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Preface 
 

Notwithstanding the tremendous effort to solve the face recognition problem, it is not 
possible yet to design a face recognition system with a potential close to human 
performance. New computer vision and pattern recognition approaches need to be 
investigated. Even new knowledge and perspectives from different fields like, psychology 
and neuroscience must be incorporated into the current field of face recognition to design a 
robust face recognition system. Indeed, many more efforts are required to end up with a 
human like face recognition system. This book tries to make an effort to reduce the gap 
between the previous face recognition research state and the future state. Also, the purpose 
of the book is to present the reader with cutting edge research on the face recognition field. 
Besides, the book includes recent research works from different world research groups, 
providing a rich diversity of approaches to the face recognition problem. 

This book consists of 12 chapters. The material covered in these chapters presents new 
advances on computer vision and pattern recognition approaches, as well as new 
knowledge and perspectives from different fields like, psychology and neuroscience. The 
chapters are organized into three groups according to their main topic. The first group 
focuses on classification, feature spaces, and subspaces for face recognition, Chapters 1 to 5. 
The second group addresses the no trivial techniques of face recognition based on 
holographic, 3D methods and low resolution video, covered in Chapters 6 to 9. Chapters 10 
to 12 cover the third group related to human visual perception aspects on face recognition. 

Chapter 1 describes the achievement and perspective trends related to nearest feature 
classification for face recognition. The authors explain the family of nearest feature 
classifiers and their modified and extended versions. Among other points they provide a 
discussion on alternatives of the nearest feature classifiers, indicating which issues are still 
susceptible to be improved. The authors describe three approaches for generalizing 
dissimilarity representations, and they include their proposal for generalizing them by using 
feature lines and feature planes.  

Chapter 2 addresses recent subspace methods for face recognition including: 
singularity, regularization, and robustness. They start dealing with the singularity problem, 
and the authors propose a fast feature extraction technique, Bi-Directional PCA plus LDA 
(BDPCA+LDA), which performs LDA in the BDPCA subspace. Then, the authors presents 
an alternative to alleviate the over-fitting to the training set, proposing a post-processing 
approach on discriminant vectors, and theoretically demonstrates its relationship with the 
image Euclidean distance method (IMED). Finally, the authors describe an iteratively 
reweighted fitting of the Eigenfaces method (IRF-Eigenfaces), which first defines a 
generalized objective function and then uses the iteratively reweighted least-squares (IRLS) 
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VIII 

fitting algorithm to extract the feature vector by minimizing the generalized objective 
function. 

A multi-stage classifier for face recognition undertaken by coarse-to-fine strategy is 
covered in Chapter 3. The chapter includes a brief description of the DCT and PCA feature 
extraction methods, as well as the proposed coarse to fine stages, OAA, OAO, and multi-
stage classifiers. 

In Chapter 4, the authors propose a method to improve the face image quality by using 
photometric normalization techniques. This technique based on Histogram Equalization and 
Homomorphic Filtering normalizes the illumination variation of the face image. The face 
recognition system is based on ANN with features extracted with the PCA method. 

The aim of Chapter 5 is to demonstrate the following points: how the feature extraction 
part is evolved by IPCA and Chunk IPCA, how both feature extraction part and classifier 
are learned incrementally on an ongoing basis, how an adaptive face recognition system is 
constructed and how it is effective. The chapter also explains two classifiers based on ANN, 
the Resource Allocating Network (RAN) and its variant model called RAN-LTM. 

Chapter 6 introduces a faster face recognition system based on a holographic optical 
disc system named FARCO 2.0. The concept of the optical parallel correlation system for 
facial recognition and the dedicated algorithm are described in the chapter. The chapter 
presents a faster correlation engine for face, image and video data using optical correlation, 
and an online face recognition system based on phase information. 

The first 3D technique for face recognition is covered in Chapter 7. The authors describe 
a 3D face mesh modeling for 3D face recognition. The purpose of the authors is to show a 
model-based paradigm that represents the 3D facial data of an individual by a deformed 3D 
mesh model useful for face recognition application.   

Continuing with 3D methods, the occlusion problem in face recognition system is 
handled in Chapter 8. In this chapter the authors describe their approach, a full automatic 
recognition pipeline based on 3D imaging. They take advantage of the 3D data to solve the 
occlusion problem because it has depth information available.  

Chapter 9 presents a model-based approach for simultaneous tracking and increasing 
super-resolution of known object types in low resolution video. The approach is also based 
on a 3D mask. The 3D mask allows estimating translation and rotation parameters between 
two frames which is equivalent to calculating a dense sub-pixel accurate optical flow field 
and subsequent warping into a reference coordinate system. 

The material covered in Chapter 10 is aimed to show how joint knowledge from human 
face recognition and unsupervised systems may provide a robust alternative compared with 
other approaches. The chapter includes a detailed description of how low resolution 
features can be combined with an unsupervised ANN for face recognition. 

Chapter 11 addresses the issue of gender classification by information fusion of hair 
and face. Unlike most face recognition systems, the proposed method in this chapter 
considers the important role of hair features in gender classification. The chapter presents a 
study of hair feature extraction and the combination of hair classifier and face classifier. The 
authors show that the key point of classifier fusion is to determine how classifiers interact 
with each other. The fusion information method used is based on the fuzzy integral. 

Last but not at least, a challenging issue on face recognition is faced in Chapter 12, 
emotion modeling and facial affect recognition in human-computer and human-robot 
interaction. In this chapter the authors present a review of prevalent psychology theories on 
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emotion with the purpose to disambiguate their terminology and identify the fitting 
computational models that can allow affective interactions in the desired environments. 

It is our interest, editors and chapter authors that this book contributes to a fast and 
deep development on the challenging filed of face recognition systems.

We also expect the reader really finds this book both helpful and promising.
January 2009 

Editor 

Dr. Mario I. Chacon M. 
Chihuahua Institute of Technology,

Mexico 
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Trends in Nearest Feature Classification 
for Face Recognition – 

Achievements and Perspectives 
Mauricio Orozco-Alzate and César Germán Castellanos-Domínguez 

Universidad Nacional de Colombia Sede Manizales 
Colombia 

1. Introduction  
Face recognition has become one of the most intensively investigated topics in biometrics.
Recent and comprehensive surveys found in the literature, such as (Zhao et al., 2003; Ruiz-
del Solar & Navarrete, 2005; Delac & Grgic, 2007), provide a good indication of how active 
are the research activities in this area.  Likewise in other fields in pattern recognition, the
identification of faces has been addressed from different approaches according to the chosen
representation and the design of the classification method. Over the past two decades,
industrial interests and research efforts in face recognition have been motivated by a wide 
range of potential applications such identification, verification, posture/gesture recognizers 
and intelligent multimodal systems. Unfortunately, counter effects are unavoidable when
there is a heavily increased interest in a small research area. For the particular case of face 
recognition, most of the consequences were pointed out by three editors of the well-known
Pattern Recognition Letters journal. The following effects on the publication of results were 
discussed by Duin et al. (2006): 
1. The number of studies in face recognition is exploding and always increasing. Some of 

those studies are rather obvious and straightforward. 
2. Many of the submitted papers have only a minor significance or low citation value. As a 

result, journals receive piles of highly overlapping related papers. 
3. Results are not always comparable, even though the same data sets are used. This is due 

to the use of different or inconsistent experimental methodologies.
A par excellence example of the situation described above is the overwhelming interest in 
linear dimensionality reduction, especially in the so-called small sample size (SSS) case. It is 
one of the most busy study fields on pixel-based face recognition. Indeed, the SSS problem is 
almost always present on pixel-based problems due to the considerable difference between 
dimensions and the number of available examples. In spite of that apparent justification,
most of the published works in this matter are minor contributions or old ideas phrased in a 
slightly different way. Of course, there are good exceptions, see e.g. (Nhat & Lee, 2007; Zhao
& Yuen, 2007; Liu et al., 2007). Our discussion here should not be interpreted as an attack to
authors interested in dimensionality reduction for face recognition; conversely, we just want 
to explain why we prefer to focus in subsequent stages of the pattern recognition system
instead of in dimensionality reduction. In our opinion, making a significant contribution in 



X        

10. Face Recognition Based on Human Visual Perception Theories  
and Unsupervised ANN 

195 

 Mario I. Chacon M. and Pablo Rivas P.  
   

11. Gender Classification by Information Fusion of Hair and Face 215 
 Zheng Ji, Xiao-Chen Lian and Bao-Liang Lu  

   
12. Emotion Modelling and Facial Affect Recognition in Human-Computer 

and Human-Robot Interaction 
231 

 Lori Malatesta, John Murray, Amaryllis Raouzaiou, Antoine Hiolle,  
Lola Cañamero and Kostas Karpouzis 

 

   
 

1 

Trends in Nearest Feature Classification  
for Face Recognition –  

Achievements and Perspectives 
Mauricio Orozco-Alzate and César Germán Castellanos-Domínguez 

Universidad Nacional de Colombia Sede Manizales 
Colombia 

1. Introduction     
Face recognition has become one of the most intensively investigated topics in biometrics. 
Recent and comprehensive surveys found in the literature, such as (Zhao et al., 2003; Ruiz-
del Solar & Navarrete, 2005; Delac & Grgic, 2007), provide a good indication of how active 
are the research activities in this area.  Likewise in other fields in pattern recognition, the 
identification of faces has been addressed from different approaches according to the chosen 
representation and the design of the classification method. Over the past two decades, 
industrial interests and research efforts in face recognition have been motivated by a wide 
range of potential applications such identification, verification, posture/gesture recognizers 
and intelligent multimodal systems. Unfortunately, counter effects are unavoidable when 
there is a heavily increased interest in a small research area. For the particular case of face 
recognition, most of the consequences were pointed out by three editors of the well-known 
Pattern Recognition Letters journal. The following effects on the publication of results were 
discussed by Duin et al. (2006): 
1. The number of studies in face recognition is exploding and always increasing. Some of 

those studies are rather obvious and straightforward. 
2. Many of the submitted papers have only a minor significance or low citation value. As a 

result, journals receive piles of highly overlapping related papers. 
3. Results are not always comparable, even though the same data sets are used. This is due 

to the use of different or inconsistent experimental methodologies. 
A par excellence example of the situation described above is the overwhelming interest in 
linear dimensionality reduction, especially in the so-called small sample size (SSS) case. It is 
one of the most busy study fields on pixel-based face recognition. Indeed, the SSS problem is 
almost always present on pixel-based problems due to the considerable difference between 
dimensions and the number of available examples. In spite of that apparent justification, 
most of the published works in this matter are minor contributions or old ideas phrased in a 
slightly different way. Of course, there are good exceptions, see e.g. (Nhat & Lee, 2007; Zhao 
& Yuen, 2007; Liu et al., 2007). Our discussion here should not be interpreted as an attack to 
authors interested in dimensionality reduction for face recognition; conversely, we just want 
to explain why we prefer to focus in subsequent stages of the pattern recognition system 
instead of in dimensionality reduction. In our opinion, making a significant contribution in 



 State of the Art in Face Recognition 

 

2 

linear dimensionality reduction is becoming more and more difficult since techniques have 
reached a well-established and satisfactory level. In contrast, we consider that there are 
more open issues in previous and subsequent stages to representation such as preprocessing 
and classification. 
At the end of the nineties, a seminal paper published by Li and Lu (1999) introduced the 
concept of feature line. It consists in an extension of the classification capability of the 
nearest neighbor method by generalizing two points belonging to the same class through a 
line passing by those two points (Li, 2008).  Such a line is called feature line. In (Li & Lu, 
1998), it was suggested that the improvement gained by using feature lines is due to their 
faculty to expand the representational ability of the available feature points, accounting for 
new conditions not represented by the original set. Such an improvement was especially 
observed when the cardinality of the training set (sample size) per class is small. 
Consequently, the nearest feature line method constitutes an alternative approach to attack 
the SSS problem without using linear dimensionality reduction methods. In fact, the 
dimensionality is increased since the number of feature lines depends combinatorially on 
the number of training points or objects per class. Soon later, a number of studies for 
improving the concept of feature lines were reported. A family of extensions of the nearest 
feature line classifier appeared, mainly encompassing the nearest feature plane classifier, the 
nearest feature space classifier and several modified versions such as the rectified nearest 
feature line segment and the genetic nearest feature plane. In addition, an alternative 
classification scheme to extend the dissimilarity-based paradigm to nearest feature 
classification was recently proposed. 
In the remaining part of this chapter, we will explain in detail that family of nearest feature 
classifiers as well as their modified and extended versions. Our exposition is organized as 
follows. In Section 2, a literature review of prototype-based classification is given. It ranges 
from the classical nearest neighbor classifier to the nearest feature space classifier, reviewing 
also modifications of the distance measure and several editing and condensing methods. In 
addition, we provide a detailed discussion on the modified versions of the nearest feature 
classifiers, mentioning which issues are still susceptible to be improved. The framework of 
dissimilarity representations and dissimilarity-based classification is presented in Section 3. 
We present three approaches for generalizing dissimilarity representations, including our 
own proposal for generalizing them by using feature lines and feature planes. Finally, a 
general discussion, overall conclusions and opportunities for future work are given in 
Section 4. 

2. Prototype-based face recognition 
Several taxonomies for pattern classification methods have been proposed. For instance, 
according to the chosen representation, there is a dichotomy between structural and 
statistical pattern recognition (Bunke & Sanfeliu, 1990; Jain et al., 2000; Pękalska & Duin, 
2005a). According to the criterion to make the decision, classification approaches are divided 
into density-based and distance-based methods (Duda et al., 2001). Similarly, another 
commonly-stated division separates parametric and nonparametric methods. This last 
dichotomy is important for our discussion on prototype based face recognition. 
Parametric methods include discriminant functions or decision boundaries with a 
predefined form, e.g. hyperplanes, for which a number of unknown parameters are 
estimated and plugged into the model. In contrast, nonparametric methods do not pre-
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define a model for the decision boundary; conversely, such a boundary is directly 
constructed from the training data or generated by an estimation of the density function. 
The first type of nonparametric approaches encompasses the prototype based classifiers; a 
typical example of the second type is the Parzen window method. 
Prototype based classifiers share the principle of keeping copies of training vectors in 
memory and constructing a decision boundary according to the distances between the 
stored prototypes and the query objects to be classified (Laaksonen, 1997). Either the whole 
training feature vectors are retained or a representative subset of them is extracted to be 
prototypes. Moreover, those prototypes or training objects can be used to generate new 
representative objects which were not originally included in the training set. 
Representations of new objects are not restricted to feature points; they might be lines, 
planes or even other functions or models based on the prototypes such as clusters or hidden 
Markov models (HMMs). 

2.1 The nearest neighbor classifier 
The simplest nonparametric method for classification should be considered k-NN (Cover & 
Hart, 1967). Its first derivation and fundamental theoretical properties gave origin to an 
entire family of classification methods, see Fig. 1. This rule classifies x by assigning it the 
class label ĉ most frequently represented among the k nearest prototypes; i.e., by finding the 
k neighbors with the minimum distances between x and all prototype feature points 
{xci,1≤c≤C,1≤i≤nc}. For k=1, the rule can be written as follows: 

 ( ) ( ),x ,xdminx ,xd cin  i  1 C;  c  1îĉ
c≤≤≤≤

=  (1) 

where d(x,xci)=║x-xci║ is usually the Euclidean norm. In this case, the number of distance 

calculations is ∑ =
=

C

1c cnn .  

The k-NN method has been successfully used in a considerable variety of applications and 
has an optimal asymptotical behavior in the Bayes sense (Devroye et al., 1996); nonetheless, 
it requires a significant amount of storage and computational effort. Such a problem can be 
partly solved by using the condensed nearest neighbor rule (CNN) (Hart, 1968). In addition, 
the k-NN classifier suffers of a potential loss of accuracy when a small set of prototypes is 
available. To overcome this shortcoming, many variations of the k-NN method were 
developed, including the so-called nearest feature classifiers. Such methods derived from 
the original k-NN rule can be organized in a family of prototype-based classifiers as shown 
in Fig. 1.  

2.2 Adaptive distance measures for the nearest neighbor rule 
In order to identify the nearest neighbor, a distance measure has to be defined. Typically, a 
Euclidean distance is assumed by default. The use of other Minkowski distances such as 
Manhattan and Chebyshev is also convenient, not just for interpretability but also for 
computational convenience. In spite of the asymptotical optimality of the k-NN rule, we 
never have access to an unlimited number of samples. Consequently, the performance of the 
k-NN rule is always influenced by the chosen metric. 
Several methods for locally adapting the distance measure have been proposed. Such an 
adaptation is probabilistically interpreted as an attempt to produce a neighborhood with an 
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define a model for the decision boundary; conversely, such a boundary is directly 
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 ( ) ( ),x ,xdminx ,xd cin  i  1 C;  c  1îĉ
c≤≤≤≤

=  (1) 
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=

C
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The k-NN method has been successfully used in a considerable variety of applications and 
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developed, including the so-called nearest feature classifiers. Such methods derived from 
the original k-NN rule can be organized in a family of prototype-based classifiers as shown 
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computational convenience. In spite of the asymptotical optimality of the k-NN rule, we 
never have access to an unlimited number of samples. Consequently, the performance of the 
k-NN rule is always influenced by the chosen metric. 
Several methods for locally adapting the distance measure have been proposed. Such an 
adaptation is probabilistically interpreted as an attempt to produce a neighborhood with an 
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Fig. 1. Family of prototype-based classifiers. 

a posteriori probability approximately constant (Wang et al., 2007). Among the methods 
aimed to local adaptation, the following must be mentioned: 
a. The flexible or customized metric developed by Friedman (1994). Such a metric makes 

use of the information about the relative relevance of each feature. As a result, a new 
method is generated as a hybrid between the original k-NN rule and the tree-structured 
recursive partitioning techniques. 

b. The adaptive metric method by Domeniconi et al. (2002). They use a χ2 distance analysis 
to compute a flexible metric for producing neighborhoods that are adaptive to query 
locations. As a result, neighborhoods are constricted along the most relevant features 
and elongated along the less relevant ones. Such a modification locally influences class 
conditional probabilities, making them smother in the modified neighborhoods.  

c. Approaches for learning distance metrics directly from the training examples. In 
(Goldberger et al., 2004), it was proposed a method for learning a Mahalanobis distance 
by maximizing a stochastic variation of the k-NN leave-one-out error. Similarly, 
Weinberger et al. (2005) proposed a method for learning a Mahalanobis distance by 
applying semidefinite programming. These concepts are close to approaches for 
building trainable similarity measures. See for example (Paclík et al., 2006b; Paclík et al., 
2006a). 

d. A simple adaptive k-NN classification algorithm based on the concept of statistical 
confidence (Wang et al., 2005; Wang et al., 2006). This approach involves a local 
adaptation of the distance measure, similarly to the other methods mentioned above. 
However, this method also includes a weighting procedure to assign a weight to each 
nearest neighbor according to its statistical confidence. 

e.  In (Wang et al., 2007), the same authors of the adaptation by using statistical confidence 
proposed a simple and elegant approach based on a normalization of the Euclidean or 
Manhattan distance from a query point to each training point by the shortest distance 
between the corresponding training point to training points of a different class. Such a 
new normalized distance is not symmetric and therefore is generally not a metric. 
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f. Other adaptations of the distance and modifications of the rule include the works by 
Hastie & Tibshirani (1996), Sánchez et al. (1998), Wilson & Martínez (1997), Avesani et 
al. (1999) and Paredes & Vidal (2000). 

2.3 Prototype generation 
The nearest neighbor classifier is sensitive to outliers, e.g. erroneously chosen, atypical or 
noisy prototypes. In order to overcome this drawback, several techniques have been 
proposed to tackle the problem of prototype optimization (Pękalska et al., 2006). A 
fundamental dichotomy in prototype optimization divides the approaches into prototype 
generation and prototype selection. In this section we will discuss some techniques of the 
first group. Prototype selection techniques are reviewed in §2.4. 
Prototype generation techniques are fundamentally based on two operations on an initial set 
of prototypes: first, merging and averaging the initial set of prototypes in order to obtain a 
smaller set which optimizes the performance of the k-NN rule or; second, creating a larger 
set by creating new prototypes or even new functions or models generated by the initial set, 
see also Fig. 1. In this section we refer only to merging techniques. The second group —
which includes the nearest feature classifiers— deserves a separated section. Examples of 
merging techniques are the following:  
a. The k-means algorithm (MacQueen, 1967; Duda et al., 2001). It is considered the 

simplest clustering algorithm. Applied to prototype optimization, this technique aims 
to find a subset of prototypes generated from the original ones. New prototypes are the 
means of a number of partitions found by merging the original prototypes into a 
desired number of clusters. The algorithm starts by partitioning the original 
representation or prototype set  R={p1, p2, …pN} into M initial sets. Afterwards, the 
mean point, or centroid, for each set is calculated. Then, a new partition is constructed 
by associating each prototype with the nearest centroid. Means are recomputed for the 
new clusters. The algorithm is repeated until it converges to a stable solution; that is, 
when prototypes no longer switch clusters. It is equivalent to observe no changes in the 
value of means or centroids. Finally, the new set of merged or averaged prototypes is 
composed by the M means: Rμ={μ1, μ2, …, μM}. 

b. The learning vector quantization (LVQ) algorithm (Kohonen, 1995). It consists in 
moving a fixed number M of prototypes pi towards to or away from the training points 
xi. The set of generated prototypes is also called codebook. Prototypes are iteratively 
updated according to a learning rule. In the original learning process, the delta rule is 
used to update prototypes by adding a fraction of the difference between the current 
value of the prototype and a new training point x. The rule can be written as follows: 

 pi(t+1)=pi(t) + α(t)[x(t) - pi(t)], (2) 

where α controls the learning rate. Positive values of α move pi towards x; conversely, 
negative values move pi away from x. 
In statistical terms, the LVQ learning process can be interpreted as a way to generate a set 
of prototypes whose density reflects the shape of a function s defined as (Laaksonen, 1997): 

 ( ) ( ) ( ),xfPmaxxfPxs kkjkjj ≠
−=  (3) 

where Pj and fj are the a priori probability and the probability density functions of class 
j, respectively. See (Holmström et al., 1996) and (Holmström et al., 1997) for further 
details. 
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c. Other methods for generating prototypes include the learning k-NN classifier 
(Laaksonen & Oja, 1996), neuralnet-based methods for constructing optimized 
prototypes (Huang et al., 2002) and cluster-based prototype merging procedures, e.g. 
the work by Mollineda et al. (2002). 

2.4 Nearest feature classifiers 
The nearest feature classifiers are geometrical extensions of the nearest neighbor rule. They 
are based on a measure of distance between the query point and a function calculated from 
the prototypes, such as a line, a plane or a space. In this work, we review three different 
nearest feature rules: the nearest feature line or NFL, the nearest feature plane or NFP and 
the nearest feature space or NFS. Their natural extensions by majority voting are the k 
nearest feature line rule, or k-NFL, and the k nearest feature plane rule, or k-NFP (Orozco-
Alzate & Castellanos-Domínguez, 2006). Two recent improvements of NFL and NFP are also 
discussed here: the rectified nearest feature line segment (RNFLS) and the genetic nearest 
feature plane (G-NFP), respectively. 
 

Nearest Feature Line 
The k nearest feature line rule, or k-NFL (Li & Lu, 1999), is an extension of the k-NN classifier. 
This method generalizes each pair of prototype feature points belonging to the same class: 
{xci,xcj} by a linear function c

ijL , which is called feature line (see Fig. 2). The line is expressed 

by the span ( )cjci
c
ij x ,xspL = . The query x is projected onto c

ijL  as a point c
ijp . This projection 

is computed as 

 ),xx(xp cicjci
c
ij −τ+=  (4) 

where τ=(x-xci)(xcj-xci)/║xcj-xci║2. Parameter τ is called the position parameter. When 0<τ<1, 
pijc is in the interpolating part of the feature line; when τ>1, pijc is in the forward 
extrapolating side and; when τ<0, pijc is in the backward extrapolating part. The two special 
cases when the query point is exactly projected on top of one of the points generating the 
feature line correspond to τ= 0 and τ=1. In such cases, pijc = xci and pijc = xcj, respectively.  
The classification of x is done by assigning it the class label ĉ most frequently represented 
among the k nearest feature lines, for k=1 that means: 

 ( ) ( ),L ,xdminL ,xd c
ijji;n  ji,  1 C;  c  1

ĉ
ĵî

c ≠≤≤≤≤
=  (5) 

where ( ) c
ij

c
ij pxL,xd −= . In this case, the number of distance calculations is:  

 ∑ =
−=

C

1c ccL 2/)1n(nn  (6) 
 

 
Fig. 2. Feature line and projection point onto it. 
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The nearest feature line classifier is supposed to deal with variations such as changes in 
viewpoint, illumination and face expression (Zhou et al., 2000). Such variations correspond 
to new conditions which were possibly not represented in the available prototypes. 
Consequently, the k-NFL classifier expands the representational capacity of the originally 
available feature points. Some typical variations in image faces taken from the Biometric 
System Lab data set (Cappelli et al., 2002) are shown in Fig. 3. 
 

 

 

 

Fig. 3. Samples from the Biometric System Lab face dataset. Typical variations in face images 
are illustrated: illumination (first row), expression (second row) and pose (third row). 
Nearest Feature Plane 
The k nearest feature plane rule (Chien & Wu, 2002), or k-NFP, is an extension of the k-NFL 
classifier. This classifier assumes that at least three linearly independent prototype points 
are available for each class. It generalizes three feature points {xci,xcj,xcm} of the same class by 
a feature plane c

ijmF  (see Fig. 4); which is expressed by the span ( )cmcjci
c
ijm x,x,xspF = . The 

query x is projected onto c
ijmF  as a point c

ijmp . See Fig. 4. The projection point can be 
calculated as follows: 

 ( ) ,xXXXXp Tc
ijm

1c
ijm

Tc
ijm

c
ijm

c
ijm

−
=  (7) 

where [ ]cmcjci
c
ijm xxxX = . Considering k=1, the query point x is classified by assigning it the 

class label ĉ, according to 

 ( ) ( ),F ,xdminF ,xd c
ijmmji;n  mj,i,  1 C;  c  1

ĉ
m̂ĵî

c ≠≠≤≤≤≤
=  (8) 
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Fig. 4. Feature plane and projection point onto it. 
Nearest Feature Space 
The nearest feature space rule (Chien & Wu, 2002), or NFS, extends the geometrical concept of 
k-NFP classifier. It generalizes the independent prototypes belonging to the same class by a 
feature space ( )

ccn2c1c
c x,,x,xspS …= . The query point x is projected onto the C spaces as 

follows 

 ( ) ,xXXXXp Tc1cTccc −
=  (10) 

where [ ]
ccn2c1c

c xxxX �= . The query point x is classified by assigning it the class label ĉ, 
according to 

 ( ) ( ) c
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 (11) 

Always, C distance calculations are required. It was geometrically shown in (Chien & Wu, 
2002) that the distance of x to c

ijmF  is smaller than that to the feature line. Moreover, the 
distance to the feature line is nearer compared with the distance to two prototype feature 
points. This relation can be written as follows: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )cmcjci
c
mi

c
jm

c
ij

c
ijm x ,xd,x ,xd,x ,xdminL ,xd,L ,xd,L ,xdminF ,xd ≤≤  (12) 

In addition,  

 ( ) ( )c
ijmC  c  1

c F ,xdminS ,xd
≤≤

=  (13) 

In consequence, k-NFL classifier is supposed to capture more variations than k-NN, k-NFP 
should handle more variations of each class than k-NFL and NFS should capture more 
variations than k-NFP. So, it is expected that k-NFL performs better than k-NN, k-NFP is 
more accurate than k-NFL and NFS outperforms k-NFP. 
 

Rectified Nearest Feature Line Segment 
Recently, two main drawbacks of the NFL classifier have been pointed out: extrapolation 
and interpolation inaccuracies. The first one was discussed by (Zheng et al., 2004), who also 
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proposed a solution termed as nearest neighbor line (NNL). The second one —interpolation 
inaccuracy— was considered in (Du & Chen, 2007). They proposed an elegant solution 
called rectified nearest feature line segment (RNFLS). Their idea is aimed to overcome not just 
the interpolation problems but also the detrimental effects produced by the extrapolation 
inaccuracy. In the subsequent paragraphs, we will discuss both inaccuracies and the RNFLS 
classifier. 
Extrapolation inaccuracy. It is a major shortcoming in low dimensional feature spaces. 
Nonetheless, its harm is limited in higher dimensional ones such those generated by pixel-
based representations for face recognition. Indeed, several studies related to NFL applied to 
high dimensional feature spaces have reported improvements in classification performance; 
see for instance (Li, 2000; Li et al., 2000; Orozco-Alzate & Castellanos-Domínguez, 2006; 
Orozco-Alzate & Castellanos-Domínguez, 2007). In brief, the extrapolation inaccuracy 
occurs when the query point is far from the two points generating the feature line L but, at 
the same time, the query is close to the extrapolating part of L. In such a case, classification 
is very likely to be erroneous. Du & Chen (2007) mathematically proved for a two-class 
problem that the probability that a feature line L1 (first class) trespasses the region R2 
(second class) asymptotically approaches to 0 as the dimension becomes large. See (Du & 
Chen, 2007) for further details. 
Interpolation inaccuracy. This drawback arises in multi-modal classification problems. That is, 
when one class ci has more than one cluster and the territory between two of them belongs 
to another class cj, i≠j. In such a case, a feature line linking two points of the multi-modal 
class will trespass the territory of another class.  Consequently, a query point located near to 
the interpolating part of the feature line might be erroneously assigned to the class of the 
feature line. 
As we stated before, the two above-mentioned drawbacks are overcome by the so-called 
rectified nearest feature line segment.  It consists in a two step correction procedure for the 
original k-NFL classifier. Such steps are a segmentation followed by a rectification. 
Segmentation consists in cutting off the feature line in order to preserve only the 
interpolating part which is called a feature line segment c

ijL~ . Segmentation is aimed to avoid 
the extrapolation inaccuracy. When the orthogonal projection of a query point onto c

ijL  is in 
the interpolating part; that is, in c

ijL~ , the  distance of such query point to c
ijL~  is computed in 

the same way that the distance to c
ijL , i.e. according to Eqs. (4) and (5). In contrast, when the 

projection point pijc is in the extrapolating part, the distance to c
ijL~  is forced to be equal to 

the distance of the query point to one of the extreme point of c
ijL~ : xci if pijc is in the backward 

extrapolating part and xcj if pijc is the forward extrapolating part, respectively.  See Fig. 5. 
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Afterwards, the rectification procedure is achieved in order to avoid the effect of the 
interpolation inaccuracy.  It consists in removing feature line segments trespassing the 
territory of another class. To do so, the concept of territory must be defined. Indeed, Du & 
Chen (2007) define two types of territory. The first one is called sample territory which, for a 
particular feature point x, stands for a ball centered at x with a radius equals to the distance 
from x to its nearest neighbor belonging to a different class. The second one —the class 
territory— is defined as the union of all sample territories of feature points belonging to the 
same class. Then, for each feature line segment, we check if it trespass the class territory of 
another class or not. In the affirmative case, we proceed to remove that feature line segment 
from the representation set. Finally, classification is performed in a similar way to Eq. (5) but 
replacing feature lines c

ijL  by those feature line segments c
ijL~  which were not removed 

during the rectification. 
 

Center-based Nearest Neighbor Classifier and Genetic Nearest Feature Plane 
The k-NFL and k-NFP classifiers tend to be computationally unfeasible as the number of 
training objects per class grows. Such a situation is caused by to the combinatorial increase 
of combinations of two and three feature points, see Eqs. (6) and (9). Some alternatives to 
overcome this drawback have been recently published. Particularly, the center-based nearest 
neighbor (CNN) classifier (Gao & Wang, 2007) and the genetic nearest feature plane (G-
NFP) (Nanni & Lumini, 2007). The first one is aimed at reducing the computation cost of the 
k-NFL classifier by using only those feature lines linking two feature points of the same 
class and, simultaneously, passing by the centroid of that class. In such a way, only a few 
feature lines are kept (authors call them center-based lines) and computation time is 
therefore much lower. The G-NFP classifier is a hybrid method to reduce the computational 
complexity of the k-NFP classifier by using a genetic algorithm (GA). It consists in a GA-
based prototype selection procedure followed by the conventional method to generate 
feature lines. Selected prototypes are centroids of a number of intra-class clusters found by 
the GA. 

2.5 Prototype selection 
Prototype selection methods aim at the reduction of the initial set of prototypes while 
maintaining an acceptable classification accuracy or even increasing it. There are two groups 
of prototypes selection methods as shown in Fig. 1. See also (Wilson & Martínez, 2000) and 
(Lozano et al., 2006). Editing methods (Wilson, 1972; Devijver & Kittler, 1982; Aha et al., 
1991) remove noisy and/or close border prototypes in order to avoid overlapping and 
smoothing the resulting decision boundaries. In other words, they are intended to produce a 
subset of prototypes forming homogeneous clusters in the feature space. Condensing 
algorithms try to select a small subset of prototypes while preserving classification 
performance as good as possible. Condensing may involve just a pure selection of 
prototypes (Hart, 1968; Tomek, 1976; Toussaint et al., 1985; Dasarathy, 1990; Dasarathy, 
1994) or include a modification of them (Chang, 1974; Chen & Józwik, 1996; Ainslie & 
Sánchez, 2002; Lozano et al., 2004a; Lozano et al., 2004b). 

2.6 HMM-based sequence classification 
There are two standard ways for classifying sequences using HMMs. The first one is 
referred to as MLOPC (Maximum-likelihood, one per class HMM-based classification). 
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Assume that a particular object x, a face in our case of interest, is represented by a sequence 
O and that C HMMs, {λ(1), λ(2), …,λ(C)}, has been trained; i.e. there is one trained HMM per 
class. Thus, the sequence O is assigned to the class showing the highest likelihood: 

 Class(O)=arg maxc P(O|λ(c)) (14) 

The likelihood P(O, λ(c)) is the probability that the sequence O was generated by the model 
λ(c). The likelihood can be estimated by different methods such as the Baum-Welch 
estimation procedure (Baum et al., 1970) and the forward-backward procedure (Baum, 
1970). This approach can be considered analogous to the nearest feature space classification 
(see §2.4), with the proximity measure defined by the likelihood function. 
The second method, named as MLOPS (Maximum-likelihood, one per sequence HMM-based 
classification) consists in training one HMM per each training sequence Oi(c), where c 
denotes the class label. Similarly to (14), it can be written as: 

 Class(O)=arg maxc(arg maxi P(O|λi(c)) ) (15) 

This method is analogous to the nearest neighbor classifier. Compare (1) and (15). 

3. Dissimilarity representations 
In (Orozco-Alzate & Castellanos-Domínguez, 2007) we introduced the concepts of 
dissimilarity-based face recognition and their relationship with the nearest feature 
classifiers. For convenience of the reader and for the sake of self–containedness, we repeat 
here a part of our previously published discourse on this matter. 
A dissimilarity representation of objects is based on their pairwise comparisons. Consider a 
representation set R:={p1,p2,…,pn} and a dissimilarity measure d. An object x is represented 
as a vector of the dissimilarities computed between x and the prototypes from R, i.e. 
D(x,R)=[d(x,p1),d(x,p2),…,d(x,pn)]. For a set T of N objects, it extends to an N×n dissimilarity 
matrix (Pękalska & Duin, 2005a): 
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where djk=D(xj,pk). 
For dissimilarities, the geometry is contained in the definition, giving the possibility to 
include physical background knowledge; in contrast, feature-based representations usually 
suppose a Euclidean geometry. Important properties of dissimilarity matrices, such as 
metric nature, tests for Euclidean behavior, transformations and corrections of non-
Euclidean dissimilarities and embeddings, are discussed in (Pękalska & Duin, 2005b). 
When the entire T is used as R, the dissimilarity representation is expressed as an N×N 
dissimilarity matrix D(T,T). Nonetheless, R may be properly chosen by prototype selection 
procedures. See §2.5 and (Pękalska et al., 2006). 
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3.1 Classifiers in dissimilarity spaces 
Building a classifier in a dissimilarity space consists in applying a traditional classification 
rule, considering dissimilarities as features; it means, in practice, that a dissimilarity-based 
classification problem is addressed as a traditional feature-based one. Even though the 
nearest neighbor rule is the reference method to discriminate between objects represented 
by dissimilarities, it suffers from a number of limitations. Previous studies (Pękalska et al., 
2001; Pękalska & Duin, 2002; Paclík & Duin, 2003; Pękalska et al., 2004; Orozco-Alzate et al., 
2006) have shown that Bayesian (normal density based) classifiers, particularly the linear 
(LDC) and quadratic (QDC) normal based classifiers, perform well in dissimilarity spaces 
and, sometimes, offer a more accurate solution. For a 2-class problem, the LDC based on the 
representation set R is given by 
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where C is the sample covariance matrix, C(1) and C(2) are the estimated class covariance 
matrices, and m(1) and m(2) are the mean vectors, computed in the dissimilarity space D(T,R). 
P(1) and P(2) are the class prior probabilities. If C is singular, a regularized version must be 
used. In practice, the following regularization is suggested for r=0.01 (Pękalska et al., 2006): 

 ( ) ( )CdiagrCr1Cr
reg +−=  (19) 

Nonetheless, regularization parameter should be optimized in order to obtain the best 
possible results for the normal density based classifiers. 
Other classifiers can be implemented in dissimilarity spaces, usually by a straightforward 
implementation. Nearest mean linear classifiers, Fisher linear discriminants, support vector 
machines (SVMs), among others are particularly interesting for being used in generalized 
dissimilarity spaces. In addition, traditional as well as specially derived clustering 
techniques can be implemented for dissimilarity representations, see (Pękalska & Duin, 
2005c) for a detailed discussion on clustering techniques in dissimilarity representations. 

3.2 Generalization of dissimilarity representations 
Dissimilarity representations were originally formulated as pairwise constructs derived by 
object to object comparisons. Nonetheless, it is also possible to define them in a wider form, 
e.g. defining representations based on dissimilarities with functions of (or models built by) 
objects. In the general case, representation objects used for building those functions or 
models do not need labels, allowing for semi-supervised approaches in which the unlabeled 
objects are used for the representation and not directly for the classifier, or might even be 
artificially created, selected by an expert or belong to different classes than the ones under 
consideration (Duin, 2008). 
We phrase such a wider formulation as a generalized dissimilarity representation. In spite of the 
potential to omit labels, to the best of the authors’ knowledge, all the current generalization 
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procedures —including ours— make use of labels. At least three different approaches for 
generalizing dissimilarity representations have been proposed and developed 
independently: generalization by using hidden Markov models (Bicego et al., 2004), 
generalization by pre-clustering (Kim, 2006) and our own proposal of generalizing 
dissimilarity representations by using feature lines and feature planes. In this subsection, we 
discuss the first two approaches, focusing particularly in their motivations and 
methodological principles. The last one is discuss in §3.3. 
 

Dissimilarity-based Classification Using HMMs 
It can be easily seen that likelihoods P(O|λ(c)) and/or P(O|λi(c)) can be interpreted as 
similarities; e.g. Bicego et al. (2004) propose to use the following similarity measure between 
two sequences Oi and Oj: 

 dij = d(Oi,Oj)=log P(Oi|λj)/Ti (20) 

where Ti is the length of the sequence Oi, introduced as a normalization factor to make a fair 
comparison between sequences of different length. Notice that, even though we use d to 
denote a dissimilarity measure, in (20) we are in fact referring to a similarity. Nonetheless, 
the two concepts are closely related and even used indistinctively as in (Bicego et al., 2004). 
In addition, there exist some ways of changing a similarity value into a dissimilarity value 
and vice versa (Pękalska & Duin, 2005a). 
A HMM-based dissimilarity might be derived by measuring the likelihood between all pairs 
of sequences and HMMs. Consider a representation set R={O1(1),O2(1),…,OM(C)}. A 
dissimilarity representation for a new sequence O is given in terms of the likelihood of 
having generated O with the associated HMMs for each sequence in R. Those HMMs are 
grouped in the representation set Rλ={λ1(1),λ2(1),…,λM(C)}. In summary, the sequence O is 
represented by the following vector: D(O,Rλ)=[d1  d2 ⋅⋅⋅ dM]. For a training set T={O1,O2,…, 
ON}, it extends to a matrix D(T,Rλ) as shown in Fig. 6. 
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Fig. 6. Generalization of a dissimilarity representation by using HMMs. 
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Fig. 6. Generalization of a dissimilarity representation by using HMMs. 
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On top of the generalized dissimilarity representation D(T,Rλ), a dissimilarity-based 
classifier can be built. 
 

Generalization by Clustering Prototypes 
Kim (2006) proposed a methodology to overcome the SSS problem in face recognition 
applications. In summary, the proposed approach consists in: 
1. Select a representation set R from the training set T. 
2. Compute a dissimilarity representation D(T,R) by using some suitable dissimilarity 

measure. 
3. For each class, perform a clustering of R into a few subsets Ym(c), c=1,…,C and i= m,…, 

M; that is, M clusters of objects belonging to the same class. Any clustering method can 
be used; afterwards, the M mean vectors Ŷi(c), are computed by averaging each cluster. 

4. A dissimilarity based classifier is built in D(T,RY). Moreover, a fusion technique may be 
used in order to increase the classification accuracy. 

Kim's attempt to reduce dimensionality by choosing means of clusters as representatives can 
be interpreted as a generalization procedure. Similarly to the case of generalization by 
HMMs, this generalization procedure by clustering prototypes is schematically shown in 
Fig. 7. 
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Fig. 7. Generalization of dissimilarity representations by clustering prototypes. 
As we explained above, our generalization method by feature lines and feature planes can 
be included in the family of model- or function-based generalization procedures. It will be 
presented in detail in the subsequent section. For the sake of comparison, here we point to a 
few relevant coincidences and differences between the generalizations by HMMs and 
clustering and our proposed approach by feature lines and feature planes. See Fig. 8 and 
compare it against Figs. 6 and 7. Firstly, notice that the representation role is played in our 
case by a function generated by two representative objects, e.g. the so-called feature lines: 
{ }c

mL . A given object x is now represented in terms of its dissimilarities to a set RL of 
representative feature lines. It also extends to D(T,RL) for an entire training set. One 
remarkable difference is that our approach, in principle, leads to a higher dimensional 
space; i.e. M > N. In contrast, HMM- and cluster-based approaches leads in general to low 
dimensional spaces:  M < N. 
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Fig. 8. Generalization of dissimilarity representations by feature lines. 
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where djk=DL(xj,Lk); and 
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where djk=DF(xj, Fk). 
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D(T, RL) and D(T, RF) are high dimensional matrices because the original representation set 
R is generalized by combining all the pairs (RL) and all the triplets (RF) of prototypes of the 
same class. Consequently, a proper procedure for prototype selection (dimensionality 
reduction) is needed in order to avoid the curse of the dimensionality. Another option is to 
use a strong regularization procedure. In general, all the possible dissimilarities between 
objects are available but the original feature points are not. Nonetheless, it is possible to 
compute the distances to feature lines from the dissimilarities. The problem consists in 
computing the height of a scalene triangle as shown in Figure 9. 
 

 
Fig. 9. Height of a scalene triangle corresponding to the distance to a feature line. 

Let us define s=(djk+dij+dik)/2. Then, the area of the triangle is given by: 

 ;)ds)(ds)(ds(sA ikijjk −−−=  (23) 

but it is also known that area, assuming dij as base, is: 
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So, we can solve (23) and (24) for h, which is the distance to the feature line. The generalized 
dissimilarity representation in (21) is constructed by replacing each entry of D(T,RL) by the 
corresponding value of h. The distance dij in Fig. 9 must be an intraclass one. 
Computing the distances to the feature planes in terms of dissimilarities consists in 
calculating the height of an irregular (scalene) tetrahedron as shown in Fig. 10. 
 

 
Fig. 10. Height of an irregular tetrahedron corresponding to the distance to a feature plane. 

Let us define s=(djk+dij+dik)/2. Then, the volume of a tetrahedron is given by: 
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but volume is also (Uspensky, 1948): 
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So, we can solve (25) and (26) for h, which is the distance to the feature plane. The 
generalized dissimilarity representation in (22) is constructed by replacing each entry of 
D(T,RF) by the corresponding value of h. Distances dij, dik and djk in Fig. 10 must be 
intraclass. 
Experiments (Orozco-Alzate and Castellanos-Domínguez, 2007; Orozco-Alzate et al., 2007a) 
showed that nearest feature rules are especially profitable when variations and conditions 
are not fully represented by the original prototypes; for example the case of small or non-
representative training sets. The improvement in such a case respect to the reference method 
—the k-NN rule— is due to the feature lines/planes' ability to expand the representational 
capacity of the available points, accounting for new conditions not fully represented by the 
original set. Those are precisely the conditions in face recognition problems, where the 
number of prototypes is typically limited to few images per class and the number of classes 
is high: tens or even one hundred persons. As a result, the effectiveness of the nearest 
feature rules is remarkable for this problem.  
Generalized dissimilarity representations by feature lines and feature planes are not square, 
having two or three zeros per column for feature lines and feature planes respectively. 
Firstly, we have considered generalizations of metric representations because the 
generalization procedure requires constructing triangles and tetrahedrons and, as a result, 
generalizing non-metric dissimilarity representations might produce complex numbers 
when solving equations for heights. An apparently promising alternative to take into 
account is the use of refining methods for non-metric dissimilarities; see (Duin & Pękalska, 
2008). Such refining methods lead to pseudo-Euclidean embedded spaces or to the 
computation of distances on distances which is equivalent to apply the k-NN rule in the 
dissimilarity space. 
In order to construct classifiers based on generalized dissimilarity representations, we 
should proceed similarly as dissimilarity-based classifiers are built; see §3.1. That is, using a 
training set T and a representation set R containing prototype examples from T. Prototype 
lines or planes considered must be selected by some prototype selection procedure; 
classifiers should be built on D(T,RL) and D(T,RF). Different sizes for the representation set R 
must be considered. In (Orozco-Alzate et al., 2007b), we proved an approach for selecting 
middle-length feature lines. Experiments showed that they are appropriate to represent 
moderately curved subspaces.  
Enriching the dissimilarity representations implies a considerable number of calculations. 
The number of feature lines and planes grows rapidly as the number of prototypes per class 
increases; in consequence, computational effort may become high, especially if a generalized 
representation is computed for an entire set. When applying traditional statistical classifiers 
to dissimilarity representations, dissimilarities to prototypes may be treated as features. As a 
result, classifiers built in enriched dissimilarity spaces are also subject to the curse of 
dimensionality phenomenon. In general, for generalized dissimilarity representations 
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Dg(T,Rg), the number of training objects is small relative to the number of prototype lines or 
planes. 
According to the two reasons above, it is important to use dimensionality reduction 
techniques —feature extraction and feature selection methods— before building classifiers 
in generalized dissimilarity representations. Systematic approaches for prototype selection 
such as exhaustive search and the forward selection process lead to an optimal 
representation set; however, they require a considerable number of calculations. 
Consequently, due to the increased dimensionality of the enriched representations, the 
application of a systematic prototype selection method will be computationally expensive. 
Nonetheless, it has been shown that non-optimal and computationally simple procedures 
such as Random and RandomC may work well (Pękalska et al., 2006) and that simple 
geometrical criteria such the length of the lines (Orozco-Alzate et al., 2007b) may be wise for 
selecting representation subsets. 

4. Conclusion 
We started this chapter with a critic about the overwhelming research efforts in face 
recognition, discussing benefits and drawbacks of such a situation. The particular case of 
studies related to linear dimensionality reduction is a per antonomasia example of an 
enormous concentration of attention in a small and already mature area. We agree that 
research topics regarding preprocessing, classification and even nonlinear dimensionality 
reduction are much more promising and susceptible of significant contributions than further 
studies in LDA. Afterwards, we reviewed the state of the art in prototype-based 
classification for face recognition. Several techniques and variants have been proposed since 
the early days of the nearest neighbor classifier. Indeed, an entire family of prototype-based 
methods arose; some of the family members are entirely new ideas, others are modifications 
or hybrid methods. In brief, three approaches in prototype-based classification can be 
distinguished: modifications of the distance measure, prototype generation and prototype 
selection methods. The last two approaches present dichotomies as shown in Fig. 1. We 
focus our discussion on nearest feature classifiers and their improved versions as well as on 
their use in dissimilarity-based classification. 
The main advantage of the RNFLS classifier is its property of generating feature line 
segments that are more concentrated in distribution than the original feature points. In 
addition, RNFLS corrects the interpolation and extrapolation inaccuracies of the k-NFL 
classifier, allowing us to use feature lines (in fact, feature line segments) in low dimensional 
classification problems. k-NFL was originally proposed and successfully used just in high 
dimensional representations such pixel-based representations for face recognition; however, 
thanks to the improvement provided by RNFLS, feature line-based approaches are also 
applicable now to feature-based face recognition. The k-NFP classifier is computationally 
very expensive. G-NFP can reduce the effort to a manageable amount, just by using a simple 
two-stage process: a GA-based prototype selection followed by the original k-NFP 
algorithm. 
We presented and compare three different but related approaches to generalize dissimilarity 
representations by using HMMs, clustering techniques and feature lines/planes 
respectively. The first two are model-based extensions for a given dissimilarity matrix and 
lead, in general, to lower dimensional dissimilarity spaces. In contrast, our methodology 
produces high dimensional dissimilarity spaces and, consequently, proper prototype 
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selection methods must be applied. Generalized dissimilarity representations by feature 
lines and feature planes are in fact enriched instead of condensed representations. 
Consequently, they have the property of accounting for entirely new information not 
originally available in the given dissimilarity matrix. Potential open issues for further 
research are alternative methods for feature line/plane selection such as sparse classifiers 
and linear programming-based approaches. In order to extend methods based on feature 
lines and feature planes to the case of indefinite representations, correction techniques for 
non-Euclidean data are also of interest. 
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planes. 
According to the two reasons above, it is important to use dimensionality reduction 
techniques —feature extraction and feature selection methods— before building classifiers 
in generalized dissimilarity representations. Systematic approaches for prototype selection 
such as exhaustive search and the forward selection process lead to an optimal 
representation set; however, they require a considerable number of calculations. 
Consequently, due to the increased dimensionality of the enriched representations, the 
application of a systematic prototype selection method will be computationally expensive. 
Nonetheless, it has been shown that non-optimal and computationally simple procedures 
such as Random and RandomC may work well (Pękalska et al., 2006) and that simple 
geometrical criteria such the length of the lines (Orozco-Alzate et al., 2007b) may be wise for 
selecting representation subsets. 

4. Conclusion 
We started this chapter with a critic about the overwhelming research efforts in face 
recognition, discussing benefits and drawbacks of such a situation. The particular case of 
studies related to linear dimensionality reduction is a per antonomasia example of an 
enormous concentration of attention in a small and already mature area. We agree that 
research topics regarding preprocessing, classification and even nonlinear dimensionality 
reduction are much more promising and susceptible of significant contributions than further 
studies in LDA. Afterwards, we reviewed the state of the art in prototype-based 
classification for face recognition. Several techniques and variants have been proposed since 
the early days of the nearest neighbor classifier. Indeed, an entire family of prototype-based 
methods arose; some of the family members are entirely new ideas, others are modifications 
or hybrid methods. In brief, three approaches in prototype-based classification can be 
distinguished: modifications of the distance measure, prototype generation and prototype 
selection methods. The last two approaches present dichotomies as shown in Fig. 1. We 
focus our discussion on nearest feature classifiers and their improved versions as well as on 
their use in dissimilarity-based classification. 
The main advantage of the RNFLS classifier is its property of generating feature line 
segments that are more concentrated in distribution than the original feature points. In 
addition, RNFLS corrects the interpolation and extrapolation inaccuracies of the k-NFL 
classifier, allowing us to use feature lines (in fact, feature line segments) in low dimensional 
classification problems. k-NFL was originally proposed and successfully used just in high 
dimensional representations such pixel-based representations for face recognition; however, 
thanks to the improvement provided by RNFLS, feature line-based approaches are also 
applicable now to feature-based face recognition. The k-NFP classifier is computationally 
very expensive. G-NFP can reduce the effort to a manageable amount, just by using a simple 
two-stage process: a GA-based prototype selection followed by the original k-NFP 
algorithm. 
We presented and compare three different but related approaches to generalize dissimilarity 
representations by using HMMs, clustering techniques and feature lines/planes 
respectively. The first two are model-based extensions for a given dissimilarity matrix and 
lead, in general, to lower dimensional dissimilarity spaces. In contrast, our methodology 
produces high dimensional dissimilarity spaces and, consequently, proper prototype 
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selection methods must be applied. Generalized dissimilarity representations by feature 
lines and feature planes are in fact enriched instead of condensed representations. 
Consequently, they have the property of accounting for entirely new information not 
originally available in the given dissimilarity matrix. Potential open issues for further 
research are alternative methods for feature line/plane selection such as sparse classifiers 
and linear programming-based approaches. In order to extend methods based on feature 
lines and feature planes to the case of indefinite representations, correction techniques for 
non-Euclidean data are also of interest. 
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1. Introduction 
Face recognition has been an important issue in computer vision and pattern recognition over 
the last several decades (Zhao et al., 2003). While human can recognize faces easily, automated 
face recognition remains a great challenge in computer-based automated recognition research. 
One difficulty in face recognition is how to handle the variations in expression, pose and 
illumination when only a limited number of training samples are available. 
Currently，face recognition methods can be grouped into three categories, feature-based, 
holistic-based, and hybrid approaches (Zhao et al., 2003). Feature-based approaches, which 
extract local features such as the locations and local statistics of the eyes, nose, and mouth, 
had been investigated in the beginning of the face recognition research (Kanade, 1973). 
Recently, with the introduction of elastic bunch graph matching (Wiskott, 1997) and local 
binary pattern (Timo, 2004), local feature-based approaches have shown promising results 
in face recognition. Holistic-based approaches extract a holistic representation of the whole 
face region, and have robust recognition performance under noise, blurring, and partial 
occlusion. After the introduction of Eigenfaces (Turk & Pentland, 1991) and Fisherfaces 
(Belhumeur et al., 1997), holistic-based approaches were extensively studied and widely 
applied to face recognition. Motivated by human perception system, hybrid approaches use 
both local feature and the whole face region for face recognition, and thus are expected to be 
potentially effective in improving recognition accuracy. 
In holistic-based face recognition, feature extraction is fundamental, which can be revealed 
from three aspects. First, the input facial image is high dimensional and most current 
recognition approaches suffer from the “curse of dimensionality” problem. Thus a feature 
extraction step is necessary. Second, facial image usually contains less discriminative or 
unfavorable information for recognition (e.g., illumination). By making use of feature 
extraction, this information can be efficiently suppressed while retaining discriminative 
information. Third, feature extraction can greatly reduce the dimensionality of facial image, 
and this reduces the system’s memory and computational requirements. 
Subspace method, which aims to reduce the dimension of the data while retaining the 
statistical separation property between distinct classes, has been a natural choice for facial 
feature extraction. Face images, however, are generally high dimensional and their within-
class variations is much larger than the between-class variations, which will cause the 
serious performance degradation of classical subspace methods. By far, various subspace 
methods have been proposed and applied to face recognition. 
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1.1 Previous work 
At the beginning, linear unsupervised method, such as principal component analysis (PCA), 
was used to extract the holistic feature vectors for facial image representation and 
recognition (Turk & Pentland, 1991). Other unsupervised methods, such as independent 
component analysis (ICA) and non-negative matrix factorization (NMF), have been 
subsequently applied to face recognition (Bartlett et al., 2002; Zafeiriou et al., 2006). 
Since the unsupervised methods do not utilize the class label information in the training 
stage, it is generally believed that the supervised methods are more effective in dealing with 
recognition problems. Fisher linear discriminant analysis (LDA), which aims to find a set of 
optimal discriminant vectors that map the original data into a low-dimensional feature 
space, is then gaining popularity in face recognition. In 1996, Fisher linear discriminant 
analysis was applied to face recognition, and subsequently was developed into one of the 
most famous face recognition approaches, Fisherfaces (Swets & Weng, 1996; Belhumeur et 
al., 1997). In face recognition, the data dimensionality is much higher than the size of the 
training set, leading to the small sample size problem (the SSS problem). Currently there are 
two popular strategies to solve the SSS problem, the transform-based and the algorithm-
based. The transform-based strategy first reduces the dimensions of the original image data 
and then uses LDA for feature extraction, while the algorithm-based strategy finds an 
algorithm to circumvent the SSS problem (Yang & Yang, 2003; Yu & Yang, 2001). 
Face recognition usually is highly complex and can not be regarded as a linear problem. In 
the last few years, a class of nonlinear discriminant analysis techniques named as kernel 
discriminant analysis has been widely investigated for face recognition. A number of kernel-
methods, such as kernel principal component analysis (KPCA), kernel Fisher’s discriminant 
analysis, complete kernel Fisher discriminant (CKFD), and kernel direct discriminant 
analysis (KDDA), have been developed (Liu, 2004; Yang, 2002; Yang et al., 2005b; Lu et al., 
2003). Most recently, manifold learning methods, such as isometric feature mapping 
(ISOMAP), locally linear embedding (LLE), and Laplacian eigenmaps, have also shown 
great potential in face recognition (Tenenbaum et al., 2000; Roweis & Saul, 2000; He et al., 
2005). 
As a generalization of vector-based methods, a number of tensor discrimination 
technologies have been proposed. The beginning of tensor discrimination technology can be 
traced back to 1993, where a 2D image matrix based algebraic feature extraction method is 
proposed for image recognition (Liu et al., 1993). As a new development of the 2D image 
matrix based straightforward projection technique, a two-Dimensional PCA (2DPCA) 
approach was suggested for face representation and recognition (Yang et al., 2004). To 
further reduce computational cost, researchers had developed several BDPCA and 
generalized low rank approximations of matrices (GLRAM) approaches (Ye, 2004; Zuo et al., 
2005a). Motivated by multilinear generalization of singular vector decomposition 
(Lathauwer et al., 2000), a number of alterative supervised and unsupervised tensor analysis 
methods have been proposed for facial image or image sequence feature extraction (Tao et 
al., 2005; Yan et al., 2007). 

1.2 Organization of this chapter 
Generally, there are three issues which should be addressed in the development of subspace 
methods for face recognition, singularity, regularization, and robustness. First, the 
dimensionality of facial image usually is higher than the size of the available training set, 
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which results in the singularity of the scatter matrices and causes the performance 
degradation (known as the SSS problem). So far, considerable research interests have been 
given to solve the SSS problem. Second, another unfavorable effect of the SSS problem is 
that, a limited sample size can cause poor estimation of the scatter matrices, resulting in an 
increase in the classification error. Third, noisy or partially occluded facial image may be 
inevitable during the capture and communication stage, and thus the robust recognition 
should be addressed in the development of subspace methods. 
In this chapter, we introduce the recent development of subspace-based face recognition 
methods in addressing these three problems. First, to address the singularity problem, this 
chapter proposes a fast feature extraction technique, Bi-Directional PCA plus LDA 
(BDPCA+LDA), which performs LDA in the BDPCA subspace. Compared with the 
PCA+LDA framework, BDPCA+LDA needs less computational and memory requirements, 
and can achieve competitive recognition accuracy. Second, to alleviate the over-fitting to the 
training set, this chapter suggests a post-processing approach on discriminant vectors, and 
theoretically demonstrates its relationship with the image Euclidean distance method 
(IMED). Third, to improve the robustness of subspace method over noise and partial 
occlusion, this chapter presents an iteratively reweighted fitting of the Eigenfaces method 
(IRF-Eigenfaces), which first defines a generalized objective function and then uses the 
iteratively reweighted least-squares (IRLS) fitting algorithm to extract the feature vector by 
minimizing the generalized objective function. Finally, two popular face databases, the AR 
and the FERET face databases, are used to evaluate the performance the proposed subspace 
methods. 

2. BDPCA+LDA: a novel method to address the singular problem 
In face recognition, classical LDA always encounters the SSS problem, where the data 
dimensionality is much higher than the size of the training set, leading to the singularity of 
the within-class scatter matrix Sw. A number of approaches have been proposed to address 
the SSS problem. One of the most successful approaches is subspace LDA which uses a 
dimensionality reduction technique to map the original data to a low-dimensional subspace. 
Researchers have applied PCA, latent semantic indexing (LSI), and partial least squares 
(PLS) as pre-processors for dimensionality reduction (Belhumeur et al., 1997; Torkkola, 2001; 
Baeka & Kimb, 2004). Among all the subspace LDA methods, over the past decade, the PCA 
plus LDA approach (PCA+LDA), where PCA is first applied to eliminate the singularity of 
Sw, and then LDA is performed in the PCA subspace, has received significant attention 
(Belhumeur et al., 1997). The discarded null space of Sw, however, may contain some 
important discriminant information and cause the performance deterioration of Fisherfaces. 
Rather than discarding the null space of Sw, Yang proposed a complete PCA+LDA method 
which simultaneously considered the discriminant information both in the range space and 
the null space of Sw (Yang & Yang, 2003). 
In this section, we introduce a fast subspace LDA technique, Bi-Directional PCA plus LDA 
(BDPCA+LDA). BDPCA, which assumes that the transform kernel of PCA is separable, is a 
natural extension of classical PCA and a generalization of 2DPCA (Yang et al., 2004). The 
separation of the PCA kernel has at least three main advantages: lower memory 
requirement, faster training and feature extraction speed. 
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2.1 Linear discriminant analysis 
Let M be a set of data, 

111 1{ , , , , , , }
Cn ij Cn=M x x x x , where xij is the jth training sample of 

the ith class, and ni is the number of samples of the ith class, C is the number of classes. The 
sample xij is a one-dimensional vector or a vector representation of the corresponding image 
Xij. LDA and PCA are two classical dimensionality reduction techniques. PCA, an optimal 
representation method in a minimization of mean-square error sense, has been widely used 
for the representation of shape, appearance, and video (Jolliffe, 2001). LDA is a linear 
dimensionality reduction technique which aims to find a set of the optimal discriminant 
vectors by maximizing the class separability criterion (Fukunaga, 1990). In the field of face 
recognition, LDA is usually assumed more effective than PCA because LDA aims to find the 
optimal discriminant directions. 
Two main tasks in LDA are calculation of the scatter matrices, and selection of the class 
separability criterion. Most LDA algorithms involve the simultaneous maximization of the 
trace of a scatter matrix and minimization of the trace of another matrix. LDA usually makes 
use of two scatter matrices, such as the within-class scatter matrix Sw and the between-class 
scatter matrix Sb. The within-class scatter matrix Sw, the scatter of samples around their class 
mean vectors, is defined as 
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The between-class scatter matrix Sb, the scatter of class mean vectors around the global 
mean vector, is defined as 
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The most famous class separability criterion is the Fisher’s discriminant criterion 
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The set of discriminant vectors 1[ , , ]
LDAd=W w w  corresponding to the maximization of the 

Fisher’s discriminant criterion can be obtained by solving the generalized eigenvalue 
problem b w=S W S WΛ . Since both Sb and Sw are symmetric matrices, the simultaneous 
diagonalization technique can be used to calculate the set of discriminant vectors W. 

2.1.1 Simultaneous diagonalization 
Fig. 1 uses a three-class problem to illustrate the procedure of simultaneous diagonalization 
in computing the discriminant vectors of LDA. The distribution of each class and the 
distributions of within- and between-class scatter are depicted in Fig. 1(a) and (b). 
Simultaneous diagonalization tries to find a transformation matrix Φ that satisfies ΦTSwΦ=I 
and ΦTSbΦ=Λg, where I is an identity matrix and Λg is a diagonal matrix. 
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Fig. 1. Procedure of simultaneous diagonalization: (a) The distributions of the three-class 
problem, (b) The within-and between-class distributions, (c) Whitening the within-class 
distribution, and correspondingly transform the between-class distribution. (d) Calculating 
the eigenvectors of the transformed between-class distribution. (e) Illustration of the first 
discriminant vector. 

The procedure of simultaneous diagonalization contains three steps: 
Step 1. Whitening Sw. PCA is used to whiten the within-class distribution to an isotropic 

distribution by a transformation matrix Θwh. Then, matrix Θwh is used to transform 
the between-class scatter Ŝb=Θwh TSbΘwh. 

Step 2.   Calculation of the eigenvectors Ψ and eigenvalues Λg of Ŝb. 
Step 3. Computation of the transformation matrix Φ=ΘwhΨ, where Φ=[φ1, φ2] is the set of 

generalized eigenvectors of Sw and Sb. 

2.2 BDPCA+LDA: algorithm 
2.2.1 Bi-directional PCA 
To simplify our discussion, in the following, we adopt two representations of an image, X 
and x, where X is a representation of an image matrix and x is a representation of an image 
vector. X and x represent the same image. 
Given a transform kernel (e.g., principal component vector) wi, an image vector x can be 
projected into wi by T

i iy = w x . In image transform, if the transform kernel is product-separable, 
the image matrix X can be projected into wi equivalently by , ,

T
i i C i Ry = w Xw , where wi,C and 

wi,R are the corresponding column transform kernel and row transform kernel of wi. In PCA, 
assuming all the eigenvectors W=[w1, w2, …, wd] are product-separable, there are two 
equivalent ways to extract the feature of an image x, T=y w x (vector-based way) and 

T
C R=Y W XW (matrix-based way), where WC and WR are the column and row projection 

matrices. 
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2.1 Linear discriminant analysis 
Let M be a set of data, 

111 1{ , , , , , , }
Cn ij Cn=M x x x x , where xij is the jth training sample of 

the ith class, and ni is the number of samples of the ith class, C is the number of classes. The 
sample xij is a one-dimensional vector or a vector representation of the corresponding image 
Xij. LDA and PCA are two classical dimensionality reduction techniques. PCA, an optimal 
representation method in a minimization of mean-square error sense, has been widely used 
for the representation of shape, appearance, and video (Jolliffe, 2001). LDA is a linear 
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use of two scatter matrices, such as the within-class scatter matrix Sw and the between-class 
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The most famous class separability criterion is the Fisher’s discriminant criterion 
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Fisher’s discriminant criterion can be obtained by solving the generalized eigenvalue 
problem b w=S W S WΛ . Since both Sb and Sw are symmetric matrices, the simultaneous 
diagonalization technique can be used to calculate the set of discriminant vectors W. 

2.1.1 Simultaneous diagonalization 
Fig. 1 uses a three-class problem to illustrate the procedure of simultaneous diagonalization 
in computing the discriminant vectors of LDA. The distribution of each class and the 
distributions of within- and between-class scatter are depicted in Fig. 1(a) and (b). 
Simultaneous diagonalization tries to find a transformation matrix Φ that satisfies ΦTSwΦ=I 
and ΦTSbΦ=Λg, where I is an identity matrix and Λg is a diagonal matrix. 
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distribution by a transformation matrix Θwh. Then, matrix Θwh is used to transform 
the between-class scatter Ŝb=Θwh TSbΘwh. 

Step 2.   Calculation of the eigenvectors Ψ and eigenvalues Λg of Ŝb. 
Step 3. Computation of the transformation matrix Φ=ΘwhΨ, where Φ=[φ1, φ2] is the set of 

generalized eigenvectors of Sw and Sb. 

2.2 BDPCA+LDA: algorithm 
2.2.1 Bi-directional PCA 
To simplify our discussion, in the following, we adopt two representations of an image, X 
and x, where X is a representation of an image matrix and x is a representation of an image 
vector. X and x represent the same image. 
Given a transform kernel (e.g., principal component vector) wi, an image vector x can be 
projected into wi by T

i iy = w x . In image transform, if the transform kernel is product-separable, 
the image matrix X can be projected into wi equivalently by , ,

T
i i C i Ry = w Xw , where wi,C and 

wi,R are the corresponding column transform kernel and row transform kernel of wi. In PCA, 
assuming all the eigenvectors W=[w1, w2, …, wd] are product-separable, there are two 
equivalent ways to extract the feature of an image x, T=y w x (vector-based way) and 

T
C R=Y W XW (matrix-based way), where WC and WR are the column and row projection 

matrices. 
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2DPCA assumes the column projection matrix WC is an m×m identity matrix, and the 
criterion of classical PCA will degenerate to 

 ( ) T
tJ =w w G w ,  (4) 

where w is a unitary column vector, 1T =w w , and Gt is the image covariance matrix defined 

as 
1
( ) ( )N T

t i ii=
= − −∑G X X X X . Compared with PCA, 2DPCA has several significant 

advantages. First, 2DPCA is simpler and more straightforward to use for image feature 
extraction. Second, experimental results consistently show that 2DPCA is better than PCA in 
terms of recognition accuracy. Third, 2DPCA is computationally more efficient than PCA 
and significantly improve the speed of image feature extraction (Yang et al., 2004). 
Bi-Directional PCA (BDPCA) extracts representative feature from image X by T

C R=Y W XW  
yet it is difficult to simultaneously determine optimal WC and WR in an analytic framework. 
However, a number of alternative approaches have been proposed to compute the optimal 
column and row projection matrices WC and WR. In the following, we summary the three 
main strategies for dealing with this: 
1. The Hierarchical Strategy (Yang et al., 2005a). Hierarchical strategy adopts a two-step 

framework to calculate WC and WR. First a 2DPCA is performed in horizontal direction 
and the second 2DPCA is performed on the row-compressed matrix in vertical direction 
(H1), as shown in Fig. 2(a). It is obvious that we can adopt an alternative method, first 
perform 2DPCA in vertical direction and then in horizontal direction (H2). 

2. The Iterative Strategy. In (Ye, 2005), Ye proposed an iterative procedure for computing 
WC and WR. After the initialization of WC0, the procedure repeatedly first updates WR 
according to WC, and then updates WC according to WR until convergence (I1), as 
shown in Fig. 2(b). Theoretically, this procedure can only be guaranteed to be 
convergent to locally optimal solution of WC and WR. Their experimental results also 
show that, for image data with some hidden structure, the iterative algorithm may 
converge to the global solution, but this assertion does not always hold. 

3. The Independence Assumption (Zuo et al., 2006). One disadvantage of the hierarchical 
strategy is that are always confronted with the choice of H1 or H2. Assuming that the 
computing of WR and the computing of WC are independent, WC and WR can be 
computed by solving two 2DPCA problems independently (I2), as shown in Fig. 2(c). 
Experimental results show that, in facial feature extraction, H1, H2, I1 and I2 have 
similar recognition performance, and H1, H2, and I2 require less training time. 

In the following, we use the third strategy to explain the procedure of BDPCA. Given a 
training set 1{ , , }NX X , N is the number of the training images, and the size of each image 
matrix is m×n. By representing the ith image matrix Xi as an m-set of 1×n row vectors 
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we adopt Yang’s approach (Yang et al, 2004) to define the row total scatter matrix 
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Fig. 2. Illustration of the three strategies in calculating the column and row transformation 
matrix 
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row j j T j j T
t i i i i

i j iNm Nm= = =

= − − = − −∑∑ ∑S x x x x X X X X ,  (6) 

where j
ix  and j

ix  denotes the jth row of sample Xi and mean matrix X , respectively. We 
choose the row eigenvectors corresponding to the first krow largest eigenvalues of row

tS  to 
construct the row projection matrix Wr 

 
row1 2[ , , , ]row row row

r k=W w w w ,  (7) 

where row
iw  denotes the row eigenvector corresponding to the ith largest eigenvalues of row

tS . 
Similarly, by treating an image matrix Xi as an n-set of m×1 column vectors 

 1 2[ ]n
i i i i=X x x x ,  (8) 
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we define the column total scatter matrix 

 
1

1 ( )( )
N

col T
t i i

iNn =

= − −∑S X X X X .  (9) 

We then choose the column eigenvectors corresponding to the first kcol largest eigenvalues of 
col
tS  to construct the column projection matrix Wc 

 
col1 2[ , , , ]col col col

c k=W w w w ,  (10) 

where col
iw  is the column eigenvector corresponding to the ith largest eigenvalues of col

tS . 
Finally we use the transformation 

 T
c r=Y W XW ,  (11) 

to extract the feature matrix Y of image matrix X. 

2.2.2 BDPCA+LDA 
BDPCA+LDA is an LDA approach that is applied on a low-dimensional BDPCA subspace, 
and thus can be used for fast facial feature extraction. Since less time is required to map an 
image matrix to BDPCA subspace, BDPCA+LDA is, at least, computationally faster than 
PCA+LDA. 
BDPCA+LDA first uses BDPCA to obtain feature matrix Y. The feature matrix Y is then 
transformed into feature vector y by concatenating the columns of Y. The LDA projector 

LDA 1 2[ , , , ]mϕ ϕ ϕ=W  is calculated by maximizing Fisher’s criterion: 

 ( )
T

b
T

w

J ϕ ϕϕ
ϕ ϕ

=
S
S

,  (12) 

where iϕ  is the generalized eigenvector of Sb and Sw corresponding to the ith largest 
eigenvalue iλ  

 b i i w iϕ λ ϕ=S S ,  (13) 

and Sb is the between-class scatter matrix of y 
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T
b i i i

i

N
N =

= − −∑S μ μ μ μ ,  (14) 

and Sw is the within-class scatter matrix of y, 

 , ,
1 1

1 ( )( )
iNC

T
w i j i i j i

i jN = =

= − −∑∑S y μ y μ ,  (15) 

where Ni, ,i jy  and iμ are the number of feature vectors, the jth feature vector and the mean 
vector of class i, C is the number of classes, and μ is the mean vector of all the feature 
vectors. 
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In summary, the main steps in BDPCA+LDA feature extraction are to first transform an 
image matrix X into BDPCA feature subspace Y by Eq. (11), and map Y into its 1D 
representation y and then to obtain the final feature vector z by 

 T
LDA=z W y .  (16) 

2.2.3 Advantages over the existing PCA plus LDA framework 
We compare the BDPCA+LDA and the PCA+LDA face recognition frameworks in terms of 
their computational and memory requirements. It is worth noting that the computational 
requirements are considered in two phases, training and testing. 
 

Memory Requirements Computation Requirements 
Method 

Projector Feature 
prototypes Training Testing 

PCA+L
DA 

(m×n)×dLDA 
Large

N×dLDA 
Same

a) Calculating the 
projector: O(Np3+dPCA3) 

                   Large
b) Projection: 
N×(m×n)×dLDA       Large 

c) Projection: (m×n)×dLDA 
          Large 

d) Distance calculation: 
N×dLDA  

Same 

BDPCA 
+LDA 

m×krow+ 
n×kcol+ 
kcol×krow×dLDA

Small

N×dLDA 
Same

a) Calculating the 
projector: 
O(m3+n3+dBDPCA3)  

          Small
b) Projection: 
N×[m×n×min(krow, kcol) 
+kcol×krow×max(m+dLDA, 
n+dLDA)]                             

Small

c) Projection: 
m×n×min(krow, kcol)+ 
kcol×krow×[max(m,n)+dLDA] 

         Small 
d) Distance calculation: 
N×dLDA  

Same 

Table 1. Comparisons of computational and memory requirements of BDPCA+LDA and 
PCA+LDA 

We first compare the computational requirement using the number of multiplications as a 
measurement of computational complexity. The training phase involves two computational 
tasks: a) calculation of the projector, and b) projection of images into feature prototypes. To 
calculate the projector, the PCA+LDA method must solve an N×N eigenvalue problem and 
then a dPCA×dPCA generalized eigenvalue problem, where N is the size if the training set and 
dPCA is the dimension of the PCA subspace. In contrast, BDPCA+LDA must solve an m×m, 
an n×n eigenvalue problem and a dBDPCA×dBDPCA generalized eigenvalue problem, where 
dBDPCA is the dimension of BDPCA subspace. Since the complexity of an M×M eigenvalue 
problem is O(M3), the complexity of the PCA+LDA projector-calculation operation is 
O(N3+dPCA3) whereas that of BDPCA+LDA is O(m3+n3+dBDPCA3). Assuming that m, n, dPCA 
and dBDPCA are smaller than the number of training samples N, in calculating the projector, 
BDPCA+LDA requires less computation than PCA+LDA to calculate the projector. 
To project images into feature prototypes, we assume that the feature dimension of 
BDPCA+LDA and PCA+LDA is the same, dLDA. For PCA+LDA, the number of 
multiplications is thus Np×(m×n)×dLDA. For BDPCA+LDA, the number of multiplications is 
less than Np×(m×n×min(krow,kcol)+(kcol×krow)×max(m+dLDA, n+dLDA)), where Np is the number 
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we define the column total scatter matrix 
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BDPCA+LDA is an LDA approach that is applied on a low-dimensional BDPCA subspace, 
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where Ni, ,i jy  and iμ are the number of feature vectors, the jth feature vector and the mean 
vector of class i, C is the number of classes, and μ is the mean vector of all the feature 
vectors. 

Subspace Methods for Face Recognition: Singularity, Regularization, and Robustness 

 

33 

In summary, the main steps in BDPCA+LDA feature extraction are to first transform an 
image matrix X into BDPCA feature subspace Y by Eq. (11), and map Y into its 1D 
representation y and then to obtain the final feature vector z by 

 T
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2.2.3 Advantages over the existing PCA plus LDA framework 
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We first compare the computational requirement using the number of multiplications as a 
measurement of computational complexity. The training phase involves two computational 
tasks: a) calculation of the projector, and b) projection of images into feature prototypes. To 
calculate the projector, the PCA+LDA method must solve an N×N eigenvalue problem and 
then a dPCA×dPCA generalized eigenvalue problem, where N is the size if the training set and 
dPCA is the dimension of the PCA subspace. In contrast, BDPCA+LDA must solve an m×m, 
an n×n eigenvalue problem and a dBDPCA×dBDPCA generalized eigenvalue problem, where 
dBDPCA is the dimension of BDPCA subspace. Since the complexity of an M×M eigenvalue 
problem is O(M3), the complexity of the PCA+LDA projector-calculation operation is 
O(N3+dPCA3) whereas that of BDPCA+LDA is O(m3+n3+dBDPCA3). Assuming that m, n, dPCA 
and dBDPCA are smaller than the number of training samples N, in calculating the projector, 
BDPCA+LDA requires less computation than PCA+LDA to calculate the projector. 
To project images into feature prototypes, we assume that the feature dimension of 
BDPCA+LDA and PCA+LDA is the same, dLDA. For PCA+LDA, the number of 
multiplications is thus Np×(m×n)×dLDA. For BDPCA+LDA, the number of multiplications is 
less than Np×(m×n×min(krow,kcol)+(kcol×krow)×max(m+dLDA, n+dLDA)), where Np is the number 
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of prototypes. In this paper, we use all the prototypes for training, thus Np=N. Assuming 
that min(krow, kcol) is much less than dLDA, in the projection process, BDPCA+LDA also 
requires less computation than PCA+LDA. 
In the test phase, there are two computational tasks: c) the projection of images into the 
feature vector, and d) the calculation of the distance between the feature vector and feature 
prototypes. In the following we compare the computational requirement of BDPCA+LDA 
and PCA+LDA in carrying out these two tasks. When projecting images into feature vectors, 
BDPCA+LDA requires less computation than PCA+LDA. Because the feature dimension of 
BDPCA+LDA and PCA+LDA is the same, in the similarity measure process, the 
computational complexity of BDPCA+LDA and PCA+LDA are equal. Taking these two 
tasks into account, BDPCA+LDA is also less computationally expensive than PCA+LDA in 
the testing phase. 
The memory requirements of the PCA+LDA and BDPCA+LDA frameworks mainly depend 
on the size of the projector and the total size of the feature prototypes. The size of the 
projector of PCA+LDA is dLDA×m×n. This is because the PCA+LDA projector contains dLDA 
Fisherfaces, each of which is the same size as the original image. The BDPCA+LDA 
projector is in three parts, Wc, Wr and WLDA. The total size of the BDPCA+LDA projector is 
(kcol×m)+(krow×n)+(dLDA×kcol×krow), which is generally much smaller than that of PCA+LDA. 
Finally, because these two methods have the same feature dimensions, BDPCA+LDA and 
PCA+LDA have equivalent feature prototype memory requirements. 
We have compared the computational and memory requirements of the BDPCA+LDA and 
PCA+LDA frameworks, as listed in Table 1. Generally, the BDPCA+LDA framework is 
superior to the PCA+LDA in both the computational and memory requirements. 

2.3 BDPCA+LDA: experimental results 
To evaluate the efficacy of BDPCA+LDA we make use of the FERET face database. The 
FERET face database is a US Department of Defense-sponsored face database and is one of 
the standard databases used in testing and evaluating face recognition algorithms (Phillips, 
1998; Phillips et al., 2000). For our experiments, we chose a subset of the FERET database. 
This subset includes 1,400 images of 200 individuals (each individual contributing seven 
images). The seven images of each individual consist of three front images with varied facial 
expressions and illuminations, and four profile images ranging from ±15° to ±25° pose. The 
facial portion of each original image was cropped to a size of 80×80 and pre-processed using 
histogram equalization. Fig. 3 illustrates the seven images of one person and their 
corresponding cropped images. 
We also compare BDPCA+LDA with other LDA-based methods, including Fisherfaces, 
Enhanced Fisher discriminant Model (EFM) (Liu & Wechsler, 1998), Discriminant Common 
Vectors (DCV) (Cevikalp et al., 2005), and D-LDA. The experimental setup is as follows. 
Since our aim is to evaluate the efficacy of feature extraction methods, we use a simple 
classifier, the nearest neighbor classifier. To reduce the variation of recognition results, we 
adopt the mean of 10 runs as the average recognition rate (ARR). All the experiments are 
carried out on an AMD 2500+ computer with 512Mb RAM and tested on the MATLAB 
platform (Version 6.5). 
In our experiments, three images of each person are randomly chosen for training, while the 
remaining four images are used for testing. Thus, we obtain a training set of 600 images and 
a testing set of 800 images. In this way, we run the face recognition method 10 times and 
calculate the average recognition rate. 
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Fig. 3. Images of an individual in the FERET subset: (a) the original images, and (b) the 
cropped images. 

 
Fig. 4. Comparisons of the recognition rates obtained using different methods on the FERET 
subset. 

Methods Fisherfaces D-LDA EFM DCV BDPCA+LDA 
Parameters [dPCA, d] [db, d] [dPCA, dw, d] [d] [kcol, krow, d] 

Values [200, 20] [60, 24] [100, 100, 24] [20] [15, 5, 28] 
ARR (%) 78.26% 82.56% 84.69% 82.51% 87.14% 

Table 2. Recognition performance of five face recognition methods on the FERET database 

Method Time for Training (s) Time for Testing (s) 
PCA+LDA 254.2 36.2 

BDPCA+LDA 57.5 26.3 

Table 3. The total CPU time (s) for training and testing on the FERET database 
We compare the recognition rates obtained using BDPCA+LDA, Fisherfaces, EFM, DCV and 
D-LDA, as shown in Fig. 4. We also list the optimal parameter values of each method and its 
maximum ARR in Table 2. The maximum ARR of BDPCA+LDA is 87.14%, higher than the 
ARRs of the other four methods. 
Table 3 shows the total CPU time of PCA+LDA (EFM) and BDPCA+LDA in the training 
phase and the testing phase. BDPCA+LDA is much faster than EFM in both the training and 
testing phases. 
We compare the computational and memory requirements of BDPCA+LDA and PCA+LDA 
(EFM). In Section 2.2.3, based on a number of assumptions, we assert that BDPCA+LDA is 
superior to PCA+LDA in the computational and memory requirements. We then check the 
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expressions and illuminations, and four profile images ranging from ±15° to ±25° pose. The 
facial portion of each original image was cropped to a size of 80×80 and pre-processed using 
histogram equalization. Fig. 3 illustrates the seven images of one person and their 
corresponding cropped images. 
We also compare BDPCA+LDA with other LDA-based methods, including Fisherfaces, 
Enhanced Fisher discriminant Model (EFM) (Liu & Wechsler, 1998), Discriminant Common 
Vectors (DCV) (Cevikalp et al., 2005), and D-LDA. The experimental setup is as follows. 
Since our aim is to evaluate the efficacy of feature extraction methods, we use a simple 
classifier, the nearest neighbor classifier. To reduce the variation of recognition results, we 
adopt the mean of 10 runs as the average recognition rate (ARR). All the experiments are 
carried out on an AMD 2500+ computer with 512Mb RAM and tested on the MATLAB 
platform (Version 6.5). 
In our experiments, three images of each person are randomly chosen for training, while the 
remaining four images are used for testing. Thus, we obtain a training set of 600 images and 
a testing set of 800 images. In this way, we run the face recognition method 10 times and 
calculate the average recognition rate. 
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Table 3. The total CPU time (s) for training and testing on the FERET database 
We compare the recognition rates obtained using BDPCA+LDA, Fisherfaces, EFM, DCV and 
D-LDA, as shown in Fig. 4. We also list the optimal parameter values of each method and its 
maximum ARR in Table 2. The maximum ARR of BDPCA+LDA is 87.14%, higher than the 
ARRs of the other four methods. 
Table 3 shows the total CPU time of PCA+LDA (EFM) and BDPCA+LDA in the training 
phase and the testing phase. BDPCA+LDA is much faster than EFM in both the training and 
testing phases. 
We compare the computational and memory requirements of BDPCA+LDA and PCA+LDA 
(EFM). In Section 2.2.3, based on a number of assumptions, we assert that BDPCA+LDA is 
superior to PCA+LDA in the computational and memory requirements. We then check the 
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correctness of these assumptions. The size of the training set is 600, much higher than the 
size of row vector (80) or column vector (80). The feature dimension of EFM is 24, much 
higher than krow (5). Thus all these assumptions are satisfied. Table 4 shows the 
computational and memory requirements of BDPCA+LDA and EFM. BDPCA+LDA needs 
less computational and memory requirements than EFM. 
 

Memory Requirements Computation Requirements 
Method 

Projector Feature 
prototypes Total Training Testing 

PCA+L
DA 

(112×92)×
39 
=401856 

200×39 
=7800 409656

a) Calculating the projector: 
O(2003+1603) ≈12096000 
 
b) Projection: 
200×(112×92)×39 =80371200
 
Total=92467200 

c) Projection: 
(112×92)×39=401856 
 
d) Distance calculation: 
200×39=7800 
 
Total=409656 

BDPCA 
+LDA 

112×12+92
×4+(12×4)
×39 
 =3584 

200×39 
=7800 11384 

a) Calculating the projector: 
O(1123+923+(12×4)3) 
≈2294208 
 
b) Projection: 
200×[112×92×4+12×4 
×(112+39)]=9692800 
 
Total=11987008 

c) Projection: 
112×92×4+4×12 
×(112+39) =48464  
 
d) Distance calculation: 
200×39 
=7800 
 
Total=56264 

Table 4. Comparisons of computational and memory requirements of BDPCA+LDA and 
PCA+LDA on the FERET subset 

It should be noted that, the training complexity of BDPCA+LDA is O(N), whereas that of 
PCA+LDA is O(N3), where N is the size of training set. This property implies that, when the 
size of the training set is high, BDPCA+LDA would be more superior to PCA+LDA in terms 
of computational requirement. 

3. Regularization of LDA: a post-processing approach 
Despite the great success of LDA in face recognition, there still exist some potential issues 
deserving further investigation. One is that the discriminant vectors may be over-fitted to 
the training set, and are very noisy and wiggly in appearance. Another disadvantage of 
traditional LDA is that it does not take into account the spatial relationship of pixels. Since 
the inaccurate location and small perturbation is unavoidable in face detection and 
recognition, spatial information would be helpful to improve the robustness of the 
recognition performance. In addressing this issue, Wang et al. (2005) proposed an image 
Euclidean distance (IMED) method, where a 2D-Gaussian function is used to model the 
effect of neighbor pixels. 
In the following, we first introduce a post-processed LDA-based method, and then 
demonstrate the equivalence of IMED and the post-processing approach. Finally, the FERET 
face database is used to evaluate the performance of post-processed LDA. 
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3.1 Post-processed LDA 
Post-processing on discriminant vectors is effective in the improvement of the recognition 
performance of LDA-based face recognition methods. In this section, we first briefly 
summarize the post-processing approach, and then present an example of the post-
processing approach, post-processed enhanced Fisher’s model (PEFM). 

3.1.1 Post-processing approach 
A post-processing approach, 2D-Gaussian filtering, has been introduced to perform on the 
discriminant vectors (Wang et al., 2005; Zuo et al., 2005b). 2D-Gaussian filter is an ideal filter 
in the sense that it reduces the magnitude of high spatial frequency in an image and has 
been widely applied in image smoothing and denoising. In face recognition, where the 
discriminant vector can be mapped to a 2D image, Gaussian filtering is used to post-process 
the discriminant images and reduce noise. 2D-Gaussian function is defined as 
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where σ is the standard deviation. First a 2D-Gaussian model M is defined according to the 
standard deviation σ > 0. The window size [w, w] can then be determined as w ≈ 5×σ, and the 
Gaussian model M is defined as the w×w truncation from the Gaussian kernel G(x, y). We 
then calculate the norm of the discriminant vector

2
T

i i iν ν ν= , and map it into the 
corresponding discriminant image Ii. The filter M is used to smooth the discriminant image 

 ( , ) ( , ) ( , )iI x y I x y M x y′ = ∗ .  (18) 

( , )iI x y′  is transformed into a high dimensional vector iν ′  by concatenating the rows of 
( , )iI x y′  together. Finally we normalize iν ′  using the norm of iν  
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′′ ′=

′ ′
,  (19) 

and obtain the post-processed discriminant vector 2ν ′′ . 
Compared with other LDA techniques, the post-processed LDA method has some potential 
advantages, such as directness, two dimensionality, and complementarity. First, post-
processed LDA is designed to directly modify the discriminant vectors. Other LDA 
techniques, such as EFM, usually adopt the strategy to define the within-class scatter matrix 
in PCA subspace. Second, when applied to image recognition task, post-processed LDA 
maps a discriminant vector into a two-dimensional image, and thus can use two-
dimensional image processing techniques to alter the appearance of the discriminant vector. 
Third, post-processing can be used as a complementary approach to combine with other 
LDA techniques, such as enhanced Fisher model, and completer Fisher discriminant 
framework. 

3.1.2 Post-processed Enhanced Fisher Model 
The Enhanced Fisher Model (EFM) method is based on the PCA plus LDA framework 
where PCA is used to alleviate the over-fitting problem and to improve the generalization 
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correctness of these assumptions. The size of the training set is 600, much higher than the 
size of row vector (80) or column vector (80). The feature dimension of EFM is 24, much 
higher than krow (5). Thus all these assumptions are satisfied. Table 4 shows the 
computational and memory requirements of BDPCA+LDA and EFM. BDPCA+LDA needs 
less computational and memory requirements than EFM. 
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Projector Feature 
prototypes Total Training Testing 

PCA+L
DA 
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200×39 
=7800 409656

a) Calculating the projector: 
O(2003+1603) ≈12096000 
 
b) Projection: 
200×(112×92)×39 =80371200
 
Total=92467200 

c) Projection: 
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d) Distance calculation: 
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Total=409656 

BDPCA 
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×4+(12×4)
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 =3584 
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a) Calculating the projector: 
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b) Projection: 
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c) Projection: 
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d) Distance calculation: 
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Total=56264 

Table 4. Comparisons of computational and memory requirements of BDPCA+LDA and 
PCA+LDA on the FERET subset 

It should be noted that, the training complexity of BDPCA+LDA is O(N), whereas that of 
PCA+LDA is O(N3), where N is the size of training set. This property implies that, when the 
size of the training set is high, BDPCA+LDA would be more superior to PCA+LDA in terms 
of computational requirement. 

3. Regularization of LDA: a post-processing approach 
Despite the great success of LDA in face recognition, there still exist some potential issues 
deserving further investigation. One is that the discriminant vectors may be over-fitted to 
the training set, and are very noisy and wiggly in appearance. Another disadvantage of 
traditional LDA is that it does not take into account the spatial relationship of pixels. Since 
the inaccurate location and small perturbation is unavoidable in face detection and 
recognition, spatial information would be helpful to improve the robustness of the 
recognition performance. In addressing this issue, Wang et al. (2005) proposed an image 
Euclidean distance (IMED) method, where a 2D-Gaussian function is used to model the 
effect of neighbor pixels. 
In the following, we first introduce a post-processed LDA-based method, and then 
demonstrate the equivalence of IMED and the post-processing approach. Finally, the FERET 
face database is used to evaluate the performance of post-processed LDA. 
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Post-processing on discriminant vectors is effective in the improvement of the recognition 
performance of LDA-based face recognition methods. In this section, we first briefly 
summarize the post-processing approach, and then present an example of the post-
processing approach, post-processed enhanced Fisher’s model (PEFM). 

3.1.1 Post-processing approach 
A post-processing approach, 2D-Gaussian filtering, has been introduced to perform on the 
discriminant vectors (Wang et al., 2005; Zuo et al., 2005b). 2D-Gaussian filter is an ideal filter 
in the sense that it reduces the magnitude of high spatial frequency in an image and has 
been widely applied in image smoothing and denoising. In face recognition, where the 
discriminant vector can be mapped to a 2D image, Gaussian filtering is used to post-process 
the discriminant images and reduce noise. 2D-Gaussian function is defined as 
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where σ is the standard deviation. First a 2D-Gaussian model M is defined according to the 
standard deviation σ > 0. The window size [w, w] can then be determined as w ≈ 5×σ, and the 
Gaussian model M is defined as the w×w truncation from the Gaussian kernel G(x, y). We 
then calculate the norm of the discriminant vector
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and obtain the post-processed discriminant vector 2ν ′′ . 
Compared with other LDA techniques, the post-processed LDA method has some potential 
advantages, such as directness, two dimensionality, and complementarity. First, post-
processed LDA is designed to directly modify the discriminant vectors. Other LDA 
techniques, such as EFM, usually adopt the strategy to define the within-class scatter matrix 
in PCA subspace. Second, when applied to image recognition task, post-processed LDA 
maps a discriminant vector into a two-dimensional image, and thus can use two-
dimensional image processing techniques to alter the appearance of the discriminant vector. 
Third, post-processing can be used as a complementary approach to combine with other 
LDA techniques, such as enhanced Fisher model, and completer Fisher discriminant 
framework. 

3.1.2 Post-processed Enhanced Fisher Model 
The Enhanced Fisher Model (EFM) method is based on the PCA plus LDA framework 
where PCA is used to alleviate the over-fitting problem and to improve the generalization 
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performance (Liu & Wechsler, 1998; Liu & Wechsler, 2002). In (Wang & Tang, 2004), Wang 
and Tang present another insight to understand EFM by modeling face difference with 
intrinsic difference, transform difference, and noise, where the PCA transform is used to 
significantly reduce noise, and the subsequent LDA step is used to separate intrinsic 
difference from transform difference. 
In EFM, each image should be previously mapped into a one-dimensional vector by 
concatenating the rows of the original image. Let 

1

(1) (1) (1) ( ) ( )
1 2{ , , , , , , , }

C

i C
N j N=X x x x x x  be a 

training set with Ni image vectors for class i. The number of class is C, and ( )i
jx  denotes the 

jth image vector of class i. The total covariance matrix St of PCA is then defined as 
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1 1

1 ( )( )
iNC

i i T
t j j

i jN = =

= − −∑∑S x x x x ,  (20) 

where x  is the mean vectors of all training images, and 
1

C
ii

N N
=

= ∑ is the total number of 

training images. The PCA projector 
PCA1 2[ , , , ]pca dϕ ϕ ϕ=T  can be obtained by calculating the 

eigenvalues and vectors of the total scatter matrix St, where kϕ  is the kth eigenvector 
corresponding to the kth largest eigenvalue of St, and dPCA denotes the PCA dimension for 
the EFM method. 
The between-class scatter matrix Sb and the within-class scatter matrix Sw are defined as 
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= − −∑S x x x x ,  (21) 
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where ( )ix  is mean vector of class i. With PCA projector Tpca, we map Sb and Sw to the PCA 
subspace, 

 T
b pca b pca=S T S T  and T

w pca w pca=S T S T .  (23) 

PCA projection can eliminate the singularity of the within-class scatter matrix. Thus the 
optimal discriminant vectors can be calculated by maximizing the Fisher’s criterion 
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T

b
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w

w wJ w
w w
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S
S

.  (24) 

The discriminant vectors can be obtained by calculate the first dLDA generalized eigenvectors 

LDA1 2[ , , , ]dw w w and the corresponding eigenvalues 
LDA1 2[ , , , ]dλ λ λ  of bS  and wS . Given an 

image vector x, the discriminant feature vector Sz  is defined as 

 S T T
S SPCA=z U T x , (25) 

where 
LDA1 2[ , , , ]S dw w w=U  is the subspace LDA projector. 
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PEFM Algorithm 
Step 1. Compute St, Sb, and Sw, and calculate the first dPCA eigenvectors 

PCA1 2[ , , , ]pca dϕ ϕ ϕ=T  of St, then modify Sb and Sw by T
b pca b pca=S T S T  

and T
w pca w pca=S T S T . 

Step 2. Calculate the first dLDA generalized eigenvectors 
LDA1 2[ , , , ]S d=U w w w  of bS  and wS , and compute 

LDA1 2[ , , , ]LDA PCA S d= =T T U ν ν ν . 
Step 3. Using 2D-Gaussian filter Mg, regularize each discriminant 

vector iν  to i′′ν , and construct the LDA projector 

LDA1 2[ , , , ]PEFM d′′ ′′ ′′=T ν ν ν .  
Fig. 5. PEFM Algorithm 

With the post-processing approach, we present the implementation of the post-processed 
RFM method (PEFM), where the main steps are illustrated in Fig. 5. 

3.2 Relation between the post-processing approach and image Euclidean distance 
In (Wang et al., 2005), Wang et al presented an image Euclidean distance (IMED) method, 
where a 2D-Gaussian function is used to model the effect of neighbor pixels. Compared with 
traditional Euclidean distance, IMED can be easily embedded with some popular image 
feature extraction and classification methods and reported a consistent performance 
improvement. In this section, we will demonstrate that the IMED method actually is 
equivalent to the post-processing approach. 
Different from traditional Euclidean distance, the computation of image Euclidean distance 
take into account the spatial relationships of pixels 
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where X1 and X2 are two are two m × n images, and X1(i, j) represent the gray value of the (i, 
j) pixel of image X1. 
Traditional Euclidean distance can be easily rewritten using its inner product representation 

 2
1 2 1 1 2 2 1 2( , ) , , 2 ,Ed = + −X X X X X X X X .  (27) 

Similarly, by defining image inner product (IMIP) as 
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image Euclidean distance can be re-formalized as 

 2
1 2 1 1 2 2 1 2( , ) , , 2 ,IME IMIP IMIP IMIP

d = + −X X X X X X X X .  (29) 

Different from traditional inner product, IMIP not only consider the product of two 
corresponding pixels, but also consider the effect of the spatial relationship between 
neighbor pixels, and thus is more robust against small degree of variations in translation, 
rotation and deformation. With the introduction of IMED and IMIP, we can conveniently 
embed them into many popular image feature extraction and classification approaches, such 
as PCA, LDA, k-nearest neighbor, and support vector machine. 
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performance (Liu & Wechsler, 1998; Liu & Wechsler, 2002). In (Wang & Tang, 2004), Wang 
and Tang present another insight to understand EFM by modeling face difference with 
intrinsic difference, transform difference, and noise, where the PCA transform is used to 
significantly reduce noise, and the subsequent LDA step is used to separate intrinsic 
difference from transform difference. 
In EFM, each image should be previously mapped into a one-dimensional vector by 
concatenating the rows of the original image. Let 
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where ( )ix  is mean vector of class i. With PCA projector Tpca, we map Sb and Sw to the PCA 
subspace, 
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PCA projection can eliminate the singularity of the within-class scatter matrix. Thus the 
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The discriminant vectors can be obtained by calculate the first dLDA generalized eigenvectors 

LDA1 2[ , , , ]dw w w and the corresponding eigenvalues 
LDA1 2[ , , , ]dλ λ λ  of bS  and wS . Given an 

image vector x, the discriminant feature vector Sz  is defined as 

 S T T
S SPCA=z U T x , (25) 

where 
LDA1 2[ , , , ]S dw w w=U  is the subspace LDA projector. 
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PEFM Algorithm 
Step 1. Compute St, Sb, and Sw, and calculate the first dPCA eigenvectors 

PCA1 2[ , , , ]pca dϕ ϕ ϕ=T  of St, then modify Sb and Sw by T
b pca b pca=S T S T  

and T
w pca w pca=S T S T . 

Step 2. Calculate the first dLDA generalized eigenvectors 
LDA1 2[ , , , ]S d=U w w w  of bS  and wS , and compute 

LDA1 2[ , , , ]LDA PCA S d= =T T U ν ν ν . 
Step 3. Using 2D-Gaussian filter Mg, regularize each discriminant 

vector iν  to i′′ν , and construct the LDA projector 

LDA1 2[ , , , ]PEFM d′′ ′′ ′′=T ν ν ν .  
Fig. 5. PEFM Algorithm 

With the post-processing approach, we present the implementation of the post-processed 
RFM method (PEFM), where the main steps are illustrated in Fig. 5. 
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improvement. In this section, we will demonstrate that the IMED method actually is 
equivalent to the post-processing approach. 
Different from traditional Euclidean distance, the computation of image Euclidean distance 
take into account the spatial relationships of pixels 

 
2 2

2
1 2 1 2 1 2

1 1

1 ( ) ( )( , ) [ ( , ) ( , )][ ( , ) ( , )]exp{ }
2 2

m n n n

IME
i j k l

i k j ld i j i j k l k l
π = =

− + −
= − − −∑∑∑∑X X X X X X ,  (26) 

where X1 and X2 are two are two m × n images, and X1(i, j) represent the gray value of the (i, 
j) pixel of image X1. 
Traditional Euclidean distance can be easily rewritten using its inner product representation 
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Similarly, by defining image inner product (IMIP) as 
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image Euclidean distance can be re-formalized as 

 2
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Different from traditional inner product, IMIP not only consider the product of two 
corresponding pixels, but also consider the effect of the spatial relationship between 
neighbor pixels, and thus is more robust against small degree of variations in translation, 
rotation and deformation. With the introduction of IMED and IMIP, we can conveniently 
embed them into many popular image feature extraction and classification approaches, such 
as PCA, LDA, k-nearest neighbor, and support vector machine. 
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According to the separability property, the definition of IMIP can be formalized to 
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IMIP can then be represented as 
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From Eq. (31) and (32), 
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In the spatial domain, the definition of two-dimensional linear convolution is  
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where ( , )f k l  denotes the original image, ( , )h i j  denotes the convolution kernel, and ( , )g i j  
denotes the convolution result. Clearly, by defining the convolution kernel 
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we can show the equivalence of IMIP and the post-processing approach. IMIP actually is the 
post-processing approach with the standard deviation σ = 1 and without the normalization 
step. The post-processing approach, in fact, can be regarded as a generalization of the 
normalized IMIP method without the constraint on the value of the standard deviation. 

3.3 Performance evaluation of PEFM 
In this section, we use the FERET face database to evaluate the efficiency of the PEFM 
method over the original EFM method, to verify the equivalence of IMED and the post-
processing approach, and to evaluate the influence of the normalization step. 
In our experiment, we adopt the same experimental setup as described in Section 2.3. The 
nearest neighbor classifier is used to match probe images and gallery images, and the 
averaged recognition rate (ARR) is adopted by calculating the mean value of recognition 
rates across 10 runs. 
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For PEFM, there are three parameters, the PCA dimension dPCA, the LDA dimension dLDA, 
and the standard deviation σ, to be determined. However, it is very difficult to determine 
these three parameters at the same time. Previous work on the FERET subset has shown that 
the maximum recognition accuracy could be obtained with the LDA dimension LDA 20d ≈ . 
With standard deviation σ ≈ 1.5, the noise in the discriminant vector would be significantly 
reduced. So we investigate the effect of the PCA dimension dPCA with dLDA = 20 and σ = 1.5,. 
As the PCA dimension dPCA (>100) increases, PEFM will be distinctly superior to EFM in 
terms of recognition accuracy. Besides, the PCA dimension has a much less effect on the 
recognition accuracy of PEFM, whereas that of EFM deteriorates greatly with increasing of 
dPCA. From Fig. 6(a), we can determine the PCA dimension of PEFM, dPCA = 100. 
After determining dPCA, we study the recognition accuracy over the variation of the LDA 
dimension dLDA with dPCA = 100 and σ = 1.5, as depicted in Fig. 6(b). The maximum average 
recognition rate of PEFM is obtained with the LDA dimension dLDA = 24. Then we explore 
the recognition rate vs. the variation of σ with dPCA = 100 and dLDA = 24, as shown in Fig. 
6(c). The maximum average recognition rate, 87.34%, is obtained using PEFM with dPCA = 
100, dLDA = 24 and σ = 1.5, which is higher than 84.54%, that of EFM. 

 
(a)                                                                              (b) 

 
(c) 

Fig. 6. Illustration of the recognition accuracy over the variation of the PEFM parameters on 
the FERET subset. (a) Recognition accuracy vs. the PCA dimension. (b) Recognition accuracy 
vs. the LDA dimension. (c) Recognition accuracy vs. the standard variation 

Next we compare the recognition performance of IMED-embedded EFM and PEFM without 
normalization. Fig. 7 shows the recognition rates of these two methods over different feature 
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Next we compare the recognition performance of IMED-embedded EFM and PEFM without 
normalization. Fig. 7 shows the recognition rates of these two methods over different feature 
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dimensions. From Fig. 7, we can see that, the performance difference between these two 
approaches is very small, and PEFM without normalization only achieve a little higher 
recognition rate than IMED-embedded EFM. The small performance difference, however, 
may be explained by that, for PEFM, IMED is only embedded in the testing stage. This 
indicates that, when IMED is embedded in enhanced Fisher model (EFM), it would be better 
to embed IMED only in the testing stage rather than to embed IMED in both the training 
and the testing stage. 

 
Fig. 7. Recognition rates of IMED-embedded EFM and PEFM without normalization 

 
Fig. 8. Illustration of the recognition rates of PEFM with and without the normalization step 
over different feature dimensions. 
Finally, we investigate the influence of the normalization step. Fig. 8 shows the recognition 
rates of PEFM with and without the normalization step over different LDA dimensions. 
From Fig. 8, we can see that, the normalization step in PEFM actually has a little effect on 
the recognition performance when applied to face recognition. 

4. Robust recognition by iterated reweighted fitting of eigenfaces 
A real face recognition system should capture, detect and recognize facial image 
automatically, making it inevitable that facial images will sometimes be noisy, partially 
occluded, or inaccurately located. The capture and communication of facial image itself may 
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introduce noise; some accessories will cause the occlusion of a facial image, for example a 
scarf may occlude a facial image; and facial images usually should be normalized by 
locations of landmarks but these locations may be inaccurate and inconsistent. Because all 
these three factors are inevitable, the development of face recognition system should always 
address the robust recognition of noisy, partially occluded, or inaccurate located image. 

4.1 Iterated reweighted fitting of eigenfaces 
Zhao et al. (2003) showed that, in face recognition, the appearance-based methods (e.g., PCA 
and LDA) are robust in the presence of low levels of small noise or occlusion. However, if 
the degree of occlusion further increases, the recognition performance would deteriorate 
severely (Martinez, 2002). Analogous to partial occlusion, the further increase of noise 
would also cause an immediate decrease in recognition performance. 
To address the partial occlusion problem, Martinez proposed a local probabilistic approach 
where each face image is divided into six local areas, and each local area is then projected 
into its eigenspace in the recognition stage (Martinez, 2002). Local probabilistic approach, 
however, cannot be used to weaken the unfavorable effect of noise because noise is always 
globally distributed. Besides, local probabilistic approach, which divides an image into a 
number of parts, also neglects the global correlation of the face image. 
Robust estimation (McLachlan & Krishnan, 1997; Isao & Eguchi, 2004) and robust 
appearance-based methods can be used to solve the noise and partial occlusion problems. 
For example, iterated reweighted fitting of Eigenfaces (IRF-Eigenfaces), a robust estimation 
of the coefficients of Eigenfaces, can address this by first defining an objective function J(y) 
and then using the Expectation Maximization (EM) algorithm to compute the feature vector 
y by minimizing J(y). The following presents the main steps in IRF-Eigenfaces: 
1. Define the objective function. Given a set of Eigenfaces 1 2[ , , , ]d=W w w w , IRF-

Eigenfaces calculate the feature vector y of image x by minimizing the objective function 
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dimensions. From Fig. 7, we can see that, the performance difference between these two 
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may be explained by that, for PEFM, IMED is only embedded in the testing stage. This 
indicates that, when IMED is embedded in enhanced Fisher model (EFM), it would be better 
to embed IMED only in the testing stage rather than to embed IMED in both the training 
and the testing stage. 

 
Fig. 7. Recognition rates of IMED-embedded EFM and PEFM without normalization 

 
Fig. 8. Illustration of the recognition rates of PEFM with and without the normalization step 
over different feature dimensions. 
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introduce noise; some accessories will cause the occlusion of a facial image, for example a 
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locations of landmarks but these locations may be inaccurate and inconsistent. Because all 
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M-Step. Given the weighted vector ( )tω , update y(t+1) by 
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If we define the function ( )zΨ  a strictly concave function in z, ( ) 0z′′Ψ < , we can 
theoretically guarantee that y(t) will converge to a local optimal feature vector y. 

4.2 Evaluation on IRF-eigenfaces 
We use the AR face database to evaluate the performance of the IRF-Eigenfaces method 
against noise and partial occlusion, and compare the recognition rate of IRF-Eigenfaces with 
those of Eigenfaces and the local probabilistic approach. The AR face database contains over 
4,000 color frontal facial images corresponding to 126 people (70 men and 56 women) 
(Martinez & Benavente, 1998).There are 26 different images of each person and these were 
captured in two sessions separated by two weeks. In our experiments, we only use a subset 
of 720 images of 120 persons. There are six images of each person. Three images were 
captured in the first session (one neutral, one with sunglasses, and one with a scarf) and the 
remaining three images were captured in the second session (one neutral, one with 
sunglasses, and one with a scarf), as shown in Fig. 9. In our experiments, all the images were 
cropped according to the location of their eyes and mouths, and the 120 neutral images in 
the first session were used for training Eigenfaces. We set the number of principal 
components dPCA=100 and use the whitened cosine distance measure (Phillips et al., 2005). 
 

 
(a)                    (b)                    (c) 

 
(d)                     (e)                     (f)  

Fig. 9. Six images of one person in the AR database. The images (a) through (c) were 
captured during one session and the images (d) through (f) at a different session. 

IRF-Eigenfaces is more robust when it comes to reconstruct noisy and occluded facial 
images. The quality of reconstructed facial images using IRF-Eigenfaces is also consistently 
better than those using Eigenfaces, as shown in Fig. 10. IRF-Eigenfaces also has a robust 
reconstruction performance for the partially occluded facial images, as shown in Fig. 11. 
Using all the neutral images in the second session as a test set, we investigate the recognition 
performance of IRF-Eigenfaces against different degree of noise. Fig. 12 shows an original 
facial image and the same image after the addition of various amounts of salt and pepper 

Subspace Methods for Face Recognition: Singularity, Regularization, and Robustness 

 

45 

noise. The largest degree of noise in our test is 50%, which is a seriously contaminated 
example. We then present the recognition rates of Eigenfaces and IRF-Eigenfaces against 
different degrees of noise contamination, as shown in Fig. 13. The addition of 50% salt and 
pepper noise caused the recognition rate of Eigenfaces to fall from 81.67% to 36.67%, but the 
recognition rate of IRF-Eigenfaces remained unchanged (95.83%). Because the recognition 
rate is robust against variation of noise, we can validate the robustness of IRF-Eigenfaces 
against noise. 
 

      
(a) 

      
(b) 

      
(c)  

Fig. 10. Reconstruction of images with different degree of salt and pepper noise: (a) original 
image; (b) reconstructed images by Eigenfaces; (c) reconstructed images by IRF-Eigenfaces. 

     
(a)                                       (b) 

 
(c) 

 
Fig. 11. Reconstructed partially occluded images: (a) original images; (b) reconstructed 
images by Eigenfaces; (c) reconstructed images by IRF-Eigenfaces. 
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IRF-Eigenfaces is more robust when it comes to reconstruct noisy and occluded facial 
images. The quality of reconstructed facial images using IRF-Eigenfaces is also consistently 
better than those using Eigenfaces, as shown in Fig. 10. IRF-Eigenfaces also has a robust 
reconstruction performance for the partially occluded facial images, as shown in Fig. 11. 
Using all the neutral images in the second session as a test set, we investigate the recognition 
performance of IRF-Eigenfaces against different degree of noise. Fig. 12 shows an original 
facial image and the same image after the addition of various amounts of salt and pepper 
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noise. The largest degree of noise in our test is 50%, which is a seriously contaminated 
example. We then present the recognition rates of Eigenfaces and IRF-Eigenfaces against 
different degrees of noise contamination, as shown in Fig. 13. The addition of 50% salt and 
pepper noise caused the recognition rate of Eigenfaces to fall from 81.67% to 36.67%, but the 
recognition rate of IRF-Eigenfaces remained unchanged (95.83%). Because the recognition 
rate is robust against variation of noise, we can validate the robustness of IRF-Eigenfaces 
against noise. 
 

      
(a) 

      
(b) 

      
(c)  

Fig. 10. Reconstruction of images with different degree of salt and pepper noise: (a) original 
image; (b) reconstructed images by Eigenfaces; (c) reconstructed images by IRF-Eigenfaces. 

     
(a)                                       (b) 

 
(c) 

 
Fig. 11. Reconstructed partially occluded images: (a) original images; (b) reconstructed 
images by Eigenfaces; (c) reconstructed images by IRF-Eigenfaces. 
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Fig. 13. The effect of salt and pepper noise on the recognition performance 
Using the images with sunglasses or scarves, we tested the influence of partial occlusion on 
the recognition performance of IRF-Eigenfaces. Table 5 lists the recognition rates of 
Eigenfaces, IRF-Eigenfaces and the local probabilistic approach in recognizing faces partially 
occluded with either sunglasses or a scarf. The recognition rate of IRF-Eigenfaces in both the 
first and second sessions is much higher than that of the other two methods, Eigenfaces and 
the local probabilistic approach. 
 

Session 1 Session 2 Methods 
Sunglasses Scarf Sunglasses Scarf 

Eigenfaces (%) 40 35 26.67 25 
LocProb (%) 80 82 54 48 

IRF-Eigenfaces 
(%) 87.50 91.67 82.50 84.17 

Table 5. Recognition performance of three face recognition methods on the AR database 

Another interesting point to be noted from Table 5 is that IRF-Eigenfaces is also more robust 
against the variation of ageing time. Eigenfaces’ recognition rate in the second session 
(25.83%) is much lower than in the first session (37.5%). The local probabilistic approach’s 
recognition rate in the second session (51%) is much lower than in the first session (81%). 
But IRF-Eigenfaces’ recognition rate in the second session (83.34%) is only slightly lower 
than in the first session (89.58%). There are two reasons for the robustness of IRF-Eigenfaces 
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against ageing time. First, IRF-Eigenfaces uses the whitened cosine distance, which can 
reduce the adverse effect of global illumination change of the facial image. Second, IRF-
Eigenfaces, which is robust to partial occlusion, is also robust to some facial change, such as 
the presence of a beard. Compare Fig. 14(a), showing a neutral face captured in the first 
session, with Fig. 14(b), showing a face with sunglasses captured in the second session. The 
image in Fig. 14(b), captured in the second session, has a heavier beard. Fig. 14(c) shows the 
image in Fig. 14(b) reconstructed using IRF-Eigenfaces. IRF-Eigenfaces can detect parts of 
the beard as a partial occlusion and thus its reconstructed image is more consistent with Fig. 
14(a). 

   
(a)       (b)      (c)  

Fig. 14. The reconstruction performance of IRF-Eigenfaces for partially occluded face in the 
second session. (a) neutral face in the first session; (b) face with sunglasses in the second 
session; (c) the reconstructed image of (b) using IRF-Eigenfaces. 

7. Summary 
In this chapter, we introduce several recently developed subspace-based face recognition 
methods in addressing three problems, singularity, regularization, and robustness. To 
address the singularity problem, we present a fast feature extraction technique, Bi-
Directional PCA plus LDA (BDPCA+LDA), which performs LDA in the BDPCA subspace. 
Compared with the PCA+LDA framework, BDPCA+LDA has a number of significant 
advantages. First, BDPCA+LDA needs less computational requirement in both the training 
and the testing phases. Second, BDPCA+LDA needs less memory requirement because its 
projector is much smaller than that of PCA+LDA. Third, BDPCA+LDA has a higher 
recognition accuracy over PCA+LDA. 
To alleviate the over-fitting to the training set, this chapter suggests a post-processing 
approach on discriminant vectors, and demonstrates the internal relationship between the 
post-processing approach and IMED. Experimental results indicate that, the post-processing 
approach is effective in improving the recognition rate of the LDA-based approaches. When 
IMED is embedded in enhanced Fisher model, it would be better to embed IMED only in the 
testing stage. 
To improve the robustness of subspace method over noise and partial occlusion, this chapter 
further presents an iteratively reweighted fitting of the Eigenfaces method (IRF-Eigenfaces). 
Despite the success of IRF-Eigenfaces in recognizing noisy and partially occluded facial 
images, it is still very necessary to further study this issue by investigating the robustness 
against inaccurate fiducial point location, illumination, and ageing in one uniform framework. 
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1. Introduction 
Face recognition has been a very active research area for past two decades due to its widely 
applications such as identity authentication, airport security and access control, surveillance, 
and video retrieval systems, etc. Numerous approaches have been proposed for face 
recognition and considerable successes have been reported [1]. A successful face recognition 
system should be robust under a variety of conditions, such as varying illuminations, pose, 
expression, and backgrounds. Although many researches [1-3] already found solutions to 
alleviate those problems, it is still a great challenge to accurately recognize faces that are 
non-frontal facial images, and disguises such as facial hair, glasses or cosmetics. 
In the past, two categories of feature extraction for face recognition have been developed, 
including of geometric features and statistical features derived from face images [1-4]. In 
geometric features method, the facial features are retrieved from either the shapes of eyes, 
nose, mouth, and chin, or the facial geometrical relationships such as areas, distances, and 
angles [4]. This kind of approaches has proven to be difficult for practical application 
because it requires a fine segmentation of facial features. In statistical features method, the 
facial features are usually extracted from important facial features based on the high-
dimensional intensity values of face images. For example, the principal component analysis 
(PCA) is the well-known statistical method [5]. This approach is simple, but does not reflect 
the details of facial local features. 
Generally speaking, researches on face recognition system can be grouped into two 
categories of classifier system, one is single-classifier system and the other is multi-classifier 
system. The single-classifier systems, including neural network (NN) [6], Eigenface [5], 
Fisher linear discriminant (FLD) [7], SVM [8], HMM [9], and AdaBoost [10], are developed 
well in theory and experiment. On the other hand, the multi-classifier systems such as local 
and global face information fusion [11-13], neural networks committee (NNC) [14], multi-
classifier system (MCS) [15], are proposed in parallel process of different features or 
classifiers.  
As one knows, neural networks (NN) are a nonlinear classifier and based on the parallel 
architecture of human brains. Its output can be binary or multiple classes. In NN, the margin 
between two classes of sample point nearby the decision function is often not a maximum. 
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1. Introduction 
Face recognition has been a very active research area for past two decades due to its widely 
applications such as identity authentication, airport security and access control, surveillance, 
and video retrieval systems, etc. Numerous approaches have been proposed for face 
recognition and considerable successes have been reported [1]. A successful face recognition 
system should be robust under a variety of conditions, such as varying illuminations, pose, 
expression, and backgrounds. Although many researches [1-3] already found solutions to 
alleviate those problems, it is still a great challenge to accurately recognize faces that are 
non-frontal facial images, and disguises such as facial hair, glasses or cosmetics. 
In the past, two categories of feature extraction for face recognition have been developed, 
including of geometric features and statistical features derived from face images [1-4]. In 
geometric features method, the facial features are retrieved from either the shapes of eyes, 
nose, mouth, and chin, or the facial geometrical relationships such as areas, distances, and 
angles [4]. This kind of approaches has proven to be difficult for practical application 
because it requires a fine segmentation of facial features. In statistical features method, the 
facial features are usually extracted from important facial features based on the high-
dimensional intensity values of face images. For example, the principal component analysis 
(PCA) is the well-known statistical method [5]. This approach is simple, but does not reflect 
the details of facial local features. 
Generally speaking, researches on face recognition system can be grouped into two 
categories of classifier system, one is single-classifier system and the other is multi-classifier 
system. The single-classifier systems, including neural network (NN) [6], Eigenface [5], 
Fisher linear discriminant (FLD) [7], SVM [8], HMM [9], and AdaBoost [10], are developed 
well in theory and experiment. On the other hand, the multi-classifier systems such as local 
and global face information fusion [11-13], neural networks committee (NNC) [14], multi-
classifier system (MCS) [15], are proposed in parallel process of different features or 
classifiers.  
As one knows, neural networks (NN) are a nonlinear classifier and based on the parallel 
architecture of human brains. Its output can be binary or multiple classes. In NN, the margin 
between two classes of sample point nearby the decision function is often not a maximum. 
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Because of its performance surface depending on the mean square error, and if the train 
error reaches to zero too quickly, its performance surface will be minimum and the weight 
values will have to be stopped to get adjusted [16]. For each subject, the numbers of face 
image sample are always small on public face databases, so the early training break in NN 
frequently occurs. The AdaBoost also has the same drawback as the NN does. That is, the 
situation of the early training break occurs in AdaBoost if the error of weak learner quickly 
reaches to zero. Besides, the application of HMM is a content-dependent classification, 
especially on speech recognition. It is based on an assumption that the class variations are 
closely related. The research of HMM on face recognition includes 1D-HMM [17], 2D-HMM 
[18], embedded HMM [19], and pseudo 2D-HMM [20]. The disadvantage of using HMM on 
face recognition is on the part of huge computation cost under the condition that the 
numbers of dimension and state are high.  
The SVM were originally designed for binary classification and it is based on the structural 
risk minimization (SRM) principle. Although several methods to effectively extend the SVM 
for multi-class classification have been reported on technical literatures [21,22], it is still an 
on-going research issue. The category methods of SVM for multi-class classification are one-
against-all (OAA) [21,30], one-against-one (OAO) [21], directed acyclic graph support vector 
machine (DAGSVM) [23], and binary tree SVM [8]. In DAGSVM and binary tree SVM, their 
training phases are the same as those of the OAO method by solving N(N-1)/2 binary SVMs, 
where N is the numbers of class. However, in the testing phase of DAGSVM, it uses a rooted 
binary directed acyclic graph which has N(N-1)/2 internal nodes and N leaves. Each node is 
a binary SVM of ith and jth classes. On the other hand, the testing phase of binary tree SVM 
constructs a bottom-up binary tree for classification. The advantage of using a DAGSVM 
and binary tree SVM is less testing time than that of OAO (maximum vote) method. If one 
employs the same feature vector for SVM, NN, and AdaBoost, he will find the performance 
of SVM is better than that of NN and AdaBoost because the SVM will result in the 
maximum separating margin to the hyperplane of the two classes. And if the feature vector 
includes noisy data, and the noisy data possesses at least one of the following properties: (a) 
overlapping class probability distributions, (b) outliers and (c) mislabeled patterns [24], the 
hyperplane of SVM will turn out to be hard margin and overfitting. Additionally, the SVM 
allows noise or imperfect separation, provided that a non-negative slack variable is added to 
the objective function as a penalizing term.  
The Eigenface is a successful example using template matching for face recognition [5]. The 
method of Eigenface uses principle component analysis (PCA) or Karhunen-Loeve 
transform that constructs a number of Eigenfaces derived from a set of training face images. 
Every prototype face image in the database is represented as a feature point, i.e. a vector of 
weights, in the space and is the query face image. The limitations of Eigenface are their 
computation cost and memory requirement burden if the face recognition system is to scale 
up. 
As for multi-classifier systems, Zhou et al. [13] presented a combined feature Fisher 
classifier (CF2C) approach, whose combined facial features are derived from facial global 
and local information extracted by DCT, for face recognition. And it performs better than 
the traditional methods such as Eigenfaces and Fisherfaces. One problem of this method is 
that it is hard to accurately detect the landmark of images, and another is that the 
localization errors might sustain to the classification step to disturb the final result. 
Rajagopalan et al. [12] proposed a face recognition method that fuses information acquired 
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from global and local features of the face for improving performance. Their method is very 
similar to that proposed by Zhou et al. [13], it brings about the same problem accordingly as 
mentioned above. Kwak et al. [11] proposed two approaches to fuzzy information fusion for 
face recognition involving aggregation of local and global face information and a wavelet 
decomposition approach. Zhao et al. [14] studied a face recognition method based on multi-
features using a neural networks committee (NNC) machine. Either of their methods is 
based on parallel features and classifiers, and is with a combination strategy at the end. 
Although their experimental results show a more accurate classification rate than that of 
single feature and classifier, its architecture is totally different from our proposed cascade 
stages, which are proceeded with a coarse-to-fine strategy. Our novel coarse-to-fine strategy 
ends up with a much more successful performance in facial recognition.  
In our system, the extracted feature for SVM is discrete cosine transform (DCT) coefficients 
that are common used for image pre-processing. In the past, Chen et al. [6] extracted DCT 
feature from the entire face image for face recognition, because they believed that if the DCT 
is obtained from individual sub-images, certain relationship information between sub-
images are not existed any more. In [25], Jing and Zhang selected the useful DCT frequency 
bands and obtained a 1D training sample set, then they proposed an improved Fisherface 
method to extract the image discrimination features, at last they applied the nearest 
neighbor classifier to the feature classification.  
To combine the image feature of frequency, intensity, and space information, we propose a 
novel face recognition approach, which combines SVM, Eigenface, and RANSAC [26] 
methods with the multi-stage classifier system. The whole decision process is developed 
through consecutive stages, i. e., “one-against-all (OAA) of SVM”, “one-against-one (OAO) 
of SVM”, “Eigenface”, and “RANSAC”, respectively. The stage 1 “OAA of SVM” and stage 
2 “OAO of SVM” uses the DCT features extracted from the entire face image. The stage 3 
“Eigenface”, face images are projected onto a feature space (face space). The face space is 
defined by the “Eigenfaces”, which are the eigenvectors of the set of faces and based on 
intensity information of the face image. “RANSAC” is applied in the last stage, in which the 
epipolar geometry method with space information of the testing image is matched with the 
two training images, and then the image with the greatest match numbers of and the 
shortest distance to corresponding feature points is selected. The face databases used for 
performance evaluation are retrieved from Olivetti Research Laboratory (ORL) [44], Yale 
database [45], and IIS (Institute of Information Science, Academia Sinica) face databases [46]. 
For each database, we use four different evaluation methods, which are OAA-SVM, OAO-
SVM, Eigenface, and our proposed multi-stage classifier. In this way, the experimental 
results can be compared with other face recognition approaches fairly.  
The remainder of this paper is organized as following: In section 2, the feature extraction 
methods, i.e., the DCT and PCA are briefly described. In section 3, the proposed coarse-to-
fine stages, OAA, OAO, and multi-stage classifiers are presented in detail. Experimental 
results using this method and the comparison to other approaches with several famous face 
databases are given in section 4. Conclusions are included in section 5. 

2. Feature extraction 
The goal of feature extraction is to transform a given set of sample data to a new set of 
features. If the transform method is suitably chosen, the features after transformation can 
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exhibit high “information packing” properties compared with the original input data. This 
means that most of the classification-related information is “squeezed” in a relatively small 
number of features, leading to a reduction of the necessary feature space dimension. 2D 
image that usually transforms space information to frequency information can be 
accomplished by one of the following methods, such as Discrete Cosine Transform (DCT), 
Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT). These methods are 
applicable to fixed original images and optimal information packing properties. In addition, 
the computation requirement of these methods is lower than that of Karhunen-Loeve (KL, 
also known as PCA) Transform [6]. PCA is a useful statistical technique that can be applied 
to fields such as face recognition [5] and image compression, and it is a common technique 
for finding patterns in data of high dimension. PCA also is for feature extraction under the 
unsupervised learning setting. This section will give a brief introduction of the two 
methods, DCT and Eigenface, for feature extraction. 

2.1 Discrete Cosine Transform (DCT)  
There are three procedures for feature extraction of frequency transformation: (1). data 
sampling, (2) data transform, (3) feature vector extraction. For data sampling, two kinds of 
approaches namely block-based and non block-based are common used; overlapped block-
based with top-bottom scan [27] or overlapped block-based with raster scan [28,29], and non 
block-based Full image [6]. That is, in this approach, we employ the DCT to the entire face 
image for data sampling, as shown in Fig. 1. Because some related information between sub-
images cannot be obtained if the DCT is applied to the sub-image independently. With 
entire-face data sampling by the DCT, all frequency information then can be accomplished. 
The DCT coefficients with large magnitude are mainly located in the upper-left corner of the 
DCT matrix as shown in Fig. 1(c). In our system, we scan the DCT coefficient matrix in a zig-
zag manner starting from the upper-left corner and subsequently convert it to a one-
dimensional vector as shown in Fig. 1(d). 
The DCT is a technique used for converting space signals into frequency components. The 
one-dimensional DCT is useful in processing one-dimensional (1D) signals such as speech 
waveforms. For analysis of two-dimensional (2D) signals such as images, a 2D version of the 
DCT (2D-DCT) is required. In short, for an N × M matrix f, the 2D-DCT is computed in a 
simple way: The 1D-DCT is applied to each row of f and then to each column of the result. If 
an image f(x,y) of size N × M, whose discrete cosine transform is C(u,v), it can be expressed 
as Eq. (1). 
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Since 2D-DCT can be computed by applying 1D transforms separately to the rows and 
columns, it can be said that 2D-DCT is separable in two dimensions. In the 1D case, each 
element C (u,v) of the transform is the inner product of the input and a basis function, but in 
the 2D case, the basis functions are N × M matrices. Each 2D basis matrix is the outer 
product of two of the one-dimensional basis vectors. 
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2.2 Eigenface method  
PCA is a well-known technique commonly exploited in multivariate linear data analysis. 
The main underlying concept is to reduce the dimensionality of a data set while retaining as 
much variation as possible in a data set. If a face image f(x,y) is a two-dimensional N × N 
array of intensity values, the corresponding image ik is viewed as a vector with N2 
coordinates that result from a concatenation of successive rows of the image. Moreover, if 
the training sets have M face images and every image is of the same size, the training set of 
M faces can be denoted by I = {i1, i2,…,iM}. Its average face i  is defined by:  
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Each face image differs from the average by the vector φj = ij - i  for j=1,…, M. This set of 
huge vectors is then subject to principal component analysis, which seeks a set of M 
orthonormal vectors uk and their associated eigenvalues λk , which best describes the 
distribution of the data. The vectors uk and scalars λk are the eigenvectors and eigenvalues, 
respectively, of the covariance matrix. 
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where A=[φ1 φ2 …φM]. The matrix C of Eq. (2), however, is N2× N2, and determining the N2 
eigenvectors and eigenvalues is an intractable task for typical image sizes. This problem can 
be alleviated by referring to some basic finding known in linear algebra. Fortunately we can 
determine the eigenvectors by first solving a much smaller M × M matrix problem, and 
taking linear combinations of resulting vectors [5]. The cost of computation is greatly 
decreased from the order of the number of pixels in the images (N2) to the order of the 
number of images in the training set (M). In practice, the numbers of face images M are 
smaller than numbers of pixels N2 (N2 >> M), and the calculations of the covariance matrix C 
become quite manageable.  
A testing face image (ix) is transformed into its eigenface components (projected into “face 
space”) by a simple operation, ( )T

k k xw u i i= − for k=1,…, M. The weights form a vector ψT = 
[w1 w2 … wM] that describes the contribution of each eigenface in representing the input face 
image, treating the eigenfaces as a basis set for face images. The vector is used to find which 
number of pre-defined face class best describes the face. The simplest method for 
determining which face class provides the best description of an input face image is to find 
the face class k that minimizes the Euclidian distance ( )k kε ψ ψ= − , where ψk is a vector 

describing the kth face class. 

3. The proposed method 
For face recognition, based on coarse-to-fine strategy, we design a multi-stage recognition 
system which combines SVM, Eigenface, and RANSAC methods to increase the recognition 
accuracy. The detail of this system is demonstrated as following.  



 State of the Art in Face Recognition 

 

54 

exhibit high “information packing” properties compared with the original input data. This 
means that most of the classification-related information is “squeezed” in a relatively small 
number of features, leading to a reduction of the necessary feature space dimension. 2D 
image that usually transforms space information to frequency information can be 
accomplished by one of the following methods, such as Discrete Cosine Transform (DCT), 
Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT). These methods are 
applicable to fixed original images and optimal information packing properties. In addition, 
the computation requirement of these methods is lower than that of Karhunen-Loeve (KL, 
also known as PCA) Transform [6]. PCA is a useful statistical technique that can be applied 
to fields such as face recognition [5] and image compression, and it is a common technique 
for finding patterns in data of high dimension. PCA also is for feature extraction under the 
unsupervised learning setting. This section will give a brief introduction of the two 
methods, DCT and Eigenface, for feature extraction. 

2.1 Discrete Cosine Transform (DCT)  
There are three procedures for feature extraction of frequency transformation: (1). data 
sampling, (2) data transform, (3) feature vector extraction. For data sampling, two kinds of 
approaches namely block-based and non block-based are common used; overlapped block-
based with top-bottom scan [27] or overlapped block-based with raster scan [28,29], and non 
block-based Full image [6]. That is, in this approach, we employ the DCT to the entire face 
image for data sampling, as shown in Fig. 1. Because some related information between sub-
images cannot be obtained if the DCT is applied to the sub-image independently. With 
entire-face data sampling by the DCT, all frequency information then can be accomplished. 
The DCT coefficients with large magnitude are mainly located in the upper-left corner of the 
DCT matrix as shown in Fig. 1(c). In our system, we scan the DCT coefficient matrix in a zig-
zag manner starting from the upper-left corner and subsequently convert it to a one-
dimensional vector as shown in Fig. 1(d). 
The DCT is a technique used for converting space signals into frequency components. The 
one-dimensional DCT is useful in processing one-dimensional (1D) signals such as speech 
waveforms. For analysis of two-dimensional (2D) signals such as images, a 2D version of the 
DCT (2D-DCT) is required. In short, for an N × M matrix f, the 2D-DCT is computed in a 
simple way: The 1D-DCT is applied to each row of f and then to each column of the result. If 
an image f(x,y) of size N × M, whose discrete cosine transform is C(u,v), it can be expressed 
as Eq. (1). 

 

1 1

0 0

2 (2 1) (2 1)( , ) ( ) ( ) ( , ) cos cos   ,    
2 2

              0, , ,      0, ,

N M

x y

x u x vC u v u v f x y
N MNM

u N v M

π πα α
− −

= =

+ +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= =

∑∑

… …
  (1) 

1
22           0where             ( )

1            
for uu
otherwise

α
−⎧⎪ == ⎨

⎪⎩
  

Since 2D-DCT can be computed by applying 1D transforms separately to the rows and 
columns, it can be said that 2D-DCT is separable in two dimensions. In the 1D case, each 
element C (u,v) of the transform is the inner product of the input and a basis function, but in 
the 2D case, the basis functions are N × M matrices. Each 2D basis matrix is the outer 
product of two of the one-dimensional basis vectors. 

A Multi-Stage Classifier for Face Recognition Undertaken by Coarse-to-fine Strategy 

 

55 

2.2 Eigenface method  
PCA is a well-known technique commonly exploited in multivariate linear data analysis. 
The main underlying concept is to reduce the dimensionality of a data set while retaining as 
much variation as possible in a data set. If a face image f(x,y) is a two-dimensional N × N 
array of intensity values, the corresponding image ik is viewed as a vector with N2 
coordinates that result from a concatenation of successive rows of the image. Moreover, if 
the training sets have M face images and every image is of the same size, the training set of 
M faces can be denoted by I = {i1, i2,…,iM}. Its average face i  is defined by:  

1

1 M

j
j

i i
M =

= ∑   

Each face image differs from the average by the vector φj = ij - i  for j=1,…, M. This set of 
huge vectors is then subject to principal component analysis, which seeks a set of M 
orthonormal vectors uk and their associated eigenvalues λk , which best describes the 
distribution of the data. The vectors uk and scalars λk are the eigenvectors and eigenvalues, 
respectively, of the covariance matrix. 

 
T

M

j

T
jj

AA

M
C

=

∑=
=

    

1
1
φφ

  (2) 

where A=[φ1 φ2 …φM]. The matrix C of Eq. (2), however, is N2× N2, and determining the N2 
eigenvectors and eigenvalues is an intractable task for typical image sizes. This problem can 
be alleviated by referring to some basic finding known in linear algebra. Fortunately we can 
determine the eigenvectors by first solving a much smaller M × M matrix problem, and 
taking linear combinations of resulting vectors [5]. The cost of computation is greatly 
decreased from the order of the number of pixels in the images (N2) to the order of the 
number of images in the training set (M). In practice, the numbers of face images M are 
smaller than numbers of pixels N2 (N2 >> M), and the calculations of the covariance matrix C 
become quite manageable.  
A testing face image (ix) is transformed into its eigenface components (projected into “face 
space”) by a simple operation, ( )T

k k xw u i i= − for k=1,…, M. The weights form a vector ψT = 
[w1 w2 … wM] that describes the contribution of each eigenface in representing the input face 
image, treating the eigenfaces as a basis set for face images. The vector is used to find which 
number of pre-defined face class best describes the face. The simplest method for 
determining which face class provides the best description of an input face image is to find 
the face class k that minimizes the Euclidian distance ( )k kε ψ ψ= − , where ψk is a vector 

describing the kth face class. 

3. The proposed method 
For face recognition, based on coarse-to-fine strategy, we design a multi-stage recognition 
system which combines SVM, Eigenface, and RANSAC methods to increase the recognition 
accuracy. The detail of this system is demonstrated as following.  
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3.1 Support vector machine for binary classifier 
Support vector machine (SVM) is a method based on statistical learning theory, which is 
applicable as pattern recognition, developed by V Vapnik [22]. The main purpose of the 
SVM is to separate two classes and maximize the margin between Hyper-plane and the 
nearly data point, as shown in Fig. 2. 
In the case of linearly separating two classes, the two classes of hyper-planes, (w·x)+b=0, 
where w ∈ Rd and b ∈ R, is considered, its corresponding to the decision function Eq. (3) is:   

 ( ) sgn(( ) ) 1f x w x b= ⋅ + = ±   (3) 

The decision function f(x) is described by weight vector w, threshold b and input patterns x. 
The solution to the optimization problem of SVM is given by the saddle point of Lagrange 
functional as Eq. (4): 

 

2

, 1 1

1min (( ) )
2

 0 1, 2, ,
:

m n

p i i i iw b i i

i

p

L w y x w b

subject to i n
L primal problem

α α

α
= =

⎧ = − ⋅ ⋅ + +⎪
⎪

≥ =⎨
⎪
⎪
⎩

∑ ∑
…   (4) 

where αi : Lagrange multipliers. 
By using Lagrange multiplier techniques, the minimization of Eq. (4) leads to the following 
dual optimization problem as Eq. (5). 
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where LD: dual problem 
When the training data are nonlinear, we usually change the feature space dimension using 
the transfer function Φ( ). Thus the decision functions of the more general form [31] are 
obtained as Eq. (6). 
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Where k is the kernel that evaluated on input patterns x,x'. Usually there are two kinds of 
kernel function, i.e., polynomial and radial basis functions (rbf), expressed as Eq. (7) and Eq. 
(8), respectively. 
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Each given face image in the face database with known labels (classes) is modeled by SVM. 
Several images of the same person under different poses and illuminations are used for 
training. Recognition is accomplished by matching a test face image with unknown labels 
against all trained image in the face database.  

3.2 One-against-all (OAA) of SVM for multi-class recognition 
Basically, the OAA strategy uses a system of Ns binary SVM, where N is the class numbers. 
More specifically, it involves a parallel architecture made up of N numbers of SVM, and 
each binary SVM solves a two-class problem defined by one class against all the others. One 
of the Ns SVM is trained with all of the examples in the ith class with positive labels, and all 
the examples in the other classes except ith with negative labels. Thus given k training data 
(x1,y1),…,(xk,yk), where xi ∈ Rd, i=1,…,k and yi ∈ {1,…,N} is the class of xi, the ith SVM solves 
the following problem: 
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Where the φ(xj) is a kernel function that mapped the training data xj to a higher dimensional 
space and C is the penalty parameter. When data with noise causes hard margin, there is a 
penalty term 1

k i
jjC ξ

=∑ which can relax the hard margin and allow a possibility of 

mistrusting the data. It can reduce the number of training errors. 
After solving Eq. (9), there are N decision functions as shown in Eq. (10) 
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where fi is a confidential rate of the output of ith SVM, x is the input data, and m is the final 
decision that found which class has the largest value of the decision function. 

3.3 One-against-one (OAO) of SVM for multi-class recognition    
In the OAO strategy, several binary SVM are constructed, but each one is constructed by 
training data from only two different classes. Thus, this method is sometimes called a “pair-
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where LD: dual problem 
When the training data are nonlinear, we usually change the feature space dimension using 
the transfer function Φ( ). Thus the decision functions of the more general form [31] are 
obtained as Eq. (6). 
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Where k is the kernel that evaluated on input patterns x,x'. Usually there are two kinds of 
kernel function, i.e., polynomial and radial basis functions (rbf), expressed as Eq. (7) and Eq. 
(8), respectively. 
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Each given face image in the face database with known labels (classes) is modeled by SVM. 
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More specifically, it involves a parallel architecture made up of N numbers of SVM, and 
each binary SVM solves a two-class problem defined by one class against all the others. One 
of the Ns SVM is trained with all of the examples in the ith class with positive labels, and all 
the examples in the other classes except ith with negative labels. Thus given k training data 
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Where the φ(xj) is a kernel function that mapped the training data xj to a higher dimensional 
space and C is the penalty parameter. When data with noise causes hard margin, there is a 
penalty term 1
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=∑ which can relax the hard margin and allow a possibility of 

mistrusting the data. It can reduce the number of training errors. 
After solving Eq. (9), there are N decision functions as shown in Eq. (10) 
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where fi is a confidential rate of the output of ith SVM, x is the input data, and m is the final 
decision that found which class has the largest value of the decision function. 

3.3 One-against-one (OAO) of SVM for multi-class recognition    
In the OAO strategy, several binary SVM are constructed, but each one is constructed by 
training data from only two different classes. Thus, this method is sometimes called a “pair-
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wise” [32,33] approach. For a data set with N different classes, this method constructs C2N= 
N(N-1)/2 models of two-class SVM. The method also is very popular among researchers in 
neural networks, Adaboost, decision trees, etc. For training data from the ith and jth classes, 
we solve the following binary classification problem: 
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The simplest decision function is a majority vote or max-win scheme. The decision function 
counts the votes for each class based on the output from the N(N-1)/2 SVM. The class with 
the most votes is the system output. 
In the majority vote process, it is necessary to compute each discriminate function fij(x) of the 
input data x for the N(N-1)/2 SVMs model. The score function Ri(x) is sums of the correct 
votes. The final decision is taken on the basis of the “winner takes all” rule, which 
corresponds to the following maximization. The expression for final decision is given as Eq. 
(12). 
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where fij(x) is the output of ijth SVM, x is the input data and m is the final decision that 
found which class has the largest voting from the decision function fij. 

3.4 Our multi-stage classifier system for multi-class recognition 
Based on coarse-to-fine strategy, the proposed novel scheme for face recognition is a 
consecutive multi-stage recognition system, in which each stage is devoted to remove a lot 
of false classes more or less during the recognition process. The flowcharts of the proposed 
system including the training phase and recognition phase are shown in Fig. 3(a) and (b), 
respectively. In the first two stages (OAA and OAO of SVM), the obtained DCT features 
from feature extraction process are used. In the first stage (OAA), we selected the classes 
whose confidential rate is greater than the threshold, fi > T, which are the subset for the 
second stage. In the second stage (OAO), the voting strategy is employed to select the top 
two classes with maximum votes, because the selected top two classes can reach a 
recognition rate nearly up to 100%. In the third stage, the Euclidian distance of each image 
of the two classes is calculated, and then the lowest distance of the image of each class is 
determined for the last stage, i.e., stage four. “RANSAC” method is applied in the last stage, 
in which the epipolar geometry method with space information of the testing image is 
matched with the two training images, and then the classified image with the greatest 
matching numbers of corresponding feature points is selected as the correct one ; in other 
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words, the training image with the most geometric similarity to the testing image is thus 
presented.  
As mentioned above, the purpose of using DCT is for dimensionality reduction, and the 
selected low-frequency DCT coefficient vectors are fed into the first two stages for training 
and testing phase (see Fig. 3(a), (b)). There are two advantages of using the same feature 
vectors for the first two stages, one is to save the computation cost and the other is to 
simplify the framework of the recognition system. Essentially, the major difference between 
the DCT, PCA, and RANSAC are the methodologies of feature extraction while considering 
what kind of features is the best for classification. For examples, DCT is for frequency 
transformation, PCA is a statistical technique, and RANSAC is for space geometric 
information. Three methods can complement each other in our recognition system. The 
outputs of each stage are collected by a cascade manner as shown in Fig. 3(b), and the final 
output of last stage accomplished by “RANSAC” method catches a striking and attractive 
classification end. 
In the first stage, OAA testing phase, (see Fig. 3(b)), a scheme with a system of Ns binary 
SVM where N is the numbers of class is used. As indicated by Eq. (10), there are N decision 
functions, and f is a confidential rate which is an output from binary SVM, in which f ∈ R 
presents. And the formula, 1 2

1,...,

( , , ,..., ) ( )arg maxN i
i N

m x f f f f
=

= , means the most confidential 

rate. We select a subset part of classes Aj whose confidential rate is larger than the threshold 
Tj, Aj = {fi | fi ≥ Tj}, where i = 1,2,…,N; j = 1,2,…,k ; N are class numbers; k are testing data 
numbers, Aj ⊂ {C1, C2,…,CN}, Ci = ClassLabels. Then the subset Aj of the class numbers is 
delivered into second stage in order to shorten the computation time. For example, only the 
top 10 classes whose confidential rates excess a preset threshold are preserved if there are 40 
classes in all; in other words, only the top 10 of the total 40 classes are selected for use in the 
second stage.               
In the second stage OAO model as shown in Fig. 3(b), there are C2N= N(N-1)/2 models of 
“pair-wise” SVM. From Eq. (12), 1 2

1,...,
arg max( , , , , ) { ( )}L i

i L
m x R R R R x

=
=…  is the largest voting 

from the decision function fij, where L is the class numbers of subset A, which is screened 
from first stage. In order to reduce testing error, top two classes with the first and second 
high voting value are selected, and the difference between their voting values is computed 
accordingly. If the numerical difference falls less than or equals e, where e is a setting 
number, these selected two classes are delivered into the third stage for binary classification; 
Ri(x) – Rj(x) ≤ e, where Ri(x) and Rj(x) are the classes with the first and second voting value. 
However, if Ri(x) – Rj(x) > e, the class i is then be decided as the only correct answer.  While 
the voting value difference falls less than or equals e, it represents a very close difference 
between classes i and j, it also tells that there is definitely a need to proceed to the next stage 
to identify the decision. 
In the third stage, the eigenvectors binary model is shaped by the training phase. As shown 
in the Fig. 4(a), the input image is projected into “face space” and the weights form vectors 
ψT = [w1 w2 … w9]. In our case, only one image of each class is selected by the process of 
finding the minimum Euclidian distance. Fig. 4(b) shows the Euclidian distance between 
input image and the ten training images. As indicated in Fig. 4(b), it represents two classes 
composed of ten training images in all, class 1 includes the first five images, which are 
images 1, 2, 3, 4, and 5, respectively; and class 2 includes the other five images, which are 
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wise” [32,33] approach. For a data set with N different classes, this method constructs C2N= 
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the most votes is the system output. 
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where fij(x) is the output of ijth SVM, x is the input data and m is the final decision that 
found which class has the largest voting from the decision function fij. 
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images 6, 7, 8, 9, and 10, respectively. Subsequently, the image with the minimum Euclidian 
distance from each class is picked out for the last stage. As a result, in our case, image 5 out 
of class 1 and image 9 out of class 2 are decided in stage three. 
In the last stage, “RANSAC” method is used to match one testing image with two training 
images, trying to find which training image best matches with the testing image. It shows 
that the one with the maximum numbers of corresponding points fits best. The procedure of 
“RANSAC” is described as following. 
a. Find Harris corners [34] in testing and training images: Shifting a window in any 

direction should give a large change in intensity as shown in Fig. 5(a). The change Ex,y 
produced by a shift (x,y) is given by: 

 2
, , , ,

,
[ ]x y u v x u y v u v

u v
E w I I+ += −∑   (13) 

where w specifies the image window, for example a rectangular function: it is unity 
within a specified rectangular region, and zero elsewhere. A Gaussian functions:  
smooth circular window wu,v = exp–(u2+v2)/2σ2.  
Iu,v : image intensity 

b. Find putative matches: Among previously detected corner feature points in given 
image pairs, putative matches are generated by looking for match points that are 
maximally correlated with each other within given windows. Undoubtedly, only points 
that robustly correlate with each other in both directions are returned. Even though the 
correlation matching results in many wrong matches, which is about 10 to 50 percent, it 
is well enough to compute the fundamental matrix F as shown in Fig. 5(b). 

c. Use RANSAC method to locate the corresponding points between the testing and 
training images: As shown in Fig. 6, the map x → l' between two images defined by 
fundamental matrix F is considered. And the most basic properties of F is x'Fx =0 [35] 
for any pair of corresponding points x ↔ x' in the given image pairs. Following steps 
was used by RANSAC method to consolidate fundamental matrix F estimation: 
Repeat 
i. Select random samples of 8 correspondence points. 
ii. Compute F. 
iii. Measure support (number of inliers within threshold distance of epipolar line). 
Choose the F with the largest number of inliers and obtain the corresponding points xi 
↔ x'i (as shown in Fig. 5(c)). 

d. Count numbers of matched and unmatched feature points: The threshold distance 
between two corresponding points xi ↔ x'I is set. Match counts if the distance between 
two corresponding points is smaller than that of the threshold; on the contrary, no 
match does. For any given image pairs, the successful match pairs should be the 
training images with the largest matching number as shown in Fig. 5 (d). 

4. Experimental results 
The multi-stage-based face recognition is evaluated on three face databases, i.e., the ORL, 
Yale and IIS face databases as shown in Fig. 7. The ORL face database contains abundant 
variability in expression, pose and facial details (as shown in Fig. 7 (a)), which is used as a 
baseline study. The Yale face database is used to evaluate face recognition methods under 
varying lighting conditions (as shown in Fig. 7(b)) and the IIS face database (as shown in 
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Fig. 7(c)) is evaluated on a great number of images of 100 subjects, each subject has 30 
different images.  
We conducted experiments to compare our cascade multi-stage classifier strategy with some 
other well-known single classifier, e.g., the SVM with OAA, OAO, and Eigenface. The 
experimental platforms are Intel Celeron 2.93GHz processor, 1GB DDRAM, Windows XP, 
and Matlab 7.01. 

4.1 Face recognition on the ORL database 
The first experiment is performed on the ORL database. There are 400 images of 40 distinct 
subjects. Each subject has ten different images taken at different times. Each image was 
digitized a 112 × 92 pixel array whose gray levels ranged between 0 and 255. One sample 
subject of the ORL face images is shown in Fig. 7 (a). There are variations in facial 
expressions such as open/closed eyes, smiling/non-smiling, and glasses/no glasses. In our 
experiments, five images are randomly selected as training samples, the other five images 
and then serve as testing images. Therefore, for 40 subjects in the database, a total of 200 
images are used for training and another 200 for testing and there are no overlaps between 
the training and testing sets. Here, we verify our system based on the average error rate. 
Such procedures are repeated for four times, i.e. four runs, which result in four groups of 
data. For each group, we calculated the average of the error rates versus the number of 
feature dimensions (from 15 to 100). Fig. 8 shows the results of the average of four runs and 
the output of each stage from the multi-stage classifier, which are SVM with OAA, OAO, 
Eigenface, and final stage. As shown in Fig. 8, the error rates of the output of the final stage 
is lower than the other three types of single classifier, our proposed method obtains the 
lowest error rate. The average minimum error rate of our method is 1.37% on the 30 feature 
numbers, while the OAA-SVM is 10.50%, OAO-SVM is 2.87%, and Eigenface is 8.50%. If we 
choose the best results among the four groups of the randomly selected data, the lowest 
error rate of the final stage can achieve 0%. 

4.2 Comparison with previous reported results on ORL 
Several approaches have been conducted for face recognition using the ORL database 
[5,6,8,9,11,13,36-41,43]. The methods of using single classifier systems for face recognition 
are Eigenface [5,37,38,40], DCT-RBFNN [6], binary tree SVM [8], 2D-HMM [9], LDA [39], 
and NFS [43]. The methods of using multi-classifiers for ORL face recognition are fuzzy 
fisherface [11,41], and CF2C [13]. Here, we present a comparison under similar conditions 
between our proposed method and the other methods described on the ORL database. 
Approaches are evaluated on error rate, and feature vector dimension. Comparative results 
of different approaches are shown in Table 1. It is hard to compare the speed of different 
methods performed on different computing platforms, so we ignore the training and 
recognition time in each different approach. It is evident as indicated in the table that the 
proposed approach achieves best recognition rate in comparison with the other three 
approaches. In other words, our approach outperforms the other three approaches in respect 
of recognition rate. 

4.3 Face recognition on the Yale database 
The second experiment was conducted on the Yale face database, which contains 165 
centered face images of 15 individuals and 11 images per person with major variations, 
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Fig. 7(c)) is evaluated on a great number of images of 100 subjects, each subject has 30 
different images.  
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experiments, five images are randomly selected as training samples, the other five images 
and then serve as testing images. Therefore, for 40 subjects in the database, a total of 200 
images are used for training and another 200 for testing and there are no overlaps between 
the training and testing sets. Here, we verify our system based on the average error rate. 
Such procedures are repeated for four times, i.e. four runs, which result in four groups of 
data. For each group, we calculated the average of the error rates versus the number of 
feature dimensions (from 15 to 100). Fig. 8 shows the results of the average of four runs and 
the output of each stage from the multi-stage classifier, which are SVM with OAA, OAO, 
Eigenface, and final stage. As shown in Fig. 8, the error rates of the output of the final stage 
is lower than the other three types of single classifier, our proposed method obtains the 
lowest error rate. The average minimum error rate of our method is 1.37% on the 30 feature 
numbers, while the OAA-SVM is 10.50%, OAO-SVM is 2.87%, and Eigenface is 8.50%. If we 
choose the best results among the four groups of the randomly selected data, the lowest 
error rate of the final stage can achieve 0%. 

4.2 Comparison with previous reported results on ORL 
Several approaches have been conducted for face recognition using the ORL database 
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methods performed on different computing platforms, so we ignore the training and 
recognition time in each different approach. It is evident as indicated in the table that the 
proposed approach achieves best recognition rate in comparison with the other three 
approaches. In other words, our approach outperforms the other three approaches in respect 
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centered face images of 15 individuals and 11 images per person with major variations, 
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including changes in illumination conditions (center-light, left-light, right-light), glasses/ no 
glasses, and different facial expressions (happy, sad, winking, sleepy, and surprised). The 
original images are 256 grayscale levels with a resolution of 195 × 231. The training and 
testing set are selected randomly with five training and six testing samples per person at 
four times. Similarly, we verify the proposed system based on the average error rate 
obtained from our four experimental results and calculate the error rates versus the number 
of feature dimensions (from 15 to 100). Fig. 9 shows the results of the average of four runs 
and the output of each stage from the multi-stage recognition system, which are SVM with 
OAA, OAO, Eigenface, and final stage. As shown in Fig. 9, the error rates of the output of 
the final stage is lower than the other three types of single classifier. The average minimum 
error rate of our method is 0.27% in the 65 feature numbers, while the OAA-SVM is 2.50%, 
OAO-SVM is 0.82%, and Eigenface is 10.27%. If we choose the best results among the four 
groups of verified data, the lowest error rate of the final stage can even reach 0%. 

4.4 Comparison with previous reported results on Yale 
Several approaches have been conducted for face recognition by using Yale database 
[6,11,13,25,40]. The methods of using Yale database in single classifier systems for face 
recognition are 2D-PCA [40], DCT-RBFNN [6], and DCT-NNC [25]. The methods of using 
multi-classifier systems for face recognition are fuzzy fisherface [41], and CF2C [13]. Here, 
the comparison of the classification performance of all the methods is provided in Table 2. 
Again, Table 2 clearly indicates that the proposed approach outperforms the other five 
approaches. 

4.5 Face recognition on the IIS database 
The IIS face database contains 3000 face images of 100 individuals. There are 30 images per 
subject, the images per subject include tens for frontal face, tens for left profile, and tens for 
right profile. Each image was digitized and presented by 175 × 155 pixel array whose gray 
levels ranged between 0 and 255 as shown in Fig. 7(c). The training and testing set are 
selected randomly. This split procedure has been repeated four times in each case. Six 
images of each subject are randomly selected for training, and the remaining 24 images are 
for testing. The result is shown in Fig. 10 and Table 3 gives evidence that the proposed 
method outperformed other classification techniques. 

5. Conclusions 
This paper presents a multi-stage classifier method for face recognition based on the 
techniques of SVM, Eigenface, and RANSAC. The proposed multi-stage method is based on 
a coarse-to-fine strategy, which can reduce the computation cost. The facial features are first 
extracted by the DCT for the first two stages, i.e., OAA-SVM and OAO-SVM. Through all 
our experiments, OAO-SVM obtained a higher recognition rate than the OAA-SVM, so in 
our research, we put the OAO after the OAA. Although the last stage (RANSAC) led to 
more accuracy in comparison with the other three stages, its computation cost more in the 
geometric fundamental matrix F estimation. In order to decrease the computation time, we 
need to reduce the classes and images to only two training images to match with testing 
image in the last stage. The key of this method is to consolidate OAO-SVM for the output of 
the top two maximum votes so that the decision of the correct class could be made later by 
RANSAC in the last stage. The feasibility of the proposed approach has been successfully 
tested on ORL, Yale, and IIS face databases, which are acquired under varying pose, 
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illumination, expression, and a great quantity of samples. Comparative experiments on the 
three face databases also show that the proposed approach is superior to single classifier 
and multi-parallel classifier. 
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Fig. 3. Flowchart of the face recognition system. (a) training phase (b) testing phase. 
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Fig. 4. (a) The weight vector ψT = [w1 w2 … w9] of input image. (b) The Euclidian distance 
between the input image and ten training samples, respectively. The sample 1, 2, 3, 4, 5 are 
the same classes and sample 6, 7, 8, 9, 10 are another classes. 
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Training image 1Testing image Training image 2

(a) Harris corners

(b) Putative matches

(c)Both images overlayed and RANSAC robust F 
estimation on matched feature points

Match: 13
Unmatch: 4

Match: 4
Unmatch: 6

(d) Count numbers of match and unmatch 
feature points  

Fig. 5. Four procedures of space information using RANSAC method to find the match and 
unmatch feature points. (a) Find Harris corners feature points in one testing and two 
training images. (b) Find putative matches of testing and training images. (c) Using 
RANSAC method to find testing and training images of match feature points. (d) Count 
numbers of match and unmatch feature points. 
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Fig. 6. Point correspondence geometry. The two cameras are indicated by their centers C 
and C' and image planes. The camera centers, 3-space point X, and its images x and x' lie in a 
common plane π. An image point x back-projects to a ray in 3-space defined by the first 
camera center, C, and x. This ray is imaged as a line l' in the second view. The 3-space point 
X which projects to x must lie on this ray, so the image of X in the second view must lie on l'. 

 

(a)
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(c)

 
Fig. 7. Some sample images from publicly available face database used in the experiments: 
(a) ORL face database, (b) Yale face database, (c) IIS face database. 
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Fig. 8. Comparison of recognition error versus the number of features of the OAA-SVM, 
OAO-SVM, Eigenface, and final stage of the Multi-stage classifier system on the ORL face 
database. 
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Fig. 9. Comparison of recognition error versus the number of features of the OAA-SVM, 
OAO-SVM, Eigenface, and final stage of the Multi-stage classifier system on the Yale face 
database. 
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Fig. 9. Comparison of recognition error versus the number of features of the OAA-SVM, 
OAO-SVM, Eigenface, and final stage of the Multi-stage classifier system on the Yale face 
database. 
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Fig. 10. Comparison of recognition error versus the number of features of the OAA-SVM, OAO-
SVM, Eigenface, and final stage of the Multi-stage classifier system on the IIS face database. 
 

Error rate (%) Methods Best Mean 
Feature vector 

dimension 
Wavelet + Eigenface [37] 2 4 140 

2D-PCA [40] 4 5 112×3 
Binary tree SVM [8] N/A 3 48 

DCT-RBFNN [6] 0 2.45 30 
CF2C [13] 3 4 30 

Fuzzy Fisherface [41] 2.5 4.5 60 
Our proposed approach 0 1.375 30 

Table 1.  Recognition performance comparison of different approaches (ORL) 

Error rate (%) Methods Best Mean 
Feature vector 

dimension 
2D-PCA [40] 

DCT-RBFNN [6] 
DCT-NNC [25] 

CF2C [13] 
Fuzzy Fisherface [41] 

Our proposed approach 

N/A 
N/A 
2.22 
N/A 
2.16 

0 

15.76 
1.8 
2.22 
3.1 
5.2 
0.27 

139/165 
N/A 

59 
14 
40 
65 

Table 2.  Recognition performance comparison of different approaches (Yale) 

Error rate (%) Methods Best Mean 
Feature vector 

dimension 
Discriminant waveletface + NFS 

[43] 3.6 N/A 60 

DWT + PNN [36] 8.83 N/A 24 
Multi-feature + DWT + PNN 

[42] 3.08 N/A 70 

Our proposed approach 1.8 2.7 35 

Table 3. Recognition performance comparison of different approaches (IIS) 
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 Telekom Research & Development Sdn. Bhd., Universiti Teknologi   

Malaysia 

1. Introduction  
The human face is the main focus of attention in social interaction, and is also the major key 
in conveying identity and emotion of a person. It has the appealing characteristic of not 
being intrusive as compared with other biometric techniques. The research works on face 
recognition started in the 1960s with the pioneering work of Bledsoe and Kanade, who 
introduced the first automated face recognition system (Zhao et al, 2003). From that 
onwards, the research on face recognition has widespread and become one of the most 
interesting research area in vision system, image analysis, pattern recognition and biometric 
technology.   
Recently, research on face recognition has received attention and interest from the scientific 
community as well as from the general public. Face recognition has become a major issue in 
many security, credit card verification, and criminal identification applications due to its 
applicability as a biometric system in commercial and security applications to prevent 
unauthorized access or fraudulent use of Automated Teller Machines (ATMs), cellular 
phones, smart cards, desktop personal computers, workstations and computer networks.  
Face recognition has been used by law enforcement agencies for finding criminals, by 
government agencies for fraud and homeland security, and by financial institutions for 
ATM and check-cashing security to protect customers against identity theft and fraudulent 
transactions. By using the face recognition, a picture identity, bankcard or Personal 
Identification Number (PIN) is no longer needed to verify a customer's identity. Face 
recognition is also applicable in areas other than security oriented applications such as 
computer entertainment and customized computer-human interaction applications that can 
be found in products such as cars, aids for disabled people, or buildings.  The interest for 
face recognition will most likely increase even more in the future due to the increased 
penetration of technologies, such as digital cameras and the internet, and a larger demand 
for different security schemes.  
Face recognition systems (FRS) are still in their infancy. The current FRS still experiencing 
low accuracy rates due to factors such as illumination, orientation and other disturbances. 
The quality of a face image has also a big impact on the performance of the FRS.  If the 
illumination on the face image is too high, the face image will be too bright; however, if the 
illumination is too low, the face image will be too dark. The variation on the illumination 
will greatly affect the quality of the face image and reduce the performance of the FRS.  
Thus, it is crucial to improve the quality of the face image in order to have a better 
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for different security schemes.  
Face recognition systems (FRS) are still in their infancy. The current FRS still experiencing 
low accuracy rates due to factors such as illumination, orientation and other disturbances. 
The quality of a face image has also a big impact on the performance of the FRS.  If the 
illumination on the face image is too high, the face image will be too bright; however, if the 
illumination is too low, the face image will be too dark. The variation on the illumination 
will greatly affect the quality of the face image and reduce the performance of the FRS.  
Thus, it is crucial to improve the quality of the face image in order to have a better 
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performance. In this work, we proposed to improve the face image quality by using 
photometric normalization techniques which will normalize the illumination variation of 
the face image. The techniques used are based on Histogram Equalization and 
Homomorphic Filtering. A face recognition system based on Principal Component Analysis 
(PCA) followed by Artificial Neural Networks (ANN) called PCA-ANN is proposed.  PCA 
is used during the feature extraction phase since it is found to be the simple and popular 
technique used for feature extraction (Martinez et al, 2001; Li & Jain, 2005).   
Sirovich and Kirby (1987) proposed the use of PCA to obtain a reduced representation of 
face images.  Kirby and Sirovich (1991) then proposed the use of PCA for face analysis and 
representation.  The work was followed by Turk and Pentland (1991) who first applied PCA 
for face recognition and named as “Eigenfaces” technique since the basis vectors constructed 
by PCA had the same dimension as the input face images. They used PCA as the projection 
scheme to obtain the feature vectors or Eigenfaces, and Euclidean distance as similarity 
function to solve face recognition problem. Lee and Lu (1998) proposed a method for 
generalizing the representational capacity of available face database. Lee et al. (1999) later 
proposed a method using PCA which detects the head of an individual in a complex 
background and then recognize the person by comparing the characteristics of the face to 
those of known individuals. 
Meanwhile, the ANN based on feed-forward neural networks is used during classification 
phase because it is one of the machine learning algorithms which is widely used for 
classification.  ANN have been commonly used as the classifier for FRS generally in a 
geometrical local feature based manner, but there are also some methods where ANN are 
applied holistically(Nazeer et al, 2007a, 2007b). Lades et al. (1993) presented an object 
recognition system based on Dynamic Link Architectures (DLA) which is an extension of 
the ANN. The DLA uses correlations in the fine-scale cellular signals to group neurons 
dynamically into higher order entities. These entities can be used to code high-level objects, 
such as a 2-D face image. The face images are represented by sparse graphs, whose vertices 
are labeled by a multi-resolution description in terms of local power spectrum, and whose 
edges are labeled by geometrical distance vectors.  Lawrence et al. (1997) presented a hybrid 
neural-network solution that combines local image sampling, a self-organizing map (SOM) 
neural network, and a convolutional neural network for face recognition. The SOM provides 
a quantization of the image samples into a topological space where inputs that are nearby in 
the original space are also nearby in the output space, thereby providing dimensionality 
reduction and invariance to minor changes in the image sample, and the convolutional 
neural network provides for partial invariance to translation, rotation, scale, and 
deformation. The convolutional network extracts successively larger features in a 
hierarchical set of layers. Thomaz et al. (1998) also studied on ANN by combining PCA and 
RBF neural network. Their system is a face recognition system consisting of a PCA stage 
which inputs the projections of a face image over the principal components into a RBF 
network acting as a classifier. Their main concern is to analyze how different network 
designs perform in a PCA+RBF face recognition system. They used a forward selection 
algorithm, and a Gaussian mixture model. According to the results of their experiments, the 
Gaussian mixture model optimization achieves the best performance even using less neuron 
than the forward selection algorithm. Their results also show that the Gaussian mixture 
model design is less sensitive to the choice of the training set. 
Temdee et al. (1999) presented a frontal view face recognition method by using fractal codes 
which are determined by a fractal encoding method from the edge pattern of the face region 
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(covering eyebrows, eyes and nose). In their recognition system, the obtained fractal codes 
are fed as inputs to back-propagation neural networks for identifying an individual. They 
tested their system performance on the ORL face database, and reported a recognition rate 
of 85 %.  Er et al. (2002) suggested the use of Radial Basis Function (RBF) neural networks on 
the data extracted by discriminant eigenfeatures. They used a hybrid learning algorithm to 
decrease the dimension of the search space in the gradient method, which is crucial on 
optimization of high dimension problem. First, they tried to extract the face features by both 
the PCA and Linear Discriminant Analysis methods. Next, they presented a hybrid learning 
algorithm to train the RBF neural networks, where the dimension of the search space is 
significantly decreased in the gradient method. Tolba and Abu-Rezq (2000) presented an 
invariant face recognition using the generalization capabilities of both Learning Vector 
Quantization (LVQ) and RBF neural networks to build a representative model of a face from 
a variety of training patterns with different poses, details and facial expressions. The 
combined generalization error of the classifier was found to be lower than that of each 
individual classifier. A new face synthesis method was implemented for reducing the false 
acceptance rate and enhancing the rejection capability of the classifier. The system was 
capable of recognizing a face in less than one second using ORL database for testing the 
combined classifier.  
The chapter is organized as follows. The first part of the chapter provides the system 
overview of an automated face recognition system. The second part of the chapter elaborates 
on the methodology used for the proposed face recognition system which includes the 
photometric normalization techniques, Histogram Equalization and Homomorphic 
Filtering, the feature extraction technique using PCA and classification using ANN. The 
final part of the chapter explains the performances of the proposed face verification system 
using both original face image and the face image with photometric normalization.   

2. System overview 
An automated face recognition system consists of two main parts which are face detection 
and face recognition as depicted in Fig. 1. Each of these parts will be described in the 
following sections. 

2.1 Face detection 
Face detection is essentially the first fundamental step or front-end of any online face 
recognition system.  It is used to determine whether there is human face in a scene either 
obtained from camera or still image.  It then identifies where the human face is.  If the 
human face is identified, it outputs a human face image consisting of the eyes, the nose and 
the mouth.  The human face is identified using direct image processing techniques which 
determines the locations and sizes of the face in scene image, and separates them from other 
non-face objects and distracting background information.  The face alignment which 
involves translation, rotation, and scaling is carried out using the center or edges of the eyes 
as a reference point since the eyes are an important feature that can be consistently 
identified. 
In Fig. 1, the scene image is captured using a web camera. The captured color image is 
transformed into a grayscale image. Face localization is applied to determine the image 
position of a face in the scene image. When the face image is detected, eyes detection is 
applied to detect the presence and location of the eyes in an image. The eyes location is used 
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performance. In this work, we proposed to improve the face image quality by using 
photometric normalization techniques which will normalize the illumination variation of 
the face image. The techniques used are based on Histogram Equalization and 
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for face alignment to correct the orientation of the face image into an upright frontal face 
image using affine transformation. The geometrical normalization is used to crop the 
upright frontal face image and scale it to a desired resolution. The cropped face image is 
used as the input image for face recognition. 
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Fig. 1. The main parts of an automated face recognition system 

2.2 Face recognition 
Face recognition establishes the identity of a person based on the person’s face with 
reference to a database of known faces. In Fig. 1, face recognition comprises of three main 
stages which are the image preprocessing, face representation, and face classification. Each 
of these stages is explained in the following subsections. 
(a) Image Preprocessing 
The aim of the image preprocessing is to preprocess a face image to enhance the data, 
remove noise and segment out the crucial data. The image preprocessing involves face 
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normalization which is used to compensate or normalize a face for position and illumination 
so that the variance due to these is minimized. A histogram of the face alone is computed to 
compensate for lighting changes in the image. Consequently, the small variation in the 
image due to identity, or muscle actuation will become the dominant source of intensity 
variance in the image and can thus be analyzed for recognition purposes. 
(b) Face Representation 
Face representation is used to generate a low-dimensional feature representation intrinsic to 
face objects with good discriminatory power for pattern classification using feature extraction. 
Feature extraction refers to applying a mapping or transformation of the multidimensional 
space into a space of fewer dimensions. The aim of feature extraction is to extract a compact 
set of interpersonal discriminating geometrical or photometrical features of the face. Feature 
extraction analyzes the variances left in the image using linear statistical techniques to 
generate a low-dimensional feature representation intrinsic to face objects with good 
discriminatory power for pattern classification. These techniques are used to classify and 
characterize the variances that remain in the image since they are now constrained and 
limited. After been preprocessed to such conditioned data, the unique features are then 
extracted and a template is then generated to represent the face image.  The template will be 
the basis form to associate the uniqueness of the data with the identity of the user. 
(c) Face Classification 
Face classification or feature matching is the actual recognition process. Given the feature 
representation of face objects, a classifier is required to learn a complex decision function to 
implement the final classification. The feature representation is optimized for the best 
discrimination which would help reduce the complexity of the decision function, and ease 
the classifier design. Thus, a good classifier would be able to further learn the different 
between the subjects. The feature vector obtained from the feature extraction is classified or 
matched to classes (persons) of facial images already enrolled in a database. The 
classification or feature matching algorithms used vary from the nearest neighbor classifier 
such as the Euclidean distance to advanced schemes like Artificial Neural Network (ANN).   
If the user is using the face recognition system for the first time, the user will be registered 
and the user template will be stored for future references. Face recognition involves 
comparing the generated template against the stored reference template. For verification, 
the matching is made against a claimed identity, where the matching process will be a one 
to one comparison between the generated template and the stored reference template. For 
identification, the matching is made by comparing the generated template against a list of 
reference templates of legitimate users which will be a one to many comparisons. 

3. Methodology 
3.1 Photometric normalization 
The purpose of the image preprocessing module is to reduce or eliminate some of the 
variations in face due to illumination. The image preprocessing is crucial as the robustness 
of a face recognition system greatly depends on it. By performing explicit normalization 
processes, system robustness against scaling, posture, facial expression and illumination is 
increased.  The image preprocessing includes photometric normalization which removes the 
mean of the geometrically normalized image and scales the pixel values by their standard 
deviation, estimated over the whole cropped image.  The photometric normalization 
techniques applied are based on Histogram Equalization and Homomorphic Filtering. 
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characterize the variances that remain in the image since they are now constrained and 
limited. After been preprocessed to such conditioned data, the unique features are then 
extracted and a template is then generated to represent the face image.  The template will be 
the basis form to associate the uniqueness of the data with the identity of the user. 
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representation of face objects, a classifier is required to learn a complex decision function to 
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discrimination which would help reduce the complexity of the decision function, and ease 
the classifier design. Thus, a good classifier would be able to further learn the different 
between the subjects. The feature vector obtained from the feature extraction is classified or 
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classification or feature matching algorithms used vary from the nearest neighbor classifier 
such as the Euclidean distance to advanced schemes like Artificial Neural Network (ANN).   
If the user is using the face recognition system for the first time, the user will be registered 
and the user template will be stored for future references. Face recognition involves 
comparing the generated template against the stored reference template. For verification, 
the matching is made against a claimed identity, where the matching process will be a one 
to one comparison between the generated template and the stored reference template. For 
identification, the matching is made by comparing the generated template against a list of 
reference templates of legitimate users which will be a one to many comparisons. 

3. Methodology 
3.1 Photometric normalization 
The purpose of the image preprocessing module is to reduce or eliminate some of the 
variations in face due to illumination. The image preprocessing is crucial as the robustness 
of a face recognition system greatly depends on it. By performing explicit normalization 
processes, system robustness against scaling, posture, facial expression and illumination is 
increased.  The image preprocessing includes photometric normalization which removes the 
mean of the geometrically normalized image and scales the pixel values by their standard 
deviation, estimated over the whole cropped image.  The photometric normalization 
techniques applied are based on Histogram Equalization and Homomorphic Filtering. 
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a) Histogram Equalization 
Gray level transformation is an image processing system that looks at every input pixel gray 
level and generates a corresponding output gray level according to a fixed gray level map.  
Histogram Equalization is the most common histogram normalization or image-specific 
gray level transformation used for contrast enhancement with the objective to obtain a new 
enhanced image with a uniform histogram or to produce an image with equally distributed 
brightness levels over the whole brightness scale. Histogram equalization is usually 
achieved by equalizing the histogram of the image pixel gray-levels in the spatial domain so 
as to redistribute them uniformly.  It is usually done on too dark or too bright images in 
order to enhance image quality and to improve face recognition performance. It modifies the 
dynamic range (contrast range) of the image and as a result, some important facial features 
become more apparent.   
Histogram Equalization arranges the gray-levels of the image by using the histogram form 
information.  Histogram, an array of 256 elements containing the counts or number of pixels 
of all gray levels, is applied by Histogram Equalization to generate a special gray level 
mapping suited for a particular image. The accumulated density function of the histogram 
for the processed image histogram would approximate a straight line. The redistribution of 
pixel brightness to approximate the uniform distribution improves the contrast of the image.  
The result of this process is that the histogram becomes approximately constant for all gray 
values. The steps for Histogram Equalization algorithm are depicted in Fig. 2. 
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discrete intensity levels and 
is set to 256 for 8-bit gray-
scale image.
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Fig. 2. Histogram Equalization algorithm 

b) Homomorphic Filtering 
Homomorphic Filtering algorithm is similar to that of Horn's algorithm except the low 
spatial frequency illumination is separated from the high frequency reflectance by Fourier 
high-pass filtering. In general, a high-pass filter is used to separate and suppress low 
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frequency components while still passing the high frequency components in the signal.  If 
the two types of signal are additive then the actual signal is the sum of the two types of 
signals. However, in this illumination or reflection problem, low-frequency illumination is 
multiplied instead of added to the high-frequency reflectance. To still be able to use the 
usual high-pass filter, the logarithm operation is needed to convert the multiplication to 
addition.  After the Homomorphic Filtering process, the processed illumination should be 
drastically reduced due to the high-pass filtering effect, while the reflectance, after this 
procedure should still be very close to the original reflectance. The steps for Homomorphic 
Filtering algorithm are depicted in Fig. 3. 
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Fig. 3. Homomorphic Filtering algorithm 

3.2 Feature extraction 
Face recognition is a high dimensional pattern recognition problem which requires large 
computation time and memory storage.  The purpose of feature extraction is to extract the 
feature vectors or information which represents the face to reduce computation time and 
memory storage.  Nowadays, face recognition research has witnessed a growing interest 
based on techniques that capitalized, and apply algebraic and statistical tools for extraction 
and analysis of the underlying manifold.  Face images are represented as a high dimensional 
pixel arrays that belongs to a manifold of intrinsically low dimension.  Computer analysis of 
gray-scale face images deals with visual signal or light reflected off the surface of a face that 
is registered by a digital sensor as an array of pixel values.  The pixel array is represented as 
a point or vector in an m-by-n dimensional image space after image preprocessing which 
involved normalization and rescaling to a fixed m-by-n size. Since faces are similar in 
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Fig. 2. Histogram Equalization algorithm 
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frequency components while still passing the high frequency components in the signal.  If 
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Fig. 3. Homomorphic Filtering algorithm 

3.2 Feature extraction 
Face recognition is a high dimensional pattern recognition problem which requires large 
computation time and memory storage.  The purpose of feature extraction is to extract the 
feature vectors or information which represents the face to reduce computation time and 
memory storage.  Nowadays, face recognition research has witnessed a growing interest 
based on techniques that capitalized, and apply algebraic and statistical tools for extraction 
and analysis of the underlying manifold.  Face images are represented as a high dimensional 
pixel arrays that belongs to a manifold of intrinsically low dimension.  Computer analysis of 
gray-scale face images deals with visual signal or light reflected off the surface of a face that 
is registered by a digital sensor as an array of pixel values.  The pixel array is represented as 
a point or vector in an m-by-n dimensional image space after image preprocessing which 
involved normalization and rescaling to a fixed m-by-n size. Since faces are similar in 
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appearance and contain significant statistical regularities, the intrinsic dimensionality of the 
face space is much lower than the dimensionality of the input face image.  For that reason, 
dimensionality reduction techniques based on linear subspace feature extraction, PCA is 
used to reduce the dimensionality of the input face space. 
PCA is based on the information theory approach which is a dimensionality reduction 
technique based on extraction of the desired number of principal components of the multi-
dimensional data.  It is related to the Karhunen-Loeve Transform, which is derived in the 
signal processing context as the orthogonal transform.  It is a statistical and computational 
method used to identify the linear directions in which a set of vectors are best represented in 
a least-square sense, to reduce multi-dimensional dataset into two dimensions for analysis 
by performing a covariance analysis between factors, and to identify new meaningful 
underlying variables or principal component.   
PCA extracts the relevant information in a face image and encodes it as efficient as possible.  
It identifies the subspace of the image space spanned by the training face image data and de-
correlates the pixel values.  This involves the computation of the eigenvalue decomposition 
of a dataset, after mean centering the data for each attribute that transforms a number of 
correlated variables into a (smaller) number of uncorrelated variables called principal 
components.  The principal components are obtained by projecting the multivariate data 
vectors on the space spanned by the eigenvectors.  The first principal component is the 
linear combination of the original dimensions that has the maximum variance; the n-th 
principal component is the linear combination with the highest variance, subject to being 
orthogonal to the n-1 of the first principal component (Shakhnarovich and Moghaddam, 
2004).  The sum of the eigenvalues equals the trace of the square matrix and the maximum 
number of eigenvectors equals the number of rows (or columns) of the matrix.  
The basis vectors constructed by PCA have the same dimension as the input face images.  
The results of a PCA method are discussed in terms of scores and loadings.  The classical 
representation of a face image is obtained by projecting it to the coordinate system defined 
by the principal components.  The projection of face images into the principal component 
subspace achieves information compression, de-correlation and dimensionality reduction to 
facilitate decision making.  In mathematical terms, the principal components of the 
distribution of faces or the eigenvectors of the covariance matrix of the set of face images is 
sought by treating an image as a vector in a very high dimensional face space.  The steps for 
the PCA algorithm are as follow: 
Step 1: The normalized training image in the N-dimensional space is stored in a vector of 

size N.  Let the normalized training face image set,  

 1 2{ , ,..., }NT X X X=  where 1 2 3{ , , ,..., }T
nX x x x x=   (1) 

Step 2: Create Eigenspace 
a. Center data: Each of the normalized training face images is mean centered.  

This is done by subtracting the mean face image from each of the normalized 
training images.  The mean image is represented as a column vector where 
each scalar is the mean of all corresponding pixels of the training images, 

 i iX X X= −   (2) 

        where the average of the training face image set is defined as:  
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b. Create data matrix: Once the training face images are centered, the next process 
is to create the eigenspace which is the reduced vectors of the mean normalized 
training face images.  The training images are combined into a data matrix of 
size N by P, where P is the number of training images and each column is a 
single image. 

 1 2{ , ,   ... , }PX X X X=   (4) 

c. Create covariant matrix: The column vectors are combined into a data matrix 
which is multiplied by its transpose to create a covariance matrix.  The 
covariance is defined as: 

 . TX XΩ =   (5) 

d. Compute the eigenvalues and eigenvectors: The eigenvalues and 
corresponding eigenvectors are computed for the covariance matrix using 
Jacobian transformation, 

 ΩV = ΛV  (6) 

       where V is the set of eigenvectors associated with the eigenvalues Λ. 
e. Order eigenvectors: Order the eigenvectors iV V∈  according to their 

corresponding eigenvalues iλ ∈Λ from high to low with non-zero eigenvalues.  
This matrix of eigenvectors is the eigenspace V, where each column of V is an 
eigenvector.  The principal components are the eigenspace V. 

 1 2{ , ,   ... , }PV V V V=   (7) 
Step 3:  Project training images 

Each of the centered training images ( iX ) is projected into the eigenspace. The 
projected training images ( PT ) are computed based on the dot product of the 
centered training images with each of the ordered eigenvectors denoted as, 

 T
P iT V X=   (8) 

The new vectors of the projected images are the feature vectors of the training face 
images. Let 1 2{ , ,..., }P p p pnT X X X= as feature vectors from the projection of the 
training set onto the principal components. The feature vector is defined as 

1 2 3{ , , ,..., }T
p mX p p p p= .  

Step 4:  Project testing image 
The vector of the testing face image (Y ) is initially mean centered by subtracting 
the mean image.  

 Y Y X= −   (9) 
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training images.  The mean image is represented as a column vector where 
each scalar is the mean of all corresponding pixels of the training images, 
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The feature vector of the testing image ( PY ) is obtained by projecting the vector of 

the mean testing face image ( Y ) into the eigenspace or the principal components, 

 T
PY V Y=   (10) 

3.3 Face classification 
The purpose of the classification stage is to map the feature space of a test data to a discrete 
set of label data that serves as template.  For the proposed face recognition systems, the 
method used for classification is based on ANN. The ANN paradigm used is based on the 
Multi-layer Perceptrons (MLP) neural network. MLP is the most widely used ANN model 
today, which has also been extensively analyzed and for which many learning algorithms 
has been developed. MLP applies the back-propagation learning algorithm. The back 
propagation learning algorithm consists of forward pass and backward pass. The 
parameters for the back-propagation learning algorithm includes the number of hidden 
nodes, learning rate, momentum coefficient, number of training cycles, size of training 
subset, and size of test subsets. The back-propagation training algorithm requires a good 
selection of values for these parameters where they should not be set too high (large) or too 
low (small), and thus should be optimized or carefully selected commonly through trial and 
error. Training a network by back-propagation involves three stages: the feed-forward of the 
input training pattern, the back-propagation of the associated error, and adjustment of the 
weights. Back-propagation is a training process where the input data is repeatedly 
presented to the neural network. With each presentation the output of the network is 
compared to the desired output and an error is computed. The error is then fed back to the 
network and is used to adjust the weights such that the error decreases with each of the 
iteration and the neural model gets closer and closer to producing the desired output. The 
whole process of the back propagation algorithm is depicted in Fig. 4. 

4. Experimental results 
The performance of the proposed face recognition systems using photometric normalization, 
linear subspace feature extraction, and Artificial Neural Network (ANN) classification are 
evaluated using two (2) face datasets, which are AT&T face dataset, and local face dataset.  
In addition to the proposed face recognition system, we also implement the conventional 
face recognition systems using classifiers such as similarity distance techniques based on 
Euclidean Distance (ED), Normalized Correlation (NC), and Bayesian classifier as baselines 
for experimental comparison. 
In these experiments, a comparison of face verification performance, namely FRR and FAR 
using different set of frontal face images, namely the original cropped face images, and face 
images which have undergone the photometric normalization techniques, Histogram 
Equalization, Homomorphic Filtering, combination of Histogram Equalization and 
Homomorphic Filtering, and combination of Homomorphic Filtering and Histogram 
Equalization.  These sets of face images are evaluated using the proposed face recognition 
systems based on hybrid of PCA feature extraction and ANN classification (PCA+ANN). 
The experiments are conducted based on five (5) types of photometric normalization 
techniques which are: 
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Fig. 4. The process flow of the back propagation algorithm 

a) Type 1: without photometric normalization preprocessing 
b) Type 2: photometric normalization preprocessing using Histogram Equalization 
c) Type 3: photometric normalization preprocessing using Homomorphic Filtering 
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The feature vector of the testing image ( PY ) is obtained by projecting the vector of 

the mean testing face image ( Y ) into the eigenspace or the principal components, 

 T
PY V Y=   (10) 

3.3 Face classification 
The purpose of the classification stage is to map the feature space of a test data to a discrete 
set of label data that serves as template.  For the proposed face recognition systems, the 
method used for classification is based on ANN. The ANN paradigm used is based on the 
Multi-layer Perceptrons (MLP) neural network. MLP is the most widely used ANN model 
today, which has also been extensively analyzed and for which many learning algorithms 
has been developed. MLP applies the back-propagation learning algorithm. The back 
propagation learning algorithm consists of forward pass and backward pass. The 
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error. Training a network by back-propagation involves three stages: the feed-forward of the 
input training pattern, the back-propagation of the associated error, and adjustment of the 
weights. Back-propagation is a training process where the input data is repeatedly 
presented to the neural network. With each presentation the output of the network is 
compared to the desired output and an error is computed. The error is then fed back to the 
network and is used to adjust the weights such that the error decreases with each of the 
iteration and the neural model gets closer and closer to producing the desired output. The 
whole process of the back propagation algorithm is depicted in Fig. 4. 

4. Experimental results 
The performance of the proposed face recognition systems using photometric normalization, 
linear subspace feature extraction, and Artificial Neural Network (ANN) classification are 
evaluated using two (2) face datasets, which are AT&T face dataset, and local face dataset.  
In addition to the proposed face recognition system, we also implement the conventional 
face recognition systems using classifiers such as similarity distance techniques based on 
Euclidean Distance (ED), Normalized Correlation (NC), and Bayesian classifier as baselines 
for experimental comparison. 
In these experiments, a comparison of face verification performance, namely FRR and FAR 
using different set of frontal face images, namely the original cropped face images, and face 
images which have undergone the photometric normalization techniques, Histogram 
Equalization, Homomorphic Filtering, combination of Histogram Equalization and 
Homomorphic Filtering, and combination of Homomorphic Filtering and Histogram 
Equalization.  These sets of face images are evaluated using the proposed face recognition 
systems based on hybrid of PCA feature extraction and ANN classification (PCA+ANN). 
The experiments are conducted based on five (5) types of photometric normalization 
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Fig. 4. The process flow of the back propagation algorithm 

a) Type 1: without photometric normalization preprocessing 
b) Type 2: photometric normalization preprocessing using Histogram Equalization 
c) Type 3: photometric normalization preprocessing using Homomorphic Filtering 
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d) Type 4: photometric normalization preprocessing using combination of Histogram 
Equalization and Homomorphic Filtering 
e) Type 5: photometric normalization preprocessing using combination of Homomorphic 
Filtering and Histogram Equalization. 
Sample of the face images which have been preprocessed using Type 1, Type 2, Type 3, 
Type 4, and Type 5 photometric normalization preprocessing techniques are shown in Fig. 5, 
Fig. 6, Fig. 7, Fig. 8, and Fig. 9, respectively. 
 

        
Fig. 5. Sample of images based on Type 1 photometric normalization 

        
Fig. 6. Sample of images based on Type 2 photometric normalization 

        
Fig. 7. Sample of images based on Type 3 photometric normalization 

        
Fig. 8. Sample of images based on Type 4 photometric normalization 

        
Fig. 9. Sample of images based on Type 5 photometric normalization 
The proposed face recognition system main decision making tool investigated is based on 
ANN classification. The parameters used for ANN classification are number of hidden 
neurons, learning rate, and momentum constant. For the experiments, the configuration of 
the optimal value for the number of hidden neurons is 100, for learning rate is 0.2, and for 
momentum constant is 0.7. 
The experiments were conducted using the prescribed types of photometric normalization 
face image sets based on AT&T and local face datasets. For both of these datasets, five (5) 
images per subject were chosen as training images and the remaining images of each subject 
are used as the testing images. There were two hundreds (200) training images from AT&T 
and one hundred (100) training images from the local face datasets, respectively.  
Meanwhile, there were two hundreds (200) testing images from AT&T, and three hundreds 
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(300) test images from the local face dataset, respectively.  The experiments were conducted 
based on the proposed face recognition system, PCA+ANN, and compared with the 
conventional face recognition systems, PCAA+ED, PCA+NC and Bayesian PCA. 
The face verification experiments were performed with different photometric normalization 
techniques (without normalization, Histogram Equalization, Homomorphic Filtering, 
combination of Histogram Equalization and Homomorphic Filtering, combination of 
Homomorphic Filtering and Histogram Equalization), linear subspaces feature extraction 
based on PCA, and decision rule or classification based on ANN classifier which was 
compared with Euclidean Distance, Normalized Correlation, and Bayesian classifiers.  The 
results using local and AT&T face datasets are summarized in Table 5.1 and Table 5.2, 
respectively. For local face dataset, the best verification performance was achieved using 
ANN classifier and Homomorphic Filtering with Half Total Error Rate (HTER) of 2.58%, 
and the worst performance of 21.15% was resulted using Bayesian classifier and Histogram 
Equalization. Meanwhile, the best verification performance for AT&T face dataset was 
achieved using ANN classifier, and combination of Histogram Equalization and 
Homomorphic Filtering with HTER of 5.02%, and the worst performance of 20.78% was 
resulted using ED classifier and Homomorphic Filtering. 
The results presented in Table 5.1 and Table 5.2, show the system performance evaluation  
based on the proposed and conventional face recognition systems, namely PCA+ANN, 
PCA+ED, PCA+NC, and Bayesian PCA.  In both AT&T face dataset and local face dataset 
experiments, it is interesting to note that the best HTER was achieved using PCA feature 
extraction and ANN classification, but using different photometric normalization technique.  
The differences in the test set performance are indicative of the different generalization 
capabilities of the respective methods.  When the representation space already captured and 
emphasized, the discriminatory information content as in the case of PCA bases, ANN was 
superior to the simple Euclidean distance or correlation decision rules.  ANN also shows a 
superior capability to cope with illumination changes, provided these were adequately 
represented in the training data.  This was the main reason for the large difference between 
the observed performance of the Euclidean Distance, Normalized Correlation and Bayesian 
classification methods used as a benchmark and ANN. 
The performance of the face recognition systems that use two-dimensional (2D) images is 
dependent on the consistent conditions such as illumination, pose and facial expression.  
The experimental results demonstrate that the proposed face recognition system improves 
the verification performance in the presence of illumination variations along with pose 
changes. One of the reasons for low verification performance is that the current 
optimization process is still subject to local minimum. Furthermore, the decision theoretic 
problems are best handled by classification methods based on an ANN classifier that yield 
the required decision functions directly via training rather than by methods based on 
distance metrics such as Euclidean distance, Normalized Correlation and Bayesian 
classifiers which make assumptions regarding the underlying probability density 
functions or other probabilistic information about pattern classes under consideration. 
The study proved that the enhancement of face recognition systems based on photometric 
normalization, linear subspace feature extraction, and ANN classification is able to 
improve the verification performance, and can be recommended for identity verification 
system. 



 State of the Art in Face Recognition 

 

82 

d) Type 4: photometric normalization preprocessing using combination of Histogram 
Equalization and Homomorphic Filtering 
e) Type 5: photometric normalization preprocessing using combination of Homomorphic 
Filtering and Histogram Equalization. 
Sample of the face images which have been preprocessed using Type 1, Type 2, Type 3, 
Type 4, and Type 5 photometric normalization preprocessing techniques are shown in Fig. 5, 
Fig. 6, Fig. 7, Fig. 8, and Fig. 9, respectively. 
 

        
Fig. 5. Sample of images based on Type 1 photometric normalization 

        
Fig. 6. Sample of images based on Type 2 photometric normalization 

        
Fig. 7. Sample of images based on Type 3 photometric normalization 

        
Fig. 8. Sample of images based on Type 4 photometric normalization 

        
Fig. 9. Sample of images based on Type 5 photometric normalization 
The proposed face recognition system main decision making tool investigated is based on 
ANN classification. The parameters used for ANN classification are number of hidden 
neurons, learning rate, and momentum constant. For the experiments, the configuration of 
the optimal value for the number of hidden neurons is 100, for learning rate is 0.2, and for 
momentum constant is 0.7. 
The experiments were conducted using the prescribed types of photometric normalization 
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images per subject were chosen as training images and the remaining images of each subject 
are used as the testing images. There were two hundreds (200) training images from AT&T 
and one hundred (100) training images from the local face datasets, respectively.  
Meanwhile, there were two hundreds (200) testing images from AT&T, and three hundreds 
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(300) test images from the local face dataset, respectively.  The experiments were conducted 
based on the proposed face recognition system, PCA+ANN, and compared with the 
conventional face recognition systems, PCAA+ED, PCA+NC and Bayesian PCA. 
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Photometric 
Normalization 

Feature 
Extractor Classifier Threshold FAR FRR HTER 

Without 
normalization 

 

ED 
NC 

Bayesian 
ANN 

6.10 
0.54 
1.22 
0.37 

7.32 
14.44 
14.88 
6.62 

7.41 
16.56 
16.19 
6.56 

7.37 
16.00 
16.04 
6.59 

Histogram 
Equalization 

ED 
NC 

Bayesian 
ANN 

9.63 
0.23 
1.15 
0.20 

12.96 
6.21 
21.19 
4.42 

12.96 
6.93 
21.11 
4.44 

12.96 
6.07 

21.15 
4.43 

Homomorphic 
Filtering 

ED 
NC 

Bayesian 
ANN 

4.91 
0.42 
1.22 
0.43 

6.58 
7.80 
16.51 
2.57 

6.30 
7.41 
16.93 
2.59 

6.44 
7.61 

16.72 
2.58 

Histogram 
Equalization + 
Homomorphic 

Filtering 

ED 
NC 

Bayesian 
ANN 

6.85 
0.23 
0.92 
0.17 

11.87 
6.75 
20.70 
6.99 

11.85 
6.30 
20.74 
7.41 

11.86 
6.03 

20.72 
7.20 

Homomorphic 
Filtering + 
Histogram 

Equalization 

PCA 

ED 
NC 

Bayesian 
ANN 

9.67 
0.24 
1.18 
0.17 

12.57 
6.69 
19.98 
3.79 

12.59 
6.56 
20.37 
3.70 

12.58 
6.63 

20.18 
3.75 

Table 5.1. Verification performance as function of photometric normalization, PCA feature 
extractor, and classifiers based on local face dataset 

5. Conclusions 
The chapter has presented an enhancement of face recognition using photometric 
normalization, linear subspace feature extraction, and Artificial Neural Network (ANN) 
classification to improve the verification performance. The proposed face recognition 
systems based on the enhancement of FRS using photometric normalization, linear subspace 
feature extraction, and ANN classification has improved the performance of the proposed 
FRS. The proposed FRS using the combination of photometric normalization based on 
Homomorphic Filtering, feature extraction based on PCA, and ANN classification clearly 
outperform comparable conventional face recognition systems.   
Based on the experimental results, the proposed face recognition using photometric 
normalization based on Homomorphic Filtering, feature extraction based on PCA, and ANN 
classification produces the best verification performance rate for local face dataset by 
yielding the lowest verification performance rate, HTER of 2.58%.  On the other hand, the 
proposed face recognition using photometric normalization based on the combination of 
Histogram Equalization and Homomorphic Filtering, feature extraction based on PCA, and 
ANN classification produces the best verification performance rate for AT&T face dataset by 
yielding the lowest verification performance rate, HTER of 5.02%. Furthermore, the ANN 
classification based on Multilayer Perceptrons proved to be superior compared to that of 
distance metric techniques such as Euclidean distance, Normalized Correlation and 
Bayesian classifier.  The reason for better verification performance using ANN classification 
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is because the classifier is trained through supervised learning known as error back-
propagation algorithm.  In supervised learning, a machine chooses the best function that 
relates between the inputs and outputs.  This function is judged by its ability to generalize 
on new inputs which were not given in the training data.  Therefore, the experimental 
results point out the overall robustness of the proposed face recognition system in 
comparison with the conventional face recognition systems.  Thus, it proves the feasibility of 
using photometric normalization in the early stage of a face recognition system, which gave 
much impact to the verification performance. 
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Normalization 

Feature 
Extractor Classifier Threshold FAR FRR HTER 

Without 
normalization 

 

ED 
NC 

Bayesian 
ANN 

6.30 
0.30 
1.05 
0.11 

13.56 
11.42 
16.65 
6.67 

13.50 
12.50 
16.00 
6.50 

13.53 
11.96 
16.83 
6.59 

Histogram 
Equalization 

ED 
NC 

Bayesian 
ANN 

12.28 
0.24 
1.10 
0.12 

16.29 
7.53 
17.25 
6.47 

16.50 
7.50 
17.00 
6.50 

16.40 
7.52 

17.13 
6.49 

Homomorphic 
Filtering 

ED 
NC 

Bayesian 
ANN 

4.19 
0.25 
0.89 
0.07 

20.56 
12.50 
17.96 
9.23 

21.00 
11.50 
19.00 
9.50 

20.78 
12.00 
18.48 
9.37 

Histogram 
Equalization + 
Homomorphic 

Filtering 

ED 
NC 

Bayesian 
ANN 

16.71 
0.32 
1.12 
0.17 

9.96 
8.32 
18.02 
5.04 

10.00 
7.50 
18.00 
5.00 

9.98 
7.91 

18.01 
5.02 

Homomorphic 
Filtering + 
Histogram 

Equalization 

PCA 

ED 
NC 

Bayesian 
ANN 

11.89 
0.25 
1.11 
0.11 

14.99 
6.94 
17.46 
6.41 

16.00 
7.50 
17.50 
6.50 

16.00 
7.22 

17.48 
6.46 

Table 5.2. Verification performance as function of photometric normalization, PCA feature 
extractor, and classifiers based on AT&T face dataset 
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1. Introduction     
Understanding how people process and recognize faces has been a challenging problem in 
the field of object recognition for a long time. Many approaches have been proposed to 
simulate the human process, in which various adaptive mechanisms are introduced such as 
neural networks, genetic algorithms, and support vector machines (Jain et al., 1999). 
However, an ultimate solution for this is still being pursued. One of the difficulties in the 
face recognition tasks is to enhance the robustness over the spatial and temporal variations 
of human faces. That is, even for the same person, captured images of human faces have full 
of variety due to lighting conditions, emotional expression, wearing glasses, make-up, and 
so forth. And the face features could be changed slowly and sometimes drastically over time 
due to some temporal factors such as growth, aging, and health conditions.  
When building a face recognition system, taking all the above variations into consideration in 
advance is unrealistic and maybe impossible. A remedy for this is to make a recognition 
system evolve so as to make up its misclassification on its own. In order to construct such an 
adaptive face recognition system, so-called incremental learning should be embedded into the 
system because it enables the system to conduct learning and classification on an ongoing 
basis. One challenging problem for this type of learning is to resolve so-called “plasticity and 
stability dilemma” (Carpenter & Grossberg, 1988). Thus, a system is required to improve its 
performance without deteriorating classification accuracy for previously trained face images.  
On the other hand, feature extraction plays an essential role in pattern recognition because 
the extraction of appropriate features results in high generalization performance and fast 
learning. In this sense, incremental learning should be considered not only for a classifier 
but also for the feature extraction part. As far as we know, however, many incremental 
learning algorithms are aiming for classifiers. As for the incremental learning for feature 
extraction, Incremental Principal Component Analysis (IPCA) (e.g., Oja & Karhunen, 1985; 
Sanger, 1989; Weng et al., 2003; Zhao et al., 2006) and Incremental Linear Discriminant 
Analysis (Pang et al., 2005; Weng & Hwang, 2007) have been proposed so far. Hall and 
Martin (1998) proposed a method to update eigen-features (e.g., eigen-faces) incrementally 
based on eigenvalue decomposition. Ozawa et al. (2004) extended this IPCA algorithm such 
that an eigen-axis was augmented based on the accumulation ratio to control the 
dimensionality of an eigenspace easily.  
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simulate the human process, in which various adaptive mechanisms are introduced such as 
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advance is unrealistic and maybe impossible. A remedy for this is to make a recognition 
system evolve so as to make up its misclassification on its own. In order to construct such an 
adaptive face recognition system, so-called incremental learning should be embedded into the 
system because it enables the system to conduct learning and classification on an ongoing 
basis. One challenging problem for this type of learning is to resolve so-called “plasticity and 
stability dilemma” (Carpenter & Grossberg, 1988). Thus, a system is required to improve its 
performance without deteriorating classification accuracy for previously trained face images.  
On the other hand, feature extraction plays an essential role in pattern recognition because 
the extraction of appropriate features results in high generalization performance and fast 
learning. In this sense, incremental learning should be considered not only for a classifier 
but also for the feature extraction part. As far as we know, however, many incremental 
learning algorithms are aiming for classifiers. As for the incremental learning for feature 
extraction, Incremental Principal Component Analysis (IPCA) (e.g., Oja & Karhunen, 1985; 
Sanger, 1989; Weng et al., 2003; Zhao et al., 2006) and Incremental Linear Discriminant 
Analysis (Pang et al., 2005; Weng & Hwang, 2007) have been proposed so far. Hall and 
Martin (1998) proposed a method to update eigen-features (e.g., eigen-faces) incrementally 
based on eigenvalue decomposition. Ozawa et al. (2004) extended this IPCA algorithm such 
that an eigen-axis was augmented based on the accumulation ratio to control the 
dimensionality of an eigenspace easily.  
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Recently, a prototype face recognition system was developed by the authors (Ozawa et al, 
2005) based on a new learning scheme in which a classifier and the feature extraction part 
were simultaneously learned incrementally. In this system, IPCA was adopted as an online 
feature extraction algorithm, and Resource Allocating Network with Long-Term Memory 
(RAN-LTM) (Kobayashi et al., 2001) was adopted as a classifier model. It was verified that 
the classification accuracy of the above classification system was improved constantly even 
if a small set of training samples were provided at a starting point. To accelerate learning of 
IPCA, we also proposed an extended algorithm called Chunk IPCA (Ozawa et al., 2008) in 
which an eigenspace is updated for a chunk of given training examples by solving a single 
intermediate eigenvalue problem.  
The aim of this chapter is to demonstrate the followings:  
1. how the feature extraction part is evolved by IPCA and Chunk IPCA,  
2. how both feature extraction part and classifier are learned incrementally on an ongoing 

basis,  
3. how an adaptive face recognition system is constructed and how it is effective.  
This chapter is organized as follows. In Section 2, IPCA is first reviewed, and then Section 3 
presents the detailed algorithm of Chunk IPCA. Section 4 explains two neural classifier 
models: Resource Allocating Network (RAN) and its variant model called RAN-LTM. In 
Section 5, an online incremental face recognition system and its information processing are 
described in detail, and we also explain how to reconstruct RAN-LTM when an eigenspace 
model is dynamically updated by Chunk IPCA. In Section 6, the effectiveness of incremental 
learning in face recognition systems is discussed for a self-compiled face image database. 
Section 7 gives conclusions of this chapter.  

2. Incremental Principal Component Analysis (IPCA)  
2.1 Learning assumptions and outline of IPCA algorithm  
Assume that N  training samples ni R∈)(x ),,1( Ni …=  are initially provided to a system 
and an eigenspace model ),,,( Nkk ΛUx=Ω  is obtained by applying Principal Component 
Analysis (PCA) to the training samples. In the eigenspace model Ω , x  is a mean vector of 

)(ix  ),,1( Ni …= , kU  is an kn×  matrix whose column vectors correspond to eigenvectors, 
and { }kk λλ ,,diag 1 …=Λ  is a kk × matrix whose diagonal elements are non-zero 
eigenvalues. Here, k  is the number of eigen-axes spanning the eigenspace (i.e., eigenspace 
dimensionality) and the value of k  is determined based on a certain criterion (e.g., 
accumulation ratio). After calculating Ω , the system keeps the information on Ω  and all the 
training samples are thrown away.   
Now assume that the )1( +N th training sample yx =+ )1( N nR∈  is given. The addition of 
this new sample results in the changes in the mean vector and the covariance matrix; 
therefore, the eigenspace model ),,,( Nkk ΛUx=Ω  should be updated. Let us define the 
new eigenspace model by )1,,,( +′′′=Ω′ ′′ Nkk ΛUx . Note that the eigenspace dimensions 
might be increased from k  to 1+k ; thus, k′  in Ω′  is either k  or 1+k . Intuitively, if almost 
all energy of y  is included in the current eigenspace spanned by the eigenvectors kU′ , there 
is no need to increase an eigen-axis. However, if y  includes certain energy in the 
complementary eigenspace, the dimensional augmentation is inevitable; otherwise crucial 
information on y  might be lost. Regardless of the necessity in eigenspace augmentation, the 
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eigen-axes should be rotated to adapt to the variation in the data distribution. In summary, 
there are three main operations in IPCA: (1) mean vector update, (2) eigenspace 
augmentation, and (3) eigenspace rotation. The first operation is easily carried out without 
past training examples based on the following equation:  

 ( )yxx +
+

=′ N
N 1

1   nR∈ .  (1) 

Hence, the following subsections give the explanation only for the last two operations.   

2.2 Eigenspace augmentation 
There have been proposed two criteria for judging eigenspace augmentation. One is the 
norm of a residue vector defined by  

 gUxyh T
k−−= )(   where  )( xyUg −= T

k .  (2) 

Here, T  means the transposition of vectors and matrices. The other is the accumulation ratio 
whose definition and incremental calculation are shown as follows:  
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where iλ  is the ith largest eigenvalues, n and k mean the dimensionality of the input space 

and that of the current eigenspace, respectively. The former criterion in Eq. (2) was adopted 
in the original IPCA (Hall & Martin, 1998), and the latter in Eq. (3) was used in the modified 
IPCA proposed by the authors (Ozawa et al., 2004). Based on these criteria, the condition of 
increasing an eigen-axis ĥ  is represented by:  

 [Residue Vector Norm]   
⎩
⎨
⎧ >

=
otherwise0
if/ˆ ηhhh

h   (4) 

 [Accumulation Ratio]      
⎩
⎨
⎧ <

=
otherwise0

)(if/ˆ θkA Uhh
h   (5) 

where η  (in the original IPCA, η  is set to zero) and θ  are positive constants. Note that 
setting a too large threshold η  or too small θ  would cause serious approximation errors for 
eigenspace models. Hence, it is important to set proper values to η  in Eq. (4) and θ  in Eq. 
(5). In general, finding a proper threshold η  is not easy unless input data are appropriately 
normalized within a certain range. On the other hand, since the accumulation ratio is 
defined by the ratio of input energy in an eigenspace over the original input space, the value 
of θ  is restricted between 0 and 1. Therefore, it would be easier for θ  to get an optimal 
value by applying the cross-validation method. The detailed algorithm of finding θ  in 
incremental learning settings is described in Ozawa et al. (2008).  
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2. how both feature extraction part and classifier are learned incrementally on an ongoing 

basis,  
3. how an adaptive face recognition system is constructed and how it is effective.  
This chapter is organized as follows. In Section 2, IPCA is first reviewed, and then Section 3 
presents the detailed algorithm of Chunk IPCA. Section 4 explains two neural classifier 
models: Resource Allocating Network (RAN) and its variant model called RAN-LTM. In 
Section 5, an online incremental face recognition system and its information processing are 
described in detail, and we also explain how to reconstruct RAN-LTM when an eigenspace 
model is dynamically updated by Chunk IPCA. In Section 6, the effectiveness of incremental 
learning in face recognition systems is discussed for a self-compiled face image database. 
Section 7 gives conclusions of this chapter.  

2. Incremental Principal Component Analysis (IPCA)  
2.1 Learning assumptions and outline of IPCA algorithm  
Assume that N  training samples ni R∈)(x ),,1( Ni …=  are initially provided to a system 
and an eigenspace model ),,,( Nkk ΛUx=Ω  is obtained by applying Principal Component 
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eigenvalues. Here, k  is the number of eigen-axes spanning the eigenspace (i.e., eigenspace 
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all energy of y  is included in the current eigenspace spanned by the eigenvectors kU′ , there 
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complementary eigenspace, the dimensional augmentation is inevitable; otherwise crucial 
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eigen-axes should be rotated to adapt to the variation in the data distribution. In summary, 
there are three main operations in IPCA: (1) mean vector update, (2) eigenspace 
augmentation, and (3) eigenspace rotation. The first operation is easily carried out without 
past training examples based on the following equation:  
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Hence, the following subsections give the explanation only for the last two operations.   

2.2 Eigenspace augmentation 
There have been proposed two criteria for judging eigenspace augmentation. One is the 
norm of a residue vector defined by  
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where iλ  is the ith largest eigenvalues, n and k mean the dimensionality of the input space 

and that of the current eigenspace, respectively. The former criterion in Eq. (2) was adopted 
in the original IPCA (Hall & Martin, 1998), and the latter in Eq. (3) was used in the modified 
IPCA proposed by the authors (Ozawa et al., 2004). Based on these criteria, the condition of 
increasing an eigen-axis ĥ  is represented by:  
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where η  (in the original IPCA, η  is set to zero) and θ  are positive constants. Note that 
setting a too large threshold η  or too small θ  would cause serious approximation errors for 
eigenspace models. Hence, it is important to set proper values to η  in Eq. (4) and θ  in Eq. 
(5). In general, finding a proper threshold η  is not easy unless input data are appropriately 
normalized within a certain range. On the other hand, since the accumulation ratio is 
defined by the ratio of input energy in an eigenspace over the original input space, the value 
of θ  is restricted between 0 and 1. Therefore, it would be easier for θ  to get an optimal 
value by applying the cross-validation method. The detailed algorithm of finding θ  in 
incremental learning settings is described in Ozawa et al. (2008).  
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2.3 Eigenspace rotation 
If the condition of Eq. (4) or (5) satisfies, the dimensions of the current eigenspace would be 
increased from k  to 1+k , and a new eigen-axis ĥ  is added to the eigenvector matrix kU . 
Otherwise, the dimensionality remains the same. After this operation, the eigen-axes are 
rotated to adapt to the new data distribution. Assume that the rotation is given by a rotation 
matrix R , then the eigenspace update is represented by the following equation:  

 1)  If there is a new eigen-axis to be added, RhUU ]ˆ,[1 kk =′ + , (6) 

 2)  otherwise, RUU kk =′ .  (7) 

It has been shown that R  is obtained by solving the following intermediate eigenproblem 
(Hall & Martin, 1998):   
1. If there is a new eigen-axis to be added,  
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2. otherwise,  
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Here, )(ˆ xyh −= Tγ  and 0  is a k-dimensional zero vector; 1+′kΛ  and kΛ′  are the new 
eigenvalue matrices whose diagonal elements correspond to k  and 1+k  eigenvalues, 
respectively. Using the solution R , the new eigenvector matrix kU′  or 1+′kU  is calculated 
from Eq. (6) or (7). 

3. Chunk Incremental Principal Component Analysis (Chunk IPCA) 
3.1 Learning assumptions and outline of chunk IPCA algorithm  
IPCA can be applied to one training sample at a time, and the intermediate eigenproblem in 
Eq. (8) or (9) must be solved for each sample even though a chunk of samples are provided 
to learn at a time. Obviously this is inefficient from a computational point of view, and the 
learning may get stuck in a deadlock if a large chunk of training samples is given to learn in 
a short term; that is, the next chunk of training samples could come before the learning is 
completed if it takes long time for updating an eigenspace.  
To overcome this problem, the original IPCA is extended so that the eigenspace model Ω  
can be updated with a chunk of training samples in a single operation (Ozawa et al., 2008). 
This extended algorithm is called Chunk IPCA.  
Assume again that N training samples { })()1( ,, NxxX …=  NnR ×∈  have been given so far and 
an eigenspace model ),,,( Nkk ΛUx=Ω  was obtained from these samples. Now, a chunk of 

L  training samples { })()1( ,, LyyY …=  LnR ×∈  are presented to the system. Let the updated 
eigenspace model be ),,,( LNkk +′′′=Ω′ ′′ ΛUx . The mean vector x′  in Ω′  can be updated 
without the past training samples X  as follows:   
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1 . (10) 

The problem is how to update kU′  and kΛ′  in Ω′ .  
As shown in the derivation of IPCA, the update of kU′  and kΛ′  is reduced to solving an 
intermediate eigenproblem, which is derived from an eigenvalue problem using a 
covariance matrix. Basically, the intermediate eigenproblem for Chunk IPCA can also be 
derived in the same way as shown in the derivation of IPCA (Hall & Martin, 1998). 
However, we should note that the dimensionality k′  of the updated eigenspace could range 
from k  to Lk +  depending on the given chunk data Y . To avoid constructing a redundant 
eigenspace, the smallest k′  should be selected under the condition that the accumulation 
ratio is over a designated threshold. Thus, an additional operation to select a smallest set of 
eigen-axes is newly introduced into Chunk IPCA. Once the eigen-axes to be augmented are 
determined, all the eigen-axes should be rotated to adapt to the variation in the data 
distribution. This operation is basically the same as in IPCA.  
In summary, there are three main operations in Chunk IPCA: (1) mean vector update, (2) 
eigenspace augmentation with the selection of a smallest set of eigen-axes, and (3) 
eigenspace rotation. The first operation is carried out by Eq. (10). The latter two operations 
are explained below.  

3.2 Eigenspace augmentation 
In Chunk IPCA, the number of eigen-axes to be augmented is determined by finding the 
minimum k  such that θ≥)( kA U  holds where θ  is a threshold between 0 and 1. To 
introduce this criterion, we need to modify the update equation of Eq. (3) such that the 
accumulation ratio can be updated incrementally for a chunk of L samples. In Chunk IPCA, 
we need to consider two types of accumulation ratios. One is the accumulation ratio for a k-
dimensional eigenspace spanned by RUU kk =′  where R  is a rotation matrix which is 
calculated from the intermediate eigenvalue problem described later. The other is that for a 
(k+l)-dimensional augmented eigenspace spanned by [ ]RHUU lklk ,=′ +  where lH  is a set of 
l augmented eigen-axes. The former is used for checking if the current k-dimensional 
eigenspace should be augmented or not. The latter one is used for checking if further eigen-
axes are needed for the (k+l)-dimensional augmented eigenspace.  
The new accumulation ratio )( kA U′′  and )( lkA +′′ U  are calculated as follows (Ozawa et al., 
2008):  
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2.3 Eigenspace rotation 
If the condition of Eq. (4) or (5) satisfies, the dimensions of the current eigenspace would be 
increased from k  to 1+k , and a new eigen-axis ĥ  is added to the eigenvector matrix kU . 
Otherwise, the dimensionality remains the same. After this operation, the eigen-axes are 
rotated to adapt to the new data distribution. Assume that the rotation is given by a rotation 
matrix R , then the eigenspace update is represented by the following equation:  

 1)  If there is a new eigen-axis to be added, RhUU ]ˆ,[1 kk =′ + , (6) 

 2)  otherwise, RUU kk =′ .  (7) 

It has been shown that R  is obtained by solving the following intermediate eigenproblem 
(Hall & Martin, 1998):   
1. If there is a new eigen-axis to be added,  
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Here, )(ˆ xyh −= Tγ  and 0  is a k-dimensional zero vector; 1+′kΛ  and kΛ′  are the new 
eigenvalue matrices whose diagonal elements correspond to k  and 1+k  eigenvalues, 
respectively. Using the solution R , the new eigenvector matrix kU′  or 1+′kU  is calculated 
from Eq. (6) or (7). 

3. Chunk Incremental Principal Component Analysis (Chunk IPCA) 
3.1 Learning assumptions and outline of chunk IPCA algorithm  
IPCA can be applied to one training sample at a time, and the intermediate eigenproblem in 
Eq. (8) or (9) must be solved for each sample even though a chunk of samples are provided 
to learn at a time. Obviously this is inefficient from a computational point of view, and the 
learning may get stuck in a deadlock if a large chunk of training samples is given to learn in 
a short term; that is, the next chunk of training samples could come before the learning is 
completed if it takes long time for updating an eigenspace.  
To overcome this problem, the original IPCA is extended so that the eigenspace model Ω  
can be updated with a chunk of training samples in a single operation (Ozawa et al., 2008). 
This extended algorithm is called Chunk IPCA.  
Assume again that N training samples { })()1( ,, NxxX …=  NnR ×∈  have been given so far and 
an eigenspace model ),,,( Nkk ΛUx=Ω  was obtained from these samples. Now, a chunk of 

L  training samples { })()1( ,, LyyY …=  LnR ×∈  are presented to the system. Let the updated 
eigenspace model be ),,,( LNkk +′′′=Ω′ ′′ ΛUx . The mean vector x′  in Ω′  can be updated 
without the past training samples X  as follows:   
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As shown in the derivation of IPCA, the update of kU′  and kΛ′  is reduced to solving an 
intermediate eigenproblem, which is derived from an eigenvalue problem using a 
covariance matrix. Basically, the intermediate eigenproblem for Chunk IPCA can also be 
derived in the same way as shown in the derivation of IPCA (Hall & Martin, 1998). 
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eigenspace, the smallest k′  should be selected under the condition that the accumulation 
ratio is over a designated threshold. Thus, an additional operation to select a smallest set of 
eigen-axes is newly introduced into Chunk IPCA. Once the eigen-axes to be augmented are 
determined, all the eigen-axes should be rotated to adapt to the variation in the data 
distribution. This operation is basically the same as in IPCA.  
In summary, there are three main operations in Chunk IPCA: (1) mean vector update, (2) 
eigenspace augmentation with the selection of a smallest set of eigen-axes, and (3) 
eigenspace rotation. The first operation is carried out by Eq. (10). The latter two operations 
are explained below.  

3.2 Eigenspace augmentation 
In Chunk IPCA, the number of eigen-axes to be augmented is determined by finding the 
minimum k  such that θ≥)( kA U  holds where θ  is a threshold between 0 and 1. To 
introduce this criterion, we need to modify the update equation of Eq. (3) such that the 
accumulation ratio can be updated incrementally for a chunk of L samples. In Chunk IPCA, 
we need to consider two types of accumulation ratios. One is the accumulation ratio for a k-
dimensional eigenspace spanned by RUU kk =′  where R  is a rotation matrix which is 
calculated from the intermediate eigenvalue problem described later. The other is that for a 
(k+l)-dimensional augmented eigenspace spanned by [ ]RHUU lklk ,=′ +  where lH  is a set of 
l augmented eigen-axes. The former is used for checking if the current k-dimensional 
eigenspace should be augmented or not. The latter one is used for checking if further eigen-
axes are needed for the (k+l)-dimensional augmented eigenspace.  
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where ( ),xyUg −= T
k  ( ),)( yyUg −=′′ iT

ki  ,yxμ −=  ,)( yyμ −=′′ j
j

 ( ),xyHγ −= T
l  and 

( )yyHγ −=′′ )(iT
li . To update )( kA U′′ , the summation of eigenvalues iλ  ( ni ,,1…= ) is 

required, and this summation can be held by accumulating the power of training samples 
(Ozawa et al., 2004). Hence, the individual eigenvalues iλ  ( nki ,,1…+= ) are not necessary 
for this update.  
As seen from Eqs. (11) and (12), we need no past sample )( jx  and no rotation matrix R  to 
update the accumulation ratio. Therefore, this accumulation ratio is updated with the 
following information: a chunk of given training samples { })()1( ,, LyyY …= , the current 

eigenspace model ),,,( Nkk ΛUx=Ω , the summation of eigenvalues ∑ =

n

j i1
λ , and a set of 

augmented eigen-axes lH  which are obtained through the procedure described next.   
In IPCA, a new eigen-axis is obtained to be orthogonalized to the existing eigenvectors (i.e., 
column vectors of kU ). A straightforward way to obtain new eigen-axes is to apply Gram-
Schmidt orthogonalization to a chunk of given training samples (Hall et al., 2000). If the 
training samples are represented by L~  linearly independent vectors, the maximum number 
of augmented eigen-axes is L~ . However, the subspace spanned by all of the L~  eigen-axes is 
redundant in general. Therefore, we should find a smallest set of eigen-axes without losing 
essential information on Y .  
The problem of finding an optimal set of eigen-axes is stated below.  
Find the smallest set of eigen-axes { }*,,1

*
lhhH …=   for the current eigenspace model     

),,,( Nkk ΛUx=Ω  without keeping the past training samples X  such that the accumulation ratio 

)( *lk
A

+
′′ U of  all the given training samples { }YX,  is larger  than a threshold θ . 

Assume that we have a candidate set of augmented eigen-axes { }ll hhH ,,1 …= . Since the 
denominator of Eq. (12) is constant once the mean vector y  is calculated, the increment of 
the accumulation ratio from )( kA U′′  to )( lkA +′′ U  is determined by the numerator terms. 
Thus, let us define the following difference )(~

lkA +′′Δ U  of the numerator terms between 
)( kA U ′′  and )( lkA +′′ U :  
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Equation (13) means that the increments of the accumulation ratio is determined by the 
linear sum of iA~′Δ . Therefore, to find the smallest set of eigen-axes, first we find ih  with the 
largest iA~′Δ , and put it into the set of augmented eigen-axes lH  (i.e., 1=l  and il hH = ). 
Then, check if the accumulation ratio )( lkA +′′ U  in Eq. (12) becomes larger than the threshold 
θ . If not, select ih  with the second largest iA~′Δ , and the same procedure is repeated until 

θ≥′′ + )( lkA U  satisfies. This type of greedy algorithm makes the selection of eigen-axes very 
simple. The algorithm of the eigen-axis selection is summarized in Algorithm 1. 
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Here, ( )xyUg −=′ )(iT
ki  and ( )xyHγ −=′ )(iT

li . As seen from Eqs. (17) and (18), the rotation 
matrix R  and the eigenvalue matrix lk+′Λ  correspond to the eigenvectors and eigenvalues 
of the intermediate eigenproblem, respectively. Once R  is obtained, the corresponding new 
eigenvector matrix lk+′U  is given by Eq. (16).   
The overall algorithm of Chunk IPCA is summarized in Algorithm 2.  
 

 

3.4 Training of initial eigenspace 
Assume that a set of initial training samples { }NiD ii ,,1|),( )()(

0 …== zx  is given before 
incremental learning gets started. To obtain an initial eigenspace model ),,,( Nkk ΛUx=Ω , 
the conventional PCA is applied to D0 and the smallest dimensionality k of the eigenspace is 
determined such that the accumulation ratio is  larger than θ. Since a proper θ is usually 
unknown and often depends on training data, the cross-validation technique can be applied to 
determining θ (Ozawa et al., 2008). However, for the sake of simplicity, let us assume here that 
a proper θ is given in advance. The algorithm of the initial training is shown in Algorithm 3.  
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4. Incremental learning of classifier 
4.1 Resource Allocating Network (RAN) 
 Resource Allocating Network (RAN) (Platt, 1991) is an extended version of RBF networks. 
When the training gets started, the number of hidden units is set to one; hence, RAN has 
simple approximation ability at first. As the training proceeds, the approximation ability of 
RAN is developed with the increase of training samples by allocating additional hidden 
units.  
Figure 1 illustrates the structure of RAN. The output of hidden units { }T

Jyy ,,1 …=y   is 

calculated based on the distance between an input { }T
Ixx ,,1 …=x  and center vector of the 

jth hidden unit { }TjIjj cc ,,1 …=c :  
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where I and J are the numbers of input units and hidden units, respectively, and 2
jσ  is a 

variance of the jth radial basis. The network output { }T
Kzz ,,1 …=z  is calculated as follows:  

 Kkywz k
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1
…=+= ∑
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γ   (20) 

where K is the number of output units, 
kjw  is a connection weight from the jth hidden unit 

to the kth output unit, and kγ  is a bias of the kth output unit.   
When a training sample ),( dx  is given, the network output is calculated based on Eqs. (19) 
and (20), and the root mean square error zd −=E  between the output z  and target d  for 

the input x  is evaluated. Depending on E , either of the following operations is carried out:  
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Fig. 1. Structure of Resource Allocating Network (RAN).  
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1. If E  is larger than a positive constant ε  and the distance between an input x  and its 
nearest center vector *c  is larger than a positive value )(tδ  (i.e., ε>E  and 

)(* tδ>− cx ), a hidden unit is added (i.e., 1+← JJ ).  Then, the network parameters 

for the Jth hidden unit (center vector Jc , connection weights { }KJJJ ww ,,1 …=w , and 

variance 2
jσ ) are set to the following values: 

pJ xc = , zdw −=J , and *cx −= κσ J
 

where κ  is a positive constant. )(tδ  is decreased with time t as follows:  
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where τ  is a decay constant, maxδ  and minδ  are maximum and minimum values of 

)(tδ , respectively.  
2. Otherwise, the network parameters are updated as follows:  
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where kkk zde −=  and α  is a positive learning ratio.  
Although the approximation ability is developed by allocating hidden units, the interference 
cannot be suppressed completely only by this mechanism. In the next section, we present an 
extended model of RAN in which a mechanism of suppressing the interference is explicitly 
introduced.  

4.2 Resource allocating network with long-term memory 
RAN is a neural network with spatially localised basis functions; hence it is expected that 
the catastrophic interference (Carpenter & Grossberg, 1988) is alleviated to some extent. 
However, since no explicit mechanism of suppressing the interference is introduced, the 
insufficient suppression might cause serious unlearning over the long run.  
To suppress unexpected forgetting in RAN, Resource Allocating Network with Long-Term 
Memory (RAN-LTM) (Kobayashi et al., 2001) has been proposed. Figure 2 shows the 
architecture of RAN-LTM which consists of two modules: RAN and an external memory 
called Long-Term Memory (LTM). Representative input-output pairs are extracted from the 
mapping function acquired in RAN and they are stored in LTM. These pairs are called 
memory items and some of them are retrieved from LTM to learn with training samples. In 
the learning algorithm, a memory item is created when a hidden unit is allocated; that is, an 
RBF center and the corresponding output are stored as a memory item. 
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Fig. 2. Architecture of RAN-LTM. 

The learning algorithm of RAN-LTM is divided into two phases: the allocation of hidden 
units (i.e., incremental selection of RBF centers) and the calculation of connection weights 
between hidden and output units. The procedure in the former phase is the same as that in 
the original RAN, except that memory items are created at the same time. Once hidden units 
are allocated, the centers are fixed afterwards. Therefore, the connection weights { }jkw=W  

are only parameters that are updated based on the output errors. To minimize the errors 
based on the least squares method, it is well known that the following linear equations 
should be solved (Haykin, 1999): 

 DΦW =   (25) 
 

where D  is a matrix whose column vectors correspond to the target outputs and Φ  is a 
matrix of hidden outputs. Suppose that a new training sample ),( dx  is given and M 
memory items )~,~( )()( mm zx  ),,1( Mm …=  have already been created, then in the simplest 
version of RAN-LTM (Ozawa et al., 2005) the target matrix D  are formed as follows: 

{ } .~,,~, )()1( TMzzdD …=  Furthermore, { }ijφ=Φ  )1,,1( += Mi …  is calculated from the 

training sample and memory items as follows:  
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Singular Value Decomposition (SVD) can be used for solving W  in Eq. (25). The learning 
algorithm of RAN-LTM is summarized in Algorithm 4.  
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Singular Value Decomposition (SVD) can be used for solving W  in Eq. (25). The learning 
algorithm of RAN-LTM is summarized in Algorithm 4.  
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5. Face recognition system 
Figure 3 shows the overall process in the proposed face recognition system. As seen from 
Fig. 3, the proposed system mainly consists of the following four sections: face detection, 
face recognition, face image verification, and incremental learning. The information 
processing in each section is explained below.  

5.1 Face detection 
In the face detection part, we adopt a conventional algorithm that consists of two operations: 
face localization and face feature detection. Figure 4 shows an example of the face detection 
process.  
Facial regions are first localized in an input image by using the skin color information and 
horizontal edges. The skin color information is obtained by projecting every pixel in the 
input image to a skin-color axis. This axis was obtained from Japanese skin images in 
advance. In our preliminary experiment, the face localization works very well with 99% 
accuracy for a Japanese face database.  
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Fig. 3. The processing flow in the face recognition system. DNN and VNN are implemented 
by RBF networks, while RNN is implemented by RAN-LTM that could learn misclassified 
face images incrementally. In the feature extraction part, an eigen-space model is 
incrementally updated for misclassified face images by using Chunk IPCA.  
 

(a) (b) (c) (d)  
Fig. 4. The process of face detection: (a) an output of skin colour filter and (b) an output of 
edge filter, (c) a face region extracted from the two filter outputs in (a) and (b), and (d) the 
final result of the face detection part. Only one face was detected in this case.  

After the face localization, three types of facial features (eye, nose, mouth) are searched for 
within the localized regions through raster operations. In each raster operation, a small sub-
image is separated from a localized region. Then, the eigen-features of the sub-image are 
given to Detection Neural Network (DNN) to verify if it corresponds to one of the facial 
features. The eigenspace model for the face detection part was obtained by applying PCA to 
a large image dataset of human eye, nose, and mouth in advance. This dataset is also used 
for the training of DNN.  
After all raster operations are done, face candidates are generated by combining the 
identified facial features. All combinations of three facial features are checked if they satisfy 
a predefined facial geometric constraint. A combination of three features found on the 
geometric template qualifies as a face candidate. The output of the face detection part is the 
center position of a face candidate.  
The overall process in the face detection part is summarized in Algorithm 5.  
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or non-registered faces. This part consists of the following two operations: feature 
extraction and classification (see Fig. 3). In the feature extraction part, the eigenface 
approach is adopted here to find informative face features. A face candidate is first 
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Fig. 3. The processing flow in the face recognition system. DNN and VNN are implemented 
by RBF networks, while RNN is implemented by RAN-LTM that could learn misclassified 
face images incrementally. In the feature extraction part, an eigen-space model is 
incrementally updated for misclassified face images by using Chunk IPCA.  
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Fig. 4. The process of face detection: (a) an output of skin colour filter and (b) an output of 
edge filter, (c) a face region extracted from the two filter outputs in (a) and (b), and (d) the 
final result of the face detection part. Only one face was detected in this case.  
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projected to the eigen-axes to calculate eigen-features, and they are given to RAN-LTM 
called Recognition Neural Network (RNN). Then, the classification is carried out based on 
the outputs of RNN. 
If the recognition is correct, RNN should be unchanged. Otherwise, RNN must be trained 
with the misclassified images to be classified correctly afterward. The misclassified images 
are collected to carry out incremental learning for both feature extraction part and classifier 
(RNN). Since the perfect face detection cannot be always ensured, there is a possibility that 
non-face images happen to be mixed with the misclassified face images. Apparently the 
training of these non-face images will deteriorate the recognition performance of RNN. 
Thus, another RBF network called Verification Neural Network (VNN) is introduced into this 
part in order to filter non-face images out.  
The procedures of face recognition and verification are summarized in Algorithm 6.  
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5.3 Incremental learning 
Since face images of a person can vary depending on various temporal and special factors, the 
classifier should have high adaptability to those variations. In addition, the useful features 
might also change over time for the same reason. Therefore, in the face recognition part, the 
incremental learning should be conducted for both feature extraction part and classifier.  
The incremental learning of the feature extraction part is easily carried out by applying 
Chunk IPCA to misclassified face images. However, the incremental learning of 
classification part (RNN) cannot be done in a straightforward manner due to the learning of 
the eigenspace model. That is to say, the inputs of RNN would dynamically change not only 
in their values but also in the number of input variables due to the eigen-axis rotation and 
the dimensional augmentation in Chunk IPCA. Therefore, to make RNN adapt to the 
change in the feature extraction part, not only the network parameters (i.e., weights, RBF 
centers, etc.)  but also its network structure have to be modified.  
Under one-pass incremental learning circumstances, this reconstruction of RNN is not easily 
done without unexpected forgetting of the mapping function that has been acquired so far. 
If the original RAN is adopted as a classifier, there is no way of retraining the neural 
classifier to ensure that all previously trained samples can be correctly classified again after 
the update of the feature space because the past training samples are already thrown away. 
This can be solved if a minimum number of representative samples are properly selected 
and used for retraining the classifier. RAN-LTM is suitable for this purpose.  
To implement this idea, we need to devise an efficient way to adapt the memory items in 
RAN-LTM to the updated eigenspace. Let an input vector of the mth memory item be 

Im R∈)(~x  and let its target vector be Km R∈)(~z : { })()( ~,~ mm zx  ),,1( Mm …= . Furthermore, let 
the original vector associated with )(~ mx  in the input space be nm R∈)(x . The two input 
vectors have the following relation: )(~ )()( xxUx −= mTm . Now, assume that a new eigenspace 
model ),,,( LNlklk +′′′=Ω′ ++ ΛUx  is obtained by applying Chunk IPCA to a chunk of L 

training samples ),,( 1 LyyY …= . Then, the updated memory item '~ )(mx  should satisfy the 
following equation:  
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where x′  and lk+′U  are given by Eqs. (10) and (16), respectively. The second term in the 
right-hand side of Eq. (27) is easily calculated. To calculate the first term exactly, however, 
the information on x(m), which is not usually kept in the system for reasons of memory 
efficiency, is needed. Here, let us consider the approximation to the first term without 
keeping x(m).  
Assume that l of eigen-axes Hl is augmented. Substituting Eq. (16) into the first term on the 
right-hand side of Eq. (27), then the first term is reduced to  
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As seen from Eq. (28), we still need the information on x(m) in the subspace spanned by the 
eigen-axes in Hl. This information was lost during the dimensional reduction process. The 
information loss caused by this approximation depends on how a feature space evolves 
throughout the learning. In general, the approximation error depends on the presentation 
order of training data, the data distribution, and the threshold θ for the accumulation ratio in 
Eqs. (11) and (12). In addition, the recognition performance depends on the generalization 
performance of RNN; thus, the effect of the approximation error for memory items is not easily 
estimated in general. However, recalling a fact that the eigen-axes in Hl are orthogonal to every 
vector in the subspace spanned by Uk, the error could be small if an appropriate threshold θ is 
selected. Then, we can approximate the term )( )( xxH −mT

l  to zero, and Eq. (27) is reduced to  
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Using Eq. (29), memory items in RNN can be recalculated without keeping the memory 
items nm R∈)(x  in the input domain even after the eigenspace model is updated by Chunk 
IPCA. Then, RNN, which is implemented by RAN-LTM, is retrained with L training 
samples and M updated memory items { }'~,'~ )()( mm zx  ),,1( Mm …=  based on Algorithm 4.  
The procedure of incremental learning is summarized in Algorithm 7.  
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5.4 Overall algorithm of online incremental face recognition system 
As mentioned in Section 5.1, the eigenspace model for the face detection part is obtained by 
applying PCA to a large dataset of human eye, nose, and mouth images. This dataset is used 
for training DNN as well. The training of VNN is carried out using a different dataset which 
includes a large amount of face and non-face images. Note that DNN and VNN are trained 
based on the learning algorithm of RAN (see Section 2). All the trainings for the face 
detection part, DNN, and VNN are conducted in advance.  
Finally, we summarize the overall algorithm of the proposed online incremental face 
recognition system in Algorithm 8.  
 

 

6. Performance evaluation 
6.1 Experimental Setup 
To simulate real-life environments, 224 video clips are collected for 22 persons (19 males / 3 
females) during about 11 months such that temporal changes in facial appearances are 
included. Seven people (5 males / 2 females) are chosen as registrants and the other people 
(14 males /a female) are non-registrants. The duration of each video clip is 5-15 (sec.). A 
video clip is given to the face detection part, and the detected face images are automatically 
forwarded to the face recognition part. The numbers of detected face images are 
summarized in Table 1. The three letters in Table 1 indicate the code of the 22 subjects in 
which M/F and R/U mean Male/Female and Registered/Unregistered, respectively; for 
example, the third registered male is coded as MR3.  
The recognition performance is evaluated through two-fold cross-validation; thus, the whole 
dataset is subdivided into two subsets: Set A and Set B. When Set A is used for learning RNN, 
Set B is used for testing the generalization performance, and vice versa. Note that since the 
incremental learning is applied only for misclassified face images, the recognition accuracy 
before the incremental learning is an important performance measure. Hence, there are at least 
two performance measures for the training dataset: one is the performance of RNN using a set 
of training samples given at each learning stage, and the other is the performance using all 
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training datasets given so far after the incremental learning is carried out. In the following, let 
us call the former and latter datasets as incremental dataset and training dataset, respectively. 
Besides, let us call the performances over the incremental dataset and training dataset as 
incremental performance and training performance, respectively. We divide the whole dataset into 
16 subsets, each of which corresponds to an incremental dataset. Table 2 shows the number of 
images included in the incremental datasets. 
 

Set MR1 FR1 MR2 MR3 FR2 MR4 MR5 FU1 
A 351 254 364 381 241 400 136 133 
B 170 220 297 671 297 241 359 126 

 

Set MU1 MU2 MU3 MU4 MU5 MU6 MU7 MU8 
A 131 294 110 103 170 136 174 33 
B 228 292 80 233 117 202 182 14 

 

Set MU9 MU10 Mu1 Mu12 Mu13 Mu14 Total 
A 79 15 75 17 10 9 3766 
B 9 14 28 18 9 9 3816 

Table 1. Two face datasets (Set A and Set B) for training and test. The three letters in the 
upper row mean the registrant code and the values in the second and third rows are the 
numbers of face images.  

Set 1 2 3 4 5 6 7 8 
A 220 232 304 205 228 272 239 258 
B 288 204 269 246 273 270 240 281 

 

Set 9 10 11 12 13 14 15 16 
A 212 233 290 212 257 188 199 217 
B 205 249 194 241 214 226 210 206 

Table 2. Number of images included in the 16 incremental datasets.  

Stage Init. 1 2 … 12 13 14 15 
Case 1 1 2 3 … 13 14 15 16 
Case 2 1,2 3 4 … 14 15 16 --- 
Case 3 1,2,3 4 5 … 15 16 --- --- 

Table 3. Three series of incremental datasets. The number in Table 2 corresponds to the tag 
number of the corresponding incremental dataset.  
 

MR3

FR2

MR4

Learning Stages
init. 2 4 6 8 11 13

 
Fig. 6. Examples of face images trained at different learning stages.  
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The size of an initial dataset can influence the test performance because different initial 
eigen-spaces are constructed. However, if the incremental learning is successfully carried 
out, the final performance should not depend on the size of the initial dataset. Hence, the 
three different series of incremental datasets shown in Table 3 are defined to see the 
influence. Note that the number in Table 3 corresponds to the tag number (1-16) of the 
incremental dataset in Table 2. Hence, we can see that Case 1 has 15 learning stages and the 
number of images in the initial dataset is 220 for Set A and 288 for Set B, which correspond  
to 6.7% and 7.5% over the whole data. On the other hand, the sizes of the initial datasets in 
Case 2 and Case 3 are set to a larger value as compared with that in Case 1; while the 
numbers of learning stages are smaller than that in Case 1. Figure 6 shows the examples of 
detected face images for three registered persons at several learning stages. 
When an initial dataset is trained by RNN, the number of hidden units is fixed with 50 in 
this experiment. The other parameters are set as follows: 72 =σ , 01.0=ε , and 5=δ . The 
threshold θ  of the accumulation ratio in IPCA is set to 0.9; thus, when the accumulation 
ratio is below 0.9, new eigen-axes are augmented.  

6.2 Experimental results 
Figure 7 shows the evolution of learning time over 15 learning stages when the chunk size L 
is 10 in Chunk IPCA (CIPCA). The curves of CIPCA and IPCA show the learning time for 
feature extraction, while those of CIPCA+RAN-LTM and IPCA+RAN-LTM mean the 
learning time for both feature extraction part and classifier. As you can see from the results, 
the learning time of feature extraction by Chunk IPCA is greatly reduced as compared with 
IPCA. This is also confirmed in Table 4.  
The learning time of Chunk IPCA decreases as the chunk size increases, and Chunk IPCA is 
much faster than IPCA even though the feature dimensions at the final stage do not have 
large differences between IPCA and Chunk IPCA. When the chunk size is 10, Chunk IPCA 
is about 8 times faster than IPCA. The reason why the decreasing rate of the learning time 
becomes small for larger chunk size is that the time for finding eigen-axes dominates the 
total learning time (Ozawa et al., 2008).  
To evaluate the effectiveness of learning an eigenspace, the classification accuracy of RAN-
LTM is examined when the following three eigenspace models are adopted:  
1. Static eigenspace model using PCA 
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Fig. 7. Evolution of learning time for four different models (sec.). 
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 IPCA CIPCA(10) CIPCA(50) CIPCA(100) 
Time (sec.) 376.2 45.6 22.5 18.1 
Dimensions 178 167 186 192 

Table 4. Comparisons of Learning time and dimensions of feature vectors at the final 
learning stage. CIPCA(10), CIPCA(50), and CIPCA(100) stand for Chunk IPCA in which the 
chunk sizes are set to 10, 50, and 100, respectively.  

2. Adaptive eigenspace model using the extended IPCA  
3. Adaptive eigenspace model using Chunk IPCA.  
Figures 8 (a)-(c) show the evolution of recognition accuracy over 15 learning stages when 
the percentage of initial training data is (a) 6.7%, (b) 12.5%, and (c) 20%, respectively. As 
stated before, the size of an initial dataset can influence the recognition accuracy because 
different eigenspaces are constructed at the starting point. As seen from Figs. 8 (a)-(c), the 
initial test performance at stage 0 is higher when the number of initial training data is larger; 
however, the test performance of IPCA and Chunk IPCA is monotonously enhanced over 
the learning stages and it reaches almost the same accuracy regardless of the initial datasets. 
Considering that the total number of training data is the same among the three cases, we can 
say that the information on training samples is stably accumulated in RNN without serious 
forgetting even though RNN is reconstructed all the time the eigenspace model is updated.  
In addition, the test performance of RNN with IPCA and Chunk IPCA has significant 
improvement against RNN with PCA. This result shows that the incremental learning of a 
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Fig. 8. Evolution of recognition accuracy for three different datasets (incremental, training, 
test) over the learning stages when the percentages of initial training datasets are set to (a) 
6.7%, (b) 12.5%, and (c) 20.0%. 
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feature space is very effective to enhance the generalization performance of RNN. However, 
Chunk IPCA has slightly lower performance than IPCA. It is considered that this 
degradation originates from the approximation error of the eigenspace model using Chunk 
IPCA. 
In Figs. 8 (a)-(c), we can see that although the incremental performance is fluctuated, the 
training performance of RNN with IPCA and Chunk IPCA changes very stably over the 
learning stages. On the other hand, the training performance of RNN with PCA rather drops 
down as the learning stage proceeds. Since the incremental performance is defined as a kind 
of test performance for the incoming training dataset, it is natural to be fluctuated. The 
important result is that the misclassified images in the incremental dataset are trained stably 
without degrading the classification accuracy for the past training data.  
From the above results, it is concluded that the proposed incremental learning scheme, in 
which Chunk IPCA and RAN-LTM are simultaneously trained in an online fashion, works 
quite well and the learning time is significantly reduced by introducing Chunk IPCA into 
the learning of the feature extraction part.  

7. Conclusions 
This chapter described a new approach to constructing adaptive face recognition systems in 
which a low-dimensional feature space and a classifier are simultaneously learned in an 
online way. To learn a useful feature space incrementally, we adopted Chunk Incremental 
Principal Component Analysis in which a chunk of given training samples are learned at a 
time to update an eigenspace model. On the other hand, Resource Allocating Network with 
Long-Term Memory (RAN-LTM) is adopted as a classifier model not only because 
incremental learning of incoming samples is stably carried out, but also because the network 
can be easily reconstructed to adapt to dynamically changed eigenspace models.  
To evaluate the incremental learning performance of the face recognition system, a self-
compiled face image database was used. In the experiments, we verify that the incremental 
learning of the feature extraction part and classifier works well without serious forgetting, 
and that the test performance is improved as the incremental learning stages proceed. 
Furthermore, we also show that Chunk IPCA is very efficient compared with IPCA in term 
of learning time; in fact, the learning speed of Chunk IPCA was at least 8 times faster than 
IPCA.  
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1. Introduction 
Owing to the Japanese government plan, U-Japan, which promised to bring about the so-
called ‘ubiquitous society’ by 2010, the use of Internet has dramatically increased and 
accordingly, development of the system through IT networks is thriving. The term 
‘ubiquitous society’ became a buzzword, signifying easy access to content on the internet for 
anybody, anywhere and at any time. Face recognition has become the key technique, as a 
‘face’ carries valuable information, captured for security purposes, without physical contact. 
They can function as identity information for purposes such as login for bank accounts, 
access to buildings, anti-theft or crime detection systems using CCTV cameras. Furthermore, 
within the domain of entertainment, face recognition techniques are applied to search for 
celebrities who look alike. Against this backdrop, a high performance face recognition 
system is sought after.  
Face recognition has been used in a wide range of security systems, such as monitoring 
credit card users, identifying individuals with surveillance cameras and monitoring 
passengers at immigration control. Face recognition has been studied since the 1970s, with 
extensive research into and development of digital processing (Kaneko & Hasegawa, 1999; 
Kanade, 1971 ; Sirovich & Kirby, 1991 ; Savvides, M. et al. 2004). Yet there are still many 
technical challenges to overcome; for instance, the number of images that can be stored is 
limited in currently available systems, and the recognition rate needs to be improved to take 
account of photographic images taken at different angles and in varying conditions.  
In contrast to digital recognition, optical analog operations process two-dimensional images 
instantaneously and in parallel, using a lens-based Fourier transform function. In the 1960s, 
two main types of correlator came into existence; the Vanderlugt Correlator and the Joint 
Transform Correlator (JTC) (Goodman & Moeller, 2004). Some correlators were a 
combination of the two (Thapliya & Kamiya, 2000; Kodate Inaba Watanabe & Kamiya, 2002 ; 
Kobayashi & Toyoda, 1999 ; Carrott Mallaley Dydyk & Mills, 1998). The authors previously 
proposed and produced the FARCO (Fast Face Recognition Optical Correlator), which was 
based on the Vanderlugt Correlator((a) Watanabe & Kodate 2005; (b)Watanabe & Kodate, 
2005). Combined with high-speed display devices, four-channel processing was able to 
achieve operational speeds of up to 4000 faces/s. Running trial experiments on a 1-to-N 
identification basis using the optical parallel correlator, we succeeded in acquiring low error 
rates of 1 % False Acceptance Rate (FAR) and 2.3 % False Rejection Rate (FRR)( Savvides et 
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al., 2004).We also developed an algorithm for a simple filter by optimizing the calculation 
algorithm, the quantization digits and the carrier spatial frequency for optical correlation. 
This correlation filter is more accurate, compared with classical correlation.  
Recently, a novel holographic optical storage system that utilizes collinear holography has 
been demonstrated (Horimai & Tan, 2005). This scheme can realize practical and small 
holographic optical storage systems more easily than conventional off-axis holographic 
optical systems. At present, the system seems to be most promising for ultrahigh density 
volumetric optical storage. 
Moreover, we proposed the super high-speed FARCO (S-FARCO) ((a) Watanabe & Kodate, 
2006; (b) Watanabe & Kodate, 2006) that integrates optical correlation technology used in 
FARCO and a co-axial holographic optical storage system (Horimai Tan & Li, 2006). 
Preliminary correlation experiments using the co-axial optical set-up show an excellent 
performance of high correlation peaks and low error rates. This enables optical correlation 
without the need to decode information in the database, greatly reducing correlation time. 
We expect the optical correlation speed to be about 3 µs/frame, assuming 24000 pages of 
hologram in one track rotating at 600 rpm. A correlation speed faster than 370,000 frames/s 
was acquired when the system was used. Therefore, the S-FARCO system proved effective 
as a 1-to-N recognition system with a large database. It should be noted also that the 
advantage of our system lies in its wide applicability to various correlation schemes. 
In recent years, the processing speed of computers has improved greatly. For example, the 
operation speed of a 128x128 pixels Fast Fourier Transform (FFT) is now about 30ms (CPU: 
3GHz, 2GB). When processing the images of several tens of people, the recognition process 
time can be calculated by the software within a few seconds. Against this background, we 
propose three different configurations, which depend on the correlation speed and size of 
shown in Figure 1. FARCO is used for several thousand people at a correlation speed of 
4000 faces per second. In response to demand for greater speed or more images, the S-
FARCO system was applied. Optical correlation of 2.7μs/face is expected, assuming that 
376800 faces can be processed in one second with 10 μm pitch of hologram in one track 
rotating at 600 rpm in S-FARCO 2.0 and 2.5. S-FARCO 2.5 is a smaller version of the 
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previous model (S-FARCO 2.0), with its size reduced by 40%, and is portable. Applied as a 
face recognition system, it is then possible to correlate more than 376800 faces per second. 
Software was also proposed for one-to-one ID recognition, which requires less calculation 
time. 
In this chapter, we propose a much more rapid face recognition system using a holographic 
optical disc system named FARCO 2.0. Section 2 describes the concept of the optical parallel 
correlation system for facial recognition and the dedicated algorithm. Section 3 presents a 
correlation engine of a much higher speed for face, image and video data using optical 
correlation.  
Section 4 presents an online face recognition system using the software which was 
constructed for FARCO algorithm based on phase information. Section 5 proposes a video 
identification system using a S-FARCO. Section 6 presents a discussion based on the results 
and summarizes the paper. 

2. The concept of the optical correlation system for facial recognition and the 
dedicated algorithm 
In this section we describe the concept of the optical parallel correlation system for facial 
recognition and the dedicated algorithm. A novel filtering correlation for face recognition 
which uses phase information with emphasis on the Fourier domain will be introduced. The 
filtering correlation method will be evaluated by comparing it with various other correlation 
methods. 

2.1 Fast Face Recognition Optical Correlator (FARCO) 
An algorithm for the FARCO is shown in Figure 2. In this system, pre- and post-processes 
with a PC are highly conducive to the enhancement of the S/N ratio and robustness. Firstly, 
facial images were captured automatically by a digital video camera. The two eyes are used  
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al., 2004).We also developed an algorithm for a simple filter by optimizing the calculation 
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previous model (S-FARCO 2.0), with its size reduced by 40%, and is portable. Applied as a 
face recognition system, it is then possible to correlate more than 376800 faces per second. 
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correlation engine of a much higher speed for face, image and video data using optical 
correlation.  
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constructed for FARCO algorithm based on phase information. Section 5 proposes a video 
identification system using a S-FARCO. Section 6 presents a discussion based on the results 
and summarizes the paper. 

2. The concept of the optical correlation system for facial recognition and the 
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as focal points. The size of the extracted image was normalized to 128 x 128 pixels by the 
center. For input images taken at an angle, affined. transformation was used to adjust the 
image and the image was normalized, fixing on the position of the eyes. This was followed 
by edge enhancement with a Sobel filter, which binarized and defined the white area as 
20%, and equalized the volume of transmitted light in the image. We have shown 
previously that binarization of the input (and database) images with appropriate adjustment 
of brightness is effective in improving the quality of the correlation signal. 
The correlation signal is classified by a threshold level. In practical applications, the 
threshold value must be customized. The threshold value varies depending on its security 
level; on whether the system is designed to reject an unregistered person or permit at least 
one registered person. The optimum threshold value must be decided using the appropriate 
number of database images based on the biometrics guideline (Mansfield & Wayman, 2002) 
for each application. In this paper, the threshold value is fixed where the Equal Error Rate 
(EER) is at its lowest. 

2.2 Design of correlation filter for practical face recognition software 
2.2.1 Filtering correlation 
In our previous work, the correlation filter of FARCO for the optical correlator was designed 
by focusing on the binary level and correlation signals, not overlapped by the 0th-order 
image, with an emphasis on the Fourier domain. The carrier-spatial frequency should be 
contained within the minimum frequency range of facial characteristics (details described in 
((c) Watanabe & Kodate, 2005). In this section, we select parameters to optimize the 
correlation filter in accordance with the correlation speed for software. We call this method 
“filtering correlation” (Horner & Gianino, 1982), which will be evaluated in reference to the 
following two other methods (Watanabe & Kodate, 2005). 

2.2.2 Phase-only correlation  
The correlation function g(x, y) between two signals, f(x, y) and h(x, y) is expressed as the 
following Equation (1) using Fourier transform formulation  

 g (x , y) = F [ F(u , v)H* (u , v)] (1) 

in which * denotes its conjugate. F denotes the Fourier transform operator. While F(u , v) is 
the Fourier transform of one signal f(x, y), H*(u, v) is the correlation filter corresponding to 
the other signal h(x, y), and u and v stand for two vector components of the spatial 
frequency domain. The classical correlation filter for a signal h(x, y) was defined as H*(u, v). 
By setting every amplitude at the number equal to 1 or alternatively by multiplying it by 
1/H (u, v), we obtained the phase-only filter (Horner & Gianinor, 1984). 

 Hp(u , v) =  exp {- i φ(u , v)} (2) 

where p stands for phase. 
The performance of the two correlation methods was evaluated through one-to-N 
identification with a database of 30 frontal facial images. As shown in Figure 3, the database 
(Tarres (web)) is composed of facial images that vary in different ways (laughing, wearing 
glasses, different races and so on). Three correlation methods were examined for three 
image sizes: (a) 32 x 16, (b) 64 x 32 and (c) 128 x 64 respectively (Figure 4). 
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2.3 Experimental results 
Experimental error rates of two different types of correlation methods are shown in Figure 5 
and Table 1. If the intensity exceeded a threshold value, the input image would be regarded 
as a match with a registered person. Error rates divided by the total number of cases were 
given by the FRR and FAR. With the threshold value set at an optimum value (arbitrary 
units), the FAR and FRR are shown in Table 1. Error rates are plotted on the vertical axis and 
comparison values on the horizontal axis. EER has been improved by 0%.  
As for the filtering correlation, EER attained the lowest value from among all the correlation 
methods, as shown in Figure 5 and Table 1. In a low resolution of 64x64 pixels, the EER 
reached 0% in the Filtering correlation only (both FRR and FAR are 0% as shown in Table 1. 
If the resolution is lowered to 32 pixels, the FRR becomes 100% at FAR 0%. These results 
indicate that the registered person cannot be recognized without accepting the others. 
Because the FRR value can be improved by trying to log in as a user of the system several 
times, the value of the FRR at FAR 0% is important for the recognition system. Therefore, the 
Filtering correlation can be counted as an advantage. The Filtering correlation works 
effectively in the application targeted at low resolution images. 
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Fig. 5. Results for two kinds of correlation with 64 x 64 pixel 
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Table 1.  Experimental error rates of two different methods 

3. A fast face recognition optical correlator of a much higher speed for face, 
image and video data using holographic optical correlator filter 
This section presents a correlator of a much higher speed for face, image and video data 
using optical correlation. The data access rate of a conventional correlator is limited to a 
maximum of 1Gbps, due to the data transfer speed of the HDD used to store digital 
reference images. Therefore, a conventional correlator has a weakness in its image data 
transmission speed. Recently, a novel holographic optical storage system that utilizes co-
axial holography has been demonstrated. This scheme can realize practical and small 
holographic optical storage systems more easily than conventional on-axis holographic 
optical systems. Using the ability of parallel transformation as holographic optical memory, 
the recognition rate can be vastly improved. In addition, the large capacity of optical storage 
allows us to increase the amount of data in the reference database. Preliminary correlation 
experiments using the holographic optical disc set-up show an excellent performance of 
high correlation peaks and low error rates at a multiplexing pitch of 10 μm and rotational 
speed of 300rpm. It is clear that the processing speed of our holographic optical calculation 
is remarkably high compared to the conventional digital signal processing architecture. 
No storage device has yet been found, which meets both conditions, i.e. transfer speed and 
data capacity. DRAM has a high-speed data transfer rate, yet with a limited data capacity of 
up to several GB. The typical secondary storage devices include the hard disk drive, optical 
disc drive and magnetic tape streamer devices. HDD technology has been making 
significant progress in expanding data capacity. Recently, the capacity of HDD data storage 
has expanded to more than 1TB. However, even if a RAID system (Redundant Arrays of 
Inexpensive Disks) is used, the maximum transfer rate of a conventional HDD system is 
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limited to the order of G bps. Typically, the input digital data is first transferred from HDD 
to the DRAM, followed by calculation of correlation. Therefore, a conventional image search 
correlation with large image database has a weakness in its image data transmission speed 
(Figure 6). It is demonstrated that the processing speed of our holographic optical 
calculation is remarkably higher than that of the conventional digital signal processing 
architecture (Figure 7). 
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Fig. 7. Optical Correlation system 

Figure 8 shows the concept of the high-speed optical correlator with a holographic optical 
disc. We call this system the Super Fast Recognition Optical Correlator, S-FARCO. A huge 
amount of data can be stored in the holographic optical disc in the form of matched filter 
patterns. In case the correlation process, an input image on the same position are 
illuminated the laser beam, the correlation signal appears through the matched filter on the 
output plane. The optical correlation process speeds up by simply rotating the optical disc at 
higher latency. 

3.1 Holographic optical memory 
Holographic optical memory, as the fourth-generation memory device with a large data 
storage capacity, has been developed with high expectations for replacing the current 
optical disc devices such as Blu-ray Disc and HD-DVD. Among other devices which belong 
to the same ‘generation’ (i.e. category), there are Near-field optical memory (Goto, K. 2004, 
Super-RENS (Tominaga et al., 2002), two-photon absorption memory (Kawata & Nakano, 
2005). However, they are essentially all fit for recording two-dimensional data. Some enable 
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Fig. 8. Optical correlator using holographic optical disc : S-FARCO 

high density by setting the recording bit below the level of the diffraction limit, while others 
make it possible to record data on multi-layers, holding the density constant. In contrast, 
holographic optical memory records data three-dimensionally across the whole recording 
material. The history of research into holographic optical memory dates back to 1948, one 
year after Dennis Gabor discovered holography (Coufal Psaltis & Sincerbox, 2000). In 1960, 
when holographic optical memory was first applied, combined with laser as a light source, 
some attention was focused on the technique of recording and reproducing wavelength. It 
was van Heerden who proposed holography as a memory device in 1963 (van Heerden 
1963). Nevertheless, despite a rather long history in research, holographic optical memory 
was not applied for practical use. This could be ascribed to the fact that sufficient progress 
had not been made in two-dimensional image display, image pick-up devices and recording 
materials. In the 1990s, there were some breakthroughs in the development of PRISM 
(photorefractive information storage materials) and HDSS (holographic data storage 
system), due to the US government-funded projects (Hesselink, 2000; Orlov, 2000). In 
parallel with this development, holographic optical memory made progress. However, there 
were still a number of issues to overcome before it could be applied more widely. For 
instance, a large size (of space) is required for optical setup due to two interference or the 
difficulty in preventing deterioration of recording material quality. With this background, in 
2004, a optical disc-shaped co-axial-type holographic optical memory was developed 
(Horimai & Tan 2005). This holographic optical memory enabled both a reference beam and 
object beam to be juxtaposed on the same axis, which is conducive to miniaturization. This 
could solve the issue of size, which was common under the two-interference system. 
Moreover, it is a reflecting-type optical disc memory of 12cm in diameter to which strengths 
in optical disc drive technique can be directly applicable. Therefore, this optical disc 
memory could be a promising device for the next generation.  
The basic structure of the conventional optical device and co-axial holographic optical 
memory are shown in Figure 9(a) and (b) . Comparing these two types, it is predicted that 
the latter system, in which juxtaposition of reference and object beam on the same axis is 
possible, can be slimmed down.  
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The co-axial holographic optical system consists of a DMD (Digital Micro-mirror Device) 
as a two-dimensional spatial laser modulator, which displays two-dimensional digital 
data on the two-dimensional plane, and photopolymer as a recording material, a CMOS 
camera as a image device for reading out reproduced two-dimensional data and a lens 
(NA: 0.55) for image formation. Holding two beams (i.e. object and reference) on the same 
axis, the object light is placed at the centre of the image, while the reference light is on the 
outside. The beam from the DMD is passing through at the objective lens, and causes 
interference in the recording medium. DMD is illuminated by plane waves, its mirror 
focus light, which was modulated by the on/off switch into the recording material by 
objective lens. At the time of recording the data, both reference and signal beam are 
displayed. When images are reproduced, only reference image is displayed. The 
reproduced image becomes higher power, when it is closer to the reference image at the 
time of recording. 
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Fig. 9. (a) Two beam interference optical system, (b) Co-axial holographic optical memory 
system 

An outline of the structure of the co-axial holographic optical memory is given in Figure 10. 
The recording material is sandwiched between two glasses, one coated by AL and the other 
by AR coated, and it is a reflection type memory. Write once photopolymer is used as a 
recording material. The spatial distribution is recorded through the distribution of refraction 
(Schilling L. M. et al. 1999 ; Sato, et al., 2006). Photopolymer is a photopolymerization 
monomer. At the initial stage, there are two types of monomers for maintaining the 
configurations: monomer 1 which photopolymerizate by corresponding to recording light 
and monomer 2 which does not correspond to the recording light. In proportion to the 
intensity of light, monomer 1 becomes polymerized, as monomer 2 gets pushed out into 
polymer-free space. At the stage of multiple recording, the monomer reduces in its density, 
and its sensitivity decreases accordingly. As all the data are recorded and the remaining 
monomer is completely polymerized, there will be no change even when it is illuminated by 
reproduced light. 
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parallel with this development, holographic optical memory made progress. However, there 
were still a number of issues to overcome before it could be applied more widely. For 
instance, a large size (of space) is required for optical setup due to two interference or the 
difficulty in preventing deterioration of recording material quality. With this background, in 
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memory could be a promising device for the next generation.  
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memory are shown in Figure 9(a) and (b) . Comparing these two types, it is predicted that 
the latter system, in which juxtaposition of reference and object beam on the same axis is 
possible, can be slimmed down.  
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The co-axial holographic optical system consists of a DMD (Digital Micro-mirror Device) 
as a two-dimensional spatial laser modulator, which displays two-dimensional digital 
data on the two-dimensional plane, and photopolymer as a recording material, a CMOS 
camera as a image device for reading out reproduced two-dimensional data and a lens 
(NA: 0.55) for image formation. Holding two beams (i.e. object and reference) on the same 
axis, the object light is placed at the centre of the image, while the reference light is on the 
outside. The beam from the DMD is passing through at the objective lens, and causes 
interference in the recording medium. DMD is illuminated by plane waves, its mirror 
focus light, which was modulated by the on/off switch into the recording material by 
objective lens. At the time of recording the data, both reference and signal beam are 
displayed. When images are reproduced, only reference image is displayed. The 
reproduced image becomes higher power, when it is closer to the reference image at the 
time of recording. 
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Fig. 9. (a) Two beam interference optical system, (b) Co-axial holographic optical memory 
system 

An outline of the structure of the co-axial holographic optical memory is given in Figure 10. 
The recording material is sandwiched between two glasses, one coated by AL and the other 
by AR coated, and it is a reflection type memory. Write once photopolymer is used as a 
recording material. The spatial distribution is recorded through the distribution of refraction 
(Schilling L. M. et al. 1999 ; Sato, et al., 2006). Photopolymer is a photopolymerization 
monomer. At the initial stage, there are two types of monomers for maintaining the 
configurations: monomer 1 which photopolymerizate by corresponding to recording light 
and monomer 2 which does not correspond to the recording light. In proportion to the 
intensity of light, monomer 1 becomes polymerized, as monomer 2 gets pushed out into 
polymer-free space. At the stage of multiple recording, the monomer reduces in its density, 
and its sensitivity decreases accordingly. As all the data are recorded and the remaining 
monomer is completely polymerized, there will be no change even when it is illuminated by 
reproduced light. 
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Fig. 10. The configuration of co-axial holographic optical memory and photopolymer. (a) 
Configuration of holographic optical memory, (b) Photopolymer curing 

3.2 High speed optical correlation system  
Figure 11 shows the schematic of our optical configuration, which is identical to the one 
used in a collinear holographic optical storage system. Note that in the collinear holographic 
system, the recording plane is the Fourier plane of the digital mirror device (DMD) image, 
as shown in the close-up part. The recorded image is composed of a reference point and the 
image to be recorded in the database, as shown in Figure 11 This image is Fourier 
transformed by the objective lens shown in Figure 11, and recorded as a hologram. This 
hologram works as the correlation filter. With the recorded image of one pixel as a delta 
function and database image, we can easily obtain the correlation filter in the co-axial 
holography system. Figure 11 shows the optical setup of the Fourier plane in close up.  
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Fig. 11. The inset shows the enlarged part of the Fourier transformation part 
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Writing a matched filter hologram, the recording image on the DMD is Fourier-transformed 
by the object lens. Thus, correlation filters are implemented with ease in the co-axial 
holography. In the case of the correlation process, an input facial image on the same position 
is Fourier-transformed by the same objective lens. The correlation signal emerges on the 
CMOS plane.  

3.3 Optical correlation using holographic optical matched filter 
3.3.1 Experimental results of multiplex recording and correlation 
Holographic optical memory features both high density and rapid playback. The above-
mentioned co-axial holography method allows for image recoding with photopolymer 
(Schilling, et al. (1999) (thickness: 500μm) at multiplex recording pitch (10μm) (Figure 12) 
(Ichikawa Watanabe & Kodate (2006). For this experiment, correlations were further 
examined using facial images which were recorded in the same method (Figure 13). 
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Fig. 13. Experimental results of 100 multiplex memory recording  



 State of the Art in Face Recognition 

 

118 

(a) (b)

Bright Dark Bright Dark Bright

monomer2

monomer

Pit

Recording layer
(photopolymer)

Gap layer

Cover layer

Base layer

Red laser
λ=650nm

Green laser
λ=532nm

Tunability mirror layer
Gap layer

Reflective layer

In response to a 
green laser.

It form fringe 
patterns. 

polymer

 
Fig. 10. The configuration of co-axial holographic optical memory and photopolymer. (a) 
Configuration of holographic optical memory, (b) Photopolymer curing 

3.2 High speed optical correlation system  
Figure 11 shows the schematic of our optical configuration, which is identical to the one 
used in a collinear holographic optical storage system. Note that in the collinear holographic 
system, the recording plane is the Fourier plane of the digital mirror device (DMD) image, 
as shown in the close-up part. The recorded image is composed of a reference point and the 
image to be recorded in the database, as shown in Figure 11 This image is Fourier 
transformed by the objective lens shown in Figure 11, and recorded as a hologram. This 
hologram works as the correlation filter. With the recorded image of one pixel as a delta 
function and database image, we can easily obtain the correlation filter in the co-axial 
holography system. Figure 11 shows the optical setup of the Fourier plane in close up.  
 

参照光

物体光

参照光

物体光

Reference light

Object light

f=4.00mm f=4.00mm

Holographic 
optical memory

Object lens

Glass AL

Imaging plane
Of relay lens

Fourier plane

Displaying
Reference image

～1.50mm

デルタ
関数

 
Fig. 11. The inset shows the enlarged part of the Fourier transformation part 

High Speed Holographic Optical Correlator for Face Recognition 

 

119 

Writing a matched filter hologram, the recording image on the DMD is Fourier-transformed 
by the object lens. Thus, correlation filters are implemented with ease in the co-axial 
holography. In the case of the correlation process, an input facial image on the same position 
is Fourier-transformed by the same objective lens. The correlation signal emerges on the 
CMOS plane.  
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Images shown in Figure 14 are the database and input images. Shift-multiplexing was 
adopted as a recoding method, while S-FARCO (wavelength: 532nm) was used as an optical 
set-up. The holographic optical media is composed of an AR-coated glass on the upper 
plane and an AL-coated glass with the photopolymer in between on the lower plane. Since 
the spot diameter of the laser is 200um, correlation results for 100 multiplex memory 
holograms can be acquired all at once on the condition that the multiplex recording pitch is 
10μm. In this experiment, intensity values of correlation signals were obtained by CMOS 
sensor. 

 
Fig. 14. Experimental samples of facial images 

3.3.2 Experimental results of S-FARCO 
We performed a correlation experiment under the conditions shown in Table 2. The 
intensities of the correlation peaks are compared with the threshold for verification. Figure 
15 shows the dependences of the recognition error rates on the threshold: (a) the false-match 
rate, and false non- match rate and (b) the correlation between identical images. The 
intersection of lines (a) represents the equal error rate (EER) (when the threshold is chosen 
optimally), producing an EER of 0% in this experiment. An ultra high-speed system can 
achieve a processing speed of 5.3 μs/correlation at a multiplexing pitch of 10 micrometers 
and a rotational speed of 300rpm.  

3.3.3 The correlation speed of a holographic optical matched filter 
These preprocessed video images are recorded on a co-axial holographic optical system. The 
correlation speed of multiplexed recording is given by:  
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Write
Mode

Laser Q-SW

Rotation speed 300
Database image 30

Input image 30
Recorded pitch (μm) 10
Input image size (pixels) 64 x 128

Hologram media (μm/cm) 400 / 12

Correlation 
Mode

Laser CW
Rotation speed (rpm) 300
Database image 30

Detect device PMT

Write
Mode

Laser Q-SW

Rotation speed 300
Database image 30

Input image 30
Recorded pitch (μm) 10
Input image size (pixels) 64 x 128

Hologram media (μm/cm) 400 / 12

Correlation 
Mode

Laser CW
Rotation speed (rpm) 300
Database image 30

Detect device PMT  
Table 2.  Experimental condition for holographic optical disc correlator 
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Fig. 15. Dependences of experimental recognition error rates with threshold 

 

961,256,000 2000

48628,0001000

29376,800600

14188,400300

10μm

Image (320 x 240 pixels)
Transfer speed (Gbps)

Number of images for 
correlation per second 

(frames / s)

Rotation
(rpm)

Multiplex 
recording pitch

961,256,000 2000

48628,0001000

29376,800600

14188,400300

10μm

Image (320 x 240 pixels)
Transfer speed (Gbps)

Number of images for 
correlation per second 

(frames / s)

Rotation
(rpm)

Multiplex 
recording pitch

 
Table 3. Correlation speed of the outermost track of an optical holographic optical disc 
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where r [mm], d [mm] and R [rpm] represent the diameter of the optical disc, the recording 
pitch and the rotating speed respectively. In a conventional correlation calculation which 
uses a digital computer, the data transfer and correlation calculation are achieved 
separately. In this system, if 240 x320 pixel information is written onto a holographic optical 
disc at 10 micrometer pitch and at 2,400 rpm, this is equivalent to data transfer of more than 
100 G bps. An important point is that the correlation result is applied to an image of 320 x 
240 bits, and the output signal of the correlation operation requires only 1.3 Mbps against 
the data transfer of 100 Gbps.  

4. An online face recognition system 
Section 4 presents an online face recognition system using the software which was 
constructed for the FARCO algorithm based on phase information. When FARCO software 
was optimized for the online environment, a low-resolution facial image size (64 x 64 pixels) 
was successfully implemented. An operation speed of less than 10ms was achieved using a 
personal computer with a CPU of 3 GHz and 2 GB memory. Furthermore, by applying eye 
coordinate detection in order to normalize facial images, online automatic face recognition 
became possible. The performance of our system was examined using 30 subjects. The 
experiment yielded excellent results, with low error rates, i.e. 0 % False Acceptance Rate and 
0 % False Rejection Rate. Therefore, the online face recognition system proved efficient, and 
can be applied practically. 

4.1 Application of online face recognition system  
Applying the algorithm used for FARCO, a high-security online face recognition system was 
designed (Figure 16.). The registration process for facial images has four steps. First, an 
administrator informs users of the URL on which the online face recognition system is 
based. Then, the users access the URL. Several facial images were taken as reference images 
in their PCs or blogs on the internet. They were uploaded to the server together with their 
IDs, distributed at the time of registration in advance. Their facial images can be checked by 
the users themselves. A web page from an online face recognition is shown in Figure 16. 
(KEY images). The recognition process can be described as follows. When a facial image 
together with the subject’s ID is inputted, the pre-processed image will be checked with the 
stored images in the database. The recognition result will be displayed on the webpage as in 
Figure 16 (Recognition result). As the system interface was designed for a web camera or 
surveillance camera, it can be applied widely and introduced at various places such as 
schools, offices and hospitals for multiple purposes. 
The online face recognition system based on the algorithm for FARCO was constructed, 
with which a simulation was conducted (Ishikawa Watanabe & Kodate, (2007) ; Ishikawa  
Watanabe Ohta &Kodate, 2006). If the intensity exceeded a threshold value, the input image 
would be regarded as a match with a registered person. Error rates divided by the total 
number of cases were given by the false rejection rate (FRR) and false acceptance rate (FAR). 
Results demonstrated considerably low error rates: 0 % as FAR, 1.0 % as FRR and EER. 
However, in FARCO software, images are stored as digital data in the database such, as a 
hard disk drive. As a result, extra time is required for reading out data. In order to achieve 
high operation speeds by optical processing, it is necessary to eliminate this bottleneck. 
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Fig. 16. Online face recognition system 

4.2 Cellular phone face recognition system 
Cellular phones are applied in a wide range of mobile systems, including e-mail, Internet, 
cameras and GPS. In this section, we propose a high-security facial recognition system with 
our Filtering correlation with 64x64 pixels that uses a cellular phone on a mobile network. 

4.2.1 Structure of the system 
A block diagram depicting the cellular phone face recognition system is shown in Figure 17. 
This system consists of the FARCO software for facial recognition, a control server for pre- 
and post-processing, and a cellular camera phone.  

4.2.2 Operation of the system (Watanabe Ishikawa Ohta & Kodate, 2007) 
(1) Registration 
The registration process for students’ facial images has four steps. Firstly, the administrator 
sends students the URL for i-application via e-mail. Secondly, students access the URL and 
download the Java application for taking input images on their own cellular phone. Thirdly, 
they start up the Java application and take their facial images as reference, then transmit 
them to the server along with their student IDs, which are issued to them beforehand. 
Finally, the administrator checks whether the student IDs and images in the server match, 
and then uploads their facial images onto the database.  
(2) Recognition 
The recognition process is as follows:  
• Students start up the camera with the Java application and take their own facial images.  
• Students transmit the image and ID (allocated at registration) back to the face image 

recognition server. Since the image and information are transferred on the https 
protocol, the privacy of the student is protected.  

• In the face recognition server, the position coordinates of both eyes and nostrils are 
extracted from the input images. After normalization on the basis of coordinates to 
128×128pixels, cutting, edge-enhancing and binarization take place.  
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• Subsequently, using the FARCO software, the correlation signal intensity is calculated 
in proportion to the resemblance of the two images.  

• Using the intensity level, the system attempts to recognize the student’s face based on 
the threshold value, which is set beforehand.  

• If the student in question is recognized as a registered person, the server creates a one-
time-password which will be sent with the result to the student.  

• Students who acquire the password in this way can log in to the remote lecture contents 
server. Moreover, the face recognition server controls student registration and its 
database and recognition record. The Administrator can check this information through 
a web browser. A facial image and registration time are then recorded, which can help 
minimize fraud. Furthermore, images at registration can be renewed by freshly 
recorded images. A flow-chart of face recognition based on the Java application is 
shown in Figure 17. 

 

 
Fig. 17. A flow-chart of face recognition based on the Java application 

4.2.3 Attendance management system experiment on students 
Our cellular phone face recognition system was used as a lecture attendance management 
system, implemented 12 times on 30 students over a period of three months. The D505is and 
D506i (Mitsubishi Co.) were chosen from among various cellular phone types for the 
experiment. Students took their own facial images with the cellular phone and transmitted 
them to the server. Images were in the jpeg format (size 120x120pixels, 7kB).  
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The database images, composed of the registered 10 multiplexed images and the recognized 
images, were added as new database images. The experimental error rates over the duration 
of the three months are shown in Table 4. Results show considerably low error rates: 0 % as 
FAR and 2.0 % as FRR.  
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Table 4. Experimental error rates over duration of three months. 

5. Various applications - video identification system - 
It is widely acknowledged that current image retrieval technology is restricted to text 
browsing and index data searching. For unknown images and videos, the searching process 
can be highly complicated. As a result, the technology for this kind of image searching has 
not become established. In this section, we propose a video identification system using a 
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FARCO, we constructed a high speed recognition system by registering the optimized video 
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holographic optical calculation is remarkably higher than that of the conventional digital 
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The users post the video contents to the FARCO server by the web interface as shown in  
Figure 18 (a). The video contents on the FARCO server are preprocessed (i.e. normalization, 
color information and other feature extraction) and transferred as binary data. These binary 
data are recorded in the form of matched filtering patterns. 
With the explosion of use of video-sharing site, there is a high demand for a recognition 
system for moving images, working at high speed and with high accuracy. So far, the 
technology is restricted to text search through the tags attached to those motion images. This 
type of index search has weaknesses such as the difficulty in pinning down the actual 
content and specifying scenes, as well as the costs of creating tags for each item. In order to 
overcome the problems posed by these characteristics, several techniques are being actively 
researched and proposed. However, the ambiguity of labeling images and the sheer variety 
pose a number of challenges for this complex issue of differentiating the images. So far, we 
have developed a Fast Recognition Correlator system (FARCO) using the speed and 
parallelism of light. FARCO has been tested rigorously and proved its high performance. 
Combining this with the promising nature of the holographic optical disc, which was 
described above, we have proposed an all-optical ultra-fast image search engine system. The 
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• Subsequently, using the FARCO software, the correlation signal intensity is calculated 
in proportion to the resemblance of the two images.  

• Using the intensity level, the system attempts to recognize the student’s face based on 
the threshold value, which is set beforehand.  

• If the student in question is recognized as a registered person, the server creates a one-
time-password which will be sent with the result to the student.  

• Students who acquire the password in this way can log in to the remote lecture contents 
server. Moreover, the face recognition server controls student registration and its 
database and recognition record. The Administrator can check this information through 
a web browser. A facial image and registration time are then recorded, which can help 
minimize fraud. Furthermore, images at registration can be renewed by freshly 
recorded images. A flow-chart of face recognition based on the Java application is 
shown in Figure 17. 

 

 
Fig. 17. A flow-chart of face recognition based on the Java application 

4.2.3 Attendance management system experiment on students 
Our cellular phone face recognition system was used as a lecture attendance management 
system, implemented 12 times on 30 students over a period of three months. The D505is and 
D506i (Mitsubishi Co.) were chosen from among various cellular phone types for the 
experiment. Students took their own facial images with the cellular phone and transmitted 
them to the server. Images were in the jpeg format (size 120x120pixels, 7kB).  
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The database images, composed of the registered 10 multiplexed images and the recognized 
images, were added as new database images. The experimental error rates over the duration 
of the three months are shown in Table 4. Results show considerably low error rates: 0 % as 
FAR and 2.0 % as FRR.  
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section below presents our newly developed FARCO video system with which motion 
images can be distinguished using our techniques applied to our face recognition.  

5.1 Basic structure of the moving image recognition system and its algorithm 
FARCO video system enables moving image search which is on the video-sharing site, 
identifying those images registered on the server.  

5.1.1 Registration for moving images 
• Users upload moving images that need to be singled out from the Web interface in the 

FARCO video. 
• Those uploaded images are preprocessed, i.e. the images are frame-compressed, the 

color information is extracted and binarized. 
• The data will be stored as basic information about the images. 

5.1.2 Recognition for moving images 
The recognition process is as follows:  
• Users execute recognition of motion images on the web interface in FARCO video.  
• By keyword search, input images have to be pinned down from the video-sharing site, 

and downloaded. Currently, twenty video-sharing sites are included in our data search 
system.  

• By making the resolution level variable, quality adjustment becomes possible. Input 
data are preprocessed, prior to cross-comparison with registered moving images. 

 

 
Fig. 18. The concept of video filtering system. (a) Registering video files, (b) Identifying 
video files 
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5.2 Experimental results 
In our experimental system, each image file taken from DVD is registered as a video file, 
while the input video image file is downloaded from video sharing sites. We performed a 
correlation experiment using a co-axial holographic optical memory system. The example 
registered video image files are shown in Figure 19 (a). The intensities of the correlation 
peaks are compared with the threshold for verification. Figure 19. shows the dependence of 
the recognition error rates on the threshold: (a) false-match rate and false non-match rate 
and (b) the correlation between identical images. The intersection of lines (a) represents the 
equal error rate (EER) (when the threshold is chosen optimally), and in this experiment an 
EER of 0% was achieved. This ultra high-speed system can achieve a processing speed of 25 
microseconds/correlation at a multiplexing pitch of 10 micron and rotational speed of 
300rpm.  
 

(a)                                                             (b)  
Fig. 19. (a) Frame image examples (b) Experimental results using holographic optical 
matched filter 

6. Conclusions 
We presented an ultra high-speed optical correlation system for face recognition (S-FARCO) 
using holographic optical memory. By means of preliminary correlation experiments using 
the holographic optical disc set-up demonstration, we acquired low error rates, e.g. 0% 
Equal Error Rate. These are the world's first experimental results for an ultra high speed 
correlation system using a holographic optical disc. The S-FARCO is potentially 1000 times 
faster than FARCO software. We also constructed and evaluated the software correlation 
filter covering several hundred volunteers, demonstrating that the system is highly accurate, 
as facial images with low resolution (64x64 pixels) have been used successfully. Using a 
CPU with 3 GHz and 2 GB memory, an operation speed of less than 10ms was achieved. We 
obtained highly accurate experimental results and low error rates, i.e. 0 % FAR and 2.0 % 
FRR, using a high-security cellular phone face recognition system with our Filtering 
correlation. Even if the size of the image is small, an accurate result can be obtained using 
Filtering correlation. Therefore, Filtering correlation works effectively with web applications 
and face recognition using a monitoring camera. We have proposed a holographic optical 
video filtering system using a holographic optical correlator. Taking advantage of the fast 
data processing capacity of S-FARCO, we explored the possibility of realizing a high-speed 
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video filtering system using a holographic optical correlator. Taking advantage of the fast 
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recognition system by registering the optimized video image file. The results demonstrated 
that the processing speed of our holographic optical calculation was remarkably higher 
compared to the conventional digital signal processing architecture. 
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1. Introduction   
Face recognition has rapidly emerged as an important area of research within many 
scientific and engineering disciplines. It has attracted research institutes, commercial 
industries, and numerous government agencies. This fact is evident by the existence of large 
number of face recognition conferences such as the International Conference on Automatic 
Face and Gesture and the Biometric Consortium conference. Special issues of well known 
journals, are being dedicated to face modeling and recognition, such as the journal of 
Computer Vision and Image Understanding (CVIU), and the systematic empirical 
evaluations of face recognition techniques including the FERET (Phillips et al., 2000), 
XM2VTS (Messer et al., 1999), FRVT 2000 (Blackburn et al., 2000), FRVT 2002 (Phillips et al., 
2002), and FRVT 2006, which evolved substantially in the last few years. There are few 
reasons for this trend; first the demands for machine automations, securities, and law 
enforcements have created a wide range of commercial applications. The second is the 
availability of feasible technologies developed by researchers in the areas of image 
processing, pattern recognition, neural network, computer vision, and computer graphics. 
Another reason for this growing interest is to help us better understand ourselves through 
the fields of psychology and cognitive science which targeted the perception of faces in the 
brain. Because our natural face recognition abilities are very powerful, the study of the brain 
system could offer important guidance in the development of automatic face recognition. 
Research with animals has shown that these capabilities are not unique to humans. Sheep, 
for example, are known to have a remarkable memory for faces (Kendrick et al., 2000). In 
addition, we constantly use our faces while interacting with each others in a conversation. 
Face gesturing helps us understand what is being said. Facial expression is an important cue 
in understanding a person’s emotional state. In sign languages, faces also convey meanings 
that are essential part of the language. 
A wealth of 2D image-based algorithms has been published in the last few decades (Zhaho 
et al., 2003). Due to the numerous limitations of 2D approaches, 3D range image-based 
algorithms are born. Generally, 3D facial range image or data is rich, yet making full use of 
its high resolution for face recognition is very challenging. It is difficult to extract 



 State of the Art in Face Recognition 

 

130 

Watanabe, E. Ishikawa, S. Ohta M. & Kodate, K. (2007). Cellular phone face recognition 
 system based on optical phase correlation. IEEJ Trans. EIS, Vol.127, No.4, (2007) 
 pp.636-643 [in Japanese]. 

7 

3D Face Mesh Modeling for  
3D Face Recognition 

Ansari A-Nasser1, Mahoor Mohammad2 and Abdel-Mottaleb Mohamed3 

1Ministry of Defence, QENF, Doha, Qatar 
2University of Denver, Denver, Colorado 

3University of Miami, Coral Gables, Florida,  
1Qatar  

2,3U.S.A 

1. Introduction   
Face recognition has rapidly emerged as an important area of research within many 
scientific and engineering disciplines. It has attracted research institutes, commercial 
industries, and numerous government agencies. This fact is evident by the existence of large 
number of face recognition conferences such as the International Conference on Automatic 
Face and Gesture and the Biometric Consortium conference. Special issues of well known 
journals, are being dedicated to face modeling and recognition, such as the journal of 
Computer Vision and Image Understanding (CVIU), and the systematic empirical 
evaluations of face recognition techniques including the FERET (Phillips et al., 2000), 
XM2VTS (Messer et al., 1999), FRVT 2000 (Blackburn et al., 2000), FRVT 2002 (Phillips et al., 
2002), and FRVT 2006, which evolved substantially in the last few years. There are few 
reasons for this trend; first the demands for machine automations, securities, and law 
enforcements have created a wide range of commercial applications. The second is the 
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the fields of psychology and cognitive science which targeted the perception of faces in the 
brain. Because our natural face recognition abilities are very powerful, the study of the brain 
system could offer important guidance in the development of automatic face recognition. 
Research with animals has shown that these capabilities are not unique to humans. Sheep, 
for example, are known to have a remarkable memory for faces (Kendrick et al., 2000). In 
addition, we constantly use our faces while interacting with each others in a conversation. 
Face gesturing helps us understand what is being said. Facial expression is an important cue 
in understanding a person’s emotional state. In sign languages, faces also convey meanings 
that are essential part of the language. 
A wealth of 2D image-based algorithms has been published in the last few decades (Zhaho 
et al., 2003). Due to the numerous limitations of 2D approaches, 3D range image-based 
algorithms are born. Generally, 3D facial range image or data is rich, yet making full use of 
its high resolution for face recognition is very challenging. It is difficult to extract 
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numerously reliable facial features in 3D. As a result, it becomes more challenging and 
computationally expensive to accurately match two sets of 3D data (e.g., matching a 
subject’s probe data with the gallery’s). Our objective in this chapter is to illustrate a model-
based approach that represents the 3D facial data of a given subject by a deformed 3D mesh 
model useful for face recognition application (Ansari, 2007). The general block diagram of 
the system is shown in Fig.1, which consists of the modeling stage and the recognition stage. 
In the modeling stage, only three facial feature points are first extracted from the range 
image and then used to align the 3D generic face model to the entire range data of a given 
subject’s face. Then each aligned triangle of the mesh model, with three vertices, is treated as 
a surface plane which is then fitted (deformed) to its corresponding interior 3D range data, 
using least squares plane fitting. Via triangular vertices subdivisions, a higher resolution 
model is generated from the coordinates of the aligned and fitted model. Finally the model 
and its triangular surfaces are fitted once again resulting in a smoother mesh model that 
resembles and captures the surface characteristic of the face. In the recognition stage, a 3D 
probe face is similarly modeled and compared to all faces in the database. Experimental 
application of the final deformed model in 3D face recognition, using a publicly available 
database, demonstrates promising recognition rates. 
 

 
Fig. 1. 3D face modeling and recognition system. 

This chapter is organized as follow: Section 2 explains the limitations and challenges of face 
recognition. Section 3 covers a review of related work. Section 4 describes the data pre-
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processing and facial features extraction. Section 5 illustrates the process of 3D face 
modeling. Section 6 demonstrates experimental results. Finally, conclusion and discussion 
are given in section 7.  

2. Limitations and challenges 
Despite the great potentials and the significant advances in face recognition technology, it is 
still not robust and prone to high error rates, especially in unconstrained environments and 
in large scale applications. The process of identifying a person from facial appearance has to 
be performed in the presence of many often conflicting factors which alter the facial 
appearance and make the task difficult. In Table  1, we categorize the variations in facial 
appearance into two types: intrinsic and extrinsic sources of variation.  
  

Variation in 
appearance sources Effects / possible task 

Extrinsic 

Viewing geometry 
Illumination 
Imaging process 
Other objects 

Head Pose 
light variations, shadow, self shadow 
Resolution, scale, focus, sampling 
Occlusion, shadowing, indirect 
illumination, hair, make-up, surgery 

Intrinsic 

Identity  
Facial expression 
Age 
Sex 
speech 

Identification, known-unknown 
Inference of emotion or intension 
Estimating age 
Decide if male or female 
Lip reading 

Table 1. Extrinsic and intrinsic variations in facial appearance. 

The intrinsic variations take place independently of any observer (camera) and are due 
purely to the physical nature of the face.  The identity source is an important intrinsic 
variation in identifying people from one another, yet problems arise when combined with 
aging or facial expression because they are difficult to characterize analytically. The extrinsic 
sources of pose variations, due to the relative position of the camera, and illuminations 
present a major challenge in face recognition. Recognition systems are highly sensitive to the 
light conditions and circumstances under which the images being compared are captured. 
These lighting conditions can be due to the environment or the physical characteristics of 
the image capturing device, i.e., two cameras of the same brand may give different 
exposures. The pose of the face is determined by the relative three dimensional position and 
orientation of the capturing device. Usually, two face images of the same subject taken at 
different poses are more different than two images of two subjects taken at the same pose.   
While change in pose is considered a rigid 3D motion, a face can also undergo non-rigid 
motion when its 3D shape changes due to speech or facial expression. It is very difficult to 
model both types of motion at the same time. All these factors and conditions make the 
images used for training the recognition system different from the images obtained for 
recognition. If these factors are not incorporated and modeled properly, they dramatically 
degrade the accuracy and performance of a recognition system.  
Another challenge is the need for an evaluation standard for measuring recognition 
performance under different environments and conditions. As a result of this necessity, an 
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numerously reliable facial features in 3D. As a result, it becomes more challenging and 
computationally expensive to accurately match two sets of 3D data (e.g., matching a 
subject’s probe data with the gallery’s). Our objective in this chapter is to illustrate a model-
based approach that represents the 3D facial data of a given subject by a deformed 3D mesh 
model useful for face recognition application (Ansari, 2007). The general block diagram of 
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processing and facial features extraction. Section 5 illustrates the process of 3D face 
modeling. Section 6 demonstrates experimental results. Finally, conclusion and discussion 
are given in section 7.  

2. Limitations and challenges 
Despite the great potentials and the significant advances in face recognition technology, it is 
still not robust and prone to high error rates, especially in unconstrained environments and 
in large scale applications. The process of identifying a person from facial appearance has to 
be performed in the presence of many often conflicting factors which alter the facial 
appearance and make the task difficult. In Table  1, we categorize the variations in facial 
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Table 1. Extrinsic and intrinsic variations in facial appearance. 

The intrinsic variations take place independently of any observer (camera) and are due 
purely to the physical nature of the face.  The identity source is an important intrinsic 
variation in identifying people from one another, yet problems arise when combined with 
aging or facial expression because they are difficult to characterize analytically. The extrinsic 
sources of pose variations, due to the relative position of the camera, and illuminations 
present a major challenge in face recognition. Recognition systems are highly sensitive to the 
light conditions and circumstances under which the images being compared are captured. 
These lighting conditions can be due to the environment or the physical characteristics of 
the image capturing device, i.e., two cameras of the same brand may give different 
exposures. The pose of the face is determined by the relative three dimensional position and 
orientation of the capturing device. Usually, two face images of the same subject taken at 
different poses are more different than two images of two subjects taken at the same pose.   
While change in pose is considered a rigid 3D motion, a face can also undergo non-rigid 
motion when its 3D shape changes due to speech or facial expression. It is very difficult to 
model both types of motion at the same time. All these factors and conditions make the 
images used for training the recognition system different from the images obtained for 
recognition. If these factors are not incorporated and modeled properly, they dramatically 
degrade the accuracy and performance of a recognition system.  
Another challenge is the need for an evaluation standard for measuring recognition 
performance under different environments and conditions. As a result of this necessity, an 
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independent government evaluation standard was initiated, called Face Recognition Vendor 
Tests (FRVT) (Blackburn et al., 2000). FRVT was developed to provide evaluations of 
commercially available and prototype face recognition technologies. These evaluations are 
designed to provide the U.S. government and law enforcement agencies with information to 
assist them in determining where and how facial recognition technology can best be 
deployed. In addition, FRVT results help identify future research directions for the face 
recognition community. In the past, many factors have been evaluated in FRVT 2002 
(Phillips et al., 2003). 
A recent challenge to face recognition systems is the concern about possible privacy 
violations.  For example, the American Civil Liberties Union (ACLU) opposes the use of face 
recognition systems at airports due to false identification and privacy concerns. The ACLU 
claims that face recognition technology poses the danger of evolving into a widespread tool 
for spying on citizens as they move about in public places. 

3. Related work 
Semi-automated facial recognition system dates way back to 1965. (Chan & Bledos, 1965) 
showed that a computer program provided with facial features extracted manually could 
perform recognition with satisfactory performance. In the past few years, face recognition 
has received great attentions. A literature survey of face recognition is given in (Zhaho et al., 
2003), where most of the paper surveys 2D algorithms. In addition, the work and survey by 
(Bowyer et al., 2004) compare face recognition techniques based on 2D data, 3D data, and 
2D+3D data fusion (also refered to as multimodal). They reported that 3D face recognition 
approaches outperform 2D approaches and the fusion of 2D + 3D data produces slightly 
better results than 3D alone. Recently, a survey by (Boyer et al., 2006) cited some algorithms 
with 2D recognition approaches outperforming the 3D approaches. There is a belief that it is 
still premature to make this judgment because current approaches do not yet make full use 
of 3D data either in the recognition algorithms or the rigorous experimental methodology. 
In this chapter, we only review relevent 3D algorithms processed on range images (3D data) 
alone. 
We can broadly classify 3D face recognition into three categories, namely, 3D surface 
matching, representative domain, and model-based approaches. A surface matching 
method, known as Iteratively Closest Point (ICP) approach (Besl & McKay, 1992), is often 
used as a necessary step in aligning or matching the datasets of two subjects (Lu & Jain, 
2006). ICP is based on the search of pairs of nearest points in the two datasets and estimation 
of the rigid transformation that aligns them. Then the rigid transformation is applied to the 
points of one set and the procedure is iterated until convergence. Hausdorff distance is 
another matching approach which is often used in conjunction with ICP. Hausdorff distance 
attempts to match two datasets based on subset points from the datasets (Huttenlocher et 
al., 1993); (Russ et al., 2005). The problems with these two matching approaches are 
expensive computations and sometimes fail to give accurate results. The main reason for 
using ICP or Hausdorff is not having direct correspondences between the two compared 
datasets. In the presented algorithm of this chapter, the two compared datasets have direct 
feature correspondences, which eliminate the need for the above alignment/matching 
algorithms. (Medioni & Waupotitsch, 2003) present an authentication system that acquires 
the 3D image of the subject using stereo images based on internally and externally calibrated 
cameras. They use the ICP algorithm to calculate similarity between two faces achieving 
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98% on a database of 100 subjects. (Lu et al., 2004) filter and stitch five multiple views of 
2.5D facial scan of each subject to obtain a more complete 3D facial scan. The complete 3D 
facial scan model is used in the gallery for recognition and the partial 2.5D scans are used as 
probes. Matching is performed using ICP between a 3D scanned test face with the faces in 
the database. A 96% recognition rate is obtained with a database of 19 subjects. (Lu & Jain, 
2005) extended their previous work using an ICP-based recognition approach  by (Russ et 
al., 2004) to deal explicitly with variations due to the smiling expression. In their 
experiments, they used a 100-person dataset, with neutral-expression and smiling probes, 
matched to neutral-expression gallery images. The gallery entries were whole-head 3D 
models, whereas the probes were 2.5D scan frontal views. They report that most of the 
errors are after the rigid transformation resulted from smiling probes, and these errors are 
reduced substantially after the non-rigid deformation stage. For the total of 196 probes (98 
neutral and 98 smiling), performance reached 89%. (Uchida et al., 2005) propose two sets of 
a passive stereo system using four cameras to capture facial images. One set contains two 
cameras with short baseline intended for accurate correspondence matching. The other two 
cameras are separated with wide baseline for accurate 3D reconstruction. ICP matching is 
used between the probe and the gallery faces of a database of 18 subjects each with four 
simultaneous images. Unfortunately, no recognition rate was reported. (Chang et al., 2005) 
present an Adaptive Rigid Multi-region Selection (ARMS) approach to independently match 
multiple facial regions and create a fused result. The ARMS is a classifier type approach in 
which multiple overlapping sub-regions (e.g., areas around the nose) are independently 
matched by ICP. Then, the results of the multiple 3D matching are fused. Their experiments 
on FRGC version 2.0 database resulted in a 91.9 % rank-one recognition rate for automatic 
Regions of Interest (ROIs) finding and 92.3 % rank-one recognition rate for manual ROIs 
finding. (Achermann & Bunke, 2000) used two range scanners to capture ranges image in 
order to overcome the holes and missing data that might result from using one scanner.  In 
addition, they used an extension of 3D Hausdorff distance for 3D face matching. Using 10 
images per each of the 24 subjects, they reported 100% recognition rate. (Lee & Shim, 2004) 
incorporate depth information with local facial features in 3D recognition using Hausdorff 
distance weighted by a function based on depth values. The weights have different values at 
important facial features such as the nose, eyes, mouth, and face contour. They achieved 
rank five recognition rate of 98%. (Russ et al., 2004) use Hausdorff distance matching for 
range images. In a verification experiment for 200 subjects enrolled in the gallery and the 
same 200 persons plus an additional 68 in the probe set, they report a verification rate of 
98%. In a recognition experiment, 30 persons enrolled in the gallery and the same 30 persons 
imaged at a later time were used in the probe set. A 50% recognition rate is achieved at a 
false alarm rate of 0. 
Other researchers attempted to represent the 3D data in a different domain and made 
recognition comparison in the representative domain. Examples of those are 3D Principle 
Component Analysis (PCA) (Hesher et al., 2003), shape index (Lu et al., 2006), point 
signature (Chua et al., 2000), spine image (Johnson & Hebert, 1999), and local shape map 
(Wu et al., 2004). PCA is a statistical approach commonly used in recognition. One reason 
for using PCA is to reduce the dimensionality of the data, while sacrificing the performance 
of the recognition algorithm. (Hesher et al., 2003) explore PCA techniques using different 
number of eigenvectors, image sizes, and different expressions. They report a high 
recognition rate, but their system degrades if the expression of a test face is different from 



State of the Art in Face Recognition 

 

134 

independent government evaluation standard was initiated, called Face Recognition Vendor 
Tests (FRVT) (Blackburn et al., 2000). FRVT was developed to provide evaluations of 
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designed to provide the U.S. government and law enforcement agencies with information to 
assist them in determining where and how facial recognition technology can best be 
deployed. In addition, FRVT results help identify future research directions for the face 
recognition community. In the past, many factors have been evaluated in FRVT 2002 
(Phillips et al., 2003). 
A recent challenge to face recognition systems is the concern about possible privacy 
violations.  For example, the American Civil Liberties Union (ACLU) opposes the use of face 
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claims that face recognition technology poses the danger of evolving into a widespread tool 
for spying on citizens as they move about in public places. 
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Semi-automated facial recognition system dates way back to 1965. (Chan & Bledos, 1965) 
showed that a computer program provided with facial features extracted manually could 
perform recognition with satisfactory performance. In the past few years, face recognition 
has received great attentions. A literature survey of face recognition is given in (Zhaho et al., 
2003), where most of the paper surveys 2D algorithms. In addition, the work and survey by 
(Bowyer et al., 2004) compare face recognition techniques based on 2D data, 3D data, and 
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approaches outperform 2D approaches and the fusion of 2D + 3D data produces slightly 
better results than 3D alone. Recently, a survey by (Boyer et al., 2006) cited some algorithms 
with 2D recognition approaches outperforming the 3D approaches. There is a belief that it is 
still premature to make this judgment because current approaches do not yet make full use 
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In this chapter, we only review relevent 3D algorithms processed on range images (3D data) 
alone. 
We can broadly classify 3D face recognition into three categories, namely, 3D surface 
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method, known as Iteratively Closest Point (ICP) approach (Besl & McKay, 1992), is often 
used as a necessary step in aligning or matching the datasets of two subjects (Lu & Jain, 
2006). ICP is based on the search of pairs of nearest points in the two datasets and estimation 
of the rigid transformation that aligns them. Then the rigid transformation is applied to the 
points of one set and the procedure is iterated until convergence. Hausdorff distance is 
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attempts to match two datasets based on subset points from the datasets (Huttenlocher et 
al., 1993); (Russ et al., 2005). The problems with these two matching approaches are 
expensive computations and sometimes fail to give accurate results. The main reason for 
using ICP or Hausdorff is not having direct correspondences between the two compared 
datasets. In the presented algorithm of this chapter, the two compared datasets have direct 
feature correspondences, which eliminate the need for the above alignment/matching 
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the 3D image of the subject using stereo images based on internally and externally calibrated 
cameras. They use the ICP algorithm to calculate similarity between two faces achieving 

3D Face Mesh Modeling for 3D Face Recognition 

 

135 

98% on a database of 100 subjects. (Lu et al., 2004) filter and stitch five multiple views of 
2.5D facial scan of each subject to obtain a more complete 3D facial scan. The complete 3D 
facial scan model is used in the gallery for recognition and the partial 2.5D scans are used as 
probes. Matching is performed using ICP between a 3D scanned test face with the faces in 
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matched to neutral-expression gallery images. The gallery entries were whole-head 3D 
models, whereas the probes were 2.5D scan frontal views. They report that most of the 
errors are after the rigid transformation resulted from smiling probes, and these errors are 
reduced substantially after the non-rigid deformation stage. For the total of 196 probes (98 
neutral and 98 smiling), performance reached 89%. (Uchida et al., 2005) propose two sets of 
a passive stereo system using four cameras to capture facial images. One set contains two 
cameras with short baseline intended for accurate correspondence matching. The other two 
cameras are separated with wide baseline for accurate 3D reconstruction. ICP matching is 
used between the probe and the gallery faces of a database of 18 subjects each with four 
simultaneous images. Unfortunately, no recognition rate was reported. (Chang et al., 2005) 
present an Adaptive Rigid Multi-region Selection (ARMS) approach to independently match 
multiple facial regions and create a fused result. The ARMS is a classifier type approach in 
which multiple overlapping sub-regions (e.g., areas around the nose) are independently 
matched by ICP. Then, the results of the multiple 3D matching are fused. Their experiments 
on FRGC version 2.0 database resulted in a 91.9 % rank-one recognition rate for automatic 
Regions of Interest (ROIs) finding and 92.3 % rank-one recognition rate for manual ROIs 
finding. (Achermann & Bunke, 2000) used two range scanners to capture ranges image in 
order to overcome the holes and missing data that might result from using one scanner.  In 
addition, they used an extension of 3D Hausdorff distance for 3D face matching. Using 10 
images per each of the 24 subjects, they reported 100% recognition rate. (Lee & Shim, 2004) 
incorporate depth information with local facial features in 3D recognition using Hausdorff 
distance weighted by a function based on depth values. The weights have different values at 
important facial features such as the nose, eyes, mouth, and face contour. They achieved 
rank five recognition rate of 98%. (Russ et al., 2004) use Hausdorff distance matching for 
range images. In a verification experiment for 200 subjects enrolled in the gallery and the 
same 200 persons plus an additional 68 in the probe set, they report a verification rate of 
98%. In a recognition experiment, 30 persons enrolled in the gallery and the same 30 persons 
imaged at a later time were used in the probe set. A 50% recognition rate is achieved at a 
false alarm rate of 0. 
Other researchers attempted to represent the 3D data in a different domain and made 
recognition comparison in the representative domain. Examples of those are 3D Principle 
Component Analysis (PCA) (Hesher et al., 2003), shape index (Lu et al., 2006), point 
signature (Chua et al., 2000), spine image (Johnson & Hebert, 1999), and local shape map 
(Wu et al., 2004). PCA is a statistical approach commonly used in recognition. One reason 
for using PCA is to reduce the dimensionality of the data, while sacrificing the performance 
of the recognition algorithm. (Hesher et al., 2003) explore PCA techniques using different 
number of eigenvectors, image sizes, and different expressions. They report a high 
recognition rate, but their system degrades if the expression of a test face is different from 



State of the Art in Face Recognition 

 

136 

the expressions in the database. (Xu et al., 2004a) slightly improved the recognition rate by 
computing a feature vector from the data in the local regions of the mouth, nose, left eye, 
and right eye. The dimensionality of the feature vector is reduced with PCA and matching is 
based on minimum Euclidean distance. Experiments on 120 subjects in the dataset resulted 
in 72% recognition rate, and on a subset of 30 subjects resulted in a 96% recognition rate. It 
should be remarked that the reported performance was obtained with five images of a 
person used for enrollment in the gallery. Performance is generally expected to be higher 
with more images used to enroll a person. (Pan et al., 2005) apply PCA to the range images 
using a novel mapping technique. Finding the nose tip to use as a center point, and an axis 
of symmetry to use for alignment, the face data are mapped to a circular range image. 
Experimental results are reported for the FRGC version 1.0 data set with 95% rank-one 
recognition rate and 2.8% Equal Error Rate (EER). Another example of a representative 
domain approach is the use of transform or wavelet. (Cook et al., 2006) present an approach 
based on Log-Gabor template for providing insensitivity to expression variation in range 
images. They decompose the facial image into overlapping 147 sub-jets (49 sub-regions and 
three scales) using Log-Gabor wavelets. For face verification, they use the Mahalanobis 
cosine distance measure and un-weighted summation to combine the result of classifying 
each region. Their experiments resulted in a 92.3 % rank-one recognition rate. 
Model-based approaches use a priori facial model such as graph or mesh model. Graph 
representation has shown to be successful (Wiskott et al., 1997); (Blome, 2003). The idea is to 
use a graph to model the face with nodes and edges. The edges are labeled with distance 
information and nodes are labeled with local wavelet responses. However, the graph 
models in the literature have some limitations. For example, there is no justification for 
defining the edges of the graph. (Mahoor et al., 2008) improved a graph model which they 
refer to as Attributed Relational Graphs (ARG). The ARG is a geometric graph also with 
nodes and edges, where the nodes represent the facial landmarks and the edges connects the 
nodes based on Delaunay triangulation. A set of mutual relations between the sides of the 
triangles are defined in the model and are used in the recognition process in addition to the 
nodes and edges. 
Mesh model approaches use a priori defined facial mesh which is usually morphed of 
deformed to a given face. A detailed example of this approach is illustrated in this chapter, 
which has the advantages of eliminating some of the previously stated problems of both the 
surface matching and the representative domain algorithms. Firstly, by representing the 
huge facial range data by a mesh model with smaller number of vertices, we reduce the 
amount of data points for facial processing, data storage, and recognition comparisons. 
Secondly, having a predefined and labeled-vertices in the deformed mesh model, establishes 
direct features correspondences between compared probe’s and gallery’s facial data. Hence 
faster recognition comparisons are achieved. Both the labeling of the model’s vertices and 
the data reduction, resulting from representing the face by the vertices of the model, are 
vital in reducing the complexity of the face recognition system. The presented method in 
this chapter is similar to work of (Xu et al., 2004b) but differs in the followings: (a) The 
method in this chapter uses a generic face mesh  model and (Xu et al., 2004b) use a general 
mesh grid model, (b) here, the aligned model’s mesh triangles coordinate are deformed to 
the data and (Xu et al., 2004b)  simply align the grid mesh coordinates to the range data then 
copy the z coordinate at each x and y coordinates, hence in their way the pose of the z 
coordinate is not considered, (c) the presented system establishes direct correspondences 
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with other models in the database, hence direct comparison is achieved in recognition, while 
the method of (Xu et al., 2004b) has no correspondences and would require facial surface 
alignment and matching. 
(Vetter & Blanz, 1999) proposed a face recognition algorithm based on computer graphics 
techniques, where they synthesize the 3D model of a face from a single 2D image of known 
orientation and illumination. However, their algorithm is computationally expensive and 
initially requires manual user assistance and a database of 200 different real scans of faces 
obtained from a 3D scanner. Correspondences across these 3D scans are pre-computed. The 
input face image is estimated as a linear combination of the projected 3D scans in the 
database; subsequently, the output 3D model is a linear combination of the 3D scans. Similar 
approach is proposed by (Jiang et al., 2004) which they referred to as analysis-by-synthesis 
2D to 3D face reconstruction, in which they use a single frontal 2D image of the face with a 
database of 100 3D faces captured by 3D scanner. In this approach frontal face detection and 
alignment are utilized to locate a frontal face and the facial feature points within an image, 
such as the contour points of the face, left and right eyes, mouth, and nose. Then, the 3D face 
shape is reconstructed according to the feature points and a 3D face database. Next, the face 
model is textured-mapped by projecting the input 2D onto the 3D face shape. Finally, based 
on the resulting 3D model, virtual samples of 3D models are synthesized with pose and 
expression variations and are projected to 2D for recognition. (Hsu & Jain, 2001) adapts a 
generic face model to the facial features extracted from both registered range and color 
images. The deformation iteratively moves the vertices of the mesh model using vertices 
displacement propagation. (Ansari & Abdel-Mottaleb., 2005) deformed a generic model to 
few 3D facial features obtained from one frontal and one profile view calibrated stereo 
images. The additional profile view complements and provides additional information not 
available in the frontal view. For 29 subjects, a recognition rate of 96.2 % is reported. In 
(Ansari et al., 2006) an improved modeling and recognition accuracy is presenting using 
dense range data obtained from two frontal and one profile view stereo images for 50 
subjects attaining 98% recognition rate. 

4. Data pre-processing and facial features extraction 
This section explains the pre-processing of the data, localization of the facial region, and the 
facial features extraction. Further details are given in (Mahoor et al., 2007). Range images, 
captured by laser scanners, have some artifacts, noise, and gaps. In the pre-processing step, 
we first apply median filtering to remove sharp spikes and noise, that occur during the 
scanning of the face, followed by interpolation to fill up the gaps, and low pass filtering to 
smooth the final surface. This is followed by face localization using facial template matching 
to discard the neck, hair, and the background areas of the range image. The facial range 
image template is correlated with the range images of a given face using normalized cross-
correlation. We start by roughly detecting the location of the nose tip and then translate the 
template such that the detected tip of the nose is placed on the location of the nose tip of the 
range image under test. Afterward, we iteratively apply a rigid transformation to the 
template and cross-correlate the result with the subject’s range image to find the best pose. 
Finally, the area underneath the template with the maximum correlation is considered as the 
localized facial region. Subsequently, we use Gaussian curvature to extract the two inner 
corners of the eyes and the tip of the nose. The surface that either has a peak or a pit shape 
has a positive Gaussian curvature value K > 0 (Dorai & Jain, 1997). Each of the two inner 
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the expressions in the database. (Xu et al., 2004a) slightly improved the recognition rate by 
computing a feature vector from the data in the local regions of the mouth, nose, left eye, 
and right eye. The dimensionality of the feature vector is reduced with PCA and matching is 
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representation has shown to be successful (Wiskott et al., 1997); (Blome, 2003). The idea is to 
use a graph to model the face with nodes and edges. The edges are labeled with distance 
information and nodes are labeled with local wavelet responses. However, the graph 
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Secondly, having a predefined and labeled-vertices in the deformed mesh model, establishes 
direct features correspondences between compared probe’s and gallery’s facial data. Hence 
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coordinate is not considered, (c) the presented system establishes direct correspondences 
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with other models in the database, hence direct comparison is achieved in recognition, while 
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generic face model to the facial features extracted from both registered range and color 
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images. The additional profile view complements and provides additional information not 
available in the frontal view. For 29 subjects, a recognition rate of 96.2 % is reported. In 
(Ansari et al., 2006) an improved modeling and recognition accuracy is presenting using 
dense range data obtained from two frontal and one profile view stereo images for 50 
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This section explains the pre-processing of the data, localization of the facial region, and the 
facial features extraction. Further details are given in (Mahoor et al., 2007). Range images, 
captured by laser scanners, have some artifacts, noise, and gaps. In the pre-processing step, 
we first apply median filtering to remove sharp spikes and noise, that occur during the 
scanning of the face, followed by interpolation to fill up the gaps, and low pass filtering to 
smooth the final surface. This is followed by face localization using facial template matching 
to discard the neck, hair, and the background areas of the range image. The facial range 
image template is correlated with the range images of a given face using normalized cross-
correlation. We start by roughly detecting the location of the nose tip and then translate the 
template such that the detected tip of the nose is placed on the location of the nose tip of the 
range image under test. Afterward, we iteratively apply a rigid transformation to the 
template and cross-correlate the result with the subject’s range image to find the best pose. 
Finally, the area underneath the template with the maximum correlation is considered as the 
localized facial region. Subsequently, we use Gaussian curvature to extract the two inner 
corners of the eyes and the tip of the nose. The surface that either has a peak or a pit shape 
has a positive Gaussian curvature value K > 0 (Dorai & Jain, 1997). Each of the two inner 



State of the Art in Face Recognition 

 

138 

corners of the eyes has a pit surface type and the tip of the nose has a peak surface type that 
is detectable based on the Gaussian curvature. These points have the highest positive 
Gaussian curvature values among the points on the face surface. Fig.2.a shows the result of 
calculating the Gaussian curvature for one of the sample range images in the gallery. 
 

(b)(a) (c)  
Fig. 2. Features extraction process (a) Gaussian curvature showing high values at the nose 
tip and eyes corners (b) Result of thresholding Fig.2.a (c) Final result of feature extraction. 

The highest points in Fig.2.a correspond to the points with pit/peak shape. We threshold the 
Gaussian curvature to find the areas that have positive values greater than a threshold, 
producing a binary image. See Fig.2.b. The threshold is calculated based on a small training 
data set different from the images used in the recognition experiments. Finally, the three 
regions with the largest average value of the Gaussian curvature are the candidate regions that 
include the feature points. The locations of the points with maximum Gaussian curvature in 
these regions are labeled as feature points. Fig.2.c shows a final result of the three feature 
extraction points. These features are used in the 3D model alignment as we show next. 

5. 3D face modeling 
This section deals with modeling the human face using its extracted features and a generic 
3D mesh model. The idea is to align the 3D model to a given face using the extracted 3D 
features then proceed with fitting the aligned triangles of the mesh to the range data, using 
least square plane fitting. Next, the aligned triangles of the model are subdivided to higher 
resolution triangles, before applying a second round of plane fitting, to obtain a more 
realistic and a smoother fitted surface resembling the actual surface of the face. Fig.3.a 
shows our neutral 3D model with a total of 109 labeled feature vertices and 188 defined 
polygonal meshes. In addition, the model is designed such that the left and right sides of the 
jaw fall within but not on the edges of the face boundary. This approach avoids 
incorporating inaccurate data at the facial edges of the captured range images. We explain 
next the process of aligning the mesh model to the range data. 

5.1 Global alignment 
In the global alignment step, we rigidly align the 3D model using the three 3D feature 
points, PI, obtained from the range image, and their corresponding feature vertices, PM, in 
the model. Subscripts I and M indicate image features and model vertices, respectively. To 
achieve this goal, the model must be rotated, translated, and scaled. Eq.1 gives the sum 
squared error between PI and PM in terms of scale S, rotation R, and translation T for n = 3 
points. 
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An example of the aligned 3D model to the range data is demonstrated in Fig.3.b and Fig.3.c 
for 2D view and 3D view, respectively. As shown in the figures, the triangles of the model 
are buried either totally or partially above or below the 3D data. We show next how to 
segment the 3D data points within the aligned 3D model. 
 

(b)(a)

XZ

Y

0

50

100

150

0

50

100

150

200

0

100

Z

X
Y

(c)

Y

X

 
Fig. 3. (a) 3D mesh model (b) 2D view of aligned 3D model vertices to the range data (c) 3D 
view of model to the range data. 

5.2 3D facial points segmentation 
The first step  prior to deforming the model is to segment and extract the 3D data points 
facing (above, below, or within) each mesh triangle using a computer graphic technique 
referred to as Barycentric Coordinate (Coxeter, 1969). A barycentric combination of three point 
vertices P1, P2, and P3, forming a triangular plane is shown in Fig.4 
 

 
Fig. 4. The barycentric coordinates of a point p with respect to the triangle vertices. 

The coordinate of point p inside the triangle is defined by 

 1 2 3p up vp wp= + +    where    1u v w+ + =  (2) 

Therefore, p lies inside the triangle and we say [u, v, w] are the barycentric coordinates of p 
with respect to p1, p2, and p3 respectively. Equivalently, we may write  

 1 2 3(1 )p up vp u v p= + + − −   (3) 

Eq.3 represents three equations and thus we can form a linear system given by  
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include the feature points. The locations of the points with maximum Gaussian curvature in 
these regions are labeled as feature points. Fig.2.c shows a final result of the three feature 
extraction points. These features are used in the 3D model alignment as we show next. 
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This section deals with modeling the human face using its extracted features and a generic 
3D mesh model. The idea is to align the 3D model to a given face using the extracted 3D 
features then proceed with fitting the aligned triangles of the mesh to the range data, using 
least square plane fitting. Next, the aligned triangles of the model are subdivided to higher 
resolution triangles, before applying a second round of plane fitting, to obtain a more 
realistic and a smoother fitted surface resembling the actual surface of the face. Fig.3.a 
shows our neutral 3D model with a total of 109 labeled feature vertices and 188 defined 
polygonal meshes. In addition, the model is designed such that the left and right sides of the 
jaw fall within but not on the edges of the face boundary. This approach avoids 
incorporating inaccurate data at the facial edges of the captured range images. We explain 
next the process of aligning the mesh model to the range data. 

5.1 Global alignment 
In the global alignment step, we rigidly align the 3D model using the three 3D feature 
points, PI, obtained from the range image, and their corresponding feature vertices, PM, in 
the model. Subscripts I and M indicate image features and model vertices, respectively. To 
achieve this goal, the model must be rotated, translated, and scaled. Eq.1 gives the sum 
squared error between PI and PM in terms of scale S, rotation R, and translation T for n = 3 
points. 
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An example of the aligned 3D model to the range data is demonstrated in Fig.3.b and Fig.3.c 
for 2D view and 3D view, respectively. As shown in the figures, the triangles of the model 
are buried either totally or partially above or below the 3D data. We show next how to 
segment the 3D data points within the aligned 3D model. 
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Fig. 3. (a) 3D mesh model (b) 2D view of aligned 3D model vertices to the range data (c) 3D 
view of model to the range data. 

5.2 3D facial points segmentation 
The first step  prior to deforming the model is to segment and extract the 3D data points 
facing (above, below, or within) each mesh triangle using a computer graphic technique 
referred to as Barycentric Coordinate (Coxeter, 1969). A barycentric combination of three point 
vertices P1, P2, and P3, forming a triangular plane is shown in Fig.4 
 

 
Fig. 4. The barycentric coordinates of a point p with respect to the triangle vertices. 

The coordinate of point p inside the triangle is defined by 

 1 2 3p up vp wp= + +    where    1u v w+ + =  (2) 

Therefore, p lies inside the triangle and we say [u, v, w] are the barycentric coordinates of p 
with respect to p1, p2, and p3 respectively. Equivalently, we may write  

 1 2 3(1 )p up vp u v p= + + − −   (3) 

Eq.3 represents three equations and thus we can form a linear system given by  
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which can be solved for the unknowns in [u, v, w]. Points inside a triangle have positive u, v, 
and w. On the other hand, points outside a triangle have at least one negative coordinate. 
Eq.4 is computationally expensive because each of the 188 triangles of the mesh model has 
to check all the range data coordinates to determine whether or not the coordinate points, if 
any, fall within its interior. A practical implementation is to window the data enclosed by 
the triangle coordinates as shown in Fig.5. Only the point coordinates within the rectangle 
are applied in Eq.4. 
 

 
Fig. 5. Windowed 3D range data points. 

Figure 6 shows a 2D view of an actual 3D mesh model, superimposed on the range data 
points. The figure shows an example of segmented 3D data points within one triangle of the 
eyebrow meshes. We show next how to fit and deform the model’s triangles to be as closely 
as possible to the 3D data. 
 

 
Fig. 6. Segmentation example of the 3D data points within one triangle using barycentric 
coordinates. 

5.3 3D face model deformations 
Once the cloud of the 3D data points is segmented by the barycentric coordinate, they are 
represented by a plane using least square fitting. The general equation of a plane, with non-
zero normal vector N, is defined in 3D as 

 0aX bY cZ d+ + + = , where ( , , )N a b c=   (5) 
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For n number of points, Eq.5 can be written in least square form as 
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where the coordinates (Xi,Yi,Zi)’s are those of all the data points segmented by the 
barycentric coordinate. Eq.6 can be solved for the plane equation parameters, B = [a, b, c, d], 
which is then substituted in Eq.5, leading to a plane representing the 3D data points. Fig.7.a 
illustrates a concept example of a triangle with 3D data points in 3D space. Fig.7.b shows the 
segmented data within the triangle which are represented by a plane using Eq.5. From the 
mathematical geometry of a plane, having the parameters of B, any point on the plane can 
be evaluated. In this work, we deform each corresponding mesh triangle to the 3D data 
points, by first discarding the three vertices Z coordinates, evaluating the X and Y 
coordinates, and solving for the new Z coordinate (given the parameters in B from Eq.6). 
This produces a mesh triangle, with new depth coordinates, lying on the plane that is 
approximated by the dense 3D data points. Fig.7.c shows the concept of deforming the mesh 
triangle to the plane representing the data. Essentially, the pose of the triangle is changed to 
match that of the plane. 
 

(a) (b) (c)

N N

 
Fig. 7. The process of deforming the triangles of the 3D mesh model, (a) Given cloud of 3D 
data and a mesh triangle (b) Segmenting the 3D data and plane fitting (c) Deforming the 
mesh triangle to the plane representing the 3D data. 
Subsequently, we repeat the deformation process to all the triangles of the mesh model. 
Fig.8. shows an example of a complete deformed model superimposed on the data in 2D 
and 3D views. Comparing Fig.8.a-b with the initially aligned model of Fig.3.c-d, we see that 
the deformation and fitting of the model to the range data are clearly observed. The 
triangles of the mesh model have come closer to the data. 
The deformed model of Fig.8 is a good representation of the data, yet it’s not smooth 
enough to represent the high resolution and curvatures of the 3D data. In the next step, we 
subdivide the triangles of the model to a higher resolution in a manner shown in Fig.9.a. 
New vertices are computed based on the locations of the deformed vertices. Fig. 9.b shows 
the result of subdividing the deformed model of Fig.8. This process increases the number of 
vertices and triangles (meshes) of the original model from 109 and 188, respectively, to 401 
vertices and 752 polygonal meshes. Finally, because the new triangles do not reflect actual 
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which can be solved for the unknowns in [u, v, w]. Points inside a triangle have positive u, v, 
and w. On the other hand, points outside a triangle have at least one negative coordinate. 
Eq.4 is computationally expensive because each of the 188 triangles of the mesh model has 
to check all the range data coordinates to determine whether or not the coordinate points, if 
any, fall within its interior. A practical implementation is to window the data enclosed by 
the triangle coordinates as shown in Fig.5. Only the point coordinates within the rectangle 
are applied in Eq.4. 
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Figure 6 shows a 2D view of an actual 3D mesh model, superimposed on the range data 
points. The figure shows an example of segmented 3D data points within one triangle of the 
eyebrow meshes. We show next how to fit and deform the model’s triangles to be as closely 
as possible to the 3D data. 
 

 
Fig. 6. Segmentation example of the 3D data points within one triangle using barycentric 
coordinates. 

5.3 3D face model deformations 
Once the cloud of the 3D data points is segmented by the barycentric coordinate, they are 
represented by a plane using least square fitting. The general equation of a plane, with non-
zero normal vector N, is defined in 3D as 
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where the coordinates (Xi,Yi,Zi)’s are those of all the data points segmented by the 
barycentric coordinate. Eq.6 can be solved for the plane equation parameters, B = [a, b, c, d], 
which is then substituted in Eq.5, leading to a plane representing the 3D data points. Fig.7.a 
illustrates a concept example of a triangle with 3D data points in 3D space. Fig.7.b shows the 
segmented data within the triangle which are represented by a plane using Eq.5. From the 
mathematical geometry of a plane, having the parameters of B, any point on the plane can 
be evaluated. In this work, we deform each corresponding mesh triangle to the 3D data 
points, by first discarding the three vertices Z coordinates, evaluating the X and Y 
coordinates, and solving for the new Z coordinate (given the parameters in B from Eq.6). 
This produces a mesh triangle, with new depth coordinates, lying on the plane that is 
approximated by the dense 3D data points. Fig.7.c shows the concept of deforming the mesh 
triangle to the plane representing the data. Essentially, the pose of the triangle is changed to 
match that of the plane. 
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Fig. 7. The process of deforming the triangles of the 3D mesh model, (a) Given cloud of 3D 
data and a mesh triangle (b) Segmenting the 3D data and plane fitting (c) Deforming the 
mesh triangle to the plane representing the 3D data. 
Subsequently, we repeat the deformation process to all the triangles of the mesh model. 
Fig.8. shows an example of a complete deformed model superimposed on the data in 2D 
and 3D views. Comparing Fig.8.a-b with the initially aligned model of Fig.3.c-d, we see that 
the deformation and fitting of the model to the range data are clearly observed. The 
triangles of the mesh model have come closer to the data. 
The deformed model of Fig.8 is a good representation of the data, yet it’s not smooth 
enough to represent the high resolution and curvatures of the 3D data. In the next step, we 
subdivide the triangles of the model to a higher resolution in a manner shown in Fig.9.a. 
New vertices are computed based on the locations of the deformed vertices. Fig. 9.b shows 
the result of subdividing the deformed model of Fig.8. This process increases the number of 
vertices and triangles (meshes) of the original model from 109 and 188, respectively, to 401 
vertices and 752 polygonal meshes. Finally, because the new triangles do not reflect actual 
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deformation to the data, we deform them once again using the same deformation process 
explained above. 
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Fig. 8. Deformed model superimposed on the range data. (a) 2D view (b) 3D view. 
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Fig. 9. (a) 1 to 4 triangle subdivision (b) Result after applying triangle subdivisions to the 
deformed model of Fig.5. 

The introduction of smaller triangles gives more effective triangle fitting of the data 
especially at areas of high curvatures. Fig. 10.a-b-c show the final result of the deformed 
model, superimposed on the data in 2D view, 3D view, and a profile 2D view, respectively. 
In Fig.10.a-b-c, because most of the models’ vertices are embedded within the data, we use 
the “*” symbol to clearly show their locations. Fig.10.d shows a profile (YZ-axis) view of the 
model in Fig.10.c without the data. This deformed model, containing 401 vertices points, is 
the final representation of the facial data, which originally contained about 19,000 points 
(based on an average range image size of 150 by 130). This is nearly a 98 % data reduction.  
We summarize below the 3D mesh model deformation algorithm: 
a. Given an aligned 3D mesh model to the facial range data, extract the 3D points within 

each triangle of the mesh model using the barycentric coordinate approach. 
b. For each triangle, fit a plane to the extracted 3D data points and solve for the B 

parameters in Eq.6. 

3D Face Mesh Modeling for 3D Face Recognition 

 

143 

c. For each of the three vertices of the mesh triangle, solve for the unknown Z coordinate 
by evaluating the coordinates of X, Y, and B parameters in Eq.5. This fits the triangle on 
the plane. 

d. Repeat steps (b) to (c) for all the mesh triangles of the model. 
e. Subdivide the resulting model and repeat steps (a) to (d). 
f. Further subdivision is possible depending on the resolution, quality, or accuracy of the 

captured range data points. 
We show next the application of the deformed model in 3D face recognition. 
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Fig. 10. Final deformed model. (a) 2D view (b) 3D view (c) profile view superimposed on the 
data (d) mesh model without showing the data. 

6. 3D face recognition 
Face recognition has received great attentions in the past few years. A recent literature 
survey for 3D face recognition is given by (Bowyer et al., 2006).  The final result of Fig.10 
gives a model with 401 deformed vertices specific to a given subject’s 3D range data. In this 
section we explore for different subjects the use of the deformed final models in 3D face 
recognition. The recognition score is based on a decision level classifier applied to the 
deformed models obtained from ranges images of a public database. 

6.1 Range image database 
The range images we use in this chapter are obtained from the publicly available GAVAB 
database captured by a 3D scanner (Moreno & Sanchez, 2004). This database contains seven 
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deformation to the data, we deform them once again using the same deformation process 
explained above. 
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Fig. 9. (a) 1 to 4 triangle subdivision (b) Result after applying triangle subdivisions to the 
deformed model of Fig.5. 
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parameters in Eq.6. 

3D Face Mesh Modeling for 3D Face Recognition 

 

143 

c. For each of the three vertices of the mesh triangle, solve for the unknown Z coordinate 
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section we explore for different subjects the use of the deformed final models in 3D face 
recognition. The recognition score is based on a decision level classifier applied to the 
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6.1 Range image database 
The range images we use in this chapter are obtained from the publicly available GAVAB 
database captured by a 3D scanner (Moreno & Sanchez, 2004). This database contains seven 
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facial range images of 61 subjects: two frontal images with normal expression, two images 
looking up and down, and three images with facial expression. Many subjects contain 
instances of dark regions in the face which do not reflect successful 3D scanning, producing 
in these cases incomplete facial surfaces. As a result, range image pre-processing and 
filtering are necessary preliminary steps. In this chapter, we are only concerned with 
modeling and recognizing the frontal images of the database under neutral expressions.  
Figure  11 contains an example of two views of the texture and range images of one subject.  
The texture images are not publicly available. For both sets of the frontal range images we 
obtain the 3D face models as outlined in previous section. One model is used as a query 
(probe) and the other model is used in the gallery (database). We explain next the 
recognition technique. 
 

(a) (b) (c)  
Fig. 11. Subject example of GavabDB (a) Textured 3D image (b) Same image without texture 
(c) Same image rotated in 3D. 

6.2 Decision level fused classifiers 
In the recognition stage of Fig.1, a query face model is aligned with all faces in the database 
and then classified for recognition based on Euclidian distance and voting classifiers. We 
compute the identification rate using the fusion of both Euclidean distance-based and 
voting-based classifiers at the decision level of the recognition system.  Fig.12 shows a block 
diagram of the decision level classifier.   
The Euclidean distance classifier, even though widely used, its performance can be greatly 
degraded in the presence of noise. The degradation is due to the equal summation of 
squared distances over all the features. Any noisy feature with a large distance can mask all 
other features and as a result the classification considers only the noisy feature, neglecting 
the information provided by the other features. To overcome this drawback, we use a voting 
classifier to decide on the final score of the recognition system. The voting classier counts 
the maximum number of minimum distances of the features between corresponding 
features points. In this case the feature points are the 401 deformed vertices of the mesh 
model. In the voting classifier a face is recognized when it has the maximum number of 
feature (votes) when compared with the corresponding features of the other subjects in the 

3D Face Mesh Modeling for 3D Face Recognition 

 

145 

database. In the presented algorithm, when a query face model is given to the recognition 
system of Fig.12, it runs through both classifiers; a direct decision for a recognized face is 
made only when both classifiers’ outputs agree on the same recognized face in the database 
(E=V1 in Fig.12). If the two classifiers are in disagreement, then a different procedure is 
taken before a final decision is made. In this case, the probe face is directly compared with 
the recognized face by the Euclidean and the voting classifier, using the voting approach. As 
a result, the second voting classifier is comparing only two faces. This approach reduces 
wrong decisions that might be taken by the Euclidean distance classifier, because of possible 
masking of noisy feature(s), and reroutes the final decision to another voting classifier for 
final recognition decision. In a scenario when both classifiers actually have the wrong 
decision, then there is no other clue and a wrong face is falsely recognized. 
 

 
Fig. 12. Decision level fused 3D face recognition system. 

6.3 Face recognition experiments 
Following the procedure illustrated by the recognition stage in Fig.1 and the classifier of 
Fig.12, we test the recognition algorithm seperately using the Euclidian distance-based 
classifier, the voting-based classifier, and the fused classifier of the recognition system. 
Fig.13 shows the overall Cumulative Match Curve (CMC) identification rate for the 61 
subjects of the GAVAB database. From the performance figure, the fused rank one 
identification rate achieves a 90.2% compared to a lower single classifier rate of 85.2% or 
65.6% by the Euclidean or the voting classifier, respectively. The fusion obviously gives 
superior performance at all ranks. It has been reported that the same database was used in 
(Moreno et al., 2003) achieving 78 % rank one identification rate for 60 out of 61 subjects 
using 68 curvature-based extracted features. 
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Fig. 13. CMC curves using single and fused classifiers for 401 model’s vertices. 
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Fig. 14. ROC curves using single and fused classifiers for 401 model’s vertices. 
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Similarly, testing the system in the verification mode, Fig.14 shows the Receiver Operating 
Characteristic ROC performance curves of the recognition system. At false acceptance rates 
of 0.1% and 1%, the fused result of the recognition system acheieves genuine acceptance 
rates of 76% and 92%, respectively. 

7. Conclusion and discussion 
A model-based algorithm for 3D face recognition from range images is presented. The 
algorithm relies on deforming the triangular meshes of the model to the range data 
establishing direct model vertices correspondences with other deformed models in the 
database. These features correspondences greatly facilitate faster computational time, 
accuracy, and recognition comparisons. By only detecting three facial features and a generic 
model, we achieved a 90.2% rank one identification rate using a noisy database. The 
presented method is proved to be useful for face recognition. However, the method can also 
be sensitive to noisy or missing data under the mesh model. In the conducted experiments, 
six subjects out of the 61 were not correctly recognized. The wrong recognition was mainly 
due to the dataset being either very noisy, incomplete, or the query range image set looks 
very different from the database set. Unfortunately, the range data pre-processing and 
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Fig. 15. Probe and database range images of four out of six subjects misrecognized. 
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filtering, presented in section 4, cannot always cope with large areas of holes or spikes. 
Fig.15 shows four of the six subjects that were not correctly recognized.  Both the query and 
database sets of Fig.15.a show noisy and incomplete facial scan at the left and right side of 
the face. Fig.15.b shows similar incomplete data at the eye location. Fig.15.c and Fig.15.d 
show not only noisy data but also facial expression between the compared query and 
database images. These factors make the query set of images very different from the 
database set. In order to demonstrate the robustness of the presented algorithm, better data 
or another database must be attempted on a large scale datasets captured by high quality 3D 
scanners. The noise introduced around the subjects’ eyes of all subjects in Fig.15 is typical of 
a lower quality and an older type of 3D scanners. At the time of publishing this chapter, the 
authors are in process of obtaining a license for the Face Recognition Grand Challenge 
(FRGC) database (Phillips et al., 2005) in order to apply the algorithm to a much better and 
cleaner database. 
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1. Introduction 
The real challenge in face detection and recognition technologies is the ability to handle all 
those scenarios where subjects are non-cooperative and the acquisition phase is 
unconstrained. In the last few years a great deal of effort has been spent to improve the 
performances where cooperative subjects are acquired in controlled conditions. However, in 
those scenarios other biometrics, such as fingerprints, have already proved to be well suited; 
in fact, the performances obtained using them are good enough to implement effective 
commercial systems. In all those cases where the application requires no constraints during 
the acquisition phase, the face is one of the best candidates among biometrics. The face is a 
non-touch biometrics and is also the natural way people use to recognize each other: for this 
reasons it is more accepted by the final users. 
The fundamental problem in recognizing people in unconstrained conditions is the great 
variability of the visual aspect of the face introduced by various sources. Given a single 
subject, the appearance of the face image is disturbed by the lighting conditions, the head 
pose and orientation of the subject, the facial expression, ageing and, last but not least, the 
image may be corrupted by the presence of occluding objects. This great variability is the 
reason that makes face detection and recognition two of the toughest problems in the fields 
of pattern recognition, computer vision and biometrics. 
One of the less studied aspects seems to be the presence of occluding objects. In 
unconstrained real-world applications it is not an uncommon situation to acquire subjects 
wearing glasses, scarves, hats etc.; or subjects talking on the phone, or, for some reason, 
having their hands between their face and the camera. In all these kinds of situations most of 
the proposed algorithms are not able to grant acceptable performances or to produce any 
kind of response at all. 
Some approaches (Lin, 2004; Hotta, 2004) propose the detection of partially occluded faces 
in two dimensional images using Support Vector Machines (SVM) or a cascade of classifiers 
trained to detect subparts of the face. For recognition, few approaches working on 2D data 
are able to recognize people using only the visible parts of the face. For example, (Park et al., 
2005) have proposed a method for removing glasses from a frontal image of the human face. 
A more general solution is needed, however, when the occlusions are unforeseen and the 
characteristics of the occluding objects are unconstrained. The problem has been addressed 
using local approaches which divide the face into parts which are independently compared. 
The final outcome is determined by a voting step. For example, see (Martinez, 2000; 
Martinez, 2002; Kim et al. 2005). A different approach has been investigated by (Tarrés & 
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the proposed algorithms are not able to grant acceptable performances or to produce any 
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trained to detect subparts of the face. For recognition, few approaches working on 2D data 
are able to recognize people using only the visible parts of the face. For example, (Park et al., 
2005) have proposed a method for removing glasses from a frontal image of the human face. 
A more general solution is needed, however, when the occlusions are unforeseen and the 
characteristics of the occluding objects are unconstrained. The problem has been addressed 
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The final outcome is determined by a voting step. For example, see (Martinez, 2000; 
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Rama, 2005). Instead of searching for local non-occluded features, they try to eliminate some 
features which may hinder recognition accuracy in the presence of occlusions or changes in 
expression. In (De Smet et al., 2006) a morphable model based approach is proposed. The 
parameters of a 3D morphable model are estimated in order to approximate the appearance 
of a face in a 2D image. Simultaneously, a visibility map is computed which segments the 
image into visible and occluded regions. 
In this chapter we present our approach: a full automatic recognition pipeline based on 
3D imaging (Fig. 1). We have chosen to use 3D data because by having depth information 
available, it is easier to detect and isolate occluding objects. This makes it possible to 
detect and recognize partially occluded faces. There are also other well known advantages 
using 3D sensors: lighting independence, the possibility to normalize pose and 
orientation, and last but not least, 3D sensors are more difficult to circumvent compared 
to 2D cameras (Fig. 2). 
The first three modules of the pipeline are the core of our method. The face detector, based 
on an improved version of a primal approach presented in (Colombo et al., 2006), is able to 
localize the presence of human-size faces in depth images. The algorithm is based on 
curvature analysis, ICP-based normalization and Gappy PCA classification. The main 
advantages of the algorithm are its independence from scale and orientation in the image 
plane and its ability to deal with occlusions if at least two eyes or one eye and the nose are 
visible. The output of the detector is the normalized position and orientation of the faces in 
the acquired scene. At this point, the image of each detected face is analyzed by the 
occlusion detection module. Each pixel is classified as occluded or free using a statistical 
model of the human face. Once the visibility map is computed, the restoration module 
reconstructs the occluded parts using gappy PCA reconstruction (Everson & Sirovich, 1996). 
Since the images are restored, it is possible to adopt any state of the art feature extraction 
and matching module. Alternatively, a partial matching approach may be adopted using the 
non-restored face image and the visibility map. 
 

 
Fig. 1. The proposed approach. The modules enclosed in the dotted box are those described 
in the paper. Feature extraction and matching modules may be any state of the art approach. 

2. Face detection and normalization 
Face detection in 3D images is not a common task; a primal approach has been presented in 
(Colombo et al., 2006). Detecting faces in 3D images presents some benefits: first of all, 3D 
data is independent from scale. This is a big advantage because face detectors have to deal 
with one less degree of freedom. The second reason to adopt 3D images regards the nature 
of the 3D data itself. There are some properties of surfaces, like the curvatures, that are 
independent from the reference system. Using features like these, it is possible to recognize 
typical parts of the face independently from pose or viewpoint. For these reasons, 3D data 
facilitate the problem of face detection. 

Occlusions in Face Recognition: a 3D Approach 

 

153 

 

 
a b 

Fig. 2. (a) a subject trying to circumvent a 2D recognition system using a magazine. (b) the 
same scene acquired by a 3D sensor. 
The approach that will be presented here reveals another important feature of 3D data. 
Considering the depth component of the image, the discrimination between face and 
occluding objects can be done using simple criteria. Intuitively an occluding object can be 
simply viewed, in terms of depth information, as something that is added to the original 
face surface, as can be seen in Figure 3. As will be shown, it is possible to handle this kind of 
noise in complex tasks like face detection and normalization. 
 

          

a b c 

Fig. 3. (a) A two dimensional image of an occluded face. (b) The three dimensional image of 
the same scene represented in (a). (c) Profile view of (b). 

2.1 Algorithm overview  
The face detector is based on the work presented in (Colombo et al., 2006). The input of the 
algorithm is supposed to be a single 3D image of the scene. If other representations are 
available, a 3D image can be generated using simple and well known rendering techniques, 
like variants of the Z-Buffer algorithm (e.g. Watt, 1999). Figure 4 shows a concise diagram 
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algorithm is supposed to be a single 3D image of the scene. If other representations are 
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representing the main steps of the algorithm. To render the problem less computationally 
intensive, single facial features, such as eyes and noses, are initially searched. Consequently, 
this first step results in an image segmentation in regions corresponding to candidate facial 
features. No relationships are established for the moment, between the segmented elements. 
In the next step potential faces are created from candidate noses and/or candidate eyes. The 
goal now is to discriminate between candidate faces that correspond to actual faces and 
those that do not. The method now registers each candidate face in a standard position and 
orientation, reducing intra-class face variability. The areas of the range image covered by 
each candidate face is further analyzed by applying a face versus non-face classifier based 
on a holistic approach. Knowledge about the structure of the face is used therefore only in 
the generation of a list of candidate face regions, while the actual classification of these 
regions as faces is purely holistic. 
 

 
Fig. 4. The face detector main diagram 
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In Figure 5 a more detailed description of the processing steps is shown. Once the scene is 
acquired, surface curvature, which has the valuable characteristic of being viewpoint 
invariant, is exploited to segment candidate eyes and noses. In greater detail: (i) the mean 
(H) and Gaussian (K) curvature maps are first computed from a smoothed version of the 
original range image; (ii) a simple thresholding segments regions of high curvature which 
 

 
Fig. 5. The face detection algorithm: detailed diagram. 
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might correspond to eyes and noses; (iii) an HK classification, based on the signs of 
Gaussian and mean curvature, divides the segmented regions into four types: convex, 
concave, and two types of saddle regions. Regions that may represent a nose or an eye are 
then characterized by their type and some statistics of their curvature. The output of the 
processing step may contain any number of candidate facial features. If no nose or eyes are 
detected, the method assumes that no faces are present in the acquired scene; while there are 
no upper bounds on the number of features that can be detected and further processed. 
Combinations of candidate features are used to select corresponding 3D surface regions 
including the eyes and the nose, but excluding the mouth and part of the cheeks. 
Each region is then rotated and translated into a standard position using a rough+fine 
registration approach based on an occlusions-tolerant version of the ICP algorithm (Besl & 
McKay, 1992), and a new depth image of the area containing the candidate facial features is 
computed. In order to select only the rigid part of the face, the image is cropped with a 
binary mask. Then, the image is analyzed in order to find occluding objects: if present, 
occluding objects are eliminated from the image invalidating the corresponding pixels. 
Finally, a face vs. non-face gappy PCA based classifier, which has been trained on several 
examples, processes the candidate depth image. The final output of the procedure is a list 
containing the location and orientation of each detected face. 

2.2 Candidate faces generation 
Given in input a 3D scene (in the form of a range image in our current implementation) a 
curvature analysis reveals regions of interest having similar characteristics to those of 
human eyes and noses. By combining all these regions, it is possible to generate hypotheses 
about the presence of faces in the scene. For the generation of a single hypothesis, at least 
two eyes or an eye and a nose must be present. The curvature analysis processing is based 
on the computation of gaussian and mean curvature maps. Using simple thresholding of 
low curvature values it is possible to isolate potential noses (convex regions) and eyes 
(elliptical concave regions). See (Colombo et al., 2006) for an in-depth description of the 
procedure adopted. 
The generation of candidate facial features results in a set composed of two kinds of 
features: eyes and noses. A single candidate face is generated combining two eyes, or an eye 
and a nose, or two eyes and one nose. These cases can handle occlusions in some parts of the 
face; for example a hand on an eye or a scarf in front of the tip of the nose. The regions 
generating a candidate face must satisfy some constraints about distances between 
themselves (Gordon, 1991). Figure 6 shows an example of a candidate face generation. 
From an actual face multiple candidates could be generated. Moreover, in the case of eye 
pairs or nose-eye pairs, double candidate faces are generated because of the ambiguities 
regarding the actual face orientation. For example, from a pair of eyes, either an upward or a 
downward face might be present. Multiple, spurious detections are eliminated as a final 
step by a simple filtering process. 

2.3 Candidate face normalization 
Once generated, candidate face images are normalized in pose and orientation in order to 
perform a final classification into faces or non-faces. The normalization is computed in two 
steps. First, a rough normalization is performed using the position of the candidate facial 
features. A reference position is defined aligning the eye positions with the X axis and the 
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plane passing through the eyes and the tip of the nose rotated by 45 degrees around the 
same axis. Finally, the tip of the nose is translated to the origin. In all those cases where one 
feature is missing (for example in case of occlusions) a degree of freedom is left 
undetermined. 
 

 
Fig. 6. An example of candidate face generation. The image on top shows the selected 
candidate features (light gray for noses, dark gray for eyes). Below, all the candidate faces 
generated by the algorithm are shown. In the case of eye pairs and eye-nose pairs, two 
candidate faces are generated for each pair because of the impossibility of determining the 
actual face orientation. 

The rough normalization procedure generates a good starting position for the following 
refinement step based on the ICP algorithm (Besl & McKay, 1992). The idea here is to refine 
the position registering the candidate face with a mean face template (Fig. 7). We used a 
customized version of the ICP algorithm aimed to handle the presence of extraneous objects. 
The algorithm has been inspired by the variants presented in (Rusinkiewicz & Levoy, 2001). 
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2.3 Candidate face normalization 
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perform a final classification into faces or non-faces. The normalization is computed in two 
steps. First, a rough normalization is performed using the position of the candidate facial 
features. A reference position is defined aligning the eye positions with the X axis and the 
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plane passing through the eyes and the tip of the nose rotated by 45 degrees around the 
same axis. Finally, the tip of the nose is translated to the origin. In all those cases where one 
feature is missing (for example in case of occlusions) a degree of freedom is left 
undetermined. 
 

 
Fig. 6. An example of candidate face generation. The image on top shows the selected 
candidate features (light gray for noses, dark gray for eyes). Below, all the candidate faces 
generated by the algorithm are shown. In the case of eye pairs and eye-nose pairs, two 
candidate faces are generated for each pair because of the impossibility of determining the 
actual face orientation. 

The rough normalization procedure generates a good starting position for the following 
refinement step based on the ICP algorithm (Besl & McKay, 1992). The idea here is to refine 
the position registering the candidate face with a mean face template (Fig. 7). We used a 
customized version of the ICP algorithm aimed to handle the presence of extraneous objects. 
The algorithm has been inspired by the variants presented in (Rusinkiewicz & Levoy, 2001). 
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Fig. 7. The mean face template used for fine registration. The surface, composed of 
approximatively 600 vertexes, has been computed using a training set of manually 
normalized faces. 

The ICP algorithm requires a matching criteria in order to find correspondences between the 
points of the surfaces to be registered. In our implementation we used a projective matcher . 
Based on the assumption that the rough registration computes a good registration (i.e. with 
a low error) between the mean face and the candidate face surface, the projective matcher 
tries to find correspondences using orthographic projections of each vertex. More precisely, 
at each iteration of the main ICP loop, the mean face template and the candidate face are 
orthographically projected using the same camera, resulting in a pair of 3D images, the data 
image and the model image. For each point located at coordinates (i,j) in the data image 
space, the correspondent point is searched in the model image space in locations (i±r, j±r); 
where r≥1 is an integer defining a square region around the current location. The 
correspondence criterion is the point at minimum distance using the 3D Euclidean metric. 
In order to deal with the presence of occlusions, ICP has been customized by including a 
correspondence rejector which allows the registration process to avoid the use of those 
points which probably belong to the occluding objects.  
Given a correspondence : 

 
(where p indicates a surface point,  n a surface normal; the subscript d indicates the data 
surface while µ indicates the mean surface) the rejector verifies that the following conditions 
are satisfied: 

  (1) 

  (2) 

The first condition (Equation 1) checks if the angle between the two normals is inferior to a 
predefined threshold. We have chosen a value of 90 degrees; so the check filters out all those 
matches that are clearly wrong because the orientation of the surfaces is very dissimilar. 
The second condition (Equation 2) assures that the distance between the two correspondent 
points must be below a predefined threshold. The value has been computed considering the 
variations between the normalized non-occluded faces from the training set and the mean 
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face template. A distance greater than 15mm is very improbable (see Fig.8 for the 
distribution of the differences) and thus we have chosen this value. 
If at least one of the two conditions is not satisfied then the correspondence is rejected. Only 
the filtered correspondences are used to compute the registration.  
 

 
Fig. 8. The histogram of the differences in depth between the mean face template and the 
normalized faces from the training set. 

2.4 Candidate face classification through GPCA 
Once registration is computed for each candidate face, depth images are generated using 
orthographic projections of the original acquisition. After cropping, each image is compared 
with the mean face in order to detect occluding objects. For each pixel p the following 
condition is checked: 

  (3) 

where Y is the candidate face depth image, while µ  is the mean face depth image. Td is the 
same threshold used in Equation 2. If the check fails, the pixel is invalidated. In this way, 
large parts of occluding objects can be eliminated. Those non-face pixels passing the check 
are assured to be limited in depth by Td. Since large regions of the image may be invalid, a 
check on the fraction of valid pixels is performed: 

  (4) 

where N is the number of total pixels in the image and Tv is the valid pixel threshold. 
Images with a low number of valid pixels are more difficult to classify because of the lack of 
information. The check is also used to avoid degenerative cases; i.e. images composed of 
only a few pixels. At this point, images present invalid regions of pixels due to occlusion 
detection or holes generated by acquisition artifacts. In order to classify them, a Gappy PCA 
classifier has been adopted. The classifier is based on Principal Component Analysis for 
gappy data (Everson & Sirovich, 1995). 
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face template. A distance greater than 15mm is very improbable (see Fig.8 for the 
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the filtered correspondences are used to compute the registration.  
 

 
Fig. 8. The histogram of the differences in depth between the mean face template and the 
normalized faces from the training set. 

2.4 Candidate face classification through GPCA 
Once registration is computed for each candidate face, depth images are generated using 
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with the mean face in order to detect occluding objects. For each pixel p the following 
condition is checked: 
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large parts of occluding objects can be eliminated. Those non-face pixels passing the check 
are assured to be limited in depth by Td. Since large regions of the image may be invalid, a 
check on the fraction of valid pixels is performed: 

  (4) 

where N is the number of total pixels in the image and Tv is the valid pixel threshold. 
Images with a low number of valid pixels are more difficult to classify because of the lack of 
information. The check is also used to avoid degenerative cases; i.e. images composed of 
only a few pixels. At this point, images present invalid regions of pixels due to occlusion 
detection or holes generated by acquisition artifacts. In order to classify them, a Gappy PCA 
classifier has been adopted. The classifier is based on Principal Component Analysis for 
gappy data (Everson & Sirovich, 1995). 
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GPCA extends PCA to data sets that are incomplete or gappy. When the intrinsic dimension 
is smaller than that of its representation, some of the information in the original 
representation is redundant, and it may be possible to fill in the missing information by 
exploiting this redundancy. The procedure requires knowledge of which parts of the data 
are available and which are missing. 
A set of N patterns  

, 
extracted from a training set of normalized non-occluded faces is used to determine the PCA 
basis so that a generic pattern x  can be approximated using a limited number, M, of 
eigenvectors: 

 
(5) 

where μ  is the mean vector, iv  is an eigenvector, and iα  is a coefficient obtained by the 
inner product between x  and iv . 
Suppose there is an incomplete version y of x , and suppose that the location of missing 
components is encoded in the vector m  ( 0im =  if the i-component is missing, otherwise 

1im = ). GPCA searches for an expression similar to Equation 5 for the incomplete pattern y : 

 
(6) 

Note that y′  has no gaps since the eigenvectors are complete. To compute the coefficients 
iβ the square reconstruction error E must be minimized: 

  (7) 

However, this expression includes the missing components, while only the available 
information must be considered. To do so, it is useful to introduce the gappy inner product  
and the corresponding gappy norm: 

 
(8) 

 (9) 

Now the error E can be redefined in such a way that only the available components are 
considered: 

  (10) 

The gappy pattern y  can be reconstructed as y′ using the Equation 6, where the coefficients 
iβ  are found by minimizing E (for additional details see Everson & Sirovich, 1995). Figure 9 

shows an example of a face range image reconstructed using GPCA. 
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Fig. 9. Example of a reconstruction of a gappy image: (a) the original depth image; (b) the 
same image with a region of invalidated pixels; (c) the reconstruction of (b) through gpca. 

The classifier used for the face detector constructs the vector m  through lexicographical 
construction, considering all the invalidated or holes pixels. The error defined in Equation 
10 is used as a measure of faceness. Thus, a candidate face is classified as a face if the 
following condition is satisfied: 

 
(11)

where vn  is the number of valid pixels and fT  is a predefined threshold. The error E needs 
some kind of normalization because the number of valid components is not fixed. Here the 
most simple normalization, the division by the number of valid pixels vn , has been adopted; 
but other kinds of normalization approaches could be experimented with as well. 

3. Occlusion detection and face restoration 
At this stage of the pipeline, faces are encoded as range images projected from the 
normalized position produced by the face detector. Any part of these images that does not 
look like part of a face and lies between the acquisition device and the acquired face is 
considered an occlusion (occluding objects may not touch the face). In other words, sets of 
points which do not fit the model of a non-occluded 3D face are classified as occlusions. The 
3D face model is obtained by the popular eigenfaces approach (Sirovich & Kirby, 1990). 
Occluded faces cannot be well represented by the linear combination of the computed 
eigenfaces. Therefore, the distance from the face space (DFFS) of occluded faces is expected 
to be quite large and can be used to reveal the presence of occlusions, though not their 
location. Differences in the pixels of the reconstructed and the original image (vector e ) are 
likely to be more pronounced where the face is occluded. 
A preliminary mask M of occlusions can be simply obtained by thresholding vector e : 

 
(12)

where Tτ  is a threshold that must take into account the resolution of the imaging device, 
acquisition noise, and the accuracy achieved in face detection and pose normalization. Since 
occlusions must be located between the acquisition device and the acquired face, their z 
coordinates will be greater than those of the reconstructed face, resulting in positive 
components of e . Unfortunately, the reconstruction error of the non-occluded regions is 
influenced by the occlusions, which may determine an inaccurate choice of the gappy 
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Fig. 9. Example of a reconstruction of a gappy image: (a) the original depth image; (b) the 
same image with a region of invalidated pixels; (c) the reconstruction of (b) through gpca. 

The classifier used for the face detector constructs the vector m  through lexicographical 
construction, considering all the invalidated or holes pixels. The error defined in Equation 
10 is used as a measure of faceness. Thus, a candidate face is classified as a face if the 
following condition is satisfied: 
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normalized position produced by the face detector. Any part of these images that does not 
look like part of a face and lies between the acquisition device and the acquired face is 
considered an occlusion (occluding objects may not touch the face). In other words, sets of 
points which do not fit the model of a non-occluded 3D face are classified as occlusions. The 
3D face model is obtained by the popular eigenfaces approach (Sirovich & Kirby, 1990). 
Occluded faces cannot be well represented by the linear combination of the computed 
eigenfaces. Therefore, the distance from the face space (DFFS) of occluded faces is expected 
to be quite large and can be used to reveal the presence of occlusions, though not their 
location. Differences in the pixels of the reconstructed and the original image (vector e ) are 
likely to be more pronounced where the face is occluded. 
A preliminary mask M of occlusions can be simply obtained by thresholding vector e : 
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where Tτ  is a threshold that must take into account the resolution of the imaging device, 
acquisition noise, and the accuracy achieved in face detection and pose normalization. Since 
occlusions must be located between the acquisition device and the acquired face, their z 
coordinates will be greater than those of the reconstructed face, resulting in positive 
components of e . Unfortunately, the reconstruction error of the non-occluded regions is 
influenced by the occlusions, which may determine an inaccurate choice of the gappy 
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projection coefficients iβ . However, the effect is significant only for occlusions which are 
very far from the face, or very large in size. Occluding objects which are far from the face are 
detected on the basis of the difference between the (possibly) occluded face y  and the mean 
(non-occluded) face μ . Components of x μ−  which are positive and large enough can be 

considered part of an occlusion. A mask B  of these occlusions is obtained as follows: 

 
(13)

Tρ  threshold must be tolerant with respect to face variability in the data set to be processed. 
As previously discussed, it is very unlikely that any face differs more than 15 mm from the 
mean face. Consequently, the threshold Tρ  has been set at that value. 
A more accurate estimate of the occlusion mask M can be obtained by excluding from the 
computation of the reconstruction error E the pixels selected in mask B. The key idea here is 
to use only non-occluded parts of the face to estimate the distance between the face space 
and the processed face. For this, we apply Gappy Principal Component Analysis (GPCA). 
The coefficients obtained by minimizing Equation 10 can now be substituted in Equation 6 
to determine a more accurate reconstruction error. 
The same technique may be applied to deal with cases in which the 3D face in input is 
incomplete (e.g. missing data from the scanner). Holes can be encoded in a mask H, so that 
the gappy products ( , )B⋅ ⋅ may be replaced by ( , )B H∨⋅ ⋅ , where B H∨  is the component-wise 
logical OR of holes and occlusions. Analogously, color information could be exploited if 
available: points having a color which is not likely to be found on a face can be marked as 
occlusions. 
On the basis of the new reconstruction error E obtained using the coefficients iβ , the 
occlusion mask M can now be determined more precisely. Here again, when the 
reconstruction error is high, the corresponding pixel is considered occluded. A variation of 
(12) is used: 

 
(14)

As a final step, morphological filters can be used to clean the occlusion mask, enforce the 
locality of the occlusion, and discard tiny regions. If the resulting mask M is empty, the face 
is considered non-occluded, and can be directly processed for recognition. Otherwise M 
replaces B as the mask for the gappy projection. The solution yields the coefficients iβ , 
which employed as indicated in Equation 6 allow for the restoration of the input face. 
At this stage, any recognition algorithm, whether holistic or feature-based, can then be 
applied to recognize the restored face. Holistic approaches may use the fully restored image 
while partial matching or feature-based approaches may exclude occlusions using the 
information contained in M. Fig. 10 summarizes the whole occlusion detection and 
restoration procedure. Figure 11 presents an example of restoration showing the steps in the 
computation of the occlusion mask. 
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Fig. 10. The occlusion detection and face restoration diagram. 
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Fig. 11. Occlusion detection and restoration on a face artificially occluded by glasses (b). The 
restored face (c) is very similar to the original non-occluded face (a). A few points have been 
preliminarily detected (d) as occluded using Eq. 13; the second step correctly identifies most 
of the occlusion (e) using Eq.14. The final occlusion mask (f) is the result of the application of 
simple morphological operators.  

4. Experimental results 
4.1 Dataset and artificial occlusion generation 
In order to perform an in-depth analysis of the algorithms (which needs the presence of a 
complete ground truth) we decided to adopt the artificial occlusion solution. It consists in 
taking an existing database of non-occluded faces and adding occluding 3D objects in each 
acquisition. Occluding objects are real world objects acquired at the IVL Laboratory at the 
University of Milano Bicocca. The entire set of objects includes: a scarf, a hat, a pair of 
scissors, two types of eyeglasses, a newspaper and hands in different configurations. We 
have used the UND Database (Chang et al., 2003), which consist of 951 3D+2D acquisition of 
277 subjects. 
Occluded acquisitions are generated inserting the objects in the acquisition space at 
plausible positions. This means, for example, that the eyeglasses are placed in the eyes 
region, the scarf in front of the mouth and so on. Thus, for each type of object, a starting 
position and orientation (To, Ro) is manually predefined considering the normalized mean 
face template as a reference. Then, for each acquisition an object is randomly chosen and 
placed on the face. The position and orientation is finally perturbed with random noise in 
order to increase the variability of the test set. Fig. 12 shows some examples. 

4.2 Face detection results 
The face detector and normalization module has been tested occluding a subset of 476 
acquisitions from the 951 images of the UND Database. A training set of 150 non occluded 
faces, taken at the IVL Laboratory with the Minolta Vivid 900 range scanner, has been used 
as the training set for the GPCA eigenspace computation. 
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Fig. 12. Some examples of artificially occluded faces. (a,c) The original UND acquisitions; 
(b,d) the occluded faces. Note that automatic preprocessing is applied to the occluded faces, 
i.e. smoothing and simple hole closure via linear interpolation. 

Figure 13 shows the receiver operator characteristic curves for the GPCA classifier at 
different values of the valid pixel threshold Tv. The curves have been computed considering 
only the candidate faces produced by the hypothesis generation phase of the algorithm. As 
can be seen, performance deteriorates as Tv decreases. This is an obvious consequence due 
to the lack of information. Depending on the application requirements, Tv must be chosen 
accordingly. 
Table 1 reports the results obtained when choosing a value for the classifier threshold Tf 
aimed at reducing false positives and a value of Tv of 0.5 (i.e. at least half of the face image 
must be non-occluded). In this case, tests were also performed on the original non-occluded 
test set. A fraction of 83% of the total number of occluded faces have been successfully 
detected, generating 43 false alarms. The results are satisfactory considering the toughness 
of the problem and the fact that a large number of the acquisitions would be missed using 
conventional 3D approaches. The detector performs very well on non-occluded faces, 
reaching 100% of the detected faces and just one false alarm. 
Figure 14 shows some examples of correctly detected faces while Fig. 15 shows a subset of 
missed faces. 
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Fig. 12. Some examples of artificially occluded faces. (a,c) The original UND acquisitions; 
(b,d) the occluded faces. Note that automatic preprocessing is applied to the occluded faces, 
i.e. smoothing and simple hole closure via linear interpolation. 
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only the candidate faces produced by the hypothesis generation phase of the algorithm. As 
can be seen, performance deteriorates as Tv decreases. This is an obvious consequence due 
to the lack of information. Depending on the application requirements, Tv must be chosen 
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Table 1 reports the results obtained when choosing a value for the classifier threshold Tf 
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must be non-occluded). In this case, tests were also performed on the original non-occluded 
test set. A fraction of 83% of the total number of occluded faces have been successfully 
detected, generating 43 false alarms. The results are satisfactory considering the toughness 
of the problem and the fact that a large number of the acquisitions would be missed using 
conventional 3D approaches. The detector performs very well on non-occluded faces, 
reaching 100% of the detected faces and just one false alarm. 
Figure 14 shows some examples of correctly detected faces while Fig. 15 shows a subset of 
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Fig. 13. The GPCA classifier ROC curves (FAR-False Acceptances Rate vs. FRR-False 
Rejections Rate) varying the value of the threshold Tv. and considering all the candidate 
faces from the 476 acquisitions of the test set. 

Test Set False Positives False Negatives Detected Faces 
UND (non-occluded) 1 0 476/476 (100%) 

UND (occluded) 43 77 399/476 (83.8%) 

Table 1. Face detection results obtained on 476 acquisitions. 

 
Fig. 14. Examples of detected faces taken from the artificially occluded UND dataset. 
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Fig. 15. Examples of missed faces taken from the artificially occluded UND dataset. 

4.3 Face recognition results 
The occlusion detection, face restoration and the following recognition modules have been 
tested considering the set of detected faces. For feature extraction and matching we used the 
popular Fisherfaces approach. 
First, an analysis has been made of how the values of the thresholds Tρ (Equation 13) and Tτ  
(Equation 14) influence the accuracy in the detection of occlusions. The training set has been 
used to estimate the mean face μ  and to evaluate the distribution of the differences 
between the pixels of non-occluded faces and those of the mean face. Taking into account 
such a distribution, the threshold Tρ  has been set to be 15 mm, which is more than five 
times the estimated standard deviation of the distribution (  = 2.849 mm). Less than 0.01% 
of the pixels of the training images exceed the mean face by that value. 
To evaluate the accuracy of the occlusion detection method the procedure has been run 
varying the threshold Tτ . Since it is known exactly which parts of the faces are occluded, it 
is possible to compute the precision (fraction of true positives among the pixels detected as 
occluded) and the recall (fraction of occluded pixels which have been detected). The results, 
obtained with both automatic as well as manual normalized dataset, are reported in Fig. 16. 
As can be seen, though the normalization error degenerates the occluded pixel detection 
performances, the approach is still effective in the case of automatic systems. 
On the basis of these measures the authors considered the value of 1.9 mm for the threshold 
Tτ  to be a good compromise which has been set to this value for the rest of the experiments. 
As a measure of the accuracy of the restoration method, the pixel by pixel absolute 
difference between the original (non-occluded) and the restored faces has been considered.  
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Fig. 16. Precision vs. recall corresponding to the pixels detected as occluded, obtained 
varying the value of the threshold Tτ . Manual (476 acquisitions) and automatic (399 
acquisitions) normalization. 

Since the restoration accuracy is expected to be highly correlated to the extent of the 
occlusions, the results obtained as a function of the area of occluded regions are reported 
(see Fig. 17). 

 
Fig. 17. Average absolute difference of the z coordinate between original and restored pixels, 
as a function of the fraction of the occluded face. Manual (476 images) and automatic (399 
images) normalization. The horizontal line represents the average difference between two 
non-occluded acquisitions of the same subject, computed on manually normalized faces of 
the training set. 
In Figure 18 shows two example of successful occlusion detection and restoration and an 
example of incorrect restoration. 
However, since the error may be unevenly distributed over the faces, recognition 
performance could be affected more than expected. In order to ensure that a restored face 
may be reliably recognized, the same holistic recognition method has been applied to the 
original, the occluded, and the restored faces, and the performance has been compared in 
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the three cases. The Fisherfaces method (Belhumeur et al., 1997) has been adopted here, but 
any other method may be applied. Fisherfaces has been chosen for its popularity, and being 
a holistic approach, it is quite sensitive to normalization errors. 
 

 
 

 

 

Fig. 18. First column: original faces. Second column: artificially occluded faces. Third 
column: restored faces. Fourth column: occlusion mask. Fifth columns: restoration error 
(brighter pixels indicate higher errors). The face in the third row represents a case of 
restoration failure. 

We considered the identity verification scenario: the set of the remaining 475 non-
occluded UND DB images not included in the test set have been used for building the 
known subject database and for training the Fisherfaces. Each test image has been 
proposed to the system, every time claiming a different identity (once for each subject 
included in the system DB). 
Fig. 19 shows the ROC curves obtained on non-occluded, occluded, and restored faces in 
case of automatic detection and normalization. As expected, the recognition of occluded 
faces is very difficult: the Equal Error Rate (ERR) for occluded faces is 0.488, which is 
slightly better than random guessing. The application of the restoration strategy 
significantly improves the EER to a more acceptable 0.147, which is quite close to the 0.062 
EER obtained on the original non-occluded faces. 
In order to understand how much normalization errors degenerate results, we normalized 
the test set manually. Fig 20  shows the performances obtained with the manual procedure. 
As can be seen, normalization errors influence the system performances but the comparison 
of these results with those in Fig 19  shows the robustness of the automatic procedure. 
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Fig. 19. ROC curves for the identity verification scenario. The curves refer to the 
performances obtained on the original (476 acquisitions), the artificially occluded and the 
restored test set (399 acquisitions). Images have been normalized automatically. 
 

 
Fig. 20. ROC curves for the identity verification scenario. The curves refer to the 
performances obtained on the original (476 acquisitions), the artificially occluded and the 
restored test set (399 acquisitions). Images have been normalized manually. 

To better understand the relationship between the occlusion extension and the recognition 
performance, the test set has been divided into three groups: 0-20%, 20-40% and over 40% 
(small, medium and large). Fig. 21 reports the ROC curves obtained using the three groups 
as test set. In the first case the EER is 0.07, which is comparable to the error rate measured on 
non-occluded faces. In the case of large occlusions, results are unacceptable (EER=0.5). For 
medium occlusions we obtained an EER of 0.27. In Fig 17 the restoration error begins to 
diverge approximatively around 30% of occluded face. 
In conclusion the proposed face detection and normalization approach combined with the 
restoration module obtains promising results with occlusions smaller than approximatively 
30% of the face. 
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Fig. 21. ROC curves for the identity verification scenario obtained on the set of 399 detected 
faces, subdivided into “small”, “medium” and “large” subsets. 

5. Conclusions and future works 
The presence of occluding objects in face recognition and more generally in object 
recognition tasks, is a “far from solved” problem. Here a solution has been presented which 
is composed of three core modules (detection, normalization and occlusion detection/face 
restoration) that could be employed in any 3D recognition system in order to improve its 
robustness. The results are quite promising and indicate that the use of 3D data may 
simplify the problem. 
However, there are still a lot of open issues. First of all, is it possible to reduce the errors 
introduced by the automatic normalization of faces? Secondly, how does the proposed 
algorithm perform in the presence of emphasized facial expressions? How could the 
proposed algorithm be integrated with a facial expression tolerant solution?  
Another important issue regards the comparison between face restoration approaches 
versus partial matching approaches. It is not clear at present if the missing or covered parts 
of the face should be reconstructed or simply detected and ignored, letting a partial 
matching strategy perform recognition.  
Future studies must take into account all these aspects. A large database containing real 
occlusions and various types and degrees of facial expressions should be adopted in order to 
allow an in-depth study of the problem and the proposed solutions. 
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1. Introduction 
Wide area surveillance situations require many sensors, thus making the use of high-
resolution cameras prohibitive because of high costs and exponential growth in storage. 
Small and low cost CCTV cameras may produce poor quality video, and high-resolution 
CCD cameras in wide area surveillance can still yield low-resolution images of the object of 
interest, due to large distances from the camera. All these restrictions and limitations pose 
problems for subsequent tasks such as face recognition or vehicle registration plate 
recognition. Super-Resolution (SR) offers a way to increase the resolution of such images or 
videos and is well studied in the last decades (Farsiu et al., 2004; Park et al., 2003; Baker & 
Kanade 2002). However, most existing SR algorithms are not suitable for video sequences of 
faces because a face is a non-planar and non-rigid object, violating the underlying 
assumptions of many SR algorithms (Baker & Kanade, 1999). 
A common SR algorithm is the super-resolution optical flow (Baker & Kanade, 1999). Each 
frame is interpolated to twice its size and optical flow is used to register previous and 
consecutive frames, which are then warped into a reference coordinate system. The super-
resolved image is calculated as the average across these warped frames. However, the first 
step of interpolation introduces artificial random noise which is difficult to remove. 
Secondly, the optical flow is calculated between previous and consecutive frames 
preventing its use as an online stream processing algorithm. Also, accurate image 
registration requires precise motion estimation (Barreto et al., 2005) which in turn affects the 
quality of the super-resolved image as reported in (Zhao & Sawhney, 2002). Optical flow in 
general fails in low textured areas and causes problems in registering non-planar and non-
rigid objects in particular. Recent techniques like (Gautama & van Hulle, 2002) calculate sub-
pixel optical flow between several consecutive frames (with non-planar and non-rigid 
moving objects) however they are unable to estimate an accurate dense flow field, which is 
needed for accurate image warping. 
Although solving all the issues in a general case is difficult, as the general problem of super-
resolution is numerically ill-posed and computationally complex (Farsiu et al., 2004), we 
address a specific issue: Simultaneous tracking and increasing super-resolution of known 
object types, in our case faces, acquired by low resolution video. The use of an object-specific 
3D mesh overcomes the issues with optic flow failures in low textured images. We avoid the 
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moving objects) however they are unable to estimate an accurate dense flow field, which is 
needed for accurate image warping. 
Although solving all the issues in a general case is difficult, as the general problem of super-
resolution is numerically ill-posed and computationally complex (Farsiu et al., 2004), we 
address a specific issue: Simultaneous tracking and increasing super-resolution of known 
object types, in our case faces, acquired by low resolution video. The use of an object-specific 
3D mesh overcomes the issues with optic flow failures in low textured images. We avoid the 
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use of interpolation, and use this 3D mesh to track, register and warp the object of interest. 
Using the 3D mask to estimate translation and rotation parameters between two frames is 
equivalent to calculating a dense sub-pixel accurate optical flow field and subsequent 
warping into a reference coordinate system. The 3D mesh is subdivided, such that each 
quad is smaller than a pixel when projected into the image, which makes super-resolution 
possible (Smelyanskiy et al., 2000). It also allows for sub-pixel accurate image registration 
and warping and in addition, such a fine mesh improves the tracking performance of low-
resolution objects. Each quad then accumulates the average colour values across several 
registered images and a high resolution 3D model is created online during tracking. This 
approach differs from classical SR techniques as the resolution is increased at the model 
level rather than at the image level. Furthermore only the object of interest is tracked and 
super-resolved rather than the entire scene which reduces computation costs. Lastly, the use 
of a deformable mask mesh allows for tracking of non-rigid objects. 
The novelty of our approach is the use of an object-specific 3D model within a combined 
tracking and super-resolution framework which means that the super-resolved image is 
created during tracking. The 3D mesh model allows for accurate tracking of non-planar and 
low-resolution objects, and unlike optical flow based super-resolution methods our methods 
does not need initial resolution increase by interpolation, thus results in less blurred images. 
The resulting high-resolution 3D models can be used for a number of applications such as 
generating the object under different views and different lighting conditions. 

2. Background and related work 
Super-Resolution methods increase the resolution of a single image or a whole video 
sequence and can be formally treated as single frame or multi-frame approaches using 
spatial or frequency information (Huang & Tsai, 1984; Borman & Stevenson, 1998). 
The simplest way of increasing the resolution of a single image is by interpolation using 
techniques like nearest neighbour or spline interpolation. However interpolation alone is 
not able to recover high-frequency details of the image or video and is therefore not truly 
regarded as `formal' SR (Park et al., 2003). More complex methods model the image 
formation process as a linear system (Bascle et al., 1996) 

 Y AX z= +  (1) 

where X and Y is the high and low-resolution image respectively. The degrading matrix A 
represents image warp, blur and image sampling; z models the uncertainties due to noise. 
Restoring the high-resolution image X involves inverting the imaging process but this is 
computationally complex and numerically ill-posed, even though different constraints have 
been proposed in the last years (Baker & Kanade 2002). 
SR methods that reconstruct super-resolved images from video sequences apply the image 
formation process of Equation 1 to several frames (Farsiu et al. 2004) or use a Bayesian 
approach to estimate images of higher resolution (Baker & Kanade 2002). Super-Resolution 
optical flow is another approach for combining several frames of a video sequence. But 
according to (Baker & Kanade 1999) most existing super-resolution algorithms are not 
suitable for video sequences of non-planar and/or non-rigid objects. 
Pre-requisite for increasing the resolution of video sequences by combining several frames 
are sub-pixel shifts between consecutive frames. Typical SR techniques assume that the 
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camera is moving as the scene is recorded. But a moving camera results in motion blur 
which decreases the quality of the images. Even though special cameras are able to increase 
the resolution of motion blurred images (Agrawal & Raskar 2007), according to (Ben-Ezra et 
al. 2005) traditional cameras should avoid motion blur as much as possible. However, in 
surveillance applications cameras are generally fixed and the object of interest is moving. 
We will capitalise on this arrangement to define the tracking and super-resolution 
requirements. This way the amount of motion blur can be avoided or is reduced to a 
minimum depending on the speed of the object and the frame rate of the camera. 
Combining several frames to increase resolution requires accurate motion estimation 
techniques (Barreto et al. 2005) to register and warp consecutive frames into a reference 
coordinate system. Accurate image registration is important and does affect the quality of 
the SR results as shown in (Zhao & Sawhney 2002). SR optical flow uses optical flow to 
register consecutive frames and typically comprises the following five main steps  
1. Image Interpolation - interpolate each frame to twice its size 
2. Image Registration - estimate the motion field between consecutive frames 
3. Image Warping - warp images into a reference coordinate system 
4. Image Fusing - fuse images using mean, median or robust mean 
5. Deblurring - apply standard deconvolution algorithms to super-resolved image 
While this approach is well suited to increase the resolution of images of rigid and planar 
scenes, image registration is more difficult for non-rigid and non-planar low-resolution 
objects that are more subjected to occlusion and lighting changes. The first step of the SR 
optical flow algorithm interpolates each frame to twice its resolution using standard 
interpolation techniques like nearest neighbour or bilinear. But interpolation cannot recover 
high-frequency details in images. In addition it introduces artificial random noise that is 
difficult to remove in the deblurring step. Image warping, the third step, also involves 
interpolation of pixels which introduces further noise.  
A similar approach which obtains the super-resolved texture during tracking is proposed 
by (Dellaert et al. 1998). This method tracks planar objects and predicts the super-resolved 
texture using a Kalman filter. In (Yu & Bhanu 2006) SR optical flow is extended and 
planar patches are used to track different parts of the face individually to account for non-
rigidity. The resolution of the face is increased for these different facial parts individually 
but again no three-dimensional object-specific mask mesh is used. The authors of 
(Smelyanskiy et al., 2000) use a Bayesian approach for high-resolution 3D surface 
construction of low-resolution images given a user provided 3D model. Synthetic images 
are rendered using the surface model, compared with the real low-resolution images and 
the difference is minimised.  
Recent studies involve the use of special cameras to capture super-resolved video sequences. 
The so called jitter camera is used in (Ben-Ezra et al. 2005) and creates sub-pixel offsets 
between frames during recording. They also show that motion blur degrades the result of 
super-resolution algorithms, even if the motion blur itself is known, and should therefore be 
avoided. The authors of (Agrawal & Raskar 2007) use a special so called flutter shutter 
camera. This camera preserves the high frequencies by opening and closing the shutter 
frequently during exposure. A single camera is extended to capture super-resolved stereo 
images in (Gao & Ahuja 2006). Our work, however, uses images captures by a standard 
digital camera. 
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use of interpolation, and use this 3D mesh to track, register and warp the object of interest. 
Using the 3D mask to estimate translation and rotation parameters between two frames is 
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generating the object under different views and different lighting conditions. 
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The simplest way of increasing the resolution of a single image is by interpolation using 
techniques like nearest neighbour or spline interpolation. However interpolation alone is 
not able to recover high-frequency details of the image or video and is therefore not truly 
regarded as `formal' SR (Park et al., 2003). More complex methods model the image 
formation process as a linear system (Bascle et al., 1996) 
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where X and Y is the high and low-resolution image respectively. The degrading matrix A 
represents image warp, blur and image sampling; z models the uncertainties due to noise. 
Restoring the high-resolution image X involves inverting the imaging process but this is 
computationally complex and numerically ill-posed, even though different constraints have 
been proposed in the last years (Baker & Kanade 2002). 
SR methods that reconstruct super-resolved images from video sequences apply the image 
formation process of Equation 1 to several frames (Farsiu et al. 2004) or use a Bayesian 
approach to estimate images of higher resolution (Baker & Kanade 2002). Super-Resolution 
optical flow is another approach for combining several frames of a video sequence. But 
according to (Baker & Kanade 1999) most existing super-resolution algorithms are not 
suitable for video sequences of non-planar and/or non-rigid objects. 
Pre-requisite for increasing the resolution of video sequences by combining several frames 
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camera is moving as the scene is recorded. But a moving camera results in motion blur 
which decreases the quality of the images. Even though special cameras are able to increase 
the resolution of motion blurred images (Agrawal & Raskar 2007), according to (Ben-Ezra et 
al. 2005) traditional cameras should avoid motion blur as much as possible. However, in 
surveillance applications cameras are generally fixed and the object of interest is moving. 
We will capitalise on this arrangement to define the tracking and super-resolution 
requirements. This way the amount of motion blur can be avoided or is reduced to a 
minimum depending on the speed of the object and the frame rate of the camera. 
Combining several frames to increase resolution requires accurate motion estimation 
techniques (Barreto et al. 2005) to register and warp consecutive frames into a reference 
coordinate system. Accurate image registration is important and does affect the quality of 
the SR results as shown in (Zhao & Sawhney 2002). SR optical flow uses optical flow to 
register consecutive frames and typically comprises the following five main steps  
1. Image Interpolation - interpolate each frame to twice its size 
2. Image Registration - estimate the motion field between consecutive frames 
3. Image Warping - warp images into a reference coordinate system 
4. Image Fusing - fuse images using mean, median or robust mean 
5. Deblurring - apply standard deconvolution algorithms to super-resolved image 
While this approach is well suited to increase the resolution of images of rigid and planar 
scenes, image registration is more difficult for non-rigid and non-planar low-resolution 
objects that are more subjected to occlusion and lighting changes. The first step of the SR 
optical flow algorithm interpolates each frame to twice its resolution using standard 
interpolation techniques like nearest neighbour or bilinear. But interpolation cannot recover 
high-frequency details in images. In addition it introduces artificial random noise that is 
difficult to remove in the deblurring step. Image warping, the third step, also involves 
interpolation of pixels which introduces further noise.  
A similar approach which obtains the super-resolved texture during tracking is proposed 
by (Dellaert et al. 1998). This method tracks planar objects and predicts the super-resolved 
texture using a Kalman filter. In (Yu & Bhanu 2006) SR optical flow is extended and 
planar patches are used to track different parts of the face individually to account for non-
rigidity. The resolution of the face is increased for these different facial parts individually 
but again no three-dimensional object-specific mask mesh is used. The authors of 
(Smelyanskiy et al., 2000) use a Bayesian approach for high-resolution 3D surface 
construction of low-resolution images given a user provided 3D model. Synthetic images 
are rendered using the surface model, compared with the real low-resolution images and 
the difference is minimised.  
Recent studies involve the use of special cameras to capture super-resolved video sequences. 
The so called jitter camera is used in (Ben-Ezra et al. 2005) and creates sub-pixel offsets 
between frames during recording. They also show that motion blur degrades the result of 
super-resolution algorithms, even if the motion blur itself is known, and should therefore be 
avoided. The authors of (Agrawal & Raskar 2007) use a special so called flutter shutter 
camera. This camera preserves the high frequencies by opening and closing the shutter 
frequently during exposure. A single camera is extended to capture super-resolved stereo 
images in (Gao & Ahuja 2006). Our work, however, uses images captures by a standard 
digital camera. 
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3. Method overview 
The image formation process and basic outline of our approach is illustrated in Figure 1. The 
degrading matrix A in Equation 1 models image warp, blur due to the optical system and 
motion as well as the down-sampling process caused by the finite and discrete imaging 
chip. We neglect the optical blur and keep the motion blur down to a minimum.  
 

 
Fig. 1. Image formation process and basic outline of our approach. The matrix A degrades 
the images according to Equation 1. The 3D model of the object is textured by projecting 
every frame onto the model using the projection matrix P. The super-resolved texture is 
calculated as the mean across several frames. 

During the image formation process the object is projected from the 3D world onto the 
image plane (Faugera 1993) and results, after being degraded by matrix A, in a finite 
number of discrete pixels as shown in Figure 1. The number of pixels that an object covers 
within the image depends on the size of the imaging chip, the optical lens, the size of the 
object itself and the distance between object and camera. As the camera or the object moves 
it may be projected onto different pixels of the imaging chip in different frames. 
The black edges surrounding the gradient on the front side of the cube in Figure 1 are 
projected nearly exact into pixel centres resulting in 14 black pixels on either side of the cube 
in the image plane in frame i. A movement of the cube in front of the camera results in sub-
pixel movements on the image plane. The black edges of the cube then may fall between 
pixels of the imaging chip resulting in grey edge pixels in frame i+1 in Figure 1. 
The tracking algorithm uses an object-specific deformable 3D model mesh to estimate 
translation and rotation parameters between consecutive frames which allows for accurate 
tracking of non-planar and non-rigid objects. Computer graphic techniques are used to 
subdivide the 3D model such that every quad of the mesh is smaller than a pixel when 
projected into the image, which makes super-resolution possible. By projecting the 3D 
model in several frames each quad accumulates different colour values over time. The 
super-resolved 3D model is then calculated as the mean colour value for each quad. Without 
loss of generality Figure 1 only shows the projection of one side of the planar cube; the same 
would be true for a non-planar and/or non-rigid object. 
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The super-resolved 3D model is created online during tracking and improves with every 
frame, whereas super-resolution optical flow incorporates consecutive and previous frames 
which prohibits its usage as an online stream processing algorithm. Furthermore, using an 
object-specific 3D model in a combined tracking and super-resolution approach inverses the 
image formation process in Equation 1. The subdivided 3D mesh represents the high-
resolution object X that is down-sampled by projection into the image plane. The finer the 
mesh the higher the resolution of X and the larger the possible increase in resolution. Thus, 
interpolation, the first step of the optical flow algorithm, is unnecessary and the resulting 
super-resolved 3D model is less blurred by achieving the same resolution increase. This in 
turn makes deblurring (the last step of the optical flow algorithm) unnecessary. Lastly, using 
the 3D mesh for tracking equals image registration, warping and the estimation of a dense 
flow field, comprising steps 2 and 3 of the optical flow algorithm. 
Furthermore we present an extended tracking approach that allows for the non-rigidity of 
objects during tracking. By incorporating a deformable mask mesh that allows for 
deformations during the tracking process super-resolution is possible despite non-planarity 
and non-rigidity. 

4. Combined tracking and super-resolution 
4.1 3D object tracking 
A pre-requisite for building our super-resolved 3D model is the need to track the object in 
low-resolution video. We utilise an object-specific 3D mesh model which is manually fitted 
in the first frame.  For fully automatic tracking, a combined appearance and geometric based 
approach similar to that in (Wen & Huang 2005) is used. We differ in that we use a 
subdivided fine mesh for the appearance approach and a constrained template matching 
algorithm for the geometric tracking as opposed to minimising a linear combination of 
action units. For each frame we apply both methods, i.e. the appearance based and the 
geometric based tracking. The one that results in the smallest tracking error will be used for 
the current frame. We describe each tracking approach in detail. 
The appearance based approach is similar to the one in (Wen & Huang 2005). We differ in 
that we use a subdivided mask mesh which achieves better tracking results than a mesh that 
is coarser with respect to the pixel size. The warping templates bi are created from this 
subdivided mask as 

 ( )( )0 0 ,i ib I Q T n X= − Ρ +  with ( )0 0 ,I T X= Ρ  (2) 

where function P is the projection of 3D object points X to image coordinates using the initial 
transformation T0; Q then maps RGB values to these coordinates. X is a vector containing the 
centre of gravity of each mask triangle, ni is the transformation parameter displacement and 
I0 is a vector of the concatenated RGB-values of each projected triangle. The required 
intrinsic camera transformation parameters are obtained using camera calibration 
techniques as in (Zhang, 2000).  
Objects are tracked by using the pose parameters of the previous frame as initialisation and 
solving for q and c for each frame i 

 ( )( )0 ,app
iI Q T X Bq Uc− Ρ ≈ +  (3) 
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The super-resolved 3D model is created online during tracking and improves with every 
frame, whereas super-resolution optical flow incorporates consecutive and previous frames 
which prohibits its usage as an online stream processing algorithm. Furthermore, using an 
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deformations during the tracking process super-resolution is possible despite non-planarity 
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subdivided fine mesh for the appearance approach and a constrained template matching 
algorithm for the geometric tracking as opposed to minimising a linear combination of 
action units. For each frame we apply both methods, i.e. the appearance based and the 
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that we use a subdivided mask mesh which achieves better tracking results than a mesh that 
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where function P is the projection of 3D object points X to image coordinates using the initial 
transformation T0; Q then maps RGB values to these coordinates. X is a vector containing the 
centre of gravity of each mask triangle, ni is the transformation parameter displacement and 
I0 is a vector of the concatenated RGB-values of each projected triangle. The required 
intrinsic camera transformation parameters are obtained using camera calibration 
techniques as in (Zhang, 2000).  
Objects are tracked by using the pose parameters of the previous frame as initialisation and 
solving for q and c for each frame i 

 ( )( )0 ,app
iI Q T X Bq Uc− Ρ ≈ +  (3) 
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where the columns of B are the warping templates bi. app
iT contains the transformation 

parameters for the appearance-based tracking at frame i and U are the illumination 
templates. Like in (Wen & Huang 2005) we use the first nine spherical harmonic bases, given 
the 3D mask mesh, for modelling lighting changes during tracking. Please refer to (Cascia 
et.al., 2000) for more details on the appearance based approach. 
The geometric based approach uses a standard template matching approach that is 
restricted by the object-specific mask. We do not use action units to track facial movements 
like in (Wen & Huang 2005). Objects are tracked by projecting every vertex V of the mask 
into the previous image, using perspective projection. Around each projected vertex a 
rectangular template is cropped and matched with the current frame. The size of the patch is 
set to 1/6th of the whole object. Normalised cross-correlation is used to match this patch in 
the current frame within a window that is double the size of the template. In order to 
minimise the effect of outliers, the entire mask is fitted to the retrieved new vertex points vi 
in the current frame utilising the Levenberg-Marquardt algorithm 

 ( )( )2

1min ,
geo

lgeo geo
i i j jjT

T T V v
=

= Ρ −∑  (4) 

where l is the number of mask vertices V and geo
iT contains the transformation parameters of 

the geometric-based approach at frame i. Again the transformation parameters are 
initialised with the previous frame. 
During tracking each method is applied individually and a texture residual as the root mean 
squared error (RMSE) for the current frame i with respect to the first frame is calculated 

 ( ) ( )( )2

01

1( ) , ,k
i j i jjRMSE T T X T X

k =
= Ρ − Ρ∑  (5) 

where k is the number of mask triangles X. The pose parameters Ti of the method with the 
smallest RMSE will be used for the current frame i as 

 ( ) ( )min ,
i

app geo
i i iT

T RMSE T RMSE T⎡ ⎤= ⎣ ⎦  (6) 

where ( )app
iRMSE T and ( )geo

iRMSE T  is the texture residual for frame i of the appearance-

based and the geometric-based approach respectively. The tracking runs automatically once 
the mesh mask is manually fitted to the first frame of the sequence. 

4.2 3D model-aided super-resolution 
During tracking the resolution of the low-detailed object is gradually increased. To achieve 
this, every triangle of the object-specific mask is projected into the video using perspective 
projection. But in order to increase the resolution of the object, every triangle needs to be 
smaller than a pixel (Smelyanskiy et al., 2000). 
As each mask triangle is projected into different frames of the sequence it is eventually 
assigned with different colour values for each frame as shown in Figure 1. Therefore the 
super-resolved mask ISR is calculated as the mean of the last k frames that result in an RMSE 
below a certain threshold ε 
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 ( )( )1

1 ,k
SR iiI T X

k =
= Ρ∑  with ( )iRMSE T ε<  (7) 

Small tracking errors (RMSE) allow for an exact alignment of the 3D mask across frames 
whereas high RMSE result in blurring and distortion. The threshold ε depends on the initial 
object resolution. Low-resolution objects usually result in higher RMSE during tracking as 
image pixels are more likely to change due to the down-sampling process of the imaging 
chip. Furthermore the quality of the super-resolved mask ISR also depends on the total 
number of frames k used. But a larger number of frames increases the probability of 
introducing artificial noise as frames might not be aligned perfectly. The issue of choosing 
the appropriate number of frames k versus the quality of the super-resolved mask is 
experimentally evaluated in Section 4.4. 

4.3 Extension to non-planar and non-rigid objects  
In order to increase the resolution of various non-planar and non-rigid objects the tracking 
algorithm also needs to allow for deformations, i.e. the mask mesh representing the three-
dimensional object needs to be deformable. This is especially an issue when tracking non-
rigid objects like faces. We therefore propose an extended tracking and super-resolution 
algorithm and apply it to faces, as faces are a major field of interest especially in wide area 
surveillance systems. 
 

Fig. 2. (a) CANDIDE-3 face mask with 184 triangle, (b), (c) and (d) are subdivided masks 
after 1, 2 and 3 subdivision steps resulting in 736, 2944 and 11776 triangles. Source: (Kuhl et 
al.,2008) © 2008 IEEE 
For tracking faces the CANDIDE-3 face model is used (Ahlberg, 2001). As shown in Figure 2 
this triangular mesh consists of 104 vertices and 184 triangles and it is subdivided three 
times using the Modified Butterfly algorithm (Zorin & Schröder, 2000) to finally produce 
5984 vertices and 11776 triangles. To allow for the non-rigidity of faces we use the 
CANDIDE-3 expression parameters for tracking mouth and eyebrow movements in low-
detailed faces. More complex facial expressions often require a more detailed face model 
and high-resolution images, such as in (Goldenstein et al., 2003; Roussel & Gagalowicz, 
2005; Wang et al., 2005). 
The expression tracking is performed after the actual tracking for each frame. Using the 
expression parameters of the last frame the combined geometric and appearance based 
tracking approach is used to determine the position of the mesh model in the current frame. 
After that a global random search (Zhigljavsky, 1991) is performed to improve the RMSE 
around the mouth and the eyebrow region. A normal distribution with respect to the last 

 
(a) 

 
(b) 

 
(c) 

 
(d) 



 State of the Art in Face Recognition 

 

178 

where the columns of B are the warping templates bi. app
iT contains the transformation 

parameters for the appearance-based tracking at frame i and U are the illumination 
templates. Like in (Wen & Huang 2005) we use the first nine spherical harmonic bases, given 
the 3D mask mesh, for modelling lighting changes during tracking. Please refer to (Cascia 
et.al., 2000) for more details on the appearance based approach. 
The geometric based approach uses a standard template matching approach that is 
restricted by the object-specific mask. We do not use action units to track facial movements 
like in (Wen & Huang 2005). Objects are tracked by projecting every vertex V of the mask 
into the previous image, using perspective projection. Around each projected vertex a 
rectangular template is cropped and matched with the current frame. The size of the patch is 
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where k is the number of mask triangles X. The pose parameters Ti of the method with the 
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based and the geometric-based approach respectively. The tracking runs automatically once 
the mesh mask is manually fitted to the first frame of the sequence. 

4.2 3D model-aided super-resolution 
During tracking the resolution of the low-detailed object is gradually increased. To achieve 
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Small tracking errors (RMSE) allow for an exact alignment of the 3D mask across frames 
whereas high RMSE result in blurring and distortion. The threshold ε depends on the initial 
object resolution. Low-resolution objects usually result in higher RMSE during tracking as 
image pixels are more likely to change due to the down-sampling process of the imaging 
chip. Furthermore the quality of the super-resolved mask ISR also depends on the total 
number of frames k used. But a larger number of frames increases the probability of 
introducing artificial noise as frames might not be aligned perfectly. The issue of choosing 
the appropriate number of frames k versus the quality of the super-resolved mask is 
experimentally evaluated in Section 4.4. 

4.3 Extension to non-planar and non-rigid objects  
In order to increase the resolution of various non-planar and non-rigid objects the tracking 
algorithm also needs to allow for deformations, i.e. the mask mesh representing the three-
dimensional object needs to be deformable. This is especially an issue when tracking non-
rigid objects like faces. We therefore propose an extended tracking and super-resolution 
algorithm and apply it to faces, as faces are a major field of interest especially in wide area 
surveillance systems. 
 

Fig. 2. (a) CANDIDE-3 face mask with 184 triangle, (b), (c) and (d) are subdivided masks 
after 1, 2 and 3 subdivision steps resulting in 736, 2944 and 11776 triangles. Source: (Kuhl et 
al.,2008) © 2008 IEEE 
For tracking faces the CANDIDE-3 face model is used (Ahlberg, 2001). As shown in Figure 2 
this triangular mesh consists of 104 vertices and 184 triangles and it is subdivided three 
times using the Modified Butterfly algorithm (Zorin & Schröder, 2000) to finally produce 
5984 vertices and 11776 triangles. To allow for the non-rigidity of faces we use the 
CANDIDE-3 expression parameters for tracking mouth and eyebrow movements in low-
detailed faces. More complex facial expressions often require a more detailed face model 
and high-resolution images, such as in (Goldenstein et al., 2003; Roussel & Gagalowicz, 
2005; Wang et al., 2005). 
The expression tracking is performed after the actual tracking for each frame. Using the 
expression parameters of the last frame the combined geometric and appearance based 
tracking approach is used to determine the position of the mesh model in the current frame. 
After that a global random search (Zhigljavsky, 1991) is performed to improve the RMSE 
around the mouth and the eyebrow region. A normal distribution with respect to the last 
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expression parameters is used to sample 10 to 20 different values for each expression 
parameter. The parameter that results in the smallest RMSE is chosen for the current frame. 

5. Experiments 
5.1 Combined geometric and appearance-based 3D object tracking 
 
 

Fig. 3. Cropped faces for each face size used. Source: (Kuhl et al.,2008) © 2008 IEEE 

In order to evaluate the tracking accuracy of the combined geometric and appearance based 
tracking algorithm, a video sequence of a face with translation and rotation movements is 
recorded at 15 frames per second and an initial resolution of 640x480 pixels. The face within 
one frame has an average size of 230x165 pixels. This resolution is divided into halves three 
times, resulting in face sizes of 115x82, 57x41 and 28x20 pixels with corresponding frame 
sizes of 320x240, 160x120 and 80x60 respectively. A cropped face for each face size used is 
shown in Figure 3. 
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Fig. 4. Tracking results for different size faces (a) and each tracking method applied 
individually to the video with the smallest resolution (b). Source: (Kuhl et al.,2008) © 2008 
IEEE 

For tracking faces we use the CANDIDE-3 face model (Ahlberg, 2001) as shown in Figure 2. In 
order to initialise this mask in the first frame of the sequence, we use the shape parameters of 
the CANDIDE-3 model to adjust the mask according to the persons individual face. After this 
initialisation, the mask is tracked automatically over more than 200 frames using the combined 
geometric and appearance-based approach as described in Section 4.1.  

 
(a) 230x165 

 
(b) 115x82 

 
(c) 57x41 

 
(d) 28x20 

A Model-based Approach for Combined Tracking and Resolution Enhancement  
of Faces in Low Resolution Video 

 

181 

The results of the combined tracking algorithm applied to different face sizes is shown in 
Figure 4(a). The RMSE for measuring the tracking accuracy with respect to the first frame is 
defined in Equation 5. The variation in RMSE in frames 1 to 100 are due to translation and 
rotation around the horizontal x-axis, whereas the peaks at frames 130 and 175 respectively 
are mainly due to rotation around the vertical y-axis. 
Faces between 230x165 and 115x82 result in similar RMSE, whereas faces with a resolution 
down to 57x41 result in a slightly increased tracking error, that is 22% larger on average. 
Even though the RMSE increased by about 41% when tracking faces with a resolution of 
28x20, the algorithm is still able to qualitatively track the face to the end of the sequence. 
 

(a) 60 (b) 80 (c) 100 (d) 140 
 

(e) 217 

(f) 60 (g) 100 (h) 180 (i) 185 

 

Fig. 5. Sample frame shots of geometric based tracking (a)-(e) and appearance based 
tracking (f)-(i). Numbers denote different frames. 

In comparison, Figure 4(b) shows the result of the geometric and appearance based tracking 
approach operating individually on the same video sequence, with the smallest face size of 
28x20, as this face size is the most difficult to track. The geometric approach loses track just 
after 40 frames and as shown in Figure 5(a) this is due to small inter frame movements 
which causes the mask to stay in the initial position instead of following the face. The mask 
then recovers in frame 80 and loses track immediately afterwards as shown in Figure 5(b) 
and Figure 5(c). The geometric approach finally loses track around frame 140, from which it 
can not recover, as shown in Figure 5(d) and Figure 5(e). This shows that the geometric 
approach is not able to handle small inter frame movements due to image noise and low 
resolution. 
The appearance based approach on the other hand results in small tracking errors from 
frame 1 through to frame 170 as shown in Figure 5(f) and Figure 5(g). But as the face turns 
the appearance approach loses track from which it cannot recover, as shown in Figure 5(h) 
and Figure 5(i). This is mainly due to large inter frame movements and the rotation of the 
face, resulting in partial occlution of the face.  
Figure 4(b) shows that by combining the geometric and appearance based approach tracking 
is improved. Both approaches complement one another resulting in smaller RMSE than 
either of them individually. While the appearance based method tends to be more precise 
for small inter-frame movements, the geometric method is better for larger displacements. 
Furthermore the geometric approach applies template matching between the current and 



 State of the Art in Face Recognition 

 

180 

expression parameters is used to sample 10 to 20 different values for each expression 
parameter. The parameter that results in the smallest RMSE is chosen for the current frame. 

5. Experiments 
5.1 Combined geometric and appearance-based 3D object tracking 
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In order to evaluate the tracking accuracy of the combined geometric and appearance based 
tracking algorithm, a video sequence of a face with translation and rotation movements is 
recorded at 15 frames per second and an initial resolution of 640x480 pixels. The face within 
one frame has an average size of 230x165 pixels. This resolution is divided into halves three 
times, resulting in face sizes of 115x82, 57x41 and 28x20 pixels with corresponding frame 
sizes of 320x240, 160x120 and 80x60 respectively. A cropped face for each face size used is 
shown in Figure 3. 
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Fig. 4. Tracking results for different size faces (a) and each tracking method applied 
individually to the video with the smallest resolution (b). Source: (Kuhl et al.,2008) © 2008 
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For tracking faces we use the CANDIDE-3 face model (Ahlberg, 2001) as shown in Figure 2. In 
order to initialise this mask in the first frame of the sequence, we use the shape parameters of 
the CANDIDE-3 model to adjust the mask according to the persons individual face. After this 
initialisation, the mask is tracked automatically over more than 200 frames using the combined 
geometric and appearance-based approach as described in Section 4.1.  
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The results of the combined tracking algorithm applied to different face sizes is shown in 
Figure 4(a). The RMSE for measuring the tracking accuracy with respect to the first frame is 
defined in Equation 5. The variation in RMSE in frames 1 to 100 are due to translation and 
rotation around the horizontal x-axis, whereas the peaks at frames 130 and 175 respectively 
are mainly due to rotation around the vertical y-axis. 
Faces between 230x165 and 115x82 result in similar RMSE, whereas faces with a resolution 
down to 57x41 result in a slightly increased tracking error, that is 22% larger on average. 
Even though the RMSE increased by about 41% when tracking faces with a resolution of 
28x20, the algorithm is still able to qualitatively track the face to the end of the sequence. 
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Fig. 5. Sample frame shots of geometric based tracking (a)-(e) and appearance based 
tracking (f)-(i). Numbers denote different frames. 

In comparison, Figure 4(b) shows the result of the geometric and appearance based tracking 
approach operating individually on the same video sequence, with the smallest face size of 
28x20, as this face size is the most difficult to track. The geometric approach loses track just 
after 40 frames and as shown in Figure 5(a) this is due to small inter frame movements 
which causes the mask to stay in the initial position instead of following the face. The mask 
then recovers in frame 80 and loses track immediately afterwards as shown in Figure 5(b) 
and Figure 5(c). The geometric approach finally loses track around frame 140, from which it 
can not recover, as shown in Figure 5(d) and Figure 5(e). This shows that the geometric 
approach is not able to handle small inter frame movements due to image noise and low 
resolution. 
The appearance based approach on the other hand results in small tracking errors from 
frame 1 through to frame 170 as shown in Figure 5(f) and Figure 5(g). But as the face turns 
the appearance approach loses track from which it cannot recover, as shown in Figure 5(h) 
and Figure 5(i). This is mainly due to large inter frame movements and the rotation of the 
face, resulting in partial occlution of the face.  
Figure 4(b) shows that by combining the geometric and appearance based approach tracking 
is improved. Both approaches complement one another resulting in smaller RMSE than 
either of them individually. While the appearance based method tends to be more precise 
for small inter-frame movements, the geometric method is better for larger displacements. 
Furthermore the geometric approach applies template matching between the current and 
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the previous frame, while the appearance approach is based on the comparison of the 
current frame with the first frame. Thus, the combination is more stable and precise and able 
to track even small size faces down to a size of 28x20 pixels. 

5.2 Combined tracking and super-resolution 
We tested the performance of the combined geometric and appearance-based tracking 
algorithm with different mask sizes. As described in Section 3, super-resolution is only 
possible when the mask mesh is subdivided such that every quad or triangle is smaller than 
a pixel when projected into the image. The following experiment evaluates the effect of the 
mesh size on the tracking performance. 
 

(a) Example Frame 
 

(b) Object Size 31x31 

 Object Size 
Mesh Size 31x31 17x17

13x13 - 20.84 
16x16 - 23.49 
20x20 - 18.78 
25x25 23.88 19.09 
33x33 12.03 17.78 
50x50 10.03 15.62 

100x100 11.88 16.25 
200x200 10.40 - 

(c) Mean RMSE across 100 frames 

Fig. 6. Mean tracking RMSE across 100 frames for a planar objects, the front side of a cube 
(a). Using an object mask mesh that is finer than the object results in smaller tracking errors. 

The front side of a cube as shown in Figure 6(a) is tracked across 100 frames of size 640x480. 
This planar patch covers an area of 31x31 pixels within the image. For tracking this patch we 
used a 3D model mesh similar to the one in Figure 1. This mesh is equally subdivided into 
25x25, 33x33, 50x50, 100x100 and 200x200 quads. Figure 6(b) shows the result of the 
combined tracking approach when different mesh sizes were used.  
For tracking a planar patch of size 31x31, the best result is achieved with mesh sizes larger 
than 33x33, whereas further subdivision does not improve the tracking. Using a mesh that is 
coarser with respect to the pixel size loses track easily and results in higher RMSE during 
tracking as shown in Figure 6(b). Such a coarse mesh is a under representation of the object, 
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resulting in higher tracking errors. By using a larger number of quads the mesh is able to 
account better for appearance changes due to sub-pixels movements. 
Another video of the same object was recorded at greater distances, resulting in a cube of 
size 17x17 pixels. The mask mesh used for tracking consists of 13x13, 16x16, 20x20, 25x25, 
33x33, 50x50 or 100x100 quads. The corresponding mean tracking errors are shown in Table 
6(c). Again the best tracking results are achieved with a mask mesh that contains more 
quads than the pixels covered by the object within the image.  
This shows that not only the super-resolution benefits from the tracking algorithm but also 
the super-resolution benefits tracking. The combined geometric and appearance-based 
tracking approach achieves best results when a fine model mesh is used. This fine mesh 
should ideally be subdivided such that every quad or triangle is smaller than a pixel when 
projected into the image. In practice a mesh that is double the size has proven to be the best 
trade-off between accuracy and speed. 

5.3 Expression tracking 
In order to evaluate the performance of the expression tracking approach, we recorded a 
video of a face with a resolution of 230x165 with mouth and eyebrow movements. One 
frame of this sequence is shown in Figure 7(a). The graph in Figure 7(b) compares the result 
of the expression tracking with the combined geometric and appearance based tracking 
approach without expression tracking. Frames 10 to 22 contain mouth openings and frames 
28 to 38 contain eyebrow movements. The graph shows clearly that the expression tracking 
improves the result of the combined tracking approach by reducing the RMSE for each 
frame. 
 

Fig. 7. Results of the expression tracking, (b) compares the tracking RMSE with and without 
expression tracking, (c) shows the mean tracking RMSE of 56 frames for different face 
resolutions. 

Furthermore we again cut the resolution of the video in halves three time resulting in face 
resolutions of 210x145, 105x73, 52x37 and 26x18 pixels in size. The mean tracking error 
across 56 frames for each resolution is shown in Table 7(c). While the difference in RMSE 
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Face Resolution With Expression Without Expression Improvement 
210 x 145 10.89 11.50 5.3% 
105 x  73 10.96 11.60 5.5% 
52 x  37 13.92 14.51 4.1% 
26 x  18 16.23 16.40 1.0% 
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the previous frame, while the appearance approach is based on the comparison of the 
current frame with the first frame. Thus, the combination is more stable and precise and able 
to track even small size faces down to a size of 28x20 pixels. 

5.2 Combined tracking and super-resolution 
We tested the performance of the combined geometric and appearance-based tracking 
algorithm with different mask sizes. As described in Section 3, super-resolution is only 
possible when the mask mesh is subdivided such that every quad or triangle is smaller than 
a pixel when projected into the image. The following experiment evaluates the effect of the 
mesh size on the tracking performance. 
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Fig. 6. Mean tracking RMSE across 100 frames for a planar objects, the front side of a cube 
(a). Using an object mask mesh that is finer than the object results in smaller tracking errors. 

The front side of a cube as shown in Figure 6(a) is tracked across 100 frames of size 640x480. 
This planar patch covers an area of 31x31 pixels within the image. For tracking this patch we 
used a 3D model mesh similar to the one in Figure 1. This mesh is equally subdivided into 
25x25, 33x33, 50x50, 100x100 and 200x200 quads. Figure 6(b) shows the result of the 
combined tracking approach when different mesh sizes were used.  
For tracking a planar patch of size 31x31, the best result is achieved with mesh sizes larger 
than 33x33, whereas further subdivision does not improve the tracking. Using a mesh that is 
coarser with respect to the pixel size loses track easily and results in higher RMSE during 
tracking as shown in Figure 6(b). Such a coarse mesh is a under representation of the object, 
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resulting in higher tracking errors. By using a larger number of quads the mesh is able to 
account better for appearance changes due to sub-pixels movements. 
Another video of the same object was recorded at greater distances, resulting in a cube of 
size 17x17 pixels. The mask mesh used for tracking consists of 13x13, 16x16, 20x20, 25x25, 
33x33, 50x50 or 100x100 quads. The corresponding mean tracking errors are shown in Table 
6(c). Again the best tracking results are achieved with a mask mesh that contains more 
quads than the pixels covered by the object within the image.  
This shows that not only the super-resolution benefits from the tracking algorithm but also 
the super-resolution benefits tracking. The combined geometric and appearance-based 
tracking approach achieves best results when a fine model mesh is used. This fine mesh 
should ideally be subdivided such that every quad or triangle is smaller than a pixel when 
projected into the image. In practice a mesh that is double the size has proven to be the best 
trade-off between accuracy and speed. 

5.3 Expression tracking 
In order to evaluate the performance of the expression tracking approach, we recorded a 
video of a face with a resolution of 230x165 with mouth and eyebrow movements. One 
frame of this sequence is shown in Figure 7(a). The graph in Figure 7(b) compares the result 
of the expression tracking with the combined geometric and appearance based tracking 
approach without expression tracking. Frames 10 to 22 contain mouth openings and frames 
28 to 38 contain eyebrow movements. The graph shows clearly that the expression tracking 
improves the result of the combined tracking approach by reducing the RMSE for each 
frame. 
 

Fig. 7. Results of the expression tracking, (b) compares the tracking RMSE with and without 
expression tracking, (c) shows the mean tracking RMSE of 56 frames for different face 
resolutions. 

Furthermore we again cut the resolution of the video in halves three time resulting in face 
resolutions of 210x145, 105x73, 52x37 and 26x18 pixels in size. The mean tracking error 
across 56 frames for each resolution is shown in Table 7(c). While the difference in RMSE 
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amounts to about 0.60 (between 5.5% and 4.1% improvement factor) for the first three 
resolution levels, a face resolution of 26x18 only results in a RMSE difference of 0.17 
compared to the tracking approach without expressions. This equals an improvement factor 
of only 1.0%. 
The smaller the resolution of the face, the larger the RMSE as shown in Figure 4(a) and 
Figure 7(c). A face that is captured in high-resolution, results in a large number of pixels 
representing this face. But the smaller the number of representative pixels, the more likely 
they are to change over time. Due to the discretisation of the imaging sensor certain face 
regions, e.g. the eyes, result in very few pixels being allocated to them. The colour value of 
these pixels is most likely to change over time as the camera or the face moves and these 
areas fall on or between different image pixels. Therefore, tracking expressions of low-
resolution faces does not improve the overall RMSE significantly. 

5.4 3D model-aided super-resolution 
In order to increase the resolution of the object of interest the object-specific 3D model must 
be subdivided into a fine mesh. Each quad or triangle must me smaller than a pixel when 
projected into the image to make super-resolution possible as illustrated in Figure 1. The 
possible increase in resolution depends on the size of the 3D model mesh. The finer the 
mesh, the larger the possible increase in resolution but however more frames are needed.  
The following experiments quantitatively evaluate the number of frames needed to achieve 
different resolutions. We therefore tracked a little cube across more than 200 frames of a 
video sequence recorded at a resolution of 320x240 with the cube of size 95x95. This video is 
sub-sampled three times resulting in resolutions of 160x120, 80x60, 40x30 and corresponding 
cube sizes of 48x48, 24x24, and 12x12 respectively. In order to diminish the effect of tracking 
errors the cube is tracked at the highest resolution of 95x95. The estimated pose parameters 
are then used for the cube of size 24x24 and 12x12. An example frame of both these 
resolutions is shown in Figure 8(a) and Figure 8(c) respectively. For comparison Figure 8(b) 
and Figure 8(d) show these frames after their resolution is doubled using bilinear 
interpolation. 
 

Fig. 8. Example frame of resolution (a) 80x60 and (c) 40x30 with cube sizes of 24x24 and 
12x12 respectively.  Figure (b) and (d) show these frames after they have been doubled in 
size using bilinear interpolation. 
For increasing the resolution of the cube of size 24x24 we used a 3D model as shown in 
Figure 1 and subdivided it into 25x25, 50x50 and 100x100 equal size quads. This mesh is 
projected into every frame of the sequence and the super-resolved 3D model ISR is created 
according to Equation 7 by combining 1, 10, 20, 50, 100 or 200 frames with the results shown 
in Figure 9. 
Using a mesh of size 25x25 cannot increase the resolution of a cube of size 24x24. Although, 
calculating the mean across about 20 frames removes the noise of the camera and partially 
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recovers the eyes of the duck that are not visible in the first frame as shown in Figure 9(c). 
Using a mesh that is double the size (50x50) results in a more detailed image but after about 
20 to 50 frames the maximal possible resolution is achieved and adding more frames does 
not improve the resolution further as shown in Figure 9(i) and Figure 9(j) respectively. 
 

Fig. 9. Super-Resolution results of a cube of resolution of 24x24 pixels using mesh sizes of 
25x25 (top), 50x50 (middle) and 100x100 (bottom) after 1, 10, 20, 50, 100 and 200 frames 
respectively. 

Using a mesh of size 100x100 equals a possible resolution increase of four times in each 
dimension. But to achieve this increase at least 50 frames are needed as shown in Figure 
9(p). But taking the mean across such a large number of frames also introduces noise as 
shown in Figure 9(r). This noise results from slightly misaligned frames and from the 
averaging process itself. 
The same experiment is done for the cube of size 12x12 using mesh sizes of 20x20, 40x40 and 
80x80. The result after combining 1, 10, 20, 50, 100 and 200 frames is shown in Figure 10. 
Using the mesh of size 20x20, which equals a resolution increase of 166%, requires about 20 
to 50 frames (Figure 10(c) and Figure 10(d)). Adding more frames does not improve the 
result further.  
Using a mesh of 40x40 results in a possible resolution increase of 3.3 times in each 
dimension and about 100 frames are needed to achieve this increase as shown in Figure 
10(k). Trying to increase the resolution 6.6 times requires a mesh size of 80x80 and about 200 
frames as shown in Figure 10(r). Even though the outer shape of the duck is recovered in 
greater detail, the overall result is very noisy and blurry as a result of taking the mean across 
200 frames. 
In practice it is therefore not recommended to increase the resolution of an object by more than 
2 to 3 times. The higher the increase in resolution the higher the number of frames needed to 
achieve this resolution which in turn results in more noise. It is therefore a trade-off between 
possible resolution increase and number of frames. Furthermore the tracking error ε in 
Equation 7 also influences the resulting super-resolution image. Large tracking errors lead to a 
misalignment of frames resulting in noisy and blurred super-resolution images. 

 
(a) (b) (c) (d) (e) 

 
(f) 

 
(g) (h) (i) (j) (k) 

 
(l) 

 
(m) (n) (o) (p) (q) 

 
(r) 



 State of the Art in Face Recognition 

 

184 

amounts to about 0.60 (between 5.5% and 4.1% improvement factor) for the first three 
resolution levels, a face resolution of 26x18 only results in a RMSE difference of 0.17 
compared to the tracking approach without expressions. This equals an improvement factor 
of only 1.0%. 
The smaller the resolution of the face, the larger the RMSE as shown in Figure 4(a) and 
Figure 7(c). A face that is captured in high-resolution, results in a large number of pixels 
representing this face. But the smaller the number of representative pixels, the more likely 
they are to change over time. Due to the discretisation of the imaging sensor certain face 
regions, e.g. the eyes, result in very few pixels being allocated to them. The colour value of 
these pixels is most likely to change over time as the camera or the face moves and these 
areas fall on or between different image pixels. Therefore, tracking expressions of low-
resolution faces does not improve the overall RMSE significantly. 
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In order to increase the resolution of the object of interest the object-specific 3D model must 
be subdivided into a fine mesh. Each quad or triangle must me smaller than a pixel when 
projected into the image to make super-resolution possible as illustrated in Figure 1. The 
possible increase in resolution depends on the size of the 3D model mesh. The finer the 
mesh, the larger the possible increase in resolution but however more frames are needed.  
The following experiments quantitatively evaluate the number of frames needed to achieve 
different resolutions. We therefore tracked a little cube across more than 200 frames of a 
video sequence recorded at a resolution of 320x240 with the cube of size 95x95. This video is 
sub-sampled three times resulting in resolutions of 160x120, 80x60, 40x30 and corresponding 
cube sizes of 48x48, 24x24, and 12x12 respectively. In order to diminish the effect of tracking 
errors the cube is tracked at the highest resolution of 95x95. The estimated pose parameters 
are then used for the cube of size 24x24 and 12x12. An example frame of both these 
resolutions is shown in Figure 8(a) and Figure 8(c) respectively. For comparison Figure 8(b) 
and Figure 8(d) show these frames after their resolution is doubled using bilinear 
interpolation. 
 

Fig. 8. Example frame of resolution (a) 80x60 and (c) 40x30 with cube sizes of 24x24 and 
12x12 respectively.  Figure (b) and (d) show these frames after they have been doubled in 
size using bilinear interpolation. 
For increasing the resolution of the cube of size 24x24 we used a 3D model as shown in 
Figure 1 and subdivided it into 25x25, 50x50 and 100x100 equal size quads. This mesh is 
projected into every frame of the sequence and the super-resolved 3D model ISR is created 
according to Equation 7 by combining 1, 10, 20, 50, 100 or 200 frames with the results shown 
in Figure 9. 
Using a mesh of size 25x25 cannot increase the resolution of a cube of size 24x24. Although, 
calculating the mean across about 20 frames removes the noise of the camera and partially 
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recovers the eyes of the duck that are not visible in the first frame as shown in Figure 9(c). 
Using a mesh that is double the size (50x50) results in a more detailed image but after about 
20 to 50 frames the maximal possible resolution is achieved and adding more frames does 
not improve the resolution further as shown in Figure 9(i) and Figure 9(j) respectively. 
 

Fig. 9. Super-Resolution results of a cube of resolution of 24x24 pixels using mesh sizes of 
25x25 (top), 50x50 (middle) and 100x100 (bottom) after 1, 10, 20, 50, 100 and 200 frames 
respectively. 

Using a mesh of size 100x100 equals a possible resolution increase of four times in each 
dimension. But to achieve this increase at least 50 frames are needed as shown in Figure 
9(p). But taking the mean across such a large number of frames also introduces noise as 
shown in Figure 9(r). This noise results from slightly misaligned frames and from the 
averaging process itself. 
The same experiment is done for the cube of size 12x12 using mesh sizes of 20x20, 40x40 and 
80x80. The result after combining 1, 10, 20, 50, 100 and 200 frames is shown in Figure 10. 
Using the mesh of size 20x20, which equals a resolution increase of 166%, requires about 20 
to 50 frames (Figure 10(c) and Figure 10(d)). Adding more frames does not improve the 
result further.  
Using a mesh of 40x40 results in a possible resolution increase of 3.3 times in each 
dimension and about 100 frames are needed to achieve this increase as shown in Figure 
10(k). Trying to increase the resolution 6.6 times requires a mesh size of 80x80 and about 200 
frames as shown in Figure 10(r). Even though the outer shape of the duck is recovered in 
greater detail, the overall result is very noisy and blurry as a result of taking the mean across 
200 frames. 
In practice it is therefore not recommended to increase the resolution of an object by more than 
2 to 3 times. The higher the increase in resolution the higher the number of frames needed to 
achieve this resolution which in turn results in more noise. It is therefore a trade-off between 
possible resolution increase and number of frames. Furthermore the tracking error ε in 
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Fig. 10. Super-Resolution results of a cube of resolution of 12x12 pixels using mesh sizes of 
20x20 (top), 40x40 (middle) and 80x80 (bottom) after 1, 10, 20, 50, 100 and 200 frames 
respectively. 

Simple objects like a cube allow for an equal subdivision of the 3D model mesh. However, 
more complex objects may require a 3D model that consists of different size quads or 
triangles, thus resulting in a varying resolution increase across the mask mesh. For 
increasing the resolution of faces, the CANDIDE-3 mask as shown in Figure 2 is used. This 
mask is finely sampled around the eyes, the mouth and the nose region. These areas are also 
the most textured and the most important part of the face and therefore a finer sampled 
mask allows for a larger increase in resolution in these areas. 
Evaluating the number of frames needed to achieve a certain resolution is more difficult 
using such a complex mask as the resolution increase varies across the entire mask due to 
different size triangles. In order to evaluate the minimum number of frames needed to 
create a face mask of higher resolution, faces are tracked in videos with minimal head 
movements in order to keep the tracking error to a minimum. The average sizes of the faces 
are 60x40 and 30x20 using videos of resolution 160x120 and 80x60 respectively. These 
resolutions are sub-sampled from the original video sequence recorded with 640x480. The 
mask mesh is manually fitted to the first frame of each sequence and then tracked fully 
automatically across more than 200 frames. 
The super-resolved mask ISR is calculated using between 1 to 200 frames with the smallest 
tracking RMSE according to Equation 7. The mean tracking RMSE amounted to 10.9 and 
14.9 for faces of size 60x40 and 30x20 respectively. We use the CANDIDE-3 mask that is 
subdivided three times as shown in Figure 2(d) for both face sizes. The high-resolution mask 
created from the 30x20 faces is then compared with a single frame of double the resolution 
(60x40) and the mask created from the 60x40 faces is compared with the face of 120x80 
respectively. We use the mean colour difference Ecolour to compare two face masks I1 and I2 
consisting of k triangles each 
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Figure 11 shows the results for six different persons. Common to all persons and face sizes is 
the strong error decrease within the first 20 to 30 frames. Within the first 20 frames faces of 
size 60x40 increase resolution most significantly with respect to a face of double the size. 
Faces of size 30x20 are smaller and therefore more frames are needed to achieve the same 
resolution increase using a mask mesh with the same number of triangles. After about 20 to 
30 frames the resolution increases most significantly. These results are comparable to the 
results of the cube shown in Figure 9 and Figure 10. 
 

 
Fig. 11. Quality of the super-resolved 3D face mask using different resolutions (60x40, 
dotted line and 30x20 solid line) and number of frames (x-aches). Source: (Kuhl et al.,2008) © 
2008 IEEE 

For a qualitative comparison the super-resolution result of person 4 is shown in Figure 12. 
The faces on the left show the facial mask that is textured with a single frame of face size 
60x40 (Figure 12(a)) and 30x20 (Figure 12(f)) respectively. The second, third and fourth 
collumn show the increase in resolution after 20 (Figure 12(b) and Figure 12(g)), 50 (Figure 
12(c) and Figure 12(h)) and 200 (Figure 12(d) and Figure 12(i)) frames have been added to 
the super-resolved mask.  
As the first step of the super-resolution optical flow algorithm is to double the size of the 
input images using interpolation techniques (see Section 2), we used bilinear interpolation to 
increase the size of the input video. The result after combing 200 frames of the interpolated 
input frames is shown in Figure 12(e) and Figure 12(j) for face sizes of 60x40 and 30x20 
respectively. Even though the input images are doubled in size the resulting super-resolved 
faces show less detail and are more blurred. Interpolation does not recover high-frequencies 
and on the contrary introduces further noise; it should therefore be avoided during the 
super-resolution process. 
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Fig. 12. Results of the combined tracking and super-resolution approach for face sizes 60x40 
(top) and 30x20 (bottom) after 1, 20, 50 and 200 frames respectively. The last column shows 
the result after 200 frames when the input images are interpolated to double the size using 
bilinear interpolation. Source: (Kuhl et al.,2008) © 2008 IEEE 

5.5 Comparison with super-resolution optical flow 
We are comparing our approach with super-resolution optical flow by applying both 
algorithms to video sequences recorded in our lab as well as surveillance video of faces. Our 
implementation of the super-resolution optical flow follows the first four steps as outlined 
in Section 2. We abstained from using deconvolution techniques as this is an additional 
option for both our approach and the optical flow method to further increase the quality of 
the super-resolved images. The optical flow between consecutive frames is calculated using 
(Gautama & van Hulle, 2002) and the mean is used to calculate the super-resolved image. 
At first we recorded a video sequence of a cube at 15 frames per second and with a 
resolution 320x240, where the cube is about 100x100 pixels in size. The proposed combined 
geometric and appearance based approach is used to track this cube across more than 100 
frames resulting in a mean tracking error of 9.16. The pose parameters are then used to 
project the 3D model into every image and k frames with the smallest tracking error are 
used to calculate the super-resolved image ISR according to Equation 7. 
The 3D model of the cube is subdivided into 400x400 quads before projected into the image 
which, under ideal conditions, equals a resolution increase of 400%. The result is shown in 
Figure 13. After about 20 frames (Figure 13(d) and Figure 13(j)) the maximum resolution 
increase is reached and further added frames result in increased blur due to tracking errors. 
For comparison we doubled the size of each frame using bilinear interpolation before 
creating the super-resolution image. Again a cube with 400x400 quads is used and the result 
is shown in Figure 13(m) to Figure 13(r). Even though the input images are doubled in size 
the resulting super-resolution images after about 20 frames (Figure 13(p)) do not show a 
significant resolution increase compared to the one without initial interpolation (Figure 
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13(j)). On the contrary, like in Figure 12, the resulting super-resolution images show a 
greater amount of blur as interpolation cannot recover high-frequency details. 
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Fig. 13. Result of the proposed combined tracking and super-resolution approach after 
combining (a) 1, (b) 5, (c) 10, (d) 20, (e) 50, (f) 100 frames. Figure (g)-(l) show cropped parts 
of every Figure (a)-(f) respectively and Figure (m)-(r) show the result after each input image 
was doubled in size using bilinear interpolation. 
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Fig. 14. Result of the super-resolution optical flow algorithm after taking the mean across (a) 
1, (b) 5, (c) 10, (d) 20, (e) 50 and (f) 100 frames. A cropped part of each image is shown in (g)-
(l) respectively. 

Super-resolution optical flow increase the resolution of each frame by interpolation, 
combining several frames afterwards enhances the quality of the super-resolved image but 
does not further increase the resolution. The increase in resolution is usually fixed at 200%. 
This is contrary to our approach as we avoid interpolation to allow for less blurred images. 
But optical flow based methods require less frames as shown in Figure 14. The quality of the 



 State of the Art in Face Recognition 

 

188 

(a) (b) (c) (d) 
 

(e) 

(f) (g) (h) (i) 
 

(j) 

Fig. 12. Results of the combined tracking and super-resolution approach for face sizes 60x40 
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bilinear interpolation. Source: (Kuhl et al.,2008) © 2008 IEEE 
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13(j)). On the contrary, like in Figure 12, the resulting super-resolution images show a 
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Fig. 13. Result of the proposed combined tracking and super-resolution approach after 
combining (a) 1, (b) 5, (c) 10, (d) 20, (e) 50, (f) 100 frames. Figure (g)-(l) show cropped parts 
of every Figure (a)-(f) respectively and Figure (m)-(r) show the result after each input image 
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Fig. 14. Result of the super-resolution optical flow algorithm after taking the mean across (a) 
1, (b) 5, (c) 10, (d) 20, (e) 50 and (f) 100 frames. A cropped part of each image is shown in (g)-
(l) respectively. 

Super-resolution optical flow increase the resolution of each frame by interpolation, 
combining several frames afterwards enhances the quality of the super-resolved image but 
does not further increase the resolution. The increase in resolution is usually fixed at 200%. 
This is contrary to our approach as we avoid interpolation to allow for less blurred images. 
But optical flow based methods require less frames as shown in Figure 14. The quality of the 
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optical flow super-resolved image increases most significantly within the first 5 to 10 frames 
as shown in Figure 14(b) and Figure 14(c). This corresponds to the number of frames most 
optical flow based super-resolution methods use, like in (Baker & Kanade, 1999). The 
addition of more frames results in more blurred and noisy images as estimating an accurate 
dense flow field across a large number of frames is difficult and erroneous especially in low-
resolution images. This is clearly visible in Figure 14(e) and Figure 14(f). Estimating a dense 
optical flow field across 50 to 100 frames is erroneous and the calculation of the mean across 
such a large number of frames results in artefacts and distortion. 
 

Fig. 15. (a) Cropped original frame with a cube of 100x100 pixels, (b) result after applying 
bilinear interpolation, (c) result of the optical flow after 10 frames without interpolation, (d) 
result of the optical flow after 10 frames with interpolation, (e) result of our approach after 
20 frames with interpolation (f) result of our approach after 20 frames without interpolation, 
and (g) cropped cube of size 400x400 pixels. 

Figure 15 summarises the results of both methods. The original video is recorded at a 
resolution of 320x240 and the cube is of size 100x100. A single cropped frame is shown in 
Figure 15(a). The simplest way of increasing the resolution is by interpolation, the result of 
bilinear interpolation is therefore shown in Figure 15(b). First we applied the super-
resolution optical flow algorithm without an initial resolution increase by interpolation. The 
result after taking the mean across 10 frames is shown in Figure 15(c). The quality of the 
image is improved, i.e. the image noise is reduced, but the resolution remained unchanged. 
Interpolation is needed to increase the resolution, thus Figure 15(d) shows the result of the 
optical flow algorithm using bilinear interpolation to double the resolution of the input 
frames. 
We also applied our approach to the video sequence that has been doubled in size using 
interpolation. The resulting super-resolved image, as shown in Figure 15(e), is more blur red 
and shows less detail, as a result of the interpolation, compared to the super-resolved image in 
Figure 15(f) that is calculated from the original input sequence. Furthermore the subdivision of 
the 3D model into a fine mesh allows for a greater increase in resolution compared to optical 
flow based methods. Lastly, Figure 15(g) shows a cropped image of the cube of size 400x400 
pixels, which equals a resolution increase of 400% compared to Figure 15(a). 
Furthermore, we tested our approach on non-planar and non-rigid objects, in this case that 
of surveillance video of people entering a bus. The video is recorded with a resolution of 
640x480 at 23 frames per second due to dropped frames. Each frame is sub-sampled to half 
the resolution resulting in 320x240 pixels. The face within one frame is about 32x25 pixels, a 
single cropped frame of two different persons is shown in Figure 16(a) and Figure 16(f). We 
applied the combined geometric and appearance based approach to track these faces across 
about 40 frames.  
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Fig. 16. Original image (a) and (f), cropped face (b) and (g), bilinear interpolation (c) and (h), 
optical flow result combining 20 frames (d) and (i) and our approach combining 20 frames 
(e) and (j). 

We omitted the use of the extended expression tracking approach because we assume that 
people have a fairly neutral expression when entering the bus. Furthermore the low 
resolution of the face does not justify the runtime overhead of the proposed expression 
tracking. Also the difference in tracking error when tracking with and without expressions 
decreases with the resolution as shown in Section 4.3. If expressions occur during tracking 
nonetheless the tracking error will increase. But as the super-resolved image is created by 
using only frames below the threshold ε (Equation 7), frames with expressions will not be 
used and therefore not affect the result. 
Optical flow is feasible for tracking planar objects like the front side of a cube in the last 
experiment but tracking non-planar and non-rigid objects like faces poses more challenges, 
especially when trying to estimate a dense flow field across a large number of frames. The 
result of the optical flow combining 20 frames is shown in Figure 16(d) and Figure 16(i). The 
chin area in Figure 16(d) shows slight distortion due to erroneous flow vectors. Figure 16(b) 
and Figure 16(g) show the initial frames after they have been doubled in size using bilinear 
interpolation. 
A comparative result of the combined tracking and super-resolution method after 20 frames 
is shown in Figure 16(e) and Figure 16(j). The super-resolved faces of our approach are less 
blurred and shows more detail compared to the result of the optical flow. Again the initial 
interpolation introduces artificial random noise, whereas our approach does not need an 
initial interpolation; but the achieved resolution increase after 20 frames is equal or slightly 
higher. 
Another advantage of our approach is the further use of the created super-resolved 3D 
model. In case of faces these models can be used to generate various face images under 
different pose and lighting in order to improve the training of classifiers or the super-
resolved 3D model itself can be used for 3D face recognition. 
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Fig. 16. Original image (a) and (f), cropped face (b) and (g), bilinear interpolation (c) and (h), 
optical flow result combining 20 frames (d) and (i) and our approach combining 20 frames 
(e) and (j). 

We omitted the use of the extended expression tracking approach because we assume that 
people have a fairly neutral expression when entering the bus. Furthermore the low 
resolution of the face does not justify the runtime overhead of the proposed expression 
tracking. Also the difference in tracking error when tracking with and without expressions 
decreases with the resolution as shown in Section 4.3. If expressions occur during tracking 
nonetheless the tracking error will increase. But as the super-resolved image is created by 
using only frames below the threshold ε (Equation 7), frames with expressions will not be 
used and therefore not affect the result. 
Optical flow is feasible for tracking planar objects like the front side of a cube in the last 
experiment but tracking non-planar and non-rigid objects like faces poses more challenges, 
especially when trying to estimate a dense flow field across a large number of frames. The 
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interpolation introduces artificial random noise, whereas our approach does not need an 
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model. In case of faces these models can be used to generate various face images under 
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6. Conclusion     
We proposed a combined tracking and super-resolution algorithm that increases the 
resolution online during the tracking process. An object-specific 3D mask mesh is used to 
track non-planar and non-rigid objects. This mask mesh is then subdivided such that every 
quad is smaller then a pixel when projected into the image. This makes super-resolution 
possible and in addition improves tracking performances. Our approach varies from 
traditional super-resolution as the resolution is increased on mask level and only for the 
object of interest rather than on image level and for the entire scene.  
We demonstrated our combined geometric and appearance based tracking approach on 
sequences of different size faces and showed that our approach is able to track faces down to 
28x20 pixels in size. The combination of these two tracking algorithms achieves better 
results than each method alone.  
The tracking algorithm is further extended to allow for the non-rigidity of objects. We 
applied this to faces and expressions. Experiments showed that the proposed method for 
expression tracking reduces the mean tracking error and thus allows for a better alignment 
of consecutive frames, which is needed to create super-resolution images. 
The proposed 3D model-aided super-resolution allows for a high increase in resolution; the 
finer the 3D mesh the higher the possible increase in resolution. Therefore we 
experimentally estimated the number of frames needed to achieve a certain resolution 
increase. In practice about 20 to 30 frames are needed to double the resolution. Increasing 
the resolution further is limited by the number of frames used as well as the tracking error. 
Large tracking errors and the averaging process across a large number of frames introduces 
noise that decreases the quality of the super-resolved image. 
We demonstrated our method on low resolution video of faces that are acquired both in the 
lab and in a real surveillance situation. We show that our method outperforms the optical 
flow based method, and performs consistently better for longer tracking durations in video 
that contain non-planar and non-rigid low-resolution objects. The combined tracking and 
super-resolution algorithm increases the resolution on mask level and makes interpolation, 
the first step of the optical flow algorithm, redundant. The resulting super-resolved 3D 
model is less blurred by achieving the same or a higher resolution increase. This in turn 
makes deblurring, the last step of the optical flow algorithm, unnecessary. Furthermore the 
super-resolved 3D model is created online during tracking and improves with every frame, 
whereas super-resolution optical flow incorporates consecutive and previous frames which 
prohibits its usage as an online stream processing algorithm. 
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1. Introduction      
The face recognition problem has been faced for more than 30 years. Although a lot of 
research has been done, much more research is and will be required in order to end up with 
a robust face recognition system with a potential close to human performance. Currently 
face recognition systems, FRS, report high performance levels, however achievement of 
100% of correct recognition is still a challenge. Even more, if the FRS must work on non-
cooperative environment its performance may decrease dramatically. Non-cooperative 
environments are characterized by changes on; pose, illumination, facial expression. 
Therefore FRS for non-cooperative environment represents an attractive challenge to 
researchers working on the face recognition area. 
Most of the work presented in the literature dealing with the face recognition problem 
follows an engineering approach that in some cases do not incorporate information from a 
psychological or neuroscience perspective. It is our interest in this material, to show how 
information from the psychological and neuroscience areas may contribute in the solution of 
the face recognition problem. The material covered in this chapter is aimed to show how 
joint knowledge from human face recognition and unsupervised systems may provide a 
robust alternative compared with other approaches. 
The psychological and neuroscience perspectives shows evidence that humans are deeply 
sensible to the face characteristic configuration, but the processing of this configuration is 
restricted to faces in a face-up position (Thompson, 1980), (Gauthier, 2002). This 
phenomenon suggests that the face perception process is a holistic configurable system. 
Although some work has been done in these areas, it is still uncertain, how the face feature 
extraction processes is achieved by a human being. An interesting case is about newborn 
face feature extraction. Studies on newborns demonstrate that babies perceive a completely 
diffuse world, and their face perception and recognition is based on curves and lines from 
the face (Bower, 2001), (Johnson, 2001), (Nelson, 2001), (Quinn et al., 2001) and (Slater A. & 
Quinn, 2001). 
Nowadays, there exists some research work on face recognition that has intended to 
incorporate psychological and neuroscience perspectives (Blanz & Vetter, 2003), (Burton et 
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al., 1999). However, the solution to the face recognition problem is stated only on bases of 
matrix operations and general pattern recognition methodologies, without considering other 
areas as visual perception. 
On the engineering area, patter recognition systems approaches offer a large variety of 
methods. In recently years, unsupervised systems have provided a new paradigm for the 
pattern recognition problem (Chacon & Ramirez, 2006a). These systems allow data mining 
or data discovering information that traditional pattern recognition systems do not 
incorporate. This feature makes it possible to find information in the feature vectors that 
may not be considered in traditional pattern recognition approaches. 
Based on these points, we present in this chapter a new face recognition approach taking 
into account recently face perception theories and an unsupervised classifier in order to 
improve the performance of the FRS in non-cooperative environments. 

2. Literature analysis 
This section presents a survey of 30 representative papers published in recently years. The 
purpose of this analysis is to provide the reader with a flavor of the variety of paradigms 
used in the face recognition problem, and to propose a method to compute an index 
performance of such methods. Table 1 shows the 30 published works analyzed. The 
numbers on the column No. are used later as references in figures and tables.  
The first analysis shown in Table 2 is the robustness of the method with respect to variations 
on face; Pose, Illumination, Expression and / or Rotation. We can observe from Table 2 that 
only one method assumes tolerance to PIE/R, five of the methods are tolerant to PIE, eight 
only consider robustness to two variations. Eight methods are designed to be invariant to 
only one variation, and eight methods are not tolerant to any variation. The most 
considerable change in the works is E, followed by P, I, and the less is R. The performances 
reported vary from good, No. 1, to very poor No.5. 
Figure 1 illustrates the feature extraction methods used in these papers, and Figure 2 
shows the type of classifier used. The feature extraction methods are 3D models, 
Fisher´s Linear Discriminant FLD, Discrete Cosine Transform DCT, Linear Discriminant 
Analysis LDA, Principal Component Analysis PCA, wavelet based, Bayesian and other 
methods. It was observed that feature extraction methods that represent data in sub-
spaces are the most commonly used.  Among the classifier methods the Euclidean 
distance is the most used, followed by other methods, and the artificial neural network 
method approach.  
With respect to the data bases, ORL, YALE, AR and MIT, are among the most used data 
bases. The ORL data base presents variations on pose, illumination, and expression (Li & 
Jain, 2004), (Samaria & Harter, 1994), (Olivetti, 2006). YALE has face images with 
individuals in different conditions, with and without glasses, changes in illumination, and 
expression (Li & Jain, 2004), (Yale, 2002). The AR data base includes changes on facial 
expression, illumination, and occlusion (Li & Jain, 2004), (Martinez & Benavente, 1998). 
The MIT data base is composed of face images involving variations on pose, illumination 
and facial expression (Weyrauch et al., 2004). Some examples of these data bases are 
shown in Figure 3.  
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No. Publication 
1 Deformation analysis for 3d face matching (Lu  & Jain, 2005) 
2 Discriminative common vectors for face recognition (Cevikalp et al., 2005) 
3 Face recognition using laplacianfaces (He  et al.,  2005) 

4 High-Speed face recognition based on discrete cosine transform and rbf neural 
networks (Er et al.,  2005) 

5 Locally linear discriminant analysis for multimodal distributed classes for face 
recognition with a single model image (Kim  & Kittler, 2005) 

6 Wavelet-based pca for human face recognition (Yuen, 1998) 
7 Real-time embedded face recognition for smart home (Zuo  & de With, 2005) 

8 Acquiring linear subspaces for face recognition under variable lighting (Lee & 
Kriegman, 2005) 

9 Appearance-Based face recognition and light-fields (Gross et al., 2004) 

10 Bayesian shape localization for face recognition using global and local textures (Yan et 
al.,  2004) 

11 A unified framework for subspace face recognition (Wang  & Tang, 2004) 
12 Probabilistic matching for face recognition (Moghaddam  & Pentland, 1998) 
13 Face recognition based on fitting a 3d morphable model (Blanz & Vetter, 2003) 

14 Face recognition using artificial neural network group-based adaptive tolerance (gat) 
trees (Zhang  & Fulcher, 1996) 

15 Face recognition by applying wavelet subband representation and kernel associative 
memory (Zhang et al., 2004) 

16 Face recognition using kernel direct discriminant analysis algorithms (Lu et al., 2003) 

17 Face recognition using fuzzy integral and wavelet decomposition method (Kwak  & 
Pedrycz, 2004) 

18 Face recognition using line edge map (Gao  & Leung, 2002) 
19 Face recognition using the discrete cosine transform (Hafed & Levine, 2001) 

20 Face recognition system using local autocorrelations and multiscale integration 
(Goudail et al., 1996) 

21 Face recognition using the weighted fractal neighbor distance (Tan & Yan, 2005) 

22 Gabor-Based kernel pca with fractional power polynomial models for face recognition 
(Liu, 2004) 

23 Gabor wavelet associative memory for face recognition (Zhang et al., 2005) 
24 N-feature neural network human face recognition (Haddadnia  & Ahmadi, 2004) 

25 GA-Fisher: a new lda-based face recognition algorithm with selection of principal 
components (Zheng et al., 2005) 

26 Kernel machine-based one-parameter regularized fisher discriminant method for face 
recognition (Chen et al., 2005) 

27 Generalized 2d principal component analysis (Kong  et al., 2005) 

28 Face detection and identification using a hierarchical feed-forward recognition 
architecture (Bax et al., 2005) 

29 Nonlinearity and optimal component analysis (Mio et al.,  2005) 

30 Combined subspace method using global and local features for face recognition (Kim  
et al., 2005) 

Table 1. List of analyzed references. 
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25 GA-Fisher: a new lda-based face recognition algorithm with selection of principal 
components (Zheng et al., 2005) 

26 Kernel machine-based one-parameter regularized fisher discriminant method for face 
recognition (Chen et al., 2005) 

27 Generalized 2d principal component analysis (Kong  et al., 2005) 

28 Face detection and identification using a hierarchical feed-forward recognition 
architecture (Bax et al., 2005) 

29 Nonlinearity and optimal component analysis (Mio et al.,  2005) 

30 Combined subspace method using global and local features for face recognition (Kim  
et al., 2005) 

Table 1. List of analyzed references. 
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No. 1 2 3 4 5 6 7 8 9 10 
P           
I           
E           
R           

%Rec. 91.00 98.34 91.96 91.20 53.00 - 95.0 98.82 70.65 93.66 
No. 11 12 13 14 15 16 17 18 19 20 

P           
I           
E           
R           

%Rec. 96.0 89.5 82.70 - 91.20 - 99.24 73.30 84.58 95.00 
No. 21 22 23 24 25 26 27 28 29 30 

P           
I           
E           
R           

%Rec. 67.40 95.30 99.30 99.50 89.63 92.03 95.48 79.00 93.00 97.00 

Table 2.  Robustness analysis with respect to Pose, Illumination, Expression, and Rotation.  
 

 
Fig. 1.  Feature extraction methods.  3D models, Fisher´s Linear Discriminant, Discrete 
Cosine Transform, Linear Discriminant Analysis, Principal Component Analysis, Wavelet 
Transform, Bayesian  methods, other methods. 
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Fig. 2.  Analysis by classifier scheme. Support Vector Machine, Euclidean distance, Artificial 
Neural Networks, Convolution , Manhattan, Other.  

Since the experimentation to obtain the performance of the proposed method in the 
analyzed works is different, it is difficult to achieve a comparison among the methods. 
Therefore, in order to obtain a comparable performance index we proposed one. The 
proposed performance index assigns a weight of 10 to the number of individual that can be 
recognized by the system and a weight of 90 to the recognition performance. These weights 
were assumed arbitrarily and can be adjusted to a particular criterion. The performance 
index is defined as follows. Let maxp be the maximum recognition performance of FRS and 

kprec the recognition of the k th− method in its different performances.  Let also maxn be the 
maximum number of faces that the k th− method can recognize. knfaces is the number of 
individuals that the k th−  method can recognize for { }1,2,3,...,k N= . Then the performance 
index is given by 

 ( )max maxmax ,       100kp prec p= <   (1) 

 ( )max max kn nfaces=   (2) 

 max maxk k
k

prec nfaces

prec p nfaces nr
w w
× ×

= +   (3) 

where kr  is the proposed performance index of the k th− method. precw is the facial 
recognition performance weight, and nfacesw the weight for the number of individuals that 
can be recognized. Using this performance index, the best method is the k th− method that 
maximizes 

 ( )max max kd r=   (4) 
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Fig. 3.  Example of data base images.  a) ORL,  b) YALE,  c) AR, and d) MIT. 

Fig. 4. shows the summary of the performance of the best three methods for each 
combination of robustness. In Figure 4, the bars indicate the recognition performance for 
each method, and the lines indicate the number of faces that each method can recognize.  
It can be noticed that the performance of the method increases as the number of faces 
decreases and vice versa. It can also be observed that the methods No. 22 (Liu, 2004), No. 17 
(Kwak & Pedrycz, 2004) and No. 3 (He et al., 2005) appear like best methods in more than 
one robustness category. 
A summary of the two best methods is shown in Table 3. It shows the classifier type, and the 
face feature extraction method used. The best method tolerant to PIE has a performance of 
91.96%. From Table 3 it is observed that methods that appear more frequently among the 
best face feature extraction are based on wavelets. It is also noticed that most of the methods 
are baseed on simple classifiers like nearest-neighbor, which open the opportunity to 
investigate with other classifiers like support vector machine, and artificial neural networks 
in order to improve their performance. 
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Fig. 4.  General results of the evaluation. Bars indicate the percentage of performance. Black 
lines indicate the number of individual that the method can recognize. 

Tolerant to No. Classifier Characteristics 

P 10 Euclidian distance Gabor wavelet representation y Bayesian 
Shape Localization 

P 22 Nearestneighbor using  
Euclidean distance 

Gabor wavelet representation of face images 
and the kernel PCA method 

I 8 9 illumination points(9PL) 9 illumination points(9PL) 

I 17 Euclidian distance and 
fuzzy integral Wavelet decomposition, Fisherface method 

E 23 GWAM Gabor wavelet associative memory GWAM 
E 24 RBF Neural Network Ellipse of a facial image 
PI 1 SVM Deformation analysis of a 3D figure 

PI 3 Nearestneighbor using  
Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigenfunctions of the Laplace Beltrami 

operator on the face manifold 

PE 22 Nearestneighbor using  
Euclidean distance 

Gabor wavelet representation of face images 
and the kernel PCA method 

PE 27 Nearest-neighborhood K2DPCA 

IE 17 Euclidian distance and 
fuzzy integral Wavelet decomposition, Fisherface method 

IE 26 RBF kernel function K1PRFD algorithm 

PIE 3 Nearestneighbor using  
Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigen functions of the Laplace Beltrami 

operator on the face manifold 

PIE 25 Optimal projection matrix 
of GA-Fisher GA-Fisher 

Table 3. Summary of the two best methods. 

Paper number

Number  
of faces  Performance 



 State of the Art in Face Recognition 

 

200 

 
a) 

 
b) 

 

 

 
c) 

 
d) 

Fig. 3.  Example of data base images.  a) ORL,  b) YALE,  c) AR, and d) MIT. 

Fig. 4. shows the summary of the performance of the best three methods for each 
combination of robustness. In Figure 4, the bars indicate the recognition performance for 
each method, and the lines indicate the number of faces that each method can recognize.  
It can be noticed that the performance of the method increases as the number of faces 
decreases and vice versa. It can also be observed that the methods No. 22 (Liu, 2004), No. 17 
(Kwak & Pedrycz, 2004) and No. 3 (He et al., 2005) appear like best methods in more than 
one robustness category. 
A summary of the two best methods is shown in Table 3. It shows the classifier type, and the 
face feature extraction method used. The best method tolerant to PIE has a performance of 
91.96%. From Table 3 it is observed that methods that appear more frequently among the 
best face feature extraction are based on wavelets. It is also noticed that most of the methods 
are baseed on simple classifiers like nearest-neighbor, which open the opportunity to 
investigate with other classifiers like support vector machine, and artificial neural networks 
in order to improve their performance. 

Face Recognition Based on Human Visual Perception Theories and Unsupervised ANN 

 

201 

88.00

90.00

92.00

94.00

96.00

98.00

100.00

10 22 27 29 8 17 17 23 24 25 1 3 3 22 27 26 29 17 25 1 3
0

50

100

150

200

250
    

 P
    

 I
    

 E
    

 PI
    

 PE
    

 IE
    

 PIE

 
 
 

Fig. 4.  General results of the evaluation. Bars indicate the percentage of performance. Black 
lines indicate the number of individual that the method can recognize. 

Tolerant to No. Classifier Characteristics 

P 10 Euclidian distance Gabor wavelet representation y Bayesian 
Shape Localization 

P 22 Nearestneighbor using  
Euclidean distance 

Gabor wavelet representation of face images 
and the kernel PCA method 

I 8 9 illumination points(9PL) 9 illumination points(9PL) 

I 17 Euclidian distance and 
fuzzy integral Wavelet decomposition, Fisherface method 

E 23 GWAM Gabor wavelet associative memory GWAM 
E 24 RBF Neural Network Ellipse of a facial image 
PI 1 SVM Deformation analysis of a 3D figure 

PI 3 Nearestneighbor using  
Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigenfunctions of the Laplace Beltrami 

operator on the face manifold 

PE 22 Nearestneighbor using  
Euclidean distance 

Gabor wavelet representation of face images 
and the kernel PCA method 

PE 27 Nearest-neighborhood K2DPCA 

IE 17 Euclidian distance and 
fuzzy integral Wavelet decomposition, Fisherface method 

IE 26 RBF kernel function K1PRFD algorithm 

PIE 3 Nearestneighbor using  
Euclidean distance 

The Laplacianfaces are obtained by finding 
the optimal linear approximations to the 
eigen functions of the Laplace Beltrami 

operator on the face manifold 

PIE 25 Optimal projection matrix 
of GA-Fisher GA-Fisher 

Table 3. Summary of the two best methods. 

Paper number

Number  
of faces  Performance 



 State of the Art in Face Recognition 

 

202 

At this point, we have presented an analysis of reported work on FRS considering, 
robustness, features used and type of classifiers. In the next section, we present important 
results on human face perception theory that can be considered in the design of new FRS. 

3. Human facial perception theory 
Notwithstanding the tremendous effort to solve the face recognition system, it is not 
possible yet, to have a FRS that deploys effectively in unconstrained environments, tolerant 
to illumination, rotation, pose, expression, noise, and viewing distance. The most efficient 
system without any doubt is the human system, therefore, it makes sense to try to discover 
the secret of this system. 
There are some studies in the fields of psychology and neuroscience related to face 
recognition (Thompson, 1980), (Gauthier & Tanaka, 2002), (Haxby et al., 2001), (Kalocsai, 
1998), (Bower, 2001), (Mareschal & Thomas, 2006). However, aside from the diversity of 
experiments and approaches, it is notorious that there is not a final conclusion about 
questions like; What features does the brain use to recognize a face?, Is there a specialized 
region of the brain for face recognition?. From the psychological and neuroscience point of 
view there exists evidence that humans are very sensible to face configuration, that is, 
relationship among the face constituents, nose, mouth, eyes, etc. But, the process is related 
only to upright faces (Thompson, 1980), (Gauthier & Tanaka, 2002). This phenomenon is 
known as the “Margaret Thatcher Illusion”, (Sinha, 2006) and (Thompson, 1980). Figure 6 
illustrates this phenomenon. Apparently the brain does not perceive differences between a 
modified upright face and a normal face, Figures 6a and 6b. This is because for the brain it is 
easier to process an inverted face. However, when the face that apparently does not have 
differences in comparison with the normal face is rotated, we can perceive the differences 
between these two faces, Figure 6c and 6d. This phenomenon indicates that it is possible that 
face perception is a holistic – configural system, or configuration based. 
 

    
                   a)                                     b)                                  c)                                   d) 

Fig. 6. Examples of the “Margaret Thatcher Illusion”.  a) Upright face with eyes inverted, b) 
normal upright face, c) and d)  corresponding right faces of a) and b) 

The work in (Gauthier & Tanaka, 2002) distinguish between two concepts; holistic – inclusive 
and holistic – configural. Holistic – inclusive is defined as the use of a part of an object even 
though it is said to be ignored. On the other hand, holistic – configural is defined as the use of 
relations among the parts of the object. Therefore, under a holistic – configural approach it is 
important to consider those relationships to achieve a good recognition performance. 
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In other studies, the area of neuroscience has suggested that the face recognition process is 
achieved in the brain by a specialized region (Thompson, 1980), (Haxby et al., 2001). These 
studies are based on analysis of PET and MRI images during object and face recognition 
experiments by humans. The laterar fusiform gyrus or Fusiform Face Area, region shows 
activity during the face recognition task, but this activity is not detected during object 
recognition (Kanwisher, 1997), (Tong et al., 2000). 
Other evidence suggests a specific region in the brain related to the face identification that is 
related to the disease called prosopagnosia. People with this problem can recognize objects 
and face expressions but not faces.  
Notwithstanding all this research it is not possible yet, to define a coherent theory for the 
face recognition process in humans. Nevertheless, some works, (Haxby et al., 2001), 
(Kanwisher, 2006), (Kalocsai, 1998), can state guidelines that can improve the performance 
of computer FRS. For example the work in (Bower, 2001) indicates that newborns perceive a 
fuzzy world and they resort to line and curve face shapes for face recognition. Figure 7 
illustrates the perception and visual sharpness of newborns during their development 
(Brawn, 2006). The sequence is Figure 7a newborn, 7b four weeks, 7c eight weeks, 7d three 
months, and 7e six months. The work in (Peterson & Rhodes, 2003) demonstrates that lines 
are better features in the holistic configuration to provide discrimination among other type 
of geometric objects. This could lead to the fact of why newborns have the ability to 
recognize people using diffuse lines features. 
 

 
a) b) c) 

  
d) e) 

Fig. 7. Newborn visual perception variation. a) Newborn, b) 4 weeks, c) 8 weeks, d) 3 
months, e) 6 months. From professor Janice Brown’s class presentations (Brawn, 2006). 
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As a conclusion of this section we recommend the work reported by Sinha (Sinha et al., 
2006), where the reader could find nineteen important points a computer vision research 
interested on face recognition should consider in FRS design. Among those points we can 
mention; human recognize familiar faces in very low resolution images, high – frequency 
information by itself is insufficient for good face recognition performance, facial features are 
processed holistically, pigmentation cues are at least as important as shape cues. 
These points are results of human visual perception experiments that are related to the main 
idea presented in this section, and more details can be found in that reference. 

4. Face feature lines, hough-KLT human facial perception theory 
Considering the theories presented in section 3 we decided to implement a face recognition 
scheme based on facial features containing information of the most prominent lines in low 
resolution faces. Besides the perceptual justification of this theory, an engineering 
justification to use features lines are the works reported in (Zhao et al., 2003) where lines are 
combined with PCA and (Konen , 1996), where the ZN-Face algorithm is able to compare 
drawing faces against gray scale faces using lines. Besides, other works show the 
advantages, like representation simplicity (Singh et al., 2003), low computational cost (Singh 
et al., 2002), invariance tolerance of face recognition algorithms based on lines, (Aeberhard 
& del Vel, 1998) and (Aeberhard & de Vel, 1999).  

4.1 Face feature lines 
The proposed method is based on the features that we will denominate, face feature lines, 
FFL.  FFL are prominent lines in low resolution face images, and can be extracted using the 
Hough transform. The Hough transform is a transformation that allows to detecting 
geometric patterns in images, like lines, circles, and ellipses.  The Hough transform, HT, 
works on a parametric space to define a line by 

 cos sinx yρ θ θ= +   (5) 

where x and y represent the coordinate of a pixel, ρ is the distance of the line to the origin, 
and θ  is the angle of the line with respect the horizontal axis. FFL can be extracted from the 
HT by obtaining the maximum values in the transformation. We consider that four face 
feature lines are enough to represent a face, based on the experiments related to the 
newborns vision system. These four FFL have shown significant improvement in the 
performance of fuzzy face recognition systems (Chacon et al., 2006b). The information of 
these four FFL will be included as components of the feature vector which is defined with 
detail on further subsections. Figure 8 illustrates how the FFL are obtained. 
The feature vector including the FFL is generated as follows: 
Step 1.   Find the four maximum peak of the HT. 
Step 2.   Obtain the four characteristic lines coordinates. 
Step 3.   Encode the coordinates information by taking the value of the first coordinate of the 

i-th line, 1ix  and add it to 1
1000

iy , and include the result to 
1i

l . 

Step 4.  Take the value of the second coordinate of the i-th line, ix2  and add it to 
1000

2iy , and 

include the result to 
2i

l .  
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The FFL feature vector can be defined by 
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a) b) c) d) 

Fig. 8. FFL extraction: a) Original image, b) Face edges, c) Accumulator of the HT. d) 
Original image plus its four FFL. 

The iz vector must be concatenated with the original image ( ),I x y , in a canonical form 
(vector column) xyi , to construct the final feature vector  

 [ ]i xy i xy+ =x z i   (7) 

The vector iz  is linked to the information of the original image in order to contribute and 
complement the face information representation before the transformation via KLT. 

4.2 Principal component analysis and Karhunen-Loeve transformation 
The feature vector is now processed by Principal Component Analysis, PCA, in order to 
reduce the features dimensionality. This reduction is achieved by the PCA that transforms 
the representation space X into a new space Y, in which the data are uncorrelated.  The 
covariance matrix in this space is diagonal.  The PCA method leads to find the new set of 
orthogonal axis to maximize the variance of the data.  The PCA transformation is 
accomplished by   
Step 1. The covariance matrix CovX  is calculated over the input vectors set ix  that  

corresponds to i facial images represented as vectors x. The covariance is defined   as 

 ( )( )
1

1Cov
1

Tn

i i
i

n
=

= − −
− ∑X x x x x   (8) 

where x  denotes the mean of each variable of the vector x , and n  is the amount  
of input vectors.   

  Step 2. The n eigenvalues of CovX  are extracted and defined as 1 2, ,... nλ λ λ , where  

1 2 ... nλ λ λ≥ ≥ ≥ .   
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(vector column) xyi , to construct the final feature vector  

 [ ]i xy i xy+ =x z i   (7) 

The vector iz  is linked to the information of the original image in order to contribute and 
complement the face information representation before the transformation via KLT. 

4.2 Principal component analysis and Karhunen-Loeve transformation 
The feature vector is now processed by Principal Component Analysis, PCA, in order to 
reduce the features dimensionality. This reduction is achieved by the PCA that transforms 
the representation space X into a new space Y, in which the data are uncorrelated.  The 
covariance matrix in this space is diagonal.  The PCA method leads to find the new set of 
orthogonal axis to maximize the variance of the data.  The PCA transformation is 
accomplished by   
Step 1. The covariance matrix CovX  is calculated over the input vectors set ix  that  

corresponds to i facial images represented as vectors x. The covariance is defined   as 

 ( )( )
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1Cov
1

Tn

i i
i

n
=

= − −
− ∑X x x x x   (8) 

where x  denotes the mean of each variable of the vector x , and n  is the amount  
of input vectors.   

  Step 2. The n eigenvalues of CovX  are extracted and defined as 1 2, ,... nλ λ λ , where  

1 2 ... nλ λ λ≥ ≥ ≥ .   
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  Step 3. The n eigenvectors are 1 2, ,... nΦ Φ Φ  and are associated to 1 2, ,... nλ λ λ .   
  Step 4. A transformation matrix, PCAW , is created 1 2[ , ,... ]PCA n= Φ Φ ΦW .   
  Step 5. The new vectors Y  are calculated using the following equation 

 T
PCA=Y W X   (9) 

where T  denotes the transpose of PCAW , and X denotes the matrix containing all 
the input vectors.   

The Karhunen-Loeve transformation, KLT, is similar to the PCA (Li & Jain, 2004), however 
in the KLT the input vectors ix are normalized to the interval [0,1] before applying the PCA 
steps.  

4.3 SOM- kmeans face recognition system 
The face recognition system is based on a combination of the k-means and SOM methods. Its 
description is presented next.  
The system is designed to recognize 10 persons. The design samples considered are the first 
8 samples of each individual. This approach generates a training matrix size of 3408x80.        
The face databases used were the ORL and the YALE. 
The classifier design is performed in two steps. First the SOM is trained with the trained 
samples. The parameters of the SOM using the Kohonen algorithm are; input dimension 
3488, map grid size 15X13, lattice type hexagonal, shape sheet, neighborhood Gaussian. 
Once the SOM has detected the possible classes, Figure 9 a, they are reinforced through the 
k-means algorithm. The k-means is applied trying to find 10 clusters, one for each class.  
Graphical representations of the clusters generated are shown in Figure 9b.  Each hexagon in 
Figure 9b includes the label corresponding to the subject that has been assigned to a specific 
neuron on the map.  The color scale represents the clusters found when the SOM is trained 
with 8 samples per subject. The U-matrix is a class distribution for graphic representation.  
 

  
                                       a)                                                                             b) 

Fig. 9.  The final map after Kohonen’s training algorithm over ORL is shown in a).  b) U-
matrix of the SOM map when the k-means is applied over ORL. 
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The performance achieved for the ORL was 100% and 90% for design and testing 
respectively. For the YALE database the performance achieved was 100% and 70% for 
design and testing respectively. The use of the k-means-clustering algorithm, that reinforces 
the grouping, may justify this higher recognition rate.  As expected, the performance has 
lower rates on the YALE database because of the variations in lighting conditions of the 
YALE database.  However the performance is comparable with current face recognition 
systems based on PCA which achieves 77%.  
The general scheme for the SOM-Hough-KLT proposed method is shown in Figure 10.  
 

 
Fig. 10. General scheme for the SOM-Hough-KLT face recognition method. 

The propose FRS based on the SOM was compared against a feedforward back propagation 
scheme for face recognition called FFBP-Hough-KLT.  The highest recognition rate on 
testing reaches 60% on the YALE database, and 92% on the ORL. This result indicates an 
advantage of unsupervised over supervised systems. 
The results obtained in this work are comparable to PCA, LDA, FLDA methods.  For the 
YALE database the highest performance reported in the literature analyzed is 80% and for 
ORL database is 97%. Another important result is that the SOM network improved with the 
k-means performed better than the FFBP network. This leads us to think that hybrid systems 
will offer new alternatives to design robust face recognition systems. 

5. Comparison of the proposed method with other classifiers 
This section presents a set of experiment results where we compare the performance of 
several FRS by evaluating the classifiers and the feature vectors. The comparison is 
considering the average performance of each classifier with respect to the data bases AR, 
YALE, MIT, and ORL. Table 4 shows the average performance by classifier by data base for 
the different data bases. ED stands for Euclidean distance, NFL is nearest feature line, FFBP1 
and FFBP2 are feedforward neural networks, GG is the fuzzy clustering algorithm Gath-
Geva modified by Abonyi – Szeifert (Abonyi et al., 2002), N-D corresponds to a fuzzy neural 
system using RBF. It can be noted that the SOM has the best performance in two of the four 
data bases, and it is not far from the best performance of the best FRS in the other two cases. 
Besides the SOM has the higher performance reached of all FRS, with 92.86%. The highest 
performance is in the ORL data base as expected because it has less variation with respect to 
PIE. Contrary to the AR and YALE data bases that have more PIE variations. 
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With respect to the type of classifier system, the systems based on Artificial Neural 
Networks and Fuzzy Logic resulted to be the most consistent on their performance over a 
set of 14 recognition experiments taking different sets of faces as shown in Figure 11.The 
experiment number 8 had the lowest performance because some of the worst face images 
were included on that testing set. We can also observe that the SOM approach was the best 
FRS among the fuzzy and ANN classifiers. 
 

Data base FRS 
 ED NFL FFBP 1 FFBP 2 SOM GG N-D 

AR 85.49 87.00 83.25 85.15 88.59 78.82 75.61 
YALE 89.79 90.73 84.79 86.76 89.76 80.17 75.61 
MIT 90.52 91.29 86.48 88.11 91.11 81.66 79.24 
ORL 84.49 85.38 88.78 90.05 92.86 83.62 83.27 

Table 4. Classifier performance by data base. 
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Fig. 11. Performance by type of classifier in the 14 experiments. 

Another important finding in these experiments is that the Hough-KLT feature yielded the 
best performance compared with the other features as shown in Table 5 over the different 
data bases. This result may reinforce the use of the face feature line feature. In this table 
DDWT stands for Wavelet features, and dB is the wavelet level used.  

6. Results, conclusion and future work 
The chapter presented an analysis of 30 works on FRS. The works were analyzed for 
tolerance to image variations, feature extraction methods and classifier system used. Results 
indicate that the most considered variation in the works is related to face expression, one of 
the most used method for feature extraction turned to be wavelet based methods, and the 
classifiers with more use are based on Euclidean distance. In order to compare the 
performance of the different works a new performance index was proposed. The best 
performance for a FRS assuming PIE tolerance reached 91.96%. 
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Feature Data base 
 AR YALE MIT ORL 

DDWT-KLT 
db1 82.12 85.18 87.42 86.56 

DDWT-KLT 
db2 82.82 85.13 87.36 86.98 

DDWT-KLT 
db4 83.42 86.24 87.74 86.66 

KLT 82.09 83.95 85.52 86.01 
Gabor-KLT 81.81 84.18 85.10 86.02 
Hough-KLT 86.69 88.57 89.32 89.43 
Eigenfaces 80.51 82.52 84.59 85.12 

 

Table 5. Performance by features. 

The chapter also covered an alternative point of view for FRS based on human facial 
perception theories. This part of the chapter, presented some neurophysiologic theories that 
may be useful to design more robust FRS. In fact, one of these theories, newborn visual 
perception, is proposed to be incorporated in a novel face recognition approach that is 
described in the chapter. The newborn visual perception idea led us to consider low 
resolution features extracted with the Hough transform, FFL, to design a FRS.  
The FRS designed is based on a SOM- kmeans classifier. The performance achieved during 
testing were, 90% for the ORL, 70% for the YALE database. As expected, the performance 
has lower rates on the YALE database because of the variations in lighting conditions of the 
database.  However the performance is comparable with current face recognition systems 
based on PCA which achieves 77%.  
In a final experiment, the proposed method was compared against 6 other methods using 
the AR, YALE, MIT, and ORL data based. The proposed method turned to achieve the best 
performance in two of the test, with 88.59% and 92.86%, and it was the second best in the 
other two, 89.76% and 91.11%. Another important result in this experiment is that with 
respect to the type of classifier system, the systems based on Artificial Neural Networks and 
Fuzzy Logic resulted to be the most consistent on their performance over a set of 14 
recognition experiments. Besides, the SOM approach was the best FRS among the fuzzy and 
ANN classifiers. 
Still another important finding in these experiments is that the Hough-KLT feature, that 
incorporates the FFL, yielded the best performance compared with the other features.  
Based on the previous results, we can conclude that incorporation of neurophysiologic 
theories into the design of FRS is a good alternative towards the design of more robust 
systems. We also may conclude that FRS based on ANN, specially with unsupervised 
systems, represent a good alternative according to the results of the experiments reported in 
this chapter.   
As future work, we propose to achieve a more complete research towards the integration of 
the results presented in (Sinha et al., 2006) into FRS design in order to evaluate the real 
impact of these theories in real world applications. 
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1. Introduction 
Various gender classification methods have been reported in the literature. These existing 
methods fall into two categories. The first kind of method is the appearance-based approach. 
Golomb et al. [1] used a two-layer neural network with 30 × 30 inputs and directly fed the 
scaled image pixels to the network without dimensionality reduction. Their database 
contains only 90 images with half male and half female facial images. Gutta et al. [2] used the 
mixture of experts combining the ensembles of radial basis functions (RBF) networks and a 
decision tree. Xu et al. [3] applied Adaboost to gender classification problem with the feature 
pools composed of a set of linear projections utilizing statistical moments up to second 
order. Wu et al. [4] also adopted Adaboost. Instead of using threshold weak classifiers, they 
used looking-up table weak classifiers, which are more general and better than simple 
threshold ones due to stronger ability to model complex distribution of training samples. 
Moghaddam and Yang [5] demonstrated that support vector machines (SVMs) work better 
than other classifiers such as ensemble of radial basis function (RBF) networks, classical RBF 
networks, Fisher linear discriminant, and nearest neighbor. In their experiments, the 
Gaussian kernel works better than linear and polynomial kernels. However, they did not 
discuss how to set the hyper-parameters for Gaussian kernel, which affect the classification 
performance. Kim et al. [6] applied Gaussian process technique to gender classification. The 
advantage of this approach is that it can automatically determine the hyper-parameters.Wu 
et al. [7] presented a statistical framework based on the 2.5D facial needle-maps which is a 
shape representation acquired from 2D intensity images using shape from shading (SFS). 
Saatci and Town [8] used an active appearance model (AAM) of faces to extract facial 
features and developed a cascaded structure of SVMs for gender classification. Lian and Lu 
applied min-max modular support vector machine to gender classification and developed a 
method for incorporating age information into task decomposition [9]. They also proposed a 
multi-resolution local binary pattern for dealing with multi-view gender classification 
probelms [10]. 
The second kind of approach is the geometrical feature based approach. The idea is to 
extract from faces geometric features such as distances, face width, and face length. Burton 
et al. [11] extracted point-to-point distances from 73 points on face images and used 
discriminant analysis as a classifier. Brunelli and Poggio [12] computed 16 geometric 
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features, such as pupil to eye brow separation and eye brow thickness, from the frontal 
images of a face and used HyperBF network as a classifier. 
 

 
Fig. 1. Illustration of the important role of hair information for gender classification. The 
upper row denotes three facial images of female, whose hair regions have been discarded, 
and the lower row denotes the same three images with hair. 

Most of the existing methods mentioned above, however, use only facial information. As we 
know, external information such as hair and clothing, also provide the discriminant 
evidence. Fig. 1 illustrates the benefit of incorporating hair information in gender 
classification task. The upper row shows the facial images whose hair regions were 
discarded. The lower row shows the corresponding original pictures. It is difficult for us to 
judge the gender when we only see the images in the upper row since their neutral-like 
faces. But, when both the facial information and the external information of hair as shown in 
the lower row are presented, we can easily make the decision. 
Although external features are useful, their detection, representation, analysis, and 
application have seldom been studied in the computer vision community. Considering the 
important role of hair features in gender classification, we study hair feature extraction and 
the combination of hair classifier and face classifier in this Chapter. Given a facial image 
containing both hair and face, we first locate hair region and face region. We construct a 
geometric hair model (GHM) to extract hair features and use local binary pattern (LBP) to 
extract facial features. After performing these feature extraction, we train two different 
classifiers for each kind of features and then apply a classifier fusion model. The key issue of 
classifier fusion is to determine how classifiers interact with each other. In this study, we 
adopt fuzzy integral [13], which has the advantage of its automatical adaptation of degree of 
classifier interaction. 
We conduct experiments on three popular facial image databases: AR, FERET and CAS-
PEAL. The experimental results demonstrate that the combination of hair and face classifiers 
achieves much higher classification rate than hair classifier or face classifier along. 
The rest of this Chapter is organized as follows: Section 2 describes the feature extraction 
process of hair and face. Section 3 introduces the fuzzy integral method. Section 4 gives 
experimental details. Section 5 is the conclusions. 
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2. Feature extraction 
2.1 Hair feature extraction 
Hair is a highly variable feature of human appearance. It perhaps is the most variant aspect 
of human appearance. Until recently, hair features have often been discarded in most of the 
gender classification systems. To our best knowledge, there are two different algorithms in 
the literature about hair feature representation. Yacoob et al. [14] developed a computational 
model for measuring hair appearance. They extracted several attributes of hair including 
color, split location, volume, length, area, symmetry, inner and outer hairlines, and texture. 
These attributes are organized as a hair feature vector. Lapedriza et al. [15] learned a model 
set composed by a representative set of image fragments corresponding to hair zones called 
building blocks set. The building blocks set is used to represent the unseen image as it is a 
set of puzzle pieces and the unseen image is reconstructed by covering it with the most 
similar fragments. By using this approach, the hair information is encoded and used for 
classification. We adopt the former method and modify it in this study. The overall process 
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of hair region. 
Hair Detection In this work, we assume that the facial images used are in frontal view. The 
hair detection process is illustrated in Fig. 4. The detection algorithm consists of the 
following four steps: 
1. Locate three landmarks on each facial image shown in the second picture of Fig. 4. Two 

are centers of eyes and the other one is middle of hair. These three points facilitate hair 
region extraction. Currently we label them manually. These points can be easily located 
in an automated manner, providing that the locations of the eyes are given. 

2. Obtain binary facial image. The pixels around the landmark in hair region form the 
seeds to separate hair from face and background. 

3. Get the edge image of the hair by Laplace operator to hair edge detection. The 2D 
Laplace operator is  , and the edge extraction result is shown in the 
lower right image of Fig. 4. 
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features, such as pupil to eye brow separation and eye brow thickness, from the frontal 
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Fig. 3. Some key parameters in geometric hair model. 

 
Fig. 4. The process of hair detection. 

4. Extract the inner and outer contour of the hair. Given an edge image from step 3), a ray 
denoted by the lines (yellow) in Fig. 3 is emitted from the mid-point of left and right 
eyes. In the ideal situation, the ray will meet exactly two edge points, I and O depicted 
in Fig. 3, respectively. By making a full rotation of the ray, we can determine the 
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contours of hair. In practice, however, step 2) may produce some holes in hair region, 
which make the detected contour inaccurate. To overcome this problem, we notice that 
the holes that will greatly affect the contour accuracy are those far away from the real 
contour and the distance between points I and O of consecutive rays will not change 
sharply. Based on this observation, we select the last edge point that the ray meets as 
the outer contour point. By using this technique, the holes can be removed. As a result, 
the detected contour of hair becomes more accurate. This improvement is illustrated in 
Fig. 5. 

 

 
Fig. 5. The original detected contour of hair (left) versus the detected contour in which the 
holes have been removed (right). 

Hair Length and Area We define the largest distance between a point on the outer contour 
and P as the hair length. The normalized distance Lhair is defined as 

 (1) 

where Girthface is the girth of the face region. 
We define the area covered by hair as the hair surface. Based on the hair model, the 
normalized hair area is defined as 

Areahair=R_Areahair/R_Areaface (2) 

where R_Areahair is the real area of hair and R_Areaface is the area of face. 
Hair Color To obtain the color in the hair region, we follow the method described in [16]. 
Based on this color model depicted in Fig. 6, the measured color results from the brightness 
and surface spectral reflectance. The averaged color distortion is calculated by 

 
(3) 

where H is the pixel set of hair region, and Ii and Ei denote the actual RGB color and the 
expected RGB color at pixel i, respectively, as follows: 

 (4) 
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Fig. 6. Color model of hair. 

According to the definitions mentioned above, the color distortion CDi at pixel i can be 
computed by 

 
(6) 

where αi represents the current brightness with respect to the brightness of the model 

 
(7) 

and (μr, μg, μb) and (r, g, b) are the mean and standard deviation of color in the training 
set, respectively. 
Hair Texture We employ Gabor wavelets to compute the hair feature attributes that 
characterize hair texture. The following two-dimensional Gabor function g(x, y) under 6 
directions and 4 scales and its Fourier transform G(u, v) are used, 

 
(8) 

and 

 
(9) 

where  and . 
The discrete form of Gabor wavelet transformation is defined as 

Gender Classification by Information Fusion of Hair and Face 

 

221 

 
(10)

where  represents the conjugate operation in complex area of the m-th orientation and 
n-th scale. 
We use the mean value and standard deviation of Gabor parameters to represent the texture 
shown in Fig. 7. The mean value and standard deviation are, respectively, calculated by 

 
(11)

and 

 
(12)

 
Fig. 7. Extracting hair texture using wavelet transformation with 4 scales and 6 orientations. 
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Fig. 7. Extracting hair texture using wavelet transformation with 4 scales and 6 orientations. 
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From Eqs. 11 and 12, we have the following feature attributes of hair texture: 

 (13)

Hair-Split Location The hair split location is commonly accompanied by a concavity point 
at the outer hairline. The split angle is defined as the angle of the concavity point with 
respect to the horizontal axis. Whether a point P is a concavity point can be judged by 

 
(14)

We define concavity[P] as the concavity of point P, which can be calculated by 

 
(15)

With this definition, we scan all the edge points on the outer contour, compute the average 
concavity and select the one with largest concavity[P] as the split point. 
By concatenating all the hair feature attributes mentioned above, we obtain a feature vector 
of hair as follows: 

 

(16)

2.2 Face feature extraction 
We use LBP [17] to characterize the face feature. The overall process is illustrated in Fig. 8. 
LBP is a simple and efficient approach for texture description. The operator labels the pixels 
of an image by thresholding 3 × 3-neighbourhoods of each pixel with the center value and 
considering the result as a binary number. The histogram of the labels is used as a texture 
descriptor. The basic LBP operator is illustrated in Fig. 9. 
To achieve rotation invariance, An extension to the original operator is to use so called 
uniform pattern. A local binary pattern is called a uniform pattern if it contains at most two 
bitwise transitions from 0 to 1 or vice versa when the binary string is considered circular. 
For example, 00000000, 00011110, and 10000011 are three uniform patterns. 
We use the notation of LBP

  
for the LBP operator. Here, LBP 

 
means using the operator 

in a neighborhood of P sampling points on a circle of radius R, and the superscript u2 
represents using uniform patterns and labeling all remaining patterns with a single label. In 
our experiment, LBP  operator is used to quantify the total of 256 LBP values into the 
histogram of 59 bins according to the uniform strategy. 
This histogram contains information about the distribution of the local micro-patterns over 
the whole image such as edges, spots and flat areas. For efficient face representation, one 
should also retain spatial information. For this purpose, an image is spatially divided into m 
small regions, R1,R2,...,Rm, and the spatially enhanced histogram for region Rj is defined as 
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 (17)

where L is the number of different labels produced by LBP operator, m is the number of 
blocks of the divided image, and I{A} is 1 or 0 depending on whether A is true or false. 
According to Eq. 17, we obtain the following face feature vector: 

 (18)
 

 
Fig. 8. The overall process of LBP feature extraction. 

 
Fig. 9. The 3 × 3-neighborhood LBP operator. 

3. Fuzzy integral fusion of support vector machine classifiers 
The ultimate goal of gender classification systems is to achieve the best possible 
classification performance. This objective traditionally led to the development of different 
classification schemes. Although the common way then is to choose one of the design that 
would yield the best performance, the sets of patterns misclassified by the different 
classifiers would not necessarily overlap. This suggested that different classifier designs 
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potentially offered complementary information about the patterns to be classified which 
could be harnessed to improve the performance of the selected classifier [18]. 
Here, we introduce a classifier fusion method based on fuzzy integral proposed by Sugeno 
[13]. The distinguish characteristic of fuzzy integral is that it is able to represent a certain 
kind of interaction between criteria, which is always avoided by making classifiers 
independent. Given a set of classifiers and their importance, fuzzy integral evaluates the 
interaction of these classifiers by computing fuzzy measure, a real function defined on the 
power set of classifiers. Based on such function and considering each classifier’s decision, 
fuzzy integral will give a final decision. 
Before describing the proposed fusion method, we present a note on notation. Let  
C = {c1, . . . , cM} be the set of classes and we have K classifiers, f1, . . . , fK. Each of the K 
classifiers provides for an unknown sample X a degree of confidence in the statement ‘X 
belongs to class cj’, for all cj .We denote by  (X) the confidence degree delivered by the 
classifier i of X belonging to cj . 

3.1 Probabilistic output of SVMs 
We choose support vector machine as the basic classifier. Two SVMs are trained on hair and 
face features, respectively. Since fuzzy integral requires each classifier to give confidence 
value, we need to convert the binary output to probabilistic output. As the task of gender 
classification is a two-class problem, we assume that the training set is 

 (19)

where xi ∈ Rn, yi ∈ {−1, 1}, and i = 1, 2, · · · ,N. 
A classifier f(x) in the margin form of SVMs is equivalent to solving the following convex 
quadratic programming problem [19–21] 

 

(20)

and its dual form: 

 

(21)

SVM classifier f(x) finds the optimal hyperplane that correctly separates the training data 
while maximizing the margin. Therefore, there is the following discriminant hyperplane: 

 
(22)
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where K(·, ·) is a kernel function and b is a bias. 
Now f(x) can be projected onto [0, 1] by sigmoid function 

 

(23)

The parameters A and B [22] can be estimated by solving the following maximum likelihood 
problem [23]: 

 

(24)

where N+ is the number of training samples with y = 1 and N− is the number of training 
samples with y = −1. 

3.2 Fuzzy integral theory 
Fuzzy measures are the generalization of classical measures. The notion of a measure in an 
Euclidean space is a natural generalization of such elementary notions as the length of a line 
segment, the area of a rectangle and the volume of a parallelepiped. Still a more general 
concept of a measure in an arbitrary abstract set can be defined [24–26] as 
Definition 1: By a measurable space we mean a pair(X,Ω) consisting of a set X and a -
algebra of subsets of X. A subset A of X is called measurable (or measurable with respect to 
Ω) if A ∈ Ω. 
Definition 2: A measure μ on a measurable space (X,Ω) is a real non-negative set function 
defined for all sets of Ω such that μ(Ø) = 0, and if  is a disjoint family of sets with A 
∈ Ω, i ≥ 1, then 

 
(25)

It can be shown that a measure μ has the following properties [24]: 
1. μ(A) ≤ μ(B) if A ⊂ B. 
2. If  is an increasing sequence of measurable sets, then 

 (26)

An important example of such a measure is the probability measure P, where P(X) = 1. 
In the seventies of the twentieth century, alternative models were proposed by different 
researchers [27–30], who all share the following intuitively reasonable axioms: 
Definition 3: Let g : Ω [0, 1] be a set function with 
1. g(Ø) = 0, g(X) = 1, 
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2. g(A) ≤ g(B) if A ⊂ B, 
3. If  is an increasing sequence of measurable sets, then 

 (27)

Such a function is called a fuzzy measure [29]. 
By the nature of the definition of a fuzzy measure g, the measure of the union of two disjoint 
subsets cannot be directly computed from the component measures. In light of this, Sugeno 
[29] introduced the so-called gλ-fuzzy measures satisfying the property as follows: 

 
(28)

A gλ-fuzzy measure is indeed a fuzzy measure, and the gλ-fuzzy measure for λ = 0 is a 
probability measure [26, 31]. 
The constant λ can be determined by solving the following equation: 

 
(29)

In which, for a fixed set of {gi = gλ(si), 0 < gi < 1} where si is the ith classifier and gi is a fuzzy 
density, there exists a unique root of λ > −1, λ ≠ 0. 
Let S = {s1, s2, · · · , sK} be a finite set of individual SVM classifiers and 0 ≤ h(s1) ≤ h(s2) ≤ · · · ≤ 
h(sK) ≤ 1, where h(si) is the probabilistic output of SVM classifier si (1 ≤ i ≤ K) and the 
Choquet integral can be computed by 

 
(30)

where Ai = {s1, s2, ..., si}, i = 1, 2, ...,K, (h(s0) = 0). Therefore, the value of gλ(Ai) can be 
computed recursively by 

 
(31)

3.3 Fusion of SVM classifiers 
Now for each fk, the degree of importance gk, of how important fk is in the recognition of the 
class ci must be determined. Hence λ can be calculated using Eq. (29) and the gλ-fuzzy 
measure can be determined by a confusion matrix (CM) in Eq. (32) of the SVM classifier sk 

which can be computed by means of n-flod validation method, 

 

(32)
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where  is the number of the samples which are the class ci assigned to the class cj by the 
classifier sk. Therefore, the gλ-fuzzy measure can be calculated by the following formulation: 

 
(33)

and 

 
(34)

where gk is the fuzzy density for the SVM classifier sk and  represent the fuzzy density for 
the class ci and the SVM classifier sk. According to the above statement, we conclude the 
following algorithm for fuzzy integral fusion of SVM (FIF-SVM) classifiers. 
 

 

4. Experiments 
4.1 Databases 
In this work, a total number of 2608 frontal facial images were selected from three popular 
face databases. Among them, 481 male and 161 female images were selected from the AR 
database randomly; 595 male and 445 female frontal facial images are chosen from the CAS-
PEAL face database [32]; and 583 male and 406 female facial images are selected from the 
FERET face database. These facial images are described in Table 1. 
 

 
Table 1. The data set. 

4.2 Fuzzy measure values 
In Table 2, the fuzzy measure values of all the classes based on face feature are larger than 
those of hair feature. However, in our experiments, the fuzzy measure depends on the 
confusion matrix which can be acquired by 5-fold validation after training. The classifier 
which takes on good classification performance after cross validation can achieve a high 
fuzzy measure for each class. The reason is that the confusion matrix is a detailed 
description form of classification accuracy. Because the classification precision of the gender 
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density, there exists a unique root of λ > −1, λ ≠ 0. 
Let S = {s1, s2, · · · , sK} be a finite set of individual SVM classifiers and 0 ≤ h(s1) ≤ h(s2) ≤ · · · ≤ 
h(sK) ≤ 1, where h(si) is the probabilistic output of SVM classifier si (1 ≤ i ≤ K) and the 
Choquet integral can be computed by 
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where Ai = {s1, s2, ..., si}, i = 1, 2, ...,K, (h(s0) = 0). Therefore, the value of gλ(Ai) can be 
computed recursively by 

 
(31)

3.3 Fusion of SVM classifiers 
Now for each fk, the degree of importance gk, of how important fk is in the recognition of the 
class ci must be determined. Hence λ can be calculated using Eq. (29) and the gλ-fuzzy 
measure can be determined by a confusion matrix (CM) in Eq. (32) of the SVM classifier sk 

which can be computed by means of n-flod validation method, 
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where  is the number of the samples which are the class ci assigned to the class cj by the 
classifier sk. Therefore, the gλ-fuzzy measure can be calculated by the following formulation: 

 
(33)

and 

 
(34)

where gk is the fuzzy density for the SVM classifier sk and  represent the fuzzy density for 
the class ci and the SVM classifier sk. According to the above statement, we conclude the 
following algorithm for fuzzy integral fusion of SVM (FIF-SVM) classifiers. 
 

 

4. Experiments 
4.1 Databases 
In this work, a total number of 2608 frontal facial images were selected from three popular 
face databases. Among them, 481 male and 161 female images were selected from the AR 
database randomly; 595 male and 445 female frontal facial images are chosen from the CAS-
PEAL face database [32]; and 583 male and 406 female facial images are selected from the 
FERET face database. These facial images are described in Table 1. 
 

 
Table 1. The data set. 

4.2 Fuzzy measure values 
In Table 2, the fuzzy measure values of all the classes based on face feature are larger than 
those of hair feature. However, in our experiments, the fuzzy measure depends on the 
confusion matrix which can be acquired by 5-fold validation after training. The classifier 
which takes on good classification performance after cross validation can achieve a high 
fuzzy measure for each class. The reason is that the confusion matrix is a detailed 
description form of classification accuracy. Because the classification precision of the gender 
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classifier based on face feature is higher than hair feature in the course of cross validation, 
the fuzzy measure favors the SVM (face) classifier. Generally speaking, there are different 
mapping parameters, A and B in Eq. (23), for different classifiers, which are independent in 
the process of training and test mutually. At the same time, there is λ > −1 in most 
situations. However, there exists λ = −1 in Table 2 because of some classification accuracy 
values equal to 100% after cross validation. Therefore, if the classification precision is less 
than 100%, there exists λ > −1. 
 

 
Table 2. Values of gλ-fuzzy measure, parameter A (B = 0) and λ. 

4.3 Classification results 
In our experiments, both the proposed geometric hair model and the LBP approach are used 
to extract hair and face features, respectively, from all the training samples. Two kinds of 
SVM classifiers, namely hair classifier and face classifier, are trained on the given data sets 
shown in Table 1. The results of five-fold validation are employed to calculate the confusion 
matrix, which determines the gλ-fuzzy measure values of these two SVM classifiers. The 
classification accuracy of three different classifiers on the test data is described in Table 3. 
 

 
Table 3. Accuracy ( %) of three different classifiers: face SVM-classifier along, hair SVM-
classifier along, and fuzzy integral fusion of face and hair SVM-classifiers. 
From Table 3, we can see that the proposed fuzzy integral fusion method achieves the best 
classification accuracy in all the cases. It should be noted that when the classification 
accuracy of both hair classifier and face classifier are relatively lower, the proposed fusion 
method can dramatically improve the classification accuracy. At the same time, we can see 
that the face classifier has higher classification accuracy than that of the hair classifier. This 
indicates that internal features such as face feature are more critical to gender classification 
than external features such as hair feature. On the other hand, hair features play a good 
complementary role for gender classification. 
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5. Conclusions 
We have presented a modified geometric hair model for extracting hair features for gender 
classification. By using this model, hair features are represented as length, area, color, split-
location, and texture. In order to integrate the outputs of both hair classifier and face 
classifier that use hair features and face features, respectively, we have proposed a classifier 
fusion approach based on fuzzy integral theory. The experimental results on three popular 
face databases demonstrate the effectiveness of the modified geometric hair model and the 
proposed classifier fusion method. From the experimental results, we can obtain the 
following observations. a) Hair features play an important role in gender classification; b) 
Face features are more critical than hair features to gender classification; c) Implementing 
the fusion of hair and face classifiers can achieve the best classification accuracy in all of the 
cases; d) The proposed fusion method can improve the classification accuracy dramatically 
when the performance of all the single classifier is not good. From this study, we believe 
that more external features such as hair and clothes should be integrated into face features 
to develop more reliable and robust gender classification systems. 
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1. Introduction     
As research has revealed the deep role that emotion and emotion expression play in human 
social interaction, researchers in human-computer interaction have proposed that more 
effective human-computer interfaces can be realized if the interface models the user’s 
emotion as well as expresses emotions. Affective computing was defined by Rosalind Picard 
(1997) as computing that relates to, arises from, or deliberately influences emotion or other 
affective phenomena. According to Picard’s pioneering book, if we want computers to be 
genuinely intelligent and to interact naturally with us, we must give computers the ability to 
recognize, understand, and even to have and express emotions. These positions have 
become the foundations of research in the area and have been investigated in great depth 
after their first postulation.  
Emotion is fundamental to human experience, influencing cognition, perception, and 
everyday tasks such as learning, communication, and even rational decision making. 
Affective computing aspires to bridge the gap that typical human-computer interaction 
largely ignored thus creating an often frustrating experience for people, in part because 
affect had been overlooked or hard to measure.  
In order to take these ideas a step further, towards the objectives of practical applications, 
we need to adapt methods of modelling affect to the requirements of particularshowcases. 
To do so, it is fundamental to review prevalent psychology theories on emotion, to 
disambiguate their terminology and identify the fitting computational models that can allow 
for affective interactions in the desired environments. 

1.1 Applications of affective computing 
Affective computing deals with the design of systems and devices that can recognize, 
interpret, generate, and process emotions. We are going to fledge out the potentials this 
research domain can provide in the field of new media applications and identify the 
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research domain can provide in the field of new media applications and identify the 
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matching theoretical background that will act as a tool for effectively modelling emotional 
interaction in such environments.   

1.1.1 Detecting and recognizing emotional information 
Detecting emotional information usually involves passive sensors, which capture data about 
the user's physical state or behaviour. The data gathered is often analogous to the cues 
humans use to perceive emotions in others. For example, a video camera might capture 
facial expressions, body posture and gestures, while a microphone might capture speech. 
Other sensors detect emotional cues by directly measuring physiological data such as skin 
temperature and galvanic resistance.  
Recognizing emotional information requires the extraction of meaningful patterns from the 
gathered data. This is done by parsing the data through various processes such as facial 
expression detection, gesture recognition, speech recognition, or natural language 
processing. 

1.1.2 Emotion in machines 
By the term “emotion in machines” we refer to the simulation of emotions using computers 
or robots. The goal of such simulation is to enrich and facilitate interactivity between human 
and machine. The most common and probably most complex application of this simulation 
lies in the field of conversational agents. A related area is that of affective robot companions, 
although their expressive and communicative capabilities are usually simpler that those of 
conversational agents, due to a large extent to other constraints and research challenges 
related to their embodiment. Such a simulation is closely coupled with emotional 
understanding and modelling as explained below. This being said, it is important to 
mention that less sophisticated simulation approaches often produce surprisingly engaging 
experiences in the area of new media. It is often the case that our aim is not to fully simulate 
human behaviour and emotional responses but to simply depict emotion in a pseudo 
intelligent way that makes sense in the specific context of interaction. 

1.1.3 Emotional understanding 
Emotional understanding refers to the ability of a device not only to detect emotional or 
affective information, but also to store, process, build and maintain an emotional model of 
the user. This is not to be mistaken for the related term “emotion understanding”, which is 
used to refer to the use of robotic and computer simulations as tools and models to 
investigate research hypotheses contributing to the understanding of human and animal 
emotions (Cañamero, 2005; Cañamero & Gaussier, 2005). The goal of emotional 
understanding is to understand contextual information about the user and her environment, 
and formulate an appropriate response. This is difficult because human emotions arise from 
complex external and internal contexts. 
Possible features of a system that displays emotional understanding might be adaptive 
behaviour, for example, avoiding interaction with a user it perceives to be angry. In the case 
of affect-aware applications, emotional understanding makes sense in tracking the user’s 
emotional state and adapting environment variables according to the state recognised. 
Questions regarding the level of detail of the tracking performed, the theoretical grounds for 
the analysis of the data collected, and the types of potential output that would make sense 
for such an interactive process are paramount. 
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2. Affect-related concepts 
A lot of confusion exists regarding emotion research terminology, and not without a reason. 
Different definitions of the role and nature of emotions arise from different scientific 
approaches since emotion research is typically multidisciplinary. Different disciplines (i.e. 
psychology, cognitive neuroscience, etc) provide theories and corresponding models that 
are based on diverse underlying assumptions, are based on different levels of abstraction 
and may even have different research goals altogether.  
The actual definition of emotions largely remains an open question: some define it as the 
physiological changes caused in our body, while the others treat it as purely intellectual 
thought processes. In psychology research, the term ‘affect’ is very broad (Rusting, 1998), 
and has been used to cover a wide variety of experiences such as emotions, moods, and 
preferences. In contrast, the term ‘emotion’ tends to be used to refer to fairly brief but 
intense experiences, although it is also used in a broader sense. Finally, moods or states 
describe low-intensity but more prolonged experiences. 
From a cognitive neuroscience point of view, Damasio (2003) makes a distinction between 
emotions, which are publicly observable body states, and feelings, which are mental events 
observable only to the person having them. Based on neuroscience research he and others 
have done, Damasio argues that an episode of emotion begins with an emotionally 
“competent” stimulus (such as an attractive person or a scary house) that the organism 
automatically appraises as conducive to survival or well-being (a good thing) or not 
conducive (bad). This appraisal takes the form of a complex array of physiological reactions 
(e.g., quickening heartbeat, tensing facial muscles), which is mapped in the brain. From that 
map, a feeling arises as “an idea of the body when it is perturbed by the emoting process”. 
It is apparent that there is no right or wrong approach, and an attempt on a full terminology 
disambiguation would not be possible without biasing our choices towards one theory over 
the other. This is to make the point that the context of each approach has to be carefully 
defined. Next we are going to enumerate core elements of emotion and ways to distinguish 
them from other affective phenomena. This will lead us to a short description of the 
directions of affective computing. Subsequently we will put forward the most prevalent 
psychological theories of emotion along with corresponding computational modelling 
approaches and couple them to the affective computing goals and more specifically to the 
goals of practical applications. 

2.1 Defining ‘emotion’ and ‘feeling’ 
Emotion, according to Scherer (1987, 2001), can be defined as an episode of interrelated, 
synchronized changes in the states of all or most of five organismic subsystems in response 
to the evaluation of an external or internal stimulus event as relevant to major concerns of 
the organism. The components of an emotion episode are the particular states of the 
subsystems mentioned. The process consists of the coordinated changes over time.  
Most current psychological theories postulate that  
• Subjective experience 
• Peripheral physiological response patterns, and 
• Motor expression 
are major components of emotion. These three components have often been called the 
emotional response triad. Some theorists include the cognitive and motivational domains as 
components of the emotion process. The elicitation of action tendencies and the preparation 
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matching theoretical background that will act as a tool for effectively modelling emotional 
interaction in such environments.   
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used to refer to the use of robotic and computer simulations as tools and models to 
investigate research hypotheses contributing to the understanding of human and animal 
emotions (Cañamero, 2005; Cañamero & Gaussier, 2005). The goal of emotional 
understanding is to understand contextual information about the user and her environment, 
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2. Affect-related concepts 
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approaches and couple them to the affective computing goals and more specifically to the 
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are major components of emotion. These three components have often been called the 
emotional response triad. Some theorists include the cognitive and motivational domains as 
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of action have also been implicitly associated with emotional arousal. However, only after 
explicit inclusion of motivational consequences in theories (and Frijda’s forceful claim for 
the emotion-differentiating function of action tendencies, see (Frijda, 1986)), have these 
important features of emotion acquired the status of a major component. The inclusion of a 
cognitive information-processing component has met with less consensus. Many theorists 
still prefer to see emotion and cognition as two independent but interacting systems. 
However, one can argue that all subsystems underlying emotion components function 
independently much of the time, and that the special nature of emotion as a hypothetical 
construct consists of the coordination and synchronization of all these systems during an 
emotion episode (Scherer, 2004). 
How can emotions, as defined above, be distinguished from other affective phenomena such 
as feelings, moods, or attitudes? Let us take the term ‘feeling’ first. Scherer aligns feeling 
with the “subjective emotional experience” component of emotion, thus reflecting the total 
pattern of cognitive appraisal as well as motivational and somatic response patterning that 
underlie the subjective experience of an emotion. If we use the term ‘feeling’, a single 
component denoting subjective experience process, as a synonym for ‘emotion’ (the total 
multi-modal component process), this is likely to produce serious confusion and hamper 
our understanding of the phenomenon. 
If we accept feeling as one of emotions’ components, then the next step is to differentiate 
emotion from other types of affective phenomena. Instances of these phenomena, which can 
vary in degree of affectivity, are often called “emotions” in the literature. There are five such 
types of affective phenomena that should be distinguished from emotion: preferences, 
attitudes, moods, affective dispositions and interpersonal stances.  

2.2 Emotions in applied intelligence 
Having distinguished emotions against other types of affective phenomena, it is now of 
particular interest, in regard to the new media domain, to present a suggested distinction on 
a different level. Scherer (2004) questioned the need to distinguish between two different 
types of emotion: (1) aesthetic emotions (2) utilitarian emotions. The latter correspond to the 
“garden variety” of emotions usually studied in emotion research, such as anger, fear, joy, 
disgust, sadness, shame, guilt. These types of emotions can be considered utilitarian in the 
sense of facilitating our adaptation to events that have important consequences for our well-
being. Such adaptive functions are the preparation of action tendencies (fight, flight), 
recovery and reorientation (grief, work), motivational enhancement (joy, pride), or the 
creation of social obligations (reparation). Because of their importance for survival and well-
being, many utilitarian emotions are high-intensity emergency reactions, involving the 
synchronization of many subsystems, as described earlier. In the case of aesthetic emotions, 
adaptation to an event that requires the appraisal of goal relevance and coping potential is 
absent, or much less pronounced. Kant defined aesthetic experience as “disinterested 
pleasure” (Kant, 1790), highlighting the complete absence of utilitarian considerations. Thus, 
my aesthetic experience of a work of art or a piece of music is not shaped by the appraisal of 
the work's ability to satisfy my bodily needs, further my current goals or plans, or 
correspond to my social values. Rather, aesthetic emotions are produced by the appreciation 
of the intrinsic qualities of a work of art or an artistic performance, or the beauty of nature. 
Examples of such aesthetic emotions are: being moved or awed, full of wonder, admiration, 
bliss, ecstasy, fascination, harmony, rapture, solemnity.  
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This differentiation of emotions has an impact on the way an appraisal-based modelling 
approach would be implemented. It would not make sense to try and model all the 
proposed components of an appraisal process in cases where only aesthetic emotions are 
expected. On the other hand it would make sense to provide a deeper model in cases where 
anger or frustration are common emotional states such as in the example of an interactive 
Television environment. 

2.3 Emotion representation 
When it comes to machine-based recognition of emotions, one of the key issues is the 
selection of appropriate ways to represent the user’s emotional states. The most familiar and 
commonly used way of describing emotions is by using categorical labels, many of which 
are either drawn directly from everyday language, or adapted from it.  This trend may be 
due to the great influence of the works of Ekman and Friesen who proposed that the 
archetypal emotions correspond to distinct facial expressions which are supposed to be 
universally recognizable across cultures (Ekman, 1978, 1993).  
On the contrary, psychology researchers have extensively investigated a broader variety of 
emotions. An extensive survey on emotion analysis can be found in (Cowie, 2001). The main 
problem with this approach is deciding which words qualify as genuinely emotional. There 
is, however, general agreement as to the large scale of the emotional lexicon, with most lists 
of descriptive terms numbering into the hundreds; the Semantic Atlas of Emotional 
Concepts (Averill, 1975) lists 558 words with ‘emotional connotations’. Of course, it is 
difficult to imagine an artificial systems being able to match the level of discrimination that 
is implied by the length of this list. 
Although the labeling approach to emotion representation fits perfectly in some contexts 
and has thus been studied and used extensively in the literature, there are other cases in 
which a continuous, rather than discrete, approach to emotion representation is more 
suitable. At the opposite extreme from the list of categories are dimensional descriptions, 
which identify emotional states by associating them with points in a multidimensional 
space. The approach has a long history, dating from Wundt’s (1903) original proposal to 
Schlossberg’s reintroduction of the idea in the modern era (Schlosberg, 1954). For example, 
activation-emotion space as a representation has great appeal as it is both simple, while at 
the same time makes it possible to capture a wide range of significant issues in emotion 
(Cowie, 2001). The concept is based on a simplified treatment of two key themes: 
• Valence: The clearest common element of emotional states is that the person is 

materially influenced by feelings that are valenced, i.e., they are centrally concerned 
with positive or negative evaluations of people or things or events.  

• Activation level: Research from Darwin onwards has recognized that emotional states 
involve dispositions to act in certain ways. A basic way of reflecting that theme turns out 
to be surprisingly useful. States are simply rated in terms of the associated activation 
level, i.e., the strength of the person’s disposition to take some action rather than none. 

There is general agreement on these two main dimensions. Still, in addition to these two, 
there are a number of other possible dimensions, such as power-control, or approach-
avoidance. Dimensional representations are attractive mainly because they provide a way of 
describing emotional states that is more tractable than using words. This is of particular 
importance when dealing with naturalistic data, where a wide range of emotional states 
occur.  Similarly, they are much more able to deal with non discrete emotions and variations 
in emotional state over time.   
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approach would be implemented. It would not make sense to try and model all the 
proposed components of an appraisal process in cases where only aesthetic emotions are 
expected. On the other hand it would make sense to provide a deeper model in cases where 
anger or frustration are common emotional states such as in the example of an interactive 
Television environment. 

2.3 Emotion representation 
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commonly used way of describing emotions is by using categorical labels, many of which 
are either drawn directly from everyday language, or adapted from it.  This trend may be 
due to the great influence of the works of Ekman and Friesen who proposed that the 
archetypal emotions correspond to distinct facial expressions which are supposed to be 
universally recognizable across cultures (Ekman, 1978, 1993).  
On the contrary, psychology researchers have extensively investigated a broader variety of 
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problem with this approach is deciding which words qualify as genuinely emotional. There 
is, however, general agreement as to the large scale of the emotional lexicon, with most lists 
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difficult to imagine an artificial systems being able to match the level of discrimination that 
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which identify emotional states by associating them with points in a multidimensional 
space. The approach has a long history, dating from Wundt’s (1903) original proposal to 
Schlossberg’s reintroduction of the idea in the modern era (Schlosberg, 1954). For example, 
activation-emotion space as a representation has great appeal as it is both simple, while at 
the same time makes it possible to capture a wide range of significant issues in emotion 
(Cowie, 2001). The concept is based on a simplified treatment of two key themes: 
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involve dispositions to act in certain ways. A basic way of reflecting that theme turns out 
to be surprisingly useful. States are simply rated in terms of the associated activation 
level, i.e., the strength of the person’s disposition to take some action rather than none. 
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there are a number of other possible dimensions, such as power-control, or approach-
avoidance. Dimensional representations are attractive mainly because they provide a way of 
describing emotional states that is more tractable than using words. This is of particular 
importance when dealing with naturalistic data, where a wide range of emotional states 
occur.  Similarly, they are much more able to deal with non discrete emotions and variations 
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Fig. 1. The activation/valence dimensional representation, after (Whissel, 1989) 

As we can see in Figure 1, labels are typically given for emotions falling in areas where at 
least one of the two axes has a value considerably different than zero. On the other hand, the 
beginning of the axes (the center of the diagram) is typically considered as the neutral 
emotion. For the same reasons mentioned above, we find it is not meaningful to define the 
neutral state so strictly. Therefore, we have added to the more conventional areas 
corresponding to the four quadrants a fifth one, corresponding to the neutral area of the 
diagram, as is depicted in Figure 1.  
 

Label Location in FeelTrace (Cowie, 2000) diagram 
Q1 positive activation, positive evaluation (+/+) 
Q2 positive activation, negative evaluation (+/-) 
Q3 negative activation, negative evaluation (-/-) 
Q4 negative activation, positive evaluation (-/+) 

Neutral close to the center 

Table 1. Emotion classes 

2.4 Other emotion representation models 
Having reviewed the areas of affective computing, it is time to start focusing on the 
available theories, descriptions and models that can support these goals. We start with 
reviewing the main groups of emotion descriptions as identified by the members of the 
Humaine Network of Excellence (Humaine, 2008).  It is important to stress the difference 
that exists between emotion models and emotion descriptions. By ‘emotion descriptions’ we 
refer to different ways of representing emotions and their underlying psychological theories, 
whereas with the term ‘emotional models’ we talk about the computational modelling of 
these theories in specific context. 
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2.4.1 Categorical representations  
Categorical representations — using a word to describe an emotional state — are the simplest 
and most widespread. Such category sets have been proposed on different grounds, including 
evolutionarily basic emotion categories; most frequent everyday emotions; application-specific 
emotion sets; or categories describing other affective states, such as moods or interpersonal 
stances (Feeltrace core vocabulary in Cowie, 1999; Ortony, Clore and Collins list of emotion 
words in Ortony, 1988; Ekman’s list of six basic emotions in Ekman, 1993). 

2.4.2 Other dimensional descriptions  
Dimensional descriptions capture essential properties of emotional states, such as arousal 
(active/passive) and valence (negative/positive). Emotion dimensions can be used to 
describe general emotional tendencies, including low-intensity emotions. In addition to 
these two, there are a number of other possible dimensions, such as power, control, or 
approach/avoidance, which add some refinement. The most obvious is the ability to 
distinguish between fear and anger, both of which involve negative valence and high 
activation. In anger, the subject of the emotion feels that he or she is in control; in fear, 
control is felt to lie elsewhere. 
Dimensional representations are attractive mainly because they provide a way of describing 
emotional states that is more tractable than using words. This is of particular importance 
when dealing with naturalistic data, where a wide range of emotional states occur.  
Similarly, they are much more able to deal with non-discrete emotions and variations in 
emotional state over time. A further attraction is the fact that dimensional descriptions can 
be translated into and out of verbal descriptions.  This is possible because emotion words 
can, to an extent, be understood as referring to positions in activation-evaluation space.   

2.4.3 Appraisal theories and representations 
Appraisal theories focus on the emotion elicitation process in contrast with the previously 
mentioned approaches that emphasize on the consequences/symptoms of an emotional 
episode. Appraisal representations characterise emotional states in terms of the detailed 
evaluations of eliciting conditions, such as their familiarity, intrinsic pleasantness, or 
relevance to one’s goals. Such detail can be used to characterise the cause or object of an 
emotion as it arises from the context, or to predict emotions in AI systems (Lazarus, 1991, 
Scherer, 1987, Frijda, 1986).  
Appraisal theories are very common in emotion modelling since their structure caters for 
simulating their postulations in computational models. Moreover, it is often the case that an 
appraisal theory was formulated explicitly in order to be implemented in a computer. Such 
an example is the OCC theory (Ortony, 1988).  This is sometimes a source of confusion, since 
the underlying emotion theory is unavoidably very closely linked with the actual modelling 
approach. 
According to cognitive theories of emotion (Lazarus, 1987), emotions are closely related to 
the situation that is being experienced (or, indeed, imagined) by the agent.  

3. Facial expression recognition 
3.1 Feature representation 
Automatic estimation of facial model parameters is a difficult problem and although a lot of 
work has been done on selection and tracking of features (Tomasi, 1991), relatively little 
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work has been reported (Tian, 2001) on the necessary initialization step of tracking 
algorithms, which is required in the context of facial feature extraction and expression 
recognition. Most facial expression recognition systems use the Facial Action Coding System 
(FACS) model introduced by Ekman and Friesen (Ekman, 1978) for describing facial 
expressions. FACS describes expressions using 66 Action Units (AU) which relate to the 
contractions of specific facial muscles.  
Additionally to FACS, MPEG-4 metrics (Tekalp, 2000) are commonly used to model facial 
expressions and underlying emotions. They define an alternative way of modelling facial 
expressions and the underlying emotions, which is strongly influenced by neurophysiologic 
and psychological studies. MPEG-4, mainly focusing on facial expression synthesis and 
animation, defines the Facial Animation Parameters (FAPs) that are strongly related to the 
Action Units (AUs), the core of the FACS. 
Most existing approaches in facial feature extraction are either designed to cope with limited 
diversity of video characteristics or require manual initialization or intervention. Specifically 
(Tian, 2001) depends on optical flow, (Leung, 2004) depends on high resolution or noise-free 
input video, (Sebe, 2004) depends on colour information, (Cootes, 2001) requires two head-
mounted cameras and (Pantic, 2000) requires manual selection of feature points on the first 
frame. Additionally, very few approaches can perform in near-real time. In this work we 
combine a variety of feature detection methodologies in order to produce a robust FAP 
estimator, as outlined in the following. 

3.2 Facial feature extraction 
Facial feature extraction is a crucial step to numerous applications such us face recognition, 
human-computer interaction, facial expression recognition, surveillance and gaze/pose 
detection (Asteriadis, 2007). In their vast majority, the approaches in the bibliography use 
face detection as a pre-processing step. This is usually necessary in order to tackle with scale 
problems, as localizing a face in an image is more scale-independent than starting with the 
localization of special facial features. When only facial features are detected (starting from 
the whole image and not from the face region of interest), the size and the position of the 
face in the image have to be pre-determined and, thus, such algorithms are devoted to 
special cases, such as driver’s attention recognition (Smith, 2003) where the user’s position 
with regards to a camera is almost stable. In such techniques, colour (Smith, 2003) 
predicates, shape of facial features and their geometrical relations (D’ Orazio, 2004) are used 
as criteria for the extraction of facial characteristics. 
On the other side, facial features detection is more scale-independent when the face is 
detected as a pre-processing step. In this case, the face region of interest can be normalized 
to certain dimensions, thus making the task of facial feature detection more robust. For 
example, in (Cristinacce, 2004) a multi-stage approach is used to locate features on a face. 
First, the face is detected using the boosted cascaded classifier algorithm by Viola and Jones 
(Viola, 2001). The same classifier is trained using facial feature patches to detect facial 
features. A novel shape constraint, the Pairwise Reinforcement of Feature Responses (PRFR) 
is used to improve the localization accuracy of the detected features. In (Jerosky, 2001), a 
three-stage technique is used for eye centre localization. The Hausdorff distance between 
edges of the image and an edge model of the face is used to detect the face area. At the 
second stage, the Hausdorff distance between the image edges and a more refined model of 
the area around the eyes is used for more accurate localization of the upper area of the head. 
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Finally, a Multi-Layer Perceptron (MLP) is used for finding the exact pupil locations. In 
(Viola, 2001), an SVM-based approach is used for face detection. Following, eye-areas are 
located using a feed-forward neural network and the face is brought to a horizontal position 
based on the eye positions. Starting from these points, edge information and luminance 
values, are used for eyebrow and nostrils detection. Further masks are created to refine the 
eye positions, based on edge, luminance and morphological operations. Similar approaches 
are followed for the detection of mouth points.  
In this work, prior to eye and mouth region detection, face detection is applied on the face 
images. The face is detected using the Boosted Cascade method, described in (Viola, 2001). 
The output of this method is usually the face region with some background. Furthermore, 
the position of the face is often not centred in the detected sub-image. Since the detection of 
the eyes and mouth will be done on blocks of a predefined size, it is very important to have 
an accurate face detection algorithm. Consequently, a technique to post-process the results 
of the face detector is used. 
More specifically, a technique that compares the shape of a face with that of an ellipse is 
used (Asteriadis, 2007). According to this, the distance map of the face area found at the first 
step is extracted. Here, the distance map is calculated from the binary edge map of the area. 
An ellipsis scans the distance map and a score that is the average of all distance map values 
on the ellipse contour el, is evaluated. 
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where D is the distance map of the region found by the Boosted Cascade algorithm. This 
score is calculated for various scale and shape transformations of the ellipses. The 
transformation which gives the best score is considered as the one that corresponds to the 
ellipses that best describes the exact face contour. The lateral boundaries of the ellipses are 
the new boundaries of the face region. 
A template matching technique follows for the facial feature area detection step: The face 
region found by the face detection step is brought to certain dimensions and the 
corresponding Canny edge map is extracted. Subsequently, for each pixel on the edge map, 
a vector pointing to the closest edge is calculated and its x, y coordinates are stored. The 
final result is a vector field encoding the geometry of the face. Prototype eye patches were 
used for the calculation of their corresponding vector fields and the mean vector field was 
used as prototype for searching similar vector fields on areas of specified dimensions on the 
face vector field. The similarity between an image region and the templates is based on the 
following distance measure: 
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where denotes the L2 norm. Essentially for a NxM region Rk the previous formula is the 
sum of the Euclidean distances between vectors vi of the candidate region and the 
corresponding mi of the mean vector field (template) of the eye we are searching for (right 
or left). The candidate region on the face that minimizes EL2 is marked as the region of the 
left or right eye. To make the algorithm faster we utilize the knowledge of the approximate 
positions of eyes on a face. 
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For eye centre detection, the normalized area of the eye is brought back to its initial 
dimensions on the image and a light reflection removal step is employed. The grayscale 
image of the eye area is converted to a binary image and small white connected components 
are removed. The areas that correspond to such components on the original image are 
substituted by the average of their surrounding area. The final result is an eye area having 
reflections removed. Subsequently, horizontal and vertical derivative maps are extracted 
from the resulting image and they are projected on the vertical and horizontal axis 
respectively. The mean of a set of the largest projections is used for an estimate of the eye 
centre. Following, a small window around the detected point is used for the darkest patch to 
be detected, and its centre is considered as the refined position of the eye centre. 
For the detection of the eye corners (left, right, upper and lower) a technique similar to that 
described in (Ioannou, 2007) is used: Having found the eye centre, a small area around it is 
used for the rest of the points to be detected. This is done by using the Generalized 
Projection Functions (GPFs), which are a combination of the Integral Projection Functions 
(IPFs) and the Variance Projection Functions (VPFs). The integral projection function’s value 
on row (column) x (y) is the mean of its luminance intensity, while the Variance Projection 
Function on row x is its mean variance. The GPF’s value on a row (column) x (y) is a linear 
combination of the corresponding values of the derivatives of the IPF and VPF on row x 
(column y): 

' '( ) (1 ) ( )u u uGPF x a IPF x a VPF= − ∗ + ∗  
' '( ) (1 ) ( )v v vGPF y a IPF y a VPF= − ∗ + ∗  

(3) 

Local maxima of the above functions are used to declare the positions of the eye boundaries.  
For the mouth area localization, a similar approach to that of the eye area localization is 
used: The vector field of the face is used and template images are used for the extraction of a 
prototype vector field of the mouth area. Subsequently, similar vector fields are searched for 
on the lower part of the normalized face image. However, as the mouth has, many times, 
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similar luminance values with its surrounding skin, an extra factor is also taken into 
account. That is, at every search area, the mean value of the hue component is calculated 
and added to the inverse distance from the mean vector fields of the mouth. Minimum 
values declare mouth existence. 
For the extraction of the mouth points of interest (mouth corners), the hue component is also 
used. Based on the hue values of the mouth, the detected mouth area is binarised and small 
connected components whose value is close to 0o are discarded similar to the light reflection 
removal technique employed for the eyes. The remainder is the largest connected component, 
which is considered as the mouth area. The leftmost and rightmost points of this area are 
considered as the mouth corners. An example of detected feature points is shown in Figure 2. 

4. Expression classification 
4.1 Recognizing dynamics 
In order to consider the dynamics of displayed expressions, one needs to utilize a 
classification model that is able to model and learn dynamics, such as a Hidden Markov 
Model or a recurrent neural network (see Figure 3). This type of network differs from 
conventional feed-forward networks in that the first layer has a recurrent connection. The 
delay in this connection stores values from the previous time step, which can be used in the 
current time step, thus providing the element of memory. 
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Fig. 3. A recurrent neural network (Elman, 1990, 1991) 

Among other implementations of recurrent networks, the Elman net (Elman, 1990, 1991) is 
the most popular. This is a two-layer network with feedback from the first layer output to 
the first layer input. This recurrent connection allows the Elman network to both detect and 
generate time-varying patterns.  
The transfer functions of the neurons used in the Elman net are tan-sigmoid for the hidden 
(recurrent) layer and purely linear for the output layer. More formally 
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similar luminance values with its surrounding skin, an extra factor is also taken into 
account. That is, at every search area, the mean value of the hue component is calculated 
and added to the inverse distance from the mean vector fields of the mouth. Minimum 
values declare mouth existence. 
For the extraction of the mouth points of interest (mouth corners), the hue component is also 
used. Based on the hue values of the mouth, the detected mouth area is binarised and small 
connected components whose value is close to 0o are discarded similar to the light reflection 
removal technique employed for the eyes. The remainder is the largest connected component, 
which is considered as the mouth area. The leftmost and rightmost points of this area are 
considered as the mouth corners. An example of detected feature points is shown in Figure 2. 

4. Expression classification 
4.1 Recognizing dynamics 
In order to consider the dynamics of displayed expressions, one needs to utilize a 
classification model that is able to model and learn dynamics, such as a Hidden Markov 
Model or a recurrent neural network (see Figure 3). This type of network differs from 
conventional feed-forward networks in that the first layer has a recurrent connection. The 
delay in this connection stores values from the previous time step, which can be used in the 
current time step, thus providing the element of memory. 
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the j-th neuron in the second (output) layer and 2
jk  is the induced local field or activation 

potential of the j-th neuron in the second layer. 
The induced local field in the first layer is computed as: 

 1 1 1 1

ii i ik w x r a b= ⋅ + ⋅ +   (5) 

where x  is the input vector, 1

i
w  is the input weight vector for the i-th neuron,  1a  is the 

first layer’s output vector for the previous time step, ir  is the recurrent weight vector and 
1
ib  is the bias. The local field in the second layer is computed in the conventional way as: 

 2 2 1 2
j j jk w a b= ⋅ +   (6) 

where 2

i
w  is the input weight and 2

jb  is the bias. 
This combination of activation functions is special in that two-layer networks with these 
transfer functions can approximate any function (with a finite number of discontinuities) 
with arbitrary accuracy. The only requirement is that the hidden layer must have enough 
neurons (Schaefer, 1996, Hammer, 2003).  
As far as training is concerned, the truncated back-propagation through time (truncated 
BPTT) algorithm is used (Haykin, 1999). 
The input layer of the utilized network has 57 neurons (25 for the FAPs and 32 for the audio 
features). The hidden layer has 20 neurons and the output layer has 5 neurons, one for each 
one of five possible classes: Neutral, Q1 (first quadrant of the Feeltrace plane), Q2, Q3 and 
Q4. The network is trained to produce a level of 1 at the output that corresponds to the 
quadrant of the examined tune (Cowie, 2001) and levels of 0 at the other outputs. 

4.2 Classification 
The most common applications of recurrent neural networks include complex tasks such as 
modelling, approximating, generating and predicting dynamic sequences of known or 
unknown statistical characteristics. In contrast to simpler neural network structures, using 
them for the seemingly easier task of input classification is not equally simple or straight-
forward. 
The reason is that where simple neural networks provide one response in the form of a 
value or vector of values at their output after considering a given input, recurrent neural 
networks provide such inputs after each different time step. So, one question to answer is at 
which time step the network’s output should be read for the best classification decision to be 
reached. 
As a general rule of thumb, the very first outputs of a recurrent neural network are not very 
reliable. The reason is that a recurrent neural network is typically trained to pick up the 
dynamics that exist in sequential data and therefore needs to see an adequate length of the 
data in order to be able to detect and classify these dynamics. On the other hand, it is not 
always safe to utilize the output of the very last time step as the classification result of the 
network because: 
1. the duration of the input data may be a few time steps longer than the duration of the 

dominating dynamic behaviour and thus the operation of the network during the last 
time steps may be random 

2. a temporary error may occur at any time step of the operation of the network 
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For example, in Figure 4 we present the output levels of the network after each frame when 
processing the tune of the running example. We can see that during the first frames the 
output of the network is quite random and changes swiftly. When enough length of the 
sequence has been seen by the network so that the dynamics can be picked up, the outputs 
start to converge to their final values. But even then small changes to the output levels can 
be observed between consecutive frames.  
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Fig. 4. Individual network outputs after each frame (Caridakis, 2006) 
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Fig. 5. Margin between correct and next best output 

Although these are not enough to change the classification decision (see Figure 5) for this 
example where the classification to Q1 is clear, there are cases in which the classification 
margin is smaller and these changes also lead to temporary classification decision changes. 
In order to arm our classification model with robustness we have added a weighting 
integrating module to the output of the neural network which increases its stability. 
Specifically, the final outputs of the model are computed as: 

 ( ) ( ) ( )2 1 1j j jo t c a c o t= ⋅ + − ⋅ −   (7) 

where ( )jo t  is the value computed for the j-th output after time step t, ( )1jo t −  is the 
output value computed at the previous time step and c  is a parameter taken from the (0,1] 
range that controls the sensitivity/stability of the classification model. When c  is closer to 
zero the model becomes very stable and a large sequence of changed values of 2

jk  is 
required to affect the classification results while as c  approaches one the model becomes 
more sensitive to changes in the output of the network. When 1c = the integrating module 
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required to affect the classification results while as c  approaches one the model becomes 
more sensitive to changes in the output of the network. When 1c = the integrating module 
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is disabled and the network output is acquired as overall classification result. In our work, 
after observing the models performance for different values of c , we have chosen 0.5c = . 
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Fig. 6. The Elman net with the output integrator (Cowie, 2008) 

In Figure 5, we can see the decision margin when using the weighting integration module at 
the output of the network. When comparing to Figure 7, we can clearly see that the progress 
of the margin is smoother, which indicates that we have indeed succeeded in making the 
classification performance of the network more stable and less dependent on frame that is 
chosen as the end of a tune. 
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Fig. 7. Decision margin when using the integrator 

Of course, in order for this weighted integrator to operate, we need to define output values 
for the network for time step 0, i.e. before the first frame. It is easy to see that due to the way 
that the effect of previous outputs wares off as time steps elapse due to c , this initialization 
is practically indifferent for tunes of adequate length. On the other hand, this value may 
have an important affect on tunes that are very short. In this work, we have chosen to 
initialize all initial outputs at  
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 ( )0 0o =   (8) 

Another meaningful alternative would be to initialize ( )0o  based on the percentages of the 
different output classes in the ground truth data used to train the classifier. We have 
avoided doing this in order not to add a bias towards any of the outputs, as we wanted to be 
sure that the performance acquired during testing is due solely to the dynamic and 
multimodal approach proposed in this work.  
It is worth noting that, from a modelling point of view, it was feasible to include this 
integrator in the structure of the network rather than having it as an external module, 
simply by adding a recurrent loop at the output layer as well. We have decided to avoid 
doing so, in order not to also affect the training behaviour of the network, as an additional 
recurrent loop would greatly augment the training time and size and average length of 
training data required. 

5. Application in human-robot interaction 
The question of how autonomous robots could be part of our everyday life is of a growing 
interest. Technology is now at a stage where in the very near future it will be possible for the 
majority of households to have their own robots, helping with a variety of tasks and even 
entertaining their owner. However, the problem of deciding on what kind of architectures 
are going to be embedded in such robots is still not completely answered. Indeed, these 
architectures require a set of properties that are not yet found in the currently available 
ones. The robots have to be adaptive in the complex and dynamic environment that we live 
in. To design such an ideal robot, it is argued that taking an epigenetic approach would be a 
suited solution (Cañamero et al., 2006).  

5.1 Attachment bonds and emotional development 
Taking inspiration from psychology, modelling the development of attachment bonds 
between a robot and its owner or user could offer a promising avenue to improve human-
robot interactions. These phenomena would help a robot initiate interactions with the 
humans in more natural way, without any explicit teaching signal. The interactions and the 
robot’s behaviour would be modulated using the feedback from the current emotional state 
of the user(s). To that end, an autonomous robot would need to use information from the 
user’s current emotional state, extracting this information from the facial expressions.   
A simple application of these idea could be to start to improve already existing models of 
the imprinting phenomenon. Imprinting was documented by Konrad Lorenz (Lorenz, 1935) 
and described as the tendency of young birds to follow the first moving object or person 
seen after hatching. This process is a product of evolution helping the survival of these 
species which don’t have a nest to protect and hide their offspring. A successful architecture 
has been developed to allow a Koala robot to discover what object or person to follow, and 
then learn how to follow him/her (Hiolle & Cañamero, 2007) . The robot used the distance 
between it and the human as a “desired perception“ to keep  constant, as would be the sight 
of the mother for a young bird, and then learned how to maintain it using a low-level 
sensorimotor learning, without any prior knowledge about how to do so.  Using facial 
detection and facial affect recognition would enhance this model since the feedback from the 
human emotional state could be used as reinforcer for the robot, to learn how and when to 
follow the human being.  
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Moreover, applying this kind of architecture to an expressive robot caters for not only 
developing a following behaviour, but also for allowing it to discover how to respond to the 
user’s facial expression, according to the context (task being handled, number of human 
present). 
From that point, using theories from developmental psychology (Sroufe, 1995), it would be 
possible for the robot to develop its own set of emotional states, all branching from one 
precursor of emotion. To clarify, it is believed that infants are born endowed with one proto-
emotion, the excitement, which is modulated by fluctuation of endogenous states of the 
central nervous system and later by external stimulations. During the infant development in 
the first year of life, these fluctuations of excitement are then correlated with external 
stimuli, to later build categories of emotional states according to the context. For instance, 
anger is believed to derive from an increase of the excitement provoked by the inability for 
the infant to carry out an action because something or someone is preventing it from 
happening.  Giving the possibility for the robot to build these context, and then, the 
categories of fluctuation of its inner excitement, given the context which has to take into 
account the other agent (human user or another robot) emotional state, would help the robot 
developing its own representation from the environment and coping strategies in the 
various situations it has encountered. This way, each robot  would be adapted to the 
environment  they are embedded in, since their development would be a product of their 
own experiences, and not a set of fixed rules already built-in their architecture. 

5.2 Emotional robotic feedback via facial expression 
In human-robot interaction, it is of paramount importance that the robot is capable of 
determining the emotional state of the human user, or on a lesser scale at least able to 
determine the emotional expression of the user in terms of simple emotional states such as 
‘stressed’, ‘relaxed’, ‘frustrated’, or basic emotions such as ‘happy’, ‘sad’, ‘angry’ or 
‘surprised’. However, there is also a strong case for the reverse of this. That is, allowing the 
robot to exhibit emotional expressions that relate to some internal state of the robot. The 
purpose for this would be to allow the human interacting with the robot to assess how their 
interaction is being handled by the robot in a manner that s/he is familiar with. In order to 
bridge the gap between humans interacting with robots and in turn robots interacting with 
humans, the process needs to be as natural as possible without the need for a priori 
information. 
Therefore, we have developed a robot head ERWIN (Emotional Robot with Intelligent 
Networks) that incorporates several interactive modalities that allows for HRI. ERWIN is 
designed to be capable of tracking and recognising human faces. The method used for initial 
detection of a face is based on Viola’s (2001) rapid object detection with improvements made 
by Lienhart and Maydt (2002). In order to be able to detect a face, or any desired object of 
interest, specially trained classifiers are used. These classifiers are trained as described in 
(Kuranov et al., 2002) using a sample set of images that contain the particular feature we 
wish to detect; in our case this was a collection of face images.  
Once a set of images has been collated, a separate text file is created which provides the 
coordinates of a bounding box encapsulating the object within the specified image. These 
images and the accompanying text file are called the positive training set as they are used to 
build a classifier that will be used to detect the desired object. However, in order to reduce 
the chances of the classifier falsely identifying an object during runtime, the classifiers are 

Emotion Modelling and Facial Affect Recognition  
in Human-Computer and Human-Robot Interaction 

 

247 

also presented with what is termed negative training images. These consist of random 
images of various objects such as cars, trees, and buildings. An important feature of the 
negative training images is that they must not contain a positive image, i.e. the object we 
wish to detect – a face. 
Sound source localisation is another modality that is built into ERWIN to allow for tracking 
of sound sources of interest within a cluttered environment. In addition to remaining 
focused on one user allowing for the two-way communication process to be as natural as 
possible. Thus, with the addition of emotional expressions being possible with robots  it is 
possible for the human to judge how their interaction with the robot is being taken. For 
example, it would be possible to allow a robot to greet a user with a look of surprise, shock 
or happiness when it has not seen that user for a long time. Or if interaction with a human 
isn’t going well, the robot is unable to clearly recognise the speech of the user, then the 
displayed emotion could reflect anger.  
ERWIN also has the ability to display simple, but effective emotions by controlling several 
actuators attached to various parts of the face. ERWIN can move four separate actuators, 
each controlling a separate feature; these include the left and right eyebrows, and the upper 
and lower lips. By controlling these features based on responses and interaction from the 
external influences,s ERWIN can display a range of emotions that in turn can affect the 
response from a human thus bringing such HRI closer to human-human interactions. The 
basic emotions include happy, sad, angry, shocked and surprised. For instance, once 
ERWIN has been called or recognises a familiar face it can respond with generating a happy 
face. This gives excellent scope for combining the multiple modalities described, allowing 
the emotions to change if ERWIN detects sound but does not locate a face or changing 
emotion if ERWIN cannot understand or interpret what a human is saying. This may later 
provide an opportunity to develop the emotion response using internal states as modelled 
in artificial immune systems (Neal, 2002) and endocrine systems (Cañamero, 1997; Neal and 
Timmis, 2003; Avila-García and Cañamero, 2004; Cañamero and Avila-García, 2007), which 
allows internal states to influence responses to the external acoustic and visual information 
gathered. 
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