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Despite the tremendous growth in the field of magnetic resonance imaging (MRI) 
evidenced in the initial phases of its development in the early twentieth century, 

scientific focus has shifted in recent years toward the study of physiology and 
pathophysiology that span the spatial scales of the molecule, cell, tissue, and organ. 

Intensified research activities over the past 15 years have justified efforts toward 
molecular and cellular imaging, dual-modality imaging systems, real-time acquisitions, 

dedicated image processing techniques and applications, and the critical evaluation 
of their potential translational value for use in the clinic. The integrative focus on 

molecular-cellular-tissue-organ function and dysfunction has taken a primary role in 
modern, personalized medicine, and it is envisaged to continue to do so, as accumulated 

knowledge from basic and clinical science work continues to elucidate molecular, cellular, 
and physiological/pathophysiological pathways and mechanisms. In this scientific 

effort, MRI continues to play a critical and synergistic role from the perspectives of basic 
science, diagnosis, and clinical interventional/therapeutic approaches. Within the realm 

of the current role of MRI in modern medicine, this book summarizes state-of-the-art 
direct and derived MRI methodologies and approaches as applied toward the assessment 
of cellular and organ function and dysfunction. The contributions in this effort are not 

excessive but few, comprehensive, and distinguished and of high quality. The topic areas 
can be generalized to find applications in other scientific areas and span both brain and 

cardiac applications, extending interest to wider audiences.
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Preface

Despite the tremendous growth in the field of magnetic resonance imaging (MRI) evidenced
in the initial phases of its development in the early twentieth century, scientific focus has
shifted in recent years toward the study of physiology and pathophysiology spanning the
spatial scales of the molecule, cell, tissue, and organ. Intensified research activities over the
past 15 years have justified efforts toward molecular and cellular imaging, dual-modality
imaging systems, real-time acquisitions, dedicated image processing techniques and appli‐
cations, and the critical evaluation of their potential translational value for use in the clinic.
The integrative focus on molecular-cellular-tissue-organ function and dysfunction has taken
a primary role in modern, personalized medicine, and it is envisaged to continue to do so, as
accumulated knowledge from basic and clinical science work continues to elucidate molecu‐
lar, cellular, and physiological/pathophysiological pathways and mechanisms.

In this scientific effort, MRI continues to play a critical and synergistic role from the perspec‐
tives of basic science, diagnosis, and clinical interventional/therapeutic approaches. Within
the realm of the current role of MRI in modern medicine, this book summarizes state-of-the-
art direct and derived MRI methodologies and approaches as applied toward the assess‐
ment of cellular and organ function and dysfunction. The contributions in this effort are not
excessive but few, comprehensive, and distinguished and of high quality. The topic areas
can be generalized to find applications in other scientific areas and span both brain and car‐
diac applications, extending interest to wider audiences.

The book opens with an Introductory Chapter in which Dr. Constantinides introduces and
explains the nature and purpose of the book and the logic and significance of its contents.

In chapter 2, Dr. Neubauer and colleagues present a comprehensive and an analytical over‐
view of the biophysical principles and fundamentals of MRI and nuclear magnetic reso‐
nance (NMR) techniques as these are applied to cellular functional studies, including
applications that extend to metabolism and oxygen consumption, based on nuclei other than
protons.

Professor Samyn and Dr. LaDisa in Chapter 3, introduce a novel and an interesting ap‐
proach using MRI-based computational fluid dynamics (CFD) modeling to simulate and
emulate the characteristics of flow, with applications to pediatric cardiovascular disease (ac‐
quired and congenital). The presented work is intriguing given its cross-discipline focus, a
true manifestation of a successful collaborative effort that engages both engineers and clini‐
cians.

In Chapter 4, Professor Lee extends novel state-of-the-art modeling MRI-derived approaches
to functional brain activation through blood-oxygen-level-dependent mechanisms. The



work uses a sparse generalized mixed-effect model to represent the spatial dependence of
activated voxels and reduce dimensionality, thereby leading to computational benefits.

Of great interest is also the work presented in Chapter 5 by Dr. Larrozal and colleagues on
the topic of texture analysis using MRI. The chapter is comprehensive and the overview em‐
phasizes the increasingly important role of image processing in clinical diagnosis and medi‐
cal practice. Given the cross-platform applicability of the presented work, I envisage that the
chapter will stimulate increased interest from scientists and clinicians in a range of scientific
disciplines.

Collectively, the book emphasizes quality work in thematic areas that span the spatial scales
of the cell, tissue, and organ. I am hopeful that the book will serve to readers as a compre‐
hensive reference guide of the current status and envisaged future direction of MRI in areas
of basic science and clinical practice that are anticipated to have significant translational val‐
ue.

With a great sense of humility and indebtedness, I would like to acknowledge InTech publi‐
cations that have initiated and supported this effort to its completion.

Dr. Christakis Constantinides
Marie Skłodowska-Curie Research Fellow

Department of Cardiovascular Medicine
University of Oxford

Oxford, UK
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Introductory Chapter

Christakis Constantinides

Additional information is available at the end of the chapter

While early works on MRI focused on hardware and software developments, and the under‐
standing of the biophysical principles, physiological, and pathophysiological phenomena that
underlie  MRI/NMR,  in  later  years,  efforts  targeted  improvements  in  acquisition  speed,
enhancement of image quality based on signal‐to‐noise‐ratio benefits, multinuclear imaging,
and  the  introduction  of  quantitative  imaging/spectroscopy  of  metabolic,  perfusion,  and
functional responses. Concerted parallel efforts targeted improvements in image quality through
basic and advanced image processing techniques, capitalizing on advances in signal and digital
image processing.

Scientific direction was strategically steered toward molecular imaging and personalized
medicine in the early 2000, when focus groups at the National Institutes of Health (NIH)
formulated scientific  funding policies.  Correspondingly,  despite  the  inherent  biophysical
limitations of the phenomenon of NMR/MRI, the last 15 years have evidenced tremendous
progress in breaking barriers toward molecular and intracellular imaging, synergistic or in
competition with optical, positron‐emission, and/or computer tomography.

In his chapter, Dr. Neubauer presents a succinct overview of the biophysical principles that
govern spectroscopy and imaging of nuclei‐other‐than‐protons, including sodium, potassium,
and chlorine, and the ionic interactions with proteins. The chapter also extends to phosphorus
and its value in the study of cellular metabolism and pH, and to the study of oxygen con‐
sumption. The study of 13C techniques and novel MRI bioreactors are briefly introduced at the
end of the chapter.

On the forefront of 1H MRI, Drs. Samyn and LaDisa present an overview of computational
fluid dynamics (CFD) modeling approaches based on MRI of large vessels. Phase contrast
techniques were introduced in the late 1980s and early 1990s, work to study fluid flow, work
among others that was independently pioneered by Drs. Dumoulin, Moran, Pelc, Firmin, and
Mohiaddin. Tremendous advances have been documented ever since, especially for the study
of large vessels, valvular disease, and cardiac chamber flow patterns. The high‐resolution

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



nature of 1H MRI has allowed the construction of accurate anatomic 3D models that have been
used in conjunction with computational flow dynamic techniques to provide accurate
estimation of flow patterns in health and disease. Estimation of quantitative biomarkers, such
as the wall shear stress, became successful through fluid-structure interaction modeling,
ultimately dependent on material tissue properties and the constitutive law dependence. Such
biomarkers became increasingly important since they correlated with inflammation and
atherogenesis. Drs. Samyn and LaDisa present a comprehensive overview of CFD-based
approaches for the estimation of WSS in cardiovascular disease (acquired and congenital), and
the assessment of helical flow patterns and their benefits. More importantly, the discussion is
extended to atherosclerosis in pediatric and in congenital heart disease.

In addition to cardiovascular disease, MR-based modeling has also been extensively applied
in cerebrovascular applications, including functional MRI (fMRI). Dr. Lee introduces a
Bayesian spatial-temporal model to capture the spatial dependence of brain-activated voxels.
The sparsity of the proposed model leads to an increased computational efficiency. It is
validated through a simulation and actual fMRI data paradigms.

Image processing has been integral to MRI since its inception. Texture analysis has emerged
in the 1960s following the introduction of mathematical frameworks for non-orthogonal
reconstruction schemes, including the wavelet algorithm. In the clinic, interest for texture
analysis intensified in the early 1990s, particularly for breast cancer diagnosis. Dr. Larrozal and
colleagues present a comprehensive overview of the progress of the field since its early days.
The approach is modular and streamlined, and is presented in terms of the steps of MRI
acquisition, regional image definition, pre-processing, feature extraction, and classification.
The future evolution of this field targets clinical applicability, once reproducibility accuracy
has been achieved, based on multicenter, international studies.

Collectively, in the effort to assess cellular and organ function and dysfunction using MRI-
derived methodologies, the work presented in this book attests to the tremendous strides and
accomplishments achieved thus far and projects to future directions aiming to attain transla-
tion in the clinic.

Author details

Christakis Constantinides

Address all correspondence to: christakis.constantinides@cardiov.ox.ac.uk

Department of Cardiovascular Medicine, University of Oxford, UK
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Tracking Cellular Functions by Exploiting the
Paramagnetic Properties of X‐Nuclei

Eric Gottwald, Andreas Neubauer and
Lothar R. Schad

Additional information is available at the end of the chapter

Abstract

The  term X‐nuclei  summarises  all  nuclei  (except  protons)  that  occur  in  biological
systems carrying a non‐zero nuclear spin.  Significant involvement in physiological
processes such as maintaining the transmembrane potential of living cells and energy
metabolism make these nuclei highly interesting for nuclear magnetic resonance (NMR)
experiments. In this chapter, a discussion of the basic physics of nuclei with a nuclear
spin >1/2 is presented. On this basis, pulse sequences for the detection of multi quantum
coherences (MQCs) are presented and explained. Information contained in the obtained
MQC signal is linked to biophysical processes. Applications to study energy metabo‐
lism, oxygen consumption, and to track brain metabolites by means of X‐nuclei NMR
are discussed as well as the use of functional phantoms, which can bridge the gap
between basic biological research and NMR data interpretation.

Keywords: sodium, potassium, chlorine, functional phantoms, X‐nuclei

1. Introduction

Apart from hydrogen (1H) all nuclei carrying a non‐zero nuclear spin can be used for signal
generation in nuclear magnetic resonance (NMR), magnetic resonance imaging (MRI), and
magnetic resonance spectroscopy (MRS) experiments. All these nuclei are referred to by the
term X‐nuclei. Sodium (23Na) is the X‐nucleus with the highest NMR sensitivity, and thus, it was
already used for imaging 30 years ago [1]. In addition to 23Na, there are other X‐nuclei, which
can be used for MRI/MRS experiments. Together with potassium (39K), 23Na mainly determines
the cell membrane potential. Chlorine (35Cl) is the most abundant anion in the human body, and

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



its intracellular and extracellular concentrations have a huge impact on cell volume regulation.
Oxygen (17O) can give insight into the oxygen consumption of the tissue of interest. Phosphorus
(31P) is heavily involved in the energy metabolism (e.g. in skeletal muscle). Carbon (13C) is the
basis of all organic molecules and also enables the possibility to track brain metabolites. During
the past years, several imaging techniques have been presented to exploit the signal of these
nuclei [2].

The main question arising from the use of X‐nuclei in MRI/MRS experiments is data interpre‐
tation. In biological systems, various processes are always occurring simultaneously, making
it difficult to link a specific effect to an underlying physiological process. Therefore, methods
are needed to bridge the gap between phantom experiments, which are used to develop new
measurement techniques, and in vivo experiments. This can be accomplished with functional
phantoms [3], which provide a high degree of control over biological processes, and therefore
lead to a better understanding of the recorded signals.

This chapter gives an overview on the natural abundant X‐nuclei, their physical properties,
and physiological information, which can be obtained from NMR experiments with X‐nuclei.
Especially, the physics of X‐nuclei with a nuclear spin >3/2 is discussed in detail with the goal
to derive and understand enhanced pulse sequences for the observation of higher coherence
orders. Applications for the spin 1/2 X‐nuclei 17O and 13C are also discussed. The chapter closes
with the introduction of a MRI compatible bioreactor setup, which can be used to study the
response of organotypic cell cultures to external stimulations.

2. NMR sensitivity

Every nucleus used for NMR experiments has different physical properties and thus exhibits
a different sensitivity response to radiofrequency (RF) pulses. The NMR sensitivity of a
nucleus is given by:

3 ( 1)S C I Igµ + (1)

Here S is the sensitivity, C is the concentration of the nucleus,  is the gyromagnetic ratio, and
I represents the nuclear spin of the nucleus. Admittedly, most X‐nuclei carry a nuclear spin >
1/2 which increases sensitivity. On the other hand, this effect is compensated by the much lower. Values for  (relative to the value for 1H), nuclear spin, natural abundances, and mean
values of in vivo concentrations for the X‐nuclei discussed here, are listed in Table 1. Since the
nuclear spin and the gyromagnetic ratio are constants, the only variable in Eq. (1) is the
concentration C. In contrast to 1H, where the in vivo concentration reaches a molar (mol/l i.e.
M) level, the concentrations of natural abundant X‐nuclei is in the range of mM (mmol/l). For
instance, 23Na is the most abundant X‐nucleus with the highest  value but compared to 1H the
sensitivity is approximately 20,000 times lower.

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies4
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Nucleus Nuclear spin Rel.γ    Natural abundance [%] Mean in vivo
concentration [mM]

1H 1/2 1.00 99.98 88,000
13C 1/2 0.25 1.11 n. a.
17O 5/2 −0.14 0.037 16
23Na 3/2 0.26 100.00 40
31P 1/2 0.040 100.00 75
35Cl 3/2 0.098 75.77 36
39K 3/2 0.047 93.10 124

1Abundance in the whole body.

2Tissue 23Na concentration in human brain.

3Tissue 35Cl concentration in human brain.

4Concentration in human calf muscle. Since 13C is mostly used for labelled precursors a value for in vivo concentration is
lacking [4–8].

Table 1. Nuclear spin values, relative gyromagnetic ratios, natural abundances, and mean values of in vivo
concentrations of different X‐nuclei.

3. 23Na, 35Cl, and 39K: interaction with proteins

The transmembrane potential mainly arises from concentration gradients of different ions
between the intracellular and the extracellular compartments. Three X‐nuclei, 23Na, 35Cl, and
39K, and their intracellular/extracellular distribution play a major role in generating this
potential. All three nuclei have a nuclear spin equal to 3/2, which leads to a nuclear quadrupolar
moment Q and a fast decay of the NMR signal.

The nuclear quadrupolar moment is a measure of the deviation of the nuclear charge distri‐
bution from the spherical shape. Positive values of Q indicate, that the nuclear charge distri‐
bution takes the shape of a prolate spheroid while negative values indicate, that the nucleus
takes the form of an inflate spheroid. The values for Q and the resulting shape of the discussed
nuclei are listed in Table 2.

Nucleus Quadrupolar moment Q [b] Shape
17O −0.026* Inflate spheroid
23Na +0.10* Prolate spheroid
35Cl −0.10*,† Inflate spheroid
39K +0.049*,† Prolate spheroid

*Polarization or Sternheimer corrections incorporated.

†Average value [9].

Table 2. Quadrupolar moments and shapes of nuclei with nuclear spin >1/2.

Tracking Cellular Functions by Exploiting the Paramagnetic Properties of X‐Nuclei
http://dx.doi.org/10.5772/64504
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The quadrupolar moment also implicates an additional electrical field which, in turn, leads to
an additional contribution to the potential energy of the nucleus. This means that the energy
levels, which split due to the Zeeman effect,1 will be shifted due to the quadrupolar interaction,
ωQ, which is related to the electrical field induced by the quadrupolar moment. A description
of the electrical field can be formulated using of the electrical field gradient (EFG) tensor, which
can be found in references [10, 11]. Figure 1 shows an illustration for the Zeeman effect in case
of a spin 3/2 nucleus. On the left hand side of the figure, there is no external magnetic field and
the energy levels are degenerate. Applying an external magnetic field nulls the degeneration
and the energy levels split. In biological systems, the quadrupolar interaction can become time
dependent. Therefore, it is useful to refer to the time averaged quadrupolar interaction 〈ωQ〉.
For a non‐zero external magnetic field and ωQ = 0, this is shown in the middle of Figure 1. The
right hand side of Figure 1 shows the case with an applied external magnetic field, where ωQ 
≠ 0. It can be seen that the inner transitions are shifted to lower energies while the outer
transitions are shifted to higher energies. This leads to an alteration of the transition frequencies
for the outer transitions.

Figure 1. Zeeman effect in a spin 3/2 system. (Left) In the absence of an external magnetic field, the energy levels are
degenerated. (Middle) Application of an external magnetic field leads (in the absence of a quadrupolar interaction) to
an equidistant splitting of the energy levels. (Right) An additional quadrupolar interaction leads to a shift of the inner
levels towards lower energy while the outer levels are shifted upwards. The end result is an alteration of the outer
transitions.

The following paragraphs contain the description of the physical properties of signal genera‐
tion and relaxation these nuclei. From this basis, dedicated pulse sequences for the observa‐
tion of multi quantum coherences (MQCs) are derived. Applications of these sequences to
phantoms are shown while the obtained data are analysed with the link to a physiological
interpretation.

3.1. Quadrupolar relaxation

This section deals with the specific relaxation processes of quadrupolar nuclei. The detailed
understanding of these processes requires a strong background in quantum physics, and the
use of the irreducible tensor formalism which is beyond the scope of this book. For this reason,
only the key results of the quantum mechanical description are presented in this chapter. The
reader can find a more detailed description in references [10–12].

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies6
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right hand side of Figure 1 shows the case with an applied external magnetic field, where ωQ 
≠ 0. It can be seen that the inner transitions are shifted to lower energies while the outer
transitions are shifted to higher energies. This leads to an alteration of the transition frequencies
for the outer transitions.

Figure 1. Zeeman effect in a spin 3/2 system. (Left) In the absence of an external magnetic field, the energy levels are
degenerated. (Middle) Application of an external magnetic field leads (in the absence of a quadrupolar interaction) to
an equidistant splitting of the energy levels. (Right) An additional quadrupolar interaction leads to a shift of the inner
levels towards lower energy while the outer levels are shifted upwards. The end result is an alteration of the outer
transitions.

The following paragraphs contain the description of the physical properties of signal genera‐
tion and relaxation these nuclei. From this basis, dedicated pulse sequences for the observa‐
tion of multi quantum coherences (MQCs) are derived. Applications of these sequences to
phantoms are shown while the obtained data are analysed with the link to a physiological
interpretation.

3.1. Quadrupolar relaxation

This section deals with the specific relaxation processes of quadrupolar nuclei. The detailed
understanding of these processes requires a strong background in quantum physics, and the
use of the irreducible tensor formalism which is beyond the scope of this book. For this reason,
only the key results of the quantum mechanical description are presented in this chapter. The
reader can find a more detailed description in references [10–12].
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Taking this into account one can deduce the following two respective expressions for the real
and imaginary parts (Jm and Km) of the spectral density [11]:
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In the latter equations, ω0 is the resonance frequency, τ is the length of the excitation pulse, τc

is the rotational correlation time, which is a measurement for the degree of freedom of a
nucleus, χ represents the root mean square coupling constant, and m is an integer number,
which will be discussed later. Since no other correlation time will be discussed in this chapter,
the rotational correlation time will be referred only as correlation time.

If nuclei can move freely, like in isotropic liquids, the correlation time is rather small and in
the range of ns. If the motion becomes more restricted, like it is the case during the interaction
with macromolecules, such as proteins, the correlation time increases. The quadrupolar
coupling constant ωQ is accounted for in the spectral density via the parameter χ. In biological
systems, there is an increased variability of different environments and simultaneously
ongoing processes leading to local variations of ωQ, which justifies the usage of the root mean
square value χ.

The influence of τc and ωQ on the spectral density was extensively discussed by Rooney et al.
[13]. In their paper, they defined four different regimes for τc and ωQ resulting in four different
types of spectra which are shown in Figure 2. These four regimes are:

• Type a spectrum: ωQτc ≫ 1 and ω0τc ≫ 1 and an additional macroscopic anisotropy in the
sample (e.g. single or liquid crystals). Molecular motion is hardly present in this system
which leads to distinct energy levels and three very narrow resonances comprising the
central resonance and two symmetrical satellite resonances at higher and lower frequen‐
cies, respectively

• Type b spectrum: ωQτc ≫ 1 and ω0τc ≫ 1 and a random distribution of the orientation of the
EFG tensors (e.g. inhomogeneous powder). Similar to the case of type a, molecular motion
is hardly present but the random distribution of the EFG tensors leads to a broadening of
the energy levels. In contrast to type a, where the spectrum shows three sharp lines, the
satellite transitions become broadened due to many different values for ωQ, and form a
powder spectrum

• Type c spectrum: ωQτc ≪ 1 and ω0τc > 1 and restricted motion (e.g. due to the interaction with
proteins). In this type, the molecular motion is much higher than in the latter two. As a result,
the energy levels are continually modulated and the satellite transitions vanish. As it can be
seen (second column from the left) in Figure 2 , the satellite resonances are completely
vanished and the central resonance takes the shape of a Lorentzian which is also influenced
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by the orientation of the different EFG tensor orientations with respect to the external
magnetic field (super‐Lorentzian)

• Type d spectrum: 〈ωQ〉 = 0 and ω0τc ≪ 1. This is the case in isotropic liquids. Due to rapid
molecular motion, the time average of the quadrupolar interaction vanishes and the energy
levels become sharp again. Moreover, there is no difference between the different transitions
leading to a single, sharp resonance at ω0

Figure 2. The four possible regimes for 23Na spectra according to Rooney et al. Figure drawn from reference [13]. Copy‐
right permission by John Wiley & Sons Ltd (license no. 3824201099423).

As it can be seen in Figure 2, nuclei with a nuclear spin > 1/2 can exhibit more than just one
resonance. Therefore, transitions equal multiple times of the resonance frequency are possible.
These transitions are known as multi quantum coherences (MQCs). In the case of spin 3/2 nuclei,
single quantum (SQ) coherences can be observed, which are normally used for proton MRI
and two MQCs, double quantum (DQ) coherences and triple quantum (TQ) coherences,
respectively. In order to understand the relaxation properties of SQ coherences, a homogene‐
ous and isotropic environment with only one compartment is assumed. The detailed discus‐
sion of higher coherences will be treated separately.

3.1.1. Longitudinal relaxation

As known from 1H‐NMR the specific time constant T1 for the longitudinal relaxation can be
determined by usage of an inversion recovery (IR) sequence. After an initial 180° pulse follows
an evolution period called inversion time (Ti). Observable magnetization is then generated by
an additional 90° excitation pulse.
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If the time between the last pulse and the acquisition is kept minimal, the acquired signal can
be formulated according to reference [11]:
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with S0, the signal which can be obtained in the case Ti = 0, and with the relaxation rates

0
1 12R J= (5)

0
2 22R J= (6)

While the relaxation rates 10 and 20 are given by the spectral densities J1 and J2 [11]:
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Here, it should be pointed out that the integer m, which was mentioned in the definition of the
spectral densities (see Eqs. (2) and (3)), takes the values of 1 and 2. Theoretically, a biexponential
relaxation curve which contains a fast and a slow relaxing component can be observed.
However, it is very difficult to observe a biexponential T1 relaxation, especially in biological
tissue. Nevertheless, for 35Cl a biexponential T1 relaxation has been observed in vivo [14, 15].

It is common to express the relaxation rates with their inverse value, which leads to two
different time constants:
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T1f depicts the time constant for the fast, and T1s for the slow relaxing component. In the extreme
narrowing limit ω0τc ≪ 1 (i.e. isotropic liquid), it follows that T1f = T1s. Therefore, the relaxation
becomes monoexponential with the time constant T1 and the signal equation simplifies to
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(11)

3.1.2. Transverse relaxation

To measure the characteristic time constant T2 for the longitudinal relaxation, spin echo (SE)
sequences are commonly used. These sequences begin with an initial 90° excitation pulse.
Subsequent to this pulse a 180° inversion pulse is placed in the middle of an evolution interval
called echo time (TE).

A more detailed version of the following description for the elicited SE signal can be found in
reference [11]. The SE signal takes the form:
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S0 is the signal intensity when TE is minimal and the relaxation rates are represented by:

1
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1
2 1 2R J J= + (14)

In this case, the spectral density with m = 0 equals
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where 1 and 2 are the same spectral densities defined in Eqs. (7) and (8). Expressing the

relaxation rates with their inverse and leads to
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Similar to the case of T1 relaxation, the T2 relaxation is biexponential and consists of a fast
relaxing component with relaxation time T2f and a slow relaxing component with a relaxation
time T2s. In the extreme narrowing limit, the relaxation times become equal and lead to a
monoexponential relaxation. In contrast to longitudinal relaxation, the two components of the
transverse relaxation can be measured straight forward. Examples can be found in references
[14, 15].

3.1.3. Rotational correlation time and its influence on relaxation times

As referred to in the discussion of longitudinal and transverse relaxation time, the rotational
correlation time τc, and the root mean square value of the quadrupolar interaction constant χ
appear in each of these two processes. The relaxation rates of longitudinal and transverse
relaxation can be used to determine τc and χ in a model with a single compartment. However,
since the biexponential behaviour can be observed much easier in transverse relaxation, the

relaxation rates 11 and 21 are used here to determine τc and χ. Additionally, the substitution

x = (ω0τc)2 is used.

First, the ratio a1 of the two relaxation rates can be calculated as
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Rearranging Eq. (18) for τc leads to:
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Knowledge of τc can then be used to calculate the value for χ. Herein, the first step is to compute
the difference b1 of the relaxation rates:
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Solving for χ leads to,
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In order to study the behaviour of the relaxation times under the influence of τc, a constant
value for χ is assumed. From Eq. (19) follows that τc depends on the resonance frequency and
thus on the magnetic field strength, leading to a dependence of all relaxation times on the
magnetic field strength. Figure 3 shows the simulated behaviour of the product of T1 and T2

with χ being dependent on τc for magnetic field strengths of 9.4 T and 21.1 T. For the longitu‐
dinal relaxation, the assumed monoexponential behaviour leads to a single longitudinal
relaxation time constant T1. In case of the transverse relaxation, a biexponential behaviour was
assumed, which leads to a fast relaxing (T2f) and a slow relaxing (T2s) component of the
transverse relaxation time constant T2. The value for τc, where the product ω0τc = 1, is indicated
with the dotted red lines for both field strengths. At increasing correlation times, it can be
clearly seen that the fast transverse relaxation time is continuously decreasing. Time constants
for longitudinal relaxation as well as the constants for slow transverse relaxation first decrease
at an increasing correlation time. Around the area ω0τc = 1, the relaxation times start to increase
again. This clarifies why the value for longitudinal relaxation times in solids is of the order of
seconds, whereas it is in the range of milliseconds for liquids.

Figure 3. Dependence of relaxation times on the correlation time. Longitudinal as well as the slow components of
transverse relaxation times initially decrease at increasing correlation times. Above the extreme narrowing limit, these
relaxation times increase again. Short components of transverse relaxation times fall continuously at increasing correla‐
tion times.

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies12



( )15 1 41
2 c

b x
x

c
p t

+
= (21)

In order to study the behaviour of the relaxation times under the influence of τc, a constant
value for χ is assumed. From Eq. (19) follows that τc depends on the resonance frequency and
thus on the magnetic field strength, leading to a dependence of all relaxation times on the
magnetic field strength. Figure 3 shows the simulated behaviour of the product of T1 and T2

with χ being dependent on τc for magnetic field strengths of 9.4 T and 21.1 T. For the longitu‐
dinal relaxation, the assumed monoexponential behaviour leads to a single longitudinal
relaxation time constant T1. In case of the transverse relaxation, a biexponential behaviour was
assumed, which leads to a fast relaxing (T2f) and a slow relaxing (T2s) component of the
transverse relaxation time constant T2. The value for τc, where the product ω0τc = 1, is indicated
with the dotted red lines for both field strengths. At increasing correlation times, it can be
clearly seen that the fast transverse relaxation time is continuously decreasing. Time constants
for longitudinal relaxation as well as the constants for slow transverse relaxation first decrease
at an increasing correlation time. Around the area ω0τc = 1, the relaxation times start to increase
again. This clarifies why the value for longitudinal relaxation times in solids is of the order of
seconds, whereas it is in the range of milliseconds for liquids.

Figure 3. Dependence of relaxation times on the correlation time. Longitudinal as well as the slow components of
transverse relaxation times initially decrease at increasing correlation times. Above the extreme narrowing limit, these
relaxation times increase again. Short components of transverse relaxation times fall continuously at increasing correla‐
tion times.

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies12

3.1.4. Multi quantum coherences

As mentioned earlier, X‐nuclei with a nuclear spin > 1/2 can exhibit MQCs. The theoretical
description of MQCs is very complex and requires a background in quantum mechanics, a
formulation that is outside the scope of this book. However, very extensive descriptions can
be found in references [11, 16, 17].

MQCs can be a valuable tool for providing physiological information in MRI experiments. X‐
nuclei such as 23Na, 35Cl, and 39K, which are heavily involved in physiological processes possess
a nuclear spin equal to 3/2, and can therefore be used to generate MQCs. Figure 4 shows all
possible coherences in a spin 3/2 system. SQ and DQ coherences can be found in liquids as
well as in environments with restricted motion. The most specific coherence is the TQ coher‐
ence. This coherence can only be found above the extreme narrowing limit ω0τc ≥ 1, which can
only be reached when there is at least temporary binding. In biological systems, this is realized
by the interaction with macromolecules, such as proteins. For that reason, the intensity of the
TQ signal can give insight in the amount of interaction between ions and proteins. Therefore,
the sequences presented subsequently, exclusively deal with the generation and detection of
SQ and TQ coherences.

Figure 4. Multi quantum coherences in a spin 3/2 system. (Black) single quantum (SQ) transitions occur between neigh‐
bouring levels. (Blue) Double quantum (DQ) transitions skip one energy level. (Red) triple quantum (TQ) transitions
skip two energy levels.

If pulsed excitation is used, like in common NMR spectrometers or MRI scanners, it is not
possible to record MCQs directly. Instead of direct excitation with a single RF pulse, several
excitation pulses need to be applied to generate a signal which includes MCQs. Typically, the
signal generated by MCQs is much weaker than signal generated SQ coherences. As a result,
one has to apply filter techniques to suppress contributions from unwanted coherences. There
are two ways to filter different coherences: either through the application of gradient pulses,
or by cycling the phases of applied pulses and/or the receiver.

Usage of gradient pulses is associated with the advantage of short total measurement times
but the signal intensity is reduced by a factor of two. If phase cycling is used, the sequence
must be repeated several times, each time with a different set of pulses and/or receiver phases.
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If one deals with TQ coherences, the avoidance of signal loss is often more important than
saving scanning time. For this reason, phase cycling is the preferred method in this chapter.
Nevertheless, the reader can find some examples for filtration with gradient pulses in refer‐
ence [18].

A common method for exciting and detecting TQ coherences is a pulse scheme consisting of
three 90° excitation pulses, as illustrated in Figure 5. As it can be seen, all pulses have the same
amplitude, while the phases of the first two pulses can vary. The time period between the first
and the second pulse is called evolution time τEvo, and it is typically within the range of ms.
Between the second and the third pulse, there is another short delay called mixing time, τMix,
which is typically in the range of several μs. In the case of TQ filtration, Φ′ is set to 90° while 
is cycled through the values of 30°, 90°, 150°, 210°, 270°and 330°. In addition to this, the receiver
phase is altered between 0° and 180° after each subsequent scan and the phase of the third
pulse is constantly equal to 0°. During the second pulse of the phase cycle, each coherence will
accumulate the phases linearly, according to the number of energy levels which where skipped,
i.e. DQ coherences will accumulate the phase with a factor one, and TQ coherences with a
factor of two, respectively. In the literature, this is referred to as triple quantum filtered T2 (TQF‐
T2) experiment, or simply, a TQF experiment.

Figure 5. Three‐pulse scheme for excitation and detection of MCQs. Pulse phases are indicated with Φ and Φ′. The time
delays τEvo and τMix represent evolution and mixing time. Data acquisition is indicated with ADC which refers to the
analogue‐to‐digital converter.

The actual signal is obtained by complex addition of all subsequent scans. Table 3 shows the
phases accumulated by all coherences during the TQF experiment. As it can be seen from the
values listed in Table 3, the contribution from SQ and DQ coherences cancel each other out
while the phases of the TQ contributions are constant. After addition, the TQ signal can be
expressed with the following equation [11]:

( ) ( )1 1
1 2

15 6
16 5

Evo EvoR R
EvoS e et tt - -= - (22)

The relaxation rates 11 and 21 were defined in Eqs. (13) and (14). To avoid the influence of the

acquisition time of the generated free induction decay (FID), a Fourier transform (FT) can be
performed along the acquisition time domain. The dependence of τEvo is then found at ω0 along
the direction of τEvo.
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SQ DQ TQ30∘ 150∘ 270∘90∘ 90∘ 270∘150∘ 30∘ 270∘210∘ 330∘ 270∘270∘ 270∘ 270∘330∘ 210∘ 270∘
Table 3. Accumulated phases of the different coherences during the TQF experiment.

Situations with ω0τc ≥ 1 can be easily simulated using solutions and the addition of agarose.
The more agarose the sample contains, the higher the correlation time. In order to simulate
different in vivo situations the agarose concentration can be varied from 1 to 7.5%. From this
data, the correlation time can be extracted according to the one compartment model. This
phantom data can help to interpret in vivo data regarding to the degree of ion binding. Figure 6
shows the TQF signals of 23Na in samples with different agarose concentration and 154 mM
23Na concentration in dependence of the evolution time τEvo recorded at 9.4 T. All curves were
normalized after acquisition and fitted according to the signal equation. With increasing
agarose levels, one can clearly see an increase in the signal‐to‐noise ratio (SNR) indicating that
the interaction of the 23Na ions with their environment is also increasing. Additionally, the
curves exhibit faster rise and decay times with increasing agarose, which is equivalent to an
increase in both relaxation rates and a decrease in both relaxation times, respectively.

Figure 6. TQF signal of 23Na at different agarose concentrations as a function of τEvo at 9.4 T. Increasing agarose content
leads to an increased interaction between 23Na and its environment, therefore, the TQF signal also increases. Addition‐
ally, both relaxation times become shorter, leading to a more rapid rise and decay of the signal.
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As previously mentioned, the degree of binding will lead to an increase in TQ contributions.

If one wants to record dynamic processes, such as changes in the amount of free water or ion
concentrations, a reference is needed. In in vivo experiments, it is often difficult to work with
an external reference which underlies variations in transmit and receive fields. It would be
more accurate to generate a spectrum with an intrinsic reference. In case of 1H‐MRS or 31P‐
MRS, a spectrum with multiple peaks arises from different binding partners of the nucleus
under observation. Unfortunately, X‐nuclei with nuclear spin > 1/2 hardly have permanent
binding partners. In most cases, the binding is related to interactions with macromolecules
and cannot be seen in conventional spectroscopy.

SQ DQ TQ90∘ 270∘ 90∘90∘ 90∘ 90∘135∘ 0∘ 225∘135∘ 180∘ 225∘180∘ 90∘ 0∘180∘ 270∘ 0∘225∘ 180∘ 135∘225∘ 0∘ 135∘270∘ 270∘ 270∘270∘ 90∘ 270∘315∘ 0∘ 45∘315∘ 180∘ 45∘0∘ 90∘ 180∘0∘ 270∘ 180∘45∘ 180∘ 315∘45∘ 0∘ 315∘
Table 4. Phases of different coherences by applying triple quantum filtered time proportional phase increment
(TQTPPI) spectroscopy with DQ suppression.

The solution to this problem is provided by multi quantum (MQ) spectroscopy. A very
promising sequence to generate more resonance peaks from different MQCs in a single
spectrum is referred to with the term triple quantum filtered time proportional phase increment
(TQTPPI) [19]. The sequence diagram is basically the same shown in Figure 5. The only
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(TQTPPI) [19]. The sequence diagram is basically the same shown in Figure 5. The only
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difference is the applied phase cycle and the fact that τEvo is incremented after each step in the
phase cycle. Since DQ coherences also occur in liquids, a suppression of these contributions
can help to simplify the signal and can be achieved by application of a 16 step phase cycle
starting with Φ = 90°, for the first pulse. The second pulse carries the variable phase Φ and the
constant phase Φ′ = 90° and the phase of the third pulse is, like the receiver phase, equal to
zero. In order to suppress DQ coherences, each step in the phase cycle has to be repeated twice,
the second time with an additional 180° phase on the middle pulse. Incrementing Φ and τEvo
is then performed after each second step in the phase cycle. Typical values for Φ and τEvo are
45° and 100μs. Table 4 shows the resulting phases of all occurring coherences after application
of the 16 step phase cycle. It can be seen that in the case of SQ and TQ contributions, the phases
of two subsequent scans are equal, while the two subsequent phases for DQ contributions
differ by 180°. DQ suppression can then be achieved by the addition of the two subsequent
scans.

Figure 7. TQTPPI spectra of 23Na at 9.4 T with different concentrations of agarose. The frequency increases from right
to left. All curves were normalized with respect to the SQ resonance. At increasing agarose content (shown along the y‐
axis), the TQ contribution becomes more pronounced.

Generating the desired signal includes two steps: First, a FT has to be performed in the
acquisition domain. Second, a second FID is generated by taking the points at ω0 in the
evolution time domain. This second dimension FID can be therefore turned into a spectrum
by the application of an additional FT. Only the experimental results of this sequence are
shown. Interested readers can find a very detailed derivation of the signal equation in
reference [17].

Figure 7 shows TQTPPI spectra with DQ suppression of 23Na obtained at 9.4 T. Different
agarose concentrations are located along the y‐axis. The first peak from the right is the SQ
resonance which is located at 1.25 kHz. Accordingly, the TQ resonance appears at a frequency
of 3.75 kHz which is exactly three times the SQ frequency. All of the spectra are normalized to
the maximum value of the SQ resonance. One can clearly see the gain in TQ signal at increasing
agarose concentrations. It is possible to consider the SQ peak as an internal reference, to
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calculate the area under both peaks and to build the ratio TQ/SQ. Observing the TQ/SQ ratio
allows the conduct of dynamic studies of changes in the motional freedom induced by changes
in the binding of the nucleus under investigation. If applied to biological tissue, this can give
valuable information about the amount of bound ions and their interaction with proteins in
the tissue.

3.2. 31P: Energy metabolism

31P spectroscopy has found its way into basic and clinical research due to the fact that 31P is
involved in energy metabolism. Energy consuming processes, such as the maintenance of the
membrane potential, use the hydrolysis of adenosine triphosphate (ATP) as the energy source.
The reaction is in accordance to:

2 iATP H O ADP P+ ® + (23)

Figure 8. 31P spectrum of a resting, arterially perfused cat soleus muscle. One can clearly see the phosphocreatine (PCr)
resonance. The α, β, and γ resonances of adenosine triphosphate (ATP) are found at positive values for δ, while the
inorganic phosphate (Pi) resonates at negative δ values. Contributions of sugar phosphate (SP) are also found at nega‐
tive δ values. Figure drawn from reference [20]. Copyright permission by The American Physiological Society (license
no. 3871910770507).

It can be seen that adenosine diphosphate (ADP) and inorganic phosphate (Pi) are produced
during this reaction. In addition to the resonances of ATP, ADP and Pi one can also detect 31P
resonances from phosphomonoesters and diesters. Figure 8 shows an example for a 31P
spectrum recorded from a resting, arterially perfused cat soleus muscle [20]. One can clearly
see the three resonances of ATP, the phosphocreatine (PCr) resonance, and the resonance line
of Pi. Small contributions from sugar phosphate (SG) are also visible.
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An overview of resonances of detectable metabolites is shown in Table 5 [4]. As it can be seen
from Table 5, the chemical shift () of the different metabolites covers a wide range. By
convention, the PCr resonance is set as internal reference (δ = 0.00 ppm).

Metabolite Chemical shift

Adenosine monophosphate (AMP) 6.33
Adenosine diphosphate (ADP) −7.05   ()−3.09   ()
Adenosine triphosphate −7.52   ()−16.26   ()−2.48   ()
Dihydroxyacetone phosphate 7.56
Glucose‐1‐phosphate 5.15
Glucose‐6‐phosphate 7.20
Inorganic phosphate (Pi) 5.02
Phosphocreatine (PCr) 0.00
Phosphoenolpyruvate 2.06
Phosphoryl choline 5.88
Phosphoryl ethanolamine 6.78
Nicotinamide adenine dinucleotide (NADH) −8.30
Table 5. Detectable metabolites by 31P spectroscopy with their chemical shift.

In 31P applications, it is not only possible to measure the concentration of a metabolite, it is also
possible to derive rate constants based on changes of the concentrations of the PCr, Pi, and
ATP. To influence the concentrations of PCr, Pi, and ATP, it is common to acquire the data while
a volunteer is exercising and during the recovery period after the exercise. In the literature,
one can find a variety of studies of the energy metabolism of human calf muscles. An extensive
review is presented in reference [21].

The fact that the chemical shift of many 31P resonances is dependent on the intracellular pH
and magnesium concentration, leads to another interesting application, namely, the in vivo
measurement of pH values. This can be achieved using the Henderson‐Hasselbach equation:

HA

A
pH pK log d d

d d
æ ö-

= + ç ÷ç ÷-è ø
(24)
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where pK is the equilibrium constant for the acid‐base equilibrium between A and HA. The
chemical shifts of the protonated and dissociated forms of the molecule under observation are
expressed by δHA and δA, respectively. Determining pH is achieved by measuring the chemical
shift δ between PCr and Pi. With literature values, Eq. (24) takes the form [22]:

3.226.803
5.73

pH log d
d

-æ ö= + ç ÷-è ø
(25)

3.3. 17O: Oxygen consumption

Supplying living cells with oxygen is of crucial importance for their viability. This can be seen
by the huge impact a shortage of oxygen (hypoxia) has on, for example, brain functions. In
order to access the production of NMR visible H2

17O, the paramagnetic properties of 17O can
be used. There are two ways to use 17O in magnetic resonance (MR) experiments.

Firstly, with direct detection of the 17O resonance, and secondly, by use of the change in the 1H
relaxation times due to the coupling between 17O and 1H. Direct and indirect detections suffer
from the low natural abundance of 17O of 0.037%. Together with low values for γ, this leads to
a sensitivity which is a factor of 1.7 × 105 lower than for 1H. To overcome this obstacle, techni‐
ques for increasing the 17O concentration are highly valuable. For this purpose, setups, like
those listed in reference [23], for the inhalation of 17O enriched gas which can increase the 17O
concentration above the natural abundance, are continuously developed.

As mentioned, a concentration increase can be reached by the inhalation of 17O enriched gas.
After inhalation, the oxygen binds to haemoglobin due to lung exchange and is transported
to the brain via the vascular system. As long as the oxygen gas is bound to haemoglobin, it is
practically NMR invisible. In this state, the rotational motion is very slow leading to a very
low value for τc and therefore to a rapid transverse relaxation. Through cerebral oxygen
metabolism (CMRO2), NMR observable 17O enriched water is produced according the follow‐
ing equation:

17 17
2 24H  4e O 2H O+ -+ + - > (26)

According to references [10] and [24], the relaxation rates R1 and R2 for the 17O nucleus in tissue
water within the extreme narrowing limit can be estimated as follows:

2
2 1

2 1

1 1 1.056 cR R
T T

c t= @ = = (27)

where  is the root mean square coupling constant introduced in Eq. (2). Under coupling to
17O, the transverse relaxation rate R2,H of the 1H nucleus can be estimated as follows:
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The relaxation time 2  denotes the transverse relaxation time for 1H when it is bound to 16O,

P is the molar fraction for H2
17O which is equivalent to the 17O enrichment factor, τ is in this

case the characteristic proton exchange lifetime and J2 is the scalar 17O‐1H coupling constant.
Hopkins et al. have shown that only the transverse and not the longitudinal relaxation is
influenced by the presence of 17O enriched water [25].

3.4. 13C: Brain metabolites

Like all organic compounds, brain metabolites are consisted of carbon atoms and protons.
Therefore, for MRS experiments, it is sensible to consider the carbon isotope 13C, which carries
a nuclear spin equal to 1/2. From Table 1 follows that the value for γ is just 25% of the proton
value. Given the low natural abundance of 1.1%, it also has a relatively low NMR sensitivity.
If a carbon spectrum is recorded at natural abundance, it will be dominated by the resonances
of free fatty acids. Nevertheless, due to the high spectral range of approximately 200 ppm, the
spectral resolution of carbon spectra is outstanding. The carbon resonances can be categorized
in four groups, which are shown in Table 6 [4]:

Resonance of nuclei in different CH groups Resonance of nuclei

adjacent to hydroxyl

groups

Resonance of nuclei

in lipids

Resonance of

nuclei in

carbonyl groupsδ ≈  25  –  60 ppm δ ≈  60  –  100 ppm δ ≈ 20 − 50 ppm

and δ > 120 ppm

δ > 150 ppm

CH3 groups CH2 groups CH groupsδ < 25 ppm δ ≈ 25 − 45 ppm δ ≈ 45 − 60 ppm

Table 6. Chemical shifts of different 13C moieties.

There are three techniques to increase the sensitivity of the 13C nucleus. One is the application
of cryogenic coils where the RF coil is actively cooled by coolant, for example, liquid nitrogen.
This reduces the electrical resistance of the coil and increases the signal strength. Another way
to increase sensitivity is the application of heteronuclear broadband decoupling. This method
also simplifies the interpretation of the spectrum since the scalar coupling between 13C and 1H
is lifted. Application of 13C‐labelled precursors does not only increase sensitivity. Furthermore,
it enables the tracking of brain metabolites, such as glycogen and neurotransmitters [26].

Some examples of detectable metabolites and the chemical shifts of the single carbon atoms
are listed in Table 7 [4]. A very good example for the application of 13C spectroscopy lies in the
observation of glycogen regulation. This might have tremendous impact in the understanding
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of pathologies such as diabetes mellitus. Tracking the metabolic pathways provides a unique
information which can only be acquired with the use of 13C spectroscopy.

Metabolite Atom no.

1 2 3 4 5 6‐aminobutyric acid (GABA) 182.3 35.2 24.6 40.2 – –

Glutamate 175.3 55.6 27.8 34.2 182.0 61.4

Glycogen 100.5 – 74.0 78.1 72.1 61.4

N‐acetylaspartylglutamic acid (NAA) 179.7 54.0 40.3 179.7 174.3 22.8

Table 7. Chemical shifts (in ppm) of detectable carbon metabolites.

3.5. Functional phantoms and data interpretation

As shown in Section 3.1.4, the main advantage of MQ spectroscopy lies in its capability of
recording signals from different coherences simultaneously. However, in order to connect the
observed effect to a specific physiological response often remains difficult. In an in vivo
experiment one has to face the fact that physiological parameters, such as the pH value,
temperature, and ion concentrations are hardly, or even not at all accessible. What can be done
is, of course, a set of experiments consisting of experiments under pathological conditions and
experiments under standard conditions.

A solution to this problem may be found by conducting basic biological experiments, which
are carried out on organotypic cell cultures. In contrast to in vivo experiments, organotypic cell
cultures in microbioreactors provide a high degree of control over the experiment. Specific
reactions can be initiated by adding drugs directly to the cell culture.

The principal approach of combining organotypic cell culture experiments in microbioreactors
with MRI‐detection techniques was impressively shown by Gottwald et al. [3]. In their study,
Gottwald et al. used a MRI compatible bioreactor to perform contrast enhanced perfusion 1H‐
MRI. The setup contained the MRI compatible reactor, which in turn contains a perfused three
dimensional cell culture on a chip (3D‐KITChip), an external perfusion system with medium
supply, and a gas mixing station. It could be shown that the perfusion characteristics are nearly
independent of the flow rates, and the system could be completely washed out from applied
drugs or contrast agent. From this, it follows that every drug applied in the system will be
washed out, allowing the cell culture to reach its initial state again. Basically, this system can
serve as a functional phantom for the development and testing of new MR sequences, as well as
for recording the specific response of cells to different drugs under various physiological
conditions.

The bioreactor with a medium reservoir and a peristaltic pump is shown in Figure 9a. A cross
section of the reactor with the flux of cell culture medium is depicted in Figure 9b. One can
see that the medium enters the bioreactor housing from below the chip and is then pumped
through the pores of the chip, and therefore through the tissue residing in the microcavities,
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to the compartment above the tissue. The medium finally exits the bioreactor to the right side.
By the use of this perfusion technique, the cells can be ideally supplied with medium and can
be cultured organotypically for weeks. This setup can then be used to record MQ spectra from
the cell culture. An example 23Na‐TQTPPI spectrum without cells, recorded with a custom built
23Na surface coil at 9.4 T, is shown in Figure 9c. The SQ resonance is shown on the right side
of the spectrum. It is not surprising that the SQ resonance is extremely large compared to the
rest of the spectrum, since this resonance contains the complete amount of free ions. Higher
frequencies are displayed from right to left. It should be noted that despite the DQ suppression,
the DQ resonance was not suppressed completely. This is related to imperfection in the
excitation pulses arising from the inhomogeneous pulse profile of the surface coil. A zoomed
section (shown by the red box) of the spectrum is depicted in Figure 9d. As one can see, there
is no TQ resonance at the expected frequency.

Figure 9. (a) Bioreactor with medium reservoir and peristaltic pump. (b) Cross section of the bioreactor with perfusion
direction. (c) With custom built surface coil recorded complete 23Na‐TQTPPI spectrum of the bioreactor without cells at
9.4 T. (d) Zoomed section (red box in c) of the spectrum without cells. The spectrum shows no significant TQ contribu‐
tion. (e) Zoomed section of a 23Na‐TQTPPI spectrum with cells. The TQ contribution is clearly present.
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The situation changes critically when the experiment is repeated with an active cell culture. In
Figure 9d, the zoomed section of a 23Na‐TQTPPI spectrum is shown from an experiment with
a cell culture. One can clearly see the TQ resonance at the expected frequency. Compared to
the other resonances, the TQ contribution is extremely small, but the quality of the gained
information is revealed if one takes the dimensions of the experiment into account. In the very
best case scenario, the entire fraction of the cell culture is approximately 1.2% of the complete
volume under investigation. It is obvious that the TQ signal arises from this small fraction
which proves that the TQTPPI spectroscopy is a very sensitive tool.

3.6. Conclusions

Based on their involvement in physiological processes such as energy metabolism, generation
of action potentials and cell volume regulation, NMR experiments on X‐nuclei can provide
valuable physiological information.

On the one hand, there are nuclei with a nuclear spin equal to 1/2 which can be measured by
means of pulse sequences known from 1H‐NMR. For instance, 31P spectra can be generated by
usage of simple single pulse sequences. Despite the relative low NMR sensitivity, the infor‐
mation obtained by the application of such simple sequences is always related to the biological
background of the nucleus under investigation. On the other hand, for the exploitation of the
full potential of spin 3/2 X‐nuclei, their unique (quantum) physical properties must be utilised.
Sequences capable to generate and record MQCs can be used to study changes in the motional
freedom of the nuclei. In living systems, the motional freedom can be influenced by a change
in ion binding or by morphological changes of the environment of the nucleus. Therefore, the
analysis of MQCs in biological tissue can provide additional information about protein activity
or changes in cell volume.

It is of high importance to link changes in the observed signal to the underlying physiological
processes. The usage of functional phantoms is a very promising way to establish that link.
Since the available magnetic field strength is continuously increasing, the relative low NMR
sensitivity of these nuclei may no longer be a drawback in the future.
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Abstract

Cardiovascular diseases (CVDs) afflict many people across the world; thus, understanding
the  pathophysiology  of  CVD  and  the  biomechanical  forces  which  influence  CVD
progression is important in the development of optimal strategies to care for these patients.
Over the last two decades, cardiac magnetic resonance (CMR) imaging has offered
increasingly  important  insights  into  CVD.  Computational  fluid  dynamics  (CFD)
modeling, a method of simulating the characteristics of flowing fluids, can be applied to
the study of CVD through the collaboration of engineers and clinicians. This chapter aims
to explore the current state of the CMR-derived CFD, as this technique pertains to both
acquired CVD (i.e., atherosclerosis) and congenital heart disease (CHD).

Keywords: computational, modeling, cardiovascular, atherosclerosis, congenital

1. Introduction

Cardiovascular disease (CVD) is a common cause of morbidity and mortality around the world
[1]. Each year, CVD afflicts more than 1.9 million in the European Union and at least 800,000 in
the United States of America (USA). The cost of health care has been increasing exponentially
over the years with estimates noting about 196 billion Euros per year and 207.3 billion dollars
spent annually on direct/ indirect costs of cardiovascular disease [1]. In the United States, almost
801,000 Americans died from heart disease, stroke, or other CVD in 2013 and ~85.6 million
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Americans live with some form of CVD [1, 2]. While far fewer have congenital heart disease
(CHD), these structural problems still afflict about 1% of live-born children and many require
intricate operations for treatment/palliation. American Heart Association data suggest that
approximately two million Americans live with some form of CHD, as do millions of Europeans
and other individuals globally [3].

Mechanical stimuli (such as pressure and strain) have been shown to influence the onset and
progression of CVD. For example, wall tension can be estimated as the product of vessel radius
and blood pressure (BP). Chronic changes in wall tension initially driven by increases in
pressure are believed to be the stimuli for vessel thickening, which then restores wall stress to
a preferred operating range [4]. Strain also reflects aortic deformation as present with hyper-
tension and aneurysm formation [5, 6].

Of particular interest is wall shear stress (WSS) (Figure 1), which can be generally defined as
the frictional force exerted on the walls of a vessel as a result of flowing blood. Areas of low
time-averaged WSS are known to correlate with sites of atherogenesis and inflammation from
prior studies [7–12]. These studies suggest that specific alterations in mechanical stimuli
manifesting from CVD may be the stimuli ultimately leading to morbidity. Hence, there is
value in knowing how and when they lead to structural, as well as functional and hemody-
namic vascular changes.

Figure 1. Wall shear stress (WSS). The figure shows schematic illustration of the velocity profile experienced by endo-
thelial cells lining a vessel as a result of flowing blood. WSS (τw) can generally be defined as the frictional force exerted
on the walls of the vessel. In its simplest form (e.g., plane Couette flow), WSS is the product of viscosity and the near-
wall velocity gradient (∂v/∂r), also known as the shear rate or rate of deformation.

The flow patterns of fluids are governed by partial differential equations that represent
conservation laws for quantities such as mass and momentum [13]. Predicting the impact of
such flows in biomedical applications, as well as within other scientific disciplines, is time
consuming and costly without computational tools. Computational fluid dynamics (CFD) is a
method of simulating fluid passing through or around an object, in this case blood vessels, by
replacing the partial differential equations with algebraic equations that can be solved
numerically using digital computers. There are several open source and commercially
available CFD software packages that facilitate the completion of these calculations with user-
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friendly interfaces that accept various types of medical imaging data. The workflow for each
software package then allows a user to generate hemodynamic results (as presented through-
out this chapter) with an appreciation for the governing mathematical equations. However, in
performing CFD modeling, there are several important clinical and engineering considerations
that should be kept in mind.

The general requirements for studying blood flow for patients with CVD and/or CHD using
CFD include first creating a model of the vessel geometry from three-dimensional (3D) medical
imaging data. Typically, cardiac magnetic resonance (CMR) or computed tomographic (CT)
imaging data are readily available 3D data that provide clear definition of anatomy. CFD also
requires prescription of the flow information for the entrance and exit of vessels which is
gleaned from phase contrast (PC) velocity-encoded CMR data acquired at these sites. It is also
necessary to prescribe the hemodynamic state beyond the borders of the 3D imaging dataset
in order to obtain physiologic results (e.g., setting downstream resistance to obtain a realistic
range of pressure). Direct or indirect assignment of this inlet and outlet information is referred
to as “setting the boundary conditions.” Rheological properties, such as blood density and
viscosity, are then assigned. The last step in the process entails the use of a powerful computer
or cluster of computers to solve the governing equations for fluid flow throughout a version
of the vessel’s geometry, which is represented as a computational mesh.

More specifically, the first step when performing CFD involves creating a computer aided
design (CAD) model within the vascular regions of interest from medical imaging data. The
CMR imaging focus of the current work most often uses data from either breath-held electro-
cardiographically (ECG)-gated, magnetic resonance angiography (MRA) or a respiratory-
navigated, ECG-gated 3D nongadolinium-enhanced, entire heart CMR sequence. CFD can be
used with other sequences and imaging modalities as well. The models created can provide
the geometry on a patient-specific basis when it is desirable to focus on a clinical question for
a specific patient, or for a group of patients with similar pathology [14]. Alternatively, repre-
sentative or idealized models are also sometimes used, where the geometry within the
idealized model is informed by measurements taken from data within a collection of CMR
scans across one or more patients. To date, our workflow has primarily used SimVascular
(simvascular.github.io, latest version, La Jolla, CA, USA), but other commonly used software
packages that facilitate the import and segmentation of CMR data include Cardiovascular
Integrated Modeling and Simulation (CRIMSON, www.crimson.software), the Vascular
Modeling Toolkit (VMTK, www.vtnk.org), and Mimics (biomedical.materialise.com/mimics,
Plymouth, MI, USA), just to name a few. Each of these programs then facilitates discretization
of the CAD model created from CMR data by interacting with some type of meshing software
(e.g., MeshSim, www.simmetrix.com, Clifton Park, NY, USA). The parameters selected during
the segmentation and meshing steps used in creating a computational version of the vascula-
ture from CMR can have a large impact on the results obtained. For example, the accuracy of
WSS indices (see below for details on specific WSS indices of interest) depends greatly on vessel
radius, and therefore on the confidence with which segments or 3D boundaries for the CAD
model are created from CMR data. In its simplest form (e.g., plane Couette flow), WSS is the
product of viscosity and the near-wall velocity gradient (Figure 1) [10]. This change in velocity
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from the wall of an artery to the next nearest location is largely determined by details of the
computational mesh that are established. Note that the velocity on the wall is often zero due
to a no-slip condition. Unfortunately, the computational costs of obtaining CFD results increase
as a function of mesh density. The trade-off is often managed in today’s CFD studies by using
adaptive-meshing approaches [15, 16] yielding smaller meshes that strategically place more
elements where they are most needed, such as near the wall, for improved accuracy when
determining WSS.

In practice, the density for blood is typically selected from the literature, and a Newtonian
assumption (i.e., constant blood viscosity) is most often employed. Although blood is a shear-
thinning fluid, meaning that its viscosity decreases as it is deformed, approximating its
behavior as Newtonian is generally thought to be reasonable for the range of shear rates
experienced by the portions of the vasculature that are highlighted in the CFD studies below.
A unique aspect of CFD software packages designed specifically for biomedical applications
is their ability to implement boundary conditions that replicate normal and CVD physiology
[17]. For example, the time-varying opposition to blood flow (i.e., impedance spectra) can be
calculated from pressure and flow measurements made at the same location in the vascular
system, but Windkessel models are often used as an approximation of the impedance given
the impracticality of the necessary measurements within a clinical setting [17]. It is an increas-
ingly common CFD modeling standard to employ three-element Windkessel representations
derived from CMR-acquired PC velocity-encoded (VENC) flow data for inlet and outlet
boundary conditions. More recent boundary condition advancements include cardiac function
through the use of closed-loop lumped-parameter networks (LPNs) with CFD models. Closed-
loop LPNs were initially developed to model single ventricle physiology [18] and are now
being used to characterize flow patterns in the coronary arteries and other vascular regions.
These closed-loop LPN models are often tuned to match measured clinical data (i.e., cardiac
output (CO), stroke volume, blood pressure, and ejection fraction), and then coupled to patient-
specific simulations that use specialized computers to solve the conservation of mass, balance
of momentum, and (in some cases) the vessel wall elastodynamics equations [19]. The results
are vascular hemodynamic indices that may aid the understanding and care of CVD, following
detailed analysis of the resulting indices.

The application of CFD to clinical cardiovascular problems typically requires teamwork
between clinicians and engineers, with a step-wise approach to gather and analyze specific
data for the study of clinically important blood flow issues (Figure 2). As an example, under-
standing flow in the aortic arch by CFD requires CMR data for the anatomy of interest (MRA
or other 3D data), as well as blood flow measurements (from PC velocity-encoded magnetic
resonance imaging sequence, PC-MRI) for all major inflow and outflow vessels (in this case,
the ascending and descending aortic flow, as well as the brachiocephalic vessels, as denoted
by the black dotted lines in Figure 2). Blood pressure measurements from each limb are also
used in assigning boundary conditions.

When creating CFD models for the aortic arch, the inlet is most often aortic flow. Typically, this
can be imposed in one of several representations including plug flow (i.e., uniform flow),
parabolic flow (as shown in Figure 1), or a patient-specific flow obtained from CMR phase

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies30



from the wall of an artery to the next nearest location is largely determined by details of the
computational mesh that are established. Note that the velocity on the wall is often zero due
to a no-slip condition. Unfortunately, the computational costs of obtaining CFD results increase
as a function of mesh density. The trade-off is often managed in today’s CFD studies by using
adaptive-meshing approaches [15, 16] yielding smaller meshes that strategically place more
elements where they are most needed, such as near the wall, for improved accuracy when
determining WSS.

In practice, the density for blood is typically selected from the literature, and a Newtonian
assumption (i.e., constant blood viscosity) is most often employed. Although blood is a shear-
thinning fluid, meaning that its viscosity decreases as it is deformed, approximating its
behavior as Newtonian is generally thought to be reasonable for the range of shear rates
experienced by the portions of the vasculature that are highlighted in the CFD studies below.
A unique aspect of CFD software packages designed specifically for biomedical applications
is their ability to implement boundary conditions that replicate normal and CVD physiology
[17]. For example, the time-varying opposition to blood flow (i.e., impedance spectra) can be
calculated from pressure and flow measurements made at the same location in the vascular
system, but Windkessel models are often used as an approximation of the impedance given
the impracticality of the necessary measurements within a clinical setting [17]. It is an increas-
ingly common CFD modeling standard to employ three-element Windkessel representations
derived from CMR-acquired PC velocity-encoded (VENC) flow data for inlet and outlet
boundary conditions. More recent boundary condition advancements include cardiac function
through the use of closed-loop lumped-parameter networks (LPNs) with CFD models. Closed-
loop LPNs were initially developed to model single ventricle physiology [18] and are now
being used to characterize flow patterns in the coronary arteries and other vascular regions.
These closed-loop LPN models are often tuned to match measured clinical data (i.e., cardiac
output (CO), stroke volume, blood pressure, and ejection fraction), and then coupled to patient-
specific simulations that use specialized computers to solve the conservation of mass, balance
of momentum, and (in some cases) the vessel wall elastodynamics equations [19]. The results
are vascular hemodynamic indices that may aid the understanding and care of CVD, following
detailed analysis of the resulting indices.

The application of CFD to clinical cardiovascular problems typically requires teamwork
between clinicians and engineers, with a step-wise approach to gather and analyze specific
data for the study of clinically important blood flow issues (Figure 2). As an example, under-
standing flow in the aortic arch by CFD requires CMR data for the anatomy of interest (MRA
or other 3D data), as well as blood flow measurements (from PC velocity-encoded magnetic
resonance imaging sequence, PC-MRI) for all major inflow and outflow vessels (in this case,
the ascending and descending aortic flow, as well as the brachiocephalic vessels, as denoted
by the black dotted lines in Figure 2). Blood pressure measurements from each limb are also
used in assigning boundary conditions.

When creating CFD models for the aortic arch, the inlet is most often aortic flow. Typically, this
can be imposed in one of several representations including plug flow (i.e., uniform flow),
parabolic flow (as shown in Figure 1), or a patient-specific flow obtained from CMR phase

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies30

contrast velocity-encoded (PC-MRI) data that intrinsically incorporates elements of both. In
vivo, the velocity profile is determined by a ratio of inertial (i.e., those forces driving the flow)
to viscous (those forces impeding the flow) forces [17]. If the impact of viscous forces is large,
such as in a smaller artery with lower velocity, then the velocity profile will be parabolic.
However, in a larger artery such as the aorta, inertial forces are more pronounced, leading to
a more uniform velocity profile except near the walls where the impact of viscous forces
manifests. It is, therefore, desirable to use a retrospective ECG-gated phase contrast velocity-
encoded sequence to sample the velocity profile, which should intrinsically capture these
features, downstream of the valve for direct input into a CFD model, but this requires appro-
priate through-plane and in-plane velocity encoding to adequately resolve flow features. This
approach may also be difficult to implement within the typical imaging time available for a
clinical case, as it requires specialized sequences and obtains data that are more detailed than
that commonly used in clinical imaging. An alternative approach is to construct CFD models
with their inlet beginning at the aortic annulus, impose the measured blood flow waveform as
an assumed velocity profile at the model inlet (with plug profile or patient-specific flow
profile), and allow the curvature and related geometry of the arch to influence the resulting
flow patterns [14]. This approach does not require specialized sequences, minimizes the
introduction of noise at the model inflow due to inadequate velocity encoding, and allows for
improved temporal resolution compared to three-component PC-MRI, using multiple planes
for flow assessment [20].

Figure 2. Step-wise creation of computational fluid dynamics (CFD) models. Flow assessments are performed by phase
contract magnetic resonance imaging (PC-MRI) at locations noted in the middle panel, while four limb blood pressure
assessments are performed after scanning.

In our workflow for CFD simulations of the thoracic aorta to date, which is shown schemati-
cally in Figure 2, outlet boundary conditions have used measured BP and the PC-MRI flow
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data from each brachiocephalic vessel and the descending aorta together with an approach
called the “pulse pressure method” to assign elements to the Windkessel parameters [21, 22].
The regional resistances, arterial capacitances, and distal resistances are estimated for each
case and used in patient-specific modeling (Table 1) [23]. Given the very small nature of the
intercostal arteries, and the fact that their flow distributions are not typically characterized by
imaging, these are not usually employed in the modeling. While flow to the intercostal arteries
is important physiologically, characterizing the flow distributions requires multiple phase
contrast image acquisition frames or 4D (four-dimensional) blood flow imaging using CMR
that is often beyond the time available and needs of the clinically ordered session.

Control T1DM
Young’s modulus E (dyn/cm2) 3.99E+06–3.57E+07 3.23E+06–1.17E+07

Innominate artery Rc (dyn·s/cm5) 429–489 320–939

C (cm5/dyn) 1.22E−04–1.42E−04 1.23E−04–3.99E−04

Rd (dyn·s/cm5) 4250–6500 4520–9260

Left common carotid artery Rc (dyn·s/cm5) 687–1720 702–1390

C (cm5/dyn) 3.91E−05–1.15E−04 4.94E−05–1.52E−04

Rd (dyn·s/cm5) 10,800–19,600 11,800–15,200

Left subclavian artery Rc (dyn·s/cm5) 662–1830 500–1480

C (cm5/dyn) 6.11E−05–1.26E−04 6.19E−05–1.62E−04

Rd (dyn·s/cm5) 6400–23,000 6813–15,000

Descending aortic outlet Rc (dyn·s/cm5) 99–231 101–232

C (cm5/dyn) 2.67E−04–8.76E−04 2.84E−04–8.16E−04

Rd (dyn·s/cm5) 894–4580 1530–4710

With permission and adapted from Samyn et al. [23].

Table 1. Resistances and capacitances used for CFD simulations of adolescent patients [22].

Figure 3. Computational fluid dynamics (CFD) modeling with realistic deformations. A mean intensity projection
magnetic resonance angiogram from a patient with aortic coarctation is shown on the left. Temporal wall motion proxi-
mal and distal to the coarctation from phase contrast magnetic resonance imaging (PC-MRI) are shown in the middle
column, and patient-specific CFD simulations (R = right, L = left, A = anterior, P = posterior) are shown at right.
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Fluid-structure interaction (FSI) simulations represent a specialized version of CFD modeling
that considers the pulsatility and elastic nature of the arterial system. FSI, therefore, has the
potential for introducing more clinically relevant features when determining indices such as
instantaneous WSS, time-averaged WSS, and oscillatory shear stress, by including more
realistic local deformations (Figure 3). For example, considering again the simple case of WSS
calculated as the product of the near-wall velocity gradient and viscosity, the movement of the
vessel wall as occurs in vivo will impact this calculation. Including local deformations in WSS
calculations therefore has the potential to provide more realistic results.

Indices of WSS are calculated from the time-varying velocity field representing flow patterns
within the aorta. Blood flow in the aorta, for instance, has long been recognized to be helical
and can be replicated by CFD (Figure 4) [24]. A helical flow pattern has many positive features
including (1) facilitating blood flow transport and suppressing turbulent blood flow, (2)
preventing the accumulation of atherogenic low-density lipoprotein (LDL) particles on arterial
luminal surfaces, (3) enhancing oxygen transport from the blood to the multilayered arterial
wall, (4) reducing the adhesion of platelets and monocytes on the arterial surface, and (5)
optimizing flow patterns within origins of the brachiocephalic vessels [25]. Helical blood flow
patterns may therefore aid in protecting the arteries from the pathologic mechanisms of
atherosclerosis, thrombosis, and intimal hyperplasia, as well as from dilation, aneurysm
formation, and dissection [25].

Figure 4. Helical aortic flow. Velocity streamtubes are shown during systole from the simulation of a patient with nor-
mal thoracic aortic anatomy (left). The streamtubes replicate the classic patterns elegantly described by Kilner et al.
(right) including axially oriented flow during early systole, the development of right-handed helical flow during mid-
systole facilitating delivery of blood flow to the arteries of the head and neck, and the presence of complex recircula-
tion regions beginning at end systole [24]. With permission from Wolters-Kluwer journals; Kilner et al. [24].

CFD may offer predictive capabilities for difficult clinical problems as will be discussed in this
chapter. For example, MRI during exercise has been pursued since the late 1990s, but is not
trivial to implement and is therefore not conducted routinely. More specifically, CMR has been
used to quantify blood flow during supine cycle ergometry in the ascending aorta, pulmonary
artery [26, 27], abdominal aorta [28, 29], and left ventricle [30]. Indices of WSS and cardiac
output were quantified in combination with CFD modeling from a recumbent cycling protocol
developed for imaging of the abdominal aorta [31–33]. CFD was also used for patient-specific
models of blood flow in the thoracic aorta to quantify indices of WSS under simulated exercise
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conditions using changes in blood flow and resistance estimated from various literature
sources [34, 35]. More recent exercise protocols for use with CMR go one step further. A pilot
study developed a protocol to obtain PC-MRI blood flow measurements in the thoracic and
brachiocephalic arteries during a three-tiered supine pedaling, and then related these meas-
urements to noninvasive tissue oxygen saturation levels acquired with near-infrared spectro-
scopy (NIRS) during assessment using the same protocol [36]. The goal of this work was to use
NIRS data as a surrogate for exercise PC-MRI data when setting boundary conditions for future
CFD studies of the thoracic aorta under simulated exercise conditions. Relationships and
ensemble-averaged PC-MRI inflow waveforms are provided in an online repository for this
purpose [36].

There are several indices of WSS that have been associated with locations of atherosclerosis in
various vascular beds. The most common of these is time-averaged WSS. WSS is actually
represented by vectors that change with each fraction of time within the cardiac cycle. Most
reports simply present time-average representations on the wall within the region of interest;
this is done for simplicity and because the mechanisms and details by which a particular WSS
index leads to neo-intimal thickening are not yet precisely known. Areas of low time-averaged
WSS have also been found in a rotating pattern down the descending aorta [37], correlate with
areas of plaque deposition [38], and are accentuated after correction of CoA [14]. However,
there is evidence suggesting that temporal and spatial changes in WSS may also serve as stimuli
for neo-intimal thickening. Oscillatory shear index (OSI) is also commonly reported in CFD
studies [11]. OSI is a measure of WSS directionality in which lower OSI values indicate that
WSS is oriented predominantly in the primary direction of blood flow, while a value of 0.5 is
indicative of bidirectional WSS with a time-average value of zero. Theoretically, regions of low
WSS magnitude and high OSI are less likely to experience fluid forces that promote washout
of noxious and potentially atherogenic materials in contact with the arterial surface (e.g., LDL).
In general, adverse values for these WSS indices (e.g., ~15 dyn/cm2 for the thoracic aorta) are
expressed as thresholds for low magnitude instantaneous and time-averaged WSS. OSI greater
than 0.1 are considered adverse, as are spatial and temporal WSS gradients greater than 100
dyn/cm2 and ±200 dyne/cm2/s, respectively) [12, 21, 39, 40]. Understanding these hemodynamic
principles and differences between indices that use them, the practitioner may apply CFD
modeling to describe blood flow patterns in the setting of typical clinical cardiovascular
pathology—atherosclerosis and congenital heart disease.

Any discussion of CFD for use in generating flow patterns and indices of WSS would be remiss
without a discussion of potential limitations, particularly with respect to advancements in
CMR that have facilitated quantification of the same indices through direct processing of data
from a more advanced clinical imaging session. For example, 4D blood flow imaging using
CMR has been used to investigate flow disruptions in the thoracic aorta [37, 41, 42]. These
methods do require specialized pulse sequences that may be outside of the clinical workflow
for some centers, are complex to acquire and post-process, and prolong scan time (~15–20 min
for a 4D-navigated flow-imaging dataset). Additionally, these methods suffer from low spatial/
temporal resolution relative to CFD simulations, which could limit the precision of the WSS
results compared to those WSS data calculated from a properly conducted CFD simulation
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where uncertainties in the processes employed were appropriately considered [43–45]. For
example, the limitations and variability in the model creation process must be carefully
controlled by acquiring a high-resolution 3D representation of the anatomy (by MRA or
equivalent sequence) and PC-MRI data. Furthermore, the individuals building CAD models
must be rigorous when using software, especially with regard to selection of a mesh of
sufficiently high density. In this manner, there can generally be a high level of confidence in
the results assuming that physiologic boundary conditions have been implemented. WSS
results from 4D blood flow imaging can suffer from the same potential limitations of traditional
CFD modeling techniques, if the spatial resolution and post-processing operations do not
carefully capture the near-wall velocity gradient.

Additional limitations may exist when CFD modeling is attempted for biologic systems. First,
clinical acquisition of suboptimal 3D anatomic data can adversely affect models. Acquisition
of non-robust 3D data may lead to oversimplification of anatomy during modeling. Second,
suboptimally acquired PC-MRI flow data, with inadequate temporal resolution or low
dynamic range, may underestimate flow. Third, ignoring cardiac motion, which can affect the
accuracy of flow determinations, may lead to errors in modeling [46]. Finally, assigning
accurate boundary conditions (especially resistances of the peripheral vasculature or the
microcirculation when coronary modeling is attempted) can be challenging, as detailed
information may have to be gleaned from the literature because patient-specific data may be
difficult to attain. Such resistances can also vary over time and certainly may differ in healthy
and diseased states [47].

2. Computational fluid dynamics modeling applied to the study of
atherosclerosis

Atherosclerosis is a complex pathobiologic process which begins with endothelial dysfunction,
involves a cascade of particles (including white blood cells, chemotactic factors, and smooth
muscle cells), and leads to progressive changes in blood vessel walls (Figure 5) [48].

After the initial endothelial dysfunction, atherosclerotic plaque develops over many years [49,
50]. The initial feature in the evolution of plaque, seen on autopsy in children as young as 10–
18 years old, is the fatty streak [51]. Many studies have shown that intimal thickening, as
assessed by ultrasound, can be detected as plaque burden increases. At first, plaque causes
outward remodeling of a blood vessel, maintaining the lumen’s dimensions, followed by
plaque encroachment on the vessel lumen [52]. By the time atherosclerotic plaque causes
stenosis (and decreases luminal dimensions by 60% or more), symptoms can be seen under
conditions of great oxygen demand, such as exercise. Thus, if the carotid vasculature is affected,
cerebral transient ischemic attacks might be manifested, whereas if the coronaries are affected,
then myocardial ischemia can occur and be manifested as angina. Peripheral plaque can lead
to symptoms of left pain—either claudication or rest pain.
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Figure 5. Atherosclerosis. Schematic representation of the evolution of the atherosclerotic plaque. (1) Accumulation of
lipoprotein particles in the intima. The modification of these lipoproteins is depicted by the darker color. Modifications
include oxidation and glycation. (2) Oxidative stress, including products found in modified lipoproteins, can induce
local cytokine elaboration (green spheres). (3) The cytokines thus induced increase the expression of adhesion mole-
cules (blue stalks on endothelial surface) for leukocytes that cause their attachment and chemoattractant molecules that
direct their migration into the intima. (4) Blood monocytes, on entering the artery wall in response to chemoattractant
cytokines, such as monocyte chemoattractant protein 1 (MCP-1), encounter stimuli such as macrophage colony-stimu-
lating factor (M-CSF) that can augment their expression of scavenger receptors. (5) Scavenger receptors mediate the
uptake of modified lipoprotein particles and promote the development of foam cells. Macrophage foam cells are a
source of mediators, such as further cytokines and effector molecules such as hypochlorous acid, superoxide anion
(O2

−), and matrix metalloproteinases. (6) Smooth muscle cells (SMCs) migrate into the intima from the media. (7) SMCs
can then divide and elaborate extracellular matrix, promoting extracellular matrix accumulation in the growing athero-
sclerotic plaque. In this manner, the fatty streak can evolve into a fibrofatty lesion. (8) In later stages, calcification can
occur (not depicted) and fibrosis continues, sometimes accompanied by SMC death (including programmed cell death,
or apoptosis) yielding a relatively acellular fibrous capsule surrounding a lipid-rich core that may also contain dying
or dead cells and their detritus (IL-1 = interleukin-1; LDL = low-density lipoprotein) [48]. With permission from Elsevi-
er Health Science.

Figure 6. Shear stress and plaque distributions depend on axial and circumferential location. In the upper corner of
panel 1, Image A shows circumferential designation (i–iv), while the lower left image (Image B) shows each axial loca-
tion of the aorta studied. Plaque distribution is shown as pie charts for each segment. On the right (panel 2), shear
stress is shown [38]. With permission from Wentzel et al. [38].

Studies have emerged to characterize the vascular hemodynamic effects of plaque by employ-
ing computational modeling based on CMR data. This area of CFD research attempts to
systematically study vascular WSS and OSI as a way to better understand where plaque forms
and how plaque influences blood flow. In a study of adults with preexisting aortic plaque, for
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systematically study vascular WSS and OSI as a way to better understand where plaque forms
and how plaque influences blood flow. In a study of adults with preexisting aortic plaque, for
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example, time-averaged WSS patterns existed in a rotating pattern down the thoracic aorta
that correlated with areas of atherosclerotic plaque [38]. WSS distribution, therefore, depended
on the axial level and circumferential location in a given axial level of the aorta (Figure 6).
Similarly, many other CFD studies have shown low WSS and high OSI are associated with
atherosclerosis. In an adult coronary CT study, coronary segments with established plaque
exhibited lower WSS compared to adjacent normal areas [53]. Within plaques, WSS was lower,
and plaque volume was higher in mid-plaque compared to upstream and downstream areas
(Figure 7) [53]. In a study of carotid atherosclerosis, low time-averaged WSS and high OSI were
seen in areas of increased mature plaque volume (Figure 8) [54].

Figure 7. Variation of wall stress (WS), wall stiffness, plaque volume, and curvature along a plaque (note that within
plaques, wall shear stress was lower and plaque volume higher in mid-plaque compared to upstream and downstream
areas) [53]. With permission from Katranas et al. [53].

Figure 8. Carotid plaque and wall shear stress. In areas of mature plaque (left), low time-average wall shear stress
(right, top right) and high oscillatory sheer index (right, bottom right) are seen [54]. With permission and adapted from
LaDisa et al. [54].
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This prior work served as motivation for a novel pilot CMR study of early vascular changes in
pediatric patients with type 1 diabetes. Twenty preadolescent and adolescent patients with
type 1 diabetes (median age of 15.8 years, range of 11.6–18.4 years) were enrolled in this
prospective CMR study and compared with eight control subjects (15.8 years with a range of
10.3–18.2 years). Using same-day brachial artery reactivity testing, lower flow-mediated
dilation was seen for the subjects with diabetes (p = 0.036), as expected—indicating the presence
of endothelial dysfunction in this group, as seen by others [55]. When patient-specific CFD
models were created from CMR data, those with diabetes had more aortic regions with high
time-averaged WSS when compared with controls, although the groups had similar OSI
(Figure 9) [23]. Many cardiovascular risk factors, including type 1 diabetes, induce physiolog-
ical outward arterial remodeling (dilation) that begins in response to overall higher initial
laminar shear stress (Glagov phenomenon). With vascular inflammation, remodeling pro-
gresses, resulting in adverse shear stress in larger arteries [56]. This pilot pediatric diabetes
study may provide a glimpse into early vascular remodeling (i.e., where wall shear stress is
still high and the aorta, which has begun to stiffen, has yet to dilate). Longitudinal studies are
needed to understand how areas of WSS and OSI change with aging, and as atherosclerosis
progresses. Understanding this may enhance therapies for early treatment of atherosclerosis
by aiding the development of medications that favorably alter WSS and OSI [23].

Figure 9. Regional differences in time-average wall shear stress for children with type 1 diabetes (red line) versus con-
trols (black line) are shown (graphs in panel C). Panel A shows the time-averaged wall shear stress (TAWSS) display
for a representative patient with type 1 diabetes (T1DM) with blue lines showing where assessments were made rela-
tive to the left subclavian artery (LSCA). Panel B shows the circumferential locations assessed. These are displayed
graphically in panel C. Along right, left, outer, and, to a lesser degree, the inner curvatures of the aorta, the median
time-averaged wall shear stress (TAWSS) at each location for diabetics (red line on the graphs) tended to be higher than
median TAWSS for controls (black line), reaching significance at two locations, one along the outer curvature (location
1.25) and another along the anatomic right side (location 1.5) of the aorta [23]. With permission and adapted from Sa-
myn et al. [23].

3. Computational fluid dynamics modeling and congenital heart disease

CFD modeling is useful in understanding not only blood flow as it relates to atherosclerosis
but also blood flow in a number of structural heart diseases, including aortic coarctation (CoA),
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aortic dilation, and aneurysms (as with bicuspid aortic valve and connective tissues diseases),
and for more complex diseases, such as repaired Tetralogy of Fallot (TOF) (to aid percutaneous
interventions) and single ventricle physiology (to optimize the Fontan operation’s total cavo-
pulmonary palliation). Collaboration between clinicians and engineers is important, so that
optimal workflow can be achieved to allow timely, patient-specific model creation for
consideration in clinical decision making. Table 2 shows some situations where CFD simula-
tions have been applied to clinical cardiovascular medicine; these will be discussed here.

Area of interest Applications Clinical impact Limitations
Coronary artery
disease (CAD)

Models based on
angiography or CT
scan may predict
hemodynamically
important plaque.

Models allow
virtual stenting
to optimize
treatment.

Accurate coronary
vessel reconstructions
and patient-specific
boundary conditions
(myocardial resistance)
are challenging
to simulate.

Aorta
Aneurysm
Dissection
Coarctation

Models quantify
hemodynamics to
develop optimal therapy
and predict outcome.

Models may be
used to predict
aneurysm progression
and risk of
rupture and
may aid in
patient follow-
up by reducing
additional imaging.
Models may aid
care by allowing
appropriate
planning and
may contribute
to stent design.

Wall motion
and low image
contrast between
vessel wall
and thrombus
may affect
modeling, but
fluid structure
interaction
(FSI) may aid
analyses.

Arterial wall Models determine
local wall
shear stress (WSS)
and oscillatory
shear index
(OSI) related to
atherosclerosis.

Models may predict
plaque, note
sites likely of
rupture, and
allow optimization
of therapy with
medications/
devices (i.e., stents).

Detailed anatomy of
some circulations
may be challenging
to model; using
accurate boundary
conditions can
be challenging.

Congenial
Heart Diseases
Coarctation
Single ventricle
Tetralogy of Fallot

Models aid
understanding
of blood flow
in complex
heterogeneous
diseases and
may aid therapy.

Modeling will
allow prediction
of hemodynamic
response to
possible surgical-
and device-
based treatments
which sometimes
dramatically
alter the
circulation.

Some have cited
this as the “ultimate
personalization
challenge” given
the heterogeneous
nature of each
category of CHD,
the complex anatomy,
and patient-specific
boundary conditions
needed.

With permission and adapted from Morris et al. [47].

Table 2. Applications of CFD modeling to cardiac disease [46].
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3.1. Aortic CFD modeling for congenital heart diseases

Building upon the CFD modeling efforts summarized above that focused on the thoracic aorta
as a vascular surrogate for the coronaries in the study of atherosclerosis, CFD modeling
research naturally extended to the diseases of the thoracic aorta—especially to the study of
CoA. CoA is a relatively common congenital narrowing of the proximal thoracic aorta,
occurring in about 8–11% of patients with CHD, and usually involves the thoracic aorta just
after the origin of the left subclavian artery (juxta-ductal CoA). Patients with unrepaired CoA
may suffer from ill-effects of hypertension (or in infancy, from cardiovascular collapse with
ductal closure). Even after successful CoA repair, many are followed due to the presence of
bicuspid aortic valve (up to 85%) with or without stenosis, residual hypertension (7–33% of
patients) [57], re-coarctation (5–50%) [58], aortic aneurysm, aortic dissection, and possibly early
atherosclerosis [59]. Recent CFD modeling studies have shown altered time-average WSS after
end-to-end anastomoses [14]. CFD modeling has also been employed to assess WSS after
Dacron patch repair of CoA [60]—an operative procedure now known to be complicated by
aneurysm formation. Aneurysms, in turn, introduce local geometric abnormalities leading to
heterogeneity in WSS that have historically been linked to adverse consequences such as
cellular proliferation and plaque progression (Figure 10). Bicuspid aortic valve is a frequently
found coexisting CHD for patients with CoA—occurring in up to 85% of these individuals.
Recently, sophisticated CFD simulations, using a custom MATLAB® program (MathWorks,
Natick, MA, USA) to facilitate segmentation of a common variant (right-left cusp fusion) of
bicuspid aortic valve, attempted to account for the influence of the valve on flow patterns and
turbulence in the ascending aorta [61]. This represents an added step toward realism, and
constitutes an alternative to imposing measured PC-MRI data directly when creating patient-
specific CFD models for patients with CoA and bicuspid aortic valve. Additionally, attempts
to account for cardiac motion have been applied to the study of aortic flow patterns via CFD.
Cardiac motion seems to be most prevalent in altering ascending aortic (AAo) flow rather than
flow in the arch or descending aortic flow, likely due in part to less tissue tethering for AAo
than the descending aorta [46]. Differences in time-averaged WSS quantified in this study from
simulations with the measured PC-MRI inflow waveforms, as compared to motion-compen-
sated cardiac waveforms, were more pronounced than differences from the model creation or
mesh dependent aspects of CFD discussed above. These results suggest that accounting for
cardiac motion when quantifying blood flow through the aortic valve can lead to different
conclusions for hemodynamic indices, which may be important, if these results are ultimately
used to predict patient outcomes [46]. CFD modeling may, thus, aid in optimal management
of aortic and aortic arch diseases—whether by influencing operative technique or optimizing
devices through material development.

Modeling can aid analysis of aortic dilation, which occurs in patients with bicuspid aortic
valves, or in those with connective tissue diseases, such as Marfan, Loeys-Dietz, and Ehlers
Danlos syndromes. It is unclear if this is causal, or, more likely, contributing to the underlying
vascular pathology. In these populations, CFD has demonstrated adversely high OSI in the
ascending aorta, an area prone to dilation [62]. Many of these patients undergo an operation
to treat an excessively dilated aorta, in order to prevent aortic rupture. Operative techniques
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conclusions for hemodynamic indices, which may be important, if these results are ultimately
used to predict patient outcomes [46]. CFD modeling may, thus, aid in optimal management
of aortic and aortic arch diseases—whether by influencing operative technique or optimizing
devices through material development.

Modeling can aid analysis of aortic dilation, which occurs in patients with bicuspid aortic
valves, or in those with connective tissue diseases, such as Marfan, Loeys-Dietz, and Ehlers
Danlos syndromes. It is unclear if this is causal, or, more likely, contributing to the underlying
vascular pathology. In these populations, CFD has demonstrated adversely high OSI in the
ascending aorta, an area prone to dilation [62]. Many of these patients undergo an operation
to treat an excessively dilated aorta, in order to prevent aortic rupture. Operative techniques
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used might include total aortic root and valve replacement (TAR), valve-sparing root replace-
ment (VSRR), or the novel and less invasive procedure of placing a personalized external aortic
root support (PEARS) introduced by Golesworthy et al. [63]. Using MRI-derived data for CFD
modeling, Marfan patients have recently been studied after operation for placement of PEARS,
and although qualitative hemodynamic indices appeared similar, some small differences in
quantitative measures of helical flow were seen pre- and post PEARS in a small cohort. Larger,
longitudinal studies will be needed to understand the hemodynamic effects of these opera-
tions. CFD may be used in the future to optimize therapy [64] by aiding the creation of aortic
“sleeves” from materials which impart better WSS properties to the patients.

Figure 10. CFD for arch repair by Dacron patch. Time-averaged WSS distributions in six normal subjects (top, 5M, 1F
ages 25–33 years) as well as age- and gender-matched patients previously treated for CoA by Dacron patch aortoplasty
(below).

3.2. Single ventricle CFD modeling

Over the last decade, CFD modeling has increasingly been applied to patients with single
ventricle physiology (Table 3), who often require multiple palliative operations in infancy and
childhood. The goal of operative therapy is to have the functioning ventricle as the systemic
pump, and to secure a source of pulmonary blood flow. Unobstructed flow to the systemic and
pulmonary circulations is the goal—to achieve widely patent branch pulmonary arteries and
no residual aortic arch obstruction [65].

When the aorta is small, as in hypoplastic left heart syndrome (HLHS), shortly after birth, the
infant is palliated with a Norwood operation to create a neo-aorta from side-side anastomosis
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of the main pulmonary artery (MPA) and native aorta. Usually, arch repair is undertaken in
the same setting. Atrial septectomy occurs too - to allow mixing of systemic and pulmonary
venous flow, and pulmonary flow is guaranteed by either an aortopulmonary arterial shunt
(i.e., either a Blalock-Taussig (BT) or a central shunt) or right ventricular (RV) to pulmonary
shunt (i.e., the Sano shunt). Some time between 3 and 6 months’ of age, when the pulmonary
vascular resistance is acceptable, the patient undergoes cavo-pulmonary shunt (Figure 11) to
direct a portion of the systemic venous blood to the lungs for oxygenation. Finally, when the
child is older (18 months to 4 years of age), the remaining systemic venous blood and hepatic
blood are directed to the lungs via completion of the Fontan (Figure 12). CMR is often used in
clinical follow-up of these patients.

RV morphology LV morphology RV or LV morphology

• Hypoplastic left heart

syndrome (HLHS)

• Complex double outlet RV

• Tricuspid atresia

• Pulmonary atresia

• Doublet inlet LV

• Severe Epstein’s anomaly

• Unbalanced AV canal defect

• Straddling or criss-cross AV

valve connections

• Heterotaxy

With permission from Johnson et al. [65].

Table 3. Single ventricular anatomy [65].

Figure 11. Cavo-pulmonary shunts of the Glenn circuit (left, current era) and Hemi-Fontan (right, original operative
technique [66]. With permission from Pelletier et al. CTSNet.org. 2013.

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies42



of the main pulmonary artery (MPA) and native aorta. Usually, arch repair is undertaken in
the same setting. Atrial septectomy occurs too - to allow mixing of systemic and pulmonary
venous flow, and pulmonary flow is guaranteed by either an aortopulmonary arterial shunt
(i.e., either a Blalock-Taussig (BT) or a central shunt) or right ventricular (RV) to pulmonary
shunt (i.e., the Sano shunt). Some time between 3 and 6 months’ of age, when the pulmonary
vascular resistance is acceptable, the patient undergoes cavo-pulmonary shunt (Figure 11) to
direct a portion of the systemic venous blood to the lungs for oxygenation. Finally, when the
child is older (18 months to 4 years of age), the remaining systemic venous blood and hepatic
blood are directed to the lungs via completion of the Fontan (Figure 12). CMR is often used in
clinical follow-up of these patients.

RV morphology LV morphology RV or LV morphology

• Hypoplastic left heart

syndrome (HLHS)

• Complex double outlet RV

• Tricuspid atresia

• Pulmonary atresia

• Doublet inlet LV

• Severe Epstein’s anomaly

• Unbalanced AV canal defect

• Straddling or criss-cross AV

valve connections

• Heterotaxy

With permission from Johnson et al. [65].

Table 3. Single ventricular anatomy [65].

Figure 11. Cavo-pulmonary shunts of the Glenn circuit (left, current era) and Hemi-Fontan (right, original operative
technique [66]. With permission from Pelletier et al. CTSNet.org. 2013.

Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies42

Figure 12. Fontan circulations—various adaptations. “Classic Fontan” (left) has a “classic Glenn circuit” plus an anas-
tomosis of the right atrial appendage to the left pulmonary artery (LPA). Lateral tunnel Fontan (not shown) uses a
baffle within the right atrium to partition systemic and pulmonary venous blood, allowing for child’s growth. Extra-
cardiac conduit Fontan (right) uses a tube graft to connect IVC to Glenn (SVC/PA), and is often fenestrated [67]. With
permission from Jacobs et al. CTSNet.org. 2013.

Using CMR data, CFD modeling in single ventricle patients has focused on understanding
energy losses occurring in these unique low-velocity flow Glenn and Fontan circuits. Modeling
has aimed to understand blood flow distribution to the lungs by using branch pulmonary
arterial PC-MRI data in CFD models. In this manner, CFD has also led to a better understanding
of the pulmonary distribution of hepatic flow and the elusive “hepatic factor” which has been
implicated in the development of pulmonary arteriovenous malformations [68–72].

Catheterization-based CFD modeling, such as that included in the work by Migliavacca et al.
[73], has advanced the clinicians’ understanding of the unique Norwood circulation by showing
that (1) larger shunts diverted an increased proportion of cardiac output to the lungs and away
from systemic perfusion, resulting in poorer oxygen delivery and pulmonary overcirculation,
and that (2) the systemic vascular resistance exerted more effects on hemodynamics than
pulmonary vascular resistance. CMR-based CFD modeling efforts have been less common in
this Norwood population, because of a number of challenges. First, highly turbulent flow from
shunts (BT, central or Sano) can lead to inaccuracies in modeling, because of suboptimal PC-
MRI data. Second, as this Norwood population is very young ages (i.e., neonates to a few months
of age), often 3D anatomic imaging data (CMR or CT) are not readily available, as it is not
typically acquired during routine clinical care, which relies predominantly on echocardio-
graphic data. Finally, without catheterization data simultaneous with 3D anatomic imaging,
accurate pulmonary and systemic resistance data may not be available, thereby leading to
inaccuracies in CFD modeling. Furthermore, the influences of anesthesia (used during
catheterization or 3D image acquisition) on such resistance data may lead to models that may
not adequately represent real-life clinical conditions. Nonetheless, computational modeling of
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this unique Norwood physiology has been attempted and refined over the last two decades [74]
with a nice review of the challenges provided by Pennati et al. [75].

CFD modeling of cavo-pulmonary shunts has been more limited relative to the CFD study of
the total cavo-pulmonary shunt (Fontan). In pilot research, the Stanford Institute for Compu-
tational and Mathematical Engineering, though, systematically studied five Glenn patients,
incorporating CMR data and catheterization data into their CFD models. Inflow data came
from the superior vena cava (SVC) PC-MRI flow data, while outflow data were more complex
and depended on the patient’s specific pulmonary tree. They first determined right and left
lung flow split from the right pulmonary artery (RPA) and the left pulmonary artery (LPA)
PC-MRI flow data and then determined the total resistance—i.e., Rp (proximal resistance) plus
Rd (distal resistance) for the pulmonary tree. They calculated the mean flow in each branch as
being proportional to the outlet surface area and calculated the downstream resistance by the
mean pressure gradient (obtained at catheterization) between SVC and left atrium. The authors
show low WSS, complex Glenn flow patterns at the caval-pulmonary anastomoses with a
transition to laminar flow more distally in the lung, and a complex pressure waveform which
dampens after the anastomoses. Power loss in this small cohort was low, and the efficiency of
flow was high. The complexity of the pulmonary tree seems to add computational time, but
more work is needed to understand how many pulmonary branches should be modeled for
accuracy. This study highlights the complexity of assigning appropriate inlet and outlet
boundary conditions—a problem that is compounded when patients are studied by either
CMR or cardiac catheterization while they are under anesthesia which alters systemic and
pulmonary resistances [76].

CFD may be useful for bilateral bidirectional Glenn connections [77], where patients have the
persistence of the left and right superior vena cava. Case reports of CFD modeling in this
unique Glenn circuit show differential lung flow due to differences in pulmonary resistance
(which may result, e.g., from unilateral lung disease (e.g., pneumonia)) or differences in branch
pulmonary arterial dimensions. Furthermore, de Zelicourt et al. [78] have noted that unbal-
anced lung perfusion may affect pulmonary arterial growth. Thus, constructing the best Glenn
circuit with attention to downstream branch pulmonary arterial flow may be essential to long-
term patient health.

Surgeons have always tried to avoid “right angles” in the construct of the unique bidirectional
Glenn and Fontan circuits, as they perceived unfavorable flow disturbances in these regions.
de Leval et al. [79, 80] described various methods for palliation of HLHS. In 2007, Bove et al.
[81] studied Fontan circuits of different varieties using computational simulations and showed
that when either the total cavo-pulmonary connection (TCPC) or the extra cardiac connection
(ECC) is performed after a bidirectional Glenn anastomosis, caval offset of the superior and
inferior vena cavae (IVC) can be achieved by beveling the IVC portion of the connection to
either the right or the left lung. They demonstrated that beveling the TCPC to the right
conferred a significant advantage to the TCPC. Similarly, when the ECC was beveled toward
the left lung, important differences were found in flow distribution, but not power losses. This
research has been continued by many with continued scrutiny regarding possible power losses
in this low-velocity circuit, which is prone to swirling of blood flow due to competitive flow
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from the superior and inferior vena cavae [81, 82]. Some centers, such as the Children’s Hospital
of Philadelphia and Stanford University, among others, have conducted “virtual operative
procedures” to study the hemodynamic effects of a given operation by employing CMR-based
CFD modeling techniques. These computations have led some to alter the Fontan circuit by
employing a “Y graft” for the Fontan [83], as first described by two groups—Marsden et al. [84]
and Soerensen et al. [85]. Not only is the energy loss reduced, especially during simulated
exercise, but also IVC flow (and the seemingly critical “hepatic flow”) can be more equally
distributed to the right and left lung fields, which is potentially protective against the devel-
opment of pulmonary arteriovenous malformations (Figure 13) [83, 85, 86].

Figure 13. A novel variation in Fontan circuit [83, 86]. Panel 1 shows color representations of the blood flow from azy-
gous vein (green), Glenn circuit (red), and inferior vena cava into the two arms of the Fontan Y graft (blue). Panel 2
gives blood flow calculations for this “Y graft”, based on conservation of mass; thus, QRPA = QIVC • x + QSVC • y and
QLPA = QIVC • (1 – x) + QSVC • (1 – y), where x is the fraction of hepatic flow going to the RPA and y is the fraction of
SVC flow going to the RPA (SVC, superior vena cava; IVC, inferior vena cava; RPA, right pulmonary artery; LPA, left
pulmonary artery; Q, flow rate). With permission and adapted from Haggerty et al. [83] and Yang et al. [86].

3.3. Tetralogy of Fallot CFD modeling

Patients with Tetralogy of Fallot (TOF) (i.e., subpulmonary and/or pulmonary valve stenosis
with ventricular septal defect, overriding aorta, and right ventricular (RV) hypertrophy)
typically undergo operative repair in infancy. Long term, their outcome is related to the degree
of chronic pulmonary regurgitation (PR) (i.e., pulmonary valve leakage), and resulting RV
dilation and RV dysfunction. Restrictive RV physiology correlates with larger RV and more
PR after repair [87]. Pulmonary arterial compliance impacts the amount of regurgitation [88].
Thus, establishing and maintaining appropriate sized branch pulmonary arteries is essential,
as elevated resistance distal to compliant arteries exacerbates PR. Furthermore, the initial type
of TOF repair may impact how much PR a patient has—with those having RV outflow tract
(RVOT) transannular patches having considerably more PR and more dilated RV than those
with RV—pulmonary arterial conduits [89]. Patients with repaired TOF, in the current era, are
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frequently studied by CMR to better understand when the PR has progressed sufficiently to
warrant operative intervention for pulmonary valve replacement [90].

CMR-based CFD modeling has been applied to the study of TOF patients to understand how
branch pulmonary arterial geometry (i.e., diameters and the bifurcation angles for the right
and left pulmonary arteries) influences pulmonary regurgitation (Figure 14) [91, 92]. Chern et
al. found that regurgitation occurs first from the LPA and suggested that it may be due to the
small angle between LPA and MPA. The authors acknowledge the limitations of their CFD
models which do not account for the influences of either distal pulmonary vascular resistance
or ventricular hypertrophy (diastolic pressure) on pulmonary regurgitation.

Figure 14. Numerical study of blood flow in pulmonary arteries after repair of Tetralogy of Fallot with different flow
patterns in diastole based on angle of bifurcation. 1. Cross-sectional flow patterns and velocity distributions are shown
for minimum velocity in the cardiac cycle (as noted by the black dot on the graph). 2. Flow patterns and velocity distri-
butions shown at the minimum flow location and at end diastole (as noted by the black dots on the graph) [93]. With
permission and adapted from Chern et al. [93].

Some researchers have proposed that a “reference geometry atlas” be available for the branch
pulmonary arteries onto which specific patient data (derived from CMR 3D MRA imaging)
may be mapped, so as to reduce computational time [92]. This is a novel idea that may allow
CFD to move more readily from the research realm to clinical setting. Others have described
in silico models to permit “virtual surgery” for patients with TOF and left pulmonary arterial
stenosis [94], an intriguing application that warrants further CFD study with larger cohorts.
Another novel application of CFD for patients with repaired TOF is modeling of the RVOT
flow to target those for whom transcatheter pulmonary valve replacement is not currently the
ideal intervention due to RVOT dilation. In this manner, CFD may aid the design of novel
percutaneously placed “pulmonary valve reducer” (for those with enlarged RVOT) [95], thus
allowing nonoperative pulmonary valve replacement. Additional CFD research for TOF
patients is warranted as better solutions are sought for this population that has chronic PR.
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4. Conclusions

In summary, creating clinically relevant CFD models requires care and rigor by individuals at
all steps in the process—from initial acquisition of clinical data through all the steps of
mathematical modeling. CFD is moving beyond being simply an intriguing mathematical
study of blood flow. Based on many pilot studies, CFD is poised to have an increasingly
powerful role in the care of patients with CVD in the next decade, by allowing a more refined
understanding of the hemodynamics of both acquired CVD due to atherosclerosis and CHD.
Continued partnerships between clinician-scientists and engineers are essential to the suc-
cessful achievement of this goal. Only with such collaborations will the complex process of
patient-specific modeling be streamlined and successfully integrated into clinical decision
making to optimize medical and interventional therapies for cardiovascular disease.
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Abstract

Bayesian modelling has attracted great interest in cognitive science and offered a flexible
and interpretable way to study cognitive processes using functional magnetic resonance
imaging data. In this chapter, a spatial Bayesian hierarchical model is applied to an
event-related fMRI study of cognitive control using the Simon test. We consider a sparse
spatial generalized linear mixed-effects model to capture the spatial dependence among
activated voxels and temporal parameters and to benefit computationally by reducing
dimensionality.  We  demonstrate  that  the  proposed  model  has  the  capability  of
identification of the brain areas related to cognitive tasks. Moreover, the reduction in
the false positive rate is observed in the simulation study, and the relevant brain regions
involved in processing cognitive control are clearly detected in a real-life fMRI example.

Keywords: Bayesian, functional magnetic resonance imaging, Markov chain Monte
Carlo, spatial generalized linear mixed-effects model

1. Introduction

Functional magnetic resonance imaging (fMRI) has increasingly become an important and
popular modality that allows researchers to investigate brain activity resulting from a particu‐
lar stimulus [1]. In an fMRI experiment, a subject is asked to perform a task by responding to a
series of stimuli that may involve a motor, sensory or cognitive task, then the MR machine
records the changes in the blood oxygen level dependent (BOLD) of the brain across different
time points, resulting in three-dimensional fMRI time-series images. Numerous statistical
models have been proposed to allow researchers to detect localized regions activated during a
task, to describe the networks required for a particular brain function or to assess physical
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characteristics elicited by cognitive processes in the brain. However, the growth in the com‐
plexity, the significant size and the hierarchical structure of fMRI data make it difficult to comprise
a fully efficient computationally feasible statistical model to accurately explain the temporal
and spatial characteristics of the data.

The standard approach used on fMRI data is known as statistical parametric mapping (SPM)
[2], which applied either a voxel-wise t-test or F-test statistics. In order to obtain an activation
map of the brain, the next step is to threshold the test statistics at a given overall error rate that
leads to a major multiplicity problem. The most common way of solving this problem is to use
Gaussian random field theory [3]. This technique is based on the assumption of a stationary
Gaussian random field, which may not be satisfied in fMRI settings. Another limitation is that
most current methods ignore at least one of the spatial or temporal relationships between
observations. Ignoring either spatial or temporal correlations in the model leads to seriously
biased conclusions [4].

This article introduces a novel Bayesian modelling approach to fMRI data analysis. Bayesian
approaches have great potential in applications because they allow a flexible modelling of
spatial and temporal correlations in data [5]. We consider a Bayesian spatiotemporal model in
a computationally feasible manner to detect brain regions that are activated by the external
stimulus in fMRI. Accurate and powerful single-subject task-related activation models are
required in order to develop effective imaging biomarkers, which constitutes the primary
scientific problem. Moreover, the Bayesian paradigm provides an attractive inferential
framework that can directly incorporate the physical characteristics of an experiment. Our goal
is to put forward a model and inferential framework by which to investigate task-specific
changes in the BOLD signal. Clearly, the model must account for the spatial relationships
between the voxels, but there are other possible sources of variation that should not be ignored.
Ultimately, we develop a hierarchical Bayesian model, which not only takes into account the
spatiotemporal and temporal drift relationships in the data under consideration, but also easily
investigates the role of specific regions that integrate brain activity to coordinate cognition and
behaviour.

The applied Bayesian hierarchical approach contains several characteristics [4, 6]. Latent
binary variables are introduced to indicate activation/inactivation of voxels. The spatial
generalized linear mixed model (SGLMM) [7, 8] is considered to capture the spatial depend‐
ence of the latent binary variables. In addition, the autoregression (AR) model is used to model
the temporal dependence of signal changes. Several studies have found that spatial depend‐
ence also appears in the temporal parameters in AR models [4, 9]. Thus, neglecting the spatial
dependence of temporal correlations moderates the computational intensity, but the simpli‐
fication may produce a biased estimation of the temporal coefficients and consequently may
result in the spurious detection of brain activities [10]. Therefore, we also consider the spatial
linear mixed-effects model to spatially regularize the AR parameters.

In fMRI data, the posterior inferences are based on the estimations of parameters; however,
the posterior distribution is typically extremely large, and is unavailable in analytic form.
Hence, we employ Markov chain Monte Carlo (MCMC) [11] sampling techniques that combine
Metropolis-Hastings [12] schemes to generate samples from the posterior distribution for the
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purpose of performing inferential tasks. To reduce the computational burden and accelerate
the sampling procedure, we parcel the brain so that sampling procedures can be performed
in parallel. In addition, prior information on activation in the form of spatially informative
variables, e.g. the grey and white areas of the brain, can be incorporated into the model.

2. Statistical modelling

In this section, we introduce the proposed statistical model in the analysis of fMRI data. To
make inferences about task-related change in underlying neuronal activity, a general linear
model is used to model BOLD signal changes for each voxel. In addition to the essential
temporal dependence of BOLD signals in a voxel itself, the BOLD signal changes show spatially
contiguous and locally homogenous among voxels [11]. Shmuel et al. [13] in the visual fMRI
study have demonstrated BOLD response seems to be well approximated by separable
spatiotemporal model. Thus, for computational convenience, we consider a Bayesian separable
spatiotemporal model for BODL signal changes to simultaneously account for the temporal
dependence in nearby time points and spatial dependence in local neighbouring voxels.

Let yv =(yv1, …, yvT )′, be a T × 1 column vector and denote the observed BOLD signals from a
voxel v =1, …, V  at time t, t =1, …, T . Following [14], we model the BOLD response for a
particular voxel v with a linear regression model defined as

2;   (0,  ),v v v v v v v T Ty X L N Ib r e e s= + + : (1)

where Xv is the design matrix, each column of which consists of values obtained from an
impulse stimulus function [15, 16] with respect to a task convolved with the hemodynamic
response function (HRF); βv, is a p ×1 vector and corresponds to the effect of stimuli on the
BOLD signal changes. The temporal correlation is modelled by ρv, being an r × 1 autoregression
coefficient vector, with L v, a T × r  matrix of lagged prediction errors [2, 14]. We assume that
the error terms  in (1) are independently normally distributed NT (0, σ 2IT ) with a mean vector
0 of length T and a covariance matrix σ 2IT  across voxels, where IT  is a T ×T  identity matrix [14].
In the Bayesian framework, the parameters are hierarchically assigned and the corresponding
priors are defined, including spatial prior being introduced to capture the spatial dependence
of brain activities among voxels.

For the purpose of detecting the activation of a voxel, a vector of binary random variables
γv =(γv1, …, γvp)′ is introduced to indicate whether the voxel v is in response to a sequence of
input stimuli. The voxel v is considered active to the stimulus j if γvj =1 and, on the other hand,
inactive if γvj =0. Given that γvj, we assume βvj has a spike and slab mixture prior of two normal
distributions [17] given by
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where N (μ, σ 2) is denoted as a normal distribution with a mean μ and a variance σ 2. In Eq. (2),

we let cvj
2 being fixed and assume τvj

2 to have an inverse gamma distribution  [4]. We
consider that  if the probability density function of X  is defined by just below Eq. (3)
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where Γ(a)= ∫0
∞

y a−1e −ydy. We set cvj
2 to be large resulting in the nonzero estimate of βvj so that

the stimulus j is considered to activate the voxel v. As George et al. [17] suggested, cvj
2 should

be taken less than 104 to avoid the computational problems and we find that cvj
2 =10 is a

reasonable choice in our simulation studies and real fMRI example.

Since the response at a particular voxel is likely to be consistent to the responses of neigh‐
bouring voxels, we apply SGLMM [7, 35] to capture the spatial relationship. We assume
γj =(γ1 j, …, γVj)′ are independently distributed in accordance to the Bernoulli distribution

γvj |ηvj ~ Ber(ηvj) with a logistic link logit(ηvj)=αvj + m ′
vϕj, where logit(ηvj)= ln( ηvj

1 − ηvj
) and αvj is a

constant intended to incorporate the expert knowledge or anatomical information and ϕj is a
vector of spatial random effects. The spatial dependence between the binary variables is
implicitly captured by ϕj assuming to have

(4)

where m ′
v is vth row of M, an V ×q matrix consisting of multi-resolutional spatial basis vectors

that are able to explain spatial variation sources. The columns of M, consist of the q principal
eigenvectors with respect to the first q largest eigenvalues from the adjacency matrix A of
voxels, an V ×V  matrix with the (v, s)th element in Eq. (5), defined as

( )
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A v s

v s
=ì

= í
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where v ~s indicates s and v are neighbours. In the three-dimensional fMRI data analysis, a 26-
adjacent neighbourhood is considered [8]. Typically, q is less than V/2 or equal to the number
of eigenvalues greater than 0.05. This choice can reduce the dimensionality significantly but
still maintains the spatial structure of the data. The graph Laplacian matrix Q =diag(A1)− A
relates spatial basis vectors to represent the image data [18] and 1 is a q ×1 column vector of
ones. We assume a conjugate prior for the smoothing parameter given by
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To avoid generating artefactual spatial structure in the posterior distribution, [19] suggested
aκ =1 and bκ =4000 in Eq. (6). We refer  if the probability density function of X is defined
in just below Eq. (7)
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It is also found that the temporal correlations between voxels tend similar [4]. Such spatial
dependence is modelled by a spatial linear mixed-effects model. For computational conven‐

ience and simplicity, we make a transformation of ρvr  such that ρ̃vr = log
1 + ρvr

1 − ρvr
 and assume

ρ̃vr ~ N (m ′
vφr , λr

2). For the spatial random effect for the temporal parameter ρ̃s is assumed to
be

(8)

where φr  is the spatial random effect for the rth order of the temporal parameters, and M and

Q in Eq. (8) are the same as those listed in Eq. (4). Finally, we assume that ,

 and . The values of a’s and b’s in the gamma or inverse gamma
distributions are determined by the user to reflect the strength of one’s prior belief before
observing the data.

3. Posterior inference

To explore parallel computation, which allows us to substantially speed-up expensive
operations in the MCMC iteration, we partition the brain into non-overlapping areas such as
rectangular three-dimensional lattices or Brodmann areas. We then carry out the statistical
model in Section 2 to analyse the partitioned data. In this chapter, for simplicity, we use
Brodmann’s map to parcel the brain into distinct regions before implementing the proposed
model to the real fMRI data. In addition, separate regions divided by a data-drive segmentation
procedure using functional clustering can be considered. Next, we introduce the likelihood
function and the priors combining the parcellation procedure to form the posterior distribution
for inference.

Suppose that a brain can be divided into G parcels, where the gth parcel contains Vg voxels,
g =1, …, G and where we denote the voxel-level parameters as θv =(βv, ρv, γv, σv

2) and the
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parcel-level parameters as Θg =(φ, κ, τ 2, λ 2, ϕ, ω). The posterior distribution is obtained by
combining the priors π(θv, Θg) and the likelihood L (θv | yv), which are defined in Eqs. (9) and
(10) as follows [8, 20]:
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Due to the intractability of the posterior, Gibbs and Metropolis-Hastings updates [20, 34] are
applied to sample the posterior distribution for estimation and inference of the model
parameters.

The posterior quantities of interest are P(γvj =1| y) for the activation map and E (βvj | y) for the
magnitude of the effect caused by the stimulus j on the BOLD signal changes for voxel v. They
can be directly estimated based on MCMC samples by
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where γvj
(m) and βvj

(m) are the mth sample from a total M MCMC samples for γvj and βvj, respec‐
tively. The distribution of P̂(γvj =1| y) in a map provides a way to visually inspect brain regions
with peak, high, low and practically no activation. In addition, Ê (βvj | y) in Eq. (11) offers
researchers to view the strength of response in the brain to the stimulus.

The construction of the binary activation map is obtained by thresholding the posterior
probability of γvj =1. A threshold value c needs to be used in the detection of brain activity, that
is, a voxel v is defined as active to a stimulus j if P̂(γvj =1| y)>c. However, threshold determi‐
nation lacks agreement among investigators. Under certain conditions, a median selection
criterion, c =0.5, results in the minimum prediction risk [21]. Smith et al. [6] and Lee et al. [4]
defined a threshold by matching a Bayes factor approximation to a likelihood ratio test for
activation such that c =0.8722 at a 5% level of significance. Additional to both, Kalus et al. [22]
applied the false discovery rate (FDR) [23] to determine a threshold. In practice, it would be
reasonable to construct activation maps for a grid of thresholds and to evaluate elicited results
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with neuroscience experts. In our experience, activation maps seem to be comparably robust
against an exact choice of the threshold.

4. Simulation studies

We conduct stimulation studies to investigate the performance of the proposed model on the
detection of brain activity. We measure the accuracy of the classification of voxels as either
active/inactive and show the proposed model to be robust with regard to different spatial
structures. Finally, we illustrate the implementation of the proposed model to a simulated
fMRI data that mimics a study in face repetition effects in memory tests [24].

4.1. Benchmark example

Consider a 30×30 binary activation image γv, v 1, …, 900, generated independently from

( )| ~ ,v v vBerg h h (12)

where logit(ηv)=αv + m ′
vϕ and

( )( )1| ~ 0, .N M QMf k k -¢ (13)

We let αv =0, κ =0.5, where M is a 300×900 matrix whose columns are q =300 principal eigen‐
vectors of the adjacency matrix, A, for the image corresponding to the first q =300 largest
eigenvalues. Moreover, m ′

v is the vth row of M, and Q =diag(A1)− A.

We consider an AR(1) temporal correlation between time points within voxels. For each voxel

v, let ρ̃v = log
1 + ρv

1 − ρv
 and ρ̃v are generated from

(14)

We let λ 2 =0.1 and ω =2.

We consider a stimulus and the block and event-related designs with a total number of time
points spanning 400 and repetition time (TR) equal to 2s. In the block design, the duration time
is 20s. In the event-related design, the stimulus is randomly assigned. The stimulus function
is convolved with a HRF modelled by a double gamma function [15] to create the design matrix
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Xv. The stimulus functions and the corresponding design matrices for the block and event-
related designs are shown in Figure 1(a) and (b), respectively.

Figure 1. The stimulus functions and the predicted BOLD signal changes used in the Benchmark example.

Given Xv, γv, ρv, the BOLD signal changes yv are generated from a normal distribution with a

covariance σv
2Λv, where σv

2 =1 and the (u, v)th element of Λv is ρ |u−v|, and a mean of Xvβv, where

3 if 1;
0 if 0.

v
v

v

g
b

g
=ì

= í =î
(15)

We then apply the proposed model to detect the activation areas, that is, to identify which
voxel has γv =1. We ran MCMC chains with 100,000 iterations in order to ensure the largest
Monte Carlo standard error (MCSE) [25] of all posterior probabilities of γv =1, less than 0.01.

We obtained posterior activation maps by setting the posterior probability threshold at 0.8722,
that is, the voxel is categorized as active if P̂(γv =1| y)>0.8722, and it is categorized as inactive
otherwise [26]. To measure the performance of our proposed model, we calculate the true
classification rate (TCR), the true positive rate (TPR) and the false positive rate (FPR), which
are defined as

number of correctly classified voxelsTCR ;
number of voxels

= (16)

number of active voxels correctly claimed as activeTPR ;
number of active voxels

= (17)
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number of inactive voxels correctly claimed as activeFPR .
number of inactive voxels

= (18)

Table 1 shows the proposed method performs well with regard to detecting the active voxels
where only a small number of active voxels are falsely identified as inactive in both designs.
Over 10 replications, the model with consideration of spatial dependence performs better on
the detection of activations. Especially, FPR reduces around 50%.

(a)
Block design (%) Event-related design (%)

TCR  92.44 (90.28–96.67) 91.12 (91.82–96.00)
TPR 99.97 (99.94–100) 99.97 (99.94–100)
FPR 6.98 (3.45–8.75) 6.54 (3.54–8.66)
(b)

Block design (%) Event-related design (%)
TCR 96.33 (95.89–97.56) 95.78 (95.12–97.50)
TPR 99.99 (99.97–100) 99.99 (99.97–100)
FPR 3.42 (1.12–5.27) 3.22 (1.32–4.78)

The values within the parentheses are the range of different rates over 10 replications.

Table 1. The percentage of correct classification of voxels with a threshold at 0.8722 for considering the spatial
dependence in (a) and without considering spatial dependence in (b) for temporal parameters in the model.

4.2. Structures with spatial dependence

To demonstrate that the proposed model is able to handle the different binary and temporal
image spatial dependencies, we generate a dataset that is the same as the benchmark example
in the paper of [27]. We create a 20×20 binary image as shown in Figure 2(a), where the areas
in red indicate that the voxels are active, and otherwise, they are not. Moreover, the values of
ρs are generated from a uniform distribution between –0.3 and 0.3 for the non-active areas.
However, we assign the fixed values –0.5, 0.5, and 0.75 to ρ in each active area, respectively,
as shown in Figure 2(b). This is designed to investigate the patterns of temporal dependencies
within the different areas. Similar to the settings discussed in Section 3.1, we consider both
block and event-related designs with one stimulus. First, βv’s generated from U(2, 5) and σv

2

from U(1, 3). The design matrix Xv and temporal correlation matrix Λv are defined to be the
same as in Section 3.1. Given Xv, γv, ρv, βv, and σv

2 the BOLD signal changes are generated from
a normal distribution with a mean Xvβv and a covariance σv

2Λv. We carry out the proposed
approach to detect the activation and estimate the parameters of interest. For ease of visuali‐
zation of the results, we provide one of the estimated binary images without thresholding and
the corresponding estimated image, as shown in Figure 2(c). By visually inspecting estimated
values of ρs in Figure 2(d) compared to the simulated ones in Figure 2(b), we are confident
that the spatial dependences also can be captured by the model.
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After thresholding by a value determined by controlling FDR as 0.05, the accuracy of the
classification of voxels measured by TCR is 99.25%, and the FPR is 4.84% with consideration
of the spatial dependence of the temporal correlations over 10 replications. On the other hand,
when the threshold is taken to be equal to 0.8722, TCR is 99.17% and FPR is 5.01%. Therefore,
the proposed model can be applied to detect the activation of brain image data even for
different spatial dependence structures.

Figure 2. Simulated and estimated binary and ρ images.

4.3. Parcellation effect

In the previous simulations, image data was analysed together. In this simulation, we partition
the data and then apply the proposed model to analyse each unit of the partitioned data. Our
goal is to investigate the effect of the parcellation of an image on the estimation of active voxels.
Given the binary image γ shown in Figure 3(a), a unit of data is generated with the parameters
being the same as the settings discussed in Section 3.1.

We consider four different parcellations, as shown in Figure 3(a), (b) and (d). Table 2 shows
the values of different measurements over 10 replications. Little difference can be found on
the measures between different parcellations. However, the computational time is dramati‐
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cally reduced for case (d), where each parcellation contains fewer voxels. The same results in
block and event-related fMRI experiments.

Figure 3. Four different parcellation schemes. The areas in red are active areas corresponding to γv =1. The blue dash‐
ed line is used to partition the area into non-overlapping parts.

Parcellation Scheme (a) (b) (c) (d)
TCR 99.12 (98.61–99.84) % 99.07 (98.68–99.56) % 98.94 (98.03–99.64) % 99.08 (98.76–99.51) %

TPR 100% 100% 100% 100%

FPR 6.35 (1.51–9.97) % 6.68 (3.67–9.36) % 7.45 (3.12–13.87) % 5.82 (2.83–9.44) %

Running time ratio 8.75 2.75 2.75 1

The values within the parentheses are the ranges of different rates over 10 replications.

Table 2. The average percentage of correctly classified voxels (TCR), true positives (TPR), and false positives (FPR)
over 10 replications for different image parcellations corresponding to Figure 3(a)–(d).

4.4. A real-life simulation example

To further demonstrate the capability of the proposed model to accurately identify the
activation regions, we simulate an fMRI dataset from an R package: neuRosim [28]. The
simulated data follows the example of event-related fMRI study [24]. We consider four
different tasks denoted by N1, N2, F1 and F2, which are presented randomly in the experiment.
The onsets for each condition are schematically shown in Figure 4. We then specify three areas
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that are activated by the tasks shown in Figure 5. The simulated four-dimensional fMRI data
consists of 351 scans, each containing three-dimensional image of size 53×63×46 and being
collected in every 2 s resulting the total time for the experiment is 11 min and 42 s.

Figure 4. Depiction of temporal occurrences of four different tasks.

Figure 5. Activated regions upon representation of different tasks.

Now we apply the proposed model to analyse the simulated data. We split the array into
disjointed arrays based on the Brodmann level regions. The voxel for all regions ranges from
236 to 969. We collect 1,000,000 samples to estimate the posterior probability of activation in
each voxel. We consider the following probability:

min 1|vjj
P ygæ ö=ç ÷
è ø

(19)
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which is used to denote whether the voxel v is activated by any of applied stimuli. Once the
posterior probability is greater than 0.8722, then the corresponding voxel is considered as
activated by a stimulus. The activation maps registered into MNI 152 template (a reference
brain map from the Montreal Neurological Institute) and the areas considered active are in
yellow as shown in Figure 6. In addition to comparing specified activation regions in Figure
5 to those detected in Figure 6, we also calculate the three measures, TCR, TPR and FPR which
are 97.71%, 99.34% and 3.25%, respectively. The results show that proposed model performs
well on classifying the active and inactive voxels.

Figure 6. Estimated probability of activation in response to any face task with activation areas in yellow.

5. Application

We apply the spatial Bayesian variable selection approach discussed in Section 2 to real fMRI
data, a study of the Simon effect [29]. In this Simon task, participants responded to one colour
with the right hand, and to the other colour with the left hand. Congruence in this aspect means
that a colour appears on the default side (congruent condition), or it may appear on the
opposite side (incongruent condition). One participant’s brain image data is selected to be
analysed for the purpose of illustration. The four-dimensional fMRI BOLD image data was
pre-processed using FSL from Oxford Centre for Functional MRI of the Brain [30], including
motion correction, realignment, slice timing correction, spatial smoothing and high-pass
filtering, before being analysed using our model. Incorrect trials were removed. The four tasks
in this experiment were convolved with a double gamma function. We divided the pre-
processed data into 48 Brodmann areas. The statistics of interest were registered into a standard
template MNI152 for ease of visualization. We used a first-order temporal autocorrelation
throughout the study.
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We consider a voxel to be active when the posterior probability of γv is greater than c, which
is either a deterministic value of 0.8722 [4] or is determined by an FDR equal to 0.05 [22].
However, in this event-related fMRI, 0.8722 seems too conservative, so the value of c is
determined corresponding to an FDR equal to 0.05. The activation maps for different tasks are
shown in Figure 7(a)–(d).

One interesting question is to compare active domains corresponding to congruency. Posterior
probabilities helped us find the following inequality between the incongruent and congruent
tasks groups:

( )right-incon left-incon right-con left-con | ,P yb b b b+ > + (20)

where βs is the magnitude of corresponding effect on the BOLD signal changes. The posterior
activations are shown in Figures 8 and 9 when posterior probabilities are thresholded by a
critical value corresponding to FDR equal to 0.05. The active regions include frontal and
occipital lobes detected by the models with and without consideration of spatial dependence
of temporal correlations. These results are consistent with other studies [31, 32]. However,
more active areas were detected by the model without consideration of spatial dependence of
temporal correlations. For something like the Simon task, it is expected that the lateral
prefrontal cortex to be activated as they are parts of the cognitive control network/multiple
demand network, while the medial prefrontal cortex is part of the default mode network [33].
Therefore, it is possible that the activation in the medial part may be some spread of activity
and therefore false positives. This is an important example that illustrates considering the

Figure 7. The activation areas with a posterior probability greater than c, corresponding to FDA = 0.05, shown in red
for different tasks.
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spatial dependence of temporal correlations may improve the estimation and reduce the some
spurious detection of activation.

Figure 8. Areas shown more activity in incongruent than congruent task without consideration of spatial dependence
of temporal correlations in the model.

Figure 9. Areas shown more activity in incongruent than congruent task with consideration of spatial dependence of
temporal correlations in the model.

6. Discussion and conclusions

In this work, we applied a new approach to performing Bayesian variable selection with
consideration of spatial dependencies from both regression and temporal coefficients in single-
subject event-related fMRI data. Through simulations, improvement in the detection of brain
activity was observed for a wide range of different spatial structures, parcellations and
experimental designs. We found that the proposed approach potentially decreases false
positive rates as shown in Table 1 in the simulation and Figure 9 in the real example. In
addition, prior information from brain structure and function for subject-level inference can
be incorporated into the analysis.

It is worth noting that the proposed Bayesian approach partitions a brain into several regions
before implementing the model to the fMRI data. In addition to Brodmann areas, several
parcellations of the brain into distinct regions are available, such as the separate regions
divided by a data-drive segmentation procedure using functional clustering. From the
simulation study, we found the computational burden to be greatly reduced by the joint use
of parcellation and an SGLMM. In particular, the probability of activation and activation
magnitudes were readily computed without requiring an adjustment for multiple comparisons
in a post-processing step. For broader goals, it would be of interest to extend the model to
group studies. In addition, we are confident that Bayesian approaches represent an important
direction in fMRI and in high-dimensional research in general.
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Abstract

Texture analysis is a technique used for the quantification of image texture. It has been
successfully used in many fields, and in the past years it has been applied in magnetic
resonance imaging (MRI) as a computer-aided diagnostic tool. Quantification of the
intrinsic heterogeneity of different tissues and lesions is necessary as they are usually
imperceptible to the human eye. In the present chapter, we describe texture analysis as
a process consisting of six steps: MRI acquisition, region of interest (ROI) definition, ROI
preprocessing, feature extraction, feature selection, and classification. There is a great
variety of  methods and techniques to be chosen at  each step and all  of  them can
somehow affect  the  outcome of  the  texture  analysis  application.  We reviewed the
literature  regarding  texture  analysis  in  clinical  MRI  focusing  on  the  important
considerations to be taken at each step of the process in order to obtain maximum
benefits and to avoid misleading results.

Keywords: texture analysis, magnetic resonance imaging, classification, computer
aided diagnosis, segmentation

1. Introduction

Magnetic resonance imaging (MRI) has become a powerful diagnostic tool by providing high
quality images, thanks to new advances in technology. MRI offers excellent anatomic details
due to its high soft-tissue contrast and the possibility to enhance different types of tissues using
different acquisition protocols. However, diagnosis of some pathologies remains difficult due
to the restricted ability of the human eye to detect intrinsic, heterogeneous characteristics of
certain tissues. For example, the visual appearance on MRI of a metastatic brain tumor can be
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very similar to one of a radionecrosis lesion (Figure 1), and a wrong diagnosis can lead to
improper  patient  treatment.  In  these  particular  cases,  histopathology  remains  the  gold
standard diagnostic technique. In an effort to avoid this invasive diagnostic approach, and
considering that additional imaging modalities are costly and not as widely available as
conventional MRI, great interest exists in identifying reliable imaging features from routine
MRI scans that would help differentiate certain lesions [1].

Figure 1. T1-weighted MRI with contrast enhancement of a brain metastatic lesion (a), and a radionecrosis lesion (b).
Discrimination of these different entities is crucial for patient treatment but it is visually non-feasible. Texture analysis
has demonstrated to be a useful tool for this purpose [1, 19].

Computer-aided diagnostic tools assist the radiologist in the diagnosis by providing quanti-
tative measures of morphology, function, and other biomarkers in different tissues. In the past
years, texture analysis has gained attention in medical applications and has been proved to be
a significant computer-aided diagnostic tool [2]. There is not a strict definition of an image
texture but it can be described as the spatial arrangement of patterns that provides the visual
appearance of coarseness, randomness, smoothness, etc. [3]. Texture analysis describes a wide
range of techniques for quantification of gray-level patterns and pixel inter-relationships
within an image providing a measure of heterogeneity. It has been shown that different image
areas exhibit different textural patterns that are sometimes imperceptible to the human eye [2].

Applications of texture analysis in medical imaging include classification and segmentation
of tissues and lesions. A search of papers containing the keywords “texture” and “MRI” in the
title was performed in SciVerse Scopus1 retrieving 200 papers on January 19th 2016, of which
140 were original studies dealing with texture analysis in clinical MRI. The distribution of these
studies per organ is shown in Figure 2. It is clear that there is an increased interest in texture
analysis in recent years, and that the major attention has been paid to neurological applications.
Some brain applications include discrimination between different types of tumors [4, 5],

1 https://www.scopus.com
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classification of diseases like Alzheimer’s [6] or Friedreich ataxia [7], and brain segmentation
[8, 9]. Following brain studies, we found applications in liver, breast, and prostate [10–12], and
cardiac MRI for detection of scarred myocardium and classification of patients with low and
high risk of arrhythmias [13, 14].

Figure 2. Distribution of original publications regarding texture analysis in MRI according to the studied organ.

This work is presented as a literature review of the most relevant publications regarding texture
analysis in MRI. Rather than providing a detailed summary of the state of the art found in the
literature search, we focused this work on the process of texture analysis considering papers
that compared different methods so we can have an idea of the best approaches for certain
applications.

2. Texture analysis process

Texture analysis applications involve a process that consists of six steps: MRI acquisition,
region of interest (ROI) definition, ROI preprocessing, feature extraction, feature selection, and
classification (Figure 3). None of these steps is specific, and the methods have to be chosen
according to the application. The texture outcome can be considerably affected depending on
the methodology used throughout the process. Herein, we present a condensed description of
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each step of the texture analysis process focusing on applications that compared different
scenarios or methods.

Figure 3. Main steps for MRI classification by means of texture analysis. ROI: region of interest.

2.1. MRI acquisition

Magnetic resonance imaging is widely used nowadays because of its high soft-tissue contrast
and the possibility to enhance specific tissues by varying the acquisition sequence parameters.
In this respect, the outcome of texture analysis strongly relies on the image acquisition
protocols, and these should be carefully selected in order to obtain maximum accuracy and
reproducibility. Different measuring techniques produce different patterns in texture and these
may vary among centers and manufacturers [15]. Texture analysis can be used reliably at one
center with a specific imaging protocol but this does not mean that the same methodology can
be directly applied to images acquired at different centers with different protocols [16].

2.1.1. Sequences

Three relevant MRI tissue parameters can be measured in a typical spin echo (SE) sequence:
spin density (ρ), spin-lattice relaxation time (T1), and spin-spin relaxation time (T2); each of
them showing different image contrast and texture. Examples of MR images weighted in these
three parameters are shown in Figure 4. Other imaging techniques, like the gradient echo (GE)
fast low angle shot (FLASH), introduce significant effects on image texture due to their own
measuring characteristics [17]. Repetition time (TR), bandwidth/echo time (BW/TE), and flip
angle are the properties that are most likely altered in a clinical setting. Repetition time had
the biggest impact when comparing different foam phantoms using clinical breast MRI
protocols, whereby better texture discrimination was elicited at higher TR [18].

The choice of the MRI sequence for texture analysis depends on the application. Contrast-
enhanced T1-weighted images is the current standard MRI protocol used by clinicians to assess
brain tumors and was used for texture analysis in [1, 4]. Some studies compared different
modalities obtaining diverse results. In the study of Tiwari et al. [19], contrast-enhanced T1-
weighted images provided better performance over T2-weighted and fluid-attenuated
inversion recovery (FLAIR) images for discrimination of recurrent brain tumors from radia-
tion-induced lesions. T1-weighted MRI was also notably better than FLAIR images for
dementia classification [20]. T2-weigthed images were more suitable for differentiation
between benign and malignant tumors [21, 22], and for discrimination of posterior fossa
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tumors in children [23]. Texture analysis applied to diffusion-weighted images also proved to
be efficient for brain tumor classification [24–26]. Texture features used in these studies differ
from each other, so a definite assumption of which MRI sequence is better cannot be made.

Figure 4. Spin echo images of a patient with meningioma. (a), ρ-image (TR/TE = 2000 ms/10 ms). (b), T1 image (TR/TE =
600 ms/10 ms). (c), T2 image (TR/TE 2000 ms/100 ms). TR: repetition time, TE: spin echo time. Reproduced with the
permission of the publisher (Les Laboratories Servier ©, Suresnes, France) from [17].

2.1.2. Influence of spatial resolution and signal-to-noise ratio

Spatial resolution and signal-to-noise ratio (SNR) have been reported to be the most influential
factors for texture analysis [15, 27, 28]. Image resolution is defined by slice thickness, field of
view (FOV), and matrix size. Signal-to-noise ratio is defined as the coefficient between the
mean signal over a homogeneous region of a tissue of interest and the standard deviation of
the background noise. Texture discrimination improves with higher levels of SNR and it has
been reported that a SNR > 4 is necessary to measure the real textural behavior of the human
brain [17]. Discrimination based on texture analysis also improves with higher spatial resolu-
tion, as shown by Jirak et al. [29], who found the best separation of three different phantoms
at a pixel resolution of 0.45 × 0.45 mm2 (good separation was also found at 0.77 × 0.90 mm2,
whereas the worst discrimination was for the lowest tested resolution of 1.53 × 1.80 mm2).
Texture analysis fails if the image resolution is insufficient since the finest textural details
cannot be spotted. Texture features from higher spatial resolution images are more sensitive
to variations in the acquisition parameters. In [28], it was found that the least influenced
resolution was at 0.8 × 0.8 mm2.

Although current routine MRI scanners can produce high-resolution images, these are
susceptible to motion artifacts, given the long scan times and are not widespread in clinical
practice. In [30], they found a strong correlation between 3D structural indices and 3D texture
features in trabecular bone in osteoporosis using routine, low-resolution images (0.7 mm),
indicating that these can be used to quantify the bone architecture without the need of higher
resolution images. These previous results indicate that even if high-resolution images provide
better texture discrimination, its application in clinical practice is far complicated as no good
reproducibility among centers is expected. Apparently the slice thickness does not influence
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significantly the outcome of 2D texture analysis according to Savio et al. [31], who found only
moderate differences between 1 mm and 3 mm thickness for separation of white matter tissue
and multiple sclerosis plaques.

2.1.3. Influence of field strength

One important difference among MRI scanners is the field strength of the magnet, the most
common values in clinical routine nowadays being those of 1.5T and 3T. Scanners with higher
field strength provide more SNR, thus increasing spatial and temporal resolution. In counter-
part, artifacts resulting from breathing or any other type of body motion are more prominent
on 3T than on 1.5T scanners, but these are generally compensated using some techniques
offered by manufacturers [32]. Better texture-based discrimination is expected on the higher
quality images acquired on 3T scanners as it was reported for liver fibrosis [33] and breast
cancer classification [34]. In [22], they found significant differences between 1.5T and 3T when
squamous cell carcinoma tumors on head and neck were compared. However, their results are
in contrast with previous evidence [33, 34] since benign versus malignant tumor discrimination
was better on 1.5T. In the study performed by Waugh et al. [18], texture discrimination of foam
phantoms using different clinical breast MRI protocols was in general improved when a 3T
scanner was used, but changes in the imaging parameters at 1.5T had less influence on the
texture outcome.

2.1.4. Multicenter studies

Few multicenter studies regarding the application of texture analysis in MRI have been
published. In [21], they concluded that texture analysis on MRI can discriminate between
different brain tissues obtained in routine procedures at three different centers. In [16], they
compared the classification performance to discriminate between bone marrow and fat tissue
on T1-weighted MRI of knees from 63 patients obtained from three centers with two different
field strength MRI scanners: two centers at 1T and one at 3T. Texture information was extracted
from two centers and was used to predict tissue using data from the third center, concluding
that feature sets from one center may be used for tissue discrimination in data from other
centers. Pixel size was found to be the parameter that mostly influences the texture outcome.
In a very large multicenter study, Karimaghaloo et al. [8] analyzed 2380 scans from 247 different
centers for segmentation of multiple sclerosis lesions achieving an overall sensitivity of 95%
on a separate dataset of 120 scans from 24 centers. The promising results of this study may be
the consequence of extracting texture features from different MRI protocols (T1, T2, proton
density, and FLAIR) and using them in combination when modeling the classifier. It should
also be noted that images were corrected for nonuniformity effects and were normalized into
a common spatial and intensity space, thus reducing the possible differences among multi-
center scans. Opposite conclusions were reached by Fruehwald-Pallamar et al. [22], as they
stated that texture analysis is useful for discrimination of benign and malignant tumors when
using one scanner with the same protocol, but it is not recommended for multicenter studies.
However, they did not mention any image normalization or inhomogeneity correction that
could somehow have affected their results, as we discuss in Section 2.3.
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2.2. Region of interest definition

Texture features are computed inside a predefined region of interest (ROI), or volume or
interest (VOI) in the case of 3D texture analysis, and are usually placed over a homogeneous
tissue or lesion area. Manual definition of ROIs is still considered the gold standard in many
applications, and it is the chosen option over automatic methods [35–38]. Different approaches
have been used to define ROIs that are also extended to 3D texture analysis. One approach for
ROI definition is the positioning of squares [39] or circles [40] of predefined sizes over the tissue
to be analyzed. Using this approach, only information of the underlying tissue is captured but
some texture details can be lost because the ROI does not cover the entire area of interest.
Another alternative is to use a bounding box defined as the smallest enclosing rectangular area
of the tissue of interest [41, 42]. The latter approach has the advantage that it covers the entire
tissue or lesion, however it also includes information from adjacent parts that can affect texture
quantification. Although delineation of the entire tissue or lesion can be tedious, it is a better
approach since the whole area of interest is included [23, 43]. In [44], they studied the effect of
lesion segmentation on the diagnostic accuracy to discriminate benign and malignant breast
lesions. They concluded that for both 2D and 3D texture analysis, delineation of the entire
lesion provides better accuracy than the bounding box approach. Figure 5 shows examples of
the three aforementioned ROI definition approaches.

Figure 5. Approaches for defining a region of interest (ROI) over a brain tumor. The use of a bounding box that covers
the entire lesion (a), or a small square inside the tumor (b) can be defined quickly and easily, but the delineation of the
entire lesion (c) is preferred in order to capture the maximum texture information only within the area of interest.

2.2.1. Size of the region of interest

The size of the ROI should be sufficiently large to capture the texture information thereby
eliciting statistical significance [45]. In [46], they studied the effect of ROI size on various texture
features extracted from circular ROIs of 10 different sizes on brain MRI of healthy adults. They
concluded that the effect of size becomes insignificant when large ROIs are used. In general,
texture features were highly affected at ROI areas smaller than 80 × 80 pixels and became
unaffected at ROI areas of around 180 × 180 pixels. These results are in general true for certain
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texture features but they can vary among the extensive range of available texture analysis
methods. In Section 2.4 we discuss the texture analysis methods mostly applied in MRI. It is
also important to notice that the ROI size might depend on the MRI acquisition parameters. It
is not the same to use a ROI of 180 × 180 pixels area over an image region of 1.5 × 1.5 mm2

resolution than over an image of 0.5 × 0.5 mm2. The MR images used by Sikiö et al. [46] had a
pixel size of 0.5 × 0.7 mm2 with a slice thickness of 4.0 mm. A good methodology to avoid
possible influences of ROI size might be the use of squares and circles of the same size among
all the studied samples but as we mentioned before, complete delineation of the ROI might
offer better results. We recommend the use of the ROI delineation approach when the range
of lesion sizes among samples is not significantly broad and when the employed texture
features are not affected between this range, otherwise ROIs of the same size might be a better
approach.

2.2.2. Feature maps

Texture feature maps can be computed by defining ROIs as sliding blocks of n × n pixels
centered at each pixel on the image, so for each pixel a specific texture feature value is computed
including its surrounding neighborhood. The block size should be large enough to capture
sufficient texture information from each pixel neighborhood, but small enough to capture more
local characteristics allowing finer detection of regions [45]. Figure 6 shows examples of texture
maps computed for sliding blocks of different sizes. Texture maps can reveal some character-
istics that are not visible on the original image and are mainly used for segmentation tasks [47].
Computing features over texture maps can lead to better results than using the original MR
images [48].

Figure 6. Texture feature maps of a cardiac MR image: (a) original image, (b) entropy feature map computed with a
sliding block with a size of 5 × 5 pixels, and (c) entropy feature map computed with a sliding block of 9 × 9 pixels.

2.3. Region of interest preprocessing

It is clear from Section 2.1 that MRI acquisition protocols are relevant for texture analysis.
Several preprocessing techniques have been proposed in order to minimize the effects of
acquisition protocols and are especially important when dealing with multicenter studies. The
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main purpose of these preprocessing techniques is to put all ROIs in the same condition, so
features extracted from them represent essentially the texture being examined. Some prepro-
cessing methods also aim to improve the texture discrimination. For example, Assefa et al. [49]
extracted texture features from a power map computed from the localized Hartley transform
of the image, and Chen et al. [50] computed features from ROIs defined over texture maps.

2.3.1. Interpolation

Image spatial resolution is one of the most influential factors in texture analysis, and it was
demonstrated that higher resolutions tend to improve texture-based classification, but high-
resolution images are not usually available in clinical routine [29, 30]. Image interpolation is
an option to enhance images with a low spatial resolution. The effect of image interpolation
on texture features was analyzed by Mayerhoefer et al. [51] comparing three interpolation
methods applied on T2-weighted images acquired at five different resolutions. They concluded
that MR image interpolation has the potential to improve the results of texture-based classifi-
cation, recommending a maximum interpolation factor of four. In their study, the most
considerable improvements were found when images with an original resolution of 0.94 ×
0.94 mm2 and 0.47 × 0.47 mm2, respectively, were interpolated by factors of two or four using
the zero-fill interpolation technique at the k-space level. Image interpolation is of special interest
when dealing with 3D texture analysis because in most MRI sequences the slice thickness is
larger than the in-plane resolution. Re-slicing all images to obtain isotropic image resolution
is required for computing textures feature to ensure the conservation of scales and directions
in all three dimensions [52].

2.3.2. Normalization

It was demonstrated that some features are not only dependent on texture, but also on other
ROI properties, such as the mean intensity and variance [53]. To avoid the influence of such
factors, ROI normalization is a recommended preprocessing step (Figure 7). In [54], they
studied the effects of ROI normalization on texture classification of T2-weighted images and
demonstrated that classification errors were dependent on the MR acquisition protocols if no
normalization was applied. They compared three methods, and the one that yielded the best
results is known as the “±3σ” normalization. In this method, image intensities are normalized
between µ ± 3σ, where µ is the mean value of gray-levels inside the ROI, and σ is the standard
deviation, so that gray-levels located outside the range [µ - 3σ, µ + 3σ] are not considered for
further analysis. Enhancement of the variations in gray-levels between neighbors is a favorable
factor for improving the classification performance. The “±3σ” normalization technique has
become the most popular and preferred choice in most publications [1, 55–57]. In another study,
Loizou et al. [58] compared six MRI normalization methods applied to T2-weighted MR images
from patients with multiple sclerosis and healthy volunteers. They concluded that a method
based on normalization of the whole brain, in which the original histogram is stretched and
shifted in order to cover a wider dynamic range, is the most appropriate for the assessment of
multiple sclerosis brain lesions by means of texture analysis.
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Figure 7. Example of region of interest (ROI) normalization of a cardiac MR image. The extracted ROI is shown in the
original histogram and after normalization using the “±3σ” method.

2.3.3. Inhomogeneity correction

There is still another residual effect that is not eliminated by ROI normalization, which is the
variation of intensity present in MR images mainly caused by static magnetic field inhomo-
geneity and imperfections of the radiofrequency coils [17]. Figure 8 shows examples of liver
MRI affected by nonuniformity artifacts. Texture features depend on local average image
intensity and are therefore affected by image inhomogeneity. Correction of nonuniformity
artifacts in MRI is recommended as a preprocessing step prior to ROI normalization and
especially for large ROIs [59]. A review of methods for MRI inhomogeneity correction is
available in [60], the most popular method found in texture literature [61–64] being the so-
called N3 algorithm [65].

Figure 8. Example of a liver MRI with inhomogeneity (a), the average local image intensity of the lower left part is
darker than the upper part. The corrected image is shown in (b). Reproduced with permission from [59].

2.3.4. Quantization of gray-levels

Texture analysis methods based on matrix computation, e.g., co-occurrence and run-length
matrices, require the quantization of gray-levels. A typical MR image is represented by 10 or
12 bits per pixel, that is, 1024 or 4096 levels of gray. So, in MRI texture analysis, quantization
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will refer to the reduction of levels of gray used to represent the image. Typical numbers of
gray-levels used for texture feature computation are 16, 32, 64, 128, and 256. Reducing the
number of gray-levels improves SNR and the counting statistics inherent in the matrix-based
texture analysis method at the expense of discriminatory power [66]. Some studies reported
that no significant effects were found when a different number of gray levels were tested [55,
67] while in the study of Chen et al. [44], a gray-level number of 32 was reported to be an
optimal choice for breast MRI. A specific study regarding the impact of the number of gray-
levels on co-occurrence matrix texture features was carried out by Mahmoud-Ghoneim et al.
[68]. They concluded that the number of gray levels, or dynamic range, has a significant
influence on the classification of brain white matter, obtaining an optimal number of 128 levels
for both 2D and 3D texture analysis approaches. It is recommended to optimize the number
of gray levels for each specific application.

2.4. Feature extraction

Feature extraction is the main and specific step in the texture analysis process and implies the
computation of texture features from predefined ROIs. Many approaches have been proposed
in order to quantify the texture of an image allowing the computation of numerous features.
In this section, we briefly describe the most popular texture analysis methods that were
successfully used to characterize MRI tissues. A review of existing feature extraction methods
can be found in [69, 70]. Although methods based on the first order statistics (histogram
features) are normally used in combination with other methods, as they may improve the
texture-based classification or segmentation [10, 71–73], they are not presented here as they do
not really describe the actual texture of the image or ROI being analyzed [70].

2.4.1. Statistical methods

Statistical methods represent the texture by considering the distributions and relationships
between the gray-levels of an image. Hereby we briefly describe a method based on second-
order statistics, the co-occurrence matrix, a method based on higher-order statistics, namely
the run-length matrix, and a method that combines the statistical approach with the structural
properties of the image known as local binary patterns (LBP).

2.4.1.1. Co-occurrence matrix

The co-occurrence matrix allows extraction of statistical information regarding the distribution
of pixel pairs in the image. Pairs of pixels separated by a predefined distance and direction are
counted and the resulting values are allocated in the co-occurrence matrix. The count is based
on the number of pairs of pixels that have the same distribution of gray-level values [3].
Normally, co-occurrence matrices are computed in four directions (horizontal, vertical, 45°,
135°) for 2D, and in 13 directions for 3D approaches [52], using different pixel or voxel
separations. Features originally proposed by Haralick et al. [74, 75] are then computed for each
co-occurrence matrix. Figure 9 shows an example of computation of the co-occurrence matrix.
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The pixel distance has to be chosen according to the application: a larger distance will allow
detection of coarse areas but care must be taken not to overstep the size of the ROIs.

Figure 9. Computation of a co-occurrence matrix for a given 4 × 4 pixel image (a) with three gray-levels (b). In this
example, the matrix is computed in horizontal direction for one pixel separation. The number of transitions of gray-
levels is counted and allocated in the co-occurrence matrix (c). The circled values indicate that there are three transi-
tions from one to two gray levels and this count is allocated in the corresponding position in the co-occurrence matrix.

One main concern about matrix-based texture features is their dependence on direction, so
different values may be obtained if the image is rotated. This is unacceptable for texture
characterization on MRI since images from different patients may have different orientations.
Rotation-invariant features can be achieved by averaging each matrix value over all directions
[44, 49] or by averaging the statistical features derived from the co-occurrence matrices [47].
Texture features based on co-occurrence matrices have become the most popular method and
have been proven to be useful for classification of tissues and lesions in MRI [76–81].

2.4.1.2. Run-length matrix

Run-length matrices consider higher-order statistical information in comparison with co-
occurrence matrices. Runs of a specific gray-level are counted for a chosen direction. For
example, three consecutive pixels with the same gray-level value along the horizontal direction
constitutes one run of length three. Computation of a simple run-length matrix is shown in
Figure 10. Fine textures will be dominated by short runs whereas coarse textures will include
longer runs [69]. The features originally proposed by Galloway [82] are usually computed for
ROI characterization. Rotation invariance can be achieved by averaging over all directions, as
previously mentioned for the co-occurrence matrix method.

There is one important consideration about run-length matrix features. As demonstrated by
Sikiö et al. [46], the features run-length nonuniformity (RLN) and gray-level nonuniformity
(GLN) were linearly dependent on the ROI size. The linear behavior of these nonuniform
features is due to the original mathematical definition, which squares the number of gray-
levels (Ng) for each run length (Eq. (1)) or the number of run-lengths (Nr) for each gray-level
(Eq. (2)). Thus, for a larger ROI there will be more runs. The normalization factor C (Eq. (3)) is
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correlated with the number of pixels and not its square. Using the square of the normalization
factor C, as proposed by Loh et al. [83], is a recommended approach in order to reduce the
dependence on ROI size.
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Figure 10. Computation of a run-length matrix for a given 4 × 4 pixels image (a) with three different gray-levels (b).
The number of runs for each gray-level is allocated in the run-length matrix (c). For example, there are two runs of size
two for the gray-level of three (circled values).

2.4.1.3. Local binary patterns

The local binary pattern (LBP) is a texture descriptor introduced by Ojala et al. [84] and it
became very popular, thanks to its simplicity and high-discriminative power. The LBP
descriptor labels each pixel in an image by comparing its gray-level with the surrounding
pixels and then assigning a binary number. A value of unity is assigned to the surrounding
neighbors with gray-level greater than the central pixel in a predefined patch and a value of
zero otherwise. A binary number is then obtained and assigned to the central pixel. The original
LBP operator considers a 3 × 3 patch, so the surrounding pixels form a binary number of 8
digits. After labeling all pixels in an image, a LBP feature map is obtained as well as a histogram
that consists of 256 bins when considering 3 × 3 patch. Figure 11 summarizes the described
steps. The LBP histogram can be used as feature vector for classification where each bin
represents one feature. Another approach is to compute new features from the LBP map as
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carried out by Oppedal et al. [20] and Sheethal et al. [85]. Uniform LBPs have been proposed
to reduce the length of the feature histogram. A LBP binary code is uniform if it contains at
most two transitions from 0 to 1 or vice-versa. Examples of uniform patterns are: 0000000 (no
transitions), 00001111 (one transition), and 10001111 (two transitions). Patterns with more than
two transitions are labeled as nonuniform, and distinct labels are assigned to each uniform
pattern. For a 3 × 3 patch, the number of bins on the uniform histogram is reduced to 59 instead
of the original 256. Uniform LBP patterns function as templates for microstructures, such as
spots, edges, corners, etc.

Figure 11. Computation of a basic local binary pattern (LBP) image. For each pixel in the original image, its gray-level
is compared to the surrounding pixels. A value of unity is assigned to the pixels with gray-level greater than the cen-
tral pixel, and a value of zero otherwise. Then a binary number is obtained and this value is assigned to the central
pixel.

The original LBP descriptor defined for a 3 × 3 patch was extended to include more neighbors
by adding two parameters: parameter P that defines the number of neighbors, and radius R
that determines the spatial resolution. Quantification at different resolutions can be obtained
by varying these two parameters. Enhancement of the discriminatory power of the LBP
descriptor can be obtained by adding an image contrast measure that calculates the local
variance in the pixel neighborhood. The contrast measure is the difference between the average
gray-level of those pixels that have unity value and those with zero value [20, 14]. Rotation
invariance is achieved by performing a bit-wise shift operation on the binary pattern P-1 times
and assigning the LBP value that is the smallest. It has been shown by Unay et al. [86] that
rotation-invariant LBP is robust against some common MRI artifacts. Their results show that
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LBP is robust to image inhomogeneity even at 40% of intensity variations. An extension of the
LBP operator on three orthogonal planes, known as LBP-TOP, was proposed by Zhao et al. [87]
and successfully applied to the entire brain for 3D texture classification of attention-deficit/
hyperactivity disorders [88].

2.4.2. Model-based methods

Texture methods based in models attempt to represent texture by the use of a generative image
model (fractals), or a stochastic model. Parameters of the model are then calculated and used
for texture analysis. The computational complexity involved in the estimation of features based
in models make them less popular than the previously described methods [70].

2.4.2.1 Autoregressive models

The autoregressive models assume a local interaction between the image pixels by considering
the pixel gray-level as a weighted sum of its neighbors. Using the autoregressive model
involves identifying the model parameters for a given image region and then using them for
texture classification [89]. In the study by Holli et al. [40], significant differences were found
especially for features derived from the autoregressive model when comparing brain hemi-
spheres in controls and patients with mild traumatic injury. Application of the autoregressive
model in different MRI organs was also found beneficial when used in combination with
features derived from other methods [4, 64, 90, 91].

2.4.2.2 Fractal models

Fractal models describe objects that have high degree of irregularity. The central concept of
fractal models is the property of self-similarity, which is the property of an object to be
decomposed into smaller similar copies of itself. Fractal analysis methods provide a statistical
measure that reflects pattern changes as a function scale by defining a parameter called fractal
dimension. The fractal dimension describes the disorder of an object numerically; the higher
the dimension, the more complicated the object. The fractal dimension is often estimated by
box counting, a procedure that overlays the image with grids of decreasing size in order to
capture the contour of relevant texture. Another approach treats the image as a textured surface
by plotting the gray-levels at each x and y position in the z plane [69, 89, 92]. Fractal models
have been successfully used especially for segmentation of brain tissues and lesions [72, 93],
and for prostate tissue classification in combinations with other methods [26, 94]. For brain
tumor evaluation, Yang et al. [63] achieved slightly better results using fractals in comparison
with other methods such as LBP, the co-occurrence matrix, and the run-length matrix.

2.4.3. Transform methods

Methods based on image transformation produce an image in a space whose coordinate system
is related to texture characteristics, such as frequency content or spatial resolution. Gabor filters
provide better spatial localization compared to the Fourier transform, but their usefulness is
limited in practice because there is no single filter resolution at which a spatial structure can
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be localized [70]. In [93], they implemented Gabor features for brain tumor segmentation but
the performance was poorer than obtained with fractals and intensity methods, and even
combining Gabor features with other methods did not improve the performance. In [95], the
co-occurrence matrix features outperformed the Gabor features for 3D classification of brain
tumors.

2.4.3.1 The wavelet transform method

The wavelet transform is a technique that analyzes the frequency content of an image within
different scales and frequency directions. The frequency is directly proportional to the gray-
level variations within the image. Wavelet coefficients corresponding to different frequency
scales and directions can be obtained to describe a given image. Wavelet coefficients are
associated to each pixel in an image to characterize the frequency content at that point over
different scales [3, 89]. Figure 12 shows an example of a wavelet transform applied to an image
at different scales.

Figure 12. Wavelet transform of a cardiac MR image at one-scale decomposition. The high-high (HH) subimage repre-
sents diagonal high frequencies, high-low (HL) extracts the horizontal high frequencies, low-high (LH) vertical high
frequencies, and the image low-low (LL) represents the lowest frequencies.
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Wavelet transform methods are popular because they offer some advantages, such as: variation
of the spatial resolution to represent textures at the most appropriate scale, and the wide range
of choices for the wavelet function that can be adjusted for specific applications [70]. Wavelet-
derived texture features have high discriminatory power and usually provide better classifi-
cation than other methods as has been shown for assessment of mild traumatic brain injury
[40], knee tissue discrimination [16], and for classification of foam phantoms [18]. It was also
demonstrated that wavelet texture features are less sensitive to changes in the MRI acquisition
protocol [18]. In some studies the wavelet transform has been used as a preprocessing method
to enhance texture appearance by selecting the sub-band with the maximum variance [96, 97].
Features derived from other methods can be extracted from these preprocessed images. Other
approaches applied the wavelet transform over previously computed texture maps [10, 85].

2.4.4. 3D texture analysis

Feature extraction methods were first proposed for 2D texture analysis. The advantage of the
volumetric nature of MRI datasets can be obtained by extending the original methods to 3D.
A simple approach to capture volumetric information is to compute 2D features in all MRI
slices and then average these values, as done by Assefa et al. [49], but in this case the gray-level
distributions in the third dimension are not taken into account. Nevertheless, it has been shown
that even this simple averaging method outperforms the typical 2D approach where only one
slice is analyzed [98]. The extension of 2D approaches to 3D is not straightforward as factors
such as translation and scaling become more complex. A review of 3D feature extraction
methods is presented in [52]. Compared with 2D texture analysis, 3D approaches increase the
dimensionality and the information captured from the image, thus improving the discrimi-
nation power [44, 99–101]. Implementation of 4D texture analysis is possible by including the
temporal dimension available in some MRI datasets. Notable results were observed for
discrimination of benign and malignant breast lesions [102] and for localization and segmen-
tation of the heart [103] using the 4D spatio-temporal approach.

2.4.5. Feature extraction tools

The widely used software package MaZda (Institute of Electronics, Technical University of
Lodz, Lodz, Poland) [104] is freely available and allows computation of texture features
based on co-occurrence matrix, run-length matrix, gradient matrix, autoregressive model,
and the Haar wavelet transform. MATLAB (MathWorks Inc., Natick, MA) toolboxes can also
be found for texture feature extraction, like the one provided by Vallières et al. [55]2 that al-
lows computation of features based on four matrix methods, and the implementation of the
local binary pattern operator provided by Ojala et al. [84]3.

2 Available from https://github.com/mvallieres/radiomics
3 Available from http://www.cse.oulu.fi/CMV/Downloads/LBPSoftware
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2.5. Feature selection

The vast variety of feature extraction methods for texture analysis allows us to obtain a myriad
of features. This generates a problem, because the more features we have, the more complex
the classification model becomes. The computed features have different discrimination power
depending on the application. Redundant or irrelevant features hinder the classification
performance and can yield issues of dimensionality. This phenomenon arises when dealing
with a high-dimensional feature space. The classification performance decreases when more
features are added to the model. Feature selection is the process to choose the most relevant
features for a specific application. Reducing the number of features speeds up the testing of
new data and makes the classification problem easier to understand, but the main benefit is
the increase of classification performance [105, 106]. While methods like principal component
analysis (PCA) or linear discriminant analysis (LDA) are used for feature reduction [23, 56],
they are not considered as feature selection methods since they still require computation of all
the original features [107].

2.5.1. Filter methods

A straightforward approach to find the most discriminative features, or the combination of
features that yields the best classification, is to perform an exhaustive search as done by [26,
33, 108]. In the exhaustive search method, all possible combinations of features are tested as
input to a classifier and those that yield the best discrimination are selected. The problem with
this method is that it becomes tremendously expensive to compute when the feature space is
very high. Filter feature selection methods make use of a certain parameter to measure the
discriminatory power. For example, typical statistical methods, such as the Mann-Whitney U-
test, can be used to find and select features with statistical significance [64]. The Fisher
coefficient defines the ratio of between-class variances to within-class variances and it is a
popular filter method found in the literature [21, 40, 47, 109–111]. However, it was claimed that
the Fisher technique generates highly correlated features with the same discriminatory power.
Another method that relies on both the probability of classification error (POE) and the average
correlation coefficient (ACC) was reported to perform better than the Fisher method for
classification of knee joint tissues [16]. Filter methods rank the features according to the
measuring parameter and usually a predefined number of features is selected, e.g. 5 or 10, for
future classification. The Fisher and POE/ACC feature selection methods are implemented in
the B11 module which is part of the MaZda software (Institute of Electronics, Technical
University of Lodz, Lodz, Poland) [104].

2.5.2. Wrapper methods

The main drawback of the filter methods is that feature selection is based on the intrinsic
information of the training data and does not consider the predictive capability of a certain
subset of features. Wrapper methods take advantage of a classification algorithm and search
the subset of features that provides optimal classification performance. The quality of the
selected subset of features depends fundamentally on the search algorithm used. We men-
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tioned earlier that an exhaustive search is not feasible for high dimensional datasets, so an
algorithm that uses some type of search strategy has to be chosen. Genetic search algorithms
have been effectively applied for brain tumor classification [95, 97] and mammogram lesions
[98]. Another search algorithm, the recursive feature elimination (RFE), ranks the features by
recursively training a classifier and removing the feature with the smallest ranking score and
selecting the subset of features that yields the best classification. Any classifier can be used in
conjunction with the RFE to compute the feature scores. The feature selection technique known
as recursive feature elimination-support vector machine (RFE-SVM), first proposed for gene
selection in cancer classification [112], has gained major attention for selecting texture features
due to its good performance over other methods [113], and in MRI was particularly used for
brain tumor classification [1, 4].

2.6. Classification

The main goal in texture analysis applications is the classification of different tissues and
lesions to automate or aid the diagnosis decision. The results of a texture-based classification
method can be later used to partition new images into regions, an approach known as texture-
based segmentation [70]. Simple statistical methods can be used to determine the texture
features with statistical significance for discrimination of two or more classes. However,
following the feature selection step described in the previous section, we focus on more
complex classification algorithms that make use of proper combination of features to achieve
the highest discrimination. The feature selection and classification steps are not specific for
texture analysis, so instead of providing a full description of the existing methods, we briefly
describe the two classifiers mostly used in MRI texture analysis applications, which are
artificial neural networks (ANN) and support vector machines (SVM).

2.6.1. Artificial neural networks

Artificial neural networks (ANN) simulate the way the human brain processes information by
implementing nodes and inter-connections. The ANN discrimination power depends on the
density and complexity of these interconnections [114]. Applications of ANNs in MRI texture
analysis include classification of: brain tumors [23, 115], multiple sclerosis lesions [109],
Alzheimer’s disease [111], and breast [102] and knee lesions [16]. While ANNs perform well
in most applications, their popularity decreased in the past years due to the introduction of
the support vector machine (SVM), which is computationally cheaper and provides similar or
even better performance than ANNs [114].

2.6.2. Support vector machines

The SVM maps the input space to a higher dimension via a kernel function to find a hyperplane
that will result in maximal discrimination. Here, a kernel is a matrix that encodes the similar-
ities between samples that can be used to achieve discrimination between classes that are not
linearly separable [114]. In [4], they demonstrated better performance of the SVM classifier
over ANN for differentiation of benign and malignant brain tumors. SVMs were also applied
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for brain tumor classification in [1, 116]. Other applications of SVMs include the staging of liver
fibrosis [33], detection of prostate [26], assessment of osteoarthritis [117], classification of
cervical cancer [118], mammogram lesions [98], and Parkinson disease [73].

2.6.3. Classification results

Important considerations have to be made when reporting classification results. To avoid
overestimated values, it is always recommended to separate the data into training and
validation sets so that results on new data can be reported. When the dataset is sparse,
resampling approaches like cross-validation or bootstrapping are recommended. For unbal-
anced data, i.e., data containing more normal than abnormal tissues, it is suggested to report
results using the area under the curve (AUC) of the receiver operating characteristic (ROC)
instead of the overall accuracy or misclassification rate [114]. Feature vector standardization
is recommended and required for some classification methods to work accurately and to
improve accuracy in some cases [16].

3. Summary

In this chapter, we reviewed the literature regarding the application of texture analysis in MRI.
This chapter was organized and focused on the six steps that define the texture analysis process:
MRI acquisition, ROI definition, ROI preprocessing, feature extraction, feature selection, and
classification. Our main goal was to provide a condensed reference of the state of the art and
especially to make readers aware about important considerations to be made for future
applications in order to implement MRI texture analysis into clinical practice. Since many
parameters can vary in each step, it is impossible to give a definite guideline of what needs to
be used, while each choice has to be made in view of the specific application. The clinical
applicability relies on the reproducibility of the methods regarding the scanner and acquisition
parameters. Therefore, it is necessary to execute more multicenter studies combining different
acquisition protocols and applying appropriate preprocessing steps to ensure that texture
features describe the actual image characteristics and are not biased by other factors. Regarding
the ROI definition step, it is recommended to carry out studies using automatic methods to
guarantee user independence. Finally, we suggest to compute as many texture features as
possible and to take advantage of powerful feature selection and classification techniques to
achieve the highest performance.
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