z: Z
AL

‘. =
e

A -

T —

v,
v

A

N

AN

—

=)
\/

1\

QA

N\

R

\/

TAVAY,

T
o

=

\

S

N

-

T A

=

-Ii---
Lo
P

&
>

b
T Y

o
\/
b

-y

S,
7

A

[ 2
e

I

72 AV
i‘é%
QY

<,

Z

= i

72

>
ST\,

L L

(77
AN

AN
AS:

77\

= A

<

SS2S
/2

77

7
—
7

—

_

p
%

L7

>
VA
Z

N

=)

RN \“
| aib _
ﬁ??#éﬁ w\ _
LA WA/ ‘y\m _
\ .,__m-w‘ | Eaﬂﬁﬁ.w_{ ﬁ_
§ s e

AL
\
\

(!

_u_..aﬁw_mﬁg;ﬁu-‘\n

f)






APPLICATIONS OF
SPATIAL STATISTICS

Edited by Ming-Chih Hung



Applications of Spatial Statistics
http://dx.doi.org/10.5772/61666
Edited by Ming-Chih Hung

Contributors

Khalid Al-Ahmadi, Janusz Szmyt, Yi-Hwa Wu, Uday Manepalli, Ghulam H. Bham, Jose Manuel Pavia, Monica
Navarrete, Beatriz Larraz, Damjan Marusic, Barbara Goli¢nik Marusic

© The Editor(s) and the Author(s) 2016

The moral rights of the and the author(s) have been asserted.

All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced,
distributed or used for commercial or non-commercial purposes without INTECH's written permission.

Enquiries concerning the use of the book should be directed to INTECH rights and permissions department
(permissions@intechopen.com).

Violations are liable to prosecution under the governing Copyright Law.

@) |

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not
be included under the Creative Commons license. In such cases users will need to obtain permission from the license
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2016 by INTECH d.o.o.

eBook (PDF) Published by IN TECH d.o.o0.

Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.

Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Applications of Spatial Statistics
Edited by Ming-Chih Hung

p.cm.

Print ISBN 978-953-51-2756-7

Online ISBN 978-953-51-2757-4
eBook (PDF) ISBN 978-953-51-5085-5



We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

37®®+ 116,000+ 119M+

ailable International authors and editor: Downloads

Our authors are among the

151 Top 1% 12.2%

Countries deliv most cited s Contributors from top 500 un sities

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y






Meet the editor

Ming-Chih Hung is a professor of Geography/GIScience
at the Northwest Missouri State University. He earned
his bachelor degree from the National Taiwan University,
focusing on DEM applications; his MS from the University
of Utah, focusing on the V-I-S Model and soft classifica-
‘E tion of TM images; and his PhD also from the University
of Utah, focusing on remote sensing and GIScience on
urban areas. His research emphasizes on the use of GIScience on urban areas.
In addition to urban areas, he is also interested in precision agriculture and
environmental issues. At Northwest Missouri State, he teaches courses on
remote sensing, GIScience, GPS, and cartography.







Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Preface XI

Application of Spatial Statistics in Transportation
Engineering 1
Uday R.R. Manepalli and Ghulam H. Bham

Comparison of Spatial Interpolation Techniques Using
Visualization and Quantitative Assessment 17
Yi-Hwa (Eva) Wu and Ming-Chih Hung

Wage Concentration in Spain: A Spatial Analysis 35
Beatriz Larraz, Mdnica Navarrete and José Manuel Pavia

Spatial Optimization of Urban Cellular Automata Model 61
Khalid Al-Ahmadi, Mohammed Alahmadi and Sabah Alahmadi

Structural Diversity of Plant Populations: Insight from Spatial
Analyses 95
Janusz Szmyt

Practical Value of User-Centred Spatial Statistics for Responsive
Urban Planning 127
Damjan Marusic¢ and Barbara Goli¢nik Marusi¢






Preface

Since quantitative revolution in 1950s and 1960s, spatial statistics has become an important
part of techniques for analyzing spatial data. During the past six decades, spatial statistics
has been used in many fields in geography and/or disciplines concerning our living environ-
ments, such as demography, medical geography, transportation, landscape ecology, preci-
sion agriculture and many others.

GlIScience, remote sensing, or statistics software makes performing statistical calculations or
tests simple—Dby just several mouse clicks. Better yet, most census or socio-economic data
can be downloaded from the Internet with relative ease. This certainly increases the applica-
bility of spatial statistics on topics that had not been associated with spatial statistics before.
With the processing part being simplified, one should pay more attention to why and how,
that is, the justification on using spatial statistics and interpretation of results.

This book is a collection of studies on applying spatial statistics in subjects such as transpor-
tation, precision agriculture, demography and ecology. Different studies require different
aspects of spatial statistics. I hope these examples can inspire readers on the use and inter-
pretation of spatial statistics, as well as caution on applying spatial statistics to these fields.
Equally important is the assessment. After things are said and done, we still have to ask one
basic question: From all numbers and calculations, one gets good results, but are they relia-
ble? Assessment is to ensure your results and interpretations are reliable, but not just one set
of assessments. Statistics sometimes can be tricky, if some of the fundamental assumptions
are not met, and such assumptions can easily be overlooked in any part of the study. When
dealing with spatial data, most users are comfortable with visualization in forms of maps,
draws, images, etc. After all, a picture is worth a thousand words. In addition to quantita-
tive assessment, it is essential to use GIScience and visualization technologies for assessment
and explore things that cannot be seen by quantitative assessment alone.

Many people deserve hearty thanks for bringing this book to reality. I wish to extend my
appreciation to all of the authors and reviewers who contributed to this book, to my collea-
gues, and to scholars and professionals around the world who inspired me in the study of
geography, GIScience, and spatial statistics. I also want to extend my sincere gratitude to
Ms. Andrea Koric from InTech, who tirelessly and patiently guided me through the entire
project and provided me with essential and helpful resources. Without her help and guid-
ance, this book is not possible. Finally, I thank my parents for their support on my education
and my wife and children for their continued support and encouragement.

Dr. Ming-Chih Hung
Geography/Geographic Information Science
Northwest Missouri State University
Maryville, MO, USA






Chapter 1

Application of Spatial Statistics in Transportation

Engineering

Uday R.R. Manepalli and Ghulam H. Bham

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65051

Abstract

“Everything is related to everything else, but near things are more related than distant
things” is the first law of geography. It can be hypothesized that spatially, occurrence
of a crash can exhibit similarities. To identify spatial patterns of crashes, this chapter
presents spatial autocorrelation techniques such as Moran’s I and the Getis-Ord
G/*statistics; spatial interpolation such as kriging; and nonparametric probability
density function and kernel density (K). The aim of this chapter is to provide
application of spatial statistics in transportation engineering specifically to identify
crash concentrations and patterns of clusters in a study area.

Keywords: The Getis-Ord Gi* statistics, Kernel-Density function, kriging, Moran’s I,
spatial autocorrelation, highway safety, crash

1. Introduction

In this chapter, spatial data analysis and its application in the field of transportation engi-
neering specifically for crash data analysis is presented. Analysis of spatial data extends the
representation of geographic space from discrete sets of points, lines and polygonal features
to mapping surfaces characterizing a continuous space. Statistics using spatial relationships
for the data mapped investigates the similarities among them. The first law of geography
states “Everything is related to everything else, but near things are more related than distant
things” [1]. This principle has been used in various fields such as criminology, economics,
transportation, etc. to identify relationships within a geographic space. In order to perform
spatial data analysis, geographical locations and attributes of an object (point, line or polygon,
area) are required. Spatial data analysis can answer questions such as how spatial data

I m EC H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [(cc) X N



2 Applications of Spatial Statistics

distributions can be compared, and how future distributions based on current spatial data
can be forecasted. In the past, different statistical techniques have been used with spatial data
and they can be broadly classified as:

Spatial autocorrelation (SA): The basic principle of SA is similar to the first law of geography.
SA is defined as the correlation of a variable with itself in space. SA measures the strength
of autocorrelation and the assumption of independence. A variable is said to be spatially
autocorrelated if there are systematic patterns in its spatial distribution. SA is positive if
nearby areas (regions) are alike. Negative autocorrelation applies to neighboring areas that
are unlike, and SA is not exhibited by random patterns.

SA is measured using spatial autocorrelation indices. Some of the commonly used indices
are Moran’s I and Geary’s C. These indices are often referred to as global indices. They
measure overall degree of spatial autocorrelation in a data set. For specific disaggregated
estimates, local indices are used. Some of the local indices are local Moran’s I [2], local
Geary’s C [3], and the Getis-Ord G;* statistics [4, 5].

Spatial interpolation: It is defined as the process of using data for locations to predict ones
that are not sampled. Inverse distance weighting and kriging [6] are commonly used in
spatial interpolation techniques. The latter considers a spatial lag relationship that has both
systematic and random components.

Spatial regression: Due to spatial autocorrelation, ordinary regression models cannot be
used. To identify the underlying effects between the dependent variable and a spatial lag of
itself, geographically weighted regression (GWR) [7, 8] is used.

Additional analysis techniques include nonparametric analysis such as kernel density esti-
mation [9], as used in point pattern analysis to identify the first-order effects, i.e.,, measure
the variation in mean value.

This chapter is organized as follows: first, the fundamental concepts for several spatial sta-
tistics measures are explained, and it is followed by case studies related to the fundamental
concepts. The chapter ends with conclusions and recommendations.

2. Fundamental concepts

This section presents the concepts related to spatial autocorrelation, i.e., Moran’s I and the
Getis-Ord G;* statistics; spatial interpolation, i.e., kriging; and nonparametric analysis, i.e.,
kernel density estimation. They are presented to show their use in transportation safety.

2.1. Moran’s 1

It is one of the oldest indicators of SA [2]. SA compares the value of a variable in one location
with its value at other locations. Similar to a correlation coefficient, SA varies between —1.0 and
+1.0. A positive correlation indicates clustering (i.e., higher crash concentrations in highway
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safety), whereas negative correlation indicates dispersion or low crash concentration. Moran’s
Iis expressed as

Moran'sI =

nzizjwif (Yi - Y)(YJ - Y)
5 ¢))

(21¢jwif)2i(y -Y)

The term w;; represents a contiguity matrix. If location j is adjacent to location i, the interaction
receives a weight of 1; otherwise, zero. The term w;; compares the sum of the cross products of
values at different locations weighted by the inverse of the distance between the locations.

The significance of Moran’s I can be evaluated by a Z value as

Z(1)= 50) )

E(I)= : ®)

5(I), the standard deviation, is computed as

S(I):\/nz(n—l)sl—n(n—l)sz—ng @

(n + 1)(n . l)sg

where

S = Zi::jwif ®)
1 2
51 :Ez#]'(wzj +wﬁ) (6)

5= Zk(z]‘wjk + z,‘wfk )2 @)
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In the foregoing formula, i, j, and k represent the location of crashes. At a level of 5%, values
of Z greater than +1.96 and less than —1.96 indicate significant positive and negative SA,
respectively.

2.2. The Getis-Ord G;* statistics

G-statistics, developed by Getis and Ord, analyzes the evidence of spatial patterns and
represents a global SA index [4, 5]. The G* (pronounced as G-i-star) statistics, however, is a
local SA index. Itis more suitable for discerning clusters of high or low concentration. A simple
form of the G;* statistics is [10]

w..X
T (8)

where G* is the SA statistics of an event i over n events (e.g., crashes) [11]. The term x;
characterizes the magnitude of the variable x at event j over all n, and in highway safety, an
index such as crash severity index (CSI) value determined at a particular location can be used.
The G;* statistics can be observed from the underlying distribution of the variable x [11]. The
threshold distance (the proximity of one crash to another) can be set to zero to indicate that all
features were considered neighbors of all other features.

Further, the standardized G;* is essentially a Z value as well and can be associated with
statistical significance

. z:ﬂwiixf/ _XZ;:lwif
2
n n 9
|:an#0; _(ijlwif) :| ( )
S

where

(10)

Positive and negative G;* statistics values correspond to clusters of crashes with high- and low-
value events, respectively. A G/* statistics close to zero implies a random distribution of events.
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2.3. Kriging

Kriging, a spatial prediction methodology based on spatial interpolation, was first developed
by Matheron [12] based on the work of Krige [6] to predict ore reserves. Kriging has been
applied widely in air quality analysis, geology, hydrology, ecology, etc. The major application
of this technique is to predict values at unmeasured locations while assessing the errors of
these predictions [13]. It relies on the notion that unobserved factors are autocorrelated over
space, and the levels of autocorrelation decreases with distance. A trend estimate, p(s), is
determined which can be defined as [13]

Zi(s) = ,u,.(s)+ei (s) (11)

s

where Z(s) is the variable of interest and s indicates the location of the site “i.” It is composed
of a deterministic trend p(s) and a random error term ¢; (s). The random errors are autocor-
related over space. The expected value of Z(s) results in different types of kriging, namely
simple, ordinary, universal, intrinsic kriging, and so on. However, universal kriging is
preferred to other kriging methods as the trends depend on explanatory variables and
(unknown) regression coefficients. The correlation between Z(s) and Z(s + h) does not depend
on actual locations, but only distance “h” between the two sites. This is possible by assuming
weak stationarity in all three cases. This indicates a constant variance of 2y (h) for any s and
h, where y (h) can be expressed as

y(h):%var[Z(s+h)—Z(s)J (12)

where var[Z(s + h) — Z(s)] is the variance between s and s + h. When 2y (h) is plotted versus
distance, the plot is called a semivariogram. A semivariogram depicts the spatial autocorrela-
tion of the measured sample points. One of the major steps is to select an appropriate semi-
variogram model that best fits the relationship between y and h. There are three models that
best explain the relationship, i.e., exponential, spherical, and Gaussian. In this chapter, only
spherical model is presented, and the specifications are

3
Cy+ c{l.S%O.S[gj }'fo <h<a

y(h)= ¢, +cifh>a (13)
0otherwise

5
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The different models (spherical, exponential, and Gaussian) rely on parameters that describe
their shape and level of spatial autocorrelation in the data. ¢, in the above equation is called
the nugget effect and reflects discontinuity in the variogram origin as caused by factors such
as sampling error and short-scale variability. The origin of the term nugget originates from
gold deposits, as gold commonly occurs as nuggets of pure metal that are much smaller than
the size of a sample. It can result in strong variability in the sample when physically close, and
therefore discontinuity of the variogram at the origin can be observed [14].

The rate of variogram reflects the degree of dissimilarity of more distant samples. At large
distances, a variogram can increase indefinitely if the variability of the phenomenon has no
limit. However, if the variogram stabilizes at a value, called the sill, it indicates that beyond
a certain distance Z(s) and Z(s+h) are uncorrelated [14]. This distance is called the range
denoted by a. It determines the threshold distance at which y(h) stabilizes [13]. ¢, + ¢, is the
maximum Y (h) value, called sill, and ¢, is referred to as partial sill [15]. Figure 1 illustrates
a semivariogram.

cop+c]

o

Figure 1. [llustration of a semivariogram.

2.4. Kernel density estimation

The kernel density method is anonparametric method that uses a density estimation technique.
It enables the observer to evaluate the local probability of an occurrence and degree of danger
in a zone. For a given set of observations from an unknown probability density function, the
kernel estimator can be defined as

)5 a8

where h is called the smoothing parameter or bandwidth, K is called the kernel, and f is the
estimator of the probability density function f. Thus, the kernel estimator depends on band-
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width (h) and kernel density (K). For a given kernel, K, the kernel estimator critically depends
on the choice of the smoothing parameter h. An appropriate choice of the smoothing parameter
should be determined by the purpose of the estimate.

3. Case studies

The different case studies presented are related to the fields of crash data analysis, safety, and
forecasting of traffic volume.

3.1. Spatial autocorrelation

A study was conducted to identify crash contributing factors on highway networks of Arkansas
using a sample of crash data. In this study, spatial autocorrelation indices i.e., Moran ’s I and
Getis—Ord G;* statistics, and multinomial logistic regression were used. Autocorrelation was
determined at different levels, and then multinomial logistic regression was used to identify
crash-contributing factors in case a crash occurs. Based on the autocorrelation indices, the
state’s 75 counties were divided into zones. Further, to identify the crash contributing factors,
a sample of data from the counties were compared to the statewide data.

% - ——— L
e
“.dﬂ‘ Searcy [+] (o]
—J0000g8D ng’é
S8 vom 'gc__‘_“_f“-—--_ #2000 Foeanag or
« M—— ¥ L
i 04N /- o T F Cross s’ z‘j
X 7 M 4 2 /o
. A ’/ 4
: % vey
.l_ Scott » y g Lee 5!
| | /‘ /{ % = 3?
Polk 25 : —
| [ < ’.._../"bo = ==
Xﬂl % RLE R >
= Dt =
[ g a— = = =9
% = Ty
Lerne 5 % 5 & :EQ
BT/ ool s = o7
\# o] § f
12 pacsioo 3G e

[] -0.775375 - -0.481100
=1 -0.481099 - -0.097832
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LA
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Figure 2. Counties categorized by G* statistics [16].
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Category Number of Counties with highest CSI® Total CSI¢ CSIratio! Crash freq. G;* statistics: range

counties CSsI? ratio of Z values

(A) ®) © D) (B) () (©) (H)
First 3 Pulaski 137,627 276,755 .50 .51 1.7678741, 6.161180
Second 9 Garland 52,189 324,668 .16 27 0.559918, 1.768740
Third 13 Craighead 28,676 298,379 .10 17 -0.097831, 0.559918
Fourth 25 Madison, Cleburne, 45,707 273,196 17 .16 -0.481099,

Logan -0.097832
Fifth 25 Chicot, Montgomery, 53,477 133,861 40 .57 -0.775375,

Polk, Perry, —-0.481100

Little River, Clay,

Colombia

Total 75 13¢ 317,676 1,306,859 .24 .34 -

Note: “~“ not applicable.

3Satisfies the condition of minimum sample size of 2000 in terms of crash frequency.
°CSI computed for county/counties in Column C.

°CSI computed for counties in Column B.

9Ratio of CSI values in Columns D and E.

Total number of counties in Column C.

Table 1. Results presented by category, highest CSI in each category, and ratios of crash data [16].

Crash data from 2004 to 2006 were used for the study. Crashes were categorized into five levels
of crash injury severity from S1 to S5, where S1 indicated fatal injury; S2, major injury; S3,
minor injury; 54, complain of pain; and S5, property damage only (PDO), based on the KABCO
scale. Further, crash frequency (CF), i.e., the summation of crash count at various levels of crash
injury severity, and crash severity index (CSI) [16] which combines various effects of different
levels of crash injury severity into an index were determined. The first step of the analysis was
to determine whether spatial autocorrelation exists. Moran’s I was used which identified that
SA exists for the crash data used. The crash injury severity levels showed significance at various
levels.

G;* was used to discern cluster structures of high or low concentration. Z-values were also
computed and the categorization of counties based on the z-values of the G* statistic was
determined. This categorization can be based on six different classification schemes: equal
interval, defined interval, quartile, natural breaks, geometric interval, and standard deviation.
The natural breaks scheme was best suited for the study [17]. In the natural breaks scheme, the
classes are based on inherent categorizing in the data. The classes identify the break points that
best groups similar values and maximizes the differences between these classes.
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In the study, Jenks’ algorithm was used to categorize the natural breaks [17]. Jenks” algo-
rithm is commonly used to classify the data in a choropleth map, a type of thematic map
that uses shading to represent classes of a feature associated with specific areas (e.g., a
population density map). Jenks’ algorithm generates a series of values that best represent
the actual breaks in the data as opposed to some arbitrary classification scheme. Thus, it
preserves the true clustering of data values. As a result, the algorithm creates “k” classes as
the variance within categories is minimized. The state of Arkansas was categorized into
five categories. Figure 2 shows these categories, and Table 1 presents the results by catego-
ry, and shows the number of counties in each category. From each category, a county or a
set of counties starting with the highest CSI was selected as a data sample. The highest CSI
was used as the criterion because it provided the greatest variability in the crash data.

Figure 3 presents graphically the higher and lower Z values of G* for the five categories. The
G;* Z values indicate the clustering of the attributes in the study area. The first category had
higher positive Z values compared to lower Z values, indicating that the value of CSI is not
random for those counties. The trend from Figure 3 indicates that the randomness increases
over the categories. This trend is similar to the trend for identification of crash casual factors
identified for each category, presented next.

8 —
——
6 =
5 — =
- =
3 =
2 = =
1 : =
0 == EHE o
-2
First Second Third Fourth Fifth

e

# Lower Gi* z-values = Higher Gi* z-values

Figure 3. Comparison of G* statistics values across five categories.

SA indices, however, do not explain why locations that indicate a cluster of crashes have a
higher incidence of crashes compared with other locations; therefore, SA methods cannot
identify crash causality factors [16]. Multinomial logistic regression (MLR) was used to identify
the crash-contributing factors. The main reasons for choosing the MLR models were:
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¢ Given that a crash has occurred, the factors that increase the chances of a fatal or a serious
injury crash were considered and computed by using the odds ratio as a result of the MLR
models.

* Factors that supplement the need for attainment of zero fatalities given that crashes occur
because of other factors, including human factors, were identified.

¢ Factors for all levels of crash severity were identified, and common factors were selected as
an alternate solution. However, this procedure is cumbersome when the desired results can
be achieved in one model.

* A minimum sample size of 2000 is required to implement MLR models [18]. Therefore, with
a decent sample size, these models can predict accurately. Details can be found elsewhere
[18, 19].

Selected independent variables in the data were checked by using a variance inflation factor
(VIF) to ensure that multicollinearity is not an issue. The variance inflation factor was found
to be less than 10 for all of the variables; hence, multicollinearity was not observed. Variables
selected for model development depended on the quality of the data. Only certain factors were
retained for analysis since some factors had missing values. When more than 10% of the values
were missing, that factor was not considered. For the factors presented in Table 2, no more
than 1% of the values were missing. Mallows’ Cp was used to retain the variables; a smaller
value of Cp indicated a better model [19].

Abbreviations Variables Levels

ATM Atmospheric conditions Clear, rain

LGT Light conditions Dark, daylight

RSUR Roadway surface Dry, wet

RU Roadway type Rural, urban

RALI Roadway alignment Curve, straight

RPRO Roadway profile Grade, level

TOH Roadway classification  Divided, undivided

TOC Collision types Angle, head-on, rear-end, sideswipe-same-direction (S5SD), single vehicle

crashes (SVC), sideswipe-opposite direction (SWOD)

WK Days of the week Weekdays (M-F), weekends (Sat, Sun)

DUI Driving under the Yes, no
influence

AADT Annual average daily <20,000, 20,000-40,000, 40,000-60,000, 60,000-80,000, 80,000-100,000,
traffic 100,000-120,000

Table 2. List of independent variables [16].
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Table 3 indicates that during darkness, fatal crashes were more likely to occur than PDO
crashes, and the odds ratio increased by a factor of 1.28 if other variables remained constant.
Similarly, the relative risk of fatal crashes was greater than the PDO crashes in rural areas and
on curved roads.

Variables Contributing factors Estimate Standard error Chi-square value p-Value Odds ratio

Fatal vs property damage crashes

LGT Dark vs daylight 0.25 0.12 3.92 0.0476  1.28
RU Rural vs urban 0.71 0.13 29.31 <0001  2.04
RALI Curve vs straight 0.34 0.13 6.25 0.0124 140
DUI No vs yes -1.17 0.13 86.71 <0001  0.31

Major injuries vs property damage crashes

Intercept -2.49 0.18 185.59 <.0001

RU Rural vs urban 0.43 0.08 29.24 <0001  1.54
RALI Curve vs straight 0.29 0.08 13.05 0.0003  1.33
TOC Angle vs SSSD -0.39 0.17 5.36 0.0206  0.68
TOC Head-on vs SSSD 1.86 0.23 64.43 <0001 641
TOC Rear-end vs SSSD -0.58 0.15 15.34 <0001  0.56
TOC SVC vs SSSD 0.69 0.13 26.32 <0001  2.00
TOC SWOD vs SSSD -1.50 0.25 36.62 <0001  0.22
DUI No vs yes -0.77 0.08 91.27 <0001 046

Table 3. Sample MLR results [16].

3.2. Kriging

Kriging models were used in a study to forecast Annual Average Daily Traffic (AADT) [13].
AADT data for 27,738 sites from 1999 to 2005 were used to forecast AADT values for 2006. The
initial interpolation was made for 27,738 sites and later expanded throughout the network.

The study assumed that the AADT values would be similar to values at nearby sites. Net-
work details were obtained based on the data provided by the Texas Department of Trans-
portation. Two functional classes were identified Class 1 (interstate) and Class 2 (other
principal arterials). Each site was then matched to attributes of the closest road section us-
ing functional class. Traffic counts on segments of the same class were spatially interpolat-
ed using kriging. For each functional class, a semivariogram was estimated. For Class 1
segments, the estimated range value, a, was 1.248; nugget value, ¢, was 2.33 x 107; and par-
tial sill, ¢;, was 1.62 x 10”. For Class 2 segments, a equaled 0.158, ¢, 9.86 x 10%, and ¢, 2.82 x

11
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10°. It was found that Class 1 scatter was higher for a given distance compared to Class 2.
The larger values of sill and nugget for Class 1 indicated spatial autocorrelation for AADT
that is distance dependent and sensitive. Class 1 roads had many access points which
might have led to fluctuations in AADT over space. For Class 2 roads, the flow changes
appeared continuous over time.

The study concluded that more data helped improve the forecast, temporal dependence was
stronger than spatial dependence, and kriging methods provided reliable results in uncounted/
unsampled locations.

3.3. Kernel density estimation

A study examined the spatial patterns of pedestrian crashes to identify high crash zones. The
study evaluated methods to rank these zones using a Geographic Information System (GIS)
[20]. To identify these high crash zones, crash concentration maps were developed. The crash
concentration maps based on density values used simple and kernel density methods. Five
years of crash data (1998-2002) for Las Vegas metropolitan was used in the study. For this
chapter, the scope is limited to identifying the crash concentrations using the Kernel density
method.

Celt

Figure 4. Illustration between kernel density (left) and simple density (right) methods [20].

The researchers identified the high crash zones using a three-step methodology: (1) geocode
pedestrian crash data; (2) create crash concentration maps; and (3) identify zones, their shapes,
and sizes. The geocoding of the crash data was performed using the “address match” feature.
One of the major issues with point data, similar to crashes, is that when a map is plotted it may
not present clusters of crash concentrations with more than just a few crashes. Developing
maps with crash concentrations is therefore helpful.

Figure 4 illustrates the difference between simple density and kernel density methods, i.e.,
drawing a circular area of search around each crash to calculate the kernel values (K). The
value of the surface is highest at the crash location and diminishes to zero at the radius of the
circle. Thus, as a result, a smooth density surface is created.
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Figure 6. Identifying crash clusters using kernel density, application to Arkansas crash data.

Once the kernel density was identified, the zones of crash concentration were determined.
These zones were either linear or circular. When dense clusters of crashes were observed along
the route, then the zone identified was linear. When dense area was isolated at an intersection
or was not linear in shape, then the zone identified was circular. When several linear zones
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were closely spaced and demographic, traffic, and geometric characteristics were similar, the
researchers classified it as a circular zone. The study identified 29 pedestrian high crash zones,
22 linear zones, and 7 circular zones. Figure 5 presents the 29 different crash zones.

The study concluded that the GIS-based methodology helps quantify the concentration of
crashes and thus reduce the degree of subjectivity involved in identifying high crash zones.
This approach is practical and easy to implement as most agencies collect crash, census, and
traffic data sets in a GIS format.

In another study, undergraduate civil engineering students were exposed to the application of
GIS in a mandatory course in transportation engineering [21]. The GIS tutorial was imple-
mented in a laboratory environment developed as a self-guided activity supported by a web-
based learning system. One of the tasks was to create a crash concentration map based on the
data provided for a state highway network using the kernel density method. Figure 6 presents
a sample output from one of the students in the laboratory. The kernel density method is
therefore easy to implement, and students in a laboratory when provided with a self-guided
tutorial can implement it. The method when based in a GIS can also serve as a powerful tool
to visualize crash clusters in a network.

4. Conclusions and recommendations

This chapter summarizes the fundamental concepts associated with spatial analysis of data in
transportation engineering. Further, the application of these concepts is presented with
interesting case studies from the literature specifically to improve highway safety and forecast
of traffic volume for planning-level applications.

In various case studies presented in this chapter, a different spatial statistics model has been
used. Depending on the type of problem, availability of data, expected outcomes, and
ingenuity have led researchers to different techniques in spatial data analysis. These techniques
help improve understanding of the phenomenon and thereby the solution to the problem. The
future of spatial statistics lies in creative thinking and seeking solutions in more than one way.
In terms of problem solving, solutions can be derived both objectively and subjectively. The
more one experiments with the available techniques, the closer one can reach an ideal solution.
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Abstract

Spatial interpolation has been widely and commonly used in many studies to create sur-
face data based on a set of sampled points, such as soil properties, temperature, and pre-
cipitation. Currently, there are many commercial Geographic Information System (GIS)
or statistics software offering spatial interpolation functions, such as inverse distance
weighted (IDW), kriging, spline, and others. To date, there is no “rule of thumb” on the
most appropriate spatial interpolation techniques for certain situations, though general
suggestions have been published. Many studies rely on quantitative assessment to deter-
mine the performance of spatial interpolation techniques. Most quantitative assessment
methods provide a numeric index for the overall performance of an interpolated surface.
Although it is objective and convenient, there are many facts or trends not captured by
quantitative assessments. This study used 2D visualization and 3D visualization to iden-
tify trends not evident in quantitative assessment. This study also presented a special
case, a closed system in which all interpolated surfaces should sum up to 100%, to dem-
onstrate the interaction between interpolated surfaces that were created separately and
independently.

Keywords: spatial interpolation, quantitative assessment, 2D visualization,
3D visualization, performance

1. Introduction

Spatial interpolation is the process of using a set of point data to create surface data [1, 2].
A point data set has data values only for certain locations, such as field work locations, within
the study area. Surface data divides the study area into cells, with a data value for each cell.
With surface data, there is often a data value for every location inside the study area, whether

I m EC H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR
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it was sampled or not. Though a set of point data is more manageable in terms of labor,
budget, and time; surface data are more useful and practical in many disciplines, such as
precision agriculture, particularly with variable rate applications [3-9].

There are many spatial interpolation algorithms available in the literature, as well as in com-
mercial GIS or statistics software [1, 10]. Each algorithm typically requires different param-
eters. Even with the same algorithm and same input data points, these different parameters
can create different surfaces.

Evaluation of interpolated surfaces is difficult and often times overlooked. In most spa-
tial interpolation studies, quantitative assessment was the only method used to evaluate
the resultant surfaces. Most quantitative methods provide a numeric index for over-
all performance. Such a numeric index is easy to understand and convenient [10-13].
However, interpolated surfaces cannot be described by one numeric index, as many char-
acteristics cannot be observed or evaluated by quantitative assessments. To date, there is
no “rule of thumb” on which spatial interpolation techniques are most appropriate for
certain situations [14].

The purpose of this chapter is to demonstrate a comprehensive approach to evaluate spa-
tial interpolation, including: common quantitative assessment, 2D visualization, and 3D
visualization. This chapter also presents a special case, a closed system consisting of three
variables. Spatial interpolation techniques were applied to the three variables separately and
independently to create surfaces. 2D visualization and 3D visualization then were used to
evaluate whether the interpolated surfaces met the requirements for a closed system. This
chapter is organized as follows: Section 2—study area and data, Section 3 —spatial interpo-
lation methods, Section 4—quantitative assessments, Section 5—2D and 3D visualization,
Section 6 —special case of a closed system, and Section 7 —conclusions.

2. Study area and data

The study area is a 12.15 ha field located at the northwest Missouri State University R.T.
Wright Farm near Maryville, MO, USA (Figure 1). This field was managed under a corn-
soybean rotation [14]. Soils within the field were mapped as mollisols. Soil samples were
collected in January 2006 using five soils sampling schemes outlined in a previous study
[15]: 0.11 ha grid with 110 samples, 0.98 ha grid with 12 samples, 3.04 ha grid with four
samples, topography-based composite with three samples, and whole-field composite with
only one sample. The soil pH value of the 110 sample points from the 0.11 ha grid was
the input data for spatial interpolation in this study. Point sampling was used to collect
grid-based samples; five 1.27 cm diameter soil cores to a 15.24 cm depth were randomly
collected from a 1.0 m? area around the predetermined cell sample point. The five soil cores
were composited to form the sample for each respective grid sample location. Soil pH was
as determined using the standard laboratory method of the United States Department of
Agriculture [16].
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Figure 1. Study area: R. T. Wright University Farm in northwest Missouri, with NAIP (National Agricultural Imagery
Program) 2006 CIR (color infrared) display.

3. Spatial interpolation methods

Spatial interpolation, or spatial prediction, is a process to estimate values of locations that
were not surveyed based on a network of points with known values [1, 2, 10, 11]. In most
cases, the input data is a network of points, while the output is a surface that divides the
study area into small cells with a data value for each cell. There are two basic assumptions
for spatial interpolation. First is spatial autocorrelation, which is best explained by Tobler's
first law of geography “everything is related to everything else, but near things are more
related than distant things” [17]. The second assumption is that values are smooth and con-
tinuous over space. Many spatial interpolation techniques were developed based on these

19
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two assumptions. Commercial GIS or statistical software provides several spatial interpola-
tion functions, such as inverse distance weighted (IDW), kriging, spline, and others.

Although there are many options for spatial interpolation, to date, there is no “rule of thumb”
on which technique is best under what certain circumstances. Even with the same technique
and same input point data, different parameters may result in different surfaces. Potentially,
a given set of points and a given spatial interpolation technique can generate many different
surfaces [10, 14]. Therefore, it is important to evaluate and understand the accuracy and reli-
ability of surface data generated from spatial interpolation. In this study, IDW, kriging, and
spline will be used to demonstrate the process to evaluate and visualize spatial interpolation
surfaces.

3.1. Inverse distance weighted

Inverse distance weighted is a deterministic estimation method where values at unmeasured
points are determined by a linear combination of values at nearby measured points. Among
available parameters, the power parameter can significantly affect the results. As the power
parameter increases, IDW acts similarly to the nearest neighbor interpolation method in
which the interpolated value is close to the value of the nearest measured value. The advan-
tages of IDW are that it is simple, easy to understand, and efficient. Disadvantages are that it
is sensitive to outliers and there is no indication of error [1].

Schloeder et al. [18] compared IDW, kriging, and spline spatial interpolation methods. They
concluded that IDW and kriging performed similarly and that both are more accurate than
the spline interpolation method. Mueller et al. [19] compared IDW and kriging on soil prop-
erties. Though individual performance differed greatly depending on the existence of spatial
structure and sampling density, they concluded little difference between the overall perfor-
mances between IDW and kriging. Kravchenko [20] conducted another study to compare IDW
and kriging on soil properties. He reported that spatial structure significantly affected the
accuracy of interpolation performance. He also reported that known variograms can greatly
improve kriging performance, which may result in a better performance than IDW. Lu and
Wong [21] developed a new form of IDW, which estimated data values at an unsampled loca-
tion based on spatial pattern found in its neighborhood. As already reported in Refs. [19, 20],
Lu and Wong [21] also found that variograms may greatly affect the performance of kriging.
Their new form of IDW may perform better than kriging without variograms.

3.2. Kriging

Kriging is a stochastic method similar to IDW in that it also uses a linear combination of
weights at known locations to estimate the data value of an unknown location. Variogram
is an important input in kriging interpolation. It is a measure of spatial correlation between
two points. With known variograms, weights can change according to the spatial arrange-
ment of the samples. A major advantage of kriging is that, in addition to the estimated
surface, kriging also provides a measure of error or uncertainty of the estimated surface.
A disadvantage is that it requires substantially more computing time and more input from
users, compared to IDW and spline [1].
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Bekele et al. [22] compared several spatial interpolation methods, including kriging and IDW.
They found that kriging generally performed better than IDW. However, they concluded that
a regression-based autocorrelated error model was overall a more flexible method for inter-
polation. Laslett et al. [23] compared kriging and spline spatial interpolation methods and
found that kriging produced better and more accurate surface than spline. Gotway et al. [24]
compared kriging and IDW, and reported that kriging performed better than IDW and was
relatively more stable because it was less dependent on spatial structure or soil sampling.
Bishop and McBratney [25] conducted a study to explore the effect of having secondary data
(such as color aerial photos) in the interpolation process. They reported an improved kriging
performance.

3.3. Spline

Spline is a deterministic method to represent two-dimensional curves on three-dimensional
surfaces. It can be imagined as fitting a flexible surface through a set of known points using
a mathematical function. A major advantage of spline is that it can create fairly accurate and
visually appealing surfaces based on only a few sample points. Disadvantages of spline are
that the resultant surface may have different minimum and maximum values from the input
data set, it is sensitive to outliers, and there is no indication of errors [1].

Laslett et al. [26] conducted an early study to evaluate and compare the performance of differ-
ent spatial interpolation methods, including kriging, IDW, spline, and others. They reported
though each method may perform better than others under certain situations, overall spline
and kriging performed relatively better than IDW. Voltz and Webster [27] compared kriging
and spline on soil properties, and concluded that kriging performed overall better than spline.
Robinson and Metternicht [28] compared spline, kriging, and IDW interpolations methods on
soil properties. They reported that no single method was suitable for all situations. Simpson
and Wu [29] compared IDW, kriging, and spline on interpolating lake depth, and reported that
spline produced the most accurate results with less than the ideal amount of sampled points.

4. Quantitative assessment

Based on a previous study [14], six interpolated surfaces were chosen for demonstration pur-
poses. They are IDW (parameters: power 2, 10 neighbors), spline (parameters: tension, 10
neighbors), kriging (parameters: circular, 10 neighbors), IDW (parameters: power 4, 20 neigh-
bors), spline (parameters: thin plate, 20 neighbors), and kriging (parameters: exponential,
20 neighbors). Each surface was evaluated by cross validation (Jackkniffing) by the 110 points
from the 0.11 ha grid [10]. This validation process will go through iterations till all points were
processed and validated. In each iteration, one sample point with known data value was dis-
carded, and the remaining sample points were used to predict the value at the location of the
discarded point. The known data values were compared to their counterpart predicted values
and a measure of prediction accuracy was calculated.

Four error measures were used as accuracy index [14]. They are (1) mean absolute error
(MAE), see Eq. (1) [12, 30]; (2) root mean square errors (RMSE), see Eq. (2) [12]; (3) systematic
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root mean square errors (RMSEs), see Eq. (3) [31]; and (4) unsystematic root mean square
errors (RMSEu), see Eq. (4) [31]. Readings from the accuracy index, the lower values mean less
errors, and therefore, higher accuracies and better performances.

> |pi-si|
i=1
n

1)
where 7 is the sample size, Pi is the predicted value at point i, and Si is the sampled value at
point i.

(2)

®)

where Pi is the estimated value at point 7, by the best-fit regression function specific to each

interpolation surface.

4)

Table 1 summarizes these four error measures for these six interpolated surfaces. At first
glance, they are quite compatible with each, meaning a similar performance. With closer
examinations, one may notice that spline (parameter: thin plate, 20 neighbors) seems to have
higher error measures, meaning more errors, and therefore worse performance. This par-
ticular interpolation has 0.3481 in MAE measure, while other surfaces are between 0.2925

MAE RMSE RMSEs RMSEu
IDW, power 2, N 10 0.2930 0.3671 0.3164 0.1712
Spline, tension, N 10 0.2957 0.3702 0.3279 0.1813
Kriging, circular, N 10 0.2926 0.3669 0.3255 0.1669
IDW, power 4, N 20 0.2965 0.3702 0.3310 0.1815
Spline, thin plate, N 20 0.3481 0.4408 0.3508 0.3167
Kriging, exponential, N 20 0.2925 0.3661 0.3357 0.1540

N: neighbor parameter.

Table 1. Cross validation (Jackknifin g) by 110 sample points from 0.11 ha grid.
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and 0.2965; 0.4408 in RMSE measure while others between 0.3661 and 0.3702; and 0.3167 in
RMSEu measure while others between 0.1540 and 0.1815. Among these four error measures,
spline (parameter: thin plate, 20 neighbors) interpolation has considerably higher values than
the other surfaces in three measures. On the other hand, IDW and kriging seem to perform
similarly with compatible error measures.

5. Visualization of spatial interpolation

5.1. 2D visualization

Figure 2 shows these six interpolated surfaces in a flat 2D visualization environment. With
visual inspection, one may notice that among these three surfaces with 10 neighbors, krig-
ing (parameter: circular, 10 neighbors) appears differently. One may describe it as smoother
with less extreme values (because of less red colors and blue colors). On the other hand, IDW
(parameter: power 2, 10 neighbors) and spline (parameter: tension, 10 neighbors) seem to
appear similarly. The same observation can be made in the group of three surfaces with 20
neighbors. Kriging (parameter: exponential, 20 neighbors) appears smoother than other two
surfaces. IDW (parameter: power 4, 20 neighbors) and spline (parameter: thin plate, 20 neigh-
bors) seem to appear similarly. Comparison between the group of 10 neighbors and the group
of 20 neighbors, one may observe another interesting trend that the group of 20 neighbors
generally appears to have more extreme values, with more red colors and blue colors, than
the group of 10 neighbors.
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Figure 2. Six interpolated surfaces with their parameters. N: neighbor. (a) IDW, power 2, N 10; (b) spline, tension, N 10;
(c) kriging, circular, N 10; (d) IDW, power 4, N 20; (e) spline, thin plate, N 20; (f) kriging, exponential, N 20.
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Appearing smoother with less extreme values is not necessarily an indication of good per-
formance or bad performance. It is just a characteristic of the overall trend of the interpo-
lated surface, which was not revealed by quantitative assessment, such as four error measures
shown earlier. An initial visual inspection of the interpolated surfaces already revealed a dif-
ferent observation from quantitative assessment. In quantitative assessment, it was observed
that IDW and kriging performed similarly, and both are better than spline. With initial visual
inspection, it was observed that IDW and spline performed similarly, while kriging performed
differently, not necessarily in a better or worse way. Such difference warrants a further exami-
nation with visualization tools.

5.2. 3D visualization

Figure 3 shows the group of three surfaces with 10 neighbors in 3D visualization. One can con-
firm the trend observed in the 2D visualization that kriging (parameters: circular, 10 neighbors)
appears smoothers than IDW (parameters: power 2, 10 neighbors) and spline (parameters:
tension, 10 neighbors). This particular 3D visualization reveals even more trends that cannot
be observed in quantitative assessment. In Figure 3, gray bars indicate locations of sample
points, with bar height equaling data values. One may notice that kriging (parameters: circu-
lar, 10 neighbors) does not quite match the sampled data. Bars poke out (or appear above) the
interpolated surface, indicating that the interpolated surface has data values less than actual
sampled data. This is an indication of inexact interpolation [10], meaning the predicted data
value at the sampled location is different from actual data value sampled at this same loca-
tion. It implies that kriging (parameters: circular, 10 neighbors) underestimated data values,
compared to actual data values. This phenomena (bar poking out of the surface) is less evident
for spline (parameters: tension, 10 neighbors), and almost nonexistent for IDW (parameters:
power 2, 10 neighbors). This implies that, in this study, kriging and spline are inexact inter-
polations, while IDW is an exact interpolation. There are parameters that can control exact or
inexact interpolation in kriging or spline. Unfortunately, for most food producers, novice GIS
users, or the general public, they are not familiar with exact or inexact interpolation. Chances
are they do not know how to control the exact or inexact interpolation, and will end up like
this study with some inexact interpolations, which is not revealed in quantitative assessment.

Figure 4 shows the group of three surfaces with 20 neighbors in 3D visualization. One can
observe the same trend that kriging (parameters: exponential, 20 neighbors) appears smooth-
ers than other two surfaces, with evident bars poking out of the surface. Comparing the group
of 10 neighbors and the group of 20 neighbors, one may notice a difference in overall surface
appearance. Taking IDW for example, IDW (parameters: power 2, 10 neighbors) has some
pointy peaks, while IDW (parameters: power 4, 20 neighbors) appears duller. Same can be
observed between spline (parameters: tension, 10 neighbors, pointy) and spline (parameters:
thin plate, 20 neighbors, duller). One may also notice another abnormality on the south and
north edges of spline (parameters: thin plate, 20 neighbors). There are some extreme peaks
or villages among these two edges. This is also visible in the 2D visualization in Figure 2(e),
where some clusters of blue colors appear along the south edge and the north edge of the
study area. Such clusters of blue colors are only visible in this particular interpolation.
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Figure 3.3D visualization of three interpolations with 10 neighbor points. Each interpolation is displayed with a
continuous tone, lighter colors for lower values, and stronger colors for higher values. View at the image from southwest.
Soil sample data are displayed as gray bars, height of bars indicates data values. (a) Kriging, circular; (b) spline, tension;
(c) IDW, power 2; (d) kriging, circular, spline, tension, and IDW, power 2 three interpolations.
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Figure 4.3D visualization of three interpolations with 20 neighbor points. Each interpolation is displayed with a
continuous tone, lighter colors for lower values, and stronger colors for higher values. View at the image from southwest.
Soil sample data are displayed as gray bars, height of bars indicates data values. (a) Kriging, exponential; (b) spline, thin
plate; (c) IDW, power 4; (d) kriging, exponential, spline, thin plate, and IDW, power 4 three interpolations.
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Min. Max. Mean S.D.
IDW, power 2, N 10 5.29 711 6.30 0.24
Spline, tension, N 10 5.30 711 6.34 0.23
Kriging, circular, N 10 5.80 6.65 6.30 0.17
IDW, power 4, N 20 5.29 711 6.31 0.31
Spline, thin plate, N 20 5.29 791 6.34 0.35
Kriging, exponential, N 20 5.71 6.78 6.30 0.18
110 samples from 0.11 ha 5.29 711 6.27 0.38

N: neighbor points.

Table 2. Descriptive statistics for six interpolation results and the original sample set

Table 2 shows the descriptive statistics for these six interpolated surfaces, as well as the
original sample data set (110 points from 0.11-ha grid). One may notice that only IDW
surfaces have the exact minimum and maximum values as the original sample data.
Overall, kriging has a smaller range (difference between minimum and maximum) than
spline. Spline (parameters: thin plate, 20 neighbors) has the largest range, as observed in
Figures 2(e) and 4(b).

In summary, different assessment methods reveal different characteristics of these interpo-
lations. The quantitative assessment indicated that IDW and kriging performed similarly,
and both better than spline. 2D visualization indicated that IDW and spline performed
similarly, while kriging performed differently, not necessarily in a better or worse way.
3D visualization indicated that IDW is an exact interpolation, while kriging and spline are
inexact interpolations. It was also revealed that kriging has the tendency to underestimate
data values, compared to actual data values. Spline had the tendency to generate extreme
data values along edges of the study area. Quantitative assessment is widely and commonly
used in most spatial interpolation studies. Although 2D and 3D visualization tools do not
provide quantitative indication of good or bad performance, they both revealed something
quantitative assessment failed to report.

6. Interactions between spatial interpolations

So far, we have examined spatial interpolations on the individual surface level. As discussed
earlier, it is difficult to determine which one performed better than others, based on one
assessment method. Different assessment methods reveal different characteristics of interpo-
lations. It is essential to understand these interpolated surfaces from all available assessment
methods.

There are occasions where spatial interpolations were used to estimate a single variable in
a larger project where multiple variables consist of a closed system. The V-I-S (vegetation-
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impervious surface-soil) model commonly used in modeling physical urban areas [32-34]
is an example of such a closed system. In the V-I-5 model, urban areas are represented by
composition of vegetation, impervious surface, and soil. For example, industrial areas may be
made of 50% impervious surface, 20% vegetation, and 30% soil, while low density residential
areas may be made of 30% impervious surface, 60% vegetation, and 10% soil. The sum of V,
I, and S percentage should be 100%, i.e., a closed system. When surveying V, I, and S percent-
age with field work, image processing, or photo interpretation, one can assure that surveyed
data values sum up to 100%, meeting the closed system requirements. When doing the spatial
interpolation to generate surfaces of V, I, and S percentages, special attention should be paid
to the interactions between variables or surfaces.

6.1. Data and spatial interpolation in a closed system

A small experiment was conducted to demonstrate how individual spatial interpolation
interacts with each other on a closed system. Fifteen points were visited and V, I, and S per-
centages were sampled in a grass field in Northwest Missouri State University in Maryville,
MO, USA (see Figure 5). This field is grassy, with scattered trees, bushes, and pitches of

Figure 5. Study area: a grass field in Northwest Missouri State University, with 2003 IKONOS image (R, G, B/3, 2, 1) true
color display.
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soil. Impervious surface can only be found on the edges (roads and parking lots). Each
point is 30 m away from its immediate four neighbors. At each point location, 100 samples
were taken, with each sample verified as either vegetation, impervious surface, or soil. All
100 samples were then summed and converted to V, I, and S percentage for that point loca-
tion. Most points have various amounts of vegetation and soil, with no impervious surface,

(9) (h) (i)
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Figure 6. Nine interpolated surfaces for percentage vegetation, impervious surface, and soil, created by IDW, kriging,
and spline spatial interpolation methods, respectively. (a) Veg: idw; (b) Veg: kriging; (c) Veg: spline; (d) Imp: idw; (e)
Imp: kriging; (f) Imp: spline; (g) Soil: idw; (h) Soil: kriging; (i) Soil: spline.
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except two points near the south edge of the study area, which is close to parking lots where
impervious surface exists.

Three spatial interpolations were chosen for demonstration purposes. They are: IDW
(parameters: power 2, 10 neighbors), spline (parameters: tension, 10 neighbors), and kriging
(parameters: circular, 10 neighbors). Each interpolation was applied to create V, I, and S sur-
faces. In total, there were nine surfaces generated. Figure 6 shows these nine interpolated sur-
faces. One may quickly observe how differently these surfaces appear, especially among these
vegetation percent surfaces. One may also notice that among three impervious surfaces, only
spline surface shows data values greater than 10, which is along the south edge. Among three
vegetation surfaces, only spline shows data values in orange or red colors (very low) near
the northeast corner. Among three soil surfaces, only spline shows data values in blue colors
(very high) near the northeast corner. These are extreme values near edges of interpolated
surfaces, a trend associated with spline interpolation, as observed in the earlier examples, also
shown in Figures 2(e) and 4(b), as well as discussed in Ref. [14].

6.2. Evaluation and visualization of spatial interpolation in a closed system

Figure 7 shows these surfaces in 3D visualization, looking from the southeast. Figure 7(a)
shows the three percentage surfaces generated by IDW, top surface for vegetation, middle
surface for soil, and bottom surface for impervious surface. Figure 7(b) shows the three
percentage surfaces generated by kriging, and Figure 7(c) for spline. Bars indicate locations
of sampled points. Height of bars equals the percent of vegetation. One may observe that
bars poking out of kriging vegetation surface, means an inexact interpolation. One may also
observe the extreme data values on spline surfaces. In this 3D visualization, it is evident that
three interpolation methods performed very differently.

When adding three surfaces generated by IDW together, because it is a closed system, all
cells supposedly should have a data value close to 100%. So do three surfaces generated by
kriging and spline. Figure 8 shows the sum of three surfaces generated by IDW, kriging,
and spline. Figure 8(a) shows the sum of V, I, and S surfaces generated by IDW. One can

e 1 iy
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Figure 7. 3D visualization of V, I, and S percentage surface. Top surface is for vegetation, middle for soil, and bottom
for impervious surface. Bars indicate locations of sampled points. Height of bars equals vegetation percent. (a) IDW; (b)
kriging; (c) spline.
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Figure 8. 2D visualization of sum surfaces estimated by (a) IDW, (b) kriging, and (c) spline.

Min. Max. Mean S.D.
Sum surface estimated by IDW 100 100 100 0
Sum surface estimated by kriging 85.12 132.00 104.68 9.69
Sum surface estimated by spline 100 100 100 0

Table 3. Descriptive statistics for three sum surfaces estimated by IDW, kriging, and spline

observe that there is no major variation from 100% in sum percentage as all cells fall into
the category of 99-100.9 range. One may also observe the same trend for spline as shown
in Figure 8(c). However, kriging as displayed in Figure 8(b) shows a lot of variations from
100% in the sum of V, I, and S percentage. This is another evidence of inexact interpola-
tion, as the interpolated data are not true to the sampled data even at the exact location
where it is sampled. Table 3 shows descriptive statistics for these sum surfaces. One may
clearly see that kriging is the only interpolation method that failed to meet the closed system
requirement (sum of all variables equals to 100%) when individual variable is interpolated
separately and independently.

Figure 9 shows these three sum surfaces in a 3D visualization environment. Bars indicate the
locations of sampled data. Height of bars is set at 100, the requirement for a closed system.
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Figure 9. 3D visualization of sum surfaces estimated by (a) IDW, (b) kriging, and (c) spline. Bars indicate location of
sampled data, with height set to 100.

One may again observe the bars overreach or underreach the kriging sum surface, an indica-
tion of inexact interpolation. On the other hand, IDW and spline seem to quite meet the 100%
requirement.

It has to be noted that in this experiment, there are only 15 sample points. Itis a very small num-
ber of samples. The results in this experiment can be biased due to small sample. Nevertheless,
some interesting trends were observed by 2D and/or 3D visualization, which was not evident
in quantitative assessment. When examining the interactions between interpolated surfaces in
a closed system, both IDW and spline met the requirement, i.e., summing variables to 100%,
even though each surface was generated from one variable separately and independently. On
the other hand, kriging failed to meet this requirement. It was observed again that kriging is
an inexact interpolation. Furthermore, it was also observed that spline, as reported earlier in
this study and in Ref. [14], had the tendency to generate extreme values along edges of the
study area.

7. Conclusion

In this study, three spatial interpolation algorithms (IDW, kriging, and spline) were applied to
a set of soil pH value data to demonstrate the complexity of the process to validate the results
of spatial interpolation. Three methods of validation were used: quantitative assessment, 2D
visualization, and 3D visualization. Each validation method revealed different characteristics
of each spatial interpolation. With quantitative assessment, it was observed that IDW and
kriging performed similarly, and both are better than spline. With 2D visualization, it was
observed that IDW and spline performed similarly, while kriging performed differently, not
necessarily in a good or bad way. With 3D visualization, it was observed that kriging is an
inexact interpolation. It was also observed that spline had a tendency to create extreme values
along edges of the study area.
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Another experiment was conducted to demonstrate the interactions between interpolated
surfaces, especially in a closed system. There were three variables in this closed system, each
represented a percentage of a specific land cover in an urban area. In a closed system, these
three variables should sum up to 100%. Three spatial interpolation algorithms (IDW, kriging,
and spline) were applied to each variable separately and independently. These interpolated
surfaces were then added up to form a sum surface. It was observed that both IDW and spline
successfully met the requirement, making the sum surface 100% for all cells, while kriging
failed to meet this requirement.

In conclusion, each spatial interpolation algorithm performed differently. One has to be
careful on evaluation of the results. Though quantitative assessment is commonly and
widely used in most spatial interpolation studies, it is essential to understand that evalua-
tion of a spatial interpolation should not rely on quantitative assessment alone. 2D visual-
ization and 3D visualization can reveal some facts that cannot be observed in quantitative
assessment.
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Abstract

In this article, the degree of concentration of wages in Spain at the provincial and
regional levels is estimated using the latest available micro-data corresponding to the
Structure of Earnings Survey 2010 (N = 216.769). From the analysis of the statistics
obtained, it is possible to know in detail the spatial distribution of national wage
inequality, to identify those areas where inequality is greatest, and to estimate the
possible existence of spatial dependence and structure. The analysis focuses not only
on the study of global inequality, but delves into the question by extending the analysis
from a gender perspective.

Keywords: inequality, Gini, gender, wages, spatial statistics, variogram

1. Introduction

It is not in dispute that there is growing concern for the increase in inequality in household
disposable income in recent decades, both nationally and internationally [1]. In the case of
Spain, the report of the International Monetary Fund [2] states that the Gini index [3] on
disposable income has risen nearly 3% points, from 31.8 in 1980 to 34.7 in 2010, while in other
advanced economies such as the United Kingdom or the United States, the increases were even
6.5 and 7.5% points, respectively, rising from 27.0 to 33.5 in the case of the United Kingdom
and 30.1 in 1980 to a more worrying 38.6 in the United States in the same period. Considering
the most up-to-date data, in the case of Latin America and the Caribbean zone in 2012, the net
Gini average is 44.2 points out of 100, the latest data available for China stand the Gini
inequality index at 47.3, reaching in India a value of 47.7 [4].

I m EC H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [{cc) X IR
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Wage inequality is found partly in the origins of this income inequality, since, in general,
higher wages mean high disposable income and vice versa. From this point of view, the
study of inequality in the distribution of wages among the population of a country is espe-
cially relevant.

However, besides the importance of dealing with the study of global income inequality in the
country, from a sociological perspective and gender, it is equally important to develop
indicators of equality between women and men, such as those carried out by some of different
women’s institutes [5, 6]. It is essential to know which degree of inequality in the distribution
of wealth occurs among women themselves and among men themselves, as different groups.
Also, in this area of study, the analysis of inequality between women and men, understood as
gender inequality, also acquires special relevance. In the case that concerns us as wage
concentration, between and within-group index concentration decomposition can be accom-
plished following the decomposition of Larraz [7].

But as we are dealing with spatially located data, because individuals (employees) work in a
specific geographical area, the study of the spatial dependence should be taken into account.
To analyze the evidence of existing spatial correlation, the study of this phenomenon should
be accomplished from a spatial approach. It seems important to emphasize that the information
provided by the spatial location of each observation through its spatial coordinates should not
be underestimated. It will be important for spatial modeling, for example.

With this in mind, the aim of this study is to conduct an analysis of the degree of overall, female,
male and gender wage concentration at regional and provincial levels (NUTS2 and NUTS3,
respectively, [8]) in Spain, as an example that could be replicated in different countries. The
study has two purposes: First, to point out the Spanish regions and provinces in which the
concentration of wages is higher and more worrying, and, second, to determine the absence
or existence of some degree of spatial dependence in the phenomenon. For the first part, this
chapter analyzes the maps showing global inequality, inequality among women themselves,
among men themselves and gender inequality at regional and provincial levels. To achieve the
second objective, the analysis of the spatial dependence of the inequality and its structure has
been carried out.

Thus, the chapter is structured as follows. After this introductory section, Section 2 describes
the methodology used in the concentration index decomposition and the theory associated
with spatial autocorrelation and its structure. Section 3 briefly describes the structure of
earnings survey [9] developed by the Spanish National Statistics Institute, whose micro-data
[10] have been used to calculate such concentration indices. Section 4 shows the maps, the
spatial correlation tests, the estimation of experimental variograms, the fit of theoretical
variograms and their analysis to finally conclude with Section 5.

2. Methodology

This section, first, makes reference to the methodology used in the decomposition of the
concentration index in between- and within-group components. Subsequently, a brief sum-
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mary is made of the study of spatial autocorrelation of global, gender, male and female
inequality indexes, to conclude with the classic analysis of the structure of spatial dependence
in geostatistics.

2.1. Measuring inequality

When addressing the quantitative study of the degree of concentration of an economic varia-
ble, the Gini index [3] continues to constitute, after nearly a century of existence, the most
used inequality coefficient by official statistical agencies [9, 11] and in the scientific literature
[12, 13]. In the case study of income or wages, the said concentration index is based on the
relationship between the cumulative proportion of population, p; = i/n, and income,

= A,/A,; where Ai = Z;{ — 1% and {xi}?: 1 represent the individual earnings ordered from

the smallest to the largest.

oo 2 (p-4) n @
Z/—]p

The values of this index range from zero, which corresponds to a level of total equal distri-
bution, to one maximum economic concentration or total inequality in the distribution of the
variable.

An equivalent expression that returns exactly the same result [7] is based on the definition of
mean difference of Gini [14] and is given by the expression

1G = Zi:I_Zj:I X; _x.f| . Vn (2)
2x -n(n—1)

being ¥ the arithmetic mean of income.

Despite the validity of these definitions, it should be noted that expression (1) can only be
applied if frequencies are unitary, so their use with survey data is limited, as the raising factor
(or weight) involves repeating each entry a number of times, not an integer most of the time.

To overcome this limitation, when the available frequencies are not unitary, the calculation of
the inequality Gini index should be made through the following expression:
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where N is the total number of individuals and #; the number of them that has a salary of x;
currency units, which again are arranged in ascending order: (x; ;) and x; < x;if i <j.

When addressing this issue from a gender perspective, in this article, besides the concentration
index among all individuals, indexes of male and female concentration are computed,
understanding those calculated on all women and men separated. With them it is intended to
understand what is happening with the inequalities among women themselves on the one
hand and among men on the other hand. These indices will be important to know the reality
and decide in which cases are relatively more urgent to take action, if that is the case.

Thus, the rate of female concentration is defined as
Ny Ny
_ Zi:le:JxW' _ij|nWinW/'

1G = 4
Women 2)_CW X NW (NW _ 1) ( )

where N, is the total number of women and n,,; is the number that has revenues of monetary
Xy; units, which again the x,,; are arranged in ascending order: (xy; 1) and xyy; < xy; if 7 <j.

Similarly, the male concentration ratio is defined as

Yl‘w nM
_ Z,-zl et T Xagg | Paa g
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Men

where N, is the total number of men and n,;; the number that has revenues of monetary x,;
units, which again the x,,; are arranged in ascending order: (xy;; 1) and x;; < x); if i <.

Also, the gender concentration index is defined, IGg,,, (6), as the one that calculates the wage
gap exclusively between the wages of men compared to women, not including the differences
between women and men, who have already been computed in the above indices (expressions
4 and 5). The index has been calculated after adapting the definitions 3 and 4 in [7] to groups
of women and men as

Xy = Xy | Tyt

i "Mr (6)
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A
IGg i = —2— being A, =
X, + X, N,N,,

Finally, to identify the contribution of inequality between men and women (gross between:
IG) and men and women together among themselves (within: IG,), the degree of total
inequality (IG) Larraz [7] decomposition can be used, which is given by:
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measures the contribution of inequity between the groups to total index and
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measures the gross between contribution to total inequality, being B, = Z i — 1% the total

n
wage bill; By, = Z ili/leinWi/ the total wage bill perceived by all women; and

n
By = Zi A__/I 1 Xy the total wage bill perceived by all men and making the subscripts Wand

M refer to the sample of women and men, respectively.

To end the methodology section devoted to the study of wage inequality, it should be noted
that the concentration index used is not affected by changes in scale. This means, for example,
the fact that /G shows less inequality (higher) in one province against another province would
not respond to a relative position of lower (higher) wages in the first province with respect to
the second province, if not at a lower relative reality of inequality itself. Also, remember that
all defined indexes have their field of variation between 0 and 1, indicating a higher value of
the index, increased inequality, and smaller, more equity.

2.2. Analysis of the spatial dependence

To study the possible presence of spatial dependence or correlation on observed variables, two
alternative approaches can be implemented, according to data and observations pertaining to
territorial units (areas) perfectly defined in space or considered as realizations of a random
variable in space.

In the first case, in this article, the Moran’s I-statistic has been used [15], capable of testing
whether the hypothesis of the values obtained from sampling of a random variable are
distributed totally random in space, or, on the contrary, there is a significant positive association
of similar values between neighboring regions. In its construction, it is necessary to resort to
the so-called physical contiguity matrix or spatial weight matrix in which the spatial relation-
ship between each pair of locations is translated, to define the concept of proximity. In this
case, it has resorted to the concept of physical contiguity first order used by Moran [16] and
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Geary [17], where w; is unitary if i and j are physically adjacent regions (if provinces have a
common border) and zero otherwise. Furthermore, suppose that the products (xl. - 3?) (x I 3?)

are calculated, with x as the arithmetic mean of the observations. Then, in the case of positive
correlation, these products tend to be positive while in the case of alternation will tend to be
negative. The statistics based on this principle was developed by Moran and is defined as
follows:

>X (X=X, - X)

n
s, S -Xy (10)
It is written in matrix equals
_n (X=X)W(X-X) ”
5 (X-X)(X-X) D
X 1~ X
being X — X = i | the column vector of the deviations of the values of the performance in
X —X
n

relation to its average. In terms of the statistical moments in the case of normality it is obtained
as follows:
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where k =m, / m% is the kurtosis coefficient and being m . = %zl: (x; = .

Regarding the distribution of the statistic, Cliff and Ord [18] demonstrated that when the
sample size is large enough, the Moran I-statistic follows a normal standardized asymptotic
distribution:

1-E(I)
——— > N(0,1
a0 (0.1 (14)

Thus, a non-significant value does not reject the null hypothesis of no spatial correlation, while
a significant positive value, thereof, inform about the presence of a pattern of positive spatial
autocorrelation, i.e., the presence of similar concentration values of the variable X between
neighboring regions.

In turn, the representation of Moran’s scatterplot is shown in this article. This representation
is a visualization technique of spatial effects, providing another useful tool in the analysis of
the degree of spatial dependence of a variable. This graph shows in abscissa the values of the
x;variable (normalized or not) and in ordinate the resulting spatial average delay (standardized
or not) of variable values in other neighboring locations, i.e., those weighted with a value other
than zero in the contiguity matrix. Through this cloud of points is achieved by comparing the
value of the variable in a location with variable values in neighboring locations (those consid-
ered by the contiguity matrix).

On the other hand, from a statistical perspective, the variogram is the essential tool to analyze
the dependence of the observed regionalization ([19, 20], among others). Under the framework
of intrinsically stationary random functions, the variogram is defined as

7)== [X(s+ )~ X(9) (15)

and shows the evolution of the similarity between the values of the phenomenon under study
X and observed locations s and s + h, X(s) and X(s + h) separated by physical distance h.
Specifically, a constant variogram for all h shows no spatial dependence of the phenomenon,
while a variogram that presents a non-zero slope near the origin of the coordinates is indicative
of the existence of some degree of spatial dependence. In this study, it was decided to allocate
the concentration index of each province to the spatial coordinates of the capital, where the
most of the population is concentrated in general terms.

Although the classical estimator y(h), which is given by the expression (16) [21], is commonly
used
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ALY

=m;(X(si +h) - X(s,)) (16)

*

7 (h)

(being, in our case, X(s;) the value corresponding to inequality index in the province whose
provincial capital has coordinates s; and N(h) the number of pairs of provinces whose capitals
are separated by a vector h), this chapter has chosen to use the estimator by Cressie and
Hawkins [22], given by equation (17), due to its larger robustness (see [23] for different options).

yCH(h)—2{0.457+N(h)} {N(h);|){(si+h) X(s,)| } (17)

3. Data from the structure of earnings survey

To carry out the study of wage inequality, we used the latest available information: micro-data
on the distribution of wages, included in the Structure of Earnings Survey 2010 [9], with a 4-
year basis. Through its micro-data, you can have, besides sex, individual wages and the
province (NUTS3) in which they perform their job, data that will allow us to carry out the
proposed study. This information is gathered from the quotation centers selected in the sample,
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Figure 1. Map of Spain at the provincial level [8]. Source: own elaboration.
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excluding enterprises in agriculture and fishing, public administration employees not covered
by social security, domestic staff and extraterritorial body workers.

The study has taken into account, on the one hand, the variable “gross annual earnings per
worker”, including payments in goods, to study the different degrees of concentration existing
in annual gross wages. The analysis of inequality in the distribution of this variable allows us
to analyze the possible consequences to the fact that women have lower gross annual salary
on average than men. On the other hand, to isolate the effect on annual salaries increased by
the presence of women in part-time jobs (a lower annual average wage), the study was also
conducted on the variable “hourly earnings per worker”.

The latest survey, dated October 2010, gathers information for about 25,104 quotation centers
and 216,769 employees of this, the grossing up factor (weight) is the number of workers in the
population corresponding to that information. These workers develop their work in a partic-
ular province (NUTS3), which are in turn included in its region (NUTS2) (see Figures 1 and 2).

N LN | -
,x_m‘f e - y =y
A, nmaoauunnm P "w"‘“ L =
é‘ £ g (‘Ji I pals\‘lﬂ rl y
:F' Gakda J " ﬁ - \_ - . = {
A - —
b £, Wﬂ Ferllﬂoifmml = R .I'
b o, ja { =y
% { Lo { / 3
W 4 L. g
i L, JoAhy LS J J
\ L Castila y Ladn /_L' S cwawsa S
1 4 Aragtn 7 7~
| Y — ( bl e
! o & ] A
e Cominicad de My A =
= A ) w7
B o ~ Y Vi g:‘a
" 2 %
v, = 4 ’ { g 3 m
" N 4 Castila.La Mancha K { Rt s
A " Extremadura ~ Y ~ £ v ’
i A » 5 \ ¥
. ( i g S "
4 . B I ! 4
\T‘— B/ s & ) . njg ) A
] o = [
| X
f 1 Andalcis . /v !
A 3
h \\, /,.l /
-; Ve —— TN { & N
Kildmetros \\_ S/ v N
- — N e y A
LA Cudades Auldnomas de Ceuta y Melkka o m i)
Proy. LAEA. Datum ETRS 1989 oo » v o~ // /
/ ) \ ) () wt

Figure 2. Map of Spain at regional level [8]. Source: own elaboration.

About the most important global statistics of the survey, following Table 1, it can be highlighted
that though the total population of workers in Spain in 2010 is almost 12 million people, there
are still more men (53.2%) than women (46.8%) working. But more important, women as a
whole earn just the 40.5% of total annual payroll, while men as a whole earn the rest. Moreover,
there is a great difference between the average wages per year of both genders: while men earn
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25,479€ per year on average, women earn just 19,735€/year. Measuring this difference on wages
per hour, it can be concluded that the gender pay gap is almost 14%.

Individuals Total annual payroll Average wage Total payroll Average wage
(%) per year per hour (€/h) per hour
Women 5,618,100 (46.8%) 40.5% 19,735.22€ 42.7% 10.15€
Men 6,381,446 (53.2%) 59.5% 25,479.74€ 57.3% 11.78€
Total 11,999,546 22,790.20€ 11.06€
Gender pay gap' 22.55% 13.84%

Source: own elaboration from the Structure of Earnings Survey Micro-Data [9].
!’Gender pay gap’ indicator is defined by Eurostat as the difference between the average gross hourly earnings of men
and women expressed as a percentage of the average gross hourly earnings of men.

Table 1. Descriptive statistics of wage distribution by gender in Spain.

Inequality indicators

Gini index (on anual salaries) 32.72%
Female Gini index 33.53%
Male Gini index 30.91%
Gender Gini index 33.57%
Low pay rate (1) 13.42%
Proportion of women among total workers with low pay jobs 66.0%
D9/D5 (ninth decile (2) divided by the median (3) of wage per hour) 2.12
D5/D1 (the median divided by the first decile of wage per hour) 1.58
D9/D1 (ninth decile (2) divided by the first decile of wage per hour) 3.34

Source: Spanish Statistics Institute (2012) and own elaboration from the Structure of Earnings Survey micro-data [9].
(1) Proportion of workers whose wage per hour is below two-third of the median salary.

(2) Deciles are the values of the pay that, ordered from smallest to largest, divide the number of workers into 10 equal
parts, such that within each are included 10% of them.

(3) Median is the value of the pay that divides the number of workers into two equal parts: the one who have a higher
salary and the one who have a lower salary.

Table 2. Inequality indicators of wage distribution in Spain.

Having said that, as if these facts were not serious enough, Table 2 reports the most important
inequality indicators. It is worth noting that female inequality is higher than male one, which
means that inequality among women themselves is higher than among men themselves. But
it is also of concern that gender inequality, measured by expression (6), is even higher.
Moreover, among workers with lower salaries, women account for 66% of them. It is also
important to say that the 10% of workers with the highest salaries earn more than double that
of median salary and more than three times the salary of the 10% of workers with lowest salary
per hour. Table 3 reports such percentiles.
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Total population Female Male
10™ percentile 8,643.66 7,001.27 11,391.44
25 percentile 13,602.53 11,462.43 15,770.16
50t percentile 19,017.09 16,536.10 21,206.99
75" percentile 28,255.45 24,751.72 31,164.24
90t percentile 40,811.42 36,249.13 44,725.21

Source: Spanish Statistics Institute (2012).

Table 3. Percentiles by gender (€/year) in Spain.

4. Results

From the micro-data of the Structure of Earnings Survey [9], concentration indices have been
calculated: overall, gender, male and female as it has been detailed in Section 2 at regional and
provincial level in Spain. This is intended, first, to compare the situation of each region and
province regarding the other as far as inequality of wages (annual and hourly) to each of the
four concepts. To do this, remember that a higher index value corresponds to a more unequal
distribution of variable, whereas a lower value corresponds to a more equitable distribution
of the same. This information was reflected in the following maps (Figures 3 to 6), showing
the detailed information in Tables A1 and A2 of the Annex.

The grey scale map has been made by compiling from the distribution decile values of the four
indices (not of each separately, so they match the legend of the 4 maps on each figure) to be
able to perform a comparison at a glance of the different degrees of inequality obtained. First
it is commented at a regional level (NUTS2) to move later at the provincial level (NUTS3).

As aforementioned, it has also carried out the spatial analysis of the different degrees of
concentration studied, to know whether a particular pattern of spatial autocorrelation should
be considered in future studies.

Thus, in regard to the space study performed from gross annual salary (Figure 3) —remem-
bering that it implies the fact that the average annual salary for women is less than the average
for men due in part to increased female employment in part-time jobs —at first sight, in general,
greater wage concentration of gender in Spain (Figure 3b) than global (Figure 3a) is observed,
i.e,, the distribution of wages among workers of different sex is more unequal if one considers
all workers together. In addition, inequality among women (Figure 3c) is clearly higher than
among men (Figure 3d) in all the regions (NUTS2).

Specifically, Madrid and Andalusia are positioned as the regions with highest overall wage
inequality in Spain, followed by Murcia, Ceuta and Castilla Leon. At the other extreme, the
Balearic Islands, Castilla-La Mancha and Navarra present a lower degree of wage concentra-
tion. In regard to gender inequality, Murcia, Andalusia, Madrid, Castilla Leon, Ceuta and
Cataluna are the regions with highest degree of concentration, continuing Balearic Islands,
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Navarra and Castilla-La Mancha as the most equalitarian regions in the distribution of wages
between genders.
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Figure 3. Map of Spain for the concentration index of the entire population (a), gender (b), the group of women (c) and
the group of men (d) at regional scale (NUTS2), calculated from the annual gross salary received by each worker.
Source: own elaboration.

If the study is carried out within the group of women, it is also of concern that the degree of
internal concentration exceeds the generally assumed because of inequality between the
distribution of annual wages between women themselves. Specifically, it is in the Midwest and
southern Spain (Murcia, Extremadura, Andalusia, Melilla, Castilla Leon, Ceuta, the Canary
Islands and Madrid) where this inequality is greater, while Baleares and Navarra regions stand
out as having less difference in women’s wages.

In the case of male inequality, Madrid is the region where the distribution is less equitable
between them, followed by Ceuta, Catalufia and Andalusia, with Castilla-La Mancha, Galicia
and the Basque Country more equalitarian.

By correcting the effect of the increased presence of women in part-time jobs on the annual
profit by considering the variable of gain/time, we see, first, how wage differences are smooth-
ed in all groups (Figure 4), while still maintaining the worrying situation of greater gender
than overall concentration, lighter than in the previous case. In general, except in Castilla Leon
and Extremadura, less concentration of female than male is now seen. Therefore, regardless
of the number of hours worked per worker, data reflect a lower equity in the distribution of
hourly wages among men than among women.
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Specifically, Madrid and Catalufianow appear as the most unequal regions (Figure 4a) together
with Castilla Leon, La Rioja and Navarra being the most equitable. In the study of gender
(Figure 4b), Madrid is the region with the highest degree of concentration between men and
women, followed again by Castilla Leon and Catalufia, which are now joined by Asturias and
Murcia. On the opposite side, again positioned are La Rioja and Navarra regions where also
the distribution of wages between men and women is more equal.

In the case of female wage concentration (Figure 4c), making it through the hourly wage
implies greater equity in regions such as Asturias, Basque Country, Navarra, La Rioja, Aragon,
Valencia, Balearic Islands and Andalusia. At the other end, still stands Castilla Leon with an
uneven distribution of the wage mass, in this case between women themselves.
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Figure 4. Map of Spain at a regional scale (NUTS2) for the concentration index of the entire population (a), gender (b),
the group of women (c) and the group of men (d), calculated from the hourly wage earned by each worker. Source:
own elaboration.

The study among men (Figure 4d), however, leads us to highlight the plight of Madrid on the
distribution of male wages, followed by Catalufia, standing at the opposite ends of equity the
regions of the Basque Country, Navarra, La Rioja and Castilla-la Mancha.

In Figure 3, a breakdown at the provincial level (NUTS 3), it is noted, first, that the range of
values of the concentration indices are higher than the automatic scale. While the regional
study on the minimum was 0.2346 and the maximum was 0.3535, in this case we find values
between 0.2018 and 0.3868. This implies that the values that correspond to each color range of
grays have changed substantially.
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That been said, in the analysis of the overall annual wage concentration in the whole country
at a provincial level (Figure 5a), three problematic areas are observed for their high levels of
inequality compared to other provinces, which are western Andalusia and the area in the center
and east of the peninsula. In the first stand Huelva, Seville and Cadiz as the provinces with
the highest concentration indices. They are followed by Valladolid and Palencia as provinces
with high levels of inequality in the distribution of annual wages, next is Madrid. Finally, the
provinces of Murcia and Lleida have the highest income inequality in the east of the country,
although any of the other three provinces of Catalufia also have high levels of inequality. On
the other hand, among the provinces with greater equity in the distribution include Ciudad
Real, Castellon, Albacete, Huesca and Alava.
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Figure 5. Map of Spain at a provincial level (NUTS3) for the concentration index of the entire population (a), gender
(b), the group of women (c) and the group of men (d), calculated from the annual salary received by each worker.
Source: own elaboration.

From the map of gender inequality (Figure 5b) we can conclude that, overall, these values are
higher than the global inequality in each province, being the provinces with the highest levels
of concentration gender the same as globally plus Zamora, Avila, Cordoba and Murcia. The
areas of greater gender equity are found in Ciudad Real, Huesca, Castellén, Albacete and
Baleares Islands.

In general, women’s inequality is seen clearly higher than the male, having increased wage
inequality among women in the western half of the country (including the two provinces of
the Canary Islands) in the East with the exception of Murcia and Lleida, which also have high
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levels of concentration in the female rate (Figure 5c). Standing as provinces with the lowest
female inequality are Castellon, Balearic, Navarra, Huesca, Teruel and Soria.

As shown in Figure 5d, the degree of concentration in the wages of men seems much more
encouraging in general, existing provinces such as Ciudad Real and Albacete with high levels
of equity; however Madrid is still of concern, which has the highest degree of male inequality
in the country, followed by Sevilla, Alicante, Palencia, Teruel and Valladolid.

Figure 6 shows, as happened at regional level, obviously that the hourly wage distribution is
more equal at the provincial level that the distribution of annual salary, since the use of the
variable earning per hour involves no consideration of part-time sessions, both male than
female.
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Figure 6. Map of Spain at a provincial level (NUTS3) for the concentration index of the entire population (a), gender
(b), the group of women (c) and the group of men (d), calculated from the hourly wage earned by each worker. Source:
own elaboration.

In regard to global inequality measured in terms of hourly wages, Figure 6a shows two areas
in the peninsula clearly with more equitable distributions, such as in the north, the provinces
of Soria, Burgos, Navarra, Huesca, La Rioja and Gipuzkoa and, in the southeast, Almeria,
Granada and Albacete. On the other hand, the greatest inequality is observed in Valladolid,
followed by Ceuta, and around by Segovia, Madrid, Leon and Lugo.

Also in the case of the study of hourly earnings, all provinces have greater gender inequality
(Figure 6b) than overall, although we are talking of figures about a tenth on average. Therefore,
although the map shows an image similar to that of global inequality, it is worthy to highlight
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it for its high concentration the province of Valladolid, followed behind by the provinces of
Lugo, Zamora, Ceuta, Segovia, Tarragona, Madrid and Teruel.

Global IG Women IG Men IG Gender IG
p-Valor annual salary 0.00023*** 0.00019*** 0.00122%** 0.00270%**
p-Valor per hour salary 0.01319** 0.16276 0.00789*** 0.01069**

Note: *** They refer to the statistical significance of the 1% and ** to 5%.
Source: own elaboration.

Table 4. Test of significance of Moran’s [-statistic: p-values of Moran’s I-statistic for overall concentration indices,
female, male and gender indices.
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Figure 7. Moran’s Scatterplot corresponding to the degree of concentration of the entire population (a), gender (b), the
group of women (c) and the group of men (d), calculated from the annual salary perceived by each worker. Source:
own elaboration.

Finally, female inequality, shown in Figure 6¢, shows a clear strip of greater inequality in the
center, highlighting Valladolid and Zamora as those provinces with the highest rate of female
concentration, followed by Segovia, Ceuta, Melilla and Teruel. Especially equitable for women
is the distribution of hourly wages in the North (interior), some provinces in central and
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southern Spain. Male inequality (Figure 6d) has not yet clear spatial/geographic patterns,
highlighting Leon, Lugo, Madrid, Ceuta and Tarragona as provinces with less equity and, at
the other end, Soria, Guipuzkoa, and Burgos and Huesca as provinces with more equity in the
wage distribution.

Once analyzed the maps of global inequality, gender, male and female in Spain, next a spatial
autocorrelation analysis of the phenomenon is performed. First the contrast of lack of spatial
correlation to positive existence of spatial correlation is performed, through statistical Moran’s
I (Table 4). This statistic is significantly positive in all cases when the variable annual gross
salary calculates the indices. In the case of earnings per hour, only in the event of the women'’s
concentration index, the statistic is not statistically significant, in which case one could not
reject the hypothesis of no spatial correlation.
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Figure 8. Moran’s Scatterplot corresponding to the degree of concentration of the entire population (a), gender (b), the
group of women (c) and the group of men (d), calculated from salary when perceived by each worker. Source: own
elaboration.

These results can be checked visually in Figures 7 and 8, showing the Moran’s scatterplot of
the concentration indices calculated from the variable annual gross profit and earnings per
hour, respectively. Figure 7 shows how neighboring provinces with high concentration values
also and vice versa surrounds provinces with high concentration values. However, in the
female concentration index computed from the wage by time, as shown in Figure 8¢, the point
cloud shows the absence of spatial correlation, indicated by the low ratio between the con-
centrations of the provinces and those of their neighbors.
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Figure 9. Structural analysis of spatial dependence: Experimental and theoretical variograms adjusted for the concen-
tration index of the entire population (a), gender (b), the group of women (c) and the group of men (d), calculated from

gross annual salary received by each worker. Source: own elaboration.

Global IG Gender IG
Model Sill Range Sill Range
Nugget effect 0.0000061 0 0.0000175 0
Spherical 0.0003189 300.011 km 0.0003364 275.015 km
Women IG Men IG
Model Sill Range Sill Range
Nugget effect 0.0000833 0 0.0000120 0
Spherical 0.0002962 149.976 km 0.0003547 200.003 km

Source: own elaboration.

Table 5. Nested variogram theoretical models, with their sills and ranges used for fitting theoretical variograms of

global inequality, gender, male and female calculated from the variable annual gross salary.
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Theoretical models Parameters for global IG

Model Sill Range
Nugget effect 0.0000038 0

Spherical 0.0002718 299.995 km

Source: own elaboration.

Table 6. Theoretical models of the nested variograms, with their sills and ranges used for the adjustment of the
directional variograms of global inequality
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Figure 10. Global IG directional variograms calculated from the annual salary. Source: own elaboration.

The aforementioned significances are confirmed with the alternative approach of variograms
represented in Figure 9, given that to the lower the p-value, the greater the structure of spatial
dependence of the phenomenon and less discontinuity at the origin (see Table 5). It can be seen
how the experimental variograms of each of the four events are adjusted from a linear
combination of a nugget effect and a spherical model. However, adjustment parameters (sill
and range) are different.

Large discrepancies are observed between them, and while the overall concentration index has
a range around 300 km (which is, more or less, the distance from the center of the Iberian
Peninsula to the coast), the gender goes down to 275 km, with the male and female of 200 km
and 150 km, respectively. Recalling that the lower the range, the smaller the distance where
the spatial correlation fades away, in the case of female concentration index, the positive spatial
correlation disappears already at short distances. However, the other three cases (the global,
male and gender concentration indices) show important spatial correlation structures.
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Global IG Gender IG
Model Sill Range Sill Range
Nugget effect 0.0002142 0 0.0001816 0
Spherical 0.0001240 99.982 km 0.0001886 99.978 km
Women IG Men IG
Model Sill Range Sill Range
Nugget effect 0.0004623 0 0.0001941 0
Spherical - - 0.0001777 100.004 km

Source: own elaboration.

Table 7. Theoretical models of the nested variograms, with their sills and ranges used for fitting theoretical variograms
of global inequality, gender, male and female calculated from the variable hourly wage.
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Figure 11. Experimental and theoretical variograms fitted for the concentration index of the entire population (a), gen-
der (b), the group of women (c) and the group of men (d), calculated from hourly wage earned by each worker. Source:

own elaboration.
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In the case of the global concentration index, directional variograms have also been calculated,
to see which one of the main directions presents the greater correlation (Table 6). Figure 10
shows how the fit of the north-south direction experimental variogram is substantially better
than in the other three main directions of space.

If we perform the same variogram analysis of the concentration indices calculated from the
variable “earnings per hour”, in cases of global, gender and male inequality a lower spatial
correlation structure is observed than in the case of annual wage, as the ranges are very small
(100 km) and the nugget effects are very large in relation to the total variability of the respective
processes (Table 7 and Figure 11). In the case of the concentration index among women, the
high variability of the process is reflected in the adjustment through a model of pure nugget
effect, indicating the absence of spatial correlation (Figure 11c).

Consequently, a clear structure of spatial correlation is observed, following a spherical model,
in all inequality indices calculated from “annual gross earnings” but very little in the case of
global, male and gender indices based on the “gain per hour” and even non-existent in the
case of female concentration.

5. Conclusions

In this chapter, the spatial structure of wage inequality in Spain has been analyzed. The study
contributes to the literature on wage concentration and gender equality analysis of the various
degrees of concentration of regional and provincial areas in Spain. The research was carried
out from the last micro-data of the Structure of Earnings Survey conducted by the Spanish
Statistical Institute in 2010, both for the whole population and the group of women together,
men together and including both genders. This is intended to give pause for the thought on
the importance of the information provided by the spatial coordinates of the data and of the
growing wage concentration in the hands of a part of society, from a gender perspective.

From this study we conclude, first, that the rate of wage concentration in the group of women
are always higher than in the group of men, implying greater inequality in the distribution of
wages among female workers than among the men of each region or Spanish province. In
addition, in general, a greater gender wage inequality is observed, than global one, worrying
fact, which hinders the equality between women and men.

In addition, as expected, a higher degree of concentration in the study of the annual gross
profit is observed, than in gross profit per hour, because part-time jobs result in a lower an-
nual salary, thereby increasing the concentration of wage levels.

From a regional perspective, at the top of the table, one corresponding to higher concentration
values are Murcia, Madrid, Andalusia, Castilla Leon, Ceuta and Catalufia, joined by Extrem-
adura and Canary Islands in the case of high levels of female inequality. At the bottom of the
table, regions such as Balearic Islands, Navarra, Castilla-La Mancha, Aragén and Galicia are
highlighted as regions with the lowest rates of wage concentration.
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Moreover, this chapter focuses on the study of the spatial analysis of wage concentration
indices. We appreciate the presence of positive spatial autocorrelation in the case of the indices
calculated by the variable annual gross earnings and earnings per hour, being unable to reject
space randomization in the case of female inequality from the earnings per hour.

Finally, through the analysis of the structure of spatial dependence of the phenomenon, greater
spatial correlation structure is concluded in the indices calculated on the annual profits, which
have ranges of up to 300 km and small nuggets effects, while those calculated on earnings per
hour see its ranges reduced to 100 km and present indicative nugget effect of lower spatial
correlation at smaller distances. Even, the female concentration measured in hourly earnings
must have been modeled through a pure nugget effect, showing the absence of spatial
correlation. Such patterns of spatial autocorrelation present in wage inequality should be
considered in future studies.

Annex
Annual wage Per hour wage

Province IG IGwoman  IGman  IGgender IG IGwoman  IGman  IGgender
Araba/Alava 0.2977  0.3162 0.2766  0.3074 0.2833  0.2768 0.2846  0.2845
Albacete 0.2881  0.3252 0.2576  0.3005 0.2575  0.2695 0.2478  0.2608
Alicante/Alacant 0.3243  0.3177 0.3194  0.3300 0.2735  0.2647 0.2751  0.2761
Almeria 0.3033  0.3145 0.2847  0.3102 0.2457  0.2306 0.2459  0.2516
Avila 0.3273  0.3637 0.2788  0.3435 0.2752  0.2609 0.2866  0.2752
Badajoz 0.3175  0.3485 0.2860  0.3250 0.2652  0.2686 0.2612  0.2662
Balears (Illes) 0.2979  0.2937 0.2956  0.3010 0.2735  0.2673 0.2769  0.2742
Barcelona 0.3213  0.3213 0.3062  0.3305 0.2874  0.2728 0.2894  0.2922
Burgos 0.3025 0.3141 0.2731  0.3222 0.2480  0.2298 0.2437  0.2572
Céceres 0.3152  0.3509 0.2857  0.3242 0.2830  0.2874 0.2787  0.2844
Cadiz 0.3400  0.3572 0.3015  0.3602 0.2776  0.2592 0.2800  0.2833
Castellén/Castelld 0.2856  0.2884 0.2618  0.2998 0.2654  0.2514 0.2668  0.2704
Ciudad Real 0.2821 0.3135 0.2501  0.2923 0.2591  0.2710 0.2473  0.2619
Codrdoba 0.3293  0.3633 0.2992  0.3387 0.2638  0.2644 0.2619  0.2648
Coruna (A) 0.3007  0.3119 0.2780  0.3087 0.2736  0.2618 0.2791  0.2760
Cuenca 0.3060 0.3183 0.2923  0.3096 0.2616  0.2555 0.2662  0.2616
Girona 0.3176  0.3203 0.3094 0.3219 0.2718  0.2593 0.2770  0.2733
Granada 0.3017  0.3191 0.2786  0.3085 0.2506  0.2397 0.2578  0.2511
Guadalajara 0.3110  0.3524 02723 0.3282 0.2803  0.2971 0.2619  0.2886
Gipuzkoa 0.3005 0.3248 0.2634  0.3173 0.2569  0.2610 0.2427  0.2646
Huelva 0.3445 0.3481 0.2962  0.3692 0.2809  0.2541 0.2679  0.3002

Huesca 0.2885  0.3017 0.2707  0.2955 0.2531  0.2582 0.2443  0.2569
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Annual wage

Per hour wage

Province IG IGwoman  IGuan  IGgender IG IGwoman  IGman  IGgender
Jaén 0.3236  0.3571 0.2857  0.3366 0.2725  0.2847 0.2601  0.2751
Ledn 0.3225  0.3447 0.2881 0.3352 0.3023  0.2773 0.3178  0.3039
Lleida 0.3284  0.3452 0.3004 0.3377 0.2761 0.2724 0.2740  0.2789
Rioja (La) 0.3066  0.3228 0.2792  0.3177 0.2556  0.2527 0.2523  0.2588
Lugo 0.3171  0.3418 0.2636  0.3329 0.3017  0.2729 0.3087  0.3122
Madrid 0.3357 0.3333 0.3270  0.3419 0.3031  0.2888 0.3085  0.3059
Malaga 0.3275 0.3383 0.3078  0.3370 0.2714  0.2549 0.2777  0.2737
Murcia 0.3311  0.3535 0.3000  0.3431 0.2814  0.2825 0.2750  0.2849
Navarra 0.2982  0.2997 0.2785  0.3117 0.2490  0.2346 0.2468  0.2557
Ourense 0.3112  0.3526 0.2737  0.3216 0.2628  0.2757 0.2455  0.2696
Asturias 0.3109  0.3238 0.2823  0.3255 0.2804 0.2766 0.2688  0.2894
Palencia 0.3378 0.3321 0.3177  0.3557 0.2787  0.2576 0.2773  0.2866
Palmas (Las) 0.3173  0.3305 0.3012  0.3209 0.2807  0.2766 0.2832  0.2811
Pontevedra 0.2989  0.3173 0.2716  0.3103 0.2829  0.2615 0.2880  0.2875
Salamanca 0.3031  0.3277 0.2797  0.3101 0.2596  0.2490 0.2663  0.2592
Santa Cruz de Tenerife 0.3278  0.3367 0.3104 0.3329 0.2856  0.2806 0.2847  0.2884
Cantabria 0.3153  0.3306 0.2863  0.3293 0.2708  0.2614 0.2695 0.2754
Segovia 0.3257  0.3561 0.2875  0.3336 0.3037  0.3172 0.2851  0.3074
Sevilla 0.3437  0.3556 0.3218  0.3575 0.2778  0.2642 0.2796  0.2810
Soria 0.2986  0.3033 0.2707  0.3209 0.2314 0.2018 0.2310  0.2408
Tarragona 0.3221  0.3186 0.3053  0.3331 0.2993  0.2912 0.2929  0.3065
Teruel 0.3210  0.3024 0.3177  0.3311 0.3001  0.2981 0.2919  0.3053
Toledo 0.3098  0.3331 0.2772  0.3234 0.2736  0.2810 0.2627  0.2775
Valencia/Valéncia 0.3182  0.3350 0.2898  0.3294 0.2725  0.2620 0.2740  0.2760
Valladolid 0.3396  0.3467 0.3165 0.3527 0.3316  0.3746 0.2883  0.3399
Bizkaia 0.3101  0.3264 0.2832  0.3234 0.2736  0.2662 0.2697  0.2790
Zamora 0.3236  0.3868 0.2798  0.3442 0.3012  0.3386 02714 0.3117
Zaragoza 0.3113  0.3211 0.2832  0.3274 0.2769  0.2523 0.2769  0.2856
Ceuta 0.3279  0.3377 0.3161 0.3371 0.3069 0.3124 0.3025 0.3094
Melilla 0.3235  0.3446 0.3039  0.3285 0.2970  0.3027 0.2915  0.2982
Spain 0.3272  0.3353 0.3091  0.3357 0.2879  0.2779 0.2895  0.2910

Source: own elaboration.

Table Al. Provincial concentration indices on the whole population (IG), on the group of women (IGypen), men (IGy,,)

and gender (IGg,4.;) concentration index. All have been calculated from the variable annual gross earnings and

earnings per hour.
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Annual wage Per hour wage
Autonomic community IE IEwoman  IEman IEgender 1E IEwoman  IEman IEGender
Andalucia 0.3315  0.3483 0.3060 0.3430  0.2708  0.2732 0.2596  0.2735
Aragon 0.3092  0.3160 02861 0.3224  0.2762 0.2753 0.2588  0.2834
Asturias 0.3109  0.3238 0.2823  0.3255  0.2804 0.2688 0.2766  0.2894
Baleares 02979 02937 02956 03010  0.2735 0.2769 0.2673  0.2742
Canarias 0.3229  0.3348 0.3058  0.3271 0.2839  0.2842 0.2805  0.2853
Cantabria 0.3153  0.3306 0.2863  0.3293  0.2708  0.2695 0.2614  0.2754
Castilla-La Mancha 0.3009  0.3292 02708 0.3120  0.2691  0.2599 0.2775  0.2720
Castillay Leo 0.3246  0.3418 02976 03375  0.2927  0.2842 0.2969  0.2966
Catalunya 0.3233  0.3236 0.3087  0.3321 0.2883  0.2902 0.2746  0.2928
Comunidad Valenciana 03173 0.3244 02980 0.3268  0.2739 02757  0.2633  0.2771
Extremadura 0.3170  0.3499 0.2863  0.3250  0.2716  0.2678 0.2750  0.2725
Galicia 0.3043  0.3230 02757 03139 0.2804 0.2834 0.2677  0.2841
La Rioja 0.3066  0.3228 02792 03177  0.2556  0.2523 0.2527  0.2588
Madrid 0.3357  0.3333 03270  0.3419  0.3031  0.3085 0.2888  0.3059
Navarra 0.2982 02997 02785 03117 0249  0.2468 0.2346  0.2557
Euskadi 0.3053  0.3245 0.2768 0.3187 02706  0.2654  0.2669  0.2755
Murcia 0.3311  0.3535 0.3000  0.3431 0.2814  0.275 0.2825  0.2849
Ceuta 0.3279 03377  0.3161 0.3371 0.3069  0.3025 0.3124  0.3094
Melilla 0.3235 03446 03039 03285  0.297  0.2915 0.3027  0.2982
Spain 0.3272  0.3353 0.3091  0.3357 0.2879  0.2779 0.2895  0.2910

Source: own elaboration.

Table A2. Indices of regional concentration on the whole population (IG), on the group of women (IGype,), men
(IGyen) and gender (IGgqer) concentration index. All have been calculated from the variable annual gross earnings per
hour.
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Abstract

Although cellular automata (CA) offer a modelling framework and set of techniques for
modelling the dynamic processes of urban growth, determining the optimal value of
weights or parameters for elements or factors of urban CA models is challenging. This
chapter demonstrates the implementation of a calibration module in a fuzzy cellular
urban growth model (FCUGM) for optimizing the weights and parameters of an urban
CA model using three types of algorithms: (i) genetic algorithm (GA), (ii) parallel
simulated annealing (PSA) and (iii) expert knowledge (EK). It was found that the GA
followed by EK produced better and more accurate and consistent results compared
with PSA. This suggests that the GA was able to some extent to understand the urban
growth process and the underlying relationship between input factors in a way similar
to human experts. It also suggests that the two algorithms (GA and EK) have similar
agreement about the efficiency of scenarios in terms of modelling urban growth. In
contrast, the results of the PSA do not show results corresponding to those of the GA
or EK. This suggests that the complexity of the urban process is beyond the algorithm’s
capability or could be due to being trapped in local optima. With this satisfactory
calibration of the FCUGM for the urban growth of Riyadh city in Saudi Arabia by using
CALIB-FCUGM, these calibrated parameters can be passed into the SIM-FCUGM to
simulate the spatial patterns of urban growth of Riyadh.

Keywords: cellular automata, urban growth, calibration, genetic algorithm, parallel si-
mulated annealing, Riyadh

1. Introduction

Linear, static, top-down, descriptive and explanatory models cannot adequately help to
explain and reflect the essence of urban phenomena. With deeper understanding of urban

I m EC H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
open science | open minds distribution, and reproduction in any medium, provided the original work is properly cited. [(cc) g
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phenomena, scientists have begun to recognize that cities are not uniform or a single type of
phenomenon but more typically hierarchies of complex systems. As complexity theory and
its properties have developed over the last three decades based on studies of non-linear
systems, fractals, bifurcations, self-organization and chaos theory, cities have gradually
become regarded as spatially complex systems [1-3]. A city can be characterized as a non-
linear, open, complex, self-organizing and emergent system, which is far from being in
equilibrium [1, 4, 5]. Urban growth dynamics are the direct consequence of the actions of
individuals, public and private corporations (local agents) acting simultaneously over urban
space and time. Therefore, cities are the spatial result over time of all these influences, which
continuously contribute to shaping a city (aggregate global form). Cellular automata (CA)
offer a modelling framework and set of techniques for modelling the dynamic processes and
outcomes of such self-organizing systems [6]. CA techniques provide a way of simulating a
self-organization process over geographical space and time [6, 7] and demonstrate significant
potential benefits for urban modelling from the late 1980s due to their simplicity, flexibility
and transparency [8-17]. However, Wu [18] argued that calibration of urban CA models is
challenging when one seeks to determine the optimal value of weights or parameters for
elements or factors of a model. If one can find optimal values, the results from running the
model are likely to be greatly improved. With this in mind, the authors designed, imple-
mented and evaluated a prototype for calibrating a stochastic, high-dimensional (up to 95)
and non-linear urban CA model.

A fuzzy cellular automata model of urban growth was presented in Ref. [19]. Al-Ahmadi et
al. presented an urban planning tool for the city of Riyadh, Saudi Arabia, which is one of
the world’s major cities undergoing rapid development. At the core of the system is a fuzzy
cellular urban growth model (FCUGM), which is capable of simulating and predicting the
complexities of urban growth. This model was shown to be capable of replicating the
trends and characteristics of an urban environment during three periods: 1987-1997, 1997-
2005 and 1987-2005. In another paper [20], the model was used to study and evaluate sev-
eral different planning scenarios, both baseline ones and scenarios that relate to actual Sau-
di government policy. The results demonstrated that the model was capable of predicting
plausible patterns of future urban growth. The model also has wider implications for use
as a spatial planning support tool for urban planners and decision-makers in Saudi Arabia.
A description of the application of fuzzy logic in the calibration of the FCUGM was pre-
sented in Ref. [21]. Along with calibration, one of the most significant aspects of any model
is to verify, validate and assess its performance. The focus of the work published by Al-
Ahmadi et al. [22] was on the techniques used to validate the performance of the FCUGM.
They presented seven different validation metrics including visual inspection, accuracy and
spatial statistics, metrics for spatial pattern and district structure detection as well as spatial
multi-resolution validation.

The aim of this chapter is to describe the implementation of a calibration module in the FCUGM
for optimizing the parameters for different modes and scenarios of the FCUGM using three
types of algorithms: (i) genetic algorithm (GA), (ii) parallel simulated annealing (PSA) and (iii)
expert knowledge (EK). These were applied over three periods [urban growth boundary
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(UGB)] including UGB I (1987-1997), UGB 1II (1997-2005) and UGB I + II (1987-2005). The
FCUGM is a hybrid CA model for research in urban planning and urban growth. It aims to
explore and explain the complex spatial patterns of urban growth and to support the spatial
urban planning through its two modules namely CALIB-FCUGM, the calibration model, and
SIM-FCUGM, the simulation model, which can be used for prediction. Although the FCUGM
is based upon fuzziness, it is designed to use stochastically constrained CA models.

2. Study area: geographic situation, physical environment and
urbanization process

The Kingdom of Saudi Arabia is situated at the furthermost part of south-western Asia and
occupies approximately four-fifths of the Arab Peninsula, covering a total area of 2.25 mil-
lion km? of which about 40% are desert lands, and a population of 22,673,538 million ac-
cording to 2004 census. The city of Riyadh is situated on the Najd Plateau in the central
region of the Arabian Peninsula and surrounded to the east by high land ridges and to the
west by the convergence of valleys forming Wadi Hanifah and Mount Tuwaiq. Riyadh is
one of the fastest growing cities in the Middle East. The annual rate of population growth
in Riyadh has reached an average of 8.1% by natural increase and immigration, and ac-
cording to recent forecasts, the population is expected to increase to 10 million by 2020. In
parallel with this dramatic increase in population, the spatial extent of Riyadh has grown
from less than 1 km? in 1920 to over 1150 km? in 2004.

The urbanization process of Riyadh during the period between 1750 and 2004 has passed
through four main phases of development namely the pioneer phase, the pre-establishment
phase, the establishment phase and the oil-boom and post-oil boom phase. Broadly, the in-
crease in wealth, building of the railway, the inauguration of the airport and transferring
government agencies from Jeddah to Riyadh and the need to build new ministries and
hundreds of houses has had a significant impact on the urban growth of Riyadh. This high
rate of growth in population and areas has not been met with an adequate expansion of
services, management capacity and development intervention. As a result, several types of
problems have manifested, for example, the spread of slums and squatter settlements, a
shortage of services for large parts of the city and a growth in demand for housing accom-
panied by land and transportation difficulties. After examining the main three Master
Plans of Riyadh, the results indicate that most of the criticisms of the first and second Mas-
ter Plans were based on the fact that they did not adequately anticipate the size of urban
growth, which took place in Riyadh; this was because much of the development occurred
beyond the boundaries designated by the plan. This resulted in unexpected urban sprawl.
Another weakness aspect of these two Master Plans was that they were formulated on the
basis of moderate economic growth rate. Consequently, they could not have anticipated the
economic effect of oil boom in the 1970s and its adverse effect on the city’s physical growth
in terms of density and scale. This suggested the need for a tool to generate different sce-
narios of urban growth and test the potential physical and environmental impact for each
scenario. Planning authorities, urban planners and decision-makers in Saudi Arabia have
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recently, however, begun to use spatial analytical and other planning tools to simulate and
evaluate the consequences of urban planning policies prior to implementing them. Such
tools can help to explore plans, policies and other factors underpinning and influencing
processes of urban growth in the recent past, which can in turn lead to a better under-
standing the current factors influencing urban growth and ultimately in making more relia-
ble predictions. Based on the use of software applications and tools, one can generate and
evaluate the consequences of diverse future scenarios for urban growth by answering
‘what if’ type questions.

In this chapter, the term “urban growth’ refers to the physical transformation of vacant, dessert
or agricultural land to urban land by planning and building infrastructure and industrial,
residential, retail, educational and other buildings and social and recreational facilities.

3. Uncertainty and global sensitivity analysis of FCUGM

Although many studies [8-17] have investigated models of urban growth-based CA, little
attention has been paid to examining the uncertainty and errors in urban CA models. It has
been hypothesised that urban CA models are influenced by uncertainties that might be
generated from various sources such as the complex interaction between input factors and
parameters, specification and structure of the model and quality of input data [23]. The
structure of CA models is not error-free; however, like other computer models, they are
affected by errors owing to poor or partial human knowledge, complexity of the process
being investigated and limitations of technology [23, 24]. The impact of neighbourhood size
and type on model outcomes of a GIS-CA urban growth model was analysed by Kocabas
and Dragicevic [24]. They applied univariate sensitivity analysis to study the variations in
model outcomes by changing one parameter at a time while other parameters were kept
constant. They found that the size and type of neighbourhood parameters have a signifi-
cant influence on CA model output. The use of such a technique is considered as local sen-
sitivity analysis. It is, however, time-consuming and cumbersome if more than two
parameters are allowed to vary simultaneously. It is also deterministic and static. It cannot
mimic the non-linear, stochastic and dynamic features, which typically exist in urban mod-
els. The error propagation in urban CA simulation was examined by Yeh and Li [23]
through using a Monte Carlo Simulation (MCE). When MCE is applied, the spatial varia-
bles are perturbed so that the sensitivities of perturbations in urban simulation can be as-
sessed in terms of errors in the outcome of simulation.

The FCUGM models the spatial pattern of urban growth using three modes: Mode 1, Mode 2
and Mode 3. The three modes differ in the structure of the fuzzy IF-THEN rule because different
structures of transition rules might generate different simulation outcomes. The FCUGM can
simulate spatial patterns of urban growth under nine scenarios [21]. An uncertainty and global
sensitivity analysis (UGSA) was undertaken on all of the nine scenarios in the three modes of
the FCUGM in order to assess the effects of uncertainties in the input variable (independent
factor) and on the output variable (dependent factor). The advantage of using global rather
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than local sensitivity analysis is that the former is dynamic, stochastic and apportions the
output uncertainty to the uncertainty in all of input variables. It evaluates the effect of one
input variable while all of the others are varied as well. In contrast, the local perturbative
approach is based on partial derivatives. The effect of the variation in one input factor is
evaluated when all of the others are kept constant at their central value [25]. In the FCUGM,
UGSA can provide an initial estimation of the quality of each mode and scenario in terms of
understating urban growth of Riyadh. Since each mode and scenario has a different specifi-
cation and structure, UGSA will be applied to help in identifying the most appropriate one.

The MCS technique was selected to undertake the UGSA because it has been applied success-
fully in a variety of applications including financial risk and statistical physics [26]. In addition,
the MCS is one of the frequently applied techniques for computer simulations or numerical
experiments. In terms of urban CA models, Yeh and Li [27] claimed that MCS tended to be
most appropriate for the investigation of error propagation in urban CA simulation, particu-
larly when mathematical models are difficult to define. Moreover, applying MCS has advan-
tages since urban CA models cannot be modelled explicitly based on mathematical equations.
Although one of the main drawbacks of MCS is the computation time required to generate a
large number of samples, yet recent advancements in computer technology have reduced this
problem [23]. MCS is relatively simple and straightforward to apply. It is generally based on
generating numerous evaluations (runs) of the model with randomly selected input values for
variables. For each trial or run, the input variables are assigned to random values based on
selected input distributions and the value of each output variable recorded [25]. The results of
MCS are, however, only an approximation (not exact) of the true value [26].

Scenario Mean SD Skewness Kurtosis 90% certainty value
Mode 1—Scenario 1 0.277 0.142  0.079 1.987 0.523
Mode 1—Scenario 2 0.505 0.15 0.154 2.053 0.656
Mode 1—Scenario 3 0.319 0.159  -0.187 1.899 0.701
Mode 1—Scenario 4 0.458 0.189  0.343 2.859 0.507
Mode 2—Scenario 1 0.508 0.109 -1.257 2.468 0.628
Mode 2—Scenario 2 0.324 0.164 -0.062 1.891 0.518
Mode 2—Scenario 3 0.458 0.189  0.343 2.859 0.674
Mode 2—Scenario 4 0.187 0132  0.754 2.753 0.423
Mode 3—Scenario 1 0.223 0.149 0572 2.538 0.315

Table 1. Output distribution statistics of the uncertainty analysis of FCUGM’s scenarios using Monte Carlo simulation
(MCS).
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These were chosen to generate and evaluate different urban growth scenarios based on dif-
ferent planning objectives. In the context of the FCUGM, the independent variables are the
parameter values of input variables while the dependent variable is the output mean
square error (MSE) of the scenario. Thus, the UGSA will examine the effect of the varia-
tions in parameters values on the MSE outcome. There are no rules for selecting the ‘best’
number of iterations for performing UGSA primarily because it is problem-dependent. Suf-
ficient iterations are essential, however, to determine statistically the relevant response dis-
tribution. Technically 1000 to 10,000 trials are usually good measures in terms of the
number of trials [26]. The MCS was run 5000 times for each scenario. The uncertainty in
the parameters of the input variable was represented by a uniform distribution with lower
and upper bounds corresponding to each input variable. Each trial will be evaluated by
calculating the MSE of the differences between the observed and simulated urban maps.
Five distribution statistics were computed to assess the output variable (MSE) resulting
from MCS for each scenario including: mean, standard deviation (SD), skewness, kurtosis
and 90% certainty value (CV), as shown in Table 1. The skewness measures the extent to
which the MSE values cluster to one side or the other of the mean. When most values and
a higher number of occurrences cluster towards the left tail, this implies that they should
provide a good solution. The kurtosis measures the sharpness of the distribution. A kurto-
sis greater than three indicates a high peak of occurrences, while less than three indicates a
flat top [28]. The CV represents the value of the MSE that 90% of the outputs (trails) less
than the returned CV. Thus, the lower the CV value, the better the scenario. Figure 1A-I
shows the occurrences of MSE generated from each scenario; this indicates the empirical
estimation of MSE for the random combinations of the input parameters.

As illustrated in Table 1, Mode 1—Scenario 4, Mode 2—Scenario 4 and Mode 3—Scenario 1
generated the best performance with the lowest certainty values of 0.507, 0.423 and 0.315,
respectively. This means that 90% of the occurrences (iterations) have a MSE with 0.507, 0.423
and 0.315 for these three scenarios. In addition, as shown in Figure 1, these three scenarios
present a similar pattern where most of the occurrences are clustered towards the left side,
with a low MSE output and thus better performance. This is supported quantitatively by
accounting for the higher skewness rates with 0.343, 0.754 and 0.572 for Mode 1—Scenario 4,
Mode 2—Scenario 4 and Mode 3—Scenario 1, respectively. In contrast, Mode 1—Scenario 2,
Mode 1—Scenario 3 and Mode 2—Scenario 1 show the highest certainty values of 0.656, 0.701
and 0.628, respectively. This indicates that 90% of the solutions are below a relatively high MSE
range (0.65-0.701). Note that the structure of modes is based on the number of fuzzy variables
embedded in each fuzzy rule and the structure of scenarios is founded on the number and type
of urban growth factors, specifically the transportation support factor (TSF), urban agglomer-
ation and attractiveness factor (UAAF) and topographical constraints factor (TCF) [21]. It can
be inferred that the number of urban growth factors in each scenario has, to a large extent,
considerable influence on the performance of the scenario. For example, the three scenarios
that showed the best performance namely Mode 1 —Scenario 4, Mode 2 —Scenario 4 and Mode
3—Scenario 1, are the only scenarios among the total of nine that included the three urban
growth factors TSF, UAAF and TCF.
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Figure 1. Uncertainty analysis for scenarios of the FCUGM using Monte Carlo simulation: (A) Mode 1—Scenario 1, (B)
Mode 1—Scenario 2, (C) Mode 1—Scenario 3, (D) Mode 1—Scenario 4, (E) Mode 2—Scenario 1, (F) Mode 2—Scenario
2, (G) Mode 2—Scenario 3, (H) Mode 2—Scenario 4 and (I) Mode 3—Scenario 1.
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In contrast, the remaining six scenarios embed only one or two. This suggests that the urban
growth process in Riyadh can be modelled more accurately by integrating these three factors
into a single scenario, rather than just using one or two of them. In addition, one can deduce
that the higher the number of fuzzy variables embedded in each single fuzzy rule in the mode,
the better the performance of that mode. Mode 3—Scenario 1, for example, embeds three fuzzy
variables in each rule and accounts for the highest certainty value, that is, 90% of the 5000
evaluations produced a low MSE with less than 0.315, which indicates that such a mode
structure is better than any other. When the number of fuzzy variables in the fuzzy rule
decreases, the MSE decreases, for instance, Mode 2—Scenario 4 (two fuzzy variables with
0.423) and Mode 1—Scenario 4 (one fuzzy variable with 0.507). However, the high accuracy
produced by Mode 3 involved a high computation time. One can see that as the fuzzy variables
in the fuzzy rule increase, the simulation time increases exponentially. For example, the
average computation time was 4.5, 8 and 19 hours for scenarios in Mode 1, Mode 2 and Mode
3, respectively.

With respect to the scenarios in Mode 1 (except for the best one, Scenario 4), it can be inferred
that urban growth in Riyadh is influenced by transportation support (Scenario 1 with a CV of
0.523) more than socio-economic services (Scenario 2 with a CV of 0.656) and topographical
constraint factors (Scenario 3 with a CV of 0.701). With regard to the scenarios in Mode 2 (with
the exception of Scenario 4), it can be inferred that the process of urban expansion in Riyadh
city is moderately affected by integrating the transportation support with socio-economic
services (Scenario 2 with 0.518 as CV) more than by integrating transportation support with
topographical constraint factors (scenario 1 with a CV of 0.628) or socio-economic services with
topographical constraints factors (Scenario 3 with a CV of 0.674).

4. Calibration of the FCUGM

The calibration process of the FCUGM is undertaken by a module called the CALIB-FCUGM.
This consists of several interlinked sub-models that are processed sequentially either once or
several times during a calibration period. The CALIB-FCUGM aims to provide the SIM-
FCUGM, the module by which the simulation is executed, with the optimal parameter values
or weights of spatial variables to enable realistic generation of urban patterns. The CALIB-
FCUGM optimizes parameters by three different algorithms, namely GA, PSA and EK.

4.1. Basic process flow of CALIB-FCUGM

The stages of the CALIB-FCUGM are illustrated in Figure 2. The main procedures of the
CALIB-FCUGM fall into four stages: (i) Input Variables Weighter, Fuzzy Distance Decay
Quantifier, Fuzzy Input Variables Integrator and Fuzzy Input Variables Normalizer (yellow
boxes); (ii) Fuzzy model (green boxes); (iii) CA model (blue boxes); and (iv) Optimization
Algorithms (grey box), as shown in Figure 2. Most boxes in Figure 2 are a sub-model of CALIB-
FCUGM,; it takes some outputs from the preceding sub-model and feeds the subsequent sub-
model with some inputs. The dashed boxes indicate that this sub-model includes parameters,
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which require to be optimized. The calibration process works sequentially. It begins by reading
input variables into the Input Variables Weighter, by which a weight is assigned to each input
variable reflecting its corresponding importance to other variables. Next, the weighted input
variables are passed into the Fuzzy Distance Decay Quantifier to compute the effect of the
distance decay of each variable by optimizing the distance decay parameters. These weighted
fuzzy variables are then fed into the Fuzzy Input Variables Integrator, which integrates these
weighted fuzzy variables into three fuzzy driving forces [19, 21]. These in turn are normalized
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Figure 2. Calibration Process of the CALIB-FCUGM.
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to between 1 and 100. The next stage involves passing these three fuzzy input variables into
the fuzzy model and creating a ‘calibrated development suitability map’. After adding a
stochastic disturbance factor into the development suitability map, this map is called the
‘calibrated development possibility map’. This calibrated development possibility map is then
entered a conditional statement to decide whether a certain location can be considered as
‘urban’ or ‘non-urban’ based on both its development possibility and the calibrated transition
threshold. The conditional statement outputs the final “urban calibrated map (UCM)’, which
is a binary map (1 for urban and 0 for non-urban). Finally, the ‘urban calibrated map’ is read
by the Evaluator, in order to assess the accuracy of this map, and compared with the “urban
observed map (UOM)’ (which is also a binary map), by computing the error between the two
maps by calculating the best net objective value (BNOV). All of this procedure is generated
several times according to the characteristics of each of the three algorithms GA, PSA and KB.
Note that the CALIB-FCUGM module works automatically after a user enters the input
variables to the module. The outcome of the CALIB-FCUGM module is an optimal set of
parameters and weights. This will be read into the SIM-FCUGM module to simulate urban
development. As the FCUGM is a loosely coupled model, the output of the CALIB-FCUGM is
read by the SIM-FCUGM by manual entry.

4.2, Feasible solution of the CALIB-FCUGM

As stated earlier, the main aim of the CALIB-FCUGM is to find the optimal set of weights and
parameters for each scenario of the FCUGM. Each candidate solution provided by the CALIB-
FCUGM is a set of weights or parameters, which vary according to their associated range
(predefined upper and lower bounds). Table 2 shows the total number of weights and
parameters, which are calibrated for each scenario. As shown, the number of weights and
parameters for scenarios is different. This is due to the difference in the number of fuzzy
variables employed in each scenario. This affects the number of input variables, number of
weights, number of distance decay parameters and other parameters because all these
parameters are used to build fuzzy variables.

Modes and scenarios Number of weights and parameters
Mode 1—Scenario 1 57
Mode 1—Scenario 2 59
Mode 1—Scenario 3 57
Mode 1—Scenario 4 65
Mode 2—Scenario 1 63
Mode 2—Scenario 2 69
Mode 2—Scenario 3 69
Mode 2—Scenario 4 93
Mode 3—Scenario 1 99

Table 2. Number of weights and parameters for scenarios in the FCUGM.
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4.3. Objective function of CALIB-FCUGM

The performance of the GA, PSA or EK algorithms is evaluated based on the quality of the
final solution acquired by the algorithm. In relation to the quality of the final solution, the value
of the objective function (cost function), which is also referred to as an fitness function in GA
and energy function in PSA, is the major criterion for assessing performance of the algorithm.
The effectiveness of any iterative algorithm such as GA or PSA depends heavily on having an
efficient objective function. The purpose of the objective function is to determine for any given
configuration of the search space a value that represents the relative accuracy of that configu-
ration or solution. In the CALIB-FCUGM context, the robustness of the solution can be
considered as an error and the objective function aims to minimize the error between the UOM
and the UCM.

There are several techniques for measuring errors, which can be used in the FCUGM problem
such as total absolute error (TAE), mean absolute error (MAE), MSE, root mean square error
(RMSE), normalized root mean squared error (NRMSE), relative operating characteristic
(ROC), confusion matrix (CM) and Kappa Index of Agreement (KIA). The measurement of
differences in errors between the observed and simulated images has been performed in
different ways by various authors. A CM was used by Wu and Webster [29] to evaluate the
accuracy of the simulated image against the observed one. The MSE and the MAE were used
by Li and Yeh [30, 31] for measuring errors between simulated and observed images in a study
involving modelling urban developments. The MSE also used by Kim [32] for measuring the
accuracy between the observed and probability images as a way of validating results from
calibration process. The NRMSE was used by Heppenstall [33] as a fitness function to validate
the calibration results of a GA and to measure the error between the observed and predicted
spatial multi-agent model for petrol prices. In addition, Pontius and Schneider [34] applied
and explained how to use the ROC technique to examine how well a probability map portrays
the likely locations of a category of new development. The Leica ERDAS image processing
application uses RMSE for measuring the error of image rectification and KIA for validating
image classification results.

As a result, in the FCUGM, the authors selected two types of measures, one to verify the
calibration results and the other for testing the simulating results. Although most of the
techniques are appropriate for verifying the performance of simulation processes, few of them
are suitable for doing this for calibration. This is because the calibration process in the FCUGM
requires the candidate solution to be assessed in each iteration, while in the simulation process,
the results are verified once at the end. Consequently, the MSE and RMSE were selected to
validate the results of the CALIB-FCUGM for several reasons. First, they are the most well
known and widely used techniques of error measurement [35]. Second, they are efficient for
validating the performance in a cell-by-cell manner, which is the case in calibrating the
FCUGM, and they will be calculated in this research as given below in Egs. 1 and 2:

" 2
OFI = MSE _2uo-6)
n
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n 2
OFI = RMSE = 2.0-6)
n

2)

where OFI is the objective function (MSE or RMSE) of a location ij; O; is the urban observed
state at location 7j; Cl-]- is the urban calibrated state at location ij; and # is the number of locations
or cells.

Although several research studies have only applied a straightforward objective or fitness
function such as the MSE or RMSE as measure for error, little attention has been paid to
measuring the effect of constraints. It has been claimed that GA and PSA are stochastic
algorithms and have to be constrained to explore only the search space with desired values.
The author argues, however, that it would be much better to compute the overall net objective
value (NOV) as well, because such a measure includes a weighting system with objective
functions and implemented constraints through penalty functions, which add to the overall
objective value. The net objective value, therefore, is penalized as the set of design variables
moves further out of bounds or does not meet a constant constraint value. The NOV can be
computed as shown in Eq. 3:

NOV =(OF, x W, ) +(PF,xW,,) 3)

where OF, is the objective function (MSE or RMSE) for a solution i; W, . is the weight of the

OF.

L
objective function (MSE or RMSE) for a solution i; PF; is the penalty function for a solution i;
and W), F, is the weight of the penalty function for a solution i.

It can be difficult, however, to compare NOV values from different experiments if the range
and mean of the NOV are different in each case. Thus, to avoid this problem, the standardized
net objective value (SNOV) will be used as shown in Eq. 4:

(OF x W,y ) +(PF,x W, )
Range,

SNOV, =

The penalty functions that will be used in the CALIB-FCUGM include two types of constraints:
(i) equality (some calibrated parameter values have to be equal a constraint value) and (ii)
inequality (some calibrated parameter values have to be less or greater than constraints). An
example of the equality constraint is that the total calibrated weights should be equal to 100;
if it is more or less than 100, the net objective value is penalized by adding this difference to
the net objective value resulting in poorer solutions.
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4.4. Experimental design of calibration process

In order to calibrate the FCUGM for acquiring the best set of parameters to generate a realistic
simulation, several experiments were conducted. The experiments have eight aspects: (i)
sample data set; (ii) calibration algorithms; (iii) mode; (iv) scenarios; (v) urban growth periods;
(vi) training process; (vii) cross-validation process and (viii) calibration time. Figure 3
illustrates the process of the calibration experiments. The best sample size for calibration is
specified. Then, this data set is divided equally into two parts, one called ‘training data set’
and the other ‘cross-validation data set’. The purpose of the former is to train the performance
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of the scenario of interest, while the latter aims to verify the calibrated parameters, which were
generated by using the training data. The authors propose to calibrate the FCUGM urban
growth process under three modes, which are comprised of nine scenarios as previously
explained.

Each scenario is calibrated over three periods UGBL UGBII and UGBI+IL The process starts
by passing the training data sets into the CALIB-FCUGM, so the model is calibrated by
three algorithms: GA, PSA and KB. Each scenario is calibrated five times for each period.
Then, the parameters of the best solution are passed into the VALID-FCUGM, where the
cross-validation data set exists, to verify the calibration results. The VALID-FCUGM is a
static model, which validates the parameters as an off-line model. This process is conduct-
ed for each scenario over the three periods. Afterwards, the performance of the scenarios in
terms of training and validation are evaluated and the best scenario in each mode is select-
ed. Next, the mean of the optimal parameters for the best scenarios from applying the
three algorithms is reported and passed into the SIM-FCUGM for simulation purposes.

4.5. Calibration data set

In terms of the calibration data set, it might be not appropriate to use the whole study area as
a training data set because the volume of data is very large and could require very high levels
of computational resources, which eventually affect the efficiency of the model. Moreover,
spatial data are often not independent: the value of one observation is likely to be influenced
by the value of another observation, so using the whole data set leads to the common problem
of spatial autocorrelation (or spatial dependence) because values of variables at one location
are more likely to be significantly associated with values at nearby locations. The high spatial
dependency of variables is more likely to affect the accuracy of analysis and might lead to
misinterpretation of the results. Random sampling is, however, a conventional way to
overcome this problem [28, 31, 36].

The authors could not find any rules in the scientific literature about the ‘best’ type and size
of random samples for calibrating urban models. An urban CA model was calibrated by Li
and Yeh [30] using artificial neural networks by training the model using a proportional
stratified random sampling method with a total of 3000 cells. The samples were proportionally
randomly selected from different land use types, 50% (1500 points) being used as a training
data set while the rest was used as test data set to verify the training results. In another study,
Li and Yeh [31] calibrated the same model but with binary urban states (urban and non-urban)
by applying the same spatial sampling method but with a total of 1000 samples, 50% for
training and the remainder for validating training results. This suggests that the sample sizes
reduce as the number of urban states decrease. There are many types of spatial sampling
methods such as random, systematic, proportional random stratified, disproportional random
stratified and clusters. It has been argued, however, that the stratified is better than the random
sample, because the latter might supply redundant observations when sample locations are
nearby to one another [36] and may exclude some smaller urban categories [31]. In any event,
systematic sampling is not appropriate for the FCUGM problem because the urban and non-
urban locations are randomly located and not systematically distributed. A random sampling
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method was used because it depends on the variable that is being investigated rather than the
size of the variable area. In the case of the FCUGM, the urban state is the state by which the
urban growth process and pattern are represented and measured. Thus, particular attention
needs to be focused on the locations of the urban state rather than non-urban ones. In this
sense, urban state locations need a more detailed monitoring or over-sampling, while main-
taining adequate coverage of the non-urban portion of the sampled area. As a result, the
proposed random sampling offers more intensity of samples for urban state locations with
60% of the total samples while 40% for the non-urban locations. With respect to the size of
sample, Rogreson [36] claimed that the size of sample should be based on the accuracy that
one seeks for estimation. Generally, the larger size of samples, the more accurate the estimation
of means and proportions. Rogreson [36] claimed that, in general, accurate estimates can
generally be obtained by choosing sample size according to Eq. 5.

ZZ
n=
aw?

©)

where 1 is the size of sample; Z is the confidence intervals, that is, +1.96 for 95% confidence
interval and W is the width of the confidence interval.

Using Eq. 5, the total sample size for calibration in the FCUGM, with a 95% confidence interval
and width within +0.02, is *9600 samples. Fifty per cent of the total sample data set is randomly
selected and used for training the calibration model, while the rest is used to verify the results
of training, that is, 4800 cells were used for calibrating the model and 4800 cells were used for
verifying the results of training.

5. The process of optimising algorithms within the CALIB-FCUGM

The basic theoretical foundation of GA and SA can be found in Refs. [37—40]. This section,
however, examines these algorithms in relation to finding an optimal solution from the huge,
non-linear and non-differential solution space of the FCUGM.

5.1. Genetic algorithms

In relation to GA, Figure 4 shows how the GA works within the CALIB-FCUGM. Prior to
starting the GA simulation, however, several decisions (FCUGM and GA parameters) have to
be made as shown in Figure 5. After selecting suitable GA parameters, the GA simulation starts
by generating an initial random population of a pre-specified number of chromosomes. Each
chromosome is a solution out of all of the total potential solutions and is made of a number of
genes. Each gene represents one parameter or weight value, which requires calibration. The
gene is represented by a number of bits. Given that, Table 3 displays the urban development
scenarios in the FCUGM and the number of their genetic characteristics.
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FCUGM Problem Parameters

- Define a space of feasible solution §

- Define an objective function, MSE and RMSE, F(S)
- Define a penalty function, Constraints, /(C)

- Define the net objective value NOV, F (F(S), F(C))

Genetic Algorithm Parameters

- Specily the size of population (no. of chromosomes) Nerom
- Specify the maximum number of evolutions Nevo

- Define the selection method

- Define the crossover method and probability Peross

- Define the mutation method and probability Pmut

Figure 5. The Parameters of the FCUGM and Genetic Algorithms (GA).

Modes and scenarios ~ Number of genes in each chromosome Number of bits in each chromosome
Mode 1—Scenario 1 57 570
Mode 1—Scenario 2 59 590
Mode 1—Scenario 3 57 570
Mode 1—Scenario 4 65 650
Mode 2—Scenario 1 63 630
Mode 2—Scenario 2 69 690
Mode 2—Scenario 3 69 690
Mode 2—Scenario 4 93 930
Mode 3—Scenario 1 99 990

Table 3. Number of genetic characteristics in FCUGM scenarios.

The GA simulation starts by generating an initial random population (set of solutions) of a
pre-specified number of chromosomes. Subsequently, each chromosome (solution) is decoded
from bits into a certain value, that is, each parameter or weight is given a number within its
bound. This is followed by evaluating the fitness of each individual solution in the initial
population by calculating the error (according to Eqgs. 1-4) between the UOM, the UCM and
reported the NOV. Then, the best solution (lowest NOV value, i.e., BNOV) in this initial
population is saved.
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To create possible solutions for the next evolution (next population), three types of opera-
tors are applied including selection, crossover and mutation. These operators are described
in more detail below. By the selection operator, two solutions are randomly selected pro-
portion to their fitness values (based on the probabilistic function of fitness). The lower the
NOV value, the more times it is likely to be selected to reproduce in the next generation.
Next, the crossover procedure based on the crossover rate combines two solutions from the
current evolution to produce two new solutions (offspring or children) for possible inser-
tion in the next evolution. The mutation rules modify the solution by randomly altering
one or more of the values of parameters or weights based on the mutation rate. Then, the
best solution (lowest NOV value) in this evolution is saved. This iterative process continues
until the maximum number of evolutions is performed (termination rule). CALIB-FCUGM
checks whether or not the desired number of evolutions are met (termination rule), if not
the population of the first evolution will be decoded and the same iterative processes con-
tinue. If the desired number of evolutions is met, then the CALIB-FCUGM will stop and
evaluate the best solution in each evolution and select the best one and report the results of
this solution in a form. The implication of selecting different GA parameters was examined
by undertaking empirical experiments on different values of the parameters. Table 4 shows
the best control parameters of GA for FCUGM problem, which will be used for all subse-
quent experiments in this research.

GA parameters Best options
Population size Small (50)
Selection method Tournament
Crossover probability Medium (0.7)
Crossover method Single point
Mutation probability High (0.2)

Table 4. The best parameters of GA for the FCUGM problem.

5.2. Parallel simulated annealing

Similar to GA, prior to starting the PSA simulation, several decisions should be made as
shown in Figure 6. It is worth noting that the PSA differs from the conventional SA in that sets
of points (solutions) are run simultaneously in each control parameter rather than one single
solution. Figure 7 shows how the PSA works within the CALIB-FCUGM. The PSA simulation
within the CALIB-FCUGM starts at a high temperature (control parameter) by generating a
number of initial random solutions (Points) of the feasible solutions, each solution denoted as
S0. Then, the error between the UOM and the UCM is measured by computing the NOV, the
resultant value is denoted as NOV(S0), The lower the value of NOV(S0), the better the solution
S0. The objective value NOV(S0) works to minimize the error (MSE, RMSE and meet its
constraints).
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FCUGM Problem Parameters

- Define a space of feasible solution §

- Define a neighborhood structure NS

- Define an objective function, MSE and RMSE, F(S)

- Define a penalty function, Constraints, F(C)

- Define an overall net objective value NOV (F(S), F(C))

Parallel Simulated Annealing Parameters

- Specify the initial control parameter 77

- Specify the cooling function and cooling rate «©

- Specify numbers of successful moves per control parameter steps SM

- Specify a termination criterion Tf

Figure 6. The parameters of the FCUGM and Parallel Simulated Annealing (PSA).

After calculating the NOV(S0), a small change in the initial solution SO is brought about using
a perturbation mechanism by which two weights or two parameters are randomly selected
and their values are exchanged between them. This yields a new solution denoted as S1.
Subsequently, a new cost function NOV(S1) is calculated in the same way as NOV(S0). Then,
the results of the two objective functions NOV(S0) and NOV(S1) are evaluated. Whether the
new solution is accepted or not is based on the following conditions:

If the NOV(S1) < NOV(S0), the objective function has declined (the error decreased) and the
new solution S1 is accepted, and the current solution SO is replaced with new solution,
therefore, SO is set to S1 and SO = S1.

If the NOV(S1) > NOV(S0), the objective function has raised (the error increased) and is
subjected to the metropolis criterion that will accept the new solution S1 according to the
probability calculated as, exp((NOV(S0) — NOV(S1))/Ti), and the computed probability is
compared to a uniformly distributed random number, R, between 0.0 and 1.0.

If R < exp((NOV(S0) — NOV(S1))/Ti), the new solution is accepted, and the initial solution is
replaced with new solution.

If R > exp((NOV(S0) - NOV(S1))/Ti), the new solution is rejected, and the initial solution stays
in the same current state.

The preceding process is regarded as an iteration in SA algorithm. This process is repeated
until the predefined number of successful moves (SM) in this particular temperature step is
met. If the number of SM is met, it implies that a quasi-equilibrium state is reached at this
particular control parameter step N and is liable to be reduced by the cooling function and
cooling rate e that were predefined. The processes will continue for a new control parame-
ter step N + 1 unless the termination rule is met, i.e., the final control parameter Tf = 0.1. At
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this control parameter value, the algorithm will stop and provide the global optimal solu-
tion. The implication of selecting different PSA parameters was examined by undertaking
empirical experiments on different values of the parameters. Table 5 shows the best control
parameters of PSA for FCUGM problem, which will be used for all subsequent experi-
ments in this research.

Generate randomly initial

Solution So

v
Compute F(S0) (NOV)

berween UOM and UCM
W
Number of iterations = L+1 By small perturbation of So,
new solution 51 is randomly
generated
W

Compute F(51) (NOV)
between UOM and UCM

W
Evaluate
F(S0) and F(S1)

If F(So) > F(S1) If F(S1) > F(So)

If exp((F(S0) — F(51)) / Ti ) = random [0, Ij]

No NO
Vv
*[ Is the munber of success = SM?
\l, Yes

Reduce the control parameter Ti to T
1 using the cooling rate «

v

Terminate
Search?

No

Temperature step = N+

Report the best Point
(solution) and its
Temperature

Figure 7. Flowchart of the PSA Process in the CALIB-FCUGM.
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PSA parameters Best parameters options and its values
Initial temperature Moderate temperature—MT (60%)
Cooling function Exponential cooling function—ECF
Cooling rate Slow cooling—MC (0.9)

Number of successful moves Medium number of successes—MNS (60)

Table 5. The best parameters of SA for the FCUGM problem.

5.3. Expert knowledge

In contrast to GA and PSA, by using EK the proper parameters and weights for the urban
model are derived intuitively and empirically rather than automatically. In relation to the urban
CA models, most studies calibrate parameters using a trial and error approach that combines
the experience of the analyst. For example, in Ref. [29], the weights of urban factors and urban
agglomeration are calibrated based on the analyst’s views. The effect of distance decay
parameters is calibrated empirically by Cheng and Masser [41] and Ward et al. [42]. In the
FCUQGM, the EK approach is not entirely based on the analyst’s perspective. The parameters
are calibrated on the foundation of the spatial structural analysis as well as the urban planner’s
experience. Thus, the calibration is not wholly qualitative in relying on a planner’s view
because quantitative results from the initial spatial structural analysis are used. Even so, the
large number of parameters in some scenarios makes it very difficult for an expert to derive
the proper parameter values.

6. Results and discussion

In this section, the FCUGM is calibrated using real data and the meaning of the calibrated
values and the consistency of the calibration results, training and accuracy of the validation
are discussed. In order to investigate the characteristics and features of the urban growth
factors that might generate and affect the urban growth pattern of Riyadh city over the last
18 years, this period was divided into two intervals, namely UGB I and UGB II. The former
represents the urban growth between 1987 and 1997, while the latter between 1997 and
2005. This division is not arbitrary; it is approximately the two intervals stated in the Gov-
ernment resolution on Urban Growth Boundary Policy. By calibrating the FCUGM over
these two intervals, the authors would be able to assess the results and compare growth
trends. The authors argue that combining the two periods (UGBI and UGBII) into one peri-
od (UGBI+II), which represents the urban growth between 1987 and 2005, so one can cali-
brate the model over the 18 years in one time, might provide an insight into changes in
urban growth patterns. In this sense, the FCUGM was calibrated for three periods UGBI,
UGBII and UGBIHIL The calibration process was carried out on nine different scenarios for
each period, which are based on different urban growth factors and different transition
rules. Thus, one can examine what are the best scenarios over each period and to what
extent they correspond to the best scenarios over other periods.
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Figure 8. A-J: SBNOV evolution curves for (A) M1—S1, (B) M1—S52, (C) M1—S3, (D) M1—54, (E) M2—S1, (F) M2—S2,
(G) M2—S53, (H) M2—54, (I) M3—S1 and (J) overall mean using GA, respectively.
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As mentioned previously, the CALIB-FCUGM produced figures that show the progress of
evolution and temperature for the GA and PSA respectively. Figures 8A-] and 9A-J show
90 least-so-far standardized best net objective value (SBNOV) curves, five for each scenario
and a mean SBNOV for each scenario using GA and PSA as a result of calibration FCUGM
over the period UGB I + II. In terms of the progressive patterns, Figures 8A-J and 9A-]
show that the curves are concave, decreasing as the evolution increases in the GA and tem-
perature decreases in PSA, i.e., the SBNOV declines as the evolution and temperature prog-
ress. Nevertheless, the degree of decrease and the values of starting and ending of SBNOV
are varied from run to run, from one scenario to another and across all of the algorithms.
Some curves decrease steeply in the early stages of evolution or temperature, while others
decrease constantly in the middle or late stages. The variation in starting points of the GA
might be attributed to dissimilar genetic characteristics in the different starting chromo-
somes. In the PSA, it might be because of the initial random states at different starting
points. Broadly, convergence into the global solution (lowest SBNOV) decelerates as the
evolution and temperature progress. The variation in ending points (the ends of curves’
tails) of the GA and PSA might be because most runs converge to a narrow extent but gen-
erally do not converge altogether. This suggests that some performed better than others
did. Some were possibly trapped in local minima.

In relation to the progress of the GA’s evolution against the SBNOV, it can be seen that the
SBNOV of the GA decreases in a consistent manner. For example, the SBNOV for most
scenarios decreases exponentially with different degrees and little noise, indicating that errors
are apparently decreasing as evolution progresses. This suggests the elitism feature of the GA,
by which the best chromosome (solution) survives (passes) into the next evolution without
any change, is working well. In contrast, the PSA shows considerable variations in the
reduction of SBNOV against the PSA’s temperature in different scenarios and modes. One
possible reason for this variation is that the computation became stuck in local minima as
shown in most scenarios. This is evident in the case of Mode 1—Scenario 2, Mode 1—Scenario
3 and Mode 1—Scenario 4, where the value of SBNOV decreases sharply in the early high
temperature (first quarter) but afterwards (over the last three quarters) there was little or even
no reduction of SBNOV. With respect to the convergence to the best global solution, it can be
seen that most of the scenarios in the GA converged into very low SBNOV, broadly below 0.1,
indicating positive performance of the algorithms across most scenarios. The higher conver-
gence to the global solution are presented by Mode 1—Scenario 4, Mode 2—Scenario 4 and
Mode 3—Scenario 1, where most evolution curves converge to a very narrow range towards
curves’ tails. This supports the argument generated as a result of the uncertainty and sensitivity
analysis discussed above, that these three scenarios produced the higher certainty values. It
also suggests that the structure of these scenarios and the urban growth factors embedded in
them are most appropriate for understanding urban growth processes. The convergence to the
best global solution in PSA was, however, varied without any apparent pattern of convergence.
The variations were not only evident by scenarios but also by running within a single scenario.
For example, Mode 1—Scenario 4 converges to a different solution with different SBNOV in
each run, where the SBNOV ranges between 0.1 and 0.5. Thus, it can be deduced that PSA
yielded poor solutions with inconsistent convergence in the global solution. However, only
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Mode 2—Scenario 3 and Mode 2—Scenario 4 showed better convergence into low SBNOV for
most of their scenarios.

Figure 9. A-J: SBNOV evolution curves for (A) M1—S51, (B) M1—S2, (C) M1—S3, (D) M1—54, (E) M2—S1, (F) M2—S2,
(G) M2—S53, (H) M2—54, (I) M3—S1 and (J) overall mean using PSA, respectively.

Figure 10A-F shows a comparison of the mean of Standardized Best Net Objective Value
(SBNOV) in terms of all runs, training and validation of the optimum solution found by
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running CALIB-FCUGM five times for each scenarios using GA, PSA and EK. It can be seen
from Figure 8A-F that, while there is some variation, there is broad correspondence in the
performance of calibration between the algorithms, in terms of overall accuracy and validation.
In terms of algorithm, the GA broadly produces highly consistent results with relatively low
variations among different runs for each scenario. It can easily be observed that Scenario 4 in
Mode 1, Scenario 4 in Mode 2 and Scenario 1 in Mode 3 account for by the lowest SBNOV
generated from different runs. Scenario 2 in Mode 1 and Scenario 3 in Mode 2 yield the worse
solution with high SBNOV in most runs.

Figure 10. (A, C and E): SBNOV for the training data using GA, PSA and EK respectively. (B, D and F) SBNOV for the
validation data using GA, PSA and EK, respectively.

In contrast, PSA produced relatively inconsistent results, which led to difficulties in observing
the accuracy of each scenario. In addition, GA and EK have a similar pattern of accuracy across
scenarios, with little variation in magnitude. For example, they gained similar levels of SBNOV
accuracy in Mode 1—Scenario 1, Mode 1—Scenario 2, Mode 1—Scenario 4, Mode 2 —Scenario
1, Mode 2—Scenario 2 and Mode 3—Scenario 1 but differ slightly in the remaining scenarios.
This suggests that the GA was capable to some extent to understand the urban growth process
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and the underlying relationship between input factors in a way similar to human experts. It
also suggests that the two algorithms have similar agreement about the efficiency of scenarios
in terms of modelling urban growth. In contrast, the results of the PSA do not show results
corresponding to those of the GA or EK. This might suggest that the complexity of the urban
process is beyond the algorithm’s capability as will be seen when we come to assess the
accuracy of results.
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Figure 11. (A-C) Urban observed map (UOM) depicting urban expansion of Riyadh city during three periods: (A)
1987-1997, (B) 1997-2005 and (C) 1987-2005.
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Figure 12. Performance of SIM-FCUGM for UGB I (1987-1997) period: (A) simulated image for scenario M1—54; (B)
simulated image for scenario M2—54 and (C) simulated image for scenario M3—S1.

With respect to the accuracy of scenarios, it can be seen that Mode 3 —Scenario 1 produced the
higher levels of accuracy across all three algorithms, while Mode 2—Scenario 1 generated the
worst solution. The high accuracy of Mode 3 might be attributed to the structure of this
scenario, which includes three fuzzy variables in each fuzzy rule, that is, each fuzzy rule
includes all of the three urban growth factors (TSF, UAAF and TCEF). In addition, this high
accuracy of Mode 3—Scenario 1 agrees with the results of uncertainty and sensitivity analysis,
in which this scenario had the lowest uncertainty compared with others. The worst solution
was produced by Mode 2—Scenario 1. This might be related to two factors: (i) the structure of
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the scenario and (ii) the type of driving forces employed in this scenario (which are TSF and
TCF), that is, these two forces are not capable in this scenario of understanding the urban
process of Riyadh. The low performance of this scenario is also revealed in the uncertainty and
sensitivity analysis, indicating a weakness in structure of this scenario. Figure 11 shows the
urban observed map for 1987, 1997 and 2005, while Figures 12-14 show the simulated urban
growth during the three periods UGB1: 1987-1997, UGB2: 1997-2005 and UGB3: 1987-2005,
respectively, that generated from THE best scenarios: M1—S54, M2 —S4 and M3—S1.
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Figure 13. Performance of SIM-FCUGM for UGB I (1987-2005) period: (A) simulated image for scenario M1—54; (B)
simulated image for scenario M2—54 and (C) simulated image for scenario M3—S1.
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Figure 14. Performance of SIM-FCUGM for UGB I (1997-2005) period: (A) simulated image for scenario M1—54; (B)
simulated image for scenario M2—S4 and (C) simulated image for scenario M3—S1.

In relation to the validation of the calibration results, it can be observed that the GA and
EK show validation results that are very close to one another and correspond closely to the
training results, whereas the PSA presents lower matching results. For example, the GA
and EK have identical training and validation results in all scenarios except Mode 2—Sce-
nario 1 and Mode 2—Scenario 3 in GA and EK, respectively. In the PSA, only four scenar-
ios match the training results including: Mode 1—Scenario 1, Scenario 2, Scenario 4 and
Mode 2—Scenario 1, and the remaining five scenarios contradict one another. This implies
that the GA and EK are better than the PSA, indicating that they have the capability to
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work well not only for the data that they trained with but with other data sets. Thus, in
terms of generalization, it might be deduced that the CALIB-FCUGM by using the GA or
EK can be used to calibrate different data sets from different times and locations.

7. Conclusion

In this chapter, theory underlying the CALIB-FCUGM has been applied to calibrate the
FCUGM for Riyadh in Saudi Arabia. This chapter can broadly be divided into three main
parts: uncertainty and global sensitivity analysis; calibration of the FCUGM; and results
and discussion of calibrating the FCUGM. This chapter began by undertaking uncertainty
and global sensitivity analysis on the scenarios in the FCUGM, which showed that the dif-
ferent structures of scenarios have different levels of uncertainty. It was found that Mode 3
—Scenario 1, Mode 2—Scenario 4 and Mode 1—Scenario 4 generated the best performance,
with the lowest uncertainty values, where 90% of the occurrences (iterations) of the Monte
Carlo simulation for those scenarios gained the lowest error in terms of the objective func-
tion of the CALIB-FCUGM. After that, the technical stages of the calibration of the FCUGM
were examined. These included the feasible solution, objective function, experimental de-
sign and calibration data set. This was followed by outlining the detailed processes of the
optimization algorithms (GA, PSA and EK) within the CALIB-FCUGM. Next, empirical ex-
periments were conducted to investigate the best control parameters of the GA and PSA
for the FCUGM problem. It was found that the best GA and PSA parameters for the
FCUGM problem had some similarity but differed with respect to problem in geography
and non-geography. Finally, the FCUGM was calibrated under nine scenarios over three
periods using three optimization algorithms. It was revealed that scenarios Mode 3 —Sce-
nario 1, Mode 2—Scenario 4 and Mode 1—Scenario 4 produced the best performance
among the nine scenarios; this result is similar to that found in the uncertainty and global
sensitivity analysis. The first reason for this is that the driving forces (TSF, UAAF or TCF)
were embedded in those scenarios. This indicated that the spatial patterns of urban growth
for Riyadh can be better understood by the three forces all together. The second reason can
be attributed to the structure of the fuzzy transition rules, for example, Mode 3 —Scenario
1, embedded all the three driving forces in each fuzzy rule and produced the most accurate
results compared with others scenarios where their rule structure embedded only one or
two driving forces.

It was found that the GA followed by EK produced better and more accurate and consistent
results compared with PSA. This suggests that the GA was able to some extent to understand
the urban growth process and the underlying relationship between input factors in a way
similar to human experts. It also suggests that the two algorithms (GA and EK) have similar
agreement about the efficiency of scenarios in terms of modelling urban growth. In contrast,
the results of the PSA do not show results corresponding to those of the GA or EK. This suggests
that the complexity of the urban process is beyond the algorithm’s capability or could be due
to being trapped in local optima. Investigation into the CALIB-FCUGM results over different
urban growth periods indicated that, where the spatial pattern is more compact, the calibration
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results are more accurate. The calibration results over the period UGB I + II followed by UGB
I produced better results compared with the one over UGB II. This can be understood due to
the characteristics of the spatial pattern of urban growth for each period. UGB I+II followed
by UGB I experienced edge expansion (relatively compact pattern), while UGB II faced in-
filling development (dispersed compact pattern).

To sum up, CALIB-FCUGM was to a large extent able to calibrate the FCUGM over differ-
ent growth periods under different scenarios using different algorithms. Although some
algorithms and scenarios showed average performance, others revealed high capability for
calibrating the model well. With this satisfactory calibration of the FCUGM for the urban
growth of Riyadh by using CALIB-FCUGM, these calibrated parameters will be passed into
the SIM-FCUGM to simulate the spatial patterns of urban growth of Riyadh.
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Abstract

Spatial analysis has been one of the most rapidly growing fields in ecology. It is related
directly to a growing awareness among researchers that a spatial structure of
biosystems, e.g., forests, is important in ecological thinking. The availability of the
specific software supports the use of spatial analyses in different fields of the science
and forestry science is only one example for this. Many data collected in the forests
have the spatial and temporal dimensions and it allows us to use spatial statistics to
quantitative description of the spatial structure of forest, which became an important
element of modern continuous cover forestry. In this chapter, key elements: data types,
null models, and summary statistics, which can be applied in spatial analyses, are
briefly described. Real data sets collected from different forests were given to provide
examples of spatial analyses. The key elements of spatial analysis in ecology are data
type, the appropriate choice of summary statistics and null models. Selecting few of
them in a single analysis makes the statements more reliable and realistic in the
changing world.

Keywords: spatial explicit indices, spatial functions, point pattern statistics, forest
structure diversity, forest dynamics

1. Introduction

Ecologists have been interested in spatial and temporal dimensions of ecological processes
in plant populations for a long time. While data collected in most ecological studies have
spatial and temporal aspects, the importance of spatio-temporal analysis has been discovered
recently. As stated in Reference [1], until the 1980s, most ecological studies avoided the
explicit consideration of space and most of the field experiments were designed to remove
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spatial signals. Techniques such as randomization and block designs were especially common
in use.

During the 1980s, there was a fundamental shift in ecology toward spatial explicit consider-
ation of relationships between organisms. Among factors favorable to use spatial analysis
in ecological studies one can distinguish the needs to include spatial structure of natural
systems in ecological theories, changes in landscapes altering ecosystems, and the needs to
evaluate their spatial heterogeneity and —which was most influential —to develop a mod-
ern technology which increase possibilities in analyzing a large spatio-temporal data sets
together with the development of specific statistical methods (e.g., point process statistics),
technology (e.g., LIDAR), and software dedicated to spatial analysis [2]. The third factor
allowed to analyze, model and visualize a complex spatial relationships between organ-
isms even in rather complex biosystems, like tropical forests. Thus, at present, spatial anal-
ysis has been one of the most rapidly growing fields in ecology and it is now related
directly to a growing awareness among researchers that spatial structure of populations
(e.g., forest trees) is important in ecological thinking.

An important concept related to biological structures includes self-organization, structure
relations, and pattern recognition [3]. Self-organization involves a variety of interactions be-
tween individuals (e.g., competition, facilitation), which can modify their growing spaces
and spatial niches. Ecological processes leave signs in the form of spatial patterns but the
spatial structure of the system can determine its properties, as well. In a forest, for exam-
ple, population structure affects the biomass production, biodiversity, and habitat func-
tions. Pattern recognition plays thus an important role in forest ecology and usually helps
to identify and link spatial patterns with corresponding properties of population [1, 4-7].

The questions tried to be answered on the basis of spatial analysis often revolve around
identifying the potential causes, e.g., ecological processes and mechanisms, staying behind the
observed arrangement of individuals in the population [1, 8]. Historically, spatial analysis
based on point pattern statistics provided only the assessment whether the empirical pattern
of the studied population emerged by chance, which meant that individuals” occurrence did
not depend on the presence of others, and the probability of the occurrence was the same across
the whole study area. This expectation is called complete spatial randomness (CSR). Two
alternatives to CSR are individuals that are distributed according to the specific mechanisms
promoting either their overdispersion (aggregations, clumping) or underdispersion (regular-
ity) [1, 8]. Nowadays, modern spatial statistics, e.g., point pattern analysis, allows us to find
out more detailed information on spatial relationships between individuals in the investigated
population. Some complex null models, such as Cox and Gibbs processes, can be helpful for
that. In general, cluster models of Thomas, Neyman-Scott, and Matern, being representatives
of Cox processes, provide detailed information on the average cluster size and the number of
clusters per unit area. On the other hand, the Gibbs class of point process models (e.g., Strauss
and Markov processes) can characterize inhibition mechanisms between individuals [8]. Point
process models, mentioned above, are important tools employed in spatial analyses. Their
importance results from their usefulness in determination weather there is any significant
spatial structure in empirical data, they can summarize the properties of the spatial structure
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and test ecological hypotheses concerning the mechanisms that may generate the observed
spatial structure in a data set [1].

Fundamental ecological questions arising in forestry concern the forest structure and its
influence on forest dynamics, forest productivity, and biodiversity [9-12]. This refers to the
way in which the attributes of trees (species, sizes) are distributed in the forest.

It affects most ecological processes running in the forest ecosystem, among which forest
regeneration, tree growth, surviving and mortality, seed dispersal, competition, or facilitation
between individuals are especially important (Figure 1). Moreover, most of biological proc-
esses generate themselves the specific structures. Thus, the structure-processes relations are
not independent. Forest dynamics depends thus to a large degree on the forest structure.

Stand structure

F 3

Individual growth
i ,E " Tree growth
conditions ——

v

Figure 1. Feedback loop determining forest stand dynamics [9, modified].

This chapter is divided into the following subchapters:

1. Data types—what should be known before running the spatial analysis.

2. Patterns and processes—the mutual dependence causes some inferential problems.
Spatial indices—an easy way to describe population structure.

Functional spatial statistics —the most informative way to discover complex structures.

AR

Conclusion

2. Data types—what should be known before running the spatial analysis

Generally, the aim of spatial analysis is to describe the structure of the pattern created by objects
distributed in space. Each object is usually treated as a point, regardless their real shapes and
point pattern statistics seem to be valuable tools in such analysis.

As mentioned above, most data collected in ecological studies can be characterized by spatial
dimensions. However, data can be of different types and selection of the appropriate statistical
method (the so-called summary statistics) depends on two things: the data we want to analyze
and ecological questions we want to answer [8, 13]. Individuals being the subjects of spatial
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analysis are usually characterized by their location (x, y coordinates) and additionally by their
different attributes, quantitative, or qualitative ones (e.g., size, species, sex, quality, health
status, and age). It is also possible to use as a tree attribute any constructed mark [14].

Individuals described only by coordinates can be analyzed as the so-called unmarked point
pattern, while data described by any mark are suitable to analyze as the marked point pat-
tern [8, 15]. The appropriate summary statistics (indices and functions) that quantify the
statistical properties depend on the form of the data type one collected in the field. Anoth-
er important issue associated with the point pattern analysis is the heterogeneity of envi-
ronment conditions. In ecology, heterogeneity plays an important role and its
quantification seems to be a key task in spatial analysis. To do that, the information on
environmental covariates (soil quality, slope, aspect, etc.) should be incorporated in analy-
sis [16].

In the unmarked point pattern analysis, one would like to characterize the spatial relation-
ships between objects, e.g., trees in the forest. Moreover, the unmarked pattern may include
one or more types of individuals. The analysis of such point patterns concerns the follow-
ing basic categories: univariate, bivariate, and multivariate point patterns [1, 15]. Univariate
point pattern analysis is focused only on one type of points, e.g., particular tree species.
The questions to be answered are about the understanding of the mechanisms (processes)
responsible for the distribution of the individuals within the study area. The fundamental
null model for the univariate analyses is the complete spatial randomness and it is called
the (homogeneous) Poisson model. According to CSR, points are distributed with equal
probability within the region of interest and each point is distributed independently of the
others. The alternatives to CSR are, either aggregated or hyperdispersed arrangement of
points. In the case of the bivariate point pattern, two types of points are the subjects of
analysis. It is important to keep in mind that these two types of points must be created by
two different processes [8]. Such points have the so-called a priori properties [16]. Good
examples of bivariate point patterns in forest studies are analyses of spatial correlation be-
tween two different tree species or live stages (adults and juveniles). In the case of the bi-
variate pattern, the null model is spatial independence of two patterns and the alternatives
are spatial attraction (positive association) and spatial repulsion/segregation (negative asso-
ciation). The main question is focused on the role of interactions between two types of
points. Bivariate analysis can support the theory of species coexistence in multispecies for-
ests [17-22]. In multivariate point pattern analysis, several data types (e.g., tree species) are
involved and each of them is created by different processes. The relevant ecological ques-
tions for such data types involve detecting and understanding spatial structures in diversi-
ty, namely whether tree species tend to form intraspecific and interspecific structures or
different tree species tend to be well mixed over the study region. According to the hy-
pothesis of spatial segregation in promoting the species coexistence, for example, intraspe-
cific clusters for a certain species are responsible for the interspecific segregation [1, 16, 23].

In spatial analysis mentioned above, points of similar or different type were characterized only
by their location. If we describe each point additionally by any mark (e.g., tree diameter, tree
height, and health status), we obtained qualitatively or quantitatively marked patterns. Thus,
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summary statistics from the so-called marked point pattern statistics should be used. Quali-
tative marks are usually created by the a posteriori marking process over the given point
pattern. This situation is quite different from the case of the bivariate pattern, created by a
priori process. In the case of a qualitatively marked point pattern, one is interested in the
characteristics of the process distributing the marks over the pattern. The relevant null model
for qualitative marks is a random labeling (or independent marking) model, in which marks
are shuffled in a random way over the joined pattern [1, 15]. In the case of quantitative marks,
the relative ecological questions are about the spatial correlation of marks created a posteriori,
too [7, 24, 25]. Such analysis can reveal, for example, the importance of competition (or
cooperation) between trees in the dependence on the distance they are apart from each other.

Figure 2 presents major characteristic of the forest structure and its important variables.

Forest structure

; ; ¢

Horizental distribution Species diversity Size diversity

- -
Spatial in-explicit measures Spatial explicit measures
Neighborhood Distance-dependent Spatial functions
MEASLres MEASUTES

Figure 2. Major characteristics of the forest structure and its measures.

3. Patterns and processes: complex mutual dependence

As mentioned above, the natural processes and mechanisms leave some traces in the spatial
pattern of individuals occupying a certain area [6]. These traces encompass different aspects
of population structure: species composition and species mixing, spatial arrangement of
individuals and spatial variation of their size [26, 27]. To understand the functional processes
it is needed to identify the structure and spatial scales at which processes operate. Spatial
patterns in plant populations, e.g., forests, determine their integrity, functionality as well as
stability to the large extent [1, 5, 9, 10, 16, 26, 28].

99



100 Applications of Spatial Statistics

In ecological studies, there are numerous examples of the attempts of inference the under-
ling processes from the observed patterns (structures). Spatial patterns of any population
can be treated as an “ecological archive” in which the past ecological processes are con-
served [16]. Decoding the signals from spatial patterns is still challenging due to the com-
plex relationships between the pattern and the structure of plant population. Some potential
problems arise from the fact that different processes can generate the same spatial pattern or
they may interact. The processes may also be the result of the specific spatial patterns (spa-
tial structures). Moreover, nonrandom processes can also generate random pattern [1, 6, 9,
27-31]. The inverse situations—that means a nonrandom process can create structured pat-
terns—can be true either. Different processes do not have to interact simultaneously and a
single process can generate exactly a single pattern [32].

The appropriate use of null models in spatial analyses, as well as complete description of the
properties of the observed spatial pattern, allows us to minimize the problems stated above.
One possibility to solve them is the use of several summary statistics simultaneously. The more
structured population, the more number of summary statistics should be used in description
of the pattern [33]. However, the use of a single or two summary statistics are the most common
in the literature [16]. Historically, only a single null model, namely CSR, was used to state if
the population is randomly distributed or not. Now, there are much more null models available
for better analysis [8, 34-37].

In forests, spatial patterns revealed by trees are usually the result of three main biological
processes: tree growth, mutual interactions, and mortality [14]. All these factors influence
the forest dynamics and also its structure at the subsequent forest development stages. Tree
growth can be impeded or “accelerated” due to different ecological processes and the neigh-
borhood effect is among others [32]. Competition processes are difficult to measure directly;
however, its effect on the tree growth and survival can be studied by spatial pattern analy-
sis. Distance-dependent mortality of trees has been quite frequently referred to as a conse-
quence of density-dependent competition, and this process frequently leads in crowded
population to a more regular distribution of surviving trees [4, 38-40]. The relationships be-
tween small and large trees may be more complex. Small trees may tend toward aggrega-
tion around large trees because of better moisture conditions around larger trees or they
tend to be segregated from large individuals because of poor light regimes for their growth
and development [41]. In multispecies forests, interspecific competition may be reflected by
spatial segregation of different tree species, and it is extremely important for weaker com-
petitors allowing them to survive [42]. Thus, heterospecific segregation promotes species co-
existence in mixed forests [1].

4. Spatial indices: an easy way to describe population structure

Spatial explicit indices can be divided into three main groups: quadrat counts, distance-
based, and angle-based indices. Great advantage of the use of spatial indices is related to the
fact that they are easy to calculate and results can be interpreted easily. However, the use of
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indices usually does not allow to draw conclusions on the spatial pattern of individuals at
different spatial scales, but results can be interpreted only at a single scale, e.g., nearest
neighborhood [3].

4.1. Quadrat counts

A quadrat counts method is based on counting points in subareas (quadrats) located in the
particular region of interest [8, 43, 44]. This method is the oldest and the simplest measure
of the pattern and intensity of population. The simplicity results from the fact that only the
number of objects (trees) in a quadrat is obtained and there is no need to know the exact
position of them. However, it limits the statistical analysis. The disadvantage of quadrat
counts method is that the dispersion of the objects may depend on the scale of the study and
the size of the sample unit [37, 43].

4.1.1. Variance-mean index (VM)

The most common index that can be applied to quadrat counts is the index of dispersion, also
called the variance-mean ratio, and being based on the Poisson distribution. For the random
distribution of points (followed the Poisson distribution), the index VM = 1. If points are
aggregated then VM > 1 and if they are evenly scattered, thus regularly distributed, the index
VM <1 [43, 45-47]. In the first case, the variability in the process is stronger than in the Poisson
process, and in the second case— the variability is smaller. For statistical inferences about the
significance of the deviation from 1 (randomness), x? test for n — 1 degrees of freedom can be
used (7 is the number of quadrats).

4.1.2. Morisita index (I,;)

Another easy-to-calculate index related to the quadrat counts method is Morisita's index, I,
calculated from the number of objects on the squares, the number of squares and the total
numbers of individuals [9, 43]. The standardized index takes the values from Ie{~1, 1} using
either of two values calculated from x? test with nn — 1 degrees of freedom. If I, < 0 then points
within the population are distributed regularly, while I, > 0 indicates the aggregated spatial
structure [43]. Random distribution of individuals is for [,; = 0. The standardized index is
assumed to be a very good measure of the spatial pattern because it is not affected by the
population density and sample size. This index was applied in References [48-51].

Example 1

To illustrate the application of the Morisita index, data sets from an old-growth oak-dominat-
ed (Quercus robur L.) forest, located in western Poland will be used. Figure 3 presents the stem
map of the forest. Only hornbeam (Carpinus betulus L.) was taken into consideration for IM
calculations.

The dependence of the spatial point pattern on the spatial scale on the basis of the Morisita
index is presented in Figure 4. The pattern was divided into 2-2 quadrats, then 3-3, 4-4, etc., I,
index was calculated for each quadrat.
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Results indicated that trees belonging to this species were distributed in clumps (I, > 1)

especially at small spatial scale. The larger spatial scale, the lower clumping intensity was
observed.
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Figure 3. Stem map generated for oak-dominated (Quercus robur L.) old-growth forests (Example 1), the plot size: 50 m
x 70 m. In the left panel: all live trees; red circles: pedunculated oak; green circles: hornbeam (Carpinus betulus L.). In
the right panel: the size of circles corresponds to the diameter of each tree.
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Figure 4. Values of Morisita index calculated for hornbeams in an old-growth oak-dominated forest and its depend-

ence on the spatial scale. The point pattern is divided into quadrats of different size, and the Morisita index is comput-
ed each time. This plot discerns different scales of dependence in the point pattern data.

4.2. Point pattern statistics

Spatial point pattern analysis is based on the data sets consisted of objects with known
locations. Modern ecological analyses are mainly based on point pattern (process) statistics
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and objects being the subjects of analysis are represented by points and marks describing them.
In this subchapter, the most common and powerful methods are briefly described and they
are supported by examples based on the real data sets from forest ecosystems. For the readers
convenience, mathematical concepts are omitted in this chapter but they can be found in many
textbooks on spatial statistics, e.g., in Refs. [1, 8, 37, 44, 52, 53].

4.2.1. Spatial arrangement

4.2.1.1. Distance-based indices

Spatial structure of a forest is largely determined by the relationships between close neighbors,
thus, the neighborhood scale seems to be very important. A group of methods called the nearest
neighbor statistics are based on the relative positions of individuals in the population [27].
Different indices from this group can provide the information on the different aspects of spatial
structure: spatial arrangement of trees, spatial differentiation of their sizes, spatial mingling
of tree species, etc. Some of them require an exact position of each tree in the population and
the others require the position of only a sample trees. Distance within this group can be
measured between the sample point to the nearest tree and from tree to its nearest neighbor
[54].

4.2.1.1.1. Clumping index of Clark-Evans with Donnelly’s modification (CE)

This index was introduced by Clark and Evans in 1954 and then it was modified using an edge
correction formulae [55]. This index has been historically the most commonly used in spatial
pattern analysis due to its simplicity and easy interpretation. The index is based on the
distances between the nearest neighbors, measured for each tree within the population under
investigation. It is a measure of the extent to which the population being analyze deviates from
the random one. For randomly dispersed population CE = 1. If individuals are distributed in
clumps then CE < 1, if they are dispersed regularly then CE > 1 [56] and for two alternative
pattern type it is CE > 1 (regularity) and CE <1 (aggregated). The maximum value of CE index
is CE~2.15 for a hexagonal distribution of individuals [55-58]. The significance of the depar-
tures from 1 can be obtained by using a standard, normally distributed test value [59]. This
author argued that the special attention with the application of the CE index should be drawn
in populations where clustering is likely to be present. Then, other indices are assumed to
provide more reliable results. Another weakness of the CE index is that it assumes that the
process generating tree location is homogeneous and in the case of spatial variations of point
density this index will show the virtual aggregation [37].

4.2.1.1.2. Hopkins-Skellam index of dispersion (HS)

This index, unlike CE, takes the nearest neighbor distances between the randomly sampled
points and the random object of the pattern (e.g., tree). The pattern is random when points are
independently distributed from each other and the distance from the data point to its nearest
neighbor should have the same probability distribution as the distance from a fixed spatial
location to the nearest point of the pattern [43, 37]. This index, similarly to the CE index, is
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dimensionless. For random population HS=1, for aggregated structure HS <1 and for regularly
spaced individuals, HS > 1. The HS test compares the value of the index to the F-distribution.
Hopkins-Skelam index is less sensitive than CE due to edge effect bias and spatial inhomoge-
neity [37].

4.2.1.2. Angle-based indices

Both indices described above require the measurement of the distances that is rather time
consuming and laborious. For this reasons, two indices based on angles between nearest
neighbors, namely, contagion index and mean directional index, have been introduced by
Corral-Rivas et al. [60] and Aguirre et al. [61], respectively. Their basic idea is to characterize
the spatial pattern of trees at the neighborhood scale by the directions under which the n
neighbors of the so-called reference point were visible. Each point of the pattern takes a role
of reference point.

4.2.1.2.1. Uniform angle index (also known as contagion index) (UAI)

This index is based on the classification of the angles a; (i refers to the reference tree and j to
its neighbors) between two neighbors. It compares these angles with an appropriate reference
angle, @, which is selected so that it yields 360°/n [10]. The contagion is defined as the
proportion of angles &; between the four neighbors, which are smaller than a,, and the index
takes the values between 0 (regularity) and 1 (clumping). In the case of four neighbors, UAI
can take five values: 0.0, 0.25, 0.5, 0.75, and 1.0. Mean values for a stand are an arithmetic mean
of all UAI values calculated for each trees. Mean values of UAI > 0.6 indicate clumped
distribution and UAI < 0.5—regularity [9, 10, 62]. More informative than the stand average
value is the distribution of UAI that provides detailed information how many trees are
arranged in clumps and how many trees are distributed randomly or regularly. As stated
above, this index is a suitable tool when the number of points exceeds 100 individuals [61].

4.2.1.2.2. Mean directional index (MDI)

This index is more conventional that the previous one and more accurate angle measurements
arenecessary, but still no distances should be measured. Usually, values obtained by MDIindex
correspond well with values obtained by the UAI index. If trees are distributed in regular
manner MDI = 0 and if they are distributed in clumps—MDI takes larger values. The mean
MDI index for the stand can be also calculated. The value of the MDI index for a random
population is exact 1.7999 (~1.8). Thus, values MDI > 1.8 indicate aggregated structure and
MDI < 1.8—regular distribution of individuals. This index is suitable in the case of the
populations with the number of individuals exceeding 50 objects [61, 63].

Example 2

The application of spatial indices is supported by real data set collected from old-growth oak-
dominated (Quercus robur L.) forest, located in western Poland. Figure 3 presents the stem map
of trees in the forest located in the nature reserve in Poland. This forest has been excluded from
any human interventions since the last 50 years. The main tree species is pedunculated oak
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(overstory), and hornbeam (Carpinus betulus L.) in the understory. The age of oaks was
approximately 160 years and hornbeam ca. 70-90 years. Each tree was described by its
coordinates and marks: diameter at the breast height (dbh in cm) and the total tree height (i in
m). Table 1 presents the values for nearest-neighbors indices (CE, HS, UAI and MDI) for all
trees and for each tree species, separately.

Spatial measure All trees Pedunculate oak Hornbeam
CE 0.90* 1.10 0.90*

HS 0.65* 0.89 0.56*

UAI 0.51 0.50 0.51

MDI 1.89* 1.99* 1.88*

*Significant departures from CSR at the a = 0.05.

Table 1. Average values of spatial indices calculated for all trees in old-growth oak-dominated forest.

Both distance-based indices, CE and HS, clearly indicated clustering of all living trees. In the
case of angle-based indices, only MDI was consistent with results obtained by distance-based
ones. The UAI showed random distribution of living trees. Oaks showed random distribution
and it was confirmed by CE, HS, and UAI indices but not by MDI. The latter showed their
clumped distribution. The spatial pattern of hornbeam was also clumped and most indices
confirmed that, except UAL On the basis of obtained results, one can state that the spatial
pattern of trees in the forest density of hornbeam, easily regenerated from sprouts.

4.2.2. Spatial variation in size: spatially explicit size differentiation indices

Apart from the spatial arrangement of trees, tree size differentiation is assumed to be an
important characteristic describing population diversity. Two commonly applied spatial
indices seem to be interesting: size differentiation index and (relative) dominance index.

4.2.2.1. Size differentiation index (T)

This index describes the similarity or dissimilarity of size of individuals being the nearest
neighbors. The neighborhood of the reference tree consists of three or four neighbors of a
reference tree. The T index is a single value calculated for each tree within the population and
an arithmetic mean gives the information on the average size differentiation of trees in the
forest. In extremely high structured population the value of T=1, whereas in population where
individuals are quite similaritis close to T=0. The arithmetic mean provides the general insight
into structural diversity of the forest, at the stand level. However, more informative is the share
of trees belonging to the particular differentiation classes: 0-0.30, very small differentiation;
0.30-0.50, moderate differentiation; 0.50-0.70, high differentiation; 0.70-1.00, very high
differentiation [10]. To find out if the departures from the expected value of Tunder the random
conditions are statistically significant, a permutation procedure can be applied.
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4.2.2.2. Size dominance index (D)

This index aims at the description of the relative dominance of a given tree to its nearest
neighbors. It can be defined as the proportion of the n neighbors of a reference tree, which are
smaller in size than the reference tree [62, 64]. If four neighbors are taken into consideration,
D index can take again five values corresponding to different biosocial categories according to
Kraft's crown classification: 0.00, very suppressed (all neighbors are smaller than the reference
tree); 0.25, moderately suppressed; 0.50, codominant; 0.75, dominant; 1.00, strongly dominant
(none of neighbors are smaller than the reference tree).

Example 3

Figure 5 presents the location of trees in a managed old-growth beech-dominated (Fagus
sylvatica L.) forest. The main tree species was European beech and silver fir (Abies alba L.) was
admixture species. Both tree species occurred in the overstory. The average age of the forest
was 145 years. Up to the year of measurements, the forest stand has been managed according
to Polish standards for beech stands. Apart from the location of each live tree in the stand (x,
y coordinates), diameter at the breast height (dbh, in cm) and the total tree height (i, in m)
were measured and tree species were reported.
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Figure 5. In the left panel there is a stem map generated for old-growth beech (Fagus sylvatica L.) forest (Example 3),
the plot size: 70 m x 50 m. green circles: Fagus sylvatica trees; red circles: Abies alba trees. In the right panel the same
pattern but the size of circles refers to the diameter of each tree.

The average diameter and height differentiation index was Ty,;,=0.33 and T),=0.20, respectively.
Results indicated that the diameter of living trees was more differentiated between close
neighbors than was observed for tree height. The distribution of trees in the particular
differentiation classes showed that the neighbors of ca. 43% of trees were only slightly different
in dbh, and 50% of trees was surrounded more differentiated individuals. In the case of tree
height, the trend is similar but the differences between nearest neighbors are much less
stressed (Figure 6).

The average spatial differentiation index calculated for diameter for beech and silver fir was
T4on = 0.32 and T,,=0.37, respectively. In the case of tree height, these indices were T, = 0.19
and T;= 0.26 for beech and fir, respectively. Figure 7 shows the distribution of trees in the
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particular size differentiation classes. Trees of both species showed more or less similar
distribution in particular size differentiation classes in the case of both tree attributes.
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Figure 6. Distribution of live trees in size differentiation classes for diameter (dbh) and total tree height in an old-
growth Fagus sylvatica forest (Example 3).
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Figure 7. Distribution of trees of different species in size differentiation classes for dbh (left panel) and total tree height
(right panel) in an old-growth Fagus sylvatica forest (Example 3).

035

0.3

0.25

0.2

0.1

0.05

0.00 0.25

Ebk mjd

0.50 0.75 1.00

Figure 8. Dominance distribution of European beech (Bk) and silver fir (Jd) in an old-growth beech-dominated forest.
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Trees showed small to moderate diameter differentiation in the neighborhood scale (ca. 90%
of trees). At the same time, height differentiation of nearest neighbors was clearly lower and
most trees showed small differentiation around (ca. 83% of trees) (Figure 6). In general, the
diameter was more differentiated than the tree height for both tree species in the forest.

Dominance criterion is useful for describing the relative dominance of different tree species,
for example European beech and silver fir from example data set presented here. The distri-
bution of beech is left-skewed meaning that the majority of trees of this tree species are
surrounded by at least three bigger neighbors. However, there are few dominant beech trees.
Similar constellation was observed in the case of silver fir (Figure 8).

4.2.3. Spatial mixing of species

The third aspect of spatial structure is attributed to the relative mingling of different species
in plant community. Two indices can be taken into consideration: species mingling index
introduced by von Gadow and species segregation index introduced by Pielou [65].

4.2.3.1. Species mingling index (MI)

This index describes the spatial distribution of different tree species around the reference tree
[10, 27, 64, 66]. It is determined for each individual (reference tree) within the population and
it gives the proportion on the nearest neighbors (e.g., 4), which are not of the same species as
reference tree is. The index takes values between 0 and 1 and if four neighbors are taken into
account, five values of MI can be obtained: 0.0 (all neighbors are of the same species as reference
tree), 0.25, 0.50, 0.75, and 1.0 (all neighbors are of different tree species as reference tree).
Similarly to previously describe indices, the distribution of MI provides a more detailed insight
into species composition of the forest. To find out whether departures from the random mixing
are statistically significant, a permutation procedure can be applied.

4.2.3.2. Species segregation index (SSI)

This index describes the relative mixing of only two species regardless of their spatial pattern.
If there are more than two species in the population, each pair of species should be analyzed
separately. The SSI index is based on the comparison of the observed number of mixed species
pairs and the expected number if the two species would be distributed independently of each
other [9, 59, 67]. The SSI values can lie between —1 and 1. Two species are associated together
(aggregated) if SSI < 0 and they are segregated if SSI > 0. They are randomly distributed from
one another if SSI =0 [59]. A)? test may be applied to judge the significance of the departures
from random mixing of both species.

Example 4

Let's go back to the oak-dominated old-growth forests introduced earlier (see Example 1). Two
tree species are present in the stand. The average value for the mingling index (MI) is small,
MI = 0.13, suggesting that tree species are distributed in a homogeneous patches. In the case
of oak, MI = 0.40 indicating that they are distributed in heterogeneous clumps, while horn-
beams are distributed in homogeneous patches (MI = 0.06).
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As shown in Figure 9, the trees form mostly homogeneous patches. About 70% of trees are
surrounded by the same tree species. It is caused mostly due to the hornbeam. About 80% of
individuals of this tree species are surrounded by conspecifics. The surroundings of oaks are
mostly heterogeneous and three of four neighbors of this tree species (70% of oaks) are of
different species.

— Hall Boak Ohornbeam

LT

0.00 D.25 0.50 0.75 1.00

Figure 9. Distribution of species mingling index (MI) for all live tree, oaks and hornbeams in the oak-dominated old-
growth forest.

Applying the Pielou's segregation index (SSI), we obtained only limited information on the
probability to find individuals of one species in the neighborhood of the individuals of the
other species. In the example, the SSI index showed random mixing of oak and hornbeam (SSI
=0.25, p-value = 0.25).

5. Functional spatial statistics: the most informative way to discover
complex structures

A great advantage of the use of simple indices described above is their simplicity in calculation
and easy interpretation. However, the modern point processes statistics functions, which
depend on the distances between all points of the pattern or distances between the nearest
neighbors, are commonly used at present. Thus, functional summary statistics characterize a
pattern as a function of scale. Depending on the data type, ecological questions to be answered
and hypotheses to be tested, different functional summary statistics can be selected.

5.1. Nearest-neighbor distance-based distribution functions

There are a few functions that are able to quantify the spatial distribution of individuals as
random, regular, or clumped. This is an important aspect of spatial structure of any population.
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5.1.1. Nearest-neighbor distance distribution function (G-function)

The G-function is based on the distances from a point of the pattern (e.g., tree) to its nearest
neighbor. The values of the G-function are nondecreasing as a function of distance r, starting
from G(r) = 0. The nearest-neighbor distribution function for CSR is easy to calculate and it is
equal to G(r)=1-exp(-Amr?). The empirical G-function is plotted against the theoretical expect-
ation and it indicates how the individuals are spaced in the population. Clustered arrangement
can be stated if G,
smaller than it would be expected under randomness. In the case of regular pattern G, < G,

s > Gew and thus the nearest-neighbor distances between neighbors are
that is, the distances between nearest neighbors are larger than under random distribution [37,
68, 69].

5.1.2. Empty-space function (F-function)

The F-function characterizes the empty space in a pattern, and it is also known in the literature
as the spherical contact distribution function. The function is based on the distribution of all
distances between arbitrary selected points, but not the location of any point of the pattern,
and its nearest neighbor [1]. The empty-space function characterizes the point pattern on the
basis of the distances from the so-called test point to its nearest neighbors. This statistics is
closely related to the G-function but its interpretation is opposite to that. The value of the F-
function for CSR is the same as for G: F(r)=1-exp(-Amr?). The empirical F-function is again
plotted against the theoretical values. Clumped distribution is assumed if the values of F, >
F. That is, the distances from an arbitrary point to its nearest neighbor of the pattern will be
larger (on average) than under the CSR because the clustered pattern contains larger gaps than

the random distribution. In the case of regular pattern, F,,, > F,, that is, the gaps are smaller

obs

and the distance from any point to its nearest neighbor will be smaller.

Itis worth noting that both functions have their inhomogeneous versions, which can be applied
in cases when the spatial pattern of individuals within the population is not homogeneous.

Example 5

Figure 10 presents the stem map generated from the data set collected in the 30-year old Scots
pine (Pinus sylvestris L.) monoculture. The stand was planted artificially at the initial spacing
1.5m x 1.5 m and it has not been managed so far. For each tree, the diameter at the breast height
(dbh) was measured as well as location coordinates (x, i) were reported.

The nearest-neighbor distribution G-function (G) was calculated for the data, and the empirical
function was plotted against the function for complete spatial randomness. Both functions are
presented on the left panel in Figure 11. The graph of the G-function for the data set is clearly
below the expectation indicating the regularity in trees distribution. Up to the distance of 1.8
m, G(r) = 0. This distance may be interpreted as the minimum distance between the nearest
individuals and it is due to the hard-core process. This is the simplest kind of interaction
between individuals.
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Figure 10. Stem map (left panel) of living trees in the 30-year old Scots pine (Pinus sylvestris L.) monoculture. In the
right panel the size of circles corresponds to the diameter at the breast height.
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Figure 11. Nearest distance distribution G-function (left panel) and empty-space F-function (right panel) calculated for
the data collected from the Scots pine monoculture. The solid line represents the empirical function for the data, the
dashed line represents the function for CSR process, and the shadowed area represents the 95% pointwise confidence
intervals calculated from 199 Monte Carlo simulations.

The empty-space F-function (F) is presented in the right panel in Figure 11. It confirms
regularity in the spatial pattern of pines stated on the basis of the nearest-neighbor function.

Figure 12 presents the graphs of the G- and F-functions (left and right panels, respectively)
calculated for hornbeams from an old-growth oak-dominated forest. Both functions confirmed
the aggregated pattern of this tree species that is inconsistence with results obtained by spatial
indices.
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Figure 12. Nearest distance distribution G-function (left panel) and empty-space F-function (right panel) calculated for
the data (hornbeam trees only) collected from an old-growth oak-dominated forest. Explanations: see Figure 11.

5.2. Second-order summary functions

Second-order statistics rely on the spatial relationships of pairs of trees, not only on nearest
neighbor distances [37].

5.2.1. Second-order functions to discover the spatial arrangement of points

5.2.1.1. Univariate (unmarked) point pattern analysis

It refers to the pattern of points (e.g., trees in the forest) described only by their position
(coordinates). Information on additional point attributes (e.g., size, sex, etc.) is not provided.

5.2.1.1.1. Ripley’s function (K(r))

It appears to be the most common second-order summary function [1, 16, 44, 69]. This function
is based on the measurements of distances between all individuals of the point pattern. It
determines the expected number (1) of points present within the distance r of typical point of
the pattern. The expectation for the CSR is that there should be Anr* individuals within the
distance r of the typical point of the pattern. Under CSR the function yields K(r) = nr* For
clustered pattern K(r) > 7+ and for regular pattern K(r) < rir%. Usually, the K-function is plotted
—together with its expectation—against the different distances r (spatial scales). Its shape
provides valuable information on the point pattern distribution. If the empirical K(r) > mr? it
means that the distribution of the individuals within the population is consistent with
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clustering at the certain r distance. Opposite, the pattern is consistent with regularity if K(r) <
nir?. Because of the K-function increases at the rate of > under the CSR expectation, it is better
to use its transformation, the L-function, which stabilizes its variance and transforms K(r) to
the straight line L(r) = r [37]. The interpretation of the L-function is quite easy. For regular
distribution L(r) <, and in the case of aggregated pattern—L(r) > r. To infer the scale of spatial
interaction in a point pattern, it is obvious to estimate it by reading off the position where the
function for the observed data set lies further away from the expectation under the CSR. It is
not always correct because of its cumulative nature and effects at smaller distances obscure
the effects at larger scales.

5.2.1.1.2. Pair correlation function (g(r))

The alternative to the K-function is the pair correlation function, a noncumulative summary
statistics. This function is closely related to the K-function and is recommended by [1, 8]. It
contains the contributions only from interpoint distances equal to the distance r. The advant-
age of the g(r)-function is that under CSR it is equal 1 and independent of the intensity of the
pattern. The tendency toward clustering means, that there will be more (on average) individ-
uals at smaller distances r than expected under CSR and g(r) > 1. Conversely, for regular
arrangement of individuals, there will be, on average, fewer individuals at the smaller
distances than under CSR, and g(r) <1[1, 37].

5.2.1.2. Bivariate point pattern analysis

Both, Ripley's function and pair correlation function can be extended to discover spatial
relationships between the points of two types. For example, bivariate point pattern analysis is
a suitable tool to discover the spatial relationships between two different tree species mixed
in the forest.

5.2.1.2.1. Bivariate Ripley's function (K,(r))

Ripley's function can be extended to the bivariate form and for more details on the suitable
estimator, see Refs. [1, 8, 37]. The ecological questions here concern the detecting possible
interactions between two types of objects (e.g., tree species in the forest). The fundamental
benchmark is spatial independence separating two alternatives: association and repulsion
(small scale) or segregation (large scale) of both types. Bivariate L;,(r) is an analog of univariate
L(r)-function. In case of the spatial independence of type 1 and type 2 of points L;,(r) = . If
Ly,(r) > r then two types of objects show spatial association at the certain distance r and if L,(r)
< r—points of different types show spatial repulsion (separation).

5.2.1.2.2. Bivariate pair correlation function (g;,(r))

Similarly to the L-function, the g(r)-function can be easily extended to bivariate forms, g,(r),
to discover correlations between two types of objects. Then, g,(r) = 1 indicates the spatial
independence of two types of points being at the distance r apart. If g;,(r) > 1 then spatial
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association of both types of objects can be stated and if g;,(r) <1—they are spatially segregated
at the distance r.

Both functions, Ripley's function and pair correlation function, can also be calculated for
inhomogeneous point patterns, thus in the case of spatial variation in the intensity of the pattern
[37].

Example 6

To present different shapes of univariate L- and g-functions for regular and aggregated
patterns, data sets from Scots pine stand and old-growth oak-dominated forest, described
previously, were used. Both functions for the empirical data sets are presented in Figure 13.
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Figure 13. The L-function and g-function for 30-years old pine (P. sylvestris L.) stand (left panel) and hornbeam (C. betu-
lus L.; right panel) in the old-growth oak-dominated forest. Dashed line represents the expected values of simulated
pattern for complete spatial randomness (CSR), solid line represents empirical g(r) function. Shaded area represents
95% pointwise confidence intervals based on 199 Monte Carlo simulations.

In the left panel, both functions calculated for live trees in pine stand showed clear evidence
for regularity. Functions lie below the expectation referred to CSR and the departures from the
expectation were significant at the distance up to 1.8 m (g-function) and 2 m (L-function). Up
to these distances both functions are equal 0. It indicates the minimum distance between trees.
Moreover, the shape of the pair correlation function is typical for plantations, where trees have
been planted in rows that are also reflected by the wave-like shape of the function. Thus, the
spatial pattern of trees can provide important information about the history of establishment
of the forest.

In the right panel in Figure 13, there is an example of clustering of trees. Both functions lie
above the expectation for CSR. Because the L-function has cumulative character it is rather
hardly to make statements on the distance at which aggregations of trees can be observed. In
the case of pair correlation function, this distance is clearly visible. The maximum value of the
g-function at the certain distance is equal to the average cluster size of trees. In case of
hornbeams it was about 0.5 m. Such small spatial aggregations of hornbeams are typical for
regeneration from sprouts, which is quite frequently observed in the case of this tree species.
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Spatial correlation between oak (subscript: db) and hornbeam (gb) —an example of bivariate
analysis—is presented in Figure 14. Bivariate pair correlation function indicated spatial
negative association (spatial repulsion) between these two tree species in the old-growth oak-
dominated forest. It means that both trees are spatially separated. In virgin forests, spatial
segregation is assumed to decrease the interspecific competition, and it is supported by
different mechanisms, e.g., different niche requirements of tree species. Thanks to spatial
separation of tree species they can coexist together in a multispecies forest.
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Figure 14. Bivariate pair correlation functions for oak (subscript: db) and hornbeam (gb) in an old-growth oak domi-
nated forest. Solid line: empirical function; dashed line: expected value of the function for spatial independence of both
species; shaded area: confidence region of null model acceptation calculated on the base of 199 Monte Carlo simula-
tions.

In oak-dominated forest, the correlation range between oak and hornbeam was about r = 11
m, thus g,,(r) <1 up to this distance. The negative association of both species results more likely
from the extremely different abundance of oak and hornbeam as well as their different life
stages. Clumped pattern of hornbeam may results from sprouting while random distribution
of oak is typical for old, large trees. In plant populations, low intraspecific competition and
higher interspecific competition favor species coexistence in multispecies forests.

5.2.2. Inhomogeneous point pattern analysis

Inhomogeneous point pattern analysis should be used in cases when point density differs
significantly with their location. Such cases are frequently observed in the natural forests, e.g.,
due to the forest site variation, seed dispersion, etc. Incorrect use of the second-order summary
function leads to misinterpretation of the results, the so-called virtual aggregation. To avoid
it, one can use inhomogeneous versions of the summary functions mentioned above or special
function introduced by Schiffers et al. [70].
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5.2.2.1. K2-function

This function was developed as an extension of g(r) that can be used to discover the regular or
clumped patterns despite the presence of the spatial variation in the point intensity across the
study region [70]. Unlike the L- and g-functions, the K2-function relates the intensities at a
given scale to the intensities at the adjacent scales [70]. It allows to interpret scales of significant
deviations from the expectations at distances where transitions from low (or high) to high (low)
intensities occur. The negative values of the K2-function indicate clustering because the
neighborhood density decreases with increasing distance. It has the positive values for regular
pattern due to the steep increase of neighborhood density at a certain distance.

Example 7

Figure 15 presents stem map generated for European yew (Taxus baccata L.) located in the
Kornik Arboretum, western Poland [71]. The population of yew developed spontaneously
during last decades. The map represents the location of male individuals only.
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Figure 15. Stem map for males of yew (Taxus baccata L.). Trees are represented by points irrespectively of their diame-
ter.

Visual inspection provides information that the density of males across the study plot was
inhomogeneous, and there is a density gradient from the south (bottom) to the north (top) of
the plot. Inhomogeneity in the tree density can be clearly seen on the graph with pair corre-
lation function that lies completely above the value 1 indicating the so-called virtual aggrega-
tion due to the heterogeneity in tree density because the pair correlation function is related to
the global intensity in the surrounding of a tree.

Thus, pair correlation function would lead to misinterpretation about the aggregated structure
of males. The dependence in global intensity restriction is circumvented by the K2-function.
In the right panel of Figure 16, the estimated K2-function lies completely within the confidence
region under the CSR expectation. There are only weak deviations (statistically insignificant)
at the smallest spatial scale toward clumping of males. Thus, the distribution of males did not
differ from the randomness.



Structural Diversity of Plant Populations: Insight from Spatial Analyses
http://dx.doi.org/10.5772/65320

Birh
i

m
=
*a

4 i B 1] [ z ] [

Aflance t i) sl ¥ il

Figure 16. Pair correlation function (left panel) and K2-function (right panel) calculated for males of European yew (T.
baccata L.). Solid lines represent empirical functions and dashed line represents expectation under the CSR process.
Dashed region (left panel) and dotted lines (right panel) represent confidence region of the null model (CSR) accepta-
tion calculated on the base of 199 Monte Carlo simulations.

5.2.3. Marked point pattern analysis: spatial diversity of different plant attributes

Marked point pattern carries different marks (attributes) of points. Marks can be qualitative
and quantitative. In this section, methods suitable to analyze the correlations among plant's
attributes. (e.g., sizes, health status, etc.) are provided with real data examples.

5.2.3.1. Qualitative marks

Marked point pattern analysis for qualitative marks describes the points in a different way
than in the case of bivariate pattern analysis (like in Section 5.2.1.2). Here, the mark is produced
by the process acting a posteriori over the univariate pattern, and it is a fundamental difference
to the bivariate pattern in which plant's attributes are generated a priori by two different
processes (e.g., plant species) [72]. It means that qualitative marks are defined as something
created conditional on a given pattern [1].

5.2.3.1.1. Mark connection function (p;,)

This function is the conditional probability, given that there is a point of the process
at the location m and the second point at the location n and they are separated by the
distance r such that the first individual is of type 1 and the second one is of type 2
[8, 37]. If the marks attached to the points (e.g., trees) of the pattern are independent
and identically distributed, then pi,(r) = p,p,, where p; and p, denote the probability
that a point is of type 1 or 2, respectively. Values larger than this, p;,(r) > pyp,, indicate
positive association between the two types, while p;,(r) < pp, indicates the negative
association.
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Example 8

The mark connection function was applied to test whether there was any spatial correlation
between trees of different health status of European yew (T. baccata L.). The study plot
(Figure 17) was established in the Kniazdwor Nature Reserve, western Ukraine [73]. Yew
occurred under the canopy of European beech (Fagus sylvatica L.) and silver fir (Abies alba L.).
All individuals of the height & > 0.5 m were classified according to the simple general classifi-
cation: 1, good health status; 2, poor health status. Details on the classification can be found in

Ref. [71].
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Figure 17. Stem map generated from the data set collected in the Kniazdwor Nature Reserve, Ukraine. Points represent
yew (T. baccata L.) trees with different health status. Green dots: yews of good health status; red dots: yews of poor

health status.
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Figure 18. Mark connection function for health status—good vs. poor—of yew trees in the Kniazdwor Nature Reserve,
Ukraine. Dashed lines: the reference values of py,(r)-function (red), p;;(r) (green), and p,,(black) for random allocations
of marks; solid line: estimated p,,(r)-function for the data set.
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Trees of poor health status showed neither the negative nor the positive association, that is,
the function p,,(r) = p,p, (black solid line, Figure 18). Because trees of good health status showed
highly clustered structure at small spatial scale, the probability of finding two healthy trees
close to each other was higher than expected (p,,(r) > p,p,). Healthy trees have—over the same
spatial scale—a lower than expected probability of having trees of poor health status as its
neighbor, that is, p;,(r) < p,p, (Figure 18).

Healthy tree have—over the same spatial scale—a lower than expected probability of having
trees of poor health status as its neighbor, that is, p,,(r) < p,p, (Figure 18).

5.2.3.2. Quantitative marks

Quantitative marks additionally describe each tree and they are numerical values (e.g.,
stem diameter, tree height, etc.). One can be interested in finding out whether the sizes of
trees growing at the distance r from each other show any spatial correlation, conditional
on the their location (unmarked pattern). An appropriate summary statistics for quantita-
tive data types are different mark correlation functions depending on the so-called test
function used in calculation [1, 7, 14, 16, 40, 74]. Two correlation functions seem to be
especially important in the structural analysis of the population: mark correlation function
and mark variogram.

5.2.3.2.1. Mark correlation function (k(r))

This function is a measure if the dependence between marks of two individuals of the
pattern is separated by the distance r [8]. The test function with two marks, m; and m,, is
a nonnegative number and the test function is of the following form: t(m,, m,) = m;m,. The
normalized k; for a random assignment of marks (lack of spatial correlation among marks)
over the pattern is equal to 1. Values of k(r) < 1 for the distance r mean that both individ-
uals have smaller marks than the average for the population. At the small distances it
means that there is an inhibition between both individuals due to their close distance. If
k{r) > 1 it means that two individuals growing at the distance r show larger marks than
the average. At small distances it means that they benefit from being close to one another
[8]. Moreover, it offers another characteristic of the pattern, namely, correlation range. It is
the distance r at which the function approaches the value 1. Using this form of correlation
function, one is interested in finding out whether the marks of two plants show any cor-
relation in space.

5.2.3.2.2. Mark variogram (y(r))

In this form of correlation function the test function is #(m,, m,) = 0.5(m,—m,)>. It characterizes
the squared differences between marks of pairs of individuals with the distances of r. If
individuals growing at the distance r apart have similar mark, then mark variogram has smaller
(than under random condition) values. Large values of y(r) indicate that marks of both
individuals tend to be different at a certain distance r. Similarly to the k{(r) function, the
correlation range can be stated [8, 37, 40].
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Example 9

Figure 19 presents the mark correlation function for diameter of trees in the oak-dominated
old-growth forest from Example 1. Analysis of k(r) indicated that pairs of trees growing at the
distance up to 9 m (correlation range) tended to have smaller diameters than the average for
the stand. In ecological meaning it can be interpreted as the mutual growth inhibition of the
neighboring trees. Mark variogram showed another interesting point of view providing details
on similarity of dissimilarity of pairs of trees in the dependence on the distance r between them.
In the oak-dominated forest, live trees being close to one another tended to have similar
diameters and the interaction range was about 12 m.
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Figure 19. Mark correlation function (left panel) and mark variogram (right panel) for diameters of live trees in the old-
growth oak-dominated forest. Dashed line represents the function for random allocation of marks of trees meaning
their lack of spatial correlation.

6. Conclusion

Spatial analyses have now largely been incorporated in ecological studies due to the realistic
assumption of spatial dependence between individuals constituting plant populations.
Population structure is one of the most important traits of each biosystem and its description
allows deeper insight into mechanisms and processes responsible for population dynamics.
To understand these natural processes, modifying the structure and dynamics of plant
populations is important from ecological (scientific) and practical (managing of natural
resources) point of view. As indicated, depending on the ecological questions stated, different
methods of spatial point pattern analysis can be applied. All of them are suitable to extract the
hidden and detailed information on the current state of any population and allow us to make
the assumptions concerning their future development. It is important to remember that the
key elements of spatial analysis in ecology are data type, the appropriate choice of summary
statistics, and null models. Selecting few of them in a single analysis makes the statements
more reliable and realistic in the changing world.
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Abstract

This chapter addresses spatial statistics via an alternative perspective, focusing on evi-
dence-based people-spatial relationships and related measures, quantifications and
qualifications, and by this, it provides rather specific spatial information and spatial
statistics about urban environments. It is based on time quality assessment (TQA), a
time-people-place-oriented approach for the analysis and simulation of the quality of
living environments, backgrounded with the method of behaviour mapping. It shows
that the quality of the time spent on a certain activity in a certain place indicates the
quality of the living environment. It also shows that the quality of the time spent
depends on what a person can afford, and it provides an evaluation of the quality of
living environments with a measure of good/bad time. The practical value is in the
provision of empirical knowledge to support planning guidance based on user-centred
small-scale spatial statistics, which is able to inform top-down and bottom-up decision-
making processes for people-friendly living environments.

Keywords: spatial-temporal statistics, urban planning, quality of life, behaviour map-
ping, bottom-up, user-centred, evidence-based, time quality

1. Introduction

Our (urban) living environment, composed of material and non-material components and
relations among them, including an infrastructure and other built components, ecosystems,
their inhabitants and users (e.g. people, animals, vegetation) and other entities (e.g. various
enterprises, cultural and political entities, etc.), is a dynamic, complex system (e.g. [1-3]). In
general, such a system is unpredictable (e.g. [4, 5]). It is composed of known invariable
components (e.g. macro-location, general climate conditions, certain elements of the environ-
ment in the considered time period, etc.); known variables (those of which we are aware, but
their quality or quantity is unknown or variable, e.g. infrastructure, [built] environment,
individuals, their habits, their occupations, their routines, etc.); and unknown variables (those

I m EC H © 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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of whom we are not aware and/or cannot determine, e.g. daily politics and unpredictable
disasters).

In approaching the system from a large scale in certain circumstances, the analysis and
simulation of selected aspects within the selected condition limits may appear simple (i.e. it is
possible to determine the simple approximations of relations, e.g. linear). However, such an
approach in general does not result in appropriate useful results. On the other hand, the
determination of very complex relations in the large-scale analyses may result in very
unreliable results and uncontrollable simulations.

Considering the above, an attempt to start with a more profound investigation of the compo-
nents of the system that are of concern to us and their relations to other components, i.e. to the
system, appears reasonable. At that level, relations are more simple (or less complex), and it is
more likely that simple approximations result in acceptable outcomes. Yet, the simultaneous
monitoring and valuation of higher-level results (i.e. mass result, larger scale) is important.
This calls for the use of the bottom-up approach, based on small rather than big data, which
may help with interpreting or informing big data in spatial statistics (e.g. [6]).

This chapter addresses people-spatial relationships, their quantifications and qualifications
and related measures for bottom-up evidence-based and user-centred urban planning. Based
on time quality assessment (TQA), a time-people-place-oriented approach for the evaluation of
the quality of living environments, this chapter provides specific types of spatial information
about urban environments and challenges the current two-dimensional land-use perspective
in urban planning with a dynamic and comprehensive perspective, taking into account users,
the activities in which they are involved and the environments in which these activities are
taking place, analysing three key parameters: time balance, economic balance and time-quality
balance. The chapter shows that the quality of the time spent on a certain activity in a certain
place indicates the quality of the living environment. It also shows that the quality of the time
spent depends on what a person can afford, and it provides an evaluation of the quality of
living environments with a measure of good/bad time. This chapter provides empirical knowl-
edge based on user-centred small-scale spatial statistics to support practical guidance for
informing decision-making processes for people-friendly living environments.

In relation to spatial planning assistance, keeping behaviour patterns in mind, interest has been
increasing in the development and implementation of approaches based on information com-
puter technology (ICT) and geolocated social media data (e.g. [7, 8]). However, to be able to talk
about the quality of living environments via a time-people-place-oriented approach, first, time
as a dimension also has to be applied to non-transportation activities. Reference [9] addressed
the travel-time ratio and examined the relationship between travel time and stay time (keeping
the goal of the travel in mind). Such an approach is particularly useful in the evaluation of the
actual temporal scheme of a person's routine. However, it does not comment on the quality of
the time spent on travelling or on staying. In this respect, the chapter addresses the quality of
living (environments) via the quality of time spent within peoples’ daily routines.

The quality of time spent on an activity is a complex function going beyond the quantity of
time spent on a certain activity in a certain place. However, it combines the basic economic
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ability of a profile, the assessment of the conduciveness of the physical environment and the
pleasantness of the activity taking place there. Contemporary responsive urban planning on a
general level refers to the quality of living environments and well-being. In relation to the
development and current state of the field of approaches towards assessing or measuring
quality of living, a variety of comprehensive concepts related to quality of life exist, usually
referring to the quantitative social, spatial and economic aspects (e.g. [10-13]). A literature
review shows that although quality of life is recognised as a general concern, little consensus
has been reached on a definition of quality of life or on the factors/predictors of an individual's
quality of life (e.g. [14, 15]). In the past decade, the quality-of-life concept has also been
focussing on well-being, health and standard of living addressed via softer indicators, such as
happiness, life satisfaction and the like [16].

However, despite the fact that many strategic documents (e.g. [17]) presenting fundamental
objectives for smart, sustainable and inclusive growth have emphasised the importance of
local development towards quality of place and the well-being of people, quality-of-life-
oriented studies still lack a focus on detailed actual and local-level aspects, which may
better interpret or indicate quality of life and living environments. In relation to this, [18]
argues that the actual implementation of such objectives in real-life situations (on a scale of
1:1) is often vaguely realised. In this framework, this chapter introduces the prototype of the
TQA approach and shows how the model can work. TQA has been introduced as an
alternative approach for assessing the effectiveness of human environments for living [19],
using bottom-up evidence-based spatial statistics. In city planning and design processes,
the TQA of living environments represents a potential universal baseline, where the TQA
approach examines relationships between characteristic socioeconomic profiles acting in
certain environments.

2. TQA approach

The current development stage of the TQA approach is characteristic of a clearly stated and
well-developed concept, based mostly on theoretical simulations. A fully fledged investigation
was not implemented. The concept foresees that calibration regarding quality of activity
follows target-group questionnaires, interviews or appropriate ways of crowd sourcing (e.g.
Web public participation, social networks) depending on the environment where the approach
is applied. Similarly, quality parameters and weights used initially follow a combination of
expert knowledge (e.g. sociological studies of everyday life, studies addressing placemaking
and place attachment, a combination of expert knowledge from the fields of environmental
psychology, urban planning and design) and data collected from the relevant target groups.
This chapter discusses a new approach and illustrates its applicability to and value mostly for
examples that simulate possible real situations. The comments are based on selected cases,
theoretically set up and occasionally proven for some territories, knowing their socioeconomic
characteristics (source: Statistical Office of the Republic of Slovenia [SURS]; Surveying and
Mapping Authority of the Republic of Slovenia [GURS]), place characteristics (e.g. spatial-site
analysis, behaviour-mapping analysis, GURS) and commuting possibilities for the theoretical
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target profile, using Michelin or similar portals. To keep the discussion manageable, the
simplification of parameters or situations is used.

Three main pillars of input data are relevant for the approach: data related to the user profile,
data related to the activity for which the suitability of the area is examined and data related to
space. In general, the collected data refer to five binds of information: population, housing,
leisure and recreation, services and transport, and they provide a possible examination of:

* facilities that examined territories shall provide,
* mobility networks that assure accessibility to these facilities and
¢ facilities in correlation with population densities.

The population can be grouped into various groups, based on common crucial characteristics,
resulting in segments of the population. One such segment of the population is defined by
boundary profiles and characteristic profiles (e.g. central profile, the most representative).
Accordingly, it is possible to define the limits of the population of the studied area and the
edge conditions of/for such a population within the area. Further, individual profiles are
necessary to define, as they can help to describe the population in the studied area. They can
be set up from available statistical data or any other relevant source (e.g. questionnaire)
regarding demographic and social parameters, such as age, gender, family status, education,
occupation, income and the like.

Based on crucial boundary characteristics, variations of individual profiles are designed by
logical filters or on the basis of known data about the population of the area of interest.
Further, the implementation of the TQA approach builds on the assumption that if boundary
profiles are satisfied, all profiles within the studied segment of the population are covered.

To get as thorough of an insight as possible into a segment of the population in the context of
this chapter, the daily routines of boundary profiles are important. There are as many routines
as there are boundary profiles. However, there can be fewer different routines as there are
profiles, as some profiles can have the same daily routines. An analysis of the daily routines of
boundary profiles can result in the compatibility of various segments of the population in
certain areas, as daily routines may explain similarities in people's interests. The implementa-
tion of TQA results in the acceptability and quality of places for a particular segment of the
population, and it enables an examination of how well a certain place suits this group of
people and how well it enables their co-habitation. The final result of the TQA approach is a
time-quality balance of a profile.

Thus, the key points for any scenario or spatial development defined in this approach are the
user profile, activity and space, where three conditions related to the user profile, acting in a
certain territory, are analysed:

¢ time balance,
® economic balance and

¢ time-quality balance.
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2.1. Time balance

Time balance shows how comfortably the user spends time in his/her (living) environment;
how comfortably a segment of the population can live in a certain area, i.e. how a chosen
routine is manageable for an individual in the available time frame; and whether a person can
achieve necessary and optional activities within the available limits of the time frame (e.g. 24 h/
day, within the schedules/opening hours of available capacities for the selected activities). A
comparative analysis of more segments of the population shows the abilities of the co-habita-
tion of various segments of the population in the same area. It also shows if any segment of the
population is being disregarded or favoured. This means that the time-balance category is
place dependent. This is closely linked with spatial characteristics (e.g. structure of the place,
infrastructure, program, etc.). Time balance is possible to establish when one has a defined
profile, routines and belonging space(s). Time balance shows how comfortably time is offered
to the user through his/her (living) environment.

The time spent on each action should be shorter or equal to the available time for that action
and should be accommodated within the time sequence available for the action:

Trgi < Tavi 1)

where Tr,; = time required for action i; Ty, = time available for action i.

For an illustration, when one does not manage that action in time, the person is late. However,
the minimum required condition—although it is not always sufficient—is to do everything
required in the entire available time frame (e.g. to do all daily routines in 24 h):

Z Trgi < Z Tavi — Trg < Thao ()
7 7

Time-balance analysis shows a balance of necessary and optional activities. In the situation of
assessing the suitability of a neighbourhood for a certain profile, first checking the criteria at
the level of time balance is the profile's ability to fulfil activities. If the profile is not able to fulfil
necessary activities, the neighbourhood is not suitable for it, and if the profile is not able to
fulfil optional activities, optional activities must be re-organised against a new priority list.

2.2. Economic balance

Economic balance is a category that represents the subject's income and expenses for necessary
and optional activities, and a financial framework within which the subject is flexible to be able
to perform each of the activities in a certain environment, i.e. whether the selected activities
can be afforded per person within a household and whether the incomes and expenses of a
household per person enable these activities to be fulfilled.

The basic information addressed is a household's incomes and expenses for necessary activities
and optional activities. The expenses of a household should not exceed the incomes:
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Z Mpgi € Z Mapyj — Mgy < My, 3)
i j

where Mg,; = money required for expense i; M 4,; = money available from source j.

Incomes are classified as regular (e.g. salary earned in working time every working day); other
regular (e.g. pension, rent); and irregular (e.g. property selling). Expenses are classified as:
residential expenses; basic basket expenses (e.g. food, clothes); other necessary expenses (e.g.
nursery, school); other optional expenses; and travel expenses for commuting as a part of a
daily routine.

2.3. Time-quality balance

Time-quality balance calculates the time spent in terms of both activity and environment. The
component of time-quality balance shows when a financial situation allows activities to hap-
pen; how well the time needed for them has been spent in total; and how much of the entire
time taken for all of the activities per day is considered good quality and how much of it is bad
quality. Time-quality balance shows the final quality of the time spent within a routine and
reflects on the quality of the living environment in which the profile lives. Thus, with this final
parameter, the TQA approach shows whether a segment of the population can live in a certain
area and how comfortably:

KTQ — & _ ZiTQf _ Z;’]‘TSpi XFij XFWij (4)
Tsr LiTs 2 Tspi

where Z ; Fwij = 1 and ~1<Fg;<1; where K¢ = time-quality coefficient; Tg = evaluated portion

of time (+ sign: good time; - sign: bad time); T; = evaluated portion of time within time interval
i; Ts, = time spent; Ts,,; = time spent within time interval i; F; = quality of quality component j
within time interval i; Fyy; = influence (weight) of quality component j within time interval .

Following the TQA approach, two time-quality components are proposed:
AC = activity component; SC = space component
therefore

j € {AS,SC} = Fwisc =1 - Fwiac 5)

2.4. Behaviour map: a means of TQA interpretation

To implement TQA as a universal evaluation tool for quality of place in relation to its usage,
behaviour mapping [19] is seen as a key part of the process. This is true especially where
behaviour maps extract behavioural evidence into layers of spatial information to provide a
better understanding of the individual and the collective patterns of use that emerge in a place.

Behaviour mapping is a method and tool for analysing usage-spatial relationships originating
from the field of environmental psychology in the 1970s of the twentieth century [20]. It is a
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product of observation and a tool for place analysis and design at the same time, and as such, it
represents a means for recording behaviours in a spatial setting and the final results of the
observation of dynamic patterns of spatial occupancies, visually expressing structural relations
between the characteristics of places and their use(r)s. Behaviour maps can contain broad spec-
trums of information, from location, type of activity and duration of activity to many other
characteristics, depending on the research question, aspects or issues. Therefore, they act as
effective media for dealing with the spatial and dynamic patterns of the usage of places. Due to
their graphic nature, visualising relationships between various—not necessarily physical —char-
acteristics of places and their users, they can be seen as a valuable tool for improving bottom-up
generated data and for providing new insights for spatial statistics. Practically, they can provide
the recognition and understanding of possible or expected uses in places, their frequencies and
their intensities, and as such, they may lead towards more effective and responsible planning
and design practice and towards the achievement of better quality of living. Knowing actual
activities in places and their characteristics in places is important for the identification of quality
of everyday living and for directing and stimulating the suitability of territories for occupancy.

Some fundamental conditions need to be met before any recording of behaviour can start. It is
necessary to define the area to be observed, to clearly define the types of activities and details
about behaviours to be observed, to schedule specific times and their repetitions for observa-
tion, and to provide a system of recording, coding, counting and analysing with either a low-
or high-tech recording approach. This chapter argues for behaviour mapping as both an
analytical tool for monitoring daily routines and as a means of the interpretation of the TQA
approach, and by this, it is promoted for the provision of bottom-up generated datasets as a
basis for user-centred spatial statistics. Behaviour mapping has the capacity to address the
social needs, locations, dimensions, frequency, intensity and co-habitation of activities in places
directly. It refers to groups and individuals as well as social-relations change.

Thus, such behaviour maps can be used to capture the knowledge that brings the indirect
insights of usage-spatial relationships and to visualise abstract notions and essentially the non-
spatial characteristics of physical environments. In relation to TQA, one of the key pieces of
information offered is time-related characteristics. A behaviour map can show two significant
temporal dimensions: (1) for how long a certain activity is going on in a certain place and (2) on
which day or in what other time-unit sequence the activity has been taking place. In the TQA
approach, behaviour is usually defined by a daily routine but allows the consideration of other
situations, e.g. a weekly routine and extraordinary routine.

The challenge of this concept is to shift the understanding about and focus on datasets for city
analysis towards people and places. Assisted with behaviour mapping, this alternative
approach provides a time-based perspective on the activities and engagement of people.

3. TQA implementation: case of Posavje District, Ljubljana, Slovenia

Posavije is one of Ljubljana's 17 districts; it features a wide range of spatial and living situations,
from dense and high residential neighbourhoods to rural, mostly agricultural areas, and it
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includes a transport point of view supplied by public bus services and the regional railway
track. To illustrate the TQA approach, the assessment of quality of living environments via
quality of time for a family man was modelled. Time-quality assessment for the daily routine
of a profile living in two different micro-locations within the same neighbourhood was
analysed and simulated. Further, regarding the contemporary demographic situation across
Europe, attention was paid to elderly people—one of the vulnerable user groups—assuming
that when some settings and arrangements are good for them, it is quite likely that they may
suit other users, too. Four different locations within four characteristic neighbourhoods in the
area were analysed and simulated (Figure 1).
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Figure 1. Case study area.

Time-quality assessment for the daily routine of a profile living in four different types of
locations within the area was simulated using the TQA approach. High-rise flats that also
provide accommodation unit for elderly people by the highway is denoted by the letter a; the
area of individual houses by b; high-rise flats in the centre of the neighbourhood, close to the
community centre, by ¢; and the area of a compact rural settlement by d, where d1 is assigned
to the current state of d. The letter F denotes a profile of a working family man with pre-school
children. The simulation examines two micro-locations in high-rise flats in the centre of the
neighbourhood, close to the community centre, c1 and c2. The letter E denotes the profile of an



Practical Value of User-Centred Spatial Statistics for Responsive Urban Planning
http://dx.doi.org/10.5772/65322

elderly man; therefore, Ea, Eb, Ecl and Ed1, respectively, are denotations of one of the possible
daily routines of such a person, regarding the location of his home. Examples show daily
routines in nice weather during spring or autumn.

The first case (Fcl and Fc2; Section 3.1) is focused on the procedure of the TQA approach;
setting up a profile; and defining and monitoring a routine and time-balance assessment,
economic assessment and time-quality assessment as a final result of the process. Meanwhile,
the second case (Ea, Eb, Ecl and Ed1; Section 3.2) is focused on the characteristics of the routine
of the profile living in different areas within the studied territory and their feasibility regarding
the circumstances (Ed1-Ed4).

No absolute measure of quality of living space exists. One always compares two spaces to
declare the quality of each, where one or both spaces may be fictive. The quality of one space
may be defined in relation to another known or defined quality, whereas the parameters of
quality depend on the purpose of the space and/or the user(s) of the space. Something that is
important for one user may not be as important for another user or may not apply to other
users at all.

The TQA approach extracts the time spent on any activity into the good or the bad portion.
The rest of the time, not classified as good or bad, is considered as the indifferent portion of
time. In the TQA approach, satisfaction with time is valuated using a scale from -100%
satisfaction (complete dissatisfaction) to +100% satisfaction (complete satisfaction), where 0%
satisfaction would mean that the user is indifferent to the time spent in a certain space.

To generalise in such a valuation:

* agood time is represented by a positively signed percentage of satisfaction;

* abad time is represented by a negatively signed percentage of satisfaction; and
¢ the rest is identified as indifferent time.

This also indicates that a good time and a bad time can neutralize each other, e.g. good time = -
bad time (e.g. 1 h of good time + 1 h of bad time = 0).

The measure of quality is the quantity of good time (or bad time if the result is negative) after
summation. The sum of the absolute values of the quantity of time (good + bad + indifferent)
may not exceed the absolute value of the available time (e.g. 24 h/day).

Further evaluation that introduces time as the universal measure for the quality of environ-
ments refers to activities and spaces linked to these two components of time (activity compo-
nent—FQAC, spatial component—FQSC) by weight (FWAC, FWSC), i.e. how much of an
influence each of the components has on the quality of time spent in a place for this certain
activity. This thought depends on the profile's preferences, which may also depend on
affordances (e.g. economic ability). The weight of each quality component describes how much
each component contributes to the potential quality of time, e.g. the potential satisfaction with
the time spent in the given place. These two parameters finally shape the activity-place
relationship in a daily routine, and they are, for comparative purposes, finally transferred into
the coefficient of time quality and time-quality balance (KTQ and TQ).
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In all of the examples referring to the implementation of the TQA approach, the following
parameters are assessed and/or calculated:

TSp, time spent (hours, minutes); FQAC, quality of activity component of time (%); FQSC,
quality of spatial component of time (%); FWAC, influence of activity component of time (%);
FWSC, influence of spatial component of time (%); KTQ, coefficient of time quality; TQ, quality
time (hours, minutes).

When implementing the TQA approach, it must be remembered that time balance and eco-
nomic balance are absolute objective measures, while time-quality balance is always subjec-
tive. Hence, it shows how one place may be better (e.g. provides higher benefit/comfort for the
user) than the other and always needs to be commented regarding the context. In this respect,
although economic balance represents an absolute value, it is linked to location.

3.1. Family man living in urban area

The simulation illustrates activity-place relations and time-quality balance (TQ) for a total
daily routine for two variations of the same main socioeconomic profile from the same
neighbourhood. The initial results are related to the time spent on the activities and the basic
qualities of activities and places. Further evaluation introduces time as the measure for quality,
referring to activities (activity component of time—FQAC) and places (spatial component of
time—FQSC), taking into account the weight (FWAC, FWSC) of each quality component,
which describes how much each component contributes to the potential quality of time. The
final results are the coefficient of time quality (KTQ) and time-quality balance (TQ).

3.1.1. Profile and time balance

For an illustration, a segment of the population is presented. It is defined as an educated man
with a permanent job and family. Age, family income and number of children are selected as
three key characteristic parameters for setting up boundary profiles of such a segment of the
population. The age ranged from the beginning of the carrier (30-year-old man) and towards
the end of the carrier (55-year-old man). Boundaries regarding family incomes are represented
by low-income educated family (2.400 EUR per month) and high-income educated family
(12.000 EUR per month). Boundaries for the number of children are one child and four
children. Based on these characteristics, eight combinations of profiles are possible (Table 1).

Discussing the possible daily routines of such eight profiles, generally, two different schedules
exist: Those with more children spent more time on preparation activities and on dropping-off/
picking-up activities. However, the assumption is that their final daily routines differ much
more, including the time valuation of journeys among the activities, and the consideration of
their working and opening hours.

3.1.2. Economic balance

The selected profile, used for an illustration of the TQA approach, is a member of a household
characterised by: family with two adults (age 30-55), two children (age 1-15) and incomes
(net) of 40.000 EUR/year, i.e. one parent earns 22.000 EUR, while the other earns 18.000 EUR,
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Table 1. Parameters of the profile and its minimal time required for necessary activities in a daily routine, excluding
commuting.

which equals approximately 11 EUR/working hour for the first and 9 EUR/working hour for
the second.

Three characteristic situations are simulated (see Table 2). In the given neighbourhood, the
basic level of expenses of such a household would be approximately 30.000 EUR/year. In the
case where the family rents their apartment, their expenses are as follows (see case 1, Table 2):
12.000 EUR for residential expenses; 11.500 EUR for basic basket expenses (e.g. food, clothes);
4.400 EUR for other necessary expenses, such as nursery, school or the possession of a family
car; 700 EUR for other optional expenses, such as hobbies, extra travel, vacations and extra
insurances; and 1.400 EUR for commuting as a part of a daily routine, considering they are
using public transport and they manage daily routines within the range of the city public
transport area. In this case, the household may save 10.000 EUR/year = (40.000 — 30.000) EUR/
year. However, their lives are rather ascetic.

In this case, if the family faced higher expenses (medium level), their earnings would soon
become negligible or none. As simulated in Table 2 (case 2), residential expenses are 15.600

Residential ~ Basic Other necessary  Optional

Earnings  expenses basket expenses expenses Commuting Total  Savings
Case 1 [EUR]  40.000 12.000 11.500  4.400 700 1.400 30.000  10.000
Case 2 [EUR]  40.000 15.600 15400  4.400 3.200 1.400 40.000 0
Case 3[EUR]  40.000 4.600 15400  4.400 3.200 1.400 29.000  11.000

Table 2. Examples of economic balance for three cases of the same profile.
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EUR (12.000 EUR + 3.600 EUR), i.e. the family strives for better commodities and affords a
larger apartment, assuring a room for every child. They increase the budget for basic basket
goods to afford higher-quality products: 14.400 EUR (11.500 EUR + 3.900 EUR). For other
necessary expenses, such as nursery, school or the possession of a family car, they spend the
same as in case 1, 4.400 EUR. They put more of their budget towards other optional expenses,
such as hobbies, extra travel, vacations and extra insurances, 3.200 EUR (700 EUR + 2.500
EUR), and they keep the same budget for travel expenses, 1.400 EUR. In this case, the balance
is +0 EUR/year = (40.000 — 40.000) EUR/year. This case (case 2, Table 2) illustrates the maxi-
mum standard that such a family could afford in the given neighbourhood. In the event they
are satisfied with a less expensive apartment, they can accrue some savings. This can be
achieved by changing the location or some other quality of the residence (e.g. size, building
quality). However, this might increase time requirements for daily travel or decrease satisfac-
tion during the time spent at home.

In the case the family owns the apartment (case 3, Table 2), the yearly residential expenses are
considerably lower since the main expense (buying a flat) was realized in the past already. For
a medium level of expenses, i.e. they spent 40.000 EUR/year, the savings would amount to
approximately 11.000 EUR/year, allocating 1.000 EUR/year for the maintenance of their invest-
ment. In such a case, the considered family could easily afford a medium level of expenses or
even a higher level (e.g. afford a better apartment or a second car). The question is the effect of
each improvement on quality of living. The examples show that in the case where the incomes
of such a household amount to less than 30.000 EUR/year and they do not have owner status
but instead must rent an apartment, they could not afford to live in the given neighbourhood.
In the case where they own an apartment, they could live there and even afford a slightly
higher level of other expenses. Savings are usually also an important component of the finan-
cial security of a household and consequently influence satisfaction. Therefore, the ability of a
household to create some savings in a given environment is not negligible.

3.1.3. Time-quality balance

Simulating time-quality balance for the same profile, with exactly the same daily routine,
living in the same neighbourhood but on the other side, close to the railway line, would show
that the time-quality balance would decrease. This is especially the case if the quality of the
spatial component of time for sleeping, which represents a great portion of good quality time,
is considered as rather bad. In such a case, instead of having 10 h 5’ (Fcl; Kyg = 0.42) of a good
quality of time per day, Fc2 has 8 h 38’ of a good quality of time per day (Krg = 0.36) (Table 3).

3.2. Elderly living in urban area

The profile was defined based on socioeconomic statistical data. The time and economic
balance of the profile was assessed as positive. Data on time and activity were collected on
the basis of a combination of approaches: field work related to spatial analysis, including
facilities and services (e.g. open/green space, recreation, culture, public transport), and acces-
sibility; and a pilot behaviour observation of the selected areas to get an idea of the behaviour
patterns of elderly in the area, including the duration of activities in the environment (e.g. how
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much time they spent coming from A to B, how much time they spent in a local park or
library). An interview with an active member of the local community, an elderly person living
in a high-raised flat area, was conducted and included questions about the daily routine there;

the environmental, social and economic commodities associated with living there; and the like.

Parameter calibration was done with a combination of discipline tacit knowledge, expert
knowledge and target-group involvement; the space component as a combination of field
work, cartographic materials, expert knowledge and target-group involvement (indirectly
with behaviour mapping, directly via interviewing); and the activity component of target-
group involvement (indirectly with behaviour mapping, directly via interviewing).
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Table 4. Time quality balance for Ea and Eb.
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3.2.1. Time-quality balance analysis for profile from various locations

The results in Tables 4 and 5 indicate that the best living conditions for an elderly person are
the areas of b and c, while area a is disadvantageous primarily due to highway pollution
(noise, air pollution) and partly due to remoteness regarding the community/neighbourhood
centre. Area d is a bit remote, which is significant for agricultural production activities (early
morning noise, season noise, smell), a mixed zone of living-agriculture-small-industry
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Table 6. Time quality balance for Ed2, Ed3 and Ed4.
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activities, relative weakness in the supply of daily goods, poor capacity and poor management
of the spatial infrastructure and therefore also traffic safety issues. However, in comparison to
area a, the major advantages are direct contact with green areas, slightly better logistics
towards the library and local community centre and lower traffic influence.

3.2.2. Time-quality balance simulation for profile from rural area in the case of changes

Ed2, Ed3 and Ed4 are simulations of daily routines of the profile in the case of the degradation
of area d (Table 6). Ed2 simulates a situation where the end bus stop is cancelled, so the area is
no longer provided with public transport. Ed3 simulates a situation in which the local supply
of daily goods (which is of poor quality already) is completely cancelled, whereas Ed4 simu-
lates a situation in which the area is without a bus and a local grocery supply.

Simulated changes indicate a similar decrease of the comfort of the feasibility of the examined
routine due to the cancellation of either a bus (Ed2) or a local grocery supply (Ed3). In the case
of the cancelation of both facilities, the daily schedule has to be modified, which manifests in
time balance (e.g. less socialising and afternoon green-area walking, more necessary walking
[commuting] and resting). In this simulation, the profile finally loses 1 h 15" quality time.
However, in the Ed4 situation, the routine, which includes shopping and library visiting, is
feasible only in good weather conditions, while in the cases of Ea, Eb, Ecl and Ed1, such a
routine is also manageable in other weather circumstances.

4. Discussion

Implementing the TQA approach results in several levels of outputs, i.e. several evidence-
based user-centred data available to inform the spatial statistics of territories. They are data
on time balance, data on economic balance and data on time-quality balance.

Such data are linked to both locations and profiles. They enable one to compare profiles within
different locations in the area or to inform about the suitability of a certain location in the area
for various profiles. Further, they indicate a comparative suitability level of a location for living
for a chosen profile against some other location for the same profile, as well as the suitability of
a location for one profile in comparison to another.

In providing sufficient repeated analyses or simulations (taking into account various circum-
stances and edge conditions; e.g. weather conditions), such results can be visualised on a
behaviour map showing a profile's suitability map for living. When more profiles are involved,
a suitability map for living of a community with certain characteristics (minimum profile—the
weakest link; average profile—general public in the area) in an area is the final output.
Moreover, results can also show which profile can reach the minimum satisfaction level at a
certain location in the area and the mapping suitability for the weakest profiles of the commu-
nity, where different profiles are recognised as the weakest at different locations within the
studied area.
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Information offered by the TQA approach is useful for any kind of place user, from individuals
to check locations, e.g. where to live or work, to decision-makers at various governance levels.
The distribution of such information is possible through the upgrade of existing available
information systems. Such information is under a constant refinement process referring to
two main sources: available geoinformatics and spatial data, and direct and indirect participa-
tory data. TQA as a monitoring or development-control approach is applicable to authorities
and individuals for establishing new developments in a place, searching for measures of
improvements, the comparison of different locations for one particular use and the comparison
of various measures in a certain location.

5. Conclusion

This chapter presents and debates a spatial interaction approach for collecting, analysing and
monitoring evidence-based data to assess quality of space for a certain use (activity) and a
certain user (profile) via analysis of the quality of time spent on that activity in a particular
space or sequence of spaces, using the TQA approach. The TQA approach proposes time as the
universal expression and measure of quality of living, using time balance, economic balance
and time-quality balance as the key indicators for calculating the possibility and comfort of
living in the given environment. Data as a result of such an approach are linked to locations
and user profiles and are therefore useful for the comparison of profiles within different
locations of the area, and judgement about the suitability of certain locations in the area for
various profiles.

It illustrates activity-place relations and time-quality balance (TQ) for the total daily routine for
variations of the same main socioeconomic profile from the same neighbourhood. The initial
results are related to the time spent on the activities and the basic qualities of activities and
places. Further evaluation introduces time as the measure for quality, referring to activities
(activity component of time—FQAC) and places (spatial component of time—FQSC), taking
into account the weight (FWAC, FWSC) of each quality component, which describes how
much each component contributes to the potential quality of time. The final results are the
coefficient of time quality (KTQ) and time-quality balance (TQ).

The applicable value of this approach is in showing the suitability of a certain location for a
chosen profile in comparison with some other location for the same profile, or in showing the
suitability of a location for one profile in comparison with another. This is especially important
in spatial planning and investment decision-making processes, as simulating a community
with certain characteristics represented via a bunch of profiles (e.g., minimum profile—the
weakest link; average profile—general public in the area) allows for a comprehensive simula-
tion of living conditions for future residents or other (business) users. In this respect, the TQA
approach can be used for searching for measures for improvements in territories, the compar-
ison of different locations for one particular use, the comparison of various measures in a
certain location and establishing new developments in a place. The capability of contemporary
ICT tools that serve as an interface between place and people can play a significant role in
automating data. Especially, monitoring tools consisting of a smartphone application, a set of
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Web services and cloud computing and storage can provide very informative and rich infor-
mation about the parameters relevant for the TQA approach. Such technology (e.g. [21])
enables insights into a real bottom-up understanding of the daily routines and circumstances
with which people are involved, and it is worth linking with TQA in the further development
of the approach and its implementation.
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