
Geospatial Technology 
Environmental and Social Applications

Edited by Pasquale Imperatore and Antonio Pepe

Edited by Pasquale Imperatore and Antonio Pepe

Photo by @spacex / unsplash

The pervasive relevance of geospatial information and the development of emerging 
geospatial technologies offer new opportunity for bridging the gap between remote 

sensing scientific know-how and end users of products and services. Geospatial 
technology comprises tools and techniques dealing with the use of spatially referenced 

information, for the description and modeling of spatial and dynamic phenomena 
related to the Earth’s environment. This book addresses environmental and social 

applications of geospatial technologies, thus also providing a multidisciplinary 
perspective on emerging geospatial techniques and tools. It consists of ten chapters 

offering insight into geospatial technology progress and trends. Authors present 
several application-oriented studies from various parts of the world, including 

applications in collaborative geomatics, geospatial statistics, GIS, agriculture, and 
natural hazard monitoring.

ISBN 978-953-51-2626-3

G
eospatial Technology - Environm

ental and Social A
pplications





GEOSPATIAL
TECHNOLOGY -

ENVIRONMENTAL AND
SOCIAL APPLICATIONS

Edited by Pasquale Imperatore
and Antonio Pepe



Geospatial Technology - Environmental and Social Applications
http://dx.doi.org/10.5772/61680
Edited by Pasquale Imperatore and Antonio Pepe

Contributors

Dayong Shen, Suarau Oshunsanya, OrevaOghene Aliku, Serge Olivier Kotchi, Nathalie Barrette, Alain A. Viau, Jae-
Dong Jang, Valery Gond, Mir Abolfazl Mostafavi, Christine Barbeau, Don Cowan, Yuanzhi Zhang, Megan Sheremata, 
William A. Gough, Leonard J. S. Tsuji, Giuseppe Solaro, Pasquale Imperatore, Antonio Pepe, Chun-Chih Tsui, Xiao-Nan 
Liu, Horng-Yuh Guo, Zueng-Sang Chen, José Luis Silván-Cárdenas, Pablo López-Ramírez, Adriana Allen, Rita Lambert

© The Editor(s) and the Author(s) 2016
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2016 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Geospatial Technology - Environmental and Social Applications
Edited by Pasquale Imperatore and Antonio Pepe

p. cm.

Print ISBN 978-953-51-2626-3

Online ISBN 978-953-51-2627-0

eBook (PDF) ISBN 978-953-51-6674-0



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,700+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

116,000+
International  authors and editors

119M+ 
Downloads

We are IntechOpen,
the world’s leading publisher of 

Open Access books
Built by scientists, for scientists

 





Meet the editors

Pasquale Imperatore received the Laurea degree (cum 
laude) in electronic engineering and the PhD degree 
in electronic and telecommunication engineering, both 
from the University of Naples Federico II, Italy. Current-
ly he is a research fellow at the Institute of Electromag-
netic Environmental Sensing (IREA), Italian National 
Research Council (CNR), Naples, Italy. His research 

interests include microwave remote sensing and electromagnetics, with 
emphasis on scattering in random layered media, perturbation methods, 
SAR data modeling and processing, SAR interferometry, parallel comput-
ing, radio localization, as well as electromagnetic propagation modeling, 
simulation, and channel measurement. Dr. Imperatore is an IEEE member 
and is a member of InTech’s Editorial Advisory Board. He acts as a review-
er for several peer-reviewed journals. 

Antonio Pepe received the Laurea degree in electron-
ic engineering and the PhD degree in electronic and 
telecommunication engineering from the University 
of Napoli Federico II, Napoli, Italy, in 2000 and 2007, 
respectively. In 2001, he joined the IREA-CNR where 
he is a permanent researcher. He was a visiting scientist 
at the University of Texas in 2005, the JPL in 2009, and 

the ECNU, Shanghai, in 2014 and 2015. Since 2012, he has been an adjunct 
professor of Signal Theory at the University of Basilicataa. He was the 
recipient of the 2014 Best Reviewer mention of the IEEE Geoscience and 
Remote Sensing Letters. His research interests include the development 
of advanced InSAR algorithms with a particular interest toward phase 
unwrapping problems.





Contents

Preface XI

Chapter 1 Geomatics Applications to Contemporary Social and
Environmental Problems in Mexico   1
Jose Luis Silván-Cárdenas, Rodrigo Tapia-McClung, Camilo Caudillo-
Cos, Pablo López-Ramírez, Oscar Sanchez-Sórdia and Daniela
Moctezuma-Ochoa

Chapter 2 Effect of Sampling Density on Estimation of Regional Soil
Organic Carbon Stock for Rural Soils in Taiwan   35
Chun-Chih Tsui, Xiao-Nan Liu, Horng-Yuh Guo and Zueng-Sang
Chen

Chapter 3 Monitoring of the 2008 Chaitén Eruption Cloud Using MODIS
Data and its Impacts   57
Yuanzhi Zhang, Jin Yeu Tsou, Zhaojun Huang, Jinrong Hu and Wyss
W.-S. Yim

Chapter 4 Increasing the Adaptive Capacity of Indigenous People to
Environmental Change: The Potential Use of an Innovative,
Web-Based, Collaborative-Geomatics Informatics Tool to
Reduce the Degree of Exposure of First Nations Cree to
Hazardous Travel Routes   75
Christine D. Barbeau, Donald Cowan and Leonard J.S. Tsuji

Chapter 5 Estimation and Uncertainty Assessment of Surface
Microclimate Indicators at Local Scale Using Airborne Infrared
Thermography and Multispectral Imagery   99
Serge Olivier Kotchi, Nathalie Barrette, Alain A. Viau, Jae-Dong
Jang, Valéry Gond and Mir Abolfazl Mostafavi

Chapter 6 Participatory Mapping to Disrupt Unjust Urban
Trajectories in Lima   143
Rita Lambert and Adriana Allen



Chapter 7 Satellite SAR Interferometry for Earth’s Crust Deformation
Monitoring and Geological Phenomena Analysis   167
Giuseppe Solaro, Pasquale Imperatore and Antonio Pepe

Chapter 8 Collaborative Uses of Geospatial Technology to Support
Climate Change Adaptation in Indigenous Communities of the
Circumpolar North   197
Megan Sheremata, Leonard J.S. Tsuji and William A. Gough

Chapter 9 GIS Applications in Agronomy   217
Suarau O. Oshunsanya and OrevaOghene Aliku

Chapter 10 3D GIS Modeling of Soft Geo-Objects: Taking Rainfall, Overland
Flow, and Soil Erosion as an Example   235
Dayong Shen, Kaoru Takara and Yuling Liu

VI Contents



Chapter 7 Satellite SAR Interferometry for Earth’s Crust Deformation
Monitoring and Geological Phenomena Analysis   167
Giuseppe Solaro, Pasquale Imperatore and Antonio Pepe

Chapter 8 Collaborative Uses of Geospatial Technology to Support
Climate Change Adaptation in Indigenous Communities of the
Circumpolar North   197
Megan Sheremata, Leonard J.S. Tsuji and William A. Gough

Chapter 9 GIS Applications in Agronomy   217
Suarau O. Oshunsanya and OrevaOghene Aliku

Chapter 10 3D GIS Modeling of Soft Geo-Objects: Taking Rainfall, Overland
Flow, and Soil Erosion as an Example   235
Dayong Shen, Kaoru Takara and Yuling Liu

ContentsVI

Preface

The world we live in is subject to global environmental change, natural hazards, growth of human pop‐
ulation, and increasing urbanization, with significant impacts on social community and Earth’s ecosys‐
tems, thus posing great challenges for the scientific community. Nowadays, Earth observation
information is acquired at increasingly finer (spatial, temporal, and spectral) scales, thus continuously
providing a significant amount of geospatial data to be processed and utilized. Within this context, the
pervasive relevance of geospatial information and the development of emerging geospatial technologies
offer new opportunity for bridging the gap between remote sensing scientific know-how and end users
of products and services.

Geospatial technology (also referred to as geomatics or geomatics engineering) comprises tools and
techniques dealing with the use of spatially referenced information, for the description and modeling of
spatial and dynamic phenomena related to the Earth’s environment. Therefore, geospatial technology is
an emerging area of research arising from the convergence and integration of different tools and techni‐
ques used for the acquisition and analysis of geospatial data in various research fields (including remote
sensing, geographic information systems (GIS), geo-informatics, navigation systems, geography, statis‐
tics, geophysics, and environmental science).

According to the development of integrated approaches and tools, a variety of location-specific data
types derived from multiple sources (e.g. radar and optical sensors, GPS, wireless networks, etc.) can
profitably be used, for instance, in decision making, problem solving, and collaboration in the areas of
emergency and sustainable management of environmental resources, with important implications both
on regional and global development.

This book addresses environmental and social applications of geospatial technologies, thus also provid‐
ing a multidisciplinary perspective on emerging geospatial techniques and tools. It consists of ten chap‐
ters offering insight into geospatial technology progress and trends. Authors present several
application-oriented studies from various parts of the world, including applications in collaborative ge‐
omatics, geospatial statistics, GIS, agriculture, and natural hazard monitoring.

Dr. Pasquale Imperatore
Institute of Electromagnetic Environmental Sensing (IREA),

Italian National Research Council (CNR),
Naples, Italy

Dr. Antonio Pepe
Institute for Electromagnetic Sensing of the Environment (IREA),

Italian National Research Council (CNR),
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Chapter 1

Geomatics Applications to Contemporary Social and
Environmental Problems in Mexico

Jose Luis Silván-Cárdenas, Rodrigo Tapia-McClung,
Camilo Caudillo-Cos, Pablo López-Ramírez,
Oscar Sanchez-Sórdia and
Daniela Moctezuma-Ochoa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64355

Abstract

Trends in geospatial technologies have led to the development of new powerful analysis
and  representation  techniques  that  involve  processing  of  massive  datasets,  some
unstructured, some acquired from ubiquitous sources, and some others from remotely
located sensors of different kinds, all of which complement the structured information
produced on a regular basis by governmental and international agencies. In this chapter,
we provide both an extensive revision of such techniques and an insight of the applica‐
tions of some of these techniques in various study cases in Mexico for various scales of
analysis: from regional migration flows of highly qualified people at the country level
and the spatio-temporal analysis of unstructured information in geotagged tweets for
sentiment assessment, to more local applications of participatory cartography for policy
definitions jointly between local authorities and citizens, and an automated method for
three dimensional (3D) modelling and visualisation of forest inventorying with laser
scanner technology.

Keywords: crowdsourcing, airborne laser scanner, crime analysis, migration, volun‐
teered geographic information

1. Introduction

The term geomatics was originally conceived by Michel Paradis, a French-Canadian survey‐
or,  as the discipline of  gathering,  storing,  processing and delivering spatially referenced

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



information [1]; as such, geomatics has been tied to the development of geospatial technology
since its birth. The Encyclopaedia of Geographic Information Science by Karen Kemp defines
geomatics as the ‘science of building efficient Earth related data production workflow’ [2].
According to this definition, the discipline of geomatics ‘truly highlights the necessary shift
from a technology-oriented silo approach to a data-flow-oriented system approach geared
toward a result in a given context’ [2]. It is the result-oriented mode that stresses the need for a
transdisciplinary approach, which has been adopted by researchers at the Geography and
Geomatics Research Centre in Mexico (CentroGeo).

As the technology evolves, the research field of geomatics has to necessarily expand along its
entire workflow, from data acquisition to geospatial information dissemination. For instance,
the georeferencing capability of mobile devices and their extensive use in social networking
are producing unprecedented amounts of information that can be of high relevance for many
important topics such as security, marketing, mental health, disaster management, etc.
Consequently, social media analysis is becoming a very important research topic within
geomatics and its related fields.

In Section 2, we provide a brief review of major steps within the geomatics approach, from
data acquisition processes and processing techniques to the analysis and visualisation methods
used for information extraction and representation. Then, in Section 3 we provide illustrative
examples of applied geomatics research to contemporary social and environmental problems
in Mexico. Section 4 ends this chapter by providing some concluding remarks.

2. The geomatics approach

In this section, we discuss the general steps involved in addressing social or environmental
issues from geomatics. The goal is to make a general review of data acquisition, processing,
analysis, visualisation and interpretation, providing examples from different fields such as
remote sensing, crime analysis or social media.

2.1. Data acquisition processes

2.1.1. Remote sensing

Since Gaspard-Félix Tournachon took the first aerial photograph in 1858 from a tethered
balloon over Paris, the interest for observing the Earth from afar has grown to the point that
cameras are put on board of any sort of flying devices including kites, balloons, airplanes,
rockets, satellites, spatial stations and unmanned aerial vehicles (drones). Indeed, aerial
photography has been the most common, versatile and economical form of remote sensing,
but other types of sensors besides cameras have also been developed [3].

In this sense, remote sensing is a continuously evolving field that is devoted to the design and
development of new and effective techniques for data acquisition of the Earth’s surface from
remote locations, typically from space and aircrafts. All these techniques share a common
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principle: to record the energy, typically the electromagnetic radiation, that has interacted with
the Earth’s surface in order to retrieve some information about it.

The range of frequencies (or wavelengths) of the electromagnetic radiation that the sensor is
sensitive to is of prime importance because it determines which materials can be detected. It
also influences whether to use the natural illumination of the sun or to use an artificial energy
source. Sensors are active or passive depending on whether they include an artificial source
of energy or not. Thus, for instance, infrared and thermal cameras are considered passive
sensors because they sense the reflected near-infrared light and the emitted thermal infrared
from hot bodies, respectively, whereas radar and lidar systems are considered active sensors
because they send microwave and laser beams, respectively, and detect the backscattered
energy.

The ability to measure quantities of radiant energy (radiance/reflectance, emittance, backscat‐
tering, etc.) would have not been as useful as it is, except because the sensors are coupled with
global positioning systems (GPSs) and inertial measuring units (IMUs) for measuring location
and orientation, thus enabling the production of digital representations of surface features that
can be integrated into geodatabases.

Furthermore, a substantial body of knowledge from related fields, such as radiative transfer
theory, imaging spectroscopy, image/signal processing and computer vision, has been
advanced that allows deriving ready-to-use information in the form of data layers that can be
overlaid within a geographic information system (GIS). These layers include vegetation
indices, digital elevation models, surface temperature, soil moisture, rainfall, snow cover, night
light, impervious surface, mineral abundance and land-cover types, to name just a few. These
surface features are specified by the various resolutions and dynamic ranges of the sensor
(spatial, temporal, spectral and radiometric). The former refers to the smallest spatial, tempo‐
ral, spectral and radiometric difference, which the sensor can resolve, whereas the latter refers
to the largest differences that can be resolved. Hence, depending on the resolution/dynamic-
range characteristics of sensors, they have distinct uses.

2.1.2. In situ data collection

In situ data collection refers to the collection of georeferenced data (mainly points and areas)
measured on the ground for a number of reasons, such as validating cartographic or remotely-
sensed products, producing data layers, model calibration and/or validation, or simply gaining
some understanding of the study area, amongst other reasons.

Regarding the methods for in situ data collection, one can guess that there are as many as the
fields involved. One fundamental question to answer before anything is done is: What do we
need to know from the ground? Then, we can decide the variables to be measured, the sampling
scheme and personnel and instrumentation needed. Among the many decisions to make is
whether to perform a random or systematic sampling; whilst the former is preferred for
accuracy assessment purposes, the latter is desirable for spatial analysis, for example, spatial
interpolation.

Geomatics Applications to Contemporary Social and Environmental Problems in Mexico
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Today, there is a growing number of affordable digital technologies that enable the collection
and real-time analysis of georeferenced field data. Not only is the increase in performance,
resolution and portability of measuring devices but also the functionality that enables on-site
analysis and visualisation that is making the in situ data collection more efficient with reduced
uncertainty [4]. Laser-based technology (e.g. range finders, dendrometers, terrain profilers,
terrestrial laser scanners, etc.) has enabled the measurement of inaccessible locations and
generation of coloured point clouds that capture the three dimensional (3D) structure of the
sampled site. On the other hand, modern communication protocols, mobile device network
coverage and cloud storage capabilities are also facilitating field data management and sharing
in unprecedented ways.

2.1.3. Crowdsourcing

The ubiquitous use of mobile devices and Internet access has fostered the ability of citizens to
collect their own data for varied purposes. Many apps and platforms have been developed
that allow citizens to collect data. GeoKey is a backend platform that allows the creation of
customised projects [5]. One still needs to programme a frontend, but it is quite versatile in the
types of data it can handle. GeoCitizen is a platform developed for community-based spatial
planning. Its goal is to provide means and information for citizens to access data and get
involved in every step of the planning process [6]. Ushahidi is a well-known platform used for
crisis mapping [7]. It gained momentum during and after the massive earthquake that hit Haiti
in 2010 [8]. OpenTreeMap allows users to collaborate in creating a massive inventory of trees
that are useful for ecosystem management and urban forestry [9]. iNaturalist focuses on users
collecting data about observations of the natural world [10]. Waze has also become a very
common platform that allows real-time communication with other users reporting traffic
conditions whilst driving [11]. NoiseTube has also been used for participatory noise pollution
mapping and monitoring [12].

Without necessarily challenging the existence of official records, it is increasingly common to
compare what the official figures tell with what the citizenry observes and experiences on its
everyday life.

Crowdsourcing and volunteered geographic information (VGI) are two terms that have been
more pervasive in the academic literature. But what, if any, is the difference between them?
Crowdsourcing can be found in many different topics, not just geographical information and
‘implies a coordinated bottom-up grassroots effort to contribute information’ [13]. For some,
VGI represents an ‘unprecedented shift in the content, characteristics, and modes of geo‐
graphic information, creation, sharing, dissemination and use’ [14]. Others, such as Harvey,
propose that not all crowdsourced data are volunteer data. He suggests making a distinction
when data are collected with an ‘opt-in’ or an ‘opt-out’ agreement [15].

Nonetheless, both ideas—crowdsourcing and VGI—rely on data being contributed by many
users. In a sense, they are strong advocates of the ‘wisdom of the crowds’ and collective
intelligence: the idea of whether a product created collectively is better than the best individual
product [16, 17].

Geospatial Technology - Environmental and Social Applications4
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The deluge of mobile apps makes it possible to crowdsource data practically anywhere. In
Mexico, however, strong biases can be introduced with this form of data collection, as it may
be far more popular in urban settings with the added issue that not all regions in the country
have the same mobile network coverage [18].

2.2. Processing techniques

Data-processing techniques refer to techniques for data preparation prior to any information
extraction. These techniques include data reformatting, cleaning, rectification, denoising,
enhancement, etc. Although a thorough review of such techniques is beyond the scope of this
chapter, it is worth noting that most techniques that operate in raster formats come from the
digital image-processing field, where theoretical developments have been around filtering
techniques in both the space and frequency domains. Additionally, techniques such as
principal components analysis (PCA) and minimum noise fraction (MNF) are applied as
spectral transformations of multispectral and hyperspectral images, whilst some spatial,
multiscale representations, for example, wavelets, are used for image denoising or spatial
enhancement (pansharpening).

In fields such as crowdsourcing or social media analysis, the preprocessing can be even more
important (since there is no adequate way to calibrate the ‘instruments’ used to acquire data),
but, opposed to remote sensing, there is no sound theoretical framework from where to draw
techniques. This situation requires, in the best case, the use of some form of ground truthing
to discard spurious data. Wherever reliable data are not available, the researcher must resort
to his/her domain knowledge or heuristic algorithms to preprocess the data.

2.3. Analysis and interpretation

The increasing production of spatial data from both official and non-official sources and with
unstructured formats has placed a larger complexity in its management and analysis. On the
one side, information granularity has incremented both spatially and temporally, thus making
it necessary to develop analytical tools that simultaneously take into account space and time
for decision-making. On the other side, the great diversity of sources of information that share
the spatial component has triggered the efforts for interoperability, which implies the possi‐
bility of combining multidimensional information that can provide potential knowledge. In
this section, we describe some of the most pervasive methods of analysis used by geospatial
technologies.

2.3.1. Cluster analysis

Generally speaking, cluster analysis refers to the process of grouping objects into classes by
some measure of similarity. These objects can be either abstract, as the companies in the stock
market, or physical as the states within a country. The similarity measures used on cluster
analysis depend on the kind of objects and the characteristics being analysed. If the interest is
in grouping earthquake occurrences, then the Euclidian distance is a reasonable similarity
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measure, but if we are grouping counties around some measurement of its economic
performance, the Mahalanobis metric could be a reasonable choice.

Cluster analysis has been successfully used in many applications: market research uses
segmentation to target products; in biology, it is used for taxonomy and DNA sequencing; in
image recognition, it is used in image segmentation.

Certainly, cluster analysis is not new within the field of geographic data analysis; ISODATA
has been in use for over 40 years in multispectral image classification [19]; the famous John
Snow map of the cholera outbreak in London is also a case of cluster analysis, and the concept
of regionalisation, when approached from a spatial analysis perspective, can be interpreted as
a case of geographically constrained clustering, that is, clusters in which observations are
grouped together by their similarity in the feature space but restricted to their neighbourhood
relations in the geographical space [20].

Recently, the increase in the quantity of data collected every day from a great number of
disparate sources has stemmed a new interest in the techniques derived from cluster analysis.
One of the reasons of this recent interest lies in the flexibility of the similarity measures that
can be used. This is especially important when working with what has been labelled as
unmodelled data, that is, data that are not structured for analysis, such as natural language.
This kind of information has become more frequent as technologies such as social media and
the pervasiveness of sensors are becoming commonplace.

Although there are cluster analysis techniques that clearly come from the statistical modelling
tradition, such as the work of Kulldorf on epidemics or ISODATA [21], the recent increase in
clustering methods comes from the algorithmic culture. Applications such as handwritten
recognition or image segmenting make extensive use of clustering methods from the algorith‐
mic culture [22–25].

In the field of geographic data analysis, there are also some important developments. In
particular, the field of geographic knowledge discovery (GKD) is gaining recognition as is
evident from the amount of conferences and special issues devoted to the topic ([26, 27],
amongst others).

On the subject of cluster analysis as a mean for extracting geographic knowledge from
unmodelled data, there have been some interesting recent developments. Frias-Martinez et al.
proposed a technique for extracting land-use information from geolocated Twitter feed and
used spectral clustering for the extraction of regular activity zones [28]. Lee et al. used k-means
clustering to detect unusual crowds also using geolocated tweets. These works rely solely on
the spatio-temporal properties of the data, which is interesting because the techniques
developed could be easily translated to work with different datasets, such as mobile telephone
records [29].

There are also some interesting examples that combine the spatio-temporal properties with
the semantic content of the messages. Amongst these, we find the work of Gabrielli et al. who
deduced trajectories from the geolocated Twitter feed and enriched these trajectories with
semantic information from the users (e.g. whether the user is a tourist) and the surroundings
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(the types of venues located around the user at a given moment) [30]. Also, the works of
Boetcher and Lee or Kim et al. present techniques for the detection of local clusters of activity
around specific topics of interest [31, 32].

This development in the GKD field, from an academic perspective, has happened in parallel
with the development of the data-mining field in the application-driven environment of start-
ups and technology corporations. Currently, as the academic field matures, it is beginning to
catch up with the technology side developed in the commercial world. The shift of focus
towards real-time analysis [33] stresses the need to not only develop better algorithms but also
develop them on top of a technological stack that allows the scaling up needed to solve the
problems associated with real- or near-real-time analysis.

In the GIS field, the recent development of the CyberGIS paradigm attempts to build a bridge
between traditional GIS and new advances on distributed data stores, parallel computing and
collaborative workflows [34–36]. Research on the parallelisation of k-means and the application
of the map-reduce programming paradigm to cluster analysis in general are examples of the
direction of technology research within the field of cluster analysis in a GKD framework [37,
38].

2.3.2. Network analysis

Network analysis in the geospatial community generally refers to analysis techniques associ‐
ated with the optimisation of transportation routes. In this section, we investigate techniques
that originated in the field of graph theory to analyse social networks, applied to geographical
phenomena—particularly, migration flows.

Migration between metropolitan areas can be conceived as a weighted graph in which nodes
(n) are the cities and the edges (m) are the flows between them. In transport analysis literature,
there are several techniques to deal with networks; one of the most frequently cited is the nodal
region approach [39]. This method is used for quantifying the degree of association between
pairs of cities in a way that allows the identification of the strongest association of the network.
The result is a graph with a maximum of (n − 1) edges. Further modifications were introduced
by Graizbord [40] and Suárez and Delgado [41] in order to provide more flexibility in the
hierarchy of the nodes and the size of the filtered graph, as well as some restrictions in the
definition of salient flows, such as the comparison from a gravitational model or previous data
on migration flows.

Bender-deMoll mentions in his network analysis and mapping report that characterisation of
flows of goods and people is a classic field of application of social network [42]. Networks are
used to represent flow patterns between sets of entities and constitute a useful analysis of
movement structures. Results of some studies on trade flows have shown to provide more
knowledge and have helped predict global resources flow between countries. By analysing
data on both forced and voluntary migrations, a strong correlation has been found between
the geography and the relationships shown by aggregate flows. In the same way, these flows
reflect the social links of migrants, that is, they usually move to places where relatives and/or
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friends are located, or to places that information networks have detected to be viable for
development.

One way to characterise flows is to detect communities, an exercise similar to cluster analysis.
With a binary network, this type of analysis can only be performed if the difference between
the number of edges (m) and nodes (n) is not too large. If m >> n, edge distribution is so
homogeneous that communities do not make any sense. However, community detection is
possible if the network is weighted and weights have a heterogeneous distribution [43].

The community detection problem requires partitioning a network in groups of densely
connected nodes, where nodes belonging to different communities have disperse links. The
quality of resulting partitions is usually measured with the so-called modularity of the
partition. The modularity of a partition (Q) is a scalar value between −1 and 1 that measures
the density of links inside communities as compared to links between communities. In the
particular case of weighted networks,
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where Aij represents the weight of the edge between i and j, ki = ΣjAij is the sum of the weights
of the edges attached to node i, ci is the community to which node i is assigned, δ(cicj) equals
1 if ci and cj are in the same community and 0 otherwise, and m = 1

2 ∑ij Aij.

The Louvain method to optimise the modularity function finds high modularity partitions on
large networks in short time and unfolds complete hierarchical community structures for the
network. In the final solution, the output partition contains communities of the most densely
linked nodes [44].

2.4. Visualisation and interpretation

Starting around the mid-1990s, geovisualisation—the use of visual representations in order to
employ vision to solve spatial problems—entered the GIScience arena. MacEachren et al.
provided tools for dynamic exploration of data to help discover relationships and patterns by
means of exploratory spatial data analysis (ESDA) [45]. At the turn of the century, the term
geovisual analytics started to be heard. It deals with analytical reasoning and decision-making
whilst using interactive visual interfaces (e.g. maps and other graphic representations) linked
to computational methods and the human capacity of knowledge construction and represen‐
tation [46]. This section presents some of the most popular visual analytics techniques.

2.4.1. Kernel density

One of the most commonly used hotspot detection methods is kernel density estimation. Its
advantages reside in the simple interpretation and its availability in almost any geographical
information system [47]. One of this method’s weaknesses is the need to accumulate observa‐
tions in a wide temporal window and unfortunately, as many other hotspot detection methods,
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it treats spatial and temporal aspects as separate entities, thus ignoring the spatio-temporal
interactions.

2.4.2. Knox’s index

Halfway through the twentieth century, Knox proposed a statistical test to detect epidemics
[48]. Essentially, it was a statistical independence test for contingency tables classifying
individual events that were registered by their location close in time and space. A more robust
implementation goes beyond the simple independence test, testing for randomness of the
spatial pattern [49]. The null hypothesis is as follows: the occurrence of an event is randomly
distributed between the locations. That is, distances in time between pairs of observations are
independent to the distances in space. The statistics is as follows:
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Figure 1. Space-time interaction graph representation and simplification of larceny theft cases in 2009 in Mexico City.

The randomisation technique for the assessment of space-time significance consists on
shuffling the temporal distances between cases or events whilst holding the spatial distances
constant, and compare the observed and the expected values from Monte Carlo simulations.
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The Knox test was originally designed to account for latency periods: time between exposure
and the manifestation of symptoms [49].

The added value given to Knox’s index by means of a graphic output was to characterise the
graph with some simple metrics from network analysis. The only transformation performed
on the graph was to invert the role of nodes and edges. The degree of each node and the size
of each connected component are useful for detecting significant spatio-temporal events
through graph pruning. Figure 1 illustrates how the application of this index metrics is useful
for detecting critical areas in order to design police operations that would align different
material and human resources (surveillance cameras, street policemen, police cars, etc.).

2.4.3. Heat maps

Originally designed for displaying financial information that would allow stockbrokers to
detect anomalistic behaviours, heat maps were patented, trademarked and made their way
into geographical data. Heat maps have been associated to choropleth maps and have become
very useful to represent point, line or area density data. Heat maps are also known as density
surfaces. They are useful for identifying those areas of a map that have high-density counts
within a spatial context [50].

It is probable that after Google released the ability to include heat maps as separate layers using
the Maps Javascript API in 2012, the use of heat maps for geospatial data experienced a boom
[51]. Since then, many more options have become available.

2.4.4. Flows representation

One of the most often used representations of entities moving between geographical locations
is a flow map, in which locations are represented as lines or arrows with their width propor‐
tional to the flow magnitudes.

The origin-destination (OD) matrix is an alternative non-geographic visualisation of this kind
of data; the magnitudes are represented by the cell colours in a heat map with the rows
corresponding to the origins and the columns with the destinations.

A kriskogram is created using a two-step procedure. Firstly, all related geographical units are
projected as a set of evenly spaced dots on a straight line called the location line. The order of
locations can be arranged using geographical criteria such as the overall orientation of the
spatial units, or demographic criteria, such as gross migration or population. In the second
step, the migration flow between two places is represented as a half-circle drawn from the
origin to the destination in a clockwise direction with the circle’s centre located on the middle
point between the two corresponding dots on the location line [52].

Flowstrates is an interactive visualisation approach in which the origins and destinations are
displayed in two separate maps, and the changes over time of the flow magnitudes are
represented in a separate heat map view in the middle [53].

Figure 2 shows examples of the three types of visualisations mentioned in the text. It is evident
the kriskogram has two disadvantages: firstly, it loses all spatial reference and secondly it is

Geospatial Technology - Environmental and Social Applications10



The Knox test was originally designed to account for latency periods: time between exposure
and the manifestation of symptoms [49].

The added value given to Knox’s index by means of a graphic output was to characterise the
graph with some simple metrics from network analysis. The only transformation performed
on the graph was to invert the role of nodes and edges. The degree of each node and the size
of each connected component are useful for detecting significant spatio-temporal events
through graph pruning. Figure 1 illustrates how the application of this index metrics is useful
for detecting critical areas in order to design police operations that would align different
material and human resources (surveillance cameras, street policemen, police cars, etc.).

2.4.3. Heat maps

Originally designed for displaying financial information that would allow stockbrokers to
detect anomalistic behaviours, heat maps were patented, trademarked and made their way
into geographical data. Heat maps have been associated to choropleth maps and have become
very useful to represent point, line or area density data. Heat maps are also known as density
surfaces. They are useful for identifying those areas of a map that have high-density counts
within a spatial context [50].

It is probable that after Google released the ability to include heat maps as separate layers using
the Maps Javascript API in 2012, the use of heat maps for geospatial data experienced a boom
[51]. Since then, many more options have become available.

2.4.4. Flows representation

One of the most often used representations of entities moving between geographical locations
is a flow map, in which locations are represented as lines or arrows with their width propor‐
tional to the flow magnitudes.

The origin-destination (OD) matrix is an alternative non-geographic visualisation of this kind
of data; the magnitudes are represented by the cell colours in a heat map with the rows
corresponding to the origins and the columns with the destinations.

A kriskogram is created using a two-step procedure. Firstly, all related geographical units are
projected as a set of evenly spaced dots on a straight line called the location line. The order of
locations can be arranged using geographical criteria such as the overall orientation of the
spatial units, or demographic criteria, such as gross migration or population. In the second
step, the migration flow between two places is represented as a half-circle drawn from the
origin to the destination in a clockwise direction with the circle’s centre located on the middle
point between the two corresponding dots on the location line [52].

Flowstrates is an interactive visualisation approach in which the origins and destinations are
displayed in two separate maps, and the changes over time of the flow magnitudes are
represented in a separate heat map view in the middle [53].

Figure 2 shows examples of the three types of visualisations mentioned in the text. It is evident
the kriskogram has two disadvantages: firstly, it loses all spatial reference and secondly it is

Geospatial Technology - Environmental and Social Applications10

impossible to identify the direction of the flow. It facilitates, however, the identification of
magnitudes. Heat maps have certain strengths when the network disperses, with few flows.
As the network becomes denser, reading it becomes more complex. The method by Boyandin
et al. is very interesting since it proposes an interactive exploration tool [53]. Incorporating the
heat map allows the identification of trends in migratory flows between pairs of places and
avoids information redundancy present in matrix representations by transforming an array of
data into one of minimal information in which each flow occupies one row in the heat map.
One inconvenience is that as more regions are selected as origins or destinations, the length of
the array can grow substantially.

Figure 2. Flow visualisations comparison. Adapted from [52–54].

For our case studies, kriskograms were ruled out because they lose all spatial references.
However, we use arcs that avoid overlapping flows. We move away from heat maps in their
traditional matrix form and instead use a heat map layer on top of a geographical base.
Flowstrates’ potential lies in the explicit incorporation of temporal trends. Unfortunately in
our case, we lack time series to profit from this representation.

2.4.5. 3D modelling

The development of 3D modelling can be traced back to the 1970s, when efforts of several
industries in developing computer-aided design software started. Today, 3D modelling
techniques have become an indispensable tool for inventorying and visualisation of objects
through digital platforms, but also for producing models with 3D printing devices.
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There are several ways for producing 3D scenes. Traditionally, 3D models have been generated
manually and algorithmically, especially in the realm of industrial and architectural design.
Commercial 3D GIS software, such as ESRI’s ArcScene and City Engine, can convert two-
dimensional (2D) features into 3D features by applying an extrusion operation (Figure 3) and
provide extensive libraries of 3D models of vegetation and urban infrastructure [55, 56].
Alternatively, models of actual vegetation and buildings can be generated through remote
sensing and computer vision techniques.

Figure 3. Extruded building footprint from a 2D database.

With the development of laser scanners and advances in photogrammetric techniques, the
interest of 3D modelling in the geospatial industry and science has shifted towards the
development of new automated or semiautomatic methods for generating photorealistic
scenes of the landscape. Close-range data acquisition, such as terrestrial laser scanners (TLSs)
and multiple oblique photographs taken with drones, allows the detailed reconstruction of
buildings and trees, whereas large-scale projects require the integration of airborne laser
scanners (ALSs), aerial photography and satellite-based data acquisitions.

Tree reconstruction and modelling from ALS data have been developed using the voxel
approach [36], simple geometrical models such as paraboloids and ellipsoids [57], wrapped
surfaces derived by radial basis functions and isosurfaces [58], whereas detailed modelling of
trees has been carried out using mobile laser scanners (MLSs), where tree trunk and branches
are detected and reconstructed [59]. Buildings are also reconstructed from both laser scanner
data [60] and photogrammetric techniques using multiple oblique photographs [61]. These
methods are, however, not fully integrated within the 3D GIS platforms but rather are
components of remote sensing and photogrammetric-processing systems.

There has also been an increasing demand to use 3D models in virtual reality (VR) and
augmented reality (AR) environments, in which virtual and immersive scenes are generated
in real time for several applications such as education, training, manufacturing, remote
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operations, entertainment, collaborative work, and so on. The key idea is the interaction of
humans with 3D models (in place of real objects) that are immersed in a background scene and
may include ambient stimuli. Although VR and AR have evolved separately, efforts have been
made to integrate these techniques with 3D GIS [62].

The adoption of these technologies has been proved successfully for urban planning, cadastral
information updating and for archaeological cultural heritage documentation and visualisa‐
tion.

2.4.6. Space-time data representations

In the early stages of geographic information sciences, most analyses and representations were
focused on static data and models. This is, as Goodchild argues, a consequence of the close
relationship that existed within digital data and hard-copy maps [63]. The former was
produced by a digitisation of the latter, which implies that digital data had to accommodate
to the lengthy and costly procedure of updating, for example, the general topographic maps.

As the field and its associated technology evolved, we have seen an ever-increasing amount
of spatio-temporal information gathered: satellite images, GPS traces, climate data, etc. In order
to make sense of these data and to fully realise its potential in helping unveil the dynamics of
the processes that produce the ‘static’ patterns observed, we need better tools to digitally
represent and analyse spatio-temporal data.

In terms of the digital representation of spatio-temporal data, the early work of Langram and
Chrisman on spatio-temporal topology clearly represents a departing point for the evolution
of the field [64]. From a theoretical perspective, the work of Hagerstrand on spatial diffusion
and space-time geography represents an equally important starting point for space-time
modelling from a spatial analysis perspective [65, 66].

Although the field has seen great advances from these early examples, the main issues
involving the establishment of the temporal dimension in the GIS field were already present:
geographical models need to be explicitly temporal (as Hagerstrand’s innovation diffusion
[65]), the need of theoretical foundations that explain the way in which the modelled subjects
interact in space and time (when studying human populations, this lies within space-time
geography, but when we deal with different problems, e.g. ecology, the theories will certainly
arise from different fields), and, finally, the need for data structures that allow storing and
processing spatio-temporal data in ways that are meaningful to the problems at hand.

3. Case studies

This section presents examples drawn from the experience of the authors working in social
and environmental issues, which will help clarify the concepts exposed in the previous
sections. Although not always explicit, all of the examples presented here include the steps of
data processing, analysis and visualisation as well as results interpretation. The intent is not
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to provide a complete explanation of each example but to provide a general application context
to complement the general approach presented in the previous sections.

3.1. Social media analysis of subjective well-being

A proposed technique for global polarity classification in short texts, specifically Twitter, is
described. The main objective was to obtain a map of subjective well-being for conterminous
Mexico; this map will allow us to see the differences in regional perceptions about general
well-being. Although this kind of maps can be obtained by traditional methods, such as polls,
it is important to note that the amount of resources, human and economic, involved in such
exercises, makes it impossible to measure well-being on finer spatio-temporal resolutions. On
the other hand, validating a methodology based on social media analysis allows us a very fine-
grain analysis, certainly, losing some of the robustness obtained with traditional polling.

For this, we classified the polarity (or sentiment) for each short text (in this case, a tweet).
Sentiment analysis is one of the most important tasks in text mining. Nevertheless, this kind
of analysis has several challenges related to the complexity of human language, that is,
multitude of styles, informal writing, language mixing, short contexts, orthographic and
grammatical errors, an always-growing vocabulary, etc. The sentiment classification attempts
to determine if one document has a positive, negative or neutral opinion or any level of them
(e.g. positive+, negative+, etc.). Determining whether a text document has a positive or a
negative opinion is becoming an essential tool for both public and private companies [67]. This
tool is useful in knowing ‘what people think’, which can be important information to help in
any decision-making process (for governments, marketing companies, etc.) [68].

3.1.1. Related work

Nowadays, several methods have been proposed in the community of opinion mining and
sentiment analysis. Most of these works employ Twitter as a principal input of data and they
aim at classifying entire documents as overall positive- or negative-polarity levels (sentiment).
Such is the work presented by da Silva et al., which proposes an approach to classify sentiment
of tweets by using classifier ensembles and lexicons; tweets are classified as positive or
negative. As a result, it is concluded that classifier ensembles formed by several and diverse
components are promising for tweet sentiment classification [69]. Moreover, several state-of-
the-art techniques were compared in four databases. The best accuracy result reported was
around 75%.

Another method for sentiment extraction and classification of unstructured text is proposed
by Shahbaz et al. who used five classes: strongly positive, positive, neutral, negative and
strongly negative [70]. The proposed solution combines techniques of natural language
processing (NLP) at sentence level and algorithms of opinion mining. The accuracy result was
61% for five levels and 75% by reducing to three levels (positive, negative and neutral).

An approach of multi-label sentiment classification was proposed by Liu et al., which has three
main components: text segmentation, feature extraction and multi-label classification [71]. The
features used included raw segmented words and sentiment features based on three sentiment
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main components: text segmentation, feature extraction and multi-label classification [71]. The
features used included raw segmented words and sentiment features based on three sentiment
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dictionaries: DUTSD, NTUSD and HD. Moreover, here, a detailed study of several multi-label
classification methods is conducted, in total, 11 state-of-the-art methods have been considered:
BR, CC, CLR, HOMER, RAkEL, ECC, MLkNN, and RF-PCT, BRkNN, BRkNN-a and BRkNN-
b. These methods were compared in two microblog datasets, and the reported results of all
methods are around 0.50 of F-measure.

In general, most of the analysed works classify the documents mainly in three polarities:
positive, neutral and negative. Moreover, most works analyse social media (mainly Twitter)
documents. In this section, we describe a method to classify sentiment in tweets. The sentiment
of the messages will be classified into three polarity levels: P (positive), neutral and N
(negative). The proposed method is based on several standard techniques such as LDA (Latent
Dirichlet Allocation), LSI (Latent Semantic Indexing), term frequency-inverse document
frequency (TF-IDF) matrix in combination with the well-known SVM (Support Vector
Machine) classifier.

3.1.2. Proposed solution

The overall workflow can be summarised as follows. A preprocessing step is first carried out,
then a pseudo-phonetic transformation is applied and, finally, the q-gram expansion is
generated.

The preprocessing focused on the task of finding a good representation for tweets. Since tweets
are full of slang and misspellings, the tweet text is normalised using procedures such as error
correction, usage of special tags, part of speech (POS) tagging and negation processing. Error
correction consists on reducing words-tokens with invalid duplicate vowels and consonants
to valid-standard Spanish words (ruidoooo → ruido; jajajaaa → ja; jijijji → ja). Error correction
uses an approach based on a Spanish dictionary, a statistical model for common double letters
and heuristic rules for common interjections. In the case of the usage of special tags, twitter's
users (i.e. @user) and URLs, they are removed using regular expressions; in addition, 512
popular emoticons were classified into four classes (P, N, NEU, NONE), which are replaced
by a polarity tag in the text, for example, positive emoticons such as :), :D are replaced by _POS,
and negative emoticons such as :(, :S are replaced by _NEG. Emoticons without any polarity
charge are discarded.

In the POS-tagging step, all words are tagged and lemmatised using the Freeling tool for the
Spanish language stop words are removed, and only content words (nouns, verbs, adjectives
and adverbs), interjections, hashtags and polarity tags are used for data representation [72].
In the negation step, Spanish negation markers are attached to the nearest content word, for
example, ‘no seguir’ is replaced by ‘no_seguir’, ‘no es bueno’ is replaced by ‘no_bueno’, ‘sin
comida’ is replaced by ‘no_comida’; a set of heuristic rules for negations are used in this case.
Finally, all diacritic and punctuation symbols are also removed.

In a second step, and with the purpose of reducing typos and slangs, a semi-phonetic trans‐
formation was applied. Firstly, the following transformations (with precedence from top to
bottom) as shown in Table 1 were carried out.
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In this transformation notation, square brackets do not consume symbols and means for any
valid symbols. The idea is not to produce a pure phonetic transformation as in Soundex-like
algorithms, but try to reduce the number of possible errors in the text. Notice that the last two
transformation rules are partially covered by the statistical modelling used for correcting
words (explained in the preprocessing step). Nonetheless, this pseudo-phonetic transforma‐
tion does not follow the statistical rules of the previous preprocessing step.

cx|xc → x ll → y w → u

qu → k z → s v → b

gue|ge → je h → ∈ ΨΨ → Ψ

gui|gi → ji c[a|o|u] → k ΨΔΨΔ → ΨΔ

sh|ch → x c[e|i] → s

* i denotes the imaginary unit number.

Table 1. List of transformations applied to geotagged tweets.

Finally, along with the bag of words representation (of the normalised text), the four- and five-
gram characters of the normalised text were added. Blank spaces were normalised and taken
into account to the q-gram expansion; so, some q-grams will be over one word. In addition to
these previous steps, several transformations (LSI, LDA and TF-IDF matrix) were conducted
to generate several data models for the testing phase.

3.1.3. Results and analysis

For the experiments, a total of 7218 tweets, with six polarity levels were split into two sets from
the TASS challenge, were used [73]. Firstly, the tweets provided were shuffled and then the
first set, hereafter the training set, was created with the first 6496 tweets (approximately 90%
of the dataset), and the second set, hereafter the validation set, was composed of the rest 722
tweets (approximately 10% of the dataset). The training set was used to fit a Support Vector
Machine (SVM) using a linear kernel with C = 1, weights inversely proportional to the class
frequencies, and using the one-against-rest multiclass strategy. The validation set was used to
select the best classifier using as performance the score F1- or F-measure. This measure
considers both the precision and the recall. The F1-score can be interpreted as a weighted
average of the precision and recall, where an F1-score reaches its best value at 1 and worst at
0.

The first step was to model the data using different transformations, namely Latent Dirichlet
Allocation (LDA) using an online learning proposed by Hoffman in [74], Latent Semantic
Indexing (LSI), and TF-IDF. Figure 4 presents the score F1, in the validation set, of an SVM
using either LSI or LDA with normalised text, different levels of q-gram (4 and 5 g), and the
number of topics is varied from 10 to 500 as well. It is observed that LSI outperformed LDA
in all the configurations tested.
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Figure 4. Performance of the various text transformations tested.

An equivalent performance was also observed when comparing the performance of normal‐
ised text, 4 and 5 g (Figure 4). Given that the implemented LSI depends on the order of the
documents, more experiments are needed to know whether any particular configuration is
statistically better than other. Table 1 complements the information presented in Figure 1.
Table 1 presents the score F1 per polarity and the average (Macro-F1) for different configura‐
tions.

Table 1 is divided into five blocks, the first and second correspond to an SVM with LSI and
TF-IDF, respectively. It is observed that TF-IDF outperformed LSI; within LSI and TF-IDF, it
can be seen that 5 and 4 g got the best performance in LSI and TF-IDF, respectively. The third
row block presents the performance when the features are a direct addition of LSI and TF-IDF;
here, it is observed that the best performance is with 4 g. The fourth row block complements
the previous results by presenting the best performance of LSI and TF-IDF, that is, LSI with
5 g and TF-IDF with 4 g. It is observed that this configuration has the best overall performance
in P+, N, none and average (Macro-F1). Finally, the last row block gives an indication of
whether the phonetic transformation is making any improvement. One major conclusion of
this work is that the phonetic transformation is making a small difference.

As a final contribution, a set of experimental statistics were generated for the National Institute
of Geography and Statistics (or INEGI from its Spanish name), yielding a map of subjective
well-being for conterminous Mexico (Figure 5). This map reflects the importance of geospatial
information, harvested from social media, because it allows us to measure subjective well-
being on finer spatial and temporal resolutions than traditional methods.
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Figure 5. Subjective well-being map of Mexico based on the sentiment analysis of tweet messages.

3.2. Characterisation of migratory flow patterns of highly qualified people in Mexico

Many real systems—social, technological, biological and information—can be described as
networks. We have only found few studies that treat migration from this perspective in the
literature: one focusing on multiscale mobility in the United Kingdom [75], another dealing
with internal migration in the United States [76], a global migration study stressing the flows
between the OECD countries [77] and global flows [78, 79].

This case study treats the characterisation of migration flows of highly qualified human
resources (defined by means of academic achievement—people with undergraduate degrees
and those with graduate degrees—and people in knowledge-intensive occupations) in 59
Mexican metropolitan areas [80]. Data refer to the change of residence in the last 5 years, that
is, recent migration was obtained from the 2010 General Population Census [81]. A common
practice in migration studies is to aggregate data according to the analysis unit. In this case,
starting with the origin-destination matrix, networks are built and then characterised.
Furthermore, the square matrix is transformed into an array of minimum information that
avoids redundancy and also allows for the dynamic exploration of flows between metropolitan
areas.

Even though non-spatial visualisations reveal important properties of networks, it is interest‐
ing to try and shed some light on whether migration flows exhibit behaviour with strong
geographical components.

Figure 6 shows the ‘graduates’ network. This network is partitioned in five communities and
has the highest Q-value (0.66), implying a reasonable quality of the partition. It is worth noting
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that the three largest metropolitan areas belong to different communities. Also, Mexico City
encompasses almost half (23) of the metropolitan areas and its community is spread out
throughout the whole country. By contrast, there is one community that consists of only one
member and another one of only two members, both located in the centre of the country.

Figure 6. Graduates’ migration network. Left: circular layout, showing labels for the 10 largest metropolitan areas; size
is relative to the betweenness centrality parameter of the network. Right: nodes are coloured according to their com‐
munity and the edges according to the source node.

An important characteristic of this study is network visualisation. By means of geographical
visualisation, some network features can be highlighted according to node parameters. It also
allows the identification of special structures in flow patterns.

Given the difficulty to explore flows and contextual elements related to the metropolitan areas,
two separate interactive visualisations were prepared for this case. One uses Tableau Public
and contains the analysis for community and role detection [82]. It also contains contextual
data for each metropolitan area. The second is a geographic visualisation with special filters
and functionality to explore the flows.

Tableau allows seeing the geographical arrangement of communities and the roles each
metropolitan area plays (Figure 4). For the more dense networks—‘undergraduates’ and
‘knowledge-intensive occupations’—there is an evident geographical component: communi‐
ties tend to group regionally. The ‘graduates’ network instead exhibits a much smaller
geographical distance than its functional one. This trend has been verified in other studies of
high-quality human resources migration [83, 84]. It is important to note that concentrated or
disperse functional distances cannot be highlighted using conventional network visualisa‐
tions.

The interactive edges were a custom-made solution using open-source software. The frontend
was built with jQuery [85] and LeafletJS [86]. The intensity of the inward and outward flows
for each metropolitan area is represented with different colours and the number of migrants
with relative widths. This interactive tool allows the comparison between origins and desti‐
nations for the different groups considered. Clicking on a metropolitan area simplifies
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available information in the visualisation by only showing flows corresponding to that
metropolitan area (Figures 7 and 8).

Figure 7. Communities for ‘undergraduate’ and ‘graduate’ migrations.

Figure 8. Flow visualisation for the metropolitan area of Cancun.

3.3. Volunteered geographic information for citizen empowerment

The case study presented in this section is set in a central neighbourhood in Mexico City: The
Roma. The neighbourhood has experienced different stages throughout the years. At the
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beginning of the twentieth century, it was considered to be high-class, rich people settled in
the areas and several businesses experienced a florescence for several years. After a massive
earthquake hit the city in 1985, many fled and the neighbourhood was partially abandoned
for quite some time. Eventually, people who had lost their homes started to settle again in the
neighbourhood, but by then it was not considered to be high class anymore. However, much
of the architecture of the mid-1950s still remains even though many of these buildings have
been occupied or have been used for different purposes other than residential. During the last
decade, a gentrification process has been occurring in the neighbourhood, provoking poor
people to be gradually expelled and richer people coming in. Because of the strong drastic
changes that have occurred in it, the citizenry has started to notice many situations they
consider to be harmful for their local environment. As a reaction, they have organised
themselves and established an effective and fluent communication channel with their local
authorities. After realising that they represent only a small portion of their municipality, they
deemed it reasonable to explore the capabilities that crowdsourcing, VGI and participatory
cartography could provide them.

For this, workshops were set up in order to find out about their needs and ideas. In an iterative
process, the citizen part together with the scientific counterpart from CentroGeo converged
on a list of variables to be collected on the field. This list represented the most pressing issues
they could tackle for the moment and that were expected to be well received by the authorities
in order to act and help ameliorate their situation. A list of six categories with several categories
was agreed. A digital geospatial platform suitable for data collection on the web was set up.
Due to time and budget constraints, it was not possible to provide them with native mobile
apps. This platform consisted of purely free and open-source software: PostgreSQL/PostGIS
[87, 88] for the backend, Bootstrap [89], jQuery and LeafletJS for the frontend and PHP [90] for
the communication between both parts.

Citizens were in charge of data collection and quality assurance. The platform has the possi‐
bility to quickly get an idea about the spatial distribution of issues on the neighbourhood by
means of a typical clustering strategy of collected data points. This is a very useful way for
citizens to get an overall impression of what situations are persistent and, most importantly,
where. Additionally, it is possible to create heat maps on the fly for the selected variables. This
is useful for citizens to explore the possible existence of spatial correlation in the data they
collected for different variables in their neighbourhood (Figure 9).

Overall, the case study was very successful in terms of allowing citizens to get more involved
in noticing more details about everyday situations they face. It also helped them define possible
courses of action to improve those situations in the neighbourhood. As of now, citizens are
analysing all of the information they collected and establishing a plan to negotiate with their
authorities. The process has helped them become more empowered because now they find
themselves with data they did not think was possible to obtain. They thought they had to solely
rely on what their local authorities could provide them and they have also found how they
can come together for a greater good.
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Also, it is worth mentioning that the maps that were obtained have been extremely useful to
show where things are happening. This has been very helpful in increasing the citizenry’s
spatial awareness of their neighbourhood.

Figure 9. Citizen-mapping platform for the Roma neighbourhood showing clusters and categories.

3.4. Crime data analysis to support public safety in Mexico City

CentroGeo participated in the development of a geointelligence platform for Mexico City’s
Public Safety Ministry [91]. Back in 2004, this institution started georeferencing crime reports;
in 2010, they already had enough experience in this task, but analytical capabilities were still
short in order to extract useful information for decision-making. In this section, we present the
implementation of a crime hotspot detection method that uses a spatio-temporal interaction
graph.

The method mentioned in Section 2.4.2 was implemented in the context of Compstat-style
planning and decision-making meetings that took place every week. A team of analysts would
prepare comparative statistics and maps to establish police operations to focalised problems.
Due to resource scarcity, it is imperative for public safety tasks to be prioritised. Hotspot
detection for specific crime types was a first relevant criterion for decision-making.

As mentioned before, a first part of the process in mapping spatio-temporal hotspots consisted
in the calculation of Knox’s index together with the creation of the spatio-temporal interaction
graph. Afterwards, the graph was characterised to identify the largest connected components,
corresponding to priority areas (Figure 1).
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Once these priority areas had been identified, human and material resources available to attack
the problem were mapped. According to the detailed temporal patterns of incidents, it was
possible to establish priority schedule tables for operating surveillance cameras in Mexico City
(Figure 10).

Figure 10. Tactical planning map for the crime analysis study showing a hot area for larceny theft in Mexico City.

Implementing a geointelligence process in Mexico City’s Public Safety Ministry was influenced
both by the concept of geointelligence and by the institutional will to introduce a more fitting
policing model for public safety in Mexico City. However, this has not been a linear process;
instead, it has proven to be a complex, changing process entangling research and technical
development results with daily demands emerging from the dynamics of the police institution.

3.5. Use of 3D vegetation modelling for forest inventorying Mexico City’s Conservation
Land

We present a case study of semiautomatic 3D forest generation through airborne laser scanner
data over the Mexico City’s Conservation Land (MCCL). Located in the southern fringe of
Mexico City, the MCCL delivers important environmental services such as carbon sequestra‐
tion, oxygen production, catchment, human recreation, among others, to the inhabitants of the
city. However, its permanence has been threatened by urban sprawl during the past three
decades generating several problems such as clandestine logging, illegal settlements and
pollution [92]. The continuous monitoring and inventoring of this forested area will help
authorities to preserve and improve this area. In this study, a 3D scene for an area of around
50 m2 was generated using ALS data. Since the generation procedure and the accuracy
assessment have been reported elsewhere [93, 94], here we only highlight the major processing
steps and provide some theoretical insights of the 3D models.
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3.5.1. ALS data processing

Point clouds acquired with the ALS50-II sensor flown by INEGI between November and
December 2007 over the entire Basin of Mexico were employed in this study.

Basic processing prior to modelling surfaces with ALS data is the ground filtering and
segmentation of the point cloud. The former refers to the segregation of ground points from
the entire point cloud. Since feature heights are measured with respect to the ground, a bare-
terrain surface must be first generated through interpolation of ground points. Then off-
ground feature heights are normalised by subtracting the terrain elevation from the point
cloud, and detection of objects of interest is conducted on the terrain-normalised dataset. For
tree canopy detection, a fruitful approach is the watershed segmentation algorithm of the
normalised digital height model with reversed z-coordinate. The segmentation procedure
delineates watersheds that correspond, approximately, to tree crowns. Then, the segmentation
is simply transferred to the points for the purpose of point selection.

3.5.2. Tree crown modelling

Points of individual trees were automatically selected using the segmentation information and
best fit models were selected for each segment. A library of crown models was constructed
from a generic revolution model of the form of Eq. (3), where (x, y, z) denotes a generic 3D
point, and (u, θ) are the independent variables in the ranges [0,1] and [0,π), respectively,
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In this model, the crown size is represented by tree parameters, namely the maximum crown
radius (r), the bottom crown height (b), and the top crown height (h), whereas the shape is
represented by functions C(u) and S(u) defined in Eq. (4), where c1,…,c7 denote the shape
parameters
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In order to simplify the model selection procedure, we computed the structure and location
parameters from point statistics, and optimised shape parameters through a simplified least-
squares orthogonal distance-fitting procedure. The orthogonal distance was computed only
for a limited set of shape parameter combinations as given in Table 2, and then the least
orthogonal distance model was selected as the best fit model. For visualisation purposes, the
tree trunk was modelled as a cylinder of radius 0.1r and height b (Figure 11).
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Model name c1 c2 c3* c4 c5 c6 c7

Ellipsoid 1 1 2 2 2 2 2.4

Cylinder 2 0 1 0 2 1 1

Paraboloid 0 0 1 1 2 1 2

Hyperboloid −1 i −0.4142i 2 2 0.95 1.95

Cone 0 0 −i 2 2 1 1

Zparaboloid 0 0 −i 2 1 1 0.5

Table 2. Parameter combinations used for the crown shape model Eq. (4).

Figure 11. 3D visualisation of modelled forest from ALS data in the Mexico City Conservation Land.

The assessment of this product with ground truth data has shown the potential of ALS [93],
especially for species communities exhibiting sparse distribution (such as Pinus hartwegii sp.),
since limitations due to occlusion problems along dense species communities (such as Abies
religiosa sp.) have also been reported suggesting the need to incorporate complementary TLS
acquisitions. In any case, the utility of these techniques for large-scale inventorying is yet to
be seen.

4. Concluding remarks

Geographic data collection has experienced a paradigm shift in terms of users being not only
consumers but also generators. Traditionally, government agencies were in charge of collecting
relevant information for different uses: cadastral, population and business censuses, vehicle
registrars, natural resources, etc. However, it has become increasingly popular to be able to
generate geographical data that do not necessarily adhere to governmental standards.
Furthermore, it has become trending not only to collect but also to share these data in what
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constitutes one of the pillars of neogeography: ‘sharing location information with friends and
visitors, help shape context, and conveying understanding through knowledge of place’ [95],
especially with all the mapping technologies available on the web [96].

This qualitative shift in the quantity and diversity of data that are gathered and examined has
come with a shift in the techniques and technologies used to process and analyse information.
In a seminal paper, Breiman talked about two cultures in data analysis: the ‘classical’ one,
where data are modelled around a theoretical statistical distribution which, implicitly, assumes
the kinds of processes producing the observations, and inferences are drawn from the
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Abstract

Accurately quantifying soil organic carbon (SOC) stocks in soils is considered necessary
and important for studying the soil  quality and productivity,  modeling the global
carbon cycle, and assessing the global climate change. The objectives of this chapter are
(1) to evaluate the effects of sampling density and interpolation methods on spatial
distribution of SOC density (SOCD) and (2) to estimate the SOC stocks in 0–30, 0–50,
and 0–100 cm layer of Tainan rural soils (2192 km2), Taiwan. Ordinary kriging (OK),
empirical Bayesian kriging (EBK), and inverse distance weighting (IDW) methods and
four sampling densities (n = 7388, 1168, 370, or 77) were used for spatial interpolation.
The  results  indicated  that  different  sampling  densities  had  significant  effects  on
predicting the spatial patterns of SOCD, but no significant difference was found among
three  interpolation  methods.  Spatial  pattern  of  SOCD  obtained  from  the  highest
sampling density appeared to be the most detailed distribution, and the prediction
accuracy showed a reducing trend with decreasing sampling density. At least 1 sample
per 2 km × 2 km area was suggested. The estimates of SOC stocks in different layers of
Tainan soils ranged from 8.03 to 8.08 million tons in 0–30 cm, 11.92 to 12.04 million tons
in 0–50 cm, and 20.38 to 20.65 million tons in 0–100 cm.

Keywords: soil organic carbon (SOC) stock, soil organic carbon density (SOCD), sam‐
pling density, interpolation method, agricultural land

1. Introduction

Soil organic carbon (SOC) is one of the largest carbon reservoirs of the earth’s surface and
plays an important role in the global carbon cycle [1, 2]. As the Kyoto Protocol was adopted
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in the annual Conference of Parties (COPs) of the UNFCCC in 1997, soil organic carbon and
its potential to become a managed sink for atmospheric CO2 have received much attention.
Accurately quantifying soil organic carbon (SOC) stocks in soils is considered necessary for
studying the soil quality, modeling the global carbon cycle, and assessing the global climate
change. In recent years, many countries and local government have attempted to assess the C
stock in their regions, including the soil organic carbon density (SOCD) and storage at global
level [3–5], especially in some European countries, the United States of America, Indonesia
[6], South Korea, New Zealand [7], and Australia [8].

In Taiwan, accurate estimation of SOC stocks based on detailed soil investigation is still absent
at the national scale or regional scale. There have been several soil survey projects on agricul‐
tural soils for various purposes by Taiwan Agricultural Research Institute (TARI), Council of
Agriculture, Taiwan. By calculating the SOC content of soil pedons and the distribution area
of different soil orders, Chen and Hseu [9] first attempted to estimate the SOC stocks in rural
lands of Taiwan. They indicated that 81 Tg (million tons) and 162 Tg of SOC were stored in
the 0–30 and 0–100 cm of agricultural soils within an area of 1.68 million ha. Chen et al. [10]
reported that SOC stocks in the 0–20 cm soil layer of cultivated lands (~0.85 million ha) were
21.7 and 27.5 Tg, which were calculated based on two legacy database obtained from detail
soil surveys conducted by TARI in 1960s and 1980s, respectively. Taking the cultivated lands
into account, the estimates of SOC stocks in the upper 20 cm soils of both studies mentioned
earlier were similar (27.5 and 27.3 Tg), indicating that legacy soil survey data are our best
resource to monitor the dynamics of soil C [6].

SOC stocks have strong spatial heterogeneity and dependence. Geostatistics have proven to
be a useful tool in predicting the spatial distribution of soil properties that are very spatially
dependent. Several spatial interpolation methods have been used to explore the spatial
distribution characteristics of SOC. For example, ordinary kriging (OK) interpolation estima‐
tion, which provides the best linear unbiased prediction at unsampled locations, has been
widely used to describe the structure of spatial dependence and quantify SOC stocks in
relatively large areas [11]. At present, there are dozens of spatial interpolation methods
described in the literature; however, many factors such as sample size and the nature of the
data are possible to affect the estimation of a spatial interpolator, and until now, there are no
consistent findings regarding what is the best interpolation method. Many studies had focused
on comparing different estimation methods to reduce uncertainty of regional SOC prediction.
However, studies assessing the effect of sampling density on spatial variability of SOC
estimation were relatively few [12], and issues of sampling density and interpolation method
are both important to our understanding of SOC variability [13].

Chien et al. [14] and Liu et al. [15] have compared the performance of some spatial interpola‐
tion methods at regional scale in Taiwan; however, estimating the SOC stocks of the whole
city by different interpolation methods has never been previously studied in Taiwan. The
objectives of this chapter are (1) to estimate the soil organic carbon density (SOCD) and SOC
stocks in 0–30, 0–50, and 0–100 cm soils and its spatial distribution at four sampling densi‐
ties at regional scale, (2) to evaluate the effects of sampling density on estimation of SOCD and
SOC stocks, and (3) to compare the difference of SOC stocks among three geostatistical

Geospatial Technology - Environmental and Social Applications36



in the annual Conference of Parties (COPs) of the UNFCCC in 1997, soil organic carbon and
its potential to become a managed sink for atmospheric CO2 have received much attention.
Accurately quantifying soil organic carbon (SOC) stocks in soils is considered necessary for
studying the soil quality, modeling the global carbon cycle, and assessing the global climate
change. In recent years, many countries and local government have attempted to assess the C
stock in their regions, including the soil organic carbon density (SOCD) and storage at global
level [3–5], especially in some European countries, the United States of America, Indonesia
[6], South Korea, New Zealand [7], and Australia [8].

In Taiwan, accurate estimation of SOC stocks based on detailed soil investigation is still absent
at the national scale or regional scale. There have been several soil survey projects on agricul‐
tural soils for various purposes by Taiwan Agricultural Research Institute (TARI), Council of
Agriculture, Taiwan. By calculating the SOC content of soil pedons and the distribution area
of different soil orders, Chen and Hseu [9] first attempted to estimate the SOC stocks in rural
lands of Taiwan. They indicated that 81 Tg (million tons) and 162 Tg of SOC were stored in
the 0–30 and 0–100 cm of agricultural soils within an area of 1.68 million ha. Chen et al. [10]
reported that SOC stocks in the 0–20 cm soil layer of cultivated lands (~0.85 million ha) were
21.7 and 27.5 Tg, which were calculated based on two legacy database obtained from detail
soil surveys conducted by TARI in 1960s and 1980s, respectively. Taking the cultivated lands
into account, the estimates of SOC stocks in the upper 20 cm soils of both studies mentioned
earlier were similar (27.5 and 27.3 Tg), indicating that legacy soil survey data are our best
resource to monitor the dynamics of soil C [6].

SOC stocks have strong spatial heterogeneity and dependence. Geostatistics have proven to
be a useful tool in predicting the spatial distribution of soil properties that are very spatially
dependent. Several spatial interpolation methods have been used to explore the spatial
distribution characteristics of SOC. For example, ordinary kriging (OK) interpolation estima‐
tion, which provides the best linear unbiased prediction at unsampled locations, has been
widely used to describe the structure of spatial dependence and quantify SOC stocks in
relatively large areas [11]. At present, there are dozens of spatial interpolation methods
described in the literature; however, many factors such as sample size and the nature of the
data are possible to affect the estimation of a spatial interpolator, and until now, there are no
consistent findings regarding what is the best interpolation method. Many studies had focused
on comparing different estimation methods to reduce uncertainty of regional SOC prediction.
However, studies assessing the effect of sampling density on spatial variability of SOC
estimation were relatively few [12], and issues of sampling density and interpolation method
are both important to our understanding of SOC variability [13].

Chien et al. [14] and Liu et al. [15] have compared the performance of some spatial interpola‐
tion methods at regional scale in Taiwan; however, estimating the SOC stocks of the whole
city by different interpolation methods has never been previously studied in Taiwan. The
objectives of this chapter are (1) to estimate the soil organic carbon density (SOCD) and SOC
stocks in 0–30, 0–50, and 0–100 cm soils and its spatial distribution at four sampling densi‐
ties at regional scale, (2) to evaluate the effects of sampling density on estimation of SOCD and
SOC stocks, and (3) to compare the difference of SOC stocks among three geostatistical

Geospatial Technology - Environmental and Social Applications36

techniques. The estimation will be an important reference for predicting the SOC stock in the
humid subtropical region.

2. Materials and methods

2.1. Basic environmental and soil conditions of Tainan city

Tainan city is located in the southwest of Taiwan with a total area of 2192 km2. The mean air
temperature is 28.7°C in summer and 18.4°C in winter. The mean annual rainfall is 1698 mm.
Except for the raining season beginning from May to September, especially the monthly rainfall
is less than the evaporation and transpiration during the summer (June to August). The soil
temperature regime of the study area is hyperthermic (>22°C), and soil moisture regime of
most area is ustic (drying in summer from June to August). About one-third of area is occupied
by hill land (30–50 m asl) in the eastern part of Tainan city, and the other two-thirds of area is
calcareous alluvial plain. About 57 and 34% of the soils of Tainan city are Entisols and
Inceptisols based on USDA soil classification, respectively. The most soils are sandy loam to
silt loam soil texture, neutral to basic reaction, and well-drained soils. Both geographical
features and soil conditions favor the growth of most vegetables, fruits, and rice production;
thus, Tainan city is an important agricultural production area in Taiwan in the last five decades.
Soils in the coastal alluvial area are saline soils and are used for fish farming.

2.2. Soil database of soil pedons

Dataset for estimating the SOC stock in agricultural soils of Tainan was obtained from a
detailed soil survey project, which was conducted from 1992 to 2010 by TARI. Soil pedons
were sampled by auger along a 250 m × 250 m cell-sized grid in the field, meaning that every
6.25 ha of the arable land has a representative soil pedon. The upper 150 cm soils were collected
by dividing into six depth intervals, and soil organic matter (SOM), pH, CEC, P, K, Ca, and
Mg extracted by Mehlich-III extractant were analyzed for each soil sample by TARI. Here, we
converted the content of SOM to SOC by dividing a Van Bemmelen factor of 1.724 on the
assumption that SOM contains 58% of organic C averagely. From these data, SOC stocks were
computed for 0–30, 0–50, and 0–100 cm soil layers. The soil organic carbon density (SOCD, kg
m−2) for a certain soil depth (h) was calculated as follows:

( )
n

1

SOCD SOC Bd d 100h i i i
i=

= × × ÷∑

where SOCi (g kg−1) is the soil organic carbon content of a certain layer, Bdi is the bulk density
(g cm−3), and di is the depth (cm). As Bd determination was not included in TARI’s soil dataset,
we adopted the following pedotransfer function for estimating the bulk density [16] to evaluate
the SOC stock:
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( ) ( ) 2
Bd 1.3026 0.169log d 0.256 ln SOC = + −  

After removing the outliers and missing data, the extracted database contains the information
of 7388 soil pedons.

2.3. Soil sampling design

The initial soil sampling scheme was based on a regular grid with cell sizes of 250 m × 250 m
across the whole cultivated land of Tainan city. In this study, all samples were used in four
subsequent estimations of SOC stocks based on regular grids of 250 m × 250 m (n = 7388), 1 km
× 1 km (n = 1168), 2 km × 2 km (n = 370), and 5 km × 5 km (n = 77), respectively. One point (soil
pedon) was selected near each center of the four sampling grids, and the SOCD of selected
point was taken for the observed SOCD of its corresponding grid. The patterns of four scales
of sampling density are shown in Figure 1. Seventy percent of the points were randomly

Figure 1. Grid-based sampling design patterns for soil organic carbon density (SOCD) at four sampling scales in Tain‐
an, Taiwan.
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selected as test data for spatial interpolation, and the rest (30%) were used for validation. The
grid numbers, total sample numbers, sample number for spatial interpolation, and sample
number for validation under different sampling densities are listed in Table 1.

Sampling density Grid size of sampling Grid numbers Total sample
points 

Points for test
(70%) 

Points for
validation (30%) 

1 per 6.25 ha 250 m × 250 m 36,715 7388 5553 1836

1 per 1 km2 1 km × 1 km 2407 1168 875 293

1 per 4 km2 2 km × 2 km 633 370 279 92

1 per 25 km2 5 km × 5 km 114 77 58 19

Table 1. Description of the test set and validation set by using different sampling densities.

2.4. Comparison of three spatial interpolation methods (IDW, OK, and EBK)

All interpolation methods have been developed based on the theory that points closer to each
other have more correlations and similarities than those farther. In this study, the spatial
interpolation was conducted using three different interpolation methods, which are available
in the ArcGIS 10.1, to compare their estimation of SOC stocks of Tainan city soils under
different sampling densities: (1) the inverse distance weighting (IDW), (2) ordinary kriging
(OK), and (3) empirical Bayesian kriging (EBK). The former two methods (IDW and OK) are
commonly used to spatially interpolate soil properties, while the third one (EBK) is a new
probabilistic data interpolation method that is included in ArcGIS 10.1 Geostatistical Analyst.

2.4.1. Inverse distance weighting (IDW)

Inverse distance weighting (IDW) method is assumed that the rate of correlations and
similarities between neighbors is proportional to the distance between them that can be defined
as a distance reverse function of every point from neighboring points. The interpolating
function is listed as follows:

( ) 1

1

n

i ii
n

ii

w z
Z x

w
=

=

= ∑
∑

u
i iw d−=

where Z(x) is the predicted value at an interpolated point, Zi is the amount at a known point,
n is the total number of known points used in interpolation, di is the distance between point i
and the prediction point, and wi is the weight assigned to point i. Higher weighting values are
assigned to those points, which are closer to the interpolated points. As the distance increases,
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the weight decreases, and u is the weighting power that imposes the amount of weight
decreases with respect to the increase in distance [17, 18].

2.4.2. Ordinary kriging (OK)

Ordinary kriging (OK) is the most common type of kriging in practice. Kriging is a linear
estimator that the estimate of the unknown value is a linear combination of the known data
values [18]. The aim of kriging is to estimate the value of a random function, z, at one or more
unsampled points or over larger blocks, from more or less sparse sample data on a given
support, say z(x1), z(x2), … z(xn), at x1, x2, … xn. This can be shown as follows:

( ) ( )*
0

1

n

i j
i

z x w Z x
=

= ∑

where wj is the weight assigned to the known value of z(xj), and z*(x0) is the estimated value.
To ensure that the estimate is unbiased, weights are made to sum to 1 [17, 18].

2.4.3. Empirical Bayesian kriging (EBK)

Empirical Bayesian kriging (EBK) is a geostatistical interpolation method that automates the
most difficult aspects of building a valid kriging model. Other kriging methods in Geostatis‐
tical Analyst are required to manually adjust parameters to receive accurate results, but EBK
automatically calculates these parameters through a process of subsetting and simulation,
which is implemented by estimating a lot of semivariogram models instead of a single
semivariogram. The prediction in unknown locations in common kriging methods is done
through calculation of semivariogram with respect to the known data locations, resulting in
the underestimation of the standard error of the prediction due to overlooking the uncertainty
of semivariogram. On the contrary, EBK uses an intrinsic random function as the kriging model
despite the other kriging methods. The other main difference of EBK with that of the other
kriging model is that EBK does not assume a tendency toward an overall mean; thus, there is
the same chance for large deviations to get larger or smaller [17].

The following steps are followed in EBK. (1) Using the available data, a semivariogram model
is estimated. (2) Given this semivariogram, a new value is simulated at each of the input data
location. (3) With respect to the simulated data, a new semivariogram model is estimated
accordingly. The calculation of a weight for the latest semivariogram according to Bayes’ rule
is the next step in this field. The semivariogram estimated in Step 1 is used to simulate a new
set of values at the input location during the repetition of Steps 2 and 3. A new semivariogram
model and its weight are produced given the simulated data. During this step, the predictions
and their respective standard errors are produced at the unsampled locations. This step finally
creates a spectrum of semivariograms [17].
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2.4.4. Calculation of the SOC stocks

After spatial interpolation, a SOCD surface was created to cover the entire area of Tainan city
soils. This surface was exported as a raster layer with the defined resolution (250 m × 250 m,
1 km × 1 km, 2 km × 2 km, and 5 km × 5 km), in which every grid square was assigned both a
SOCD value and an area value. The next step was to accumulate as follows:

n

grid
1

SOC stock SOCD Areah ih
i=

= ×∑

where SOC stockh is the total amount of soil organic carbon stock at depth h in Tainan soils, n
is the total grid number of the raster, i is the ith grid square, SOCDih is the soil organic carbon
density for the ith grid square calculated to depth h, and Areagrid is the area of each grid square,
set by the defined resolution. The performance of IDW, OK, and EBK in mapping the spatial
distribution of SOCD was evaluated by using samples from the validation set (Table 1).

2.5. Evaluation of the accuracy of three interpolation methods

Mean error (ME), mean absolute error (MAE), mean relative error (MRE), and root mean
square error (RMSE) were calculated as follows:
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where Soi is the estimated SOCD at location i, Svi is the observed SOCD at location i, and n is
the total number of sample observations. The MAE and RMSE provide a measure of interpo‐
lation precision with lower values indicating more precise methods, while the ME and MRE
measure the bias. Smaller ME, MRE, and RMSE values indicate less error. The coefficient of
determination R2 of linear regression line between the predicted and the measured values was
also used as a measure of performance for each method.
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where Svī is the mean of observed value.

3. Results and discussion

3.1. Accuracy of different interpolation methods

The ME, MAE, MRE, RMSE, and R2 values of cross-validation obtained from EBK, OK, and
IDW methods are listed in Table 2. The results showed the trend that ME, MAE, MRE, and
RMSE increased while R2 decreased with reducing sampling density for a certain depth as it
was expected. At the highest sampling density (1 sample per 6.25 ha), IDW method performed
best with the lowest MAE, MRE, and RMSE values in 0–30 cm layer, while EBK method
performed best in 0–50 cm (R2 = 0.663) and 0–100 cm (R2 = 0.740) layers. At the density of 1
sample per 1 km2, the best performance was obtained by IDW method in 0–30 cm layer and
by OK method in the upper 50 and 100 cm soils. At the sampling scale of 1 sample per 4 km2,
EBK and IDW methods performed best in 0–30 and 0–50 cm layers, respectively. In 0–100 cm
layer, ME, MAE, and MRE obtained from EBK were the smallest, and R2 obtained from OK
was the highest. At the scale of 1 sample per 25 km2, the prediction accuracy was low based
on the R2 value. The validation result revealed that sampling density should be more than 1
sample per 4 km2 at least in the study area.

Considering the SOC stored at different depths, the best performance for estimating SOCD in
0–30 cm layer was obtained by IDW method at the scale of 1 sample per 6.25 ha and per 1
km2. In 0–50 and 0–100 cm layers, EBK and OK methods performed best at the highest sampling
scale and the scale of 1 sample per 1 km2, respectively. EBK method was hypothesized as the
best interpolation method, but we found that OK and IDW interpolation methods performed
nearly as well as EBK in this study, and all three interpolation methods performed approxi‐
mately well. Additionally, when the sampling scales were 1 sample per 6.25 ha and per 1 km2,
the R2 value increased with soil depth; in other words, the prediction accuracy of three
interpolation methods was relatively poor for estimating the SOCD in 0–30 cm layer. It
indicated that soil organic carbon is affected by other related factors, and the regulating
processes are complicated and vary spatially, especially in the upper soil [19].

The effect of sampling density on prediction accuracies in our study was consistent with other
researches. Zhang et al. [13] conducted a research of similar sampling schemes with ours (from
0.5 km × 0.5 km to 2 km × 2 km), and they found prediction accuracies of SOC content obtained
from OK and LUK (kriging combined with land use information) increased with decreased
grid size. Sun et al. [12] also reported that sampling density significantly affected the estimation
of regional SOC concentration, but trends do not increase regularly with the sampling density,
primarily due to the complicated factors on the spatial variation in SOC. In contrast, Chien et
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performed best in 0–50 cm (R2 = 0.663) and 0–100 cm (R2 = 0.740) layers. At the density of 1
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layer, ME, MAE, and MRE obtained from EBK were the smallest, and R2 obtained from OK
was the highest. At the scale of 1 sample per 25 km2, the prediction accuracy was low based
on the R2 value. The validation result revealed that sampling density should be more than 1
sample per 4 km2 at least in the study area.

Considering the SOC stored at different depths, the best performance for estimating SOCD in
0–30 cm layer was obtained by IDW method at the scale of 1 sample per 6.25 ha and per 1
km2. In 0–50 and 0–100 cm layers, EBK and OK methods performed best at the highest sampling
scale and the scale of 1 sample per 1 km2, respectively. EBK method was hypothesized as the
best interpolation method, but we found that OK and IDW interpolation methods performed
nearly as well as EBK in this study, and all three interpolation methods performed approxi‐
mately well. Additionally, when the sampling scales were 1 sample per 6.25 ha and per 1 km2,
the R2 value increased with soil depth; in other words, the prediction accuracy of three
interpolation methods was relatively poor for estimating the SOCD in 0–30 cm layer. It
indicated that soil organic carbon is affected by other related factors, and the regulating
processes are complicated and vary spatially, especially in the upper soil [19].

The effect of sampling density on prediction accuracies in our study was consistent with other
researches. Zhang et al. [13] conducted a research of similar sampling schemes with ours (from
0.5 km × 0.5 km to 2 km × 2 km), and they found prediction accuracies of SOC content obtained
from OK and LUK (kriging combined with land use information) increased with decreased
grid size. Sun et al. [12] also reported that sampling density significantly affected the estimation
of regional SOC concentration, but trends do not increase regularly with the sampling density,
primarily due to the complicated factors on the spatial variation in SOC. In contrast, Chien et
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al. [14] evaluated the sampling scale (approximately 1 sample per 7.7–20 ha) in a 10-km2 area
and indicated that sufficient spatial information about the soil properties could still be retained
even when the original sampling densities were reduced to nearly half. The best sampling
design depends on the reasonable costs and acceptable extent of estimation error, for example,
Sun et al. [12] found that increasing 18% of prediction accuracy had to increase the sampling
density for almost 15 times. In our case, at a depth of 100 cm layer, the increases in prediction
accuracy (RMSE) were 16–37% as soil samples became six times, whereas the increases in
accuracy were 28–46% as soil samples increased 20 times. Therefore, sampling density should
be evaluated more comprehensively in the future work.

Soil layer Sampling density Interpolation method ME MAE MRE RMSE R2

0–30 cm 1 sample per 6.25 ha EBK 0.021 0.689 0.239 0.882 0.446

OK 0.012 0.705 0.243 0.897 0.426

IDW 0.013 0.686 0.236 0.882 0.445

1 sample per 1 km2 EBK 0.072 0.827 0.306 1.091 0.293

OK 0.075 0.816 0.300 1.082 0.297

IDW 0.075 0.816 0.300 1.057 0.314

1 sample per 4 km2 EBK −0.027 0.678 0.213 0.827 0.528

OK −0.057 0.728 0.224 0.893 0.411

IDW −0.054 0.840 0.262 1.031 0.215

1 sample per 25 km2 EBK 0.404 0.943 0.416 1.166 0.039

OK 0.349 0.862 0.375 1.076 0.151

IDW 0.453 0.908 0.397 1.126 0.130

0–50 cm 1 sample per 6.25 ha EBK 0.009 0.795 0.219 1.127 0.663

OK −0.006 1.025 0.270 1.331 0.519

IDW −0.031 1.059 0.274 1.397 0.466

1 sample per 1 km2 EBK −0.029 1.256 0.351 1.593 0.317

OK −0.023 1.214 0.336 1.537 0.338

IDW −0.024 1.212 0.340 1.566 0.321

1 sample per 4 km2 EBK −0.083 1.627 0.373 1.943 0.181

OK −0.019 1.569 0.364 1.887 0.247

IDW −0.070 1.394 0.335 1.747 0.188

1 sample per 25 km2 EBK 0.061 1.522 0.524 1.893 0.013

OK −0.010 1.499 0.505 1.883 0.034

IDW 0.119 1.452 0.503 1.858 0.044

0–100 cm 1 sample per 6.25 ha EBK 0.013 1.370 0.293 1.973 0.740

OK −0.006 1.927 0.404 2.571 0.541

IDW −0.052 1.951 0.394 2.630 0.519
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Soil layer Sampling density Interpolation method ME MAE MRE RMSE R2

1 sample per 1 km2 EBK −0.068 2.403 0.539 3.126 0.304

OK −0.039 2.383 0.524 3.096 0.365

IDW −0.046 2.383 0.533 3.145 0.340

1 sample per 4 km2 EBK 0.082 2.904 0.521 3.638 0.273

OK 0.242 2.907 0.534 3.601 0.309

IDW 0.121 2.918 0.536 3.640 0.273

1 sample per 25 km2 EBK 0.123 3.200 1.014 4.001 0.002

OK 0.066 3.289 1.011 4.061 0.005

IDW 0.224 3.213 1.015 4.076 0.002

Table 2. Prediction accuracy of soil organic carbon distribution (SOCD) estimation for cultivated soils in Tainan at
various sampling density.

3.2. Spatial distribution of SOCD from different interpolation methods and sampling
designs

At a depth of 0–30 cm, the spatial pattern of SOCD that generated from OK method at dif‐
ferent sampling densities has a similar distribution, but the spatial heterogeneity and resolu‐
tion of the patterns varied among different sampling densities (Figure 2). The spatial
pattern obtained from 7388 samples (grid size = 250 m × 250 m) appeared the most detailed
SOCD spatial distribution. In general, high SOCD (>3.8 kg m−2) was found from the north to
the northwest region and in the east by south part, and lower SOCD (<2.6 kg m−2) was found
in the middle and southeast by south part of Tainan (Figures 2a, 3a, and 4a). The spatial
variation and local differences became less evident with decreasing the sampling density,
especially at the scale of 1 sample per 25 km2 (5 km × 5 km grid size) (Figure 2d). A similar
trend appeared in the spatial patterns of SOCD that generated from EBK and IDW methods
among different sampling scales (Figures 3d and 4d). As a whole, the spatial heterogeneity
and resolution of the distribution patterns varied between IDW and two kriging methods.
IDW is an exact interpolator that predicts a value which is identical to the measured value
at a sample location [18]. Therefore, the local maxima and local minima are reserved in esti‐
mating the spatial distribution of SOCD. There were some minor differences in the spatial
patterns between OK and EBK methods at the same sampling scale. The distribution area of
the highest (>5.0 kg m−2) and lowest (<2.6 kg m−2) SOCD estimated by EBK method was
smaller than those estimated by OK method, indicating that the EBK method has a higher
degree of smoothing effect when sampling grid size was larger than 1 km × 1 km. At a
depth of 0–50 (Figure 5) and 0–100 cm (Figure 6), the effects of interpolation method and
sampling density on the SOCD distribution pattern were similar with those in 0–30 cm lay‐
er, so we only present those obtained from EBK methods here. In general, the effect of sam‐
pling density on the result of regional SOCD estimation is very obvious. The SOCD
interpolation contours, which were compiled from three methods, described SOCD spatial
variability with more accuracy and detail as the sampling density increases.
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mating the spatial distribution of SOCD. There were some minor differences in the spatial
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Figure 2. Distribution of soil organic carbon density (SOCD) interpolated by OK method in 0–30 cm soil layer at four
sampling scales.

Figure 3. Distribution of soil organic carbon density (SOCD) interpolated by EBK method in 0–30 cm soil layer at four
sampling scales.
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Figure 4. Distribution of soil organic carbon density (SOCD) interpolated by IDW method in 0–30 cm soil layer at four
sampling scales.

Figure 5. Distribution of soil organic carbon density (SOCD) interpolated by EBK method in 0–50 cm soil layer at four
sampling scales.
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Figure 4. Distribution of soil organic carbon density (SOCD) interpolated by IDW method in 0–30 cm soil layer at four
sampling scales.

Figure 5. Distribution of soil organic carbon density (SOCD) interpolated by EBK method in 0–50 cm soil layer at four
sampling scales.
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Figure 6. Distribution of soil organic carbon density (SOCD) interpolated by EBK method in 0–100 cm soil layer at four
sampling scales.

Figure 7 showed the differences between the measured and the predicted values of SOCD of
OK interpolation method in each 250 m × 250 m grid at different sampling scales in 0–30 cm
layer. As the sampling density reduced with larger grid sizes, much more points turned to be
dark purple (underestimated) and dark green (overestimated), indicating an increasing
difference between the measured and the predicted values of SOCD. Most of the dark green
points were added to the central region, while the dark purple points were added to the
western region. The spatial distribution pattern of differences between the measured and the
predicted values of SOCD in 0–30 cm by EBK and IDW was shown in Figures 8 and 9. At the
highest sampling density (1 sample per 6.25 ha), difference plot that generated by EBK method
(Figure 8a) had more yellow points than those generated by OK method (Figure 7a), indicating
that EBK has a smaller interpolation error than OK at this sampling scale. The distribution of
differences generated by IDW was almost appeared by yellow points at the highest sampling
density (Figure 9a), meaning that the differences between the observed and the predicted
values of SOCD were less than 0.5 kg m−2. It also indicated that the IDW method had the
smallest interpolation error among three methods. Generally, the spatial pattern of estimation
error obtained from three interpolation methods had similar distribution pattern between the
sampling scale of 1 sample per 1 km2 and per 4 km2 in 0–30 cm soil layer of Tainan. The patterns
of interpolation error in 0–50 and 0–100 cm layers were similar with those in 0–30 cm layer, so
we omitted them in the text. With the decrease in sampling density, the differences between
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the measured and the predicted values of SOCD became larger, and high uncertainty was
distributed around the local maxima and minima sites [18].

Figure 7. Differences between the measured and the predicted values of soil organic carbon density (SOCD) by OK
method in 0–30 cm layer.

Figure 8. Differences between the measured and the predicted values of soil organic carbon density (SOCD) by EBK
method in 0–30 cm layer.
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Figure 9. Differences between the measured and the predicted values of soil organic carbon density (SOCD) by IDW
method in 0–30 cm layer.

3.3. Estimation of SOC stocks

The SOC stocks in soil layers of 0–30, 0–50, and 0–100 cm were listed in Table 3. At the highest
sampling density (1 sample per 6.25 ha), the estimates of SOC stocks in 0–30 cm soil layer of
Tainan were similar among three interpolation methods, which ranged from 8.03 to 8.08
million tons, while SOC stocks in 0–50 cm layer ranged from 11.92 to 12.04 million tons and in
0–100 cm layer ranged from 20.38 to 20.65 million tons. The SOC stocks at a depth of 0–30 cm
increased with decreasing sampling density but decreased at a depth of 0–100 cm. On the basis
of estimates at the highest sampling density, the effect of sampling scale on SOC stocks
generally had less than 4% of differences under the same soil layer and interpolation method.
Although the effect of sampling scale on the result of regional SOCD estimation is obvious,
there was no significant effect on the estimation of total SOC stocks in Tainan in this study.

According to our estimation, around 40% of the total SOC stock in the upper 100 cm was held
in 0–30 cm layer and 58% in 0–50 cm layer of agricultural soils. The ratios were slightly lower
than those estimated by previous studies, which reported that 46–66% (with an average of
50%) of the total organic carbon in the upper 100 cm was stored in 0–30 m layer and 65–81%
(with an average of 70%) in 0–50 cm layer of cultivated soils in Taiwan [9, 20]. For forest lands
of Tainan, 40–49% of the total SOC stock in the upper 100 cm was held in 0–30 cm layer and
61–65% in 0–50 cm layer in this study. This is in accordance with the estimates of Tsai et al. [21],
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which reported that 41–84% (with an average of 59%) of the total organic carbon in the upper
100 cm was stored in 0–30 m layer and 67–98% (with an average of 78%) in 0–50 cm layer of
forest soils in Taiwan.

EBK OK IDW

Sampling density SOC stock
(million ton)

Percentagea

(%)
SOC stock
(million ton)

Percentage
(%)

SOC stock
(million ton)

Percentage
(%)

0–30 cm layer

1 sample per 6.25 ha 8.03 100 8.05 100 8.08 100

1 sample per 1 km2 8.15 102 8.21 102 8.19 101

1 sample per 4 km2 8.08 101 8.21 102 8.09 100

1 sample per 25 km2 8.24 103 8.26 103 8.28 102

0–50 cm layer

1 sample per 6.25 ha 11.92 100 11.95 100 12.04 100

1 sample per 1 km2 12.01 101 12.24 102 12.12 101

1 sample per 4 km2 11.89 100 12.13 102 11.95 99

1 sample per 25 km2 11.92 100 11.95 100 11.98 99

0–100 cm layer

1 sample per 6.25 ha 20.38 100 20.76 100 20.65 100

1 sample per 1 km2 20.36 100 20.98 101 20.70 100

1 sample per 4 km2 20.05 98 20.75 100 20.37 99

1 sample per 25 km2 19.92 98 20.00 96 20.03 97

aThe SOC stocks estimated at the highest sampling density as a standard for comparing.

Table 3. The estimates of SOC stocks in 0–30, 0–50, and 0–100 cm layers of Tainan by three interpolation methods at
different sampling densities.

3.4. Land use effect on SOC stocks and SOCD

Soil organic carbon (SOC) stocks in different soil layers under different land uses were listed
in Table 4. Generally, agricultural lands, forests, and lands for other uses occupy 49.1, 21.4,
and 29.5% of the total area of Tainan, respectively. The SOC stocks in the agricultural lands,
which were estimated by different interpolation methods and sampling densities, ranged from
4.10 to 4.26 million tons in 0–30 cm layer, 6.05 to 6.21 million tons in 0–50 cm layer, and 10.22
to 10.71 million tons in 0–100 cm layer. The SOC stocks in the forest lands varied between 1.55
and 1.67 million tons in 0–30 cm layer, 2.15 and 2.41 million tons in 0–50 cm layer, and 3.35
and 3.97 million tons in 0–100 cm layer. Lands for other uses stored 2.38–2.47 million tons of
SOC in 0–30 cm layer, 3.56–3.65 million tons in 0–50 cm layer, and 6.06–6.37 million tons in 0–
100 cm layer. Regardless of the soil layer, interpolation method, and sampling density, 50.3–
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3.4. Land use effect on SOC stocks and SOCD

Soil organic carbon (SOC) stocks in different soil layers under different land uses were listed
in Table 4. Generally, agricultural lands, forests, and lands for other uses occupy 49.1, 21.4,
and 29.5% of the total area of Tainan, respectively. The SOC stocks in the agricultural lands,
which were estimated by different interpolation methods and sampling densities, ranged from
4.10 to 4.26 million tons in 0–30 cm layer, 6.05 to 6.21 million tons in 0–50 cm layer, and 10.22
to 10.71 million tons in 0–100 cm layer. The SOC stocks in the forest lands varied between 1.55
and 1.67 million tons in 0–30 cm layer, 2.15 and 2.41 million tons in 0–50 cm layer, and 3.35
and 3.97 million tons in 0–100 cm layer. Lands for other uses stored 2.38–2.47 million tons of
SOC in 0–30 cm layer, 3.56–3.65 million tons in 0–50 cm layer, and 6.06–6.37 million tons in 0–
100 cm layer. Regardless of the soil layer, interpolation method, and sampling density, 50.3–
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52.2% of the total SOC stocks stored in the agricultural lands, while forests stored 16.7–20.2%
and lands for other uses stored 29.4–31.0%.

Sampling density Grid size Agriculture lands Forest lands Lands for other uses

EBK OK IDW EBK OK IDW EBK OK IDW

0–30 cm layer

1 per 6.25 ha 250 m × 250 m 4.10 4.10 4.11 1.55 1.56 1.58 2.38 2.39 2.39

1 per 1 km2 1 km × 1 km 4.14 4.16 4.16 1.61 1.64 1.62 2.41 2.41 2.41

1 per 4 km2 2 km × 2 km 4.10 4.16 4.12 1.58 1.64 1.55 2.41 2.41 2.41

1 per 25 km2 5 km × 5 km 4.14 4.18 4.25 1.67 1.64 1.56 2.43 2.44 2.47

0–50 cm layer

1 per 6.25 ha 250 m × 250 m 6.13 6.14 6.13 2.24 2.33 2.25 3.55 3.58 3.57

1 per 1 km2 1 km × 1 km 6.14 6.19 6.21 2.28 2.33 2.41 3.59 3.60 3.62

1 per 4 km2 2 km × 2 km 6.05 6.08 6.12 2.26 2.26 2.36 3.58 3.60 3.65

1 per 25 km2 5 km × 5 km 6.06 6.21 6.07 2.30 2.15 2.32 3.56 3.62 3.56

0–100 cm layer

1 per 6.25 ha 250 m × 250 m 10.61 10.62 10.62 3.56 3.79 3.86 6.21 6.24 6.27

1 per 1 km2 1 km × 1 km 10.53 10.67 10.71 3.58 3.77 3.97 6.24 6.26 6.31

1 per 4 km2 2 km × 2 km 10.36 10.47 10.54 3.46 3.60 3.84 6.23 6.30 6.37

1 per 25 km2 5 km × 5 km 10.22 10.46 10.26 3.63 3.35 3.68 6.07 6.21 6.06

Table 4. The estimates of SOC stocks (million tons) in different land uses of Tainan by three interpolation methods at
different sampling densities.

As agriculture is the major land use in Tainan, the SOCDs of different cropping soils in the
agricultural lands were further estimated by EBK interpolation method and listed in Table 5.
In Tainan, lands for rice cropping, upland, orchard, and fallow uses were 18.2, 41.8, 37.0, and
3.0% of the total agricultural lands, respectively. The mean SOCD of different cropping soils
decreased in the following order in all soil layers: rice cropping land > upland > abandoned or
fallow land > orchard.

Tainan has a humid subtropical climate, which is favorable to the degradation of soil organic
matter. Main parent materials of Tainan soil are calcareous sandstone, shale, and mudstone
[22]. Thus, majority of the cultivated lands is calcareous alluvial soil with neutral to basic soil
reaction as well as higher buffering capacity to resist changes in pH caused by chemical
fertilizer. Therefore, SOC storage of agricultural soil in Tainan is not greatly affected by
management or cropping system, except for rice cropping. Long-term rice cultivation has been
reported to increase the SOC storage in surface soils of Taiwan [10]. In our study, however,
the mean SOCD of rice cropping land was slightly, but not significantly, higher than other
cropping system (Table 5).
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Land use Percentage of area (%) 1 sample per

6.25 ha

1 sample per

1 km2

1 sample per

4 km2

1 sample per

25 km2

0–30 cm layer

Rice cropping land 18.2 3.99 ± 0.83 3.94 ± 0.70 3.95 ± 0.60 4.00 ± 0.38

Upland 41.8 3.85 ± 0.71 3.81 ± 0.55 3.82 ± 0.53 3.77 ± 0.42

Orchard 37.0 3.53 ± 0.65 3.55 ± 0.47 3.42 ± 0.43 3.54 ± 0.32

Abandoned or fallow land 3.0 3.67 ± 0.66 3.62 ± 0.50 3.71 ± 0.47 3.70 ± 0.46

0–50 cm layer

Rice cropping land 18.2 5.87 ± 1.46 5.86 ± 1.30 5.84 ± 1.12 5.92 ± 0.71

Upland 41.8 5.74 ± 1.11 5.71 ± 0.86 5.73 ± 0.84 5.56 ± 0.74

Orchard 37.0 5.23 ± 1.13 5.13 ± 0.82 4.97 ± 0.88 5.06 ± 0.57

Abandoned or fallow land 3.0 5.50 ± 1.08 5.43 ± 0.80 5.55 ± 0.76 5.50 ± 0.75

0–100 cm layer

Rice cropping land 18.2 10.04 ± 3.00 9.96 ± 2.68 10.00 ± 2.49 10.05 ± 1.22

Upland 41.8 10.16 ± 2.16 10.10 ± 1.73 10.17 ± 1.69 9.55 ± 1.35

Orchard 37.0 8.52 ± 2.46 8.28 ± 1.81 7.84 ± 2.08 8.16 ± 1.29

Abandoned or fallow land 3.0 9.59 ± 2.25 9.52 ± 1.80 9.80 ± 1.69 9.40 ± 1.34

Table 5. Soil organic carbon density (kg m−2, mean ± standard deviation) for different cropping soils in the agricultural
land of Tainan (estimated by EBK interpolation method).

3.5. Uncertainty (improvement of the estimation of SOC stock)

The number of soil samples, the distance between sampling locations, and the choice of
interpolation are factors that affect the prediction of spatial distribution for soil properties [18,
23]. Generally, the larger the number of soil samples, the more accurate the kriging maps of
soil properties [18, 24]. The original database (7388 soil samples) that we used in this study
was obtained from a detailed soil survey in Tainan; thus, the sample number for spatial
interpolation at the highest sampling density should be large enough to provide valuable
information when comparing with other researches. The distance between sampling locations
is another factor that influences the spatial patterns of SOCD. Despite large sample number,
the sample locations are not evenly distributed over the whole area (Figure 1), and it probably
results in a higher uncertainty of estimation in the region with sparsely or no located obser‐
vations. OK is one of the most commonly used spatial interpolation methods that only consider
the spatial autocorrelation and heterogeneity of SOC but overlooks the influence of environ‐
mental variables (and so as EBK). However, SOC status is influenced by many soil character‐
istics and environmental factors; those overlooked factors may also contribute to the
interpolation error in this study, especially in the surface soils. In addition, land use is very
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intensive in Taiwan. The smallest sampling grid in our study (250 m × 250 m) may still be
divided by different land uses and managements, which is possibly to result in high spatial
variation in SOC. In the future, better techniques or models should be developed for a better
understanding of the spatial distribution of SOCD and relationships between environment
variables and SOCD, which are important to predict SOC stocks.

4. Conclusion

In this study, OK, EBK, and IDW methods and four scales of sampling density (1 sample per
6.25 ha, 1 km2, 4 km2, and 25 km2) were used for spatial interpolation of SOCD in Tainan. The
results indicated that sampling density has significant effect on the prediction for spatial
patterns of SOCD. The spatial pattern obtained from the highest sampling density appeared
the most detailed SOCD spatial distribution, and all indices of prediction accuracy showed a
reducing trend with decreasing sampling density for a certain depth. We suggested that
sampling density should be more than 1 sample per 4 km2 at least in this study area.

All three interpolation methods performed on SOCD and SOC stocks approximately well;
however, OK and EBK methods had a smoothing effect, while IDW method reserved the local
maxima and local minima in estimating the spatial distribution of SOCD. Although the
sampling density had a significant effect on spatial prediction of SOCD, the estimates of SOC
stocks in Tainan were not significantly influenced by the sampling density and interpolation
methods. The estimates of SOC stocks in 0–30 cm soil layer of Tainan ranged from 8.03 to 8.08
million tons, while SOC stocks in 0–50 cm ranged from 11.92 to 12.04 million tons and in 0–
100 cm ranged from 20.38 to 20.65 million tons. In terms of agricultural land uses, the mean
SOCD was slightly influenced by rice cropping system with little increase in SOCD.
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Abstract

This  chapter  presents  the  monitoring  of  the  2008  Chaitén  eruption  cloud  using
Moderate Resolution Imaging Spectroradiometer (MODIS) data and its impacts. The
8-day MODIS data from 3 to 10 May 2008 were used to track the movement and
dispersion  of  the  eruption  cloud  of  the  Chaitén  volcano  in  Chile  following  the
eruption on 2 May 2008. For detecting volcanic particulates, the procedure is adopted
based  on  the  brightness  temperature  difference  (BTD)  algorithm,  by  which  the
thermal  infrared  channels  were  centered  on  11–12  μm  of  multispectral  satellite
sensors. The BTD is generally negative for volcanic ash but positive for ice and water
vapor.  The  eruption  cloud  was  found  to  drift  northeastward,  eastward,  and
southeastward  crossing  the  central  and  northern  part  of  Argentina  and  over  the
Atlantic  Ocean.  The timing of  heavy rainfall  in South Africa during May–June,  in
central Australia during June 2008 and in Hong Kong during June (the wettest since
record began in 1884), was considered to have been connected to the dispersion of
the particulates from this Chaitén eruption to further impact downstream.

Keywords: volcanic cloud dispersion, MODIS data, Chaitén eruption, heavy rainfall

1. Introduction

Volcanic eruption clouds are potentially hazardous to aircrafts in the air. The ash clouds may
persist for many hours or perhaps days and have been known to produce en route flight
diversions in regions thousands of kilometers from their source in [1]. As volcanic eruptions
are variable in intensity and composition, the tracking of the eruption cloud is particularly

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



relevant to aviation safety. Additionally, the spread of eruption clouds may have possible
climatic  effects  including  precipitation  changes.  Due  to  the  isolated  locations  of  many
volcanoes, remote sensing plays an important role in tracking ash clouds as they drift away
from an erupting volcano. In this paper, Moderate Resolution Imaging Spectroradiometer
(MODIS) data were downloaded from 3 to 10 May to monitor and retrieve the volcanic ash
cloud from the 2 May eruption of Chaitén volcano in Chile and to analyze its impacts on
rainfall.

Figure 1. Map of southern South America showing the location of the Chaitén Volcano.

The Chaitén volcano, a southern Andean arc volcano in Chile located at latitude 42.833°S and
longitude 72.646°W (Figure 1), began erupting explosively in the early morning around 08:00
coordinated universal time (UT) on 2 May 2008 in [2], without warning in [3]. Ash columns
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abruptly jetted from the volcano into the stratosphere reaching an altitude of more than 21 km
followed by lava dome effusion and continuous low-altitude close space ash plumes in [4].
This eruption was the largest eruption in Chile since Cerro Hudson in 1991 in [5] and the largest
explosive rhyolitic eruption since Novarupta, Alaska in 1912. Prior to this, the volcano
comprised a rhyolitic lava dome within a 2.5 km diameter caldera was last thought to have
erupted at 9370 14C years B.P. in [6]. The eruption had immediate and serious social and
economic consequences across southern Chile and Argentina. Floods and lahars inundated
the town of Chaitén and its 4625 residents were evacuated. Widespread ashfall and drifting
ash clouds closed regional airports and led to the cancellation of numerous domestic and
international flights in Argentina and Chile in [7]. Furthermore, the aquaculture industry in
the nearby Gulf of Corcovado was badly affected, while ecotourism was curtailed and the
regional nature reserves were forced to close.

2. Data and methodology

2.1. Data

In this study, the 8-day data of (from 3 to 10 May 2008) NASA-MODIS Level-1B Calibrated
Geolocation Data Set (MOD02) in [8] with 1 km resolution were applied to track the movement
and dispersion of the eruption cloud of the Chaitén volcano in Chile following the eruption
on 2 May 2008. About 30-year average rainfall distribution image and June 2008 rainfall image
were used to compare with the drought information, which was downloaded from the website
of Australian Bureau of Meteorology. And the rainfall images for South Africa and annual
rainfall data for Hong Kong were downloaded from the websites of South Africa Weather
Service and Hong Kong Observatory, respectively.

2.2. Methods

2.2.1. Methodology for volcanic ash tracking

The most widely used approach to detect volcanic ash is based on the brightness temperature
difference (BTD) procedure applied to the channels centered at around 11 and 12 μm in [9].
The BTD technique has been applied either to polar satellite instruments such as the Advanced
Very High Resolution Radiometer (AVHRR) [10–11], the Moderate Resolution Imaging
Spectroradiometer (MODIS) [12–17], rather than to geostationary satellite instruments as the
Geostationary Operational Environmental Satellite (GOES) in [18], and the Spin Enhanced
Visible and Infrared Imager (SEVIRI) measurements in [19]. In this study, the volcanic ash
detection procedure adopted is based on the BTD algorithm using the thermal infrared
channels centered on 11 μm and 12 μm of a multispectral satellite sensor. This is because
volcanic ash contains large amounts of silicates that scatter and absorb infrared radiation in a
different way than meteorological water and ice clouds in [20]. A BTD of 11–12 μm is generally
negative for volcanic ash and dust and positive for ice and water clouds [11, 20, 21]. Bands 31
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(11 μm) and 32 (12 μm) of MODIS data were used for volcanic ash monitoring in this study.
Before BTD calculation, there are two steps. Firstly, Digital Number (DN) values need to be
transferred into radiant intensity to calculate the brightness temperature since MODIS images
are expressed with DN values. Secondly, brightness temperature was calculated using the
Planck function.

The formulae used for Radiant Intensity calculation of bands 31 and 32 of MODIS data were
used as in [22]:

Rad31 scale31(band31 offset31)= - (1)

Rad32 scale32(band32 offset32)= - (2)

(where rad 31 and rad 32 are the Heat Radiant Intensity (Wm−2 .sr−1(m−1) of bands 31 and 32 of
MODIS data, respectively; while band 31 and band 32 are the DN values of band 31 and 32 of
MODIS data, respectively; scale 31 and offset 31 are the radiometric calibration constant of
band 31 of MODIS data, and, scale 32 and offset 32 are the radiometric calibration constant of
band 32 of MODIS data).

After determination of the Heat Radiant Intensity, the brightness temperature can be calcu‐
lated based on Plank function. The formulae used were used as in [22]:

T31 K31,2 / ln (1 K31,1 / rad31)= + (3)

T32 K32,2 / ln (1 K32,1 / rad32)= + (4)

(where K 31,1 = 729.541636 W.m−2.sr−1.μm−1; K 31,2 = 1304.413871K; K 32, 1 = 474.684780 W.m
−2.sr−1. μm−1, and, K 32, 2 = 1196.978785K).

2.2.2. Methodology for rainfall study

In this study, Australian, South Africa, and Hong Kong history observation rainfall data were
downloaded to study the impacts of Chaitén volcano eruption cloud on rainfall. For Australia,
the average rainfall in June from 1961 to 1990 and rainfall in June 2008 were obtained as shown
in Figure 2 and Figure 3. For South Africa, the rainfall data of May and June were downloaded
to compare the rainfall change caused by Chaitén volcanic ash migration as shown in Figure 4
and Figure 5. For Hong Kong, the historical rainfall data used in this study is the annual rainfall
data between 1947 and 2009 obtained from Hong Kong Observatory as shown in Figure 6. The
figure also listed out the significant annual rainfall change of Hong Kong caused by volcanic
eruptions or nuclear tests.
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Figure 2. Average rainfall in June over the Australian continent from 1961 to 1990 (Courtesy of Australian Bureau of
Meteorology).

Figure 3. Heavy rainfall in June 2008 in Australia (Courtesy of Australian Bureau Meteorology).
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Figure 4. Rainfall May 2008 in South Africa, but a significant increasing rainfall during 21–31 May was attributed to
the migration of the eruption cloud from the Chaitén volcano in Chile following the eruption on 2 May 2008 (Courtesy
of South Africa Weather Service).

Figure 5. Rainfall in June 2008 in South Africa, but a heavy rainfall was attributed to the migration of the eruption
cloud from the Chaitén volcano in Chile following the eruption on 2 May 2008 (Courtesy of South Africa Weather
Service).
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Figure 6. The annual rainfall of Hong Kong from 1947 to 2009 (Courtesy of the Hong Kong Observatory).

3. Satellite tracking of eruption cloud

Images of the eruption cloud recorded by NASA-MODIS using the Terra and Aqua MODIS
sensors are shown as examples as in Figures 7–12.

Figure 7. May 2, 13:50 UT: Chile (MODIS).
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Figure 8. May 3, 14:35 UT: Chile (MODIS).

Figure 9. May 5, 14:25 UT: Chile (MODIS).

Figure 10. May 6, 15:05 UT: Chile (MODIS).
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Figure 10. May 6, 15:05 UT: Chile (MODIS).
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Figure 11. May 9, 18:10 UT: Chile (MODIS).

Figure 12. May 10, 14:40 UT: Chile (MODIS).

4. Results and discussion

4.1. Eruption cloud tracking

Applying Eqs (3) and (4), the eruption cloud tracking BTD images can be calculated from
MODIS images data shown as in Figures 13–20.
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Figure 13. Chaitén eruption cloud on 3 May 2008.

Figure 14. Chaitén eruption cloud on 4 May 2008.

Figure 15. Chaitén eruption cloud on 5 May 2008.
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Figure 14. Chaitén eruption cloud on 4 May 2008.

Figure 15. Chaitén eruption cloud on 5 May 2008.
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Figure 16. Chaitén eruption cloud on 6 May 2008.

Figure 17. Chaitén eruption cloud on 7 May 2008.
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Figure 18. Chaitén eruption on 8 May 2008.

Figure 19. Chaitén eruption cloud on 9 May 2008.
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Figure 18. Chaitén eruption on 8 May 2008.

Figure 19. Chaitén eruption cloud on 9 May 2008.

Geospatial Technology - Environmental and Social Applications68

Figure 20. Chaitén eruption cloud on 10 May 2008.

Based on the results of monitoring the volcanic ashes using MODIS in this study and the
referred reports, the following inferences can be drawn as below:

(1) On 3 May (Figure 13)—The eruption cloud formed a continuous, linear, and sharp-edged
plume. The cloud-drifted southeastward reaching the Atlantic coast of Argentina

(2) On 4 May (Figure 14)—The volcanic ash fallout direction is toward the southeast which
is similar to 3 May. The Chilean town of Futaleufu, located at about 75 km from the
volcano, received copious fallout where ash deposition of10–30 cm in thickness is reported
in [23] (3) On 5 May (Figure 15)—A continuous linear plume with an easterly orientation
passed over the Atlantic Ocean. Large quantities of fine ash were reported at Trelew,
Rawson and Madryn in [23] in Argentina and several Argentinian regional airports were
shut down due to the lack of visibility.

(4) On 6 May (Figure 16)—It is reported that the eruption entered a more intense but short-
lived phase with column height up to 30 km estimated. This eruption produced a cloud
that drifted northeastwards across the Andes into Argentina.

(5) On 7 May (Figure 17)—The eruption cloud continued to drift in a northeast direction.
Light fallout was reported at Bahia Blanca and Mar del Plata in Argentina in [23], located
at more than 1000 km away from the volcano.

(6) On 8 May (Figure 18)—The eruption cloud moved in a northeasterly and northerly
direction.
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(7) On 9 May (Figure 19)—There was an increase in eruption activity on 9 May compared to
8 May. The volcanic ash drifted northeastwards reaching the Atlantic coast of Argentina.

(8) On 10 May (Figure 20)—A light eruption occurred on 10 May and the volcanic ash drifted
eastwards.

4.2. Precipitation impact further downstream

Two examples of downstream precipitation impact over the continent of Australia are shown
in Figures 2 and 3. It can be clear that the rainfall in June 2008 was much more over that of the
Australian continent in the average of 1961–1990 normal. The link with the spread of the
Chaitén eruption cloud is supported by the detection of stratospheric aerosol drifting over
southeastern Australia by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in [2].
Similarly torrential June rainfall occurred in South Africa (Figure 5) and over Hong Kong
(Figure 6) in southern China in [24]. From Figures 4 and 5, it is obviously that late May, early
and middle June 2008 in South Africa, the rainfall had a significant increase compared with
that early May. It is reported that heavy rainfall on June 19 across parts of South Africa
prompted severe flooding and mudslides. According to reports, Scottburgh, KwaZulu-Natal
received a total of 128 mm of rain within 24-h (NOAA). June 2008 in Hong Kong with 1364.1
mm rainfall was the wettest month since record began in 1884. This included a rainstorm with
a return period of 1100 years which led to over 2400 landslides on Lantau Island in [25]. The
spread of stratospheric aerosols across the Intertropical Convergence Zone was likely to have
been assisted by the timing of the early May eruption date which was during the southern
hemisphere autumn when solar radiation intensity was decreasing in the southern hemisphere
and increasing in the northern hemisphere.

5. Conclusions and future work

We have tracked the transport and deposition of volcanic ash during the first 8 days of May
2008 Chaiten volcano activity in Chile from 3 May to 10 May using MODIS images. The purpose
was to learn the dispersion pattern of the eruption cloud and to analyze the possible impacts
on rainfall. The volcanic ash detection procedure used in this study is based on the BTD
algorithm using the thermal infrared channels centered on 11 and 12 μm of a multispectral
satellite sensor. The results of BTD volcanic ash retrieval algorithm have been found to show
good agreement with RGB images recorded by NASA-MODIS Terra and Aqua sensors. The
eruption cloud was found to drift northeastwards, southeastwards and eastwards following
the eruptions, reaching the Atlantic coast of Argentina and beyond over a 8-day period. The
timing of heavy rainfall during May/June in South Africa, during June 2008 in central Australia
and during June in Hong Kong (the wettest since record began in 1884) was thought to have
been connected to the dispersion of particulates further downstream. However, the effective
radius of volcanic ash particles and optical depths of clouds detection were not included in
this research, but will be considered in our future work.
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Abstract

The arctic and subarctic regions of Canada are experiencing amplified climate change
impacts, which are disproportionately impacting Canadian indigenous populations’
ability  to  safely  travel  on  land  to  acquire  resources.  Less  predictable  and  more
dangerous travel conditions are impacting not only the health and safety of individu‐
als but also the traditional lifestyles that are vital to the cultural well-being of these
indigenous communities. The University of Waterloo’s Computer Systems Group has
developed a novel decision-support tool termed “Collaborative-Geomatics.” This web-
based informatics tool can allow for the community to monitor, in real-time, the safety
of travel routes. Using handheld GPS tracking systems, the utility of the geomatics
system to present real-time travel conditions was carried out in a Canadian First Nations
community, located along the Western James Bay coast. The results of this study showed
that the collaborative-geomatics tool offers the potential to monitor and store informa‐
tion on the safety of travel routes, helping to promote adaptive capacity and aid in
knowledge transfer within arctic and subarctic indigenous communities.

Keywords: arctic, indigenous, climate change, collaborative-geomatics, safe-travel
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1. Introduction

1.1. Global and arctic climate change

With the release of the Fifth Assessment Report by the Intergovernmental Panel on Climate
Change (IPCC), it is now unequivocally certain that global warming is due to anthropogenic
emissions, resulting in widespread social and ecological impacts [1, 2]. Globally, the atmos‐
phere and oceans have warmed, and there have been more frequent heavy precipitation events
and Heat waves [3]. It is becoming apparent that social systems, like ecological ones, are
vulnerable to climate change, especially to extreme environmental events [3]. The spatial
convergence of climate change impacts will  likely compound risks to already vulnerable
populations, globally [4]. Regions such as the Arctic are predicted to experience disproportion‐
ally greater ecological and social impacts from global warming [5]. Indeed, the duration of the
sea-ice-free season has decreased in the arctic–subarctic region of Canada [6], and sea levels
have changed and will continue to change [7, 8].

The Canadian arctic and subarctic regions have already experienced a general warming of up
to 5°C, the most rapid rates of increasing average surface temperatures in the world [9–11].
Thinning Arctic Sea ice has been documented since 1979 [12]. Satellite imagery of Arctic Sea
ice has shown a disturbing pattern in the rate of decline in ice extent. Winter months show a
rate of decline in ice occurring at 3.5–4.1% per decade, while summer shows a rate of decline
of 9.4–13.6% per decade [12]. Current models are predicting a continued and unprecedented
decline in sea ice in the Arctic. Sea ice retreat in the Arctic will significantly impact arctic
precipitation; the resulting increase in surface evaporation will lead to an amplified arctic
hydrological cycle [13].

Climate models and precipitation trends indicate that there will be a significant increase in
rainfall in arctic regions [6, 14–17]. By the end of the twenty-first century, it is predicted that
precipitation rates in arctic regions will increase by 50% and will peak during the autumn and
winter months, resulting in a likely increase in river discharge [13]. It is very likely that
continued warming will result in changes to spring snow and river melt timing, pushing the
spring peak flows earlier [18].

Increased atmospheric warming has also impacted permafrost in the Arctic. Since the early
1980s, permafrost temperatures have warmed by approximately 3°C, resulting in an overall
thinning and loss in the extent of permafrost. The southern boundary of continuous permafrost
in the arctic–subarctic region has already advanced northward by approximately 50 km [12].
Warming global temperatures are producing climate extremes. Arctic regions have already
recorded increased wind speeds in all seasons [18]. Changes to sea-level pressure around mid-
latitudes have resulted in longer and more frequent winter storms over the lower Canadian
arctic [18]. Continued global warming is predicted to not only have devastating and irrever‐
sible ecological impacts on the arctic–subarctic environment, but it is now becoming apparent
that there will also be equally significant social impacts on the individuals and communities
who call this region home.
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1.2. Risk and challenges associated with climate-related impacts

Globally, indigenous groups represent some of the most vulnerable populations, but are rarely
considered in climate change discourse [19]. It is expected that the world’s indigenous
populations, living in arctic and subarctic regions, are some of the most vulnerable and will
experience the greatest impacts of climate change [20, 21]. Within Canada, indigenous
communities are defined as including First Nations, Inuit, and Métis people. The 2011
Canadian National Household Survey determined that just over 4% of Canada’s population,
approximately 1.4 million people, is indigenous [22]. Canadian indigenous people experience
many inequalities compared to Canadian nonindigenous people, such as shorter life expect‐
ancy, higher rates of diabetes and infectious disease (e.g., tuberculosis), and higher rates of
suicide and substance abuse [23, 24]. Approximately half of Canada’s indigenous population––
referred to as Aboriginal Peoples in the Canadian Constitution─live in northern Canada, on
reserves, or in rural and remote communities [25]. Remote indigenous populations usually
share close relationships with the land and practice traditional land-based lifestyles [26, 27].
Thus, indigenous groups living in Canada’s arctic and subarctic regions are particularly
vulnerable to climate change due to their interconnectedness with the land [25, 28].

Traditional ways of living include hunting and harvesting practices that are guided by seasonal
cycles. Using environmental indicators such as seasonal cycles, indigenous groups have been
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impacts of changing winter conditions is the inability to travel onto the land and participate
in traditional harvesting activities, resulting in emotional feelings of being trapped and
imprisoned [34]. Furthermore, participants reported changes to their eating habits, consuming
more costly and less nutritious store-bought foods.

Related to this ability to access traditional resources and the importance behind such resources,
the safety of indigenous people while out on the land is an important challenge when facing
the impacts of climate change. Younger generations, especially, are viewing the land with more
fear and uncertainty and believe that it is less accessible [35, 36]. Many safety issues are arising
in relation to sea ice and early spring thaws. In many indigenous communities, sea ice is
important for winter hunting activities such as hunting sea mammals [33]. However, ice
conditions are less reliable, and sudden changes in ice conditions are becoming more common,
resulting in safety issues for those who are out on the land and water. Changes in ice thickness,
ice condition, ice movement, and the extent of open water can become a safety issue While out
on the ice hunting. Also, early thawing of ice and ground along bush trails is resulting in
stranded snowmobiles and increased risk of drowning and hypothermia [37]. Sudden changes
to wind conditions often occur rapidly, resulting in dangerous and potentially life-threatening
conditions for those already out on the land and water, making navigation difficult. Research
has shown that the incident rate of accidents in northern coastal indigenous communities has
increased as a result of changes in weather [37]. Furthermore, an increase in extreme weather
events, such as an increase in unpredictable and intense summer storms, presents a risk to
boaters out on the water [37, 38].

Cultural impacts as a result of these climate-induced changes are affecting the psychological
status of many indigenous people [39]. Since traditional harvesting activities allow for the
development of social relationships and the processing and consumption of traditional foods
[39], any disruption to these activities negatively impacts indigenous culture.

Safety while out on the land relates to the predictability of environmental conditions (e.g.,
weather) [33]. Historically, indigenous people have been able to predict environmental
conditions through their intimate knowledge of the land; however, it has become more difficult
to use traditional knowledge to predict environmental events (e.g., ice breakup and weather
patterns), as these things are occurring “at the wrong time” [33]. There is concern that as
adaptive and flexible as TEK is, the rate and magnitude of climate-induced change might be
too unpredictable for TEK to adapt [33, 40]. Therefore, there is a need for decision-support
tools that are culturally appropriate and community-informed that can display real-time
information on the safety of travel routes in arctic and subarctic indigenous communities [41–
43].

1.3. Using geomatics to make travel safer

Since the 1990s, indigenous communities throughout Canada have been using Geographic
Information Systems (GIS) for mapping [44], defined as “an organized collection of specific
computer hardware, software, geographic data and personnel designed to efficiently capture,
store, update, manipulate, analyze and display all forms of geographically referenced infor‐
mation (e.g., raster/vector) that can be drawn from different sources” [45, 46]. Within indige‐
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nous communities, GIS have been used to map information, such as traditional land use (e.g.
hunting, fishing, and harvesting) [44, 47]. The ability to map traditional land-use activities and
assets has played an important role in the collection and storage of TEK. Unlike traditional
paper maps, GIS maps have the ability to be easily developed and modified to represent and
archive current environmental conditions and/or traditions [44]. However, there has been
concern, within the academic arena, that GIS can be a marginalizing technology [48]. Concern
over how people, space, and the environment were represented by GIS systems has resulted
in the shift from GIS technology to public participation GIS (PPGIS).

PPGIS draws upon conventional GIS techniques and builds upon them, allowing for what has
been described as “a wider, more distributed use and development of geographic data,
information, and knowledge” [49]. Although hard to define, PPGIS has been described as “the
use of geographic information systems (GIS) to broaden public involvement in policy making
as well as to the value of GIS to promote the goals of nongovernmental organizations,
grassroots groups and community-based organizations” [49, 50]. PPGIS supports a range of
interactive approaches and web-based applications that focus on ease of use and accessibility
to support youth, elders, women, First Nations, and other vulnerable segments of society that
have often been marginalized and excluded from decision-making processes [48]. Within arctic
and subarctic indigenous communities, PPGIS offers the opportunity for communities to work
together and build a database of value-based information [50]. This collection of information
can lead to increased adaptation with respect to the impacts of climate change, through
empowerment and knowledge sharing, between community and family members. Travel
route (e.g., bush trails, ice roads) mapping on a real-time basis can help community members
to be proactive and make informed decisions, on the safety of trail and ice-road conditions
prior to heading out onto the land. It is with this knowledge, and First Nations community
involvement, that the Computer Systems Group at the University of Waterloo developed a
PPGIS termed “Collaborative-Geomatics.”

Geomatics is a method used to link geospatial data (e.g., cities, regions, and countries) and
attribute data (e.g., social, economic, ecological, and cultural data) [51]. Collaborative-
geomatics is a PPGIS mapping tool based on geo-web technology where participants can
collaborate, discuss, and communicate about community-based cultural asset maps and
databases [49, 52]. The use of the collaborative-geomatics informatics tool by First Nation
groups has been shown to build capacity in the communities through the complementary
archiving of Western science and TEK [53], while having the potential to use the collaborative
real-time function to plan and deal with the complex and dynamic nature of environmental
change within subarctic environments. In this context, we worked with a subarctic First Nation
community to develop and implement a collaborative-geomatics informatics tool that can use
real-time geospatially referenced environmental change information to reduce the degree of
exposure to unsafe travel routes and support the growth of community-wide adaptive
capacity. In this chapter, we will present results from the initial step in our iterative process,
related to the development of a decision-support tool (i.e., the collaborative-geomatics
informatics tool) to reduce the degree of exposure of First Nations Cree people to hazardous
bush travel routes.

Increasing the Adaptive Capacity of Indigenous People to Environmental Change: The Potential Use of an Innovative,
Web-Based, Collaborative-Geomatics Informatics Tool to Reduce the Degree of Exposure of First Nations Cree to

Hazardous Travel Routes
http://dx.doi.org/10.5772/103394

79



2. Methods

2.1. Study location

The western James Bay region of Ontario, Canada, is populated by ~10,000 First Nation Cree
who inhabit four coastal First Nations communities and one town (i.e., Moosonee; Figure 1)
[54]. Within Canada, First Nation Cree make up the largest and most widely distributed
populations of Aboriginal groups. Our focal community, Fort Albany, is located on the Albany
River (52°15′N, 81°35′W), being a remote fly-in community with a population of approxi‐
mately 900 people. Year-round access to the village is by aircraft only, with ice-road access in
the winter. The James Bay winter road is 312 km long and connects the First Nations com‐
munity of Attawapiskat in the north to Moose Cree First Nation (i.e., the community of Moose
Factory) in the south, running by the First Nations communities of Kashechewan and Fort
Albany (Figure 1). The winter road is a vital connection for First Nations communities along
the western James Bay coast. These roads provide access to hunting camps, fishing sites,
firewood collection areas, and other important subsistence activity sites. The winter road is
also a lifeline that connects families that are spread out between the communities along the
coast. With access to Moose Factory and Moosonee in the winter (Moosonee is the northern
terminus of the rail line),more northern communities have the ability to purchase less-
expensive food and household supplies. Fiber-optics and/or satellite Internet connections are

Figure 1. Map of the Mushkegowuk Cree First Nations territory, Western James Bay, Ontario, Canada.
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available in all the western James Bay communities, with cell phone service only available in
Moose Factory and Moosonee.

Fort Albany lies within the Mushkegowuk Territory (i.e., the western James Bay region), which
is composed of ecologically important muskeg and wetlands. This region provides resources
that many First Nations rely upon for subsistence, such as traditional game species (e.g., large
ungulates, small mammals, game birds, fish), which are also socially and culturally important
[55, 56]. Seasonal harvest of traditional foods is still an important part of life for First Nation
Cree along the James Bay coast [29, 54]. The spring harvest, which begins in the middle of
March, with the setting up of spring camps, is an important time of the year for the harvesting
of traditional food that will be stored for consumption throughout the year. This time spent
out on the land is also an important time where families come together to reaffirm their culture
[57]. The spring hunt continues until river breakup, late April or early May [29, 58].

With respect to climate change, this region has already experienced significantly earlier sea-
ice breakup events (0.8 days/year) and significantly longer sea-ice-free seasons (0.32–0.55 days/
year) [6, 56, 59]. The Albany River and Attawapiskat River have also seen earlier breakup dates
impacting the communities along their banks [56, 58]. Sudden warming events in the late
spring combined with increased rainfall events have been attributed to extreme flooding
events in the First Nations communities along the Albany River [60]. It is predicted that by the
year 2100, in the western James Bay region, summer temperatures will increase by 4.1°C and
winter temperatures by 7.5°C, along with an increase in extreme weather events [11].

2.2. The collaborative-geomatics informatics tool

The term collaborative geomatics is defined as “a participatory approach to both the devel‐
opment and use of online, distributed-authority, geomatics applications” [46]. Similar to
neogeography, collaborative-geomatics builds upon the concept of PPGIS and collaborative
GIS, where public participation is paramount [46]. Collaborative-geomatics is a system that is
“centered on the designs, processes, and methods that integrate people, spatial data, explor‐
atory tools, and structured discussions for planning, problem solving, and decision-making”
[61].

What makes our geomatics decision-support tool unique is that it is based on the declarative
application engine termed Web Informatics Development Environment (WIDE). The WIDE
software toolkit [52] was developed over the last 17 years by the University of Waterloo
Computer Systems Group (http://csg.uwaterloo.ca/) to construct, design, deploy, and maintain
relatively inexpensive, secure, complex, web-based, and mobile systems [62]. The WIDE toolkit
allows for a forms/wizards-based approach to system construction that supports the rapid
development and modification of the tool. The WIDE toolkit is based on HTML, JavaScript,
and PHP, and is provided as a software service over the Internet while supporting standard
web browsers [46]. The security model is role-based.

The collaborative-geomatics informatics tool first deployed in 1992 supports a common high-
resolution imagery reference map, similar to how Google Earth® presents data [49] (Figure
2). Some of the basic features of the tool include the entry of real-time geospatial information
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(oral, written, and visual [photographic, video]) that is securely housed within the system
through accessibility safeguards (user names and passwords). The ability to develop groups
within the system and send both public and private messages, similar to Facebook® Messen‐
ger®, supports the development of social networks (Figure 3). Furthermore, a forums section
within the system allows for members to discuss a variety of topics with other users in their
community network (Figure 4).

Figure 2. Satellite imagery on the collaborative-geomatics informatics tool of Fort Albany First Nations.

Figure 3. Group development application on the collaborative-geomatics informatics tool.
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Figure 4. Forum development application on the collaborative-geomatics informatics tool.

The WIDE toolkit and collaborative-geomatics system is a proven technology that has been
successfully used in over 80 governmental, community, resource management, and cultural
heritage applications [46, 49]. One question that had been raised in the initial development of
the geomatics tool with chiefs and councils of Fort Albany First Nations, and community
members, was that of the security/confidentiality of TEK such as locations of hunting camps
and community bush trails that will be collected and stored in the informatics tool. As TEK is
an intellectual property, the security of TEK is of utmost importance. It was explained that all
data (including TEK) would be stored only on secure servers within the communities (and/or
secured data vaults off-site). Added to the physical security aspect of the tool, TEK would also
be operationally secure with access to TEK on the tool being password-protected through
profiles vetted by the chosen representatives of the individual communities. In some cases,
differential access would be controlled by the chiefs and councils, while in other cases by family
gatekeepers [49]. Granting of differential access was dependent on the type of TEK and the
proposed use of TEK [46, 49]. It should be emphasized that other iterations of the informatics
tool have provided storage for sensitive data for government ministries using exactly the same
safeguards as described above [46]. Even the researchers do not have access to TEK on the tool
unless granted by a gatekeeper. Our approach is guided by the indigenous principles of OCAP
[63]: community Ownership, Control, Access, and Possession of their data. With the data
housed within the communities and with the applications accessible through any Internet
connection, the short-term accessibility is not in question. Over the medium- to long-term,
there were concerns about the sustainability of a system that requires upgrades and develop‐
ment from a third-party organization. Given this issue, a stand-alone version of WIDE toolkit
is currently being developed to allow communities to create their own unique applications for
their informatics tool [49]. With some basic training, community members could develop and
evolve their system to meet the future geospatial knowledge needs; this is one of the unique
features of the WIDE toolkit’s wizards-based approach.
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2.3. Field testing of the informatics tool

In 2016, using handheld Global Positioning Systems (GPS) (Garmin® Oregon® 550) alongside
a mobile Apple iPhone® GPS tracking app (Track Kit®), the western James Bay winter road
was tracked by vehicle and the associated .GPX files were uploaded onto the collaborative-
geomatics informatics tool. The Garmin GPS units have been shown by previous research in
the same subarctic community to be easy to transport and were easy to use when tracking and
georeferencing important locations [64]. The Apple iPhone® GPS tracking app (Track Kit®)
was chosen to act as a backup, and to support the tracking of travel routes, due to the low cost
associated with this program and the fact that many community members in Fort Albany own
and use Apple products, such as the iPhone®, iPad®, and iPod®, all of which are supported
by the Track Kit® app. Prior to using the app, the associated background map of the western
James Bay coast was loaded from an Internet connection.

While mapping the winter road, important river crossings and areas known to flood were
marked as waypoints and photographed. These waypoints and photographs were then
uploaded onto the informatics tool. Community bush trails as identified by community
members were also tracked using the same GPS devices. With the help of a community elder,
these trails were driven by snow machine, and the use and cultural importance of these travel
routes were discussed. These tracks were saved as .GPX files and uploaded onto the infor‐
matics tool as a bush-trail layer. Important landmarks were also marked using waypoints and
photographed using both the GPS cameras and Apple iPhone® camera. The collaborative-
geomatics informatics tool supports photographs uploaded in either .JPG, .PNG, or .GIF file
format. The initial evaluation of the potential use of the collaborative-geomatics informatics
tool was qualitative, using a combination of field notes and participant observations [64–66].

3. Results and discussion

3.1. Ease of use (hands-on testing)

With the use of handheld GPS tracking systems, the community bush trails and the winter ice
road were successfully tracked and uploaded as .GPX files onto the collaborative-geomatics
informatics tool. Pictures and important locations were also noted and marked as waypoints
and uploaded (as .JPG files) onto the informatics tool (Figure 5). The ability to add geospatial
information in the form of photographs/videos in real-time has the ability to provide even
more detailed information on travel conditions.

Travel conditions were color-coded according to road and trail conditions (white = clear
conditions; yellow = use caution, some areas may become dangerous; red = avoid use,
dangerous conditions). Five of the most frequently used community bush trails were mapped
along with the 312 km James Bay winter road, both north (Figure 6) and south of Fort Albany.
Overall, the ability to track and map community travel routes and upload them as a layer onto
the informatics tool was simple and accurate; we could visualize the winter road on our base
layer, satellite imagery, to check the accuracy of the waypoints uploaded. While the Garmin®
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GPS units were easy to use, the ease of use and ability to take detailed pictures and notes on
the mobile App made the Track Kit® app the most useful GPS unit in mapping travel routes.
Furthermore, the preloaded high-resolution imagery on the App allowed for navigation while
traveling along the bush trails and winter road.

Figure 5. Geospatially referenced photograph of a river-crossing located on the James Bay winter road.

Figure 6. James Bay winter road, north of Fort Albany First Nations to Attawapiskat First Nation, tracked via handheld
GPS units and uploaded as a layer onto the collaborative-geomatics informatics tool.

3.2. Potential use of the collaborative-geomatics informatics tool to build adaptive capacity

The meanings of names and relationships with the land are often propagated in narratives
from elders to children. This oral history helps First Nation children to develop a sense of place
within their environment from a very young age. This sense of place with the land and the
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memories and connections to a place are responsible for guiding future societal activities, land
uses, oral history, and cultural transmissions of traditional knowledge. It is widely recognized
that First Nations have developed an extensive understanding of the environment [67]. In the
past, this knowledge of the environment was transmitted within and between generations,
solely through oral traditions. This knowledge allowed First Nations to sustain their subsis‐
tence lifestyles and adapt to environmental change. Historically, northern indigenous com‐
munities addressed changes in the environment through TEK and skillsets acquired over
generations on the land [33, 38]. Due to rapid changes in the environment as a result of a
warming climate, knowledge once used to respond and adapt is becoming increasingly
difficult to apply, thus decreasing First Nations’ adaptive capacity [33, 38]. As environmental
change continues in the arctic and subarctic regions, the resulting direct and indirect impacts
have affected and will affect traditional lifestyles [11, 56]. At present, there is a great disconnect
between what is currently being done on a global climate scale in terms of adaptation measures
to climate change and what is needed locally [33, 68]. Increasing a community’s adaptive
capacity is one way in which vulnerability can be reduced [69, 70]. The collaborative-geomatics
informatics tool is a decision-support tool that has the potential to increase the adaptive
capacity of northern Canadian indigenous people to climate change impacts.

The following factors have resulted in less predictable and more dangerous travel routes:
changes in the extent and extant of ice on lakes and rivers; later ice formation; earlier and more
rapid spring melting; changes in the quality and amount of snow; increased precipitation,
especially in the form of freezing rain; increased wind events; unpredictable wind directions;
and an increased number of storms [42, 71–73]. The biophysical impacts of climate change on
the safety of travel routes in the Canadian arctic and subarctic are having negative physical,
social, cultural, and economic impacts on the indigenous communities in the region [27, 36,
41, 72, 74]. The collaborative-geomatics informatics tool has the potential to act as a decision-
support tool to make bush travel safer, by promoting informed decisions prior to bush travel.
The real-time capabilities of the tool can help determine the safest and most appropriate travel
time and route prior to heading onto the land. This knowledge can not only directly protect
the health and safety of individuals but also help relieve the anxiety associated with the
unpredictability of travel routes, thus allowing for greater ability to practice traditional land
use.

The collaborative-geomatics informatics tool would allow for the support of social networks
where real-time travel information in the form of mapped trails/commentary/picture/videos
can be posted online, allowing for further networking and discussion. The sharing of infor‐
mation via social networks can further help to rapidly mobilize community response in times
of crisis [38]. Indeed, Pennesi et al. noted that one of the main barriers toward climate change
adaptation in the arctic was the lack of social networks to support the informed decision on
the safety of land-based activities [74]. Historically, community and family units played an
important role in supporting adaptive capacity in northern indigenous communities [38].
However, with changes to the social and cultural structures, many indigenous communities
have seen radical changes in lifestyles, resulting in the erosion of the social networks that have
historically supported adaptation to environmental challenges [38]. The building and support

Geospatial Technology - Environmental and Social Applications86
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of social networks in arctic indigenous communities to build relationships of support and trust
have been identified as key components in contributing to adaptability [38]. The collaborative-
geomatics informatics tool has the potential to support the use of multiple social networks,
where users can invite others to join a group and share specific information with those
members.

Thus, the collaborative-geomatics informatics tool has the potential to increase the adap‐
tive capacity of arctic–subarctic indigenous communities by supporting the transfer of TEK
(Table 1). The transfer of information can be horizontal across age groups and/or vertical
between age groups [57, 64]. Adaptive capacity has been described as “a set of resources
that represent an asset base from which adaptations can be made” [41]. TEK plays a pivotal
role in the manifestation of adaptive capacity and is considered to be a vital component in
the effectiveness of adaptive strategies [5, 41, 57, 74].

Features of the

informatics tool

Importance

Geospatial information

(oral, written, visual

[picture/video])

• Ability to store geospatial information on culturally important locations, such as bush trails

[64, 43]

• Linking youth and elders through technology and traditional knowledge in the form of oral

history [43]

Social networking

(groups and forum

development)

• Allows for social networking to help decrease the risks associated with heading out onto the

land

• Formation of groups and forums within the geomatics tool to share information and discuss

experiences [43]

• Communication can foster the collaboration and exchange of information between

individuals and communities along the coast that share resources and travel routes [38]

Real-time capabilities • Real-time travel information will allow families and community members to determine the

safest time to travel and empower youth to travel onto the land

• Greater safety can allow for more travel between communities and the resulting transfer of

knowledge

• Real-time capabilities can help with the selection of the safest travel route going out on the

land

Table 1. Key features of the collaborative-geomatics informatics tool important for the monitoring of unsafe travel
routes.

Access to TEK is important in the formation of appropriate adaptive responses that together
support the building of adaptive capacity. The effectiveness and strength of an adaptive
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measure is directly related to the quality of information available [42]. Individuals and
communities that readily have access to TEK will possess the depth of knowledge required to
develop strong adaptive responses toward hazardous and unpredictable travel routes. Three
areas of adaptive responses, flexibility, hazard avoidance, and emergency preparedness, have been
identified as being important in building adaptive capacity in the arctic [4, 42]. The collabo‐
rative-geomatics informatics tool has the ability to support each of these adaptive responses.

The diversity and flexibility in travel routes and resources are vital in the adaptability toward
unpredictable climate events and dangerous travel conditions [38]. The collaborative-geomat‐
ics informatics tool imbues flexibility, by allowing for modification and adjustments to travel
routes prior to heading out onto the land. Based on real-time trail and road conditions,
decisions can be made with respect to changes in the modes of transportation, harvesting
equipment, and location of harvesting activities [41, 75]. Flexibility and diversity in behavior
lead to the development of new skills and knowledge, which can further support the ability
to make flexible and diverse decisions, resulting in increased adaptive capacity. There are some
constraints to behavioral flexibility that can be addressed through features of the collaborative-
geomatics informatics tool. Income constraints have been shown to restrict the flexibility and
diversity of behaviors [75]. Changes in the mode of transportation and type of harvesting
equipment are resource-dependent and can act as barriers to adaptation. Social networking,
such as discussion forums and group settings, supported by the informatics tool, can link
community members together to share resources, exchange ideas, and develop groups that
could pool their resources and travel together.

Hazard avoidance of dangerous and unsafe travel routes is another adaptive response
important to the development of increased adaptive capacity. Technology has been shown to
play an important role in the avoidance of hazards [41]. Geospatial information provided in
the informatics tool acts as a knowledge base from which individuals and groups can accu‐
rately identify real-time hazardous locations and determine the safest way to travel or whether
to travel at all. Photographs and videos uploaded onto the tool can also provide valuable in-
depth detail and real-time travel information of hazards to be consulted prior to heading out
onto the land. The real-time capabilities of the informatics tool can also support more efficient
maintenance and repair of hazardous locations on travel routes. Geospatial information
uploaded onto the tool can inform ice-road maintenance crews of the exact locations of
hazardous conditions, allowing for quicker and more efficient resource use.

When facing unpredictable environmental conditions, emergency preparedness is an impor‐
tant adaptive response. Anticipating adverse travel conditions prior to traveling can help avoid
dangerous and potentially deadly situations. The collaborative-geomatics informatics tool can
serve as a decision-support tool that allows individuals and groups to make informed decisions
on travel conditions before heading out. Some of these decisions are regarding the equipment
and supplies required to travel safely. The modification of equipment used while on the land,
such as more powerful boat engines and snowmobiles, can reduce the degree of exposure to
dangerous situations [38]. The packing of extra and/or emergency supplies (e.g., extra gas,
food, water, and warm clothing) is a proactive adaptive response to hazardous (or potentially
hazardous) situations while traveling on the land. The informatics tool can help in emergency
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preparedness through proactive route planning. Individuals or groups heading out onto the
land can geospatially mark locations on the tool, prior to heading out, to identify where they
could be located if any issues were to arise. Furthermore, the social networking abilities of the
tool can help to bring individuals together to form traveling groups, reducing the likelihood
of emergencies and sharing of supplies to reduce the costs associated with bush travel. In this
way, communities can build their adaptive capacity to deal with an unpredictable environ‐
ment.

A dimension of adaptive capacity is the ability for a community to be innovative [46, 76].
Innovation can be defined as an “initiative, product, process, or program that profoundly
changes the basic routines, resources, and authority flows or beliefs of any social system” [46,
76]. The collaborative-geomatics informatics tool can not only help reduce the degree of
exposure to unsafe travel routes, but it can also allow communities to monitor, store, and
analyze various forms of information to help monitor cumulative impacts of environmental
change in the area. The ability of the informatics tool to nurture diversity and flexibility of
different forms of knowledge is a key attribute to the development of innovation [46]. Increased
innovation would allow for subarctic First Nations communities to not only adapt to climate-
related impacts, but also actively engage in community-based land-use planning, increasing
the community’s ability to respond to change associated with the ever-increasing develop‐
mental pressures in the region [46].

3.3. Future development of the informatics tool

The next step in the development and implementation of this real-time informatics tool will
be to work toward developing it as a mobile App supported by Apple iPhone®, iPad®, iPod®,
and Andriod® phones. This would allow for the tracking and mapping of not only community
travel routes, but also personal and family trails. With the development of a collaborative-
geomatics informatics tool mobile App, the tracking of travel routes and the storage of TEK
could be accomplished without the expense of having to purchase GPS tracking devices.
Furthermore, due to privacy concerns around third party Apps, a mobile geomatics App
would allow individuals to have control over their own information. Having a handheld
informatics tool that could seamlessly track travel routes and automatically upload trails
without the use of cables and computers would allow for greater accessibility by community
members who might not have access to computers and the skills to use traditional GPS devices.
Another added benefit of developing a handheld mobile version of the informatics tool would
be using the tool for navigation. High-resolution base maps used in the current geomatics
system, when loaded onto the tool prior to heading out onto the land, could act as a navigation
tool to help guide individuals or groups around hazardous areas or during emergencies.

Although the monitoring and mapping of real-time safe-travel routes is a specific application,
this collaborative-geomatics informatics tool could also be used for other purposes [64]. Once
the collaborative-geomatics informatics tool has been fully community-tested and modified to
meet the community’s needs, the informatics tool will be given to the community, as a stand-
alone secure system, at no cost to the community. It should be emphasized that this type of
innovative approach and technology has the potential to help other indigenous communities
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in the Canadian arctic and subarctic, as well as indigenous communities located outside of
Canada.

4. Conclusion

It is clear from numerous scientific studies that global air temperatures are rising at a rate never
experienced before. This elevation in temperatures impacts Earth’s ecosystems, resulting in
changes in snowfall, rainfall, sea levels, and species distributions. Such environmental changes
have been well documented, but there has been relatively little research into the impacts of
climate change on social systems. As the global population continues to rise and the divide
between the rich and poor widens, it is expected that climate change effects will dispropor‐
tionately impact already marginalized populations. Furthermore, experts predict that northern
latitudes will experience the greatest impacts of environmental change due to global warming.
First Nations communities in Canada have a history of marginalization and social inequalities,
especially in communities located in the northern regions of the country. Despite these
differences, there has been relatively little done to mitigate the impacts of environmental
change on indigenous people. The ability to travel on land, ice, snow, and by water to acquire
resources is an integral part of many indigenous people’s lifestyles. However, changes to the
extent and extant of ice on lakes and rivers, changes in the quality and quantity of snow,
increased precipitation especially in the form of freezing rain, and unpredictable storms have
resulted in less predictable and more dangerous travel conditions, impacting not only the
health and safety of individuals but also the traditional lifestyle that is vital to the cultural well-
being of these indigenous communities.

This study set out to examine the potential of a novel decision-support tool to reduce the degree
of exposure to unsafe travel routes for James Bay Cree. It is clear from this research that the
collaborative-geomatics informatics tool developed by the University of Waterloo’s Computer
Systems Groups has the potential to allow for the community to monitor, in real-time, the
safety of travel routes. The ability to monitor and store information, on the safety of travel
routes, has the potential to promote adaptive capacity and aid in knowledge transfer within
arctic and subarctic First Nations Cree communities. The use of TEK and Western science as
complementary knowledge system should be encouraged [77]. Increased adaptive capacity
can lead to social and ecological resilience, allowing indigenous communities to better
withstand the shocks and stresses that further environmental change and future resource
development will bring [70, 78, 79].
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Abstract

A precise estimation and the characterization of the spatial variability of microclimate
conditions (MCCs) are essential for risk assessment and site-specific management of
vector-borne diseases and crop pests. The objective of this study was to estimate at local
scale, and assess the uncertainties of Surface Microclimate Indicators (SMIs) derived
from  airborne  infrared  thermography  and  multispectral  imaging.  SMIs  including
Surface Temperature (ST) were estimated in southern Quebec, Canada. The formula‐
tion of their uncertainties was based on in-situ observations and the law of propaga‐
tion of uncertainty. SMIs showed strong local variability and intra-plot variability of
MCCs in the study area. The ST values ranged from 290 K to 331 K. They varied more
than 17 K on vegetable crop fields. The correlation between ST and in-situ observa‐
tions was very high (r = 0.99, p = 0.010). The uncertainty and the bias of ST compared
to in-situ observations were 0.73 K and ±1.42 K respectively. This study demonstrated
that very high spatial resolution multispectral imaging and infrared thermography
present a good potential for the characterization of the MCCs that govern the abun‐
dance and the behavior of disease vectors and crop pests in a given area.

Keywords: airborne remote sensing, infrared thermography, microclimate indicators,
uncertainty, local scale, crop, pests and diseases
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1. Introduction

Microclimates which are defined by agrometeorological conditions are key factors governing
crop development and growth. They influence the abundance, development, and behavior of
diseases and pests which can significantly reduce crop yield [1–6]. A regular use of pesticides
for pest control can result, along with the risk to environmental and human health that pesticides
pose. Microclimate variability induced by agrometeorological conditions represents around
80% of the variability of agricultural production [7]. These conditions are defined through
variables such as the amount of vegetation, surface temperature, surface moisture, air temper‐
ature  (AT),  relative  humidity  (RH),  solar  radiation,  evapotranspiration,  wind speed and
direction, rainfall, etc. Indicators such as percent vegetation cover (PVC) and leaf area index
(LAI) [8, 9], duration of leaf wetness [2, 10], thermal units [11], degree days, vapor pressure
deficit [7, 11, 12], potential evapotranspiration [13], water stress indices [12, 14, 15], drought
indices [16], precipitation indices [17], etc., are related to these variables, and they are used to
quantify and monitor agrometeorological and microclimate conditions on a given territory.
They are also used to identify appropriate times in the management of various agricultural
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and harvesting.  These variables  and their  related indicators  are  defined in this  work as
microclimate indicators (MCIs).  MCIs,  which are related to vegetation,  temperature,  and
humidity levels, are considered critical indicators [18–24] and are used for the prediction and
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estimate other MCIs [2, 7, 25], models of growth and yield forecasting [25–28], models of disease
and pest predictions [10, 23, 29], and models of climate prediction and adaptation to climate
change [30, 31].

Several MCIs are commonly observed using weather stations [18, 32, 33] or in situ sensors [28,
34]. However, data from weather stations are point data that represent the specific conditions
of the observing site. Their spatial representation on a larger area is not always valid [2, 7]
because of the spatial heterogeneity of landscape and microclimate conditions [35]. The low
number of weather stations and their generally sparse geographical distribution does not often
allow for the characterization of the spatial variability of a microclimate within a given area
[18, 32, 33, 36]. The cost and the maintenance of a more densified weather station networks to
ensure better characterization of the spatial variability of microclimates is very high and could
not be supported by the users [32]. In addition, meteorological data are often missing or
erroneous in many parts of the world [7, 34, 36], which limits the application of simulation
models [37, 38] and the management of agricultural practices. Some MCIs are considered
secondary variables and are not commonly observed by weather stations [7], and punctual
observations are not appropriate because of their large spatial variability [29, 39, 40]. Compared
to MCIs related to atmospheric conditions (air temperature, relative humidity), those related
to surface conditions (surface microclimate indicators, SMIs) like vegetation amount, surface
temperature (ST), surface moisture and leaf wetness duration are often not observed by
weather stations [10, 25, 41]. These SMIs are more directly related to microclimate conditions
which affect water status and crop growth as well as the abundance, behavior and develop‐
ment of crop pests and diseases. And, weather stations where these SMIs are actually observed
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frequently report missing or erroneous data due to equipment failure [25]. Punctual in situ
observations over crop fields to address the lack of data on those SMIs are time and resource
consuming, and they do not always result in a good characterization of their spatial variability
[42]. Finally, for some of these SMIs, like leaf wetness, there is no commonly accepted standard
for their measurement [2]. Due to all these limitations, weather station networks are not always
able to meet the requirements for characterization of microclimate conditions in agriculture,
or more specifically in precision agriculture and site-specific pest management [40]. This also
concerns several other applications which require the characterization of the microclimate
conditions.

While SMIs related to surface conditions are less frequently observed by weather stations, they
are the primary variables derived from satellite images. Thus, the estimation of SMIs using
satellite images overcomes the problem of sparse meteorological station networks and the
nonavailability of meteorological data [18]. Some agricultural management programs are
based on MCIs estimated by satellite images, where meteorological ground station data are
not available [39]. These images offer a unique advantage for the estimation and the monitoring
of microclimate conditions in the soil-vegetation-atmosphere interface over vast territories and
at different spatial and temporal resolutions [43–46]. The spatial density of data derived from
satellite images exceeds that of observations from weather stations. These data allow a better
characterization of the spatial variability of microclimate conditions. Compared to point data
acquired in fields, they are less costly in time and money [34]. Vegetation indices (VIs) derived
from satellite images are used to estimate indicators of the amount of vegetation like percent
vegetation cover (PVC) [8, 9, 47, 48] and leaf area index (LAI) [28, 49–51]. The normalized
difference vegetation index (NDVI) is the best known and most widely used VI [11, 28, 34, 45,
46, 51, 52]. It is used in many other applications including estimating biophysical variables
such as photosynthetically active radiation (PAR) and evapotranspiration [53, 54], monitoring
crop growth and development [39, 46, 52], yield forecasting [55–57], and drought monitoring
[16, 34, 58]. Surface temperature (ST) is a key variable to understanding and to characterizing
heat and water exchanges between the surface and the atmosphere [20, 59, 60]. It can be
estimated using several Earth observation systems like GOES, MSG/SEVIRI, NOAA/AVHRR,
Terra, Aqua/MODIS, ASTER, and Landsat-8/TIRS. ST is used for the estimation of other MCIs
such as air temperature [18] and evapotranspiration [37], for the detection of water deficits and
the monitoring of drought conditions [16, 61], and for risk assessment of the occurrence of
diseases and pests [32]. For example, the temperature condition index (TCI), based on the ST
derived from satellite images, is one of the most used to track drought conditions and their
impact on regional and global scales [16]. Variations of surface moisture in the short and long
term and its impact on vegetation can be monitored using stress indices based on ST and IVs
derived from satellite images [56]. The TVDI is one of the most used indices to estimate surface
moisture [21, 24, 62, 63]. Chen et al. [64] used the TVDI estimated using MODIS images to
characterize the spatial variability of surface moisture and to link it with rice farming systems
in the Mekong Delta, Vietnam. Holzman et al. [56] also used the TVDI derived from MODIS
images to estimate soil water availability and to assess crop yield at the regional scale.
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SMIs which are derived from satellite images have a good potential to be used in regional agro-
meteorological systems [35]. Several products related to surface temperature and to vegetation
indices, such as those of MODIS, are also available in the form of time series. These products
are frequently used to study climate and other dynamic phenomena in space and time [65].
However, applications of SMIs are limited either by the low spatial resolution or by the low
temporal resolution of Earth observation systems which are used [60]. ST is derived from
systems such as GOES and MSG/SEVIRI with a very high temporal resolution (15 min).
However, these systems are characterized by a very low spatial resolution (3–5 km). Sensors
like MODIS and AVHRR, which are mostly used to estimate surface temperature in many
applications, are characterized by a high temporal resolution (1 day), but are associated with
a low spatial resolution (1 km). Earth observation systems including Landsat-5/TM, Landsat-7/
ETM+, and Landsat-8/TIRS are those with the best spatial resolution in thermal bands (120, 60,
and 100 m, respectively). However, they are limited by a very low temporal resolution (16
days). The low spatial resolution satellite images used to estimate SMIs often lead to mixed
pixels that combine different elements like bare soil, vegetation, water, impervious surfaces,
and clouds, especially in environments with a strong spatial heterogeneity [32, 48, 59, 66]. These
mixed pixels could lead to significant errors in the estimation of SMIs [32, 66]. This low spatial
resolution also makes it difficult to link data from satellite images and data collected in the
field [45, 48]. Moreover, the presence of clouds limits time series continuity [62]. That is even
more problematic with low temporal resolution Earth observation systems.

Indicators such as ST are characterized by high spatial and temporal variability so they require
observations both at a very high spatial and at a very high temporal resolution [59]. The low
spatial resolution of satellite image products which are associated with ST limits several
agricultural applications that require the characterization of the microclimate and the intra-
plot variability. Site-specific management of crop pests, as well as management of agricultural
inputs and irrigation, requires accurate estimates of crop status and agro-meteorological
conditions and characterizations of their intra-plot variability [42]. Several authors are
unanimous on the fact that management of diseases and pests, characterized by a high spatial
and temporal dynamics, requires specific agro-meteorological information at the field and
microclimate scales [67–69]. Matese et al. [70], for example, have shown that the microclimate
of vineyards is characterized by high spatial variability (intravignoble and intervignoble)
meaning that measurements from meteorological stations located outside of these vineyards
do not effectively reflect the microclimate conditions occurring there. Agricultural practices
rely increasingly on data acquired at fine scales in order to characterize the spatial and temporal
variability of growth factors within the fields in order to improve management of crop diseases
and pests and agricultural inputs, and to reduce the costs for producers and the toll on the
environment and human health. Airborne remote sensing offers several advantages that can
meet this need. Technological advances in recent years in the field of thermal infrared remote
sensing led to the development of very high spatial resolution airborne sensors which allow
the observation of ST at very fine scales [20]. According to Wood et al. [71], airborne remote
sensing is an effective approach to producing accurate information in near real-time to improve
the management of agricultural practices (prevention and control of crop diseases and pests,
fertilizer application, irrigation, etc.) in a precision farming context. It provides accurate
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mapping solutions with flexibility of choice regarding spatial and temporal scales that meet
specific needs [42, 72] such as integrated pest management. It was thus demonstrated that
images at very high spatial resolution are more appropriate to map riparian vegetation which
is characterized by great complexity, great diversity, and spatial variability that manifests itself
in very short scales [73]. Wood et al. [71] used airborne images to map the intra-plot variability
in wheat fields. Zhang et al. [74] used airborne images to assess the effectiveness of different
herbicides in cotton fields. The airborne thermal imagery acquired using infrared thermogra‐
phy cameras was among those used for the detection of water stress [42]. The characterization
of the spatial variability of microclimate conditions at fine scales also requires accurate data
[42, 68, 69, 75, 76]. This requires the assessment of the uncertainties related to tools and methods
used to estimate SMIs.

The aim of our study was to estimate, evaluate uncertainties, and characterize the spatial
variability of surface microclimate indicators (amount of vegetation, surface temperature, and
surface moisture) derived from airborne infrared thermography and airborne multispectral
imaging in the context of prevention and control of vegetable crop diseases and pests.

2. Method

2.1. Study area

The study area is located in the valley of the St. Lawrence River, in the Montérégie West region,
in the south of the metropolitan area, and in the southern part of the province of Quebec,
Canada (Figure 1). The terrain is relatively flat in this study area. Elevations vary between 50

Figure 1. Study area.
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and 73 m (average elevation of 60 m), with slopes varying between 0 and 6.14% (average slope
of 0.77%) (Canadian Digital Elevation Data [77]). Elevations are higher in the northern half of
the study area. Black soil (organic soil) dominates the southern half part, while the northern
half is mainly occupied by mineral soil. Forest and wooded areas are mainly located in the
south. Agricultural lands are mainly used for vegetable crops (potato, lettuce, onion, carrot,
celery, cabbage, etc.) and field crops (soybean and maize). These crops are respectively
distributed in the northern part and in the southern part of the study area. Airborne imagery
acquisition and in situ measurements were performed on July 14, 2006. Ground recognition
was conducted from July 13 to 14, 2006.

2.2. Data acquisition

Figure 2 presents the overall schema of data acquisition and processing.

Figure 2. Overall schema of airborne remote sensing data acquisition and processing.

2.2.1. Airborne multispectral imagery and infrared thermography

The MS4100 camera (Duncan Tech, Auburn, CA) was used for the acquisition of airborne
multispectral images. It was configured to operate with the spectral bands blue (437–483 nm),
green (520–560 nm), red (640–680 nm), and near infrared (767–833). This camera is character‐
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ized by an image plane of 14.2 × 8 mm2, a pixel size of 7.4 microns, an image resolution of 1920
× 1080 pixels, a focal length of 17 mm, and a field of view of 49° × 28.6° (Duncan Tech 2005).

The acquisition of infrared thermography images was performed with the ThermaCAM
SC2000 camera (FLIR Systems Inc., Boston, MA, www.flir.ca). This camera operates in the
spectral band of 7.5–13 μm. Its imaging system is a focal plane array (FPA), with an uncooled
microbolometer detector of 240 × 320 pixels. It has a spatial resolution (instantaneous field of
view, IFOV) of 1.3 mrad and a field of view (FOV) of 24° × 18°, with a minimum view distance
of 0.3 m. This latter parameter allows a maximum spatial resolution of 0.4 × 0.4 mm (absolute
size of each pixel at a distance of 0.3 m). Its thermal resolution or thermal sensitivity is 0.07°C
at an ambient temperature of 30°C, with an absolute precision (systematic bias) of +/−2°C or
+/−2%.

Images were acquired at a flying height of 1200 m, with 13 flying lines oriented south-west/
north-east in the direction of the length. The flying height was determined from an expected
spatial resolution of 1.5 m on the infrared thermographic images and an equivalent expected
spatial resolution of 0.25 m on the multispectral images. A minimum of 30% lateral (side)
overlap was used between images of adjacent flying lines, and a minimum of 60% longitudinal
overlap was used between adjacent images of the same flying line. The calculation of these
overlaps was based on the technical specifications of the infrared thermography camera. In
addition to the remote sensing sensors, the acquisition system also included an integrated
Global Positioning System/Inertial Navigation System (GPS/INS), which is a Position and
Orientation Solutions for Direct Georeferencing (POS/DG) designed by the Applanix Corpo‐
ration (Richmond Hill, Ontario, Canada, www.applanix.com). The acquisition system was
mounted on an airborne platform carried by a Cessna 310L airplane. Image acquisition took
place between 9:15 and 11:06 a.m. Eastern Standard Time, from the western boundary to the
eastern boundary of the study area (Figure 1).

2.2.2. Field investigation and in-situ measurements

A field reconnaissance was conducted before, during, and after the acquisition of airborne
images. It allowed the identification of crop varieties and their phenological stages, the
identification of infield problems related to drainage, water and nutrient stress, abiotic
damage, stress and damage caused by crop pests and diseases, and yield variation. In situ
measurements were carried out for air temperature, relative humidity, surface reflectance, and
surface temperature on various sites in the study area during the acquisition of airborne
images. These measures were used to correct remote sensing images and to assess the accuracy
of estimating agro-meteorological indicators.

2.2.2.1. Air temperature and relative humidity

Air temperature (AT) and relative humidity (RH) were observed from 13 sample points
distributed over the study site. These observations were synchronized to the acquisition of
airborne images. They were carried out at a height of 1.5 m from the surface using hygrother‐
mometers (model 6301032 NexxTech, ORBYX electronics, Concord, ON). These instruments
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have an absolute accuracy of ±1.8°C between 0 and 40°C. A series of nine repeated measure‐
ments at 5 s intervals was carried out by sampling point in order to obtain an average measure
with a resultant uncertainty of ±0.6°C. A device was used to protect the hygrothermometers
from wind and direct sunlight. Continuous measurements at 10-min intervals were under‐
taken during the acquisition of airborne images, using two hygrothermometers installed at
two weather station sites. The comparison of these measures with those acquired by meteoro‐
logical stations at the same time was used to adjust hygrothermometer measurements to those
of the meteorological stations.

2.2.2.2. Surface reflectance

Surface reflectance measurements were performed using a spectroradiometer FieldSpec Pro
(ASD Inc., Boulder, CO, www.asdi.com) at two calibration sites (calibration site 1, CS1, and
calibration site 2, CS2). On site CS1, reflectance measurements were performed on a white
tarpaulin and on green grass. On site CS2, these measures were performed on a water surface
(irrigation pond), bare soil (black soil), and on an onion crop surface. Each reflectance meas‐
urement was preceded by a calibration of the spectroradiometer using a Spectralon (white
reference). Reflectance measurements were carried out simultaneously with the acquisition of
airborne images.

2.2.2.3. Surface temperature

Surface temperature was measured on the same calibration surfaces used for surface reflec‐
tance, during and after the acquisition of airborne images. Infrared thermometer OS643E-LS
(Omega, Stamford, CT) was used for these measurements. This instrument measures the
temperature using the radiation emitted in the 6–14-μm-wide spectral band (thermal infrared).
It has a reading accuracy of ±2%, a display resolution of 1°C, and a field of view of 65 mm
diameter at 1 m. Surface temperature measurements were performed vertically at a target
distance of about 1 m, except for water surface which required an oblique view and a greater
distance for reasons of accessibility. Nine measuring points were sampled across each
calibration surface. Two types of measurements were performed with the infrared thermom‐
eter. The first, called “calibration measurements of the infrared thermometer,” was used to
establish the relationship between the measurements of the thermometer and the infrared
thermography camera and in order to use the thermometer readings as reference data for the
assessment of the uncertainty of the surface temperature derived from the airborne infrared
thermography. The calibration measurements of the infrared thermometer were performed at
four sites, on a white tarpaulin that served as a reference surface. The geometry of the
measurement was configured such that the two sensors covered the same field of view on the
tarpaulin. The second type of measurement was used as a validation measure of the estimation
of the surface temperature by airborne infrared thermography. These measures were
synchronized with the acquired airborne images.
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2.3. Data processing

2.3.1. Radiometric and atmospheric corrections

2.3.1.1. Multispectral imagery data

A gradual darkening effect from the center to the edges was found when reading the multi‐
spectral images. This phenomenon is known as vignetting [78–80]. It was corrected using the
equations proposed by Hasler and Süsstrunk [81].

The empirical line method [82] was used to perform the atmospheric correction of the multi‐
spectral images. This method assumes that there is in the image at least one low reflectance
target (value close to 0) and one high reflectance target (value close to 1) in each spectral band
of the sensor [82–84]. A linear equation that models the relationship between the luminance
(or the digital count) and the surface reflectance is set to convert the digital counts in surface
reflectance values. Although this approach corrects both radiometric and atmospheric effects
and overcomes having to use atmospheric measurements and a radiative transfer model, it
does require reflectance measurements on target surfaces with simultaneous image acquisi‐
tion; this was performed in the present study. The average values of surface reflectance and
digital count of the calibration panels were used to establish regression models and derive the
equation of the empirical line in each spectral band of the sensor. Three target surfaces were
used to determine the empirical line in each spectral band.

2.3.1.2. Infrared thermography data

The infrared camera ThermaCAM SC 2000 is designed for industrial applications and for
research and development applications conducted primarily in laboratory. The format of the
camera output data does not meet the needs of a geospatial application. The ThermaCAM
Researcher software 2001 (FLIR Systems AB, Rinkebyvägen, Danderyd) was used to export
the thermography to a MatLab file (.mat). The structure of this file contains information like
date and time of data acquisition, object signal, emissivity, temperature, characteristics of the
black body and the trigger signal number. From this data structure, the surface temperature
matrix was converted into a 32-bit georeferenced Tagged Image File Format (GeoTIFF) image
file.

The radiometric calibration and atmospheric correction are internal to the thermal camera. The
calibration is performed by measuring digital counts over a blackbody with a known emitted
luminance, surface temperature, surface emissivity, and target distance. The data derived from
this calibration are used to produce a curve associating digital numbers to luminance values
and to establish the relationship between the input luminance of the sensor and the surface
temperature of the target. The latter conversion is made using a series of lookup tables (LUTs)
stored in the camera. These LUTs establish the relationship between luminance values and
blackbody temperatures. When a measurement is made, the system identifies the LUT which
is associated with the digital number signal generated and calculates the temperature value
related to the measurement. The surface temperature calculated by the camera is based on the
law of total radiation [85, 86] by using the infrared radiation emitted by the surface, the
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reflected infrared radiation emitted by the surrounding heat sources, and the thermal radiation
of the atmosphere Eq. (1).

( ) ( )4 4 4 4
cam amb atmST 1 1T T Tet e t t= + - + - (1)

where Tcam, input temperature of the camera (K); ε, surface emissivity; τ, transmissivity of the
atmosphere; ST, surface temperature (K); Tamb, reflected ambient temperature (K); Tatm,

temperature of the atmosphere (K).

The input parameters used by the thermal camera to solve Eq. (1) were surface emissivity,
ambient temperature (temperature of the ambient air from the environment of the object),
temperature of the atmosphere (temperature of the air between the object and the camera), the
target distance, and the relative humidity of the air. These parameters were provided to the
camera before the measurements and were used in post processing to correct the infrared
thermography images. The ThermaCAM Researcher software (FLIR Systems, Boston, MA)
was used for the acquisition and correction of infrared thermography images. The surface
emissivity value was set to 1 in order to calculate an apparent atmospherically corrected
blackbody temperature because the acquisition and processing software accepts only one
emissivity value by image. However, the surface emissivity varies over the image with the
spatial heterogeneity of the observed territory. The surface temperature was subsequently
calculated using the apparent blackbody temperature and a surface emissivity map (Sec‐
tion 2.5.2).

2.3.2. Orthorectification and spatial integration

Airborne remote sensing data acquisition was completed with an average of 350 images per
flight line for a total of 4500 images per sensor. A conventional aerial triangulation was carried
out on subsets of images of different flight lines in order to perform the internal calibration of
the sensors and solve the linear and angular eccentricities of the GPS/INS/camera system. A
total of 30 images and a minimum of 5 control/tie points per image were used for this calibra‐
tion. The images used for the calibration are those whose centers coincide with a point that
can be defined as a control point (intersection of roads, trails, rivers, or center of irrigation
pond, etc.). An algorithm was developed to mark the center of the images to identify those
suitable for the calibration. The resolution of eccentricities consisted of comparing the exterior
orientation parameters calculated by the conventional aerial triangulation method and those
from the GPS/INS system data. Image orthorectification and mosaicking were subsequently
performed automatically for each flight line. Then, a mosaic of different image lines was
completed. The internal orientation parameters and the values of eccentricity from the
calibration, the external orientation parameters from the GPS/INS system data, and a digital
elevation model were used as input data in the OrthoEngine module of Geomatica software
(PCI Geomatics, Richmond Hill, ON) to perform the orthorectification. Data from the Base de
Données Topographiques du Québec (BDTQ, topographic database of the province of Quebec,
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1/20000) was used as spatial reference to collect control points to assess the overall accuracy
of the orthorectified multispectral image and infrared thermography image.

Estimating SMIs by using multisensor data requires a good spatial integration of these data to
ensure the linking of homologous pixels from multispectral and thermal images. To achieve
this, an average filter of 5 × 5 pixels and a resampling to the resolution of 5 m were successively
applied to the 1.5-m resolution images.

2.4. Image classification

A maximum likelihood supervised classification (MLSC) [87, 88] was performed using
airborne multispectral and infrared thermography images to map land use and land cover
(LULC). The MLSC was conducted according to different thematic classes including: full cover
vegetable crop (FCVC), partial cover vegetable crop (PCVC) (vegetation and visible bare soil),
large-scale farming (LSF), hay and grazing land (HGL), organic bare soil (OBS), mineral bare
soil (MBS), herbaceous, forest, impervious surface (IS), and water. Field reconnaissance data
and the Insured Crop Database (ICDB) of the Financière agricole du Québec (www.fadq.qc.ca)
were used to collect both training and validation sites. Error statistics like overall accuracy,
kappa coefficient, producer accuracy, and user accuracy [89, 90] were used to assess the quality
of the classification. The polygons associated with the thematic classes of the classified image
were used to evaluate the spatial variability of SMIs according to these classes.

2.5. Estimation of surface microclimate indicators and uncertainty assessment

2.5.1. Vegetation quantity

The normalized difference vegetation index (NDVI) [91] and percent vegetation cover (PVC)
were used to express the amount of vegetation and the spatial variability of phenological stages
observed in the field. Formulas of NDVI and PVC are, respectively, presented in Eqs. (2) and
(3). Vegetation indices (VIs) can be considered as indicators of the amount of vegetation and
vegetation biomass [92]. The NDVI is one of the best known and most used of VIs [28, 45, 51,
93], particularly for estimating the amount of vegetation and monitoring crop phenology [34,
46]. The NDVI was estimated using airborne multispectral images, as formulated in Eq. (2).
PVC was estimated using the NDVI [94] according to Eq. (3). In a comparative study based on
airborne images, Nagler et al. [48] showed that the NDVI gave a better result for estimating
PVC, compared to soil-adjusted vegetation index (SAVI) and enhanced vegetation index (EVI).
The uncertainty of the NDVI was evaluated by validation using in situ measurements (Eq. (4)).
The formulation of the uncertainty of the PVC (Eq. (5)) was based on the law of propagation
of uncertainty (LPU) and the combined standard uncertainty assessment approach proposed
by the guide to the expression of uncertainty in measurement (GUM) [95].

NIR R

NIR R

NDVI r r
r r

-
=

+
(2)
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where NDVI, normalized difference vegetation index; ρR, reflectance of the red band; ρNIR,

reflectance of the near infrared band.
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max min
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NDVI NDVI
é ù-

= ê ú-ë û
(3)

where PVC, percent vegetation cover; NDVImin, NDVI minimum; NDVImax, NDVI maximum.

The parameters NDVImin and NDVImax, respectively, correspond to the NDVI of bare soil and
the NDVI of full vegetation cover. They were estimated using the classified image according
to the average NDVI values, respectively, associated with FCVC and PCVC classes.
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where u(NDVIairborne), uncertainty of the NDVI derived from airborne multispectral imagery;
NDVIairborne, NDVI derived from airborne multispectral imagery; NDVIin situ, NDVI derived
from in situ spectroradiometric measurements; N, number of observations of the pair (NDVIin

situ, NDVIairborne); a, slope of the linear regression NDVIin situ/NDVIairborne; b, intercept of the linear
regression NDVIin situ/NDVIairborne.
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(5)

where u(PCV), PVC estimation uncertainty; u(NDVI), NDVI estimation uncertainty;
NDVImin, NDVI minimum threshold corresponding to bare soil; NDVImax, NDVI maximum
threshold corresponding to full vegetation cover.

2.5.2. Surface temperature

Surface temperature (ST) was estimated using (Eq. (6)) [96, 97], based on the apparent
blackbody temperature derived from the airborne infrared thermography and the surface
emissivity model (SEM) estimated according to Sobrino and Raissouni [98]. The largest source
of uncertainties in the estimation of the ST derived from airborne infrared thermography are
related to the input parameters of the temperature model (Eq. (1)). They include surface
emissivity model, ambient temperature, temperature of the atmosphere, relative humidity of
the air, viewing distance, error induced by the ambient infrared radiation reflected by the
surface, estimation error of the transmissivity of the atmosphere, and atmospheric radiation
[99]. The surface emissivity model is the most important source of uncertainty [99, 100].
Orthorectification and image coregistration and mosaicking are other non-negligible sources
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of uncertainty. Considering all these uncertainty components, the formal assessment of the
resultant uncertainty of the ST derived from airborne infrared thermography (STairborne) using
analytical methods such as LPU is not easy to achieve. The uncertainty of the STairborne was
estimated by validation, as an experimental uncertainty combining all the above uncertainty
components. The assessment of the experimental uncertainty was performed using in situ
measurements carried out by infrared thermometry (STin situ) (Eq. (7)).

b
1
4

s

ST T

e
= (6)

where ST, surface temperature (K); Tb, apparent blackbody temperature (K); εs, surface
emissivity (0, 1).
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where u(STairborne), uncertainty of the surface temperature derived from airborne infrared
thermography (K); STairborne, surface temperature derived from airborne infrared thermography
(K); STin situ, surface temperature derived from in situ infrared thermometry (K); N, number of
observations of the pair (STin situ, STairborne); a, slope of the linear regression STin situ/STairborne; b,
intercept of the linear regression STin situ/STairborne.

2.5.3. Surface humidity

Surface humidity (SH) was estimated using the temperature/vegetation dryness index (TVDI)
proposed by Sandholt et al. [101]. This index is based on the principle that the direct relation‐
ship between soil moisture and ST is not easy to assess. However, soil moisture is an important
factor in the spatial and temporal variability of ST. It influences ST via evapotranspiration and
the thermal properties of the surface [101]. Also, the status of the vegetation cover is a function
of soil water content. Thus, the curve relating ST and NDVI, commonly known as the ST/NDVI
space, allows the assessment of the moisture conditions of the surface and the estimation of
soil water status [24, 34, 56, 101–105]. For a given site, the point cloud of the relationship TS/
NDVI defines a trapezoidal space. This space is a set of isolines representing different states
of surface moisture [105]. Its left vertical edge represents bare soil, from a dry state corre‐
sponding to an absence of evapotranspiration (Enull), to a wet state corresponding to a maxi‐
mum of evapotranspiration (Emax). The horizontal line of the lower limit of the trapezoid
defines the wet edge with minimum values of ST (STmin). It reflects the increase of the green
vegetation amount along the x axis (increasing NDVI). The slope of the line representing the
upper limit of the trapezoid is defined as the dry edge with maximum values of ST (STmax). Eq.
(8) shows the formulation of the TVDI, which varies between 0 and 1. A value of 1 corresponds
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to dry conditions and is associated with limited water availability. The value 0 corresponds to
maximum evapotranspiration and unlimited water availability.

min

max min

ST STTVDI
ST ST

-
=

-
(8)

where ST, surface temperature (K); STmin, line of the wet edge defining the minimum value of
ST (K); STmax, line of the dry edge defining the maximum value of ST (K).

The line of the dry edge is defined as follows:

maxST  NDVIa b= + ´ (9)

The parameters a and b are the coefficients of the linear regression ST/NDVI determined using
the points defining the upper limit of the ST/NDVI space.

The calculation of TVDI is based on the presence of pixels of full vegetation cover, pixels of
bare soil, and mixed pixels of vegetation and bare soil in the ST/NDVI space. The classified
image was used to identify those pixels in order to compute the point cloud of the ST/NDVI
space and to estimate the edge lines needed for the calculation of the TVDI.

The uncertainty of the TVDI was formulated in Eq. (10) on the basis of the LPU [95].
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where u(TVDI), uncertainty of the temperature/vegetation dryness index; u(ST), uncertainty
of the surface temperature (K); u(STmax), uncertainty of the surface temperature related to the
dry edge of the ST/NDVI space (K); u(STmin), uncertainty of the surface temperature related to
the wet edge of the ST/NDVI space (K).

The uncertainty u(ST) is equal to u(STairborne) (Eq. (7)). Uncertainties u(STmax) and u(STmin) were
estimated using the variance of the residuals of the regression lines, respectively, associated
with the upper edge (Eq. (11)) and the lower edge (Eq. (12)) of the ST/NDVI space.
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where u(STmax), uncertainty of the surface temperature related to the dry edge of the ST/NDVI
space (K); STmax, surface temperature of the dry edge of the ST/NDVI space (K); NDVI,
normalized difference vegetation index (−1, 1); a and b, intercept and slope of the line of the
dry edge of the ST/NDVI space; Npls, number of pixels used to define the line of the dry edge
of the ST/NDVI space.
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where u(STmin), uncertainty of the surface temperature related to the wet edge of the ST/NDVI
space (K); STmin, surface temperature related to the wet edge of the ST/NDVI space (K); ST̄ min,

average surface temperature of the wet edge of the ST/NDVI space (K); Npli, = number of pixels
used to define the line of the wet edge of the ST/NDVI space.

The TVDI estimated from airborne images was validated using in situ measurements of AT
and HR, as surface moisture was not measured during the field campaign. This validation is
based on the assumption that conditions of high surface moisture are locally associated with
lower values of AT and higher values of HR. Conversely, dry surface conditions are locally
associated with higher AT values and lower HR values.

3. Results

3.1. Land use and land cover

Airborne multispectral imaging and infrared thermography helped achieve good classification
results in the study area. Overall accuracy and kappa coefficient of the supervised classification
were, respectively, 84.87% and 0.85. The classified image showed that agricultural surfaces
represent the main LULC of the study area (53.25%). The proportion of this area occupied by
the other LULC themes is 28.82% for forests, 11.66% for hay and grazing land, 2.63% for
impervious surfaces, and 0.28% for water (Figure 3). Vegetable crops and large-scale farming
are the main components of agricultural surfaces. They occupy 23.50 and 17.58%, respectively,
of the study area. The proximity of vegetable crops with organic bare soil (OBS) shows that
they are mainly grown on this type of soil. The presence of OBS on vegetable crop fields denotes
the high variability that could characterize the microclimate of these environments.

3.2. Vegetation quantity

The NDVI derived from airborne multispectral imaging (NDVIaero) varies in the study area
between −0.73 and 0.84 (Figure 4), with an average value of 0.34 and a standard deviation of
±0.31. It is strongly correlated with the NDVI derived from in situ observations (r = 0.994; p =
0.006) (Figure 5). Uncertainty and bias of the NDVIaero, based on in situ observations, are,
respectively, ±0.045 and −0.118. On average, the NDVIaero underestimates the NDVI values by
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about 0.118. The NDVI map shows three major classes of LULC in the study area (Figure 4).
In the first group, IS, dry crop residues, and MBS have NDVI values less than 0. In the second
group, water, OBS, and PCVC have NDVI values between 0 and 0.33. In this category, OBS is
characterized by NDVI values between 0 and 0.29, with an average value of 0.10 and a standard
deviation of ±0.045. The third group includes forest and FCVC surfaces, which are character‐
ized by the highest values of NDVI (NDVI mean = 0.60).

Figure 3. Classification of the land use and land cover using airborne multispectral imagery and infrared thermogra‐
phy.

Figure 4. Variation of the normalized difference vegetation index (NDVI) over the study area.
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Figure 5. Validation and uncertainty assessment of the NDVI derived from airborne multispectral imagery with in-situ
observations.

Average values of NDVI associated with OBS (0.10) and full vegetation cover (0.60) were,
respectively, used as minimum and maximum values of NDVI for the estimation of PVC (Eq.
(3)). Figure 6 shows the map of the variation of PVC over the study area. It varies between 0
and 1, with an average value of 0.48 and a standard deviation of ±0.42. Its resultant uncertainty
varies between 0 and ±0.365 over the study area (Figure 7). The variation of PVC and its
resultant uncertainty according to NDVI is illustrated by Figure 8. PVC uncertainty increases
with NDVI values. Thus, highest PVC uncertainties are observed on areas with greater
vegetation cover and lowest PVC uncertainties are observed on areas with smaller vegetation
cover (Figure 8). The average value of PVC on FCVC surfaces is 0.70, with an average uncer‐
tainty of ±0.279, while PCVC surfaces have an average value of 0.48 PVC, with an average
uncertainty of ±0.215. Comparatively, forest cover is characterized by an average value equal
to 0.90 PVC, with an average uncertainty of ±0.338. PVC is characterized by a lower spatial
variability compared to NDVI, because all NDVI values less than or equal to 0.10 have a PVC
value equal to 0 and, all NDVI values greater than or equal to 0.60 have a PVC value of 1.
However, the spatial dynamics of agricultural surfaces, ranging from bare soil (PCV = 0) to
complete vegetation cover (PCV = 1), is best described by PVC rather than NDVI. To illustrate
this, Figure 9 show the variation of NDVI and PVC values on potato crop fields in different
phenological stages.
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Figure 6. Variation of the percent vegetation cover (PVC) over the study area.

Figure 7. Variation of the uncertainty of the percent vegetation cover (PVC) over the study area.
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Figure 7. Variation of the uncertainty of the percent vegetation cover (PVC) over the study area.
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Figure 8. Variation of the percent vegetation cover (PVC) and its uncertainty according to the normalized difference
vegetation index (NDVI).

Figure 9. Variation of the normalized difference vegetation index (NDVI) and the percent vegetation cover (PVC) over
potato crops at different phenological stages.
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3.3. Surface temperature

Surface temperature estimated by airborne infrared thermography (STairborne) demonstrates a
very high thermal spatial variability over the study area (Figure 10). This variability occurs
both at the intra-plot and local scales. In the period of airborne data acquisition (09:10–11:00
am) and across the study area, the STairborne varies from 290 to 331 K, with an average value of
300.60 K (SD = ±3.42 K). This represents a spatiotemporal variation of more than 40 K over an
area of 56 km2 and a period of about 2 h. The correlation between STairborne and STin situ is very
high (r = 0.99; p = 0.010) (Figure 11). The experimental uncertainty and the bias of the
STairborne compared to in situ observations are, respectively, 0.73 and ±1.42 K.

Figure 10. Variation of the surface temperature (ST) over the study area: (a) ST variation according to soil type, (b) ST
variation according to soil quality, (c) ST variation on crop surfaces according to soil drainage, and (d) ST variation
according to crop varieties and phenological stages.

Figure 11. Validation and uncertainty assessment of the surface temperature (ST) derived from airborne infrared ther‐
mography with in situ observations.
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Table 1 shows the variations of STairborne on various classes of LULC. Highest temperature
values and highest temperature variations are observed on impervious surfaces (STmean = 309.99
K, SD = ±5.12 K, STmax–STmin = 39.5 K). Lowest temperature values and lowest temperature
variations are observed on surface waters (STmean = 296.67 K, SD = ±0.74 K). The standard
deviation of the temperature associated with this class is very close to the uncertainty of
STairborne. Among vegetation areas, forests present the lowest temperature values and the lowest
temperature variations (STmean = 297.87 K, SD = ±0.97 K). Surface temperature values and
variations of full cover vegetable crops (STmean = 298.91 K, SD = ± 1.43 K) are close to those of
large scale farming (STmean = 298.01 K; SD = ± 1.57 K), while ST values and variations of partial
cover vegetable crops (STmean = 302.22 K; SD = ± 2.60 K) are closer to those of hay and grazing
surfaces (STmean = 302.01 K; SD = ± 2.55 K). Temperature variation reached 8 K on full cover
vegetable crop surfaces, while ST varied over 17 K on partial cover vegetable crops. These large
variations are mainly due to soil temperature. ST values are on average higher and vary much
more on organic bare soil (STmean = 307.36 K; SD = ± 3.87 K) than on mineral bare soil (STmean =
304.65 K; SD = ± 2.52 K). The variations of ST on organic bare soil reached 20.33 K and the
difference between the ST of vegetable crops and the ST of organic bare soil reached 21.44 K.
This very high variation of ST on organic bare soil may be due to water status and the high
spatial and temporal dynamics of the temperature of this type of surface.

Surface temperature (K)

Minimum Maximum Mean Standard deviation

Impervious surface 291.66 331.16 309.88 5.12

Water 293.73 298.91 296.67 0.74

Forest 294.84 303.36 297.87 0.97

Hay and grazing land 295.75 311.32 302.01 2.55

Full cover vegetable crop 296.25 304.33 298.91 1.43

Partial cover vegetable crop 297.13 314.16 302.22 2.6

Large scale farming 294.92 305.7 298.01 1.57

Mineral bare soil 297.45 314.31 304.65 2.52

Organic bare soil 297.36 317.69 307.36 3.87

Table 1. Variation of the surface temperature derived from airborne infrared thermography in the study area
according to land use and land cover.

Field survey and in situ observations show that intra-field variability of STairborne observed in
vegetable crops are associated with spatial patterns which are related to

• Topographic variation

• Variation of soil type (organic versus mineral soil)

• Different states of organic matter in black soil crops (decomposed soil, not decomposed soil,
loam)
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• Soil drainage problems in certain areas of the field

• Bare soil versus vegetation areas

• Presence of different crop varieties on the same plot

• Variation of crop phenology on the same field due to different planting dates of crop units

• Water and mineral stress

• Abiotic damage due to phenomena like strong wind, heavy rain, heat stress, farm machi‐
nery, and pesticides

• Stress and biotic damage caused by disease and pests

• Proximity to windbreaks (windproof effect)

• Yield variation

The study area is mainly composed of organic and mineral soil. Organic soils are mostly located
in the south part which was formerly covered by lakes. Hence, a strong relationship between
land elevation and soil type in the area. The values of ST are higher on organic soil compared
to mineral soil. Loam soils are sometime present on organic soil fields. Figure 10a shows a
strong variability of ST between a loam zone (higher values of ST) and an organic soil zone
(lower ST values) on field 53. On some fields, the organic soil is not well decomposed. Its
nutritional quality is reduced. This causes growth problems and gives rise to a high intra-field
variability of ST, which is the case with field 15 on which is grown Chinese cabbage (Fig‐
ure 10b). Poor drainage and flooding caused by underground tanks, for example, can hamper
crop growth and lead to a strong spatial variability of ST due to lower vegetation cover in the
problematic areas of the field. Figure 10c shows a maize crop field affected by poor soil
drainage. The temperatures are higher on the problematic areas of the field due to lower
vegetation cover.

Intra-field variation from bare soil to full vegetation cover is associated with the highest
temperature variabilities observed on the fields (Figure 10d, field G3). ST values are much
higher on bare soil than on full cover vegetable crops. Figure 10d shows temperature variations
above 14 K on field G3, which is a mix of bare soil and vegetation. Different crop varieties are
characterized by varying phenology, canopy structure, and planting dates. This causes a
spatial variability of ST. Figure 10d shows temperature variations between lettuce, celery, and
potato crops. Subdivision of fields according to different planting dates results in a variation
of phenological stages within the same crop variety, hence a variation of percent vegetation
cover and ST within the field. Spatial variability of ST on field M3 (celery crop) (Figure 10d)
is primarily a function of growth stages associated with different planting dates. The lowest
temperatures are those of the vegetation cover of the most mature plants. While higher
temperatures are associated with younger plants, which are characterized by a lower percent
vegetation cover. Spatial variability of ST on crop surfaces are related not only to the variability
of soil and crop varieties but also to several other agrometeorological factors such as soil
moisture, nutrient and water stress, abiotic damage by weather conditions or cultural practices,
and damage caused by pests. Thus, a high spatial variability of ST over a field or crop unit
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may indicate a crop growth problem and therefore reflect variability in yield. Temperature
variability of the field presented at Figure 10c is strongly correlated with yield maps (not
presented here—yield maps were shown by the farmer).

3.4. Surface humidity

3.4.1. Lines of dry and wet edges of the TS/NDVI space and their uncertainties

Figure 12. Cloud points of the ST/NDVI space and estimation of dry edge and wet edge lines.

Cloud points of the ST/NDVI space established with airborne infrared thermography and
airborne multispectral images describe a trapezoidal area where the upper edge is associated
with the highest dry conditions and the lower edge is associated with the highest moisture
conditions (Figure 12). The cloud points of the upper edge were used to establish the equation
of the dry limit (ST = −25.08 × NDVI + 326.09 (K)) with an uncertainty of ±0.757 K, and the cloud
points of the lower edge was used to establish the equation of the wet limit (ST = 291.61 K)
with an uncertainty of ±0.779 K. Both uncertainty values are close to the one of STairborne. The
points of the wet limit are mainly located on the western edge of the study area, while a large
majority of the points of the dry limits are located on the eastern boundary. The western
boundary is the location of the first flight lines’ images, acquired in the morning during the
period of the lowest ST values. The points of the wet limit are located on vegetation surfaces
and on bare soil with low ST values. The eastern boundary is the location of the last flight lines’
images, acquired late in the morning when ST values are higher.

3.4.2. Surface moisture variability and uncertainty components of the TVDI

The map of the TVDI confirms that the wetter surfaces are located on the western side of the
study area and the driest surfaces are located on the eastern part (Figure 13). There are
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however, some drought islands (TVDI > 0.50) in the wetter zone and some moisture islands
(TVDI < 0.30) in the driest zones. Among the drought islands, there are hay, organic bare soil,
and low cover vegetable crops on organic soil (PCV < 0.25). Organic bare soil, full cover
vegetable crops, and partial cover vegetable crops are among the moisture islands observed
in the driest areas. Over the study area and the period of observation, the TVDI ranges between
0 and 1, with a mean value of 0.35 (SD = ±0.097). Its uncertainty varies between ±0.021 and
±0.126 (Figure 14), with an average value of ±0.055 (SD = ±0.016). The histogram of the
uncertainty of the TVDI shows three peaks around the values ±0.033, ±0.040, and ±0.068
(Figure 15). The map of the uncertainty confirms these three peaks which are associated with
three types of surfaces (Figure 14). The first type corresponds to surfaces of low values of NDVI
such as mineral bare soil, hay, and grazing lands. The second type also corresponds to surfaces
of low NDVI values such as organic bare soil and low cover vegetable crops on organic soil.
Areas with a high percent vegetation cover, dominated by forests and full cover crops, compose
the third type of surface on which higher values of uncertainty are observed (Figure 14). This
shows that the uncertainty of the TVDI increases with the NDVI (Figure 16). Figures 17 and
18 show that this uncertainty also increases when the ST or the temperature of the dry limit
(STmax) are near the temperature of the wet limit (TSmin). However, this situation generally
corresponds to a high vegetation cover with low ST values, therefore a tendency to observe
low values of TVDI and higher surface moisture values. These conditions converge toward
the wet limit (Figure 19).

Figure 13. Variation of the temperature/vegetation dryness index (TVDI) over the study area.
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Figure 14. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) over the study area.

Figure 15. Histogram of the uncertainty of the temperature/vegetation dryness index (TVDI) over the study area.
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Figure 16. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the normal‐
ized difference vegetation index (NDVI).

Figure 17. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the surface
temperature of the dry edge (STmax).
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Figure 16. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the normal‐
ized difference vegetation index (NDVI).

Figure 17. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the surface
temperature of the dry edge (STmax).
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Figure 18. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the surface
temperature (ST).

Figure 19. Variation of the uncertainty of the temperature/vegetation dryness index (TVDI) according to the TVDI.

3.4.3. Spatial variability of the TVDI on agricultural surfaces

The TVDI varies between 0.20 and 0.70 across full cover vegetable crop surfaces, with an
average value of 0.39 (SD = ±0.076) and an average uncertainty of ±0.067 (SD = ±0.006). This
shows that the surface moisture is much lower in some agricultural parcels compared to others.
However, full cover vegetable crops are on average wet surfaces rather than dry. This trend
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is also observed on partial cover vegetable crop surfaces where the TVDI varies between 0.15
and 0.93, with an average value of 0.44 (SD = ±0.093) and an average uncertainty value of ±0.058
(SD = ±0.011). Much drier surfaces are observed on partial cover vegetable crops compared to
full cover vegetable crops. On average, surface moisture was higher on large-scale crops
compared to vegetable crops. The TVDI values of the first ones vary from 0.14 to 0.83, with an
average value of 0.31 (SD = ±0.065) and an average uncertainty value of ±0.064 (SD = ±0.009).
Surface moisture of organic bare soils is highly variable (TVDI: AV = 0.48, SD = ±0.116), with
very wet surfaces (TVDI < 0.25) and very dry surfaces (TVDI > 0.75), while mineral bare soil
surfaces are wetter on average (TVDI: AV = 0.33, SD = ±0.063).

3.4.4. Relationship between the TVDI and in situ observations of air temperature and relative humidity

The relationship between the TVDI and in situ observations shows that it is highly correlated
with air temperature (r = 0.88, p = 0.004, Figure 20). However, it does not present a correlation
with relative humidity (r = 0.09; p = 0.826). The correlation between the TVDI and air temper‐
ature verifies the hypothesis that conditions of higher surface moisture (the TVDI value tends
toward 0) are locally associated with lower values of air temperature, while the conditions of
lower surface moisture (the TVDI value tends toward 1) are associated with higher values of
air temperature (Figure 20). Figure 20 shows that the locations at which in situ observations
were made are predominantly wet surfaces (TVDI < 0.50). That did not permit the assessment
of the relationship between the TVDI and in situ observations of air temperature and relative
humidity in drier conditions.

Figure 20. Correlation between the temperature/vegetation dryness index (TVDI) derived from airborne imagery and
in situ observations of air temperature (AT).
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4. Discussion

4.1. Vegetation index and percent vegetation cover

The NDVI estimated using airborne multispectral imaging (NDVIairborne) is an important
indicator of the spatial heterogeneity of agricultural surfaces and their intra-plot variability. It
allows the easy distinguishing of different states of agricultural lands like full vegetation cover,
partial vegetation cover, and bare soil. NDVI values which are associated with these thematic
classes were, respectively, estimated at 0.58 (SD = 0.087), 0.37 (SD = 0.172), and 0.10 (SD = 0.071)
for vegetable crops on organic soil. These values are close to those observed in different studies
using in situ observations if we consider the bias of 0.118 between NDVIairborne and NDVIin situ.
For example, Van De Griend and Owe [92] report a value of 0.157 for the NDVI of bare soil
(sandy loam). Considering all potential sources of error mentioned above and the uncertainty
of NDVI values reported by different studies [106], the uncertainty of ±0.045 of NDVIairborne is
satisfactory. Nagol [106] reports NDVI uncertainty values varying between ±0.023 and ±0.085
according to different types of vegetation and weather conditions. Compared to NDVI, PVC
refers more to a vegetation cover rate and a quantity of biomass. Full cover vegetation has a
maximum PVC value and an absence of vegetation have a zero value. Thus, PVC allows a
better characterization of the amount of vegetation, from bare soil to full vegetation cover. This
characterization would allow a better assessment of phenological stages.

4.2. Airborne infrared thermography, surface temperature of agricultural lands and crop
management

The estimation of ST using airborne infrared thermography (STairborne) allowed the characteri‐
zation of the intra-plot variability of agricultural lands over the study area. This variability is
mainly associated with a variation in the percent vegetation cover, the type of vegetation,
surface moisture conditions, and different types of soil. STairborne thus helps to reveal the
changing microclimate conditions across crop fields. It is a useful variable for the modeling
and estimation of MCIs at local scales. And it offers a high potential for crop management
given its ability to detect problematic areas in the field. The STairborne was estimated with an
uncertainty of ±0.73 K and a bias of 1.42 K with respect to in situ observations. The uncertainty
of STairborne is greater than the sensitivity of the infrared thermography camera (±0.007 K), but
its estimated bias is lower than the accuracy of the camera (2.00 K). The uncertainty of
STairborne is due to the measurement accuracy of the camera, the uncertainty of the surface
emissivity estimated by using in-situ observations and airborne multispectral imagery, the
uncertainty of the atmospheric correction, and the uncertainties of the orthorectification and
image mosaicking. The uncertainty of STairborne is relatively good considering all these sources
of uncertainties. Some conditions and components of the method helped to achieve this good
result in the present study: (1) the clear sky during the acquisition of the airborne images, (2)
the low altitude used for this acquisition which resulted in a low optical thickness, and (3) the
mapping of surface emissivity which helped to reduce the influence of the main source of
uncertainty in the estimation of the STairborne. The estimation of STairborne in clear sky conditions
with a relatively low uncertainty, aligns with the observations of Moran et al. [107] who report
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that in these conditions where visibility is high and water vapor content is low, the atmospheric
correction of thermal images is not necessary because the absorption by atmospheric particles
is balanced by the thermal emission of these components. The uncertainty and the bias of the
STairborne is close to those of the ST estimated using other airborne sensors [108–110] or earth
observation satellites [108, 111–116]. Considering the high intra-plot variability of ST, even if
on full cover vegetation surfaces, the uncertainty of STairborne is satisfactory to characterize the
microclimate conditions of agricultural lands. Using airborne infrared thermography is a
promising approach to characterizing agricultural surfaces and a promising diagnostic and
decision-making tool for crop management. This allows the characterization of growing
conditions along with the occurrence and behavior of diseases and pests through the estima‐
tion of several other MCIs like surface humidity and near surface air temperature.

4.3. The TVDI indicator of surface moisture

The trapezoidal space ST/NDVI and the TVDI estimated using airborne multispectral imaging
and infrared thermography allowed a good characterization of the spatial variability of surface
moisture and its temporal variability induced by successive acquisition flight lines. The
variation of humidity conditions over the study area, from the wet limit to the dry one, is thus
both time and space dependent. This study shows that the ST/NDVI space and the limit lines
defining the TVDI could be established on an intra-seasonal and inter-seasonal basis to assess
surface moisture and could take into account not only prevailing moisture conditions at the
time of image acquisition but also taking into account the dynamics of these conditions
throughout the season and between seasons. The concept of sub-cloud points of wet and dry
limits of the ST/NDVI space and their clear identification were used to improve the estimation
of those limit lines and to assess their uncertainty. The use of sub-cloud points reduces the
subjectivity of the estimation of the limit lines by calculating their uncertainty. Wang et al. [63]
report about this subjectivity and the imprecision that it generates in the estimation of the
TVDI. The concept of the sub-cloud points of the limit lines allows the assessment of this
imprecision and allows this to be taken into account when estimating the uncertainty of the
TVDI. The TVDI was estimated over the study area with a low uncertainty. The analysis of the
components of this uncertainty showed that it is strongly related to the NDVI and the
temperature of the dry limit. The uncertainty of the TVDI increases with the NDVI, and it
decreases with the temperature of the dry limit. Each of these two variables allows a full
expression of the minimum and maximum uncertainty of the TVDI for a given percent
vegetation cover. These results confirm those of Li et al. [21] who also report that the uncer‐
tainty of the TVDI increases with the NDVI and the approximation of the isolines. The TVDI
showed that the intra-plot variability of surface moisture may be quite high on vegetable crop
surfaces. Of two neighboring fields, the spatial extent of one can be mainly characterized by
surface moisture conditions close to those of the wet limit while that of the other one can be
mainly characterized by surface moisture conditions close to those of the dry limit. This reflects
the high spatial variability of the agro-meteorological conditions that could influence the
abundance of crop diseases and pests in the fields.

Geospatial Technology - Environmental and Social Applications128



that in these conditions where visibility is high and water vapor content is low, the atmospheric
correction of thermal images is not necessary because the absorption by atmospheric particles
is balanced by the thermal emission of these components. The uncertainty and the bias of the
STairborne is close to those of the ST estimated using other airborne sensors [108–110] or earth
observation satellites [108, 111–116]. Considering the high intra-plot variability of ST, even if
on full cover vegetation surfaces, the uncertainty of STairborne is satisfactory to characterize the
microclimate conditions of agricultural lands. Using airborne infrared thermography is a
promising approach to characterizing agricultural surfaces and a promising diagnostic and
decision-making tool for crop management. This allows the characterization of growing
conditions along with the occurrence and behavior of diseases and pests through the estima‐
tion of several other MCIs like surface humidity and near surface air temperature.

4.3. The TVDI indicator of surface moisture

The trapezoidal space ST/NDVI and the TVDI estimated using airborne multispectral imaging
and infrared thermography allowed a good characterization of the spatial variability of surface
moisture and its temporal variability induced by successive acquisition flight lines. The
variation of humidity conditions over the study area, from the wet limit to the dry one, is thus
both time and space dependent. This study shows that the ST/NDVI space and the limit lines
defining the TVDI could be established on an intra-seasonal and inter-seasonal basis to assess
surface moisture and could take into account not only prevailing moisture conditions at the
time of image acquisition but also taking into account the dynamics of these conditions
throughout the season and between seasons. The concept of sub-cloud points of wet and dry
limits of the ST/NDVI space and their clear identification were used to improve the estimation
of those limit lines and to assess their uncertainty. The use of sub-cloud points reduces the
subjectivity of the estimation of the limit lines by calculating their uncertainty. Wang et al. [63]
report about this subjectivity and the imprecision that it generates in the estimation of the
TVDI. The concept of the sub-cloud points of the limit lines allows the assessment of this
imprecision and allows this to be taken into account when estimating the uncertainty of the
TVDI. The TVDI was estimated over the study area with a low uncertainty. The analysis of the
components of this uncertainty showed that it is strongly related to the NDVI and the
temperature of the dry limit. The uncertainty of the TVDI increases with the NDVI, and it
decreases with the temperature of the dry limit. Each of these two variables allows a full
expression of the minimum and maximum uncertainty of the TVDI for a given percent
vegetation cover. These results confirm those of Li et al. [21] who also report that the uncer‐
tainty of the TVDI increases with the NDVI and the approximation of the isolines. The TVDI
showed that the intra-plot variability of surface moisture may be quite high on vegetable crop
surfaces. Of two neighboring fields, the spatial extent of one can be mainly characterized by
surface moisture conditions close to those of the wet limit while that of the other one can be
mainly characterized by surface moisture conditions close to those of the dry limit. This reflects
the high spatial variability of the agro-meteorological conditions that could influence the
abundance of crop diseases and pests in the fields.

Geospatial Technology - Environmental and Social Applications128

4.4. Added value of the integration of optical and microwave data for the characterization
of microclimatic conditions and crop identification

The integration of microwave remote sensing data (passive or active) with optical (multispec‐
tral) and thermal data offers several advantages both for the characterization of microclimatic
conditions and for the characterization of land use and land cover (LULC). This integration
makes it possible to characterize both the microclimatic conditions of the surface (surface
temperature and moisture) and the air near the surface (near surface air temperature) by using
optical and thermal remote sensing data and the microclimatic conditions of the soil layers
near the surface (soil temperature and moisture) by using microwave remote sensing data.

Soil temperature and soil moisture are two important agro-meteorological variables. The first
has an influence on both the development of crops and several pests and pathogenic micro‐
organisms in the soil. The second is more directly related to the water content of the soil, and
thus to the amount of water available for the development and growth of crops. But in the
conditions of the presence of vegetation and cloud cover, it is more difficult to estimate these
two variables using optical and thermal remote sensing data. Indeed, in the presence of
vegetation, surface temperature and moisture estimated by optical and thermal data are more
related to the canopy or to a mixed surface composed of canopy and fraction of bare soil, while
microwave remote sensing data offer a better potential for estimating soil temperature and
soil humidity even in the presence of vegetation (low vegetation percent cover) and clouds
[117–120]. For example, Manns et al. [118] used data from the airborne sensor Passive Active
L-band System (PALS) to estimate soil moisture in agricultural and forest areas. However,
some disadvantages are associated with the use of microwave remote sensing for estimating
soil temperature or soil moisture depends on the type of system used. The major one is the
low spatial resolution of passive microwave sensors [117, 119]. The use of radar sensors (active
microwave) has the advantage of a better spatial resolution compared to passive microwave
sensors. However, the estimation of soil moisture using radar images is more difficult because
these data are more sensitive to the surface roughness and to the structure of the canopy [117].

Different crop varieties may have different canopy structures (size and geometry of the canopy,
canopy density, leaf orientation, row direction) at certain phenological stages [121]. As the
radar remote sensing data are highly sensitive to this structural variation [117], their integra‐
tion with optical data acquired at specific periods of the season optimizes the accuracy of the
algorithms used to perform classification of crops [121].

4.5. About the use of airborne-based technologies versus spaceborne-based technologies

Airborne data offer many advantages for the characterization of microclimatic conditions,
identification of different crop varieties, and monitoring of crop condition and phenology. One
of the most important advantages is the flexibility of the choice of spatial resolution, spectral
resolution, and temporal resolution at which the images will be acquired.

Compared to satellite images for which the spatial, temporal, and spectral resolutions are
already set, those of airborne images can be defined according to the needs and constraints of
the user. For example, very high spatial resolution images can be acquired at particular periods
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of the season and at specific times of the day to meet precise needs in agriculture. However,
the spatial, temporal, and spectral resolutions of satellite images would not allow to do so.

The growing interest in the use of drones for remote sensing applications and their rapid
development open the way for a greater access to airborne imagery with reducing acquisition
costs (aircraft rent and pilot fees, flight authorization, etc.), increasing autonomy (the purchase
of a drone and the expertise to operate it are more accessible compared to an aircraft), and
reducing constraints related to airborne mission (minimum permitted flight height, the spatial
resolution increases with the decrease of the flight height).

5. Conclusion

Infrared thermography and airborne multispectral imaging were used in this study to estimate
surface microclimate indicators (SMIs) at local scale and to assess their uncertainties. Normal‐
ized difference vegetation index (NDVI), percent cegetation cover (PVC), surface temperature
(ST) and the temperature/vegetation dryness index (TVDI) were used to characterize local and
intra-plot variability of the amount of vegetation, the surface temperature, and surface
moisture. The ST estimated by airborne infrared thermography offers a high potential for the
management of vegetable crops, as it allows the detection and investigation of problematic
zones in the fields. The spatial variability of surface temperature has been associated with
several growth factors and management practices of agricultural lands such as soil type
(mineral soil, black earth, loam), drainage and soil quality, soil moisture, crop varieties and
their growth stage, and stress (water and nutrient deficit, abiotic damage). This thermal
variability is the result of several agro-meteorological phenomena that govern crop yields, as
well as the occurrence and behavior of crop pests and diseases. The TVDI demonstrated that
intra-plot variability of surface moisture may be quite high on crop surfaces. This reflects the
high variability of microclimate conditions that can affect diseases and pests that are present
on these surfaces. The main limitation of the applications of SMIs derived from airborne remote
sensing is the cost of images acquisition and processing. Planning airborne missions and using
unmanned aerial vehicles (UAV) via a shared service that includes different stakeholders
working in the same territory (agricultural producers, agroenvironmental consulting clubs,
phytosanitary warning networks, etc.) would be able to meet the specific needs of crop
management and integrated pest management (spatial and temporal resolution, periods and
critical management areas), while significantly reducing the costs associated with the use of
such data. Moreover, the rapid development of technologies related to Earth observation
satellites and sensors has led to better spatial and temporal resolutions. The growing availa‐
bility of Earth observation images due to a greater number of satellites in orbit, the advent of
satellite constellations, and various integrated Earth observation programs will allow for
greater frequency of image acquisition over vast territories and at finer scales. This will help
reduce data gaps and enable better monitoring of microclimate and agrometeorological
conditions at local scales.
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Abstract

This chapter shares the experience of two action research projects ReMap Lima and
cLIMA sin Riego, where mapping has been used with three main objectives: to make
visible what is otherwise ‘invisible’; to open up dialogue between different stakehold‐
ers in the city and to arrive at concrete actions, collectively negotiated between citizens
and policy makers. Two case study sites were chosen in Lima, Peru: Barrios Altos (BA)
in the historic centre and José Carlos Mariátegui (JCM) at the edge of the city. The
approach adopted applies  a  participatory action methodology based on grounded
applications and advanced technologies for community-led mapping and visualisa‐
tion. The chapter reflects upon three interrelated sites of the mapping process: the
reading,  writing  and  audiencing  of  maps  and  explores  how  these  can  provide
opportunities  to  break  away  from  the  polar  positions  often  established  between
Claimant/ marginalised group and the state, thus aiming to contribute to a process of
spatial  co-learning  across  typically  confronted  actors.  The  two  case  studies  show
different  possibilities  for  interrogating  the  city  to  provide  a  spatially  and socially
grounded way of co-producing knowledge for action that can contribute to the planning
of just urban futures.

Keywords: Participatory mapping, Counter-mapping, Drones, Spatial justice, Critical
cartography, Urban Global South, Lima

1. Introduction

Acknowledging that maps plays a key role in urban planning and the design and implementa‐
tion of policies, a critical engagement with the ‘work’ they do, how they operate and how they
come to be made, is important. In many cities across the Global South, the use of maps in decision-
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making is increasing. Although maps are often seen as technical means, a shift to positioning
them as political devices brings to view the political economy and the unequal development
landscape that characterises these cities.

In Lima, the state is investing considerable resources in the production of cartographic
information. However, this production is predominantly linked to particular projects or mega-
infrastructural developments, making evident the fragmented cartographic landscape of the
city where certain areas are over-mapped while others remain under-mapped.

For several decades, Lima has developed through land invasions rather than formal planning
[1, 2]. Since the 1940s, the city has undergone an explosive demographic growth to reach an
estimated 9 million population in 2015. This process has been underpinned by the inability of
city authorities to keep up with the required provision of housing and basic services and also
accurately record the extent of Lima. Although a detailed updated overall map of the city does
not exist, certain areas have been recurrently mapped supporting dominant visions of how the
city is and should develop.

We understand maps as ‘neither neutral nor unproblematic with respect to representation,
positionality, and partiality of knowledge’ (p. 101 in Ref. [3]). Because maps are statements
that support the actualisation of ideas [4–6], there is a close relationship between the way in
which space is framed and the actions that are given potential with this framing. In this sense,
hegemonic representations of how the city should develop can play a role in fostering
exclusionary socio-environmental processes. We hereby seek to contribute to the growing
critical cartographic and development planning literature to understand how and under what
conditions mapping can support socially and environmentally just processes and outcomes.

Much has been written about how maps are part and parcel of dispossession and control, but
also resistance. Of particular weight, due to the number of academic contributions, is the link
made between map-making and hegemony of the state that dominates map production [7, 8].
An insightful addition to this body of the literature is the notion of ‘unmapping’ as a form of
control. Roy [9], in her article on informality, argues that systems of deregulation and unmap‐
ping are interlinked and that regimes of urban governance often operate through them. She
explores how state purposefully leaves the peri-urban areas of Calcutta unmapped because
doing so allows considerable ‘territorialized flexibility to alter land use, deploy eminent
domain, and to acquire land’ (p. 81 in Ref. [9]). Thus, ‘unmapping’ can be interpreted as a
means of control as well as accumulation.

In recent years, there has been a growing literature in development planning focussing on the
role of mapping as a tool for resistance in response to the marginalising authoritative maps
produced by state agencies. Here, mapping is adopted as a tactic to enhance the negotiation
capacity of excluded groups when fighting towards just processes of recognition and equitable
distribution of resources [3]. Several scholars have explored how the mapping of indigenous
territories has been used to bolster the legitimacy of customary claims over resources in legal
battles [10, 11]. In the urban context, grassroots actors are adopting mapping as a means to
contest evictions and relocations [12] and to claim their entitlement to services and urban
infrastructure [13, 14].

Geospatial Technology - Environmental and Social Applications144



making is increasing. Although maps are often seen as technical means, a shift to positioning
them as political devices brings to view the political economy and the unequal development
landscape that characterises these cities.

In Lima, the state is investing considerable resources in the production of cartographic
information. However, this production is predominantly linked to particular projects or mega-
infrastructural developments, making evident the fragmented cartographic landscape of the
city where certain areas are over-mapped while others remain under-mapped.

For several decades, Lima has developed through land invasions rather than formal planning
[1, 2]. Since the 1940s, the city has undergone an explosive demographic growth to reach an
estimated 9 million population in 2015. This process has been underpinned by the inability of
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These accounts can be understood as various forms of ‘counter-mapping’: a term pioneered
by Peluso and defined by Harris and Hazen as ‘any effort that fundamentally questions the
assumptions or biases of cartographic conventions, that challenges power effects of mapping,
or that engages in mapping in ways that upset power relations’ (p. 115 in Ref. [3]). One of the
dominant aspects in counter-mapping is the fundamental polar positions established between
the ‘us’ (the claimant and marginalised group) against the ‘them’ (the state). This contributes
to very long battles where the power and action space is constantly struggled over. Moreover,
counter-mapping does not preclude participation and indeed it can solely be expert-led [15].

This chapter explores the possibility of opening up participation in counter-mapping to include
a wide range of actors in two research projects led by the authors: ReMap Lima1 and cLIMA
sin Riesgo2. Adopting a Participatory Action Research methodology that promotes the
‘plurality of knowledges’, the mapping process is explored as an opportunity for spatial co-
learning through an incremental process of network building among ordinary citizens,
planners, policy makers, researchers, and advocates. Adapting Rose’s visual methodologies
approach [18], the chapter explores how new possibilities for transformative change might be
created through three interrelated sites in the mapping process: reading, writing and audiencing
of maps [19].

Two case study sites are chosen: Barrios Altos (BA) in the historic centre of Lima and José
Carlos Mariátegui (JCM) at the edge of the city. These two neighbourhoods are contrasting not
only because of their geographic location but also because the centre has been over-mapped,
while the periphery has been rarely recorded through official mapping efforts. Thus, these two
areas capture distinct processes of cartographic marginalisation: those of misrepresentation
and omission.

2. An overview of the case studies

2.1. Barrios Altos in the historic centre

Barrios Altos (BA) is a deprived and overcrowded area which experienced a steady decline in
the living conditions since the 1970s due to a general lack of public and private investment.
Local dwellers, mostly impoverished tenants, face the risk of health problems related to
inadequate basic services, the structural collapse of buildings and frequent fires caused by
precarious electricity connections. Despite being declared a UNESCO world heritage site in
1991, the area is undergoing rapid changes propelled by an illegal land market (Figure 1). Due

1 ReMap Lima is an 18 month project led by the authors that began in November 2013 to interrogate the nature of
cartographic representations of marginalised neighbourhoods in Lima In addition, the project explored the possibilities
of opening up the writing of maps to ordinary citizens through the adoption of grounded applications and advanced
technologies for community-led mapping and visualisation. For more information, see Ref. [16].
2 Building on ReMap Lima, cLIMA sin Riesgo was launched in February 2015 with support from Climate and Develop‐
ment Knowledge Network (CDKN). This action-research project focusses on everyday risks that often go unnoticed,
examining how they are produced, where they accumulate and who they affect. It evaluates the public and private
investments that are made to cope with and mitigate risk and seeks to produce knowledge and co-funding mechanisms
to disrupt urban risk cycles (for more information, see Ref. [17]).
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to its strategic location at the geographic centre of the city, and in close proximity to several
planned infrastructure projects as well as the central market of Metropolitan Lima, the land is
in high demand. Land traffickers use various techniques from coercion to violence to take
possession of residential properties and illegally changing them to more profitable uses such
as storage facilities for the central market (Figure 2). In this way, many of the historic buildings
are quietly converted while keeping the facades intact, where new structures are erected
replacing the antique interiors. This process affects negatively the built environment eroding
the cultural heritage and leading to the eviction of many vulnerable inhabitants who have lived
there for generations. These processes are somewhat ‘invisible’ as they are often physically
hidden from the street and tolerated by the Municipal authorities.

Figure 1. A building in Barrios Altos marked as ‘Property under litigation’, a sign that illustrates the disputes and con‐
flict with land traffickers posing as owners. Source: Photo by Rita Lambert.

Over time, the city centre has been repeatedly mapped from different perspectives. Existing
thematic maps produced by government agencies depict Barrios Altos as a poor zone,
overcrowded, with high criminality and at risk of physical collapse. These thematic maps are
compiled by PROLIMA, a special municipal body in charge of the strategic vision for the
renovation of the historic centre and the Masterplan 2025 [20]. They substantiate the argument
for the demolition of 40% of the area [21] and its renovation through private investment which
would capitalise on the cultural heritage but in effect lead to gentrification [22, 23].

An interview with the former architect of the plan for the historic centre reveals the assump‐
tions underpinning the mapping of the area to substantiate current redevelopment plans:

‘This area is like a black hole, it is difficult to extract information, as it is difficult to access … Moreover,
many properties are not registered. Not everything can be mapped. We have limited capacity so we
concentrated our efforts on certain parts and we second guess what happens in other parts’ (interview
with the head architects of PROLIMA, May 2014).
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Figure 2. The storage facilities that violate the building height restrictions for the historic centre and come to replace
the old structures within an area deemed of monumental value. Source: Photo by Rita Lambert.

Most of the illegal land use changes into storage facilities are not recorded by official maps.
Moreover, when representing risk, institutional maps mainly take into account the construc‐
tion materials of the buildings and the probability of their collapse in the event of an earth‐
quake, thereby disregarding other man-made risks (Figure 3).

Figure 3. Map showing the scenario of risk of disaster in the event of an earthquake. The map depicts most of Barrios
Altos in red at the highest risk of physical collapse. Source: PROLIMA 2013.
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Official maps of the area do not consider the daily risks that threaten the most vulnerable
segments of the local population, such as fires due to sparks created from exposed cables
compounded by the flammable materials held in the storage facilities, or the spread of
epidemics due to lack of adequate water and sanitation. For example, a diagnostic map from
the public water utility company SEDAPAL portrays this area as well serviced with potable
water (Figure 4). However, the last infrastructure investments made in this area date back to
1970 (interview with SEDAPAL, May 2015), and the infrastructure is old and prone to leakages.
This leads to the contamination of potable water as well as the weakening of the traditional
adobe building structures due to the humidity generated. Furthermore, not all households are
serviced with potable water. One house, that used to accommodate a single family, is now
typically subdivided to accommodate several families of tenants, who, in many cases, rely on
a single water point in the courtyard of the quinta or multi-family housing unit. In some
instances, water is rationed by the inhabitants themselves, as they often rely on one metre and
share the bill.

Figure 4. SEDAPAL map showing an extensive water network in the whole historic centre, portraying the area as well
served with potable water but in effect hiding the reality of many residents who do not enjoy individual water connec‐
tions. Source: PROLIMA 2013.

This type of map conceals the severity of the problem, funnelling public investments elsewhere
whilst thousands of residents struggle to access water in an area considered the foundation of
the city of Lima. Although the historic centre has been over-mapped through time and is, at
the moment, at the centre of government projects, everyday risks are rendered invisible.
Moreover, because the renovation of the area remains a top-down endeavour with the
diagnostic and proposal stages removed from the reality experienced by tenants on the ground
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and with no active intervention to stop the negative processes, the loss of the cultural heritage,
which includes its people, is rapidly occurring. The vacuum in effective management, the lack
of a robust diagnosis of the lived reality in the area and the exclusion of inhabitants from
participating in decision-making processes to redevelop the area, limit the scope of urban
renovation projects and programmes.

2.2. José Carlos Mariátegui at the periphery of the city

In the absence of a national housing policy and affordable land in the central areas of Lima,
the urban poor are forced to occupy informal settlements on the steep slopes at the city's edge.
Many of these areas coincide with the local ravine ecosystem or ‘Lomas Costeras’: an essential
ecological infrastructure for recharging the aquifers that guarantee water for Lima and regulate
the effects of climate variability. Located in San Juan de Lurigancho, the most populated and
poorest district of Lima, José Carlos Mariátegui (JCM) is one of these areas and was established
in the 1990s through a first wave of invasions. Constituted by various settlements, each
working within its own boundary, JCM suffers from uncoordinated actions and fragmented
planning, which contribute to the production and reproduction of conditions of risk for the
local dwellers (Figures 5 and 6).

Figure 5. The continuous occupation of the steep slopes in JCM leads to the production and reproduction of risks and
the increased vulnerability of the inhabitants. Source: Photo by Rita Lambert.
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Figure 6. As people flatten the plots to then build their house, they contribute to the instability of the slope and in‐
crease the risk for others. Source: Photo by Rita Lambert.

Overall, the area is rapidly urbanising with the continuous influx of people. Moreover, large-
scale land traffickers operate here to capitalise on the barren areas of land upslope by opening
up new roads, dividing the land into plots and selling them off. The never-ending occupation
of the steep slope is exacerbating the vulnerability of the population, as access to basic services
becomes ever more difficult for those located in the upper part and the increased instability of
the slope worsens the risk of rockfalls and structural collapse of retaining walls.

In contrast with BA, JCM is under-mapped with few and often outdated maps produced by
municipal authorities and Civil Defence. These maps only partially capture the risks that
threaten the area and exclude the newly established settlements, as these have emerged after
the stipulated cutoff date of 31 December 2004 for formal land titling by the National Govern‐
ment. As the residents consolidate these settlements under precarious physical and legal
conditions, they are often excluded from public plans and investments to improve housing,
basic services and social facilities.

In order to gain official recognition from the district government, local community organisa‐
tions—also known as Agrupación Familiar (AF)3 —hire professional topographers to produce
schematic plans of their own settlements, which are then submitted to the local municipality
(Figure 7). Only once these plans have been certified by the latter, can the inhabitants begin
the process of requesting basic services such as water and electricity.

3 An AF is a community organisation that governs by the facto all collective affairs in the neighbourhood and operates
as the interface with governmental institutions and programmes, as well as with neighbouring settlements and informal
land traffickers.
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Figure 7. An example of a certified map. Source: Quebrada Verde, JCM.

Figure 8. The vertical staircases of JCM are planned and built in such a way that they increasing the risk of accidental
falls. Source: Photo by Rita Lambert.

Participatory Mapping to Disrupt Unjust Urban Trajectories in Lima
http://dx.doi.org/10.5772/64303

151



These plans or maps are diagrammatic and lack any details of the context, such as adjacent
settlements or contour lines. They represent the terrain as flat, thereby failing to record the
risks associated with the occupation of the steep slopes. The lines on the map are directly
transposed onto the ground, demarcating the plots that will soon be occupied. In most cases,
the layout works against the contour lines making it difficult to access the plots through the
resultant steep stairs and paths and increasing the risk of accidental falls (Figure 8).

These plans are also used by community organisations to subdivide plots further up slope. In
the absence of public recognition and investments, the selling of new plots carved out of the
slopes is often regarded as the only viable financial source to improve the liveability of the
most consolidated parts of the settlement. In short, these abstract plans do not reflect the
challenges associated with the exponentially increasing risks produced by the urbanisation of
the area.

Landing in these conflict-ridden contexts, the research projects ReMap Lima and cLIMA sin
Riesgo built upon an existing network of partner organisations and local community groups
with whom the authors established a productive working relationship in 2012, in support of
existing processes for transformative change. These projects have a strong mapping compo‐
nent where the reading, writing and audiencing stages are used to improve the spatial
knowledge of these areas and to identify how risk is distributed and with what consequences
for the most vulnerable. Besides the ambition of producing robust evidence and counter-map
how these areas are represented, the mapping process is designed to bring together various
stakeholders from state authorities, local communities, academics, NGOs, and to open up
critical reflection and foster the design of integrated responses and co-financing mechanisms
to reduce and prevent risk.

3. Sites of participatory mapping

3.1. The site of reading

The reading of maps refers to the critical questioning of ‘who’ maps and what is included/
excluded. Focussing on official maps that dominate the framing of particular areas helps to
bring into view who and what is left ‘off the map’ and why. This interrogation contributes to
the examination of the socio-environmental power struggles at play and the actions that are
justified through cartographic devices. The process of reading maps as texts that bring forth
particular arguments [24, 25] facilitates the identification of those cartographic devices to be
rewritten to contest hegemonic representations. Recent literature has provided valuable
insights into how maps work, arguing that maps are not fixed representations but are rather
in constant flux, as each encounter with a map produces new meanings and engagements with
the world [26]. Although reading is subjective, we contend that a collective reflective position
can be attained when the reading of maps is a debated process.

The projects seek to create such spaces for critical reflection to interrogate why certain
representations and ways of mapping are stabilised, what consequences these might have and
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how new possibilities can be imagined for more inclusive representations that can effectively
contribute to breaking risk accumulation cycles. For example, cLIMA sin Riesgo facilitated
several forums bringing together public entities who work on disaster risk management,
preservation of cultural heritage, urban regeneration, infrastructural service provision, urban
development planning and land use zoning. One of the objectives was to contrast and evaluate
the different methodologies adopted by these organisations to map risk.

The discussion confirmed that everyday risks and episodic disasters are often disregarded.
Most institutions define risk management strategies, relying on sectoral statistics and often
outdated and non-georeferenced data. Agreeing that this approach limits a comprehensive
understanding of the spatial distribution of risk and its accumulation over time and also
hinders the design of effective structural solutions, participants agreed on the importance of
reconsidering how risks are cartographically captured. Moreover, public institutions con‐
firmed that they rely mostly on scientific studies and the prediction of large-scale disasters as
principal tools to identify and visualise risk on official maps. Last, but not least, they acknowl‐
edged the need to take into account everyday risks to enable a prospective approach to risk
management and prevention.

However, the established official way of mapping risk overlooks the potential of knowledge
co-production through participatory mapping processes in the identification of small-scale
hazards. Integrating interdisciplinary and inter-institutional platforms into the mapping
process has proven to be effective in bridging the ‘them’ and ‘us’ divide and questioning the
entrenched institutional modes of framing risk as well as marginalised areas and how they are
cartographically represented.

Figure 9. The aerial photographs produced by the drones were used in various workshops and focus groups, with lo‐
cal dwellers actively engaging in their critical reading. Source: Photo by Rita Lambert.
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Moreover, the production of robust data that make visible many of the otherwise ‘invisible’
changes occurring in the study areas creates more traction to address such changes.

In February 2014, the ReMap Lima project started with the production of high resolution 2D
and 3D images captured through drones. The unregulated environment in Lima regarding the
use of drones made it possible to produce these images. As one of the co-investigators notes,
this would not have been possible to do in London and such a high resolution image cannot
be attained (interview with Andy Hudson-Smith, June 2015). Although there is controversy
regarding the application of drones, as they are typically associated with military use and
surveillance, if used sensitively, they can help advance the visualisation of recurrently
disregarded realities. We could not rely on satellite images because they were outdated and
did not provide the level of detail required to analyse and capture dynamic ongoing changes.
The images produced were highly revealing and easier to read than any other drawn map,
particularly for the inhabitants that had never seen their neighbourhood from this perspective
(Figure 9). A new reading of the areas could be attained through two important factors: the
level of detail captured, and the scale jump which the bird's-eye view provided.

In BA, the view from above made visible the otherwise ‘unseen’ processes occurring behind
both conserved and deteriorating facades. This included the storage facilities and the build‐
ings, which had experienced eviction (Figure 10). Moreover, from the 3D digital model, one
could discern the violation of building height restrictions stipulated for the historic centre,
which occur behind facades that mask such processes (Figure 11).

Figure 10. Close-up detail on the 2D image of BA showing the eviction of one muti-family housing unit, Isaias Clivio.
Source: ReMap Lima.
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Figure 11. 3D point cloud produced with the drone to show building heights in BA. Source: ReMap Lima.

In JCM, the high-quality images exposed the different practices adopted by land traffickers,
such as the tracing of plots to be urbanised and the opening up of new roads. Unlike the maps
produced by the AFs, the 3D image revealed the topography and the risk produced by the
continuous urbanisation of the steep slopes. Furthermore, this image captured the whole
ravine, showing the shifting borders and the loss of ecological infrastructure as the lomas are
encroached (Figure 12). It also made evident the disjunctures between the various settlements,
raising awareness of the ravine as a system which needs consolidated planning efforts at a
larger scale. As a JCM inhabitant and mapper notes:

‘People often don't know what is happening at the back of their own settlement … Working with this
technology has meant that a lot of information was gathered about the risk areas. With the drone images,
the leaders realised that new roads were being opened and they started to pay attention to the matter,
raising awareness of their community and promoting the planning and safeguarding of open spaces’
(interview with JCM inhabitant, May 2015).

Figure 12. 3D point cloud of JCM. Source: ReMap Lima.

The production of cartographic images that can be easily read is crucial to engage local dwellers
and gives them a sense of empowerment. As one of the local partners and co-investigator notes

Participatory Mapping to Disrupt Unjust Urban Trajectories in Lima
http://dx.doi.org/10.5772/64303

155



in the case of BA: ‘for the neighbours, having this aerial photo, is like having the urban block in their
hands… it has given a lot of information… the mapping process has helped to strengthen social
organisation’ (interview with Silvia de los Rios, July 2015).

01-3D scanning using drones
SenseFly eBee drones were used to capture aerial images, as
well as point clouds with the height of building and terrain.

02-Generation of Mesh
Using a 3D computer program (Rhino), the point cloud
was triangulated and converted into a mesh.

03-Digital Modeling
Based on the 3D mesh, the buildings were modeled in detail.
The heights were provided by the mesh whilst the details of
the buildings were taken from the 2D aerial images.

04-3D printing
The digital file produced was 3D printed in ABS plastic
with a 3D Maker-Bot. As this is an automated process, it
permits the completion of models in a short period of
time.

05-Final details on the physical model
To make it easier to identify buildings, photographs of the
facades were adjoined to the models and the aerial images
were used as a base.

06-Projection on physical models.
Various variables collected were projected onto the
models to facilitate their reading.

Table 1. The process from the drone image capture to the printing of 3D models for planning for real workshops.

Table 1 explains the process adopted to use the drone data to make physical models that can
be used in planning for real workshops with community groups. Being able to produce various
outputs—from a model of the whole ravine in JCM which can be handheld to a large aerial
image where people can immerse themselves—helped to grasp the spatiality of problems at
various scales and to guide discussions about the scale of action required, as well as informing
the site of writing of new maps.
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3.2. The site of writing

The site of writing focuses on the collective decision of what to map, how to map and towards
what end. It also encompasses the actual process of data gathering in the field and its repre‐
sentation on maps. The writing process began with a discussion of ‘why to map’ together with
community mappers comprised of women and men inhabitants and community leaders from
the two areas. Mapping was identified by the participants as a means to document and
denounce otherwise invisible practices. It was also seen as a strategic activity to understand
trends and ongoing processes of change by institutions and real estate developers. Moreover,
the process was also seen as a useful means to identify the social and material resources of a
neighbourhood and to promote strategic interventions.

Subsequently, transect walks were designed together with local dwellers (Figure 13), and the
variables to be recorded were also agreed. A manual, as well as a digital process, was used to
gather the data (Figure 14).

Figure 13. The mappers of BA collecting information during the transect walk. Source: Photo by Rita Lambert.

The manual process involved the use of the drone images as base maps and the annotation of
relevant information identified through the transect walks. The map was completed with the
stories, experiences and knowledge of local dwellers through photographs and short-filmed
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interviews, which were keyed into online maps. In parallel, the digital process used a number
of open source mobile phone applications such as Epicollect+, MyTracks and Twitter4, which
helped the systematic data collection, and the speedy integration of the georeferenced surveys
in Quantum GIS. We organised training workshops in order for participants to learn how to
use these programmes and to visualise the information gathered. Although there was differ‐
ential engagement among community mappers due to the agility required to work with such
technologies, the main aim of these workshops was to allow everyone involved to become
familiar with the way the technology works and its possibilities. The capacities required within
each of the mapping teams were flexible enough to allow different roles to be comfortably
filled by participants.

Figure 14. Preparing for the transect walk together with community mappers. Source: Photo by Flora Roumpani.

For cLIMA sin Riesgo, a total of 700 georeferenced surveys were undertaken at different scales,
including information at the household level in both areas, at the block and multi-family
housing unit level in BA, and at the settlement level in JCM. The survey questionnaires contain
social and economic aspects such as the local dwellers’ individual and collective capacity to
save and investments made to mitigate risk. The questionnaires also recorded physical aspects
such as living conditions, construction materials and the type and state of available infrastruc‐
ture and services, as well as the specific hazard that affect each area. This knowledge comple‐
ments scientific and sectoral studies, determining with more precision the location of physical
threats and revealing other sources of risk and vulnerabilities. Moreover, it allows an under‐

4 Epicollect+ provided the recording of a number of variables in a survey format at point location; MyTracks was useful
for line tracing, and Twitter was experimented with as a real-time collector ideal for purposes of emergency reporting.
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standing of the inhabitants’ perception of risk and the identification of the capacities required
to respond to these risks effectively and preventively.

The information-gathering process in the field promoted the interaction of community
mappers with a large number of women and men dwelling in both areas. In the case of JCM,
mapping across settlements was important to establish new social relations, reflect collectively
upon common problems and discuss ways to consolidate efforts, halt urban expansion and
plan this area. The mapping process was articulated to a series of capacity-building workshops
run by CENCA (Instituto de Desarollo Urbano), a progressive NGO and partner in cLIMA sin
Riesgo with a long-established presence in the area. The entire process helped raise awareness
and strengthen local capacities and encouraged the participation of community leaders and
local inhabitants. This process was particularly targeted towards young people, who were
trained as community mappers, enabling them to gain a better understanding of the reality
affecting their own neighbourhoods. In BA, the leaders took the opportunity to reach out to
their neighbours, explaining the importance of self-enumeration and mapping, not only to
make visible the conditions in which they live but also as a means to strengthen social
organisation and collective action. As stated by two of the mappers in BA:

‘They [those involved in ReMap Lima] began mapping from the air and then we walked from door
to door. As community leaders, we became aware of many problems: lack of water services, lack of
electricity, collapsed sewerage pipes. Despite being in the modern era, we still live precariously’
(interview with local leader and BA mapper, May 2015).

‘The mapping process was useful to me and the other mappers and helped us to understand the reality
of the neighbourhood. For us tenants, the project helped us to see that we have to organise ourselves to
fight for better housing conditions’ (interview with BA mapper, May 2015).

3.3. The site of audiencing

The site of audiencing involves making collective decisions on who should see the maps, where
they should be displayed and how to frame new interpretations emanating from the contrast‐
ing of existing and newly written maps. A cyclical process is thereby established as one moves
back to the site of reading, evaluating the meanings that emerge from new written maps.

An important consideration concerns the exposure of sensitive information, particularly when
working with vulnerable and highly contested territories such as BA and JCM. In both areas,
if misappropriated, the data collected could be used against its intended aims and further
promote land trafficking. Because the mapping process includes government institutions and
various actors, which might have multiple and overlapping identities (for example, a local
leader might have vested interests to engage in the pirate subdivision of plots), issues of co-
option and questions of who owns the process and the Information need careful consideration
[27].

Foreseeing how the cartographic information produced could be misappropriated and by
whom is an important aspect of counter-mapping. As demonstrated by various scholars,
serious questions are raised regarding the unintended negative consequences of counter-
mapping [10, 11, 28, 29]. In the two projects discussed, the researchers from UCL and the
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partner NGO hold the bulk of the sensitive information. However, as sharing what emerged
throughout the research process is strategically important to expand the network of allies and
advocates and provide a learning platform, various forums were devised. On the one hand,
workshops, exhibitions and international conferences5 provided the space to attract a wide
audience, including community-based organisations, government institutions, academics,
activists and even remote mappers.6 On the other hand, we provided an online platform to
share non-confidential qualitative and quantitative information produced throughout the
research. This takes the form of a publicly accessible ‘Online Story Maps’ hosted by (ESRI)
digital platform (Figure 15). These maps offer a nuanced reading of the actual conditions
shaping urban risk and allow those involved in the research, as well as other audiences, to
understand how risk accumulation cycles operate, thus enabling a reframed diagnosis of the
process of urbanisation in risk, but without disclosing information that could potentially
exacerbate such process.

Figure 15. Online story map publicly available can be easily navigated to apprehend: (1) the different causes of every‐
day risk and episodic disasters; (2) where and why potential impacts manifest; (3) who is affected, why and where; (4)
the relationship between different types of risk; and (5) the actions and investments made to mitigate or reduce risk.

Displaying the information with a clear narrative, which includes photographs and video
testimonies from local dwellers, and structuring the information under different themes for

5 The projects were exhibited at the COP21 in Lima, public exhibitions in London (The Building Centre, July 2015) and at
various sites in Lima since November 2015, reaching over 3000 visitors. Moreover, they were presented at various
conferences including: GISRUK Leeds 15–17 April 2015 and Foro Centro Vivo, Lima 28 April 2016.
6 The projects drew in the unforeseen involvement of remote mappers. Within three days that the 2D drone image was
donated to OpenStreetMap, mappers from afar staked their piece of the earth. JCM was traced discerning the dirt roads,
staircases and building structured. Examining Lima on OpenStreetMap, one sees that this is the only area in the periphery
that has been mapped with such detail.
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each area, guide viewers in the reading of these maps, reframing the problematic and the
actions that need to be taken. All the while providing credible quantitative evidence accom‐
panied by the actual voices of those living in that reality, the online story maps move away
from using strict cartographic conventions. They thus suspend the need to ‘appropriate the
state's techniques and manner of representation to bolster the legitimacy [of claims]’ (p. 384 in
Ref. [10]), which reveal but inherently abstract, efface and omit [11, 10, 30]. Many negative
unintended consequences of counter-mapping (especially of indigenous territories) have been
attributed to the ‘forced’ adoption of the cartographic conventions in order for the information
not to be dismissed in dialogue with authorities.

4. Concluding remarks

The two action-research projects examined in this chapter have provided an invaluable
experimentation space to push new possibilities for the spatial analysis of marginalised areas
that are altogether omitted or misrepresented in official maps. It has also shown how the
articulation of different types of knowledge throughout the mapping process can offer a more
precise and comprehensive spatial and social diagnosis.

The three sites of mapping, reading writing and audiencing, show different opportunities for
how one can interrogate the city and provide a spatially and socially grounded way of
producing knowledge for action. Besides enabling the creation of legitimate and robust
evidence for the understanding of risk, these sites play different roles in facilitating co-learning
and the co-production of knowledge through an incremental process of network building
among local dwellers, researchers, planners and advocates. These three sites are not only
interrelated but also iterative.

Reaching beyond the local site of map production by those putting forward their claims, the
chapter shows that it is possible and effective for counter-mapping initiatives to consider at
points the inclusion of the very institutions that play a role in propagating the dominant
framings of the areas. Also, one cannot strictly pertain to the hegemony of the state and see
institutions that constitute it, as a solid impenetrable unit. The research reveals that officials
have the capacity and the will to reflect on what needs to be changed and aspire to work
towards more socially and spatially just outcomes. More needs to be done on this front to open
up spaces for collective reflection and to move beyond the everyday constraints that might
limit such opportunities, as one official notes: ‘we are so busy earning a living, we have no time or
energy to think about how and why things could be different … we do what has been done because it is
less trouble … but if we have a chance to stop and think, anything is possible’ (interview with official
from Civil Defence, October 2015). Overall the challenge is always to sustain and scale up
multiple engagements and carve new avenues for those excluded in the city to have a voice in
urban policy and planning issues and conceptions. Notwithstanding that knowledge produc‐
tion is a site of power struggles, using the mapping process to foster a political space for
dialogue, can open-up new opportunities to coordinate the transformative actions required to
interrupt unjust urban trajectories.
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With respect to scaling up, there have been some advancements made in cLIMA sin riesgo,
propelled to a large extent by the mapping process, that relate to the setting up of local
observatories7. These are platforms devised with local communities and institutions that will
continue monitoring through mapping how risk operates and how it can be addressed.

On another note, ensuring that the mapping from the air using drones and mapping from the
ground with community mappers goes hand in hand was a crucial aspect for the demystifi‐
cation of technology. The articulations of various mapping methods served the very practical
purpose of enabling local dwellers to have accessible means to engage with the problematic
and analyse it at different scales, raising awareness and critical reflection and promoting
alternative framings and imaginations of the future. As the potential impact of such technol‐
ogies in these kinds of contexts is still unknown, it is crucial to critically evaluate the potentials
and limitations of such tools in advancing grassroots practices and claims for resistance.

In our experience, one has to acknowledge the role that the technology itself and innovative
visualisations can play in fostering progressive and constructive iterations in the reading,
writing and audiencing of maps; whether this is linked to the possibility of grounding such
methods to enable local dwellers to become active players in the use and construction of
cartographic devices, or by attracting the attention of institutions to seek more efficient ways
to capture how cities change and why. The participation of citizens in state mapping initiatives
can be problematic if it is only a means for the efficient and cheap collection of data. Although
questions of co-optation are still present, the writing of inclusive representations of the city is
an avenue towards the planning of more socially and environmentally just cities. Towards this
end, counter-mapping, together with other processes, can play a key role in fostering genuine
commitment towards participation in knowledge production and spatial co-learning.
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Abstract

Synthetic aperture radar interferometry (InSAR) and the related processing techni‐
ques provide a unique tool for the quantitative measurement of the Earth’s surface
deformation associated with certain  geophysical  processes  (such as  volcanic  erup‐
tions,  landslides  and earthquakes),  thus  making  possible  long-term monitoring  of
surface deformation and analysis of relevant geodynamic phenomena. This chapter
provides an application-oriented perspective on the spaceborne InSAR technology with
emphasis on subsequent geophysical investigations. First, the fundamentals of radar
interferometry and differential  interferometry,  as  well  as  error  sources,  are  briefly
introduced.  Emphasis  is  then placed on the  realistic  simulation of  the  underlying
geophysics processes, thus offering an unfolded perspective on both analytical and
numerical approaches for modeling deformation sources. Finally, various experimen‐
tal investigations conducted by acquiring SAR multitemporal observations on areas
subject to deformation processes of particular geological interest are presented and
discussed.

Keywords: deformation modeling, geodesy, SAR interferometry

1. Introduction

Synthetic aperture radar interferometry (InSAR) is a consolidated technique that can be used
to measure crustal deformation (associated with volcanic and seismic activity) by exploiting the
phase of coherent electromagnetic signal. Specifically, theoretical foundation of the space‐
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borne  (across-track)  SAR  interferometry  and  multitemporal  advanced  processing  (e.g.,
persistent-scatters and small-baseline based) methods are introduced. First, we methodologi‐
cally address the InSAR methods allowing the detection, mapping and monitoring of the Earth’s
crust dynamic processes (surface displacements) over large temporal and spatial scales with
centimeter to millimeter accuracy. Then, emphasis is placed on the geological processes taking
place within the Earth's crust, such as the movement of a seismogenic fault, the accumulation
of magma, variation of pressure in the magmatic reservoirs, subsidence. All these phenomena
can cause deformations of the Earth's surface and can then be investigated by suitably exploit‐
ing satellite observations. For such a purpose, different approaches are possible; most of them
are based on the inversion of a suitable model describing the underlying geophysical phenom‐
enon. Specifically, in order to model the deformation sources both analytical and numerical
approaches have been adopted. Within the analytical framework, we first address the most
commonly adopted models, which can reproduce the observed deformations in a sufficiently
realistic way by using simple functions characterized by a limited number of parameters.
Although these analytical models neglect several aspects (e.g., the properties of magma inside
the source,  including its  compressibility,  the asperities  along the fault  plane,  the crustal
heterogeneity), they still constitute a valuable tool for a preliminary evaluation on the localiza‐
tion and geometric characteristics of the sources. Numerical modeling, which is a powerful tool
allowing a realistic simulation of geophysical processes, using heterogeneous information and
efficient computational methods, is also discussed. Specifically, various numerical modeling
techniques exist; one of the most used in the Earth Sciences community is the finite element
method (FEM) technique. In fact, both the increase in knowledge about geophysical systems
and technological development of numerical techniques have enabled the implementation of
complex modeling approaches, which are able to represent the spatiotemporal variability of the
geophysical parameters of interest. In this context, the use of FEM multiphysics tools repre‐
sent a new frontier for the understanding of the spatial and temporal evolution of different
geodynamic settings, such as volcanic and seismic areas and those with a hydrogeological
instability. Therefore, a comprehensive and updated perspective is offered in this chapter,
encompassing advanced remote sensing and geophysical methodologies addressed to the
analysis  of  several  natural  phenomena resulting in the deformation of  the Earth’s  crust.
Furthermore, a wide range of case studies is shown, which have systematically been investi‐
gated by considering data acquired by different SAR sensors (e.g., ENVISAT, RADARSAT-2)
on diverse hazardous geologically zones of interest (e.g., areas interested by seismic and volcanic
activity).

2. SAR interferometry principles

Synthetic aperture radar (SAR) [1–3] is a coherent active microwave remote sensing system
widely used for the Earth remote sensing. SAR instruments can be mounted on-board aircraft
or satellite platforms; they work by transmitting microwave pulses toward the Earth surface
and by measuring the microwave echoes scattered back to the sensor platform. SAR is an
imaging system with all-weather, day and night sensing capability that nowadays plays a key
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role for the remote sensing of the environment, and in particular it is extensively used for the
monitoring and analysis of several geophysical phenomena. A SAR image can be represented
as a two-dimensional (2D) complex signal in the (range, azimuth) plane, whose amplitude
gives information about the backscattering coefficient of the ground and the phase includes
information about the distance traveled by the emitted electromagnetic pulses from the
transmitting to the receiving antennas (i.e., twice the sensor-to-target distance). Range (or cross-
track) direction is associated with the “line-of-sight” distance from the radar to the target,
whereas azimuth (along-track) direction is parallel to the flight track.

One of the major applications of the SAR technology is represented by the SAR interferometry
(InSAR) technique [4–8], which is based on the measurements of the phase pattern difference
between two complex-valued SAR images acquired from two different orbital positions, and
allows the measurements of geomorphological characteristics of the ground, such as the
topography height and its modifications over time (e.g., the surface deformation) due to
earthquakes, volcano eruptions, or other geophysical phenomena. Historically, the main
application of InSAR was the retrieval of the terrain topography [4–6]. Depending on the time
when SAR acquisitions are collected and the orbital position of the SAR platform, different
InSAR configurations can be distinguished. Cross-track interferometry is a basic SAR inter‐
ferometric configuration in which two antennas are arranged across the track of the platform,
as sketched in Figure 1.

Figure 1. SAR interferometric configuration. The black lines show radar signal paths for an interferogram pair formed
by the antennas M and S.

Within this context, two different acquisition modes can be distinguished: single-pass mode is
characterized by two distinct antennas on the same platform (in the standard form, the former
(master) operating in a receive/transmit mode and the latter (slave) in the receive mode only),
the repeat-pass mode concerns two separate passes of a single SAR mission over the same area
[8]. In addition to the standard cross-track interferometric configuration, we also mention the
along-track interferometry (ATI), which is a single-pass configuration with two antennas
displaced with a baseline parallel to the direction of motion: airborne ATI has been mainly
used for measurement of ocean currents.
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Let us consider again the imaging geometry depicted in Figure 1, where the first SAR image
(i.e., the master image) is taken from the orbital position labeled to as M, and the second one
(i.e., the slave image) is captured from the orbital position labeled to as S, at a distance b
(typically referred to as baseline) from M. Taking into account simple geometrical considera‐
tions relevant to the considered geometry, it is possible to uniquely locate each imaged targets
on the ground and get an estimate of their heights (namely, z) above the reference plane. As
evident by inspection of Figure 1, if a same target (namely, T) is observed from two orbital
positions (master and slave), the difference between the path lengths to the target can be
correctly measured and the target height z above the assumed zero-altitude plane can be
unambiguously determined. This is obtained by taking into account the following two
equations (see Figure 1):

2 2 2( ) 2  sin( )r r r b r bd J a+ = + - - (1)

cosz H r J= - (2)

where δr and δ + δr represent the radar ranges from the corresponding antennas to the target
point being observed, ϑ is the radar look angle, α represents the angle of the baseline relative
to the horizontal, z denotes the scatterer height above the flat-earth reference, H is the height
of the sensor above the reference surface, and b is the physical separation of the antennas that
is referred to as the baseline of the interferometer. Notice that (1) derives from the application
of the cosine rule to the MST triangle and (2) is a simple geometric relationship linking the
target topography (z), the sensor height (H), and the radar side-looking angle (ϑ). The ability
in successfully reconstructing the unknown topography (z) is strictly dependent on the
capability to precisely measure the slant-range difference δr, which represents one of the
known terms of the system of Eqs. (1) and (2).

Historically, a first methodology to get an estimate of δr was represented by the radar
stereometry [8]. In such a method, the master/slave sensor-to-target slant-range difference δr
is measured by searching for the position of the same target in the two coregistered SAR images
(being the coregistration the operation needed to spatially aligned one SAR image to another)
[9, 10]. As a matter of fact, the attainable accuracy in estimating δr is on the order of the system
slant-range resolution. However, it can be proved that the errors in the estimation of δr is
magnified by a factor on the order of the ratio ( rb ) when they are transferred to height meas‐
urements [3], thus leading to an inaccurate measurement of the target height (z). For instance,
we consider ENVISAT platform parameters ( rb = 800km

100m ) and suppose being able to discriminate
reasonable range displacements of 1/16th of the pixel spacing through use of correlation digital
processing (i.e., the accuracy in measurement of δr is equal to 0.5 m). Accordingly, the
achievable height accuracy turns out to be on the order of kilometers, and it is evidently
unacceptable. This is the main reason of InSAR success with respect to radar-stereometry.
Indeed, the intrinsic limitation of radar stereometry due to the low attainable accuracy of
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topography is fully overcome by SAR interferometry, which allows estimates of the master/
slave slant-range difference δr with centimeter accuracy over region of hundreds of kilometers
in size at a resolution of a few meters.

In the following, we primarily refer to the repeat-pass cross-track SAR interferometry config‐
uration. Let us consider again the imaging geometry depicted in Figure 1 and assume the radar
system has infinite bandwidth and hence with point-wise image pixels [4]; under this condition
the master and slave complex-valued SAR images (pixel-by-pixel) can be mathematically
represented as follows:

$
1 1

4exp j rp
l

g g é ù= -ê úë û
(3)

$
2 2

4 ( )exp j r rpg d
l

g é ù= - +ê úë û
(4)

where γ1 and γ2 are the complex reflectivity functions of the master and slave scene, respec‐
tively, and λ denotes the operative radar wavelength. It is worth mentioning that the phase of
each single-channel radar signal is composed of two parts: the first represents the propagation
phase that depends on the radar-scene distance, the second depends on the inherent electro‐
magnetic scattering process. The interferometric phase map (so called interferogram) is formed
on a pixel-by-pixel basis starting from two coregistered (complex) SAR images as follows. For
each pixel, the phase difference between the two SAR images is extracted by simply multi‐
plying the first image (master) by the complex conjugate of the second image (slave) and then
by extracting its phase term.

From (3), we get the radar observable (interferometric phase):

° $ $ *
1 1 2

*

2 ] 4[ ( )arg arg exp j rpy g g d
l

g g é ù= = ê úë û (5)

where the asterisk denotes the complex conjugate operation, and the symbol arg[·] refers to
the phase extraction operation (i.e., the operator that extracts the phase of a complex number
restricted to the ]− π, π] interval). Assuming that the scattering mechanism on the ground has
not significantly changed (arg[γ1] = arg[γ2]) between the two passages of the sensor over the
illuminated area (mutually coherent observations), the measured interferometric phase ψ̃
depends upon purely geometric information on the path difference δr only:

° 4( )arg exp j rpy d
l

é ù= ê úë û
(6)
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The observed interferometic phase ψ̃ is 2π-ambiguous, and the obtained image is called an
interferogram; the pattern formed by the iso-phase contours is commonly referred to as fringe
pattern. Since the ambiguity of the phase measured modulo 2π, the information on range
difference δr is then retrieved from the interferogram by applying the phase unwrapping
operation [11, 12], thus estimating the inherent absolute interferometric phase ψ, which is given
by:

4 rpy d
l

= (7)

Note also that: ψ̃ =W (ψ), where W is the so called wrapping operator [13].

The difference in range from the scatterer to the two aperture phase centers is well approxi‐
mated (since b ≪ r, the commonly referred to as parallel-ray assumption is reasonable) as δr =
−b sin(ϑ – α), where b|| = −b sin(ϑ – α) is just the projection of the baseline along the line of sight
(LOS) (Figure 1). Thus, the interferometric phase is given by:

4 sin( )bpy J a
l

= - - (8)

It is worth highlighting the height sensitivity of ψ, through the dependence of the actual look
angle ϑ, on the altitude z = H – r cos ϑ, where H is the height of the sensor above the reference
surface. By considering the standard interferometric configuration depicted in Figure 1, it is
possible to relate the computed interferometric phase to the (unknown) height topography [4].
At first order, we obtain:

0 0
0

4 4( )
sin
bz bsin z

z r
y p py y J a

l l J
^¶

» + = - - -
¶ (9)

where z is the topography height above the flat earth reference, ϑ0 is the look angle to the point
target assuming zero local height, b⊥ = b cos(ϑ0 – α) represents the projection of the baseline
normal to the line of sight from the radar to the target and it is an important parameter referred
to as orthogonal baseline. The first term in (9), ψ0 = 4π

λ b sin(ϑ0 −α), accounts for phase contribution
generated by an ideally flat-earth (z = 0); this term is present even in the absence of any height
elevation above the reference surface. Indeed, across the image swath there will be an equiv‐
alent flat-earth variation in phase resulting from the corresponding change of incidence angle
from near to far swath edge. In order to avoid that the result be biased with position across
the swath, the flat earth variation needs to be removed from the recorded phase, thus removing
(interferogram flattening) the high-frequency modulation induced by the “flat earth” phase
variations to facilitate further processing. The second term in (9), Δψ = ∂ψ

∂ z z, is the resulting
“flattened” phase difference, with the height sensitivity of the interferometer given by
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∂ψ
∂ z = − 4π

λ
b⊥

rsinϑ0
. From (9), it is clear that the sensitivity of the interferometer could be improved

by increasing the baseline. The perpendicular baseline, however, cannot exceed the limiting
case (critical baseline) for which the variation in the interferometric phase difference across a
single ground range resolution element is 2π. Indeed, the arising decorrelation phenomena
lead to significant noise disturbances in the computed interferogram [14], hence fraction of the
critical baseline are typically used in practice. As a result, a compromise is needed for the
selection of the optimal baseline: on the one hand, large interferometric baselines would
guarantee more accurate estimates of height topography, on the other hand, large baseline
interferograms are more affected by decorrelation noise.

2.1. Detecting surface deformation

In this section, we shortly review the basic principles of differential SAR interferometry.
Indeed, satellite SAR interferometry nowadays is mostly used for the detection/monitoring of
surface changes occurring between the two passages of the radar sensor over the same scene.
In such a case, as a slightly change across the two SAR acquisition times occurs in the imaged
scene (due to, for instance, subsidence, landslide, or earthquake phenomena), an additive term
associated with the radar line of sight (LOS) component of the surface displacement arises in
the interferometric phase, in addition to the phase dependence on topography. By the
inspection of the imaging geometry depicted in Figure 2, at the first-order we get:

4 4
sinLOS LOS

LOS

bz d z d
z d r
y y p py

l J l
^¶ ¶

D = D + D = - D + D
¶ ¶ (10)

Figure 2. Differential SAR interferometry geometry. Note that r2 − r1 = (r2 − r̃) + (r̃ − r1)≅ΔdLOS + δr , where

δr = r̃ − r1 is the path difference in the absence of any ground displacement, and the LOS displacement, ΔdLOS, is given
by ΔdLOS = Δd sin(ϑ – αD), with Δd representing the amplitude of the displacement from P1 to P2.
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where ΔdLOS represents the projection of the surface-displacement vector onto LOS (range)
direction, ϑ is the look angle to the point target with respect to the nominal local height, and
Δz denotes the residual topographic variation. Note that it is reasonable to assume that the
radar echoes remain correlated since the surface displacements are assumed small with respect
to a resolution cell. It is also important to note that a much more sensitive dependence of phase
(10) results from surface displacement ΔdLOS than from residual topographic variation Δz,
insofar as the distance r typically is very much greater than the orthogonal baseline distance
b⊥. Notice that, in order to isolate (measure) the interferometric phase term associated with the
displacement, it is necessary to remove the interferometric phase contribution pertinent to the
underlying topography in Eq. (10). Specifically, the so-called differential SAR interferometry
(DInSAR) basically consists in the synthesis of a simulated topographic phase screen from an
available digital elevation model (DEM) of the area (using the so so-called back-geocoding
process) and to subtract on pixel basis these synthetic fringes leaving only the terms associated
with the displacement (see Eq. (10)) [4].

In this ideal configuration, the DInSAR technique gets an unambiguously measurement of the
LOS displacement of the order of fractions of wavelength: note that a differential phase change
of 2π is converted to a LOS displacement of λ/2. As an example, since the error on the estimate
is of a fraction of π and the wavelength is of the order of centimeters (e.g., for the ERS-1/2 case
λ = 5.6 cm), we could measure LOS displacement down to millimeter accuracy, provided that
coherence of the differential interferograms is sufficiently high. Computed differential SAR
interferograms however contain, in addition to the deformation component, some (unwanted)
phase terms arising from unavoidably inaccuracies in the knowledge of the actual topographic
pattern and/or of the orbital parameters. In particular, the variation of the interferometric phase
can be expressed more in general in the form:

disp topo orb prop noisey y y y y yD = D + D + D + D + D (11)

where:

• Δψdisp = 4π
λ ΔdLOs accounts for a possible displacement of the scatterer between observations,

where ΔdLOS denotes the projection of the relevant displacement vector on the line of sight;

• Δψtopo = 4π
λ

b⊥

rsinϑ Δz represents the residual-topography induced phase due to a nonperfect
knowledge of the actual height profile (i.e., the DEM errors Δz);

• Δψorb accounts for residual fringes due the use of inaccurate orbital information in the
synthesis of the topographic phase;

• Δψprop denotes the phase components due to the variation of propagation conditions
(pertinent to the change in the atmospheric and ionospheric dielectric constant) between the
two master/slave acquisitions;
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• Δψnoise accounts for decorrelation phenomena: spatial baseline decorrelation, Doppler
centroid decorrelation, thermal decorrelation, and temporal decorrelation (including any
change in scattering behavior) [14].

As a final remark, we observe that another source of misinterpretation upon the measured
deformation is intrinsic to the InSAR technique itself, and it is due to phase unwrapping errors.
Evidently, phase unwrapping errors are integer multiples of 2π but they can propagate within
the inversion process, thus significantly affecting the deformation measurements [3].

Figure 3. Geometric scheme for the deformation components.

Availability of InSAR results computed from SAR data obtained from ascending and descend‐
ing orbits allows the retrieval of the east-west (E-W) and the up-down (U-D) components of
the detected deformation [15, 16]. Let us assume the target “observed” from both the ascend‐
ing and the descending satellite passes, and assume the displacement components along the
ascending and descending radar LOS directions have been estimated. For the sake of simplic‐
ity, the following assumptions are made: (i) ascending and descending radar LOS directions
(dLOS

(asc) and dLOS
(desc), respectively) lay on the plane identified by east and –z directions, and (ii) the

sensor look angle ϑ is approximately the same for both the ascending and descending
observations. In particular, for all the pixels that are common to both radar geometries, the
sum and the difference of LOS-projected deformations computed (over approximately the
same time period) for the ascending and the descending orbits can be calculated. Based on
simple geometric considerations, the E-W and up-down components of the measured surface
deformation can be estimated as follows:
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Notice that, because of the namely polar sensor orbit direction, the north-south (N-S) compo‐
nent of the deformation cannot be reliably singled out. Geometric scheme to interpret the
deformation component is portrayed in Figure 3.

Finally, we emphasize that a fundamental advantage of InSAR technology, with respect to
global positioning system (GPS) networks, resides in its dense spatial sampling of the dis‐
placement field.

3. Multichannel SAR interferometry

Differential SAR interferometry methodology has first been applied to investigate single
deformation events. At the present days, however, it is chiefly applied for the computation of
displacement time-series through the so-called multitemporal (or multichannel) interferomet‐
ric SAR approaches [17–25]. These advanced methods are based on the processing of sequences
of multitemporal interferograms relevant to an area of interest and are aimed at recovering
the expected LOS-projected time-series of deformation. A short overview of the main algo‐
rithms proposed up to now is here reported. Generally speaking, multichannel interferometric
techniques can be categorized into two broad families, those focused on analyzing persistent
scatterers, that is to say point-like targets that are not significantly affected by decorrelation
effects [17–19], and the small baseline (SB) [20–26] methodologies, relying on the investigation
of deformation signals related to distributed scatterers (DS) on the ground, which can be
however severely corrupted by decorrelation effects. In this latter case, an a priori selection of
the exploited SAR data pairs with small baseline values is required to reduce the noise level
in the generated interferograms. Despite of their intrinsic differences, both the PS and SB
algorithms have successfully been used to detect and monitor deformation phenomena, due
to several natural and anthropic hazards, such as volcanic events, earthquakes, landslides,
damages to man-made infrastructures in urbanized areas caused by underground, and
tunneling excavations and/or gas and water exploitation [27–37]. Very recently, a plethora of
different PS- and SB-oriented approaches have been implemented and public InSAR toolboxes
[17–26] are available to users. Recently, some innovative approaches based on the joint
exploitation of spatial and temporal relationships among sequences of interferograms and of
the statistical characteristics of SAR images involved in their formation have been proposed
for the analysis of deformations affecting DS targets [38–42]. In particular, the method
proposed in [40], which is known in literature to as SqueeSAR, is aimed at retrieving the
displacement time-series of DS that are identified by preliminarily studying the statistical
homogeneity of adjacent pixels in long sequences of amplitude SAR images, and then by
averaging the interferometric phase only on the set of statistically homogeneous (SH) pixels
[40, 41]. In addition, the average interferometric phases (associated with couples of images)
are jointly employed (for each pixel of the SAR scene) to obtain estimates of the phase relevant
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to SAR acquisitions [40], thus finally retrieving (for each SH target) a time-series of deforma‐
tion. This method allows increasing the number of detectable DS targets, but at the expenses
of ad-hoc processing for the generation of average (multilook) InSAR interferograms. At
variance with the SqueeSAR and other recently proposed multitemporal filtering techniques
(e.g., [41, 42]), the method proposed in [41] (and also detailed in [42]) used conventional
multilook interferograms, which can be generated by using any of existing InSAR toolboxes
and without any preselection of SH targets. This leads to the nonapplicability of statistical
framework adopted in [40], which is based on the distributed scattering hypothesis under
which the probability density function (pdf) of the complex-valued SAR image may be
regarded as being a zero-mean multivariate circular normal distribution. This issue is not
considered a very limiting factor in [43], where “conventional” multilook interferograms (also
potentially prefiltered using other space-based noise filtering techniques [44]) are filtered in
time with the aim to isolate and discard the noise components that are not conservative in time
from generated time-series of deformation. The mathematical framework of this new im‐
proved SBAS-oriented processing chain is illustrated in [43, 45] where the method is fully
detailed. In the following, we focus on the small baseline subset (SBAS) algorithm, originally
proposed in [20], by analyzing the underlying basic principles. Let us consider a set of Q single-
look-complex (SLC) SAR data acquired over a certain area of interest. One of them is assumed
as the reference (master) image, with respect to which the images are properly coregistered.
This set is characterized by the corresponding acquisition times {t1,…, tQ} and perpendicular
baselines {b⊥1,…, b⊥Q} evaluated with respect to the reference image. Application of the
standard SBAS technique starts with the generation of a number, namely M, of small baseline
multilook (differential) interferograms. The multichannel phase unwrapping (MCh-PhU)
problem consists in the jointly retrieval of the original (unwrapped) phase signals from the
modulo-2π measured (wrapped) phases relevant to the considered stack of interferograms.
The MCh-PhU operation can be straightforwardly implemented through various 2D [46–48]
and 3D approaches [44, 49–51] (and/or hybrid ones [13, 52]). The variation of the interferometric
phase pertinent to the kth SAR data pair can be expressed as (see also (10)):

LOS orb prop noise
4 4

sin

k
k k k k k

k

bd z
r

p py y y y
l l J

^D = D - D + D + D + D (14)

where k ∈ {1,…, M} specifies the considered interferometric pair (master/slave) of the multiple
baseline configuration used for the generation of the relevant interferogram. Readers are
referred to [20] for further details. Once the phase associated to each SAR acquisition, as well
as the residual topography, are estimated, the phases are converted to deformation and the
atmospheric phase screen (APS) is computed and filtered out from the obtained deformation
time-series. APS removal is achieved by exploiting the assumption that APS is spatially
correlated and uncorrelated in time, thus processing atmospheric corrupted time-series is
performed with a spatial low-pass (LP) filter and a time high-pass (HP) filter [17, 20]. The
quality of retrieved LOS time-series is finally evaluated pixel-by-pixel by calculating the values
of the temporal coherence factor, defined in [52]. Residual orbital fringes are also estimated and
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filtered out in the conventional SBAS processing chain by searching for (in each interferogram)
any possible phase ramp, which can be directly related to errors in the knowledge of sensor
position along its orbit. Such residual phase ramps (see also [38, 39]) are jointly analyzed to
correct orbits state vectors. Finally, for pixels with high temporal coherence the map of LOS
mean deformation rate over the analyzed time-periods is computed. Note that, whenever
ascending/descending SAR data-tracks are available, SBAS processing can be applied for the
two complementary orbits. Thus, the ascending/descending rates of deformation can be
composed, as described in the previous section, to retrieve the east-west and up-down
displacement rates over the time-period span by the available SAR scenes. Finally, we highlight
that a parallel computational model for SBAS algorithm is discussed in [13, 26].

4. Geological models and applications

In this section, we describe the technical aspects related on how to retrieve the characteristics
of a deformation source from satellite InSAR data, focusing the attention on the seismic,
volcanic, and landslide activities. We present the state-of-the-art of the techniques concerning
this problem, describing the most commonly used analytical and numerical models, and also
providing appropriate geological examples for each kind of modeling approach.

4.1. Analytic modeling

The increasingly widespread use of space geodesy has resulted in numerous, high-quality
surface deformation data sets. For example, a dense array of more than 1000 continuous GPS
(global positioning system) stations are distributed throughout Japan [53] and more than 700
GPS stations are operating in the California area [http://earthquake.usgs.gov/monitoring/
deformation/]. Many geologically active areas, such as Hawaii, Mt. Etna, Campi Flegrei, and
Long Valley caldera, have regional GPS networks as well [55‒58]. At the same time, DInSAR
is a well-established technique for studying and analyzing tectonically active areas character‐
ized by wide spatial extent of the inherent deformation [5]. These geodetic data can provide
important constraints on fault geometry, its slip distribution and also type and position of a
magmatic source. For this reason, over last years, many researchers have developed robust
and semiautomatic methods for inverting suitable models to infer the source type and
geometry from surface deformation [54]. Most of these methods use elasticity theory and a
trial-and-error approach to find geologically plausible deformation models that fit the major
features of the observed deformation field [55]. Other authors have systematically searched
through a large set of feasible models, comparing the model predictions to the data, and
choosing the model that minimizes the misfit [56].

The knowledge of source geometry from geodetic data primarily requires a forward model
describing how the crust responds to various kinds of deformation sources. The most com‐
monly used crustal model is the homogeneous, isotropic, linear and elastic half-space [57]. In
spite of its limitations, the elastic half-space model is widely used to simulate surface defor‐
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mation, primarily due to its mathematical simplicity. Sources models commonly used in many
papers are [58, 59]:

Figure 4. Four types of buried point dislocation sources: tensile, dilatational, strike slip, and dip slip (from [58]).

• The elastic dislocation of a finite rectangular source (Okada model): it is one of the most
used model to simulate the surface displacement due to an earthquake, represented as a
shear dislocation over a finite rectangular fault [60]. Moreover, the Okada model can also
be used to describe magma intrusion like sills or dykes, interseismic and postseismic
displacement. Pertinent source parameters are east and north position, depth, length, width,
strike angle, dip angle, dislocation (or slip), dislocation angle (rake), opening (for magmatic
intrusion) (Figure 4).

• The point pressure source (Mogi model): it is one of the simplest and effective sources used
in volcanology, as its description requires only four parameters: depth, east and north
position, volume/pressure variation [61] (Figure 5).

• The finite spherical pressure source relies on the assumption that the radius of the source
cannot be separated from the pressure change. This means that we can only obtain estimates
of the depth, location, and power of the source [58]. In [62], the mathematical expressions
to approximate the deformation due to a pressurized finite spherical cavity were derived
by applying higher order corrections for stresses reflected back on the source by its image.

• The closed pipe: a model for a plugged conduit or a cigar-shaped magma chamber. It
includes a conduit to transport magma from the chamber to the surface. During quiescence
period, the magma tends to cool and forms a plug, and the pressure in the magmatic system
can increase [58]. The distribution of surface deformation from inflation of a closed pipe is
quite different from that previously described for a sphere and this is mainly related to two
main aspects: (1) most conduits are quite small relative to magma chambers, and (2) the
near-field deformation from an elongate embedded source depends on the value of
Poisson’s ratio [63].

• The open pipe: a composite model for the filling of an open conduit. In [64], it is presented
a dislocation model for surface deformation from magma rising in a conduit that is open at
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the top. A constant cylindrical dislocation is used to model portions of the conduit subject
to a uniform pressure change [58].

Figure 5. Surface deformation from an embedded point pressure source (Mogi model) (from [58]).

In spite of its limitations, the elastic half-space models are widely used to model surface
deformation caused by uniform rectangular dislocations [60] and point sources [61]. Moreover,
until recently, most geodetic data were not of sufficiently high quality to justify more complex
crustal models.

For almost all the listed models, the geometric parameters (position, depth, dimension,
orientation, etc.) are nonlinearly related to the surface displacement. On the contrary, other
parameters, as the dislocation for the Okada model or the pressure change for a Mogi model,
have a linear dependency with the surface displacement [59]. The estimation of nonlinear and
linear parameters from geodetic data follows different inversion strategies, which are ex‐
plained in the next section.

4.1.1. Inversion strategies for source parameters estimation

The relationship between the measured deformation field (which for instance can be inferred
through InSAR technique, as discussed in Sections 2 and 3) and the source geometry can be
expressed by the following equation:

( )G= + ed m (15)

where d is the deformation data vector, m is the source parameter vector (e.g., for a fault,
length, width, depth, dip, strike, location, slip are the source parameters to be estimated), and
G describes the specific functional form. The ε term is a vector of observation errors. For the
source geometry estimation problem the data, in general, are nonlinearly related to the source
parameters. For this reason, source estimation reduces to nonlinear optimization [54]. There‐
fore, we systematically search the finite dimensional parameter space for m, using G to predict
the deformation field for a given m. The geodetic signal contains unmodeled deformation such
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as those arising from elastic heterogeneity or anisotropy, which may contribute to the misfit,
thus our best estimated source model is always conditional on the assumptions intrinsic to the
forward model.

Derivative-based algorithms, Levenberg-Marquardt or the method of conjugate gradients,
offer straightforward and efficient strategies for solving the mentioned optimization problem
[54]. These algorithms depend on the gradient and higher-order derivatives to guide them
through misfit space; however, due to the nonlinear nature of the G functional form, they can
get trapped in the first local minimum that they encounter and never find or even approach
the global minimum. Consequently, these algorithms work well only when the initial guess is
near the global minimum. A priori information can often provide a good initial guess. Clearly,
whether a derivative-based method reaches the global minimum depends on where it starts.
Moreover, in [54], it was found that particularly in the case of low measured displacement, the
misfit space often contains numerous local minima and lacks a deep, well-defined global
minimum. Therefore, derivative-based methods offer a practical approach for retrieving the
solution to the geodetic inversion problem only in cases characterized by high measured
displacement and good geologic insights, such as the type and location of the deformation
source [54].

In spite of their inefficiency, exhaustive and random searches do not have the limitation to
remain trapped in a local minimum. In the past, mathematicians have sought algorithms that
combined the efficiency of a derivative-based method with the robustness of a random search.
The result was the Monte Carlo class of algorithms. The common feature that all algorithms
of this class share is an element of randomness that permits an occasional uphill move, that is,
the algorithms will not always move from a candidate model with higher misfit to a model
with lower misfit [54]. The most common Monte Carlo algorithms are the simulated annealing
[65] and the random cost algorithm [66]. Another class of Monte Carlo algorithm includes the
genetic algorithms [67].

Simulated annealing. In such a kind of algorithm, the possibility to choose a higher misfit model
compared to a lower one mainly depends on the state of the annealing process at the time of
the choice [54]. The algorithm gives an estimate of this state dependence in terms of a global
time-varying parameter called temperature. At high temperatures, all source models have
roughly equal chances of getting picked, whereas at low temperatures the algorithm favors
low misfit models. The specific annealing algorithm adopted here follows from the work by
Yu and Rundle [65] and Berg [68]. It is called the “heat bath” algorithm and proceeds as follows.
The initialization procedure consists of two steps: (1) set bounds on the values for all the model
parameters (these bounds can come from geologic constraints or physical limitations) and (2)
randomly pick an initial starting model. Cycle through the individual model parameters. The
most significant complication to the simulated annealing algorithm is the cooling schedule,
i.e., how the temperature changes as the annealing progresses. This plays a crucial role in the
successor failure of the optimization. In [69], a critical temperature at which the bulk of the
annealing should, for maximum efficiency, occur was defined. In brief, at the critical temper‐
ature the system remains cool enough to favor low misfits but still high enough to escape local
minima.
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Random cost. This algorithm is an alternative Monte Carlo approach for nonlinear optimization
problems characterized by many local minima in a broad misfit space [66]. It considers a
stochastic process to enforce a random walk in misfit space, which allows it to overcome the
increase of misfit and to find the global minimum. In [54], the authors indicate that this
algorithm is significantly less efficient than simulated annealing, but it is much easier to
implement because it does not require a specific cooling schedule. The random cost approach
begins by generating a set of trial models that span a region about an arbitrary a priori model
[54].

4.1.2. Geological applications

In this section, we present two examples of deformation sources in volcanic (Lazufre, Chile)
and seismic (2012, Emilia earthquake, Italy) environment, by applying the analytic modeling.
In the first case, the simulated-annealing-based approach is adopted, while in the second case
we apply the Levemberg-Marquardt algorithm (see Section 4.1.1).

4.1.3. Sill and finite spherical sources: the case of Lazufre (Chile) volcano

The Lazufre volcanic area is located on the Chilean-Argentinean border at ~300 km east of the
subduction trench (Figure 6). The area contains several morphologically distinct volcanic
centers [71, 72]. Only one of these, the Lastarria volcano (~5700 m asl), shows strong and
persistent fumarolic activity localized on the recent crater borders and on the western flank
(Figure 6).

Figure 6. Deformation at the Lazufre volcanic area: (a) location of Lazufre; (b) InSAR observation for the period June
1995‒December 2006 acquired by ERS; (c) InSAR observation for the period April 2003‒January 2008 acquired by EN‐
VISAT; (d) details of Lastarria volcano; (e) NNW-SSE profiles across the deformation areas for the ERS dataset (black)
and for the ENVISAT dataset (gray); (f) photograph of the Lastarria volcano from the northwest, 10 km distant from
the summit [70].

Geospatial Technology - Environmental and Social Applications182



Random cost. This algorithm is an alternative Monte Carlo approach for nonlinear optimization
problems characterized by many local minima in a broad misfit space [66]. It considers a
stochastic process to enforce a random walk in misfit space, which allows it to overcome the
increase of misfit and to find the global minimum. In [54], the authors indicate that this
algorithm is significantly less efficient than simulated annealing, but it is much easier to
implement because it does not require a specific cooling schedule. The random cost approach
begins by generating a set of trial models that span a region about an arbitrary a priori model
[54].

4.1.2. Geological applications

In this section, we present two examples of deformation sources in volcanic (Lazufre, Chile)
and seismic (2012, Emilia earthquake, Italy) environment, by applying the analytic modeling.
In the first case, the simulated-annealing-based approach is adopted, while in the second case
we apply the Levemberg-Marquardt algorithm (see Section 4.1.1).

4.1.3. Sill and finite spherical sources: the case of Lazufre (Chile) volcano

The Lazufre volcanic area is located on the Chilean-Argentinean border at ~300 km east of the
subduction trench (Figure 6). The area contains several morphologically distinct volcanic
centers [71, 72]. Only one of these, the Lastarria volcano (~5700 m asl), shows strong and
persistent fumarolic activity localized on the recent crater borders and on the western flank
(Figure 6).

Figure 6. Deformation at the Lazufre volcanic area: (a) location of Lazufre; (b) InSAR observation for the period June
1995‒December 2006 acquired by ERS; (c) InSAR observation for the period April 2003‒January 2008 acquired by EN‐
VISAT; (d) details of Lastarria volcano; (e) NNW-SSE profiles across the deformation areas for the ERS dataset (black)
and for the ENVISAT dataset (gray); (f) photograph of the Lastarria volcano from the northwest, 10 km distant from
the summit [70].

Geospatial Technology - Environmental and Social Applications182

Through InSAR observations, a large-scale elliptical deformation pattern was detected during
the period from 1995 to 2008, with a deformation rate ranging from 1.8 to 3.2 cm/year [70]. The
observed displacement rate at LAS reaches up to 2 cm/year from 2003 to 2008, with a part of
this signal being related to the large-scale deformation field. To retrieve the mean deformation
velocity maps of the area the SBAS algorithm (see Section 3) was applied to two SAR datasets
acquired by the European Satellite missions ERS-1/2 and the ASAR sensor onboard the
ENVISAT satellite, operating both in descending orbits.

Figure 7. Inversion results of the Lazufre deformation data from 2003 to 2008: (1) observation data, (2) analytic models,
and (3) residuals. Lastarria displacement result by simulating a finite spherical source showing (4) the observation da‐
ta, (5) the analytic model, and (6) residuals highlighting three fumarolic areas (black circles). Dashed lines indicate
flank movements (FM), on the western flank of the Lastarria volcano [70].

In order to quantify the sources that are responsible for the observed two-scale deformations
[70], the considered analytical models were inverted by applying the simulated annealing
method. To isolate the displacement pattern the authors followed two main steps: (1) a linear
Pearson correlation coefficient [73] and a search of pixels falling within 95% of a similar trend
to the maximum displacement observation point (see CEN in Figure 6) were applied; pixels
that are not affected by the deformation were automatically excluded; (2) a subsampling of the
cross-correlated dataset using a regularly spaced grid (1 km), thus reducing significantly the
computational time without affecting the parameter estimation performance, was applied.
Because the observed main deformation pattern is very extended in space and its source is
likely laterally extended, in [70] an expanded dislocation plane acting as a sill source model
[65] has been assumed, and then its parameters has been estimated. For the sake of simplicity,
the models were performed in an elastic half-space medium with a Poisson’s ratio v = 0.25 and
a Young’s modulus of E = 50 GPa. Residuals are generally less than 0.2 cm/year with the
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exception of a near radial-symmetric deformation signal with uplift rates larger than 1 cm/year
centered on the Lastarria volcano affecting an area of about 50 km2 (Figure 7).

To further investigate this residual deformation a spherical source model approximation is
applied [62]. The residuals are again generally less than 0.2 cm/year, with the exception of the
area where the three main fumarolic fields are located, which still shows a discrepancy (i.e.,
the difference between the satellite observation and retrieved model) up to 0.5 cm/year (Figure
7). The best fitting model suggests a shallow spherical source located between 0.6 and 0.9 km
below the Lastarria summit. The source radius is ~0.3 km (between 230 and 360 m) and subject
to a volume change of ~13,000 m3/year [70].

4.1.4. Okada fault model: the case of the Emilia (Italy) earthquake

On May 20, 2012, a local magnitude (Ml) of 5.9 earthquake occurred near the town of Finale
Emilia, in the Central Po alluvial Plain, Italy. The seismic sequence evolved with some
decreasing magnitude aftershock events (Ml ≤ 5.1), until May 29, when a Ml = 5.8 seismic event
occurred around the Mirandola village, about 10 km SW of the May 20 main shock epicenter
(Figure 8). The focal mechanisms for these two seismic events show both a WNW-ESE and E-
W oriented nodal planes, respectively, and a ~N-S compressional kinematics [74]. The large
amount of data available for the considered area, acquired through InSAR analyses, geophys‐
ical and deep borehole geological investigations, allows extensively studying the relationship

Figure 8. (a) April 30‒June 17, 2012 RADARSAT-2 InSAR interferogram; b⊥ =447m (perpendicular baseline), ϑ = 30°
(look angle); the black square represents the InSAR reference point. Note that the red and blue colors correspond to a
sensor-target range decrease and increase, respectively. (b) Analytic modeling of the RSAT-2 displacement map. The
blue stars are the locations of the two main shock events and the black rectangles represent the surface projection of
the best-fit Okada plane solutions. (c) Residuals map; the blue triangles indicate the locations of the Ml ≥ 5.0 after‐
shocks occurred after May 20. Table 1 reports the retrieved fault parameters for IFT and MFA (modified from [74]).
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between the ground deformation fields and the activated fault segments associated with the
Ml 5.9 and Ml 5.8 main shocks.

To this aim, an analytic modeling was performed [74] by investigating a RADARSAT-2
(RSAT-2) interferogram (see Section 2) that, encompassing the two main earthquakes, allowed
quickly identifying the upper crust regions affected by the faulting processes. In particular, in
[74], the authors searched for the faults parameters, by using a nonlinear inversion based on
the Levenberg-Marquardt Least-Squares approach [75]; the DInSAR data were subsampled
through a QuadTree algorithm [76] over a mesh of about 4600 points. The best fit solution
consists of two distinct reverse fault planes, corresponding to the south dipping Inner Ferrara
Thrust (IFT) and Mirandola Ferrara Anticline (MFA) for the May 20 and the May 29 events,
respectively (Figure 8b and Table 1) (more details are provided in [74]). The model shows a
good fit with the measured InSAR data, as clearly highlighted by the residual map in Figure
8c, where values smaller than 2 cm are generally found. However, small areas with higher
residuals are also noted; they appear at the locations corresponding to the few aftershocks with
Ml ≥ 5.0 (not considered in the inversion procedure) occurred in the same time period covered
by the RSAT-2 interferogram.

4.2. Numerical modeling: finite element method

Most of the analytical formulations are based on the assumption of a geologic source (seismic
or magmatic) embedded in a homogeneous elastic half-space medium [77]. Analytical elastic
models are attractive because of their straightforward formulation. However, active geological
areas are usually characterized by severe heterogeneities, nonelastic rheologies and complex
topography, which are responsible for significant shallow and surface effects. To meet this
need, different numerical procedures can be applied in ground deformation studies to estimate
how heterogeneity and topography can affect the deformation field solution.

To make numerical simulations practical, it is necessary to reduce the number of degrees of
freedom of the object under study to a finite number. The reduction is called discretization.
The product of the discretization process is the discrete model. The most popular numerical
techniques in structural mechanics are finite element method and boundary element method (BEM).
FEM is the most widely used. The basic concept in the physical FEM is the subdivision of the
model into disjoint (nonoverlapping) components of simple geometry called finite elements.
The response of each element is expressed in terms of a finite number of degrees of freedom
characterized as the value of an unknown function, or functions, at a set of nodal points. The
response of the model is then considered to be approximately that obtained by connecting or
assembling the collection of all elements. A detailed discussion, which is however beyond the
scope of this chapter, can be found in [78, 79].

4.2.1. Geological applications

Two examples of deformation sources in landslide (Ivanchich, Italy) and seismic (2012, Emilia
earthquake, Italy) environment obtained by applying the numerical modeling are shown in
the next sections.
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4.2.2. A steady-state creep model: the case of the Ivancich (Italy) landslide

The Ivancich landslide is located in the southeast part of the historical town of Assisi munici‐
pality (Italy) and is affected by an active slow motion. Recurrent damages to buildings and
infrastructures caused by the slow landslide evolution led local authorities to carry out
geological and geotechnical investigations aimed at implementing effective remedial works
and mitigation strategies. The kinematical evolution of the Ivancich unstable mass has been
simulated by performing a two-dimensional time-dependent FEM of the active ground
deformation [80]. We briefly report here the main results achieved in [80].

Figure 9. (A) The landslide inventory map of Assisi area; the location of four considered inclinometers is also reported.
(B) ERS-ENVISAT mean deformation velocity map with location of the six considered SAR pixels. The thick black line
shows the longitudinal cross section A-A’ used for modeling, along which the sectors subdivision is reported. (C) A-A’
2D section reporting the model geometry of the landslide area with geological units, superimposed on the triangular
FE mesh. For further details, see [80].

The longitudinal section along the A-A’ line (Figure 9) has been reconstructed by using the
available borehole information, the geomorphological evidences and the inclinometer
readings.

In [80], the authors subdivided the slope modeling domain into four geomechanical units: (i)
the landslide deposit (unsorted debris), (ii) the upper part of the slope is constituted by the
limestone bedrock, (iii) the central part is the pelitic-sandstone bedrock, and (iv) the shear zone,
with a thickness lower than 2 m, at a depth ranging between 20 and 60 m. In addition, the
analysis of geomorphological evidences and InSAR displacement measurements allowed us
to identify four areas showing similar kinematical behavior. InSAR data cover almost 20 years
of ERS-1/2 and ENVISAT SAR images acquired between April 1992 and November 2010 and
processed through the SBAS technique (see Section 3). Four different subsectors along the
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landslide shear band, characterized by different creep rate parameters, have been assumed in
the mesh domain. The authors chose a deviatoric creep model characterized by a creep rate,
depending on the stress state deviatoric component to simulate the behavior of the soil in the
shear band [81]. In particular, they proposed that the creep strain rate of the soil in the shear
band is the unknown parameter, which can be obtained through an optimization procedure
with field data. In Figure 10, a comparison between the time series of six selected SAR pixels
and those calculated with the in LOS-projected model is shown. According to the authors, the
modeling results highlights that a quasi-linear trend in LOS projection can reasonably describe
the variation of the slope displacement over time. Higher displacement rates are calculated for
the central portions of the landslide, whereas significantly lower rates are predicted in the
upper and lower portions of the slope. Moreover, for the same creep model, they showed the
comparison between the time series of the displacement at the top of four inclinometers located
along the examined longitudinal section and the model results, and they found a good
agreement between field data and model results for all considered inclinometers [80].

Figure 10. Comparison between the time series of six SAR pixels and the calculated secondary creep model in LOS
[from 80].

4.2.3. Discretization of faults model: the case of Emilia (Italy) earthquake

A numerical modeling for the retrieved ground deformation of the two Emilia earthquakes,
already described in Section 4.1.2, was performed in [74] by using FEM. This modeling
approach permits us to take into account geological (rock types) and geophysical information
available for the considered area. The two seismic events were analyzed in a structural
mechanical context under the plane strain approximation mode, in order to solve for the
retrieved displacements [82]. Figure 11a and b reports the geological and structural conditions
on which the subdomain setting of the FEM model is based. In [74], a 2D structural geometric

Satellite SAR Interferometry for Earth’s Crust Deformation Monitoring and Geological Phenomena Analysis
http://dx.doi.org/ 10.5772/64250

187



domains of the region at depth along the AA’ line (Figure 8a) was derived. A 2D optimization
was performed: the two BB’ and CC’ profiles, shown in Figure 8a, cross the areas of maximum
deformation associated with the Ml 5.9 and Ml 5.8 seismic events, respectively. The model was
made to evolve through two stages: during the first stage (preseismic), the model compacted
under the weight of the rock successions (gravity loading) until it reached a stable equilibrium.
At the second stage (coseismic), where the stresses were released through a nonuniform slip
along the faults, an iterative optimization procedure based on a trial and error approach [82]
was used, allowing us to follow the evolution of the faulting processes within the best fit
solution retrieval. In [74], the authors applied the following boundary conditions (Figure
11a and b): the upper boundary representing the Earth’s surface was not constrained; the
bottom boundary was a fixed constraint; a symmetry condition was assumed for the SSW and
NNE areas to make the edge effects as negligible. Moreover, they considered three different
boundary settings to simulate the sedimentary and tectonic contacts between different rock

Figure 11. (a and b) 2D numerical model along the BB’ and CC’ profiles of (a) with the indication of the used bounda‐
ries and subdomain settings. The parameters rho, E, and n represent the density, Young’s modulus, and Poisson’s ra‐
tio, respectively (see [74] for more details). (c and d) Comparison of RSAT-2 (blue triangles), analytical model (green
triangles), and FEM model (red triangles) data evaluated along the BB0 and CC0 profiles, respectively. (e and f) Sec‐
tions of the displacement maps of the Ml 5.9 and Ml 5.8 seismic events, respectively. The arrows indicate the mean
displacement directions. (g and h) Locations of the Okada (green lines) and FEM (red lines) fault solutions superim‐
posed on the numerical model mesh. W1, W2, and W3 as well as Fx and Fy are the widths and active loads along the
optimized faults, respectively (see [74] for more details).
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successions (Figure 11a and b): (i) free mechanical constrains where the faults are kept locked;
(ii) roller constraints, which allow the faults to freely slip under the applied stress field, thus
the mechanical discontinuities are considered as active; (iii) boundary loads along which the
forces are concentrated and transferred to the boundary subdomains. In Figure 11c and d, a
comparison between the best fit solutions for the RSAT-2 data with the analytic and the
heterogeneous FEM models along the BB’ and CC’ lines, respectively, is shown. From this
analysis, a good fit between the FEM models developed along these profiles and the observed
ground deformation pattern is evident, in terms of shape and amplitude of the signal, for both
seismic events.

5. Conclusion

This chapter offers an updated and applications-oriented perspective on the satellite InSAR
technology, with emphasis on subsequent geophysical investigations. Various phenomena
occurring in hazardous geologically zones of interest (e.g., areas interested by earthquake,
volcanic activity, or landslide), for which the inherent Earth’s crust deformation pattern can
be obtained by suitably processing data acquired by SAR sensors (e.g., ENVISAT, RADAR‐
SAT-2), have been investigated. Moreover, the adoption of appropriate geophysical models
for the considered scenarios has also permitted to consistently explain the resulting deforma‐
tion patterns. Finally, the obtained information can be suitably stored in geographic informa‐
tion system (GIS) for the geospatial data management, with important implications in terms
of the assessment of geological risks (such as volcanic and seismic), damage assessment, and
the proper prevention/planning of human activities.
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Abstract

A  literature  review  is  conducted  of  geospatial  technologies  in  community-based
research  on ice  and mobility  among Indigenous  people  of  the  circumpolar  north.
Numerous studies explore the use of traditional knowledge in the Arctic on sea ice, but
limited  evidence  of  community-based  research  in  sub-Arctic  communities  and  in
freshwater ice systems is found. Geographical Information Systems (GIS) and remote
sensing  tools  have  been  applied  in  a  variety  of  ways  in  support  of  community
adaptations. These include the production of living memory maps, ice classification
systems, and geodatabases that reflect the relationship-building nature of collabora‐
tions  between  Indigenous  traditional  knowledge  holders  and  scientists.  Satellite
imagery—particularly synthetic aperture radar (SAR)—is widely used to characterize
traditional understandings of ice to help tailor geospatial tools, climate research, and
early warning systems, so that they may be used more effectively to address commun‐
ity interests and needs. As numerous mapping platforms have been developed in the
circumpolar north, there are important considerations with respect to data manage‐
ment, Indigenous rights, and data sharing. We see opportunities for further research in
lake and river ice, and in further developing early warning systems to address the
growing problem of unpredictable ice regimes in Arctic and sub-Arctic regions.

Keywords: circumpolar north, climate change, ice, traditional knowledge, geospatial
technologies
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1. Introduction

The climate system of the circumpolar north is undergoing transformative change. Average
annual Arctic air temperatures have increased by 2.9°C since the start of the twentieth centu‐
ry [1]. As a result, significant sea ice declines through most of the Arctic have occurred over the
past 30 years [2], while inland, freshwater ice systems have experienced shorter seasons of ice
cover due to a significantly later freeze-up and earlier breakup [3]. The decline in sea ice leads
to greater absorption of solar radiation in the Arctic Ocean in early autumn, which intensifies
vertical fluxes of heat and moisture into the atmosphere, amplifying the effects of climate change
in poles to approximately twice the global average [4].

Such changes have affected the mobility of Indigenous people of the north, who rely on the
frozen landscape to move freely during winter months [5, 6]. Sea ice, frozen lakes, and rivers
act as virtual highways in the north, while seasonal winter ice roads are constructed to provide
access to the north for various industries, and are crucial for bringing year-round essentials,
such as food, fuel, construction, and household items into remote communities [7, 8]. In recent
years, travel to hunting grounds is less predictable, and ice persists for shorter periods of time,
posing hazards to hunters [7]. Beyond direct impacts to traditional land use, these changes
impact the northern community’s well-being in terms of food security, health, culture, and
spiritual life [9].

Regional characterizations of Arctic ice systems, which bring together information from
satellite imagery, in situ observations, and climate models, are being used to help better
simulate global climate projections [10–12], to forecast seasonal sea ice extent [13], to map
potential new Arctic shipping routes [14], and to explore opportunities for natural resources
development [15]. However, at the local level, a variety of geospatial tools have emerged in
polar research to support Indigenous communities adapting to climate change. This chapter
looks at what geospatial technologies have been used in Arctic and sub-Arctic regions to
support adaptations to changing ice regimes. We will explore what outputs have emerged
from geospatial research collaborations, and what lessons have been learned. We will then
look at more recent concerns of data management, and how this has led to the establishment
of numerous networks and mapping platforms in the circumpolar north (see Section 2 for the
criteria used to delimit the region).

Community-based cartography in the Arctic is not new. Early Inuit maps were made with
ephemeral pieces of the landscape, as charts were drawn into snow and sand, and detailed
coastal relief maps were carved or assembled from sticks and stones [16–18]. It is said that
maps of winter trails are etched in the minds of those who make and use them [5]. The
communication of this collective traditional knowledge (traditional knowledge) is an oral
tradition. Traditional knowledge has been defined in numerous ways across the literature, but
is generally understood as accumulated bodies of knowledge rooted in the spiritual health,
culture, and experiences of Indigenous peoples in the occupancy and use of a land base [19–
22]. Traditional knowledge represents a cumulative, multigenerational knowledge of local and
regional physiography, natural features, climate, wildlife, and an intimate understanding of
the relationships between all aspects of the environment, including people [20]. Efforts to map
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traditional knowledge among Indigenous peoples have been widespread since the 1970s in
response to concerns about the erosion of traditional culture, the need to improve participatory
natural resources management practices, and an interest in asserting legal claims of tenure
over traditional lands and natural resources [23–27].

A specific interest in traditional ice use in the circumpolar north emerged in the 2000s, a period
during which geospatial technologies experienced radical changes and greatly enabled
mapping in the far north [28]. In 2000, the U.S. government began to allow the public to receive
a nondegraded GPS signal globally, which facilitated its use in remote regions. The same year,
ESRI released Arc IMS 3.0, a web-based Geographical Information Systems (GIS) platform that
initiated a wave of innovation in online mapping. Moreover, space agencies and commercial
companies began to make increasingly more available high-resolution satellite imagery every
year [29].

At the same time, scientists have become interested in using Indigenous traditional knowledge
in their research over the past few decades. This is particularly true in the circumpolar north,
where the impacts of climate change on the cryosphere have created a sense of urgency to
understanding the impacts of global warming to the region. Historical scientific climatological
data in the circumpolar north are lacking, except for proxy measures (e.g., sediment cores),
but over millennia Indigenous peoples have maintained traditional land-use practices and a
detailed knowledge of natural processes. Thus, traditional knowledge can be used to fill key
knowledge gaps at local scales [30, 31]. Indeed, many scientists work with traditional knowl‐
edge holders due to the paucity of weather- and ice-monitoring data in high-latitude regions
of the world, and to increase their understanding of the impacts of climate change in a region.
However, traditional knowledge plays a more foundational role than simply patching gaps in
data records. It helps scientists to better frame their research in ways that can ultimately
produce more usable knowledge to northern communities [32].

Northern Indigenous peoples have also been interested in collaborating with scientists, in the
interest of documenting traditional knowledge for cultural preservation and to assert land-use
claims over their traditional lands [26, 27, 33], and because rates of environmental change have
surpassed anything experienced previously [34]. Indigenous peoples of the north are adaptive
by nature [8, 35]; however, climate change has prompted communities to inquire how science
and technology can be used alongside traditional knowledge of the land to support their efforts
in adapting to climate change.

As a growing body of research has suggested, collaborative research with traditional knowl‐
edge holders is successful when it allows the time for a meaningful, co-productive process to
develop [36, 37]. The tools and outputs of co-productive geospatial projects may act as
boundary objects—collaborative tools or concepts that possess shared meaning within the
collaboration—but whose significance differs markedly when collaborating individuals return
to their own institutions or community contexts [38, 39]. In other words, traditional knowledge
maps and databases can have very different roles in communities than they do in research.
Thus, researchers, spatial analysts, and others involved in these collaborations who take the
time to consider how the outputs of their research will be used by their collaborators tend to
be more effective at creating viable tools that will be used by communities [36, 37].
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2. Methodology

This review involved a search of peer-reviewed literature in Google, Scopus, and Web of
Science databases in January, 2016. A search string was developed to identify articles that could
help identify geospatial tools being used to support adaptations among Indigenous peoples
to climate changes in the circumpolar north. Of specific interest were those adaptations
pertaining to changes in the cryosphere and to impacts on mobility in the Arctic and sub-Arctic.
Our demarcation of the circumpolar north follows that of Ford et al. [7] whose definition of
the Arctic includes Alaska, Canada North of 60°N, together with northern Quebec and
Labrador, all of Greenland, the Faroe Islands, Iceland, the northernmost regions of Norway,
Sweden and Finland, and Russia—including the Murmansk Oblast, the Nenets, Yamalo-
Nenets, Taimyr, and Chukotka autonomus okrugs, Vorkuta in the Komi Republic, Norilsk and
Igsrka in Krasnoyarsky Kray, and those parts of the Sakha Republic whose boundaries lie
closest to the Arctic Circle. However, we also include the Hudson Bay Lowlands (including
James Bay) in Canada due to its physical geography and its sub-Arctic climatology. The
resulting area has a population of approximately 4 million people, of whom approximately
400,000 and 1.3 million are Indigenous persons [7, 40, 41]. We wanted to know how geospatial
technologies are being used in community-based, collaborative research with Indigenous
communities. Thus, research that sought to integrate or use as complementary knowledge
constructs—traditional knowledge and the natural sciences in geospatial contexts—with a
focus on work that prioritizes community-based research and Indigenous ways of character‐
izing ice systems was the primary object of this literature review. The resultant search queries
employed the following terms: “climate change,” “adaptation”; “Arctic” or “sub-arctic”; “indig‐
enous” or “Aboriginal”; “GIS” or “Geospatial” or “remote sensing” or “mapping”; “ice” or “ice
monitoring”; and “community” or “community-based.”

A limited review of the gray literature was conducted to evaluate and interpret trends in the
literature, which included reviews of websites and correspondence with some Arctic scholars.
Forward and reverse citations were conducted and produced the included publications on the
theme of data management.

We limited our search to publication dates between January 2005 and January 2016 to exclude
research using outdated technologies, and to focus on the period during which adaptation
research in the circumpolar north has been concentrated (Ford et al. [7]). Excluded were those
studies that did not emphasize the use of geospatial technologies, community-based collabo‐
ration, and the complementary use of traditional knowledge with the natural sciences, even
where such studies may have applications in community-based research. We also excluded
studies that focus exclusively on in situ monitoring and make no explicit mention of geospatial
tools. We sought publications on sea, lake and river-ice systems, and on ice roads, as these all
act as substrates for movement for the Indigenous peoples of the north. However, we expanded
our criteria to include a study of icing of pastures, because we felt this work has some bearing
on the other studies we looked at. Research that emphasizes bulk transportation through the
Arctic was excluded, as were numerous papers in ecology and northern ecosystems. Also
excluded were studies of permafrost and glacier systems.
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The original search produced 470 peer-previewed articles. These were exported to Endnote
for evaluation. Duplicates were removed, and a reading of the abstracts was conducted. After
applying the exclusion criteria discussed above, we reviewed 30 articles. Qualitative analysis
of the literature involved manual coding of emergent themes rather than coding according to
theoretical constructs or previous empirical results [42]. Our reading included some interest
in chronology to identify themes relevant to the present research context.

3. Results and discussion

The resulting community-based ice studies in our search are almost entirely centered in coastal
Arctic Canada and Alaska, although not exclusively. All but one study focus on sea ice. The
three primary themes that emerged were as follows: (1) the documentation of traditional
knowledge in community-based research; (2) the complementary uses of traditional knowl‐
edge and science to understand local and regional contexts; and (3) the resulting need to
manage geographical data appropriately and effectively (see Table 1). Here, we discuss these
themes and their subthemes that emerged from our examination of the literature. First, we
discuss how traditional knowledge documentation produces living memory maps that are of
considerable value to both researchers and communities, and that act as discursive objects of
ongoing research that have implications for how we design geodatabases. These maps are the
basis of ice classification systems, and some studies further incorporate remote sensing with
traditional knowledge for local ice monitoring to facilitate safe winter travel. A number of
studies use these tools collectively with the aim of developing integrated early warning systems
(EWS). In this light, the emergence of numerous collaborative geomatics platforms has led to
numerous concerns regarding data management in recent years.

3.1. Production of living memory maps

The value of documenting collective memory is discussed throughout the literature as a
discursive process. Aporta [5] and Gearheard et al. [43] collaborated with Inuit hunters to map
winter trails and document traditional knowledge of wildlife and other features. The resulting
maps, developed in consultation with elders and present-day hunters, are described as “living
memory maps” [5, 43]. Along with Freeman’s work of the 1970s [23–25], these collaborative
maps have been among the first documents to show how extensive traditional land use of the
circumpolar north is, reflecting a tenure of land that Aporta contrasts with the widely mis‐
placed notion of an unused and largely barren Arctic landscape [5]. Winter trails across the
ice, rather, provide important conduits that span the circumpolar north. They are reconstructed
each year and are based on knowledge that has been shared orally over many generations.
This knowledge includes detailed understandings of ice processes and travel safety, and
represents the cumulative knowledge of present-day hunters and of the detailed, intergen‐
erational knowledge held by the elders of a community [5, 44–47]. See Figure 1 for examples
of the kinds of knowledge that are used to create these maps.
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Primary research
themes

Geospatial
application themes 

Applications Publication

Documenting
traditional
knowledge (TK)

Living memory maps
of winter trails and
ice use based on
participatory TK
research

Document of traditional land use
and tenure systems

Aporta (2009), Fidel et al.
(2014)

Participatory mapping process
enables researchers to actively
engage with communities

Aporta (2009), Eisner et al.
(2013), Eisner et al. (2009)
Gearheard et al. (2010),
Herrmann et al. (2012), Laidler
et al. (2010)

Maps of collective memory in a
community can be used to
facilitate the intergenerational
transfer of TK from elders to
youth

Isogai et al. (2013), Laidler et
al. (2011)

Complementary uses
of TK and science to
understand local
context

Ice classification
systems

Classification and mapping of ice
types

Druckenmiller et al. (2010),
Laidler et al. (2010), Tremblay
et al. (2006)

Used to identify of climate change
indicators

Laidler et al. (2010), Tremblay
et al. (2006)

Using TK with
remote sensing

Used to identify vulnerabilities
and adaptive capacities of
communities
to climate change

Druckenmiller et al. (2009),
Ford et al. (2009), Laidler et al.
(2009)

Using TK validate remote
sensing observations

Bell (2012), Gauthier et al.
(2010), Kapsh et al. (2010),
Laidler et al. (2011)

Development of
geospatially-based
early warning
systems

Establishment of networks of
community-based monitoring
teams that integrate TK using
geospatial tools

Gauthier et al. (2010),
Mahoney et al. (2009), Johnson
et al. (2013)

Integration of community-based
ice observation networks, remote
sensing tools, seasonal forecasts
and decision-making to warn of
unsafe conditions for hunting
and/or travel

Bell et al. (2014),
Druckenmiller et al. (2009)
Mahoney et al. (201)

Data management Development of
Geomatics
platforms

Designed primarily for
engagement with community

Harrmann et al. (2012)
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Primary research
themes

Geospatial
application themes 

Applications Publication

Intended for ease of uptake
and customization

Gardner-Youden (2012), Isogai
et al. (2013), McCarthy et al.
(2012)

Employs complex relational
databases for integrating
multiple data types and sources
for enrichment of TK

Eicken et al. (2014), Pulsifer et
al. (2011)

Highly interactive platform to
facilitate education and public
awareness of community-driven
research while protecting
intellectual property rights

HBC (2015)

Large platform designed to
enable information sharing and
to establish early warning systems

Eicken (2014)

Respecting
indigenous rights

Designing accessible research
to enable shared authorship with
communities

Johnson et al. (2015), Pulsifer
et al. (2015)

Table 1. Themes found in the use of geospatial technologies in community-based research in Arctic and sub-Arctic
regions.

Figure 1. Examples of traditional knowledge used to create living memory maps.

These maps are of significant use to both researchers and community members, but often for
different purposes, as illustrated in Figure 2. Scientists base much of their work on the details
they provide of local ice processes and the potential they offer in helping to build meaningful
relationships with communities [44, 45, 48]. On the other hand, communities have been
interested in their potential to support local interests in land management, land-use claims,
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cultural preservation, and the sharing of traditional knowledge with younger generations [26,
27, 49]. In some instances, the value of these maps may be the reason why communities
collaborate in the first place; so, care in their production and maintenance to reflect this value
is important [32]. However, as has been observed elsewhere [50], their value to local gover‐
nance and natural resources management is not adequately discussed in the literature
(expressed by the dashed lines in Figure 2). This gap may have implications in terms of how
useful the research ultimately is to communities.

In their study of Inuit sea ice use, Laidler et al. [47] use topographic maps in interviews with
elder sea ice experts to document and map traditional knowledge of local sea ice. They cite the
conversational value of large paper maps to dialog with sea ice experts, employing mylar
overlays for documenting spatial information provided by elders, which are later digitized.
The ability to converse respectfully and effectively with elders is an important aspect of the
mapping process. However, accuracy is lost with digitization at rates inversely proportional
to scale. Thus, this approach warrants consideration of the potential benefits of mapping
directly into a GIS platform.

This view of traditional knowledge documentation as an ongoing dialog with community
participants is a notable theme in community-based traditional knowledge mapping. For
instance, there are practical challenges to mapping traditional knowledge due to the fact that
traditional knowledge is usually intertwined with stories, place names, euphemisms, and other
aspects of a community’s culture that can render it incomplete in its documented form [51].
This has underscored the need for relational geodatabases (a topic we will address later in this
chapter) to facilitate ongoing inputs of data as they are collected, so that waypoints associated
with traditional knowledge documented in interviewed form may be enriched by stories,
photography, and other data formats [32, 38]. To this end, one study employs participatory

Figure 2. Examples of applications of living memory maps by communities and in research.
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photomapping as a method for documenting, contextualizing, and sharing Indigenous
observations of environmental conditions [52].

Methods of traditional knowledge mapping require archival research as a precursor to any
new traditional knowledge mapping studies. Of the many traditional knowledge mapping
projects that have been already conducted to date, a significant number exist only in paper
form, lie on old hard drives, or are essentially lost, having been inappropriately cataloged.
Thus, methods for archiving any recovered work from previous traditional knowledge studies
are essential [53].

3.2. Ice classification maps

A number of studies have created atlases of ice types based on characteristics drawn from
traditional knowledge [6, 48, 54–57]. As Tremblay et al. [48] discuss, this allows a researcher
to understand how ice dynamics are perceived from a community perspective, and to conduct
ice research using scientific methods based on traditional knowledge of ice and ice safety.
Often, based on living memory maps, these studies can include extensive interviews and field
surveys with elders and local hunters to photograph and geolocate different kinds of ice, and
describe how these ice types are used. Interviews and surveys may document names of ice
types in the local language, identify features. and/or processes deemed important to hunters
and fishers, and locate important fishing and/or hunting sites where different types of ice may
be found. The maps that result establish classification systems of ice as baselines on which the
impacts of environmental change and industrial development on ice systems can be evaluated
[6, 54–56].

Some studies have identified indicators of environmental change and incorporated them into
ice classification systems, either for analysis of potential impacts of climate extremes or climate
change on safe travel over ice [48, 57, 58] or to help researchers understand the influences of
local geography on ice systems [48]. As Figure 3 illustrates, the resulting ice classification
systems demonstrate how traditional knowledge, science, and geospatial tools can be used
together to synthesize valuable tools for managing ice safety.

Figure 3. Ice classification systems are based on the complementary use of traditional knowledge, science, and geospa‐
tial technologies.
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3.3. Synthetic aperture radar (SAR) imagery in ice monitoring for safe winter travel

A number of studies have explored the use of SAR imagery in ice safety monitoring. SAR uses
an active microwave sensor that provides imagery, regardless of cloud cover or time of day
(unlike optical imagery), and employs radar to interpret and map surface and near-surface
characteristics of ice [59]. Its resolution is generally more appropriate for use at scales that are
used by hunters [60]. Passive microwave imagery, which has a coarser resolution than SAR
but broader spatial coverage, was used in one study of walrus hunting in Alaska to evaluate
regional anomalies in sea ice concentrations, but the resultant anomalies were unable to be
resolved with local sea ice use due to problems with scale and the resolution of the imagery [61].

Ice monitoring studies aim to provide communities with tailored remote sensing [54, 62] or
map products [6, 55, 56] to help individuals in communities plan their travel across ice. Laidler
et al. [62] evaluate an Inuit community’s interests in tailored SAR products, and results indicate
that Inuit hunters are interested in using satellite imagery (and were using it previous to the
study), but would prefer to have the following: higher resolution and higher frequency SAR
images; time series of images as well as supplemental optical imagery to help better elucidate
details themselves from the images; image interpretation training; and opportunities for
collaborations directly with the agency processing the SAR imagery, so that traditional
knowledge could inform and improve on how images are interpreted on an ongoing basis.

Some studies have explored how traditional knowledge can do just that—that is, meaningfully
inform the validation and processing of remote sensing imagery—for community use [6, 54].
For example, a study in Nunatsiavut (Labrador, Canada) aimed to develop a processing and
validation methodology to incorporate sea ice thickness data and satellite imagery into a
knowledge database of both Inuit- and WMO-based ice catalogs. Their goal is to streamline
the generation of products that they process in accordance with user needs, and based on
extensive community consultation.

In another study of river ice in Nunavik (Quebec), SAR imagery and the FRAZIL GIS-based
hydrological modeling tool are used to create ice maps for safe winter travel planning [6]. This
study is significant in that it demonstrates how advances in the RADARSAT-2 satellite
technology (multipolarization, polarimetry, and higher spatial resolutions) have the ability to
discriminate between freshwater types, and how improved image delivery times have enabled
near real-time use of the technology [6]. However, the authors also indicate that validation of
satellite imagery in their study was complicated by the difficulty in accessing key sites on the
rugged, remote landscape of the study site. They opted to use ground-based cameras and aerial
photogrammetry with limited success, and improvements to their radar mapping process were
deemed necessary. Today, this could be made possible with unmanned aerial vehicle (UAV)-
enabled photogrammetric validation, which has recently been studied for its potential in
gaining access to remote Arctic and sub-Arctic sites as a remote sensing tool [63]. Other options
for validation include the potential of community-based volunteer monitoring programs to
work closely in collecting data, for which there is extensive guidance from previous research
[64, 65].
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that Inuit hunters are interested in using satellite imagery (and were using it previous to the
study), but would prefer to have the following: higher resolution and higher frequency SAR
images; time series of images as well as supplemental optical imagery to help better elucidate
details themselves from the images; image interpretation training; and opportunities for
collaborations directly with the agency processing the SAR imagery, so that traditional
knowledge could inform and improve on how images are interpreted on an ongoing basis.

Some studies have explored how traditional knowledge can do just that—that is, meaningfully
inform the validation and processing of remote sensing imagery—for community use [6, 54].
For example, a study in Nunatsiavut (Labrador, Canada) aimed to develop a processing and
validation methodology to incorporate sea ice thickness data and satellite imagery into a
knowledge database of both Inuit- and WMO-based ice catalogs. Their goal is to streamline
the generation of products that they process in accordance with user needs, and based on
extensive community consultation.

In another study of river ice in Nunavik (Quebec), SAR imagery and the FRAZIL GIS-based
hydrological modeling tool are used to create ice maps for safe winter travel planning [6]. This
study is significant in that it demonstrates how advances in the RADARSAT-2 satellite
technology (multipolarization, polarimetry, and higher spatial resolutions) have the ability to
discriminate between freshwater types, and how improved image delivery times have enabled
near real-time use of the technology [6]. However, the authors also indicate that validation of
satellite imagery in their study was complicated by the difficulty in accessing key sites on the
rugged, remote landscape of the study site. They opted to use ground-based cameras and aerial
photogrammetry with limited success, and improvements to their radar mapping process were
deemed necessary. Today, this could be made possible with unmanned aerial vehicle (UAV)-
enabled photogrammetric validation, which has recently been studied for its potential in
gaining access to remote Arctic and sub-Arctic sites as a remote sensing tool [63]. Other options
for validation include the potential of community-based volunteer monitoring programs to
work closely in collecting data, for which there is extensive guidance from previous research
[64, 65].
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As exemplified by Ford et al. [58], when climate indicators are obtained, sea ice observation
data and classification systems can be used with sea ice charts (these are SAR-based maps of
ice concentrations provided in Arctic coastal areas by the Canadian Ice Service) to better
understand community vulnerabilities to climate change. Where SAR is available, sea ice
concentrations can be studied directly as has been done in studies of walrus hunting in the
Bering Strait of Russia and Alaska [66].

3.4. Use of other remote sensing imagery

While the majority of adaptation and ice monitoring research with Indigenous peoples has
emerged out of North America [7, 37], in Eurasia the Sami reindeer-led initiative, the EALÁT
Project, has used remote sensing and participatory Geographical Information Systems (GIS),
with the end goal being the establishment of an early warning system with respect to seasonal
climate impacts on herding grounds [67]. Remote sensing has been used in a collaborative
classification system to identify where the seasonal icing of pastures occurs. Icing effectively
“locks out” reindeer from their food source (lichen) and force nomadic herders out of tradi‐
tional herding routes. EALÁT has developed vegetation indices collaboratively with herders
using MODIS, SAR, and Lidar, and notably has developed an integrated approach that
includes the seasonal forecasting of icing events to facilitate on-the-ground land-use decision-
making during “lockout” seasons. This kind of early warning system, which brings traditional
knowledge and seasonal forecasting together through extensive collaboration and knowledge
coproduction, can allow for the early detection of unsafe conditions. This is what others have
called for in other regions of the circumpolar north in the face of climate change [32].

3.5. Collaborative geospatial platforms and data management

With the growth of traditional knowledge mapping, rights to intellectual property and free
and informed prior consent have featured prominently in the design of geospatial systems for
research with Indigenous communities [33]. However, the numerous legal and ethics-based
protocols that exist can be unclear for both the community and the researcher in terms of who
has the authority to use or share data through community-based research [37]. Many technical
solutions do exist—such as systems with multiple access roles, data encryption, and protection
of sensitive sites—but these require highly technical skills that may be out of reach of some
communities or research projects.

A number of geospatial platforms have emerged to provide geospatial services in traditional
knowledge mapping, to work respectfully with communities, and to establish appropriate
protocols for mapping and managing traditional knowledge data. These include the Exchange
for Local Observations and Knowledge of the Arctic (ELOKA) program (National Snow and
Ice Data Center), the Geomatics and Cartographic Research Centre’s Inuit SIKU Sea Ice Atlas
(Carleton University), the Interactive Knowledge Mapping Platform for Community-Driven
Research (Arctic Eider Society), and an emerging collaborative geomatics tool being developed
for use in sub-Arctic Canada (the Centre for Community Mapping and the Computer Systems
Group, University of Waterloo). Each of these tools is rooted in research networks particular

Collaborative Uses of Geospatial Technology to Support Climate Change Adaptation in Indigenous Communities of
the Circumpolar North

http://dx.doi.org/10.5772/64214

207



to given regions, and brings together numerous local and regional projects into one platform
[38, 68].

Some scientists have called for greater data sharing and partnerships to reduce ice-related
hazards [56]. In light of this, data management has emerged as a prominent issue, particularly
in the high Arctic, where most of the community-based traditional knowledge research on ice
has occurred [37, 38, 69, 70]. Principles of “Indigenist data management” have been called for
and are rooted in the context-specific nature of traditional knowledge, and the need for
relationship-building and a respect for Indigenous values, culture, and language in research
[38]. Enabling communities to share their own data at their own discretion at conferences or
with other communities or researchers should be a priority for the design of geospatial
platforms. Yet, this is complicated by the fact that data generated during research can be in
diverse formats, such as recorded narratives, qualitative observations, transcripts, various
types of multimedia, and geodatabases. Providing meaningful accessibility to archives of these
assemblages of data remains a challenge [37, 70]. Additionally, a lack of access to technology
and slow Internet speeds persist in the north, and must be reflected in the development of
plans to store and share data [37].

3.6. Gaps in the literature

Studies involving sea ice are well characterized in the literature. However, comparable studies
of ice use in brackish and inland freshwater systems were found to be notably underrepre‐
sented in community-based geospatial research. Neither lake-based nor ice road studies are
represented at all, and only one community-based river ice study was found. This may be due
to fewer remote sensing tools available in inland contexts; there are no ice charts, for example.
Algorithms have yet to be developed with which to characterize river ice effectively in the
processing of SAR imagery; however, anticipated enhancements to the RADARSAT constel‐
lation planned for 2018 may benefit freshwater research [59]. Additionally, in situ monitoring
can be used effectively on freshwater lakes to validate imagery [10].

There was a concentration of research among communities that participated in the Interna‐
tional Polar Year (IPY)-affiliated projects, which were centered in the high Arctic. This signifies
both that the funding provided by the initiative was instrumental in advancing community-
based geospatial research on ice systems, and that a lack of other sources of funding has
hindered research where IPY research sites and priorities did not occur. Virtually, all of the
work was in coastal communities, primarily in Canada, and to a lesser degree, Alaska. IPY
Canada decidedly prioritized research that was community-based [69], indicating that the field
of community-based research on ice has been advanced by the IPY initiative. By contrast, a
paucity of community-based studies outside of Arctic North America was noted, and this was
also seen with respect to the sub-Arctic regions of the world, including Canada. Studies
conducted in freshwater regions and on ice roads have also been relatively rare, which is
particularly noteworthy given their role in supporting northern livelihoods.

Finally, we agree that the potential for an early warning system approach to ice research should
receive greater emphasis, as continued warming and amplification of polar temperatures in
the polar regions will negatively impact ice-based travel in the Arctic and sub-Arctic regions
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of the world. Such early warning systems may focus on establishing how geospatial technol‐
ogies can be used to detect dangerous ice conditions earlier or in real time, and help commu‐
nications within community and between communities located in high-latitude regions,
increasing the adaptive capacity of these communities.

4. Conclusion

Geospatial technologies have helped scientists work with Indigenous peoples to document
and map traditional knowledge, and develop tools for cataloging ice systems. This documen‐
tation process, more of a dialog than a series of data-collection procedures, has produced
geodatabases and maps that are valuable to both researchers and communities for different
reasons. Tools, both old and new, are used to create living memory maps and ice classification
systems, which can be used to inform scientific inquiry on climate change, impacts to local ice
systems, and ways of using the ice.

Remote sensing has been an important part of this process, and the current movement toward
tailoring image products in collaboration with communities is exciting. However, the ultimate
goal of creating community-based tools to improve ice safety requires expanding the scope of
research to outside North America, to be inclusive of sub-Arctic regions of the world, as well
as inland freshwater systems, since communities located in these regions and systems also are
similarly impacted by climate change and resultant safe winter-travel concerns. Finally, the
end goal of setting up an integrated early warning system will require greater partnership
building between research teams and community members, and the establishment of mean‐
ingful data management systems that facilitate knowledge sharing while addressing com‐
munity interests and concerns.
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Abstract

Agronomy is a branch of agriculture that deals with soil and crop. Soil varies in space
and is responsible for variation in the growth and yield of crops on the field. This
variation in the yields of crops planted and monitored on the same parcel of land under
the  same  environmental  conditions  has  been  a  great  concern  to  farmers.  Spatial
variations of soil nutrients status, as caused by topography, soil texture and manage‐
ment practices, have been observed across the fields. Hence, the need to separate the
field into site specific management units using geographical information systems (GIS)
for effective soil and crop management in order to obtain optimum productivity. Over
the  years,  field  sizes,  farming direction,  locations  of  fences,  rotations  and fertility
programmes  have  changed  the  nutritional  status  of  the  farms.  Consequently,  the
productivity of the soil has equally been affected. In spite of these factors, convention‐
al agriculture treats an entire field uniformly with respect to the application of fertiliser,
pesticides, soil amendments and other chemical application. The use of GIS will help
farmers to overcome over- or under-applications of fertiliser and other agrochemical
applications. The potential of GIS application in agronomy is obviously large. However,
the GIS user community in the field of agronomy is rather small compared to other
business sectors. To advance the use of GIS in agronomic studies, this Chapter in book
tends to explore the applications of GIS to some fields in agronomy.

Keywords: spatial variability, soil properties, site-specific management, crop yields,
ArcGIS

1. Introduction

Agronomy, an aspect of agriculture, is a spatial activity that represents the backbone of the
economy of many nations. This is the result of its noticeable contribution to the employment
of labour and the gross domestic product of most developing countries. However, as land is
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a finite resource, the increase in food production in order to meet an affluent population
becomes one of the major issues faced by many developing countries in the world. Hence, the
improvement in agronomic practices is inevitable to ensure wise land-use planning and proper
management of available resources for Crop cultivation.

With the growing interest in placing site-specific information in a spatial and long-term
perspective [1], precision in agronomic practices would require a technology that can calculate
spatial and temporal variations in crop growth with a time scale appropriate for management
decisions [2]. Today, advances have been made towards extraordinary digital systems for
utilization in soil fertility examination, soil survey and land-use planning, crop production
and yield monitoring. Computer programmes, such as geographical information system (GIS),
contribute to the speed and efficiency of overall agronomic planning processes [3].

According to [1], most process-based agronomic models examine temporal variations using
point data from specific sites, while GIS facilitates storage, manipulations, analysis and
visualization of data. They further stated that the interaction of both spatial and temporal
issues can be best handled through interfacing agronomic models with geographical infor‐
mation system (GIS).

2. What is geographical information system (GIS)?

A geographical information system (GIS) is a thematic mapping system, which allows for the
production of maps based on themes such as soils or hydrology [4]. Geographical information
systems are a special class of information systems that keep track of events, activities and things
and also of where these events, activities or things happen or exist [5].

GIS is a part of a suite of technologies that enhance precision in agronomic practices. The
system requires preliminary basic information that is relevant to the particular project
discipline. The importation of information into a GIS would require time and attention, mainly
because this information will provide the basic knowledge of the territory and on the individ‐
ual parameters, and it is difficult to modify in a second time [6]. According to [6], all the
information in a GIS can be linked and processed simultaneously, obtaining a syntactical
expression of the changes induced in the system by the variation of a parameter. The GIS allows
the updating of geographical information and their relative attributes, producing a fast
adaptation to the real conditions and obtaining answers in near real time [6]. In [7], the authors
reported that GIS techniques have been used for farm-related assessments at national and
regional scales for many years. Geographical information systems have been in existence for
about three decades, but only in the last 10 years, these applications have widely been used
for agronomic and natural resource management [8]. The GIS is a dynamic product rather than
a static product, Making it easy to update, edit, and reproduce maps [4]. According to [9],
geographical information systems allow for the visualization of information in new ways that
reveal relationships, patterns and trends that are not visible with other popular systems.
Geographical information systems provide valuable support to handle out voluminous data
that are generated through conventional and spatial format and for the integration of these
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data sets [10, 11]. The GIS technique uses a digital map that allows the users to view, update,
query, analyse and manipulate the spatial and tabular data either alone or together, within
few minutes. Unlike paper maps, GIS can prepare and manage large collection of agronomic
and land resource data necessary for crop production [12].

2.1. Importance of GIS to agronomy

Agronomic activities are spatial and the need to place site-specific information in a spatial and
long-term perspective would require special models that can be used to calculate spatial
variation in crop growth and monitor variations in trend with a time scale appropriate for
guiding decisions. GIS could play a significant role in agronomy at several levels due to the
fact that it can be used to study the nutrient status of individual fields to arrive at specific
requirements for external application of nutrients [12]. According to [13], the use of GIS in
precision agronomic practices helps to manage the information intensive environment in crop
production by combining site-specific (within field) management with computer software
modelling for analyses and interpretation of varying inputs and outputs. As opposed to
farmers’ typical manual adjustment, GIS helps farmers to manage with-in field variable rate
application, which results from spatial variation in crop yields within a field [14]. Hence, GIS
enhances the assessment and understanding of variations in a field crop. According to [14],
GIS can be used to assemble many layers of information such as soil nutrients, elevation,
moisture content and topography to produce a map to show which factors influence crop yield.
In [14], it was Also reported that the yield can then be estimated or used for future reference
and the economic inputs and outputs can be calculated based on anticipated yield. This will
have a huge potential for saving costs spent on over applied fertilisers that otherwise could
have been used on another field.

3. Applications of GIS in agronomy

According to [1], applications of GIS have grown from primarily hydrological applications in
the mid-1980s to the current wide range of applications in agronomy and natural resource
management research. Examples of GIS applications in agronomy and natural resource
management research include: atmospheric modelling [15], climate change, sensitivity and/or
variability studies [16–18], characterization and zonation [19, 20], hydrology, water quality,
water pollution [21, 22], soil science [8, 23] and spatial yield calculation—regional, global [24,
25] and precision farming (spatial yield calculation) [26, 27]. Several studies have been reported
on the application of GIS on cultivation practices of various crops [10, 28–31]. In [12], the
authors reported The application of GIS to fertility management of Soils planted to tea where
digitized Maps of the soil pH, potassium, phosphorus and organic matter were prepared using
the Arc MAP software. According to [12], it would be beneficial for tea growers in those
locations for calculating fertiliser requirements. In [12], it was reported that measures may be
required to reduce to a desired level the pH of fields having pH > 5.5. In [32], a geodatabase
was developed using GIS mapping. This was to provide soil quality monitoring based on data
of agrochemical soil survey in order to monitor land cover/soil quality changes between
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periods of soil survey. In the work of [32], ArcGIS was employed for mapping soil quality and
it was reported that soil data can easily be handled and analysed using ArcGIS because they
are spatial in nature. It was also reported in [32] that there was no significant changes in humus
and easily hydrolysable nitrogen content within the period between the last two soil agro‐
chemical surveys (Figures 1 and 2). In [33], a GIS-based decision support system was used to
establish potentials and limitations of different soils for crop production, while [34] employed
GIS in soil erosion control where the factors and elements affecting erosion were studied by
analysing numerical maps of different parts of a basin.

Figure 1. Humus content in the soil: (a) humus content per elementary plots; (b) humus average value per agricultural
soil contour per field; (c) average value per field; (d) average value per agricultural soil contours per enterprise
(Source: [32]).

Figure 2. Nitrogen content in the soil: (a) nitrogen content per elementary plots; (b) nitrogen average value per agricul‐
tural soil contour per field; (c) average value per field; (d) average value per agricultural soil contours per enterprise
(Source: [32]).
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3.1. Operational use of GIS in precision farming: regional and local levels

The GIS techniques have been used for farm-related assessments for many years at both
national and regional scales, respectively [7]. The combination of these techniques and
remotely sensed data have been used to aid the assessments of land capability [35], crop
condition and yield [36–38], range condition [39], flood and drought [37, 38], soil erosion [40,
41], soil compaction [42] and climate change impacts [43, 44] on regional levels. Also, attempts
have been made by [45, 46] to assess leaching behaviour for regional scale using a combination
of the leaching and chemistry examination (LEACHM) models and GIS database.

At the local level, the number and variety of local agricultural GIS applications have dramat‐
ically increased during the past 5 years [45]. Most of the applications are targeted at individual
farms [47]. For example, [48] utilized the spatial analysis tools in PC ARC/INFO to perform
fully automated conservation program determinations, compliance monitoring and farm
planning. In [47], it was stated that this particular application is noteworthy both for its
substance and because it illustrates how rapidly the computing resources, user interfaces and
database functions in desktop GIS have evolved during the past 5 years. Similarly, [49]
determined possible pond sites and estimated rainwater-harvesting potential for a 172-ha farm
using GIS.

Most of these field- and subfield-scale applications are connected with precision or site-specific
farming, Which helps to direct the application of seed, fertiliser, Pesticide and water, within
fields in ways that optimize farm returns and minimize chemical inputs and environmental
hazards [7, 50]. In [51], the use of GIS in precision farming to generate production-based
farming system that can be designed to increase long-term, site-specific and whole-farm
production efficiency, productivity and profitability was discussed. In addition, [7, 52]
reported that most site-specific farming systems utilize some combinations of Geographical
positioning system (GPS) receivers, continuous yield sensors, remote sensing, geostatistics and
variable rate treatment applications with GIS. According to [47], the reason for combining these
advanced technologies is to collect spatially referenced data, perform spatial analysis, make
decisions and apply variable rate treatment.

3.2. GIS applications in agrometeorological operations

Due to the increasing pressure on land and water resources for crop cultivation, land-use
management and forecasting (crop, weather, fire, etc.) have become more essential every day.
Hence, GIS is an important tool at the disposal of decision makers [6]. For instance, precipita‐
tion and solar radiation are meteorological conditions that can be mapped and monitored to
directly assist in the agronomic process to provide advice on the occurrence of drought [53].
In [6], it was reported that developed countries use GIS to plan the times and types of agro‐
nomic practices, which requires certain information such as soil types, land cover, climatic data
and geology, in describing a specific situation in any given location. Each informative layer
provides to the operator the possibility to consider its influence on the final outcome [6].
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3.3. Operational use of GIS in agroclimatological and agroecological studies

The GIS technology has been shown to synthesize and integrate more data than methods used
in the pre-computer era and to shift the design of agroecological and agroclimatological studies
towards user-specific classifications [35]. In a study carried out in Zimbabwe, effective rainfall
and vegetation for variable interpolation between stations were calculated from rainfall and
vegetation data using GIS maps [35]. In addition, seasonal rainfall surfaces were constructed
for Zimbabwe using decadal rainfall data while adopting the procedures described by [54].
They also generated surfaces showing mean rainfall and annual rainfall anomalies to describe
the main rainfall period for Zimbabwe in terms of rainfall variability. This showed the natural
regions experiencing considerable spatial variability in terms of mean and inter-seasonal
variability of rainfall (Figure 3).

Figure 3. Rainfall variability zones in Zimbabwe (Source: [35]). See Table 4 in Corbett and Carter (1997) for zone de‐
scriptions.

3.4. Use of GIS for agronomic characterization and zonation

The GIS techniques have also been used to characterize agroclimatic diversity and to delineate
maize-specific adaptation zones [55]. In the report of [55], it was concluded that the emergence
of GIS has made it possible to delineate agroclimatic zones with greater precision, especially
by allowing many ‘layers’ of spatially referenced data (including survey data) to be integrated
into one digital database.

3.5. GIS application in soil survey studies

According to [47], three approaches have been implemented in an attempt to utilize GIS and/
or GPS to improve soil attribute predictions at regional scales. The first approach evaluated
the use of GIS and/or GPS to improve traditional soil surveys. For example, Long et al. [56]
examined the potential of using GPS methods in soil surveys and found these methods to be
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maize-specific adaptation zones [55]. In the report of [55], it was concluded that the emergence
of GIS has made it possible to delineate agroclimatic zones with greater precision, especially
by allowing many ‘layers’ of spatially referenced data (including survey data) to be integrated
into one digital database.

3.5. GIS application in soil survey studies

According to [47], three approaches have been implemented in an attempt to utilize GIS and/
or GPS to improve soil attribute predictions at regional scales. The first approach evaluated
the use of GIS and/or GPS to improve traditional soil surveys. For example, Long et al. [56]
examined the potential of using GPS methods in soil surveys and found these methods to be
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more efficient than traditional methods of mapping and sufficiently accurate to support
positioning/navigating in fields and field digitizing of soil boundaries.

The second approach combined geostatistical modelling with soil survey maps to generate
improved soil descriptions. In [57], a map that preserved the map unit boundaries and
incorporated the spatial variability of the attribute data within the map unit delineations were
produced. This was done by combining spatially interpolated (krigged) distributions of
measured values with soil map unit delineations within a GIS framework. It was reported by
[47] that this approach appeared promising for countries and regions with well-developed soil
survey programs.

The third approach neglects the use of traditional soil survey methods and explores the
possibilities of integrating GIS, pedology and statistical modelling to improve soil resource
inventory [58, 59]. In a study, [60] combined a GIS with an existing soil landscape model to
create soil drainage maps. The soil landscape model used multivariate discriminant to predict
soil drainage class from parent material, terrain and surface drainage feature variables [61].

3.6. GIS as an agronomic land-use planning tool

Figure 4 is a pictorial view of SPAREC GIS being used for land-use planning [4]. It was stated
by Coleman AL and Galbraith JM that soil survey data and geographic information systems
(GIS) are important tools in land-use planning. They reported that the map unit interpretive
records (MUIR) were used to create interpretation maps, flooding frequency maps and runoff
maps after soil data were added to other data layers and images. Figure 5 shows a flooding
frequency map converted from tabular estimates of values in an ArcView GIS. It was explained
by [4] that the blue areas are frequently flooded, red areas are occasionally flooded, while the
green areas are rarely flooded. They further reported that the soil based-GIS made the decision-
making process more accurate, automated and efficient, hence promoting wise land-use
planning. In [3] and [62], it was reported that the soil-based GIS is a dynamic product that
serves to convert verbal communication into visual communication while preventing infor‐
mation overload. In the Report of [4], it was reported that with the GIS, tabular soil information

Figure 4. Pictorial view of SPAREC GIS (Source: [4]).
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can be georeferenced and easily converted to geographic and interpretive maps, which
provides the user with a visual representation of the tabular data. Figure 6 is an example of
an interpretive map showing the ratings for site suitability of local roads and streets, where [4]
explained that the green areas represent a slight rating, meaning they are the most suitable,
while the yellow areas are rated moderate and the red areas are severe areas having the most
serious limitations.

Figure 5. Flooding frequency map (Source: [4]).

Figure 6. An example of an interpretive map showing ratings for local roads and streets (Source: [4]).

3.7. Operational use of GIS for soil fertility studies

Soil fertility investigations are necessary to confirm soil fertility status [63], which is also
necessary as a guide for the fertility management practice to adopt [64, 65]. Several methods
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of soil fertility investigation have been employed in confirming the fertility status of soils [66,
67]. In [68], the authors reported that these methods did not ensure the completion of soil
fertility investigation within the specified time frame and the required degree of accuracy, as
change in soil fertility status over a period of 2 or 3 years makes these methods invalid, thus
making it difficult for agronomists to manage soil fertility over large areas. They reported that
the application of geospatial technology involving the use of global positioning system (GPS)
and geographic information system (GIS) had greatly improved the old traverse techniques.

In the application of space-time evolution of soil fertility data mining based on visualization,
a three-dimensional spatial variation of soil nutrient spatial map for soil available phosphorus
(Figure 7) was produced by [69]. In a study, [70] evaluated the spatial variation of soil organic
carbon, soil water content, NO3–N, PO4–P (phosphate-phosphorus) and K (potassium) in the
0–15 cm layer of a 3.3 ha field cropped with maize and soya beans. They calculated that as
many as 400 randomly selected samples per hectare may be needed to develop an accurate
soil NO3–N map and that an application travelling at 8 km h−1 would need to modulate fertiliser
rates every 2.25 s to match nitrogen fertiliser rates to soil NO3–N requirements.

Figure 7. A three-dimensional spatial variability map of available phosphorus for 2003(a) and 2008(b) (Source: [69]).

In [71, 72], the authors reported the use of GIS techniques and remote sensing in forest soil
fertility studies. According to [68], GIS could be used to map fertility levels across a farm to
serve as basis for the application of farm inputs and also for establishing accurate location of
yield data for the production of yield maps for monitoring yield [73, 74]. It was also reported
by [68] that periodic review of soil fertility status can be done on digital maps generated with
GIS technique (Figure 8). According to [12], this is due to the fact that the GIS technique uses
a digital map which allows the user to view, update, query, analyse and manipulate spatial
and tabular data either alone or together, within a few minutes. In assessing the relative
efficiency of GIS map-based soil fertility evaluation in relation to traditional soil testing, [76]
reported minor variations in available nitrogen content, no variation in available phosphorus
and a large difference in available potassium under the two methods of evaluation (Table 1).
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They concluded that fertiliser recommendations generated from GIS maps were agronomically
as effective as those generated form soil testing (Table 2).

Figure 8. Surface maps showing the distribution of soil fertility indicators (Source: [75]).

Parameter Low/Slightly Acidic Medium/Acidic High/Alkaline

Soil test GIS Soil test GIS Soil test GIS

Available N (g/kg) 8.9 7.8 11 22 0 0

Available P (mg/kg) 100 100 0 0 0 0

Available K (cmol/kg) 44 33 33 67 22 0

pH 5.6 6.7 4.4 3.3 0 0

Source: [76].

Table 1. Comparison of traditional soil test and GIS method of assessing samples (%) that fall under low, medium and
high nutrient availability and pH categories.
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Treatment Rice Potato Sesame

Farm 60-30-30 300-200-200 Residual

State 80-40-40 200-150-150 80-40-40

Soil test Variable Variable Variable

GIS Variable Variable Variable

Source: [76].

Table 2. Nutrient rates generated from state, field-specific, soil test-based recommendations and GIS.

3.8. Spatial yield calculation

In [47], it was reported that new GIS data layers developed from models were used with some
information in various GIS-based application of existing crop yield models. Several studies
Showed that these applications can be used to store and process data for decision making with
respect to the factors that influence Crop cultivation and crop yield in a crop production. For
example, the climate surfaces can be used as inputs in genotype-sensitive crop models to assess
the risks for specific crop varieties [35]. This was illustrated by [36] who used GIS and remote
sensing technologies with the SOYGRO [77] physiological soya bean growth model to predict
the spatial variability of soya bean yields. In the report of [78], continuous yield sensors with
a combination of accurate location information obtained using a GPS with the results of a
variable flow rate sensor can provide information about the crop performance for a year that
can be used to guide the following year’s crop management strategies. According to [36], the
examination of spatial patterns of simulated yield improved production estimates and
highlighted vulnerable areas during drought.

3.9. Agronomic impact assessment using GIS

The GIS and environmental models have been combined in many projects to evaluate the
impacts of modern agriculture [47]. For instance [79], used the EPIC-PST crop growth/chemical
movement model [80] interfaced with Earthone GIS to evaluate crop yield and nitrate (NO3–
N) movement to surface and ground waters for four soils and nine cropping systems. In [79],
the authors digitized soil maps using GIS and described how the data can be used with model
results to compare the predicted changes in crop yields and nitrogen losses on different soils
under water quality protection policies that targets specific soils and/or cropping practices.

4. Conclusions

The GIS is an excellent informative tool that enhances visualization and ease of analysis and
handling of spatial data. Its digital map allows for the periodic review of soil fertility status as
it improves and updates information on crop, soil and the prevailing climatic conditions as
they affect agronomic practices, thus greatly enhancing the management of finite resources
and accurate land-use planning due to its accurate knowledge base.
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The benefits of GIS applications could be better exploited with increase in the level of aware‐
ness and understanding of the potential use of GIS and related technologies in the assessment,
storage, processing and production of data ranging from site-specific farming systems to global
food production and food security issues. The GIS offers the advantage of generating and
synthesizing new information cheaply and quickly Over a wide range of areas as well as
temporal or historical changes resulting from management practices, thus, aiding the ease in
decision-making process.
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Abstract

In physics, objects can be divided into rigid and soft objects according to the object
deformation capacity. Similarly, geo-object can also be classified into rigid geo-objects
(e.g., building, urban) and soft geo-objects (e.g., mudflow, water, soil erosion). There
are three types of approaches for 3D GIS modeling, i.e., surface-based, volume-based,
and hybrids in terms of geometry. These approaches are suitable for representing rigid
geo-objects, but they are not suitable to simulate the intrinsic properties of the soft geo-
object, i.e., dynamics and deformation. And so far there are few GIS modeling methods
for simulation of soft geo-objects. GIS flow elements (FEs) and GIS soft voxels (SVs)
were proposed for 3D modeling of soft geo-objects. GIS flow elements can realistically
represent  the  dynamics  and  stochastics  of  soft  geo-objects,  while  GIS  soft  voxels
simulate deformation of soft geo-objects. The authors discuss the implementation and
computer programming of GIS flow elements and GIS soft voxels in this study. GIS FE
and SV have been successfully applied in a case study toward the simulation of the
process of rainfall, overland flow, and soil erosion. A software system has been designed
and developed, which has the functions of data management, model computation, and
3D simulation.

Keywords: 3D GIS modeling, soft geo-objects, rainfall, overland flow, soil erosion

1. Introduction

Nowadays, severe shortage of water resources, ecological destruction and environmental
pollution,  global  changes,  natural  disasters,  etc.,  are the key issues of  geosciences.  Main
research objects of these key issues such as water, polluted air, and mudflow are soft geo-
objects.  Modeling and 3D visualization of  soft  geo-objects  is  emerging research area.  In
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computer graphics, several approaches have been applied for simulation of soft objects, e.g.,
the particle system approach and the metaball approach [1]. However, the particle system
approach and the metaball  approach are driven by physical force objects,  which are not
suitable to simulate geographic process that is driven by more complex geomodeling [2].
Mitasova et al. used densities of particles to sample rainfall excess and sediment transporta‐
tion of sand and clay. Compared to traditional sampling method, their method showed several
advantages [3]. For example, it can be easily extended into arbitrary dimensions, and is fairly
straightforward to be implemented in a multiscale framework with data adaptive capabili‐
ties. But the method has obvious limitations. Firstly, it cannot accurately represent the dynamic
change of sample points’ velocity and direction over space and time because all sample points
have the same size. Furthermore, the geographic phenomena of soil separation and fusion
during the process of soil  erosion have not been represented. Soil  erosion is  a naturally
occurring process in land which refers to wearing away of a field’s top soil by natural forces
of water and wind. How the sediment transports, how the soil separates, and how much soil
losses, all these are driven by geomodeling.

2. Methodologies

In GIS existing research studies focus more on rigid objects such as mountains, roads, and
buildings, and few methods have been proposed for the modeling and 3D visualization of soft
geo-objects. GIS flow elements (FEs) and GIS soft voxels (SVs) were proposed and developed
for 3D modeling of soft geo-objects. GIS FEs can realistically represent the dynamics and
stochastics of soft geo-objects while GIS SVs can simulate deformation of soft geo-objects.

2.1. GIS FE

A GIS FE is a basic simulation unit and spatially corresponds to a pixel in remotely sensed
imagery. It is characterized by the position (i.e., x, y, z coordinates), velocity, and direction of
a soft object, but volume is neglected. GIS FE is driven by geomodeling with the objective to
simulate the dynamic feature in soft geo-objects. Although a GIS FE is within a pixel, it can
take many appearances such as a point, a line segment, or a surface depending on the natural
appearance of the soft geo-object. For example, the FE is with line segment shape for rainfall
simulation. The velocity and direction of a FE can well reflect the real dynamic change. Besides
the above-mentioned fundamental attributes, a FE is able to carry more properties such as
color and texture that help distinguish and characterize an object. This provides flexibility for
extension.

2.2. GIS SV

A GIS SV is a basic unit for deformation simulation. Similar to FE, a GIS SV is also based on a
pixel from remotely sensed imagery and it also features with position, velocity, and direction,
which are controlled by geomodeling. But a GIS SV carries volume information. A SV is
covered by an isosurface that can well represent volume shape and surface deformation. A
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GIS SV has potential to carry more information by adding colors and textures or by modeling
its internal structure.

2.3. Calculation of basic parameters

Here the basic parameters include direction, velocity, shape, and volume.

8-neighborhood tracing algorithm is used to calculate the direction of a FE. Eq. (1) is used to
compute the velocity of the FE (V) where M1 is geoscientific model and p1, p2, …, pj are
parameters affecting V. Suppose that V is directly proportional to the length of a GIS FE (L),
we get (Eq. 2) where L is a proportional coefficient with a value greater than 0. (Eq. 3) is used
to control the shape of the GIS SV where g represents isosurface, d is the length of a pixel, h is
the average thickness of the soft geo-object, and r2 = x2 + y2 + z2 in which (x, y, z) are 3D
coordinates of the critical point of the GIS SV. Eq. (4) calculates the volume Vol of the GIS SV.
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  V Ll= (2)
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The following section will introduce the application of using GIS FE and GIS SV theories in
modeling and 3D simulation of rainfall, overland flow, and soil erosion.

3. GIS FE-based simulation of rainfall

The objective is to simulate raindrops falling from the sky to the ground surface.

3.1. Raindrop dynamics

Force objects on a raindrop include gravity, air buoyancy, air resistance, wind force, and the
kinematic equation for a raindrop in vertical direction is [4]:

R B
dvm mg F F
dt

= - - (5)
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where m represents raindrop mass, v represents raindrop falling velocity, t represents time, g
means gravitational acceleration, FR means air resistance, and FB means air buoyancy. Figure 1
shows the force objects of a raindrop.

Figure 1. A schematic view of raindrop dynamic analysis.

3.2. Criteria for raindrop GIS FE representation

In this study raindrop GIS FE representation meets artificial rain experiments criteria [5]:

• Raindrop particle size distribution is close to natural rainfall. Natural rainfall raindrop sizes
range from near zero to about 7 mm. The median particle size of an erosive rain storm is
between 1 and 3 mm. Raindrop diameters normally increase with the increase in rainfall
intensity.

• Raindrop impact velocity is close to the natural raindrops. Raindrop impact velocity, from
droplet velocity near zero to the maximum raindrop velocity of more than 9 m/s. The landing
speed of an ordinary raindrop with a diameter of 2 mm is 6–7 m/s.

• Rainfall intensity is close to the natural rainfall. Natural rainfall intensity from near zero to
a few millimeters per minute. In general, low rainfall intensity is not important to soil
erosion, and the frequency of high rainfall intensity is very low, so that the importance is
limited. Common rainfall intensity of 0.2–2 mm/min is usually the most important rainfall
intensity.
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• Throughout the study area, raindrop characteristics and strength is fairly uniform.

• The rainfall is continuously simulated in the study area.

• The impact angle of most raindrops is not too much deviated from the vertical line.

3.3. Raindrop GIS FE representation

The representation includes geometry representation and dynamic representation.

Raindrop is considered to have a shape of a combination of a taper and a semisphere with
white color and it is transparent. The initial position, x and z are randomly created and y
position is on the top of the viewpoint. The velocity and direction are determined based on
raindrop dynamics. The raindrop object has its lifespan, which ends when raindrop collides
with DEM.

3.4. Programming

The development platforms are Visual Studio C++ and OpenGL.

3.4.1. Define raindrop array

Create raindrops by meeting artificial rain experiment criteria. The raindrop array stores
raindrop total number, color, transparency, and coordinates information. 3D coordinates of
the start point of rain line are generated with a random function. Coordinates of the end point
of the rain line are calculated based on dynamic analysis.

3.4.2. Create animation

Create raindrops animation by meeting artificial rain experiment criteria as well and the
pseudo code is as follows:

For i from 1 the total number of raindrops

{

Translate the start and end points of the rain line to a new position along z axis based on the
initial velocity setting

Add an acceleration increment to the initial velocity of the raindrop

If a rain line touches or penetrates DEM, then

{

The life of the rain line is ended

Reinitialize a new rain line and set the initial velocity

}

}
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4. GIS FE-based simulation of overland flow

The objective is to simulate the velocity and direction of overland flow.

4.1. Flow streamline dynamics

Saint Venant kinematic equation of unsteady flow of water is used as the governing equation
[6]:

1 2 U L xM M P P W TD + D = - + - (6)

or it is written as:

( )0 f
V V yV g g i i
x t x

¶ ¶ ¶
+ + = -

¶ ¶ ¶
(7)

where PU and PL represent pressure on the upstream face and downstream face, respectively;
Wx represents the gravity component in water flow direction; T is friction resistance, ΔM1 and
ΔM2 are local momentum change and transport momentum change, respectively, x is distance
in water flow direction, t is time, y is the depth of water, i0 and if are bottom slope and friction
slope, respectively. Flow streamline dynamic analysis is shown in Figure 2.

Figure 2. A schematic view of flow streamline dynamic analysis.

4.2. Compute the velocity of overland flow

Overland flow velocity is an equation of discharge per unit width and slope angle [7]:

n mV Kq S= (8)
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where K, m, n are parameters. Compared to laminar flow and turbulence flow equations,
normally the value of m/n is between that of laminar and turbulent flow. By nonlinear
regression analysis, we deduced the equation

0.4667 0.251021.8811V q S= (9)

where S and q represent the slope angle and the discharge per unit width, respectively. The
water discharge was computed using the equation [8]:

( )cosq x I f b= - (10)

where x represents the average slope length from the slope top, β represents the average slope
gradient, I represents the rainfall intensity, and f represents the infiltration rate.

4.3. Compute overland flow direction

Water and sediment discharge computation based on grid DEM is usually determined using
single flow path algorithm, i.e., the method of determining the maximum gradient. For a 3 ×
3 window, the center cell has eight neighbors. The water and sediment flow direction coding
of each cell is based on the digital coding method in Refs. [8, 9]. For example, if the flow
direction of water and sediment of a grid unit as the center of the window is due west, i.e.,
water and sediment in the center of the window flow into the adjacent cell 4, then the flow
direction value of the center cell is 4.

In the algorithm, following values are combined for identification of landform structure.

• DEM elevation values, stored in the array ALT[i, j].

• Flow direction values, stored in the array PTR[i, j].

• Flow streamline coordinates, stored in the array FLOWLINE[i, j].

The above arrays have the same size. Each grid unit has a value to identify one of its attributes.
In addition, the algorithm uses the following terms:

• Outflow point: if water and sediment flows out of a grid unit, then the unit is called an
outflow point.

• Inflow point: if water and sediment flows into a grid unit, then the unit is called an inflow
point.

• Flow point: if water and sediment flows from grid cell (i, j) to grid cell (x, y), then (x, y) is a
flow point of (i, j).

In fact, in addition to certain points along watershed boundary that only have outflow, other
points have both inflow and outflow. Algorithm:
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In a 3 × 3 window, gradients from the center cell to its 8-neighborhoods are used to determinate
flow directions.

• For cells at the edge of DEM or boundary of the study area, the flow direction of each cell
is defined as the direction toward the boundary.

• For any other grid cell, calculate the cell’s elevation gradients to its eight neighbors. EG0, i =
Z0 − Zi (i = 1, 3, 5, or 7) represents the elevation gradient in horizontal or vertical directions,
and EG0, i = Z0 − Zi/sqrt(2) (i = 2, 4, 6, or 8) represents the elevation gradient in diagonal
directions.

• Determinate the neighboring cell which has the maximum elevation gradient.

• Identification of isolated depression flow direction. Scan the study area using a 3x3 window,
and (i, j) is the center cell of the window. Calculate the eight elevation gradients of (i, j). If
the maximum gradient value is less than 0, then identify (i, j) as an isolated depression.

• Identification of outflow point flow direction. Scan the study area using a 3×3 window, and
(i, j) is the center cell of the window. Calculate the eight elevation gradients of (i, j). If the
maximum gradient value is greater than 0, then identify (i, j) as an outflow point.

4.4. Flow streamline GIS FE representation

The representation includes both geometry representation and dynamic representation.

Flow is considered to have a fine cylinder shape with Cambridge blue color and it is trans‐
parent. The initial position starts from the intersection point between raindrop and collision
plane on DEM. Its velocity and direction is determined based on the analysis of dynamics. The
lifetime of the flow streamline ends when it runs into a channel.

5. GIS FE- and SV-based simulation of sediment transport and soil erosion

The objective is to simulate sediment transport and the process of soil erosion by water.

5.1. Sediment particle dynamics

Dynamic analysis of a sediment particle is shown in Figure 3 [9]. The parameters are W as
gravity, Py as uplift, Px as traction force, and T as upper-surface friction. In this simulation, only
suspended load is considered. The velocity of suspended load in water flow direction is mostly
equal to that of flow streamline [10]. Bed load and saltation load will be considered in future
work.

Because spatially varied forces acting on flow streamline and sediment particles are too
complicated to be precisely represented, we firstly use an 8-neighborhood tracing algorithm
to compute the flow direction on hillslopes, then apply the modeling theory of remote sensing
information model combined with experimental results to obtain an equation for flow velocity
computation on hillslopes to simulate dynamic sediment laden flow in 3D space.
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• Determinate the neighboring cell which has the maximum elevation gradient.

• Identification of isolated depression flow direction. Scan the study area using a 3x3 window,
and (i, j) is the center cell of the window. Calculate the eight elevation gradients of (i, j). If
the maximum gradient value is less than 0, then identify (i, j) as an isolated depression.

• Identification of outflow point flow direction. Scan the study area using a 3×3 window, and
(i, j) is the center cell of the window. Calculate the eight elevation gradients of (i, j). If the
maximum gradient value is greater than 0, then identify (i, j) as an outflow point.

4.4. Flow streamline GIS FE representation

The representation includes both geometry representation and dynamic representation.

Flow is considered to have a fine cylinder shape with Cambridge blue color and it is trans‐
parent. The initial position starts from the intersection point between raindrop and collision
plane on DEM. Its velocity and direction is determined based on the analysis of dynamics. The
lifetime of the flow streamline ends when it runs into a channel.

5. GIS FE- and SV-based simulation of sediment transport and soil erosion

The objective is to simulate sediment transport and the process of soil erosion by water.

5.1. Sediment particle dynamics

Dynamic analysis of a sediment particle is shown in Figure 3 [9]. The parameters are W as
gravity, Py as uplift, Px as traction force, and T as upper-surface friction. In this simulation, only
suspended load is considered. The velocity of suspended load in water flow direction is mostly
equal to that of flow streamline [10]. Bed load and saltation load will be considered in future
work.

Because spatially varied forces acting on flow streamline and sediment particles are too
complicated to be precisely represented, we firstly use an 8-neighborhood tracing algorithm
to compute the flow direction on hillslopes, then apply the modeling theory of remote sensing
information model combined with experimental results to obtain an equation for flow velocity
computation on hillslopes to simulate dynamic sediment laden flow in 3D space.
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Figure 3. A schematic view of sediment particle dynamic analysis.

5.2. Erosion voxels

We form GIS SVs on a pixel basis and name it erosion voxel to simulate the separation and
fusion of soil mass. The erosion voxel combines the attributes not only from geographic pixels,
but also from particles and metaballs in computer graphics.

(1) The main characteristics of a pixel-based erosion voxel are described as follows:

• The appearance of an erosion voxel is designed as a circumscribed ellipsoid of a cuboid. The
width and length of the cuboid are equal to cell length, and the height of the cuboid
represents the averaged thickness of soil loss per unit duration (which depends on specific
time, location, and amount of rainfall);

• Represents averaged volume of soil loss per unit duration; therefore, it has statistical
meaning;

• Represents the highest precision of geographic image data, and includes soil properties,
vegetation coverage, slope, elevation (represented by the elevation of center point of top
face of its inscribed cuboid) and other information;

• Once time reaches the specific step of duration, we separate a specific erosion voxel from a
specific pixel, and it will run off with water (i.e., erosion voxel separation);

• When the velocity falls to zero, the erosion voxel will subside, and the fusion of erosion
voxels will occur;

• When the erosion voxel runs into a channel, its lifetime will be ended.

(2) Quantitative expression of an erosion voxel

An erosion voxel is represented by a circumscribed ellipsoid:
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where d represents cell length, h represents averaged thickness of soil loss per unit duration,
and (x0,y0,z0-h/2) are the coordinates of the center point of an erosion voxel. The volume of a
GIS SV (Vol) is computed based on its inscribed cuboid (Figure 4).

2V d h= (12)

where d is the cell length and h is averaged thickness of soil loss per unit duration.

(3) Elevation

Real surface elevation is represented by the elevation of the center point of the upper surface
of the inscribed cuboid of the erosion voxel.

(4) Transport routes

Considering that an erosion voxel only has statistical meaning, we treat its transport routes
the same as sediment laden flow [2].

(5) Structure parameters of an erosion voxel

Include center-point coordinates, strength, color, transparency, timer, etc. Other attribute
parameters such as soil type, vegetation coverage, and slope angle can be added as needed.

(6) Separation and fusion

Use the basic methods for rendering GIS SVs [11]. Considering that an erosion voxel only has
statistical meaning, force analysis to contact surface and volume control are not performed.

Figure 4. The profile of a GIS SV.
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Use the basic methods for rendering GIS SVs [11]. Considering that an erosion voxel only has
statistical meaning, force analysis to contact surface and volume control are not performed.

Figure 4. The profile of a GIS SV.
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6. Results

Based on the aforementioned technology, including software module design, algorithm
design, and pseudo code description, for the implementation of the new methodology, we
develop a Modeling and 3D Simulation System for Water Erosion on Hillslopes (M3DSSWEH).
The system includes three modules: module of DB management, module of model computa‐
tion and verification, and module of 3D simulation. The system has been designed and
developed based on the platform of Oracle, Visual C++, and OpenGL. It has a user-friendly
interface based on human-machine interactive techniques and the advanced module design
makes it flexible and easy for function extension.

Figure 5. User interface of M3DSSWEH.

• User interface (UI)

The system UI consists of menus, toolbars, floating panels, and viewports (Figure 5).

• GIS simulation module

The module simulates rainfall, overland flow, and soil erosion process:

Rainfall simulation in this study references standard artificial rain experiments. Set raindrop
intensity and raindrop diameter based on rainfall intensity and pixel size to enhance scientific
simulation and further facilitate the simulation of raindrops splash effect.

Overland flow simulation is based on GIS FE, which is represented by a fine cylinder. The
height of the cylinder is in direct proportion to the velocity of overland flow; the inclination
of the cylinder represents the direction of the movement; the diameter of the cylinder is in
direct proportion to the depth of overland flow; and the depth of cylinder color is related to
sediment concentration. The deeper the cylinder color is, the greater sediment concentration
it represents.

Sediment simulation is also based on GIS FE, which is represented by a sphere. The radius of
the sphere is in direct proportion to sediment size, and the color of the sphere is related to soil
type.
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Figure 6. The GIS simulation module of M3DSSWEH.

Soil erosion simulation is based on GIS SV and the rendering of the SVs are using the afore‐
mentioned template rendering algorithm (Figure 6).

• Data source

As an implementation, the data source is from a research area located between 39°43’37”–
39°46’28”N, and 111°7’7”–111°9’14”E, with an area of 3.85 km2. It is Wufendigou watershed
in Inner Mongolia, belonging to China Loess Plateau region. The watershed is characterized
by severe water and soil loss and this research will be applicable to improving the under‐
standing of soil erosion in the China Loess Plateau region.

Theory and methodology of GIS FE and GIS SV will be further extended to better serve
geoscience in the future.

Figure 7. GIS simulation of terrain, light, shadow, rainfall, and overland flow.
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Figure 8. GIS simulation of soil erosion.

• System output (Figures 7 and 8)

• System advantages

The system shows rainfall, overland flow, and soil erosion simulation using GIS FEs and GIS
SVs, and the results are satisfactory. Compared to traditional GIS models such as TIN, grid,
tetrahedral, and octree, it is more convenient, vivid, and efficient to use GIS FE and GIS SV to
simulate dynamic soft geo-objects. Combining GIS FE and GIS SV with the traditional GIS
models, any geo-object in solid, liquid, or gas phase can be well represented.

• System prospects

7. Conclusions

This paper discusses the implementation and computer programming of GIS FE and GIS SV.
Based on a case study in the China Loess Plateau region, we used GIS FE and GIS SV to simulate
rainfall, overland flow, and soil erosion, respectively. Implementations show that the spatio‐
temporal changes of sediment-laden flow can be more intuitively and realistically simulated
after GIS flow elements and GIS soft voxels technology are integrated into the system.

Both GIS FE and GIS SV are proposed based on a pixel from remotely sensed imagery that
facilitates the data acquisition particularly with the significant use of remote sensing technique
in geosciences and its integration with GIS. On the other hand, the pixel level data can be
directly used in the calculation without further spatial operation so as to ensure the data
accuracy. Moreover, both the GIS FE and GIS SV are driven by reliable geoscientific models.
Therefore, GIS FE and GIS SV together can be used as basic units for simulating soft geo-objects

3D GIS Modeling of Soft Geo-Objects: Taking Rainfall, Overland Flow, and Soil Erosion as an Example
http://dx.doi.org/10.5772/64376

247



and have the potential for practical use in other research areas such as flood modeling and
simulation.
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