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Preface

One of the topics of interest and technical development is the automatic control system re‐
search. From the beginning, it has been a growing booster of different knowledge areas. Re‐
member, for example, first developments such as the water clocks and the watt regulator
that helped at that time with the development of the industrial revolution.

Along the history, we can find different mathematical tools that have allowed the develop‐
ment of single-input single-output (SISO) control systems, which demanded a certain de‐
gree of knowledge in the feedback systems in contrast to the multivariable systems,
modeling and physical representation, stability concepts, observability and regulator design,
etc., of today.

In case of robotic development, we consider multivariable control systems, where each of
the variables must follow the instructions of the kinematic control with the aim of trajectory
following in which each of the joint movements must be required to comply the specific
tasks.

This book contains a selection of research works focused on robot control applications
where the reader can appreciate the development and progress of these systems. There are
descriptions of projects in each section in areas such as mobile robotics, navigation systems,
trajectory-planning navigation systems, and non-holonomic systems.

On the other hand, one of the areas of knowledge that has been developed and that eventu‐
ally helped the development of robotic control is without doubt artificial intelligence. In this
book, we will find control schemes for robotics using artificial intelligence concepts in order
to face highly non-linear systems.

The editor specially appreciates and thanks authors of the chapters who shared their knowl‐
edge with the scientific community and other potential readers.

Dr. Eng. Efrén Gorrostieta
Engineering Faculty of the Autonomous University of Querétaro

Cerros de las Campanas
Queretaro Qro

Mexico
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Provisional chapter

A Review of Compliant Movement Primitives

Miha Deniša, Tadej Petrič, Andrej Gams and
Aleš Ude

Additional information is available at the end of the chapter

Abstract

Dynamical models of robots performing tasks in contact with objects or the environment
are difficult to obtain. Therefore, different methods of learning the dynamics of tasks
have been proposed. In this chapter, we present a method that provides the joint torques
needed to execute a task in a compliant and at the same time accurate manner. The
presented method of compliant movement primitives (CMPs), which consists of the task
kinematical and dynamical trajectories, goes beyond mere reproduction of previously
learned motions. Using statistical generalization, the method allows to generate new,
previously untrained trajectories. Furthermore, the use of transition graphs allows us
to combine parts of previously learned motions and thus generate new ones. In the
chapter, we provide a brief overview of this research topic in the literature, followed by
an in-depth explanation of the compliant movement primitives framework, with details
on both statistical  generalization and transition graphs.  An extensive experimental
evaluation demonstrates the applicability and the usefulness of the approach.

Keywords: compliant movements, adaptive system, learning system, robot control,
learning by demonstration

1. Introduction

The need to operate in unstructured environments, such as human everyday environments and
homes, drives the development of algorithms for fast generation of new trajectories of robots in
compliant behavior mode without sacrificing tracking accuracy. Operating in unstructured
environments  and  with  humans  requires  compliant  robot  behavior  because  of  possible
unplanned contact with objects, and more importantly, with humans themselves. To achieve
such behavior, accurate dynamical models of the robot and the task are needed [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Yet, acquisition of accurate dynamical models of robots and more specifically of robots
performing a task, are difficult to obtain. Therefore, different methods, including biologically
inspired methods, were proposed for robot control [2]. Other approaches have been proposed
for torque learning. For example, Nguyen-Tuong and Peters [3, 4] relied on local Gaussian
process regression (GPR) and used it for on-line dynamic model learning. Their approaches
improve the accuracy of the model while avoiding high feedback gains. On the other hand,
their method requires the availability of a large quantity of data in order to fully learn a
complete dynamic model, and not only task-specific torques. Learning of torques for a specific
task can be utilized using iterative learning control (ILC) [5] as was shown in the paper of
Schwarz and Behnke [6], who used ILC to learn motor and friction models. Similarly, Gautier
et al. [7] proposed an iterative learning identification and control method for dynamic robot
control.

The latest generations of robotic mechanisms, such as the Kuka LWR-4, are equipped with
joint-torque sensors [8], which can be used to measure the torques during the operation. The
possibility of recording joint torques has been exploited in several approaches for learning of
task-specific joint torques. One such method is with the use of compliant movement primitives
(CMPs), first introduced by Petrič et al. [9] and later adopted by [10, 11], which encode both
the kinematic trajectory as well as the corresponding joint torques.

The main topic of this chapter is a review of compliant movement primitives (CMPs), which
are suitable for robots with active torque control. CMPs enable accurate execution while
maintaining a compliant mode of operation, without requiring explicit models of task
dynamics. CMPs draw their inspiration from the human ability to learn arbitrary dynamical
tasks [12]. They can be easily learned from user demonstrations. In this paper, we present the
basics of the CMPs, followed by the means to surpass the limited applicability of pure imitation
through generation of new, previously untrained movements. In order to do so, two mathe-
matical means were exploited: statistical generalization, which allows for variation in task
configuration, and hierarchical database search, which allows combinations of previously
trained tasks.

Both statistical generalization and hierarchical database search have been previously em-
ployed in robotics on a kinematic level. For example, generation of kinematic trajectories with
statistical generalization using locally weighted regression was shown in [13]. The method was
applied to dynamic movement primitives (DMPs) [14], which also constitute the kinematic
part of the CMPs. Similarly, Forte et al. used Gaussian process regression to generalize between
the weights of the DMPs [15]. Other approaches of generalization, not relying on DMPs, are
thoroughly discussed in [16]. Hierarchical database presented in this chapter consist of
transition graphs, that is, motion graphs on each level. It was shown that smooth transitions
between movements can be found if they are organized in motion graphs [17]. While Koval et
al. [18] used motion graphs to generate different styles of locomotion, Yamane et al. [19, 20]
combined them with a binary tree database. Similar work on hierarchical databases was also
done by Deniša et al. [11, 21].

Compliant movement primitives are composed of both kinematic and dynamic trajectories.
While the first, kinematic part, is encoded as the aforementioned DMPs, the latter, dynamic
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part, is encoded as a set of radial basis functions. Only the combination of both allows accurate
and compliant execution of trajectories. Similar approaches have recently appeared in the
literature. An approach that utilizes tactile sensors to determine the force of contact with the
environment on the iCub robot, and calculate the joint torques from the measured arm pose
was proposed by Calandra et al. [22]. The authors propose using calculated joint-torques in a
feed-forward manner for the control, just as is the case in CMPs. Similarly, Steinmetz et al. [23]
recorded joint torques along the kinematic trajectory, encoded as a DMP, and used these
torques as a feed-forward signal for the controller to increase the accuracy in the next execution
of the in-contact task.

The need for robot operations in unstructured environments, combined with the complexity
of the acquisition of dynamical models of various tasks, and the occurrence of similar methods
in the literature all point at the applicability of the proposed compliant movement primitives
approach for robots that go beyond the factory floor.

This chapter is structured as follows. We first provide the details the CMPs, explaining both
the kinematic and the dynamic aspects. Generation of new trajectories with statistical gener-
alization and hierarchical database search is explained in Section 3. Experimental evaluation
is given in Section 4, followed by a Discussion and a Conclusion.

2. Compliant movement primitives

Compliant movement primitives CMPs are defined as a combination of Dynamic movement
primitives (DMPs) for encoding kinematic trajectories and corresponding task-specific
dynamics encoded in Torque Primitives (TPs). They are defined as

( ) ( ), ( ), ( ), ( ) ,é ù= ë û&& &d d d ft t t t tth p p p (1)

where ̈  ,   ̇  ,     , are the desired acceleration, velocity, and position encoded in the
DMPs and    are the corresponding task-specific dynamics, that is, joint torques or forces,
encoded in TPs.

The learning of CMPs is done in three different stages. The first stage is learning the kinematic
trajectory for the DMPs. The second stage is learning of corresponding torque or force profiles
for TPs, and the last, third, stage is the execution of CMPs. While the learning of kinematic
trajectories in the form of DMPs is well documented [13–15, 24], the literature for learning TPs
is not as vast [10, 25].

2.1. Control structure

The basic control structure for robot control using CMPs is shown in Figure 1. The main
advantage of the proposed control architecture is the model free approach which in the
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execution step enables natural compliant behavior while ensuring sufficient accuracy of the
desired movement. Natural compliance is the compliance of the mechanism itself. Because the
robot is compliant while executing the task, the forces in case of an unforeseen collision are
small. Thus, the robot can perform tasks in unstructured environment and safely interact with
humans.

Figure 1. Block diagram of the multi-layered and multi-stage control system. The colored lines (green, orange, and
blue) are only active when a chosen state is active (see text for detailed description).

Figure 1 shows the structure of the proposed multi-step control algorithm. The colors indicate
which block is active in each step: green—learning of the DMPs, orange—learning of the TPs,
and blue—execution of the CMPs. Note that black connections are always active, regardless
of the step.

Assuming the robot consists of rigid bodies, the joint space equations of motion can be written
in a form

( ) ( ) ( ) ( , , )+ + =&& & && & t ,H q q+ C q,q g q q q qò (2)

where ̈, ̇,  are the joint acceleration, velocity, and position, respectively; H(q) is the inertia
matrix,  , ̇  are the Coriolis and centripetal forces,    are the gravity forces, and  ̈, ̇, 
are additional nonlinearities, for example, friction. We denote the full robot dynamic model as𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 ̈, ̇,  . Note that this inverse dynamic model 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 ̈, ̇,   does not include dynamics

of the task.

In general, the common approach for tracking the desired motion is using the impedance
control given with

( ) ( ) ) ,(= - + - + +&& & & &d d robot fu q,q,qτ K q q D q q f τ (3)

where K and D are the diagonal matrices of the desired stiffness and damping respectively [1],
qd is the vector of desired motion encoded in DMPs, and  is the vector of task-specific torques

encoded in TPs. Here, if the values of K are high, the robot is accurately tracking the trajectory
with high error rejection ratio, that is, with stiff behavior. Vice versa, if the values of K are low,
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the robot cannot accurately track the desired trajectory unless additional task-specific torques are provided.

In the following, we explain the three steps of the CMPs learning approach: (1) learning of
DMPs, (2) learning of TPs, C) execution of CMPs with accurate trajectory tracking and
compliant behavior.

2.2. Learning of DMPs

The aim of the first step was to learn the task-specific trajectories of motion, encoded in DMPs.
There are several possibilities on how to gain and encoded the motion in DMPs for both
periodic and point-to-point motions [13–14, 24]. A short recap fallows on how to encode
motions based on human demonstrations for point-to-point DMPs. The equations below are
valid for one DOF and can be used in parallel for multiple DOFs. A DMPs is defined as a
nonlinear system of differential equations

( )( ) ( ) ,= - - +& z zvz g y z f sa b (4)

.=&vy z (5)

Here, the linear part ensures that y converges to the desired goal configuration once f(s)
becomes zero. f(s) is a nonlinear part that defines the shape of the movement. It is given by

( ) 1
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=

S
=

S

d

d

L
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w s
f s

s
y

y
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Here, the Gaussian basis functions    are defined as

( ) ( )( )2 ,= - -b b bs exp d s cy (7)

where cb are centers and db are widths of the Gaussians. Since f(s) is not directly time dependent,
the phase variable s was introduced as

.= -& svs sa (8)

The phase variable is common across all DMPs and TPs, for example, it is common for all
CMPs. With proper selection of parameters αz, βz, αs and v, the convergence of the system is
guaranteed. For evaluation, the parameters were set empirically to αy = 48, βz = αz/4 and αs = 2.
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To acquire weights wqb that represent the desired motion, the target for learning is derived from
Eqs. (4) and (5). It is given by

( ) ( ) ( )( )2 , 1, , ,= + - - = ¼&& &target xn i z xn i z z xn if v q t q t g q t i Ta a b (9)

where the goal g is defined by the end value of the example trajectory qxn(tT). To calculate
weights wqb, the overdetermined system (Eq. (9)) is solved using regression technic for each
joint. Note that recursive regression [26] is also possible, which is a common choice for online
imitation learning.

2.3. Learning of TPs

Once DMPs are learned, learning of TPs follows. This step is denoted with orange color in the
block scheme given in Figure 1. Here, we give a short recap of the method that exploits stiff
and accurate robot behavior in a supervised environment.

The TPs are given as a combination of Gaussian functions denoted by

1

1

( )  .
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=
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=

S

d

d

L
b tb b
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b b

w s
s

yt
y

(10)

To gain corresponding torques for accurate tracking of the trajectory, the gain K is set to “high.”
Note that this usually implies stiff robot behavior; therefore, the action must be performed
under human supervision. To acquire weights wtb that represent the corresponding torques,
the target for learning is given in a form of

( ) ( ).- = - + -& &TP target d df K q q D q q (11)

where y is the desired motion trajectory encoded in DMPs (Eqs. (4) and (5)). Using the same
approach as in DMPs, the weights wtb from Eq. (10) are calculated using a recursive regression
[26] for each joint. The details on learning TPs are in [10].

2.4. Execution of CMPs

Once both, the DMPs and TPs are learned, the CMPs can be executed using the control law
given by Eq. (3). This step is denoted with blue color in the block scheme given in Figure 1.
Because the task-specific dynamics is provided in a feed-forward manner, the tracking
accuracy remains high even if the feedback gains are much lower that during learning. By
selecting lower feedback gains, it is assumed that the robot behavior is compliant. However,
since feedback gains are low and the robot behavior is complaint, the error rejection ratio is
small, from which follows that the tracking is only accurate as long as the system is not heavily
perturbed.
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Note that the main idea of the CMPs is that the feed-forward part assures the nominal behavior
of the robot for a specific given task even in cases when low feedback gains are used. In this
way, good tracking and compliant behavior are achieved at the same time.

3. Autonomous generation of CMPs

Learning CMPs by human demonstration greatly simplifies execution of tasks in a compliant
manner, as it does not need mathematically defined dynamic models in advance. But doing
this for each variation of a dynamically versatile task is unpractical and time-consuming. In
the following, two example expansions of the initial CMP database are presented to overcome
this issue. While the first subsection tackles the issue of generating completely CMPs using a
search in hierarchical databases with transition graphs, the second delivers the methodology
for using statistical techniques in order to generalize CMPs.

3.1. Hierarchical database search

This section presents combining available trajectories to generate new trajectories with the
corresponding feed-forward torque control signals using hierarchical graph search. Generat-
ing new robot movements through hierarchical graph search as such is not new, see for
example, [20, 21]. To apply the hierarchical graph search on CMPs, the database of CMPs needs
to be divided into two parts: the primary part that includes the kinematic trajectories and the
secondary one that includes the dynamic part of CMPs, that is, corresponding torques. As new
kinematic trajectories are synthesized through hierarchical search in the initial database,
corresponding torques are extracted from the secondary part of the database.

3.1.1. Building the database

The primary part of the database, which stores kinematic part of CMPs, that is, position
trajectories qd, is a binary tree-like structure with transition graphs at each level. As the primary
database is built, the secondary part is added. It encodes the dynamic part of CMPs, that is,
corresponding torques τf. Database construction begins with concatenating initial example
position trajectories into a sample position matrix

[ ]1 2, , , ,F= ¼X x x x (12)

where xi denotes a state vector sampled at a given discrete time interval, and F the total number
of all samples belonging to all example trajectories included in the database. A state vector,
defined as

[ ]1 1 2 2, , , , , , ,= ¼& & &i x x x x xP xPq q q q q qx (13)
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where subscript x denotes examples, and P number of DOF represents positions and velocities
of an example trajectory at a given discrete time interval.

The sample motion matrix, encapsulating all example potion trajectories, represents a root
node of a binary tree. See Figure 2 for a simple representation of the database. A k-means
algorithm, with k = 2, is used to cluster similar state vectors and split the initial root node into
two child nodes. Clustering is then used again on each of the two child nodes, and thus, the
nodes at the next level are gained. This can also be seen in Figure 2 depicting a simple example
of a database. The nodes keep splitting until the criterion, based on the variability of the data
in node, is met. The mean distance dk of a node k, used as a “stop split” criterion, is defined as

( )1 ,
,=S

=
kn

i ki k
k

k

d
d

n
x c

(14)

where nk denotes the number of state vectors clustered in node k. Euclidian distance d(xki,ck) is
calculated between each state vector in the node and the node’s centroid ck, gained by the k-
means algorithm. As this criterion indicates the similarity of the clustered state vectors, the
database does not get unnecessary deep, while the precision of the representation remains
satisfactory. The clustering is continued until all nodes meet the “stop split” criterion. Every
branch is extended as a leaf node until the last layer. In this way, all the state vectors are
represented at all the database levels.

Figure 2. A simple representation of used database. The primary part encoding kinematic trajectories and with transi-
tion graphs is shown on the left. The secondary part which encapsulates corresponding torques and has multiple lay-
ers per level is depicted on the right side.
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Every level of the database includes a transition graph representing all possible transitions
between the nodes (see Figure 2). The graph’s edge weights define the probability of transition
from one node to the other. The transition probability from node k to node l is estimated by

kl
kl

k

mP
n

= (15)

where mkl denotes the number of all state vectors clustered in node k that have a successor in
node l, that is, the number of transitions observed in all trajectories of the original data. As
state vectors are not needed any more, they are omitted, and at each node, a mean of corre-
sponding state vectors  is saved instead. At this point, the time component is also lost, which

is tackled later on in this section.

While the already constructed primary part of database encodes CMP’s kinematic trajectories,
the secondary part will encode the dynamic part. The torques signals are not separately
clustered, but rather associated with corresponding nodes in the primary database. For each
part of the kinematic trajectories, represented in a single node through the mean of state
vectors, a corresponding mean of the torques signal  and its time durations is stored. As the

same kinematic movement can have different dynamic parts, this is done multiple times for
each dynamic task descriptor. See Figure 2 for example representation of the whole database.

3.1.2. Synthesizing new CMPs

A new trajectory is defined by first selecting the desired start and end points on two different
trajectories. A dynamic task descriptor, for example, the desired task time multiplier k, is also
selected. As the level determines, the fidelity of reproduction compared to the original
trajectories, the last level of the hierarchical database is usually selected. A path between the
nodes corresponding to the desired start and end joint position needs to be found. To achieve
that A* search algorithm, it is used on the transition graph at the desired level. As long as the
two trajectories share a similar enough part, the most probable path is found and with it a
sequence of nodes, that is, mean state vectors.

Based on the selected dynamic task descriptor, for example, k, we add the corresponding mean
torques  to the state vectors  of the discovered sequence. We enhance this sequence further

with time durations td corresponding to the added torques. A sequence of positions, torques,
and their time durations is gained. The newly discovered sequence can be written as

( 1)1 2
1 1 2 2( , ,0), , , , , , , ,

2 2
-ì ü+æ ö+ï ïæ ö

í ýç ÷ç ÷
è øï ïè øî þ

K d r drd d
f f r fr

t tt tt t tx x x (16)

where r denotes the number of nodes on the trajectory.
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A trajectory from each discovered sequence is generated by encoding it as a DMP. The DMPs
describing newly synthesized kinematic trajectories and the corresponding torque control
signals (encoded as TPs) can then be used to execute new, not directly shown, movements
while remaining compliant.

3.2. Statistical generalization

Using programming by demonstration approaches to learn CMPs can simplify compliant
execution of dynamically versatile tasks. But executing demonstrations for each possible
variation of the task would be time-consuming and cumbersome. For each new task descriptor,
a new CMP needs to be learned, that is, motion trajectory needs to be learned through human
demonstrations and executed on a robot for torque learning. Even if the deviation happens
just on the torque level, for example, because of different payload, supervised learning of the
torque is needed. Besides using actions graphs to generate new CMPs, as seen in the previous
section, statistical generalization techniques can be employed. For that, a set of learned CMPs
which transition smoothly between each other as a function of task descriptors, that is, query
points, is needed. Using generalization, a task can be executed at an arbitrary query point c
within the learned query space.

For statistical generalization, we use Gaussian process regression (GPR), which can be used to
learn a function

: [ , , , ]a q qF c w g w vt (17)

A CMP, defined by wq, gq, wτ, and v, can be used to execute a task, defined by a query c, in a
compliant manner. By the above definition, F computes appropriate CMP parameters at the
given query c, that is, at a given task variation.

Once the Gaussian process is trained using example training sets of CMPs, new appropriate
CMPs for given queries c can be calculated by simple matrix multiplications, which can easily
be accomplished in real time.

4. Evaluation

To evaluate the CMPs, a robotic arm with a mounted hand was used. The Kuka LWR-IV
anthropomorphic arm was used. It has seven degrees of freedom and, important for the
presented approach, torque sensors at each joint. We omit further details, for example, internal
parameters, of the robotic arm and refer the reader to [8]. In order to grasp objects, a three
fingered BarrettHand BH8-280 was mounted at the end of the robotic arm. Further details on
grasping are omitted, as this is not the focus of the chapter. While the approach based on the
CMPs does not need the dynamical model of the robot, the dynamical model of the Kuka robot
was used in all experiments. Note that the controller for the Kuka robot does not allow to fully
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disengage the dynamical model. However, using the CMPs, any possible model errors are
compensated.

Evaluation of CMPs first focuses on estimating the quality of tracking the desired trajectory
under various stiffness settings by measuring the errors between desired and actual robot
trajectory. Here, the CMP approach was compared to a standard high-gain feedback control
approach. Next the behavior of both systems when colliding with an unforeseen object was
evaluated. The last part is concerned with evaluation of autonomously generated CMPs using
the statistical graph search and evaluation of generalized CMPs.

4.1. Tracking accuracy evaluation

The analysis of tracking was performed on a pick-and-place task. The performance of the
approach based on CMPs was compared with a common feedback approach. The evaluation
setup can be seen in Figure 6, where a snapshot shows an example of pick-and-place move-
ment. The initial movement trajectory for pick and place was demonstrated using kinesthetic
guidance and encoded in DMPs as a part of CMPs. As the DMPs have been studied previously,
we omit their specific evaluation and refer the reader to [13, 14, 24]. The demonstrated
trajectory was then executed several times, using stiff robot control, that is, high feedback gains,
which ensure accurate trajectory tracking. While executing the motion, the corresponding
torques were obtained and encoded as CMPs. For evaluation, the mass of the object that the
robot was holding was changed from 0.5 kg up to 4.5 kg with a step of 1 kg.

The movement was then executed using the complete CMPs, that is, including feed-forward
torques, under different feedback gain settings. For comparison, for each object mass, several
executions were performed by varying feedback gain parameters without using feed-forward
torques, that is, using a common stiffens controller. To identify the tracking accuracy of the
controllers, the maximum tracking error for each task execution was calculated. The maximal
tracking error is defined as

( )max || ( ) ( ) || ,= -m t a de t tp p (18)

Where () is the current robot position on the trajectory, and the () is the desired position

of the trajectory, both in Cartesian space. The task was performed for several different feedback
gains settings going from 50 Nm/rad up to 2000 Nm/rad, selected so that covered a wide
spectrum of compliance exhibited by a Kuka LWR-IV robot.

Results of the evaluation are shown in Figure 3, where we can see the mean and standard
deviation of the em over all feedback gain settings and for each object weights. We can clearly
see here that the tracking accuracy is much larger if only feedback control is used compared
to the novel approach based on CMPs. The plot also shows the point where the tracking error
starts to increase notably, regardless of the approach, which was 50 Nm/rad. Based on this
results, the feedback gains for future evaluation were set to K = 50 Nm/rad.
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Figure 3. Mean and standard deviation of task's maximum error for different the object masses. The CMP indicates the
performance CMPs system, while the noFF indicates the mean and standard deviation for the feedback control without
feed-forward torque signal. The gCMP indicates the performance of the generalized CMPs trajectories.

4.2. Contact evaluation

To evaluate the behavior of CMP-based control approach, while colliding with an unforeseen
object, or an environment, a downward motion was demonstrated first, and then executed to
train the CMP. During learning the movement was executed in a free space, without any
contacts. To evaluate the forces and behavior when robot collides with an unforeseen object or
environment, an object was placed in the path of the robot. The behavior of the robot when
colliding was analyzed for three different cases: impedance control with high gains (K = 2000
Nm/rad), impedance control with low gains (K = 50 Nm/rad), and previously learned CMP
with (K = 50 Nm/rad).

The results of impact are shown in Figure 4, where we can see that in case of high feedback
gains the tracking error remains relatively small thorough the movement. However, in this

Figure 4. Robot colliding with an object while using different stiffness settings and control approaches. The graphs
present collision trajectories and forces under two different stiffness settings (K = 1000 Nm/rad and K = 50 Nm/rad) and
with two different control approaches (noFF and CMP). The top plot shows the actual robot task space position in ver-
tical (z) axis, and the bottom plot shows TCP forces in the vertical (z) axis.
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case, the forces rise significantly when the robot is in the contact with the environment. Vice
versa, if the robot is compliant, that is, if the feedback gains are low, the forces are small, but
the tracking accuracy is poor. Finally, CMPs combine both positive aspects: good tracking
accuracy before contact and low interaction forces once the contact is established.

4.3. Hierarchical graph evaluation

Hierarchical graph approach was also evaluated using a Kuka LWR-IV robot arm. The
demonstrator taught the robot several reaching movements while kinesthetically guiding the
arm. Two examples of the learned movements that intersect each were shown. DMPs were
used to encode all kinematic trajectories. They were used in the second step to obtain corre-
sponding torque control signals, as described previously. Each movement was executed three
times with different task time multipliers κ = {1,2,3}. The learned movement trajectories qd and
the corresponding torque control signals τf were used to execute the learned reaching CMP
using a low-gain feedback controller.

As described in Section 3.1, the database was built using learned CMPs and used to find new
reaching movements. A* search algorithm found new sequences of nodes, as the demonstrated
trajectories had parts that were sufficiently similar. Each new sequence started in the first node
of one of the demonstrated trajectories and ended in the final node of one of the others. Each
new sequence of mean position was then enhanced with mean torques and corresponding time
duration three times, once per task time multiplier. Using DMPs, a complete representation of
new reaching movement’s trajectories was synthesized. A close-up of transitions of two
example demonstrated and newly synthesized movements is shown in Figure 5. Smooth and
continuous transitions can be observed. In order to evaluate transitions of corresponding
torque signals, tracking error was observed during executions of example demonstrated CMPs
and newly generated CMPs. No significant rise in errors could be observed.

Figure 5. Smooth and continuous transition can be observed in a close-up of two example demonstrated and newly
synthesized movements. Original demonstrated movements are denoted by red color, while newly synthesized are
marked with a dashed blue line.

4.4. Statistical generalization evaluation

Evaluation of statistical generalization can be done by comparing generalized CMPs to learned
non-generalized CMPs. The selected task was a pick-and place task. Evaluation setup can be
seen in Figure 6. A trajectory (), which successfully moves a hand weight from the initial
position to the final position, was demonstrated by kinesthetic guidance. It was then executed
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five times using a standard high-gain controller which ensures high tracking accuracy. Mass
of the object was changed each time. In this way, five different CMPs were learned, each having
the same kinematic component and a different dynamic one. This set was used with statistical
generalization techniques in order to generalize them over a one dimensional query, that is, a
varying object mass. Generalized CMPs could compliantly move an object with arbitrary mass
within the training space. New, generalized, CMPs were executed for nine different queries,
covering demonstrated weights as well as points in between. Tracking errors were recorded
for each execution. Each new generalized CMP was executed at eight different stiffness
settings. Tracking errors were recorded for each execution. By comparing the maximum
tracking errors of generalized CMPs to maximum tracking errors gained by executing learned
CMPs, a slight but not statistically significant, increase in tracking error was observed. The
errors prevailed at lower stiffness settings as the system is more susceptible to inaccuracies in
generalized torque signals.

Figure 6. Experimental set-up for statistical generalization evaluation. The robot executed a pick-and-place task. Each
execution the object weight was varied.

5. Discussion

In order to be efficient, robots need to autonomously react to the changes of the external
conditions, such as changes in the environment or in the task. Relying on pure reproduction
of learned motion will not provide the robots sufficient possibilities to reach to different
situations, as learning to cover for all situations is simply impossible—the number of possi-
bilities is far too great.

In this aspect, both presented methods of autonomous CMP generation, either through a
hierarchical database search or through statistical generalization, expand the realm of learned
motions to new, previously unexplored solutions. While the first method combines parts of
demonstrated trajectories, the second one generates completely new trajectories within the
database of learned motions. These new trajectories resemble the previously learned ones, that
is, they have similar properties. The challenge of generating completely new motions using
CMPs remains an open issue. While explorative methods, such as reinforcement learning
methods, could be used to learn completely new motions with respect to a given reward, such
methods are also known for requiring a large number of iterations. These might make practical
use less convenient.
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As an alternative to CMPs, dynamical models could be used. Here, it is important to note that
CMPs model the complete task, for example, the task of interaction with a deformable object.
Obtaining a dynamical model of a robot might be feasible, specifically for an expert, but
obtaining a dynamical model for numerous tasks, such as the aforementioned task of interac-
tion with a deformable object, might be extremely difficult, if not impossible. Thus, CMPs offer
the means to solve this problem, as modeling is not needed, but they tend to solve it for one
task at a time. Again, the presented methods of adapting to the changes of the task allow for
learning of complete families of tasks from a small set of demonstrations.

Obtaining the CMPs is another area which requires further research, as currently these are
obtained in a supervised manner during stiff robot behavior. Thus, the effort for the user still
remains considerable. While we have proposed initial solutions in autonomously obtaining
torque profiles in [25], a general method still remains an open research issue.

In conclusion, we have presented the CMP framework and two methods that expand the realm
of possible application beyond simple imitation. The CMP framework, which bypasses the
need for accurate dynamical modeling, was extensively evaluated and has been shown to offer
a viable opportunity for compliant and at the same time accurate robotic behavior.
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Abstract

This chapter discusses the design and modelling of a spherical flying robot. The main
objective is to control its hovering and omnidirectional mobility by controlling the air
mass differential pressure between two asynchronous coaxial rotors that are aligned
collinearly. The spherical robot design has embedded a gyroscopic mechanism of three
rings that allow the rotors’ under-actuated mobility with 3DOF. The main objective of
this study is to maintain the thrust force with nearly vertical direction. The change in
pressure between rotors allows to vary the rotors’ tilt and pitch. The system uses special
design propellers to improve the laminar air  mass flux.  A nonlinear fitting model
automatically calibrates the rotors’ angular speed as a function of digital values. This
model is the functional form that represents the reference input to control the rotors’
speed, validated by three types controllers:  P,  PI,  and PID. The robot’s thrust and
induced forces and flight mechanics are proposed and analysed. The simulation results
show the feasibility of the approach.

Keywords: flight mechanics, flying control, robot modelling, thrust force, UAV,
under-actuation

1. Introduction

Nowadays, unmanned aerial vehicle (UAV) robots are being deployed at an increased rate
for numerous applications falling into a variety of engineering fields. There exist numer‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



ous kinds of rotary-wing-based robotic technologies in particular with active devices. Robots
with rotating wings are capable to self-control over lift, propulsion, landing, hovering And
take-off tasks [1–4]. Overcoming vertical flight (with minimum energy cost) is fundamen‐
tal  to  accomplish autonomous precise  tasks.  One fundamental  aspect  in  controlling and
designing rotary-wing-based intelligent machines is  to consider under-actuated issues to
reduce the number of actuators. Under-actuated flying robots perform motion tasks more
naturally, taking advantage of the inertial and gravitational forces, consequently, reducing
the use of electrical energy. Biological flying birds are instances of extremely efficient under-
actuated bodies. Therefore, in order to design flying machines with a reduced number of
actuators,  it  is  essential  to  model  and  understand  the  mechanical  nature  of  the  robot
mechanics, the fluids and their physics-based relationship.

The present work has foundations on the prototype of a home-made spherical aerial robot.
Some experiments can be viewed at https://www.youtube.com/watch?v=rrGH1Oh_beM.
Nevertheless, the purpose of this chapter is not on showing and discussing experimental
results, but on mathematically sustaining the hypothesis of the robot’s flight mechanics and
control. Unlike, known spherical design approaches [5–7], rather than deploying aileron-like
propellers, we proposed yaw, pitch and roll changes through under-actuation exerting an
inner gyroscopic mechanism. In the present chapter, the authors are particularly interested in
disclosing the physical model of a dual rotary-wing spherical robot with an under-actuated
gyroscopic mechanism. The model has been divided into four major areas: the robot’s flight
mechanics with direct and inverse solution, the thrusting or induced force model, the rotors
control model and a proportional integral derivative (PID) based control with non-stationary
reference values.

This chapter is organised as follows. In Section 2, the design and mechanical aspects of the
aerial robot are presented. Section 3 presents the kinematic direct and inverse solutions of the
flight mechanics. In Section 4, the acceleration components and forces involved in the robot’s
aerodynamics are discussed. Section 5 presents the robot’s thrusting force model that involves
two collinear induced forces. Section 6 presents the rotors’ actuator speed models that are
proposed from empirical measurements, and subsequently, the analytical solution is obtained.
In Section 7, the actuators’ feedback linear control is described. Finally, in Section 8, conclusions
are drawn.

2. Spherical gyroscopic robot

Unlike other reported approaches [8–13], in this study, the authors have proposed an
omnidirectional spherical design with two rotors vertically collinear (see Figure 1, right, and
Figure 2).
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Figure 1. Left: Aerial robot real prototype. Right: Robot’s main actuated and under-actuated mechanical elements.

Figure 2. Left: Robot’s global and local spherical coordinates. Centre: Robot’s flying space (Eqs. (1)–(3)). Right: recur‐
sive trajectory generation (Texto) and (Texto).

3. Flight mechanics model

Flight mechanics refers to the study of geometry of flight of a heavier-than-air aircraft,
considering aerodynamic aspects. Expressions (1)–(3) model the three-dimension robot’s
Cartesian kinematic components that describe its motion. The components, namely, x, y and
z, are the space positions w.r.t. the location of the robot’s starting flight. The proposed
kinematic model is constrained with initial posture as the inertial frame origin, where d is the
distance between the robot’s instantaneous 3D position and its Cartesian origin. Azimuth angle
ϕ0 is w.r.t. the plane XY, and the elevation angle ϕ1 is w.r.t. the Y-axis:
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( ) ( )1 0cos sinf f=x d (1)

The y component (vertical) is expressed as

( )1sin f=y d (2)

And, the z component is expressed as

( ) ( )1 0cos cosf f=z d (3)

For further purpose, the inverse solution is obtained by an algebraic arrangement of deriva‐
tives. The first-order derivatives of Eqs. (1)–(3) are obtained and shown in Eqs.(4)–(6),

( ) ( ) ( ) ( ) ( ) ( )1 0 1 0 0 1 0 1cos sin cos cos sin sinf f f f f f f f= + -& & &&x d d d (4)

The vertical component is expressed as

( ) ( )1 1 1sin cosf f j= +& &&y d d (5)

And, the z component is expressed as

( ) ( ) ( ) ( )1 0 1 0 0cos cos cos cosf f f f f= + &&& dz d (6)

Figure 2 centre depicts the robot’s flying space, which is spherical with the Cartesian origin at
robot’s starting flying task.

Expressing in the matrix form, the first-order derivative dp/dt w.r.t. time is

1 0 1 0 1 0 0

1 1 1

1 0 1 0 1 0

0
f
f

×
æ ö-æ ö æ ö
ç ÷ç ÷ ç ÷= = ç ÷ç ÷ ç ÷

ç ÷ ç ÷ ç ÷- -è ø è ø è ø

&&
&& &
&&

x dC C dS S C S
p y dC S

z dC C dS C C C d
(7)

By simplifying, the linear equation of direct kinematic is denoted by the Jacobian matrix J and
the first-order vector of independent variables,
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= F& &p J (8)

In order to obtain a recursive functional form equivalent to previous state variables, the
derivatives are expressed in the following manner:

= F
d dp J
dt dt

(9)

Time differentials are eliminated, and the integration operators complete the remaining
differentials dp and dϕ:

2 2

1 1

f

f

= Fò ò
&&

&&

p

p

dp J d (10)

Thus, to solve for the robot’s Cartesian position a recursive form is obtained by algebraically
reordering. Next, robot’s position pt+1 is obtained by successive approximations of ϕt until ϕf:

( )1 f f+ = + -t t f tp p J (11)

In addition, the kinematic inverse solution requires the inverse-squared Jacobian matrix,
assuming that it is an invertible and non-singular matrix, with non-zero determinant:

[ ] [ ]( ) ( ) ( )

0 0
1 2

1 0 1 1 1 0 122
2 21 1 0 0 1

1 0 1 0 1 1 0

0
1-

æ ö-ç ÷
= -ç ÷

ç ÷+ ç ÷-è ø

dC dS
J dC S S dC dC C S

d C C C S S
dC S dC C S dC C

(12)

Therefore, the first-order inverse kinematic is obtained by an algebraic approach:

1-F =& &J p (13)

As described earlier, we complete the differentials dp and dϕ:

2 2

1 1

1-

F

F
F = òò

&

& &

& p

p
d J dp (14)

By integrating both sides of the equality, respectively, a recursive inverse solution in terms of
the rotor’s angular speed is obtained,
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( )1
1

-
+ = F + -F && & &t t f tJ p p (15)

where pt is the actual robot 3D position and pf represents the final desired position in space.
To achieve such location, the robot recursively approximates the next desired rotor’s controlled
velocity. The next figure depicts a simulation result where the aerial robot successively
approached the final desired position, staring from the Cartesian origin.

4. Aerodynamic robot’s model

The aerodynamic robot’s model refers to the application of the Newton’s second law of motion
in three dimensions to infer the thrusting force T and other involved forces that produce the
Cartesian accelerations:

2
1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 1 0 0

¨
2

0 11 0 1 0 1 1 0 1 1 0 1 0 1 0

x dc s ds s dc c dc c ds c dc c

dc c ds s dc s ds c ds s

f f f f f f

f f f ff f

= - + + - -

- - - - -

& & && & & & &

& & & & &

&&&&

&& &&
(16)

2
1 1 1 1 1 1 1 1 1f ff f= + + - +&& && && &&&y d s dc d c ds dc (17)

2
1 0 1 0 1 1 0 0 1 0 1 1 0 1 1 0 0 1

2
1 01 0 1 0 0 1 0 0 1 1 0 0 1 0

z dc c ds c dc s ds c dc c ds s

ds c dc s ds s dc c dc s

f f f f f f

f f f f f f

= - - - - +

- - + - -

&&& & &&&

&&

& & & &

& & & & &&& &
(18)

In the matrix form, the following equation represents the direct kinematic solution for the
Cartesian accelerations:

1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0

1 1 1 1 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

2 2 2
0 0 0 0 2

2 2 2

dc c ds s c s dc c dc c dc c dc c ds s
dc s ds c

dc c ds c c s d dc c dc c ds s dc s c
p

ds

f
f
æ ö- - - - -æ ö æ ö
ç ÷ç ÷ ç ÷= + -ç ÷ç ÷ ç ÷

ç ÷ ç ÷ç ÷- - - - - -è ø è øè ø

&
&&
&

& (19)

or

1 2p J JF F= × + ×& &&&

From the previous expression, the vector acceleration is substituted into the Newton’s second
law of motion,

= × &&f m p (20)
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where the Cartesian force components defined in robot’s local inertial frame are expressed as
follows:

( ) ( )1 0cos sinq q=xf T (21)

The force component along the robot’s local y component is expressed as

( )1sin q=yf T (22)

And, the force component along the robot’s local Z component is expressed as

( ) ( )1 0cos cosq q=zf T (23)

By simplifying the Cartesian force components in the matrix form

1 0

1

1 0

æ ö
ç ÷= ç ÷
ç ÷
è ø

c s
f T s

c c
(24)

And, by substituting the functional form of the vector force f into the Newton’s second law,

1 0

1

1 0

æ ö
ç ÷× = ç ÷
ç ÷
è ø

&&
c s

m p T s
c c

(25)

Thus, by reordering the previous equation, we substitute the vector constraints wT =(C1S0, S1,
C1C0). The acceleration vector d2p/dt2 is a function of the next position pt+1 and the rotors
variables:

( )1, ,+= F F&& &
t f tTw m p p (26)

By dropping off the induced robot’s force T,

( )1
1, ,-

+= FF&& &
t f tT w m p p (27)

So far, in this expression, the total thrusting induced force T represents the robot’s global flying
force. Thus, T is an arithmetic result produced by the sum of the top rotor’s induced force T1

and the below rotor’s induced force T2 according to the following governing constraints:

(a) For T1 = T2, the inflow air mass is same throughout both rotors, hence T = T1 + T2.

(b) For T1 > T2, speed and air mass below rotor 1 are greater than rotor 2 inflow, T = T1 + α2 T2.

Induced Force Hovering of Spherical Robot by Under-Actuated Control of Dual Rotor
http://dx.doi.org/10.5772/63548

25



(c) For T1<T2, opposed to constraint (b), then T2 = α2T1 and T = T1(1+α2).

Here, the numerical factors α1,2 are gains denoting rotors’ speed-rate differences. For either
constraint (b) or (c), the gyroscopic mechanism angles’ tilt and pitch are affected, consequently
changing the robot’s azimuth and elevation angles.

5. Induced force model

According to the depictions of Figure 3, the rotors are continuously pushing the air down. As
per Newton’s third law, an equal and opposite reaction force, denoted as rotor thrust, is acting
on the rotor due to air. The induced force model refers to the thrusting force exerted to
accelerate the robot. And at a constant velocity the quasi-static hovering is achieved [1–4].

Figure 3. Rotors’ flow conditions in the slip streams.

The momentum conservation is obtained by relating the induced force T2 to the rate of
momentum change. It is the mass rate and the far-field wake-induced velocity vw below rotor
2, where dm/dt=ρAv2 and the rotor disk area A = πR2. Thus, the moment conservation

= & wT mv (28)

The energy conservation per unit time

21
2 wTv mv= & (29)

To obtain a relationship between v and vw, let us substitute T and dm/dt,

(30)
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Algebraically simplifying,

1 ; 2
2 w wv v v v= = (31)

Hence, substituting vw into T,

(32)

Then,

22T Avr= (33)

Dropping off v, the following expression is obtained;

2
Tv

Ar
= (34)

The propulsive power Pw is the thrusting force T capable to move the robot at a given velocity
(distance over time):

2w
TP Tv T

Ar
= = (35)

The induced power per unit thrust for a hovering rotor can be written as

2
wP Tv

T Ar
= = (36)

The above expression indicates that, for a low inflow velocity, the efficiency is higher. This is
possible if the rotor has a low disk loading (T/A). Note that the parameter determining the
induced power is essentially T/(A). Therefore, the effective disk loading increases with an
increase in altitude and temperature.

From previous analysis, let us now precisely define the thrusting force for rotors 1 and 2,
according to Figure 3 (left side). For rotor 1, the air mass flow is

(37)

Hence, considering only rotor 1, the induced force is

(38)
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The energy conservation principle for rotor 1 is expressed as

(39)

And finding a relationship between v1 and v2 in accordance with Figure 3 (left side),

2 12v v= (40)

Thus,

2
1 1 1 12T Avr= (41)

The induced air velocity induced by rotor 1 is modelled by

1
1

1 12
Tv

Ar
= (42)

Similarly, modelling both the induced force T2 and velocity v2 for rotor 2, the following analysis
is developed. The airflow rate,

(43)

And the induced force T2 considers the inflow air mass and the far-field wake-induced velocity
vw,

(44)

The energy conservation for the second rotor is expressed as

(45)

The relationship between far-field wake-induced air velocity vw and v3 is given by vw=2v3, and

2
2 2 2 32T A vr= (46)

Therefore, the second rotor’s air induced velocity is

2
3

2 22
Tv

Ar
= (47)

Robot Control28



The energy conservation principle for rotor 1 is expressed as

(39)

And finding a relationship between v1 and v2 in accordance with Figure 3 (left side),

2 12v v= (40)

Thus,

2
1 1 1 12T A vr= (41)

The induced air velocity induced by rotor 1 is modelled by

1
1

1 12
Tv

Ar
= (42)

Similarly, modelling both the induced force T2 and velocity v2 for rotor 2, the following analysis
is developed. The airflow rate,

(43)

And the induced force T2 considers the inflow air mass and the far-field wake-induced velocity
vw,

(44)

The energy conservation for the second rotor is expressed as

(45)

The relationship between far-field wake-induced air velocity vw and v3 is given by vw=2v3, and

2
2 2 2 32T A vr= (46)

Therefore, the second rotor’s air induced velocity is

2
3

2 22
Tv

Ar
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From the three previous postulates of Figure 3, let us deduce the conditions when both rotors,
although asynchronous, simultaneously induce the airflow equally, when v1=v3 (Figure 3a).
For this case, the total robot’s thrusting force T=T1+T2,

2 2
1 1 1 2 2 32 2T Av A vr r= + (48)

For case 1, let us assume A1=A2 and v2=v3 through the second rotor’s disc area. And,

(49)

Rewriting total T as a function of v1, thus we have

2
c

c

m
v

r = (50)

The air mass variation is denoted as the mass derivative w.r.t. time,

(51)

Now, for the case v1>v3,

1 2 2T T Ta= + (52)

Let us substitute our T1 and T2 models previously analysed,

2 2
1 1 1 2 2 32 2T Av A vr r= + (53)

In addition, A1=A2, v2=2v1 and vw=2v3, but v2>v3 hence v3=α2v2. Thus, vw=2(α2 2(2v1)), and we
obtain the relationship between the far-field wake-induced velocity and v1:

2 16wv va= (54)

By substituting v1 into expression T, developing and factorising algebraically,

( )2
1 1 2 22 4T Av r a r= + (55)

Similarly, for the case when v1<v3, T=T1(1+α2),
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2 2
1 1 1 2 2 32 2T Av A vr r= + (56)

for this case, A1=A2, v2=2v1 and vw=2v3. However, just above and below rotor 2, v2<v3, and
therefore v2=α2v3, then v3=2v2/α2.

2
2 1

1 1 2
2

2 2 2 vT Av Ar r
a

æ ö
= + ç ÷

è ø
(57)

Factorizing and algebraically arranging,

2 2
1 1 2

2

82T Av rr
a

æ ö
= +ç ÷

è ø
(58)

Solving the parameter α2 for each of the three cases,

(59)

Therefore, we synthesise the total thrusting force T for all cases by

( )2 2
1 1 2 22T Av r a r= + (60)

Therefore, from Eq. (60), now we have a functional form for the thrusting force T. Thus, to
reach a controlled rotors’ velocity, we must establish a relationship between the induced ve‐
locity v1 and the rotor angular velocity dϕ/dt using the tip speed of the rotor blade as refer‐
ence. The rotor inflow is represented in non-dimensional form as

(61)

where CT is the thrust coefficient modelled by

(62)
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Therefore, the following equality allow us to deduce CT with more

(63)

Thus, substituting (Texto) into v1,

(64)

And subsequently, v1
2 is substituted into T,

(65)

Therefore, the induced force T arising from the fluid mechanics equation (65) is equated
with the induced force of the flight mechanics equation (27), the following expression is ob‐
tained:

(66)

Our objective is to find an analytical solution for the rotor speed required to reach the in‐
duced velocity v1 and the induced force T, which is governed by the flight mechanics law.
The induced air mass velocity v1 can be expressed in terms of the rotor speed that is control‐
led to obtain the desired angular velocity,

(67)

This model represents the independent variable to control the motors’ Speed of Eq. (73) or
Eq. (74):

Thus, it follows a set of empirical temperature measurements where some experimental
hovering experiments were carried out. The plots in Figure 4 depict how the air pressure is
affected as the temperature varies over time.
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Figure 4. Left: Thrusting force w.r.t. induced velocity. Right: Air mass density as temperature varies.

6. Actuators’ speed model

The actuators’ self-calibration speed model is discussed in this section. The real rotary velocity
in a range from minimal to maximal values approached a logarithmic model. It considered the
empirical set of angular speed measurements w.r.t. digital controls. The inherent physical
variations, such as temperature, air pressure, density and air dust particles, affected the
actuators’ performance. Since the angular speed value capable to hover the spherical robot’s
body is disturbed, a self-calibration is required to maintain position control as accurate as
possible. From experiments, the empirical models that obtained (Figure 5) φ vs. d are fitted
according to the next model. The parameters A and β are unknown and must fit the speed
measurements φ, w.r.t to digital word d,

(68)

We temporally substitute d’=ln(d), and thus the rotary speed

(69)

To estimate the unknown parameter β, a linear mean-squared method is applied,

(70)

Subsequently, the previous parameter solution is used in the next expression A,
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(71)

By substituting the parameters numerical values, the rotary speed model is obtained as follows:

(72)

In addition, in order to obtain the inverse solution, we algebraically drop off the variable d
from Eq. (72),

(73)

And numerical parametric values from Eq. (72) are substituted into (73) to obtain

(74)

In order to compare how our theoretical model fits the empirical model, both inverse and direct
operation control modes are depicted in Figure 5.

7. Rotor’s speed control

From the previous section, the actuators’ speed model is now used to formulate a feedback
linear control. Let us assume that a rotor control variable (i.e., angle, velocity and acceleration)
should ideally be equal to the real sensed control variable, as expressed by the next equality
(75). Nevertheless, in a realistic scenario real and ideal control variables are different due to a

Figure 5. Actuator’s raw measurements. Left: Direct solution. Right: Inverse solution.
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number of factors, such as frictions, inertial and gravity forces, motor electromagnetic
performance and so on. Thus, both variables are approached by a multiplicative gain or factor
alpha, which approximates both numerical values according to the relation

(75)

Assuming an arbitrary actual derivative order, the equation is equivalently expressed as

(76)

The time differentials are eliminated and the remaining differentials are obtained by solving
the following definite integrals,

(77)

By solving the definite integrals,

(78)

In this case, φ̂2 is the expected or the reference value to be reached ideally, φ̂2 =φ ref. Thus, by
adjusting the times sub-interval labels, and algebraically reordering, the next recursive
numerical successive approximation equation is expressed as follows:

(79)

From the previous expression, the error ket is spanned into the past (angular displacement),
the actual (rotary speed) and the future (angular accelerations) errors in order to cover the
whole error history. And the general constant gain k is proportional to kp, kI and kd. Thus,

( )1t t p p I I d dk e k e k ej j+ = + + + (80)

Therefore, the next feedback proportional error ep (rad/s) with proportional gain kp (dimen‐
sionless) is obtained with the observation ϕt measured online. And the reference model (Texto)
is established in terms of the instantaneous control word δt:

(81)
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Figure 6. Left: Measurement and reference proportional models. Right: Proportional error.

For illustrative purpose, an accelerative rotor’s task to exert robot’s propulsion was performed.
Figure 6 (left) depicts both the reference model ϕref and the observation ϕ(t).

In addition, Figure 6 (right) shows the proportional error behaviour ϕref-ϕ(t) without kp.
Furthermore, the feedback integral error eI (rad/s) with integral gain kI (dimensionless) is
expressed by the time integration of the difference of (d2ϕ/dt2 – d2ϕ(t)/dt2).

(82)

The observation model d2ϕ/dt2 was obtained online by the numerical derivatives of the optical
encoder according to the following relationship:

(83)

In addition, since the observation model inherently poses perturbations, an analytical reference
model d2ϕref/dt2 was obtained using a nonlinear regressive fitting process for parameters
identification,

(84)

where the previous expression is similarly expressed as

(85)

And by solving vector x,
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(86)

Hence, the reference model is a theoretical nonlinear function of time,

(87)

Therefore, for the sake of the integral control uI (rad/s), the angular acceleration reference
model (Texto) is substituted next in its general form:

(88)

Finally, in order to keep data homogeneity (numerical data subtraction), time integration is
obtained by the trapezoid rule for numerical integration,

(89)

Figure 7. Left: Measurement and reference integral models. Right: Integral error.

Figure 7 (left) depicts both reference and empirical models integrated with time. Figure 7
(right) shows the integral error behaviour.

In addition, the derivative control ud=kded (rad/s) with feedback derivative error ed, and with
derivative gain kd (dimensionless), improves the closed-loop stability as follows:

ref
d d d t

d dk e k
dt dt
f fæ ö= -ç ÷

è ø
(90)
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In order to obtain the time derivative observation model, the rotor’s angle evolution ϕ(t) (rad)
is observed online using an optical encoder during the time slot where velocity and acceleration
are also measured. As the measurements are read with noise, the analytical reference model
is fitted as a nonlinear polynomial of the following form:

( )ref 23709.6273 2116.9484 27.9289t t tf = - + + (91)

where the derivative error general form is expressed as

( )( )2
0 1 2d d d t

dk e k b b b t t
dt

f= - + + - (92)

Figure 8 (left) depicts both reference ϕref(t) and observation ϕ(t) models together. Although
both curves are apparently fitted, the vertical scale is provided in thousands of radians.
Figure 8 (right) shows the derivative error scale.

Figure 8. Left: Measurement and reference derivative models. Right: Derivative error.

Generally, the PID controller is expressed by the next expression

(93)

Therefore, the controlled rotor’s velocity that is recursively calculated by dφt+1/dt= dφt/dt + ut

is applied, and we established the following controller choices: proportional (P), proportional
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integral (PI) and proportional-integral-derivative. Figure 9 (left) depicts the rotors’ angular
speed without control and with three types of controllers. The constant parameters were
adjusted accordingly to obtain such results. We can see that after 25 s the responses P and PI
gradually converge w.r.t. the raw rotor’s speed (Figure 9, left).

Figure 9. Controllers P, PI and PID. Left: Rotor’s angular speed. Right: Induced Cartesian forces.

In addition, with the controlled rotor’s speed output, the induced force is iteratively calculated
by

(94)

Thus, Figure 9 (right) depicts the induced component forces that are produced using three
types of controllers.

8. Conclusions

This work briefly introduced the design of an aerial spherical robot with under-actuated
gyroscopic mechanism. Although the purpose of this study was not to describe the robot flying
and physical capabilities, the main objective was to demonstrate the induced force model
deploying dual collinear rotary wings with no steering actuators. This study describes the
following four major areas: the robot flight mechanics, the model of the induced thrusting
forces, the self-calibration actuators’ Speed model validated with three types of controllers (P,
PI, PID) to drive the rotors’ motor speed. The proposed aerodynamic mechanism poses neither
ailerons nor propellers for steering control. Although the platform is a home-made laboratory
prototype with special arrangements, the main focus of this chapter is to model the hypothesis
of controlling the robot’s directions by varying rotors’ asynchronous speed. To achieve this,
the under-actuated gyroscopic mechanism provides the ability to control its inner yaw, pitch
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and roll angles. Until this stage, the robot development is under an early control capability.
However, this study presents mathematical solutions and simulation results to demonstrate
the proposed aerodynamic hypothesis.
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Abstract

This chapter presents a new reactive navigation algorithm for a wheeled mobile robot
(WMR) with a differential drive mechanism moving in unknown environments [1]. The
mobile robot is controlled to travel to a predefined goal position safely and efficiently
without any prior map of the environment. The navigation is achieved by modulating
the steering angle and turning radius. To avoid obstacles while seeking the goal position,
the dimensions and shape of the robot are incorporated to determine the set of all
possible collision-free steering angles. The algorithm then selects the optimum steering
angle candidate to contour the obstacle. Simulation and experimental results on a WMR
prototype are used to validate the proposed algorithms.

Keywords: recurrent neural networks, obstacle avoidance, robots

1. Introduction

Over  the  years,  mobile  robots  have  evolved  rapidly  incorporating  a  wide  spectrum  of
applications. They aid within the field of medical technologies, assist in vehicle driving, and
can be occupied for use within hazardous rescue missions. Mobile robots helped monitor the
spread of oil during the catastrophic spill on the Gulf of Mexico [2]. Additionally, robots were
of great aid during the Japanese Fukushima nuclear crisis in monitoring the radiation levels
and cleaning up leftover debris [3].

In performing all previous tasks, mobile robots must be equipped with autonomous naviga-
tion. This is described as the arrival at of the robot at a target location without any assistance,
and whilst avoiding obstacles present around. Perception, path planning, localization, and
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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motion control are the key elements that build toward autonomous navigation. With percep-
tion, sensors pick up information regarding the robots immediate environment that are then
perceived and translated within the robot. The next step is path planning, which is the robot’s
ability to come to a consensus regarding the required action as a result of its expected goal.
The final step occurs with motion control through which the robot executes the required action
through its actuators [4].

In this chapter, we focus on path planning in unknown environments [5]. Path planning
represents a key feature of autonomous navigation. The problem of path planning is usually
classified in three categories according to the given environment and constraints:

• Global Path Planning—This framework requires full knowledge of the robot workspace; a
global map is supplied as given input.

• Local Path Planning (Sensor-Based Path Planning)—This framework requires partial
knowledge of the workspace. Therefore, only an incomplete map is supplied.

• Reactive Navigation (Obstacle Avoidance)—In this framework, no a priori information is
required about the workspace. Instead, obstacles are discovered in real time while the robot
is executing its motion.

Due to the inherent nature of the obstacle avoidance problem, navigation algorithms do not
produce efficient paths and do not guarantee global convergence as would global path
planning algorithms. This would result the robot in producing inefficient paths or failing to
reach the goal position (trap position).

The implementation of path planning and obstacle avoidance techniques on a real mobile robot
imposes different types of constraints including kinematic, dynamic, and time constraints. The
differential drive robot must follow a curve path due to the kinematic constraint as it is unable
to reach the desired point place instantly and in a short period of time. Disregarding this
limitation, when dealing with path planning and obstacle avoidance techniques, would lead
to an unsafe design as the transitional curve may potentially intersect with obstacles and,
therefore, result in a collision.

2. Autonomous navigation concepts

2.1. The configuration space

For a two-dimensional robot, the robot configuration can be fully described by rigidly attaching
a frame to the robot and then specifying the position and orientation of this frame in the global
frame. The complete specification of the location of every point on the robot is called a
configuration, q. The set of all possible configurations is called a configuration space or C-
space (𑨈𑨈 𑨈𑨈 𑨈𑨈). A rigid object moving in a plane is, therefore, specified by the triple configuration,

q = (x, y, θ), and the configuration space can be represented by 𑨈𑨈 = ℝ2 × 𝑆𝑆𝑆𝑆 2 , where SO(2) is
the special orthogonal group of 2-D rotations [6].
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space (𑨈𑨈 𑨈𑨈 𑨈𑨈). A rigid object moving in a plane is, therefore, specified by the triple configuration,

q = (x, y, θ), and the configuration space can be represented by 𑨈𑨈 = ℝ2 × 𝑆𝑆𝑆𝑆 2 , where SO(2) is
the special orthogonal group of 2-D rotations [6].

Robot Control42

The introduction of new notation is important for the description of collisions. The workspace
in which the robot moves will be denoted as . When the robot moves in a plane, the work-
space is now denoted as W = ℝ2. The subset of this workspace occupied by obstacles is then
denoted as 𑪂𑪂 𑪂𑪂 , and the subset occupied by the robot at configuration is denoted as  𑪂𑪂 . The robot must avoid a configuration causing it to come into physical contact with
any obstacle, as this would cause a collision otherwise. The set of configurations in which the
robot would come into a collision with an obstacle is defined as the obstacle configuration
space,

= { | ( ) = 0}.obst q qÎ /IC C A O (1)

On the other hand, the set of all collision-free configurations is defined as the free configuration
space. It is defined as the set difference

= \free obstC C C (2)

The configuration space of a rigid robot translating in the plane  = ℝ2 is two-dimensional,
easily visualized in Figure 1. The circular-shape robot is presented with an obstacle in the
workspace. When sliding the robot around the obstacle, the boundary configuration can be
determined. As a result, motion planning for the robot in the workspace is converted to motion
planning for a point robot in the configuration space [7].

Figure 1. Construction of the configuration space.

2.2. Definition of obstacle avoidance

Let qtarget be a target configuration. At time ti the robot is in configuration q(ti). The robot senses
a portion of the environment using its onboard sensors. Let the set of workspace obstacles seen
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at configuration q(ti) be    ⊂ . The objective is to compute a motion control vector ui
such that

• The robot progresses to the target location F(q(ti), qtarget) < F(q(ti + T), qtarget), where: ×  ℝ+ is a function that evaluates the progress of one configuration to another [8].

• The trajectory does not collide with the obstacles ,where ,  is the set

of configurations of the trajectory followed from q(ti) to q(ti + T). T > 0 is the sampling period.

The solution of the problem is a sequence of control vectors {u1, …, un} computed in real time
that guide the robot eventually to the target configuration while avoiding the sensed obstacles
in the environment as shown in Figure 2.

Figure 2. Obstacle avoidance problem [8].

2.3. Kinematics of a two-wheel differential drive robot

A differential drive robot is composed of one passive wheel and two coaxial wheels. The
passive wheel provides stability, while the coaxial pair steer the robot through carefully
modulating their velocities. A straight line motion is achieved through equal velocities in both
wheels, while left and right motion occurs if the right wheel is faster than the left and the left
wheel is faster than the right, respectively. Pivoting is noticed when both wheels steer equally
as fast, but in opposite directions. A zero turning radius is a major advantage with this motion
configuration. An initial rotation can trigger motion in any direction. Further advantages to
this robot configuration include the simple mechanical structure and kinematic model and the
low fabrication cost. However, this robot configuration has also a few drawbacks: the wheels
must be driven with exactly the same velocity profile, which can be challenging considering
the actual variations between wheels, motors, and environmental differences. It is also difficult
for the robot to move on irregular surfaces. Moreover, the orientation of the robot may change
abruptly if one active wheel loses contact with the ground [9].
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There are two types of nonholonomic constraints governing the motion of the robot platform:
Pure rolling constraint and no lateral slip constraint [10]. The pure rolling constraint implies
that the robot wheels have a pure rolling motion without any slipping. This constraint is
described by the following equations

cos sin = ,r wx y L Rq q q w+ + && & (3)

cos = .l wx y sin L Rq q q w+ - && & (4)

The no lateral slip constraint implies that the robot’s center point velocity is only in the direction
of the axis of symmetry and its lateral component is zero. It is given by

cos sin = 0.y xq q-& & (5)

Without reference to forces and masses, robot kinematics implies a relationship between the
position of the robot and its wheels, velocities, and the equations of motion. This section
analyzes the mathematical kinematic relationship related to a differentially driven vehicle. The
robot configuration is illustrated in Figure 3.

Figure 3. Kinematics of a two-wheel robot.

Let the rotational velocities of the left and right wheel be ωL and ωR, respectively, and Rw be the
wheel radius then. Then, assuming no wheel slippage, the translational velocities of the wheels
are given by

= ,l l wv Rw (6)
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= .r r wv Rw (7)

Let the robot forward velocity in the local frame be v, the angular velocity about its Instanta-
neous Center of Rotation (ICR) axis be ω, and let L be half the distance between the wheels, as
shown in Figure 4. Then the forward and angular velocities of the robot can be derived from
the wheels velocities as follows:

1 1
2 2
1 1

2 2

.l

rL L

vv
vw -

é ù é ùé ù
= ê ú ê úê ú
ê úë û ë ûë û

(8)

Figure 4. Instantaneous turning radius.

Let θ be the robot orientation with respect to the global x-axis, then the robot velocity vector
in the global frame is given by

cos 0
sin 0 .
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q
q
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(9)

Figure 4 shows the instantaneous turning radius rc that can be evaluated by

= .r l
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r l

v v
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v v
æ ö+
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2.4. Odometry

A robot’s global frame position is measured via the dead reckoning method. This method
integrates incremental movements measured through wheel encoders and a compass to
estimate position, given a known initial start location. The compass delivers the robot’s
orientation, θ. The incremental movements are measured through wheel encoders and a
compass. The robot orientation is θ, while the angular velocities of the left and right wheels ωl
and ωr, respectively, estimate the two-dimensional position (x, y) via encoders. Encoders utilize
encoder pulses to deliver accurate arrival times through the measurement of angular velocities.
For encoder resolution, p, and elapsed time, Δt, the angular velocities of the wheels is then
defined as

2= .r,l p t
pw
D

(11)

Next, the robot kinematic Eqs (6–9) are used to find the robot velocities  and . Let T denote
a fixed sampling time. Then, the robot position (x, y) in the global frame is found by performing
trapezoidal integration

old old= ( ),
2
Tx x x x+ +& & (12)

old old= ( ).
2
Ty y y y+ +& & (13)

Since the position estimation involves a numerical integration of the measurements, there will
be an error accumulation over time. As a result, a meaningful estimate of the position cannot
be attained with the dead reckoning method.

Systematic and nonsystematic errors are usually encountered with the dead reckoning
method. Systematic errors arise due to the misalignment and the unequal diameter of both
wheels, while nonsystematic errors may occur as a result of wheel slippage incidents or
nonhomogenous environment with uneven floors.

3. Collision avoidance algorithm

In this section, the proposed collision avoidance algorithm is developed using the following
parameters. The configuration q(ti) denotes the position and orientation of the robot in the
global frame, while     represents only the sensed portion of the environment. This
measured portion of the environment is used to construct the robot’s workspace polar map,
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which allows the set of obstacles     to be identified and the configuration space  to be

computed. Next, the operation of the robot is performed in the C-space to simplify the motion
planning and navigation. The motion of the two-dimensional robot in the global frame can be
simplified to that of a one point (robot reference point) in the C-space. The optimum steering
angle γdesired is selected by identifying all the workspace obstacles and classifying the available
gaps that can be accessed by the robot. The nonholonomic constraints are taken into account
by computing the required radius of curvature rc such that ,  which is the set of configura-

tions of the trajectory followed from q(ti) to q(ti + T) does not intersect with any obstacle,

. This is achieved by restricting the radius of curvature to an adaptive
upper bound. Finally, the robot executes the control action ui = (γdesired, rc). The process is
repeated until the robot converges to the target position qtarget. The algorithm is pictorially
illustrated in Figure 5.

Figure 5. Reactive navigation algorithm in action.
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3.1. Identification of reference steering angle

The steering angle with which the robot takes in the absence of obstacles is referred to as the
reference steering angle, γref. It is an intermediate variable that will later help us find the desired
steering angle γdesired, which is derived as follows. Let the robot configuration shown in Figure 6
be:

= ( , , ),r r r rq x y q (14)

Figure 6. The robot’s trajectory to qtarget in the absence of obstacles.

where (xr, yr) is the position of the robot in the x − y plane, and θr ∈ [0, 2π) is the robot’s
orientation with respect to the x-axis.

Let the target configuration be

target target target target= ( , , ).q x y q (15)

Let   be the vector connecting the robot reference point to the target location. The phase angle

of   is given by

target

target

= arctan .r
r

y y
x x

a
-

-
(16)

Orientation error is corrected for by turning the robot in an angle defined as follows:
γref = α − θr , − π ≤ γref ≤ π. The range of γref is chosen in such a way that the smaller turning angle
is selected. The robot can turn clockwise (right) or counter clockwise (left). Figure 6 illustrates
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the trajectory taken by the robot to move to the target configuration. The robot finally achieves
a straight line path once its x-axis is on line with the error vector.

3.2. Model of robot environment

The robot environment is modeled by constructing a polar map of the workspace in the local
robot frame. At a given instant of time, the distances from the robot to all the surrounding
obstacles are measured by a laser range finder and used to build the partial polar map. The
laser range sensor is calibrated to scan the 200° front view of the robot in 20 sectors with a 10°
angular resolution, as illustrated in Figure 7. The measured data is returned as a set of data
points:

1 2 20( ( )) = { , ,..., ,..., }.i jq t p p p pP (17)

A point pj is expressed by a pair (dj, βj) where dj is the distance between the robot and the
obstacle at sector j. βj is the orientation of the jth sector, Sj, with respect to the local x-axis. The
subset of workspace obstacles seen at configuration q(ti) is identified by applying a threshold
on dj,

( ( )) = { ( ( ))| }.i j i j safeq t p q t d RÎ £O P (18)

Figure 7. Polar map of the workspace.
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The choice of the threshold Rsafe plays an important role in the obstacle avoidance algorithm.
If Rsafe is large, then the obstacle avoidance will start too soon which results in a suboptimal
path. Also, by selecting a large Rsafe, the algorithm may fail to detect any gaps in the environ-
ment and, therefore, incorrectly report a trap situation. For example, the robot in Figure 8
successfully detects a gap in the environment with Rsafe1 but fails to do so when using a large
value Rsafe2.

Figure 8. The effect of using a large value for Rsafe.

The detection range threshold Rsafe is allowed to take different values depending on the
situation encountered:

safe

0.1 if robot isclose to targetconfiguration;
=

0.5 otherwise.
m

R
m

ìï
í
ïî

(19)

The robot is considered close to the target configuration if:

2 2
target target( ) ( )r rx x y y e- + - £ (20)

where ε is the target threshold.

3.3. Evaluation of configuration space

The 2D robot with radius R computes the Cobst for a given set of workspace obstacles, . Assume

for a moment that a single obstacle exists,  =  . As illustrated in Figure 9, obst is found

through tracing the robot’s configuration as it slides around pj. Hence, the following relations
can be written for Circle Cj enclosing obst with Radius R and center Ij = (Ij,x, Ij,y):
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2 2 2
obst , ,= { |( ) ( ) },j x j yq x I y I RÎ - + - £C C (21)

, = cos ,j x j jI R d b+ (22)

, = sin , 100 100 .j y j j jI d b b- £ £o o (23)

Figure 9. C-space algorithm.

Next, we find the radial distance Li which is the radial distance between the robot and the
boundary of  at angle βi. The equation of Cj in polar coordinates is

,2 2
, ,

,

= , = 2( ),j y
j j x j y j

j x

I
I I atan

I
r f+ (24)

2 2 22 cos( ) = .i j j i i jL L Rr r b f+ - - (25)

Equation 24 can be solved for Li, giving:

2 2 2
min max= min{ cos( ) ( )}, .sini j i j j i j iL Rr b f r b f a b a- ± - - £ £ (26)

Equation 26 has a real value if αmin and αmax are selected as:

min max= min{ sin }, = max{ sin }j j
j j

R Ra f a f
r r

± ± (27)
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The above analysis is for the case when  contains a single obstacle point. In the common case
where  consists of m obstacle points, Cobst is found by:

1
= .obst j

j m£ £
UC C (28)

The exact robots radius was utilized to enlarge the obstacle points. However, control errors
arise within the algorithm even when using accurate robot dimensions. Therefore, the radius
is modified to Rs = R + dsafe. This serves as a space buffer that adds a safety margin. In our
implementation dsafe is chosen to be 20% of the robot radius.

3.4. Selection of desired steering angle

The sectors in  are classified as free or occupied. The jth sector Sj is occupied if Lj ≤ Rsafe;
otherwise, it is free. Adjacent free sectors are grouped together to form gaps. Let Nfree denote
the number of sectors forming a gap. The gaps are classified as follows:

free

free

free

if > 3,
if = 3,
if < 3.

wide N
gap medium N

narrow N

ì
ï= í
ï
î

(29)

The desired steering angle is set as the angle of the gap edge with minimum cost. To ensure
the selection of the widest possible gap, the search at the beginning is performed over the free
wide gaps. if no solution exists within this category, the algorithm searches for a gap in the
medium category. The algorithm searches within the narrow gaps, only if the latter two
categories did not contain any solution.

1 ref 2Cost( ) = ( ) .j j jc cb g b b- + (30)

The equation is explained as follows: the term c1(γref − βj) refers to the closeness of the goal
location to the desired steering direction. The second term, c2βj, indicates how close the current
robot heading is to the current steering direction. The coefficients are chose to be c1 = 0.3 and
c2 = 0.7, as with this, more weight is given to the steering angles resulting in a smoother
trajectory.

In Figure 10, the oscillatory trajectory of the robot is exemplified. At the initial start time t0, the
robot’s polar map has gaps G1 and G2. At this time, the robots steers toward G2 as it closer to
the qtarget. After an elapsed time T, the robot no longer has G2 within its range as it achieves a
better view, steering the robot toward G1. However, this action brings the robots back to its
initial state at t0 where both gaps are visible. With this repetitive motion, the robot gets trapped
in an infinite loop of repetitive actions. One way to solve this problem is to adjust the steering
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angle adaptively and smooth the trajectory while avoiding the trap situations as described
later in the chapter.

Figure 10. Trajectory oscillation scenario due to a trapped situation.

The algorithm used to select the desired steering angle is summarized as follows:

if ref ∈  then

desired ref=g g

elseif wide ≠  then

wide
desired = arg min ( ).

j
jCost

b
g b

ÎG

else if medium ≠  then

desired
medium

= arg min ( ).j
j

Cost
b

g b
ÎG

else if narrow ≠  then

desired
narrow

= arg min ( ).j
j

Cost
b

g b
ÎG
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else

Turn 180° around.

end if

end if

3.5. Identification of adaptive radius of curvature

The robot follows a circular arc with constant wheel velocities instead of the desired steering
angle due to the nonholonomic kinematic constraint. A collision could take place when going
from the initial to the final path configuration as it may be interested with 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  𝑜𝑜 . An
example of a collision is demonstrated in Figure 11, where the robot had steered with a
relatively large radius.

Figure 11. The robot collides with an obstacle because it uses a large turning radius.

The sector along the local x-axis is labeled as S0 and the sector along the desired steering angle

is labeled as Sdesired. Next, define  as the distance between the robot front reference point and
the obstacle point oj as shown in Figure 12. This distance is evaluated in terms of the variable
Lj as follows:

2 2= ( cos ) ( sin ) ,m
j j j j jL L a Lb b+ + (35)
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Figure 12. Turning radius selection.

where a is the actual distance separating the middle point m of the wheels axis from the robot
front reference point. Lmin is then defined as the minimum distance to the nearest obstacle point
situated between Sdesired and S0. The optimum turning radius rc is selected so that the robot
trajectory goes through (Lmin, γdesired) as shown in Figure 12. The turning radius is derived as
follows. Consider the isosceles triangle where the two equal sides have length rc and the
remaining side has length Lmin. From the law of cosines,

2 2 2
min 1= 2 2 cos .c cL r r a- (36)

α1 can be found as

1 22 = 180,a a+ (37)

2 desired= 90 ,a g- (38)

1 desired= 2 .a gÞ (39)
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Using the double angle formula and equation 32, we can find rc as

min

desired

= .
2sin( )c

L
r

g
(40)

A safety margin is introduced by reducing the turning radius so that the robot passes through
the point (Lmin − dsafe2, γdesired) instead. Also, the turning radius rc is forced to saturate if it is
greater than a threshold value rlarge. In our implementation, dsafe2 is selected to be 1.2R and
rlarge = 0.5m.

4. Experimental results

4.1. Mobile robot platform

A prototype robot platform was designed and built to validate the proposed algorithms. The
platform has a differential drive mechanism and is designed to operate indoors on flat solid
surfaces. Forward, backward, and steered motion is generated by controlling the right and left
wheel velocities based on the differential steering concept. The platform control system
includes a single board computer and a microcontroller, thus providing a dependable and
strong computing environment. The platform comprises also a large range of sensors including
ultrasonic sensors and a laser range sensor for obstacle detection, as well as a compass and
encoders for localization. Figure 13 shows a front view picture of the mobile robot platform.

The obstacle avoidance algorithms described earlier are tested on the mobile robot platform
in different environment settings. The testing is conducted indoors in a lab environment where
the lab furniture is to be avoided. The obstacles are arranged in five different scenarios that
vary in difficulty. For all scenarios, the sample time is T = 1 s, the robot initial configuration is
(0, 0, − 90∘) while the target x–y location is (1.6 m, − 1.5 m). Hence, the initial error in position
is 2.1932 m.

4.2. Environment setting 1

The robot’s initial configuration is connected to the target configuration through a direct
path indicated by a straight line as observed in Figure 14a. The trajectory, of length 2.2711 m,
is depicted in Figure 14b. In Figure 14c, the robot’s velocities are presented and are smooth
in the global frame. Figure 14d exemplifies the control action. An infinite radius of 0.5 is set
for keeping the plot in rage as the robot would steer in an infinite radius when moving in a
straight line.
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Figure 13. Mobile robot platform.

Figure 14. Experimental results. (a) Robot initial position, target position, and the surrounding obstacles; (b) The obsta-
cle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajectory in
blue; (c) The robot velocities; (d) The robot control action.
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Figure 15. Illustration of the trajectory control algorithm at different time intervals. The obstacles surrounding the ro-
bot at a given instant of time are shown as black dots in the Cartesian coordinate frame. A rough estimate of the obsta-
cle contour is defined by the solid yellow line. The classified sectors are shown in the polar histogram. The desired
steering angle is indicated by a dashed green line, while the reference steering angle is indicated by a solid red line.
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Critical time samples with some intermediate values are shown in Figure 15. At a sample of
12 s, the robot is only capable of viewing the square obstacles front side. This classifies the front
gaps as occupied. The reference steering angle is classified to be in an occupied sector as it is
of −20° value. Hence, the reference angle γdesired with a value 30° is selected as the next best
alternative, and the corresponding turning radius is approximately 0.205 m as shown in
Figure 14d. Figure 15b illustrates the robot at a sample time of 26 s. At this sample, the robot
can only observe the obstacles’ right side and has a γref of −54° and a γdesired of −10°. Additionally,
the robot takes a turn with a 0.5 m radius. The sample at 49 s is seen in Figure 15c. γdesired is
simply equated to γref as it resides in a free sector. This moves the robot straight to the target.
This scenario course was completed within 70 s.

Figure 16. Experiment 2 results. (a) The robot initial position, target position, and the surrounding obstacles; (b) The
obstacle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajecto-
ry in blue. (c) The robot velocities; (d) The robot control vector.
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Figure 17. (a) Shows the robot entering the passage; (b) shows the robot inside the passage; (c) shows the robot exiting
the passage.
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Figure 18. Experiment 3 results. (a) The robot testing environment; (b) the robot trajectory; (c) the robot velocities; (d)
the robot control vector.

4.3. Environment setting 2

A scenario of wide entrance but narrow exit was modeled as in Figure 16a. The robot was
able to make it through the passage within 74 s and with a 2.2539 m trajectory length, shown
in Figure 16b below. Figue 16c and 16d depict the robot velocities and control actions,
respectively. Figure 17 illustrates with polar histograms for when the robot first enters the
passageway, moves within it and then exits.

4.4. Environment setting 3

The difference in this scenario is that the narrow nature of the passage way is greater than that
depicted in scenario 2, as shown in Figure 18a. As a result, the robots ability to pick up on and
detect the narrow gaps that are only slightly larger than its size is tested. As shown in
Figure 18b, the robot successfully makes it through the pathway and its corresponding
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velocities and control actions during the trajectory are illustrated in Figure 18c and 18d,
respectively. Figure 19 provides details via histograms from when the robot enters to when it
leaves the passageway 19.

Figure 19. (a) Shows the robot entering the passage; (b) Shows the robot inside the passage; (c) Shows the robot exiting
the passage.
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4.5. Environment setting 4

The difference between this scenario, depicted in Figure 20a, and scenario 3 is the addition of
an obstacle to block the exit from the passageway, forming a dead end for the robot. The
trajectory taken by the robot is presented in Figure 20b, 20c, and 20d represent the robot’s
velocity and control actions through this passageway, respectively. In Figure 20c, fluctuations
left and right can be seen for the turning angle, γdesired. However, at t = 31 s the robot approaches
the dead end and comes to realize that the narrow gap is in fact blocked. The robot thus steers
left and now envisions the dead end as a gap, resulting in the robots attempt to steer toward
it once more. This is illustrated in Figure 21c. After 179 s, the robot completes the mission of
contouring the obstacles and overcoming the oscillations back and forth having travelled a
total of 6.0243 m.

Figure 20. Experiment 4 results (a) The robot initial position, target position, and the surrounding obstacles; (b) The
obstacle points in green, the area occupied by the robot at each instance in time in red, and the reference point trajecto-
ry in blue; (c) The robot velocities; (d) The robot control vector.
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Figure 21. (a) Robot detects a passage; (b) robot discovers a dead end and attempt to turn away; (c) after the robot
moves away, the dead end appears as a gap.
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4.6. Environment setting 5

The three obstacles in scenario 5 are placed in such a way to form a narrow gap that is smaller
than the robot size. This makes the robot’s initial steering to fall into a blocked path as
depicted in Figure 22a. The robot ends up at the target location due to its nature to persistently
search for a gap, as illustrated in Figure 22b, the target location as shown in Figure 22b. The
robot velocities and control actions are depicted in Figure 22c and Figure 22d, once more,
depict the robot’s respective velocities and control actions.

Figure 22. Experiment 5 results. (a) The robot testing environment; (b) The robot trajectory; (c) The robot velocities; (d)
The robot control vector.

5. Conclusion

This chapter presents a reactive navigation algorithm for a wheeled mobile robot under
nonholonomic constraints and in unknown environments. The mobile robot can travel safely
and efficiently to a preset destination having no prior knowledge of the environment. The
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shape and dimensions of the robot are all incorporated to produce the control algorithm that
determines the set of all steering angles that result in no collisions. The selection of the steering
angle depends on the one that is closest to the target and is identified as the widest gap. In
addition, the algorithm takes into account the nonholonomic constraints of differentially
steered robots by computing circular trajectories with adaptive radius of curvature. A mobile
robot platform was built and used to assess and validate the performance of the algorithms
over a variety of unstructured indoor environments. The results demonstrate that the naviga-
tion algorithm is capable of driving the robot safely through different obstacle arrangements
and avoids successfully trap situations.
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Abstract

Robot mobile navigation is a hard task that requires, essentially, avoiding static and
dynamic objects. This chapter presents a strategy for constructing an occupancy map
by  proposing  a  probabilistic  model  of  an  ultrasonic  sensor,  during  robot  indoor
navigation. A local map is initially constructed using the ultrasonic sensor mounted in
the front of the robot. This map provides the position of the nearest obstacles in the
scene useful for achieving the reactive navigation. The encoders allow computing the
robot location in the initial local map. A first path for robot navigation based on the
initial local map is estimated using the potential field strategy. As soon as the robot starts
its trajectory in real indoor environments with obstacles, the sensor continuously detects
and updates the occupancy map by the logsig strategy. A Gaussian function is used for
modelling the ultrasonic sensor with the aim of reaching higher precision of the distance
measured for  each obstacle  in  the  scene.  Experiments  on detecting,  mapping and
avoiding obstacles are performed using the mobile robotic platform DaNI 2.0 and the
VxWorks system. The resulted occupancy grid is analysed and discussed at the end of
this document.

Keywords: occupancy map, obstacle detection, path planning, robot mobile naviga‐
tion, Gaussian model

1. Introduction

Nowadays, the artificial intelligent field has developed service task in robotic systems with
the aim of providing help or comfort to humans. This is called service robotic [1], and it is
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supposed that the robot acts total or partially with autonomy. In particular, the service robotic
tackles the problem of domestic robots. Such robots require highly autonomy and real‐time
processing for recognizing unknown environments. To do this, they use stereovision [2] and
laser range finders [3, 4]. Furthermore, these robots must be able to autolocalizing and to
navigate without human supervision, detect and locate obstacles and constructing its own
map of the environment, using only their sensors and eventually a communication system
with  a  central  computer.  The  environment  and  workspace  of  the  industrial  robots  are
especially adapted for them and for performing special tasks; thus, these robots are program‐
med for knowing the environment in accordance with their physical dimensions. On the
contrary, service robotics interacts with a changing and initially unknown environment.

Topologic and geometric maps could be constructed for perceiving robot environment. As
proposed by Thrun et al. [5], a topologic map contains nodes and lines that joint these nodes
representing the possible trajectories from one node to another. Furthermore, the author
proposes the efficient mapping of the space and the low complexity as advantages, however,
to recognize the place is difficult, depends of personal interpretation, and it could produce
suboptimal trajectories. In contrast, the geometric maps numerically represent the coordinates
and properties of the environment of the robot. These maps could efficiently represent big
regions with few numeric parameters. Thus, the environment is descripted through geometric
characteristics such as segments, corners, among others and their corresponding relationships
(distance positions) [6].

On the other hand, the occupancy grid is a technique based on the discretization of the space
in equal cells with a probability, which represents an occupied, empty or unknown area. This
technique has been largely used due to it requires basic concepts for constructing, representing
and updating and it allows to compute shorter trajectories. The main disadvantage of the
occupancy grid is that requires the robot position.

The ultrasound is mechanical radiations with frequency higher to the audible range (>20 kHz)
when these waves are reflected by an object in the environment. The ultrasonic sensors contain
a piezoelectric transducer that is used as a transmitter and receptor for emitting and receiving
the ultrasonic waves, respectively. This project proposes a strategy focused on ultrasonic
sensors since this provides the distance from each obstacle in the environment to the sensor
mounted on the robot. Recently, a self‐configuring network of ultrasonic sensors has been
proposed for tracking moving target [7], providing that these sensors provide an economical
and basic solution to object detection in indoor environments.

In the development of novel strategies for proposing autonomous robotic systems, this work
tackles with the problem of obstacle detection and avoiding in real time using an ultrasonic
sensor embedded in a robot mobile during indoor navigation [8]. The environment is initially
unknown; thus, first of all, the robot constructs an initial version of a two‐dimensional (2D)
occupancy map. Several experimental tests are performed for modelling the sensor error and
for measuring the precision of measurements with the aim of assuring a reliable map.
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2. Overall strategy for robot navigation

Figure 1 depicts the block diagram of the global strategy for constructing a local occupancy
map of indoor environments. As the operating range of the ultrasonic sensor is known, this
sets the size of the area covered by the sensor, which will be directly updated in the local map
at each instant time t. This area establishes the size of an initial local map previously provided
to the robot. On the other hand, before robot starts to move, the ultrasonic sensor is used for
detecting objects in front of him. To do this, the ultrasonic sensor carries out a “sweep” in the
range −90° to 90° with respect to X axis of the robot (see Figure 2a). The local map also uses
the initial robot location, due to location of the objects are given with respect to the ultrasonic
sensor. The path‐planning module computes an initial path for robot navigation. The potential
field’s technique is used to plan the best trajectory for the robot. In real time, robot odometric
location is obtained from the encoders for updating the map and continuously constructing
the global map of the robot scene. Both global and local maps store the probability of occupancy
around the robot during navigation.

Figure 1. Global strategy for constructing an occupancy map during indoor navigation.

Every update of the global map is stored in a file internally on the robot. The map construction
consists in dividing the environment in small uniform cells, which will be labelled as occupied
or free in accordance with the ultrasonic measures. An intensive calibration strategy is required
with the aim of obtaining an accurate digital representation of the real scene. The robot
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navigates from a predefined initial position to a goal position; then, the algorithm ends when
the robot reaches such predefined goal position.

Figure 2. (a) Reference axis of the mobile robot DaNI 2.0. (b) Graphical representation of the robot in the local and
global reference axis, P represents the reference point of the position.

3. Robot model description

The mobile robot used in this project is shown in Figure 2a. This is a robotic platform called
NI LabVIEW robotics Starter Kit® [9], also known as DaNI 2.0, developed by National Instru‐
ments company® (NI). This mobile robot was designed to develop and run algorithms in real
time for autonomous system applications. The components of the mobile robot DaNI 2.0 are
essentially: two DC motors, two encoders and a reconfigurable card sbRIO‐9632 (Single Board
Reconfigurable I/O), an ultrasonic sensor mounted on a servomotor for providing to sensor
rotational motion. Figure 2b illustrates a graphical representation of the robot, with the global
and local reference axis of the robot. The X and Y axes are defined arbitrarily in the plane as
the reference of the global coordinates.

The kinematic model of the robot DaNI 2.0 consists in a differential configuration: each wheel
of the robot is connected to a DC motor, which provides the traction force and a stabilization
wheel for balancing the robot. The basic model for representing the robot position considers
the robot as a single point in the space. Thus, the robot position is specified by choosing a point
P in the robot chassis as a reference; usually, this point is the centre of the wheel axis. In addition,
the point P represents the origin of the robot axis Xr and Yr indicating the local reference of the
robot position, see Figure 2a.

In particular, the sbRIO‐9632 card is a heterogeneous‐embedded platform, developed by NI®,
which contains a real‐time processor and serves as main control unit of the robot. Besides, this
platform includes a Field Programming Gate Array (FPGA) Xilinx Spartan‐3, which is a
reconfigurable device that executes programmed tasks in real time, that is, the active response
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of the system to external events. This real‐time execution uses a low‐level programming to
perform tasks, such as motor control, signal acquisition by means of digital or analogue inputs
and monitoring digital and analogue inputs/outputs, among others. However, a higher level
of programming is possible through the NI LabVIEW® robotics software, which is a graphical
language. Programming languages such as C, C++ or Java could be also used.

3.1. Robot odometric localization

During navigation, the robot needs to know its position and orientation with respect to its local
and global axis of reference. To do this, the most common method used is based on geometric
equations providing an estimation of the robot location by combining information obtained
from the encoders on the wheels and from the propulsion components. This method is known
as odometric estimation [10], and it is commonly used due to it only employs the kinematic
model of the robot without including forces or torques in the mechanism. The main constraint
of this method is that, a small error at the beginning of the estimation increases with the time,
due to it is accumulated. Another strategy for avoiding this incremental error is to correct the
robot position at regular times of movement, using landmarks [11]. Nevertheless, the cost of
installation of the landmarks could be considerably high. For this reason, the odometric
location strategy is commonly used providing enough results in short trajectories at low cost.

In order to compute the robot position P(X, Y) in the global coordinate system, it is necessary
to know the rotational angle between the local and global coordinate axis, given by θ and the
origin coordinates of the robot local axis. The geometric equations for computing the point P
position in global coordinates are as follows:
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The robot motion dr is computed over the time by considering the robot geometry and its
angular velocity on the wheels, using the following equation:

2
r

rd t
rev w
p j= (2)

where r is the wheel radius (1.16 dm for the DaNI 2.0 robot),  the angular velocity of the

wheel and t is the time.

In accordance with the robot geometry and the wheel type, the movement of the robot Xr is
only in one direction (X direction is used). Furthermore, in the case of one wheel is keeping
fix to the floor, while the second wheel moves with an angular velocity; then, the robot will
draw a circle around the fixed wheel with a radius of 2l; being l the distance from the point P
in the chassis to the wheel (1.778 dm for DaNI 2.0 robot). This movement only affects θ angle:
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In order to estimate the location errors due to the odometry, a square trajectory was imple‐
mented on the robot. It was found that such errors in the trajectory are mainly due to the errors
in the turns, performed to 86° approximately but expected to 90°. Besides, small changes in
the wheels’ trajectory are not registered by the encoders, these changes are minimal, and
however, they produce a notable final error.

The odometric errors exist essentially due to the robot construction, that is, there is a small
difference between the diameters of the wheels. Furthermore, the finite resolution of the
encoders and the irregularities in the floor where the trajectory is performed avoid an ideal
execution of the trajectory.

3.2. Ultrasonic sensors

As it was mentioned in the introduction section, the ultrasonic sensors consist of one trans‐
mitter and receptor of the sound. Once the ultrasonic wave has been sent, when such wave
found an object a signal, this is reflected as an echo and can be detected by the same transmitter,
which acting also like a receptor. In general, the applications of the ultrasonic sensors are based
on estimate the lapse of time between such emission and reception of the ultrasonic waves.
This lapse of time is known as time of flight (ToF), the corresponding distance to the object that
reflected the wave is estimated by means of:

1
2 fd v t= × (4)

where v represents the velocity of sound and tf the time of flight.

On the other hand, one particular problem with the ultrasonic sensors is the mirror reflection.
This reflection happens mainly in the corners and it is occasioned for several reflections of the
ultrasonic waves before to return to the sensor (see Figure 3). As a consequence of this
phenomenon, some objects of the environment of small size or orientation cannot be detected
by the sensor, or in some cases, they are detected farther than really they are. Thus, only the
readings taken when the ultrasonic wave impacts perpendicular to the surface will be taken
as correct measures.

The cone of sensibility, also known as acoustic sensor aperture, introduces incertitude in the
position and distance of the reflected object if the robot is in motion. This is illustrated in
Figure 4: if one object is detected in the cone of sensibility, therefore, the measured distance
will correspond to an object “in front” of the sensor, even if the object is located with an
orientation with respect to the robot.
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Figure 3. Mirror reflection of the ultrasonic waves. (a) Extended trajectory of the ultrasonic wave. (b) Ultrasonic echo
that does not return to sensor.

Figure 4. Main effect of the acoustic aperture of the ultrasonic sensor that produces incertitude in the object position,
positioning the object in an unreal location.

3.3. Gaussian model of the ultrasonic sensor

The experimental test for modelling the sensor was performed at different sampling times with
the aim of considering the effect of the robot motion in the measurements. The sampling times
used were 60, 80, 100, 200 and 400 ms, in the range of −65° to 65° with intervals of 5° at distances
of 6, 8 and 10 dm from the wall. Figure 5 illustrates the average of these different test performed
using a sampling time of 80 ms. The chart (a) shows a stable range of measurements among
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−20° to 40° confirmed by the standard deviation shown in chart (b). Note that different sensor
positions (6, 8 and 10 dm) do not affect the measurements. Similar results have been obtained
for a sampling time of 100 ms; however, as this project will be performed in real time, 80 ms
was chosen due to it represents the best trade-off between stability and time of detection.

Figure 5. Charts of the measurement averages. (a) The sampling time used is 80 ms, for three distances 6, 8 and 10 dm.
(b) The standard deviation of measurements performed in chart (a), note the range of stability is among −20° to 40°.

In order to reduce the measurement error of the ultrasonic sensor and to validate that the
detected object is inside a specific region, it is used a probabilistic technique based on a
Gaussian function. The Gaussian model implies to know the errors due to the distance and
angle detection [12]. This model considers the measured distance, denoted here as d, and its
uncertainty (), and orientation angle θ and its uncertainty (). Therefore, the real measure

is in the range of  ± , and the orientation  ±  is denoted by:

( )
( )2 2

2 2( )
21| ,

2
d

d z

d
P z d e q

q
s s

q
q

ps s

- -
+

= (5)

where z is the variable in the workspace of the ultrasonic sensor measurements. This equation
represents the probability that the object be in the position measured by the sensor and uses
two standard deviations, range and angle (see Figure 6a). The error measured on the angle for
one object located at 10 dm is 0.12 dm that represents an error of ±0.7°. This effect is small;
therefore, it will be ignored for constructing the occupancy map, considering only the 1D
model based on distance only (see Eq. 5). Figure 6b depicts in blue the 1D model of the
ultrasonic sensor considering only the distance and the uncertainty (). Using a confiability

value of 0.8, the resulted plot is shown in green. Once the object has been detected, the
environment behind him is unknown. Thus, the probability of such cells is considered 0.5
because the cell value cannot be known (red plot in Figure 6b). Furthermore, this plot repre-
sents the probability of the object be in the distance describe in the x axis. This result will be
used for occupancy map construction.
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Figure 6. Gaussian model of the ultrasonic sensor. (a) Object position in coordinates (d, θ) for a 2D probability model.
(b) Probability model of object position detected by ultrasonic sensor in 1D.

4. Global map construction

The occupancy maps are a probabilistic technique based on small cells that divide the sur‐
rounding space of the indoor or outdoor environments. The probability of one cell is occupied
which is estimated using robot sensors. Each cell in the map represents the information
contained in the physical space in front of the sensors used to measure the environment. The
values in the cell describe the following situations:

<0.5 free cell
=0.5 unknown
>0.5 occupied cell

ì
ï
í
ï
î

(7)

4.1. Static occupancy map

The initial local map uses the initial position of the robot, which is always knowing as
navigation is performed only in indoor environments for constructing a static occupancy map
considering that the robot is not moving in the environment. The ultrasonic sensor in front of
the robot rotates in the range of −90° to 90° with respect to the x axis of the robot; nevertheless,
the real range used was in the range of −20° to 40° in order to acquire more stable and accurate
measures. Another advantage is that a reduced amount of measurements avoiding synchro‐
nization problems and allowing the real‐time execution. The rest of the angle range will be
covered as the robot navigates in the environment.
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In this work, an initial local map is constructed since a static position of the robot in the
environment which is represented by a grid as illustrated in Figure 7b. This map indicates the
starting point of the robot trajectory and the corresponding state of the surrounding environ‐
ment in accordance with Eq. (7). Each cell of the map represents 1 dm2 of the environment
minimizing the location errors due to the odometry of the robot. Note that, the red cells in the
front and in both sides of the robot represent the obstacles in the scene (probability of the cells
are higher to 0.5). This map is updated based on the log‐odds algorithm for mapping the
environment in a global map.

Figure 7. Initial local map. (a) Indoor scene with obstacle, (b) blue cells represent free space, red cells represent obsta‐
cles and green cells are unknown space.

4.2. Dynamic occupancy map

Figure 8 illustrates the block diagram for constructing the dynamic occupancy map. The
measures obtained from the encoders in order to locate the robot in the global reference system.
Once the current robot location in the environment is known, a homogenous transformation
is carried out with the aim of updating the cells covered by the ultrasonic sensor based on the
Eq. (7) and finally assigning them in the global map.

Note that, in the odometric localization block of Figure 8, the local reference axis of the robot
has been rotated and angle β with respect to global axis. Therefore, one point (X1, Y1) in the
local robot axis oriented with an angle α will be located in the global reference axis by means
of:
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Figure 8. Local and global reference axis for constructing the dynamic occupancy map.

4.3. Updating the global map

One commonly used technique for updating the occupancy map is the Bayesian strategy,
described in Eq. (10), which defines the probability P of the cell state s(Ci) be occupied, given
the distance (d) measured by the sensor at the time t+1.
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Each lecture provides partial information of the environment; therefore, in order to establish
the state of each cell, an updated equation is used for combining the prior and the current
probabilities of the cell, yielding:

( ) 1( ) ( )i i t i tP C P C P C-= + (10)
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4.4. The log-odds algorithm

Eq. (10) could give numerical instabilities for probabilities closer to 0 or 1. To overcome this
problem, Thrun [13] propose that the status “occupied” for each cell i at instant time t can be
modelled as the logarithm of an occupied cell, divided by the probability of the cell be empty
and represented by:
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The probability could be obtained, easily:
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Besides, it is considered that the prior value of the occupied cells 0 takes a constant value given

by:
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The algorithm for updating the occupancy map is described as follows:

Algorithm 1. Updating the occupancy map

Inputs: {lt-1,i,r,z}

for each cell Ci do

if Ci is in the vision field of the sensor then

lt,i=lt‐1,i+lsensor_model−l0

else

lt,i=lt−1,i

end if

end for

5. Path planning

A safe and coherent navigation of the robot in his workspace requires a path planning
technique and an obstacle avoidance strategy. In this project, the path planning technique used

Robot Control80



4.4. The log-odds algorithm

Eq. (10) could give numerical instabilities for probabilities closer to 0 or 1. To overcome this
problem, Thrun [13] propose that the status “occupied” for each cell i at instant time t can be
modelled as the logarithm of an occupied cell, divided by the probability of the cell be empty
and represented by:

( )
( ),

|
log

1 |
i

t i
i

P C d
l

P C d

é ùë û=
é ù- ë û

(11)

The probability could be obtained, easily:

( )
,

11
1 t i

i lP C
e

= -
-

(12)

Besides, it is considered that the prior value of the occupied cells 0 takes a constant value given

by:

0
( 1) ( )log log
( 0) 1 ( )

i i

i i

P C P Cl
P C P C

=
= =

= - (13)

The algorithm for updating the occupancy map is described as follows:

Algorithm 1. Updating the occupancy map

Inputs: {lt-1,i,r,z}

for each cell Ci do

if Ci is in the vision field of the sensor then

lt,i=lt‐1,i+lsensor_model−l0

else

lt,i=lt−1,i

end if

end for

5. Path planning

A safe and coherent navigation of the robot in his workspace requires a path planning
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is the potential fields which basically consist in the computation of the attraction forces
produced by the goal position and the repulsion forces caused by the closer objects in the
scenario. Thus, an artificial potential field guides the robot to goal position, while the obstacle
avoidance method allows a safe navigation of the robot.

The potential field acting on the robot is given by the attraction field towards the goal and the
repulsion field produced by the obstacles, that is:

( ) att rep( ) ( )U q U q U q= + (14)

Figure 9. Block diagram of the path planning algorithm.
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In the same way, the forces could be separated in attraction and repulsion forces yielding:

( ) ( )att rep ( )F q F q U q= - (15)

Furthermore, the attraction force could be described as:

( ) ( )att att goalF q k q q= - × - (16)

where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵   is the Euclidean distance between ∥  𑨒𑨒 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 ∥, and the repulsion force could

be described as:
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where katt and krep are positive scalar factors,    is the minimal distance from q to the object
and 0 is the distance in which an object influences in the path.

The general strategy for programming the path planning algorithm is illustrated in Figure 9.
If the current robot position is known, then the resultant force is estimated considering all the
new directions that the robot can take. Such directions are chosen based on the angle of
observation of the ultrasonic sensor and the probable position of the robot if he walks in that
specific direction. Once each force has been computed, the smaller is selected due to this force
moves the robot closer to the goal. Once the new direction has been selected, the motors are
turned on to follow this direction. The algorithm ends when the goal has been reached by the
robot.

6. Experimental results

Several tests were performed to validate the path planning algorithm. In the tests, the mobile
robot DaNI 2.0 navigates in an indoor environment with obstacles located between the starting
and goal position. Both starting and goal positions are the same during the experiments and
only the obstacle locations change. The graphical representation of the occupancy map is
labelled as: green colour represents the unknown environment, blue cells represent free path
(empty cells) and red cells represent obstacles (occupied cells).

The first experimental test is performed in an environment without obstacles; the results are
illustrated in Figure 10. The odd rows of this figure show different instant times of the whole
sequence performed by the robot; in particular, the first picture shows the starting position,
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and the ninth picture shows the goal position of the robot. Even rows depict the occupancy
map constructed at that time. Note how effectively the obstacles detected are located in the
borders of the region navigated by the robot, that is, any obstacle is detected in the middle of
the scene as is expected.

Figure 10. Test 1 of the path planning algorithm. The navigation is performed without obstacles. The graphical repre‐
sentation of the occupancy map is updating using the measurement obtained from the ultrasonic sensor, during robot
navigation in real time.
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The second experimental test is performed in an environment with two obstacles; the results
are illustrated in Figure 11. In this case, the first picture shows the starting position, and the
ninth picture shows the goal position of the robot. Note that the final occupancy map con‐
structed is smaller than the map of the test 1. The last is due to obstacles are detected therefore
included as red cells; however, behind the object, even if there are a free space, this area is not
reached for the ultrasonic sensor.

Figure 11. Test 2 of the path planning algorithm. The navigation is performed with two obstacles in the environment.
The graphical representation of the occupancy map is updating using the measurements obtained from the ultrasonic
sensor, during robot navigation in real time.

The results of the last experimental test showed here are illustrated in Figure 12. As in the
test 2, the occupancy map is small with respect to the real environment due to zones behind
objects cannot be not established by the robot.
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Figure 12. Test 3 of the path planning algorithm. The navigation is performed with two obstacles in the environment at
different position with respect to test 2. The graphical representation of the occupancy map is updating using the
measurements obtained from the ultrasonic sensor, during robot navigation in real time.

7. Conclusions and perspectives

The construction of occupancy map using ultrasonic sensors is easily perturbed by environ‐
mental noise. To overcome this constraint, it is used a Gaussian model of the sensor, providing
higher precision of the distance measured for each obstacle in the scene. In addition, another
typical error found in the measurements performed by ultrasonic sensors is related with the
cone produced at the time of sending the ultrasonic signal. In this project, it was found that
this error is less than 1°; therefore, it could be ignored. Furthermore, the error produced by the
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irregularities in the floor is reduced by using the proportional integral‐derivative (PID) control
of the robot. Updating the global map requires the synchronization between the ultrasonic
measures and the robot location in the environment.

The occupancy map of a real indoor environment is constructed by an ultrasonic sensor and
a mobile robot. The logsig strategy allows a safe indoor navigation of our robot by establishing
a probability of occupancy to each cell in the map avoiding a collision of the robot with an
obstacle. The global strategy is performed in real time. The time employed for the robot for
constructing the map depends of the number of obstacle in the scene; however, a real‐time
execution of the platform is assured by using the VxWorks platform of the robot DaNI 2.0.

Future works are focused on multiple robot navigation on dynamic environments. To do this,
a proposed approach consists in sending the local map constructed for one robot to a master
terminal by IP connection in order to incrementally construct the global map by adding local
maps of the environment.
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irregularities in the floor is reduced by using the proportional integral‐derivative (PID) control
of the robot. Updating the global map requires the synchronization between the ultrasonic
measures and the robot location in the environment.

The occupancy map of a real indoor environment is constructed by an ultrasonic sensor and
a mobile robot. The logsig strategy allows a safe indoor navigation of our robot by establishing
a probability of occupancy to each cell in the map avoiding a collision of the robot with an
obstacle. The global strategy is performed in real time. The time employed for the robot for
constructing the map depends of the number of obstacle in the scene; however, a real‐time
execution of the platform is assured by using the VxWorks platform of the robot DaNI 2.0.

Future works are focused on multiple robot navigation on dynamic environments. To do this,
a proposed approach consists in sending the local map constructed for one robot to a master
terminal by IP connection in order to incrementally construct the global map by adding local
maps of the environment.
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Abstract

The precise eye state detection is a fundamental stage for various activities that require
human-machine interaction (HMI). This chapter presents an analysis of the implemen-
tation of a system for navigating a wheelchair with automation (CRA), based on facial
expressions, especially eyes closed using a Haar cascade classifier (HCC). Aimed at
people with locomotor disability of the upper and lower limbs, the state detection was
based on two steps: the capture of the image, which concentrates on the detection actions
and image optimization; actions of the chair, which interprets the data capture and sends
the action to the chair. The results showed that the model has excellent accuracy in
identification  with  robust  performance  in  recognizing  eyes  closed,  bypassing  well
occlusion issues and lighting with about 98% accuracy. The application of the model in
the simulations opens the implementation and marriage opportunity with the chair
sensor universe aiming a safe and efficient navigation to the user.

Keywords: wheelchair, classifier cascade, detector eyes closed, active vision, eyes state

1. Introduction

A number of illnesses and accidents can lead to severe damage in the spinal cord of a patient
resulting in the loss of motion in the lower and upper parts. According to [1], 14% of the
population has some kind of disability, be it visual, motor, hearing, and others, representing
a growth of 7% in recent years.

Among this group, about 4% do not have any kind of movement in the lower and upper limbs.
This is due to very serious motor problems, such as hemiplegia of four members and the need
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for ventilatory support. Also applies to patients with degenerative diseases of the neuromus-
cular system, for example, amyotrophic lateral sclerosis (ALS) in which in a progressive
manner the person loses his movements, until completely paralyzed, thereby causing death
by respiratory failure.

Among the various types of motor disabilities that can affect a person, quadriplegia (motor
disability of the four members) and the neuromotor system diseases such as ALS are serious
deficiencies, which lead the individual to an almost vegetative state, with difficulties with
integration into society as useful as a capable person. However, in most cases such individuals
have full brain capacity, and with the necessary physical media, they may participate produc-
tively in society. Thus, it is necessary to find ways to develop their personal and professional
skills and have a professional activity with human dignity.

Typically, this patient uses a wheelchair to perform tasks such as come and go, always with
the aid of a carer or relative. Some of these use couplings that allow the user to their locomotion
in their environment and in general are very invasive.

The works of [2–5] indicate the concern of the academic community in realizing technology
stocks, low cost, that make the everyday life of these more independent people, and these
studies also indicate that these actions prolong the lives of patients and improve their quality
of life [6, 7].

Figure 1. CRA used as prototype.

Several studies have been conducted by different research groups [8–10] to develop wheel-
chairs with some kind of intelligence or are simply able to understand voice commands,
autonomous locomotion, deviation obstructions, and other functions as outlined in [2]. These
models have a high cost and maintenance, having little or no type of embedded technology.

Motivated by this reality began an interdisciplinary nature project that aims to provide a
common wheelchair with elements that make it both possible and economically viable the
mobility of a patient without movements of the upper and lower limbs. Patients with this
degree of disability have only a means of interaction with the machine elements present in
one’s face, which will are the facial expressions and the device that will allow the mobility
automation with wheelchair (CRA), as shown in Figure 1.
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This navigation is limited in some aspects, as some movements of facial expressions were
extremely tiring, such as opening and closing the mouth, and others were too difficult to be
captured or required equipment that are still under development, such as the retina of the eye
movement. So two expressions have proved less susceptible to failure, namely low intrusive-
ness and low learning curve. They are the opening and closing of the eyes and the movement
of turning one’s head to right and left. These expressions were evaluated by 20 individuals
simulating the state of a quadriplegic and generated evaluation described in Table 1.

Facial expression Failure (%) Setting (%) Intrusiveness (0–10) Learning (0–10)

Close and open your eyes 2 98 2 2

Head spin 3 97 2 3

Table 1. Percentage of success and failure detection of facial expressions. Average score of the difficulty of learning to
use facial expressions, and how this application was not intrusive or in a total of 20 individuals.

Hence, the model for navigating a CD is based on two expressions:

• Open and close your eyes (move the seat forward or stop);

• Turning the head to the left or right (moves the seat through 90° about the axis thereof)

This work aims to present the architecture to detect the action of opening and closing the eyes
based on HCC characteristics and evaluate the performance of the detector according to
efficiency and effectiveness.

The effectiveness of the detector was tested in the prototype, evaluating their response to
commands, since its effectiveness was evaluated from:

• Target image database construction considering regionalities and Brazilian cultural diver-
sity;

• Manipulation of the various training variables;

• Handling and controlling the ideal minimum number of neighbors of the detector, reducing
the number of false positives;

• Increased response or equal to 98% accuracy.

According to [11], the model [12] uses a classifier cascade and features of HCC. It works great
on face detection and has already become standard for its high hit rate and low false positive
rate.

The model [12] is adaptive and widely used by its degree of robustness and speed. In our
implementation, the detection is based on HCC, with parameters evaluated, and a positive
bank with about 10,000 images of frontal eyes closed, as shown in Figure 2.

This chapter is organized as follows: Section 2 presents the state of the art related to work
developed here as well as our contribution. Section 3 describes the materials and the method
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used for the realization and implementation of the architecture. Section 4 presents the tests
and results. Section 5 in turn brings the conclusions and future work.

Figure 2. Sample det positive.

2. State of the art

According to [2], there are more than 35 CRI projects around the world, all of these projects
vary in many ways. Initially, they include the project IntellWheels [2] which aims to create a
development platform for intelligent wheelchairs, facilitating the design and testing of new
methods and techniques for the CRIs, which takes as its premise aspects of low cost, comfort,
and ergonomics.

Elizabeth and Roger [13] propose a seat which makes use of the head movement to perform
navigation with a video system and a helmet with sensors. The study by [14] provides that the
construction of an ellipsoidal 3D model of the head interprets the flow of this movement and
establishes, according to the author, a more effective methodology than 2D approach.

Based on the Kalman filter to predict the possible movement of the head [15], attempts to reduce
the action of the head movement assuming that with few moves the chair can now follow a
route estimated by this position. This action, according to the author, reduces user effort.

Taylor and Nguyen [16] and Nguyen et al. [17] use similar ideas to use sensors placed on the
user's head (especially accelerometers) to detect motion in a system designed to free platform.
Wei-Kai and Isaac [18] address the recognition of facial gestures in interactive environments
and aims to recognize the gestures through points of interest in the face of the individual by
using Active Shape Models to extract face features to then assemble a 3D model in line with
Actinos Facial Coding System (FACS).

Manogna et al. [19] create a system to directly control the engine speed based on the movement
of the head. The device is fixed on the patient's head and sensor-based motion produces CRI.
The same study was performed by [20], who evaluated a similar device in a closed environ-
ment. It describes the difficulty in understanding the face and his intentions and suggests using
the same type of sensor.

The study by [19, 20] has been updated with the study by [21] that detects the opening and
closing of the mouth for extra movement and studying the problem of head ergonomics. Zheng
et al. [5] describe the Lucas-Kanade algorithm for detecting facial movement and discusses a
method efficiency, accuracy, and response time.
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Control of the CRA's status based on the opening and closing of the eyes is a simple method
used to control the same as the state of the art analyzed but widely applied in research-related
fatigue drivers to avoid traffic accidents.

Martin and colleagues [22, 23] describe a system that locates and tracks your eyes for algebraic
operations on the face of the image extracted by the method of [20], which notably is also used
in [24–30]. In all, eyes are found from the face detection which reduces the search space and
facilitates significantly the detection task to then perform detection. Some utilize filters that
improve the detection condition.

It is noticed that the utilization of computer vision for CRI movement was gradual. It was also
almost constant that the use of accelerometers or cameras on the individual's head makes the
equipment very intrusive and requires specific training to use the hardware and therefore
difficult to adapt. The hit rates always fluctuate above 90%, but these mentioned, none is to
analyze the influence of detector creation parameters. The majority does not have a specific
database for the purpose and generally uses the same standard database available on the Web.

The contribution of this work is focused on the identification of the influence of the classifier
training parameters and the relationship between complexity and efficiency/effectiveness of
the detector.

Formation of a database of 10,000 images and analyze the influence of regionalism in the
detector as opposed to embedded detectors in public libraries. The analysis of processing time
both the detector's response to its creation.

3. Materials and method

The model for the detection of eye state uses a simple idea. If a detector can detect a human
eye on a front face then it must also recognize one eye closed. To this end, a trained classifier
cascade is used to identify this object in the input image. The choice of [12] model mainly
provides for its simplicity, speed of execution, and the outstanding performance [8]. The
method basically combines four key concepts:

• Rectangular features called Haar features;

• Full image;

• Learning algorithm—AdaBoost;

• A classifier cascade.

The combination of these ideas permits simultaneous selection of key features and trains the
classifier cascade, and then next steps will be described.

3.1. Features of Haar

The Haar features encode the existence of contrasts between the targeted regions of the image.
A set of these resources is used to encode the contrasts displayed by a human face, on this
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work, eyes closed, and their spatial relationships. These characteristics are called Haar, because
its concept is similar to the coefficients of the Haar wavelet, set in a detection window W×H
pixels according to the formula:

( )
1
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i i
i

RecSum rw
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=å (1)

where ωi is arbitrarily singling as weight factor, and 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵) is the sum of the intensities

of the pixels, which was described by [12] as a full image. The rectangle r_i and described as
a function of five parameters:r = (x, y, w, h, ϕ), where x, y are the coordinates of the top position
of the pixel array, w and h define the dimensions of the rectangle, and ϕ = {0°, 45°} represents
the degree of rotation.

The presence of a characteristic Haar, Figure 3, is determined by subtracting the average pixel
value of the region by the average pixel value of the clear area. If the difference is above a
threshold (set during learning), the characteristic is present.

Figure 3. Some features of Haar and the detection window.

Paul and Michael [12] reported the fact that the choice of the characteristics of use, rather than
models based on pixel points of the image statistics, is important because of the benefits of the
ad hoc domain knowledge, which can be extracted knowledge hidden in images hardly found
in a finite set of training.

In the case of blink detection, this fact is used to represent the approximate information and
also related to the test image backgrounds. This knowledge becomes very thin with respect to
open and closed eye, the use of the two is hardly found in other models with appearance-based
approach.

In general, therefore, the characteristics are nothing more than rating information for a set of
light intensity of a pixel. This process consists of the sum of the intensity of the pixels of white
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regions of characteristics and the intensity subtracted from the sum of the gray balance of the
image. The results are used as the characteristic value of a given location and can be combined
to form weak hypotheses in the images [31].

Typically, the model adopts the rectangles seen in Figure 3 and determines the presence or
absence of thousands of Haar features in each image position and with different scales, Paul
and Michael [12] used a technique called integral image.

3.2. Full image

The complete image created from the original image, a new representation of the image, simply
sums the values of each pixel to the left and above, inclusively. The idea to use this represen-
tation is to increase the speed of feature extraction, as any rectangle of an image can be
calculated by means of this idea. Only four indices are required to calculate any rectangle, and
as an immediate consequence, one needs only one pass for desired data in subregions of an
image, see Figures 4 and 5.

Figure 4. Representation of full image: (a) area calculation, (b) sum of areas A−B−C+D, (c) rationed area calculation,
(d) quick sum A−B−C+D.

Figure 5. Integral calculus image representation. It should be noted that the sum of the region (a) is equal to seven in
(b) represented as 108−73−80+52.

3.3. Adaboost

The source Boosting problem in computational area, known as machine learning, can be
exposed informally as follows: suppose there is a sorting method which is slightly better than
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a random choice for any distribution X, called weak learner or weak classifier. The existence
of a classifier weak implies the existence of a strong classifier (strong learner), with small error
on the entire space X.

In statistics, it is asked if given a reasonable estimation method, you can get a method close to
great. This problem was solved by [32], which presented an algorithm that transforms a weak
classifiers into a strong classifier.

From then on, several algorithms were developed within the context of boosting. One of the
most recent and successful algorithms is known as AdaBoost that comes from the fact that
boosting generates in every step a distribution on the observations of the sample and gives
greater weight (most likely to be in the disturbed sample) to misclassified observations in the
previous step. The basic algorithm is shown in Figure 6.

Figure 6. Adaboost algorithm.

In this sense, AdaBoost is focused on the bad ratings, or else the data difficult to classify, and
this is the main feature of this algorithm: minimize error over a training set. One of the
advantages of AdaBoost, as studied by [33, 34], is the existence of other parameters, in addition
to T shifts, to improve learning.

The result, after successive iterations of the algorithm, a set of hypotheses with weights wherein
those having lower classification errors become more important, is called strong hypothesis
or strong classifier.

3.4. Classifier cascaded

Increasing the speed of a classification task, in general, results in an increase in errors associ-
ated. However, for this purpose to be effective, we would have to reduce the number of
evaluation of the weak classifiers, which would result in a loss in accuracy of the system. So
Paul and Michael [12] propose a degenerative tree decision, decision stump, the structure that
contains the binder thread from general to more specific, according to which the first cascade
levels are not very accurate, although able to sort a large number of samples with a small
amount of characteristics.

The use of cascade is characterized by the fact that, in an image during a detection task, the
most sub-window analyzed by classifier is rejected. For this reason, a generalization in the
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early stages should be high enough to avoid the transition to subsequent stages of sub-
windows classified as false positive [35], as shown in Figure 7.

Figure 7. Estructure of the classifier.

3.5. The chair

One of the general proposed projects involves low cost as the minimum use of equipment is
attached to the chair. This comprises only a webcam coupled to the PC and a Kinect® sensor
(see Figure 8) coupled to the associated chair or independently allows the model to obtain
various environmental information capable of determining actions of the chair, for example
the sudden passage of someone in front of the same or the proximity of an obstacle.

Figure 8. Chair and its embedded hardware.

A notebook with processor 1.6 GHz dual-core Intel Core i5 (Turbo Boost up to 2.7 GHz) with
3 MB and 4 GB of memory was used. The connection between the PC and the chair uses an
ATmega328 microcontroller board (arduino UNO), which has 14 digital pins input/output, 6
analog inputs, and USB connection.

3.6. Architecture

The software implements the model, which seeks, from the detection of the eye status (open,
closed) to inform the chair the action that should be taken especially to move forward or stop.
The command “move on” triggered when the user closes his eyes unnaturally or stays with
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the eye closed for a period of time greater than 2 s, in about 10 frames, is analyzed, and if the
detection occurs in a percentage above 90%, a command is sent, otherwise nothing is done.
The command acts in a similar way as opposed to the motion to move forward as a way to
clear up this script diagrammed in Figure 9. It was found that according to [36], the human
eye takes 280 ms to blink.

Figure 9. How to detect closed eyes.

In the proposed architecture, Figure 9, CAM/frame image captures through a common
webcam, performs the face detection, and focuses on this area of interest; then the image is
treated to minimize or neutralize lighting noise and send the information for treatment. In
CHAIR ACTION, capturing is carried out prior to information and detects by means of an
algebraic operation described in [36], the region where the eyes in the face are properly
separated and sent to analyze the state close left eye (CL) and close right eye (CR). In the first
step, the image is captured and represented in gray tones; there are 28 frames per second. In
each, we use facial detector defined in [12] widely used and recognized efficiency, according
to [37]. Around this region of interest are made two image optimization operations:

• Inversion;

• Retinal filter.

Figure 10. Eye detection structure.

Filtering through the algorithm in [38] called retinal filter cancels much of the image distortion
and improves cleaning detail, even in low light (<100 lux) also keeps the naturalness. After
correction of the image, an algebraic operation is made to detect the eyes of the person in the
image. The completion of this step proved to be quite efficient with the use in [27] or [28] due
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to the fact that even after correction of the image both methods provide great instability
regarding the detection of the eyes, even using different parameters as those used for the same.
The extraction assumes that the person is in front of the camera and below the horizontal line
of the eyes, while maintaining a fixed distance to the camera in a variable angle between 30 <
θ < 70 as described in Figure 10.

3.7. Kinematic model and motion control

The kinematic model of the chair is presented as a process in which each wheel contributes
both to the movement of the chair as to his/her mistake notably associated with obstacles and
soil deformation. While our research ambience is indoors and appropriate to the patient, these
errors can be minimized with the use of inexpensive sensors that can identify and predict
possible problems in navigation.

Here we describe the mathematical idea of the chair movement that follows a traditional model
of representation of the world. This model, whose movement and orientation are performed
by two independent actuators, considers the rectangular object moving at speed V. The state
plan of the chair in the Cartesian plane (x, y) is defined by the vector:

( ), , , , t
c c c cx y vq w (2)

where xc and yc, are the coordinates of the central point of the wheel axle, θ is the angle formed
between the base of the chair C(xc, yc), vc is the linear velocity at the point C, and ωc is the
angular velocity,, as described in Figure 11.

Figure 11. Cartesian representation of the chair.

The chair should move only in the direction normal to the axis of the driving wheels and can
restrict the analytic relationship:

´cos ´siny xq q- (3)
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Based on the information that is obtained during the navigation, the calculation of the
linear speed of each wheel is deducted for subsequent adjustment and especially in cases
of unevenness through a relation between the number of pulses of the encoder N and its
sampling period T.

e

N Dv
R T
p

= (4)

where v and D are, respectively, the linear velocity and the diameter of the wheel, and Re is the
encoder resolution. A possibility of representation of state variables is based on the speed at
the contact point between the right wheel (vD) and left (vE) with the floor.

( ), , , , T
c c D Ex y v vq (5)

The choice of this form of representation is essentially the ease of mediating these quantities
by odometry system.

Considering the continuous system, we have:
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Also,
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or alternatively

2 2
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Consider b the distance between the contact points of the wheels, rD radius of the wheels, L the
distance from point C to the center of rotation of the chair, and ,, the angular velocities

of the right, left, and center wheel movement of the chair.

From the speeds of the wheels of the robot, we may calculate the linear and angular velocities.

2
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v v
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w

+ì =ïï
í -ï =
ïî

(10)

To find out its position in the reference plane, we must know the chair state space, and how it
will evolve over time with the vD and vE speeds.

Considering the condition called no slip can descrier the kinematic equations of motion of
point C with respect to the linear (v) and angular (ω) velocity [4, 26]:

cos
sin

c

c

x v
y v

q
q

q w

=ì
ï =í
ï =î

(11)

or matrix form:
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4. Testing and results

The performance of the closed eye detection system was built based on a set of 10,000 images
of various persons. Images were acquired in a controlled lighting environment with 2048 ×
1536 pixels in JPG format. For accurate detection classifier, various parameters can be changed
during the training process. The influence of these parameters changes the complexity of weak
classifiers, and therefore aspects as positive and false positives are influenced.

The standard size entry was set to 24 × 24 pixels. All images in our base were taken in the same,
uniform background. Immediately, we wanted to see if the negative assembly constructed from
the same occluded images with faces is sufficient to distinguish between open and closed eyes;
using the classifier with default parameters, the following results were obtained, as descri-
bed in Figure 11.

Figure 12. Comparison between detector 1 taken with random sample negatives and diverse background and using
samples only performing the occlusion of the region of interest.

This analysis would serve to decrease the cost of both image search optimization and sched-
uling but has not proven satisfactory for such small images. Then the other negative training
set was created, gathered randomly about 9000 different images that do not contain any
references to human eyes. Figure 12 shows some examples of negative training sets. As Rainer
and Jochen [39] showed, the version of AdaBoost gave best results for facial detection, Gentle
AdaBoost, with a ratio of false positives required cascades set to 10e−6.
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Due to small size of the training image, we limited rectangle Haar that was used. Although
the number of ways in which the rectangles may be arranged is large, for practical reasons, we
limited the time with the following steps:

1. Only Haar-like with two, three, and four rectangles Was considered;

2. The size of the model of Haar features was set at a maximum of 5 × 5 and 3 × 3 pixels at
least;

3. All rectangles that contribute to the unique Haar features were of the same size.

A total of 408,564 characteristic Haar were obtained by imaging under the above conditions
with a satisfactory number of resources. For this problem, four detectors were used which were
constructed and differed primarily by the type of boost used and parameter variation as
described in Table 2, wherein MinHitRate is the minimum hit rate desired for each phase of
the classifier; MaxFalseAlarm is the maximum false alarm rate desired for each phase of the
classifier; Nstages is the number of cascaded stages; BTYPE is the kind of boost used (type of
boosted classifiers: DAB— Discrete AdaBoost, RAB—Real AdaBoost, LB—LogitBoost, GAB—
Gentle AdaBoost); WTRate is the cutting line and the weight used in the boost; and Wcout is
the maximum count of false trees for all stages of the cascade.

Parameter Sorter 1 Sorter 2 Sorter 3 Sorter 4

MinHitRate 0.9–0.999 0.9–0.999 0.9–0.999 0.9–0.999

MaxFalseAlarm 0.1–0.5 0.1–0.5 0.1–0.5 0.1–0.5

Nstages 20 25 20 25

Btype GAB RAB LB DAB

WTRate 0.95–0.98 0.95–0.98 0.95–0.98 0.95–0.98

Wcount 100 100 100 100

Table 2. Presentation of parameters and classifiers.

As shown in Figure 13, the results are established with great parameter, and the results are
described in Table 3.

Figure 13. Negative sample.
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Parameter Sorter 1 Sorter 2 Sorter 3 Sorter 4

MinHitRate 0.999 0.987 0.985 0.999

MaxFalseAlarm 0.5 0.5 0.4 0.5

Nstages 20 25 20 25

Btype GAB RAB LB DAB

WTRate 0.97 0.98 0.95 0.95

Wcount 100 100 100 100

Processing time 4 days 5 days 4 days 7 days

Table 3. Presentation of results and better processing time.

Figure 14 shows the difference between the result of the public detector and the detector with
better response. Both have a good recognition rate, but positive for higher rates against false
positives makes the classifier "olhosfechadosGAB" provide better performance.

Figure 14. ROC graph with the best parameters and analysis for different versions of AdaBoost.

Simulating what will happen directly in the chair is crucial. Therefore there were two tests: the
first with 12 volunteers, conducted during the same period of time (2 min) recording a video
with one’s image of the front face held at specified times to opening and closing the eyes, with
the following results described in Figure 15.
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Figure 15. Comparison of our classifier and public distribution.

In the second test, the same group of volunteers held navigation CD from point A to point B,
which would use a region of 1 square meter stopping place, as shown in Figure 16.

Figure 16. Result detection of volunteers.
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Volunteers can perform spins of the head that do not exceed 30 degrees, in an environment
with good lighting conditions (above 200 lux). In carrying out the detection was operated with
frame size 640 by 320 with 28 FPS. In all, the volunteers were able to make the journey without
difficulty with stopped or early movement. During the test, we observed the total time
hardware response to commands, and these times ranged from 250 to 300 ms.

5. Conclusion

The tests clearly demonstrated that HCC can be successfully used in a blink detection system,
and the combination of the classifier set to closed eyes and face resulted in a fast and efficient
system.

The trained detector (one classifier) with the parameters described in Table 2 exceeded the
detector OpenCV framework proposed by both the rate of detection and computational
efficiency. In this study, we were able to detect approximately 98% of the results with about
9% false positives.

The results showed that the use of regionalized data enables more efficient detection. We
observed that the detector does not fail to be submitted to the people with whom he/she was
trained. To set a robust system, the patient must have a face image trained classifier with a
significant number of possessions.

Figure 17. Conducted in chair.

The average error was 0.058, while applying the minimum neighboring detector returned a
number of 90% positive, while for the maximum number of neighbors obtained 98% as
detection windows scan across the image with the maximum neighboring the intersection
between the windows is unique and therefore there is no possibility of true or false.
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Another crucial point is the detector oscillation while the individual closes and opens his
eyes. This set of errors stabilizes in a few milliseconds (would not be a problem if this time
(Figure 17) did not result in "leaps" in the chair). The solution to this problem was given by
using a waiting time for stabilization of detection (about 1 s), and thereafter the chair had
its start and stop smoothly performed.

Using our PC, it was possible to obtain an average rate of 280 ms detector response, and the
architecture proved to be quite stable, no crash or time-consuming to user responses. Individ-
uals engaged in the work reported that it would not require extensive training to use the chair
and (after 30 min of test) and did not experience discomfort when using the system (Figure 18).

Figure 18. Detector response analysis.

As future work, we highlight the implementation of the navigation control with the head that
will allow the user to perform turns and spins with the chair and the analysis of all these ideas
applied to a larger architecture and its integration with other low-cost sensors that allow to
bypass obstacles.
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Abstract

Watch your step! Or perhaps, watch your wheels. Whatever the robot is, if it puts its
feet, tracks, or wheels in the wrong place, it might get hurt; and as robots are quickly
going from structured and completely known environments towards uncertain and
unknown terrain, the surface assessment becomes an essential requirement. As a result,
future mobile robots cannot neglect the evaluation of terrain’s structure, according to
their driving capabilities. With the objective of filling this gap, the focus of this study
was laid on terrain analysis methods, which can be used for robot control with particular
reference to autonomous vehicles and mobile robots. Giving an overview of theory
related to this topic, the investigation not only covers hardware, such as visual sensors
or laser scanners, but also space descriptions, such as digital elevation models and point
descriptors, introducing new aspects and characterization of terrain assessment. During
the discussion, a wide number of examples and methodologies are exposed according
to different tools and sensors, including the description of a recent method of terrain
assessment using normal vectors analysis. Indeed, normal vectors has demonstrated
great potentialities in the field of terrain irregularity assessment in both on‐road and
off‐road environments.

Keywords: traversability, terrain assessment, terrain analysis, UGV, mobile robots

1. Introduction

From an analysis in the United States, the automated guided vehicles (AGVs) market will
be worth 2240 million dollars by 2020, due to growing automation investments across all
major  industries  [1].  Besides,  BI  Intelligence  estimates  a  number  of  10  million  cars  and
trucks featuring self‐driving capabilities by the same year [2].  On the other side,  during
the DARPA Robotics  Challenge 2015,  worldwide universities  and their  humanoids have
raced among challenging scenarios,  and a  number  of  robots  lost  their  balance traveling
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across  rubble  [3],  and  some of  them even  used  semi‐autonomous  systems  to  overcome
this challenge by manually sending commands about specific locations where to put their
feet on. Additionally, the Curiosity rover, recently sent on Mars by NASA, demonstrates
the growing utilization of  robotics  technologies  in  planetary exploration as  they require
high level of reliability during their surveys, and rocks or terrain irregularities may cause
irreparable damages to on‐board instrumentation [4].

The common element among all these types of robots consists of the necessity of a high level
of driving capability; though motion control has made great strides, it may fail in case of
unexpected circumstances, including road hazards, pavement distresses, and rubble. As a
result, from widely known AGVs, spread in industries since years, to modern unmanned
ground vehicles (UGVs) [5], the high level of driving capabilities is perceived an essential
requirement. In order to enhance robustness and reliability, future mobile robots should be
designed including custom hardware and software components, helping UGVs to adapt their
driving behavior according to surface irregularities. In robotics, the assessment of terrain
conditions is generally referred to as “terrain traversability analysis;” even though traversability
has been explored from various perspectives, a thorough survey on this topic suggests that a
specific definition is still missing in the robotic community [6]. On the other hand, as robots’
diffusion increases braking up new boundaries in their application, the use of visual technol‐
ogies for traversability assessment will improve their reliability; consequently, the acquisition
of information about the terrain is a prerequisite capacity and recent advances in sensors and
perception encourage future researched in this field.

Among the number of methods and models for terrain analysis, there are at least two large
categories, (i) classification‐based methods and (ii) cost‐assessment methods. In the former, it is
possible to count all the approaches that consider a binary distinction of the terrain as two
classes, traversable or non‐traversable; to cite an example, in [7], the authors use an on‐line
trained classifier to distinguish traversable and non‐traversable regions. Widely spread in
research, occupancy maps also fall in this category as they use the elevation of surrounding
objects to construct a map of occupied regions on the base of sensor measurements [8]. Whereas
in cost‐assessment methods is common to assign a continuous cost index, to better describe
the traversability characteristics of terrain according to a specific cost function [9]. As advances
on the same line, Tanaka et al. implemented a fuzzy‐based traversability analysis, considering
terrain roughness and slope as input for a fuzzy inference system and then generating a vector
field histogram for navigation purposes [10].

A further classification of methods commonly used in this field distinguishes between
geometric‐ or appearance‐based methods. Used in a large number of works in research [11–13],
geometric‐based analyses aim to detect traversability using geometric properties of surfaces
such as distances in space and shapes. Whereas appearance methods, to a greater extent related
to camera images processing and cognitive analyses, have the objective of recognize colors and
patterns not related to the common appearance of terrain, such as grass, rocks or vegetation
[14, 15]. In spite of the clear potentialities of appearance‐based methods, still geometric ones
are mostly common in robotics, because they can be easily used for path‐planning purposes,
where also probabilistic methods are gaining interest. Indeed, in 2006, Thrun et al. [16]
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presented a probabilistic algorithm for terrain classification on a fast moving robot platform,
constituting a part of their autonomous vehicle during the Darpa Grand Challenge in 2005. As
a recent example, in [17], the authors describe a terrain classification approach for an autono‐
mous robot based on Markov random fields (MRFs) on fused 3D laser and camera image data.

In the light of glaring requirements of terrain analysis for future UGVs, this discussion aims
at exploring some of the basic concepts of traversability; the focus was laid on geometric
methods. This study introduces a definition of traversability and its application to robot control
and autonomous ground vehicles. This directly leads to the contributions of this chapter, which
attempts to compare different methodologies and fill the gap between theory and practical
applications giving a definition that can be of general value for terrain traversability analysis
in terms of a fuzzy set, including practical examples to foregoing functions available in the
literature. Furthermore, the potentialities of novel methods based on the normal vectors
analysis will be explored, providing some practical examples of application.

The chapter is structured as follow: Section 2 will provide an overview and basic knowledge
about the field with focus on related works and recent techniques for visual terrain analysis,
used sensors and space representation. Later, in Section 3, a theoretical background will help,
who unfamiliar with the topic, to understand the basic concepts related to robot models and
state spaces, introducing a definition of traversability in terms of a fuzzy set. Examples, results
and comparisons are exposed during a thorough discussion in Section 4, which will cover basic
functions and recent researches in the field applied on both synthetic data and real scenarios.
Conclusions are drawn in Section 5.

2. Overview

As humans themselves rely on their five senses to know where to walk or drive a vehicle on,
creating an implicit space representation in the brain, robots perceive and interpret the space
using exteroceptive and proprioceptive transducers as a sensing aid. In order to build an
effective exteroceptive traversability analysis tool two elements are required: (i) visual sensors
and (ii) a mathematical space representation. The former comprises any exteroceptive sensor
such as cameras, depth cameras, or time‐of‐flight sensors, which endow robots with sensing
capabilities; whereas the latter provides a spatial organization of sensory data and build an
abstract representation of the 3D environment. As a result, the approach to terrain traversa‐
bility analysis may change according to space representation, as much as the available data
may vary according to the type of sensor. Even though the most common methods for terrain
traversability analysis are based on exteroceptive perception [9], for the sake of completeness,
it is important to cite that proprioceptive sensors are also successfully used for terrain analysis
[18–20], measuring and interpreting quantities such as vibrations or slippage, but their study
is out of the scope of this study.

To facilitate the comprehension of the content of this discussion, following a short review on
space representations and sensor technologies available for terrain analysis in mobile robotics
is reported.
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2.1. Sensors for terrain analysis

Sensing denotes a group of techniques used in robotics to measure any physical quantity
interacting with the robot. Hence, any device used to acquire information can be counted in
this category. Although the general concept of sensing as the problem of understanding how
a robot see the world, by means of a set of visual sensors, has been addressed following various
approaches, in the specific topic of traversability, there are a number of open issues still to be
solved. In [21], the author has accurately described the problem of semantic perception for a
robot operating in human‐living environments, approaching the problem from sensors and
data point of view. Notwithstanding the valuable work done in the field of perception, the
indoor structured environments introduce a number of simplifications which are never
applicable in outdoor unstructured environments. First of all, indoor scenarios are generally
characterized by smooth ground surfaces and high‐size objects represented as vertical planes.
For this reason, AGVs, commonly used in indoor industrial environments, do not consider
any terrain representation at all. Moreover, indoor robots generally move at low speed, and
consequently, they do not require any sophisticated system for terrain analysis. The situation
changes totally in the case of planetary rovers [4], driving on sandy terrains featuring rocks,
varying in size and shape. Furthermore, recent driverless cars are quickly going towards public
roads; in such situations, rocks, road hazards, and pavement distresses may put the vehicle,
and its passengers, in serious danger [22].

(a)t (b)

(c) (d)

Figure 1. Examples of sensing devices in which: (a) is a depth camera, the Kinect sensor, mounted on an experimental
planetary rover, (b) is a stereovision system including the XB3 Bumblebee camera used on an agricultural tractor, in (c)
an autonomous electric car featuring a Sick laser, and (d) is an ultrasonic sensor‐based mechatronic device.
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Since this discussion examines terrain analysis, a distinction between acquisition and repre‐
sentation of information should be done. On one hand, the space acquisition strongly depends
on the typology of sensors and applications; on the other hand, its representation depends on
the perception meaning and its content. From a purely geometrical point of view, the most
primitive representation of a point in the space is the 3D Euclidean metric. However, the
information about the real 3D coordinates of a specific point can be obtained by triangulation
techniques [23, 24] on stereocamera images, or by directly measuring its distance using time‐
of‐flight (TOF) systems [25]. Figure 1 shows typical image sensors assembled on several UGVs
in order to acquire some of the images used for the experimental discussion in this work.
Specifically, Figure 1a depicts a depth sensor, the Kinect camera, used in [26] for a novel
approach to terrain analysis, whereas in Figure 1b a more sophisticated vision system designed
for an agricultural tractor is shown [27], the red circle marks a trinocular stereocamera.
Figure 1c and Figure 1d show two examples of time‐of‐flight sensors, a Sick laser range finder
and a sonar sensing system. Following, the technology at the base of such sensors will be briefly
recalled.

2.1.1. Stereovision

Stereocameras constitute a family of cameras composed by two or more lenses with separated
image sensors. They provide a visual image for each lens and post‐elaboration attempts to
estimate the distance of each point from the sensor by means of connections between corre‐
spondences seen by two different lenses at the same time, simulating the human binocular
vision. In order to provide accurate measures, the sensors require the perfect calibration with
respect to each other, done by the extrapolation of their intrinsic and extrinsic parameters.

In the literature, a large number of methods for camera calibration are available. As an example,
Kearney et al. propose a method for the calibration using geometric constraints in [28] and
then Puget and Skordas present a method for optimizing the calibration [29]. Later, many
researchers studied methods for fast and accurate calibration of multiple cameras [30], in
anticipation of the most recent researches of automatic calibration for cars, for example [31].
Recent sensors use more than two cameras for the triangulation in order to increase the
accuracy in both short and long range. The 3D representation of the environment is inferred
detecting the same point into both camera images, and the bigger the set of points the richer
will be the 3D space reconstruction.

Simplifying the concept, said d the distance from a point p measured by a binocular stereoca‐
mera, then:

-P P1 2

= ,fbd
x x (1)

where f is the focal distance of the sensors, b is the baseline, that is, the spacing between the
sensors, and x1, x2 are the coordinates of p in the two images expressed in terms of pixels.
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An example of a trinocular camera featuring multiple baseline can be seen in Figure 1b, where
the sensor has been mounted as visual aid on an experimental tractor [27].

2.1.2. Time‐of‐flight 3D sensors

In contrast to stereocameras, TOF‐based systems, such as lasers and sonars, directly evaluate
distances by the measurement of the delay until an emitted signal hits a surface and returns
back to the receiver, thus estimating the true distance from the sensor to the surface. Also in
this case, a simplified relation can calculate the distance between the sensor and a point in the
space as follows:

= ,
2
ctd (2)

where c is the speed of the ray, light in case of lasers, and t is the amount of time since the
emission until the reception. However, in case of ultrasonic sensors, the speed of the ray
depends of its wavelength and the estimation of the distance as well as the localization problem
become harder due to the wider beam which may be cause of multiple reflections. As an
example, in [32], the authors propose three different mathematical approaches to detect
position and orientation of an observer, such as a robot, with respect to a smooth surface. Such
ultrasonic‐based system is depicted in Figure 1d. In contrast to ultrasonic technology, laser
scanners are much more precises and reliables for environment description. To underline the
global diffusion of laser scanners, Figure 1c shows a Sick 3D laser range finder applied on an
electric autonomous vehicle at University of Almería (Spain) [33]. As proof of the higher
performance of lasers, Borrmann et al. obtained an accurate space description from a laser
scanner and use laser information to build a global map in outdoor urban environment [34].
Besides this research, a large number of scientists continuously propose new methods for the
3D space reconstruction using 3D laser scanner technologies.

Thanks to their properties of accuracy and reliability, the research involving vision for mobile
robot shifted towards the use of laser technologies as an aid for space reconstruction.

2.2. Space representations

The term space representation roboticists refer to an abstract depiction of robots’ surrounding
environment. As robots live in the three‐dimensional space, the most natural space represen‐
tation should be the Euclidean 3D space, but handling 3D space data may be hard and time‐
consuming. Thus, for computational performance purposes, the most used foregoing space

representation has been the 212‐dimensional, such as digital elevation models (DEM) better

described later in this section. Only recently, thanks to the high performing CPU and GPUs,
3D point descriptors are gaining interest in this field.
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2.2.1. Digital elevation maps

Organizing sensors data is a mandatory step to reconstruct information for geometric inter‐
pretation purposes, and digital elevation models (DEM) [35] are widely used as space repre‐
sentation in mobile robotics. Although topography and large areas terrain mapping constitute
the original use of DEMs, their use for traversability analysis has been demonstrated as
successful in mobile robotics [4]. As further example, Larson et al. discuss a real‐time approach
to analyze the traversability of off‐road terrain for UGVs considering positive and negative
obstacles through elevation information [36].

DEMs have been introduced as a compact 212‐dimensional representation, which assumes that

a surface can be represented as an elevation function (,), :ℝ2 ℝ, where x and y are the
coordinates on a regularly sampled plane. As a result, a grid‐based space representation is
obtained, in which a surface is described by a finite number of points collected in a fixed size
grid structure. Figure 2 shows an example of a DEM representation obtained from a stereo‐
camera images, the entire procedure shows the process from a camera image, see Figure 2a,
to point cloud in Figure 2b, and DEM, Figure 2c. Though compact the DEM representation
requires a further step from acquisition to 3D reconstruction and DEM generation, whereas
working on purely 3D data implies that one step can be skipped.

Figure 2. Example of two different space representations in which (b) is a point cloud representation, whereas (c) is the
relative DEM, both geometrically describing the scene in the camera image (a).
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The classical DEM approach constitutes an efficient representation, but it lacks of accuracy in
space description since objects are described as surfaces using their elevation without taking
into account their real shape. For instance, a tunnel cannot be represented using a digital
elevation model. As an improvement of classical DEMs approach, Pfaff et al. [37] proposed the
extended DEMs or the so‐called extended elevation maps (EEM). Such technique involves the use
of additional information in order to have a better description of objects and space; further‐
more, the authors also used a Kalman filter to enhance the terrain description in a DEM taking
into account measurements error and uncertainties. Recently, in [38], the researchers used EEM
as multilayer digital maps for the description of volcano areas.

In conclusion, though suitable due to its compactness and simplicity, in each DEM formaliza‐
tion, there is the assumption of regularity in the surface and it turns into a not‐complete space
representation. As the matter of fact, it fails in a large number of practical situations; never‐
theless, it is extensively used in robotics since it is simply applicable in low‐performance
embedded controllers.

2.2.2. Point descriptors

A recent space description, used in robotics for traversability purposes, consists in the
representation of each point simply by its 3D Cartesian coordinates [24]. Hence, let us define
a point cloud as a set of scattered 3D points, that is:

( ){ }∈ ∈  3= , , , = 1,2,..., , ,i i i ip x y z i n n (3)

where n is the number of elements in the set. In order to provide a coherent space represen‐
tation, the coordinates of each point  have to be given respect to a common coordinate
system. The origin of such reference frame is usually located into the robot’s geometric center
or the sensing device, defined as camera reference frame 𝀵𝀵𝀵𝀵 ,,,, . For this reason,

generally distance data need an additional coordinate transformation using appropriate
rotation matrices. As a result, 3D space description in form as point cloud constitutes a simple
and robust solution to represent environments for robotic purposes. In the most recent data
representation, the RGB color information is added to points obtaining the so‐called RGB‐D
point clouds. As an example, Figure 2b shows an RGB‐D point cloud obtained as triangulation
of stereopairs in outdoor road environment. Nowadays, it is common to think the 3D points
as defined in the three‐dimensional meaning of Euclidean metric and represented by its
Cartesian coordinates (x, y, z). However, problems such as perception and recognition in point
clouds are ill‐posed, if only the geometric coordinates of points are considered. In spite of the
addition of new characteristics of points, such as color or intensity, may help, the problem
remains ill‐posed due to the ambiguity of matching between points. In particular, a point in a
cloud can be seen as a single point, yet it could represent the intersection of perpendicular
planes representing the sides of an object, and therefore, it could be described using semantic
meanings such as “vertex” or “edge.” The set of characteristics used to describe a point defines
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a local descriptor. As a result, in the context of perception, the concept of 3D point as described
only by its coordinates is substituted by the concept of local descriptor.

Let be given a point cloud , defined as in Eq. (3), and let us consider a point pq the so‐called
query point, the neighborhood of pq in  can be defined as the set of points such that:

{ }∈ ⊂ − ≤ ∀ 3= : = 1,2,..., ,q q
i i mP p p p d i k (4)

where dm, the so‐defined as search radius, is the maximum distance between pq and each
neighbor, k is the number of neighbors of pq in Pq, and |·| is a generic norm (without loss of
generality, it is possible to refer to the Euclidean distance).

A local descriptor of pq can be defined as the vector function F that describes the information
content of Pd according to a specific characteristic:

( ) { }1 2, = , ,..., ,q q q q q
nF p P x x x (5)

where  is the ith dimension of the descriptor. By comparing the local descriptors of two

points, namely p1 and p2, it is possible to estimate their differences. Let Г be the measure of
similarity between p1 and p2, with their associated descriptors F1 and F2, and let d be their
distance:

( )G 1 2= , .d F F (6)

Then, d is a scalar function and can be considered as the degree of similarity between points.
If Г → 0 two points can be considered similar according to the specific characteristics set.
Conversely, if Г increases the points will have different properties. It is important to note
that the effectiveness of the explicit expression of descriptors is given by its ability to
differentiate points in the presence of rigid transformations, noise, sampling variations,
changes in scale, or illumination. Moreover, the generality of the representation of points
using descriptors allows to collect points and their characteristics such as color, but also
traversability, as a vector in the form of a point cloud.

A possible application of point clouds for traversability analysis can be found in [14], where
the authors describe a method for terrain classification using point clouds data obtained by
stereovision. They propose the use of superpixels as the visual primitives for traversability
estimation using a learning algorithm. A different approach can be found in [39]; here, the
authors acquire information about terrain by a LIDAR and, using local 3D point statistics,
segment it into three classes: clutter to capture grass and tree canopy, linear to capture thin
objects such as wires or tree branches, and finally surface to capture solid objects such as
ground terrain surface, rocks or tree trunks. As further example, in [40], the authors use a Sick
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lidar to acquire point cloud and build a traversability cost‐to‐go function for navigation
purposes.

2.2.3. A comparison among methods for terrain analysis

To finalize this overview, it is worth to compare different methods according to their use in the
scientific community and provide a classification of the used approaches. Table 1 presents a
summary of references in the field of terrain analysis and traversability, classifying them for
space representation and used sensor, the full bullet indicates the classification. More specifi‐
cally, the classification of used sensors distinguishes between ToF and stereocameras as method
to acquire information, whereas the space description classification differentiates between
DEMs and point clouds, including in the last category also point descriptors.

Reference Application Sensors
ToF | Stereo

Space representation
DEM | Pt.C

Bellone et al. [27] Natural ●|● ○|●

Bellone and Reina [41] Automotive ●|○ ○|●

Braun et al. [42] Natural ○|● ●|○

Broggi et al. [13] Automotive ○|● ●|○

Cafaro et al. [43] Search and rescue ●|○ ○|●

Dargazanv and Berns [44] Natural ○|● ○|●

Dongshin et al. [14] Natural ○|● ○|●

Haselich et al. [17] Natural ●|○ ●|○

Ishigami et al. [45] Planetary ●|○ ●|○

Kubota et al. [46] Planetary ●|○ ●|○

Larson et al. [36] Natural ●|○ ●|○

Neuhus et al. [25] Automotive ●|○ ○|●

Ohki et al. [38] Field ●|○ ●|○

Oniga et al. [12] Automotive ○|● ●|○

Papadakis et al. [9] Search and rescue ●|○ ●|○

Pfaff et al. [37] Natural ●|○ ●|○

Rohmer et al. [47] Planetary ●|○ ●|○

Roccacio et al. [7] Natural ○|● ●|○

Suger et al. [11] Natural ●|○ ○|●

Thruh et al. [16] Automotive ●|○ ○|●

Vandapel et al. [39] Natural ○|● ○|●

Whitty et al. [40] Field ●|○ ○|●

The full bullet indicates the classification.

Table 1. Comparison of the literature, the table classifies space representations and used sensors for traversability
purposes
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This analysis suggests that both DEMs and point clouds are used for traversability analysis;
however, one can consider as a possible trend, the use of point clouds for terrain traversability,
since recent researches are going towards this direction. Contrary, DEMs constitute a stable
and robust tool, widely used in all the fields of robotics, and it is even possible to find recent
extensions of research. To cite one of them, in [38], the authors use an extended elevation
models as improvement to DEMs. The historical predominant application of traversability is
in natural outdoor environments, where the assumptions of surface regularity cannot be
applied. Only recently, the study of surfaces is gaining interest in the automotive sector, in
which all researches are quite recent, since this technology was never required in the field.
Possible uses are as follows: pavement distress detection [41], sidewalk detection [12], or
segment terrain’s inliers and outliers to be used for obstacles detection [13].

From sensors point of view, laser scanner are commonly used for specific applications such as
planetary or search and rescue, whereas stereocameras are preferred in applications where the
cost‐effectiveness of cameras can be attractive. However, it is important to cite that ToF sensors
are commonly used for geometry‐based traversability techniques, whereas cameras are used
in the case of appearance‐based classification.

3. Terrain traversability analysis

From a dictionary definition, the word “traversability” denotes “the condition of being travers‐
able” and traversable concerns the capability “to travel across or through.”1 This linguistic
definition does not explicitly refer to means; for instance, if one is conducting a car the word
traversable better characterizes the action of “driving across or through,” whereas going by
feet may refer to the natural process of “walking across or through.” However, an allusion to
two elements exists in the definition: (i) the space, to be traversed, and (ii) the mean, to traverse
the space. In classical control theory, such elements are expressed using concepts such as
controllability or reachability, and they are related to the properties of a system to reach a
generic state from the origin or the other way round, according to a specific physical model of
the process. Whereas a thorough survey on traversability assessment suggests that its formal
definition is still missing in the robotic community [6]. In the same survey, a qualitative
definition of traversability in the context of UGVs appears, stating:

“The capability of a ground vehicle to reside over a terrain region under an admissible state
wherein it is capable of entering given its current state, this capability being quantified by
taking into account a terrain model, the robotic vehicle model, the kinematic constraints
of the vehicle and a set of criteria based on which the optimality of an admissible state can
be assessed [6].”

Though descriptive and valuable, this definition only provides ingredients to reach a more
general and formal definition of traversability. First of all, it is important to consider few

1 Definition from Oxford Dictionaries.
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aspects: (i) a robot model including its motion constraints, (ii) space representation, for
example, the terrain model, and (iii) a set of criteria to express the traversability properties. All
these concepts will be later recalled.

Since this topic is attracting further researches, a more general definition of traversability is
given later by Cafaro et al. [43]. The authors have made a valuable work on the theory of space
description using point clouds, introducing the definitions of traversable region and traversability
map in the context of graph theory, thus defining traversability as the existence of a connection
(i.e., a branch) between two vertexes of a graph. A different characterization in terms of fuzzy
sets was already provided by Seraji [48], and even though it was not general, the author
distinguishes among different types of terrain providing the introduction of this topic in the
robotic community. In the light of all relevant works made in research a clear discrepancy
between theory and application appears. This section will attempt to fill this gap, using the
elements in the literature to reach a definition in terms of control space which can consider the
robot model, its operating environment and an evaluation criterion.

3.1. Robot models and configuration space

Prom the basis of control theory, it is well known that the robot control includes three different,
but fundamental, items: process, controller, and sensors. This concept perfectly describes the
ancient meaning of the word control, which refers to the capacity of inducing a specific behavior
to a process based on observations of its evolution. Starting from simple regulators, the control
theory evolved towards robot control, regarding robots considered as complex processes.
Obviously, as processes complexity increases, the complexity of controllers increases itself. The
reason of the growing complexity of robotic systems is furthermore referred to the requirement
of a higher level of interaction between robots and real world.

The physical description of robots in control theory typically is expressed through a process

and a state space. Thus, given the state 𑨈𑨈 𑨈𑨈 𑨈𑨈, where 𑨈𑨈 𑪂𑪂 ℝ is referred to as state space, and the

command 𑨈𑨈 𑨈𑨈 𑨈𑨈 with 𑨈𑨈 𑪂𑪂 ℝ, called command space, a discrete system can be defined as:

(7)

The function f, referred to as transition function, denotes the behavior of a system, from simple
systems to complex mobile robots. The generality of this definition expresses the evolution of
any physical process and though usable in any possible situation, its elements, including space
structures and transition function, must be explicitly expressed in practical applications. The
command space can be easily defined given the kinematic/dynamic properties of the robot and
its actuators, and it can be considered as a finite set of possible actions. Whereas the state space
may be uncountable, open set and even featuring time‐variant elements (e.g., moving obsta‐
cles); as a consequence, it deserves a specific description.

For the sake of clarity, let us mention an example, the state space for a planar vehicle may be

defined as 𑨈𑨈 = ℝ2 × 𝀵𝀵𝀵𝀵(2) denoting ℝ2 the translations on x and y axis, respectively, and SO(2)
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the rotation around the axis orthogonal to the motion plane, also known as SE(2), special
Euclidean group. This state space constitutes an open and uncountable set. Considering the

3D space, it is also common to find the state space as 𝀵𝀵𝀵𝀵𝀵𝀵𝀵 𝀵 𝀵3 × 𝀵𝀵𝀵𝀵(3) referring to 3D
translations and rotations, for example, in the case of position and orientation of UAVs
(unmanned aerial vehicles) or even simply the end effector’s pose in manipulators. Talking
about traversability and driving on not‐flat terrains, the use of 3D representation is also
becoming common for a more accurate design of autonomous navigation systems for UGVs.
As a general definition, in robotics, it is possible to find the name configuration space  or simply
C‐Space [49, 50] describing the set of all possible configurations of the robot. C‐Space refers to
a broad family of constructions closely related to the state space notion in physics which is
common in general control theory.

Now, let us suppose that the C‐Space contains a forbidden region ; moreover, since the
mobile robot will also live in C‐Space, we can denote the robot geometry as a subset , all
sets may be expressed using polygonal or polyhedral models. At this point, let us denote as

 a possible configuration of our mobile robot , as a result  is the configuration of the
entire robot geometry in C‐Space, note that in the case of SE(2), the configuration of the robot
at the time k will be q = (xk, yk, θk). Under the aforementioned assumptions, an obstacle region
can be expressed as follows:

{ }Î Ç ¹ / ÍC C M O C= | ( ) 0 .obs q q (8)

The obstacle region constitutes the set of all robot’s configurations  intersecting the
forbidden subspace. All the other configurations can be denoted as free space, , and
obviously . Let us note that the sets  and  must be closed set in , as a
consequence  must be open, this will ensure the possibility to formalize an optimization
problem in ; moreover, it ensures that the robot can drive arbitrary close to an obstacle
without colliding it. As last consideration, though different in the formulation, the configura‐
tion  and the state  in Eq. (7) may be considered similar; as a consequence, there exists a
transition function to go from a configuration q1 at a time t1, to another configuration q2 at the
time t2. A rough analogy between states and configurations suggests that the transition function
can be expressed as qk+1 = f (qk, uk); clearly defining the robot  in the configuration q moving
according to the equation of motion f.

This discussion does not pretend to be a complete description of spaces and sets, but it only
gives the preliminary knowledge for the reading of this text, for additional details about
assumptions, demonstrations, and definitions please refer to [50] as a relevant reference in the
field.

The reason of the diffusion of C‐Spaces in robotics research resides in the possibility of
describing them as manifolds, i.e., topological spaces that behave at every point like our
intuitive notion of a surface, and the best way of describing the terrain is to consider its
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topological properties. Hence, considering a ground vehicle, the configuration space cannot
be other than the terrain region it is driving on, described as a manifold.

3.2. Traversability characterization

The previous theory considers the robot moving in a configuration space  composed by a free
space part  and a forbidden region . Yet, considering the concept of traversability as the
condition of being traversable, then it is simple to understand that the free space can be
considered as traversable, while the forbidden space may be not traversable. This definition
would be perfectly enough for a binary classification of traversability.

Nevertheless, we are looking for a more general definition; thus, the traversability can be seen
as the capability to travel across of through, which implies that the aforementioned binary
definition could be extended. Indeed, the set could be forbidden (i.e., not traversable at all) or
partially forbidden (i.e., traversable with some grade of membership). This clearly recalls the
fuzzy logic2 that can be considered as an extension of the binary logic, such that statements
need not be true or false, but they may have a grade of truth between 0 and 1. As a result, one
can suppose the existence of a fuzzy set defined following.

Definition 1 Let be given a robot  expressed as a closed subset  where  is a possible
configuration of the mobile robot , and  denotes its C‐Space. Let us suppose the existence of a not
empty free space , with . Moreover, let us suppose be defined a traversability function

, the traversable region will, be the defined by the following fuzzy set:

{ }Î ÎC C T M C= ( , ( ))| ( ) .tr free freeq q q (9)

First of all, let us note that the traversable set is included into the C‐Space by definition,
, because the membership function  is defined in ; moreover  and also

. The traversability function used in this definition can be considered as a clear
analogous of the more general membership functions which are common in the theory of fuzzy
sets. As a result, when  goes to 1 the statement “is traversale” will be true, whereas if 
the statement “is traversable” will be false.

The aforementioned definition considers all the elements previously indicated, i.e., a robot
model , a space structure  and a set of traversability criteria . The use of this definition,
according to an explicit expression of , can also be used to solve optimal control problems.

In order to better clarify the concept, Figure 3 expresses the difference between a simple
occupancy map in Figure 3a, where free space and obstacles are clearly distinguished through
a binary classification black/white, whereas the concept of fuzzy set in Figure 3b better
characterizes the terrain according to the membership function . Its values are expressed

2 Definition of fuzzy set: Given a generic set X and a membership function : [0; 1], the fuzzy set A is defined as 
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characterizes the terrain according to the membership function . Its values are expressed

2 Definition of fuzzy set: Given a generic set X and a membership function : [0; 1], the fuzzy set A is defined as 
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according to a degree of membership in gray scale, denoting in white high values of ; on the
contrary, black corresponds to low values of . The presence of the region  in Figure 3b can
be interpreted as a region “less‐traversable” than usual, but still not classifiable as an obstacle,
a politic of driving control may generate safe plans.

(a) (b)

Figure 3. Depiction of the free space and fuzzy traversability characterization, the entire area inside the rectangle can
be considered as  in (a), whereas the gray‐scale gradient indicates the value of the membership function  for
each point of  in (b). The presence of the region A denotes a portion of the free space featuring different values of
traversability.

4. Discussion

As the definition of traversability previously introduced can be of general value for geometry‐
based terrain analysis purposes, how to use it in order to build practical traversability functions
will be following shown, including the re‐definition of classical methods, such as elevation
models and roughness models. The exposed examples cover both binary classification
methods and cost‐based assessment methods. Along the discussion, an irregular terrain model
in the form of a DEM of about 20 m × 20 m, featuring a 0.25m grid size, has been used in order
to compare different methods. Let us note that the terrain model, considered as sample model,
expressed as a DEM is stored into a 80 × 80 size matrix, that is, 6400 elements. The same data
in form of a point cloud, storing only the points’ Cartesian coordinates, will take 6400 × 3 points.
This clearly demonstrates the advantage in handling DEMs instead of point clouds; however,
using DEMs part of the information is lost due to the assumption of terrain regularity, which
is not always applicable. Moreover, ToF sensors as well as stereocamera triangulation always
provide a set of distances between the cameras and sampled points in the space, that is, a point
cloud, thus a transformation is required, including its computational cost, to build the digital
map.
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4.1. Binary classification for traversability

Let us consider the example of a binary classification and apply the aforementioned definition
to find a member function  such that the traversability region corresponds to the free part of
the configuration space. Given a generic robot , in the configuration space , in this simple
case  can be expressed by the function:

(10)

Note that, even though this function is the simplest possible, it works regardless of the
particular structure of the C‐Space, and it converges into the general theory of configuration
space. However, in practical cases, it is expected the free space to be explicitly expressed. To
prove that  is true in the case of binary classification, let us consider that by definition
that . As a result, the only part that should be proven is , if  is defined as in
Eq. (10). Hence, let us suppose that exists a configuration qk such that  but . This
implies ; hence, , but this is absurd because qk would belong to both 
and . As a result,  if  is defined as in Eq. (10).

Figure 4. Binary traversability rule applied on an elevation model. In (a) and (b) the 3D‐view and xy‐view are shown.
The red color labels not traversable regions (i.e., ), whereas the cyan color denotes the traversable parts of the
terrain, .

As an example of functionality, Figure 4 presents a binary classification applied to a sample
terrain model. For the sake of the example, given  = (,,),  has been defined as the set of
points such that  ≤ 𝀵𝀵𝀵𝀵. The result is a cyan region which can be considered as traversable,

that is, belonging to , and a red region which can be considered as not traversable, that is,
. The example explicitly refers to the 3D space; however, the definition in Eq. (10) has

general value, since the structure of the configuration space has not been explicitly given.
Though simple and widely used this method neglects information about intermediate levels
of elevation or local irregularities; hence, it is much more used in indoor structured environ‐
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ments where there are strong discontinuities (e.g., floor, walls) and under the assumption of
regular flat floor surface. A different way to see this concept consists in the occupancy maps,
which consider a cell as not traversable, if its elevation is higher than a threshold, that is,
obstacle.

4.2. Elevation terrain model for traversability

Typically used in mobile robotics, elevation models may be described using the formulation
in Eq. (9). Let us suppose to have a ground vehicle that can move in three‐dimensional space.
As indicated earlier, its configuration space can be expressed as  = ℝ3, neglecting the orienta‐
tion terms to simplify the notation, the ground vehicle may be considered as a subset ,
and we can also consider the existence of a forbidden region . Now, let us construct a
traversability function given a terrain model expressed as follows:

{ }Î Ç ÆC C M O= ( , , ) | ( ) = ,free q x y z q (11)

where  = (,), with :ℝ2 ℝ supposed to be regular; moreover, x and y are considered as
limited, thus  ≤ 𝀵𝀵𝀵𝀵,  ≤ 𝀵𝀵𝀵𝀵. In this way, a bounded portion of the x, y plane has been

defined. As a result, given a generic shaped robot  in the configuration space , a traversa‐
bility function  that considers an elevation terrain model can be expressed by the following:

- " Î ¹ ÌT C M C( ) = 1 , 0| ( ) .q
tr max free

max

z
q q z q

z (12)

(a) (b)

Figure 5. The elevation model better describes the sample terrain in Figure 4, the higher informative content allows to
perform better cost‐based traversability analysis, in (a) the 3D mesh is presented, whereas the xy‐axis view is depicted
in (b).

One should note that in Eq. (12) if  𝀵𝀵𝀵𝀵 then  and the configuration will fall into low

values of membership function and this implies that the point will not belong to . However,
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even though the configuration of the robot includes orientation angles in its formalization, this
traversability function does not consider any orientation in its values and this results in a
limitation in the practical application of pure elevation‐based methods. For the sake of
completeness, we should consider the case of 𝀵𝀵𝀵𝀵𝀵𝀵 ∞, where  ∀, but this case can be

considered as trivial.

The example of this type of analysis is reported in Figure 5, where the values of  are indicated
as a color bar from blue corresponding to traversable regions, to red denoting not‐traversable
part of terrain. It results evident that a control rule based on such analysis will bring the robot
towards the lowest regions of the terrain, which though reasonable, it may be not the best
behavior according to the objective of the robot movements. Let us observe that in this method,
the robot shape is considered as a single point in the calculation of the traversability function,
hence considering only the terrain elevation.

4.3. Traversability model based on roughness index

A widely used approach, for geometry and cost‐based terrain traversability analysis, consists
in the definition of the roughness index [47]. It is defined as the standard deviation of the
elevation values in a specific region of the terrain, given by the projection of the robot shape
on the ground.

Given a terrain region considered as free space , defined as in Eq. (11), and a robot model
 described using any polygonal model. Then, it is possible to define the roughness index 

of the terrain, when the robot is in the configuration  as the standard deviation of the
elevation values  of the surface given by the intersection between  and .

m- 2= ( ) ,q qB E Z (13)

where  is the set of all points that fall into the intersection between the
robot  and the free space, and  is the average of the elevation values in the same
region. Since the values of  are not limited in [0, 1] the traversability function related to the

roughness index, according to the definition in Eq. (9), may be considered using a normaliza‐
tion as following:

- " Î ¹ ÌT C M C( ) = 1 , 0| ( ) .q
max free

max

B
q q B q

B
(14)

As in the previous case, Eq. (14) → 0 if  𝀵𝀵𝀵𝀵𝀵𝀵 and the configuration q will fall into low

values of membership function and this implies that it does not belong to . Moreover, 
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, as a result  is well defined. Also in this case, if 𝀵𝀵𝀵𝀵𝀵𝀵 ∞,  ∀
can be considered as trivial.

Figure 6 shows an example of traversability map obtained using the roughness index, for the
sake of this calculation, the robot has been considered to cover an area of about 8 × 8 cells of
the map having grid size of 0.25 m, corresponding to 2 meters in size. The consideration of the
standard deviation on a terrain region calculated according to the robot’s geometry may be
considered as a robust method and, for this reason, widely used for practical applications. One
should note that between the pure elevation traversability analysis and the roughness analysis,
a specific region of the terrain appears as irregular and dangerous, corresponding to a local
surface minimum. This evaluation agrees with the reality that a robot may get stuck into a
hole. On the contrary, the same analysis does not mark as irregular the peak of the hill that
may be perfectly traversable as upland. However, it is clear that also this method may fail in
the simple case of a surface featuring a slope, which though regular and traversable, it may
present high values of variance in its elevation [51].

(a) (b)

Figure 6. Roughness traversability analysis result based on the roughness index in Eq. (13), integrated into the mem‐
bership function in Eq. (14); (a) 3D surface model; (b) xy‐view. The color bar indicates increasing values of traversabili‐
ty, where red corresponds to not traversable regions, while blue corresponds to traversable portion of terrain.

4.4. Unevenness point descriptor‐based model

As an alternative analysis to solve the problems related to the variance of the elevation in sloped
regular surfaces, the use of normal vectors to estimate surface irregularities was presented in
[27], where the authors defined the unevenness point descriptor (UPD), as a simple choice to
extract traversability information from 3D point cloud data. Specifically, the UPD describes
surfaces using a normal analysis in a neighborhood, resulting in an efficient description of both
irregularities and inclination.

Summarizing the concept, let  be a point cloud, that is, a set of points defined by their
Cartesian coordinates defined as in Eq. (3), and let pq be a given point defined as the query point.
The neighborhood of pq in  can be defined as in Eq. (4), given a search radius dm > 0. Then, we

define the unevenness point descriptor FU in pq, as: (,) =  , , where   = (𝀵𝀵,,)
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is given by the vector sum of all the vectors   normal vectors in the neighbors Pq, that is,  = ∑ = 1   with  = 1,...,,  is defined by  =   /, and k is the number of elements

in .

The components of   provide information about the global direction of the local surface in

the sensor reference frame. Whereas  can be interpreted as a local inverse “unevenness
index,” since it assesses the degree of local roughness, and it depends on the distribution of

the direction of the normal vectors in the neighborhood.  is normalized by k, i.e., the number
of points in Pq; hence, it is possible to compare the unevenness index of different points among
each other. The main advantages of this descriptor reside in its simplicity and robustness for
traversability evaluation. Contrary to other methods, UPD detects the variations in the surface
orientation instead of the variation of the pure elevation, which leads to a general description
of regularity in the surface. Moreover, the UPD can be easily adapted to the robot’s specific
task by appropriately setting the neighborhood size, dm. In practice, its value is fixed at the
beginning of the operations based on the robot geometric size [26]. As further observation,

given a neighborhood  denoting a certain region of the terrain, its orientation can be written
as follows:

q -
æ ö
ç ÷ç ÷
è ø
r1( ) = ,cos

| |

q
q z

q

r
P

r
(15)

where  represents the third component of  , orthogonal to the xy‐plane, as a consequence,

d(Pq) represents the global orientation of the surface portion Pq respect to the plane xy.

To bring the unevenness index into the definition of a traversable region, we can consider as
given the C‐Space  and a forbidden space ⊂ , then a free space can be defined as in the
following Eq. (16):

{ }Î Ç Ç ¹ ÆC C P M O= | ( ) ,free q q (16)

where  is a generic portion of space expressed as a point cloud. Let us note that the meaning
of the intersection with  consists in a practical limitation of the C‐Space in the part the robot
can see or has information about. Then, let us suppose to be given the unevenness index

, the traversability region may be identified by the set in Eq. (9), where the membership
function is given by the following:

z- " Î ÌT C M C( ) = 1 | ( ) .q
freeq q q (17)
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(a) (b)

Figure 7. Unevenness point descriptor‐based model for geometric traversability analysis applied on a point cloud de‐
picting the sample terrain model. In (a) and (b), the 3D view and xy‐view, respectively, are depicted. The search radius
for the UPD calculation is dm = 1 m.

(a)

(b) (c)

(d) (e)

Figure 8. UPD point·descriptor analysis. In (b) the 3D point cloud is shown using the color bar to denote traversability
value, whereas its relative 𝀵𝀵𝀵𝀵‐view is shown in (c). As the point cloud has been obtained by stereo‐triangulation, the
left‐camera image is shown in (a). The roughness index‐based analysis in Eq. (14) produces poor results on the same
scenario using a DEM approach, see 3D‐view (d) and xy‐view (e).
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Now, let us observe that in its original form the UPD considers the robot model into the
parameter , at least in its size, that has been said to be fixed at the beginning of robot
operations, according to its shape. However, it is possible to generalize the concept of neigh‐

borhood  considering the set of points which fall in the set not as a sphere neighborhood but
as the intersection between a polyhedral robot model  and the free part of C‐Space, hence

 This generalization allows the user to better define the robot shape
into the descriptor.

The example of the UPD analysis, for the same terrain model considered as sample, is
reported in Figure 7, for the sake of visibility, the values of ζq have been normalized to their
minimum values in the region, since the results of variation were close to regularity. During
the calculation, the search radius has been set to 1 m, according to the previous example of the
roughness index. Contrary to the previous approaches, in the UPD analysis, the strong
variations such as the depressions are now considered as not regular showing a different
perception of the traversability of this terrain model.

As last example, in Figure 8, the UPD has been applied on a point cloud obtained by triangu‐
lation on a stereocamera in real environment, the value of the traversabilitv function is reported
using in color scale, whereas the left‐camera image of the scenario is reported in Figure 8a.
This scene has been extracted from a dataset thoroughly analyzed in [51]. It can be interesting
to note that the presented case scenario features a ramp to access an indoor structure. The ramp
is considered as regular via UPD analysis, whereas it may be misinterpreted considering
elevation model as well as the roughness index. All the borders are correctly detected as not
traversable regions. As the matter of fact, Figure 8d and Figure 8e present the same scenario
described using a DEM and the traversability function in Eq. (14). The misunderstanding of
the scenario leads to the erroneous classification of the ramp to access the building behind it
as fully not traversable. On the contrary, in Figure 8b and Figure 8c the scene is properly
interpreted using the UPD approach.

5. Conclusion and further extensions

Along the chapter, different methods of geometry‐based traversability for mobile robotics have
been explored. A thorough review on the topic suggests that the future trend of sensors and
space description for traversability purposes will refer to point clouds and time‐of‐flight
sensors, or stereo‐3D reconstruction. The necessity to improve the description of terrain,
removing the assumption of regularity, will bring the robot towards the full 3D reconstruction
of the environment at least in short range visibility. Among different methods analyzed in the
discussion, the UPD has demonstrated highest capability of recognition even though it could
be costly in terms of computational performances. The contributions in this work are as follows:
(i) a review of the field with comparison among technologies, (ii) a new definition of travers‐
ability that can be of general value for robot navigation purposes, and (iii) a comparison among
literature methods including practical examples.
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To conclude this chapter, it is worth to give some possible extensions of this work and future
developments. One of them could be the definition of traversable regions in terms of proba‐
bility. Indeed, it should be possible to include a probability function in terms of risk‐of‐collision
or probability of traverse, in which high values refer to minimum probability of collision (i.e.,
max traversing probability) or low values imply maximum probability of collision (i.e., min
traversing probability). Moreover, the traversability regions as defined during this chapter may
fit for navigation purposes using the common potential fields, where the potential function
will consider traversable regions as “attractive.” On the contrary, “repulsive” regions will
coincide with low values of traversability function. Literature in this field typically considers
potential functions that use the distance from obstacles instead of a complete traversability
description.

Author details

Mauro Bellone

Address all correspondence to: bellonemauro@gmail.com

Department of Applied Mechanics, Chalmers University of Technology, Gothenburg, Sweden

References

[1] Automated Guided Vehicle Market by Type – Global Forecast to 2020. Marketsandmarkets,
2015.

[2] J. Greenough, The self‐driving car report: forecasts, tech timelines, and the benefits and barriers
that will impact adoption. BI Intelligence, 2015.

[3] H. A. Yanco, A. Norton, W. Ober, D. Shane, A. Skinner, and J. Vice, “Analysis of human‐
robot interaction at the darpa robotics challenge trials,” Journal of Field Robotics, vol. 32,
no. 3, pp. 420–444, 2015.

[4] Ellery, A. (2015). “Planetary Rovers: Robotic Exploration of the Solar System”. Springer,
ISBN: 978–3–642–03258–5.

[5] M. H. Hebert, C. E. Thorpe, and A. Stentz, “Intelligent unmanned ground vehicles:
autonomous navigation research at Carnegie Mellon” (Vol. 388). Springer Science &
Business Media, Eds. 2012, ISBN:1461563259.

[6] P. Papadakis, “Terrain traversability analysis methods for unmanned ground vehicles:
A survey,” Engineering Applications of Artificial Intelligence, vol. 26, no. 4, pp. 1373–1385,
2013.

Watch Your Step! Terrain Traversability for Robot Control
http://dx.doi.org/10.5772/64489

133



[7] H.  Roncancio,  M.  Becker,  A.  Broggi,  and  S.  Cattani,  “Traversability  analysis
using  terrain  mapping  and  online‐trained  terrain  type  classifier,”  in  Intelligent
Vehicles  Symposium  Proceedings,  2014  IEEE,  pp.  1239–1244,  IEEE,  2014.

[8] S.  Thrun,  “Learning  occupancy  grid  maps  with  forward  sensor  models,”
Autonomous  Robots,  vol.  15,  no.  2,  pp.  111–127,  2003.

[9] P.  Papadakis,  F.  Pirri  “3D  Mobility  Learning  and  Regression  of  Articulated,
Tracked Robotic Vehicles by Physics–based Optimization” International conference
on  Virtual  Reality  Interaction  and  Physical  Simulation,  Eurographics,  Dec  2012,
Darmstadt,  Germany.

[10] Y.  Tanaka,  Y.  Ji,  A.  Yamashita,  and  H.  Asama,  “Fuzzy  based  traversability
analysis  for  a  mobile  robot  on  rough  terrain,”  in  Proceedings  of  the  2015
IEEE  International  Conference  on  Robotics  and  Automation,  2015.

[11] B.  Suger,  B.  Steder,  and  W.  Burgard,  “Traversability  analysis  for  mobile
robots  in  outdoor  environments:  A  semi‐supervised  learning  approach  based
on  3d‐lidar  data,”  in  Robotics  and  Automation  (ICRA),  2015  IEEE  International
Conference  on,  pp.  3941‐3946,  2015.

[12] F.  Oniga  and  S.  Nedevschi,  “Processing  dense  stereo  data  using  elevation  maps:
Road  surface,  traffic  isle,  and  obstacle  detection,”  IEEE  Transactions  on  Vehicular
Technology,  vol.  59,  pp.  1172–1182,  2010.

[13] A.  Broggi,  E.  Cardarelli,  S.  Cattani,  and  M.  Sabbatelli,  “Terrain  mapping  for
off‐road  autonomous  ground  vehicles  using  rational  b‐spline  surfaces  and  stereo
vision,”  in  Intelligent  Vehicles  Symposium  (IV),  2013  IEEE,  pp.  648–653,  2013.

[14] K. Dongshin, M. O. Sang, and M. R. James, “Traversability classification for ugv
navigation: A comparison of patch and superpixel representations,” (San Diego, CA),
pp. 3166‐3173, International Conference on Intelligent Robots and Systems, 2007.

[15] A. Howard and H. Saraji,  “Vision‐based terrain characterization and traversability
assessment,”  Journal  of  Robotic  System,  vol.  18,  no.  10,  pp.  77–587,  2001.

[16] S.  Thrun,  M.  Montemerlo,  and  A.  Aron,  “Probabilistic  Terrain  Analysis  For
High–Speed  Desert  Driving”  In  Robotics:  Science  and  Systems,  pp.  16–19,
Philadelphia,  USA,  August  2006.

[17] M.  Häselich,  M.  Arends,  N.  Wojke,  F.  Neuhaus,  and  D.  Paulus,  “Probabilistic
terrain  classification  in  unstructured  environments,”  Robotics  and  Autonomous
Systems,  vol.  61,  no.  10,  pp.  1051–1059,  2013.

[18] K.  Iagnemma,  H.  Shibly,  and S.  Dubowsky,  “On‐line  terrain parameter  estimation
for  planetary  rovers,”  in  Robotics  and  Automation,  2002.  Proceedings.  ICRA  ‘02.
IEEE  International  Conference  on,  vol.  3,  pp.  3142–3147,  IEEE,  2002.

Robot Control134



[7] H.  Roncancio,  M.  Becker,  A.  Broggi,  and  S.  Cattani,  “Traversability  analysis
using  terrain  mapping  and  online‐trained  terrain  type  classifier,”  in  Intelligent
Vehicles  Symposium  Proceedings,  2014  IEEE,  pp.  1239–1244,  IEEE,  2014.

[8] S.  Thrun,  “Learning  occupancy  grid  maps  with  forward  sensor  models,”
Autonomous  Robots,  vol.  15,  no.  2,  pp.  111–127,  2003.

[9] P.  Papadakis,  F.  Pirri  “3D  Mobility  Learning  and  Regression  of  Articulated,
Tracked Robotic Vehicles by Physics–based Optimization” International conference
on  Virtual  Reality  Interaction  and  Physical  Simulation,  Eurographics,  Dec  2012,
Darmstadt,  Germany.

[10] Y.  Tanaka,  Y.  Ji,  A.  Yamashita,  and  H.  Asama,  “Fuzzy  based  traversability
analysis  for  a  mobile  robot  on  rough  terrain,”  in  Proceedings  of  the  2015
IEEE  International  Conference  on  Robotics  and  Automation,  2015.

[11] B.  Suger,  B.  Steder,  and  W.  Burgard,  “Traversability  analysis  for  mobile
robots  in  outdoor  environments:  A  semi‐supervised  learning  approach  based
on  3d‐lidar  data,”  in  Robotics  and  Automation  (ICRA),  2015  IEEE  International
Conference  on,  pp.  3941‐3946,  2015.

[12] F.  Oniga  and  S.  Nedevschi,  “Processing  dense  stereo  data  using  elevation  maps:
Road  surface,  traffic  isle,  and  obstacle  detection,”  IEEE  Transactions  on  Vehicular
Technology,  vol.  59,  pp.  1172–1182,  2010.

[13] A.  Broggi,  E.  Cardarelli,  S.  Cattani,  and  M.  Sabbatelli,  “Terrain  mapping  for
off‐road  autonomous  ground  vehicles  using  rational  b‐spline  surfaces  and  stereo
vision,”  in  Intelligent  Vehicles  Symposium  (IV),  2013  IEEE,  pp.  648–653,  2013.

[14] K. Dongshin, M. O. Sang, and M. R. James, “Traversability classification for ugv
navigation: A comparison of patch and superpixel representations,” (San Diego, CA),
pp. 3166‐3173, International Conference on Intelligent Robots and Systems, 2007.

[15] A. Howard and H. Saraji,  “Vision‐based terrain characterization and traversability
assessment,”  Journal  of  Robotic  System,  vol.  18,  no.  10,  pp.  77–587,  2001.

[16] S.  Thrun,  M.  Montemerlo,  and  A.  Aron,  “Probabilistic  Terrain  Analysis  For
High–Speed  Desert  Driving”  In  Robotics:  Science  and  Systems,  pp.  16–19,
Philadelphia,  USA,  August  2006.

[17] M.  Häselich,  M.  Arends,  N.  Wojke,  F.  Neuhaus,  and  D.  Paulus,  “Probabilistic
terrain  classification  in  unstructured  environments,”  Robotics  and  Autonomous
Systems,  vol.  61,  no.  10,  pp.  1051–1059,  2013.

[18] K.  Iagnemma,  H.  Shibly,  and S.  Dubowsky,  “On‐line  terrain parameter  estimation
for  planetary  rovers,”  in  Robotics  and  Automation,  2002.  Proceedings.  ICRA  ‘02.
IEEE  International  Conference  on,  vol.  3,  pp.  3142–3147,  IEEE,  2002.

Robot Control134

[19] E. Coyle and E. G. E. Jr., “A comparison of classifier performance for vibration‐based
terrain classification,” tech. rep., DTIC Document, 2008.

[20] F. L. G. Bermudez, C. J. Ryan, D. W. Haldane, P. Abbeel, and R. S. Fearing, “Performance
analysis and terrain classification for a legged robot over rough terrain,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 513–519, IEEE,
2012.

[21] R. B. Rusu, Semantic 3D Object Maps for Everyday Manipulation in Human Living
Environments. Künstl Intell (2010) 24: 345. doi:10.1007/s13218–010–0059–6.

[22] M. Bellone and G. Reina, “Pavement distress detection and avoidance for intelligent
vehicles”, International Journal of Vehicle Autonomous Systems, 2016, Vol. 14, ISSN:
1471–0226.

[23] J. D. S. Prince, “Computer Vision: Models, Learning, and Inference” Cambridge
University Press, 1st ed., 2012.

[24] R. Szeliski, “Computer Vision: Algorithm and applications” Springer, 2010,
ISBN1848829353.

[25] F. Neuhaus, D. Dillenberger, J. Pellenz and D. Paulus, “Terrain drivability analysis in
3D laser range data for autonomous robot navigation in unstructured environments,”
2009 IEEE Conference on Emerging Technologies & Factory Automation, Mallorca,
Spain, 2009, pp. 1–4, doi: 10.1109/ETFA.2009.5347217.

[26] M. Bellone, A. Messina, and G. Reina, “A new approach for terrain analysis in mobile
robot applications,” in Mechatronics (ICM), 2013 IEEE International Conference on, pp.
225–230, IEEE, 2013.

[27] M. Bellone, G. Reina, N. Giannoccaro, and L. Spedicato, “Unevenness point descriptor
for terrain analysis in mobile robot applications,” International Journal of Advanced
Robotic Systems, vol. 10, p. 284, 2013.

[28] J. K. Kearney, X. Yang, and S. Zhang, “Camera calibration using geometric constraints,”
(San Diego, California, USA), IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 1989.

[29] P. Puget and T. Skordas, “An optimal solution for mobile camera calibration,” (Cincin‐
nati, Ohio, USA), IEEE International Conference on Robotics and Automation, 1990.

[30] G. Unal, A. Yezzi, S. Soatto and G. Slabaugh, “A Variational Approach to Problems in
Calibration of Multiple Cameras,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 8, pp. 1322–1338, Aug. 2007, doi: 10.1109/TPAMI.
2007.1035.

[31] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic and extrinsic
calibration of a rig with multiple generic cameras and odometry,” (Tokyo, Japan),
International Conference on Intelligent Robots and Systems, 2013.

Watch Your Step! Terrain Traversability for Robot Control
http://dx.doi.org/10.5772/64489

135



[32] L. Spedicato, N. I. Giannoccaro, G. Reina, and M. Bellone, “Three different approaches
for localization in a corridor environment by means of an ultrasonic wide beam”,
International Journal of Advanced Robotic Systems, vol. 10, pp. 163–172, March 2013.

[33] J.L. Torres, J.L. Blanco, M. Bellone, F. Rodrìguez, A. Gimènez, and G. Reina – “A
proposed software framework aimed at energyefficient autonomous driving of electric
vehicles” – International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, Bergamo, Italy October 2014, pp. 219–230, ISBN 978–3–319–
11899–4;

[34] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg, “Globally
consistent 3d mapping with scan matching,” Robotics and Autonomous Systems, vol. 56,
no. 2, pp. 130–142, 2008.

[35] I. S. Kweon and T. Kanade, “High‐resolution terrain map from multiple sensor data,”
IEEE Transaction on Pattern and Machine Intelligence, vol. 14, pp. 278–292, 1992.

[36] J. Larson, M. Trivedi, and M. Bruch, “Off‐road terrain traversability analysis and hazard
avoidance for ugvs,” (Baden‐Baden, Germany), IEEE Intelligent Vehicles Symposium,
2011.

[37] P. Pfaff, R. Triebel, and W. Burgard, “An efficient extension of elevation maps for
outdoor terrain mapping,” In Proceedings of the International Conference on Field and
Service Robotics (FSR), pp. 165–176, 2005.

[38] T. Ohki, K. Nagatani, and K. Yoshida, “Path planning for mobile robot on rough terrain
based on sparse transition cost propagation in extended elevation maps,” pp. 494–499,
2013 IEEE International Conference on Mechatronics and Automation (ICMA), Aug
2013.

[39] N. Vandapel, D. F. Huber, A. Kapuria, and M. Hebert, “Natural terrain classification
using 3‐d ladar data,” (New Orleans, LA, USA), pp. 5117–5122, IEEE International
Conference on Robotics and Automation, 2004.

[40] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya, “Autonomous navigation
using a real‐time 3d point cloud,” in 2010 Australasian Conference on Robotics and
Automation, pp. 1–3, 2010.

[41] M. Bellone and G. Reina, “Road surface analysis for driving assistance,” in Workshop
Proceedings of IAS‐13 13th International Conference on Intelligent Autonomous Systems
Padova (Italy), pp. 226–234, 2014.

[42] T. Braun, H. Bitsch, and K. Berns, “Visual terrain traversability estimation using a
combined slope/elevation model”, Advances in Artificial Intelligence Volume 5243 of
the series Lecture Notes in Computer Science pp 177–184, Springer, 2008, ISBN 978–3–
540–85845–4.

Robot Control136



[32] L. Spedicato, N. I. Giannoccaro, G. Reina, and M. Bellone, “Three different approaches
for localization in a corridor environment by means of an ultrasonic wide beam”,
International Journal of Advanced Robotic Systems, vol. 10, pp. 163–172, March 2013.

[33] J.L. Torres, J.L. Blanco, M. Bellone, F. Rodrìguez, A. Gimènez, and G. Reina – “A
proposed software framework aimed at energyefficient autonomous driving of electric
vehicles” – International Conference on Simulation, Modeling, and Programming for
Autonomous Robots, Bergamo, Italy October 2014, pp. 219–230, ISBN 978–3–319–
11899–4;

[34] D. Borrmann, J. Elseberg, K. Lingemann, A. Nüchter, and J. Hertzberg, “Globally
consistent 3d mapping with scan matching,” Robotics and Autonomous Systems, vol. 56,
no. 2, pp. 130–142, 2008.

[35] I. S. Kweon and T. Kanade, “High‐resolution terrain map from multiple sensor data,”
IEEE Transaction on Pattern and Machine Intelligence, vol. 14, pp. 278–292, 1992.

[36] J. Larson, M. Trivedi, and M. Bruch, “Off‐road terrain traversability analysis and hazard
avoidance for ugvs,” (Baden‐Baden, Germany), IEEE Intelligent Vehicles Symposium,
2011.

[37] P. Pfaff, R. Triebel, and W. Burgard, “An efficient extension of elevation maps for
outdoor terrain mapping,” In Proceedings of the International Conference on Field and
Service Robotics (FSR), pp. 165–176, 2005.

[38] T. Ohki, K. Nagatani, and K. Yoshida, “Path planning for mobile robot on rough terrain
based on sparse transition cost propagation in extended elevation maps,” pp. 494–499,
2013 IEEE International Conference on Mechatronics and Automation (ICMA), Aug
2013.

[39] N. Vandapel, D. F. Huber, A. Kapuria, and M. Hebert, “Natural terrain classification
using 3‐d ladar data,” (New Orleans, LA, USA), pp. 5117–5122, IEEE International
Conference on Robotics and Automation, 2004.

[40] M. Whitty, S. Cossell, K. S. Dang, J. Guivant, and J. Katupitiya, “Autonomous navigation
using a real‐time 3d point cloud,” in 2010 Australasian Conference on Robotics and
Automation, pp. 1–3, 2010.

[41] M. Bellone and G. Reina, “Road surface analysis for driving assistance,” in Workshop
Proceedings of IAS‐13 13th International Conference on Intelligent Autonomous Systems
Padova (Italy), pp. 226–234, 2014.

[42] T. Braun, H. Bitsch, and K. Berns, “Visual terrain traversability estimation using a
combined slope/elevation model”, Advances in Artificial Intelligence Volume 5243 of
the series Lecture Notes in Computer Science pp 177–184, Springer, 2008, ISBN 978–3–
540–85845–4.

Robot Control136

[43] B. Cafaro, M. Gianni, F. Pirri, M. Ruiz, and A. Sinha, “Terrain traversability in rescue
environments,” in 2013 IEEE International Symposium on Safety, Security, and Rescue
Robotics (SSRR), pp. 1–8, Oct 2013.

[44] A. Dargazanv and K. Berns, “Stereo‐based terrain traversability estimation using
surface normals,” in 41st International Symposium on Robotics; Proceedings of ISR/Robotik
2014, pp. 1–7, June 2014.

[45] G. Ishigami, K. Nagatani, and K. Yoshida, “Path planning for planetary exploration
rovers and its evaluation based on wheel slip dynamics,” in IEEE International Confer‐
ence on Robotics and Automation, pp. 2361–2366, 2007.

[46] T. Kubota, Y. Kuroda, Y. Kunii, and T. Yoshimitsu, “Path planning for newly developed
microrover,” in 2001. Proceedings 2001 ICRA IEEE International Conference on Robotics and
Automation, vol. 4, pp. 3710–3715, 2001.

[47] E. Rohmer, G. Reina, and K. Yoshida, “Dynamic simulation‐based action planner for a
reconfigurable hybrid leg‐wheel planetary exploration rover,” Advanced Robotics, vol.
24, no. 8–9, pp. 1219–1238, 2010.

[48] H. Seraji, “Traversability index: A new concept for planetary rovers,” (Detroit, MI,
USA), pp. 2006–2013, IEEE International Conference on Robotics and Automation,
1999.

[49] J. J. Craig, Introduction to Robotics: Mechanics and Control, vol. 3. Pearson Prentice Hall,
Upper Saddle River, 2005.

[50] S. M. LaValle “Planning Algorithms” Cambridge University Press, 2006,
ISBN1139455176.

[51] M. Bellone, G. Reina, N. Giannoccaro, and L. Spedicato, “3d traversability awareness
for rough terrain mobile robots,” Sensor Review, vol. 34, no. 2, pp. 220–232, 2014.

Watch Your Step! Terrain Traversability for Robot Control
http://dx.doi.org/10.5772/64489

137



Robot Control
Edited by Efren Gorrostieta Hurtado

Edited by Efren Gorrostieta Hurtado

Photo by Ociacia / iStock

This book includes a selection of research papers in robot control applications. The 
description of projects using robotic systems in areas such as vision, navigation, path 

planning, trajectories, non-holonomic systems, mobile robotics, robot control with 
very specific structures, as well as artificial intelligence systems is pointed out. It 
also presents several tools and mathematical concepts that allow the development 
and operation of robotic systems. Additionally, the development of different ideas 
in control systems that are useful and hopefully enriching for the reader are also 

presented in this book.

Robot C
ontrol

ISBN 978-953-51-2684-3

 

ISBN 978-953-51-4170-9


	Robot Control
	Contents
	Preface
	Chapter 1
A Review of Compliant Movement Primitives
	Chapter 2
Induced Force Hovering of Spherical Robot by Under-Actuated Control of Dual Rotor
	Chapter 3
Adaptive Steering and Trajectory Control of Wheeled Mobile Robots for Autonomous Navigation
	Chapter 4
Occupancy Map Construction for Indoor Robot Navigation
	Chapter 5
Analysis of a Sorter Cascade Applied to Control a Wheelchair
	Chapter 6 - Watch Your Step! Terrain Traversability for Robot Control

