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Preface

The history of humanity is the history of progress and improvement. From the use of primi‐
tive tools such as stone axes to bronze utensils, from observing individual phenomenon to
the understanding of systems, human history is littered with social progress and technologi‐
cal improvement. The focal point shift from individual events to systems represents a quan‐
tum leap in understanding. The subject of this book “real-time systems” is a branch of the
study about systems and their behaviors. A lot of times, the cumulative behaviors of a sys‐
tem are not a simple addition of individual parts. For example, the collective behavior of a
neural network exhibits intelligence while its individual node does not. Thus, the study of
systems (all kinds of systems such as bio-systems, ecosystems, social systems, computer sys‐
tems, and the weather system to name just a few) is much more complex and interesting
than the study of individual object and its behaviors.

Real-time systems (discussed in this book) are special kind of systems that have some
unique characteristics:

• These systems are subject to real-time constraints. The time constraints are represented as
deadlines. In this context, systems interact with environments by acquiring data from the
environment (through sensors, cameras, etc.), processing (interpreting) the data, and affect‐
ing (taking actions based on the processed data) the environment before the deadlines. Of
course, in real situations, deadlines can be further categorized as hard deadlines or soft
deadlines.

• The parts in these systems are connected and can communicate either synchronously or
asynchronously.

• Flexible architectures that can be applied to different domains and be adapted to changing
environments.

• Systems that are able to display cognitive behaviors (intelligence) by self-learning and self-
organizing.

It’s exciting to know that the content presented in this book is the work of practitioners, re‐
searchers, scientists, and scholars from many countries, like Brazil, Finland, Italy, Korea,
Malaysia, Spain, Sweden, the United Kingdom, and the United States. This book will be use‐
ful to a wide range of audiences: university students/professors, engineers, and business‐
men who are interested in real-time systems and future innovations.

Dr. Kuodi Jian
Metropolitan State University, Computer Science Faculty,

Department of Information and Computer Sciences,
Minnesota, The United States of America





Chapter 1

Introductory Chapter: Real-Time Systems

Kuodi Jian

Additional information is available at the end of the chapter
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1. Introduction

In nature, we encounter a lot of things: some are single objects (such as rocks, water, and air)
while others are systems (such as weather systems, cooling systems in cars, and electric power
systems). In general, systems consist of many objects. Thus, systems are more complex than
single objects. To understand how things work, we need to study not only the characteristics of
single objects but also the collective behaviors of systems. This book focuses on the study of
systems and their characteristics. Specifically, we discuss a subset of systems called “real-time
systems” that meet certain time constraints.

The dividing line of single objects and systems also depends on the viewpoint. For example,
when looking at a car as a single object (from a car user’s points of view), we only see its
functionalities as a vehicle (its driving wheel to control direction, its brake pedal to control stop,
etc.); on the other hand, when looking at a car’s break system (from a car mechanic’s point of
view), we see the mechanical details of the brake system such as hydraulic ducts, boosters, and
brake pads. Figure 1 shows the different points of views.

Figure 1(a) shows an object viewpoint; Figure 1(b) shows the car’s brake from a system point
of view. Understanding these different views is very important in dealing with the complexity.
In fact, these viewpoint shiftings mimic the human brain strategy (the strategy that is also
adopted by software engineering and design) in dealing with complex tasks.

The strategy is to abstract away the details when they are not needed, and to microscope the
details when they are needed. For example, to use a car, we do not need to know how the
combustion engine works, neither do we need to know how the brake system works (all we
need to know is that pressing the gas pedal to accelerate the car and pressing the brake pedal
to stop the car). As a car user, we simplify the car by abstracting away the details of mechanical
details. Here the mechanical details are irrelevant to operate a car. On the other hand, to repair
a car, we have to know different systems in a car. As a mechanic, the knowledge of how each

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



system works is vital to perform his job. At system level, we have to go extra mile to understand
different parts and the interaction among these parts (as mentioned before, systems consist of
parts). This viewpoint shifting is necessary for a mechanic. By microscoping into the details,
a mechanic is able to isolate and fix a problem occurred in a car system.

Figure 1. Object view and system view of a car. (a) Object view, (b) system view of brake.

2. Systems are more than simple addition of parts

Often, we assume that systems are made of parts and collective behavior of a system is the
addition of its parts. This assumption stems from our intuition and experiences. For example,
if one chopstick can sustain 1 lb, then a bundle of ten can sustain 10 lbs.

But that assumption does not tell the whole story. We claim that a system is more than the
addition of its parts. In other words, the whole is greater than the sum of its parts. “The whole
is more than the sum of its parts. It is more correct to say that the whole is something else than
the sum of its parts, because summing up is a meaningless procedure, whereas the whole-part
relationship is meaningful” [1].

The importance of studying systems instead of individual parts is the implication of our claim:
the synergy. Let us take an example to illustrate how this is the case. Human body can be
viewed differently. If our focus is on the parts, we will see organs such as heart, liver, kidney,
and head; if our focus is on the whole (holistic/system view) body, we actually see a complex
organism that is made of many systems (digestive system, cardiovascular system, nerve
system, etc.). Figure 2 shows the structure parts of a human body.

Real-time Systems2



Figure 2. The structure parts of a human body.

One of the most amazing synergistic effects of a human body is the soul (or abstract thinking).
Human soul is the thing that is above and beyond any body parts. In fact, it belongs to a
different domain (body parts belong to a concrete physical domain, while soul belongs to a
cognitive/spiritual domain). I want to point out that only from a holistic/system point of view,
we are able to see the effect of synergy (the spiritual side of our body).

Another example of our claim is the neural networks. When focusing on an individual neural
node, we see only simple behavior of conducting information from point A to point B; but
when focusing on the whole system, we are able to see the synergy of intelligence.

Synergy gives us the reason to study systems.

3. Real-time systems

In this book, we focus on the discussion of a subset of systems: real-time systems. Real-time
systems are those systems that have certain requirements on the timing. In this type of systems,
responses to environment’s stimuli must be done before certain deadlines. The characteristics
of real-time systems are:

• The usefulness of a system is judged not only by the correctness of the system behaviors but
also by the time these behaviors are initiated.

• Different parts of a system will communicate and the communication among the parts also
satisfies certain time requirements. The typical communication timing requirements are:
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1. Synchronous--- the communication must be done at the real-time (no delay or the delay
can be ignored in a practical sense). This is the most stringent time requirement. One
of the examples is the video conferencing (in this situation, real-time data must be
delivered without delay).

2. Isochronous--- real-time data must be delivered in a fixed period of time. This is a quasi
real-time requirement. Isochronous is the requirement that is not as rigid as synchro‐
nous but not as lenient as asynchronous (kind of in the middle). This mode of commu‐
nication meets the need of those applications that a steady data stream is more
important than completeness and accuracy. One of the examples is the digitized voice
communication (in this case, dropping of packets is acceptable).

3. Asynchronous--- the communication can be done later. This is the most flexible time
requirement. One of the examples is the email (no guarantee how fast the message will
be delivered to the recipient).

• Failure to take a required action is as bad as the wrong action. For instance, the consequence
of a delayed car brake action may cause an accident (in this case, it is almost as bad as the
wrong action).

To make the concept of real-time system more concrete, let us look at some examples of real-
time systems:

3.1. Air traffic control system

Air traffic control system contains multiple function units. The main objective is to regulate
the airplane traffic so that the operation is safe and efficient. To achieve that, multiple func‐
tional units (parts) of the system must communicate and cooperate among themselves. For

Figure 3. An air traffic control system.
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example, the radar tower will send information of airplane positions to the air traffic controllers
and the air controller will tell airplanes to maintain certain speed, altitude, and direction.
Figure 3 shows the parts involved in this system.

As shown in Figure 3, the air controller needs to monitor and control airplanes (such as
knowing the stages of takeoff, departure, en route, approaching, and landing). Since the speed
of a typical commercial airplane is in the range of 600–700 miles per hour, the system works
in strict time constraint. Thus, it is a real-time system.

3.2. Energy demand management system

Another example of real-time system is the electric distributing and energy demand manage‐
ment system also known as demand side management (DSM) [2]. Figure 4 shows the parts
involved in this system.

Figure 4. An electric distributing and energy demand management system.

As shown in Figure 4, the electric power distributing system has many parts and is a complex
system. To optimize the power efficiency, modern power systems use both fossil energy and
reusable energy such as hydraulic power, photovoltaic energy, and wind energy. The main
functionality of the system is to regulate the power source by using energy storage and by
switching on and off power generators. Since we are not able to store large portion of electricity,
the system must monitor the supply and demand data in real-time. Sometimes, the configu‐
ration of the power grid needs to be changed to accommodate the power demand surge (all
these need to be done with a time limit).

Introductory Chapter: Real-Time Systems
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4. Overview of the chapters

In this book, we carefully selected a set of manual scripts that are written by authors with
different backgrounds. The selected articles have a broad spectrum of topics ranging from
theory to application. At the mean time, all the topics are centered on the main theme of real-
time systems. In this way, readers get the benefit of wide exposure to the issues and information
related to the subject. In the following, I give you a brief introduction to each of the remaining
chapters.

Chapter 2 “Real-Time Reconfiguration of Distribution Network with Distributed Genera‐
tion” wrote by Daniel Bernardon, Ana Paula Carboni de Mello, and Luciano Pfitscher. The
main contribution of the chapter is the presentation of “a new methodology to perform the
real-time reconfiguration of distribution networks incorporating distributed generation in
normal operation”. The research method used belongs to empirical and scientific (according
to [3], research methods can be put into a set of predefined categories).

Chapter 3 “Uniform Interfaces for Resource-Sharing Components in Hierarchically Sched‐
uled Real-Time Systems” wrote by Martijn M. H. P. Van Den Heuvel, Reinder J. Bril, Johan
J. Lukkien, Moris Behnam, and Thomas Nolte. The main contribution of the chapter is the
proposing of “uniform interfaces to integrate resource-sharing components into Hierarchical
Scheduling Frameworks (HSFs) on a uni-processor platform”. The contribution is significant
to the field of real-time operating systems. The research method used belongs to experimental
research [I].

Chapter 4 “Thermal and Energy Analysis for Periodic Scheduling on Multi-Core Real-Time
Systems” wrote by Ming Fan. The main contribution of the chapter is the analysis of the
thermal behavior on multi-core real-time systems and the energy consumption for a given
speed scheduling on multi-core systems.

Chapter 5 “Multi-objective Real-time Dispatching Problem in Electric Utilities: an Appli‐
cation to Emergency Service Routing” wrote by Vinicius Jacques Garcia, Daniel Bernardon,
Iochane Guimaraes, and Julilo Fonini. The main contribution of the chapter is the presentation
of a novel application of real-time dispatching problem to electric utilities when multi-
objectives are involved. It presents a heuristic approach to solve the emergency dispatching
and routing problem.

Chapter 6 “Kalman Filtering and Its Real-Time Applications” wrote by Lim Chot Hun, Ong
Lee Yeng, Lim Tien Sze, and Koo Voon Chet. The main contribution of the chapter is the
demonstration of different use of Kalman filtering. The authors outlined and explained the
fundamental Kalman filtering model in real-time discrete form, and devised two real-time
applications that implemented Kalman filtering.

Chapter 7 “A Real-Time Bilateral Teleoperation Control System over Imperfect Network”
wrote by Truong Quang Dinh, Yong II Yoon, Cheolkeun Ha, and James Marco. The main
contribution of the chapter is the introduction of an advanced bilateral teleoperation net‐
worked control system; the introduction of an approach to develop a force-sensorless feedback
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control (FSFC) that is able to simplify the sensor requirement in designing the Bilateral
Teleoperation Networked Control System (BTNCS).

Chapter 8 “Wireless Real Time Monitoring System for the Implementation of Intelligent
Control in Subways” wrote by Alessandro Carbonari, Massimo Vaccarini, Mikko Valta, and
Maddalena Nurchis. The main contribution of the chapter is the presentation of the technical
features of state-of-the-art Wireless Sensors Networks (WSN) for environmental monitoring.
Specifically, this article presents the application of WSN to the Passeig de Gracia (PdG) subway
station in Barcelona using a Model-based Predictive Control system (MPC).

The above-mentioned chapters cover a wide range of topics that are centered on the theme of
real-time systems [4, 5]. We wish you enjoy reading rest of the book.

Author details

Kuodi Jian

Address all correspondence to: Kuodi.jian@metrostate.edu

Metropolitan State University, Saint Paul, MN, USA
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Chapter 2

Real‐Time Reconfiguration of Distribution Network with
Distributed Generation

Daniel Bernardon, Ana Paula Carboni de Mello and
Luciano Pfitscher

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62632

Abstract

This  chapter  shows a  methodology to  accomplish the  real‐time reconfiguration of
distribution  networks  considering  distributed  generation  in  normal  operating
conditions. The availability of the wind power generation, solar photovoltaic power
generation, and hydroelectric power generation is considered in the reconfiguration
procedure.  The  real‐time  reconfiguration  methodology  is  based  on  the  branch‐
exchange technique and assumes that only remote‐controlled switches are considered
in the analysis. The multicriteria analysis, analytic hierarchy process (AHP) method, is
used to determine the best switching sequence. The developed algorithms are integrated
into a supervisory system, which allows real‐time communication with the network
equipment. The methodology is verified in a real network of a power utility in Brazil
with different typical daily demand curves and distributed generation scenarios.

Keywords: distributed generation, distribution network, real‐time reconfiguration, re‐
mote‐controlled switches, smart grid

1. Introduction

The electric power system, especially the distribution system, is undergoing major changes in
its current structure. This new concept of smarter grids, known as smart grids, is incorporat‐
ing automation technologies and communication in real time to the grid, with more intelli‐
gent devices,  distributed generators’  connection and instant forward actions to electrical
problems. These changes in the distribution system enable greater diversity in services related
to energy, such as demand management, the use of distributed generation from renewable

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



sources, connection of electric vehicles, and voltage maintenance after self‐healing, among
others.

In this sense, this chapter presents a new methodology and a software tool for real‐time
reconfiguration of distribution network considering distributed generation units the renewa‐
ble sources. The work of [1, 2] indicates that this system has a good performance, applying
smart grids concepts, from the information and functionality of remote‐controlled equipment
installed in the distribution test systems.

This chapter is divided into five sections. The second section presents the main concepts that
guide the smart grids. Following is shown the distributed generation technologies to the
application exposed in this work. The fourth section presents the reconfiguration methodology
developed in real time. Then, the results and discussions are exposed considering a large real
distribution system. Finally, the main conclusions are presented in the last section.

2. Smart grids concepts

The smart grids represent a new paradigm in the way power systems are designed and
operated. They are characterized by the integration of well‐established technologies and
concepts that together seek to respond to the increased demand and requirements regarding
quality and sustainability in the energy sector [3]. The resources available from technological
advances in telecommunication and automation have brought benefits to the grid, especially:
fast processing and information exchange between network devices, allowing real‐time
monitoring and control; cost and time reduction with maintenance teams; the possibility of
creating more robust and reliable systems and less susceptible to human limitations; and the
integration of network structures, such as distributed generation, stability control, and
demand control.

However, the benefits of the technology are often economically viable only if the automated
system is part of a larger whole, provided with a degree of intelligence. This applies, for
example, for the automatic network restoration, in which the automatic operation of remotely
controlled switches must be integrated with the detection and isolation of the fault systems,
ensuring the restoration of the largest possible number of consumers. In this case, the system's
intelligence can be represented by the response of computer programs that employ optimiza‐
tion techniques and support decision‐making.

A general illustration of some features and elements of the smart grids is highlighted in
Figure 1. From the bottom to the top, the figure shows the main interfaces between the power
utility services and equipment, and the consumer and/or micro generator. The middle layer
of the figure gives some examples of structures that can be related either to power utilities or
to consumers. A brief discussion on the main concepts shown in the Figure 1 is presented in
this section.

Real-time Systems10



Figure 1. A general view of a smart grid.

2.1. Response demand

The demand response refers to the ability of management and control of power system loads.
The primary goal of DR was to reduce peak consumption by turning off loads in higher power
consumption schedules. Alternatively, consumption can be shifted to off‐peak periods or even
can be increased at certain periods, to maintain the stability of generation or to make the most
of the available resources, such as energy from distributed generation [4].

The implementation of DR is done through electronic devices that communicate with the
power utility and receive commands to turn off the loads connected to them, according to the
request of the utility or to the energy rate variation. Previously, a priority study of the loads
must be done to avoid interruptions that may harm important services to the consumer.

The demand response is one of the challenges of the energy market facing the smart grids. It
can promote greater pressure to reduce prices and increase concern about the use of energy
by consumers. From the utility's viewpoint, it may result in a change in load curves and
reduction of the peak consumption, which implies lower need for investment in energy
reserves. On the other hand, the biggest challenges are the consumers’ behavior change, the
need for compatible technology—such as advanced metering structures—and the efficiency
of government agencies in regulating and supervising the process.

2.2. Advanced metering infrastructures (AMIs)

Advanced metering infrastructure comprises all the elements needed for the measurement
and communication between consumers and suppliers. The communication in this case is

Real‐Time Reconfiguration of Distribution Network with Distributed Generation
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bidirectional and allows, for example, that a power utility sends to the consumer the real‐time
energy pricing. Integration with demand response devices allows load management according
to the change in the price or according to the need of the power utility.

The advanced metering infrastructure consists of electronic meters, communication networks,
and a data management system (MDMS, meter data management system), which is respon‐
sible for storing and managing the large amount of data from the power meters and establish
interface between the data collected and other features of the network, such as the billing
system and maintenance teams, for example.

The advantages of AMIs include the possibility of monitoring the energy billing in real time
by the consumer, fast detection of measurement failures and non‐technical losses, and the
creation of consumer profiles for demand response programs and fast response to energy
restoration systems. AMIs also allow the creation of more accurate consumer databases for
profiles and demand estimation studies and provide real‐time measurements that help in
decision‐making regarding the system operation. The technological challenges of AMIs
include the need for standardization of communication and interfaces between devices, and
security issues to ensure that only authorized devices could access the network information [5].

2.3. Smart meters

The smart meter may be considered as an evolution of the automatic electronic power meter.
The main feature of smart meters is the two‐way communication, which makes it possible to
receive real‐time power utility commands.

The standard of communication varies depending on the smart meter application project. In
some countries, for example, power meters communicate through wire with a data concen‐
trator and the data concentrator communicates with a central by a wireless network. Many
smart meters, however, have wireless communication capability directly to the operation
center.

Communication can be considered the biggest challenge of deploying smart meters. A wide
variety of protocols and possible ways of communication is used, and there is no universal
standardization of power meters. Possible arrangements of networks include the use of cellular
networks, satellite communications, radio frequency, Wi‐Fi, power line communication,
directly to a central or a data concentrator, or in cascade mode communicating through a mesh
network. The main protocols used are defined by ANSI C12.18 standard in the United States,
and IEC 61107/62056 in Europe. Regardless of the type of communication, the discussion about
the project to be adopted involves cost, safety, and health.

Some common features in smart meters include possibility of remote connection and shut‐
down of the energy point, grid failure warning, fraud warning, real‐time monitoring of energy
bill, and demand control. In some projects, smart meters also have the ability to communicate
with user internal devices. For example, in a residence, the smart meter can receive or send
information to and from appliances, air‐conditioning units. This concept is based on the home
area network and enables the timely management of user loads.

Real-time Systems12



2.4. Plug‐in electric vehicles

The smart grids led to concerns about changes in consumer load profiles, and the prospect of
increased plug‐in hybrid electric vehicles (PHEV) connected to the power system is one of the
most discussed points [6]. Electric vehicles are characterized by substituting fully or partially
(in case of hybrid vehicles) the traditional internal combustion motor by electric motors for
vehicle propulsion. Electric motors are typically powered by batteries; and if the batteries are
recharged through the electric distribution network, the vehicles are called plug‐in.

The impact of PHEVs in power systems is significant, and several studies highlight the need
for planning of battery recharges, to avoid concentration of PHEVs overloading the system,
and solutions based on the use of the vehicle to inject energy into the network during peak
periods (vehicle‐to‐grid).

The smart grids shall be prepared to absorb this new type of demand. Some aggravating quality
factors in power systems can be cited: power imbalances (in case of single‐phase chargers),
harmonics, and increased voltage drops and losses, particularly in feeders with large exten‐
sions. Furthermore, the capacity of distributions transformers may be easily extrapolated if a
large amount of PHEVs is loaded simultaneously.

2.5. Small‐scale distributed generation

Distributed generation (DG) normally employs renewable energy sources, mainly wind and
photovoltaic, due to difficulties of building small conventional power plants, such as hydro
and thermal coal, close to consumption centers.

In residences, photovoltaic energy has the advantages of cost and modularity to install in roofs
—in the power range up to 10 kW. Figure 2 shows a typical arrangement of a photovoltaic
microgeneration connected to the grid, which includes a set of batteries for energy storage,
power electronics circuits (charge control and inverters), and a bidirectional power meter.

Figure 2. Small‐scale generation connected to the grid.

To take advantage of DG, smart grids have to include advanced mechanisms of generation
estimation, short‐ and long‐term ability to quickly regulate power and energy storage, and
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management of distributed resources in conjunction with the demand response [7]. The main
technical issues involved are related to power quality, stability, and protection, due to the
intermittent characteristic of the primary sources.

2.6. Automation and information technology

A high level of automation and information technology (IT) is expected in a smart grid. The
network infrastructure must support data management of electronic meters (MDMS), moni‐
toring and control of network status (overload, reactive power control, etc.), load and distrib‐
uted generation management, charging of PHEVs, among other features. Information systems
should communicate with each other at different levels of implementation, such as power
regulation strategies, billing, maintenance management, consumer and network databases,
geographic information systems (GIS), among others. Interoperability between standards and
communication protocols plays a critical role in the advancement of smart grids. An important
reference guide is published by the National Institute of Standards and Technology (NIST) [8].

At the operation center, the supervisory systems (SCADA) perform the interface between the
technical team (operator, planner, supervisor, etc.) and the network devices. At the distribution
network, some automation features may include automatic adjustment of protection devices,
automatic regulation of voltage levels, control of capacitor banks and transformers’ taps,
control of distributed generation, self‐reconfiguration, in addition to the automatic manage‐
ment of loads and consumption measurements. Furthermore, the automation requires the
employment of remote‐controlled equipment (switches, reclosers, circuit breakers, etc.), and
digital controllers and intelligent electronic devices (IEDs).

With the advancement of the smart grids, the profile of the load curves of distribution feeders
will be subject to a different dynamic behavior. Some features, such as increased use of
distributed generation, demand response, and charging of electric vehicles, will require a fast
network response for new generation and load scenarios. The automatic reconfiguration in
real time will help to improve the network performance and to promote more efficient use of
the smart grids resources.

3. Distributed generation technologies

The concept of distributed generation refers to the use of small generators directly connected
to the distribution network or the local network of consumers. Among the current generation
sources stand out wind power, photovoltaic, hydroelectric, and diesel. Thermal power plants
and biomass have also been employed in DG, but on a smaller scale.

3.1. Wind power

The wind power harnessing is obtained from the kinetic energy conversion of the air masses
through translational movement in rotational kinetic energy, using a wind turbine or wind
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generator for electricity generation. Figure 3 illustrates the typical components of a wind
turbine: rotor, nacelle, generator, sensors, among others.

The rotor is responsible for transforming the kinetic energy of wind in mechanical energy of
rotation. The turbine blades are fixed in the rotor, which in turn is connected to a hub inter‐
connected to the generator through a gearbox. The mechanisms to allow operation of the
generator are located in the nacelle, for example, the turning control, the brake system, the
wind sensors, among others.

3.1.1. Determination of wind power

Only part of the extracted wind power can be used to generate electricity. The amount of energy
that can be converted into electricity is obtained by the power coefficient of the wind turbine
Cp, which is the ratio between the possible power to be extracted from the wind and the total
amount of power contained therein [9, 10]. Equation (1) defines the effective output power of
a wind turbine (kg m/s) (where 1 kg m/s is 9.81 W):

r= × × × × 31
2t pP C A v (1)

where ρ is the specific air density (kg/m3), A is the cross‐sectional area (m2) swept by the
propeller blades or the turbine blades, e v is the wind speed (m/s).

Figure 3. Schematic of a wind turbine generating power.
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3.2. Photovoltaic power

Photovoltaic generation uses semiconductor elements capable to generate electricity from the
direct conversion of solar energy in electrical energy through solar cells (photovoltaic).
Although it can be straightforward, this conversion process depends on the characteristics of
each semiconductor and quality of the materials employed in manufacturing technology.

One of the key aspects for the photovoltaic systems implementation is the knowledge of local
solar radiation characteristics. These data may be obtained through the meteorological data
base information. Solar radiation and temperature are the major variables that affect the
generated power of the photovoltaic cells. To illustrate these effects, characteristic curves were
obtained with the PV module parameters (245 W KD245GH) of the Kyocera manufacturer [11].
Figure 4a shows the I–V curves as a function of solar radiation. As can be seen, the solar
radiation modifies the available power by changing the output current of a photovoltaic
module. Besides to the solar radiation, the operating temperature of the cells also influences
the amount of generated power, since the output voltage of the photovoltaic cell is changed
depending on the ambient temperature. Figure 4b shows the I–V characteristic curve consid‐
ering the temperature variation.

Figure 4. (a) Current and (b) voltage characteristics for the KD245GH module.

3.2.1. Determination of the solar photovoltaic power

The photovoltaic systems’ behavior is usually characterized by measuring the voltage and
current curves (I–V curves) of the PV modules from standard test conditions (STC). These
conditions establish the reference values for the radiation (L) 1000 W/m2, temperature (T) 25°C,
and air mass (AM) 1.5.

However, STC conditions rarely occur in real operating conditions. Consequently, the
estimation of the PV modules behavior requires extrapolation from the standpoint of real
operating conditions.
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Currently, there is no standard methodology for assessing the electricity production of PV
modules. There are typically two methods of assessing the amount of maximum power that
modules produce numerical methods and algebraic methods [12, 13]. The numerical proce‐
dures are used to calculate the instantaneous power peak of the curve I–V in specific conditions,
such as STC. Since the algebraic procedures use data regression analysis using historical data
and can be used for any operating condition, they are more suitable for real data applications.

The method of Osterwald is one of the algebraic methods most commonly used because of the
simplicity. It allows calculating the output power of a photovoltaic system for any amount of
irradiation and cell temperature. Equation (2) shows the method of Osterwald [14]:

gé ù= × × - × -ë û1 ( )i
Máx STC i STC

STC

GP P T T
G

(2)

where PSTC is the maximum power generated by the module (Watts), usually being the rated
power of the manufacturer datasheet. GSTC is the overall radiation to the condition of the STC;
Gi and Ti is the overall radiation; and air temperature condition TSTC is measured and the
temperature for STC condition. Knowing that the STC conditions are given in restricted
conditions, it is necessary to apply a power factor correction for temperature, which is
represented by γ and corresponds to the value of the interval -0.005 to -0.003°C-1.

3.3. Hydroelectric generation

The energy generation through the hydraulic potential for exploitation in a river can be
characterized in different ways: When there is a concentrated unevenness in a waterfall,
featuring a natural advantage, through a barrage with small unevenness, or through diversion
of river from its natural course. The water is conducted through canals, tunnels, or penstocks
and transformed into kinetic energy by spinning of turbine blades; this motion produces
electrical power from the drive shaft of a generator.

Small hydro power (SHP) currently accounts for a fast and efficient way to promote the
expansion of supply of electricity. This type of project enables better compliance with the
consumers’ requirement of small urban centers and rural areas, complementing the power
supply performed by the conventional system.

Regarding operating philosophies, SHPs have great flexibility, having two main forms of
reservoirs regularization: the river or storage, with daily regulation reservoir, and the dis‐
patched power depends on the physical characteristics and techniques and also the central
philosophy of the undertaking that holds.

3.3.1. Power extracted from a hydraulic turbine

The estimated output power for a hydraulic turbine can be obtained in relation to the height
of the available downfall and of the flow of the hydraulic turbine, considered constant.
Generally, the turbines models of Pelton, Francis, Kaplan, and Bulb are used for small hydro
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projects. The choice considering one or other model is defined according to the height of fall
characteristics, water flow, and rotation of the turbine generator set.

In general terms, the power of a turbine can be expressed as the sum of the three forms of
energy of Bernoulli's theorem [9], as represented in Eq. (3).

r r
+ + =

²
2

pv Ph
g g gQ (3)

where v is the flow velocity (m/s), g represents the gravitational constant (m/s), p is the water
pressure (N/m2) at a height h of water (m) with ρ density (kg/m3) and a water flow Q (m3/s).

The output power of the turbine shaft in a hydroelectric system can be obtained through Eq. (4)
[15].

r h= × × × ×e liq TP g Q H (4)

where ρ represents the specific mass of water (1000 kg/m3), g is the gravity acceleration (9.81 
m/s2), Q is the flow rate (m3/s) of the turbine at a drop height Hliq (m) with an efficiency of ηT,
which depend on the chosen hydraulic turbine model.

4. Automatic reconfiguration of distribution network in real time

4.1. Problem formulation

The reconfiguration of the distribution network is considered an optimization problem in that
search, among the various solutions (topologies) possible, the solution that leads to better
performance, considering the ultimate goal of reconfiguration and observing the network
constraints. One factor that increases the complexity of the problem is the high number of
switching devices in a real network, which results in a lot of different possible configurations
to be analyzed.

In general, it may be impractical to test all possible combinations and perform, for each of the
calculations needed—such as power flow and reliability indicators—in order to identify the
setting that results in the best performance. To solve the problem, optimization methods that
reduce the search space of the optimal solution are used.

Another problem is that the optimal solution found meets a given situation of power genera‐
tion and consumption, which typically varies over a period. The load variation during the day,
for example, can modify the parameters for which the topology is optimized, resulting in a
new optimum configuration. At this point, the solution for the reconfiguration of the network
must come from at least two premises:
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a. The network must be flexible to allow the reconfiguration, whenever observed the need;
and

b. It is necessary to establish a cost–benefit relationship to determine the necessity and the
effectiveness of the reconfiguration;

The diagram in Figure 5 shows the architecture employed in this work to meet these premises.
The SCADA program is the main interface between the real‐time reconfiguration program
developed and the equipment in distribution network.

The first premise is to facilitate the implementation of the reconfiguration, so there is an
effective gain with the network topology change. The use of remote‐controlled equipment such
as switches and reclosers is a solution that meets this premise on two aspects: The reconfigu‐
ration can be automated without the need to displacement teams to operate the equipment,
and immediate, or can be performed at the time wherein determining its need.

Figure 5. Architecture of the developed system.

The second premise aims to limit the wear of the switching equipment. One solution is to
establish relevant levels change in the network (e.g., demand) and parameters utilized as the
aim of reconfiguration (e.g., energy losses), and conditioning reset only to cases in which the
alteration levels exceed the reference values.

4.1.1. Demand rate evaluation and profile of distributed generation

In order to obtain a good discretization of the demand curve and generation curve to avoid
frequent reconfigurations in the network, it is employed a set of six demand rates. The rates
are constructed from the average of historical data (typical daily demand curve). The repre‐
sentative demand for one entire period is the maximum value observed in it and the case of
generation curve it is used the average output power.

Figure 6 exemplifies the discretization of typical curves; Figure 6a shows the demand curves
of an industrial feeder; and Figure 6b shows a wind turbine generation curve.
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Figure 6. Discretization of typical curves of (a) an industrial feeder, (b) a wind turbine.

4.1.2. Objective functions and constraints

The first stage of the optimization process is to define the objective function (FO) and con‐
straints of the problem. The OF includes the minimization of network indicators:

i. Expected loss of energy in the primary network (ELosses);

ii. Expected index of interruption frequency in the system (ESAIFI); and

iii. Expected value of energy not supplied (EENS).

These three indicators can identify each of the alternatives, and reconfiguration is shown in
Eq. (5).

( )= + +* * *
1 2 3min  . . .i i iOF ELosses w ESAIFI w EENS w (5)
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where i corresponds to the period of analysis: 1...6; w1...w3 are weights of the criteria in
multicriteria method; Ii is current equipment or driver; Vj is operating voltage in permanent
state; PDGn is active and reactive power limits provided by the distributed generator, the
minimum power equations Pmin, and maximum power Pmax presented in Section 3, depend on
the DG technology considered.

4.1.3. Optimization technique for selecting configurations

Several optimization methods are proposed to solve the reconfiguration problem of distribu‐
tion networks. The search techniques can be classified into different categories: heuristics,
meta‐heuristics, expert systems, and mathematical programming [16]. Following is detailed
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one of heuristic search techniques, and considerations are then presented to illustrate a
reconfiguration of application example using this technique in a real network model. The
heuristic search technique, also known as branch exchange, is based on a local search, where
the algorithm looks for a new solution from neighboring configurations in each iteration.

In power systems, the method is premised on the radial configuration of the network. This
method consists in carrying out successive changes in network configuration (e.g., opening a
switch and closing another), so that each search tree node represents a possible solution of the
problem. If the objective function indicators decrease, there is a new solution, and the algorithm
continues the search process until no further improvement occurs. The technique can best be
understood in two stages:

i. Step A: Analysis of interconnections between feeders in situations where there are
not distributed generators connected to the distribution network [17] and

ii. Step B: Analysis of interconnections in situations where there are distributed
generators connected to the distribution network [1, 2].

Figure 7 illustrates the flow chart includes the Stage A and Stage B of heuristic search technique
for reconfiguration of distribution networks.

Figure 7. Flowchart from step A and step B of heuristic search technique for reconfiguration of distribution networks.
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4.1.4. Decision‐making method of multicriteria

The reconfiguration of the distribution network can involve optimization criteria that result
in conflicting solutions. For example, considering the minimization of losses and increased
reliability, a network topology can represent the optimal solution that meets the first criterion
is, however, not represent the optimum solution to the second criterion.

A usual method of multicriteria analysis‐based decision‐making is the analytic hierarchy
process (AHP) proposed by Saaty [18]. In AHP, the degree of preference of one over another
objective is quantified through a table of the method suggested by the author, and the
relationship between alternatives is represented by a matrix. A detailed description of AHP
calculation methodology used in this work is presented in [17], which obtained as results for
the indicators of the OF: w1 (ELosses) = 0.64; w2 (ESAIFI) = 0.26 and w3 (EENS) = 0.10.

5. Experimental analysis

The proposed methodology was verified through several tests on the concession area of a
power utility of Brazil. The real distribution network model presented in Figure 8 is used as a
case study, and this network has the following:

• Two substations with voltage 69/13.8 kV;

• Five feeders: FD‐101; FD‐102; and FD 103 connected from the Substation A; and FD‐104 and
FD‐105 connected from the Substation B;

• 15 tie‐switches remote‐controlled (TS) in normally open state, named and numbered as TS‐
1 to TS‐15;

• 143 remote‐controlled switches (S) in normally closed state1;

• Solar photovoltaic plant of 500 kW, located between the S11 and S12 switches;

• Wind power plant of 1600 kW, located between the TS‐10 and S39 switches;

• Hydroelectric power plant (SHP) of 1000 kW, located between the TS‐15 and S61 switches.

The original configuration of this system is shown in Figure 8, where it is important to highlight
the interconnection switches and the distributed generation plants.

5.1. System evaluation

The analysis is done considering the expected maximum values of demand feeders and the
average availability of active power generation by source of DG during the period corre‐
sponding to each of the six levels, as shown in Figure 9. For the developed methodology
exemplification, only the results of level 5 are detailed (18h00–20h59).

1 The manual switches which are not part of the tests are omitted in the representation of the network.
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Figure 8. Network distribution with DG.

Figure 9. Demand evaluation and generation.

5.2. System optimization

The reconfiguration algorithm is applied considering the individual analysis of each switch
interconnection shown in Figure 8. The individual analysis of the tie‐switches leads to the
results shown in Figure 10. Only the cases where the objective functions analyzed presented
positive evolution are shown.
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The results of objective function in Eq. (5) are sorted from lowest to highest value to give the
best switching sequence. These results of the objective function represent the individual
changes made in the network and its effects, as can be seen in Figure 10a for energy losses,
Figure 10b for ESAIFI and Figure 10c for EENS.

These sorted results represent one switching sequence that should be performed by reapplying
the branch exchange according to the defined order. The best configuration achieved with one
tie‐switch is preserved as the initial configuration to the following tie‐switch to be tested. The
final result of the network optimization to the analyzed rate demand is shown in Figure 11.

Figure 10. Results for the individual analysis of tie-switches. (a) Energy losses. (b) ESAIFI. (c) EENS.
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Figure 11. Final results of reconfiguration analysis.

The final result of the optimization of the network to the rate demand analyzed is shown in
Figure 12 which shows the loads distribution between the analyzed feeders; Figure 12a shows
the original configuration; and Figure 12b shows the network configuration after changes. All
procedures of the main software were successfully performed to give the best network
topology that improves the FO indicators.

Figure 12. Load distribution between the distribution network feeders: (a) original configuration and (b) after changes
reconfiguration.

6. Conclusion

In this chapter, a novel methodology for real‐time reconfiguration of power distribution
networks considering distributed generation units was presented. The main advantages of the
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proposed system are automatic change of the network topology based on load rate analysis,
modelling, and DG profile from distinct generation sources; multicriteria decision‐making is
given by the AHP method to choose the switching sequence and, finally, the computational
analysis, the supervisory control, and the data acquisition of remote‐controlled switches are
integrated to perform the real‐time reconfiguration. The switching is performed automatically,
in the sequence determined by the software. Additionally, case studies are performed with
real data from a power utility in Brazil, with the use of different operational scenarios that
guarantee a real evaluation of the developed software performance. The results included in
this chapter shown the feasibility of the proposed methodology, which assure the use of this
system to other real networks with DG.
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Abstract

In literature, several hierarchical scheduling frameworks (HSFs) have been proposed for
enabling resource sharing between components on a uni-processor system. Each HSF
comes with its own set of composition rules which take into account a specific synchro‐
nization protocol for arbitrating access to resources. However, the inventors of these
synchronization protocols have also chosen to describe these composition rules with the
help of protocol-specific component interfaces. This creates unnecessary framework
dependencies on components.

In this chapter, we review existing interfaces and propose uniform interfaces to integrate
resource-sharing components into HSFs. For the purpose of computing uniform interfaces,
we  introduce  a  local  (component-level)  timing  analysis  for  components  which  is
independent (or agnostic) of the global synchronization protocol being used for arbitrating
access to shared resources. An individual component can therefore be analyzed as if all
resources are entirely dedicated to it. Given its interface, the component can then be used
with an arbitrary global synchronization protocol. This increases the reusability of a
component's timing interface, because the interface can still be fed to protocol-specific
composition rules when components are integrated.

Keywords: hierarchical scheduling frameworks, resource sharing, component compo‐
sition, real-time interfaces, synchronization protocol

1. Introduction

Hierarchical scheduling frameworks (HSFs) have been developed to enable composition and
reusability of real-time components in complex systems, for example, as described by Hole‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



nderski et al. [1] for the automotive domain. During the development of such systems,
component models have become important in order to separate and structure the development
of system parts over engineering teams (or third parties). The increasing system complexity
therefore demands a decoupling of (i) development and analysis of individual components
and (ii) integration of components on a shared platform. This decoupling requires component
interfaces covering both functional aspects as well as non-functional aspects, such as timing.
An HSF supports system composition from a timing perspective because it isolates compo‐
nents by allocating a processor budget to each component. A component that is validated to meet
its timing constraints when executed in isolation will continue meeting its timing constraints
after integration (or admission) on a shared uni-processor platform. The HSF is therefore a
promising solution for industrial standards, e.g., the AUTomotive Open System ARchitecture
(AUTOSAR), which more and more specify that an underlying operating system should
prevent timing faults in any component to propagate to other components on the same
processor.

Independent analysis of components and their integration in HSFs is enabled through a set of
composition rules (e.g., as proposed by Shin and Lee [2]). By splitting the timing analysis in
complementary parts, one could establish global (system level) timing properties by compos‐
ing independently specified and analyzed local (component level) timing properties. Local
timing properties are analyzed by assuming a worst-case supply of processor resources to a
component. The way of modeling the provisioning of the processor budget to a component is
defined by a resource-supply model, e.g., the periodic resource model by Shin and Lee [2] or
the bounded-delay model by Feng and Mok [3]. These models make it possible to combine the
timing constraints of the tasks within a component (typically deadlines) and abstract from the
way tasks are locally scheduled. A component can therefore be represented by a single real-
time constraint, called a real-time interface. Components can be composed into an HSF by
combining a set of real-time interfaces, which will treat each component as a single task by
itself. This enables reuse of components.

The global scheduling environment (a parent component) can provide more resources to its
(child) components than just processor resources. For example, components may use operating
system services, memory mapped devices, and shared communication devices requiring
mutually exclusive access. An HSF with support for resource sharing makes it possible to share
serially accessible resources (from now on referred to as resources) between arbitrary tasks,
which are located in arbitrary components, in a mutually exclusive manner. A resource that
is only shared by tasks within a single component is a local shared resource. Their local sched‐
uling impact can be easily abstracted by real-time interfaces. A resource that is used in more
than one component is a globally shared resource.

Any access to a resource (local or global) is assumed to be arbitrated by a synchronization
protocol. In practical situations, a component developer is typically unconcerned about the
sharing scope of resources. A component may access resources for which just local usage or
global usage is determined only upon integration of components into the HSF. Fortunately,
the syntax of the primitives for accessing local and global resources can be the same, even
though the synchronization protocols are different (e.g., as implemented by van den Heuvel,
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et al. [4]). The actual binding of function calls to scope-dependent synchronization primitives,
that arbitrate either global or local resource access, can be done at compile time or when the
component is loaded. Dynamic binding of primitives makes it possible to decouple the
specification of global resources in the interface from their use in the implementation. This
flexible decoupling of the sharing scope of resources in the application's programming
interface is called opacity by Martinez et al. [5] and it abstracts whether or not a resource is
globally shared in the system.

This chapter presents an extension of this notion of opacity to component analysis and the
corresponding derivation of a real-time interface of a component. Opacity requires that the
implementation of a component, as well as the way in which interface parameters are derived
(the local analysis), are unaware of the global synchronization protocol. In this way, compo‐
nents cannot make use of any knowledge about the constraints and modifications to a
component imposed by the global synchronization protocol. By definition of opacity, all
computed interface parameters of a component are made independent of a global synchroni‐
zation protocol.

Based on this observation, we present the following contributions:

• We present a uniform representation of component interfaces and a corresponding opaque
analysis to derive these interfaces.

• We survey the existing analyses for components that are assumed to run in HSFs with a
particular synchronization protocol. We characterize the opacity compliance of their
analyses.

2. Related work

In hierarchically scheduled systems, a group of recurring tasks, forming a component, is
mapped on a reservation; reservations were originally introduced by Mercer et al. [6] and
Rajkumar et al. [7]. We first review existing works on hierarchical scheduling of independent
components. Secondly, we lift the assumption on the independence of components, so that
tasks may share resources with other tasks, either within the same component or located in
other components. This means that resource sharing expands across reservations which calls
for specialized synchronization protocols for arbitrating access to resources. Finally, we
discuss the extension of real-time interface representations for components requiring access
to shared resources through a synchronization protocol.

2.1. Timing interfaces of independent real-time components

The increasing complexity of real-time systems led to a growing attention for component-
based systems. Deng and Liu [8] therefore proposed a two-level HSF for open systems, where
components may be independently developed and validated. The corresponding timing
analysis of the HSF has been presented by Kuo and Li [9] for fixed-priority preemptive
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scheduling (FPPS) and by Lipari and Baruah [10] for earliest-deadline-first (EDF) global
schedulers.

Later, the research community identified the challenges of separating the timing analysis of
the HSF by means of real-time interfaces for components. A real-time interface separates the
component's internals (i.e., its tasks and scheduling policy) from its global resource allocation
strategy. Wandeler and Thiele [11] calculate demand and service curves for components using
real-time calculus. Shin and Lee [2] proposed the periodic resource model to specify periodic
processor allocations to components. The explicit-deadline periodic (EDP) resource model by
Easwaran et al. [12] extends the periodic resource model of Shin and Lee [2] by distinguishing
the relative deadline for the allocation time of budgets explicitly. The bounded-delay model
by Feng and Mok [3] describes linear service curves with a bounded initial service delay.

Many works presented approximated [e.g., 13–15] and exact [e.g., 2,12,14] budget allocations
for the bounded-delay and periodic resource models under preemptive scheduling policies.
Both Lipari and Bini [14] and Shin and Lee [16] have presented methods to convert the
bounded-delay model into a periodic resource model. In our chapter, we extend these models
in order to support task synchronization.

2.2. Task synchronization in hierarchically scheduled systems

In literature, several alternatives are presented to accommodate resource sharing between
tasks in reservation-based systems. de Niz et al. [17] support this in their fixed-priority
preemptively scheduled (FPPS) Linux/RK resource kernel based on the immediate priority
ceiling protocol (IPCP) by Sha et al. [18]. Steinberg et al. [19] implemented a capacity-reserve
donation protocol to solve the problem of priority inversion for tasks scheduled in a fixed-
priority reservation-based system. A similar approach is described by Lipari et al. [20] for EDF-
based systems and termed bandwidth inheritance (BWI).

BWI regulates resource access between tasks that each have their dedicated budget. It works
similar to the priority-inheritance protocol (PIP) by Sha et al. [18], and when a task blocks on
a resource, it donates its remaining budget to the task that causes the blocking. BWI does not
require a priori knowledge of tasks, i.e., no ceilings need to be precalculated. BWI-like protocols
are therefore not very suitable for arbitrating hard real-time tasks in HSFs, because the worst-
case interference of all tasks in other components that access global resources needs to be added
to a component's budget at integration time in order to guarantee its internal tasks' schedula‐
bility also in case budget needs to be donated. This leads to pessimistic budget allocations for
hard real-time components. To accommodate resource sharing in HSFs, three synchronization
protocols have therefore been proposed based on the stack resource policy (SRP) from Baker
[21], i.e., HSRP by Davis and Burns [22], SIRAP by Behnam et al. [23], and BROE by Bertogna
et al. [24].

2.3. Timing interfaces for resource-sharing components

Global resource sharing in HSFs is often based on the SRP by Baker [21] in order to compute
blocking delays in the schedule; these computations follow a similar approach as the SRP,
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which is then re-used at the various scheduling levels in the HSF. In addition, resource sharing
requires scheduling mechanisms which have an impact on the local scheduling of a compo‐
nent. If a task that accesses a globally shared resource is suspended during its execution due
to the exhaustion of its (processor) budget, excessive blocking periods can occur which may
hamper the correct timeliness of other components (see Ghazalie and Baker [25]). To prevent
such budget depletion during global resource access (see Figure 1), four synchronization
protocols have been proposed. These are based on two general mechanisms to prevent budget
depletion during the execution of a task's critical section:

Figure 1. When the budget Qs (allocated every period Ps) of a task depletes while a task executes on a global resource,
tasks in other components may experience excessive blocking durations, B.

1. self-blocking: wait with accessing a resource when the remaining budget is insufficient to
complete a resource access entirely. Self-blocking comes in two flavors: (i) the subsystem
integration and resource allocation policy (SIRAP) by Behnam et al. [23] and (ii) the
bounded-delay resource open environment (BROE) by Bertogna et al. [24]. With SIRAP,
a self-blocked task essentially spin locks, i.e., it idles the component's budget away, while
the task is waiting for its budget to replenish. Instead, BROE delays the remaining
processor's resource supply to a component if there is insufficient budget to complete the
entire critical section and if the budget supplied so far is running ahead with respect to
the guaranteed processor utilization.

The idea of self-blocking has also been considered in different contexts, e.g., see [26] for
supporting soft real-time tasks and see Holman and Anderson [27] for a zone-based
protocol in a pfair scheduling environment. SIRAP by Behnam et al. [23] and BROE by
Bertogna et al. [24] use self-blocking for hard real-time tasks in HSFs on a single processor
and their associated analysis supports composition. Behnam et al. [28] have significantly
improved the original SIRAP analysis by Behnam et al. [23] for arbitrating multiple shared
resources; similarly, Biondi et al. [29] have improved the analysis of BROE for arbitrating
multiple shared resources. However, these improvements also complicate the analysis
and they make the timing analysis more protocol specific.

2. overrun: execute over the budget boundary until the resource is released—called the
hierarchical stack resource policy (HSRP) by Davis and Burns [22]. HSRP has two flavors:
overrun with payback (OWP) and overrun without payback (ONP). The term without
payback means that the additional amount of budget consumed during an overrun does
not have to be returned in the next budget period.

The overrun mechanism (with payback) was first introduced by Ghazalie and Baker [25]
in the context of aperiodic servers. This mechanism was later re-used in HSRP in the
context of two-level HSFs by Davis and Burns [22] and complemented with a variant
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without payback. Although the analysis presented by Davis and Burns [22] does not
integrate in HSFs due to the lacking support for independent analysis of components, this
limitation is lifted by Behnam et al. [30].

Although these four resource-arbitration protocols prevent budget depletion during a task's
resource access, in order to do so, processor resources may need to be delivered differently.
This, on its turn, may add constraints to the supply of processor resources in order to preserve
local deadline constraints of tasks. Protocol developers deal with these constraints in different
ways and sometimes these are already taken into account in the local analysis of a component
(e.g., see [28–30]). This may therefore result in protocol-specific interfaces of components.

We present a uniform way to model the local constraints on the component's processor supply
imposed by resource sharing by extending the periodically constrained model of Feng and
Mok [3], as presented for independent components by Shin and Lee [16]. It is therefore
important to know which resources a task will access in order to support independent analysis
of each of the resource-sharing components. Our local analysis then yields the same timing
interface, regardless of the protocol being used for global resource synchronization. During
the integration of components, we take those interfaces and we analyze the impact of syn‐
chronization penalties with the help of protocol-specific composition rules.

3. Real-time scheduling model

A system contains a single processor and a set ℛ of M resources R1, …, RM. The processor and
(some of) these resources need to be shared by N components, C1, …, CN, and each component
executes its work through a set of (concurrent) tasks (as depicted in Figure 2).

Figure 2. Overview of our system model. A parent component implements a global scheduler to allocate a share of the
processor and a share of other resources, e.g., R1 and R2, to each of its child components, C1 … CN. Each child compo‐
nent, Cs, contains a set of tasks, τs1 … τsn, and a local scheduler. Tasks, located in arbitrary components, may share re‐
sources. Tasks receive their share of the resources as specified by their component interface, Γs.
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3.1. Component and task model

Each component Cs contains a set Ts of ns sporadic, deadline-constrained tasks τs1, …, τsns
. A

sporadic task generates an infinite sequence of jobs which are activated at least Tsi time units
separated from each other. Each sporadic job may arrive at an arbitrary moment in time, i.e.,
it may delay its arrival for an arbitrarily long period. A sporadic task can be seen as a sporad‐
ically periodic task which exhibits its worst-case processor demand when subsequent jobs
arrive separated minimally in time, i.e., similar to a periodic task under arbitrary phasing (see
Liu and Layland [31]).

We extend the timing characteristics of a sporadic task, as introduced by Mok [32], with a
parameter to capture its resource requirements. The timing characteristics of a task τsi ∈Ts are
therefore specified by means of a quadruple (Tsi, Esi, Dsi, ℋsi), where Tsi ∈ IR+ denotes its
minimum inter-arrival time, Esi ∈ IR+ its worst-case execution time (WCET), Dsi ∈ IR+ its
(relative) deadline (where 0 < Esi ≤ Dsi ≤ Tsi), and ℋsi denotes the set of its WCETs of critical
sections. The WCET of task τsi within a critical section accessing global resource Rℓ is denoted
hsiℓ (i.e., a value contained in ℋsi), where hsiℓ ∈ ℝ+ ∪ {0}, Esi ≥ hsiℓ. For tasks, we also adopt the
basic assumptions by Liu and Layland [31], i.e., jobs do not suspend themselves, a job of a task
does not start before its previous job is completed, and the overhead of context switching and
task scheduling is ignored. For notational convenience, tasks (and components) are given in
deadline-monotonic order, i.e., τs1 has the smallest deadline and τsns

 has the largest deadline.
A task set is said to be schedulable if all jobs of the tasks are able to complete their WCET of
Esi time units within Dsi time units from their arrival. The tasks of this component have to meet
their deadlines with a particular budget on the processor and each resource being used. These
budgets specify the periodically guaranteed fraction of the resource that the tasks may use.
The timing interface of a component Cs specifies this budget, i.e., the interface is denoted by a
triple Γs =(Ps, Qs, Xs), where Ps ∈ IR+ denotes the component's period, Qs ∈ IR+ denotes its
budget on the processor, and Xs denotes the set of resource holding times to global resources
(which may be seen as budgets on resources). The maximum value in Xs is denoted by Xs and,
just like any budget, the resource holding time must fit in the components budget: 0 ≤ Xs ≤ Ps.
The period Ps therefore serves as an implicit deadline of the component.

The set ℛs denotes the subset of global resources accessed by component Cs, so that
hsiℓ > 0 ⇔ Rℓ ∈ ℛs and the cardinality of ℛs is denoted by ms (just like the cardinality of Xs).
The maximum time that a component Cs executes on the processor while accessing resource
Rℓ ∈ ℛs is called the resource holding time which is denoted by Xsℓ, where Xsℓ ∈ IR+ ∪ {0} and
Xsℓ > 0 ⇔ Rℓ ∈ ℛs. The relation between the WCET of a critical section (hsiℓ) and the resource
holding times (Xsℓ) of a component is further explained in Section 4.1.

3.2. Scheduling model

A unique system-level (global) scheduler selects which component, and when a component,
is executed on the shared processor. The component-level (local) scheduler decides which of
the tasks of the executing component is allocated the processor. The global scheduler and each
of the local schedulers of individual components may apply different scheduling policies. As
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scheduling policies, we consider EDF, an optimal dynamic uniprocessor scheduling algorithm,
and the deadline-monotonic (DM) algorithm, an optimal priority assignment for FPPS of
deadline-constrained tasks. The SRP by Baker [21] is used to arbitrate access to shared
resources between components at the global level; similarly, the SRP is used at the local level
to arbitrate access to shared resources between tasks locally.

3.3. Synchronization protocol

This chapter focuses on arbitrating global shared resources using the SRP. To be able to use the
SRP for synchronizing global resources, its associated ceiling terms need to be extended.

3.3.1. Preemption levels

With the SRP, each task τsi is assigned a static preemption level equal to πsi = 1/Dsi. Similarly,
we assign a component a preemption level equal to Πs = 1/Ps, where period Ps serves as a relative
deadline. If components (or tasks) have the same calculated preemption level, then the smallest
index determines the highest preemption level.

3.3.2. Resource ceilings

With every global resource Rℓ two types of resource ceilings are associated; a global resource
ceiling RCℓ for global scheduling and a local resource ceiling rcsℓ for local scheduling. These
ceilings are statically calculated values, which are defined as the highest preemption level of
any component or task that shares the resource. According to the SRP, these ceilings are defined
as:

= max( ,max{ | }),N s sRC R RP P Îl l (1)

= max( ,max{ | > 0}).s sn si sis
rc hp pl l (2)

We use the outermost max in (1) and (2) to define RCℓ and rcsℓ in those situations where no
component or task uses Rℓ. The values of the local and global ceilings as defined in (1) and (2)
by definition guarantee mutual exclusive access to their corresponding resource Rℓ by the
sharing tasks and components and, therefore, the values of these ceilings cannot be further
decreased. In some situations—as further investigated by Shin et al. [33] and van den Heuvel
et al. [34]—it might be desirable to limit preemptions more than is strictly required for mutual
exclusive resource access, which can be established by increasing the value of the local resource
ceilings in (2) artificially. On the contrary, increasing the global ceiling, i.e., the value of RCℓ

in (1), never returns schedulability improvements.
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3.3.3. System and component ceilings

The system ceiling and the component ceiling are dynamic parameters that change during
execution. The system ceiling is equal to the highest global resource ceiling of a currently
locked resource in the system. Similarly, the component ceiling is equal to the highest local
resource ceiling of a currently locked resource within a component. Under the SRP, a task
can only preempt the currently executing task if its preemption level is higher than its com‐
ponent ceiling. A similar condition for preemption holds for components.

4. Opaque schedulability analysis of a component

After developing a component and before publishing it to a framework integrator, a compo‐
nent is packaged as a re-usable entity. This includes deriving a timing interface to abstract
from deadline constraints of tasks. Such an abstraction requires an explicit choice for a re‐
source-supply model, capturing the processor supply to a component. Moreover, a compo‐
nent specifies what it needs in terms of resources and exposes those resources that may be
shared globally in its interface. Whether or not a global resource is actually used by other
components is unknown within the context of a component.

There are several ways to account for local scheduling penalties due to global resource shar‐
ing. One might assume that each resource must be globally shared and, subsequently, ac‐
count for the worst-case overhead inside the local analysis. Alternatively, we opt for the
assumption that all resources are just locally shared during the local analysis and we com‐
pensate for global sharing between components at integration time. These assumptions are
often made tacitly.

The latter alternative presents the same view as during component development, i.e., a com‐
ponent has the entire platform at its disposal and all resources. Whenever a synchronization
protocol for global resources is used that is compliant with a synchronization protocol for
local resources, the local analysis of a component can be based on local properties only. We
call such a local analysis opaque because it separates local and global resource arbitration.

Definition 1An opaque analysis provides a sufficient local schedulability condition for an individual
component. It treats all resources accessed by the component as local, so that, even under global shar‐
ing, properties of the global synchronization protocol do not influence the computed interface parame‐
ters.

The key consequence of an opaque local analysis is the absence of assumptions on the global
synchronization protocol. Section 4.1 shows how resource holding times, Xsℓ ∈Xs, can be
computed without making assumptions on the global synchronization protocol. Next, we
accomplish the same for budget parameter Qs in the interface of the component. This means
that the values of the resource holding times should be absent in the equations that validate
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the local tasks' schedulability. Table 1 gives an overview of local analyses found in literature
by indicating their opacity. This section proceeds with an opaque analysis which ultimately
results in a uniform representation of component interfaces, Γ(Ps, Qs, Xs).

Analysis of resource-sharing
strategies

Authors Opacity Impact on local analysis

BROE Bertogna et al. [24] Yes –

Enhanced BROE Biondi et al. [29] No Proc.-supply model uses RHTs

HSRP—overrun without
payback (ONP)

Davis and Burns [22] No Not compositional

HSRP—overrun without
payback (ONP)

Behnam et al. [30] Yes –

Enhanced overrun Behnam et al. [30] No Proc.-supply model uses RHTs

Improved overrun without payback Behnam et al. [35] No Proc.-supply model uses RHTs

HSRP—overrun with
payback (OWP)

Davis and Burns [22] No Not compositional

HSRP—overrun with
payback (OWP)

Behnam et al. [30] No Proc.-supply model uses RHTs

SIRAP Behnam et al. [23,28] No Proc.-supply model uses RHTs

Table 1. Overview of the synchronization protocol's support for integrating resource-sharing components into the HSF
with opaque analysis.

4.1. Computing resource holding times

The resource holding times were introduced by Bertogna et al. [36] in order to represent the
cumulative processor time consumed by the tasks within the same component Cs that can
preempt a task τi while it is holding a resource Rℓ. The way of computing resource holding
times of tasks therefore depends on the local scheduling policy, because the scheduling policy
determines possible preemptions. Besides the scheduling policy, preemptions may be limited
by a resource ceiling, i.e., the value of the local resource ceiling rcsℓ also influences the resource
holding times (see Figure 3). In an HSF, the resource holding time represents the longest critical-
section length as experienced by blocked tasks in other components.

In literature, various system assumptions in the description of a particular global synchroni‐
zation protocol have shown to affect the way of computing resource holding times [e.g., see
23, 24, 30]. However, all these methods can be simplified and unified (independent of the local
scheduling policy and the global synchronization protocol) by assuming that the component's
period Ps is smaller than the tasks' periods.
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Figure 3. The resource holding time (RHT) represents the cumulatively consumed processor time by any task of a com‐
ponent while one task holds a resource. In order to guarantee mutual-exclusive access to resource Rℓ, the associated
resource ceiling (rcsℓ) is at least equal to the highest preemption level of any (local) task sharing resource Rℓ. One may
consider to further limit preemptions during critical sections by increasing the resource ceiling. On the one hand, this
may lead to longer blocking delays to tasks with a higher preemption level (in this case: τs1). On the other hand, this
decreases the tasks' RHTs (in this case: τs2 or τs3).

The main observation leading to this simplification is that an access to a global resource must
be followed by a release of the resource in the same component period, for example, established
by the self-blocking mechanisms or the overrun mechanisms considered in real-time literature.
If a resource must be accessed and released in the same component period which is smaller
than the task periods, then we can limit the number of preemptions within a critical section
and this, on its turn, will lead to a smaller resource holding time. The resource holding time
of a task τi accessing a resource Rℓ is captured by a value Xsiℓ, which represents the amount of
processor time supplied to component Cs from the access until the release of task τsi to resource
Rℓ. We now present a lemma that captures the possible preemptions of task τi, regardless of
other system assumptions.

Lemma 1 (Taken from van den Heuvel et al. [34]). Given Ps <Ts
min and

Ts
min =min {Tsi | 1≤ i ≤ns}, all tasks τsj that are allowed to preempt a critical section accessing a global

shared resource Rℓ, i.e., πsj > rcsℓ, can preempt at most once during an access to resource Rℓ when using
any global SRP-compliant protocol, independent if the local scheduler is EDF or FPPS.

Lemma 1 makes it possible to compute the resource holding time, Xsiℓ of task τsi to resource Rℓ

as follows:

>
= ,si si sj

rcsj s

X h E
p

+ ål l
l

(3)

and the maximum resource holding time within a component Cs is computed as
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= max{  | 1 }.s si sX X i n£ £l l (4)

The computed values of Xsℓ are included in the set Xs which is part of the component's interface,
Γs. We recall that opacity requires that the way of computing the interface parameters Qs and
Xs of a component is independent of the global synchronization protocol; Lemma 1 establishes
this requirement for the set of resource holding times, Xs, of a component.

4.2. Computing a processor budget

The traditional schedulability analysis of tasks fills in task characteristics in a demand-bound
function or a request bound function and compares the tasks' requirements with the supplied
processor resources. The same schedulability analysis holds for tasks executing within a
component, although the processor supply is modeled in a more complicated way.

The processor supply refers to the amount of processor resources that a component Cs can
provide to its tasks in order to satisfy deadline constraints. The linear lower bound of the
processor resources supplied to a component with a periodically assigned processor (specified
by an interface Γs =(Ps, Qs, Xs)) is given by [2]:

( )( )( ) = 2 .s
s ss

s

Qt t P Q
PG - -lsbf (5)

The longest interval a component may receive no processor supply on a periodic resource
Γs =(Ps, Qs, Xs) is named the blackout duration, i.e.,

{ }= max  | ( ) = 0 = 2( ).s s ss
BD t t P QG -lsbf (6)

The lsbfΓs
(t) in (5) is not only a linear approximation of the supplied processor resources in

an interval of length t, it also models a bounded-delay resource supply as defined by [3] with

a continuous, fractional provisioning of 
Qs

Ps
 of the shared processor (also referred to as the

virtual processor speed) and a longest initial service delay of BDs time units.

4.2.1. Testing interfaces with earliest-deadline-first scheduling of tasks

Assume we are given a component Cs and its tasks have to execute on a periodic budget Qs

every period Ps. If this processor budget is allocated to the tasks according to an EDF scheduling
policy, then the following sufficient schedulability condition holds (as described by Shin and
Lee [16]):
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where dbfs(t) denotes the cumulative processor demand of all tasks of component Cs for a time
interval of length t and the set Ss denotes a non-empty finite set of time-interval lengths (see
Baruah [37]), i.e.,

{ }({ }def

1S = =  | 1 ; N ; 0,l , , .s si si s s sns
t b T D i n b t cm T T+ ù× + £ £ Î Î úû

K (8)

The dbfs(t) is fully compliant to the schedulability analysis for task sets on a dedicated unit-
speed processor, i.e.,

1
( ) = ( ) .si si

s s si
i n sis

t D Tt b t E
T£ £

ê ú- +
+ ê ú

ë û
ådbf (9)

The blocking term, bs(t), is defined according to the SRP, as described by Baruah [37]:

( ) = max{ | : > 0 < }.s sj sk sk sjb t h k h D t D$ Ù £l l (10)

The algorithmic complexity of verifying the scheduling condition in (7) is pseudo-polynomial
in the number of tasks.

4.2.2. Testing interfaces with fixed-priority preemptive scheduling of tasks

Assume we are given a component Cs and its tasks have to execute on a periodic budget Qs

every period Ps. If this processor budget is allocated to the tasks according to a FPPS policy,
then the following sufficient schedulability condition holds (as described by Shin and Lee [16]):

1 : S : ( , ) ( ),s si s s
i n t t i tG" £ £ $ Î £rbf lsbf (11)

where rbfs(t , i) denotes the worst-case cumulative processor request of τsi for a time interval
of length t and the set Ssi denotes a non-empty finite set of time-interval lengths (see Lehoczky
et al. [38]), i.e.,

{ }
def

S = =  | < ; IN ; (0, ] { }.si sa si sit b T a i b t D D+× Î Î È (12)
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The rbfs(t , i) is fully compliant to the schedulability analysis for task sets on a dedicated unit-
speed processor, i.e.,

1
( , ) = .s si sj

j i sj

tt i b E
T£ £

é ù
+ ê ú

ê úê ú
årbf (13)

The blocking term, bsi, is defined according to the SRP, as described by Baker [21]:

= max{ | < }.si sj sj si sb h rcp p £l l (14)

The algorithmic complexity of verifying the scheduling condition in (11) is pseudo-polynomial
in the number of tasks.

4.2.3. Deriving the processor budget from the scheduling test

Computing a processor budget for a component Cs involves a function that takes a fixed period
Ps, a task set and a local scheduling policy as input and returns the smallest component budget
Qs. The function should satisfy, dependent on the local scheduling policy, the condition in (7)
or (11).

One may approximate the size of the smallest required processor budget by means of a binary
search in the range Qs ∈ (0, Ps). As amongst others suggested by Shin and Lee [2], the smallest
value of budget Qs can be found by means of taking an intersection between the left-hand sides
and the right-hand sides of the inequalities. This intersection concerns solving a simple
quadratic equation (e.g., see Lipari and Bini [14]).

5. Integration of components and global schedulability

In this section, we present the composition rules of components in HSFs in the presence of
global shared resources. A global integration test implements the admission control for
components based on the resource requirements specified in their interfaces. The global
analysis explicitly takes into account the corresponding penalties for global resource sharing
which depend on the synchronization protocol applied at the top-level scheduler. These
penalties include (i) blocking between components and (ii) protocol-specific penalties (in our
case, either BROE, ONP, OWP, or SIRAP). Dependent on the chosen global synchronization
protocol, the latter influences the processor requests by a component or it influences the
processor supplies to a component. To analyze these scheduling penalties appropriately, it is
reasonable to assume that during component-integration in the HSF, the synchronization
protocol of the HSF is known.
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Looking at resource sharing between components, the effectively used processor bandwidth
of a component therefore depends on two parts (see Section 3.1): the processor budget (denoted
by Qs in interface Γs) and the set of budgets on global resources (which are the resource holding
times denoted by Xs in interface Γs). The budget Qs should be sufficient to meet the deadline
constraints of the tasks and no other constraints should influence the size of Qs (e.g., constraints
related to global synchronization should be avoided). The resource holding times define the
amount of execution time that a component receives for an accessing a global resource. In other
words, if component Cs is granted access to resource Rℓ, it receives Xsℓ time units of execution
time on resource Rℓ prior to the implicit deadline Ps. The global synchronization protocol
defines how this is established and the run-time rules of the protocol may or may not lead to
an overlap of the processor allocation times to a component as contained in Qs and Xs. In the
remainder of this section, we show the integration of components for two scheduling policies
(EDF and FPPS) applied to the allocated bandwidth of the components.

5.1. Earliest-deadline-first scheduling of components

In the processor supply model, we assumed that the component's period also serves as a
deadline for the provisioning of its processor budget. The following utilization-based sched‐
ulability condition, as defined by Baruah [37], can therefore be applied to the top-level EDF-
scheduler:

1
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The blocking term, B(t), presents the resource holding time of a potentially interfering,
resource-sharing component with a deadline beyond the considered component, Cw; it is
defined by Baruah [37]:

( ) = max{ | : R R < }.u u s s uB t X s R P t P$ Î Ç Ù £l l (16)

The term Os(t) defines the additional amount of budget that a component Cs requires under a
certain global synchronization protocol in order to prevent excessive blocking durations for
other components in the system.

With ONP, a component can request for an additional amount of Xs time units of processor
time each period Ps. Similarly, with SIRAP, a task of a component may idle away at most Xs

time units of processor time each period Ps. Hence, the synchronization penalties of both SIRAP
and ONP can be modeled by allocating Xs time units of processor time in addition to the regular
processor budget Qs in each period Ps, so that the term Os(t) is defined by Behnam et al. [30]
for ONP and van den Heuvel et al. [39] for SIRAP:
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With OWP, a component can only request an additional amount of Xs time units of processor
time once. Hence, the term Os(t) is defined by [30]:

if
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For both SIRAP and BROE, it is required that Xs ≤ Qs in order to be able to complete an entire
critical section within a single budget of size Qs. For SIRAP, we establish this condition by
allocating Qs + Xs time units of processor budget every period Ps. For BROE, however, we
increase Qs with Os(t) time units if it is too small to fit Xs time units contiguously, where Os(t)
is defined as follows:

( )( ) = max 0, .s s s
s

tO t X Q
P
ê ú
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5.2. Fixed-priority preemptive scheduling of components

For global FPPS of components—by definition disallowing BROE—the following sufficient
scheduling condition can be applied (as defined by Lehoczky et al. [38]):

1
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The blocking term, Bs, is defined by the resource holding time of a lower-priority, resource-
sharing component (in line with Baker [21]):

= max{ | < }s u u sB X RCP P £l l (21)

and the term Or(t) defines the additional amount of budget that a component Cs requires under
a certain global synchronization protocol in order to prevent excessive blocking durations for
other components in the system.

Similar to EDF, under global FPPS the term Or(t) is defined by Behnam et al. [30] for ONP and
by van den Heuvel et al. [39] for SIRAP:

Real-time Systems44



( ) = .r r
r

tO t X
P
é ù
ê ú
ê ú

(22)

Also under FPPS, a component arbitrated by OWP can only request an additional amount of
Xs time units of processor time once. Hence, the term Or(t) becomes time independent and it
is defined by [30]:

( ) = .r rO t X (23)

Just like with tasks, a finite set of time-interval lengths t can be tested in order to determine
the schedulability of a set of components, i.e., the set can be specified as in (12) using component
period Ps as the deadline for the execution of budget (WCET) Qs. The algorithmic complexity
of verifying the scheduling condition in (20) is then pseudo-polynomial in the number of
components.

6. On the importance of opacity and its properties

Traditional protocols such as the PCP by Sha et al. [18] and the SRP by Baker [21] can be used
for local resource sharing in HSFs, as observed by Almeida and Peidreiras [13]. With an opaque
local analysis, we can re-use the same local analysis of components in the presence of global
shared resources. The local analysis for HSFs with the ONP protocol, as presented by [30],
already satisfied the notion of opacity because it uses a simple overrun upon integration and
nothing else locally. In the previous sections, we also unified the local analysis of HSFs with
other resource-sharing protocols (OWP, SIRAP, and BROE). This means that the interface of a
component is independent of the resource-arbitration protocol. In this section, we briefly
review non-opaque analysis and we highlight some important properties of opacity.

6.1. Monotonicity of the analysis

In Sections 4 and 5, we have summarized the compositional timing analysis of an HSF: the
global analysis verifies the admission of a set of components into the HSF and the local analysis
verifies the deadline constraints of tasks of each component in isolation on a periodically
allocated budget, Qs. The local scheduling conditions in (7) and (13) determine the smallest
size of Qs. For analyzing these conditions, we observe that increasing a local resource ceiling
rcsℓ cannot lead to less blocking of local tasks (term bs(t) or bsi) and, thus, it cannot lead to a
smaller budget Qs. As a result, we have the following property.

Property 1In an analysis satisfying (7) for EDF or (13) for FPPS, the total requested resources of a
component reflected in the allocated budget Qs is monotonically non-decreasing with an increase of a
local resource ceilings rcsℓ, ∀ Rℓ ∈ ℛs.
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Although not mentioned explicitly, this property is tacitly assumed in some analysis (e.g., by
Shin et al. [33], Behnam et al. [40] and Behnam et al. [30]) and our analysis supports it as well.
It holds for all global synchronization protocols except for some non-opaque analysis (see
Table 1).

6.1.1. SIRAP and its opacity

The analysis as traditionally presented for SIRAP is non-opaque. However, SIRAP is an
important and widely used protocol, so we side-step this problem by applying the same local
and global analysis of ONP also to SIRAP, i.e., inserting Xs units of idle time every period Ps.
The intuition behind this idea is that SIRAP never idles away more processor time in one
component period Ps than ONP requires for overrun (see van den Heuvel et al. [39] for the
details). This adjusted analysis of SIRAP satisfies Property 1.

6.1.2. How Property 1 could be violated

Since global resources may need to be shared with tasks in other components, the ideas
underlying most of the non-opaque analyses (like the non-opaque ones in Table 1) is to use
the resource holding times of local tasks to tighten the analysis of wasted resources. Often this
means that the tasks of a component are penalized by changes in the processor supply due to
arbitrated accesses to global resources. The properties of a synchronization protocol are then
reflected on the computed value of budget Qs of a component. For example, this could work
based on the following observations:

• With OWP, see Behnam et al. [30], the resource holding time can be used to account for the
processor time that is being exchanged between two consecutive component periods due
to overruns and paybacks.

• With ONP, see Behnam et al. [35], the resource holding times can be used to tighten the
delivery of budget Qs in component period Ps, because an overrun must fit in each compo‐
nent period as well.

• With SIRAP, see Behnam et al. [23], the resource holding times can be used to determine the
amount of resources that can be idled away by the tasks in each component period.

• With BROE, see Biondi et al. [29], the resource holding times can be used to bound an
additional delay due to resource sharing experienced by tasks compared to the regular delay
of their resource supply (BDs).

Intuitively, resource sharing comes with penalties to the tasks involved. However, sometimes
the local tasks may also benefit from resource sharing, i.e., the tasks may require less processor
resources. Section 6.1.3 presents an example of such a scenario using a non-opaque analysis of
ONP. This clearly shows that a non-opaque analysis may violate our monotonicity property
(Property 1).
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6.1.3. Motivating example

We now demonstrate the effect of using properties of the global synchronization protocol for
optimizing the parameters of the component's interface in the local analysis. We consider a
simple non-opaque analysis for ONP. Behnam et al. [35] improved ONP by observing that the
normal budget Qs of a component Cs has to be served at least before Ps − Xs instead of the regular
relative deadline Ps (as we assumed for our analysis). The reason is that an overrun of at most
length Xs must also fit in each period Ps after budget Qs has been depleted. This means that the
blackout duration of the processor supply becomes shorter, so that tasks have to wait shorter
until they get selected for execution by the local scheduler. Behnam et al. [35] model their idea
with the help of the explicit deadline periodic resource model by Easwaran et al. [12]. The
explicit deadline Ps − Xs improves the required budget of the tasks in a non-opaque way because
it uses resource holding times to tighten the deadline.

Example 1Consider a component C1with a period P1 = 10 and a single task τ11 = (27, 5, 27, {0.5}) which
specifies an access to a global resource Rℓ for a duration of h11ℓ = X11ℓ = X1 = 0.5 time units. We use ONP
for arbitrating access to global resources.

According to the improved ONP analysis of Behnam et al. [35] where the resource holding time of 0.5
time units is exploited to tighten the deadline for budget Q1, it is sufficient to allocate Q1 = 2.5 time units
every period of 10 time units. This budget allocation can be captured by interface
Γ1 = (P1, Q1, X1)= (10, 2.5, {0.5}) with explicit deadline P1 − X1. This interface is derived based on the
assumption that an additional amount of 0.5 time units may need to be supplied within one component
period to complete resource access by means of a budget overrun.

If resource Rℓturns out to be local to component C1, i.e., component C1is independent of other components
in the system, then budget overruns are unnecessary for accessing resource Rℓ. An independent
component C1would have required a periodic budget ofQ1 = 8

3 time units every period of 10 time units.
We recall, however, the 2.5 time units must be supplied within 9.5 time units from the budget's release,
leading to a density of processor allocations of 2.5

9.5 . This density is higher than the one without resource

sharing, i.e., 8 / 3
10 < 2.5

9.5 .

Once the HSF is composed, one may admit a component into the system requiring 8
3 time units every 10

time units while one may need to reject a component requiring 2.5 time units before relative deadline
9.5 every 10 time units. This depends on the resources requirements of other components in the HSF.
Hence, a non-opaque analysis may give the illusion of resource efficiency by artificially creating resource
dependencies.

By making assumptions in the local analysis on how ONP changes the processor supply to a
component, a manufacturer may give an untruthful impression on the efficiency of the
component. Such impressions cannot be given through an opaque analysis due to its monot‐
onicity property. For some protocol-specific local analysis, monotonicity of the local analysis
is hard to prove or disprove. Nevertheless, the above example clearly shows the importance
of monotonicity for multi-vendor environments, for example, obtained through an opaque
local analysis.
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6.2. Detecting and accounting for shared resources

An additional problem with a non-opaque analysis (e.g., see the analyses in Table 1) is that it
impacts the budget of a component with synchronization penalties, no matter whether or not
an accessed resource is shared with other components. As a result, the synchronization
penalties are incorporated in the component's timing interface and they cannot be taken out
any longer. Hence, it disallows us to account for the synchronization penalties corresponding
to the resources that really need to be shared between components as detected at integration
time.

Since a component is unaware of other components, it is also unknown which resources
actually need to be shared. Instead of directly deriving the interface of a component, one may
therefore perform an intermediate step. One may specify partial interfaces for components for
each of the resources the component requires. Upon integration of components, these partial
interfaces can then be combined into a true interface by selecting just the interfaces corre‐
sponding to the resources that are globally shared with other components.

This procedure works intuitively with an opaque analysis and works as follows. Given a
component Cs, we assume that Ps is given by the system designer and is fixed during the whole
process of merging partial interfaces into a single interface. A partial interface Γsℓ considers
one global resource Rℓ in isolation, i.e., Rℓ can be globally shared or it can be local to the
component.

Definition 2 (Partial interface candidate)(Taken from van den Heuvel et al. [34]) A partial interface
candidate Γsℓ = (Ps, Qsℓ, {Xsℓ}) of component Cs accessing resource Rℓ is a valid interface Γs for component
Cs—i.e., an interface that satisfies the local scheduling condition in (7) for EDF or (11) for FPPS—
under the assumption that only resource Rℓ may be globally shared with other components.

A partial interface Γsℓ is a valid interface for the restrictive case that resource Rℓ is the only
resource being exposed globally. It specifies the budget and the resource holding time to
resource Rℓ of the component, but other resources accessed by the same component are
excluded from the interface. The remaining problem is to derive one interface for the case a
component accesses more than one globally shared resource. Lemma 2 shows how to merge
partial interfaces into a single interface.

Lemma 2 (Taken from van den Heuvel et al. [34]). Assume a component Cs accesses ms resources.
Let a selection of partial interfaces of component Cs be a series of Γsℓ = (Ps, Qsℓ, {Xsℓ}), i.e., one partial
interface Γsℓ is selected for each resource Rℓ. The local tasks' deadlines of component Cs are met by
interface Γs = (Ps, Qs, {Xsℓ | Rℓ ∈ ℛs}), where Qs = max{Qsℓ | Rℓ ∈ ℛs}.

The intuition behind this lemma is as follows. By virtue of the SRP [21], a task τsi can be blocked
by just one (outermost) critical section of task τsj with a lower preemption level (where
πsi ≥ πsj) before τsi can start its execution. Hence, it is sufficient to add the largest difference in
budget to the value of Qsℓ in order to accommodate for one local blocking occurrence.

Lemma 2 presents an important result for open environments in which components may be
loaded or removed from the platform after deployment. It enables us to incrementally analyze
the resource dependencies of the components in the HSF. Prior to the integration of compo‐

Real-time Systems48



nents, it is still unclear which of the global resources need to be shared with other components
and which resources can be treated as local. Upon integration of components, the sets ℛs of
accessed resources by component Cs with the resources that truly need to be shared globally
are known. We can then make an appropriate selection of partial interfaces and combine them
into a single interface for each component. Figure 4 illustrates this procedure as defined by
Lemma 2. The result is that we account for the synchronization penalties of just the globally
shared resources. If components enter or leave the HSF, one may use the partial interfaces to
detect the updated resource dependencies between the components in the HSF.

Figure 4. Partial interfaces define the resource requirements of a component on each accessed resource separately.
They can be combined into a single interface which captures all resource requirements of a component. The resources
that do not need to be shared between components can be ignored (in this example, Rs and Rh can be ignored), so that
resource arbitration and the corresponding penalties can be avoided for those resources.

7. Conclusion

This chapter introduced the notion of uniform interfaces for resource-sharing components that
need to be integrated on a uni-processor platform. The interface of a component abstracts from
global resource sharing until component integration. The local timing analysis of a component
that returns such an interface is called opaque. Sufficient conditions for opacity are

• component periods are smaller than the local tasks' periods, so that resource holding times
of a component are defined independently of the global synchronization protocol;

• resource holding times must disappear from the local schedulability test, so that the budget
parameter of a component can be solely computed with the purpose of meeting deadline
constraints of tasks (and independently of the global synchronization protocol).

As a result of both conditions, when the SRP arbitrates access to shared resources between
periodic components, the necessary condition of opacity is satisfied: all interface parameters
of a component are computed independently of a global synchronization protocol. Moreover,
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component dependencies on shared resources and the corresponding synchronization
penalties can be optimized at component integration.

We applied opacity to four existing global synchronization protocols: SIRAP, ONP, OWP, and
BROE. For some systems that deploy such a protocol, a non-opaque analysis has shown to
significantly improve schedulability (e.g., as demonstrated by Behnam et al. [28], Biondi et al.
[29]). However, this requires that components are delivered to system integrators with an
interface that includes worst-case synchronization penalties, which in practice may never
occur. We therefore believe that the simplicity of opaque analysis and its opportunities to
analyze systems incrementally may be beneficial for complex systems in which component
development, test, analysis, and integration is spread over different research and development
teams.

8. Glossary

This section gives an overview of the abbreviations and the symbols being used throughout
this chapter.

Abbreviation Description

AUTOSAR AUTomotive Open System Architecture

BROE Bounded-delay resource open environment

BD Blackout duration

BWI Bandwidth inheritance

DM Deadline monotonic

EDF Earliest-deadline-first

EDP Explicit-deadline periodic

FPPS Fixed-priority preemptive scheduling

HSFs Hierarchical scheduling frameworks

HSRP Hierarchical SRP

IPCP Immediate PCP

LCM Least common multiple

ONP Overrun and no payback

OWP Overrun with payback

PCP Priority ceiling protocol

RHT Resource holding time

LSBF Linear supply-bound function

SIRAP Subsystem integration and resource allocation policy
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Abbreviation Description

SRP Stack resource policy

WCET Worst-case execution time

Symbol Description

N Number of components in the system

M Number of global resources

ℛ Set of global resources

Rℓ ℓ-th global resource

RCℓ Global resource ceiling of Rℓ

Cs s-th component

Πs Preemption level of Cs

Ps Period of the resource allocations to component Cs

Ds Relative deadline for the resource allocations to component Cs

Qs Periodically allocated processor time for Cs

ℛs Set of global resources accessed by Cs

Xs Set of holding times to global resources accessed by Cs

Xsℓ the resource holding time of Cs for Rℓ

Xs Maximum of the resource holding times of Cs

Os Processor time for Cs merely dedicated to prevent excessive blocking

Γs Interface of Cs defining periodic resource demands of Cs

Γsℓ Partial interface defining Cs' demands for a given resource Rℓ

BDs Longest duration for Cs without any processor supply

dbfs(t) Demand-bound function of the tasks of Cs in an interval t

rbfs(t , i) Request-bound function of task τsi and its higher priorities in an interval t

lsbf(t) Linear lower bound of the processor supply in any sliding window of length t

Ts Task set of a component

ns Number of tasks composing component Cs

τsi i-th task of component Cs

Tsi Minimal inter-arrival time of task τsi

Esi WCET of τsi

Dsi (Relative) deadline of τsi

Ssi Set of time instances that to determine schedulability of a task τsi

ℋsi Set of WCETs of task τsi on resources
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Symbol Description

rcsℓ Local resource ceiling of resource Rℓ

πsi Preemption level of task τsi

hsiℓ WCET of τsi's largest critical section to Rℓ

Xsiℓ Largest resource holding time of τsi to Rℓ
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Abstract

Since 2004, most of chip vendors have begun to shift their major focus from single-
core to multi-core architecture (W. Wolf. Signal Processing Magazine, IEEE, 26(6):50–
54, 2009). One major reason of this shift is that it reaches a physical limit by scaling
transistor size and increasing the clock frequency to improve the computing perform‐
ance on a single-core architecture (Agarwal et al. Proceedings of the 27th Internation‐
al Symposium on, pages 248–259, June 2000), that is, the overall chip cannot be reached
within a single clock cycle. Multi-core architecture, however, brings innovative and
promising opportunities to further improve the computing performance. By provid‐
ing multiple processing cores on a single chip, multi-core systems can dramatically
increase the computing performance and mitigate the power and thermal issues with
the same performance achievement as single-core systems. As multi-core architecture
has been more and more dominant in the industrial market, there is an urgent demand
for effective and efficient techniques for the design of multi-core systems.

In this chapter, we first analyze the thermal behavior on multi-core real-time systems by
taking the heat transfer among different cores into consideration. Then we analyze the
energy consumption for a given speed scheduling on multi-core systems.

Keywords: Real-Time, Multi-Core, Thermal, Power, Energy, Periodic Scheduling

1. Introduction

Today, multi-core architecture has been widely supported by most of major chip vendors,
including Intel, AMD, IBM, Nvidia, ARM, Sum microsystems, Qualcomm, Broadcom, and so
on. Some of the chip manufacturers have already launched 16-core chips into the market, that
is, AMD OpteronTM 6300 Series [1]. It is not surprising that in the coming future, hundreds
or even thousands of cores will be integrated into a single chip [22]. When moving toward

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



multi-core architecture, it comes with new and critical challenges in design of multi-core
systems, particularly multi-core real-time systems.

As architecture becomes more and more complicated, besides the timing constraint, many
other design constraints are taken into consideration in real-time system design and develop‐
ment. Traditional approaches focus exclusively on timing constraints [3,4,6,7]. Today, many
other design constraints (e.g. power/energy, thermal, and reliability) also need to be considered
seriously in real-time system design [8,9,11,12,14].

Figure 1. Power vs. Temperature [9]: Intel Core i5-2500K (32 nm Sandy Bridge), voltage 1.26 V, frequency at 1.6 GHz
and 2.4 GHz, respectively.

1.1. Power/energy analysis in multi-core real-time systems

Catalyzed by continuous transistor scaling, hundreds of billions of transistors have been
integrated on a single chip [13]. One of the immediate consequence caused by the tremendous
increase of transistor density is the soaring power consumption [5], which further results in
severe challenges in energy and temperature[11,17]. Today, power has become a critical and
challenging design objective in front of system designers.

1.2. Thermal analysis in multi-core real-time systems

The continuously increased power consumption has resulted in a soaring chip temperature.
Moreover, as design paradigm shifts to deep submicron domain, high chip temperature leads
to a substantial increase in leakage power consumption [13], which in turn further deteriorates
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the power situation due to the interdependency between temperature and leakage power. For
instance, with Intel core i5-2500K (32 nm Sandy Bridge), the leakage power roughly grows up
to 2× from 55°C (13 W) to 105°C (26 W), see Figure 1. Furthermore, the soaring chip temperature
adversely impacts the performance, reliability, and packaging/cooling costs [17]. As a result,
power and thermal issues have become critical and significant for advanced multi-core system
design. In next section, we introduce some necessary backgrounds of multi-core scheduling
with power and thermal awareness, respectively.

The aggressive semiconductor technology scaling has pushed the chip power density doubled
every two to three years [16,20], which immediately results in an exponential increasing in
heat density. High temperature can degrade the performance of systems in various ways.
Therefore, there is a great need of advanced techniques for thermal/temperature aware design
of multi-core systems.

2. Preliminary

2.1. Multi-core platform and task model

The multi-core platform consists of M processing cores, M ≥ 2, denoted as P, P = {P1,P2,…,PM}.
Each core Pi has N running modes, each of which is characterized by a 2-tuple set (vk, fk), where
vk represents the supply voltage and fk represents the frequency under mode k, 1 ≤ k ≤ N.

Let S represent a static and periodic speed schedule, which indicates how to vary the supply
voltage and working frequency for each core at different time instants. A speed schedule S is
constituted by several state intervals, which is described as below:

Definition 1 [25]: Given a speed schedule S for a multi-core system, an interval [tq−1, tq] is called
a state interval if each core runs only at one mode during that interval.

Recall that speed schedule S is a periodic schedule, let L denote the length of one scheduling
period. According to Definition 1, a speed schedule S essentially consists of a number of non-
overlapped state intervals. Let Q represent the number of non-overlapped state intervals
within one scheduling period of S, then we have that [25]

1. ∪q=1
Q tq−1, tq = 0, L

2. tq−1, tq ∩ tp−1, tp = ∅, if q≠p

For a single state interval [tq−1, tq], let Kq represent the interval mode, Kq = {k1,k2,…,kM}, where
ki denotes the running mode of core Pi in interval [tq−1, tq].

2.2. Power model

The overall power consumption (in Watt) of each core is composed of two parts: dynamic
power Pdyn and leakage power Pleak. We assume that: (1) Pdyn is varied with respect of supply
voltage but independent of temperature, (2) Pleak is sensitive to both temperature and supply
voltage. Specifically, for the dynamic power, we know that it is proportional to the square of
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supply voltage and linearity of working frequency. We assume that the working frequency is
linearly proportional to supply voltage, thus the power consumption of the i-th core (Pi) under
running mode ki can be formulated as below [18].

3
, *dyn i ki kiP vg= (1)

where γki is a constant value determined by the platform and running mode, and vki is the
supply voltage of core Pi determined by the running mode.

For leakage power, although there is a very complicated relationship between leakage power
and temperature from circuit level perspective, Liu et al. [23] found that a linear approximation
of the leakage temperature dependency is fairly accurate. Work [12] further formulated the
leakage power of core Pi as below:

, ( * ( )) *leak i ki ki i kiP T t va b= + (2)

where αki and βkiare constants depending on the core running mode, that is, mode ki.

Consequently, the total power consumption of core Pi at time t, denoted as Pi(t), can be
formulated as:

3( ) ( * ( )) * *i ki ki i ki ki kiP t T t v va b g= + + (3)

For convenience in our presentation, we rewrite the above formula by separating the elements
into temperature independent/dependent parts such that

( ) * ( )i i i iP t T ty f= + (4)

whereψi =αki * vki + γki * vki
3 and ϕi =βki * vki.

1 1 11( ) ( )0

0( ) ( )MM M M

P t T t

P t T t

y f

fy

é ù é ù é ùé ù
ê ú ê ú ê úê ú= +ê ú ê ú ê úê ú
ê ú ê ú ê úê úë ûë û ë û ë û

L
M M M O M

L
(5)

Or

( ) + (t)t =Ρ Ψ ΦΤ (6)
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Note that we use the bold text for a vector/matrix and the unbolded text for a value, for
example, T represents a temperature vector while T represents a temperature value.

2.3. Thermal model

Figure 2. Illustration for thermal phenomena on multi-core system [26].

Figure 2 illustrates the thermal circuit model for a multi-core platform consisting of four
processing cores. Ci represents the thermal capacitance (in Watt/°C) of core Pi, and Rij represents
the thermal resistance (in J/°C) between core Pi and Pj. Note that the thermal model adopted
here is similar to the one used in related work [19,21]. Let Tamb represent the ambient temper‐
ature, then the thermal phenomena of core Pi in Figure 2 can be formulated as

( ) ( )( ) ( ) ( )i ji i amb
i i

j iii ij

T t T tdT t T t TC P t
dt R R¹

--
+ + =å (7)

Let

1

1 , if j=i

1 , otherwise

amb

ii

M

k
ik

ij

ij

Ti
R

R
g

R

d

=

ì =ï
ï
ï ìï
í ï

ïï = íï -ïï ïï îî

å (8)

Then the thermal model in equation (7) can be rewritten as

1

( ) ( ) ( )Mi
i ij j ij

dT tC g T t P t i
dt

d
=

+ = +å (9)
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Accordingly, for the entire system, the thermal model can be represented as

C d T(t )
dt + gT(t)=P(t) + δ (10)

where C and g are MxM matrices

1 11 1

1

0
,

0

M

M M MM

C g g

C g g

é ù é ù
ê ú ê ú= =ê ú ê ú
ê ú ê úë û ë û

C g
L L

M O M M O M
L L

(11)

and δ is an Mx1 vector

1

M

d

d

é ù
ê ú= ê ú
ê úë û

δ M (12)

Note that C, g, and δ are all constants that are determined by the multi-core platform only.
Moreover, C is the thermal capacitance matrix with none zero values only on the diagonal,
and g is a thermal conductance matrix. The thermal model adopted here is a generic model
which takes the heat transfer among different cores into consideration. Thus, it can be directly
applied on thermal analysis for both temperature transient state and temperature stable state.

3. Temperature analysis in multi-core real-time systems

There is an interactive effect between power and temperature, that is, high power leads to high
temperature, which in turn further aggravates the power consumption. In order to calculate
the energy consumption accurately and efficiently, it is necessary to develop an efficient
solution to calculate the temperature first.

In this section, we first present a temperature formulation within thermal transient state for a
constant speed schedule interval. Then we present an analytical solution to calculate the
temperature within thermal steady state for a periodic speed schedule.

3.1. Temperature analysis in system thermal transient state

In this subsection, we will formulate the temperature variation [26] within one state interval
[tq−1, tq] in the system thermal transient state.

First, by applying power model given by equation (6) into thermal model given by equation
(10), we can derive that
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C d T(t )
dt + gT(t)=Ψ +ΦT(t) + δ (13)

Then we simplify the above equation by letting G=g−Φ. Thus the above equation can be
rewritten as

C d T(t )
dt + GT(t)=Ψ + δ (14)

Since C represents the capacitance matrix, according to the circuit nature, we know that matrix
C contains no zero values only on its diagonal. Thus, we can see matrix C is non-singular.
Therefore, the inverse of C, that is, C−1 exists. Then we can further simplify equation (14) into
below

( ) ( )d t t
dt

= +
T AT B (15)

where A= −C−1G and B=C−1(Ψ + δ). The system thermal model formulated by equation (15)
has a form of first order Ordinary Differential Equations (ODE). Particularly, if all coefficients
are constant, then there exists a solution which can be formulated as

1
0( ) ( )t tt e e-= + -A AT T A I B (16)

For a state interval [tq−1,tq], it is important to point out that all coefficients in the above are
constant. Specifically, let Kq be the corresponding interval mode, and let T(tq−1) be the temper‐
ature at the starting point of that interval. Then according to equation (16), the ending
temperature of that interval, that is, T(tq−1), can be directly formulated as

1

1( ) ( ) ( )q Kq q Kqt t
q q Kq Kqt e t e

-D D
-= + -A AT T A I B (17)

where Δtq = tq − tq−1.

3.2. Temperature analysis in system thermal steady state

In this subsection, we will formulate the temperature variation [26] within one state interval
[tq−1, tq] in the system thermal steady state.

Consider a periodic speed schedule S, and let T(0) be the initial temperature at time instant 0.
For an arbitrary state interval [tq−1, tq] within speed schedule S, to obtain its steady-state
temperature, one intuitive way is to trace the entire schedule S by consecutively calculating
the temperature from the first scheduling period until system reaches its thermal steady state.
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Although this approach works from theoretical point of view, when considering the practical
computational time cost (which would be extremely expensive), it turns out that this intuitive
approach would be inefficient or even impractical. Thus, it would be desirable and useful to
develop an efficient solution to rapidly calculate steady-state temperatures for a periodic speed
schedule.

Figure 3. A speed schedule within two scheduling periods.

Let us first consider the temperature variation at the end of each scheduling period, that is, t
= nL, where n ≥ 1. Let the scheduling points of S(t) in the first period be t0,t1,…,ts, respectively.
After repeating S(t), let the corresponding points in the second scheduling period be t0',t1',
…,ts', respectively (see Figure 3). Note that

t0 = 0, t0' = ts = L, and ts' = 2L. According to equation (17), at time t1 and t1', we have

1
1 1 1 1

1 0 1 1( ) ( ) ( )K Kt t
K Kt e t e
-D D= + -A AT T A I B (18)

' '1
1 1 1 1' '

1 0 1 1( ) ( ) ( )K Kt t
K Kt e t e
-D D= + -A AT T A I B (19)

Subtract equation (18) from (19) on both sides, and simplify the result by applying Δt1 =Δt1
',

t0 =0 and t0
' = L , we get

1 1'
1 1( ) ( ) ( ( ) (0))Ktt t e LD- = -AT T T T (20)

Follow the same trace of the above derivation, we have that

2 2 1 1

2 2 1 1

'
2 2

'

( ) ( ) ( ( ) (0))

( ) ( ) ... ( ( ) (0))

K K

s Ks K K

t t

t t t
s s

t t e e L

t t e e e L

D D

D D D

- = -

- = -

A A

A A A

T T T T

T T T T
L (21)

Since ts = L , ts
' =2L , and let e ΔtsAKs…e Δt2AK 2e Δt1AK 1 =K, the last equation in (21) can be rewritten

as
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(2 ) ( ) ( ( ) (0))L L L- = -T T K T T (22)

In the same way, we can construct that

1( ) (( 1) ) ( ( ) (0))xxL x L L-- - = -T T K T T (23)

where x = 1,2, …,n. Sum up the above n equations, we get

1
1

( ) (0) ( ( ) (0))n x
x

nL L-
=

= + -åT T K T T (24)

In the above, {Kx−1|x = 1,2,…,n} forms a matrix geometric sequence. If (I−K) is invertible, then
we have

1( ) (0) ( ) ( )( ( ) (0))nnL L-= + - - -T T I K I K T T (25)

Next, we consider the temperature variation for an arbitrary time instant when repeating a
periodic speed schedule. Given a periodic speed schedule S(t), let tq (tq ∈[0,L]) be an arbitrary
time instant within schedule S(t). Moreover, let's repeat S(t) for n times, where n ≥ 1. Let T(nL
+ tq) denote the temperature of T(tq) in the n-th scheduling period, by following the similar way
of the above derivation, we can get that

1( ) ( ) ( ) ( )( ( ) (0))n
q q qnL t t L-+ = + - - -T T K I K I K T T (26)

where Kq = e ΔtqAKq…e Δt2AK 2e Δt1AK 1.

Until now, we have been able to formulate the temperature variation of an arbitrary time
instant in the n-th scheduling period. Next, we will further formulate the temperature variation
of an arbitrary time instant in the system steady state. Consider an arbitrary time instant, that
is, tq , 0 ≤ tq ≤ L, within the first scheduling period. The brief idea of calculating the steady-state
temperature corresponding to tq is to let n go to infinity in equation (27). We formally describe
our method in Theorem 1.

Theorem 1 [25]: Given a periodic speed schedule S(t), let T(L) and T(tq) be the temperatures at
time instant L and tq, tq ∈ [0,L], respectively. If for each eigenvalue λi of K, we have |λi| < 1,
then the steady-state temperature corresponding to tq can be formulated as

1( ) ( ) ( ) ( ( ) (0))ss q q qt t L-= + - -T T K I K T T (27)

Proof:
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First, based on equation (26), by letting n→+∞, the steady-state temperature of the q-th
scheduling point in S(t) can be represented as

1( ) ( ) ( ) ( lim )( ( ) (0))n
ss q q q n

t t L-

®¥
= + - - -T T K I K I K T T (28)

When n→+∞, the matrix sequence Kn converges if and only if |λi|< 1, for each eigenvalue λi of
K [14]. Under this condition, we have lim

n→∞
Kn =0. Moreover, if |λi|< 1 holds, then (I-K) is

invertible. Thus, the steady-state temperature of the q-th scheduling point in S(t) can be further
formulated as

1( ) ( ) ( ) ( ( ) (0))ss q q qt t L-= + - -T T K I K T T (29)

Note that as n→+∞, unless the temperature runs away and causes the system to break down,
we know that the system could eventually achieve its thermal steady state. That means for
each eigenvalue λi of K, the condition of |λi|< 1 should always hold. Therefore, it is reasonable
and practical to make such assumption shown in Theorem 1.

4. Energy analysis in multi-core real-time systems

Besides temperature, energy consumption is another important and challenging issue in the
design of multi-core real-time systems. We have now been able to formulate the temperature
variation in a multi-core system in the previous section. In this section, we will discuss how
to formulate the energy consumption on multi-core systems with consideration of the inter‐
dependence between leakage power and temperature.

In the rest of this section, we first present an analytical solution to calculate energy consump‐
tion of an arbitrary state interval. Then we present a solution to calculate the total energy
consumption of the entire speed schedule.

4.1. Energy analysis for one scheduling state interval

Consider a state interval, that is, [tq−1, tq] with initial temperature of T(tq−1). The energy con‐
sumption of all cores within that interval can be simply formulated as

1
1( , ) ( )q

q

t

q q t
t t t dt

-
- = òE P (30)

Based on our system power model, given by equation (6), we have
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E(tq−1, tq)=ΔtqΨ +Φ∫tq−1

tq
T(t)dt (31)

Theorem 2 given below is targeted to solve the above energy calculation problem.

Theorem 2 [25]: Given a state interval [tq−1, tq], let Tq−1 be the temperature at time tq−1. Then the
overall system energy consumption within interval [tq−1, tq] can be formulated as

E(tq−1, tq)=ΔtqΨ +ΦG−1H (32)

where Δtq = tq − tq−1, andH=Δtq(Ψ + δ)−C(T(tq)−T(tq−1)).

Proof:

In equation (31), let X= ∫tq−1

tq
T(t)dt , then the energy formula can be rewritten as

E(tq−1, tq)=ΔtqΨ +ΦX (33)

On the other hand, according to the system thermal model given by equation (10), we have

C d T(t )
dt + GT(t)=Ψ + δ (34)

where G=g−Φ. By integrating on both sides of the above equation with respect to time t, where
t ∈ [tq−1, tq], we can get

C(T(tq)−T(tq−1)) + G∫tq−1

tq
T(t)=Δtq(Ψ + δ) (35)

Note that X= ∫tq−1

tq
T(t)dt ; thus from the above, we can derive that

1-=X G H (36)

where H=Δtq(Ψ + δ)−C(T(tq)−T(tq−1))

Applying equation (36) into (33), we can see that

E(tq−1, tq)=ΔtqΨ +ΦG−1H (37)

From Theorem 2, we can see that for an arbitrary state interval [tq−1, tq], once the beginning
temperature T(tq−1) is known, the total energy consumption within [tq−1, tq] can be easily and
directly calculated.
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Subsequently, given a periodic speed schedule S and an initial temperature T0, we are able to
calculate the energy consumption within an arbitrary state interval in any scheduling period.

Corollary 1 [25]: Given a periodic speed schedule S(t) consisting of Q state intervals, let T0 be
the initial temperature. Then the energy consumption within the q-th state interval in the n-th
scheduling period, denoted as E(tq−1 + nL, tq + nL), can be calculated as

E(tq−1 + nL , tq + nL )=ΔtqΨKq +ΦKqGKq
−1 HKq (38)

where Δtq = tq − tq−1, andHKq =Δtq(ΨKq + δ)−C(T(tq + nL )−T(tq−1 + nL )).

Corollary 1 can be easily derived from Theorem 2. With the help of Corollary 1, given any
periodic speed schedule on a multi-core platform, when repeating that schedule, we can
quickly calculate the energy consumption within any state interval.

Accordingly, given a periodic speed schedule, when analyzing the system thermal steady state,
we can directly calculate the energy consumption of any state interval within the system steady
state.

Corollary 2 [25]: Given a periodic speed schedule S(t) consisting of Q state intervals, let T0 be
the initial temperature. Then the energy consumption within the q-th state interval in the
system steady state, denoted as Ess(tq−1, tq), can be calculated as

Ess(tq−1, tq)=ΔtqΨKq +ΦKqGKq
−1 Hss Kq (39)

where Δtq = tq − tq−1, andHssKq =Δtq(ΨKq + δ)−C(Tss(tq)−Tss(tq−1)).

Corollary 2 is directly derived from Corollary 1 by replacing the transient temperatures with
steady-state temperatures.
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Abstract

This chapter presents a novel application of real‐time dispatching problem to electric
utilities when multi‐objective is involved. It is described how the problem related to
emergency services  in  electric  utilities  is  considered,  with an aggregated objective
function developed to handle the minimization of the waiting time, the total distance
traveled, the sum of all delays related to already assigned orders, and the cost of non‐
assigned emergency orders. After that, actual cases have shown the effectiveness of the
proposed model to be adopted in real‐world applications either as a search for optimal
solution or by applying a heuristic‐based algorithm developed.

Keywords: multi‐objective optimization, dispatching problem, real‐time systems, dy‐
namic vehicle routing, emergency orders

1. Introduction

Electric  power  distribution  utilities  are  charged  of  managing  customer  attendance  and
maintenance procedures in their network [1]. The consideration of emergency scenarios makes
the problem even more complex especially by assuming resource constraints (human and
material) and strict regulation policies that establish targets and indices related to this context [2].

Considering that repair crews help to maintain the network under normal conditions, that
is, all the customers with power supply and non‐technical problems associated with the
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electric network, emergency orders are normally related to equipment failures, overload
conditions, and interrupted conductors [3].

From this context, the most relevant aspect to be considered refers to the waiting time asso‐
ciated with the emergency orders, since the level of injury or danger of death imposes im‐
mediate response from the network operation centre (NOC). The decision‐making problem
involves a considerable amount of data and several aspects and criteria, all of them related
to network and equipment operation procedures. This context is close to that one described
by Ribeiro et al. [4]: “decision making is a process of selecting ‘sufficiently good’ alternatives
or course of actions in a set of available possibilities, to attain one or several goals.”

Such a decision‐making process when referring to emergency services in electric utility gen‐
erally involves not only the waiting time (also referred as response time [5]) for emergency
orders but also two even important aspects: the total distance traveled and the sum of all
delays related to already assigned orders. The former sounds really intuitive, because the
minimization of the total distance traveled by all crews improves their productivity by ag‐
gregating more time in their workday to complete the assigned orders. The latter aspect is
that one more specific: the consideration of multitasked maintenance crews. They are al‐
ways charged of pre‐established routes that include orders known a priori when a set or
emergency orders come up. This criterion of minimizing the sum of all delays represents the
desired trade‐off between the planning and actual scenarios, in such a way that they could
be as similar as possible [6].

This chapter proposes a multi‐objective approach based on a mathematical model to handle
emergency orders under real‐time conditions. It comprises four criteria related to this prob‐
lem: the minimization of the waiting time for emergency services, the total distance traveled,
the sum of all delays related to already assigned orders, and the cost of non‐assigned emer‐
gency orders.

2. Problem description

The electric NOC is charged of attending emergency calls for 24 hours a day and 7 days a
week, all answered by maintenance teams. Since they involve critical situations such as lack
of supply or even the possibility of injury to people, they are considered critical tasks that
require immediate attention. In this context, a real‐time system is desirable and appropriate
to support engineers to find the available teams that can meet these pending emergency
work order (EWO) as soon as possible, thus defining what is called as the Emergency Dis‐
patching and Routing Problem (EDRP).

Considering the urgency of these orders, the EDRP's main function is to reduce the waiting
time, defined as the sum of travel time and execution times of service orders scheduled to be
executed before the pending EWOs. The definition of EDRP assumed in this work comprises
the problem of decision to allocate pending EWOs to maintenance crews available, adopting
as a criterion of choice to minimize the waiting time. The problem becomes even more chal‐
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lenging from the consideration that these crews are multitasking: they serve not only the
EWOS but also commercial services (customer demand orders). This characteristic gives the
optimization problem a unique importance due to the associated complexity.

Such a conclusion comes from the fact that the EDRP corresponds to a dynamic vehicle rout‐
ing problem [7, 8], which can be clearly distinguish from the static vehicle routing problem
[9, 10] by assuming that at least some inputs to the problem can change during the execution
of the previously defined routes. Therefore, there is a concurrence between the resolution of
the EDRP and the dynamic generation of new EWOs [7] and the EDRP involves not only a
dispatching decision (to which available crew a certain EWO will be assigned) but also a fur‐
ther routing decision: in which position of the existing routing a certain EWO should be in‐
serted.

Some particular discussions about attributes related to dynamic vehicle routing problem ad‐
dressed in this work will be introduced next.

2.1. Dynamic vehicle routing attributes

Particularly in the EDRP defined in this work, over the several aspects that may point the
differences between the static and the dynamic fashion of vehicle routing problem described
by Psaraftis [7], four of them must be highly considered:

1. Time dimension: It is important to keep track of geographic location of all vehicles, since
that locations will be used to reach new EWO when they are made known, which means
that it is also need to keep track of how vehicle schedules evolve over the time;

2. Near‐term decisions: In the dynamic context of the vehicle routing problem included in
the EDRP, there is a trade‐off between take decisions based on near‐term information or
wait more time to take a greater defined landscape in order to promote better choices;
even assuming that future information may change and incurring on risk of taking “a
restrict” policy, near‐term events are assumed more relevant in the formulation of the
EDRP;

3. Faster computational times: The dynamic and also the emergency situation involved in
the EDRP both require faster calculations for obtaining candidate solutions when
comparing to the static context, since in this last one may be acceptable to wait for dozens
of minutes or even hours; this requirement is that one that entails the real‐time behavior
involved in this work;

4. Indefinite deferment mechanisms: A certain level of deferment is desired since it makes
a role of counterbalancing the near‐term vision assumed; however, one has to describe
some mechanisms to avoid that some particular EWOs, due to their unfavorable geo‐
graphical characteristics when compared to other ones, may be postponed indefinitely.

From these specific characteristics emerge a combinatorial problem to construct several
routes in order to meet customer demand in the context of an electric power distribution
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utility in Brazil, specifically with concern to the occurrence of EWO and thus describing a
dynamic problem.

The main challenge when attending emergency services with multitasking maintenance crews
refers to the trade‐off between static and dynamic scenarios. These crews may systematically
change their a priori routes with commercial orders upon the occurrence of EWOs, remem‐
bering that the latter orders have precedence over the first ones.

From this consideration, two main course of action may be assumed in order to route pending
EWOs: (1) the complete restructuring of existing routes and (2) only the insertion of EWOs in
any position of existing routes. The first case relates to route all orders simultaneously, whether
commercial or emergency, forgetting existing routes. The second case involves restricting the
changes in the a priori route, allowing only the inclusion of EWOs in any position. The problem
addressed in this paper considers these two cases.

The main issue involved in EDRP refers to the presence of several conflicting optimization
criteria. The main one is the waiting time to perform the EWOs, representing a tentative to
mitigate the risks to the security of the electricity distribution network.

Another important criterion, this with an economic impact, refers to reducing the cost of the
routes as the time needed to complete them, involving both commercial orders and EWOS.
One can note that, in this case, a conflict regarding the precedence of EWOS and total cost: the
higher is the precedence of EWOS, the higher will be the cost of the routes.

The third and last aspect to be considered refers to minimizing the sum of all delays related to
the previously assigned services, in order to maintain the desired trade‐off between the
planning and actual scenarios.

All these questions will be discussed in details in the next section and further explained with
practical examples for actual instances. The following section presents a simple example of
EDRP instance.

2.2. A simple dispatching solution

Herein, there is an aspect that must be mentioned: all the repair crews have workday that may
be different, thus affecting their availability to serve emergency services. An example of a
possible EWO dispatching is given in Figure 1, which describes just one EWO (E0) and three
crews available: crew 1, namely C1, 21 min far from E0; crew 2, namely C2, 60 min far from
E0; and crew 3, namely C3, 30 min far from E0. With this information, one must decide that E0
must be dispatched to C1 since it has the smaller travel time, which in this case also corresponds
to the smaller response time.

Real-time Systems74



Figure 1. Example of an EWO dispatching.

It is worth noting that the geographical position of each crew is permanently changing by
assuming the dynamic behavior involved, always conducting to the consideration of a multi‐
depot vehicle routing. Another aspect is that each crew has its proper working hours. As
depicted in Figure 1, taking this assumption and considering that C1 has 9:00 am as its initial
work time, C2 has 7:00 am as its initial work time, and C3 has 8:00 am as its initial work time,
the time when the EWO comes up plays an important and definitive role on deciding which
vehicle must be assigned to. If this time is 9:30 am, the previous analysis is appropriated, but
if we consider 8:00 am, the following approaching time for each vehicle must be calculated:
Vehicle 1 only will reach the EWO at 9:21 am; vehicle 2 will reach the EWO at 9:00 am; vehicle
3 will reach the EWO at 8:30 am. These results suggest that vehicle 3 must be dispatched to
execute E0.

The next section is devoted to present the mathematical programming formulation developed
to the EDRP.

3. Mathematical programming formulation for EDRP

The EDRP description presented in the previous section corresponds to a multi‐objective and
multi‐attribute vehicle routing problem [11], with the most important ones stated as follow,
according to the taxonomy of Eksioglu et al. [10]:

1. Real‐time solution method (1.2.4);

2. On‐site service—waiting times (2.5.2);

3. Customers on node (3.2.1);
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4. Geographical location of customers—both urban and rural zones (3.3.3);

5. Multiple origins (3.4.2);

6. Time window restrictions on vehicles (3.6.4);

7. Exactly n vehicles—equivalent to TSP (3.7.1);

8. Uncapacitated vehicles (3.8.2);

9. Deterministic travel time (3.10.1);

10. Travel time dependent transportation cost (3.11.1);

11. Partially dynamic (4.1.2).

With all these attributes assumed, a mathematical programming formulation may be stated in
order to define how to treat these characteristics and also to allow a further resolution by exact
methods, when possible.

The following subsections are devoted to describe the formulation developed: First, the set of
parameters and variables are presented, followed by the objective functions definition; finally,
the constraints are defined in blocks in such a way to give a better understanding of how the
previously defined attributes are related to.

3.1. Parameters and variables

All the conditions and information necessary to have a solution for an EDRP instance are
presented in three tables: Tables 1–3. The first one is devoted to describe general parameters,
the second defines crew‐related parameters, and the last one reports the service order‐related
parameters. In all tables, the first column (“PARAM”) includes the parameter identification
and the second one presents the corresponding description (“DESCRIPTION”).

PARAM Description

Dij Distance in hours between node i and node j

F The set of all objective functions

Wi Factor that weighs the objective function i, with ∑
i∈F

Wi =1

Table 1. General parameters.

PARAM Description

CC Cost per hour of any crew (in $/h)

PREDi The set of predecessors nodes of node i in the initial route: i ∈Vs ∪Vc ∪Ve

R The set of routes

RTi The initial route of node i
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PARAM Description

SEQi The sequence number of node i, in the corresponding route

SUCi The set of successors nodes of node i in the initial route: i ∈Vs ∪Vc ∪Ve

T0r The initial time of crew r

Tr Time that the r crew should finalize its route

U Maximum acceptable time to any crew finish its route

Vs The set of starting nodes, corresponding to crew positions

Vt The set of terminal nodes, corresponding to artificial nodes created to make easier the finishing route time
calculations

Table 2. Crew‐related parameters.

PARAM Description

EC Cost related to each non‐assigned emergency order (in $)

OCi Cost of the service order i (in $/h)

PREDi The set of all predecessor nodes of node i

STi Service time of order i (in hours)

SUCi The set of all successor nodes of node i

TAi Expected arrival time for service order i on the initial route

TEi Time when emergency order i was generated

TSi Service time of order i, i ∈V \Vs \Vt

V The set of all programmed and emergency orders, including starting and terminal nodes:

V =Vc ∪Ve ∪Vs ∪Vt

Va The set of all assigned service orders: Va ={i ∈Vc ∪Ve | RTi ≠ −1}
Vb The set of orders which are in the first position on the initial routes: Vb ={i ∈Vce |SEQi =1}
Vc The set of programmed orders

Vce Vce =Vc ∪Ve

Ve The set of emergency orders

Ven The set of emergency orders which are unassigned to route crews: Ven ={i ∈Ve | RTi = −1}
Vens Vens =Ven ∪Vs

Vr The set of all emergency orders that are already routed: Vr ={i ∈Ve | RTi =1}
Vsce Vsce =Vs ∪Vc ∪Ve

Table 3. Service order‐related parameters.
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After parameter decryption, the set of variables must be introduced. Since this formulation
refers to a mixed integer programming model [12], it includes both discrete and continuous
variables. In addition, the set of discrete variables have two distinct subsets: the first compris‐
ing nonnegative integer variables and the latter referring to binary variables.

It is worth noting that the set of decision variables includes four main attributes: precedence
between service orders, assignment of orders to routes, and finally, time information of when
repair crews arrive at service orders or when these crews complete their workdays. Table 4
presents all the variable sets defined to the proposed formulation.

SETDescription

xijr Binary variable indicating if the node i is preceding of node j on the route r: xijr = 1 if it is true and xijr = 0 otherwise

yir Binary variable indicating if node i is included on the route r:yir = 1 if it is true and yir = 0 otherwise

si Binary variable denoting the assignment of emergency order i to any available crew: si = 1 if it is true and si = 0
otherwise

ti Real variable indicating the arrival time on node i

ui Integer variable indicating the relative position of the node i

Table 4. Variable sets defined for the proposed formulation.

3.2. Objective functions

Following the preceding definition on Section 2, about the criteria involved in the multi‐
objective and real‐time approach for service‐order dispatching and routing, four objective
functions are considered in this work: an objective function, Eq. (1), to denote the waiting time
in hours involved in the solution proposed; an objective function, Eq. (2), to denote the total
route cost, related to the sum of all travel times between any two nodes weighted by the hourly
cost of the crews; an objective function, Eq. (3), to denote the number of hours related to the
delay caused by the new assignment when compared to the initial routes; and finally, an
objective function, Eq. (4), to denote the cost of non‐assigned emergency orders.

It is worth noting that in all criteria, the unit remains the same: the number of financial units
involved per hour ($/h).
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Since we are focus on a multi‐objective approach, all the four criteria must be considered
together in the optimization process. In this work, it is assumed an a priori approach to address
the multi‐objective problem [13], from the previous definition of all Wi factors before conduct‐
ing the optimization process to dispatch and route. Eq. (5) presents the four criteria of Eqs. (1)–
(4) weighted by corresponding Wi factors.
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3.3. Basic constraints

After introducing all criteria put together with an unique objective function, there is a set of
equations to define the constraints to be assumed in the formulation proposed. The first set of
constraints are called just as “basic constraints,” since they are related to the assignment of
already routed orders or referring conditions as precedence and non‐anomalous route
construction: for instance, overlapping routes, service orders included in more than one route,
etc.
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The assignment of all orders, with exception of the unassigned emergency ones (Ven set), is
guaranteed by Eq. (6). Eq. (7) ensures that any order should be assigned to no more than one
route and Eqs. (8) and (9) define the designation of all starting nodes and of all terminal nodes,
respectively. Eq. (10) corresponds to the coupling constraints for variable sets y and s, which
means that, for all unassigned emergency nodes, the value of s corresponding variable is equal
to 1 if it remains unassigned, requiring y corresponding variable to take the value 0.

In Eq. (11), it is guaranteed that each starting node should have exactly one successor node in
the set V\Vs, whereas the Eq. (12) ensures that the terminal nodes must have exactly one
predecessor node belonging to the set V\Vt; Eq. (13) states that each terminal node should have
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exactly one starting node as its successor node. In this sense, with regarding to each assigned
service order belonging to the set Va, Eqs. (14) and (15) ensure exactly one successor and one
predecessor node, respectively. With regarding to unassigned emergency nodes, Eqs. (16) and
(17) ensure no more than one successor node and no more than one predecessor node,
respectively.

Eqs. (18)–(20) correspond to the coupling constraints for variable sets x and y. If a certain node
i is assigned to a route r (yir = 1), this node should have one successor and one predecessor node
in this route, Eqs. (18) and (19), respectively. Eq. (20) requires that each terminal node should
be predecessor node of exactly one starting one.

Finally, Eq. (21) forbids connections of a node to itself.

3.4. Subtour elimination constraints

In order to have crew routes without subtours, Miller–Tucker–Zemlin (MTZ) constraints [14,
15] are defined on Eqs. (22)–(25). These constraints arise from definition of extra integer
variables for each node, in such a way to have defined the relative order of each one of these
nodes in their corresponding routes. First, all the starting nodes (Vs set) are defined as the
beginning of each route, Eq. (22), followed by definition of the remaining ones (V\Vs set) to
be restricted on the range of [2, |V|], Eqs. (23) and (24). Eq. (25) corresponds to the coupling
constraints for variable sets x and u, referring that if node j is successor of node i on the route
r by defining xijr = 1, the following inequality holds: ui ≤uj −1.

The last set of constraints, Eq. (26), refers to the assumption of the initial routes from the
definition of parameter SEQ: if node j follows node i on initial routes, ui < uj.

1 ,i su i V= " Î (22)

2 , \i su i V V³ " Î (23)

, \i su V i V V£ " Î (24)
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3.5. Arrival time constraints

Computing the waiting time for all nodes is only possible by defining the values for the variable
set t, described in Table 4 as the arrival time.
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Since each crew has a starting node in the first position of its route, Eq. (27) defines that all
nodes in the set Vs their arrival time is zero. The next set of constraints, Eq. (28), establishes
properly how the arrival time is calculated by considering three main factors:

(1) the arrival time of the predecessor node i (ti); (2) the service time at node i (TSi); and (3) the
traveled distance between the predecessor node i and the current node j (Dij). By adopting the
factor −U , one attempts to switch off the constraint whenever xijr =0, since ti + T Si + Dij < <U
and allowing tj =0. For xijr =1, the following inequality holds: tj ≥ ti + T Si + Dij.

0 ,i st i V= " Î (27)

(1 ) , \ , \ , ,j i i ij ijr t st t TS D U x i V V j V V r R i j³ + + - - " Î " Î " Î ¹ (28)

3.6. Domain constraints

Eqs. (29)–(33) present the domain of variable sets x, y, s, t, and u. The linear programming
model is defined by assuming the continuous variables t, after aggregating the discrete ones:
x, y, s, and u. Only this last set is not binary, and it is worth noting that the set s is only defined
for emergency nodes: Ve.

{0,1} , , ,ijrx i j V r RÎ " Î " Î (29)

{0,1} , ,iry i V r RÎ " Î " Î (30)

{0,1} ,i es i VÎ " Î (31)
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4. Proposed algorithm

The composition of the objective function presented in the previous section was evaluated by
testing the model performed with the IBM ILOG CPLEX 12.5 optimization environment. Even
for small instances, read up some units outstanding emergency orders and a few dozen
commercial orders in the schedule of teams, it was possible to obtain the optimal solution with
adaptations in the model developed in practice to accurately resolution impediment for
various reasons: (i) the dispatch issue emergency orders has combinatorial nature; (ii) the real‐
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time response requirements is very important; and (iii) variability in the characteristics of
dispatch problem instances is very significant.

Given this perspective, a heuristic approach to the EDRP is developed carefully observing the
mathematical model described in Section 3. The heuristic algorithm corresponds to a search
in variable neighborhood with multiple restarts, allowing versatility adjustments and easy
adaptation to different dispatch scenarios and also relative efficiency as the numeric result.

The compromise was found with the algorithm which refers to the need for real‐time response.
This requirement may be relaxed in the case of a very large number of instances, such as in
situations of extreme weather events that cause a very unusual number of EWOs. In these
situations, what you want is to meet emergency orders as soon as possible, including com‐
pletely passing over the planned orders. On the other hand, in more commonplace situations
whether meet emergency orders as soon as possible but at the same time, minimizing the delay
in the a priori routing planning with commercial orders.

The next sections describe both the decision support system architecture developed and the
proposed heuristic algorithm to the EDRP described in Section 3.

4.1. Decision support system architecture

In order to deal with this dichotomy, the concept of dispatch scenarios was developed,
exploiting basically the balance or imbalance between supply (availably of working hours)
and demand (service time of pending emergency orders). In addition, the EDRP considered
in this work should be able to handle real‐time automatic dispatch of EWOs.

Assuming this entire context, a computational approach based on decision support systems
[16] is proposed, since these systems provide concepts, definitions, and techniques that help
decision makers in the decision process, especially by analyzing and furnishing alternatives
of mathematical models in a reasonable time. The key idea involved is the proper use of
techniques inspired by the mathematical model presented in Section 3, combined with efficient
heuristics to furnish reasonable solutions bearing in mind the real‐time requirements previ‐
ously assumed [17]. Following these principles, it is proposed an architecture for the system
as shown in Figure 2.

In order to provide real‐time capabilities in the proposed computational system, the great
representation of multi‐core processors on most computers available suggests that this
character may be exploited in parallelizable architectures. The first premise of the proposal is
to divide the geographical of the electric utility into smaller areas that do not represent
interconnection resources over a day, as if these areas were isolated from the point of view of
the planning of calls in a day. For each one of these areas, there is a thread involving all the
components of the architecture of Figure 2.

Another important constructive feature of the proposed architecture is to be event‐driven [17],
due to the component “Checking event queue.” This queue contains all the operations related
to the EDRP, whether logs or even actions to be taken: dispatch a given crew to attend a certain
pending EWO.
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Figure 2. Proposed decision support system architecture.

Which is the best scenario? This answer is given by the component “Define a scenario,” which
evaluates how is the relationship between supply and demand, in such a way that supply
refers to the remaining working time hours and demand refers to the service time of pending
EWO. Whenever the required service time is much greater than the number of working time
hours available, it is possible one is facing a situation of extreme climate event, thus requiring
at least disregard the commercial demands or even add more working time hours for triggering
extra repair crews. When low demand occurs, that is, the number of crews is greater than the
number of pending EWO; the assignment problem emerges [18], and an exact solution for this
problem is suitable as a lower bound to the original problem described in Section 3.

The next step after defining a scenario to the EDRP refers to execute the most appropriated
algorithm to solve it, component “Apply algorithm.” Afterwards, the component “Define crew
scheduling” carries out final checking, since there may have been changes in the crews as non‐
communication or temporary unavailability. A report of the whole process is in charged of the
component “Warning and alerts.”

4.2. Proposed heuristic algorithm

The main reason for employing a “Variable Neighborhood Search”‐based algorithm [19] for
the EDRP refers to the possibilities of including adaptation in the optimization process based
on the instance, even by applying several types of neighborhoods or even by applying
neighborhood reduction strategies when the search space appears to be huge. These possibil‐
ities of adaptation are especially important when facing with real‐time system approaches such
as that proposed in this work.

Figure 3 presents the proposed algorithm developed to EDRP. There are three parameters:
instance, with all the data entered in the mathematical model of Section 4.1.2, the number of
permitted iterations (N), and the number of neighborhoods (T). The algorithm begins with a
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constructive procedure in step 1, which systematically creates a solution for the EDRP by
checking the gain promoted by each insertion of a pending EWO on the already constructed
routes, taking into observation the aggregated objective function of Eq. (5). Since it is a greedy
procedure, the best choice is assumed and the next pending EWO is evaluated until all of them
are designated.

Figure 3. Proposed “Variable Neighborhood Search”‐based algorithm.

The loop structure between steps 3 and 22 is relates to the algorithm itself that has a number
of repetitions given by the parameter N. Steps 4–19 are equal to the search itself, where the
variable k is the neighborhood considered: k = 1 is equivalent to insertion neighborhood, and
k = 2 corresponds to the 2‐opt neighborhood. Step 6 corresponds to a disturbance procedure
applied to the current solution (sol), considering neighborhood defined by parameter k. This
disturbance corresponds to changing the assignment of a given EWO or even changing the
relative position in the corresponding route. From there, the repetition structure of the steps
8–14 is responsible for generating new neighbor solutions as they represent gains in the
objective function (steps 10 and 11), which means lower values since the EDRP is defined for
a minimization criterion—Eq. (5).

If the loop structure of steps 8–14 is over, it is checked if the solution generated by the search
is better than the incumbent solution (sol), step 15. If so, one assumes the resulting solution
search (newsol) as new incumbent and backup solution for the initial neighborhood (step 17).
Otherwise, proceed to the next neighborhood (step 19) in an attempt to seek a minimum
alternative and different location from the previous neighborhood.
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The count of search iterations is performed in step 20, followed by the reset approach that is
one of the advantages of this algorithm (steps 21 and 22). This process is performed by
comparing the difference between the incumbent solution and the resulting solution search,
along with the number of iterations. The actual reset (step 22) occurs only when the number
of iterations indicates that the search has reached 50% of the effort and the search does not
promote further improvement.

5. Computational results and analysis

Aiming to evaluate the developed algorithm presented in the previous section and also the
associated computer system, two case studies were developed focusing on the variation in the
cost of EWO, and the consequent impact in the dispatch defined.

The following are each of these studies and the exploited details:

• Case study 1 refers to the ratio of cost of emergency orders and travel time;

• Case Study 2 relates to the influence of the cost of an EWO on the sequence of orders existing
commercial.

In addition, a set of instances of EDRP was used in order to evaluate the performance of the
proposed methodology when observing the computation time required, that is, if the real‐time
requirement is guaranteed. In all cases, the time required was less than a minute, and most
were <10 s. The processor used is an Intel Core i5‐3230M, 2.6 GHz, running Windows 7
operating system. Table 5 summarizes these results.

Instance Time (s) No. of crews No. of commercial orders No. of emergency orders

c16 0.213 1 7 1

c24_1248 0.288 1 7 6

e1 0.370 5 30 6

e4 0.455 9 30 6

e2 0.471 6 30 6

a1_3108 0.669 4 26 9

a1_2229 0.703 4 26 11

a1_2130 0.805 4 26 11

a1_1210 1.090 4 26 12

a1_2027 1.876 4 26 15

j2 8.643 8 0 49

Table 5. General results for the proposed algorithm.
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5.1. Case study 1

This study explored the first and fundamental characteristic of a review of a dispatch solution:
the impact of the cost of EWO on travel time associated with.

Table 6 presents 11 test cases that were developed with one team and two EWO. One can see
that the O4863657 cost has not changed, just O4863663 has changed from $100.00/h in case 11
to $2.00/h in the case 0. Three last columns of Table 6 represent the components of the objective
function that is impacted in this case study: expected cost of emergencies, travel costs, and the
overall cost.

Instance O4863657 cost O4863663 cost f emergency f displacement f global

r11 100 100 81 61 142

r10 100 90 80 61 141

r9 100 80 78 61 139

r8 100 70 77 61 138

r7 100 60 76 61 137

r6 100 50 74 61 135

r5 100 40 73 61 134

r4 100 30 71 61 132

r3 100 20 70 61 131

r2 100 10 43 86 129

r1 100 5 39 86 125

r0 100 2 36 86 122

Table 6. Results for test case 1.

From Figure 4, one can note that for O4863663 cost values ≥$20/h, corresponding to test cases
r3–r11, this order is always chosen to be in the first route position by promoting the smallest
displacement. When O4863663 cost is reduced to <$20/h, the cost of waiting time becomes more
representative than displacement cost, causing the advance of the order with the greatest cost
(O4863657) in the corresponding route. In addition, one can see the evolution of these
components of the objective function and also the evolution of the costs of each of the orders
considered in the study: (i) “F Emergency” is the portion corresponding to the cost of waiting
time for emergency orders; (ii) “f displacement time” is the cost of the displacement performed;
(iii) “f global” is the sum of two parts.

The highlight in Figure 4 is given to the time when there is a reversal in the route sequence
due to the change in the O4863663 cost: The cost of waiting for EWO was above the travel cost
up to the test case r3, after it, the most appropriate decision to reduce “f global” is to choose
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that sequence with less waiting time. The result of this transition on the route of the team is
illustrated in Figure 5.

Figure 4. Results for all instances of case study 1.

Figure 5. Analysis of the emergence of postponing on case study 1.

5.2. Case study 2

In this case study, it is verified the influence that EWO costs have on the relative position of
these orders on the existing route.

Eight test cases were developed, always assuming only an emergency order and six commer‐
cial orders: two with priority 0 and 4 with priority 2.

Table 7 summarizes the results for each test case, and the columns contain the identification
of test case, the cost of the E4354201 order, the expected cost of the emergency order (“f
Emergency”), the delay cost on commercial orders (“f commercial”), the cost of displacement
(“f displacement”), and the overall cost (“f global”), which equals the sum “f Emergency” + “f
Commercial” + “f displacement”. The cost E4354201 ranges from $24/h (test case “pr12”) to $
1/h (“pr5”).
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Instance E4354201
cost

f
emergency

f
commercial

f
displacement

f
global

pr12 24 2.7 -209.8 33.1 -174.04

pr11 18 2.0 -209.8 33.1 -174.7

pr10 12 8.0 -219.5 35.1 -176.34

pr9 8 5.3 -219.5 35.1 -178.99

pr8 4 2.7 -219.5 35.1 -181.65

pr7 3 2.0 -219.5 35.1 -182.32

pr6 2 2.5 -229.6 43.7 -183.36

pr5 1 3.4 -232.0 43.1 -185.53

Table 7. Results for test case 2.

With the help of Figure 6, it is possible to identify the three areas highlighted in the chart that
corresponds to changes in the route:

• First region: between transition from test case pr11 to test case pr10;

• Second region: between transition from test case pr7 to test case pr6;

• Third region: between transition from test case pr6 to test case pr5.

Transition costs of the first region causes the emergency order pass from the first to the second
position on the route; second transition region makes the emergency order to be is only the
third on the route; and finally, the last transition (third region) leads the emergency order to
be in the last position of the route. Such events are highlighted in Figure 6, which illustrates
the routes for test cases pr12, pr10, pr6, and pr5.

Figure 6. Analysis of the commercial orders delay on test case 2.
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6. Conclusions

This work presents a heuristic approach to solve the emergency dispatching and routing
problem, inspired by a newly developed mathematical formulation also presented. Some
attributes of vehicle routing problem are addressed, particularly: the real‐time solution; on‐
site service; multiple origins; time window restrictions on vehicles; and partially dynamic
problem (Figure 7).

Figure 7. Analysis of the emergence of postponing on test case 1.

Several criteria and constraints are involved from that attributes assumed, basically consider‐
ing the minimization of both the waiting time, travel times, the delay caused by the assignment
of pending EWOs, and the cost of non‐assigning them. The set of constraints include besides
the general ones, those related to the partially dynamic problem addressed and the arrival time
constraints due to the minimization of waiting time and to the assumption of on‐site service.

The proposed methodology, traduced in a heuristic approach that carefully observes the
mathematical programming formulation, comprises decision support system techniques
deriving a specially architecture developed, with the important requirement to promote better
efficiency on multi‐processors systems in order to handle real‐time conditions. Practical results
based on actual cases show how suitable is the proposed system to be applied in real‐time
conditions and demonstrates the proper response to system parameters defined.
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Abstract

Kalman filter was pioneered by Rudolf Emil Kalman in 1960, originally designed and
developed to solve the navigation problem in Apollo Project. Since then, numerous
applications  were  developed  with  the  implementation  of  Kalman  filter,  such  as
applications in the fields of navigation and computer vision's object tracking. Kalman
filter consists of two separate processes, namely the prediction process and the measure‐
ment process, which work in a recursive manner. Both processes are modeled by groups
of equations in the state space model to achieve optimal estimation outputs.  Prior
knowledge on the state space model is needed, and it differs between different systems.
In this chapter, the authors outlined and explained the fundamental Kalman filtering
model in real‐time discrete form and devised two real‐time applications that implement‐
ed Kalman filter. The first application involved using vision camera to perform real‐
time image processing for vehicle tracking, whereas the second application discussed the
real‐time Global Positioning System (GPS)‐aided Strapdown Inertial Navigation Unit
(SINU)  system  implementation  using  Kalman  filter.  Detail  descriptions,  model
derivations, and results are outlined in both applications.

Keywords: Kalman filter, real‐time, navigation, vehicle tracking, GPS‐aided‐INS

1. Introduction

Kalman filter exists for the past 50 years. It was first introduced by Rudolf Emil Kalman in 1960
[1] and was implemented on the Apollo Project in 1961 to solve the space navigation problem
[2]. Kalman filter is claimed to be an optimal estimator [1] due to its ability to optimally estimate
the system's error covariance and use the prediction in a recursive manner to improve the system

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



measurements from time to time. As such, Kalman filter was implemented as the estimator in
various applications, such as in navigations [3, 4], image processing [5, 6], and finance [7].

One of the uniqueness in Kalman filter is that it consists of two distinct processes, namely, the
prediction process and the measurement process. Both processes are combined and operated
in a recursive manner to achieve optimal Kalman filtering process [8]. Another uniqueness of
Kalman filter is the incorporation of prediction errors and measurement errors into the overall
Kalman filtering process. It is common that each prediction and measurement process consists
of errors in random nature. These errors or “noise” are normally being described using the
stochastic process. On the other hand, a real‐time application can be defined as an application
or program that reacts or responses within a predefined time frame, where such predefined
time frame is a quantified time using a physical clock [9]. From a real‐time application's point
of view, the real world's continuous time is turned into discrete time frame Δ. Different real‐
time applications have different Δ, which in turn defined the response time of the applications.
The real‐time application must react within the predefined time frame to provide an up‐to‐
date response. Such real‐time constraint forced the application to complete its routine within
the time frame, else the output may not be accurately reflecting the current state of input [10].

Note that the realization of Kalman filter, in its recursive nature, can be described as a real‐
time implementation. In this book chapter, the authors will demonstrate two real‐time Kalman
filtering examples. The first example demonstrated the real‐time Kalman filter implementation
on vehicle tracking application using vision camera's image processing. A Kalman filtering
model is established to estimate the positions and velocities of the moving vehicles and to
provide tracking on the vehicles at a normally visible condition [11]. The second example
demonstrated the Kalman filter implementation on the real‐time Global Positioning System
(GPS)‐aided Strapdown Inertial Navigation Unit (SINU) System or GPS‐aided INU system for
Unmanned Aerial Vehicle (UAV) motion sensing. The results obtained from both experiments
will be illustrated and discussed in this book chapter.

The outline of this chapter is as follows. Section 2 illustrates the generalized Kalman filter
model from real‐time system's point of view. Section 3 outlines the real‐time vehicle tracking
system using vision camera. The contents include the elaboration of image processing
algorithms, illustration of the Kalman filtering model on the tracking system, result in
acquisition, and discussions. Section 4 depicts the real‐time GPS‐aided SINU system for UAV
motion sensing using Kalman filter. The contents included the derivation of Kalman filter for
the GPS‐aided SINU system, the offline and real‐time implementation of the Kalman filter on
the GPS‐aided SINU system, results and discussions, and conclusion. Lastly, Section 5
concludes the chapter.

2. Kalman filter

Kalman filtering is a popular technique used to solve observer problems [12] in control
engineering [13]. Numerous derivations of the Kalman filter model can be obtained from
various researchers’ works [3, 8, 12, 14, 15], where detailed elaborations and explanations of
the Kalman filter, which included the derivation of the prerequisites such as the state space
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model and random variables, are outlined. Hence, in this chapter, the authors derived and
explained the discrete real‐time Kalman filter model from the implementation point of view
to ensure readers can understand the idea of Kalman filter from the real‐time implementation
angle.

2.1. Discrete Kalman filter model

A typical Kalman filtering process is separated into two distinct processes, namely, the
prediction process and the measurement process [14]. In general, the Kalman filter prediction
model and the measurement model of a real‐time system, expressed in discrete form, are as
follows:

1k k k-= + +x x Bu wf (1)

k k kz v= +Hx (2)

where xk  is the predicted output, zk  is the measurement output, ϕ denotes the state transition
matrix, B is the control input matrix, and u is the optional control input matrix. H  is the
measurement transformation matrix, whereas wk  and vk  are the process noise matrix and
measurement noise matrix, respectively. Both Equations (1) and (2) depict the general
expression of the Kalman filtering process [14, 15]. In terms of real‐time implementation,
however, further elaborations are to be performed on Equations (1) and (2).

2.2. Kalman filter algorithm

The Kalman filtering algorithm starts from the prediction process by estimating the prediction
state based on the derived state space equation. The state space equation, or state transition
equation, may differ in different systems. From the implementation point of view, the
expression of the prediction state, similar to Equation (1), is outlined as follows:

1k kf-
-= +% %x x Bu (3)

where x̃k
− is defined as the a priori state estimated at the discrete instant k, and x̃k   is defined

as the a posteriori state illustrated at the discrete instant k given the measurement zk . Note that,

from Equation (3), the a priori state x̃k
− can be elaborated as a hypothesized state predicted from

the system's state transition equations, whereas the a posteriori state x̃k  can be elaborated as the
measured state obtained by the system's observation. By letting xk  be the true value of state

measurement, the a priori prediction error  ek
−   and a posteriori estimation error ek  can be

expressed as:
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k k k
- -= - %e x x (4)

k k k= - %e x x (5)

From Equation (4), the a priori prediction error covariance can be expressed as:

( )( )TT
k k k k k k kE E- - - - -é ùé ù= = - -ë û ê úë û

% %P e e x x x x (6)

From Equation (6), substituting xk. Equation (1) and x̃k
− with Equation (3) yielded:
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(7)

Because the state estimation error and the process noise error are uncorrelated,

( ) ( )1 1 1 1 0TT
k k k k k kE E- - - -

é ùé ù- × = - =ë û ë û% %x x w w x x (8)

Therefore, Equation (7) can be simplified into:
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f f

f f

-
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-

é ùæ ö æ ö
ê ú= × - × - ×ç ÷ ç ÷
ê úè ø è øë û

é ù+ = × × +ë û Q

P x x x x

w w P

(9)

Equation (9) yielded an important step in the prediction process of the Kalman filtering
algorithm in obtaining the a priori prediction error covariance using the system's state transition
matrix ϕ, the a posteriori measurement error covariance from previous estimation Pk−1 and the

process noise covariance Qk = E wkwk
T . Hence, in summary, Equations (3) and (9) summarized

the two most important equations in deriving the prediction process of the Kalman filter
algorithm.

The next stage of the Kalman filtering algorithm is the measurement process. Equation (2)
depicts the observation equation, or the actual measurement equation, of the system. The
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measurement output zk  is normally obtained from the system's measurement sensors or
devices. From here, it is possible to express the a posteriori measurement x̃k  as follows [16]:

( )-
k k k k k

-= + -% % %x x K z Hx (10)

where Kk is the Kalman gain, and the term (zk −H x̃k
−) is commonly known as the measurement

residual or innovation [14–16]. Substituting Equation (2) into Equation (10) yielded:

( ) ( )k k k k k k k k k k k k
- - - -= + + - = + - +% % % % %x x K Hx v Hx x K H x x K v (11)

Given the a posteriori measurement error covariance, with reference to Equation (5):

( )( )TT
k k k k k k kE E é ùé ù= = - -ë û ë û% %P e e x x x x (12)

Substituting Equation (11) into Equation (12) yielded:
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(13)

Because the state estimation error and measurement noise error are uncorrelated,

( ) ( ) ( )( ) 0
TT

k k k k k k k kE E- -é ùé ù- × = - =ê ú× ×ë û ë û
% %x x K v K v x x (14)

Therefore, Equation (13) can be simplified into:

Pk =(I −Kk H )·E (xk − x̃k
−)·(xk − x̃k

−)T ·(I −Kk H )T + Kk ·E vk ·vk
T ·Kk

T

      = (I −Kk H )·Pk
−·(I −Kk H )T + Kk ·Rk ·Kk

T (15)

Equation (15) depicts the error covariance update equation in the measurement process of the
Kalman filtering algorithm. From Equation (15), one could obtain the optimal Kalman gain Kk
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with minimal mean squared error, where the mean squared error is reflected by the trace of Pk

[16], in which the trace is defined as the sum of the diagonal elements in the matrix. To do so,
the error covariance update equation from Equation (15) can be rewritten as:

( )T T T T
k k k k k k k k k k

- - - -× × ×= - × × ×- + × + ×P P K H P P H K K H P H R K (16)

The mean squared error reflected by the trace of the error covariance Pk  can be expressed as:

T Pk =T Pk
− −T Kk ·H ·Pk

− −T Pk
−·H T ·Kk

T + T Kk ·(H ·Pk
−·H T + Rk )·Kk

T

=T Pk
− −2T Kk ·H ·Pk

− + T Kk ·(H ·Pk
−·H T + Rk )·Kk

T (17)

where T ·  denote the trace of matrix and T Kk ·H ·Pk
− =  T Pk

−·H T ·Kk
T , as the diagonals of both

matrixes are identical. Performing the first derivative of Equation (17) with respect to Kalman
gain Kk  yielded:

[ ] 2 2 2 0
Tk T

k k k k k
k

d
d

- -é ù= - × + × + =ë û × × ×
T P

H P K H P H K R
K

(18)

where 
d T Kk ·H·Pk

−

d Kk
= H·Pk

− T  and 
d T Kk ·(H·Pk

−·H T + Rk )· Kk
T

d Kk
=2Kk·(H ·Pk

−·H T + Rk ). Rearranging

Equation (18) yielded the optimal Kalman gain with minimal mean squared error, as follows:

( ) 1T T
k k k k

-- -= ×× × +×K P H H P H R (19)

Lastly, substituting Equation (19) into Equation (16) yielded:

( ) ( )
1T T

k k k k k k k k

-- - - - -= - × +× × × × = - ×××P P P H H P H R H P I K H P (20)

where Equation (20) is the simplified version of error covariance update equation expressed
in terms of optimal Kalman gain obtained from Equation (19) and the a priori prediction error
covariance obtained from Equation (9).

In summary, the Kalman filtering algorithm can be summarized and is shown in Figure 1. The
prediction process, as shown in Figure 1, covers the prediction of a priori state and a priori error
covariance. The measurement process, on the contrary, covers the calculation of optimal
Kalman gain, updating the a posteriori estimation state and the a posteriori error covariance.
Both processes run in a recursive manner, forming the well‐known Kalman filtering algorithm.
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Figure 1. Block diagram of the Kalman filtering algorithm.

2.3. Real‐time consideration of Kalman filter

Figure 1 depicts a typical Kalman filtering process algorithm in its recursive form. Notice from
the block diagram that the algorithm processed each stage one by one and rewind back to the
initial block for the next cycle of processing. From the real‐time perspective, there are certain
time critical events that need to be handled within a specific time frame. In this subsection, the
time critical events are analyzed and discussed as part of the consideration of real‐time Kalman
filtering algorithm.

The pseudo code of the Kalman filtering algorithm is outlined in Figure 2. It is divided into
three sections. The first section denotes the system initialization, and it is covered from steps
100 and 101. The second section is the prediction process section, covered from steps 200 to
202. The third and final section is the measurement process section, covered from steps 300 to
310. Note that the second and third sections run recursively.

Figure 2. A typical Kalman filtering algorithm process pseudo code.
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Figure 3 depicts the timing diagram of the real‐time Kalman filtering algorithm based on the
pseudo code illustrated in Figure 2. The following observations are obtained by examining
Figure 3:

1. ΔT21 can be defined as the time required for Kalman filter prediction process from steps
200 to 202.

2. ΔT32 is defined as the time required for the measurement sensor's data preparation from
steps 300 to 305. The time consists of reading the measurement data from the sensors and
performs the preprocessing on the data as part of the measurement process preparation.
Note that ΔT32 may be the most time‐consuming factor in Kalman filtering process due to
the preprocessing step 302. Depending on the application, the preprocessing of measure‐
ment data may require a substantial amount of processing power to complete.

3. ΔT43 depicts the time required for the measurement data computation process from steps
306 to 310. Three important parameters were computed within this time frame, namely,
the optimal Kalman gain, the measurement states, and the error covariance measure‐
ments.

4. The total duration for a single iteration is ΔT41, which is equal to ΔT21+ΔT32+ΔT43. Note that
ΔT41 shall not exceed Δ, where ΔT is defined as the fixed time‐step of iteration. In most
Kalman filter applications, ΔT is normally adopted as the sampling duration of incoming
data. If the processing time for a single iteration exceeded Δ, then the next prediction will
not be accurate.

Figure 3. A typical timing diagram of real‐time Kalman filtering algorithm process.

3. Vision‐based real‐time vehicle tracking system

A vision‐based real‐time vehicle tracking system used vision camera to achieve target track‐
ing [17]. The number of tracked vehicle can be single or multiple. The detection and tracking
of vehicles are done through the image processing of consecutive frames of video. Before
tracking the vehicles across frames, target detection algorithm such as background subtrac‐
tion is responsible for isolating the position of the moving vehicles in every frame. The
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tracking algorithm used the measurements from the detection stage to relate the moving ve‐
hicles from frame to frame. However, due to the limitation of performance in the target de‐
tection algorithm, it is not reliable to solely depending on the measurements computed from
the detection stage. As such, Kalman filtering algorithm can be adopted to compensate the
fluctuation and missing measurements whenever the detection stage fails. The missing
measurements are predicted based on the center position and velocity of the detected vehi‐
cle. An experimental study was conducted on the real‐time vehicle tracking at a road junc‐
tion. The results showed that the Kalman filtering algorithm is capable of tracking the
vehicles even with loss measurements appeared on the scene.

3.1. Preprocessing of vision‐based vehicle tracking system

Traditionally, the road traffic monitoring is analyzed based on the data collected from the
electronic sensor (i.e., loop detector) and manual observation by the human operator. The
integration of multiple targets tracking algorithms in the vision‐based vehicle tracking system
offers an attractive alternative with additional potential to collect a variety of traffic parameters
[18]. As illustrated in Figure 4, that the vehicle tracking process is the second processing stage
in the existing vision‐based traffic monitoring system. The performance of this stage greatly
depends on the output from the first stage (i.e., the vehicle detection stage). The frames from
the video input are recognized as image sequences and fed into the first stage of traffic
monitoring system. Moving vehicles are segmented from the stationary background. Because
a moving vehicle is formed by a sequence of images from the consecutive frames, the fore‐
ground images are matched and combined into its respective tracked objects.

Figure 4. Processing stages of the vehicle monitoring system.

Background subtraction technique is the most widely used image processing algorithm for
moving vehicle segmentation [19]. The basic idea of background subtraction algorithm is to
subtract (in pixel‐wise) all consecutive frames from an occupied background frame. As a result,
this algorithm can be easily affected by sudden changes in background and illumination. Since
then, numerous researches on updating the background image have been carried out to create
a more adaptive background model. However, the contribution effort is still not able to
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perform vehicle segmentation perfectly, which indirectly affects the performance of vehicle
tracking. This is where the Kalman filtering algorithm comes into the picture to improve the
tracking performance.

3.2. Kalman filter model for vehicle tracking system

From the vehicle tracking system's point of view, the Kalman filter is to be designed to have
the ability to predict the movement of vehicles in the future video frames. The prediction
provides a suitable area for searching vehicles in the future frames. Consequently, it shortens
the processing time by excluding the foreground images that is not located in the search area
[14]. Besides, it also assists the tracking process in the situations where vehicles are temporarily
lost due to failed detection.

In the common road traffic flow, vehicle movements can be sufficiently recorded with an
optical sensor (i.e., camera) of 25 frames per second. This is because the changes in displace‐
ment of moving vehicles in x‐ and y‐positions have been monitored to be small and do not
show drastic changes, even at the road junction [20]. Kalman filter can be adopted for predict‐
ing the position of the vehicle, particularly during the loss of measurement detections. As
discussed previously in Section 2.2, the Kalman filter is a recursive model between the
prediction process and the measurement process. The prediction model of the vision‐based
vehicle tracking system, expressed in real‐time discrete form, is outlined as follows:
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where p̃n,x,k,  p̃n,y,k  denote the predicted vehicle location in pixels, ṽn,x ,k, ṽn,y ,k  denote the
predicted velocities of the vehicle in pixels per second,  ãn,x ,k, ãn,y ,k  denote the predicted
vehicle acceleration, and ΔT and n are the sampling instant between image frames and the
detected vehicle number, respectively. The predicted error covariance can be calculated as:

1 1 T T T
k k k k k k kE-

- - é ù= × + =× ×× + + ë ûQ QP P P w wf f f f (23)
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where Qk  is assumed to be Gaussian noise of prediction process.

On the contrary, the measurement model of the vision‐based vehicle tracking system, ex‐
pressed in terms of real‐time algorithm, is outlined as follows:
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where pn,x ,k ,  pn,y ,k
T  is the measured vehicle position in pixels, vn,x ,k ,  vn,y ,k

T  is the measured
vehicle velocity in pixels per second, and an,x ,k ,  an,y ,k

T  is the measured vehicle acceleration
in pixels per square second. The measured velocity and acceleration can be expressed as:

( ), , , , ,x,k 1 /n x k n x k np p Tn -= - D (25a)

( ), , , , , ,k 1 /n y k n y k n yp p Tn -= - D (25b)

( ) ( )2
, , , , , , 1 , , 22 /n x k n x k n x k n x ka p p p T- -= - + D (26a)

( ) ( )2
, , , , , , 1 , , 22 /n y k n y k n y k n y ka p p p T- -= - + D (26b)

With Equations (24) to (26), the optimal Kalman gain can thus be derived using Equation (19)
followed by the updates of the estimation state variables x̃n,k  using Equation (10) and the
updates of error covariance Pk  using Equation (20). Note that the measurement noise cova‐
riance matrix Rk  is assumed to be Gaussian noise.

3.3. Experiments and results

An experimental study was carried out using the Kalman filtering model derived in Section
3.2 for real‐time vehicle tracking. The experiment used the video stream captured from a static
camera installed on a pedestrian bridge above the road, somewhere near the Multimedia
University, Melaka, Malaysia. The Kalman filtering model is implemented with C++ program‐
ming language. The Open source Computer Vision (OpenCV) library [21] is used for the
vehicle detection stage using the background subtraction method based on adaptive Gaussian
mixture model in OpenCV. The tracking stage is demonstrated with the Kalman filtering
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algorithm for associating the foreground images with tracked vehicles from the previous
frame.

Figure 5 depicts one of the image frames of the experiment. During the experiment, the
tracking of vehicle number 8 (Figure 5, left) suffered lost detections due to the imperfection
of background subtraction technique. Figure 6 illustrates the tracking results comparison in
terms of x‐ and y‐positions in the image frames for the experiment. Note that there were lost
detections in position of vehicle number 8 from frames 190 to 197, as shown in Figure 6. No‐
tice that, despite the loss measurements of vehicle number 8, the Kalman filter algorithm can
still provide adequate estimations to the vehicle's positions. Note that, although vehicle
number 8 was not moving in a straight line, the tracking process was able to update the pre‐
diction according to the computed velocity and acceleration from the measurement model.
This result shows that the Kalman filtering algorithm assures the continuous tracking of ve‐
hicles, although there are several lost measurements during the process.

Figure 5. Illustration of one of the image frames of Experiment 2.

Figure 6. Comparison of vehicle number 8's tracking results for (a) x‐position and (b) y‐position in image frame.
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3.4. Conclusion

This section demonstrated the experimental study of the Kalman filter model for multiple
vehicle tracking. The model has incorporated the measurements of center positions of mov‐
ing vehicles together with the computed velocity and acceleration from the displacement
changes in the prediction phase. The tracking results show that the derived Kalman filter
model is suitable for tracking multiple vehicles, although measurements are lost in a short
period of time.

4. Real‐time GPS‐aided INU system

Inertial navigation system, which relied on inertial sensors [22] to operate, existed for the
past few decades for navigation applications. The SINU is a low‐cost inertial sensor devel‐
oped to substitute the high‐cost, high‐performance inertial sensors. High‐performance iner‐
tial sensors are commonly being controlled by government regulations, resulting in
unattainable of the sensors in civilian applications. On the contrary, the low‐cost, low‐per‐
formance SINU sensors can be easily acquired, but its measurement data suffered from vari‐
ous errors [23] that jeopardized its accuracy. Due to this issue, the GPS data are adopted as
an external reference source to minimize the SINU's errors through the implementation of
the Kalman filter.

A typical SINU consists of three orthogonally aligned accelerometers and three orthogonally
aligned gyroscopes that provide direct measurement on 3 degrees‐of‐freedom (DOF) accel‐
erations and 3‐DOF angular velocities. Some SINU consists of extra three orthogonally
aligned magnetometers for true north measurement. These measurements, as discussed pre‐
viously, are not accurate. To increase the SINU's accuracy, the GPS's position data obtained
from dead reckoning technique is fused with the SINU data through the Kalman filtering
algorithm. The system that used such fusion technique is commonly known as the GPS‐aid‐
ed SINU system, in which this fusion is known to retain the advantages of both SINU and
GPS while discarding the disadvantages [4].

4.1. Inertial navigation equations

The GPS‐aided SINU system is supposed to provide outputs in terms of position, velocity,
and orientation. However, the direct outputs provided by the SINU are in terms of accelera‐
tions and angular velocities. Hence, the inertial navigation equations, or navigation equa‐
tions, are formulated to describe the relationship between the GPS‐aided SINU system's
outputs in terms of the accelerations and angular velocities.

The general form of navigation equations can be derived as follows:
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where ΔT  represents the sampling time instant of the SINU sensor, pk
n = px ,k

n py ,k
n pz ,k

n T  and

vk
n = vx ,k

n vy ,k
n vz ,k

n T  are the three‐dimensional position and velocity in navigation frame (or n‐

frame), Rb,k
n  represents the direct‐cosine‐matrix (DCM) that transforms body frame (or b‐frame)

to n‐frame, sk
b = sx ,k

n sy ,k
n sz ,k

n T  and gn = 0 0 −9.80665 T  represent the three‐dimensional
acceleration measurement (from the accelerometers) in b‐frame and the gravitational force in
n‐frame, Ωie

n  is the skewed rotation rate matrix in earth frame [or e‐frame with respect to inertia‐

frame (or i‐frame)] projected to n‐frame, Ωib
b  is the skew matrix of angular velocity measurement

(from the gyroscopes) in b‐frame with respect to i‐frame projected to b‐frame, and Ωin
b  is the

skewed transport rate matrix in n‐frame with respect to i‐frame projected to b‐frame. Note that
the definition of different frames can be found in [4].

4.2. Dynamic error model of inertial navigation equations

The navigation equations outlined in Equation (27) served as the ideal equations to calculate
the position, velocity, and orientation based on the data measured from the SINU. However,
as discussed earlier, the measurement data from the low‐cost SINU contained various dynamic
errors that were not reflected in Equation (27). Hence, perturbation process is applied on the
navigation equations to acquire the dynamic error equations.

The dynamic error equations, expressed in continuous time, can be elaborated as:

δẋ=
δṗn

δv̇n

ε̇n

=

A pp⋅δrn + A pv⋅δvn

Avp⋅δrn + Avv⋅δvn + (sn ×)εn + Rb
n⋅δsb

Aep⋅δrn + Aev⋅δvn − (ωin
n ×)εn −Rb

n⋅δωib
b

(28)

where A pp, A pv, Avp, Avv, Aep, and Aev represent the Jacobians of position, velocity, and
orientation error equations [24], respectively, with the subscripts p, v, and e representing the
position, velocity, and orientation, respectively. A full description and elaboration of the
Jacobians can be found in [24]. εn denotes the orientation errors, the ( * × ) operator represents
the matrix's cross‐product, sn and ωin

n  denote the three‐dimensional acceleration measurement
in n‐frame and three‐dimensional angular velocity measurement in n‐frame with respect to i‐
frame projected in n‐frame, δsb and δωib

b  denote the three‐dimensional acceleration measurement
errors in b‐frame and three‐dimensional angular velocity measurement error in b‐frame with
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respect to i‐frame projected in b‐frame. Note that both δsb and δωib
b  are the random errors that

reside in the SINU that causes the inaccuracy of the sensor [23].

Equation (28) can be expressed in the state space model as follows:

δ δ= × + ×x A x B u& (29)

with

A=

A pp A pv 03×3

Avp Avv (sn ×)
Aep Aev − (ωin

n ×)
, B=

03×3 03×3

Rb
n 03×3

03×3 −Rb
n

, δx=
δrn

δvn

εn

,  u=
δsb

δωib
b (30)

where 03×3 is a three‐by‐three zero matrix. It should be noted that the error matrix u in Equation
(30b) can be modeled using the Gauss‐Markov model or through the Allan variance analysis
[23].

4.3. Kalman filtering model of GPS‐aided SINU

The Kalman filter prediction stage of GPS‐aided SINU system used the state space model of
the dynamic error equations of the SINU to predict the errors. For real‐time implementation,
the dynamic error equations stated in Equation (29) are to be transformed into its discrete form
as follows:

1k kd d -= F × +k -1x x w% (31)

where Φ denotes the transition matrix approximated to:

Φ= I9×9 + A⋅ΔT =

I3×3 + A pp⋅ΔT A pv⋅ΔT 03×3

Avp⋅ΔT I3×3 + Avv⋅ΔT (sn ×)⋅ΔT
Aep⋅ΔT Aev⋅ΔT I3×3 − (ωin

n ×)⋅ΔT

(32)

and wk −1 is the error covariance matrix expressed as:
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where Qk  represents the process noise covariance.
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The observation equations of the dynamic errors, on the contrary, can be modeled as follows:

δk k k= × +kz H x e (34)
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where p̃k
n, ṽk

n and ϑ̃k
n denote the three‐dimensional position, velocity, and orientation vectors

calculated from the navigation equations, expressed in n‐frame. On the contrary, pGPS , j
n , vGPS , j

n

and ϑMEAS ,k
n  denote the three‐dimensional position, velocity, and orientation vectors obtained

from sensors measurement. The variables with subscript GPS indicate the parameters obtained
from GPS measurements, whereas the orientation vector ϑ˜k

n can be obtained from the DCM
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n  [25]. Meanwhile, the orientation measurement vector ϑMEAS , j
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where Equations (36) and (37) represent the orientation measurement vectors. Note that the
vector mx

n my
n mz

n T  refers to the three‐dimensional magnetic field strength in n‐frame
obtained from the magnetometers, and the operator atan2 represents the four‐quadrant inverse
tangent function.
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Notice from Equation (35) that there are two different discrete instants described by subscripts
j and k. These two different subscripts described two different discrete instants, with subscript
k depicts the SINU's discrete instant, whereas subscript j depicts the GPS's discrete instant. In
most cases, the SINU's sampling rate is much faster than the GPS's sampling rate. This creates
phenomena in GPS‐aided SINU system's Kalman filtering process that the filter will need to
predict a multiple number of predictions before obtaining a measurement from GPS to correct
the errors. Figure 7 illustrates the time operation diagram of the matching of 5 Hz GPS data
with the 40 Hz SINU data.

Figure 7. Real‐time operational diagram of the GPS‐aided SINU system.

4.4. GPS‐aided SINU system design and its real‐time implementation

Figure 8 delineates the operational block diagram of the design of GPS‐aided SINU system.
As shown in Figure 8, that the SINU consists of three‐dimensional accelerometers, gyroscopes,
and magnetometers that output three‐dimensional accelerations, angular velocities, and
magnetic field strengths, respectively. The sampling rate of the SINU is 40 Hz. By combining
these data with the GPS data (5 Hz) through the Kalman filtering model, the system is able to
compute the estimated position, velocity, and orientation errors, which could be used to
improve the overall estimations.

Figure 8. GPS‐aided SINU system operational block diagram.
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Offline field experiment using a moving car was carried out to verify the performance of the
GPS‐aided SINU system before real‐time implementation. The Kalman filtering process is
carried out in offline mode to verify the performance of the developed system. Note that, in
the experiment, the SINU and GPS data rate are 40 and 5 Hz, respectively. The data obtained
from the offline experiment was fed into the Kalman filtering model to obtain the offline
measurements. To test the performance of the proposed GPS‐aided SINU system, the same set
of offline data was also fed into a conventional GPS‐aided SINU system with no magnetome‐
ters. The result obtained from the conventional GPS‐aided SINU system without magnetome‐
ters is compared to the result obtained from the proposed GPS‐aided SINU system with
magnetometers to verify the performance of the proposed system. From the results of the
offline experiment, there is an average difference computed to be 2.84 m between the naviga‐
tion paths of GPS‐aided SINU system with and without magnetometers. The mean difference
between the navigation paths of GPS measurements and the GPS‐aided SINU system with
magnetometers is computed to be ′0.173 m. On the contrary, the mean difference between the
navigation paths of GPS measurements and the GPS‐aided SINU system without magneto‐
meters is calculated to be ′2.67 m, much higher than the mean difference from the previous
calculation. Such results indicate that the proposed system work well in offline mode.

With the success offline implementation on the moving car, the system is now ready for real‐
time implementation. Both the GPS module and the SINU are connected to an embedded high‐
performance computer (HPC) through RS‐232 for data acquisition and real‐time processing.
The embedded HPC used in the system come with an Intel Core™ 2 Duo Processor E7500, 4
GB DDR2 RAM, 40 GB hard drive integrated into Zotac Nforce 9300‐ITX motherboard. Similar
to the previous setting, the SINU's data rate is 40 Hz, which is relatively faster than the GPS
data rate of 5 Hz. During the data acquisition stage, the embedded HPC acquired one set of
SINU data every 25 ms (equivalent to 40 Hz). On the contrary, the embedded computer
acquired one full GPS data every 0.2 s (equivalent to 5 Hz). Hence, it is obvious that there is a
mismatch of GPS data to SINU data. As shown in Figure 7, when both GPS and SINU data are
updated with the newest measurements, the real‐time processing system will proceed with
the Kalman filtering process to provide a new update on the error prediction. At the instances
where newest GPS data were not available, the real‐time system will compute the error
prediction solely depending on the previous error prediction obtained from the Kalman
filtering process and the newest SINU measurements.

A graphical user interface (GUI) is developed using Visual Basic software (from Microsoft
Corporation) for the real‐time implementation. A total of 31 variables will be saved into the
solid‐state hard disk continuously in binary file format. The first nine variables represent the
raw data from the SINU, which serves the inputs of the GPS‐aided SINU system. The subse‐
quent 15 variables represent the computed three‐dimensional position, velocity, orientation,
acceleration errors, and orientation errors, which serve as the outputs of the GPS‐aided SINU
system. The last seven variables are the GPS data. Figure 9 shows the GUI layout and the real‐
time experimental results of the developed real‐time GPS SINU system. Figure 9 (top left)
indicates the serial ports setting for the SINU and the GPS. An”Operation Start“button is
located beneath the serial ports frame. An X‐Y graph is used to display both the real‐time GPS
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path in green color line and the real‐time SINU's navigation path in red color line. A group of
real‐time parameters could be found below the X‐Y graph. These parameters included the real‐
time updated position, velocity, orientation, and GPS information. The incoming raw SINU
data are displayed at the bottom of the GUI. Note that the position plots shown in Figure 9 X‐
Y graph are the results from one of the field experiments conducted in Kampung Seri Pantai,
Mersing, Malaysia. In this experiment, the GPS‐aided SINU system is installed inside an UAV
for motion sensing. The navigation path of the UAV, in GPS data, is shown using the Google
Earth in Figure 10. The duration of the experiments was approximately 50 min. The recorded
average flight speed was 145 km/h.

Figure 9. GUI of the real‐time GPS‐aided SINU system and its field experiment result.

Figure 10. Navigation path of the real‐time GPS‐aided SINU system experiment on a UAV in Google Earth.
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Figures 11 and 12 illustrate the results obtained from the real‐time experiment, with Fig‐
ure 11 depicting the real‐time velocity plot and Figure 12 depicting the real‐time orientation
plot. The motion sensing results are compared to the UAV's onboard Piccolo II Autopilot
Navigation System [26] outputs. Note that the Piccolo II Autopilot Navigation System is a
high‐performance, commercial‐grade navigation system for UAV autopilot. The mean
square differences of position, velocity, and orientation were computed between the devel‐
oped system and the Piccolo II system and the comparison results are outlined in Table 1.
Such results indicate that the low‐cost GPS‐aided SINU system achieved a comparable, ade‐
quate performance when compared to a high‐performance, high‐cost system.

Mean square difference

Position (m) 0.3081

Velocity (m/s) 0.0077

Orientation (°) 2.5930

Table 1. Mean square difference of position, velocity, and orientation estimation between the proposed GPS‐aided
SINU system's output with Piccolo II's output.

Figure 11. Real‐time GPS‐aided SINU system velocity plot.
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Figure 12. Real‐time GPS‐aided SINU system orientation plot.

5. Conclusion

This chapter illustrated the real‐time implementation of Kalman filter in two applications,
namely, the vision‐based vehicle tracking system and the GPS‐aided SINU system. The
Kalman filtering algorithm was derived with the consideration of real‐time element. Detail
illustrations on deriving the Kalman filtering models for the vision‐based vehicle tracking
system and the GPS‐aided SINU system were outlined and discussed. Both implementations
were put on real‐time experiments, and the results from both implementations were recorded
and analyzed. The results show that the real‐time Kalman filtering algorithms work well in
the applications.
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Abstract

Functionality  and  performance  of  modern  machines  are  directly  affected  by  the
implementation of real-time control systems. Especially in networked teleoperation
applications,  force  feedback  control  and  networked  control  are  two  of  the  most
important factors,  which determine the performance of the whole system. In force
feedback control, generally it is necessary but difficult and expensive to attach sensors
(force/torque/pressure  sensors)  to  detect  the  environment  information  in  order  to
drive properly the feedback force. In networked control, there always exist inevita‐
ble random time-varying delays and packet dropouts, which may degrade the system
performance and, even worse, cause the system instability. Therefore in this chapter,
a study on a real-time bilateral teleoperation control system (BTCS) over an imperfect
network is discussed. First, current technologies for teleoperation as well as BTCSs
are briefly reviewed. Second, an advanced concept for designing a bilateral teleoper‐
ation networked control (BTNCS) system is proposed, and the working principle is
clearly explained. Third, an approach to develop a force-sensorless feedback control
(FSFC) is proposed to simplify the sensor requirement in designing the BTNCS, while
the  correct  sense  of  interaction  between  the  slave  and  the  environment  can  be
ensured.  Fourth,  a  robust-adaptive  networked  control  (RANC)-based  master
controller is introduced to deal with control of the slave over the network contain‐
ing both time delays and information loss. Case studies are carried out to evaluate
the applicability of the suggested methodology.
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1. Introduction

Teleoperation, which allows a human operator to interact with the environment remotely,
extends humans’ sensing, decision making, and operation beyond direct physical contact. Since
its introduction in the late 1940s, teleoperation systems have been deployed worldwide in
numerous domains ranging from space exploration, underwater operation, and hazardous
assignment to micro-assembly, and minimally invasive surgery.

In common, control schemes for teleoperation systems can be classified as either compliance
control or bilateral control. In the compliance control [1, 2], the contact force sensed by the
slave device is not reflected back to the operator, but is used for the compliance control of the
slave device. On the contrary, in the bilateral control [3–5], the contact force is reflected back
to the operator. The operator is able to achieve physical perception of interactions at the remote
site similar to as directly working at this site. Consequently, it improves the accuracy and safety
in teleoperation. Thus, the bilateral control has drawn a lot of attention.

Figure 1 shows a generic configuration of a bilateral teleoperation system which includes five
components: operator, master, communication network, slave, and environment. The master
is capable of acquiring information about the desired manipulation actions and assigning the
tasks to the slave. It normally consists of an input component, such as a joystick, console, or
tactile device, and a force-reflecting mechanism (FRM) to exert the reflected forces on the
human operator. The slave is a robotic device that takes the place of the human operator to
carry out the required tasks at the remote environment. It is usually equipped with sensors to
acquire information about the task process to feed back to the master.

Figure 1. Generic configuration of a bilateral teleoperation system.

There are two common control architectures of bilateral teleoperation systems: position–
position and position–force architectures. In the first approach, the master position is passed
to the slave device, and the slave position is passed back to the master side. The reflected force
applied to the operator is derived from the position difference between the two devices and,
therefore, this approach is not desirable in cases of free motion. In contrast, the position–force
approach uses directly the force measured at the remote site rather than the position error. In
this architecture, the contact force, sensed by a force/torque sensor mounted on the slave
device, is scaled by a force-reflecting gain (FRG), and this scaled force is reflected back to the
operator via the master device. This method then provides the operator a better perception of
tasks execution at the remote site.

In order to derive sufficiently the FRG, two important tasks are required: first, to detect the
environment and, second, to determine the contact force at the slave site. Many studies have
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been carried out to optimize the FRG [4, 5]. Although the reported algorithms showed some
remarkable results, there remain some drawbacks such as how to determine the FRG appro‐
priately with unknown environments; and especially, it is difficult and expensive to attach
proper sensors (force/torque/pressure sensors) to detect the loading conditions. Additionally,
the use of these kinds of sensors is cost-ineffective and difficult to be installed in practice.
Especially, it is easy to be damaged when the system operates under hazard conditions.
Incorporation of teleoperation and force feedback requires bidirectional information exchange
between the master and slave via the network. In contrast to the advantages such as cost saving,
power consumption, easy implementation, and maintenance, a networked control system
(NCS) leads to two major problems, inevitable random time-varying delays and packet
dropouts because of restrictions imposed by the transmission data rate and channel band‐
width. Due to sensitivity of bilateral teleoperation systems to time delays and packet dropouts,
even a small time delay can destabilize the system [6].

Disregarding the packet loss problem, numerous methods have been proposed [7–9] to
minimize the bad effect of time delay. Herein, the controllers were designed based on the
assumptions that time delay was constant [7], bounded [8], or had a probability distribution
function [9]. Moreover, these assumptions just considered that the time delay in the closed
control loops was less than one sampling period while in practice, it is random and irregular.
To compensate large and uncertain delays, other studies suggested adaptive control schemes
using variable sampling periods, which were based on neural networks (NNs) or prediction
theories [10–12]. Although the performances were improved, there were requirements on
acquiring the real delay data for the training processes, which were not appropriately dis‐
cussed.

To adapt with NCSs compromising not only time delays but also packet dropouts, many
important methodologies, such as state feedback control [13], robust control [14–16], predictive
and model-based predictive control [17, 18], were proposed. By using these techniques, the
NCS performances were remarkably improved over the traditional methods. However in most
studies, time delays and packet dropouts were assumed to be priorly known and bounded to
design the controllers. The sampling period was always fixed in these studies and, subse‐
quently, limited the control performances. Furthermore, computation delay normally at the
master side is also one important factor affecting directly the system performance. Recently,
an advanced robust variable sampling period control approach has been developed for
nonlinear systems containing both the kinds of delays and packet dropouts [19–21]. The
applicability of this method was proved through real-time experiments.

Therefore to fully overcome the above-mentioned problems, a simple and cost-effective real-
time bilateral teleoperation networked control system (BTNCS) is introduced in this chapter.
The advanced concept for designing a bilateral master-slave teleoperation networked control
system is proposed, and the working principle is clearly addressed. Next, an approach to
develop a force-sensorless feedback control (FSFC) is proposed to simplify the sensor require‐
ment in designing the BTNCS while the correct sense of interaction between the slave and the
environment can be ensured. To deal with the networked control of the slave, a robust-adaptive
networked control (RANC)-based master controller is suggested to compensate for the
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problems of time delays and information loss. Case studies are carried out to evaluate the
applicability of the suggested methodology.

2. Bilateral teleoperation networked control system

Figure 2. Proposed architecture of the BTNCS.

Without loss of generality, the architecture of the BTNCS is suggested in Figure 2. The design
for this BTNCS should address the following issues:

• The local master (LM) controller functions as the main control unit of the system to ensure
that the slave manipulator could execute robustly and accurately the tasks given by the
operator via a human interface (HI), disregarding the impacts of networked communication
problems and environments. The local slave (LS) controller is, therefore, an optional design.
It can be just a buffer or a zero-order holder (ZOH) to receive the control input derived by
the LM controller and distribute sequentially to the manipulator.

• There is no force/pressure/torque sensor to be attached at the manipulator end to minimize
the cost and risks. Only an internal sensor, as displacement sensor, is used to monitor the
manipulator trajectory and send back to the LM controller to form a closed control loop.

• The interaction between the manipulator and environment is, therefore, estimated by the
FSFC module at the master side. Here, the FSFC should consist of two parts: first, an
environmental interaction (EI) estimator to detect the environment characteristics as well
as to derive properly a reflecting force required to be applied to a physical device in the HI
module (as a joystick); second, an FRM controller to drive the FRM to generate the desired
reflecting force.

• The FRM is suggested to be constructed using pneumatic rotary actuators. This use brings
some advantages over the traditional design with DC electric motors. Compared with an
electric motor, a pneumatic actuator provides a higher ratio of force-mass, and can produce
larger reflected force without using any reduction mechanism, such as gearbox. In addition,
with the pneumatic solution, the FRM is able to work under safe conditions without damage
from the operator.

• Due to having different control modules and other functions at the master side, computation
delays τ com  need to be taken into account when designing the LM controller.
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• The communication network has unavoidable delays, τ ca and τ sc, and packet dropouts,
represented by “virtual” switches, Sca and Ssc, in the forward and backward channels,
respectively. Sca (Ssc) is opened (or 1) when a packet loss event exits.

The following are attempted to address the two important issues in designing the BTNCS
which are the FSFC and the LM controller.

3. Force-sensorless feedback control

3.1. Design of FSFC

As stated in Section 2, the FSFC compromises the two main modules: EI estimator and FRM
controller. The FRM controller can be selected as a typical feedback controller in which the
reference input is the desired reflecting force sent from the environment classifier and the
feedback signal can be the force/torque/pressure at the physical device of the HI module.

The EI estimator is suggested as in Figure 3. This estimator with two inputs and one output
contains four blocks: Learning Vector Quantitative Neural Network (LVQNN) classifier, slave
dynamics, environment dynamics, and fuzzy-based FRG tuner. Without loss of generative,
the interactive environment can be represented by two factors: damping ce and stiffness ke.
Thus, The LVQNN classifier is firstly designed with two inputs and two outputs to classify
the environment. The two inputs are the command and response from the slave while the two
outputs are predicted values of the environment damping and stiffness, ĉe and k̂ e, respectively.
Next, these predicted values are fed into both the environment dynamics and fuzzy-based FRG
tuner. Synchronously, the slave command is also input to the slave dynamics. The interaction
between the slave dynamics and environment dynamics—loading force—is, therefore,
estimated and denoted as F̂ e. Meanwhile, the fuzzy-based FRG tuner is designed with two
inputs, ĉe and k̂ e, and one output which is value of the FRG. Finally, the desired reflected force,
Fdr, is derived from the estimated loading force and the FRG.

Figure 3. Configuration of the proposed environmental interaction estimator.
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3.2. LVQNN classifier

3.2.1. Learning vector quantitative Neural Network

NN is one of the powerful artificial intelligent techniques that emulates the activity of biolog‐
ical NNs in the human brain. LVQNN is a hybrid network which uses advantages of compet‐
itive learning and bases on Kohonen self-organizing map or Kohonen feature map to form the
classification [22].

Figure 4 shows a generic structure of an LVQNN with four layers: one input layer with m
nodes, first hidden layer named competitive layer with S1 nodes, second hidden layer named
linear layer with S2 nodes, and one output layer with n nodes (in this case, S2 ≡ n).

Figure 4. Structure of the LVQNN.

The core of the LVQNN is based on the nearest-neighbor method by calculating the Euclidean
distance weight function, D, for each node, nj, in the competitive layer as in the following:
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where X is the input vector; W1(j,i) is the weight of node jth in the competitive layer corre‐
sponding to element ith of the input vector.

Next, the Euclidean distances are fed into function C which is a competitive transfer function.
This function returns an output vector o1, with 1, where each net input vector has its maximum
value, and 0 elsewhere. This vector is then input to the linear layer to derive an output vector
o2, where each element corresponded to each node of the output layer and computed as
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where W2(k,j) is the weight of node kth in the linear layer corresponding to element jth of the
competitive output vector; kW(k) is linearized gain of node kth in the linear layer.

In the learning process, the weights of LVQNN are updated by the well-known Kohonen rule,
which is shown in the following equation:
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where μ is the learning ratio with positive and decreasing with respect to the number of
training iterations (niteration), μ =niteration

−1 .

3.2.2. Design of LVQNN classifier

Here, the LVQNN classifier is designed and implemented into the FSFC to distinguish different
working environments at the slave side in an online manner. To enhance the given task with
the limited number of input information, the input vector of the classifier is constructed as a
vector of current and several historical values of four signals: the slave driving command,
{Xds

(0), Xds
(−1), …, Xds

(−g )}, slave response, {Xs
(0), Xs

(−1), …, Xs
(− p)}, and their derivatives,

{d Xds
(0), d Xds

(−1), …, d Xds
(−h )}and {d Xs

(0), d Xs
(−1), …, d Xs

(−q)}, respectively, while the final outputs
are the environment damping and stiffness, ĉe and k̂ e.

For applications to classify the environment which is varied with both the damping and
stiffness values, the output from the classifier should be the mix of classes with different ratios.
In order to enhance this task, a so-called smooth switching algorithm is proposed here. The
environment class is, therefore, determined by the smooth combination of the current class
detected by the LVQNN (Y) and the previous class using a forgetting factor, λ

( ) ( ) ( ) ( )1 1class t class t Y tl l= ´ - + - ´ (4)

Similarly, the estimated values of the damping coefficient and stiffness are produced by
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Additionally, in order to avoid influences of noises on the classification performance, the
forgetting factor is online tuned with respect to the changing speed of the classifier outputs:
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Step 1: Set the initial value for the forgetting factor, λ=0.5; define a small positive threshold,
0<γ1 <γ2, for the classifier output changing speed, vY , which is defined by the number of
sampling periods when Y continuously changes.

Step 2: For each step, check vY and update λ by comparing vY with γ using the following rule:

+ If vY =0, Then λ(t + 1)=λ(t);

+ Else If (vY >γ2), Then λ(t + 1)=λ(t + 1) / 2 and reset vY =0;

+ Else If (vY ≥γ1)&(vY (t)≤γ2), Then λ(t + 1)=λ(t + 1)×2 and reset vY =0;

+ Otherwise, λ(t + 1)=λ(t).

3.2.3. An illustrative example

3.2.3.1. Test rig setup

To evaluate the effectiveness of the LVQNN classifier, an experimental system has been
designed as in Figure 5. One joystick with one Degree of freedom (DOF) is used to generate
driving commands for the slave. An FRM which employs a valve-driven mini pneumatic
rotary actuator and two bias springs is attached to the opposite side of the joystick handle. The
slave employs an asymmetrically pneumatic cylinder as its manipulator. The displacement of
the cylinder rod is sensed by a linear variable displacement transducer (LVDT). The interaction
between the master and slave is enhanced by the communication module which can perform
either wire-by-wire or wireless protocol. To generate environmental conditions for the slave
manipulator, compression springs with different stiffness values are installed in serial with
the cylinder rod. An air compressor is used to supply the pressurized air for both the FRM and
the slave. A compatible PC and a multifunction data acquisition device are employed to
perform the communication between the PC and master. The system specifications are listed
in Table 1.

Figure 5. Design layout for the experimental BMST system.
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Parts Type Component characteristics

Rotary actuator CRB1BW15 90-D Max. torque: 0.9 Nm

Pressure sensors SDE1-D10-G2-W18 Pressure range: 0–10 bar

Pneumatic cylinder CDC-20 Stroke: 100 mm, bore: 20 mm, rod: 8 mm

Servo valves MPYE-5-1/4-010B Control voltage range: 0–10 VDC

LVDT Novotechnik TR100 Measurement range: 0–100 mm

Springs Case 1, Case 2, Case 3 Randomly selected

Table 1. Specifications of the system components.

Input number Number of nodes in the hidden layer

20 25 30 35 40

20 80.35 80.50 81.48 82.17 81.29

24 81.14 81.19 82.26 81.48 82.78

28 80.61 80.03 81.66 81.12 81.69

32 75.34 80.64 85.64 81.00 81.80

36 81.03 81.58 81.93 81.85 80.49

40 79.30 80.98 80.90 80.13 80.22

Goodness of fit [%]

Table 2. Learning success rate of the LVQNN classifier [%].

3.2.3.2. LVQNN classifier training and verification

In order to train the network, the prior task is acquiring the target data. Real-time teleoperation
experiments without force feedback concept were performed on the test rig. Both the three
springs mentioned in Table 1 were used to generate the environmental conditions. For each
condition, a trajectory for the slave manipulator was randomly given by the operator. The slave
information, including the valve driving command and cylinder rod displacement, with
respect to each spring was acquired with a sampling period of 0.02 s.

Next, each of the acquired slave data sets was used to perform the input vector, while the
correspondingly selected spring was used as the target output class (1, 2, or 3). To investigate
performance of the LVQNN classifier with respect to different structures, several trainings
were performed with the selected data set by varying the number of inputs from 20 to 40, and
the number of hidden neurons was changed from 20 to 40. After the training process, the results
(goodness of fit [%]) of the LVQNN are analyzed in Table 2. It shows that the most suitable
LVQNN structure was realized with 32 nodes in the input vector and 30 nodes in the com‐
petitive layer. The learning success rate in this case was highest with 85.64 [%].

Real-time teleoperation experiments were performed in order to investigate the ability of the
LVQNN classifier in practice. Other three experiments with the three loading conditions were
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carried out with the same cylinder trajectories given from the master using an open-loop
control. The classification results were then achieved as displayed in Figure 6–8. The results
imply that the proposed classifier could online detect well the loading conditions and,
therefore, is capable of producing precisely decisions on the environment characteristics.

Figure 6. Real-time classification of the optimized LVQNN with respect to spring case 1.

Figure 7. Real-time classification of the optimized LVQNN with respect to spring case 2.
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Figure 8. Classification performance of the optimized LVQNN with respect to spring case 3.

4. Robust-adaptive networked control

4.1. Problem and RANC design concept

In this section, the RANC approach for a generic system is introduced to support the design
of the LM controller. Consider a discrete-time plant [20, 21]:

1k k k k

k k

x Ax Bu Ed
y Cx

+ = + +ìï
í =ïî

(6)

where xk∈R nis the state vector, uk∈R mis the control input, yk∈R pis the controlled output,

dk∈R d is the environment impact, and A, B, C and E are matrices with appropriate dimensions.

The RANC-based LM controller in Figure 2 is then designed based on the following issues [20,
21]:

• Both the actuators and controller are event-driven.

• The sensors are time-driven with variable sampling period T. For step (k + 1)th, this sampling
period Tk+1 is online optimized depending on the total system time delay τk+1 to make sure:
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• Sets of continuous packet dropouts {pd} are online detected and bounded by p̄k +1:
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( )1 sup ,1 1dkp p d k+ = £ < + (8)

Using the results in references [20, 21], the configuration of an NSC using the proposed RANC
controller is clarified in Figure 9. Herein, the RANC mainly consists of five modules: Time
Delay and Packet Detector (TDPD), Time Delay Predictor (TDP), Variable Sampling Period
Adjuster (VSPA), Quantitative Feedback Theory (QFT), and Robust State Feedback Controller
(RSFC). The TDPD module is firstly used to detect the network problems at the current state.
This information is then sent to the TDP to perform one-step-ahead prediction of system delays
which are the inputs of the VSPA to adjust effectively the sampling period. The two modules,
QFT and RSFC, are employed to construct the so-called hybrid controller to compensate for
the influences of delays and packet dropouts. A smart switch (SSW) is employed to switch the
hybrid controller to QFT or RSFC based on the outputs of the TDPD detector and the TDP
predictor with rule:

• The QFT is selected (SSW = 0) once there is no packet loss and all delay components are less
than their pre-defined threshold values: ( * is ceiling function to return the nearest integer)

, , , ,QFT QFT QFT
com com ca ca sc sc

QFT k k k k kt t t t t t t té ù é ù é ù= = = = "é ùê úê ú ê ú ê ú (9)

• Otherwise, the RSFC is chosen (SSW = 1).

Figure 9. Configuration of networked LM controller using the RANC approach.

4.2. Design of RANC components

4.2.1. Design of VSPA

By using the TDPD and TDP, the sampling period for the coming step (k + 1) is defined as

( )
1 0 0 0 0
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where τ̂k +1
com, τ̂k +1

ca and τ̂k +1
sa are the delays estimated by the TDP.

4.2.2. Design of TDPD

To measure accurately time delays and packet dropouts, the TDPD employs a micro-control
unit (MCU) with proper logic. Here, PIC18F4620 MCU from microchip equipped with a 4 MHz
oscillator is suggested to be used [19]. The real-time measurement accuracy of 50μs[19] which
is suitable for this application. For each step kth, the TDPD enhances the following tasks:

• Derive the real working time using the MCU, tk.

• For a command uk sent from the controller to the plant, a time stamp is encapsulated into
this packet to detect the forward delay, τk

ca, and packet dropouts if having, pk
ca.

• For the signals sent from the sensors to the controller, they are combined with time stamps
to detect the delay, τk

sc, and packet dropouts if having, pk
sc.

• The total number of continuous packet dropouts is then determined as:

ca ca sc sc
k k k k kp S p S p= + (11)

• Depend on the time stamps to detect the computation delay at the controller side, τk
com.

4.2.3. Design of TDP

The TDP based on a so-called adaptive gray model with single-variable first-order, AGM (1,1)
to estimate the system delays in the coming step, τ̂k +1

com, τ̂k +1
ca , and τ̂k +1

sa . The AGM (1,1) prediction
procedure is as follows:

Step 1: For an object with a data sequence
{yObject(tO1), yObject(tO2), …, yObject(tOm)} (m≥4), the raw input gray sequence representing for the
object data is derived as

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 0 0 0
1 2 1, ,..., ; ; 2,.., 4;raw raw raw raw n k k ky y t y t y t t t t k n-= D = - = ³ (12)

Note: Eq. (12) is obtained from Eq. (14) if condition (13) satisfies; otherwise, it is obtained from
Eq. (15).

( ) [ ]
( )

TDP 1 DP

1 1 1

T is the predictionsampling/ 2; ; 2,..., ;

; : time of previo

 period

us value of 
Oi Oi Oi O i

O O Olast Olast Object O

t T t t t i m

t t t t y t

T-D < D = - " Î

D = -
(13)
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( ) ( ) ( )0 ; ; 1,..., ;raw k Object i k Oiy t y t t t k n n m= = = = (14)

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

0
1 1 1 TDP

1 2 30

11

;

; 2,..., ; / ; 1,..., 1

raw Object k k

raw k i i k Oi i k Oi i k Oi

Oi k Om TDPO i

y t y t t t T

y t Sa Sb t t Sc t t Sd t t

t t t k n n t t T i m

-

+

= = +

= + - + - + -

£ £ = = ê - ú = -ë û

(15)

where {Sai, Sbi, Sci, Sdi} (i =1, …, m−1)is a [4 × m – 1] coefficient matrix of the spline function
going through the object data set {(t1, yObject(t1)), …, (tm, yObject(tm))} .

Theorem 1: There always exist two non-negative additive factors, c1 and c2, to convert any raw
sequence (12) to a gray sequence which satisfies both the gray checking conditions.

Proof: The proof of this theorem can be found in reference [19].

Thus from (12), the gray sequence is derived using Theorem 1:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )0 0 0 0 0 0
1 2 1 2, ,..., 0; ; 1,...,n k raw ky y t y t y t y t y t c c k n= > = + + = (16)

Step 2: Use the 1-AGO to obtain a new series y(1) from y(0):

( ) ( ) ( ) ( ) ( )( )1 0
1 21 1

k k
k i k raw i ki i

y t y t t y t c c t
= =

= ´D = + + ´Då å (17)

Step 3: Create the background series z(1) from y(1) by the following general algorithm:

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 1
11 ; 2,...,k k k k kz t t y t t y t k na a -= + - = (18)

( ) ( ) ( )1k aver adapt kt ta ba b a= + - (19)
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1 1
1 1

1 1 1 1
1

1 1

1, IF : /

, IF : / /

0, IF : /

k n

k i i
i i

k n k n

adapt k i i k i i
i i i i

k n

k i i
i i

s t t t

t s t t s t t t

s t t t

a

+

= =

- +

= = = =

-

= =

é ³ D Då åê
ê
ê= D D < < D Då å å å
ê
ê

£ D Då åêë

(20)

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 0
1 1log / / log /k k ns t y t y t y t y t= (21)
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where αaveris the average weight and set as 0.5 [23, 24]; β is a momentum rate within range [0,
1] and tuned by a Lyaponov-based SISO fuzzy mechanism (LFM) in order to guarantee a robust
prediction performance (see the proof of this theory in reference [20])

Step 4: Establish the gray differential equation:

( ) ( ) ( ) ( )0 1
k ky t az t b+ = (22)

( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 0
2 2

1 0
1 3 3

1 0
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z t y t

z t y t
a b B B B Y B Y

z t y t

b
-

é ù é ù-
ê ú ê ú
ê ú ê ú-é ù= = = =ê ú ê úë û
ê ú ê ú
ê ú ê ú-ë û ë û

M M M
(23)

Step 5: Setup the AGM (1,1) prediction as follows:

( ) ( ) ( ) ( )( ) ( )( )
( ) ( )
( )

( )( )
( )

0
1 10 1 1 1

1
32 2

ˆ ˆ1 1ˆˆˆ ˆ ˆ1
ˆ ˆ1 1
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i i

k k k k
i i i

t a tb ay t t
y t b ay t t a t

t a t t a t
a

a
a a

- -
-

=

+ - D- D
= - + D =

+ D + DÕ (24)

Step 6: Perform the predicted value of y at step (n + p)th:

( ) ( )
( ) ( )
( )

( )( )
( )
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1 2
32 2
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y t c c

t a t t a t
a

a a

+
- -

+
=

+ - D- D
= - -

+ D + DÕ (25)

where p is the step size of the grey predictor. In this case, p = 1.

4.2.4. Design of QFT controller

Denotes the transfer functions of the plant and the controller in the NCS as Gp(s) and Gc(s),
respectively. The closed-loop transfer function from input R(s) to output Y(s) including delays
can be expressed as

( ) ( )
( )

( ) ( ) ( )

( ) ( )
NCS

1

com ca s
c p

s
c p

G s G s eY s
T s

R s G s G s e

t t

t

- +

-= =
+

(26)

And the open-loop transfer function is then derived as

( ) ( ) ( )NCS s
c pL s G s G s e t-= (27)
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Next, the procedure to design this robust controller can be expressed as follows [25, 26]:

Step 1: The QFT controller should be designed on how the tracking signal meets the acceptable
variation range with respect to a reference (for each value of ?i of interest)

( ) ( ) ( )NCS NCS NCS
l i i u iT j T j T jw w w£ £ (28)

Step 2: Establish bounds for robust stability of the closed-loop system

( )NCS 1.4, 0T j Mw w£ = ³ (29)

Step 3: A sensitivity function is defined as

( ) ( )( ) 1NCS1 , 0S j L jw w w
-

= + ³ (30)

Establish bounds for noise and disturbance rejection of the closed-loop system

( ) ( ) ( )1
dBmax

1 , 1 0dB , 0D DL j M M Mw w w
-

+ £ > > ³ (31)

Step 4: Define a working frequency range of the NCS.

Step 5: Bases on the nominal plant to design the controller, GQFT(s), with initial poles and zeros.

Step 6: Use the loop-shaping method to refine the controller designed in Step 5. The principle
to guarantee a robust control performance is the loop gain value is always on or above the
boundaries defined by constraints (28)–(31) and, is to the right or on the robustness forbidden
region for any critical frequency within the range defined in Step 4.

Step 7: The controller resulted from Step 6 could ensure that the variation in magnitude of
TNCS(s) (26) is satisfied at the desired constraints. However, it does not guarantee that the
magnitude of TNCS(s) actually lies between the given bounds Tl

NCS( jωi) and Tu
NCS( jωi)for the

whole frequency range. Therefore, a pre-filter FQFT(s) is necessary to be designed and placed
in front of the controller to compensate for this problem.

4.2.5. Design of RSFC

The RSFC is designed to deal with the NCS in cases that the delays are greater than the
threshold values defined in Eq. (9), and/or there exists packet dropouts. To simplify the
analysis, it can be assumed that rk = 0 (Figure 9) during the system modeling and RSFC design.
The system discrete form for step (k + 1)th can be expressed through the following three cases:
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Case 1: There is no packet loss in network transmission during both current period and

previous period:

0 0 1
1 1 1k k k k k k k kx A x B u B u Ed+ - -= + + + (32)

where Ak
0 = e AT k , Bk

0 = ∫0
T k −τk

e At Bdt , Bk
1 = ∫T k −τk

T k
e At Bdt .

Case 2: There exists i packet dropouts up to step kth:

0 2
1k k k k i k i kx A x B u Ed+ - -= + + (33)

where Bk
2 = ∫0

T k
e At Bdt .

Case 3: There were pd continuous packet dropouts just passed up to step (k − 1)th:

0 0 1
1 11 dd

k k k k p kk k k px A x B u B u Ed+ - -- -= + + + (34)

Since, the general discrete form of the system can be established as

12
0 0 0

1
1 1

kp
j j

k k k k i kk k k k i k i
j i

x A x B u B u Edd d
+

+ -- -
= =

= + + +åå (35)

where δ lis an activation function:

1, If subsystem isactivated, {0,1,2}
0, Otherwise.

l l l
d

=ì
= í
î

(36)

In case of no delays, the control rule is designed as

k ku Kx= (37)

Then, Eq. (35) can be re-written in the following form:
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1 2

0 0 0
1

1 1
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j j

k k k i kk k k k i k i
i j

x A B K x B Kx Edd d
+

+ -- -
= =

æ ö
ç ÷= + + +ç ÷
ç ÷
è ø

å å (38)

or

1k k k E kX X d+ = F +F (39)

where Xk = xk
T xk−1

T ⋯ xk− p̄k +1

T T , Φk =
Ak

* B1k
* ⋯ B( p̄ k +1−1)k

* Bp̄k +1k
*

I p̄k +1× p̄k +1 0
,

2
* 0 0 0 *

1

0 0 , , .T j j
E k ikk k k k i k i

j

E A A B K B K Bd d- -
=

F = = + =é ùë û åL

Theorem 2: For given constants ξi
j >0, if there exist positive definite matrices Pi

* >0, K1 >0, K2 >0,

i∈ 0, 1, …, p̄k +1 , j ={0, 1, 2} such that following inequalities:

2 * * *
1 2

* * * * *
1 2 1 1

0
T T T

i i A B
T T

A B i

P K K

K K K K P

x -é ùF + F
ê ú >
ê úF +F + -ë û

(40)

hold, then the NCS (39) is exponentially stable with a positive decay rate by using the RSFC

control gain derived by

RSFC 2 1
TK K K -= (41)

with K1
* =diag {K1} , K2

* =diag {K2} , KRSFC
* =diag {KRSFC}

1 1 1 1

2 2
0 0 0

1 1
1 1

0 0
, .

0
0 0

k k k k

j j j j
k k k k p k p k p k pA B j j

A B B B

I

d d d
+ + + +- + - + - -

= =

é ùé ù
ê úê úé ùé ù
ê úê úê úê úë ûF = F = ê úê úê ú ë ûê úë û
ê úë û

å åL L

Proof: The proof of this theorem can be found in reference [20].
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4.3. An illustrative example

4.3.1. Networked control system setup

To validate the RANC applicability, a simple networked control system was set up based on
the configuration in Figure 9. Here, the main controller was built in an experimental PC
equipped with the MCU (presented in Section 4.2.2) The network module includes one coor‐
dinator and one router employed the ZigBee protocol [19]. The multifunction card was used
to perform the communications with the TDPD module and the network. The control objec‐
tive is speed tracking control of a servomotor system via the setup network. Here, the servo‐
motor system was RE-max series manufactured by Maxon Corporation. The transfer
function from the input to output of this system can be expressed as [20]

( ) 2

32300
0.001 20.93 493.4pG s

s s
=

+ +
(42)

To evaluate the capability of the proposed RANC, a comparative study of the RANC with
three existing approaches, a QFT-based robust controller (QFTRC), a static state feedback
controller (SSFC), and a hybrid QFT–SSFC as shown in Table 3, has been investigated. To
make control challenges, disturbance loads and computation delays were randomly generat‐
ed. Here, the loads were created by putting the system into a varied magnetic field which
affected on the motor shaft. Meanwhile, an arbitrary matrix-based complex calculating pro‐
cedure representing a complex application was added to the controller at the PC side.

Control
method

Main control modules Functions

QFT SFC SSW-based
TDPD–TDP

VSPA
based TDP

Delay
compensation

Packet loss compensation

Fixed
gain

Dynamic
gain

QFTRC √ √

SSFC √ √ √

QFT–SSFC √ √ √ √ √

RANC √ √ √ √ √ √

Table 3. Specifications of the compared controllers.

Based on Section 4.2.4, QFT delay bounds were defined as
τ̄QFT

com =0.02s, τ̄QFT
ca =0.03, τ̄QFT

sc =0.03and, the QFT controller was designed as
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( )

( ) ( )

2

8 3 2

30.5387 56684.6 3328880
10 0.002852 180.2 1260000
426.65 400

QFT

QFT

s sG s
s s s

F s s

-

+ +
=

+ + +
= +

(43)

Based on Section 4.2.5 and by setting the initial bounds for the total delay and packet dropouts
as: τ̄0 =0.1s > τ̄QFT , p̄0 =2; the initial RSFC gain was computed as KRSFC

0 = 0.3796 0.2642 .

The initial sampling period of the RANC was selected as 10 ms, while that of the other
controllers must be fixed to 0.15 s to cover all the delays.

4.3.2. Real-time experiments

In this section, real-time speed tracking of a servomotor system over the setup network has
been investigated in which the reference speed was selected as 10 rad/s. The experiments using
the comparative controllers were carried out and, consequently, the results were displaced in
Figure 10. An analysis on the control performances using four evaluation criteria, PO (percent
overshoot), ST (settling time), SSE (steady state error) and MSE (mean square error), is then
performed as demonstrated in Table 4.

Controller Step responses

PO [%] ST [s] SSE [%] MSE [rad/s]2

QFTRC 2.6 1.0 13.9 1.23

SSFC 8.67 2.1 6.18 1.87

QFT–SSFC 2.07 1.35 5.88 1.35

RANC 0.2 0.8 1.58 0.63

Table 4. Comparison of NCS performances using different controllers.

Figure 10. Step speed performances using different controllers.
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From Figure 10 and Table 4, it is clear that the worst-case performance was with the QFTRC.
It is because the QFTRC was designed for an NCS in which the delays are bounded by
constraint (9) and there is no packet dropout. Hence when facing with the networked servo‐
motor including both the large delays and packet dropouts, the controller could not guarantee
the robust tracking (SSE was 13.9%). In case of using the SSFC for which the control gain was
designed for the worst network conditions (large delays and highest number of continuous
packet dropouts), SSE was remarkably reduced to 6.18%. However due to this fixed control
gain use, the system response was much slower than that of the QFTRC. Additionally, due to
lack of disturbance rejection capability, the SSFC could not ensure a smooth tracking (PO =
8.67% and ST = 2.1s). The QFT-–SSFC, by taking advantages of both the QFT and SSFC, could
improve the tracking result. Nonetheless, the QFT–SSFC with fixed control gains and fixed
sampling period restricted the system adaptability to the sharp variations of network problems
and disturbances (SSE was slightly reduced to 5.88%).

The best tracking result was achieved by using the RANC (see Figure 10 and Table 4). It comes
as no surprise because the RANC possesses all the advantages of the QFT and state feedback
designs and, the high adaptability to the system changes by using the adaptive control gains
and adaptive sampling period. Figure 11 demonstrates the delay and packet dropout detection
and prediction results of the TDPD and TDP modules, respectively. During the operation,
these were supported by the VSPA and hybrid QFT–RSFC modules to regulate properly the
sampling period and control gains.

Figure 11. Step speed case: performances of TDPD and TDP.

5. Conclusions

In summary, an advanced bilateral teleoperation NCS has been introduced. In addition, the
two important issues in designing the BTNCS system, FSFC and RANC, have been clearly
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addressed. The LVQNN-based FSFC shows the safe and cost-effective solution in controlling
the FRM while the RANC-based LM controller is a feasible choice to drive the slave manipu‐
lator over the network with delay and packet loss problems.

The effectiveness of the LVQNN classifier as well as the RANC controller has been confirmed
through the two case studies and analysis. One of our future research topics would be the full
design of the proposed BTNCS to investigate the applicability of this method in a practical
application such as remote construction equipment.
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Abstract

This chapter looks into the technical features of state-of-the-art wireless sensors networks
for environmental monitoring. Technology advances in low-power and wireless devices
have made the deployment of those networks more and more affordable. In addition,
wireless sensor networks have become more flexible and adaptable to a wide range of
situations. Hence, a framework for their correct implementation will be provided. Then,
one specific application about real-time environmental monitoring in support of a model-
based predictive control system installed in a metro station will be described. In these
applications, filtering, resampling, and post-processing functions must be developed, in
order to convert raw data into a dataset arranged in the right format, so that it can inform
the algorithms of the control system about the current state of the domain under control.
Finally,  the  whole  architecture  of  the  model-based predictive  control  and its  final
performances will be reported.

Keywords: Environmental monitoring, Real-time control, Wireless sensor networks,
Performance evaluation, Network design

1. Introduction

One of the most critical components in an advanced real-time control system is the implemen‐
tation of a real-time monitoring network. Indeed, real-time monitoring is in charge of measur‐
ing the actual state of the domain that is controlled. The features and requirements of the network
depend on the type of control that is implemented and on its architecture. In this chapter, we
will focus on the importance of wireless sensor-based environmental networks (WSNs) targeted

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



to real-time control of complex buildings. Then, we will show what role they play in the
implementation of a model-based predictive control (MPC) system, that is one of the most
advanced approaches presently considered.

To this purpose, the basic characteristics of MPC will be clarified and some of the most popular
applications will be described in Section 2. Section 3 will report on the technical features of
typical WSNs for environmental monitoring and will sum up its background. The purpose of
Section 4 is analyzing the whole architecture of real-time environmental monitoring systems.
Hence, it will argue typical constraints, requirements, technical issues, choice criteria that are
helpful for designing and installing such systems in harsh environments. For the sake of clarity,
this chapter will refer to the real case of an MPC system applied to the “Passeig de Gràcia”
(PdG) subway station in Barcelona, which was the topic of an EU funded 3-year research
project. In that same section, all the issues connected with real-time data management will be
faced, including pre-processing (i.e. filtering and re-sampling) and post-processing functions
(e.g., more complex procedures that convert pre-processed data into a format that can be
interoperable with the controller unit of the MPC system). Finally, the most important
information about the MPC system integrated in the PdG station and the benefits obtained
thanks to the MPC will be discussed in Section 5. Conclusions and references will terminate
this chapter.

2. Model-based predictive control systems

2.1. State-of-the-art and applications

Efforts to reduce the energy consumption of public buildings and spaces have recently been
receiving increasing concern. Energy savings define a clear objective: to minimize energy
consumption, while maintaining acceptable comfort levels in the presence of uncertainties.
Thus, uncertainty must be explicitly considered by including adaptation capabilities in order
to adjust the control strategy to changing conditions. Comfort and H&S requirements define
operative constraints that can be either hard or soft: this implies that constraints must be
explicitly considered in the control strategy. These constraints can be satisfied only if a suitable
and robust sensor network is deployed in the controlled spaces.

Among the hard control approaches, MPC [1–3] is one of the most promising techniques for
HVAC systems because of its ability to integrate disturbance rejection, constraint handling,
and dynamic control and energy conservation strategies into controller formulation. In fact,
for complex constrained multi-variable control problems, MPC has become the accepted
standard in the process industries [4].

MPC computes the optimal control policy by minimizing a proper cost function subject to
certain constraints on input, output, or state variables. Its success is largely due to its unique
ability to optimally control either linear or nonlinear MIMO processes using a predictive model
and explicitly considering constraint in its formulation. Explicit consideration of uncertainty
is discussed in a number of contributions [5–8] and can be achieved using stochastic models
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and by minimizing the probability of constraint violation. Due to these reasons, MPC has been
successfully implemented in various researches on buildings over the last years. A review of
the representative studies about MPC can be found in [9], which also exploits the Building
Controls Virtual Test Bed (BCVTB) for running a building energy simulation with real-time
Building Energy Management System (BEMS) data as inputs.

In subways applications, as far as metro operators are concerned, they suffer from the high-
energy consumption of their facilities. While the lighting, ventilation, and vertical transport
systems are crucial for the safety and comfort of passengers, they represent the most of the
non-traction energy required in underground stations. Hence, as shown in [10], the intelligent
control of these subsystems can significantly reduce their energy consumption without
impacting the passenger comfort or safety or requiring expensive refurbishment of existing
equipment.

Differently from the buildings above ground, the environmental conditions (temperature and
humidity) are quite stable in underground spaces and, usually, there is no need for heating in
winter but just for cooling in summer. Since no air-conditioning plant is usually installed in
underground spaces, the air change becomes a key requirement that must be guaranteed by
means of mechanical ventilation that compensates for lacks of natural ventilation. Therefore,
in this domain, both the natural and the forced air flows are relevant and produce thermal
effects that cannot be neglected. Nevertheless, it has to be remarked that a specific norm about
air change in underground spaces has not been drawn up yet.

Underground stations are also characterized by a large number of output variables (temper‐
ature, air exchange, CO2 and PM10 concentrations in platform and energy consumption of
actuators) but by a small number of input variables (usually just one fan): this reduces the
controllability and the possibility of simplifying the control task by coupled sub-problems
decomposition. The decomposition into simpler (eventually coupled) sub-problems, in fact, is
possible when different output variables are mainly affected by different control inputs: since
usually the control input is just the speed of the station fan for controlling many output comfort
and air-quality variables, there is no chance for decomposition. Therefore, the problem is
handled with a cost function formed by a weighted sum of conflicting objectives and subject
to appropriate constraints, while the control task is faced through an optimization problem.

This severe controllability issue means that a whole building control strategy, such as MPC,
is much more effective.

Model predictive control, in fact, may be used to enhance BEMSs so that they can improve
their control performances getting close to optimal behavior [11].

2.2. The control architecture

The overall control scheme is depicted in Figure 1. The energy manager is in charge of enabling
or disabling controller functionalities. A supervisory subsystem is in charge of checking the
correct operation of each subsystem and alerting the energy manager in the case of failures,
faults, or constraint violations. It is also in charge of detecting unreliable sensory data and to
switch to a safe control policy (the original one) when needed. A set of software proxies, one
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for each sensor or external data or actuator, acts as middle-ware, thus making information
available to and from the control system independently from the specific hardware or external
service adopted. A monitoring subsystem (see Section 4) collects information about station
status (via the sensor network detailed in Section 3), and predictions about disturbance factors
that affect the dynamic behavior, such as external uncontrolled fan (i.e., not controlled fans),
people, trains, and weather.

Figure 1. Typical architecture of an MPC.

The disturbances have to be measured and, if possible, predicted by a model that provides the
future behavior of non-controllable factors. For trains and external fans, the station operator
can always provide schedules that may be reasonably used as a measure or prediction. Any
slight variation from the schedule can be addressed by the disturbance rejection capability of
the feedback control scheme (Figure 1). When available, these schedules or the status of trains
and external fans can be accessed in real time through the SCADA system already installed in
the station, thus improving the reliability of the measures of these disturbances. A large-scale
simulation study performed in [12] showed a potential for the energy savings and/or im‐
provements in thermal indoor environment when using the weather forecasts in a predictive
control strategy compared to a simple rule-based control, despite the uncertainty in the
weather forecasts. Therefore, weather forecasts and local weather stations are used to improve
control performance. As shown in [13], a large part of the energy savings potential can be
captured by taking into account also for instantaneous occupancy information.

This information is then processed and made available for use by the controller subsystem
(Section 5.1). The prediction model (described in following Section 5.2), fed with all the
available information, is used to carry out a scenario analysis and to select what control policy
ensures the best predicted performance in terms of energy consumption and comfort. The
corresponding optimal solution is applied to the station as control action, and the process is
repeated at each control step.

In this framework, as for each control system, the sensor network that will be described in the
next section is of paramount importance, since it determines the ability of the system to reject
disturbances and unpredictable events.
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3. Environmental monitoring networks

3.1. Typical architecture of an WSN-based environmental monitoring system

In the last decades, we have witnessed a significant evolution of environmental monitoring
systems. This wide category embraces a considerable range of application scenarios—from
public surveillance to industrial automation. The first monitoring systems were mainly based
on high-precision sensors; hence, the cost and complexity for deploying such systems is
typically higher and the efficiency lower than most current solutions. Nowadays, the terrific
advances in low-power devices and wireless technologies have driven an evolution toward
wireless sensor networks (WSN)-based monitoring approaches. Typically, a set of sensor
nodes is deployed over an area, each of them including a set of sensing units as well as one or
more wireless interfaces. In many cases, off-the-shelf sensor nodes are used, providing a trade-
off between the cost and complexity of network deployment and maintenance, and the
accuracy of the measurements.

Although each application scenario imposes its own requirements, there exist some common
rules when deploying a wireless sensor network for monitoring purpose. A set of sensor nodes
is deployed over the area of interest, and one or more entity is added for collecting the data.
Usually, there is at least one central sink gathering sensor measurements, either periodically
or after a “long” monitoring time interval, which could be defined for instance as one entire
day or 1 month, depending on the time requirements of the application. A real-time monitoring
application normally imposes stricter time requirements (e.g., collect measurements every 2
min). In fact, in many practical deployments sensor nodes are divided in subsets (e.g., based
on location) and a hierarchical architecture is employed. In addition, it is very common to
deploy also a set of gateways, each collecting measurements from a subset of the sensor nodes,
so as to improve scalability and reliability of the system. A gateway is normally a device that
is not limited in power and storage, but in some cases, it could be one of the low-power devices
taking also the role of collection point.

Concerning the communication point of view, there has been a great deal of effort in defining
new standards, algorithms, and protocols for WSN connectivity, strongly motivated by the
high potential of using those networks in several different application scenarios. Hence,
nowadays a considerable number of solutions are employed in real deployment to provide
robust connectivity. Although many technologies and mechanisms exist, a complete descrip‐
tion of all of them is out of the scope; hence, we briefly mention some of those that are more
related with our area of interest.

In fact, physical and media access control layers are most commonly implemented according
to the IEEE 802.15.4 standard, which is designed for low-power and low-data-rate devices
using short-range transmission. The maximum data rate is 250 kbits/s, and range is typically
few tens of meters. As the standard is intended for low data rate, the packet size is limited to
127 bytes. The standard allows three frequency bands (868, 915, and 2450 MHz). Commercially,
available devices typically work on 2.4 GHz band. IEEE 802.15.4 defines three topologies that
may be used by the upper layer protocols: star, mesh and cluster tree. Typically, the radio
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listening and transmitting power consumptions are in the order of few tens of milli-watts, and
idle and sleep modes consume significantly less.

Many communication mechanisms are based on 802.15.4 standard. 6LoWPAN (IETF working
group) is an adaption layer allowing IPv6 traffic transmitted through 802.15.4 network, which
apply packet restructuring due to the very limited size of 802.15.4 packets. One of the most
widely used approaches is the ZigBee stack, which defines various layers on top of 802.15.4
and specifies three possible roles for nodes. The coordinator and the router are fully functional
devices, while an end device cannot route packets. On the other hand, WiFi typically is not
used by sensor devices, due to the high power need, but it is often used for connecting
gateway(s) to the Internet, or to a central server receiving all the collected data.

In the next section, we briefly discuss some of the existing solutions for WSNs used in the
context of environmental monitoring, highlighting the most common approaches and
technologies employed, whenever disclosed.

3.2. State-of-the-art of WSN-based environmental monitoring systems

The class of WSNs deployed for environmental monitoring purpose is relatively wide, thus
including a large set of different technologies, environments, architectures, and applications.
Let us summarize them based on a simple taxonomy, by first distinguishing between outdoor
and indoor.

In the former case, it is possible to identify two main sub-classes, depending on the location
where sensors are placed—under the ground or over a surface. If the signal is transmitted over
the air, the transmission propagation is significantly different, thus the communication
distance significantly wider, allowing longer-range transmissions also compared to the indoor
case, since less obstacles are typically present in this case. The most typical use case is the
monitoring of a field or farm, aimed to obtain environmental measures data, number of animals
within an area or any moving object, for detecting intruders. In urban areas, the most common
objectives are surveillance and traffic or road surface monitoring. In [14], the authors describe
a WSN for monitoring a potatoes crop. More than 100 TinyOS-based sensing nodes were
sensing the environment and sending data to one gateway, connected to a central server
through Wi-Fi. Barrenetxea et al. [15] reports the case of a similar deployment of 16 nodes on
a rock glacier in Switzerland, but GPRS was used instead of Wi-Fi. In collaboration with
biologists, authors of [16] deployed a IEEE802.15.4-based WSN for capturing the habitat of
foxes, whereas [17] capture the distribution of seabirds on an island through a network of 150
TinyOS-based sensors organized in one single-hop and one multi-hop network, both connect‐
ed to a central gateway through their own gateway.

If the sensors are placed below the ground surface, the goal is the monitoring of the status of
the ground, either for complementing the monitoring above the ground (e.g., for intelligent
irrigation), or for more specific objectives, such as landslide monitoring for earthquake
prediction. A fundamental issue is the modeling of the underground communication channel,
in order to properly design the network and avoid burying and un-burying sensors many
times, which is complicated and time-consuming [18]. The architecture is usually less struc‐
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tured, and based on the characteristics of the soil, typically obtained in a pre-deployment
phase, with one or more gateways over the ground surface [19].

Concerning indoor scenarios, we can further split this class into two sub-categories: subway
(i.e., underground transportation systems) and building (e.g., office, museum). Both of them
may experience a significant impact of the human presence, as well as carried wireless-
equipped devices, on the signal propagation [20]. Usually, building hosting offices, museums
or malls, are regularly structured, and sensors are installed for surveillance in the offices of a
company, or inside other public place such as a museum. In [21], a 16-nodes WSN is deployed
over the three floors of a medieval tower, in order to monitor and detect potentially dangerous
vibrations. One sink collecting all data was placed at the top floor where access to the external
Wi-Fi network was available. Peralta et al. [22] describe a preliminary testbed and lessons
learnt from a deployment in a museum in Portugal.

On the other hand, the environment of subways is proven to be more harsh, mainly due to
high-speed train crossing the area of interest, and the (building) structure, which can seriously
affect the signal propagation and quality of a link between two adjacent nodes, due to tunnels,
stairs, and substantial use of metal and concrete materials [23]. The typical motivation for
deploying a WSN for underground transportation system monitoring is safety and energy
saving [24]. Several interesting results and practical guidelines are reported in [25], which
describes two deployments in two underground railway stations, one in Prague and one
London. Before the actual deployment, accurate measurements were performed in order to
model the propagation of the signal within the tunnels of interest and properly plan the
network design. The evaluation suggested the centre of the tunnel as the best place for placing
the receiver and transmitter’s antennas, which turn out to be not practical in real deployment,
confirming the gap between ideal installation design, and feasibility in real settings.

4. Wireless real-time environmental monitoring systems

4.1. Requirements, constraints, and challenges

One of the most peculiar issues of a WSN is the lifetime of the system. Typically, environmental
monitoring needs a network stable and reliable for months or years, whereas employing sensor
nodes implies significantly lower time ranges. Moreover, several reasons can lead to node
failure or reboot, causing unexpected network behavior and loss of data, all these events
potentially requiring access to the (failed) node for re-configuring or re-charging it. However,
the cost and potentially high distance make it unfeasible to operate on the network continu‐
ously, implying the need for self-configuration and self-maintenance feature implementation.
In addition, several mechanisms can be employed not only for energy harvesting, but also for
reducing the energy consumption associated with sensing and/or transmission: MAC duty
cycle, data aggregation, data prediction [24, 26].

One of the main challenges of a wireless network is the communication reliability, as the
wireless channel is intrinsically unstable and requires a maximum distance and certain

Wireless Real-Time Monitoring System for the Implementation of Intelligent Control in Subways
http://dx.doi.org/10.5772/62679

147



physical conditions to be verified in order to guarantee data delivery (e.g., obstacles among
nodes might undermine the connectivity). On the other hand, wireless links provide the
flexibility to easily and gradually deploy a network, reducing the need and cost for mainte‐
nance and facilitating incremental deployment (e.g., through self-organizing and self-healing
properties).

Real-time monitoring implies that the measurements taken from the sensors have to be
delivered over a short-time interval. Although the duration depends on the specific application,
data must be delivered quickly, thus an off-line data gathering method is not suitable. For all
the above reasons, the system must be robust in terms of failure and reliable in terms of
connectivity. When deploying a network for real-time monitoring, a certain level of redun‐
dancy is usually desired, so that some sensor nodes can mitigate the effect of a failure or lack
of others, not only for sensing the environment, but also to guarantee forwarding of other
nodes’ measurements to the central sink [25].

The wide range of possible application scenarios make it unfeasible to identify a widely
recognized “best” strategy, although a set of general rules can be inferred. The location of
sensor nodes must ensure coverage of the entire area under monitoring, both from a sensing
and a connectivity point of view. Regarding the former, the actual coverage depends on the
application and the monitoring area, where some sub-areas might be excluded and some others
might require higher sensor density (e.g., tunnel). As for the latter, it is essential to guarantee
that there are not isolated nodes at any time during the period of monitoring, and that all of
them are able to reach the data collection entity. In practical terms, (at least) one routing path
to the sink and/or gateway must be available and known at each sensor node. Several impli‐
cations can be deduced: (1) each node must be located so as to be within the transmission range
of at least another node of the network; (2) routing path(s) must be acquired from each sensor
and dynamically updated whenever needed (e.g., after failure); (3) if duty cycle is performed,
it must be designed so as to guarantee that awake periods of nodes belonging to a routing path
overlap enough to guarantee proper transmission/reception. In addition to it, each specific
(category of) environment imposes physical constraints on where nodes can be located, the
propagation of the signal and the network design.

To conclude this discussion, let us focus on the constraints and challenges typically related to
subway environments, and the real deployment under study. Several real deployments
evaluation have demonstrated the special care needed before the actual installation [25],
highlighting the importance of performing accurate measurements of the signal power under
different conditions, as the structure of underground transportation systems typically
exacerbate some issues, such as the multi-path fading.

4.2. The case study: design choices and criteria

In this section, we describe a real-world use case of an environmental monitoring system
deployed in the context of the EU-funded SEAM4US (Sustainable Energy mAnageMent for
Underground Stations) project, aimed to energy management optimization. The main role of
the sensor network is to track in real-time both environmental and energy measures of interest,
an intelligent control system (Section 2). The WSN was installed in the “Passeig de Gracia”
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(PdG) subway station in Barcelona, one of the most crowded in the city, connecting three
important railway lines and having on average more than fifty trains per hour.

The monitoring platform is in charge of gathering data from sensors, re-arranging and post-
processing them into a database, and forwarding clean, time aligned measurements to the
intelligent control unit that is in charge of applying optimum control policies for energy
savings. PdG metro station is a harsh environment for wireless sensor placement, operation
and communication, as many station areas are located far from each other, many obstacles can
severely affect the signal propagation, and it is a highly dynamic scenario due to passengers
and trains crossing the station every day. The station area is rambling, thus connecting all
nodes directly to the gateway was neither feasible nor efficient. For that reason, the network
architecture was done in such a way to provide multi-hop paths from all nodes to the gateway.

Several sensor nodes were installed inside the metro station, each of them sensing a specific
set of environmental aspects under investigation. One of the most important design choices
was to deploy a wireless network, as the need for wiring all the nodes can easily limit the
installation options. For similar reasons, most of the sensor nodes are battery powered,
whereas all the sensor gateways have power supply, in order to guarantee continuous
operation. The position of sensors was decided according to the specific requirements for
modeling and controlling the system. Due to the limitation mentioned above, it is often
necessary to choose a trade-off between requisites from monitoring, wireless communication,
and building structure.

Regarding the values transmitted, they should typically be estimated as the average value out
of a set of measurements, thus sensors should be typically installed in several locations
scattered around the station. Then, a calibration process was applied to estimate at what extent
measurements were affected by their sub-optimal locations and, when feasible, correction
factors were applied.

Routing plays a key role to ensure correct data delivery. To allow multi-hop communication
and adapt to the variable condition, we implemented a dynamic routing protocol to achieve
flexibility and quicker setup. Indeed, the protocol periodically exchanges a very restricted
amount of information, taking advantage of other control packets, so that routing information
are updated frequently, but the amount of additional control traffic is very low. The actual ad-
hoc routing procedure, involving more control packet to be exchanged, is used only in case of
missing information. The routing algorithm takes both link quality and hop-count into
account, in order to better capture the quality of each available path.

Each sensor acquires its settings from the gateway after reboots and error conditions, and it
stores some previous measurements. This approach significantly helped to avoid data loss in
case of unexpected events, such as sudden worsening of signal quality in the station. Con‐
cerning the energy consumption, using cheap battery instead of more expensive energy
harvesters allowed us to achieve a battery lifetime that was enough for the project require‐
ments.

Data reliability was strengthened by implementing a mechanism that periodically verifies the
data received at the gateway server and requests data re-transmission in case of missing values.
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In practice, real-time monitoring is stricter in terms of delay requirements; hence, the mecha‐
nism parameters must be tuned according to the specific requirements. During the modeling
and testing time, the design of the monitoring network turned out to be redundant both in
terms of measurements collected and in terms of available adjacent nodes for routing, due to
some changes in terms of requirements. Clearly, in this kind of harsh environment, redundancy
is often needed or desired, as it contributes to increase the reliability of the system.

4.3. Implementation and system performance

The system consists of the central SEAM4US server, various gateway servers, gateway nodes,
and sensor nodes. Gateway servers are Linux servers (FitPCs) connected to the gateway node.
The gateway and sensor nodes are implemented on the processing and communication board
by Redwire LLC called Econotag, with an additional 32 KHz oscillator and one of the four
sensor boards specifically designed to fulfill the requirements of the project. Table 1 lists all
of them, reporting the specific environmental aspects measured through every board. In
addition, Figure 2 illustrates how the WSN is installed within the station, also showing that
the network is divided in four sub-networks from the communication point of view (SN2, SN3,
SN4, SN5), whereas SN1 includes only the weather station.

Type Probes Sensor IDs

Sensor
Board 1

-Air pressure
-Air temperature
-Surface temperature
-High-speed
anemometer

1, 3, 4, 5, 6, 7,
8, 10, 11, 12,
13, 14, 15, 16,
17, 18, 20, 21,
22, 23, 24, 25,
27, 28, 29, 30,
31, 32, 33, 34,
57

Sensor
Board 2

-Air pressure
-Relative humidity
-CO2
-PM10

26, 35

Sensor
Board 3

-Air temperature
-Surface temperature
-Low-speed
anemometer
-Differential pressure

9, 56

Weather
Station

-Solar radiation
-CO2
-PM10

55

Table 1. List of sensors deployed within PdG station.

Real-time Systems150



Figure 2. WSN deployment within PdG station.

We installed Contiki OS as an operating system to the nodes. We made various additions to
OS, such as routing and control protocol, to make it more suitable to our needs. Concerning
power saving, we implemented an energy efficient MAC protocol that combines R-MAC [27]
and ContikiMAC [28], leading to a cross-layer mechanism able to allow nodes to stay in sleep
mode most of the time, according to the application’s data sampling and delay requirements
[29]. This way, we are able to achieve battery replacement periods of many years, as shown
from the estimation in Figure 3, which was satisfactory for this use case.

Figure 3. Battery replacement period plotted over network transmission interval.
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The requirement in terms of data delivery can be summarized by specifying the maximum
allowed packet loss (PL) as 20%. In fact, the system was able to satisfy the requirement as the
average packet delivery ratio over the entire network during the evaluation period was 13%.
An interesting finding is that in this kind of environment, sub-networks can show significant
differences in terms of performance compared to other more homogeneous scenarios. For a
quick look at this aspect, in Table 2, we reported the values of some performance indicators
observed during a period of 1 week, both the average value over the entire network and the
average for each sub-network: the PL, the number of hops to the gateway (NH), and the
number of available routing paths to the gateway (NP).

Average PL NH NP

TOT 13% 2.04 17.34

SN2 7% 2.19 16.8

SN3 24% 2.3 4.25

SN4 5% 1.9 31

SN5 35% 1.77 1.6

Table 2. Performance indicators observed during one week.

The total average is not the average of the values shown below, since each sub-network has
different number of nodes. The sub-network SN4 is the one that cover the tunnel where on
average one train every minute passes, implying that it is located in a very dynamic environ‐
ment mainly due to passengers and trains crossing. As you can see from Table 2, SN4 is the
sub-network with the lowest PL and the higher number of available paths. Indeed, we could
observe that the number and position of sensor nodes in SN4 was sufficient to ensure many
multi-hop alternative paths for each node, despite the challenging condition. On the other
hand, SN5 has the highest PL, mainly because each node has very limited alternative paths to
reach the gateway, and renovation areas surround or partially cover this area, limiting
communication and worsening channel condition. Hence, we can say that in harsh environ‐
ments it is important that every node has some alternative paths to reach the central server, as
this redundancy contributes to reduce the PL.

4.4. Architecture of the monitoring sub-system

A fundamental issue in the implementation of MPC is the interface between the model used
to drive the control logics and the data gathered by means of the sensor network. Models used
in the MPC control loop are based on a somewhat idealized representation of the environment:
clean data, perfect time alignment, direct measures of all the necessary physical quantities, etc.
Of course, this is not the case in real systems [30]. Therefore, specific modules must be
developed to recover a data flow from the sensor network that is suitable for feeding the model
predictions: the monitoring subsystem (Figure 4).
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Figure 4. Raw data pre-processing, filtering and resampling.

The main task of the monitoring subsystem is to act as an interface between the model used
to drive the control logics and the data gathered by means of the WSN described in Section 3.
Indeed, the control model accepts as inputs synchronized clean data, complete records at
regular time intervals. However, this is never the case of raw data sent by a WSN. For that
reason, the monitoring subsystem was made up of a set of units developed to recover a data
flow from the WSN and convert them into a suitable form for feeding the control model
computations. Summarizing, three main steps are accomplished by this component:

• filtering in order to reduce the aliasing and the noise of raw data;

• re-sampling to perform time alignment;

• post-processing (i.e., unit conversion, calibration, estimation of indirect measurements).

In this sub-section, filtering and re-sampling will be described, whereas post-processing will
be the object of the next subsection.

Raw data are asynchronously acquired by the sensor network with sampling frequency fs

(subject to some drift due to network latency); therefore, they have to be aligned in time before
entering the controller. This task is carried out by a re-sampling centralized process that, at a
fixed rate fr, captures the updated value for each sensor and stores it. In order to avoid aliasing,
according to Shannon’s theorem [31], this process requires input data to be low-pass filtered
with a cut-off frequency greater than half the re-sampling frequency fc ≤ fr/2.

Filtering is used to smooth data; however, it introduces a delay that, when too long, could
make the information useless for control purposes. The delay introduced by the filter depends
on filter order, type and cutoff frequency (i.e., frequency at −3 dB of attenuation) with respect
to sampling frequency fs. An IIR filter type was selected and used as the best compromise
between complexity, selectivity, and phase shift. Once the cutoff frequency is given, the filter
parameter can be computed as

2 /cf
sa e fp-= (1)
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and a filter recursive form for implementation is

( ) 11n n ny a x a y -= - × - × (2)

A sampling frequency fs must be established in order to avoid, or limit, aliasing noise in the
digital signal. Again, according to Shannon’s theorem, this is done based on the spectrum
occupancy band of the continuous signal to be sampled. In order to determine the spectrum
occupancy of each sensor type, a data collection campaign was performed in the real station.
Data were acquired for a whole week with a high sampling rate in order to obtain an over‐
sampled dataset. The sampling rate was 1 min for temperatures, wind speed, and wind
direction and 10 s for air speed and concentration of pollutants. The sampled data were then
re-sampled and aligned in time every 10 s. A Welch mean-square spectrum was then estimated
and analyzed. Defining B−20dB as the frequency at which power attenuation is at least −20 dB
between the amplitude of the lower harmonics in the spectrum and the amplitude of the
spectral components beyond spectrum occupancy band B−20dB itself, its value can be graphically
determined from the spectrum plots.

Shannon’s theorem states that, given a signal with occupancy band B, in order to keep all the
original information in the sampled signal and to avoid aliasing, the sampling interval must
be fs > 2B. In our case, the sensors are much more reactive than the system dynamics and much
of the original information contain noise that can be removed by post-process filtering with
cut-off frequency fc ≪ fs. Thus, a small amount of aliasing can be tolerated if it falls in the part
of the spectrum that is cut by the post-process low-pass filter, that is, when fc < B, a less
restrictive relation can be applied: fs > B + fc. In other words, it is necessary to have f s > f s

L ,
where:

,
2 ,

c cL
s

B f when f B
f

B otherwise
+ <ì

= í
î

(3)

The cut-off frequency for post-process low-pass filter fc and the re-sampling frequency fr are
chosen so that reasonable values for raw sampling frequency fs and residual aliasing are
achieved. The results reported in Table 3 are achieved with fr = 1/600 Hz and

f c =
f r

2 =1 / 1200Hz . The filter cutoff frequency is chosen as large as possible (equal to its upper
bound) in order to limit the consequent phase delay and hence to make the controller more
reactive.

Sensor Occupancy band Aliasing f s
min δs

max

Temperature B− 20dB = 0.3 mHz 1% 0.6 mHz 1667 s

Wind speed B− 20dB = 3.0 mHz 1% 3.8 mHz 261 s
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Sensor Occupancy band Aliasing f s
min δs

max

Wind direction B− 20dB = 6.0 mHz 1% 6.8 mHz 146 s

Air speed B− 20dB = 10.0 mHz 6% 10.8 mHz 92 s

CO2 concentration B− 20dB = 0.7 mHz 1% 1.4 mHz 714 s

PM10 concentration B− 20dB = 2.0 mHz 1% 2.8 mHz 353 s

Table 3. Sampling frequencies and sampling intervals for each sensor type.

Based on the spectrum analysis, a sampling interval δs ≐ 1/fs = 60s is selected as the final value
for all the sensors involved in the control. In this way, the sampling interval is large enough
to limit the network traffic and the storage requirements, but it is also small enough to avoid
significant aliasing in acquired information.

In order to exploit the disturbance rejection capability of the closed loop, the control interval,
that is the interval used for updating the control action, is selected as the fastest synchronous
data update rate available, that is the re-sampling rate fr = 1/600Hz (δr ≐ 1

f r
=600s).

Finally, the prediction interval, that is the step used for updating predictions, is selected as the
slowest available prediction update rate, which is the weather forecast update rate δw = 1 h.
This allows prediction horizons of hours to be used without introducing excessive computa‐
tional burden and with better prediction accuracy (lower propagated uncertainties). Since, as
will be shown in following Section 5.3, satisfactory control results and energy savings have
been obtained with a prediction horizon of one step p = 1, a prediction horizon of 1 h is finally
adopted.

From now on, post-processing functions will be intended to be applied to filtered and
resampled values.

4.5. Post-processing functions

Post-processing functions were used to convert data processed as described in Section 4.4 into
a format that is compliant with the controller unit of the MPC system. In the case of PdG station,
the most important indoor environmental parameters, which were sent to the controller in
order to estimate the current state of the controlled domain at each iteration of the MPC, were
as follows: air change rates; air temperature values; dust (PM10) concentration.

4.5.1. Air change rates

Thanks to the layout of PdG station, that is made up of a series of corridors, if air flow rates
through the corridors leading to the PdG’s platform are estimated, their balance will give back
the total amount of air change rates across the platform, that is of interest because it is the most
crowded room in the station and it is polluted by the passage of trains. As a consequence, an
accurate evaluation of air speed flowing through corridors is of utmost importance. This
measure was collected by means of the “high-speed anemometer” reported in Section 4, whose
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records are filtered and re-sampled in real-time. However, this is just correlated to the air flow
rate, whose value is still unknown and must be estimated, instead. In addition, it must be
estimated by means of a straightforward algorithm because it must be implemented in real-
time. Among the factors that make this conversion task quite cumbersome, we cite the sensor’s
sheltering by a pipe and by a net at the pipe’s ends, and its location to one of any room’s top
corners. So, preliminary numerical and experimental surveys were carried out in order to find
out an accurate conversion procedure. More specifically, numerical simulations supported by
experimental evidence showed that obstacles that may be found in corridors (e.g. people) affect
just locally air speed field in any cross section of corridors, and do not change the overall
balance estimated in the case of unobstructed corridor’s cross section [32]. In other words, any
air speed value on the middle cross section of corridors could be correlated with the average
air speed across corridors. These values were then multiplied by the cross section’s area in
order to estimate the overall air flow rates across any corridor. However, the disturbance
caused by presence of the sensor’s sheltering was corrected by means of a calibration process,
that adjusted real-time measurements of high-speed anemometers (Q’) through a relation
including an y-offset (q) and a scale factor (m):

Q m Q q= × ¢ + (4)

The two coefficients were estimated from a set of on field measurements performed in PdG
station by means of hand-held instruments. The dataset was then split into the first 75%, which
was used for estimating the coefficients q and m, and the second 25%, which was used for
validation purposes. Technically, the estimation was based on an OLS (ordinary least square)
algorithm [33]. Six calibration curves were worked out for as many sensors placed in corridors.
Each curve was based on two sets of measurements taken for about 15 min at two different
times of the day. The calibrated measurements of air speed were then multiplied by the cross
section, so as to work out air flow rates. The validity of this procedure was already demon‐
strated by the authors in a previous research paper [32].

In Figures 5 and 6, an example of the inputs and outcomes from this calibration process is
provided. Figure 5 compares the plot of the data logged by the hand-held instrument (i.e.,
benchmark) and the data plotted by the installed Seam4us sensor, where the benchmark
presents peaks higher than the Seam4us sensor, and its average value is slightly higher than
the other series. Those plots are the result of filtering and resampling, as reported in Section 4.4.
Then, the y-offset (0.1510 m/s) and scale factor (1.2719) of the calibration curve were estimated
by means of OLS analysis, like in Eq. (4). Similarly, the calibration curves for all the other
corridors were worked out. In the case of node no. 18, Figure 6 shows that the calibration
brought the two curves to almost superimpose. At this juncture, air flow rates through
corridors are known and they are ready to be combined one another in order to estimate
outdoor air supplied to the platform (PL3), which is air change per hour from outdoor air
(ACO):
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( )
´

3PL as CNl CNe SLbM ACO Q Q Q Q += + + -= (5)

where Qas is the air supplied by the mechanical ventilation system; QCNl is air flow rate entering
across the corridor called CNl, and the last two terms computes the difference between air flow
rate flowing through corridor CNe and another corridor called SLb. The difference was due
to the evidence that only the air flow coming from CNe, but that was not directed toward SLb,
entered the platform PL3. The plus apex indicates that this contribution was taken into account
just in case the balance is positive.

Figure 5. Raw data at node no. 18.

Figure 6. Transformed data compared with the dataset used for verification.

Another finding was that trains in tunnels affect the amount of air flow rates flowing across
tunnels. For that reason, air flow rates estimated in tunnels by means of sensors’ measurements
were reduced by a factor included in post-processing functions, which was computed as a
result of an overall air flow balance in the station. Although no contribution to the platform’s
daily ventilation came from the two Pdg’s tunnels, because they always worked in extraction
mode, the reduction determined on air flow rates due to the presence of trains was estimated
just for the purpose of general knowledge. The overall air flow balance in the station around
the platform can be written as:
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2as CNl CNq CNop tunQ Q Q Q Qa- = + + × + × (6)

where, Qas is the same as mentioned above, Qtun is the air flow rate of the fans extracting air
from tunnels and CNl, CNq, and CNop are corridors. The overall air flow balance brought to
determine the coefficient α = 0.7, that is the reduction due to the presence of trains in tunnels.

4.5.2. Air temperature

Similarly to what described in Section 4.5.1, air temperature plots provided by the Seam4us’
WSN were compared with those ones measured by accurate hand-held instruments. We
checked two types of deviation: an y-offset of the respective average values of the two plots;
peaks of the Seam4us networks were lower than the peaks of the hand-held instruments. The
latter was probably due to the packaging inside which the Seam4us sensors were sheltered.
But it was deemed as not relevant, because just average temperatures over time steps of 1 h
were needed by the intelligent control module, whereas peaks were due just to trains passing
by, whose consequences lasted for a few minutes. The former was corrected by comparing the
two average measures from the two plots and applying an y-offset factor to every Seam4us
sensor. So, one specific y-offset conversion for each Seam4us temperature sensor was estimat‐
ed.

4.5.3. Dust concentration

The raw measurements provided by the PM10 sensors were relative to the number of particles
counted within 0.283 l of air volume (u.o.m. is pcs/0.283 l). The purpose of the post-processing
function was twofold: firstly, to extend particles’ count over the whole spectrum, due to the
fact the sensor was able to sense only particles sized more than 0.5 μm; secondly, PM10

concentration should be measured in standard unit of measure, that is, μg/m3. In order to
pursue that, a post-processing function made of six steps was set up. Given that raw data
(rawPM) were measured as pcs/0.283 l, the first step turned it into n measures in pcs/m3,
through the factor k = 3534 l/m3, hence n = k*rawPM. The second step assessed the ratio of
particles out of their total number, which was not considered in the raw measures (because
limited above 0.5 μm). So an on-site survey through a hand-held instrument (i.e., “Fluke
particle counter”) was done, and the distribution in Table 4 was had. As a result, if the sum
of particles measured by the WSN between 0.5 and 10 μm is 100%, which number must be
increased by 79.3% to include even those particles between 0.3 and 0.5 μm.

Range of diameters [μm] Central value of diameters ds
j [μm] Ratio Dj [%]

0.3–0.5 0.4 79.3

0.5–1.0 0.75 62.2

1.0–2.0 1.5 19.1

2.0–5.0 3.5 17.7
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Range of diameters [μm] Central value of diameters ds
j [μm] Ratio Dj [%]

5.0–10.0 7.5 0.88

>10.0 12.5 0.13

Table 4. Distribution of particles found in PdG station.

Given the distribution of particles in Table 4, in the third step, the number of particles per size
was rewritten in the form: nj = n*Dj, where nj is the number of particles whose diameter’s central
value is equal to dsj, n is the raw measure of particles and Dj is the ratio. Steps 4–6 were
determined according to literature and used to convert the number of particles in concentra‐
tion. In particular, step no. 4 computed the volume occupied by nj particles [34]:

( )3

6
j j

svol d np
= × × (7)

As a fifth step, the concentration mj [μg/m3] will be computed as [35]:

10 10
j j j

PM F effC PM m C volr= = ××´ (8)

where the coefficient CF = 1 in our case and an overall value of ρeff was assessed experimentally
according to the relationships [36]:

10

10
5

1

eff j j
PMj

PM
vol F

r
=

=
×å (9)

The coefficients F are provided by the literature [36], while PM10 was measured in the station,
at the same time, when the counting in Table 1 was done. It came out that PM10 = 320 μg/m3,
all the other values are known, hence ρeff = 3.15·1012 μg/m3. By combining all the steps described

Figure 7. Raw data collected about PM10.
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above, the conversion of the kind depicted on Figures 7 and 8 were performed automatically
by the Seam4us system, and in real-time during monitoring.

Figure 8. PM10 post-processed and converted into concentration.

5. Implementation of the MPC

5.1. MPC installed in the case study

In the considered station (PdG-Line3), the air exchange and thermal comfort is achieved by
two fans located in the station and two fans situated in the middle of the two tunnels. The
original control policy, hereafter referred to as baseline (BSL), requires the station fans to inject
air into the station in the daytime, and the tunnel fans to extract air from the platform in the
daytime (between 07.00 and 22.00) and inject air at night (between 22.00 and 07.00 of the next
day), when the station fans are switched off. All the fans are driven by an inverter based on
the input frequency on the basis of a day/night schedule and a seasonal schedule set by the
station operator as follows (the sign of the frequency input represents the air flow direction:
positive when entering platform):

• Winter (January, February, March) and Autumn (November, Decdmber) modes: tunnel fans
at −25 Hz in the daytime and +25 Hz at night, station fans at +25 Hz only in the daytime;

• Spring (April, May, June) and Summer (July, August, September, October) modes: tunnel
fans at −50 Hz in the daytime and +25 Hz at night, station fans at +50 Hz only in the daytime.

Since the tunnel fans serve different contiguous stations, their control must be implemented
at a higher level in order to coordinate multiple stations on the same line. On the contrary, the
station fans can be controlled locally (even if they must be driven in parallel in order to avoid
falling into stall conditions) and are driven by the MPC agent. Therefore, the ventilation
controller has to manage power consumption and indoor comfort by acting on only one
actuator that is the driving frequency of the two station fans. MPC control is active only when
the fans are active for the baseline; therefore, MPC is ON between 07.00 and 22.00 (daytime).

While the standard approach adopted by the station operator is to drive the devices solely
based on time schedules, with MPC the problem is tackled in a dynamic way: the information
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coming from the monitoring network and from the models are used to decide on the optimal
ventilation control to be applied at any given time.

Weather conditions and forecasts are obtained by means of online web-service wunder‐
ground.com©. A software proxy is in charge of querying this service and periodically, thus
providing weather conditions and forecasts. The quality of the current weather condition is
improved by using a local weather station connected to the wireless sensor network. The
CCTV-based crowd density estimator (see [37, 38]) is used here to detect people, since it is the
main source of data for modeling passenger behavior, and it is based exclusively on the video
streams of the CCTV surveillance system (which usually exists in a station).

Based on what was stated in Section 2.2 and is shown in Figure 9, at each re-sampling instant
(i.e., every 1/fr seconds), the MPC algorithm collects information about the station by taking
re-sampled data from the monitoring, evaluates the best control action by using hourly
predictions over a predefined prediction horizon p and applies it to the station. Data acquisi‐
tion is carried out by waiting a maximum defined time-out interval after each re-sampling
instant: when time-out is reached, MPC proceeds to compute the control action corresponding
to that interval and applies it via the actuator proxy. The generation of the candidate control
policy is strongly related to the adopted searching technique. In the case study, since the
controlled actuators have the same input values that are discretized from 0 to 50 Hz with a
resolution of 1 Hz {0, 1,…, 49, 50}, and the prediction horizon is set to p = 1, an exhaustive case
generation is used as a simple solution for determining the optimal control action to be applied.

Figure 9. Timing of the control system.

For the sake of generality, parameters and variables are normalized here with respect to the
maximum value of the related term in the cost function. Therefore, all the physical variables
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identified with tilde in their raw version, will be represented in the MPC problem formulation
with their normalized versions (without tilde).

The total absorbed electric power has to be minimized while keeping thermal comfort and air
quality parameters as close as possible to the desired values (soft constraints). Moreover, the
thermal comfort and air-quality parameters must be kept strictly inside the bound constraints:

• Air exchange level on platform greater than a minimum threshold: M(t) > MLO(t)

• Difference between inside and outside CO2 level lower than a maximum level:
CCO2

(t) - CCO2

O (t)<ΔCCO2

U

• Particulate level lower than a maximum threshold: CPM 10
(t)<CPM 10

U

• Temperature lower than a maximum threshold: T(t) < TU

The sum of squares of the total absorbed electric power of tunnel fans PT and station fans PS

have to be minimized. The temperature in platform T should be as close as possible to the
outside temperature TO and to the desired value T́  and it must be lower than the upper bound
TU. The air change rate with outdoor air M should be as big as possible and it must be bigger
than the lower bound MLO, which takes into account for the current occupancy also. Pollutant
concentrations in platform CCO2 and CPM10 should be minimized, moreover CCO2 must be lower
than the outdoor concentration CCO2

O  plus an allowed increase ΔCCO2
U  and CPM10 must be lower

than the upper bound CPM10
U . In order to achieve these multiple conflicting objectives over the

fixed prediction horizon p, the single objectives are combined in a global objective by arbitrary
weighting factors αPT

, αPS
, αΔT, αT, αM, αCO 2

, αPM10
, αΔF. Therefore, the following cost function is

defined and evaluated:
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The last term in cost function has been added for considering the amplitude of change in
frequency F that drives the actuators. It is a stability objective that could be useful to smooth
the control movements. Denoting with superscripts ⋅ L and ⋅ U lower bound and upper bounds,
respectively, the previous minimization is subject to the following comfort constraints ∀ t ∈ Z:

( ) ( ) ( ) ( ) ( )
2 2 2 10 10

, ,, ( )LO O U U U
CO CO CO PM PMM t M t C t C t C C t C T t T> - < D < < (11)

and to the following operative constraints ∀ t ∈ Z that considers the physical limits of the
actuators:
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( )L HF F t F< < (12)

Once the bounds are derived from regulations or operative limits and set point T́  is fixed by
comfort requirements, the remaining degrees of freedom for tuning the controller are the
weights of the different cost terms α⋅ and the prediction horizon p. At each control step t, the
MPC problem consists in finding the optimal control sequence that minimizes the cost function
(10), under constraints (11) and (12). The presence of constraints makes the optimization
problem not trivial, however, as reported in literature [39–41], barrier functions can be used
to transform the constraints into objectives. In constrained optimization, a barrier function is
a continuous function whose value increases to infinity when approaching the boundary of
the feasible region: it is used as a penalizing term for the violations of constraints.

The logarithmic barrier function is used here to implement a generic upper bound constraint
x ≤ xU, thus transforming the original constrained optimization problem into an unconstrained
equivalent one. Then, by exploiting the predictive models, all the possible scenarios are
evaluated and the best one is selected for controlling the fan.

Further details about the control approach can be found in [12].

5.2. The predictive models

Two dynamic Bayesian networks (DBN) were embedded in the MPC scheme in order to act
as the control models [42]. The main benefits deriving from their use consist in: having
established a formalism for dealing with uncertain and incomplete information; their graphical
representation explicitly states causal relations between variables; the causal assumptions
allowed us to limit the amount of data needed to define joint probability distributions; when
additional data are available, the “belief updating” process can be applied, that is, conditional
probability tables can be updated and refined when new evidence is available.

All the afore-listed features dramatically match with the needs typically arising in contexts
monitored in real-time. For instance, data coming from sensors are always affected by
uncertainty; even more important, while monitoring is in progress, new knowledge is available
and it should be used to refine the parameters of the nonlinear probability distribution
functions embedded in DBN, etc…. So, the choice of DBN fits particularly well in this case,
when simpler models (e.g., auto-regressive) cannot work, due to the complexity of the domain.
The word “Dynamic” means that these networks are able to make inference about some
variables of the state of a system at time “t + 1”, once the state of the same system at time “t”
is known, thanks to the data provided by the WSN environmental monitoring system.

A detailed description of the two DBNs embedded in the whole control architecture is out of
the scope of this contribution, although it was provided by another book chapter [43]. How‐
ever, it is worth recalling that the two DBNs were relative to:

1. The first DBN estimated indoor air temperature in the station halls and in the platform;
the temperature values at selected nodes is estimated based on the temperature values

Wireless Real-Time Monitoring System for the Implementation of Intelligent Control in Subways
http://dx.doi.org/10.5772/62679

163



recorded at various places in the station and outdoors, number of trains passing per hour
and occupation density during previous hours;

2. The second DBN estimated air flow rates in the station and the rate of air changes in the
platform, starting from the temperature values forecasted by the first DBN, expected
mechanical air supply, outdoor forecasts, and the state of some variables of the station in
previous hours, namely airflow rates in some corridors and in tunnels, outdoor air
supplied by the mechanical air supply system, number of trains per hour.

3. Both networks were trained on a set of data generated by means of a lumped parameter
simulation models. But their parameters were being gradually improved by means of
datasets made up of measurements by the WSN.

5.3. Performances of MPC

The described MPC strategy was successfully applied to control the forced ventilation of the
PdG-Line3 station for 5 months (from August to December 2014). Some relevant measures
collected by the monitoring system, representing filtered, re-sampled and post-processed
quantities, are depicted in Figures 10 and 11.

Figure 10. Performances measured during a working day (left) and a weekend (right) in October.
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Figure 11. Performances measured during the whole month of October.

Figure 10 refers to the system operating in the summer mode during a working day (when the
station opens at 05:00 and closes at 24:00) and during a weekend (when the station remains
open all the time). Similarly, Figure 11 refers to the whole month of October. Note that from
October 18th to 21st there is an interruption due to maintenance on the station and the fans
were switched manually off. The corresponding comfort levels in the station were significantly
worsened in that period, showing the control effectiveness.

Note that, during the working days, irrespective of the summer or winter modes, the higher
number of people and trains passing through the station makes the indoor climate less
comfortable and the savings margins become smaller, albeit still relevant w.r.t the weekend.
The comfort indexes all remain acceptable: temperature is kept stable and at acceptable levels
while pollutants comply with constraints.

Permanently installed energy meters where used for monitoring energy consumption before
and after the installation of the SEAM4US system. The total energy saving with respect to the
baseline S ≐ EMPC − EBSL is defined as the difference between the energy consumption achieved
with the MPC strategy EMPC and the energy consumption obtained with the baseline strategy
EBSL. The percent energy saving S is the same value S divided by the baseline energy con‐
sumption EBSL.

The resulting values for energy saving relative to the direct and continuous measures taken
during the 4 months of full operation are reported in Table 5. These periods are representative
of the different operating conditions occurring in PdG-Line3 station and produce global
savings of about 33% without significantly affecting passenger comfort.
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Months S (kWh) S%

September 2304 30

October 3859 48

November 240 11

December 297 14

Total 6701 33

Table 5. Monthly and total energy saving produced by the MPC.

6. Conclusions and lessons learnt

The experimental results and lessons learnt reported in this chapter, confirm the importance
of the pre-evaluation of the environment, and of a careful pre-deployment design for a wireless
real-time environmental monitoring system. Several are the technologies and protocols
available to build the wireless system, allowing to accomplish many tasks, from the periodical
sensing to the recovery from PL at the gateway. However, the selection of those to be used is
highly dependent on the scenario and must be a trade-off between requirements and limita‐
tions. An essential aspect is accessing the nodes remotely, and to implement the network with
the capability of self-configuration and recovery after failure, so as to reduce human interven‐
tion. However, we also showed that knowing the complete architecture of the building, and
the details of the operational condition, is of utmost importance for identifying the source of
unexpected problems or sudden changes of operation (e.g. unusual event, such as city festival).
From the data forwarding point of view, our results confirm the challenging signal propaga‐
tion, especially in tunnel at rush hours, and observe the importance of installing redundant
nodes for both sensing and connectivity objective. Ensuring redundant paths from a node to
the gateway has shown to be of paramount importance for keeping data loss below a reason‐
able value.

Once WSNs are in place and real-time monitoring is running, several control applications can
be developed on top of them. However, the controller needs filtered, re-sampled, and
processed datasets with no missing values, hence post-processing must be implemented to
this purpose. In the specific case described in this chapter, real-time monitoring was used in
support of MPC and was tested in a subway in Barcelona. Not only did the system show to be
able to comply with air quality and comfort requirements set for these places, but it determined
energy savings as high as 33%, too. In conclusion, considering the affordability and wide
availability of monitoring technologies nowadays, much research should be devoted to the
development of intelligent control logics that can determine very high energy savings, even
when installed in existing buildings.
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