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Preface

The topics of climate change, weather prediction, atmospheric sciences and other related
fields are gaining increased attention due to the possible impacts of changes in climate and
weather upon the planet. Concurrently, the increasing ability to computationally model the
governing partial differential equations that describe these various topics of climate has
gained a great deal of attention as well. These topics are focused upon changes to the planet
and continue to evolve as data bases are enlarged with new large scale studies, of which the
ability to share such data on a global scale has greatly expanded. The ability to computation‐
ally model these evolving changes and predict possible outcomes from these changes con‐
tinue to advance at a rapid scale with enhancements in computational engineering
mathematics, including the mainstream theme of computational fluid dynamics. 

This book will examine several of the topics that are used to model the climate and predict
changes as a stepping stone to recent advances in the fields of study and provide focal
points of endeavor in the evolving technology. 

Several chapters provide a summary of key topics currently of high interest to the climate
modeling community. In the first chapter the authors present the vector analysis mathemati‐
cal theory behind compressible and incompressible flows. The second chapter presents the
results of a regional climate model (RegCM4) model for upper blue Nile river basin. The
third chapter presents the time-series analysis of water energy balance coupled with ecosys‐
tem variability in South West China. The fourth chapter reviews the effect of climate change
on human health. The fifth chapter quantifies and details the sensitivity of numerical solu‐
tion to different input parameters. The sixth chapter reviews the evolution of Eta model and
underscores its potential to simulate complex climate change patterns.
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Research Professor,
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Chapter 1

Computational Vector Mechanics in Atmospheric and

Climate Modeling

James Williams, Britton Landry,

Matthew Mogensen and T. V. Hromadka II
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Provisional chapter

Computational Vector Mechanics in Atmospheric and
Climate Modeling

James Williams, Britton Landry,
Matthew Mogensen and T. V. Hromadka II

Additional information is available at the end of the chapter

Abstract

The mathematical underpinnings of vector analysis are reviewed as they are applied in
the development of the ensemble of numeric statements for subsequent matrix solution.
With the continued advances in computational power, there is increased interest in the
field of atmospheric modelling to decrease the computational scale to a micro‐scale. This
interest is partially motivated by the ability to solve large scale matrix systems in the
number of occasions to enable a small‐scale time advancement to be approximated in a
finite‐difference  scheme.  Solving  entire  large  scale  matrix  systems  several  times  a
modelling second is now computationally feasible. Hence the motivation to increase
computational detail by reducing modelling scale.

Keywords: Vectors, vector fields, curl, divergence, Divergence Theorem

1. Introduction

Computational Engineering Mathematics as applied to topics in Computational Geosciences
and Computational Fluid Dynamics, among other themes and topics, is the foundation of
computational modelling processes involved with Climate and Atmospheric processes. This
chapter reviews the key mathematical underpinnings of computational mathematics used to
represent climate, atmospheric and hydrologic related processes. The commonly used numerical
and computational approaches of finite difference, finite element, and finite volume have
common roots stemming from the mathematical analysis of partial differential equations,
ordinary differential equations, vector differential and integral equations, among other topics

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



including solution of large scale matrix systems involving tens of thousands of unknown
variables, time‐stepped numerous times a modelling second, resulting in incredible numbers
of computations. This chapter focuses on important aspects of matrix solutions and on the vector
analysis towards use in development of finite volume and nodal domain numeric solutions of
the  governing Navier‐Stokes  equations.  Due to  the  continuing increasing  computational
capability forecast according to Moore’s Law, the use of Navier‐Stokes solvers in routine problems
is becoming more prevalent, and will possibly be common practice in a few short years.

Methods for developing large scale matrix systems and their solution is a fundamental area of
knowledge needed for the successful modelling of atmospheric processes and climate. This
particular topic can be investigated in other references focused towards solving large scale
matrix systems. Methods for efficiently constructing the matrix system for subsequent solution
is also a subject for other references. Rather, in the current chapter, the focus is on the topics
of matrix system solution and the existence and uniqueness of solutions. The reduction of the
governing partial differential equations into numeric form or into finite element or finite
volume form, and then further developed into numeric statements, is another subject dealt
with in detail in other references.

In the current chapter, the mathematical underpinnings of vector analysis are reviewed as they
are applied in the development of the ensemble of numeric statements for subsequent matrix
solution. With the continued advances in computational power, there is increased interest in
the field of atmospheric modelling to decrease the computational scale to a micro‐scale. This
interest is partially motivated by the ability to solve large scale matrix systems in the number
of occasions to enable a small‐scale time advancement to be approximated in a finite‐difference
scheme. Solving entire large scale matrix systems several times a modelling second is now
computationally feasible. Hence the motivation to increase computational detail by reducing
modelling scale.

2. The Navier‐Stokes equations in computational engineering mathematics

The mathematical description of fluid processes are embodied in the well‐known Navier‐
Stokes equations. These equations relate Newton’s second law of motion to a control volume
of fluid. Their origins can be found in the work dated between 1827 and 1845, including the
advances made by Saint‐Venant. Although all fluids possess viscous effects, in many problem
situations the effects of viscosity can be neglected, reducing the governing equations consid‐
erably. The assumption of the fluid being incompressible in the range of temperatures and
conditions under study further reduces the governing equations to being applicable to a fluid
that is incompressible and having zero viscosity. That is, an ideal fluid. The analysis of ideal
fluid flow is considerably simpler to undertake than the full Navier‐Stokes equations, and
provides generally a good framework and basis for the analysis of the complete fluid flow
mathematical regime. Ideal fluid flow ignores shear stresses in fluids and normal stresses (that
is, thermodynamic pressure forces) are the internal force components carried forward into the
analysis.

Topics in Climate Modeling2
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The resulting Euler equations are well known in fluid mechanics and are particularly amenable
to solution when applied to flow on a streamline. For steady flow, the Euler equations indicate
that flow velocity and pressure sum to as constant value along a horizontal streamline (or
neglecting weight of the fluid control volume). Integration of the Euler equation along a
streamline for steady flow conditions results in the Bernoulli equation, which is a commonly
used relationship in the analysis of fluid flow. The Bernoulli equation is often misapplied by
failure to adhere to the assumptions applied in the derivation of that equation. Namely, steady
flow conditions, frictionless or shear‐free flow, incompressible fluid flow, and flow on a
streamline. A common misapplication is to apply Bernoulli’s equation at two points within a
fluid domain that do not lie on the same streamline. The sum of the Bernoulli equation
components is called the Bernoulli constant, and has different values depending on the
streamline under study. If the Bernoulli constant is constant throughout the entire fluid
domain, regardless of streamline, then the flow is said to be irrotational. Irrotational flow can
be assessed within a vector field by use of the vector operator Curl, defined in the development
below. In particular, the streamline can be mathematically described in terms of vector notation
with respect to usual measure of distance along the streamline, .
When dealing with fluid flow, particularly atmospheric fluid flow, thermodynamic pressure
is a key component. Thermodynamic pressure is also called static pressure. The stagnation
pressure is measured under an ideal frictionless process where the fluid is decelerated to zero
speed (note that velocity is a vector whereas speed is a scalar term.) The dynamic pressure
quantifies the magnitude of the flow velocity. The flow speed is determined given the stagna‐
tion pressure and the static pressure at a point. These relationships become impacted by the
speed, particularly with higher Mach numbers greater than about 0.3.

Application of the Bernoulli equation finds good use in many problems of high interest
involving fluid flow regimes involving contraction or expansion of flows. In all of these
applications, however, care is required to preserve the fundamental assumptions employed in
the derivation of the Bernoulli equation.

The above discussion focuses on the mass continuity and flow momentum equations embodied
in the Navier‐Stokes equations. A similar resulting formulation arises using the energy
equation. In this second situation, a control volume is determined that conforms to the stream
lines of the flow regime, and steady incompressible flow is considered that is inviscid. The
Bernoulli equation then arrives even though different concepts and boundary conditions are
employed. Therefore, the Laws of Thermodynamics for steady, incompressible flow along a
streamline simplifies to the well‐known Bernoulli equation which is also employed for analysis
of mechanical energy fluid flow problems.

In civil engineering hydraulics problems, the energy equation formulation of the Bernoulli
equation is typically shown graphically, as the Energy Grade Line or EGL displaying the sum
of the three energy head components of pressure head plus velocity head plus gravity head,
all in units of length. The sum of these three components is the Total Energy Head, which
represents the height the fluid would rise up to in a tube open for the fluid to access. The
Hydraulic Grade Line or HGL is plotted the velocity head below the EGL.

Computational Vector Mechanics in Atmospheric and Climate Modeling
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3. Irrotational flow and the vector operator curl

Another important vector calculus operator is divergence. This operator provides several
measures of fluid flow and fluid properties including compressibility, and also a measure of
the strength of source or sink conditions. A divergence value that is positive indicates outwards
flux from the target point, whereas a negative value indicates flow trends indicative of a sink.

The vector operators of curl and divergence are key vector calculus tools used in the analysis
of fluid flows of both compressible and incompressible flow regimes, and form the basis of
continuity equations.

Modeling topics currently tend to divide along lines of numerical methods, particularly in
leveraging parallelism versus increased processor performance. The partial differential
equations describing the atmospheric processes involved still are heavily influenced by
processes such as rainfall, convective processes, and others. Many models use grid‐based
finite‐difference analogs, whereas other approaches are based upon finite element and finite
volume schemes. Because many of these schemes involves grid density problems at the poles,
further attention has been paid towards use of discretization's of the globe into different
geometric finite volumes and tessellations. Finite volume methods, like finite element models,
are attractive in conserving energy, mass, and momentum. Furthermore, the Divergence
Theorem has a more direct application with use of finite volume or finite element methods.

In this chapter, the fundamental vector calculus principles are reviewed that are most relevant
to fluid flow modeling such as involved with compressible and incompressible flow problems
in water and the atmosphere. Details regarding these fields far surpass the scope of this chapter,
but the fundamental elements are generally based in the computational mathematics involved
in formulation of and solution of large scale matrix equations.

4. Vectors

4.1. Definition and representation

A vector is used to describe a quantity such as displacement, velocity, or force that has both
magnitude and direction. In two dimensions or three dimensions, we can represent the
magnitude and direction of a vector with an arrow (Figure 1) [1].

By convention, a vector is usually written in bold, or with an arrow, such as  or  . We may
also represent a vector as a displacement vector. For example, the displacement from point A

to point B can be written as the vector 𝀵𝀵𝀵𝀵 (Figure 2).

It is important to note that a vector is not anchored to any particular place in the coordinate
system. Rather, it represents only a change in terms of distance and direction. Thus, two vectors
are equal if they have the same magnitude and direction (Figure 3).

Topics in Climate Modeling4
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Figure 1. Vector representation.

Figure 2. A displacement vector.

Figure 3. The same vector shown three times.

Most often when dealing with vectors of more than two components, it is easier to represent
them algebraically. We write a vector as a list of its components, which are equivalent to the
change in each of the coordinate directions (Figure 4). This is fairly easy to represent in two or
even three dimensions, but also extends to  dimensions.

Computational Vector Mechanics in Atmospheric and Climate Modeling
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Figure 4. A vector < ∆,   ∆ > with illustrated components.

A vector that denotes a specific point in the coordinate system is called a position vector
(meaning a vector that, when its tail is placed at the origin, points to a specific point) Thus, a
position vector for a point (, ) woud be < ,  >. (Figure 5)

Figure 5. A position vector.

4.2. Vector addition and scalar multiplication

Two basic operations that can be performed on vectors are addition and scalar multiplication.
In other words, we can add and subtract vectors, as well as multiply them by a constant which
will lengthen or shorten the vector.

Definition: If  and v are two vectors positioned so the initial point of  is at the terminal point
of , then the sum + is the vector from the initial point of  to the terminal point of 
[stewart8]. (Figure 6).

Topics in Climate Modeling6
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Figure 6. Vector addition [1].

Algebraically, vector addition results in adding the vectors component‐wise:

Let ,  and  ,  
,  ,   , 

a b c d
a b c d a c b d

= =
+ = + = + +

u v
u v

  
 (1)

In addition to representing a vector by its components, we can represent a vector by a linear
combination of the basis vectors, a basis vector being a vector with a magnitude of one in the
direction of only one of the coordinate axes.

 , ,  a b c a b c= = + +r i j k (2)

Vector addition results in factoring each basis vector:

( ) ( )
Let   

 
a b c d

a b c d a c b d
= + = +

+ = + + + = + + +
u i jand v i j

u v i j i j i j
 

 (3)

Definition: If  is a scalar and  is a vector, then the scalar multiple  is the vector whose length
is   times the length of  and whose direction is the same as  if  > 0 and is opposite to  if < 0. If  = 0 or  = 0, then  = 0 [1].

Algebraically, scalar multiplication results in multiplying each component of the vector by the
scalar constant:

( ) ( )
Let ,  and  be a scalar

 
a b c

c ca cb ca cb
=

= + = +
u

u i j
 

 (4)

Vector subtraction results from applying both vector addition and scalar multiplication by −1.
Furthermore, from this we can derive from geometric or algebraic arguments the following
properties of vectors:
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Given , ,  are vectors and ,    are scalars: [1]

+ = +a b b a (5)

(commutative property)

( ) ( )+ + = + +a b c a b c (6)

( ) 0+ - =a a (7)

( )c d c d+ = +a a a (8)

( )c c c+ = +a b a b (9)

The length of a vector can be found by utilizing the Pythagorean Theorem. If a vector has

the components  =   < , ,  >, then the length of u is found by:  =   2 + 2 + 2
4.3. The dot product

Multiplication between vectors is not the same as between scalars. With vectors we have two
“products”, the dot product and the cross product. The dot product between vectors will play
a vital part in vector calculus. We can think of the dot product as being a metric of how much
one vector is influencing another. An application for the dot product is work, where work is
defined as 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 𝀵 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵. If we think of the force and distance as vectors, then the
amount of work to move a sled between two points as one pulls on a rope is the dot product
between the force and direction or distance vectors (Figure 7).

Figure 7. Dot product visualization. Image courtesy www.newyorkfamily.com.

Definition: If  = < 1, 2, …, 𝀵𝀵 > and  = < 1, 2, …, 𝀵𝀵 > are 𝀵𝀵 dimensional vectors, then the

dot product of  and  is the number 𑫅𑫅 given by [1]

Topics in Climate Modeling8
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Definition: If  = < 1, 2, …, 𝀵𝀵 > and  = < 1, 2, …, 𝀵𝀵 > are 𝀵𝀵 dimensional vectors, then the

dot product of  and  is the number 𑫅𑫅 given by [1]
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1 1 2 2  ...  n na b a b a b× = + + +a b (10)

The dot product of two vectors is therefore a scalar (number), by definition, and not a vector.
To find the dot product we multiply the corresponding components and add.

Theorem: if  is the angle between the vectors  and , then [1]

a.b =|a||b|cos(θ). (11)

Important property: Two non‐zero vectors  and  are orthogonal, or perpendicular, if the
angle between them is  2, therefore  and  are orthogonal if 𑫅𑫅 = 0.

4.4. The cross product

The cross product is the other “product” between two vectors. The caveat is that the cross
product is only defined for vectors in three dimensions. An application for the cross product
is torque. This is similar to work which we saw with the dot product, but the cross product
results in a vector orthogonal to the two vectors that created it.

Definition: If  = < 1, 2, 3 > and  = < 1, 2, 3 > are three dimensional vectors, then the

cross product of  and  is the vector × given by [1]

2 3 3 2 3 1 1 3 1 2 2 1 ,  ,a b a b a b a b a b a b´ = - - -a b (12)

The cross product of two vectors is therefore a vector (unlike the dot product). The cross
product × of two vectors  and   is a non‐zero vector that is orthogonal to  and  (Figure 8).

Figure 8. The cross product visualization.

Theorem: If  is the angle between the vectors  and , then [1]

|a×b|=|a||b|sinθ (13)

That is, the magnitude of the resultant vector from the cross‐product depends on the angle
between them. The direction (while remaining orthogonal) depends on the order of the cross
product, × or  ×  .
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5. Parametric equations

An important concept within vector calculus is parameterization. In this we will create a vector
function that can build a line, a curve (called a space curve) or a surface in space. The idea is
that each component of the vector is a function of a single independent variable called the
parameter. The parameter dictates the value of the component for each value in the domain of
the parameter. The terminal point of this vector will “draw out” the line, curve or surface as
the parameter varies through its domain.

( ) ( ) ( ) , , f t g t h t=r (14)

Example:

2 2 1, 3 , 7t t t= + -r (15)

5.1. Equation of a line

To parameterize a line we will create a vector equation in which  is a position vector for all
points on the line. The addition of two vectors creates a vector that will “draw” the line with
its terminal point based upon values of a parameter. The equation is:

0 1t= + é ùë ûr r v (16)

The parameter is ,  = < , ,  > is a vector parallel to the line, and 0 = < 0, 0, 0 > is a
position vector to any single point on the line. A sketch of the mechanics of this equation is
shown in Figure 9.

Figure 9. Vector equation of a line.
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As  varies, the terminal point of r “draws” the line. When we look at the resulting components
from the vector equation, the parametric equations are:

0 0 0 ,  ,  x x at y y bt z z ct= + = + = + (17)

If we wanted to parameterize a straight line between the points (0,1) to (2,1) then we could use as the parameter, and since the  value is constant across the entire line, our vector equation
becomes  = < , 1 > ,     0 ≤  ≤ 2.

5.2. Equation of a plane

The vector equation for a plane is: 𑫅𑫅𑫅𑫅 𑨒𑨒𑨒𑨒0 =   < , ,  > 𑫅𑫅 <  𑨒𑨒 0,  𑨒𑨒 0, 𑨒𑨒 𑨒𑨒 𑨒𑨒0 >   = 0. In
this case n is a normal vector to the plane and  and 0 are position vectors to two points within
the plane, thus their difference creates a vector in the plane. After evaluating the dot product,
the scalar equation becomes:

( ) ( ) ( )0 0 0 0 1a x x b y y c z c- + - + - = é ùë û (18)

6. The gradient

An important calculation in vector calculus is the gradient. We will see that the gradient of a
function will return a vector that points in the direction of greatest increase from any point in
the function. First we will inspect where the gradient comes from.

6.1. Partial derivatives

As we move into three dimensions we see our functions represented as 𑨒𑨒 = (, ). Now our
functions are of two variables. Remembering that a derivative is the rate of change of a function
at a specific point, the partial derivative with respect to x or y becomes the rate of change at a
point in either the x or y direction. There are several notations for partial derivatives [1].

( ) ( ),   ,  x x
zf x y f f x y

x x
¶ ¶

= = =
¶ ¶

(19)

( ) ( ),   ,  y y
zf x y f f x y

y y
¶ ¶

= = =
¶ ¶ (20)

The partial derivatives are found, largely, the same way as single derivatives. The only new
aspect is the other variable, which we treat as a constant when taking the derivative.
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Example:

• Find ∂∂ , where  ,  = 3 + 2 ∂∂ = 3 + 2
• Find ∂∂  0, 2 = 3 + 22 = 7
6.2. Directional derivative

Now that we know how to find the rate of change in either the x or y direction, what about the
other infinite directions we may be interested in? We will utilize a directional derivative to
find the rate of change from a point in a particular direction.

Theorem: if f is a differentiable function of  and , then  has a directional derivative in the
direction of any unit vector  =   < ,  > where [1]

Duf(x,y)=a.fx(x,y)+b.fy(x,y) (21)

The directional derivative appears to be a dot product between two vectors. In fact if we assume
that it is and write the function as a dot product between two vectors the resulting equation
reveals:

( ) ( ) ( ),  , , , ,x yD f x y a b f x y f x y= ×u (22)

We immediately see our vector u, and the second vector of partial derivatives is known as the
Gradient.

6.3. The gradient

When talking about the gradient we will introduce an operator called the dell operator, which
is similar to an upside down triangle. The del operator is a vector.

( )    5
x y
¶ ¶

Ñ = +
¶ ¶

i j (23)

The gradient is the product of the del operator and the function

( ),    f ff x y
x y
¶ ¶

Ñ = +
¶ ¶

i j (24)

Thus another way to annotate a directional derivative would be:[1]
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Duf(x,y)=u.∇f(x,y) (25)

It is important to note that the gradient of a function will point in the direction of greatest
increase of a function at a specific point. The magnitude of the gradient at that point will be
the greatest rate of change. When viewing a function as its level curves. The gradient will be
orthogonal to the curve at any point.

Example:

Find the maximum rate of change of  ,  =   3 + 22 at (2,1)

( ) ( ) ( )2 2 2 2,  3 , 4 ,  2,1  13,8 , 2,1  13 8 233f x y x y xy f fÑ = + Ñ = Ñ = + = (26)

6.4. Tangent planes

In a similar way to finding a line tangent to a curve at a point, we can find a plane tangent to
a surface at a point. The idea of a tangent plane will be applied later in the chapter.

Suppose that we have a surface  = (, ) and we want to find the plane tangent to the surface
at the point (0, 0, 0). The equation is:

( )( ) ( )( ) ( ) ( )0 0 0 0 0 0 0 0 0, ,  , ,x y x yz z f x y x x f x y y y f f x x y y- = - + - = × - - (27)

If we think of the differences between the values of , ,  as the change in the , , and 
coordinates, then as that difference approaches zero, we can use the differentials for x,y,z.[1]

( ) ( )0 0 0 0 , ,  x y
z zdz f x y dx f x y dy dx dy
x y
¶ ¶

= + = +
¶ ¶ (28)

7. Vector fields

We saw that a vector has both a magnitude and a direction. When we assign a vector to every
point in space we build a vector field. A practical example in the real world would be wind
speeds. It is easy to see that at every point the wind has both a velocity and a direction.

Definition: Let  be a set ℝ2 (a plane region). A vector field on ℝ2 is a function  that assigns
to each point (, ) in D a two‐dimensional vector (, ). A vector field is expressed as follows
[1].
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( ) ( ) ( ) ( )1 2 3, , , , , , , ,x y z f x y z f x y z f x y z P Q R= + + = + +i j k i j kF (29)

7.1. Curl

Perhaps, the most important attribute of a vector field is the curl. The curl will determine if
there is some sort of twist or spin within the vector field. This will become very important
when we start to discuss work through a vector field. The curl is determined by taking the
cross product between the del operator and the vector field.

curl = Ñ´F F (30)

To find the actual curl vector we will find the determinate of the matrix ∇ ×  [2]:

ˆˆ

 

î j k

x y z
P Q R

¶ ¶ ¶
Ñ´ =

¶ ¶ ¶
F (31)

R Q P R Q P
y z z x x y

é ù é ù¶ ¶ ¶ ¶ ¶ ¶é ùÑ´ = - + - + -ê ú ê úê ú¶ ¶ ¶ ¶ ¶ ¶ë ûë û ë û
F i j k (32)

If the curl results in a zero vector, then the vector field is determined to have zero curl and the
vector field is conservative.

Figure 10. Vector fields with and without curl. Images from Wolfram Mathematica 9.0.

When we compare the plots of the two similar vector fields in Figure 10, we notice a subtle
difference between them. In the vector field on the left there are vectors pointing towards the
center as well as vectors pointing away from the center. This indicates curl. In the vector field
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on the right, all points are pointing away from the center which indicates that there is no curl
in the vector field.

7.2. Divergence

The divergence of a vector field can be thought of as a quantification of the rate that the vector
field is expanding or contracting per unit volume at any point in the field [3]. If the divergence
is equal to zero the vector field is said to be incompressible. Divergence is calculated by taking
the dot product between the del operator and the vector field [2].

  P Q Rdiv
x y z

¶ ¶ ¶
=Ñ × = + +

¶ ¶ ¶
F F (33)

If the divergence at a point is positive the point is considered a source. If the divergence is
negative the point is a sink. If the divergence is zero, then the point is neither a sink nor a
source.

8. Line integrals

If we remember back to the dot product, we defined work as  = 𑫅𑫅𑫅𑫅𑫅𑫅. We now think of a particle
moving through a vector field along a curve between two points described by the vector () .
The work done by the vector field on the particle as it is moving between two points can be
thought of as the dot product between the vector field and the direction vector of the particle.

Figure 11. Work approximation over a line segment.
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If we inspect a small segment of the curve, the work between two points can be approximated
by taking the dot product of F and the tangent vector to the curve at a point between them,
T(the unit tangent) or dr (Figure 11).

If ∆ is the length of the curve between two points, then the approximation of work over the

entire curve would be the sum of work in all subsections

( ) ( )* * *
1

 ,
n

i i i ii
Work x y P s

=
» × Då F T (34)

As ∆ goes to zero we have an infinite sum, or integral [4].

( )
( )

( ) ( )( ) ( )     
b

C C a C

t
Work dS t dt t t dt d

t
¢

¢ ¢
¢

= × = × = × = ×ò ò ò ò
r

F T r F r r F r
r

 F (35)

8.1. The fundamental theorem for line integrals

We talked earlier about conservative vector fields, where the curl was zero. There is an
important implication to the curl being zero; there exists a function such that the gradient of
that function is equal to the vector field. This function is called the potential function.

, ,    , ,F P Q R
x y z

¶Æ ¶Æ ¶Æ
ÑÆ = = =

¶ ¶ ¶
(36)

Theorem: Let  be a smooth curve given by the vector function   ,   𑩤𑩤 𑩤𑩤  𑩤𑩤 𑩤𑩤. Let ∅ be a
differentiable function of two or three variables whose gradient vector ∇ ∅ is continuous on. Then [2]

( )( ) ( )( ) 
C

d b aÑÆ × =Æ -Æò r r r (37)

Clearly, if the path is closed, where the start point is the same as the end point, the work will
be zero. Another implication to the conservative vector field is path independence. This means
that the work done by a conservative vector field on an object moving between two points is
the same regardless of the path.

1 2

 
C C

d d× = ×ò òF r F r (38)
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1 2

 
C C

d d× = ×ò òF r F r (38)
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9. Green's Theorem

In essence, Green's Theorem allows us to calculate the work done around a closed path through
a non‐conservative vector field by looking at the area enclosed by the path rather than the path
itself.

Green's Theorem: Let  be a positively oriented, piecewise‐smooth, simple closed curve in the𑨒𑨒 𑨒𑨒 𑨒𑨒 plane and let  be the region bounded by . If  and  have continuous partial derivatives
on an open region that contains , then [4]

     
RC C

Q Pd P dx Q dy dA
x y

æ ö¶ ¶
× = + = -ç ÷¶ ¶è øò òF r ∬ (39)

We can recognize in this integral that we are translating the line integral into a double integral
of the curl in the x‐y plane over the area enclosed by the curve. The positive orientation
indicates that we are moving in a counter clockwise direction around the curve. Green's
Theorem can also be applied to the 𑨒𑨒 𑨒𑨒 𑨒𑨒 plane and the 𑨒𑨒 𑨒𑨒 𑨒𑨒   plane if the curve or path is in
either of those two planes. Green's Theorem is especially useful if the path encloses an area
with a hole in it. In this case we are still integrating the curl over the area.

Example: [2]

Evaluate the given line integral around the path defined by the circles:

2 2 2 2
1 2: 4,  : 1 C x y C x y+ = + = (40)

(41)

Computational Vector Mechanics in Atmospheric and Climate Modeling
http://dx.doi.org/10.5772/65009

17



We are going to utilize the area between the two circles to solve this line integral.

By Green's Theorem:

(42)

( ) ( )2 3 3 2 2 24 , , 3 , 3Q Px y x y x y
x y

¶ ¶
= - + = = -

¶ ¶
F (43)

(44)

Converting to polar coordinates:

( )
2 2

2 2

0 1

 3( cos ) 3( sin )    r r r dr d
p

q q q+ò ò (45)

2 2
3

0 1

 3    45
2

r dr d
p

pq =ò ò (46)

10. Surface area

Previously we saw how to parameterize a line in which the x, y and z components were made
to be functions of another variable (usually ) which created a line in space or a “space curve”.
Similarly we can parameterize a surface in the same way, except that we will have to utilize
two variables (in this case, u and v). This will return a vector equation describing our surface
as [5]:

( ) ( ) ( ) ( ) ( ), , , ,     ,  u v f u v g u v h u v u v D= + + Îr i j k (47)

Finding the surface area of a flat or geometric surface is relatively easy as there are known
formulas for such cases. However, it is more difficult to find the surface area of a more
complexly defined surface. In this case we will see that the relationship between surface area
and surface integrals is similar to the relationship between arc length and line integrals.

If we have a space curve defined by the vector function   = <   ,   ,   > where𑩤𑩤 𑩤𑩤  𑩤𑩤 𑩤𑩤, the length of the of the arc between 𑩤𑩤 and 𑩤𑩤 is found by: [5]
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2 2 2
    

b

a

dx dy dzArc Length dt
dt dt dt

æ ö æ ö æ ö= + +ç ÷ ç ÷ ç ÷
è ø è ø è øò (48)

If the curve is in the x‐y plane where  =   , 𑩤𑩤 𑩤𑩤  𑩤𑩤 𑩤𑩤 then

2
  1   

b

a

dyArc Length dx
dx

æ ö= +ç ÷
è øò (49)

In a similar sense to the arc length, where we utilized a secant line to approximate the length
of a curve, we can utilize a tangent plane to a surface to approximate the surface area.

The primary idea is that to get as close to the true surface area as possible we must use an ever
increasing number of planes approximating our surface. Then as the number of planes goes
towards infinity the sum of their areas approaches the area of the surface.

It is important to remember how to define a plane. Two ways that will be important to surface
area are finding two vectors within the plane and by finding a point with a normal vector to
the plane. In order to find two vectors within the plane we can utilize the resulting vectors
from the directional derivatives of our surface at our point within the surface. With the
parameterization of the surface the vectors would become  and . To find the normal vector

to the plane containing the two directional derivative we will take their cross product.

In order to find the surface area of the plane we can scale each vector by the change of the
parameter of the subinterval. We then take the cross product of the scaled vectors and by the
rules for the cross product we can factor out the change in variables such that:

(50)

If we then sum the area of each plane, the approximation to the surface becomes:

1 1
i j

m n

u v i j
i j

u v
= =

´ × ×åå r r (51)

Then the surface area for our surface S is: [4]

(52)

If the surface is defined in terms of  =  , 
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then the formula becomes: [4]
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11. Surface integrals

In this section we will see that the surface integral is very similar to what a line integral is to
curves in space.

It is clear that each coordinate is a function of our two parameters. The parameterized surface,(, ), is considered smooth if both of the partial derivatives ,  are continuous and the

cross product,  × , is never zero on the interior of the parameter domain. This cross product

is called the standard normal to . [6].

Figure 12. The parameter domain and corresponding surface section.

The first step is to assume the parameter domain, D, is an image of a function and has a
rectangular shape which has been divided into rectangular sub sections identified as 𝀵𝀵𝀵𝀵. The

dimensions of ∆, ∆ and an area of ∆ * ∆ (Figure 12).

Our surface is similarly divided into corresponding subsections, each defined by 𝀵𝀵𝀵𝀵. If we form

the Riemann sum of the product of a function  evaluated at some point 𝀵𝀵𝀵𝀵*  in each subregion

of our surface with the area of each subregion, ∆𝀵𝀵𝀵𝀵. The resulting summation is: [4]

(54)

As the area ∆𝀵𝀵𝀵𝀵 goes to zero and m and n go to infinity we have the definition of the surface

integral as: [4]
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integral as: [4]
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(55)

Let's take a second to remember what the dS was:

If we remember back to how surface area was calculated utilizing an infinite number of tangent
planes, then the change in the surface area ∆𝀵𝀵𝀵𝀵 clearly becomes dS [7].

(56)

Remember that  ×   is the length of a vector normal to the surface. This allows us to

compute a surface integral by converting it into a double integral over the parameter domain
D. If, for example, our surface is defined by an equation where the parameterization can be
defined by  = ,  = ,  = ℎ(, ), then our normal vector will be: [7]

  x y
h h
x y
¶ ¶

= + = +
¶ ¶

r i k j kr (57)

  x y
h h
x y
¶ ¶

´ =- - +
¶ ¶

r r i j k (58)

22
  1 x y

h h dA
x y

æ ö¶ ¶æ ö´ = + +ç ÷ç ÷¶ ¶è ø è ø
r r (59)

Then the resulting surface integral becomes: [7]

( )( )
22

, , ,  1 
æ ö¶ ¶æ ö + +ç ÷ç ÷¶ ¶è ø è øòò

R

h hg x y h x y dxdy
x y (60)

Similar formulas can be easily derived should the surface be defined in a way other than by = (, ).
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12. Oriented surfaces

It is important to talk about the “orientation” of a surface. It is easy to see that there are always
two vectors that are normal to any surface as they point in exactly opposite directions. We can
think about a “positive” orientation being one defined by a normal vector pointing away from
the origin and a “negative” orientation being defined by a normal vector pointing towards the
origin. In vector calculus, the only surfaces that are used are those that are orientable. A type
of surface that is not orientable, such as the Mobius Strip, is not applicable within vector
calculus.

13. Surface integrals and flux

Suppose that we have an oriented surface, S, with a unit normal vector, n (remember, that a
unit normal vector is a vector orthogonal to the surface with a length of 1 unit. If we think of
this surface being within a vector field describing, perhaps, a fluid with a density function of(, , ) and a velocity field of (, , ) flowing through our surface S, then the amount of the
“fluid” passing through our surface at one point would be the dot product between the vector
field at the point and the normal vector to the surface at that same point (Figure 13).

Figure 13. Flux visualization.

The rate of flow (mass per unit time) per unit area is 𝀵𝀵. If we divide our surface into sub regions
defined by 𝀵𝀵𝀵𝀵 where each subregion is small and nearly rectangular we can approximate the

mass or amount of fluid crossing 𝀵𝀵𝀵𝀵 in the direction of n per unit time by:
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( ) ( ) ijA Sr ×v n (61)

If we add this mass for each sub section as the area of each subsection goes to 0 it results in an
infinite sum or integral which calculates the rate of flow through S:

(62)

This type of surface integral occurs frequently in physics. If the density function is constant
then we are only left with the velocity vector field.

More simply, if F is a continuous vector field defined on an oriented surface S with a unit
normal vector n, then the surface integral of F over S is: [4]

(63)

We are then able to translate this integral into our previously shown double integral over a
region such that: [4]

(64)

With regards to the actual mechanics of how this integral is calculated it is important to have
an understanding of the relationship between the parts. It is also important to pay attention to
how the surface is defined. Let's assume  = (, ) is our surface. We must express the surface
as a function (, , ). Then,  , ,  =  𑨒𑨒 (, ). The resulting normal vector of the surface
becomes:
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  (65)

The differential for surface area is:

( )
22

   , ,  1  x y
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Computational Vector Mechanics in Atmospheric and Climate Modeling
http://dx.doi.org/10.5772/65009

23



The resulting integral then becomes:
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The denominator within the dot product and the radical within the surface differential will
cancel which leaves us with the final integral: [4]

(68)

14. Stokes Theorem

Stokes’ Theorem is very similar to Green's Theorem. In fact it can be thought of that Green's
Theorem is a special case of Stokes’ Theorem, or that Stokes’ Theorem is a higher‐dimensional
version of Green's Theorem. What Stokes is going to do is relate a line integral with a surface
integral. Stokes’ Theorem will find the work done around a closed path by computing a surface
integral of the curl of a vector field over a “surface cap [8]” on top of the path.

Stokes’ Theorem: Let S be a smooth oriented surface in ℝ3 with a smooth closed boundary C
whose orientation is consistent with that of S. Assume that  = < , , ℎ > is a vector field
whose components have continuous first partial derivatives on S. Then [9]

(69)

In other words the circulation of a vector field around the boundary of an oriented surface in
space in the direction counter clockwise with respect to the surface's unit normal vector equals
the integral of the curl for vector field over the normal component of the surface. The surface
must also be piecewise smooth.

We can think of this integral as relating a line integral around a closed path to a surface integral
over a “capping surface” of the path. The interesting idea is that it doesn't matter what the
surface is over the path, once the surface integral is calculated it reaches the same value!

While this result is difficult to prove in the general case, an easier intuition is gained through
inspection of Green's Theorem demonstrated earlier. This can then be extended to Stokes,
which is the same concept in three dimensions.
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Example:

Evaluate ∮𑫅𑫅𑫅𑫅𑫅𑫅𑫅𑫅 where  is the curve of intersection of the paraboloid  = 9 − 2 − 2 and the

plane  = 5, oriented up, through 𑫅𑫅 = 𝀵𝀵 + 3𑨒𑨒 − 3.

First check the curl to see if the vector field is conservative.

𝀵𝀵𝀵𝀵𝀵𝀵𑫅𑫅 = −33 − 32 𝀵𝀵 + 3 − 1 , not conservative

We are going to utilize Stokes’ Theorem to solve this problem. Remembering that we can define
our surface over the path as anything, let's use the plane  = 5. , ,  =  − 5,  =  = < 0, 0, 1 >1 , 𑫅𑫅𝀵𝀵 𝀵 1𑫅𑫅𝀵𝀵
If we project the surface into the x‐y plane it will form a circle. By making the substitution 5

for  then 5 = 9 − 2 − 2, and 2 + 2 = 4 we see our area is a circle of radius 2. We will convert𑫅𑫅𝀵𝀵 into polar coordinates.

( ) ( ) ( )
2 2 2 2

3 2 3

0 0 0 0

  3 3 ,0, 1 0,0,1curl dS zy xz z dA
p p

× = - - - ×ò ò ò òF n (70)

Further substituting 5 for  becomes

2 2
3

0 0

(5 1)   r dr d
p

q-ò ò (71)

( ) ( )
2 2 2 2 2 22

0 0 0 0 0 0

2125 1    124    124  248
2

r dr d r dr d d d
p p p p

q q q q- = = =ò ò ò ò ò ò (72)

496Flux p= (73)

15. Divergence Theorem

In this final section we move away from line integrals and again visit flux. In this case we will
be looking at how a vector field moves through a solid shape in space.
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The divergence theorem states: Let  be a simple solid region and let S be the boundary surface
of . Let F be a vector field whose component functions have continuous partial derivatives
on an open region that contains E. Then [10]

(74)

In other words the Divergence Theorem states that the flux of F across the boundary surface
of  is equal to the triple integral of the divergence of F over .

The Divergence Theorem is to surface integrals what Green's Theorem is to line integrals in
that it allows us to convert a surface integral over a closed surface into a triple integral over a
closed region.

While the equation looks to be a direct equivalence between the double and triple integrals, it
is not quite that simple. If we were to try and utilize the surface integral definition for flux on
a closed surface, we would have to compute the flux through each sub surface individually
then add the result. In contrast, the divergence theorem allows us to find the flux through the
closed surface by utilizing the divergence through the volume.

Example:

Find the outward flux of F through the closed surface of the cylinder 2 + 2 = 4 from  = 0 to = 3.  = 62 + 2  + 2 + 2  + 422 . R is the region cut from the first octant.

(75)

12 2 2div x y= + +F (76)

If we project our region into the x‐y plane, we see that it is a quarter circle with a radius of 2.
In this problem we will utilize cylindrical coordinates to solve the integral.

𝀵𝀵𝀵𝀵𝀵𝀵 = ∫0
2 ∫02∫03(12 + 2 + 2)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 = 2∫0

2 ∫02∫03(6 +  + 1)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵
= 6∫0

2 ∫02(6 +  + 1)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 = 6∫0
2 ∫02(6𝀵𝀵2cos𝀵𝀵 + 𝀵𝀵2sin𝀵𝀵 + 𝀵𝀵)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵
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Abstract

The fourth version of the International Center for Theoretical Physics (ICTP) Regional
Climate Model (RegCM4) model is evaluated for its performance over Upper Blue Nile
River Basin Region (UBNRBR). The model rainfall captured the observed spatial and
temporal variability of rainfall over the basin during the spring (MAM) and summer
(JJA) seasons. The simulation dataset is generated using the RegCM4 for the period
1982–2009. The UBNRBR is first divided into 14 homogeneous regions using criteria
including  Rotated  Empirical  Orthogonal  Function  (REOF),  spatial  correlation  and
topographical features. Spatially averaged observed and simulated rainfall time series
are then generated and analyzed for each region. Standardized rainfall anomalies of the
observations and the simulated data are highly correlated over most of central regions,
while a weak correlation is found over the east border regions of the basin. The dominant
modes of rainfall variability are identified using REOF. The first leading patterns of
rainfall and upper wind (averaged between 100 and 300 hpa) are highly correlated and
exhibit  similar  features  between  simulated  and  observed  dataset  over  the  basin.
Similarly, the first loading pattern of low level wind (averaged between 850 and 1000
hpa) exhibits a dipole structure across the southwestern and southeastern regions of the
UBNRBR. The correlations with significant rotated principal components (RPCs) across
gridded gauge, and model rainfall fields with that of low- and upper level winds show
the presence of significant relationship (correlation exceeding ~0.6). Overall, that the
RegCM4 shows a good performance in simulating the spatial and temporal variability
of precipitation over UBNRBR.

Keywords: RegCMx, variability, RPC, Upper Blue Nile River Basin Region (UBNRBR)
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1. Introduction

Regional climate models (RCMs) have become increasingly important tools to downscale
global (large scale) climate information for regional applications. Numbers of studies have
demonstrated the capability of regional climate models of different version (RegCMx) in
downscaling global climate information for regional applications and representing details of
regional climate [1–8]. Such models are driven by initial and lateral boundary conditions taken
from reanalysis, observations and from global circulation model (GCM) output [3–5, 9–13].
RCMs become suitable tools for regional process studies, which increase our understanding
about influence of local climatic forcing superimposed on large-scale climate variability. By
coupling appropriate land surface, hydrologic or lake models with that of RCMs enables
accurate simulation of detailed precipitation, temperature, surface hydrological features and
other meteorological variables [14].

The sensitivity of RegCMx to dynamical configuration such as domain size, resolution and the
physical parameterizations has been demonstrated in a number of studies [1, 4, 5, 11, 13].
Hence, before applying a regional climate model for regional climate variability studies, the
accuracy of the model in reproducing the observed regional climate should be assessed to
establish its strengths and weaknesses for the specific region [3].

Regional climate models have been utilized extensively for mid-latitude regions in wide-
ranging surface climate and hydrologic process investigations. Sensitivity studies and
simulation of present, past and future climate on the mesoscale and regional scale have been
carried out [2, 3, 7, 11, 12, 15, 16]. Relatively few studies exist for eastern Africa climate [4, 5,
8, 17–19]. Most of the above studies of eastern Africa [except 18, 19] focused on the spring and
autumn seasons, as these are the main and short rainy seasons for the equatorial Africa. The
performance of the RegCM3 in reproducing the Ethiopian summer rainfall variability also
evaluated [18, 19]. They found that RegCM3 not only reproduced the spatial variability of dry
and wet years but also correlated well with gauge data.

Based on these considerations, in this chapter, the performance of a regional climate model
(an updated version of the RegCM4) is presented [20]. Here, we briefly discuss/compare the
essential atmospheric variables of observational and/with model simulation that will be
necessary in the rest of the chapter to understand the various characteristics of rainfall in the
basin. Such as in representing the climatology, inter/intra annual variability of atmospheric
variables including rainfall and wind field with respect to relatively large set of rain gauge
and satellite based observations and reanalysis datasets.

2. Model, data and methodology

2.1. Model description

The regional climate model used in this study is the ICTP RegCM4 described by Giorgi et al.
[20]. It is a hydrostatic model based on the dynamical core of the Penn State/NCAR Mesoscale
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Model version 4 [21] with the developments described by Giorgi et al. [11, 12]. RegCM4
includes a range of physics options, and for the present work, it uses the radiation scheme of
Community Climate Model version 3 (CCM3) [22], the nonlocal planetary boundary layer
scheme originally developed by Holtslag et al. [23] and later modified as described by Giorgi
et al. [11, 20]. The Biosphere–Atmosphere Transfer Scheme in [24] is used for land surface
process calculations. Precipitation is represented by two different terms: resolvable (large-scale
non-convective) and convective (subgrid-cumulus). The resolvable scale precipitation is
represented by the subgrid explicit moisture scheme [25]. For convective precipitation, three
options are available: (1) the modified Anthes-Kuo scheme [12, 26], (2) the Grell scheme [21]
and (3) the Emanuel scheme [27]. In addition, different schemes can be chosen for land and
ocean regions [20]. After many preliminary tests, we selected the Grell scheme with the Fritsch-
Chappel closure [11, 12, 28] over land and the Emanuel scheme over the ocean grid points.
More information on the different physics schemes and applications of the RegCM4 model
system can be found in the study of Giorgi et al. [20].

2.1.1. Experimental setup

The simulation/analysis period is 1982–2009, and we applied similar experimental setup with
previous study; in which, its initial and lateral boundary conditions are obtained from the new
ERA-Interim 1.5° × 1.5° third generation ECMWF gridded reanalysis product [29]. The sea
surface temperature (SST) used to force RegCM4 is obtained from the National Oceanic and
Atmospheric Administration (NOAA) weekly optimum interpolation (wk-OI) [30] on one-
degree grid. The 10-min resolution global land cover characterization (GLCC) dataset for
vegetation cover, land use and elevation is used as obtained from the United States Geological
Survey (USGS). The model domain (Figure 1), the upper right panel, covers most of the African

Figure 1. Topography (in meters) of the study area. The blue lines are the 14 homogeneous rainfall regions. The red
dots represent the rainfall stations used in this study.
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continent and adjacent ocean waters at a grid point spacing of 50 km [31]. This study showed
that this domain size is sufficient to obtain a realistic simulation of the climate of UBNRBR.

2.2. Data

The station rainfall dataset used to calibrate the model output is obtained from the Ethiopian
National meteorological Agency (EMA). It includes 430 unevenly distributed stations through-
out the region for the period 1979–2014. The distribution of the gauges and quality control
methods for the observed rainfall dataset are discussed in detail [31]. In addition to the station
data described above, we use a blended gauge and satellite product: the global precipitation
climatology project (GPCP) described by Adler et al. [32]. The SST is obtained from the UK
Met Office Global Sea Ice and Sea Surface Temperature (HadISST2) described by Rayner et al.
[33]. This product includes SST observations and satellite-derived estimates at the monthly
scale with a resolution of 1° × 1°. The third generation European Centre for Medium-Range
Weather Forecasts (ECMWF) 1.5° × 1.5° gridded reanalysis product of ERA-Interim [29] and
National Centers for Environmental Prediction-National Center for Atmospheric Research
(NCEP–NCAR) reanalysis products are also used [34].

2.3. Data analysis methods

To capture the patterns of co-variability of rainfall and other atmospheric variables at different
stations and in the Upper Blue Nile Region, the principal component (PC) analysis (PCA) is
applied to the time series. The method consists of computing the covariance matrix of the
analyzed atmospheric variable dataset with the corresponding eigenvalues and eigenvectors
[35]. The projection of the analyzed atmospheric fields (e.g., rainfall, wind, etc.) into the
orthonormal eigenfunctions provides the PC score time series. The spatial patterns (eigenvec-
tors), properly normalized (divided by their Euclidean norm and multiplied by the square root
of the corresponding eigenvalues), are called empirical orthogonal function (EOF) or simply
“loadings.” The loadings in this study are the correlation values between the original data time
series at each grid point and the corresponding principal component time series.

In order to extract more localized spatial patterns of variability, we apply the varimax rotation
to the loadings [36–39]. Rotated empirical orthogonal function (REOF) analysis is applied to
atmospheric variables such as rainfall, low-level wind (averaged between 850 and 1000 hPa),
upper level wind (average of pressure levels between 100 and 300 hPa), vertical wind profile
averaged over the longitude band between 35°W and 68°E and for selected oceanic basins. The
region that is included in the REOF analysis of rainfall is between 34° and 40°E and 7.5° and
13°N for consistency with the gauge data.

To remove the influences of location and spread from a set of data, all atmospheric variables
time series are standardized by subtracting the mean and dividing by the standard deviation.
For each mode, a spatial pattern of loadings describes its area of influence and time scores that
reveal the amplitude and wavelength of oscillation. Hence, we used standardized anomalies
of time scores (PCs/RPCs) for correlation analysis of the dominant modes of atmospheric
variables.
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3. Result and discussion

3.1. Characteristics of large-scale circulation

Spring season climatological patterns of both ERA-Interim and model simulation upper level
horizontal wind (Figure 2a, 2b and 2e) shows strong spatial consistency. The pattern corre-
sponds to an anomalous southerly extension of subtropical westerly jet streams (STWJ) over
northern Africa is reproduced very well by RegCM4.

Figure 2. Spring (MAM) season mean horizontal wind: (a) ERA-Interim upper level (averaged between 100 and 300
hPa) wind, (b) RegCM4 upper level wind, (c) ERA-Interim low-level (averaged between 850 and 1000 hPa) wind, (d)
RegCM4 low-level wind, (e) the bias of upper wind ERA-Interim vs. RegCM4 and (f) the bias of lower wind ERA-In-
terim vs. RegCM4.

This pattern in both ERA-Interim and model shows relatively narrow and shallow streams
with maximum wind speed. The downward bent of subtropical westerly jet stream is related
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to a large-scale convection in the lower troposphere, which is conducive condition for spring
rain getting regions of Ethiopia [19, 40]. The STWJ is formed as a result of conservation of
angular momentum as the air moves from the lower latitudes to the higher latitudes [19 and
reference there in]. The low-level horizontal wind climatology for the spring season in ERA-
Interim and RegCM4 simulation (Figure 2c, 2d and 2f) shows a good agreement in both the
magnitude and direction.

Similar, comparison of summer ERA-Interim and RegCM4 horizontal upper level winds
indicates a strong similarity (Figure 3a, 3b and 3e) in representing the location and strength
of the tropical easterly jet (TEJ) core, even though the jet stream is slightly stronger in the model
over regions south of Chad, Central African Republic, central and eastern Ethiopia. The TEJ
extends from southeast Asia across the Indian Ocean towards northeast Africa, with the jet
core positioned above 10°N over the Arabian Peninsula and eastern Africa, and tilted south-
ward over central and western Africa. The low-level wind climatology for the summer season
in ERA-Interim and RegCM4 is shown in Figure 3c, 3d and 3f. Like spring, summer season
also showed a good agreement in both the magnitude and direction of the east African low-
level jet (EALLJ).

Figure 3. Summer (JJA) season mean horizontal wind: (a) ERA-Interim upper level wind, (b) RegCM4 upper level
wind, (c) ERA-Interim low-level wind, (d) RegCM4 low-level wind, (e) the bias of upper wind ERA-Interim vs. RegCM
and (f) the bias of lower wind ERA-Interim vs. RegCM.
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The correlation with the time series of the wind field and the first rotated principal component
(RPC1) of the upper level wind (Figure 4a and 4b) reveals that the spatial pattern of the
dominant mode of variability at upper levels is a dipole structure, which shows positive above
~10°N and negative below ~10°N in both model and ERA-Interim. The boundary of the dipole
pattern in the model is shifted slightly northward and has stronger magnitude over southern
regions.

Figure 4. Spring (MAM) season: (a) correlation patterns of upper level horizontal ERA-Interim wind vs its dominant
RPC1, (b) correlation patterns of upper level horizontal RegCM wind vs its dominant RPC1, (c) dominant time evolu-
tions of upper level wind ERA-Interim and RegCM, (d) correlation patterns of low level horizontal ERA-Interim wind
vs its dominant RPC1, (e) correlation patterns of low level horizontal RegCM wind vs its dominant RPC1 and (f) domi-
nant time evolutions of low level wind ERA-Interim and RegCM.

The variance explained by the first RPC of the model (~45%) and ERA-Interim (~34%) are more
than 1/3 of total variance. The intra-annual variability of RPC1 in ERA-Interim and RegCM4
(Figure 4c) shows a good agreement (correlation value of ~0.96) and the extreme years (1982/83,
1984, 1992, 1997–2000, 2008) are well captured. The similarity of variability of low-level
horizontal wind patterns in Figure 4d and 4e describes the performance of the model in
representing the region of dominant variability in the wind field, which explains ~15% and
~10% of total variance, respectively, although small difference are observed over southwest
regions of Ethiopia. Significant and high correlation (correlation value of ~0.81) of the dominant
time components (RPC1s, Figure 4f) confirms the ability of the model to simulate the large-
scale circulation. The importance/link of variability of this wind in its magnitude and direction
to the Upper Blue Nile River Basin climate is discussed detail in the next Section.
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Like spring, during summer season quit similar correlation (upper level wind field and its first
RPC1) patterns of (Figure 5a and 5b) ERA-Interim and RegCM are observed, which describes
the characteristics of TEJ in both reanalysis and model simulation. The fractions of variance
explained by these patterns are ~46% and 51% of ERA-Interim and RegCM, respectively. The
time evolutions (RPC1s) of ERA-Interim and RegCM (Figure 5c) shows a good agreement
(correlation value of ~0.95), and in particular, the extreme negative years (1983, 1987, 1997 and
2009) and positive years (1988, 1994 and 1998) are well captured.

Figure 5. Summer (JJA) season: (a) correlation patterns of upper level horizontal ERA-Interim wind vs its dominant
RPC1, (b) correlation patterns of upper level horizontal RegCM wind vs its dominant RPC1, (c) dominant time evolu-
tions of upper level wind ERA-Interim and RegCM, (d) correlation patterns of low level horizontal ERA-Interim wind
vs its dominant RPC1, (e) correlation patterns of low level horizontal RegCM wind vs its dominant RPC1 and (f) domi-
nant time evolutions of low level wind ERA-Interim and RegCM.

The patterns of the dominant mode of variability in the lower level wind of the ERA-Interim
reanalysis and RegCM4 are essentially identical (Figure 5d and 5e) and show a positive loading
over coast of Somalia, which corresponds to east African low-level jet (EALLJ). Figure 5f shows
the variances explained by the first RPC of the reanalysis and models are ~11 and 12%,
respectively. The correlation between the low-level ERA-Interim and RegCM4 wind is ~0.85,
which shows the resemblance of the two time series (Figure 5f).

3.2. Rainfall climatology, annual cycle, and intra-annual variability

In this section, we analyze the spatial patterns, annual cycle and intra-annual variability of
spring and summer rainfall over Upper Blue Nile Region. Mean seasonal rainfall over the
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region for the period 1982–2009 shows that the southern and central mountainous regions
receive on average more than 12 mm/day during summer and small (1–2 mm/day) amount of
rainfall during spring seasons (Figure 6). The western and eastern regions, which are semiarid,
receive comparably less precipitation during these seasons. The model reproduces reasonably
well this climatological pattern of rainfall, although with positive and negative biases over the
western mountainous regions and some isolated areas of Upper Blue Nile River Basin region.
It exhibits also a central-east/west gradient where rainfall decreases from ~12 to less than ~7
mm/day. RegCM4 forced by ERA-Interim reanalysis capture the location of higher precipita-
tion rates in the southwest, central and northeastern region better than GPCP and CRU dataset.
We also note that the GPCP dataset show relatively low precipitation amounts over the
southern and central mountain regions of the basin with respect to gauge.

Figure 6. Rainfall: (a) spring mean gauge rainfall, (b) spring GPCP mean rainfall, (c) spring RegCM mean rainfall, (d)
summer mean gauge rainfall, (e) summer GPCP mean rainfall, (f) summer RegCM mean rainfall, (g) bias of gauge vs.
RegCM during spring, (h) bias of GPCP vs RegCM during spring and (i) bias of gauge vs. RegCM during summer.

Figure 7 shows the mean annual cycle for the homogeneous rainfall regions of the basin using
different sets of observations (gauge, GPCP and CRU) and RegCM4 simulation. The annual
cycle values are averaged for each homogeneous region of the Upper Blue Nile River Basin
over the whole observation and simulation periods. Over Tana subregions (Figure 7a), which
lie over the “Semien Mountain,” the model captures the summer monsoon rainfall and the
pre- (May) and post-monsoon rain, although some slight differences in the intensities among
the observed and model estimates are observed.
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Figure 7. Areal averaged of homogeneous regions seasonal rainfall or annual cycle.

For Jemma and Muger regions (Figure 7b and 7c), gauge, GPCP and CRU observations exhibit
a maximum July–August and small rain during spring season. The model captures this cycle
except small underestimation of the rainfall amount (compared to observational dataset or
gauge). The Didessa region of the basin (Figure 7d) shows unimodal, but longer rainy season
almost throughout the year maximum between May and September. However, there is a wide
spread in the magnitude and phase of the precipitation maxima across these datasets, with the
gauge showing the largest magnitudes, GPCP the smallest and CRU some intermediate values.
RegCM4 also captures well the long seasonality, and slightly overestimate precipitation
amounts throughout the year. Overall, RegCM4 performs well in reproducing the seasonal
cycle of precipitation in all regions, except for an overestimation over the southwestern and
central regions, where the rainfalls in almost all months is systematically underestimate over
the eastern regions. We note that GPCP had better agreement in the magnitude, and especially,
the phase of the rainy season peaks and corresponding breaks than CRU with respect to gauge
dataset. Most previous studies of RegCM3 using a smaller domain centered over eastern Africa
found difficulties to correctly reproduce the precipitation patterns. For example, in [18]
performed 18 years of simulation with RegCM3 over eastern Africa and reported overestima-
tion by >26% precipitation in Ethiopia, using the Grell/Emanuel convective scheme. In
reference [8] indicated some deficiencies in capturing short east Africa rainy season of the
observed rainfall over the Kenya Highlands and Lake Victoria Basin using RegCM3. Sun et al.
[4] showed also some deficiencies over the Congo–Angola Basin and Kenya Highlands and
the monsoon flow during the same period was stronger than observed.

Figure 8 shows the spatial patterns of correlation coefficient between the first dominant
summer RPC1 of observational rainfall and the corresponding raw summer mean rainfall time
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series at each grid point over the basin region. According to the result, the northeastern regions
have high coefficient of variation in rainfall during summer season. The variance explained
over this region is ~15, ~26, ~13 and ~33% of the total variance using gauges, GPCP, RegCM4
and CRU, respectively. The pattern of gauge (Figure 8a) is narrower when we compare with
respect to GPCP and CRU and similar with model simulation (Figure 8a, 8b, 8c and 8d). The
model and gauge shows significant negative correlation over small western regions of the
basin, unlike gauge and CRU. The corresponding RPC1 of RegCM4 significantly correlated
with RPC1 of gauge (correlation between RPC1s of gauge and RegCM4 is ~0.67). Similarly,
RegCM4-RPC1 correlated significantly with GPCP-RPC1 (correlation between them is ~0.82)
and the two observational RPCs (gauge and GPCP) correlated with a magnitude of ~0.88. The
dominant RPC of RegCM4 captured correctly the extreme positive years (e.g. 1983, 1989 and
1990) and extreme negative years (e.g., 1984, 2000 and 2008/2009) with that of corresponding
observational RPCs.

Figure 8. Summer season, correlation patterns of rainfall first dominant RPC1 with raw rainfall: (a) gauge, (b) GPCP, (c)
RegCM, (d) CRU, (e) the time series of the RPC1 for the observations and the RCM, (f–i) correlation patterns of rainfall
RPC2 with raw rainfall, of gauge, GPCP, RegCM and CRU, respectively and (j) the time series of the RPC2 for the ob-
servations and the RCM.

The second patterns of correlation between second RPC2 of rainfall and summer mean rainfall
by gauge, GPCP and RegCM4 are shown in Figure 8f, 8g and 8h, respectively. The patterns in
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all dataset indicate a strong correlation over northwestern and western regions of Upper Blue
Nile River Basin. About 12, ~24 and ~11% variances are explained by the patterns out of total
variance over southwestern region using gauge, GPCP and RegCM4, respectively. The variance
explained by RegCM4 over this region is smaller than GPCP, but relatively same compared to
gauge. RegCM4 and gauge RPC2 negatively correlated with their corresponding rainfall over
northeastern region unlike GPCP. The second gauge RPC is significantly correlated with GPCP
and RegCM4, with a correlation with ~0.9 and ~0.56, respectively. Similar to the first RPC, the
observational RPC2 extreme positive years (e.g., 1983, 1988, 1996 and 2007) and extreme
negative years (e.g., 1996, 2002, and 2008/9) are clearly reproduced by the model. Our simu-
lation showed relatively good performance when we apply dry Grell over land and Emanuel
over Ocean and we used ERA-Interim at the lateral boundaries of the simulation.

Observed areal averaged standardized anomalies of each homogeneous spring mean rainfall
(not shown here) time series are significantly (a significance level of 95%) correlated with the
corresponding simulation dataset. The result indicates the model standardized precipitation
anomaly is highly correlated with the corresponding gauge and GPCP datasets. On the
contrary, weak correlation over most of homogeneous regions with CRU dataset, which may
be because of high spatial difference over the region, using small number of stations may bring
such result between simulation and CRU dataset unlike GPCP and gauge. Similar results were
reported by Tsidu [41].

Overall the RegCM4 simulates fairly the observed multi-scale spatial and inter-/intra-annual
temporal variability of climate in UBNRBR (correlation with gauge >0.7). We also noticed
GPCP represents the observed multi-scale variability better (correlation with gauge >0.83) than
CRU for both homogeneous areal mean standardized time series and dominant RPCs.

4. Summary and conclusion

In this study, we investigated the ability of the RegCM4 to simulate the multi-scale spatial and
temporal variability of large-scale circulation and rainfall for spring and summer season. The
main large-scale circulation that connected with the generation of rainfall during summer
season over the basin (such as TEJ and EALLJ) is realistically simulated. Comparison of ERA-
Interim and RegCM4 horizontal upper level winds indicates a strong similarity in representing
the location and strength of the TEJ core, even though the jet stream is slightly stronger in the
model over regions of south Chad, Central African Republic, central and eastern Ethiopia.
Model simulated low-level horizontal wind has a good agreement during summer season with
reanalysis wind dataset in both the magnitude and direction over Ethiopia in general and the
basin in particular. The correlation with simulated and ERA-Interim first dominant rotated
principal components (~0.95) of upper level horizontal winds of summer is significant and
high in magnitude. We also notice that similar patterns of RPC1s show the ability of the model
to capture the features of this wind, which is highly connected with the rainfall variability over
most of Upper Blue Nile basin regions during summer season. The low-level horizontal wind
spatial patterns of dominant variability and high magnitude (correlation value of ~0.86) of the
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to capture the features of this wind, which is highly connected with the rainfall variability over
most of Upper Blue Nile basin regions during summer season. The low-level horizontal wind
spatial patterns of dominant variability and high magnitude (correlation value of ~0.86) of the
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corresponding RPCs also confirm the performance of the model to capture the main features
of rain generating mechanisms over the basin.

Upper Blue Nile River Basin summer climate variability from different observation datasets
along with the performance of the regional climate model (RegCM4) in reproducing this
variability is also assessed. The observed rainfall datasets have indicated that central moun-
tainous regions, S. Gojjam, Beles, Wonbera, Anger, southern of Dabus, Didessa and Tana basin
receive on average more than 12 mm/day of rainfall during the summer season, on the contrary
Beshilo, Welaka, and Jemma regions, which are semiarid, receive comparably less precipitation
during this season. Similar climatological pattern of rainfall is shown using GPCP, although
with positive and negative biases over the western mountainous regions and some isolated
lowland areas, respectively.

The mean annual cycle for the homogeneous rainfall regions using different sets of observa-
tions (gauge, GPCP and CRU) and RegCM4 simulation shows RegCM4 performs well in
reproducing the seasonal cycle of precipitation over all regions, except for an overestimation
over the southwestern regions, where the rainfalls in almost all months and systematically
underestimate the eastern regions. We have noted that GPCP had better agreement in magni-
tude, and especially, the phase of the rainy season peaks and corresponding breaks than CRU
with respect to gauge dataset.

The correlation coefficients between simulated and observed rainfall anomalies normalized by
the standard deviation over the 14 climate subregions during spring and summer seasons and
between the first two dominant RPCs show the ability of RegCM4 simulation to reproduce
intra-annual variability of rainfall over subregions of the basin. The first dominant pattern of
observational dataset which explains the east and western regions for spring and summer
seasons, respectively, is captured correctly by RegCM4 simulation with corresponding RPCs
significant correlation (correlation >0.6). Similarly, the second dominant variability regions
(spring-eastern and summer-western) are simulated fairly with significant correlation with
corresponding RPCs (correlation >0.56) including extreme years.

The simulated climatologies and intra-annual variability of different homogeneous climate
subregions of the basin are consistent with the observed variables in representing these
subregions. In particular, the model reasonably reproduces the observed rainfall and wind
field climatology and intra-annual variability during both seasons. Conversely, the model has
evidently weak representation of variability of temperature during both seasons with respect
to station and CRU temperatures and better with respect to ERA-Interim. The spatial and
temporal characteristics of climate in the region of the Upper Blue Nile Basin have been
presented. Rainfall is highly seasonal, roughly highest percent of annual rainfall occurring
between June and September.

The model captures the general patterns of the observed rainfall distributions, in particular
the ICTZ position and intensities, although it is overestimated by the model as compared to
the observation datasets. Both gauge and GPCP show the highest correlations with regard to
the two dominant RPCs as compared to the rest of the datasets, but the pattern of variability
of the model is best agreed with the gauge intra-annual variability in both summer and spring

Evaluation of a Regional Climate Model for the Upper Blue Nile Region
http://dx.doi.org/10.5772/64954

41



seasons. The RegCM4, compared to the observations, shows a little more bias in rainfall
estimation than temperature. This shows that temperature variability depends more on local
process, hence RegCM4 correct the temperature and make it to have better representation of
observed variability.
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Abstract

It is important to highlight energy-water balance and ecosystem response to climate
changes. The change of water-energy balance and ecosystem due to climate change will
affect the regional ecological and human living significantly, especially in Southwest
China  which  is  an  ecologically  fragile  area.  This  chapter  presents  the  retrieval
methodology  of  parameters  (reconstruction  of  vegetation  index,  land  cover  semi-
automatic classification, a time series reconstruction of land surface temperature based
on Kalman filter and precipitation interpolation based on thin plate smoothing splines),
time-series  analysis  methodology  (land  cover  change,  vegetation  succession  and
drought  index)  and  correlate  analysis  methodology  (correlation  coefficient  and
principal component analysis). Then, based on the above method, remote sensing data
were integrated, a time series analysis on a 30-year data was used to illustrate the water-
energy balance and ecosystem variability in Southwest China. The result showed that
energy-water balance and ecosystem (ecosystem structures, vegetation and droughts)
have severe response to climate change.

Keywords: energy-water balance, climate change, ecosystem, droughts estimation,
vegetation index, time series analysis, land cover change

1. Methodology

Southwest China consists of the municipality of Chongqing and the four provinces of Guangxi,
Yunnan, Guizhou and Sichuan, 21°07′N to 34°14′N, 97°30′E to 112°05′E (Figure 1). Southwest
China, which was considered to be rich in water resources, has suffered climate changes in the
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last decades. It is particularly important to highlight energy-water balance and ecosystem
response to climate changes in Southwest China using the remote sensing techniques and
Geographic Information System(GIS). This chapter introduced the methodologies for retrieving
parameters of land cover, vegetation index, gridded precipitation, land surface temperature,
which can be used as the factors of climate change and ecosystem. Furthermore, the climate
change response of droughts estimation methods was presented. The time series analysis of
water-energy balance and ecosystem variability of Southwest China in recent 30 years showed
that ecosystem structures, vegetation and droughts were affected by the change of climate. The
following paragraphs describe the recent achievements in more detail.

Figure 1. Location of Southwest China.

1.1. Retrieval of parameters of energy-water balance and ecosystem

1.1.1. Ecosystem (vegetation index): reconstruction of vegetation index based on Savitzky-Golay filter

Terrestrial ecosystem is extremely sensitive to climate change, especially the corresponding
change of the surface vegetation is the most significant. Vegetation is the important feature of
the land surface and is the core and function parts of the biosphere and ecological system. It
is widely accepted that energy and water together drive diversity and form of vegetation [1,
2]. In order to show the vegetation information, many kinds of vegetation index (VI), such as
Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation Index(SAVI),
Transformed Soil-Adjusted Vegetation Index(TSAVI), Modified Soil-Adjusted Vegetation
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following paragraphs describe the recent achievements in more detail.

Figure 1. Location of Southwest China.

1.1. Retrieval of parameters of energy-water balance and ecosystem

1.1.1. Ecosystem (vegetation index): reconstruction of vegetation index based on Savitzky-Golay filter

Terrestrial ecosystem is extremely sensitive to climate change, especially the corresponding
change of the surface vegetation is the most significant. Vegetation is the important feature of
the land surface and is the core and function parts of the biosphere and ecological system. It
is widely accepted that energy and water together drive diversity and form of vegetation [1,
2]. In order to show the vegetation information, many kinds of vegetation index (VI), such as
Normalized Difference Vegetation Index(NDVI), Soil-Adjusted Vegetation Index(SAVI),
Transformed Soil-Adjusted Vegetation Index(TSAVI), Modified Soil-Adjusted Vegetation
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Index(MSVAI), Difference Vegetation Index(DVI), Green Vegetation Index (GVI), Perpendic-
ular Vegetation Index(PVI), Enhanced Vegetation Index(EVI), etc., have been developed [3].
And most of these attempts focused on the differences of the absorptive and reflective
electromagnetic spectrum properties between the visible (VIS) and near-infrared (NIR)
portions. According to some researchers, the time series Vis can derived from NOAA/AVHRR,
SPOT/VEGETATION, TERRA or AQUA/MODIS, and the time series Vis can detect long-term
development of vegetation, evapotranspiration, drought, plants phenology, corn yield, land-
use/cover changes, and terrestrial ecosystems at different spatial and temporal resolutions
globally [4–7]. Theoretically, because of the subtle vegetation canopy changes with respect to
time, a generalized VI temporal profile is continuous and smooth [8]. However, the time series
VI data always fluctuate with remarkable rises and falls which is the result of disturbances
possibly caused by cloud contamination, atmospheric variability and bi-directional effects.
Besides, there are a lot of no-data pixels in some VI data products because of hardware or
human factors [9]. For instance, the VI datasets of MOD13A2 of MODIS need cooperate with
its quality assurance (QA) data layer for application. The reliability and quality of VI values
can be checked from the QA data layer. A series of approaches have been developed to reduce
the errors of the noises in VI data and to reconstruct high quality time series datasets. Among
them, a simple algorithm based on Savitzky-Golay filter explored by Chen was thought to be
most efficient [10].

To reconstruct the high-quality MODIS EVI time series data, the Savitzky-Golay filter was used
based on two hypotheses proposed by Chen: (1) The EVI data from a satellite sensor are
primarily related to vegetation changes. Such as, an EVI time series follows annual cycle of
vegetation growth and decline; (2) Clouds and poor atmospheric conditions made an EVI time
series incompatible with the gradual process of vegetation change, because these usually
depress EVI values and cause sudden drops in EVI which are regarded as noise and removed
[10].

The Savitzky-Golay filter process requires continuous data, while the MOD13A2-EVI is not
continuous as it contains poor quality pixels (for example, cloudy, not being processed). Based
on the quality assurance (QA) dataset generated in preprocessing of MODIS EVI data in spatial,
we produce a continuous dataset by interpolating the poor quality pixels of EVI data. Firstly,
we searched eight pixels with good QA nearest a given pixel with poor quality and recorded
the value of those eight pixels and their distance to the given poor quality pixel. Figure 2
describes the eight pixels by eight different directions searching.

After that, the inverse distance weighted interpolation method (IDW) is applied to compute
the values of the given pixel. According to the definition of IDW, we can define EVI as:
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where EVI is EVI value of poor quality pixel after interpolation and EVIi is the EVI value of a
good pixel. The continuous initial EVI time series is recorded as EVI0.

Figure 2. Eight directions searching.

Each pixel in the 163 images in seven years was studied using time series analyzing methods.
Based on the EVI0 data, we firstly generated a time series curve of each pixel and dealt with
noisy signal for each curve using Savitzky-Golay filter, and then extracted a long-term change
trend (EVItr). After that, the weight of each point, which was in the 163 samples time series
() data, was computed and the EVI time series were traversed.

1.1.2. Ecosystem (land cover): land cover semi-automatic classification from multispectral remote
sensing imagery

Through the conversion of forests and grasslands to croplands and pastures, humans have
affected the exchange of energy, water and carbon between the atmosphere and the land
surface. As the key input to ecosystem researches, various studies focused on land cover
mapping [11]. Whereas, land cover data at large scale is hard to approached except remote
sensing [12]. A variety of approaches was used to map land cover based on remote sensing
data [13–17], including visual interpretation classification, unsupervised clustering coupled
with extensive ancillary data and manual labeling of clusters, supervised classification, expert
system classification, artificial intelligence neural network classification, and decision tree
classification. However, the accuracy and the efficiency of land cover classification is not
guaranteed and the land cover classifications are arbitrary using these method. For example,
supervised classification methods require selecting training samples which rely on substantial
expertise and human participation, so the result of land cover classification is influenced
greatly, and it is impossible to classify land cover automatically with these methods. The
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algorithms such as neural network classification and fuzzy logic classification are difficult to
understand and apply widely because of highly complicated in their algorithm basis. The
construction of the decision tree and the assignment of thresholds for each sub-nodes are the
key problem of decision tree classification, and they heavily depends on human experience
and varies spatially and temporally. In order to solve these problems to improve the accuracy
and efficiency of classification, Jiang et al. proposed an efficient automatic landscape classifi-
cation approach using prior accurate land-cover data as the background experience [18, 19].
This method consists of two steps: (1) semi-automatically detecting land cover changed pixels
from satellite images compared with prior land cover map; (2) semi-automatically classifying
the land cover of changed pixels based on pattern recognition and changed rules.

Automatic collection of training samples: In this method, pure pixels of land cover were
extracted automatically with an accurate previous land cover dataset as prior knowledge. The
interiors of individual land cover areas and larger patches are considered to be more ecolog-
ically stabile areas. Based on accumulation area threshold (Pa), the samples of different land
covers sorted in descending order of their area. The accumulation area threshold is calculated
based on the percent of largest patches of specific land cover categories occupied in its total
area.

After spatial buffer analysis, the joint region of different land cover were discarded. The buffer
area are obtained using the different distance to all patches because of patches of vary areas.
The distance of buffer analysis is

= <, 0d
buffer

dAbP A
(3)

where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is area threshold for buffer analysis, 𝀵𝀵𝀵𝀵 is the buffer area of the patch with a
distance of d, with d negative, and A is the area of the patch.

Establishment of three-dimensional feature space: The data in all spectral bands of each land
cover class, which were extracted from the region of interest, were processed by principal
component statistical analysis. The first three principal components for orthogonal decompo-
sition was selected to construct the three-dimensional feature space of different land cover
classes.

( )
s=

<
-

å

2

3 2

2
1j

ji ji
i

ji

MPP
c (4)

where P is the principal component (PC), MP and  are mean and standard deviation of PC,
respectively, c is the radius of the three-dimensional feature space.

Change detection and classification of changed pixels: Combining the satellite images and
early land cover maps, the spectral data of the images were extracted according to accurate
early land cover maps. Based on spatial intersect analysis with corresponding three-dimen-
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sional feature space, the pixels with spectral data outside the ellipsoid were detected as
changed pixels. After obtaining the changed land cover pixels, the satellites images and three-
dimensional feature space were used to classify the changed area of land cover by calculating
the minimum spectral distance. For each changed pixel, the spectral data of all bands were
input to the formula for all land cover classes in three-dimensional feature space to calculate
the minimum spectral distance 𝀵𝀵𝀵𝀵.
To express the rules of changed land cover, we proposed a drag coefficient of changed land
cover (r). Combining 𝀵𝀵𝀵𝀵 and r, we determined the final land cover classification of changed

pixels. The minimum distance of the land cover classification based on changed rules is defined
as:

= *
mi miij

pdL d (5)

where 𝀵𝀵𝀵𝀵𝀵𝀵 is the minimum distance of the mth pixel to the ith land cover class based on the

changed rules and 𝀵𝀵𝀵𝀵 is the drag coefficient of the ith land cover class that changed to the jth

land cover class.

The class information would be contaminated by adjacent class codes, so the post-classification
results was modified to solve the problem. Any group of pixels, which was <3 pixels in size,
was identified as noise in dilation operation.

1.1.3. Energy parameter: land surface temperature

The parameter of temperature of surface energy balances has be important index for studies
of ecosystem response to climate change. As land cover mapping, the land surface temperature
retrieval based on remote sensing has been the primary method for gaining temperature at
large scale. This is due to the accessibility and convenience of satellite remote sensed infor-
mation. However, the surface energy parameters retrieved from remote-sensing data are often
interrupted on the spatial and temporal scales by clouds, aerosols, solar elevation angle and
bidirectional reflection. so, it is always difficult to obtain complete dataset for a large region.
In addition, the accuracy of surface parameter retrieval was affected with various degrees by
an indirect retrieval method and the instantaneous features of monitoring [2, 20]. To reduce
such impacts, a time-composite method is generally adopted. For surface energy parameters,
the time series fitting and noise-removal methods commonly used to include the mean diurnal
variation and nonlinear regression methods. Compared with nonlinear regression method, in-
situ measurement data are necessary for the mean diurnal variation method [10, 21]. However,
the modeled results often cannot represent the actual situation under significant changes of
environmental conditions [20, 22]. In recent years, data-assimilation methods have been
adopted in the reconstruction of time series data to solve these problems. In this paper, a time
series reconstruction method based on an ensemble Kalman filter was established, which is
can be applied in various studies[19, 23–26]. It focused on evaluating the state of a discrete-
time controlled process. The state Xk can be expressed as [27]:
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where Wk−1 are noise in normal probability distributions; ,  𑨒𑨒 1and ,  𑨒𑨒 1are the noise
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where  is the nonnegative covariance matrix of  and  is the positive covariance matrix

of ; 𝀵𝀵 is the function of Kronecker-δ.

We define N as the number of days of measurement, then:
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where  𑨒𑨒 1∧
 is defined to be our a priori state estimate at step k, given knowledge of the process

prior to the step k, and ∧  is our a posteriori state estimate at step k, given measurement .

Then, the a priori state is defined as follows:
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The calculation process of a Kalman filter is a constant “forecast correction” process. Based on
time-update and observation-update, the values were reconstructed with minimum variance
by compared to in situ values.

1.1.4. Water balance: precipitation interpolation based on thin plate smoothing splines

Precipitation data are one of the important input elements of ecological mechanism model,
and it play an extremely important role in simulating and researching ecosystem changes at
regional or global scale. It also a key index in global change researches, which is a direct
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parameter for drought estimation [28]. The precision of precipitation data may affect the
simulation and prediction precision. At present, the precipitation data acquisition mainly rely
on the long-term observation of the weather stations, but scarcity and uneven distribution of
weather stations reduce the accurate of spatial precipitation data.

The precipitation measurements from the WMO stations are point measurements. Spatial
interpolation technique for meteorological elements is often used to obtain the meteorological
data of every position in the scope which is covered by the meteorological stations. Several
methods have been developed to interpolate these point data to a real estimation of rainfall.
The software ANUSPLIN, developed by Hutchinson, Australian National University, was
applied to generate gridded precipitation data [29]. ANUSPLIN is a kind of analysis and
interpolation tool for multivariable data using local thin plate spline function. The model
required to enter the location of the meteorological site, elevation and other ancillary data. Its
statistical analyzes and diagnose multivariable data to realize spatial interpolation function.

In order to fit to datasets distributed across an unlimited number of climate station locations,
interpolating methods of ANUSPLIN were applied, which use thin plate smoothing splines
for spatial interpolation with a third parameter of elevation [30–36]. The main advantage of
thin plate splines is that splines do not require prior estimation of spatial auto-covariance
structure, which was difficult to estimate and validate. The partial spline observational model
for n data values zi at positions x is given by setting [37]:
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where  is the thin smoothing spline,  are jth unknown parameter and  are jth known

function, which all have to be estimated.  is spatial position with elevation,  are errors with

covariance structure given by
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where  = , ... ,  is positive definite  ×  matrix and 2 may be known or unknown, the

errors  are uncorrelated if  is diagonal and correlated otherwise. The function  and the

parameters   are estimated by minimizing
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where    is a measure of the roughness of the spline function  defined in terms of mth
order derivatives of , and  is a positive number called the smoothing parameter

1.2. Time series analysis

1.2.1. Land cover change

Land cover change is one of the main methods by which the human activities have effect on
the land surface environment. Research on dynamic models of land use change process is an
important approach and means to deeply understand land use change process and its causes,
and the research also can reveal the response of the land cover to anthropogenic activities.
Land cover change mainly shows in land cover change speed and transfer direction, and
comprehensive land use dynamic degree, single land use dynamic degree and transition
matrix were used to express them [38].

2. Comprehensive land cover dynamic degree

Comprehensive land use dynamic degree is used to describe regional difference of land use
types change speed and reflect the influence on change of land cover types by human activities.
The mathematical model are as follows:
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where  is the comprehensive land cover dynamic degree in t period, 𝀵𝀵𑨒𑨒 𑨒𑨒 𑨒𑨒 is the total area
of land cover change of ith type converted into jth type from monitor beginning to end. 𑨒𑨒 is
the area of ith type when the monitor started.

3. Single land cover dynamic degree

Single land use dynamic degree is used to describe the speed and amplitude of different land
cover types change in a certain period. It reflects the influence on change of single land cover
type by human activities. The mathematical model is as follows:
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where 𑨒𑨒 is the single land cover dynamic degree of ith type from t1 to t2 time, 𑨒𑨒𝀵𝀵𝀵 and 𑨒𑨒𝀵𝀵𝀵
were areas of ith type in 𝀵𝀵2 and 𝀵𝀵1time separately.
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4. Transition probability matrix

Transition probability matrix was proposed by the Russian mathematician Markov. At the
beginning of the twentieth century, Markov found that the nth result affected by the n-1th result
in the transfer of some factors of a system. In Markov’s analysis, the quantitative descriptions
of the system state and state transition were reflected in the transform process of a metastable
system from time T to time T + 1 in a certain time interval, thus revealing the land cover pattern
time and space evolution process. Transition matrix of land cover depicts comprehensively
and specifically structural characteristics of land cover change and reflects the change direction
led by human activities. Transition matrix are as follows:
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4.1. Vegetation succession

Net primary production (NPP) represents the accumulated organic matter by plants per unit
area and time. From an ecological perspective, it measures the rate at which solar energy is
stored by plants as organic matter. NPP is influenced by climate, soil, vegetation type and
human activities, for various ecological monitoring activities, and is generally regarded as an
important factor that provides a comprehensive evaluation of ecosystem status and services,
including productivity capability, habitat, and wildlife, and ecological footprint [39, 40]. NPP
is not a directly observable ecosystem characteristic, and it is difficult to measure accurately
over large areas due to the spatial variability of environmental conditions. A number of NPP
models for different ecosystems have been developed. These models are broadly classified into
regression-based and process-based. Regression-based models are established by empirically
derived relationships between climate values and NPP, such as Miami [41]. Although regres-
sion-based models, with the advantages of simplicity and fewer parameter requirements, can
be extrapolated for most land ecosystems, uncertainties are also involved when considering
heterogeneous vegetation, standard errors of measurements and novel climatic conditions,
which may not be appropriate for the regressions [42, 43]. Process-based models, ranging from
simple models based on light use efficiency (LUE) to more mechanistic models based on “soil-
vegetation-atmospheric-transfer” (SVAT) schemes, are based on physiological and ecological
processes such as photosynthesis, evapotranspiration, respiration and nutrient cycling [44,
45]. These models have more parameter requirements and complexities; however, they better
describe mechanisms and have the potential to estimate NPP more accurately when compared
with regression-based models. The models based on LUE are called production efficiency
models (PEMs), which use LUE for the conversion of absorbed photosynthetically active
radiation (APAR) to biomass [46]. They are widely acceptable to map NPP at different scales
as it follows the basic principles of the photosynthesis process and is easily amenable to remote
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simple models based on light use efficiency (LUE) to more mechanistic models based on “soil-
vegetation-atmospheric-transfer” (SVAT) schemes, are based on physiological and ecological
processes such as photosynthesis, evapotranspiration, respiration and nutrient cycling [44,
45]. These models have more parameter requirements and complexities; however, they better
describe mechanisms and have the potential to estimate NPP more accurately when compared
with regression-based models. The models based on LUE are called production efficiency
models (PEMs), which use LUE for the conversion of absorbed photosynthetically active
radiation (APAR) to biomass [46]. They are widely acceptable to map NPP at different scales
as it follows the basic principles of the photosynthesis process and is easily amenable to remote
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sensing data [47]. The satellite data-driven PEMs, such as CASA [48] and GLO-PEM [49], have
been used to analyze the spatiotemporal patterns of NPP over continents and global land
surfaces [50–53].

The CASA model simulates NPP directly thus avoiding a Ra (autotrophic plant respiration)
calculation and taking environmental conditions (temperature, rainfall/soil moisture) and
vegetation characteristics into consideration [54, 55].

The CASA model computes NPP as a function of absorbed photo synthetically active radiation
(APAR) and light use efficiency (LUE) [48, 56] as follows:

( ) ( ) ( )= ´, , ,NPP x t APAR x t LUE x t (19)

where x represents the grid cell and t represents the period in which NPP is accumulated, for
example, a month. APAR is determined by the fraction of photo synthetically active radiation
(FPAR) and the total solar surface radiation (SOL) (MJ m−2) [57] as

( ) ( ) ( )= ´ ´, , , 0.5APAR x t SOL x t FPAR x t (20)

where the constant 0.5 represents the ratio of the total solar radiation (with a wavelength range
of 0.4–0.7 μm) used by the vegetation [58].

LUE is calculated as the product of maximum light use efficiency, and its temperature and
moisture stressors [56] as

( ) ( ) ( ) ( )e e e e= ´ ´ ´
1 2 max

, , , ,LUE x t x t x t x tWT T (21)

where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 𝀵𝀵 represents the actual light use efficiency, max the maximum light use efficiency,

and the value for grass (0.604 g/MJ), simulated by Running based on BIOME-BGC model [59],
was used here; 1(,)  and 2(,)  are temperature scalars, and (,)  is the moisture stress

coefficient. 1(,) , 2(,)  and (,)  were computed at every location at each time step.1(,)  and 2(,)  are calculated as [56, 57].
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where 𝀵𝀵𝀵𝀵𝀵𝀵 is an optimal temperature, defined as the mean temperature in the month of

maximum normal differential vegetation index (NDVI). T is the monthly mean temperature;2  = 1, when  = 𝀵𝀵𝀵𝀵𝀵𝀵; it decreases to 0.5 when T is 10°C above or 13°C below 𝀵𝀵𝀵𝀵𝀵𝀵.(, 𝀵𝀵) reflects the effect of water condition, and it generally increases when available water

increases. Atmospheric vapor pressure deficit reflects air humidity, which affects transpiration
and then the LUE [60]. Therefore, there are currently studies using vapor pressure deficit (D
in kPa) to calculate the moisture stress coefficient [61, 62], computed as [49]

( )e
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where  is dew point temperature (K) and  is surface temperature (K). When −  < 0,  = 0. Td was derived from Guo Jie’s regression model for Sichuan province based

on Yang Jingmei’s findings of a significant linear relationship between dew point temperature
and the logarithm of total perceptible water [63, 64] as follows:

= +( ) 1.8084 0.0735 dLn U T (25)

where U is total perceptible water (mm).

4.2. Estimation of droughts: drought index, drought level definition, index of drought
frequency

Drought is an kind of extreme water deficit processes, which can be used as indicators of
ecosystem deteriorate and climate change. Drought can be classified to four categories of
Meteorological Drought, Hydrological Drought, Agricultural Drought and Socioeconomic
Drought [65–68]. There are numerous drought indices were formulated by integrating
variables to identify and quantify the duration, magnitude, intensity and spatial extent of a
drought, such as precipitation, evapotranspiration, temperature, terrestrial water storage
(TWS), the TWS anomaly index (TWSI), vegetation, etc.[69–71]. Whereas, precipitation is the
most direct parameter for evaluating meteorological droughts, which also can be applied in
estimating agricultural drought, hydrological drought and socioeconomic drought [72–73]. To
be a worldwide natural hazard, meteorological droughts can be measured by various indices
such as Precipitation Anomaly Index (PAI) [69, 74, 75], Palmer Drought Severity Index(PDSI)
[76], Z-score or standardized rainfall anomalies [77], Standardized Precipitation Index(SPI),
Standardized Precipitation Evapotranspiration Index(SPEI) [78], et al. However, compare with
complex indices, a simple measure may be applied more easily to evaluate drought disaster
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at large scale [79]. For example, PDSI requires, in addition to precipitation, soil moisture,
runoff, evapotranspiration, potential evapotranspiration and other factors of plant growth to
assess droughts. Furthermore, PDSI cannot be used to identify drought at short time scales,
e.g., less than nine months [76]. Compared to complex indices, such as PDSI, SPI maybe a
better index based on precipitation alone, as it also compares drought conditions among
different time periods and regions. Among these indices, precipitation anomaly index (PAI)
that uses precipitation alone is the simplest index; it is a dimensionless number in which
negative/positive values indicate dry/wet conditions. It is precisely because of these advan-
tages of simple computation, spatiotemporal consistency, and easy comparison to historical
records, PAI is an important meteorological drought index for large area drought assessment
in China [80].

The meteorological droughts index of the precipitation anomaly index (PAI) was used for
drought analysis. PAI was calculated from the monthly precipitation data from the China
meteorological data sharing service system (CMDSSS) of the China meteorological adminis-
tration (CMA). The PAI of SC from 1961 to 2012 is calculated as:

= - ´( ) / 100%PAI P P P (26)

where  and  are precipitation and mean value.

Droughts level PAI (%)

Month Season Year

None [−40, ∞) [−25, ∞) [−15, ∞)

Mild [−60, −40) [−50, −25) [−30, −15)

Moderate [−80, −60) [−70, −50) [−40, −30)

Severe [−95, −80) [−80, −70) [−45, −40)

Extreme (− ∞, −95) (− ∞, −80) (− ∞, −45)

Table 1. Drought level definition based on PAI.

Because of difficulty to evaluate absolute droughts, the meteorological drought level was used
to estimate the drought severity. Table 1 shows the relationship between the PAI and mete-
orological drought level in three temporal scales of month season and year [80].

The drought frequency (DF) were defined as:
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= ´100%DF n N (27)

where n is the number of years of droughts, N is number of study years [81].

4.3. Correlate analysis between energy-water balance and ecosystem parameters

4.3.1. Correlation coefficient

Correlation coefficient method is used for studying the closeness relations of variables and is
described by a quantitative index which is called correlation coefficient. The calculation process
is simple and clear and the result is intuitional and easy to interpret, so the method is consid-
ered to be the best for analyzing long-term vegetation trends. When we study the interrelation
of a plurality of geographic features, and study the impact of certain factor on the other feature
without taking into account of other features, the correlation coefficient can be used. We chose
correlation coefficient as the quantitative indicator of evaluation relevant. The formula of
correlation coefficient is as follows [82]:

é ù- -ë û=
- -
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å å

n
i i

i=1

n n2 2
i i
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(X X)(Y Y)

(X X) (Y Y)
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where 𝀵𝀵𝀵𝀵 is the correlation coefficient of variable X and variable Y; n is the number of sample;X is the mean of variable X; Y is the mean of variable Y.

The significance test of correlation coefficient generally uses the t-test. The statistic calculation
formula is:

=
-
- 2

2
1xy

r nr r
(29)

where r is the correlation coefficient, n is the number of samples.

4.3.2. Principal component analysis

Principal component analysis (PCA) is a kind of multivariate statistical method. Through
orthogonal transformation converts, a set of possible correlation between variables convert to
a set of linear irrelevant variables which is called principal components.
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Principal component analysis is to investigate correlation among multiple variables. It was
used to study that how to reveal the internal structure among multiple variables by a few
principal components. Namely, a few principal components were derived from the original
variables and make them as much as possible to retain the information of the original variables
and unrelated to one another. Usually, in mathematical treatment, the linear combination of
the original index was regard as a new composite indicator. The classical approach is to use
the variance of F1 (first linear combination) to express. The bigger Var(F1) is, the more
information you gather F1 contains. Thus, the variance of F1 should be the biggest of all linear
combinations and F1 is the first principal component. The number of principal components is
decided by the quantity information that principal components represented [83].

5. Result and discussion

5.1. Climate change pattern of Southwest China

5.1.1. Land surface temperature

Taking Sichuan province as an example, the temperature increased from 1982 to 2010 (Figure
3). In regional terms, the temperature increased in 90.2% of the region in Sichuan province, in
addition to Batang County, Derong County and Xiangcheng County. In western Sichuan
region, Annual average temperature showed a rising trend, and it is very obvious in Jiuzhaigou
County, Li County, Mili Tibetan Autonomous County, Shiqu County and Leibo County, the
biggest increase among them is 1.89°C every 10 years. In eastern Sichuan, including Guan-
gyuan, Bazhong, Nanchong, Ziyang, Leshan, Luzhong and so on, temperature increased by
over 0.2°C every 10 years. The temperature rising trend in 76% of the region of the Sichuan
province are extremely significant or significant. The temperatures have a decreased of as much
as 1.25°C every 10 years in Batang County, Derong County and Xiangcheng County.

Figure 4 shows the change of mean temperature of Sichuan Province in four seasons from 1982
to 2010. It turns out the spatial distribution pattern changes of mean temperature at different
seasons are not significant. The changes of mean temperature in summer ranged from −6.59
to 22.06°C, the change ranged from −6.59 to 22.06°C in spring, from −6.59 to 22.06°C in autumn,
and from −6.59 to 22.06°C in winter. The mean temperature variations in winner is biggest
(30.746°C), and it in autumn is smallest (25.27°C).

Figure 5 shows the monthly mean temperature changes of time series from 1982 to 2010. As
can be seen from the Figure 5, the monthly mean temperature display cyclic variations under
this time series. It offered upgrade firstly than descending latter tendency. In June, July, August
and September, the temperature was higher and reaches a maximum in July and August. In
January, the monthly mean temperature is lower. The changes of every year were basically
similar, and they have certain periodicity with an obvious fluctuation. The fluctuation of the
highest temperature of each year is very small. A maximum of the highest temperature appears
in the June 2006 was 23.65°CA minimum of the highest temperature has an obvious fluctuation
ranged from 1.23(1984) to 4.28(1987).
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Figure 3. Gradient of the annual mean temperature of Sichuan Province.

Figure 4. Different seasonal mean distribution maps of Sichuan Province.
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Figure 5. Change curve of monthly mean temperature during 1982–2010.

Figure 6. Change curve of annual mean temperature during 1982–2010.

Figure 6 shows annual changes of the mean temperature from 1982 to 2010. The mean
temperature fluctuated between 12.48 and 13.90°C. The minimum of the mean temperature
occurred in 1992 and the maximum occurred in 2006. From 1982 to 2010, the annual mean
temperature was rising obviously which was consistent with global warming trends.

5.1.2. Precipitation

Taking Sichuan province as an example, we selected the monthly mean precipitation data of
nine weather stations from 1982 to 2010. As can be seen from Figure 7, the spatial distribution
of annual average precipitation was uneven in 29 years with descending from the east to the
west. Taking Songpan Country-Li Country-Kangding City-Jiulong Country-Yanyuan Country
as a boundary, the annual precipitation of the east of the boundary was abundant, and it is
more than 900 mm/a. Especially, the annual mean precipitation of Ya’an is more than 1200 mm/
a and ranked first in the whole province. The annual mean precipitation of most areas in the
west is not more than 800 mm. Among them, there is a very little rain in Shiqu country, less
than 600 m/a.
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As shown in Figure 8, the annual average precipitation was concentrated mostly in summer,
and there are obvious differences in the spatial distributions in different seasons. The spring
precipitation mainly concentrated in the central and eastern regions in Sichuan, and the
maximum precipitation was 311.55 mm. The precipitation in summer moves westward
concentrating in the central regions with the maximum precipitation of 859.68 mm. The scope
of autumn rainfall mainly concentrated in the central and southern Sichuan with uneven
spatial distribution. The maximum precipitation was 340.02 mm. The precipitation of most
regions in winter was low, and decreased from the west to the east.

Figure 7. Annual precipitation distribution map of Sichuan Province.

Figure 8. Different precipitation distribution maps of Sichuan Province in different seasons.
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Monthly mean precipitation changing trends in every years were basically the same, namely,
it offered upgrade firstly than descending latter tendency (Figure 9). In June, July, August and
September, the precipitation was higher and reaches a maximum in July and August. In
January, the monthly mean precipitation is lower. The precipitation change has certain
periodicity with an obvious fluctuation from 1982 to 2010. The maximum of annual highest
precipitation was 294.49 mm in 1984, and the minimum is 154.03 mm in 2006. The annual lowest
precipitation has no obvious fluctuation ranged from 2.86 to 15.71 mm. The monthly mean
precipitation had not a visible downtrend by 0.11 mm per decade.

Figure 9. Change curve of monthly mean precipitation during 1982–2010.

Figure 10 shows the changes of the annual precipitation from 1982 to 2010. The annual
precipitation showed obvious decreasing trend. The maximum of the annual precipitation
occurred in 1989 (1131.17 mm), and the minimum occurred in 2006 (812.84 mm). The precip-
itation changed in a wide range and had obvious fluctuations.

Figure 10. Change curve of annual precipitation during 1982–2010.
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5.2. Variability of ecosystem in Southwest China

5.2.1. Land cover change

We integrated remote sensing data and other correlative material to get the land use maps for
1980, 1990, 1995, 2000 and 2005 years (Figure 11). The maps included 18 land cover types: dry
land, paddy fields, low coverage grassland, medium coverage grassland, high coverage
grassland, sparse woodland, shrub land, woodland, other wood land, lakes, graff, reservoir
and pits, coast, beach, urban land, rural residential areas, construction land, waste land. As
can be seen from Figure 11, the main land use types were cropland, grassland, woodland.
Among them, paddy field and dry land were highly concentrated in Sichuan and Chongqing
and dry land accounted for a large proportion. There are only small numbers of them scattered
across the other region. The grassland, including low coverage grassland, medium coverage
grassland and high coverage grassland, were distributed mainly in Sichuan and Guizhou. The
woodland were mainly distributed at Yunnan and Guangxi.

The time series analysis on land cover indicated the whole change is not obvious with certain
changes on land use types during 20 years. High coverage grassland, woodland, urban land
and construction land increase, others decrease.

Figure 11. Distribution of land cover in 1980, 1990, 1995, 2000 and 2005.

5.2.2. Vegetation destruction and recovery

The normal differential vegetation index (NDVI) products MOD13A2 (d209-d225) were
obtained from the NASA website (ftp://e4ftl01.cr.usgs.gov/) at the same time from 2004 to 2010.
These data were used to analyze the vegetation destruction and recovery. As can be seen from
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Figure 12, NDVI is smaller in the northwest of Sichuan Province than other area in Southwest
China. Comparing 2006 with 2004, NDVI in southeast of Yunnan and Chongqing Province
changed significantly with a sudden drop, and it in other areas showed no obvious change. In
2008, the conditions had improved, NDVI in southeast of Yunnan and Chongqing Province
increased, but it in the northwest of Sichuan Province decreased. In addition, there is a large
scale of the decline of NDVI in the south-central part of Southwest China. NDVI in some
regions of northwest of Sichuan Province increased in 2010, and it decreased in the region near
the boundary of Sichuan and Chongqing Province. In general, NDVI in Southwest China
decreased from 2004 to 2010, especially in Sichuan Province.

Figure 12. Distribution of NDVI in 1980, 1990, 1995, 2000 and 2005.
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5.3. Energy-water balance and ecosystem response to climate change

5.3.1. Energy-water balance response: droughts analysis based on precipitation

The spatial distribution variability of the index of drought frequency (DF) of 12 months from
1961 to 2012 in SC is shown as Figure 13. Monthly DF has clear change in different months.
SC suffered from droughts in a large area in January, February, March, October, November
and December. As shown in Figure 13, Yunnan Province and Guangxi Province are severely
drought-afflicted areas. A drought pattern also appeared in the monthly variability of DF over
time. From January to March, central and eastern Yunnan Province, southwestern Sichuan
Province, and southern Guangxi Province experienced droughts (DF >40%) over large area. In
May, the drought area rapidly narrowed, and the area of DF >40% was located in a limited
extension of Yunnan Province. From June to September, the DF was low with a slightly increase.
The distribution of droughts was spread from east to west. In October, droughts began to occur
again in a large area, and the DF of eastern Guangxi Province and the DF of northwestern

Figure 13. Spatial distribution of the monthly DF in SC from 1961 to 2012.
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Yunnan Province exceeded 40 and 30%, respectively. From November, the drought area
increased rapidly. Half of study area is at a high drought risk. The DF of the entire Yunnan
Province in western SC is >40%. In December, the DF of most of the area of Yunnan Province
exceeded 50%, except in the limited extension of the central portion, which meaning that these
regions suffered droughts biyearly.

Figure 14. Spatial distribution of annual DF in Southwest China from 1961 to 2012.

To illustrate the spatial distribution of drought variability, the annual DF of SC from 1961 to
2012 was calculated. As shown in Figure 14, the annual droughts DF were scattered, in contrast
to the monthly scale. More than 61% of the area in SC had a relatively high DF (>15%), that is,
all of SC has been a region of high drought risk for more than half century. The southern and
eastern mountain zones have high drought frequency. In contrast, Sichuan Basin, which
occupies a large portion of the study area with relatively flat and fertile grounds, suffered fewer
droughts events.
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5.3.2. Ecosystem response: droughts analysis based on vegetation index

The vegetation index data were 1 km, 16 days composited MODIS EVI (MOD13A12), which
were downloaded from the NASA EOS Data Gateway (EDG) (http://modis.gsfc.nasa.gov/
index.php). To be consistent with monthly GRACE estimates, the days EVI product was
recomposited using the maximum value composite (MVC). The composited monthly EVI data
were then linearly interpolated to a 1 × 1 grid.

Droughts are common in Southwest China, and several episodes of potential severe droughts
were detected using temporal variability analysis of the GRACE TWS change. To evaluate
drought events in Southwest China from 2003 to 2013, three indicators were taken into account:
the PAI, the AVI and the annual cycle removed TWS (TWSI). To compute the TWSI, monthly
averaged GRACE TWS change data for 10 years were removed at each pixel. Using the
spatiotemporal variability analysis described above for the TWS, the precipitation, and the
EVI, we chose representative pixels from three regions for drought analysis. Figure 15 shows
the time series of the three droughts indicators between 2006 and 2012 when droughts were
likely to occur in Southwest China.

Figure 15. Time series of the TWSI, the PAI, and the AVI for selected pixels.

The correlation coefficients between EVI and precipitation were all more than 0.84 from 2003
to 2013, whereas they were 0.05, 0.07, 0.08 and 0.16 between PAI and AVI, respectively. The
low correlation coefficients between PAI and AVI imply that these two drought indicators
predict different water resources deficit conditions that accompany droughts. However,
correlation analysis showed that TWSI present low correlation with EVI, precipitation and
corresponding droughts indicators. Figure 15 shows that the occurrence and release of drought
AVI lagged behind PAI for 1–3 months and droughts of AVI were more severe than PAI. This
is because of the delay in recharge of surface and soil water from rainfall and the vegetation
growth. Both indicators mainly reflected water depletion in surface water and shallow soil
water. PAI and AVI were both invalid for detecting droughts. This was most obvious during
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the period from the end of 2011 to the beginning of 2012 in Figure 15, when the time series for
PAI and AVI had no extreme droughts and a normal and gentle amplitude fluctuation.
However, TWSI showed that Southwest China experienced great water resource decreases
during this period, which may have caused an extreme drought in 2006. Considering the
annual cycle of precipitation and vegetation growth and their relation to shallow water, the
TWS change mainly contributed to the discharge of groundwater to surface water, which
implied a drought risk.

6. Conclusion

Southwest China is an ecologically fragile area with more than 242 million populations. The
change of water-energy balance and ecosystem due to climate change will affect the regional
ecological and human living significantly. Our study of Southwest China in past 30 years shows
that ecosystem structures destroyed by shrinking of water ecosystem, forest ecosystem and
grass ecosystem, together with the precipitation reduction and temperature rise. In addition,
the climate changes also affected the artificial ecosystems such as crops land, which resulting
in food production mainly caused by frequently occurred severe droughts. Our research
showed that, even in the region with abundant water resources of Southwest China, energy-
water balance and ecosystem have severe response to climate change, which is significant to
human productions and activities of daily livings.
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Abstract

Over the past 50 years, human activities such as burning fossil fuels have released huge
quantities of greenhouse gases, which have trapped additional heat in the lower layers
of atmosphere, changed global climate and led to more intense and frequent weather
events. The overall health effects of climate change are likely to be extremely negative.
Climate change affects social and environmental factors related to health, such as drinking
water, food and shelter. It also imposes new disease and mortality on human populations.
Extreme high temperatures increase deaths from trauma, diabetes, mental disorders and
cardiovascular, respiratory and renal disease. As the number of weather‐related natural
disasters increase every year, these disasters result in more deaths and slams the basic
living need of people, mainly in developing countries. Intense rainfall and flood, ruin
agricultural  land, contaminate freshwater supplies,  increase the risk of  waterborne
diseases, and create breeding grounds for disease‐carrying insects and increase the
incidence of infectious diseases. All populations will be affected by climate change, but
some are more vulnerable than others. Areas with weak health infrastructure, low
socioeconomic status and elderly populations especially in developing countries will be
the least able to cope with the hazardous effects of climate change.

Keywords: climate variables, temperature, humidity, health, mortality

1. Introduction

Over the past 50 years, burning fossil fuels have released sufficient quantities of greenhouse
gases including carbon dioxide in the lower atmosphere to trap heat and affect global climate.
Average world temperature has increased about 0.85°C in the past 130 years, and the last three
decades has been warmer than decades before 1850 [1].
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These climate changes have made sea levels rise, glaciers melt and precipitation patterns
change. Climate change affects clean air, safe drinking water, sufficient food and secure shelter.
Rising sea levels destroy homes, medical and other facilities. More than half of the world’s
population lives within 60 km of the coastal line and they may be forced to move [1] and leave
their properties, which in turn can increase social displacement, mental disorders, unemploy‐
ment and crime rates.

Climate variable Unit Definition

Mean temperature °C The average temperature in the specified time frame

Maximum

temperature

°C The maximum temperature in the specified time frame

Minimum

temperature

°C The minimum temperature in the specified time frame

Apparent

temperature (AT)

°C AT combines temperature and humidity (and occasionally wind) into a single

index for the assessment of human comfort in the warm season. It can be

calculated in different ways [5]

Diurnal temperature

range (DTR)

°C The daily maximum temperature minus the daily minimum temperature within

1 day [4]

Wet‐bulb

temperature (Tw)

°C The temperature at which air becomes saturated by evaporation at constant

pressure [5]

Temperature

humidity index

(THI)

°F Is calculated as𝀵𝀵𝀵𝀵𝀵𝀵 𝀵 𝀵𝀵𝀵𝀵𝀵𝀵 + 𝀵𝀵) + 15
T and Tw are in degrees Fahrenheit [5]

Discomfort index – See temperature humidity index (THI) [5]

Humidex – Canada’s version of a comfort index is called the humidex (Hx) and is calculated

as𝀵𝀵𝀵𝀵 𝀵 𝀵𝀵 + 0.555(𑨒𑨒 𑨒𑨒 10)
where T is in degrees Celsius and e is in hPa [5]

Heat index (HI) – The HI is used to express summer comfort levels. It is based on a complex

multiple regression equation that combines T and RH. It is highly correlated

with both AT and THI [5]

Precipitation millimeter Water that falls to the ground as rain, snow, etc.

Heat/cold wave Extreme temperature ≥2 days [36]

Hot/cold wave

duration

The number of consecutive days on which the threshold was exceeded [34]

Heat/cold wave

number

The chronological number of a heat/cold wave in any given summer/winter [34]
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Climate variable Unit Definition

Relative humidity

(RH)

% The amount of water vapor present in air expressed as a percentage of the

amount needed for saturation at the same temperature [6]

Absolute humidity

(AH)

gram per cubic

meter

The water content of air at a given temperature [12]

Specific humidity Unitless or

expressed as

parts per

thousand

The ratio of the water vapor content of the mixture to the total air content on a

mass basis [12]

Mixing ratio Unitless or

expressed as

parts per

thousand

Mixing ratio is the mass of moisture per mass of dry air

Dew point

temperature (Td) 

°C When unsaturated air is cooled to saturation at constant pressure and without

changing the air’s moisture content that temperature is the dew point

temperature. Dew point depends on the air’s vapor pressure [5]

Dew point

depression

°C The difference between the temperature and dew point temperature at a certain

height in the atmosphere. For a constant temperature, the smaller the difference,

the more moisture there is, and the higher the relative humidity [5]

Vapor pressure millibars or

hPa (1 hPa = 

100 Pascals = 1 

mb)

The partial pressure exerted by water vapor in the atmosphere’s gaseous

mixture [5]

Table 1. Climate variables used in epidemiological research.

Extreme weather events are becoming more intense and more frequent [1]. The overall health
effects of a changing climate are likely to be severely negative. The number of weather‐related
natural disasters in the world has more than tripled since the 1960s. Every year, these disasters
result in deaths, mainly in developing countries [1].

Variables rainfall patterns and floods can contaminate freshwater supplies, heighten the risk
of waterborne diseases such as diarrhea and create breeding grounds for disease‐carrying
insects such as mosquitoes [1]. Climate change is also likely to decrease the production of
agricultural products in many regions, and this will increase malnutrition and undernutrition
[1].

Although thousands of years ago, Hippocrates suggested that climate has a wide range of
effects on human health [2], serious investigation about the effect of climate on health has just
happened in the recent 20 years and in light of robust scientific evidence about global climate
change. Now, some authors describe “Climate” as a key determinant of human health [3].
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Various effects of different climate variables including temperature, humidity, precipitation,
wind direction and speed; on human health have been investigated. Some of the variables used
in climate and health studies are summarized in Table 1.

Diurnal temperature range (DTR) is known as an important meteorological indicator. It shows
weather stability and authors think it is associated with global climate change and urbaniza‐
tion [4].

The proper humidity variable in epidemiological and environmental health research should
be selected based on the research questions. The most commonly used humidity variable is
relative humidity [5]. However, researchers think this variable has limited use, should be used
with caution and should be avoided in research about health conditions in which proximity
to saturation is not relevant [5]. Relative humidity varies as a function of both the air water
vapor content and air temperature; therefore, it is difficult to figure out which variable actually
relates to the dependent variable. The complexities associated with the relative humidity
variable may explain some of the contrary results of epidemiological studies about how
humidity influences health outcomes [5].

Variables that include thermal components, such as relative humidity, dew point depression,
and vapor pressure change severely by time of day and season [5]. Researchers should be
cautious in incorporating the daily or seasonal average of these variables in statistical models
as they do not represent the average moisture content of the air [5]. If the research question is
related to the degree of saturation, then relative humidity or dew point depression are
appropriate variables to use; but their dependence on daytime or changing weather situations
should be taken care of [5].

Water vapor mass‐based climate variables, such as specific humidity, absolute humidity,
mixing ratio, dew point temperature and vapor pressure, are often highly correlated [5] and
therefore should not be used simultaneously in statistical models. These variables are used
when the air’s actual moisture content is important [5].

Absolute (AH) and relative humidity (RH) are related to temperature. The hotter the air, the
more water it can hold and therefore a much higher AH is achievable in warmer weather.
However, the amount of water that cold air can carry is low, and therefore, the relative humidity
can get higher and it feels more humid in cold weather [6]. In high RH, sweat does not easily
evaporate because the air is pretty much saturated and temperature does not lose by sweating
[6].

If human comfort in hot environments is the research question, then wet‐bulb temperature or
apparent temperature is the best variable to work with [5].

Davis et al. [5] made the following recommendations for choosing the right humidity variables
in epidemiological research. First, the humidity variable should be chosen based on the
research question and primary health consideration. For example, specific humidity can be
used when the effect of atmospheric moisture content on disease is assessed. This variable
might also be important for studies on microbial or fungal disease and pulmonary diseases.
Apparent temperature can be used for studies about thermal stress such as heat shock or
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sudden cardiac death. Second, it is better to use several daily measurements (at least max and
min values) rather than one measure for humidity variables; especially, when working in
middle to high latitudes where there is large daily variation in humidity.

Researchers should also consider that the effects of climate variables can be modulated by other
factors, such as social development, infrastructure, socioeconomic status and human adapta‐
tion [2].

In this chapter, we try to summarize the main health effects of climate variables reported in
world studies.

2. Infectious diseases

Climate can determine the type of infectious diseases prevalent in different geographical areas,
whereas weather can affect the time and the intensity of infectious disease outbreaks [3].

Several infectious diseases have been found related to climate variables. The more popular
ones are listed below:

2.1. Malaria

Among different infectious diseases, the incidence of malaria, in particular, is generally
thought to increase because of climate change and global warming [7]. Other vector‐borne
diseases may increase or decrease, but they currently make much less victims than malaria [7].

Diseases, such as malaria, which are transmitted by mosquito vectors, are sensitive to mete‐
orological conditions. Excessive heat and cold kills mosquitoes. Malaria mosquitoes persist in
a range between 17 and 33°C [8]. In this range, warmer temperatures increase mosquito
reproduction and biting activity and the rate at which pathogens mature within them. For
example, at 20°C, falciparum protozoa take 26 days to incubate, but at 25°C, they develop in
13 days. Also, Anopheles mosquitoes live only several weeks and warmer temperatures permit
parasites to mature earlier, and the mosquitoes have more time to transfer the infection [3].

Temperature thresholds also limit the geographic range of mosquitoes. Transmission of
falciparum malaria occurs in geographical areas where temperatures exceed 16°C [3].

Studies from Kerman, Iran, showed that the most effective meteorological factor on the
incidence of malaria was temperature. As the mean, maximum and minimum of monthly
temperature increased, the incidence rate raised significantly and models showed that a 1℃
increase in maximum temperature in a given month was related to a 15 and 19% increase in
malaria incidence on the same and subsequent month, respectively. Other studies from other
world countries have also shown the effect of rising temperature in the incidence of malaria [9].

Dynamic models project that global warming will increase the transmission capacity of
mosquitoes some 100‐fold in temperate zones, and that the areas capable of sustaining
transmission will grow and include more world populations [3]. The reports show that malaria
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has returned to South Korea, parts of southern Europe and the former Soviet Union. Malaria
has also recolonized in the Indian Ocean, coastal province of South Africa, [3] many of these
changes in the pattern of diseases are indicative of long‐term warming and climate changes.
Similarly, climate warming and the resulting change in the length of seasons in the East African
highlands have led to an increased incidence of malaria [10].

Over the past century, intense precipitation (>5 cm over 24 h) has become more frequent, and
warming of land surface has apparently intensified the monsoons that are strongly associated
with mosquito and waterborne diseases in India and Bangladesh [3]. Several studies showed
a positive association between increases in malaria and relative humidity, which is often
positively correlated with precipitation [5].

In Gao et al.’s study, in Anhui Province, China, rainfall (rs = 0.48) had the highest relation with
malaria incidence. Malaria is a reemerging disease in this province, and rainfall is known as
an important meteorological factor in the reemerging of this disease in the region. In this study,
beside the effect of the same month’s rainfall on malaria transmission, rainfall in the earlier 2
months also influenced malaria incidence [9]. Intense precipitation has also been reported to
cause malaria outbreaks in Honduras (1998), Venezuela (1999) and Mozambique (2000) after
hurricanes, torrential rains and cyclones in South America and southern Africa [3]. Climate
change can allow diseases to invade immunologically naive populations with unprepared
medical and health‐care facilities [7].

However, very high rainfall can reduce mosquito populations by flushing larvae from their
habitat in water swamps [11]. Researchers have also documented the association of malaria
outbreaks with the El Niño Southern Oscillation(ENSO) cycle [11].

2.2. Yellow fever

Yellow fever is a climate‐related viral disease that has a high rate of mortality and is carried
by Aedes aegypti. Yellow fever is restricted by the 10°C winter isotherm and freezing kills Aedes
eggs, larvae and adults [3].

2.3. Dengue fever

Studies suggest that there is a direct relationship between global warming and dengue fever
[12]. Dengue fever is characterized by severe headaches and bone pain, and mortality occurs
in case of hemorrhagic fever and shock syndrome. It is carried by Aedes aegypti and is restricted
by the 10°C winter isotherm [3]. Climate change has helped dengue fever to spread into
northern Australia and Argentina [3] as many of these changes in the pattern of diseases
happened after long‐term warming. Extreme weather and especially intense precipitation
events after hurricanes have led to outbreaks of dengue fever in Honduras in 1998 and
Venezuela in 1999 [3].

Changes in temperature and rainfall may also affect the distribution of disease vectors in
dengue fever [2]. Researchers think that in the Asia‐Pacific region, El Niño and La Niña events
seem to affect the occurrence of dengue fever outbreaks [11].
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2.4. Leishmaniasis

Studies have indicated that climate variability may influence changes in the vector geograph‐
ical distribution as well as the density of the rodent reservoirs of leishmaniasis. In South
America, climate variability based on ENSO revealed a significant effect on leishmaniasis. Also
significant relationships were found between Mediterranean visceral leishmaniasis and
climatic factors in some studies [5].

A study from Tunisia found that for relative humidity above 57.8% and lagged by 2 months,
for each 1‐unit increase in relative humidity, the disease incidence significantly increases by
5%. This study also showed seasonality during the same epidemiologic year and intervals
between zoonotic cutaneous leishmaniasis (ZCL) epidemics ranging from 4 to 7 years.
Mathematical models showed that ZCL incidence raises by 1.8% (95% CI: 0.0–3.6%) when there
was 1‐mm increase in the rainfall lagged by 12–14 months, and by 5.0% (95% CI: 0.8–9.4%)
when there was a 1% increase in humidity from July to September in the same epidemiologic
year. The researchers think that higher rainfall is expected to result in the increased density of
plants that are food for Psammomys obesus (the reservoir rodent). Consequently, following an
increase in the population of this rodent, the pool of Leishmania major transmissible from the
rodents to blood‐feeding female sand flies increases and can lead to a higher probability of
transmission to humans over the next season [13].

2.5. Tick‐related diseases

Warm winters have been demonstrated to facilitate northern migration of the ticks that carry
tick‐borne encephalitis and Lyme disease [3]. There is now evidence of vector species re‐
sponding to recent climate change in Europe. For example, there has been latitudinal shifts in
ticks, which carry tick‐borne encephalitis in northern Europe [2]. Also tick‐borne encephalitis
has extended geographically in Sweden, and the tick vector of Lyme disease has spread in
eastern Canada [11]. Tick‐borne encephalitis in Sweden is likely related to warmer winters
over the past two decades. The geographic range of ticks that transmit Lyme disease and viral
encephalitis has extended to higher latitudes in Sweden and to higher altitudes in the Czech
Republic [11].

Changes in climate that can affect the transmission of vector‐borne infectious diseases include
temperature, humidity, rainfall, soil moisture and sea level rise [1]. Research is ongoing to
determine how these factors affect the risk of vector‐borne diseases. Examples of vector‐borne
diseases likely to be sensitive to climate change has been shown in Table 2.

Crimean–Congo hemorrhagic fever (CCHF) is another tick‐borne disease in Africa, Asia,
Eastern Europe and the Middle East. It is a viral hemorrhagic fever transmitted mainly through
tick bites and/or contact with blood and body fluids of patients (and/or infected animals).
Studies from Iran showed that climate variables including mean temperature, accumulated
rainfall and maximum relative humidity were significantly correlated with monthly incidence
of CCHF. The number of cases in warmer summers was higher than the cooler ones, and also
that the warmer the winters, the higher the number of cases [14].
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Vector Diseases

Mosquitoes Malaria, Filariasis, Dengue fever, Yellow fever, West Nile fever, Chikungunya fever

Sand flies Leishmaniasis

Triatomines Chagas disease

Ixodes ticks Lyme disease, Tick‐borne encephalitis

Hyalomma ticks Crimean‐Congo Hemorrhagic Fever (CCHF)

Tsetse flies African trypanosomiasis

Black flies Onchocerciasis

Snails Schistosomiasis

Table 2. Vectors and their related diseases that are likely to be sensitive to climate change [2, 14, 59].

The majority of cases of CCHF have been reported in Iran, Turkey and Bulgaria and correspond
closely with the months that the temperature is between 30 and 40°C and maximum humidity
is between 20 and 50% which is the favorite condition of the ticks. There are higher numbers
of reported CCHF cases in warmer seasons and seasons with low rainfall [14].

2.6. Diarrhea and gastroenteritis

Changes in temperature and rainfall may affect the incidence of diarrheal diseases [2]. In
tropical and subtropical regions with crowding and poverty, heavy rainfall and flooding
may trigger outbreaks of diarrhea [11] by contaminating fresh water resources.

In Brisbane, Australia, there was a statistically significant positive relationship between diurnal
temperature range (DTR) and diarrhea among children younger than five years. This effect
was the greatest at one‐day lag, with a 3% (95% CI: 2–5%) increase in emergency department
admissions per 1°C increment of diurnal temperature range. The relative risk increased rapidly
when DTRs were over 10°C [15]. Diarrheal diseases in Peru and Fiji have also accompanied
short‐term increases in temperature [11].

Ambient humidity has been reportedly associated with infectious enteritis. Studies in Japan,
Taiwan and Peru showed negative relationships between relative humidity and infectious
gastroenteritis [5]. Also similar relationships have been uncovered for rotavirus, another agent
causing enteritis in Australia [5].

2.6.1. Salmonella

Salmonella bacteria proliferate more rapidly at higher temperatures and in animal gut and
food [11]. Strong linear associations have been reported between temperature and notifications
of salmonellosis in European countries and Australia [11].

Some recent studies have provided evidence about associations between weather events and
the incidence of Salmonella. For example, studies have identified associations between average
temperature and the number of reported cases of Salmonella infection. However, coastal
communities may be more vulnerable because flooding events can contaminate their water
supply with bacteria. A study from the United States observed a 4.1% increase in salmonellosis
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of reported CCHF cases in warmer seasons and seasons with low rainfall [14].

2.6. Diarrhea and gastroenteritis

Changes in temperature and rainfall may affect the incidence of diarrheal diseases [2]. In
tropical and subtropical regions with crowding and poverty, heavy rainfall and flooding
may trigger outbreaks of diarrhea [11] by contaminating fresh water resources.

In Brisbane, Australia, there was a statistically significant positive relationship between diurnal
temperature range (DTR) and diarrhea among children younger than five years. This effect
was the greatest at one‐day lag, with a 3% (95% CI: 2–5%) increase in emergency department
admissions per 1°C increment of diurnal temperature range. The relative risk increased rapidly
when DTRs were over 10°C [15]. Diarrheal diseases in Peru and Fiji have also accompanied
short‐term increases in temperature [11].

Ambient humidity has been reportedly associated with infectious enteritis. Studies in Japan,
Taiwan and Peru showed negative relationships between relative humidity and infectious
gastroenteritis [5]. Also similar relationships have been uncovered for rotavirus, another agent
causing enteritis in Australia [5].

2.6.1. Salmonella

Salmonella bacteria proliferate more rapidly at higher temperatures and in animal gut and
food [11]. Strong linear associations have been reported between temperature and notifications
of salmonellosis in European countries and Australia [11].

Some recent studies have provided evidence about associations between weather events and
the incidence of Salmonella. For example, studies have identified associations between average
temperature and the number of reported cases of Salmonella infection. However, coastal
communities may be more vulnerable because flooding events can contaminate their water
supply with bacteria. A study from the United States observed a 4.1% increase in salmonellosis
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risk associated with a one‐unit increase in extreme temperature events, and this increase in
risk was more in coastal versus non‐coastal areas (5.1% vs. 1.5%). Also they observed a 5.6%
increase in salmonellosis associated with a one‐unit increase in extreme precipitation events,
and the effect was stronger in coastal areas (7.1% vs. 3.6%) [16].

Typhoid fever is a life‐threatening illness caused by the bacterium Salmonella typhi. In February
2000, after torrential rains and a cyclone‐inundated large parts of southern Africa and Mo‐
zambique, typhoid spread in the area [3].

2.6.2. Cholera

Studies have shown that cholera bacteria proliferate more rapidly at higher temperatures and
in water [11]. Intense precipitation has been reported to cause outbreaks of cholera after
hurricanes in Honduras in 1998, and after torrential rains and a cyclone in Mozambique in
2000 [3]. It is possible that increases in the rate of coastal outbreaks of cholera are also related
to the warming of coastal waters and El Niño events [17].

A study from Iran showed that the incidence of cholera was significantly related to higher
temperature and humidity and lower precipitation. Cholera epidemics are most likely to occur
in hot seasons and in countries with more than one hot season, several cholera epidemics are
likely each year. The significant relationship reported between the incidence of cholera and the
lack of precipitation in Iran may be due to the fact that drought leads to the use of unsafe water
[18].

2.7. Tuberculosis (TB)

In some countries, the highest incidence of diagnosed tuberculosis (TB) was in spring.
Although the exact mechanism of this seasonal pattern is not well understood, there is a
possibility that factors, such as temperature, humidity and sunlight, are related to TB incidence.
Some researchers hypothesize that since winter is a cold season and people live in closed
environments during winter; thus, transmission of TB happens in winter, and eventually, the
symptoms and diagnosis happen in spring [19, 20].

A study from Kerman, Iran, reported that the incidence of TB increased in warm months, and
for each one‐unit C increase in temperature, the risk of TB increased 1.03 times. Also relative
humidity with one‐year lag had a reverse association with TB [21].

2.8. Hand, foot and mouth disease (HFMD)

HFMD is a common viral illness that usually affects children under 5 years old. Symptoms
include fever, mouth sores and skin rashes. A study in China found that the commonly hot
days positively affected the hand, foot and mouth disease (HFMD) burdens with the relative
risk (RR) peaking at around 6 days of lag. The RR of HFMD in the Pearl River Delta Region
was generally higher and persisted longer than that in the remaining developing areas [22].
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2.9. Melioidosis

Melioidosis is an infectious disease that can infect humans and is caused by the bacterium
Burkholderia pseudomallei. It is predominately a disease of tropical climates, especially Southeast
Asia and northern Australia. The bacteria causing melioidosis are found in contaminated
water and soil. It is spread to humans through direct contact with the contaminated source.
Symptoms and signs of melioidosis can be mild, but severe manifestations such as bacteremia,
organ abscesses and severe pneumonia can lead to death. Researcher found a significant
correlation of melioidosis cases in Singapore with higher rainfall and, to a lesser degree, with
higher humidity levels [23].

2.10. Other

Studies suggest a direct relationship between global warming and schistosomiasis [7]. Inter‐
annual and especially ENSO‐related variations in climatic conditions in Australia have been
reported to affect outbreaks of Ross River virus disease [11]. Climate also effects hantavirus
pulmonary syndrome (HPS) and West Nile virus (WNV) [3].

3. Mortality

Normal human body temperature is maintained by the hypothalamus and is 36.1–37.8°C.
When the environmental temperature exceeds the regulatory capacity of the hypothalamus,
this can exert substantial stress on body organs [24].

Several world studies have shown that extreme temperatures can increase mortality. These
graphs generally have the shape of a U, V or J and show an increase in mortality beyond a
specific threshold temperature [24]. In most of these studies, a minimum mortality temperature
(TMM) or a comfort range, in which the least number of mortality per unit of time happens, has
been reported.

In Greater Beirut, the TMM was 27.5°C and 1°C rise in temperature yielded a 12.3% increase
(95% CI: 5.7–19.4%) and 1°C drop in temperature caused 2.9% increase (95% CI: 2–3.7%) in
mortality [25]. The TMM in other world cities can be seen in Table 3.

Although temperature itself can effect mortality through physiological routes; low income,
lack of air conditioning, poor access to transport, poor education, unhygienic microenviron‐
ments and older age have been recognized as risk factors which increase vulnerability to heat
and cold [25]. Studies have shown that heat waves increase mortality more in vulnerable
populations, such as elderly people, especially women, mentally ill people, children, those in
thermally stressful occupations or people with preexisting illness [11].

It is very likely that climate change will lead to more frequent heat waves. Excess deaths were
reported in England, Wales and France during the 2003 heat wave and caused a public health
crisis. Much of the mortality from heat waves is due to cardiovascular, cerebrovascular and
respiratory causes and happens more in the elderly [2].
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Some researchers have mentioned a phenomenon called “urban heat island effect,” which
refers to urban centers with temperatures being somewhat higher than the surrounding
suburban and rural areas [2]. Some inner urban environments have high thermal mass and
low ventilation, which absorbs and retains heat and amplifies the rise in temperatures,
especially overnight [11]. The impact of extreme heat on human health may also be exacerbated
by increases in humidity [2].

Populations are likely to acclimatize to climate change through a range of behavioral, techno‐
logical and physiological adaptations. However, infrastructural changes are likely to happen
much slower, especially in developing countries [2].

The temperature–mortality relation varies greatly by latitude and climatic zone. People in
hotter cities are more commonly affected by low temperatures, and people in colder cities are
more affected by high temperatures. Other factors such as housing that may provide poor
protection against cold or heat can cause higher excess winter mortality than expected [11].
However, cold also shows its deadly effect through infectious diseases such as influenza in
elderly people or respiratory syncytial virus in infants [11].

City Latitude TMM (°C) Shape of curve

Salvador, Brazil [26] 12.97 S 23 J

Bangkok, Thailand [26] 13.75 N 29 J

Chiang Mai, Thailand [26] 18.79 N 19–28 U

Mexico City, Mexico [26] 19.43 N 15–18 Wide U

Taishan, China [8] 22.25 N 25.7 J

Zhuhai, China [60] 22.27 N 25.9 J

Shenzhen, China [29] 22.55 N 33 J

Guangzhou, China [60] 23.13 N 26 J

Sao Paulo, Brazil [26] 23.55 S 21–23 Wide U

Taipei, Taiwan [27] 25.03 N 25.2–31.5 Asymmetric V

Nanxiong, China [8] 25.11 N 24 J

Monterrey, Mexico [26] 25.66 N 17–31 Asymmetric U

Miami, USA [25] 25.77 N 27.2

Tampa, Florida, USA [61] 27.96 N 27.1

New Delhi, India [26] 28.61 N 19–29 J

Chongqing, China [29] 29.55 N 34 J

Shiraz, Iran [41] 29.61 N 20–25 J

Kerman, Iran [40] 30.28 N 21.1–25.1 Wide J

Jacksonville, Florida, USA [61] 30.33 N 24.8

Shanghai, China [38] 31.20 N 28 Reversed J

Nanjing, China [29] 32.05 N 35 J
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City Latitude TMM (°C) Shape of curve

Santiago, Chile [26] 33.45 S 16 Wide U

Tehran, Iran [40] 33.69 N 28.5

Beirut, Lebanon [25] 33.88 N 27.5 Wide asymmetric V

Cape Town, South Africa [26] 33. 92 S 17 Wide U

Tokyo, Japan [27] 35.68 N 29.4–30.8 V

Seoul, South Korea [27] 37.56 N 30.1–33.5 Asymmetric V

Seoul, South Korea [24] 29.5 J

Athens, Greece [35] 37.58 N 22.7–25.7

Baltimore, USA [25] 39.28 N 21.4

Valencia, Spain [25] 39.46 N 15 (winter),
24 (summer)

Beijing, China [27] 39.91 N 31.3–32.3 J

Beijing, China [38] 25 U

Castile‐La Mancha,
Spain [34]

40.10 N 37

Boston, USA [25] 42.36 N 21

Sofia, Bulgaria [26] 42.70 N 16 J

Christchurch, New
Zealand [40]

43.53 S 20.5

Bucharest, Romania [26] 44.42 N 22 Wide U

Harbin, China [29] 45.75 N 29 J

Ljubljana, Slovenia [26] 46.05 N 17 J

Kings County,
Washington, USA [30]

47.47 N seems like
22.1

J

London, UK [35] 51.50 N 19.3–22.3

Holland [25] 52.31 N 16.5

North Finland [35] 67 N 14.3–17.3

Table 3. The reported minimum mortality temperature, latitude and the shape of the mortality curve, in different
world cities sorted based on latitude.

McMichael et al. estimated the temperature threshold below which cold‐related mortality
begins to increase, to range from 15 to 29°C, and the threshold for heat‐related deaths to range
from 16 to 31°C in different world cities. These researchers found heat thresholds were
generally higher in cities with warmer climates, but cold thresholds were unrelated to climate
[26]. Other researchers have reported lower latitude cities to have higher threshold tempera‐
tures [27]. The reported minimum mortality temperature for some world cities, sorted by
latitude, has been shown in Table 3.
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A meta‐analysis showed that the effect of cold on mortality were delayed and lasted at least
10 days, whereas heat effects appeared quickly and lasted usually only 3–4 days. Interestingly,
despite widely ranging climates, the TMM were close to the 75th percentile of temperature in
all 12 countries/regions studied in the meta‐analysis, suggesting that people have probably
adapted to their local climates [28]. This finding is consistent with TMM in communities with
colder climates being lower than in communities with warmer climates [28].

In China, associations between daily maximum temperature and daily mortality from all‐
causes were observed in different cities, with increases in 3.2–5.5%, with each 1°C increase in
the daily maximum temperature over the threshold. Also a stronger temperature‐associated
mortality was detected in females and adults over 30 years [29]. Isaksen et al. [30] in King
County, Washington, showed that heat, expressed as humidex, is associated with increased
mortality and that the risk increases with heat’s intensity.

In China, researchers also observed statistically significant associations of DTR with total,
cardiovascular and respiratory mortality in most cities in the full year and in cool seasons.
However, few significant results were found in warm seasons. The researchers think that wide
DTR might be a source of additional stress on the cardiorespiratory systems in low tempera‐
tures, and this stress might have more detrimental effects in older people and those with
underlying cardiovascular disease [31]. Increase in mortality with increase in DTR was also
seen in other Chinese cities and a multicity study in Korea. Researchers have suggested that
the consistency in the literature shows the association of DTR with mortality are not likely to
be substantially changed by geography, climate, population, publication bias or model
specifications [31].

A study from a coastal city in India showed a clear effect of ambient heat in the increase in all‐
cause mortality and suggested that heat index has a stronger effect than maximum temperature
on mortality. This study also showed an inverse relationship between mean mortality and
relative humidity [32].

In a high plateau area in southwest China, risk assessments showed a strong increase in
mortality starting at a DTR of approximately 16°C. The risk of mortality with extreme high
DTR was greater for males and aged under 75 years. Researchers suggested that DTR of 16°C
may be a good cutoff point for epidemiological mortality studies [4].

Researchers in Australia found that winters that were colder or drier had significantly
increased death risks in most cities, whereas warmer or more humid summers did not increase
the risk of death. The strongest increase in deaths for a colder winter was in Brisbane, the city
with the warmest climate and the mildest winter. This again shows that warmer cities are more
vulnerable to cold. Also, studies have showed that drier winters are associated with more
influenza outbreaks [33].

Linares et al. [34] in Spain found that the variable, heat wave duration, was of major importance
in mortality. The significant lags between temperature and mortality during heat waves range
from 0 to 6 days. But for cold waves, this impact was extended to 12‐day lag for respiratory
deaths [34].
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The variable, relative humidity, is usually present in mortality models with a negative sign
showing inverse association and is thought to reduce the effect of heat and cold on mortality.
Some researchers think that it is preferable to address temperature and relative humidity
separately in epidemiological studies, especially when it comes to defining heat and cold waves
and estimating their effect [34]. However, in Shanghai, Philadelphia and Sydney extreme
maritime tropical (warm and moist) air mass was associated with high mortality, indicating
that extreme humidity may be as dangerous as extreme temperature [5].

Researchers have reported that the TMM in different world cities correlates with the latitude.
Others have mentioned that TMM varies with temperature of the place and humans adapt to
local climatic conditions. In France, 80% of TMM variance was accounted for by the mean
summer temperatures (MST), and TMM was highest in the southern parts of France [35].

In Australia, pooled data show that the relative risk of mortality started to increase around the
95th percentile of temperature, increased sharply at the 97th percentile and rose alarmingly at
the 99th percentile. These researchers think that tiered health risk‐based metrics should be
performed to define a heat wave [36].

A study about infant mortality in California showed that the excess mortality risk was 4.4%
per 5.6°C increase for average of same day and a previous 3‐day apparent temperature. The
associations for apparent temperature were highest for black infants. This study suggested
that infants were also a vulnerable subgroup to heat exposure [37].

3.1. Cardiovascular disease and mortality

In China, strong associations between daily maximum temperature and daily mortality from
cardiovascular causes were observed in different geographical cities, with increases in 4.6–
7.5% with each 1°C increase in the daily maximum temperature over the threshold [29].

In Beijing, people with hypertensive disease were susceptible to both extremely low and high
temperatures, and in Shanghai, people with ischemic heart disease showed greater suscepti‐
bility to extremely cold days [38]. Some studies have documented an association between mean
temperature and humidity variations, and the number of visits to the emergency departments
for atrial fibrillation [10].

In East Asia, heat waves had the strongest effects on cardiovascular deaths, which was (8.8,
95% CI: 5.5–12.2) [27]. In Washington State, statistically significant results were found for
circulatory (9%) and cerebrovascular (40%) deaths and heat in all ages [30] and stratifying by
age, and statistically significant increases in mortality risk on hot days were found for the 65–
84 age group, in cerebrovascular (37%), and in the 85+ age group, in circulatory (18%),
cardiovascular (17%), and cerebrovascular (53%) mortality [30].

In China per capita years of education (as an indicator of economic status), percentage of
population over 65 years and percentage of women had direct impact on cold‐related cardio‐
vascular mortality in populations. Also number of hospital beds (as an indicator of the
availability of medical resources), percentage of population engaged in industrial occupations,
and percentage of women showed direct impact on heat‐related cardiovascular mortality [39],
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which confirms that socioeconomic factors can alter the effect of climate variables on cardio‐
vascular mortality.

Gender also shows a different impact at low and high temperatures. Men tend to have a higher
risk at low temperatures, whereas women tend to have higher risk at high temperatures [39].

A study from Kerman, Iran, showed increases in daily mortality from cardiovascular diseases
as temperature decreased. Also significant correlations were observed between cardiovascular
mortality and temperature, and the maximum correlations for cardiovascular deaths were on
lag 0–lag 3. For each 1°C decrease in temperature, cardiovascular deaths showed a 0.6%
increase [40], but no increase in cardiovascular mortality was detected with increased tem‐
perature, which is probably related to acclimatization. In Shiraz, Iran, the minimum number
of cardiovascular deaths happened at 20°C. Drops in mean monthly temperature were
significantly associated with increased 18‐ to 60‐year‐old cardiovascular deaths that happened
one month later [41].

3.2. Respiratory disease and mortality

There is epidemiological evidence that shows influenza‐related morbidity and mortality peaks
2–3 weeks after falls in AH. Also, in vitro experiments have shown improved survival of the
influenza virus at lower AH levels [6]. Extremes can be hazardous for health in many other
indirect ways as well. Prolonged droughts fuel bush fires that release hazardous respiratory
pollutants [3].

In Korea, above a threshold temperature of 29.5°C, a rise in temperature of 1°C resulted in an
increase in death from respiratory conditions (RR 1.02; 95% CI: 1–1.04). There was also an
increased risk of death from asthma (RR 1.05, 95% CI: 1.01–1.11) [24].

In Hong Kong, cold temperature and rainfall was associated with most influenza epidemics;
but, relative humidity and absolute humidity did not show much contribution to epidemics
[42]. This effect may be due to prolonged survival of viral particles under colder conditions or
enhance crowding and indoor activities that would increase contact, aerosol and droplet
transmission [42].

Some studies have shown that rainfall could be a predictor to forecast influenza infection for
subtropical and tropical regions, but not in all temperate regions. One plausible mechanism is
that rainfall could increase indoor activities, and therefore influence the number of contacts
and the risk of exposure to infected individuals [42].

A study from Turkey reported that some meteorological parameters such as wind direction,
air temperature and atmospheric pressure were related to the incidence of pulmonary
embolism. But no relation was found between unprovoked pulmonary embolism(PE) cases’
monthly distribution and pressure, humidity or temperature. However, there was a statisti‐
cally significant positive correlation between provoked PE cases and air temperature [43]. The
relation between PE and hot temperature may be related to dehydration or people traveling
in cars for longer distances [43]. In a study about temperature and infant mortality, white
infants had an elevated risk for deaths from respiratory causes [37].
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Climate‐related events including heat waves and extreme meteorological events can increase
the frequency of acute cardiorespiratory events due to higher concentrations of ground level
ozone, changes in particle pollution, altered spatial and temporal distribution of allergens
(pollens, molds, and mites), and some infectious disease vectors. These events will not only
aggravate the condition of those with current respiratory disease and asthma but also increase
the incidence and prevalence of allergic respiratory conditions [44].

Weather can affect asthma directly, by acting on airways, or indirectly, by influencing airborne
allergens and pollutant levels. Cold air temperature can aggravate asthmatic symptoms [44].
There is evidence that, during pollen season, thunderstorms can be associated with asthma
outbreaks or acute respiratory disease outbreaks [44, 45].

Some studies have reported higher barometric pressure, more hours of sunshine and lower
humidity in winter to be associated with an increase in chronic obstructive pulmonary disease
(COPD) exacerbations, implying that warm and dry high pressure systems were associated
with COPD anomalies. Studies from Trinidad showed that in warm, wet climates incidence of
asthma increased with higher relative humidity in the wet season. Conversely, a study from
Japan demonstrated an association between low relative humidity and hospital admissions
for pediatric asthma. The other indirect effects of humidity in respiratory disease include its
role in promoting the increasing mold and mites [5]

In many world countries, low humidity levels were found to precede the onset of increased
winter time influenza‐related mortality by several weeks. Low humidity probably impacts on
virus stability and viability, host susceptibility and human behavior [5].

A study from Australia about pediatric emergency department visits showed that high
temperatures had a significant impact on pediatric diseases, including chronic lower respira‐
tory diseases. Low temperatures were also significantly associated with respiratory diseases
[46].

A study from Kerman, Iran, showed increases in daily mortality from respiratory diseases as
temperature decreased. This relation reached a maximum after a 26‐day lag. In this study, for
each 1°C decrease in temperature, respiratory deaths showed an average of 2.5% increase [40].
In Shiraz, Iran, the minimum number of respiratory deaths happened in 25°C. Mean monthly
temperature was inversely and significantly associated with total and female respiratory
deaths on the same month and with total, male and female respiratory deaths that happened
one month later [41].

4. Premature delivery

In the United States, ambient temperature was significantly associated with preterm birth, and
regardless of their maternal demographic characteristics or baby gender, each 5.6°C (10° F)
increase in weekly average apparent temperature (with lags up to one week), caused an 8.6%
increase (95% confidence interval: 6.0, 11.3) in preterm delivery. Preterm delivery has many
etiologies, but one possible explanation for its relation with heat is increased dehydration with
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the incidence and prevalence of allergic respiratory conditions [44].

Weather can affect asthma directly, by acting on airways, or indirectly, by influencing airborne
allergens and pollutant levels. Cold air temperature can aggravate asthmatic symptoms [44].
There is evidence that, during pollen season, thunderstorms can be associated with asthma
outbreaks or acute respiratory disease outbreaks [44, 45].

Some studies have reported higher barometric pressure, more hours of sunshine and lower
humidity in winter to be associated with an increase in chronic obstructive pulmonary disease
(COPD) exacerbations, implying that warm and dry high pressure systems were associated
with COPD anomalies. Studies from Trinidad showed that in warm, wet climates incidence of
asthma increased with higher relative humidity in the wet season. Conversely, a study from
Japan demonstrated an association between low relative humidity and hospital admissions
for pediatric asthma. The other indirect effects of humidity in respiratory disease include its
role in promoting the increasing mold and mites [5]

In many world countries, low humidity levels were found to precede the onset of increased
winter time influenza‐related mortality by several weeks. Low humidity probably impacts on
virus stability and viability, host susceptibility and human behavior [5].

A study from Australia about pediatric emergency department visits showed that high
temperatures had a significant impact on pediatric diseases, including chronic lower respira‐
tory diseases. Low temperatures were also significantly associated with respiratory diseases
[46].

A study from Kerman, Iran, showed increases in daily mortality from respiratory diseases as
temperature decreased. This relation reached a maximum after a 26‐day lag. In this study, for
each 1°C decrease in temperature, respiratory deaths showed an average of 2.5% increase [40].
In Shiraz, Iran, the minimum number of respiratory deaths happened in 25°C. Mean monthly
temperature was inversely and significantly associated with total and female respiratory
deaths on the same month and with total, male and female respiratory deaths that happened
one month later [41].

4. Premature delivery

In the United States, ambient temperature was significantly associated with preterm birth, and
regardless of their maternal demographic characteristics or baby gender, each 5.6°C (10° F)
increase in weekly average apparent temperature (with lags up to one week), caused an 8.6%
increase (95% confidence interval: 6.0, 11.3) in preterm delivery. Preterm delivery has many
etiologies, but one possible explanation for its relation with heat is increased dehydration with
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heat exposure, which may decrease uterine blood flow and increase pituitary oxytocin to
induce labor [47].

In Spain, when maximum apparent temperature exceeded the 90th percentile, the risk of
preterm birth increased up to 20% after 2 days, and when minimum temperature rose to the
90th percentile, it increased by 5% after a week [48]. Exposure to moderately high temperatures
during late pregnancy might be associated with an increase in risk of preterm birth [49].

In Rome and Barcelona, increase in maximum apparent temperature (MAT), especially in the
second half of the second trimester, increased the risk of preterm and particularly early preterm
births [50].

5. Diabetes, endocrine and metabolic diseases

Some researchers have suggested that climate change may be related to increase in type 2
diabetes [51].

Studies have reported significant associations between increases in daily endocrine and
metabolic diseases mortality with increase in the daily maximum temperature above the
threshold. Mortalities for diabetes were also significantly associated with temperature. The
increased mortality for every 1°C increase in the daily maximum temperature over the
threshold for endocrine and metabolic outcomes, and particularly diabetes, was 12.5–31.9%
and 14.7–29.2% [29]. Statistically significant increases in post‐heat exposure diabetes‐related
mortality in the 45–64 age group in the United States suggests that underlying health status
may contribute to these risks [30].

In a study about pediatric emergency department visits in Australia, high temperatures had
a significant impact on endocrine and metabolic pediatric diseases, whereas low temperatures
were also significantly associated with endocrine, nutritional and metabolic diseases [46].

Although congenital hypothyroidism was reported to have a seasonal pattern in some parts
of the world, a recent study did not find a significant pattern [52].

6. Mental diseases

Extremes of temperature and rainfall, such as heat waves, floods and drought, have both direct
immediate effects such as mortality, and indirect longer term effects. For example, populations
that have survived severe floods and drought may suffer from sustained increases in common
mental disorders [2].

In a study about the effects of extreme heat in mortality in the United States, statistically
significant results were found for mortality related to mental disorders which showed a 43%
increased risk [30].

Climate Parameter Variability and Health
http://dx.doi.org/10.5772/64955

95



7. Injuries and trauma deaths

Extreme events such as floods can cause injuries, deaths and other sequelae [11]. A study from
Iran showed that the overall mortality caused by trauma was higher in the warm season, and
the highest significant correlation between unintentional trauma deaths and temperature was
seen in ages over 60 years (r = 0.301). Also, an inverse significant correlation was observed
between the unintentional trauma deaths and humidity and was again highest in the over 60‐
year age group (r = ‐0.336). The authors think these results may be attributed to increase in
activity or travelling in warm seasons and increased risk of unintentional injuries, such as
traffic accidents, falls, drowning and heat exhaustion. Also, older people tolerate hot environ‐
ments less than others [53].

Some studies have shown a peak in suicide rates during the spring season, and attributed it to
increased temperatures; and others showed no relation between suicide and temperature.
Some authors have regarded pollen as an important seasonal aeroallergen that may act as
trigger for suicide [53]. However, suicide can be related to many other important socioeco‐
nomic factors that have to been considered in these studies. Some researchers have commented
that suicide is a complex, phenomenon driven by not only biological factors but also interac‐
tions between individuals and their environments, and weather variables may only increase
the risk [53].

In a study about the effects of extreme heat on mortality in the United States, statistically
significant results were found for accidental deaths [30].

8. Parkinson’s disease

In Spain, a study about the effect of heat waves on Parkinson’s disease (PD) mortality and
morbidity showed that at a maximum daily temperature of 30°C, PD‐related admissions were
at a minimum. But starting at a temperature of 34°C, the number of admissions increases with
temperature. Researchers concluded that suffering from PD is a risk factor for excess morbidity
and mortality associated with high temperatures [54].

9. Multiple sclerosis

A study from Kerman, Iran, showed that the highest number of hospital admissions for
multiple sclerosis happened in spring and winter, and this seasonal pattern was more pro‐
nounced in women. Researchers think that the seasonal‐related hospital admissions are
probably related to climate variables or seasonal infectious diseases [55].

Other researchers have found that the disease prevalence is lower in warmer climates, which
enjoy more sunshine; also as latitude and distance from the equator increases, the prevalence
of MS increases as well. Others have shown that the prevalence is less in people with sun burns
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or those who have high levels of vitamin D [55]. However, more research about the role of
climate variables in the incidence of MS is needed as some studies have not shown these
relations.

10. Allergic diseases

Climate change may change the timing and duration of the pollen and spore seasons and the
geographic scope of these aeroallergens, affecting allergic disorders such as hay fever and
asthma [11].

Meteorological events can alter the onset, spatial and temporal distribution and the duration
and intensity of allergens such as pollens, molds and mites. Therefore, the onset, duration and
intensity of the pollen may also vary from year to year. Weather variables are among the main
factors affecting phenology and pollen production by plants [44].

Different climate variables influence the daily fluctuations in the amount of pollen. The more
important variables are temperature, rainfall and duration of sunshine. At least 10 weather
elements are thought to affect the concentration of pollen, which are temperature, rainfall,
average wind speed, relative humidity, maximum temperature, minimum temperature,
temperature range, continued rainfall hours, accumulated sunshine hours and accumulated
mean temperature [44].

When conditions are good for pollination (ripe anthers, low humidity and warm temperature),
anthers open and release pollen. If the favorable weather conditions arrive early, ripe anthers
will release less ripe pollen with less allergen. Otherwise, if weather is non‐favorable and
anthers do not open until later, riper pollen with more allergens are released [44].

These events can increase the incidence and prevalence of allergic‐related conditions [44].
Thunderstorms can also induce attacks of severe asthma and are a common cause of epidemics
of asthma attacks requiring Emergency Department visits [44]. Thunderstorm‐related asthma
has happened in England, Canada, Mexico, Australia, Italy [44] and Iran [45].

11. Renal problems

A US study on older adults showed that risks of hospitalization for fluid and electrolyte
disorders, renal failure, urinary tract infection, septicemia and heat stroke were statistically
significantly higher on heat wave days. For fluid and electrolyte disorders and heat stroke, the
risk of hospitalization increased during more intense and longer lasting heat wave periods.
Risks were generally highest on the heat wave day but remained elevated for up to five
subsequent days [56].

Another US study showed statistically significant increased mortality risk associated with
extreme heat from nephritis and nephrotic syndromes [30]. In South Korea, a significant heat‐
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associated increase in the RR of mortality from genitourinary conditions was observed. This
shows that patients with preexisting chronic conditions may be more susceptible to high
ambient temperatures [24].

Kidney stones have also been inversely linked to relative humidity in a few studies [5]. A
study showed that extraterrestrial radiation, isothermality, annual mean temperature (AMT)
and precipitation seasonality were significant predictors of urolithiasis prevalence in Iran,
and urolithiasis is more prevalent in the south of Iran, which has a warmer climate. High
temperatures can result in increased urinary concentration and low urinary volume due to
excessive sweating, which can increase in the concentration of relatively insoluble salts that
turn into stones. Some authors have indicated a strong relationship between annual mean
temperature (AMT) and stone prevalence and predicted that cases of nephrolithiasis will
increase due to the global warming [57].

12. Environmental toxins

Studies about climate change have found out that ocean warming around the Faroe Islands
has facilitated the methylation of mercury and its subsequent uptake by fish. Researchers
think that methyl mercury concentrations in fish will increase by 3–5% for a 1°C rise in
water temperature. Eating methyl mercury‐contaminated fish has harmful effects for
humans and also impairs fetal/infant neurocognitive development [11, 58].

The severe effects of climate change and global warming on human populations suggest
that actions should be taken to reduce its burden on human populations. All populations
will be affected by climate change, but some are more vulnerable than others. Countries
with weak health infrastructure, mostly in developing countries will be the least able to cope
with climate change [1].

Many policies have the potential to reduce greenhouse gas emissions. For example, promoting
clean energy, the safe use of public transportation and physical activity can reduce carbon
emissions [1]. Carbon taxation has also been implemented in some developed countries.
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Abstract

Mathematical  modelling  is  one  of  the  most  powerful  methods  for  the  study  and
understanding  of  the  Earth’s  climate  system and its  components.  Modern  climate
models used in variety of applications are derived from a set of multi-dimensional non-
linear differential equations in partial derivatives, which describe dynamical, physical
and chemical processes and cycles in the climate system. Climate models are mostly
deterministic  with  a  large-phase  space  dimension  containing  a  vast  number  of
parameters that have various meanings. Most of them are not well-known a priori and,
hence, are not well defined. Parameter errors and their time and space variabilities
generate parametric uncertainty. Some model parameters describe external forcing that
can strongly influence the climate model behaviour. It is, therefore, very important to
estimate the influence of variations in parameters on the model behaviour and results
of simulations. Questions like these can be answered by performing sensitivity analysis.
This chapter considers various methods of sensitivity analysis that can be used: first, to
estimate  the  influence  of  model  parameter  variations  on its  behaviour;  second,  to
identify parameters of climate models and third, to study the model response to external
forcing.

Keywords: climate, dynamical systems, sensitivity analysis

1. Introduction

One of the biggest issues facing humanity today is the observed ongoing global climate
change. Consequently, the prediction of future climate as well as changes in climate due to
changes in natural processes and human-caused factors (e.g. greenhouse gas emissions) are
issues  that  have  deservedly  received  significant  attention.  The  essential,  powerful  and
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effective methodology for solving this class of problems is computational simulation of the
Earth’s climate system (ECS) and its components with the use of mathematical climate models
that can range from relatively simple to fairly complex. Over the past several decades, the
use of climate models as an aid in the understanding past, present and future climates has
been substantial. The ECS is a natural, extremely complex, large-scale physical system that
includes the atmosphere (the Earth’s gaseous envelope),  hydrosphere (oceans, rivers and
lakes), land surface, cryosphere (ice and snow) and finally the biosphere together with lots
of  natural  and anthropogenic  cycles  (e.g.  water  cycle,  carbon and nitrogen cycles).  It  is
important that the constituent elements of the ECS are characterized by their own specific
physical, dynamical and chemical properties [1–6]. Dynamics of the ECS has turbulent nature
and displays wave-like fluctuations within a broad time-space spectrum and, therefore, are
characterized by high non-linearity [3, 7, 8]. From mathematical viewpoint, the ECS is an
extremely sophisticated, interactive, multi-scale, non-linear dynamical system. In this context,
climate  simulation  represents  one  of  the  most  complex  and  important  applications  of
dynamical  systems theory,  its  concepts  and methods.  The  instantaneous  state  of  certain
characteristics of the ECS (such as temperature, humidity, atmospheric pressure, wind and
precipitation)  is  referred  simply  to  as  the  weather.  Climate,  meanwhile,  represents  the
‘average weather’ and is characterized by a statistical ensemble of states through which the
ECS travels  for  decades  (usually  over  ~30 years,  according to  the  World Meteorological
Organization’s definition).

State-of-the-art mathematical climate models used in variety of applications represent systems
of multi-dimensional, non-linear differential equations in partial derivatives that are the
mathematical statements of basic physical laws, primarily the conservation laws for momen-
tum, mass and energy. Such models also include a variety of empirical and semi-empirical
relationships and equations that are based on observations and experience rather than theories.
Mathematical climate models are mostly deterministic with a large-phase space dimension,
containing a vast number of various parameters. Equations that describe the evolution of the
ECS and its processes are quite complicated. Therefore, in the majority of situations, we,
unfortunately, cannot solve them analytically with an arbitrary set of initial conditions, even
for very simple cases. We can only find an approximate solution using numerical methods
such as, for example, Galerkin projection or finite-difference technique. Consequently, climate
models have finite space and time resolutions. Due to the limited resolutions of climate models,
many physical processes those are very important for climate dynamics cannot be adequately
resolved by the model space-time grid and, therefore, should be parameterized, i.e. described
parametrically. As a result, the number of model parameters increases significantly. A large
number of them have various meanings and are not well-known a priori and, hence, are not
well defined. Parameter errors and their variabilities in time and space generate parametric
uncertainty in mathematical climate models and, undoubtedly, affect the output results.
Assessment of the potential impact of variations in climate model parameters on the model
behaviour represents essential element of model building and quality assurance. Sensitivity
analysis in dynamical systems is a powerful tool that allows us to estimate the influence of
model parameters and their variations on the results of computer simulations. It is important
to ensure that some model parameters describe external forcing that can strongly influence the
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climate model behaviour. All human-caused impacts on the ECS (greenhouse gas emissions
due to combustion of fossil fuels and industrial processes, aerosol emissions due to biomass
burning, changes in albedo due to deforestation, soil tillage and land degradation) can be
considered as small external perturbations that are described in climate models via parameter
variations. Hence, both equilibrium and transient climate system sensitivity to external forcing
can be examined within the framework of sensitivity analysis in dynamical system.

2. Elements of dynamical systems theory

Dynamical systems theory [3, 9–11] serves as a very powerful and reliable framework for
modelling, studying and predicting the temporal-spatial behaviour of the ECS and its constit-
uent elements. Generally, a certain abstract dynamical system represents a pair (X, St) , where
X is the phase space of a system, and St : X → X is a family of evolution functions that is
parameterized by a real variable t ∈ T . Commonly this variable performs the role of time. It
is assumed that the phase space is a complete metric or Banach space that can be either finite-
or infinite-dimensional. The set γx = {x(t) : t ∈ T} is called trajectory (or orbit), where x(t) is
continuous function with values in X such that Sτx(t) = x(t + τ) for all τ ∈ T+ and t ∈ T. In climate
studies, the semi-dynamical systems are of prime interest. Semi-dynamical systems are
dynamical systems whose evolution is considered only for t ≥ 0 . For semi-dynamical systems,
a family of mappings St, t ≥ 0, forms a semi-group that satisfies the following conditions [12]:

1. S0 ≡ I, where I is the identity operator

2.

3. Stx is continuous in both t and x ∈ X

Continuous-time dynamical system is commonly generated by the set of autonomous ordinary
differential equations (ODEs) assuming that t ∈ ℝ+

( ) ( ) 0, 0 ,x f x x x x X= = Î& (1)

Here x0 ∈ X is a system state specified at t = 0 and f is continuous vector-valued function. The
solution of a system (1) x = x(x, t) is determined for all t ≥ 0 and can be represented as
x(t) = x(x0, t) = Stx0. However, in climate simulations, we ordinarily deal with discrete dynamical
systems. To convert the set of infinite-dimensional differential equations (1) into finite-
dimensional discrete form, a few methods can be applied (e.g. finite-difference approximation
or spectral projection technique). Consequently, instead of continuous-time dynamical
system (1) we can obtain a discrete in time and space dynamical systems that can be solved
numerically for given initial conditions:

(2)
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Given the system state x0 at the initial time t = 0, we define the trajectory of x0 under f to be the
sequence of points  ∈ : ∈ ℤ+  such that xk = f k(x0), where f k denotes the k-fold composition

of f with itself. Note that f 0(x)≡x . Eq. (2) uniquely specifies the trajectory of discrete dynamical
system if the map f : X → X and the initial state x0 are given. The state of dynamical system xk

at time tk is defined by the system state xk − 1 at the previous time tk − 1 as f(xk − 1).

It is important to highlight that climate dynamical systems possess a number of generic
properties [3, 9, 12–14]:

First, these systems are non-linear and dissipative. This means that the divergence of corre-
sponding vector field ∇ ⋅ f(x(t)) is strictly negative and the system’s phase volume contracts.

Secondly, from a certain moment of time t*, the norm of the solution for any initial conditions
stays bounded: ‖x(t)‖ < V0 at t > t*, where V0 is the so-called absorbing set in the system phase
space. All trajectories of climate dynamical system will ultimately enter to the ball of radius
V0. This property guaranties the existence inside V0 of finite-dimensional invariant compact
attracting set, which is called the attractor. Attractor is, therefore, a set towards which a system
tends to evolve for a wide variety of initial conditions of the system. If starting states of a system
are chosen on the attractor, then the corresponding orbits will remain on the attractor. All other
trajectories will be attracted to this set fairly fast.

Thirdly, trajectories of climate dynamical systems are generally unstable, exhibiting Lyapunov
instability. This means that the nλ-dimensional part of phase volume of a system increases
along certain directions correspond to nλ positive Lyapunov exponents (note that nλ < n).

Finally, a certain unstable trajectory enclosed in a bounded phase volume (attractor) generates
a deterministic dynamical chaos, which means that over time, under certain conditions, the
behaviour of simulated system begins to resemble a random process, despite the fact that the
system is defined by deterministic laws and described by deterministic equations. This
phenomenon of deterministic chaos was first uncovered by E. Lorenz as he observed the
sensitive dependence of atmospheric convection model output on initial conditions [15].
Consequently, all trajectories that start close enough will diverge from one another, but will
never depart from the attractor. The rate of separation of infinitesimally close trajectories is
characterized by the positive Lyapunov exponents. The number of directions along which the
orbit is unstable is defined by the number of positive Lyapunov exponents nλ.

In general, the dynamics of climate system can be conditionally divided into two phases that
are correspondingly the motion towards the attractor and the motion along the attractor. When
system orbit travels toward the attractor, the system phase volume contracts to the finite-
dimensional volume of the attractor. In many theoretical and practical applications, the ECS
evolution is considered on its attractor assuming that the system possesses the properties of
ergodicity. Then, statistical characteristics of a system (e.g. first  =   and secondvar  = 2 − 2 moments) can be calculated by averaging along a certain trajectory. How-
ever, attractors of dissipative dynamical systems have highly complex fractal structure. Such
attractors are commonly referred to strange attractors. Since the phase volume of dissipative
dynamical systems contracts continuously in the limit of large time, the dimension of attractor
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is found to be smaller than the dimension of system phase space. Since the phase volume of a
system is expanded in nλ directions, the dimension of the attractor cannot be less than the
dimension of phase space, and the attractor is nested inside a bounded absorbing set. Conse-
quently, the attractor represents a fractal set of dimension nA nested in the absorbing ball, where
nλ ≤ nA < n. The fractal dimension of attractors of dissipative dynamical systems can be
determined by the Kaplan-Yorke conjecture [16]. The so-called Kaplan-Yorke dimension is
defined as follows:

1
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where j is the maximum integer such that the sum of the j largest exponents is still non-negative,

i.e.  = 1  > 0. The sum of all positive Lyapunov exponents, according to the theorem [17],

gives an estimate of Kolmogorov-Sinai entropy, i.e. the value showing the mean divergence of
the trajectories on the attractors. The arrangement of the Lyapunov exponents in Eq. (3) is as
follows: 1 ≥ 2 ≥ ⋯ ≥ . The multiplicative inverse (reciprocal) of the largest Lyapunov

exponent is referred as characteristic e-folding time. Note that for chaotic dynamics the
characteristic time is finite, while for regular motion it is infinite. As an example, let us consider
the barotropic vorticity equation on the rotating Earth:

( ) ( )2
0, ,  0J l h
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where ψ is dimensionless geostrophic stream function, l is the Coriolis parameter, h is an
orography, ϕ is an external forcing, α and ν are friction coefficients, J( , ) is a Jacobian and ∇ is
the Laplacian. Barotropic vorticity equation has a finite-dimensional global attractor. The
formula for the estimated fractal dimension of this attractor is [12]:
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where Gr = ‖ϕ‖2/(|λ1|ν2) is the generalized Grashof number, λ1 is the largest (λ1 < 0) eigenvalue
of the Laplacian of a sphere.

It is necessary to underline that one of the most essential properties of climate dynamical
systems is the stability. Generally, the stability of dynamical systems refers to their response
to external forcing and other inputs. Dynamical system is considered to be stable if it remains
in an ‘invariable’ state as long as there is no external forcing, and if the system returns to an
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‘invariable’ state when the external forcing is eliminated. The climate system stability may be
determined in terms of bounded inputs. In other words, the climate system is stable if every
bounded input generates a bounded output. Climate system modelling is concerned not only
with the stability of a system but also the degree of its stability. Climate models have a large
number of various parameters that may affect the results of computational simulations.
Assessment of the climate system response to variations in the model parameters is extremely
important and is among the main problems with regards to system stability.

Other important property of climate dynamical system is its predictability. Generally speaking,
predictability is the degree to which an accurate prediction of a system’s state can be made
either qualitatively or quantitatively. It is important to note that pretty much the same models
are applied for both weather prediction and climate simulation. Taking into account the chaotic
nature of the atmosphere-ocean system, two types of problems associated with predictability
can be defined. Predictability of the first kind is associated with numerical weather prediction,
which is a Cauchy (initial value) problem. Numerical weather prediction aims to predict, as
precisely as possible, the future state of the atmosphere. This problem requires an accurate
knowledge of the current state of the atmosphere-ocean system. However, the evolution of this
system is highly sensitive to small errors in the initial conditions [15]. Due to the intrinsic limits
with regards to the predictability of atmospheric processes, inaccuracies and missing infor-
mation in the inputs, as well as inadequacies of forecasting models, detailed and useful weather
forecasts are limited to about 2 weeks [18].

By contrast, predictability of the second kind focuses on the prediction of the statistical
properties of a system with respect to external forcing. Climate simulation belongs to this class
of problems and actually represents a boundary value problem that focuses on much longer
time scales than numerical weather prediction (typically several months or even years).
Boundary conditions (e.g. the energy that reaches the Earth from the Sun, the energy that goes
from the Earth back out to space and so on) constrain climate over a long period of time. If
these boundary conditions are imposed correctly then we can simulate the Earth’s climate in
the long run, without paying attention to what the initial conditions are. To control initial
instability caused by initial conditions, the spin-up period is usually eliminated from the
climate simulation, prior to analyzing the results. Thus, predictability of climate systems
involves the study of stability of climate model attractors with respect to external forcing.
Predictability of dissipative dynamical systems applied to climate simulations deteriorates
with time. To quantify predictability, we can use the rate of divergence of system orbits in phase
space (i.e. Kolmogorov-Sinai entropy, Lyapunov exponents).

3. A formal dynamic model of climate system

Let us consider the ECS in a bounded spatial-temporal domain Ωt = Ω × [0, τ]. Let us denote
by φ ∈ Q(Ωt) the state vector that characterizes the ECS in the domain Ωt. Note that Q(Ωt) is
the infinite real space of sufficiently smooth state functions that satisfy certain boundary
conditions at the boundary ∂Ω of the spatial domain Ω, which is usually the Earth’s sphere.
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Let 𑨈𑨈 𑨈𑨈 Ω ⊂ 3 be the vector of spatial variables and t ∈ [0, τ] be the time. Mathematically, the
temporal evolution of the ECS in the domain Ωt is expressed via the set of partial differential
equations, which reflect the specific dynamical, physical and other properties of the ECS:

( ) ( ) ( )( ) ( ) ( )0, , , , ,  ,0t r t r t r t r rj j l j j¶ = =L (4)

where  is a non-linear, multi-dimensional differential operator that describes the dynamics,
dissipation and external forcing of the system, λ ∈ G(Ωt) is the parameter vector, G(Ωt) is the
domain of admissible values of the parameters and φ0 is a given vector valued function (the
initial state estimate). The model state vector φ includes temperature, pressure, density,
humidity, wind velocity and other physical variables. Note that the system (4) characterizes a
continuous medium for which the state vector φ is infinite-dimensional: φ ∈ Φ, where Φ is the infinite-
dimensional Hilbert space. The vector of parameters, in its turn, contains any input of the
system (4) such as classical parameters, initial and boundary conditions and so on. Essentially,
the solution of such complex infinite-dimensional system cannot be found analytically. In order
to obtain numerical solution, the original system of infinite-dimensional equations should be
transformed, using an appropriate method, into a system with a finite number of degrees of
freedom. For example, Eq. (4) can be projected onto the sub-space spanned by the orthogonal

base Ψ =   = 1  that is defined to represent state vector on the domain Ω. Thus, state vector

φ can be introduced in the form of normally convergent series:

( ) ( ) ( )
1

,
n

i i
i

r t x t rj y
=

»å (5)

Substituting (5) into (4) and then applying the Galerkin method, we can obtain, instead of
infinite-dimensional distributed parameter system (4), the finite-dimensional lumped system
that is formally described by the following set of ordinary differential equations:

( ) ( ) 0, ,   0, ,   0x F x t x xa t= Î =é ùë û& (6)

Here  is the state vector with dimension n representing a set of spectral coefficients, F is
the Galerkin projection of the operator  on the base Ψ and 𑨈𑨈 𑨈𑨈 m is the m-dimensional
parameter vector.

It is important to note that space-time spectrum of processes occurring in the climate system
is extremely broad. Consequently, the state-of-the-art mathematical climate models due to their
spatial-temporal limited resolutions are unable to simulate correctly all of these processes.
Physical processes that are too small-scale to be explicitly represented in the model due to its
discrete spatial-temporal structure are parameterized, i.e. replaced by simplified parametric
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schemes generating additional model parameters. Let τc be a characteristic timescale of a
certain physical process. Physical processes with timescales smaller than τc (the so-called sub-
grid-scale processes) should be parameterized in climate models. Examples of these processes
include radiative transfer (short-wave solar radiation and outgoing long-wave radiation
emitted by the Earth), cloud formation processes, microphysical processes within clouds that
lead to the formation of precipitation, the deep convection in the tropics, land-surface proc-
esses, photochemical processes, carbon cycle, etc.

Using finite difference method to approximate time derivatives in Eq. (6), we can obtain the
generalized numerical climate model that can be used for computer simulations:

( )0, 0 ,   1, ,k kx m x k K= = ¼

where m0,k is non-linear operator that indirectly contains model parameters and propagates
the state vector from time t0 (the initial conditions) to time tk, and K is the number of time steps.
Generally, all climate models may be arranged in several classes, based on various principles,
e.g. the complexity of the models or the description and representation of physical processes
[19]. However, there is no best or general-purpose climate model. Each particular model is
characterized by inherent properties, and has specific advantages and disadvantages. Selecting
the ‘best’ model depends on many various factors, including the objectives of simulation and
what performance measures are used.

4. Forward and adjoint sensitivity analysis

To estimate the impact of model parameter variations on the model performance and state
variables, one can use a sensitivity function (or coefficient) that is the partial derivative of a
given element of state vector xi with respect to a certain model parameter αj [20, 21]:

( ) ( ) ( ) ( )
0

0 0

0

, ,,
, lim

j

i j j i ji
ij

j j

x t x tx t
S t

da
a

a da aa
a

a da®

+ -¶
º =

¶
(7)

where δαj is the infinitesimal perturbation of parameter αj around some fixed point 0.

Approximating the state vector x(α0 + δα) around x(α0) by Taylor expansion, one can obtain
the following linear equation:

( ) ( )
0

0 0 H.O.T.xx x
a

a da a da
a
¶

+ = + +
¶
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where  is a sensitivity matrix. Let us rewrite the vector equation (6) in
component form:

( ) ( ) 0, , 0, , 0 , 1,i i i ix F x t x x i na t= Î = Îé ù é ùë û ë û& (8)

Differentiating Eq. (8) with respect to αj, we obtain the set of non-homogeneous ODEs, the so-
called sensitivity equations:

1

, 1, , 1,
n

i i k i

j k j jk

x F x Fd i n j m
dt xa a a

=

æ ö æ ö¶ ¶ ¶ ¶
ç ÷ ç ÷= + Î Îé ù é ùë û ë ûç ÷ ç ÷¶ ¶ ¶ ¶è ø è ø

å (9)

Sensitivity equations describe the evolution of sensitivity functions along a given trajectory,
and, therefore, allow tracing the sensitivity dynamics in time. A system of sensitivity equa-
tions (9) can be expressed in a matrix form (see below). Thus, to calculate sensitivity functions
with respect to parameter αj one should be able to solve the following set of differential
equations with given initial conditions:

( ) ( )
( )

0

0

, ,           0

,    0
i i i i

j j j j j

x F x x x

S M S D S S

aì = =ï
í

= × + =ïî

&
& (10)

where Sj = (∂x/∂αj) = (S1j, ⋯, Snj)T is the sensitivity vector with respect to parameter αj,𑩡𑩡𑩡𑩡𑩡𑩡 = ∂ ∂  is a Jacobian matrix and Dj = (∂F1/∂αj, ∂F2/∂αj, …, ∂Fn/∂αj, )T. Once we have

solved Eq. (10), it is possible to analyse the sensitivity of system (8) with respect to the
parameter αj. Since the model parameter vector α has m components, to evaluate the model
response to variations in the parameter vector δα, the set of Eq. (10) must be solved m times.
Therefore, this approach is acceptable for low-order models. The use of sensitivity functions
requites the differentiation of model equations with respect to parameters. However, this is
not always possible. Fairly often in sensitivity analysis of complex dynamical systems, the
model response to variations in its parameters represents a generic response function that
characterizes the dynamical system [22, 23]:

(11)

where Φ is a non-linear function of state variables x and model parameters α. The gradient of
functional R with respect to vector of parameters α around the unperturbed parameter vector
α0 and corresponding unperturbed state vector x0:
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quantifies the influence of parameters on the model performance. In particular, the effect of
the jth parameter can be estimated as follows:
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where δαj is the variation in parameter 0. Note that
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The accuracy of sensitivity estimates strongly depends on the choice of perturbation δαj. By
introducing the Gâteaux differential, the sensitivity analysis problem can be considered in the
differential formulation eliminating the need to set the value of δαj [22, 23]. The Gâteaux
differential for the response function (11) has the following form:
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0 0 0 0
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Φ Φ,
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d a d da

a

æ ö¶ ¶ç ÷= × + ×
ç ÷¶ ¶è ø
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Here, δx is the state vector variation due to the variation in the parameter vector in the direction
δα. Linearizing the non-linear model (Eq. (8)) around an unperturbed trajectory x0(t), we obtain
the following system of variational equations, the so-called tangent linear model, for calculat-
ing δx:

( )
0 0 0 0

0
, ,

, 0, , 0
x x

x F Fx t x x
t x a a

d d da t d d
a

¶ ¶ ¶
= × + × Î =é ùë û¶ ¶ ¶

Then, using Eq. (12), we can calculate the variation in the response functional δR. Taking into
account that  where  is a dot-product, the model sensitivity to
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Then, using Eq. (12), we can calculate the variation in the response functional δR. Taking into
account that  where  is a dot-product, the model sensitivity to
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variations in the parameters is estimated via the gradient of the response functional ∇αR. This
approach is convenient, however, computationally very expensive since climate models
involve a large number of parameters. Adjoint approach allows the calculation of sensitivities
within a single numerical experiment. Using adjoint equations, one can calculate the sensitivity
gradient ∇αR as follows [22]:

( )
0 0 0 0

Τ
0 0 *

, ,0

Φ,
x x

FR x x dt
t

a
a a

a
a a

é ùæ ö¶ ¶ê úç ÷Ñ = - ×ê úç ÷¶ ¶è øê úë û
ò (13)

where the vector function x∗ is the solution of adjoint model, which is numerically integrated
in the inverse time direction:
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One of the key problems in climate simulation is the identification of parameters in mathe-
matical models that describe the climate system. This problem is quite difficult due to both the
huge number of state variables and parameters, and the argument that the governing finite-
difference equations are non-linear grid functions of these states and parameters. Using the
adjoint approach, we can solve the identification parameter problem if the observations are
available. This problem is mathematically formulated as an optimal control problem in which
model parameters play the role of control variables, and model equations are considered as
constraints. Let yobs be the set of observations and H be observation operator mapping from
solution space of model to observation space. Therefore, yobs = H(x) + εobs, where εobs is the vector
of observation errors. It is usually assumed that these errors are serially uncorrelated and
normally distributed with known covariance matrix W. The parameter identification problem
seeks to minimize, with respect to α, a certain objective function (x, α) expressing the ‘distance’
between observations and corresponding model state using the model equations as con-
straints:

( )* arg min ,xa a= J

where α* is a specified parameter vector. The objective function is written as

( ) ( )
21

2
= - obs

R
J H x ya (15)
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For illustrative purposes, let us consider the following example. Let obs   and xi(tk, α) be,

respectively, the observation and model prediction of the ith component of state vector at time

tk, 2 the variance of obs  , and H the identity operator. Then the objective function can be

written as

( )
( ) ( )

( ) ( )
21, ,

2
obs

i i k i k
i k

x w x t y ta aé ù= -ë ûååJ (16)

where  are a weighted coefficient reflecting the accuracy of observations (in our case,  = 1 2).

Many optimization algorithms rely on descent methods that require the computation of the
gradient of the objective function. The gradient of Eq. (16) with respect to parameter αj is
defined as

( ) ( )
( ) ( ),i k

i i k
j ji k

x t
w x t

a
a a

¶¶
= - ×

¶ ¶ååJ
(17)

where ∆  =  ,  − obs  . The right-hand side of Eq. (17) shows that sensitivity

functions play a critical role in determining the corrected values of model parameters.

5. Application of conventional methods of sensitivity analysis

Both forward and adjoint methods allow us to analyse transient and equilibrium sensitivities
of dynamical systems. The exploration of sensitivity of complex dynamical systems requires
considerable computational resources. For simple enough low-order models, the computa-
tional cost is minor and, for that reason, models of this class are widely used as simple test
instruments to emulate more complex systems. We will illustrate the above-described con-
ventional methods of sensitivity analysis based on a coupled non-linear dynamical system,
which is composed of fast (the ‘atmosphere’) and slow (the ‘ocean’) versions of the well-known
Lorenz [15] model (L63). This model allows us to mimic the atmosphere-ocean system and
therefore serves as a key element of a theoretical and computational framework for the study
of various aspects of sensitivity analysis. Recall that under certain conditions the Lorenz model
exhibits a chaotic behaviour. As mentioned above, the system is obtained by coupling of two
versions of the original Lorenz model with distinct timescales that differ by factor ε [24, 25]:
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where the fast and slow sub-systems are represented, respectively, by lower case and capital
letters. The following notations are used in Eqs. (16)–(21): σ, r and b are the parameters of the
original L63 model, a is a parameter representing the amplitude scale factor, k is ‘uncentring’
parameter, c is a coupling strength parameter for x − X and y − Y variables, and cz is a coupling
strength parameter for z − Z variables. One can assume that a = 1, k = 0 and c = cz without loss
of generality. Therefore, the vector of state variables of coupled model (18) and (19) is
x = (x, y, z, X, Y, Z)T and the vector of model parameters is α = (σ, r, b, c, ε)T. In the operator
form, the set of Eqs. (16)–(21) can be rewritten as follows:

( )x L Q x= +& (20)

where the non-linear uncoupled operator L and linear coupled operator Q are represented by
the following matrices:
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The unperturbed parameter values are selected to be as follows:

[ ]0 0 0 0 010, 28, 8 / 3, 0.1, 0.1;1.2r b cs e= = = = Î

Chosen values of σ, r and b correspond to chaotic behaviour of the L63 model. For σ = 10 and
b = 8/3, the critical value of parameter r is 24.74, which means that any value of r larger than
24.74 induces deterministic chaos [15]. The parameter ε = 0.1 indicates that the slow system is
10 times slower than the fast system. Basic dynamical, correlation and spectral properties of
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this system, and the influence of the coupling strength on power spectrum densities, spectro-
grams and autocorrelation functions were explored in detail in [26]. Here, we will briefly
mention the main features of the system (19).

The coupling strength parameter c plays a very important role in qualitative changes in the
system dynamics since this parameter controls the interactions between fast and slow sub-
systems. Qualitative changes in the dynamical properties of a system can be revealed by
determining and analyzing the system’s spectrum of Lyapunov exponents that characterize
the average rate of exponential divergence (or convergence) of nearby trajectories in the phase
space. In the analysis of coupled dynamical systems, we are dealing with conditional Lyapunov
exponents that are normally used to characterize the synchronization with coupled systems.
The dynamical system (21) has six distinct Lyapunov exponents. If the parameter c tends to
zero, then this system has two positive, two zero and two negative Lyapunov exponents. Let
us examine the impact of coupling strength parameter on the two largest Lyapunov exponents
(Figure 1). These exponents, being initially positive, monotonically decrease when the
coupling strength parameter increases approaching the x-axis at about c ≈ 0.8 and become
negative at c ≈ 0.95. Therefore, phase-synchronous regime for fast and slow sub-systems is
observed when c > 0.95 [27]. However, when c > 1.0 , all six Lyapunov exponents become
negative causing a limit cycle dynamics.

Figure 1. Two largest conditional Lyapunov exponents as functions of coupling strength parameter.

Apart from Lyapunov exponents, autocorrelation functions enable one to distinguish between
regular and chaotic processes and to detect transition from order to chaos. In particular, for
chaotic motions, autocorrelation functions decrease in time, in many cases exponentially, while
for regular motions, autocorrelation functions are unchanged or oscillating. In general,
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space. In the analysis of coupled dynamical systems, we are dealing with conditional Lyapunov
exponents that are normally used to characterize the synchronization with coupled systems.
The dynamical system (21) has six distinct Lyapunov exponents. If the parameter c tends to
zero, then this system has two positive, two zero and two negative Lyapunov exponents. Let
us examine the impact of coupling strength parameter on the two largest Lyapunov exponents
(Figure 1). These exponents, being initially positive, monotonically decrease when the
coupling strength parameter increases approaching the x-axis at about c ≈ 0.8 and become
negative at c ≈ 0.95. Therefore, phase-synchronous regime for fast and slow sub-systems is
observed when c > 0.95 [27]. However, when c > 1.0 , all six Lyapunov exponents become
negative causing a limit cycle dynamics.

Figure 1. Two largest conditional Lyapunov exponents as functions of coupling strength parameter.

Apart from Lyapunov exponents, autocorrelation functions enable one to distinguish between
regular and chaotic processes and to detect transition from order to chaos. In particular, for
chaotic motions, autocorrelation functions decrease in time, in many cases exponentially, while
for regular motions, autocorrelation functions are unchanged or oscillating. In general,
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however, the behaviour of autocorrelation functions for chaotic motions is frequently very
complicated and depends on many factors (e.g. [28]). Knowing autocorrelation functions, one
can determine a typical timescale (typical time memory) of the process [29]. Moreover, if
autocorrelation functions are positive, the dynamical system may have the persistence
property (an intention of a system to remain in the similar state from one time moment to the

following). For a given discrete dynamic variable   = 0 , an autocorrelation function is

determined as (s) = xixs  − xi xs , where the brackets  denote ensemble averaging. Assuming
time series originates from a stationary and ergodic process, ensemble averaging can be
replaced by time averaging over a single normal realization (s) = xixs  − x 2.

Signal analysis commonly uses the normalized autocorrelation function (ACF), defined as
R(s) = (s)/ (0). Results of numerical experiments show that for relatively small parameter c
(c < 0.4), the ACFs and their envelopes for all variables decrease fairly rapidly to zero, consis-
tently with the chaotic behaviour of the coupled system. However, as expected, the rates of
decay of the ACFs of the slow variables are less than that of the fast variables. For coupling
strength parameter on the interval 0.4 < c < 0.6, the ACFs of the fast variables become smooth
and converge to zero. As the parameter c increases, the ACFs become periodic and their
envelopes decay slowly with time, indicating transition to regularity. For c > 0.8, calculated
ACFs show periodic signal components. In order to explore the sensitivity of system (19) with
respect to coupling strength parameter, let us introduce the following sensitivity functions:

1 2 3/ , / , /c c cS x c S y c S z c= ¶ ¶ = ¶ ¶ = ¶ ¶

4 5 6/ , / , /c c cS X c S Y c S Z c= ¶ ¶ = ¶ ¶ = ¶ ¶

The corresponding sensitivity equations can be written as

( )1 2 1 4c c c cS S S cS Xs= - - -&

2 1 2 3 1 5c c c c c cS rS S xS zS cS Y= - - - + +&

3 2 1 3 6c c c c cS xS yS bS cS Z= + - + +&

( )4 5 4 1c c c cS S S cS xes= - - -&

( )5 4 5 6 4 2c c c c c cS rS S XS ZS cS ye= - - - + +&
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( )6 5 4 6 3c c c c cS XS YS bS cS ze= + - - -&

Sensitivity functions can be introduced for any particular model parameter. Since the param-
eter vector α consists of five components, five sets of sensitivity equations can be derived from
the model (Eq. (19)). The dynamics of sensitivity functions can be traced by solving the
sensitivity equations along with the non-linear model. Sensitivity functions, calculated on the
time interval [0, 20], are shown in Figure 2. Envelopes of these functions grow over time while
sensitivity functions themselves oscillate. Sensitivity function is a measure of the change in
state variable due to the variation in the estimated parameter. Unfortunately, obtained
sensitivity functions are inherently uninformative and misleading. We cannot make a clear
conclusion from them about system sensitivity to variations in the parameter c. Similar results
were obtained when we considered the influence of variations in the parameter r on the system
dynamics. This parameter plays an important role in the formation of system’s dynamical
structure and transition to chaos. Let us define the following sensitivity functions:

Figure 2. Time dynamics of sensitivity functions with respect to parameter c on the time interval [0, 20] for c0 = 0.9.

1 2 3/ , / , /r r rS x r S y r S z r= ¶ ¶ = ¶ ¶ = ¶ ¶
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4 5 6/ , / , /r r rS X r S Y r S Z r= ¶ ¶ = ¶ ¶ = ¶ ¶

The associated system of sensitivity equations can be written as

( )1 2 1 4r r r rS S S cSs= - -&

( )2 1 2 3 1 5r r r r r rS x rS S xS zS cS= + - - + +&

( )3 2 1 3 6r r r r rS xS yS bS cS= + - +&

( )4 5 5 1r r r rS S S cSes= - -&

( )5 4 5 6 4 2r r r r r rS X rS S XS ZS cSe é ù= + - - + +ë û
&

( )6 5 4 6 3r r r r rS XS YS bS cSe é ù= + - -ë û
&

Envelopes of calculated sensitivity functions grow over time and sensitivity functions dem-
onstrate the oscillating behaviour (Figure 3). Obtained functions are also uninformative and
inconclusive. Thus, using conventional methods of sensitivity analysis can be questionable in
terms of interpretation of the obtained results for chaotic dynamics. As discussed in [21],
general solutions of sensitivity equations for oscillatory non-linear dynamical systems grow
unbounded as time tends to infinity; therefore, sensitivity functions calculated by conventional
approaches have a high degree of uncertainty, quickly becoming uninformative and incon-
clusive as time increases. In this regard, in climate simulation, the average values of sensitivity
functions  over a certain period of time can be considered as one of the most important
measures of sensitivity, where R is a generic response functional (Eq. (11)). However, the
gradient  cannot be correctly estimated within the framework of conventional methods
of sensitivity analysis since for chaotic systems it is observed [30–32] that  ≠  .
This is because the integral

( ) ( )
0

0

lim lim
R R

I dt
t

t da

a da a
da®¥ ®

+ -
= ò
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does not possess uniform convergence and two limits (τ → ∞ and δα → 0) would not commute.

Figure 3. Time dynamics of sensitivity functions with respect to parameter r on the time interval [0, 25] for c0 = 0.9.

6. Sensitivity analysis based on shadowing property

The new approach of sensitivity analysis known as shadowing method was introduced in [31]
to analyse the sensitivity of highly non-linear and/or chaotic dynamical systems with respect
to variations in their parameters. This method is theoretically based on the pseudo-orbit tracing
(or shadowing) property for discrete and continuous dynamical systems [33, 34]. Using
shadowing method, one can properly estimate the time-average sensitivities  making
the conclusion on the system sensitivity to variations in its parameters. The pseudo-orbit
tracing property means that around an approximate (or pseudo) trajectory of dynamical
system under consideration, there exists the exact trajectory, such that it locates evenly close
to a pseudo-trajectory. Pseudo-trajectories arise by virtue of various errors of computer
simulation (e.g. round-off errors and numerical technique errors). Thus, by making numerical
simulations, we actually cannot obtain an exact trajectory of a system, but only an approximate
trajectory known as a pseudo-trajectory. The exploration of shadowing property in dynamical
systems was originated by Anosov [35] and Boven [36]. To date, the shadowing theory is well-
established for the so-called hyperbolic dynamics that distinguished by the existence of both
expanding and contracting lines for derivatives. Let us make some basic notes on the shad-
owing theory.
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Let f : X → X be a homeomorphism of a compact metric space (X, dist). We will consider the
discrete dynamical system : ℤ ×   generated by homeomorphism f:

Let us denote by (x, f), the trajectory of a point x ∈ X with respect to f, i.e. 
Set any metric (distance function) dist(⋅,⋅) for X. It is said that a set of points  is called
a d-pseudo-trajectory (d > 0) of f if dist(xk + 1, f(xk)) < d for k ∈ ℤ. Note that a distance function
dist(⋅,⋅) defines an interval between each pair of geometric objects inside the brackets. It is said
that the dynamical system f possesses the shadowing property if for every ε > 0 , there is d > 0
such that for every d-pseudo-trajectory ζ , there exists y ∈ X satisfying dist(fk(y), xk) < ε for all
k ∈ ℤ. According to the so-called discrete shadowing lemma [33], for any ε > 0 , there exists
d > 0, such that any d-pseudo-trajectory can be ε-shadowed. If any dynamical system has the
shadowing property, its trajectories calculated numerically reflect the reality.

The shadowing lemma for continuous dynamical systems (flows) is more sophisticated than
for discrete systems since in this instance re-parameterization of shadowing trajectories is
required because for flows, close points of the true trajectory and the pseudo orbit do not
correspond to the same time moments [33, 34]. Let X be the phase space of continuous

dynamical system : ℝ ×   generated by a set of ordinary differential equations. A
function :ℝ  is a d-pseudo-orbit of ft if the inequality dist(ft(t, g(τ)), g(t + τ)) < d holds for
any 𑨈𑨈 𑨈𑨈 ℝ and t ∈ [−1, 1]. A re-parameterization is actually a monotonically increasing
homeomorphism h of the line ℝ such that h(0) = 0. The set of re-parameterizations h denoted
by Rep(ε), where ε > 0, is defined as [33]:

To illustrate the applicability of this method, let us consider a continuous one-parameter
generic dynamical system

(21)

The shadowing sensitivity analysis method is based on the ‘continuous’ shadowing lemma
and the following assumptions: (a) the dynamical system is ergodic and (b) model state
variables are considered over long time interval t ∈ [0, T], where T → ∞, and an averaged

performance measure   = lim ∞ 1 0  ,  ,  𝀵𝀵 is of the most interest for us. With

these assumptions, we can use the arbitrarily chosen trajectory of the system to trace the state
variables along the orbit and calculate R(α). For example, the arbitrary trajectory x(t) can be
chosen as a solution of the model equations, such that it is located nearby a certain reference
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trajectory xr(t). According to the shadowing lemma, the closest orbit x(t) to xr(t) satisfies the
following constrained minimization problem [37]:

( )( ) ( ) ( )
22 2

,
0

1min 1 such that , ,
é ùæ öê ú- + - =ç ÷ê úè øë û
ò
T

rx

d dxx t x t dt f x
T dt dtt

tt h a (22)

where η is the parameter that provides the same order of magnitude of the two terms in the
integrand and τ(t) is a time transformation. The second term in the integrand describes re-
parameterization. The problem (22) is called the non-linear least square shadowing (LSS)

problem, and its solution denoted by  ,   and  ,   is a solution of the model equations

and time transformation that provides the trajectory  ,   to be close to xr(t). The perform-

ance measure 〈R(α)〉 averaged over the time interval t ∈ [0, T] can be then approximated as:

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( )( )

0

1 , ,
0

T
T T

s sR R R x t dt
T

t

t

a a a a
t t

» =
- ò (23)

since  ,   satisfies the model equation at a different α. The desired sensitivity estimate∇    can be computed by solving the following linearized LLS problem [37]:

( )2 2 2
,

0

1min such that  , ,¶ ¶é ù+ = + +ê úë û ¶ ¶ò
T

rS

dS f fS dt S f x
T dt xm

h m m a
a

(24)

The solutions of this problem S(t) and μ(t) relate to the solutions of the non-linear LSS problem
(22) as follows:

( ) ( ) ( ) ( )( ) ( )
( ) ( ),

, , ,   
T

T T s
s s

d td dS t x t t
d d dt

t a
t a a m

a a
é ù= =ê úë û

(25)

The time-dependent parameter μ is called a time-dilation variable, and it corresponds to the
time transformation from the shadowing lemma. Using S and μ, we can estimate the desired
sensitivity (the derivative of the linearized performance measure (22) with respect to the
parameter α):
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Several numerical algorithms can be used to solve the linearized LSS problem (24). One such
method is based on variational calculus, which is used to derive optimality conditions
representing a system of linear differential equations that are then discretized and solved
numerically to calculate variables S and μ [37].

Figure 4. Original (in red) and pseudo (in blue) orbits for fast z and slow Z variables for c = 0.015.

Here, we consider two sets of numerical experiments: weak coupling (c = 0.015) and strong
coupling (c = 0.8) between fast and slow systems. As an example, the original and pseudo-
trajectories for the fast z and slow Z variables are shown in Figures 4 (weak coupling) and 5
(strong coupling). Pseudo-trajectories were calculated using the LSS method by adding a small
perturbation to the parameter r. The deviation that is a difference between the ‘true’ and the

Figure 5. Original (in red) and pseudo (in blue) orbits for fast z and slow Z variables for c = 0.8.
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approximate variables of the slow and fast sub-systems for weak coupling are illustrated in
Figure 6. Obtained pseudo-trajectories lie very close to the associated true trajectories, proving
the existence of shadowing property. Therefore, one can analyse the sensitivity of coupled
dynamical system (20) with respect to parameters by averaging the computed sensitivity
functions along the trajectory.

Figure 6. Differences between variables that correspond to the original trajectories and pseudo orbits for c = 0.01.

c ∂Z/∂r ∂Y/∂r ∂X/∂r ∂z/∂r ∂y/∂r ∂x/∂r

1.0 1.10 0.05 0.01 1.08 0.04 0.03

0.8 0.69 0.08 0.03 1.02 0.07 0.07

0.4 0.95 0.03 −0.01 1.03 0.09 0.09

0.15 0.91 −0.08 −0.09 1.01 −0.01 −0.01

10−4 1.04 −0.02 −0.03 1.02 −0.01 −0.01

Table 1. Sensitivity estimates of fast and slow variables with respect to parameter r.

The strong coupling does not introduce significant qualitative and quantitative changes in the
behaviour of pseudo-trajectories with respect to the true orbits. Sensitivity estimates with
respect to the parameter r calculated over the time interval [0, 20] for different values of
coupling strength parameter are shown in Table 1. The most sensitive variables are z and Z.
The sensitivity of variables x, y, X and Y with respect to r is significantly less than that of
variables z and Z.

The use of shadowing method of sensitivity analysis allows the calculation of average
sensitivity functions that can be easily interpreted. Let us recall that sensitivity functions
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obtained via conventional methods are uninformative and inconclusive because their enve-
lopes grow exponentially over time and functions themselves oscillate.

7. Fluctuation dissipation relation in climate sensitivity

To estimate the ensemble-averaged response of the climate system to small external forcing,
Leith [38] has proposed using the fluctuation-dissipation theorem (FDT) from statistical
physics that quantifies the relation between the fluctuations in a system at thermal equilibrium
and the response of the system to applied external perturbations. The FDT was initially
obtained by Nyquist [39] in terms of the relation between fluctuations in voltage appearing
across a resistor and its impedance. Afterwards, the FDT was formulated and proved for
systems modelled by a Langevin equation [40] and for general non-linear dynamical systems
in thermodynamic equilibrium [41, 42]. According to the FDT, under certain assumptions, the
response of stochastic dynamical system to infinitesimal external perturbations is described
by the covariance matrix of the unperturbed system. The two key assumptions commonly
considered are: (a) the system state is close to equilibrium, and (b) the probability density
function of the unperturbed system is Gaussian. Meanwhile, for a climate system, the standard
hypotheses of equilibrium statistical mechanics do not hold since the climate system is highly
non-linear and dissipative, and is affected by strong external periodic and stochastic forcing.

In spite of strong non-linearity in the climate system, the linear approximation and time-
invariant hypothesis are still extensively applied in climate research [43]. A basic assumption
in a linear approximation is that the different external perturbations are acting independently
and additively on the system’s response. Thus, the response of some climate variable x to
external forcing ∆  can be represented as ∆ = 𑨆𑨆∆ , where S is a sensitivity function (coeffi-
cient). For example, to estimate the change in equilibrium surface temperature ∆Θs due to the
increase in radiative forcing, the following simplified relationship between carbon dioxide and
radiative forcing can be used [44, 45]:

( ) ( ) ( )
2

5.35 ln / 0CO t c t cé ù× = ´ ë ûF

where c(t) is the concentration of carbon dioxide in parts per million by volume at time t and
c(0) is the reference concentration. Therefore, CO2, where S = 0.8 K ⋅ W− 1m2. For doubling of
CO2 concentration, this gives the warming of ~ 3 K.

The response of non-linear systems to external perturbations is fundamentally different from
the reaction of linear systems [45]. This difference is mainly due to the wider involvement of
the system’s inherent characteristics and irregularity, and various ways of taking them into
account. Consequently, system’s fluctuations represent the integration of external forcing and
internal feedbacks. The FDT allows us to clearly identify external forcing and separate them
from the system’s natural oscillations. Let us consider a finite-dimensional dynamical system
described by state vector x:
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(27)

Since we are interested in statistical characteristics of this system, let us introduce its average
state:

( )
0

1lim
®¥

= ò
T

T
x x t dt

T
(28)

Together with the system (27), let us consider the perturbed system by adding some external
forcing   to the right-hand side of (27):

( ) ( ) 0, 0¢ = + ¢ ¢=¢& F   x f x x xd (29)

If Eqs. (27) and (29) have stationary probability density functions ρ and ρ ′ respectively, then

( ) ( ),    ¢ ¢ ¢ ¢ ¢= ò = òx x x dx x x x dxr r (30)

It is important to consider that the average state of the perturbed system (29) x ′  can be different
from that of the unperturbed system (27) and, therefore, the difference δx = x  − x ′  depends
on the external forcing [46]:

( )= N Fxd d

where  is a certain non-linear function. For small perturbations, we can expect that the relation
between   and δx is nearly linear. If  is differentiable at a certain point 0, then  can be
represented by a Taylor series. Then if we omit all the non-linear terms and leave the first order,
linear terms, we obtain:

( ) H.O.T= +L Fxd d

where  is a linear response operator whose properties are not known a priori.
Thus, the climate sensitivity problem is to find an operator . However, this problem is not
trivial due to the complicated fractal structure of the attractors (as the set of states) of chaotic
systems. Attractors are structurally stable with respect to small external perturbations only for
hyperbolic dynamical systems [35, 36], and the response of these systems is linear with respect
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to small enough external forcing [47]. Since the climate system is not hyperbolic and its
attractors depend on external perturbations, some special approaches should be considered.
The use of -regularization of fractal attractor of chaotic dynamical systems allows us to ensure
that the attractor ceases to be fractal [48]. The main idea of this method is to add random noise
to the right-hand side of the model Eq. (27) [46, 49, 50]:

( ) ( ) ( ) 0,  0x f x t x xm= + =& ò (31)

where  is a small positive constant and μ(t) is Gaussian stochastic process. This idea has a
reasonable physical base since physical mechanisms that are responsible for energy transfor-
mation and dissipation in the climate system are never accurately known. In addition,
computer simulation of the system (27) will generate pseudorandom noise due to round-off
errors. All of these effects may be considered as white Gaussian noise. Resulting, we can get
the Fokker-Plank equation corresponding to (26) for studying the evolution of the probability
measure (probability density function) ρ  [46, 50]:

( )divd f x
t
r r r¶ é ù= Ñ - ë û¶
ò

ò ò (32)

The function  satisfies the following conditions: ρ  ≥ 0 and . If x ∈ X, where X is a
compact manifold without a boundary, then (i) the stationary solution of the Eq. (31) exists,
(ii) this solution is unique and (iii) this solution is asymptotically stable [46]. In a general case

of the phase space ℝ, the problem, unfortunately, remains unsolved. In a similar way, we can
obtain the Fokker-Plank equation for the perturbed system:

( )( )2 '' ' div 'f x
t
r r d r¶ é ù= Ñ - +ë û¶

F òò (33)

The problem now is to find the relation between δx  and ℱ. If the increment ℱ is small enough
then

( ) ( ) ( )( ) Τ

0

é ù= = ò + ë ûòL F F
t

x x t B x t dxdd d t r tdò (34)
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where B = − (1/ρ )∇ρ . If the system dynamic is a stationary random process and ρ  is normally
distributed, then the response operator can be represented as

( ) ( ) ( ) 1

0

0
t

t C C dt t-= òL (35)

and we can obtain the following relation between δx  and ℱ:

( ) ( ) ( ) ( )1

0

0 -= ×ò F
t

x t C C d td t t d (36)

where (τ) is a τ-lagged covariance matrix of x. From this equation, it follows that the response
operator for ergodic dynamical system can be calculated from a single trajectory. However, the
state vector is dimensionally large; therefore, some procedure should be used to reduce its
dimensionality in order to calculate the covariance matrix effectively. For the atmosphere, Eq.
(36) was first obtained in [38] under very strict assumptions [42]: (a) the system has at least one
quadratic invariant (energy); (b) it has an incompressible phase volume; and (c) it is forced by
a weak source. Under these conditions, the system probability density function is Gaussian.
Climate systems do not satisfy these assumptions since they have a contracting phase space
and do not have any exact quadratic invariant.

The derivation of Eq. (36) represented in [46] is based on more realistic and less restrictive
assumptions that make the true validity of Eq. (36) for any non-normal distribution ρ . It can
be shown that the relation (36) holds under: (a) weak stochastic regularization; (b) weak forcing
anomaly and (c) the system has a Fokker-Planck equation with a unique stationary solution.

As a simple example, consider one-dimensional stochastic dynamical system, i.e. system
having only one variable Θ generated by the Langevin equation

( )Θ Θ ta+ =& F (37)

Here α = 1/τ0, where τ0 is the relaxation time for Θ, and ℱ   is a broadband noise forcing such
that

( ) ( ) ( ) ( )0,   ¢ ¢= = -F F Ft t t t tJd (38)
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Angular brackets denote ensemble averages and δ is the Dirac delta function. Eq. (37) repre-
sents a simple version of radiative balance climate model, which is forced by an external
heating whose time dependence is white noise [51, 52]. The variable Θ is the departure from
steady state Θ0, i.e. Θ is a climate anomaly. The relaxation time τ0 in Eq. (36) is τ0 ≈ 58 days [52].
The autocorrelation function for system (37) is

( ) ( )
2

Θ Θ '

Θ
t tt t

e a- - ¢=

Solving Eq. (37) yields

( ) ( ) ( )
0

Θ Θ 0
t

t ttt e e t dtaa - -- ¢= + ¢ ¢ò F (39)

Since the ensemble average of (t) vanishes, one can average Eq. (37) to obtain

Θ Θ 0+ =& a

Thus, the average anomaly  decays exponentially to zero in the relaxation time τ0. Let the
climate system be in equilibrium. Then at t = t ′, the system is perturbed by a sudden infini-
tesimal delta function impulse ϑδ(t − t ′) to the temperature. Consequently, Θ(t) at t = t ′ is
changed on the value of ϑ. Then the temperature anomaly begins to decrease back to zero in
accordance with Eq. (39). The mean system response to any infinitesimal change in the forcing

(t) can be calculated by the Eq. (37). In particular, for (t) being a staircase function, i.e. a
constant ∆s that is activated at t = 0, the system response is given by

0

1Θ lim lim
-

-

®¥ ®¥

D-
= D = D =ò

t t
s

s st t

ee d
a

at t
a a

The validity of relation (36) was verified for different models of the atmosphere [46]. This
relation holds with a high accuracy for both barotropic and two-layer baroclinic global
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atmospheric models and with a satisfactory accuracy for global general circulation models of
the atmosphere.
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Abstract

The design of the Eta model goes back to early 1970s, when its original dynamical core
was  designed following the  philosophy of  Akio  Arakawa of  emulating  important
properties of the atmospheric governing equations. The core’s later major features were
invented and implemented in the mid-1980s. Once a comprehensive physics package
was added, the model became operational as a regional NWP model in the United States
in 1993. Its use for regional climate projections followed later, for the South American
region and then for a regional reanalysis over the North American region. Summary of
the model’s dynamical core is given, followed by that of its physics package. Results of
experiments revealing the model’s ability to generate added value even at large scales
when run as a regional climate model (RCM) are summarized. The Eta model is applied
on various climate scales seamlessly, from subseasonal, seasonal to multidecadal, from
coarse 40 km up to high 5 km resolution. Examples of applications to various socioe-
conomic sectors, such as for hydropower management, crop yield forecasts, environ-
mental  and  forest  conservation,  urban  areas  management,  assessment  of  natural
disaster risks, etc., are given. The Eta RCM capability to reproduce extreme climatic
values is pointed out.

Keywords: Eta model, eta vertical coordinate, regional climate models, topography in
climate models, added value by RCMs, horizontal diffusion

1. Introduction: model design

The origins of the Eta model go back as far as 1973 when the dry version code was written at the
University of Belgrade of its “ancestor” model, referred to at the time as limited area primitive
equation model  (LAPEM).  This  first  code already had an Arakawa,  or  Arakawa-Lorenz,
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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conserving vertical advection scheme, and a lateral boundary condition (LBC) scheme that
stayed in place until the present.

Over the years, many development steps followed along with a few model name changes until
the name “Eta” became generally accepted, referring to the model´s unique vertical coordinate.
But a number of other features that deserve to be noted are found in model’s dynamical core,
which can be summarized as follows:

• For the gravity wave terms, on the model’s E grid, forward-backward scheme is used that

- avoids the time computational mode of the leapfrog scheme and is neutral with time steps
twice leapfrog [1];

- is modified to enable propagation of a height point perturbation to its nearest-neighbor
height points, thereby suppressing the space computational mode of the semistaggered
grid [2, 3].

• Also for other terms, including various physics calls, split explicit time differencing is used.
This makes the model very efficient since long time steps are used for subroutines that do
not require short steps for reasons of stability.

• Horizontal advection scheme is used that conserves energy and C-grid enstrophy, on the B/
E grid, in space differencing, for two-dimensional nondivergent flow. The scheme is one of
Janjić [4] obtained by transformation of the Arakawa and Lamb [5] C-grid scheme so as to
use the B/E grid velocity components.

• Conservation of energy is enforced in transformations between the kinetic and potential
energy, in space differencing [6].

• Nonhydrostatic version is available via a switch of the code. If chosen, the model uses the
scheme of Janjic [7]. Instead of solving a prognostic equation for the vertical velocity
component, the scheme approximates the vertical acceleration using the finite difference of
the hydrostatic vertical velocities of two consecutive time steps.

• The eta vertical coordinate [8] ensures hydrostatically consistent calculation of the pressure-
gradient (“second”) term of the pressure-gradient force (PGF) irrespective of the steepness
of the terrain. This is because the eta coordinate surfaces are very nearly horizontal. The
topography discretization with the coordinate has been upgraded some years ago by
introducing the so-called sloping steps (e.g., [9]), which successfully addresses the Gallus
and Klemp [10] problem the step-topography discretization has with flow over a bell-shaped
topography [11, 12].

• Van Leer type finite-volume vertical advection of dynamic variables (v, T), using the scheme
of [13].

One advantage of the eta coordinate compared to the usual terrain-following (sigma) is that
vertical sides of model cells are very nearly equal so that for a finite-volume discretization,
which ensures conservations by keeping track of the inflow and outflow into and out of model
cells, multiplications of horizontal fluxes by the area of the vertical sides of cells can be skipped.
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This is done in the Eta so that in view of the Arakawa-type horizontal advection and finite-
volume vertical advection it is very nearly a finite-volume dynamical core model. In fact, in
view of its conservation of second-order integral quantities of enstrophy and kinetic energy,
not done in standard finite-volume cores, its dynamical core can be referred to as a finite-
volume “plus” dynamical core.

The physics package of the model includes the Noah surface scheme over land and sea ice,
with roughness length following [14], and Monin-Obukhov with Paulson functions inside the
surface layer. In addition, the wind-direction-dependent form drag scheme is used to account
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the time of this writing, they are being replaced by the RRTMG scheme of [26], upgraded
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2. Eta coordinate treatment of topography

After about 2000 quite a few papers stated that the eta coordinate, used by the Eta model, “has
difficulties in representing flow over mesoscale topography” and/or that it “appears to be ill
suited for high-resolution prediction models” (e.g., [31], among others).What prompted these
doubts was a poor result of an experimental NCEP Eta model in forecasting a downslope
windstorm in the lee of the Utah Wasatch Range, and even more the results of Gallus and
Klemp [10]. In simulating an idealized case of flow over a bell-shaped topography, or “Witch
of Agnesi”, and using an eta nonhydrostatic code, Gallus and Klemp [10] had flow separate
downstream of the mountain instead of properly descending along the lee slope.

To address the problem, discretization using the eta coordinate was refined by assuming
sloping bottoms of model’s lowest velocity cells, if the four neighboring elevation values permit
the definition of the direction of the slope. This would be the case when one of the four elevation
values is higher than the remaining three, and when two neighboring values are equal and
higher than the remaining two. The slope would be defined inside the model layer below that
of the velocity point. For an illustration in the simplest 2D case, see Figure 2 of Ref. [9].
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The refinement improved considerably the simulation of flow over the bell-shaped topogra-
phy, Figure 3 of [9], but not as much as the artificial enforcement of zero vorticity along the
step corners by Gallus and Klemp, a modification they found to be working better than some
others they tried. Recently, however, an oversight was noticed in the sloping steps Eta code,
consisting of its horizontal diffusion not having been made aware of the existence of the slopes.
While addressing this oversight, in addition the horizontal diffusion scheme was made
unconditionally stable and monotonic. This seemed desirable because in very high resolution
runs apparently too high values of the scheme’s nonlinear diffusion coefficients were resulting
from high values of the velocity deformation. Following these refinements, the simulation of
the Gallus-Klemp experiment was obtained as shown in the right-hand plot of Figure 1. The
result that Gallus and Klemp obtained with their artificial code modification is shown in the
left-hand plot. The right-hand plot shows velocities along the lee slope even slightly greater
than those of the left-hand plot.

Figure 1. Simulation of the Gallus-Klemp experiment with the Eta code allowing for velocities at slopes in the horizon-
tal diffusion scheme, right-hand plot. The plot (c) of Figure 6 of Ref. [10], left-hand plot. Contours show wind speed in
m s-1, with 10 m s-1 prescribed at the lateral boundaries of the domain; see [10] for additional detail.

In summary, with the eta coordinate discretization using sloping steps refinement, and the
model’s Arakawa-style schemes, arbitrarily steep topography can be used with no significant
noise generation and no major disadvantages that we are aware of. One could consider that a
downside of the coordinate is that vertical resolution of the boundary layer becomes poor over
high topography. However, model layers getting very thin over high topography with terrain-
following systems might not be desirable either. For the illustration of the point made about
steep topography in Figure 2 a plot is reproduced from Figure 8 of [9], showing vertical cross
section generated using a nonhydrostatic option and running a case of a severe downslope
windstorm in the lee of the Andes. Cliffs of well over a kilometer and up to about 2 km are
seen in the model’s topography, with no visible noise in the isotherms depicted. The plot is
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generated using NCAR Graphics Package with values of individual grid cells shown and no
contour smoothing.

3. Value added at large scales

One issue the Eta model has been used to address is that of the possibility of achieving added
value at large scales inside the domain of a regional climate model (RCM). The usual attitude
of people running RCMs is that RCMs should improve on small scales, while keeping the large
scales as close as possible to those of the global driver model. To this end, nudging of the RCM’s
large scales toward those of the driver global model is frequently applied. Opinions have even
been advanced that RCMs are unable to improve on large scales. Veljovic et al. [32] have on
the other hand argued that attempting to improve also on large scales when running an RCM
is a worthwhile objective, and have presented results indicating that this indeed is possible. If
one can achieve added value at large scales inside an RCM, small scales will obviously benefit

Figure 2. West-east cross section of the topography and temperature in deg K at 33 h of an 8 km resolution Eta forecast
initialized at 0000 UTC 10 July 2006. The case run is one of an intense zonda windstorm in the lee of the Andes, with
heating in the area of the station San Juan, at the distance of about 340 km from the origin of the plot, of more than 9 K
compared to the temperature at 24 h. For additional detail see [9].
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too, and perhaps quite considerably so. Thus, Figure 1 of [32] shows an example of quite an
extraordinary improvement achieved using an RCM, which hardly could have been possible
without an added value at large scales.

A caveat is, however, needed regarding some of the tests for which authors have made
statements on the added value achieved at different scales but have driven their RCMs by
various reanalysis fields. One should notice that it is only via experiments that use GCM results
for LBCs that one can fairly test the ability of an RCM to add value at large scales. It is crucial
to note that the purpose of RCMs is not to reproduce something we know, but to improve on
climate integrations that are projecting changes into the future that we do not know. When
driving an RCM with reanalysis LBCs, the RCM has no opportunity to improve on large scales
of the climate projection driver data even though it might be able to do so. As pointed out by
Veljovic et al. [32], and restated in [9], this is because such climate projection driver data have
not been made a part of the experiment. Thus, a proper assessment of the optimal domain size,
and of the ability of the RCM to add value at different scales, is not possible.

One should note that we are not saying that in experiments with RCMs driven by a reanalysis
one cannot improve on a field or a feature that might be considered large scale, such as perhaps
precipitation pattern, compared to the reanalysis used. But this is not a test of the ability of the
RCM to add value at large scales because the global fields against which such a test needs to
be made, climate projection fields, were not used to drive the RCM.

It is suggested that in order to achieve added value at large scales, four requirements must be
observed. First, one needs to run the RCM on a relatively large domain. Note that domain size
is very inexpensive as compared to resolution. Second, one should use LBCs that are not
ignoring the basic mathematical properties of the problem at hand. That means enforcing the
driver model values along the outside RCM boundary only, and not all of them at the outflow
parts of the boundary. Third, one must not use large scale or spectral nudging. And finally,
fourth, one must use an RCM with dynamical core not of inferior quality to that of the driver
global model.

Following the original effort of Veljovic et al. [32], additional experiments that support the four
requirements listed above have been presented by Mesinger and Veljovic [11, 12]. For an overall
test, the most crucial issue is obviously demonstrating that indeed achieving added value at
large scales is possible when the requirements listed are observed. To this end, in Figure 3 the
verification results are shown for an experiment in driving a 21-member Eta model ensemble
by ECMWF 32-day ensemble members. Verification scores chosen are for the wind at 250 hPa,
assuming that it is the placement accuracy of the wind at upper troposphere, in particular of
the jet stream, that reflects the model skill in forecasting atmospheric large scales better or at
least more directly than various spectral analysis methods a number of authors used. There-
fore, the placement of wind speeds greater than a chosen value, selected at 45 m s-1, has been
assessed using the verification approach that is customary in quantitative precipitation
verifications. ECMWF analyses were taken as “observed”. The measure used is the one usually
referred to as the equitable threat score (ETS) or Gilbert skill score (e.g., [33]). To minimize the
impact of “hedging”, e.g., of obtaining a higher score if the forecast area is greater than the
observed, the “bias adjusted” ETS scores, ETSa [34], were calculated. Results for the driver
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ECMWF ensemble (red) and the Eta ensemble (blue) are shown in the upper panel of the figure.
More traditional RMS differences between the ensemble members and the analyses are shown
in the lower panel.

Figure 3. Bias-adjusted ETS scores of 250 hPa wind speeds greater than 45 m s−1, upper panel, and RMS wind differ-
ence, in m s−1, lower panel, of the driver ECMWF ensemble members (red) and Eta members (blue), both with respect 
to ECMWF analyses. Initial time is 0000 UTC 4 October 2012.

Compared to that of the earlier experiment of Veljovic et al. [32], the driver ECMWF ensemble
of the experiment of Figure 3 was of an increased resolution, of about 32 km the first 10 days,
and 63 km thereafter. The resolution of the Eta ensemble was unchanged, about 31 km. Thus,
during the first 10 days the resolution of the two ensembles of Figure 3 was about the same.
Yet, a clear advantage of the Eta ensemble is seen in the ETSa scores during the first 3–9 days
of the experiment, supported by the lower RMS differences during that time. The differences
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in ETSa scores following day 10 are smaller, with the Eta scores being somewhat higher most
of the time when the two are visibly different during about the first half of that period, and an
opposite result near the end. The RMS differences following day 10 show about the same
message. One might consider scores of earlier times, when the model skill is still synoptically
useful, to have more of a meaning than that near the end of the experiment, in particular once
the ETSa becomes close to its random value of 0.

Along with the earlier results cited, the scores of Figure 3 we feel amount to a fairly large body
of evidence showing that a nested limited area model, or an RCM, can achieve added value
over its driver model also at large scales. If it does so more often than not, then using large
scale or spectral nudging will be a nudging in the wrong direction. One should also note that
the boundary conditions scheme of Ref. [30] or relaxation boundary conditions, forcing the
RCM values in a boundary band of points to approach those of the driver model, also represent
a way of nudging the RCM toward the large scales of the driver model. Thus, if used, they
reduce the ability of the RCM to improve on large scales. In summary, if one finds that spectral
or large scale nudging is needed for an acceptable result, we feel it is a good idea to try to find
out why.

4. Regional reanalysis

Starting with Kalnay et al. [35], a practice of analyzing all reasonably available data using an
unchanged system of model and data assimilation has become customary, with the idea that
thereby as much as possible the changes in model and data assimilation systems will be taken
out of the resulting analyses so that as much as feasible the climate and climate change
information only will impact the analyses. Presumably for the first time, in the early two
thousands a regional reanalysis effort has been undertaken at NCEP, running the then
operational Eta model and data assimilation systems. The paper presenting the project design
and selected results for the original 25-year period of 1979–2004 is Mesinger et al. [36]. The
reanalysis, named North American Regional Reanalysis (NARR), is continued by NCEP/
Climate Prediction Center in near-real time, and is used for many application purposes.

5. From weather to climate

The Eta model has been applied to produce weather forecasts over South America at the Centre
for Weather Forecasts and Climate Studies (CPTEC) of INPE since December 1996 [37]. Due
to the steep slopes of the Andes Cordillera in South America, the eta coordinate was demon-
strated to enable a realistic reproduction of the major features of the summer circulation over
South America [38].

The first attempts to extend the integration of the Eta model were applied over South America:
Chou et al. [39, 40] using two different land surface schemes—the simple bucket model and
the SSiB scheme. The evaluations of one-month simulations produced by the Eta model
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showed improvement over the driver CPTEC Atmospheric General Circulation Model
(AGCM). Chou et al. [40] demonstrated that the model responds most strongly to changes in
the lateral boundary conditions, in the second place, to changes in the sea surface temperature,
and then, finally, to the land-surface conditions, such as soil moisture and soil temperature.

The Eta model started seasonal forecasts over South America [41] in 2002 by applying persisted
anomaly of sea surface temperature as the lower boundary condition of the model. The model
was driven by CPTEC AGCM through the lateral boundary conditions. The integration range
was 4.5 months. The evaluations showed that the model reproduced the seasonal precipitation
variability over the continent and some potential use of higher frequency variability forecast
by the model. The Eta seasonal forecasts clearly showed advantage over the driver CPTEC
AGCM forecasts, in particular of the seasonal precipitation forecasts [42]. Some systematic
errors of seasonal precipitation forecasts were identified in the construction of model seasonal
climatology [43] such as the underestimate of 850 hPa specific humidity in the central part of
the domain during summer season. Bustamante et al. [43] also showed the interannual
variability of seasonal precipitation predicted by the Eta model in agreement with observa-
tions. Resende [44] also obtained an underestimate of 700 hPa specific humidity over most of
the South America by the Eta model simulations driven by Climate Forecast System Reanalysis
(CFSR) [45] at the lateral boundary conditions, in both winter and summer seasons. This
underestimate of seasonal-specific humidity may be one of the sources of errors of seasonal
precipitation, which is generally underestimated [46].

The relevance of the boundary conditions to drive the regional climate model is shown in
Pilotto et al. [47], who compared the Eta seasonal precipitation forecasts driven by CPTEC
AGCM, with persisted sea surface temperature anomaly, against the forecasts driven by
CPTEC Coupled Ocean-Atmosphere GCM, using predicted sea surface temperature. The
model was set up in the domain covering the southern Atlantic Ocean and eastern part of South
America. Improvements of the precipitation forecasts over the equatorial oceans by the Eta
forecasts driven by the OAGCM were substantial by reducing the excessive precipitation of
the Intertropical Convergence Zones over the Atlantic and Pacific Oceans.

A first attempt to apply the Eta RCM forecasts for crop yield productivity in Brazil was
produced by Vieira [48] using a physically based crop model driven by Eta seasonal forecasts.
Although the evaluation of these forecasts showed some level of error in various areas where
corn crop is produced [49], the forecasts captured reasonably well the crop productivity
forecasts, particularly in the months of maximum productivity.

Most of the energy production in Brazil is based on hydropower. Therefore, the accurate
precipitation forecasts are essential for the correct management of energy production, distri-
bution, and transmission. An example of the application of Eta RCM seasonal forecasts over
major Brazilian river basins can be found, for example, in the project mentioned by [50], that
demonstrated that the Eta RCM has smaller systematic errors in total precipitation during the
rainy season of the Sao Francisco River Basin, in comparison with the driver CPTEC AGCM
seasonal precipitation forecasts. These forecasts were run in ensemble mode perturbing
parameters of the Betts-Miller-Janjic convection scheme of the Eta model. Another example of
the application of the seasonal forecasts for the energy sector is the work of the evaluation of
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the Eta seasonal forecasts in capturing the onset of rainy period over the Parana River, one of
the major rivers for power production in Brazil [51].These forecasts showed large spread in
determining the onset of the rainy season. A potential application in the energy sector is the
forecast in subseasonal scale as shown in [52] driven by CPTEC Coupled Ocean-Atmosphere
General Circulation Model (OAGCM), using lagged ensemble of 20 members constructed from
twice daily forecasts during 10 consecutive days.

6. Climate change

The Eta model was adapted to run from seasonal to multidecadal range [53] in order to develop
capacity for studies of climate change. Some of the changes consisted of allowing seasonal
variations of vegetation greenness, sea surface temperature reading off coupled ocean-
atmosphere global climate models for any long decadal range, synchronicity with OAGCM
calendar, and updated equivalent CO2 concentrations according to the projected future
emission scenarios. The model was initially driven by the HadAM3P global atmospheric model
and had the present climate simulation evaluated against climatology [53]. The model
reproduced reasonably well the South America summer climatological features such as the
South Atlantic Convergence Zone and the upper level circulation.

To support impact, vulnerability, and adaptation (IVA) studies for the Brazilian Second
National Communication to the UNFCCC, the Eta model was set up at 40 km horizontal
resolution, nested in four physics perturbation members of the HadCM3 simulations under
the A1B emission scenario [54]. The model was run continuously from 1960 to 1990. The time
slice between 1961 and 1990 was considered the reference climate period, while three time
slices, 2011–2040, 2041–2070, and 2071–2099, were produced as future climate periods. In order
to verify model capability to reproduce large-scale climatic pattern in long-term integrations,
Nakićenović and Swart [55] demonstrated that the seasonal mean upper-level winds that were
simulated in the 30-year continuous runs agreed with reanalysis winds (Figure 4). The Bolivian
Anticyclone, which is a major summer feature over South America, was correctly positioned.

For the Brazilian Third National Communication, the strategy to construct the Eta ensemble
considered two greenhouse gas emission scenarios, RCP4.5 and RCP8.5 [56], and at least two
global climate models, HadGEM2-ES and MIROC5. The runs were divided into four time slices
from 1961 to 2005, as the reference climate period, and 2006–2040, 2041–2070, and 2071–2100,
as the future climate periods [57, 58]. The horizontal resolution was increased to 20 km. From
the Second to the Third National Communication, the Eta model was upgraded following [9].
The major changes were the modification of the vertical advection, making the model a full
finite volume, and the refinement of the eta coordinate discretization, which allowed sloping
sides of topography cells. This version showed improvement over the previous version, in
particular in capturing the downslope windstorms at the lee of the Andes in South America
[59], the zonda winds, a foehn type of wind.
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Figure 4. Mean 200 hPa streamlines from ERA40 reanalysis (left column) and Eta run nested in HadCM3 simulations
(right column) for DJF (top row) and JJA (bottom row). Areas shaded in orange refer to wind speeds in m s−1.

The spread of the Eta ensemble runs resulting from the use of different global models at the
lateral boundary conditions in [57] was shown to be larger than the spread resulting from the
use of the perturbed members of the same global model in [53]. The spread produced by the
use of different global model drivers and different emission scenarios [57] attempts to produce
the range of lower and upper limits of the projected changes. Therefore, the constructed
ensemble tries to envelope the uncertainties associated with the construction of the climate
change projections.

The output from the Eta model downscaling of global climate change projections has been
applied to support studies on various socioeconomic sectors. Studies of possible impacts of
climate change have been produced to the Brazilian hydropower availability [60], to water

The Eta Model: Design, Use, and Added Value
http://dx.doi.org/10.5772/64956

147



resources considering small river basins and river springs [61], to Amazon biome and general
tropical forest conservation [62, 63], and to coffee crops [64, 65]. Indices of vulnerability and
susceptibility to climate change have been designed, for example as in [66], in order to help to
construct adaptation measures.

The IVA studies generally require higher resolutions dataset because the problem faced is of
local scale rather than global or continental. In addition, the major issue of climate change is
the change of the extreme values. In coarse resolution, the values are smoother. The increase
in horizontal resolution, easily provided by an RCM, can help to reproduce the frequency
distribution of a variable closer to the observed frequency. The evaluations of trends of extreme
values in metropolitan areas of São Paulo [67] and Rio de Janeiro [68] under the A1B scenario
used the Eta model output at 40 km. The increase in resolution to 20 km [69, 70] has shown
improvement over the 40 km, especially in the extreme values. The mean values of the Eta
climate change projections at 20 km resolution are very similar to those of the coarse 40 km
resolution runs. The gain due to the resolution is detected in the extreme values that agree
better with observations as demonstrated by Chou et al. [69].

Figure 5. Frequency distribution of temperature (°C) for two cities in Brazil, São Paulo and Guarulhos; and frequency
distribution of precipitation (y-axis in log) (mm day−1) for stations around the Metropolitan Region of São Paulo
(RMSP, the grey contoured area). The distributions are for the period 1961 to 1990. The black lines refer to observatio-
nal data; the purple lines, the 20 km Eta simulations; and the blue lines, the 5 km Eta simulations.

An additional horizontal resolution increase may lead to grid sizes smaller than 10 km and to
scales in which nonhydrostatic motions become important. The advantage of using the switch
to change from hydrostatic to nonhydrostatic mode is clear in long-term integrations, in which
resolution is decreased in favor of increasing the integration range. This further increase in
horizontal resolution is suitable to help measure the resilience of a city to changes in the climate.
The evaluation of the 5 km Eta in nonhydrostatic mode setup over Southeast Brazil [71, 72]
showed the advantage of the higher resolution for reproducing the distribution frequency of
temperature and precipitation in metropolitan areas. Figure 5 compares the frequency
distribution of temperature and precipitation for stations located in the metropolitan area of
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temperature and precipitation in metropolitan areas. Figure 5 compares the frequency
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São Paulo obtained by the Eta runs set up in 5 km and in 20 km resolutions. The 5 km resolution
distribution approaches the observation distribution more than the 20 km distribution. At this
resolution, the topography and coastline are better described, which favor the representation
of the winds and temperature, and, consequently, precipitation.

Over southeastern Europe the model was used by Kržič et al. [73] and Djurdjević [74].
Investigations made are similar to some of those summarized above for regions of Brazil. The
Eta model used, however, differs in having its radiation scheme replaced by that of [75], and
also in being coupled to the Princeton Ocean Model (POM). One needs to note that in these
references the acronym EBU is used for the Eta version used, referring to “Eta Belgrade
University”.

7. Work in progress and plans

Along with various applications we are pursuing further development of the model, in several
directions. In view of the constant increase in the power of computing resources, one of these
efforts is aimed at improving the performance of the model when run at high horizontal
resolutions. Thus, we have been making extensive experiments using 1 km resolution over a
domain including very complex coastal topography of the Brazilian states of Rio de Janeiro
and São Paulo. Our plans addressing the performance at these and higher resolutions include
further upgrades of the model’s already upgraded Mellor-Yamada 2.5 turbulence scheme. Our
codes include some features of the Mellor-Yamada-Nakanishi-Niino scheme (MYNN, e.g., [76],
and references therein), and additional work in this area is planned.

Another direction of our model refinement efforts is motivated by the need to enable improved
environmental applications at the time of diverse influences on climate by changes in atmos-
pheric constituents, such as aerosols, greenhouse gasses additional to carbon dioxide, etc. Work
on coupling these with the now experimentally implemented RRTMG radiation scheme is in
progress.

To enable model use in a global setup, work is in progress for implementing the current Eta
code to be used mapped on a cubed sphere, by following in the footsteps of the earlier work
of Rančić et al. [77] and Zhang and Rančić [78]. Once this work becomes sufficiently mature,
it should provide an ideal framework also for the use of the Eta as a nested model on one face
of the cube, with resolution higher than on the remaining five faces. This should enable “lateral
boundary conditions” of the “nested” model to be defined much more consistently than what
can be done when nesting a limited area model in an “alien” global model.
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