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Preface

Nowadays mathematical modeling and numerical simulations play an important role in life
and natural science. Numerous researchers are working in developing different methods
and techniques to help understand the behavior of very complex systems, from the brain
activity with real importance in medicine to the turbulent flows with important applications
in physics and engineering. This book presents an overview of some models, methods, and
numerical computations that are useful for the applied research scientists and mathemati‐
cians, fluid tech engineers, and postgraduate students.

The first section of the book presents models and simulations for the analysis of the behav‐
ior of some parts of the human body. In Chapter 1, Chen and Calhoun discuss some imag‐
ing (fMRI) aspects of brain functional (BOLD) activity. In Chapter 2, Bauer and Paulus study
the biomechanical behavior of a lumbar spine model that take the spinal structures with
their specific material properties into account. In Chapter 3, Kitajima et al. investigate some
aspects of computational neuroscience by using RC and RCL circuits to model the neurons
and the cell membrane. The last chapter of this section, Chapter 4 by Jackowska-Zduniak,
introduces a two-coupled van der Pol equation model to describe the heart action potential
to recreate some pathological behavior, such as the most common (AVNRT) tachycardia.

The second section of the book presents some mathematical and numerical methods to inte‐
grate different types of differential equations. In Chapter 5, Khan et al. simulate fractional
differential equations by using Chebyshev- and Legendre (ChSANN and LSANN)-simulat‐
ed annealing neural networks. In Chapter 6, Sweilam and Assiri introduce and numerically
study some real-life model problems that can be formulated as ordinary differential equa‐
tions. In Chapter 7, Motsa et al. explore the application of a novel multi-domain spectral
collocation method for solving general nonlinear Lane-Emden-type differential equations.
Finally, in Chapter 8, Khan et al. provide a comprehensive discussion of systems of fuzzy
fractional differential models in imprecise environment.

The third section of the book presents different problems of heat transfer where fluids are
involved. In Chapter 9, Castro et al. analyze the convection heat transfer in an experimental
heat exchanger using experimental and numerical simulation data. In Chapter 10, Ludowski
et al. propose solving steady-state inverse heat transfer problems using Computational Flu‐
id Dynamics (CFD) software. In Chapter 11, Lopes addresses the physical principles and
numerical models implemented in the software package EasyCFD. In the last chapter of this
section, Chapter 12, Shateyi et al. analyze the problem of magnetohydrodynamic (MHD) mi‐
cro-polar fluid, heat and mass transfer over unsteady stretching sheet through a porous me‐
dium.



The final section of the book presents some models and techniques for turbulent flows. In
Chapter 13, Alonzo-García et al. provide an overview of the technical, theoretical, and nu‐
merical applications of Computational Fluid Dynamics (CFD) using the finite volume tech‐
nique, restricted to incompressible turbulent flows. In Chapter 14, Lauk et al. investigate a
novel 3D model based on the Reynolds Turbulence Stress Model (RSTM) closure of equa‐
tions of carrier and particulate phases for channel turbulent flows. In Chapter 15, Ketabdari
discusses and evaluates different free surface simulation methods based on computational
grid. Finally, in Chapter 16, Mejía et al. address the use of Large Eddy Simulation (LES) for
analyzing transport and mixing of passive and reactive scalars at high Schmidt regimes.

As the editor of this book, I would like to thank all the authors who have contributed to this
volume as well as the reviewers for their assessment. Also, I express my gratitude to the
InTech editorial staff for their invitation to be editor of an initial book project that, with the
particular help of Ms. Iva Lipovic, the publishing process manager (PPM), we have arrived
to convert in this new InTech book. Finally, at this moment where my father recently passed
away, I dedicate all this effort to his memory and to him, Ricardo López-Barasoain (1935–
2015), from Villafranca, Navarra, Spain. Of course, the rest of my family and all my friends
and advisors are not forgotten in this dedicatory final paragraph.

Ricardo López-Ruiz
University of Zaragoza

Spain
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Chapter 1

BOLD fMRI Simulation

Zikuan Chen and Vince Calhoun

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63313

Abstract

Background:  Brain  functional  magnetic  resonance  imaging  (fMRI)  is  sensitive  to
changes in blood oxygenation level dependent (BOLD) brain magnetic states. The fMRI
scanner produces a complex-valued image, but the calculation of the original BOLD
magnetic  source  is  not  a  mathematically  tractable  problem.  We  conduct  numeric
simulations to understand the BOLD fMRI model.

Methods:  A brain cortex volume of interest  (VOI) is  configured with vasculatures
(vessels or beads). Brain activity results in a local vascular blood magnetic susceptibil‐
ity change in VOI (denoted by χ(r,t)), manifesting as a dynamic magnetic source for
BOLD  fMRI.  The  MRI  scanner  produces  a  timeseries  of  complex-valued  images
reflecting  the  dynamic  source  χ(r,t).  A  voxel  BOLD  fMRI  signal  is  simulated  by
calculating the intravoxel spin precession dephasing signal, a 3D BOLD fMRI by a
multivoxel image of voxel signals for a 3D χ source distribution, and a 4D BOLD fMRI
by a timeseries of 3D multivoxel images. The simulation data are subject to pattern
analysis and statistical parametric mapping.

Results: Both MR magnitude and phase signals (images) are different from a prede‐
fined χ source due to data transformations inherent in the MRI scanning process. The
3D BOLD fMRI simulation shows the spatial distortions between the χ source and the
MR image. The 4D BOLD fMRI simulation shows that the reconstructed source map is
different from the original image and also that the task-correlation-based functional
mapping method is susceptible to noise.

Conclusion: BOLD fMRI simulation offers a means to understand the single-voxel MR
magnitude and phase signals, 3D multivoxel images, and 4D functional movies for a
predefined BOLD χ source with respect to various parameter settings. It also allows us
to separate the intravascular/extravascular signals and numerically characterize spin
diffusion effect. The 3D BOLD fMRI simulation shows the source-image mismatch,
which motivates the benefits of χ source reconstruction by solving an inverse MRI
problem. The 4D BOLD fMRI simulation shows the noise dependence of the task-
correlated functional map extraction.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Keywords: magnetic resonance imaging (MRI), blood oxygenation level dependence
(BOLD), magnetic susceptibility source, dipole effect, voxelization, complex-valued
magnetic resonance signal (image), intravoxel dephasing signal, multivoxel image,
BOLD fMRI simulation, task correlation

1. Introduction

Magnetic resonance imaging (MRI) is a versatile non-invasive imaging technology that has
been widely accepted for brain imaging (probing a magnetic state of brain interior). When
applied to brain functional imaging, MRI produces a timeseries of images that are construed
as an image representation of a brain functional activity. It is believed that any brain activity
incurs a cerebral blood oxygenation level dependent (BOLD) magnetic state change that can
be detected by MRI [1–4]. Brain functional imaging based on MRI and the endogenous BOLD
contrast is termed BOLD fMRI.

In principle, the MRI output is a complex-valued image consisting of a pair of magnitude and
phase [5]. Nevertheless, only the MR magnitude image has been exploited for brain imaging
(structural or functional). Recent research shows that neither the MR magnitude nor the phase
could faithfully represent the brain magnetic state. This is due to a cascade of MRI transfor‐
mations (including linear dipole-convolved magnetization and nonlinear complex modulo/
argument operations [6]). Consequently, conventional BOLD fMRI that is based on MR
magnitude imaging may deviate from the underlying brain magnetic source change due to
nonlinear data transformations associated with MR magnitude image formation. Since there
is a lack of analytic formulation for describing the imaging aspects of BOLD fMRI, we conduct
numeric simulations to understand the BOLD fMRI model.

In the past decades, there have been reports on single-voxel BOLD signal simulations [7–9]
and multivoxel 3D BOLD imaging simulations [6, 10, 11]. In this chapter, we first provide a
tutorial on the numeric simulations of single-voxel signals and multivoxel images and move
forward to address implementing 4D BOLD fMRI simulations.

2. Models and methods

An overview of a brain BOLD fMRI model is diagramed in Figure 1, which consists of a cascade
of three modules (stages). Specifically, the “Source Magnetism” module provides the pheno‐
typical χ expression of a brain functional biophysiological state, which serves as the source of
the “MRI technology” module that produces a complex-valued MR image. Upon data
acquisition of a 4D fMRI, a postprocessing stage of “Statistic image analysis” is performed to
extract the brain functional map (fmap). A complete BOLD fMRI simulation implements the
three cascaded stages in Figure 1 by numerical representations and computations.

Numerical Simulation - From Brain Imaging to Turbulent Flows4
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Figure 1. A BOLD fMRI model consists of three stages. The stage of “Source Magnetism” provides a dynamic magnetic
susceptibility source for the stage of “MRI Technology”. The MRI detection produces a 4D complex-valued fMRI data‐
set, which are used for functional imaging and mapping by “Statistical Image Analysis”.

2.1. Definition of 3D vasculature and magnetic susceptibility source (χ)

The initial step of BOLD fMRI simulation is to configure a χ-expressed BOLD activity, thereby
providing a BOLD χ source for fMRI. We define a brain cortex volume of interest (VOI) with
a tissue background and fill it with a cortex vasculature, thus simulating a brain cortex region.

BOLD fMRI Simulation
http://dx.doi.org/10.5772/63313
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Let χ0(r) denote a static 3D χ distribution of parenchymal tissue in VOI and Δχ(r,t) the vascular
blood χ change associated with a BOLD activity, with r = (x,y,z) denoting the spatial coordinates
in VOI, then the dynamic 4D χ source is given by

0

0 static

do

( , ) ( ) ( , ) noise
with  

( ) ( )                                                 (parenchymal tissue)
( , ) (1 ( )) ( ) ( , )    (BOLD activity)

t t

t Hct Y t NAB V t

c c c

c c
c c

= + D +

=
D = × × - × ×

r r r

r r
r r r

(1)

where Hct denotes the blood hemocrit (Hct = 0.4 for normal blood), χdo the magnetic suscept‐
ibility difference between deoxygenated and oxygenated blood tissues (χdo = 0.27 × 4π ppm
(in SI unit)), Y(t) the blood oxygenation level (Y ∈ [0,1]), NAB(r) the local neuroactive blob
distribution, and V(r,t) the vasculature geometry in VOI. The explicit t variable indicates a
possible change during a BOLD activity, such as cerebral blood volume change in V(r,t) and
oxygenation level change in Y(t). For the sake of simulating fMRI signals, a pure BOLD activity
is expressed by a dynamic blood magnetic susceptibility change, Δχ(r,t), which serves as the
magnetic source for BOLD MRI simulation. In practice, the BOLD activity provides an additive
term, Δχ(r,t) (a perturbation term), on a background distribution χ0(r) in Eq. (1).

A local functional activity is defined by a 3D spatial distribution of NAB(r) (a neuroactive blob
centered at r in VOI). For the sake of numerical representation, we assume a NAB by a
Gaussian-shaped blob (with soft boundary) or a ball-shaped blob (with hard boundary). A
NAB defines a local activity distribution in VOI, which presents with an ON state (active state)
and vanishes with an OFF state (resting state) by a temporal modulation of a designed task
paradigm. We may define an excitatory activity by a positive distribution (NAB(r) > 0) or an
inhibitory activity by a negative distribution (NAB(r) < 0), in relation to the static background
distribution. For the numerical simulation of a BOLD activity, we define a BOLD χ response
by a spatiotemporal modulation model in Eq. (1). A brain active state gives rise to Δχ(r,t) ≠ 0
in NAB and at a task “ON” epoch, and a brain resting state is numerically characterized by
Δχ(r,t) = 0 over the VOI in Eq. (1).

It is mentioned that the BOLD χ expression in a brain activity is simply simulated by a spatial
modulation model in Eq. (1), where a neuronal activity is defined by a local blob that shapes
a local blood Δχ map by a spatial multiplication. We also simplify the BOLD χ source simu‐
lation by ignoring the hemodynamic response function (hrf), which otherwise could be
accounted for by convoluting Δχ(r,t) with a kernel of hrf (usually adopting a canonical hrf that
is characteristic of a high upshoot followed by a small undershoot).

A BOLD χ change happens inside the vascular blood stream. We need to configure the
vasculature geometry V(r,t) by filling the VOI with cluttered vessels with a blood volume
fraction (bfrac), as expressed by

Numerical Simulation - From Brain Imaging to Turbulent Flows6
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where the t variable is reserved to incorporate the change in cerebral blood volume as a result
of vasodilation/vasoconstriction in a BOLD activity. A static vasculature is included as a binary
volume V(r) that remains stationary during a BOLD activity. The random vascular geometry
is generated under a control of bfrac = [0.02, 0.04] for cortex vasculature simulation [1, 8, 11–13].

Figure 2. Illustrations of VOI vasculature and BOLD Δχ source. The VOI is filled with (a1) random vessels (cylindrical
segments) and (b1) spheric beads. The NAB-modulated Δχ distributions are shown in (a2) and (b2), respectively, with
a y0-slice. It is noted Δχ may assume positive and negative values in local NAB regions.
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In order to maintain a control of constant bfrac for cortex vasculature over different regions or
across multiresolution subregions, we may fill a VOI with random beads instead of cluttered
vessels. In Figure 2 (a1,b1) are illustrated two brain local vasculature geometries with cluttered
cylinders and random beads, under local stimuli by an excitatory blob (in red) and an inhibitory
blob (in green). The NAB-modulated BOLD χ response distributions (in an active ON state)
are shown in Figure 2 (a2, b2) with a y0-slice in which the inactive regions (far from NAB) have
little or no BOLD responses (Δχ ≈ 0).

In order to numerically depict the vasculature geometry, we need to define the VOI with a
large finely gridded 3D matrix with a tiny grid element (gridel) at a scale of micronmeter [14].
For example, a matrix of 2048 × 2048 × 2048 gridels, where a gridel = 2 × 2 × 2 μm3, is used to
represent a small VOI of 4.1 × 4.1 × 4.1 mm3. The large matrix resulting from VOI gridel
sampling offers a quasi-continuous representation of a continuous distribution over VOI. A
gridel represents a spin packet (or isochromat) that contains numerous identical proton spins,
serving as a mesoscopic representation (at micronmeter scale) between microscopic structure
(at atomic and molecular angstrom scale) and macroscopic structure (at millimeter scale of
MRI voxels) [15, 16].

2.2. Calculation of χ-induced fieldmap

Upon determining the brain χ source configuration, we calculate the χ-induced magnetic field
map (fieldmap for short) by a 3D spatial convolution with a dipole kernel. This is to simulate
the brain tissue magnetization process in a main field B0 that produces an inhomogeneous
fieldmap. Let b(x,y,z) represent the z-component of χ-induced 3D vector field; it is given by
[10, 11]

0 dipole
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where * denotes spatial convolution, and hdipole a 3D dipole field [17]. In a Fourier domain, the
3D dipole convolution can be efficiently implemented by multiplicative spatial filtering, as
expressed by [18]
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where (kx,ky,kz) denotes the coordinates in the Fourier domain. The fieldmaps induced by the
Δχ distribution in a main field B0 are illustrated in Figure 3 (displayed with a y0-slice), which
shows a conspicuous dipole effect in a manifestation of bipolar-valued quadruple lobes around
vessels (with an orientation dependence [19]).
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Figure 3. The fieldmaps calculated from the Δχ distributions in Figure 2(a2, b2). It is noted that the Δχ-induced field‐
map takes on a continuous inhomogenous bipolar-valued distribution over VOI, bearing a conspicuous dipole effect
around large vessels (beads).

Figure 4. 3D FFT implementation by 2D FFT and 1D FFT. The 3D FFT of a large 3D matrix (e.g., 2048 × 2048 × 2048) is
achieved by first performing 2D FFT on each z-slice (xy-plane) and then 1D FFT along z columns. A large 3D matrix is
decomposed into a number of small z-chunks to reduce the data file management (fwrite and fread).

In computation implementation, the 3D FFT for fieldmap calculation for a finely-gridded 3D
χ distribution matrix (e.g., 2048 × 2048 × 2048 gridels) may encounter an “out-of-memory”
problem. We propose to solve this problem by decomposing 3D FFT into 2D FFT and 1D FFT.
Specifically, we first conduct 2D FFT on each z-slice (or xy-plane) and save the data as data
files, and then conduct 1D FFT along each of the z-axis columns of a 3D volume that is stacked
from z-slices (processed by 2D FFT and saved in files). In order to reduce the data file man‐
agement (fwrite and fread) of the 3D FFT decomposition, we decompose the 3D matrix into a
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handful of z-chunks (z-slabs) that each consists of multiple z-slices. The number of z-chunks
is dependent upon the available computer RAM (random access memory). As illustrated in
Figure 4, we only need to manage (fwrite and fread) a number of 32 z-chucks (each consists of
64 z-slices in a matrix of 2048 × 2048 × 64), instead of 2048 individual z-slices.

2.3. Multivoxel partition of VOI

An MRI output is a discrete multivoxel image with the voxel size at a macroscopic millimeter
scale, which implies that the MRI scanning process partitions a brain VOI into a small array
of macroscopic voxels. We simulate a multivoxel MR image by rebinning mesoscopic gridels
(at micronmeter scale) into macroscopic voxels (at millimeter scale). For example, we can
reduce a large matrix of 2048 × 2048 × 2048 gridels to a small image matrix of 64 × 64 × 64 voxels
with a voxel of 32 × 32 × 32 gridels. The multivoxel partition of VOI is in fact a spatial sampling
by voxels, called voxelization. We denote the gridel-sampled representation of a continuous
distribution over VOI by a spatial variable “(r)”, and the voxel-sampled discrete representation
by an index variable “[r]”. Let Ω denote a voxel space, and |Ω| the voxel size (in terms of a
number of gridels in Ω). The VOI voxelization is represented by

( , , ) ( , , )

1[ , , ] ( , , )
| | x y z x y z

V x y z V x y z
¢ ¢ ¢ ÎW

¢ ¢ ¢=
W å (5)

The VOI voxelization (voxel sampling) is necessary for MRI to produce a multivoxel image,
due to the band limit of coil transmission and reception, which is designed as a parameter of
voxel size in MRI protocol. The voxel size also represents a parameter of spatial resolution. In
the MRI output, a high-resolution (corresponding to small voxel size) produces a large image
matrix, and vice versa.

2.4. Calculation of intravoxel dephasing signals (Monte Carlo method)

An MRI voxel signal (or a NMR signal) is formed by an intravoxel spin precession dephasing
in a χ-induced fieldmap. A quadrature detection produces a complex-valued voxel signal,
denoted by C[x,y,z] that is formulated by [5]
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where γ denotes the gyromagnetic ratio, and the auxiliary variable ‘X’ is reserved to explicitly
include the dependence of NMR signal upon a diverse set of factors. We are always concerned
with the factors of echo time (TE), field strength (B0), spatial resolution (voxel size |Ω|), and
vessel geometry in particular.
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A voxel contains a number of gridels that each represents a spin packet. The voxel signal
calculation in Eq. (6) counts all the spin packets in the voxel space. For a voxel that contains a
large number of gridels, we may select a smaller number of gridels to calculate the voxel signal
and reduce the computation burden. The intravoxel dephasing signal calculation made by
counting the spin packets is a Monte Carlo simulation, which is expressed by
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For example, a voxel of 32 × 32 × 32 gridels consists of 32,768 spin packets, from which we may
randomly select 3000 for the intravoxel average computation in Eq. (7) at a small computation
cost of 10% (≈3000/32,768). It is noted that C[x,y,z;X] denotes a complex voxel signal at [x,y,z]
in VOI, and we also use C[x,y,z;X] to represent a multivoxel complex-valued image in the
context that [x,y,z] addresses all the voxels in VOI.

From a complex signal (image), we can calculate its magnitude and phase components by
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It is also noted that we use the magnitude loss and phase accrual to represent the pair of
complex signal components and that the magnitude and phase calculations are different
nonlinear operations.

2.5. Intravascular (IV) and extravascular (EV) signal separation

In an MRI experiment, it is difficult to separate intravascular (IV) signal from extravascular
(EV) signal in an NMR signal. In numerical simulation, we can calculate the IV and EV signals
separately based on the binary partition of voxel space according to the vessel geometry. Let
ΩIV and ΩEV denote the IV and EV subspaces in a voxel space, which are partitioned by the
vessel geometry by
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Then, we calculate the IV signal by only counting the gridels that are within vessel space (ΩIV),
and the EV signal by the gridels in ΩEV. That is, the IV and EV signals are given by
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In Figure 5 are illustrated the IV/EV partition of a voxel space for IV/EV signal simulations. It
is mentioned that the ΩIV only occupies a small fraction of Ω and the BOLD χ change is confined
in ΩIV.

Although a BOLD Δχ change is confined in ΩIV in a NAB, the vascular blood magnetization
process in B0 establishes a long-range magnetic field distribution, not only in ΩIV but also in
ΩEV, with a distant decay (∝1/r3) and a spatial modulation by NAB (see Figures 2 and 3).
Obviously, a BOLD activity causes an IV signal and an EV signal simultaneously, which are
generated from different field values over the IV and EV spaces, respectively. In Figure 5(a) is
illustrated the IV/EV signal formations from spin particles in the IV/EV partition spaces.

A voxel NMR signal is formed from its IV and EV signals by a convex combination according
to the IV/EV occupancies, as represented by
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| |with    
| |

IV EV

IV

C x y z X bfrac C x y z X bfrac C x y z X
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Consequently, the IV signal contribution is greatly suppressed by a small weight of bfrac (<<1),
as will be demonstrated later.

Figure 5. Illustration of extravascular (EV) and intravascular (IV) space partition in a voxel for intravoxel spin dephas‐
ing signal simulations (a) in absence of spin diffusions (static spins) and (b) in the presence of spin diffusions. A voxel
space is partitioned by its intravoxel binary vasculature into IV (vessel=1) and EV (vessel=0) subspaces.
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2.6. Diffusion effect

An NMR signal is formed via the carrier of hydrogen protons in tissue water. Since the water
molecules undergo random motions, the water protons are non-stationary. We describe the
proton random motion in 3D space by a trajectory r(t), which is represented by [9, 20]
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where δt denotes the time interval of the random motion of water molecules (δt = 2 ms in
simulation), D the diffusion coefficient (different for diffusions in IV and EV), and Gauss a
Gaussian distribution of the random motions (with a standard deviation of σd). It is noted that
water proton diffusion in IV space is twice faster than in EV space. In Figure 5(b) are illustrated
the diffusion IV and EV signal simulations.

2.7. Volumetric BOLD fMRI simulation

Based on individual voxel signal calculation, we implement 3D volumetric BOLD fMRI
simulation by calculating the voxel signals at a multivoxel image array. Given a 3D χ source,
the 3D BOLD fMRI simulations produce a 3D complex-valued multivoxel image C[x,y,z; X];
here, we are concerned with the spatial pattern comparison between the χ source and the
magnitude image. Since the phase image bears a conspicuous dipole effect that dooms the
morphological mismatch with the χ source, we do not need to compare the phase image with
the χ source. However, the phase image is directly related to the χ-induced fieldmap, and the
phase image has been used for the fieldmap reconstruction in an inverse MRI solver [11, 21,
22]. In particular, in a small phase angle regime, the phase conforms the fieldmap with a
difference of constant scale. In large phase angle scenarios, the unwrapped phase image
resembles the fieldmap very well (albeit with somewhat nonlinear distortions). Therefore, we
are also concerned with pattern comparison between MR phase image and the fieldmap. We
suggest the spatial pattern comparisons by spatial correlations, which are defined by
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It is noted that the spatial pattern correlations are applied to the multivoxel matrices (in
notation of [r]) of the χ source, the fieldmap, and the images, which are all discretized at a
spatial resolution of the same voxel size.

2.8. 4D BOLD fMRI simulation

It is straightforward to implement 4D BOLD fMRI simulation based on the repetition of
volumetric BOLD fMRI simulations for each snapshot capture over a BOLD activity. First, we
need to define a task-evoked 4D BOLD χ change, as illustrated in Figure 6. Specifically, we
configure a 3D vasculature-laden VOI and provide a 3D χ distribution for a brain VOI state.
A local χ change is simulated with a spatiotemporal modulation by a NAB and a task paradigm
(in Eq. (1)). For the weak BOLD response detection, the task paradigm is usually designed as
a boxcar waveform for repetition measurement of BOLD signals. We may define a positive
NAB for an excitatory BOLD response and a negative NAB for an inhibitory response. The
static background χ0 may be assigned to a water pool (χ0 = χwater) or be empty (χ0 = 0) with an
additive Gaussian noise.

Figure 6. Illustration of 4D BOLD χ response simulations. A VOI is filled local Δχ change with positive and negative
Δχ responses superimposed on a static background in the presence of noise. A BOLD event is represented by a times‐
eries of the 3D Δχ snapshot distributions in Eq. (1) through a spatiotemporal modulation by NAB(r) and task(t).

The 4D BOLD fMRI simulation involves a predefined 4D source χ[r,t] and two output 4D
images (A[r,t] for magnitude and P[r,t] for phase, as defined in Eq. (8)). Conventional BOLD
fMRI exploits the 4D magnitude dataset A[r,t] for functional analysis. For a task-evoked BOLD
fMRI simulation, the functional activity map can be extracted from a 4D dataspace, Λ[r,t] =
{χ[r,t], A[r,t], P[r,t]} by a temporal correlation (tcorr) map that is defined by
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where stdt denotes the standard deviation of the data with respect to the t variable, χtrue the
predefined χ source, and χrecon the reconstructed χ source (by solving the inverse problem of
MRI data). It is noted that the correlation coefficient is invariant to signal strength. Therefore,
a strong response signal may have the same correlation value as a weak response does as long
as the strong and weak responses take on the same timecourse profiles. Consequently, the scale
invariance of correlation leads to correlation saturation (tcorr = 1 at regions with different
response strengths). Nevertheless, the correlation saturation can be ruined by the presence of
noise. Herein, by noise we mean any pattern difference between the response signal timecourse
and task timecourse. In reality, the BOLD χ responses are subject to various noises (biological
noise, physiological noise, detection noise) that spoil the task correlations at weak response
regions. Only strong responses are immune to noise spoilage. It is the noise in the voxel
response timecourse (extracted from a 4D dataset at a specific voxel) that shapes the tcorr map
according to the response signal strength.

3. Simulation results

3.1. Single voxel signal simulations

3.1.1. EV/IV signal separation

By calculating the EV and IV signal portions separately and their convex linear combination
in Eq. (11), we present the EV/IV signal behaviors with respect to a span of echo time (TE=[0,

Figure 7. Intravascular (IV) and extravascular (EV) voxel signal simulations. The IV signal evolves drastically for a
long TE and its contribution to the full voxel signal is relatively small.
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60] ms) and for a range of field strength (B0=[1.5, 3, 4, 7, 9] Tesla). It is seen in Figure 7 that the
IV signal changes quickly with a long echo time. However, the drastic IV signal changes are
greatly suppressed in the voxel signals by the dominant EV signals. In particular, the IV signal
may be developed into phase wrapping phenomenon for a long echo time (see Figure 7(b2)).
With the dominance of EV signals in a large voxel, a voxel signal remains as a linear phase
accrual with echo time (see Figure 7(b3)).

3.1.2. Multiresolution voxel signal behavior

As a voxel size decreases, the voxel space contains less (or none) vessels, and there is less voxel
average effect. In Figure 8, the four-level voxel subdivision and multiresolution voxel signal
behaviors are demonstrated. At level =1, the parent voxel contains a clutter of vessels where
the complex voxel signal appears as a short line-segment trajectory (with respect to TE). As the
voxel is decomposed into an 8 × 8 × 8 array at level = 4, the subvoxel only contains a single
vessel, and the voxel signal becomes turbulent due to the high field values for rapid Larmor
precession [14, 23].

Figure 8. Multiresolution complex-valued voxel signals due to voxel subdivision. As the voxel size is dyadically re‐
duced, the smaller voxels contain less vessels, and the voxel signal may become turbulent at vessel boundary (Adapted
from [23]).

3.1.3. Diffusion effects on magnitude and phase signals

The numerical simulations on the diffusion effect on MR magnitude and phase are presented
in Figure 9 for a span of TE = [0, 60] ms with different field strengths (in terms of ΔχB0 = [0.1,
3] ppmT). The results show that the diffusion has more effect on low field magnitude than on
high field magnitude [20]. Nevertheless, the diffusion has little effect on MR phase signals.
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Figure 9. Effects of diffusion and field strength on voxel signal magnitude and phase. It is seen that the diffusion has
more effects on magnitude signal than on phase signal and that the diffusion effect decreases as the field strengths
increases (Adapted from [20]).

3.2. Volumetric BOLD fMRI simulations

3.2.1. Cortex VOI configuration and voxelization

We define a cortex VOI in a large matrix and fill it with random beads (radius = 3 μm, bfrac =
0.03), and simulate local BOLD response by a Gaussian-shaped NAB, which modulates the
local χ distribution by a spatial multiplication. The VOI is partitioned into a coarse matrix by
grouping the gridels into voxels. As a result of voxelization, we represent a distribution over

Figure 10. Illustration of VOI configuration and voxelization. A VOI is represented by a large matrix for subvoxel
structure representation. The VOI voxelization produces a small multivoxel matrix, depending on the voxel size.
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VOI by a multivoxel image matrix. The voxelization with a large voxel size produces a small
image matrix, and vice versa. Figure 10 shows a VOI that is represented by a large matrix in
gridel sampling (a) with a zoomed region for substructure visualization (b). The VOI voxeli‐
zation by a voxel of 32 × 32 × 32 gridels produces a matrix of 64 × 64 × 64 voxels (c) and produces
a matrix of 32 × 32 × 32 voxels (d) by a voxel of 64 × 64 × 64 gridels. It is seen that a larger voxel
size is comprised of more spatial smoothing.

3.2.2. Multivoxel image calculation

Given a 3D χ distribution in Figure 11(a), we calculated the χ-induced fieldmap by Eq. (2) and
presented the results (b). In the absence of diffusion, we calculated the complex-valued T2*
images (c, d). In the presence of diffusion (Eq. (12)), we recalculated the complex-valued T2*
images (e, f). The diffusion simulation on multivoxel fMRI shows that the diffusion effect is
insignificant on image formation.

Figure 11. Illustration of volumetric BOLD fMRI simulation, displayed with a z-slice (with B0//z-axis). (a) 3D Δχ source
(in a matrix of 64 × 64 × 64 voxels resulting from a VOI of 2048 × 2048 × 2048 gridels); (b) the Δχ-induced fieldmap; (c,
d) the magnitude and phase images with static spins (at TE= 30 ms); and (e, f) the magnitude and phase images with
diffusion spins.
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3.2.3. Morphological distortions associated with 3D BOLD fMRI

We performed volumetric BOLD fMRI simulations for a span of echo times (TE= [0, 30] ms)
with different parameter settings with respect to voxel size, field strength, and with and
without diffusion. With the datasets of numerical BOLD fMRI simulations, we compared the
magnitude images with the predefined χ source and the phase images with the fieldmaps. The
results are presented in Figure 12. Note that the pattern correlations are plotted in a small
display window ([0.9, 1]) out of the full range of corr ∈ [–1, 1] for scrutiny.

Figure 12. Spatial correlation measurements (a) between χ source and magnitude image and (b) between χ-induced
fieldmap and phase image, for static intravoxel dephasing and diffusive intravoxel dephasing. Note the small display
windows for corr values in the range of [–1,1] (Adapted from [11]).

3.3. 4D BOLD fMRI simulations

The 4D BOLD fMRI simulations are presented in Figures 13 through 15. Specifically, in Figure
13 are shown (a) the VOI configuration with two local neuroactive blobs (NAB), (b) the NAB-
modulated BOLD χ distribution at an ON state (or active state), and (c) the NAB-absent χ
distribution at an OFF state (or resting state), displayed with a y0-slcie. We designed a task
paradigm by a pattern of 5 ON states and 5 OFF states, simulating the brain active state
measurement by 5 repetitions and the brain resting state measurement by another 5 repetitions.
(In practice, a multiple repetition of the “ON/OFF” pattern is used to design the task paradigm).
The bead-represented vasculature structure in a voxel in VOI is shown in zoom (d) with a 3D
display. It is noted that the VOI is represented in a matrix of 2048 × 2048 × 2048 gridels (a), the
voxelization on VOI is represented by a multivoxel matrix of 64 × 64 × 64 voxels (b) and (c)
with a voxel = 32 × 32 × 32 gridels (d), and that the cortex vasculature in a VOI is simulated by
a uniform random distribution (background) that is independent of the BOLD NAB and task
paradigm. The 4D χ(r,t) representation for a local BOLD activity is related to the NAB and the
task through a spatiotemporal model in Eq. (1).
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Figure 13. Numerical representation of a local BOLD activity in terms of 4D χ(r,t). (a) A Gaussian-shaped NAB and a
ball-shaped NAB in VOI; (b) an ON state χ[r,tON]; (c) an OFF state χ[r,tOFF]; and (d) the bead-laden structure in a voxel.

Upon the numerical representation of 4D χ(r,t), we performed 4D BOLD fMRI simulations by
repeating the 3D BOLD fMRI simulation for each snapshot time point (there are 10 timepoints
for the task pattern of 5 ONs and 5 OFFs), with the settings (TE= 30 ms, B0 = 3 T, VOI matrix =

Figure 14. Numerical simulations of 4D BOLD fMRI data acquisition. (a1, a2) BOLD magnitude images captured at an
ON and OFF state and (a3) the magnitude signal timecourses at two voxels (marked by x and o (a1, a2), extracted from
the 4D magnitude dataset A[r,t]). (b1, b2, b3) for the BOLD phase images in P[r,t] and the voxel phase timecourses.
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64 × 64 × 64 voxels, 1 voxel = 32 × 32 × 32 gridels, 1 gridel = 2 × 2 × 2 μm3). Figure 14 shows (a1,
a2) the magnitude images, (b1, b2) the phase images captured at an ON and OFF state, and (a3,
b3) the timecourses of magnitude signal changes, and phase signal changes at two voxels: one
voxel inside an active blob (marked by “x” in (a1)) and another outside the active at blob
(marked by “o”). It is noted the ripples in the signal timecourses in (a3, b3) are attributed to
the additive Gaussian random noise in the data acquisition simulations.

By arranging the timeseries of images according to the task timecourse, we can play a movie
for a BOLD activity. In reality, the BOLD response is too weak and noisy to be perceived
between an ON and OFF state. For the sake of BOLD response pattern representation, we need
to extract the BOLD activity blobs from the timeseries of images by statistical parameter
mapping method, which consists of an essential task correlation map as defined in Eq. (14).

Figure 15. Numerical simulations of fmap extractions from 4D BOLD fMRI datasets in the presence of additive Gaussi‐
an noises at different noise level = {0.001,0.01,0.05,0.1}. (a) Magnitude fmap and (b) phase fmap.

Upon the completion of 4D BOLD magnitude and phase image datasets (A[r,t], P[r,t]), we
calculated the task- correlated fmap using Eq. (14). In the results, we obtained 3D Atcorr for
BOLD magnitude fmap from the 4D magnitude image dataspace, and a 3D Ptcorr for BOLD
phase fmap from the 4D phase image dataspace. By repeating the 4D BOLD fMRI simulations
with different noise levels, we show that Atcorr or Ptcorr is sensitive to the additive Gaussian
noise. In Figure 15 are showed the Atcorr and Ptcorr (displayed with a y0-slice out of the 64 × 64 ×
64 matrix volume) for the Gaussian noise at different noise levels = {0.001, 0.01, 0.05, 0.1}. It is
seen that either the magnitude or phase fmap suffers from correlation saturation in little noise
(noise level < 0.01) or tends to be buried in severe noises (noise level > 0.05) for our spatiotem‐
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poral modulation model in Eq. (1). In particular, our simulation shows the correlation
saturation in extreme cases of little noise or noiseless settings; this phenomenon may be
explained by the scale invariance of correlation coefficient. On the other extreme case, a severe
noise may destroy the task-correlated activity blob; this explains the pursuit on high-SNR
image acquisition.

Our 4D BOLD fMRI simulations show that the predefined BOLD NAB in Figure 13(a) could
be largely reproduced by a task-correlation magnitude fmap (Atcorr in Figure 15(a)) as extracted
from a 4D BOLD fMRI magnitude dataset, thus justifying the BOLD fMRI experiment for brain
functional mapping. In comparison, the phase fmap (in Ptcorr) is spatially dissimilar to the
predefined BOLD NAB due to the conspicuous dipole effect in the phase images [6, 11].
Nevertheless, our 4D BOLD fMRI simulations also show that the imaging noise has a strong
effect on the fmap extracted from the magnitude or phase image dataset due to the simplified
spatiotemporal modulation model for numerical BOLD χ expressions.

4. Discussion

The data acquisition of BOLD fMRI is not analytically tractable due to the involvement of
diversified parameters. The BOLD fMRI simulations provide a means to observe the effect of
MRI transformations on the MR data acquisition; spatial distortions between the underlying
magnetic source and MR images; and reproducibility of functional activity extraction from a
4D BOLD fMRI dataset.

Since MRI is designed to measure a magnetic field distribution, the BOLD fMRI only measures
the χ-expressed BOLD response during a functional activity, a phenotypic numeric expression
of a biophysiological brain functional activity in terms of tissue magnetism. It is believed that
a functional activity causes IV blood magnetism change in terms of oxygenated and deoxy‐
genated blood magnetic susceptibility change. Therefore, our simulation begins with a
configuration of magnetic source by a vasculature-laden VOI with a 3D χ source distribution.
Through a spatiotemporal modulation by a predefined local neuroactive blob (numerically
NAB(r)) and a task paradigm (numerically task(t)), we define a dynamic χ source to represent
a χ-expressed BOLD activity (in Eq. (1)). It is pointed out in Eq. (1) that the BOLD χ response
may incorporate the factors of cerebral metabolic rate of oxygen consumption (CMRO2),
cerebral blood volume (CBV), and cerebral blood flow (CBF) through the parameters of Y(t)
and V(r,t), thereby enabling the numeric simulations of MRI-detected BOLD activity. In reality,
the biophysiological aspects for neurovascular coupling are far more complicated than the
spatiotemporal modulation model in Eq. (1), which deserves a long-term exploration.

Upon a predefined χ source map, we implement 3D BOLD fMRI numerical simulation based
on MRI principles. In the results, we are concerned with pattern comparison between the
source distribution and the output images (magnitude and phase). Our simulations show that
neither the magnitude image nor the phase image is a faithful representation of the χ source
distribution. In the context of volumetric medical imaging, the MRI output image is not a
tomographic reproduction (quantitative spatial mapping) of the χ source. Since the source-
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image mismatch is due to a cascade of MRI transformations that cause distortions during data
acquisition, this inspires us to reconstruct the χ source by solving an inverse MRI problem [21,
22].

In NMR principle, a voxel signal is formed from numerous hydrogen proton precessions in a
magnetic field. The signal formation involves a huge space scale span from a microscopic
atomic scale to macroscopic millimeter scale. For numerical simulations, we implement the
mesoscopic micrometer scale through gridel sampling [14, 15]. A gridel is a tiny grid element
(at micronmeter scale) smaller than vessel size with which we may digitally depict a vessel
geometry. On the other hand, a gridel consists of numerous protons at microscopic atomic
scale. The collective proton spins in a gridel are denoted by a spin packet [14, 15]. We define
a cortex VOI in a large finely-gridded matrix and partition the VOI into a coarse multivoxel
matrix, with each voxel containing an adequate number of gridels for subvoxel structure
representation. The VOI partition and gridel rebinning for multivoxel image formation is a
topic of multiresolution BOLD signal analysis [15, 23].

In the past decades, the BOLD fMRI mechanism was numerically simulated with signal voxel
signals, [7–9], offering an understanding of BOLD fMRI signal formation with respect to a
diverse set of parameter settings. However, the single-voxel signal simulation cannot reveal
the spatial context for source-image mapping study. Therefore, we were motivated to use
multivoxel image simulations for revealing the spatial mismatches between the source and the
image [9–11]. Based on 3D BOLD fMRI simulations, it is a straightforward process to imple‐
ment 4D BOLD fMRI simulations. Our 4D BOLD fMRI simulations for a task-evoked brain
functional activity, based on a simple spatiotemporal modulation model in Eq. (1), show that
the fmap extraction from a 4D BOLD fMRI dataset is sensitive to the additive Gaussian noise.
The noise dependence of the task-correlation-based fmap extraction is attributed to the scale
invariance of the correlation coefficient.

One factor for the source-image mismatch is the dipole effect that is introduced during the
tissue magnetization in a main field B0, which is unavoidable for MRI data acquisition. The
dipole effect is introduced to the χ-induced fieldmap, which is propagated to the MR magni‐
tude and phase images (signals) via different data transformations. The dipole effect on the
χ-induced fieldmap manifests bipolar-valued quadruple lobes around vessels. Upon MRI data
acquisition, the magnitude image is a nonnegative nonlinear spatial mapping of the fieldmap
and the phase image is an arctan nonlinear spatial mapping. It is interesting to show in our
numeric simulations that the nonnegative magnitude image resembles the predefined χ source
distribution, except for the negative inversions at negative χ regions (not reported herein), and
we have found that the (unwrapped) bipolar-valued phase image conforms very well with the
bipolar-valued fieldmap [6, 11]. The phase image bears a conspicuous dipole effect that makes
a striking difference between the phase image and the predefined χ source.

BOLD fMRI simulation is a time-consuming computation job. In a computer cluster (a Kernel
Linux system with 16 CPUs and 252 GB memory), the single-voxel signal simulation requires
about 1 hour, and 3D multivoxel simulation requires more than 10 hours, and 4D BOLD fMRI
simulation requires a few days, depending on the sizes of gridel, voxel, and VOI. The compu‐
tation burden may be greatly reduced by a Bloch technique [24], which implements intravoxel
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dephasing signal calculation by a linear approximation. The fast Bloch simulation method is
good for MR phase image simulation, but not good for MR magnitude simulation due to an
accentuated edge effect. Moreover, the IV and EV signal separation and the diffusion simula‐
tions are not implementable by the Bloch method.

5. Conclusion

We conclude our numerical BOLD fMRI simulations by the following findings (albeit quali‐
tative):

1. Both the MR magnitude and the phase images are spatially different from the predefined
magnetic susceptibility distribution. This image-source distortion is due to the inevitable
data transformations associated with MRI data.

2. By numerical simulation, we can separate the intravascular (IV) signal from the extrava‐
scular (EV) signal in a voxel signal. The IV signal is much stronger than the EV signal as
a result of a BOLD χ change. However, the drastic IV signal evolution is usually greatly
suppressed in a voxel signal by a small proportion of blood volume fraction (bfrac ≈ [0.02,
0.04]).

3. As voxel size decreases, the voxel signals evolve more drastically and turbulently inside
and around the large vessels.

4. The proton diffusion effect due to nonstationary water molecules in brain tissues incurs
more MR magnitude signal decays in a low field than in a high field. In comparison, the
proton diffusion has little effect on MR phase signals.

5. The numerical simulation on 4D BOLD fMRI for task-evoked functional mapping shows
that the functional activity extraction by a task correlation technique is sensitive to data
noise.

Overall, the numerical simulations on BOLD fMRI allow us to look into the insights of a single-
voxel signal, a multivoxel image, and a video of brain functional BOLD activity with respect
to various parameter settings. The finding in source-image mismatch inspires us to seek for
the underlying magnetic source of BOLD fMRI for more accurate brain functional mapping.
The finding in the noise sensitiveness of task-correlated fmap raises a caveat to the correlation-
based functional mapping.

Abbreviations:

1D: one dimensional; 2D: two dimensional; 3D: three dimensional (spatial); 4D: four dimen‐
sional (spatiotemporal); BOLD: blood oxygenation level dependent; MR: magnetic resonance;
MRI: magnetic resonance imaging; fMRI: functional MRI; FFT: fast Fourier transform; NAB:
neuroactive blob; VOI: volume of interest; IV: intravascular; EV: extravascular; gridel: grid
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element; bfrac: blood volume fraction; fmap: functional map; corr: correlation (coefficient);
tcorr: temporal correlation or task correlation.
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Abstract

Computer modeling is a widely used method to determine the biomechanical behavior
of a system. The aim of our biomechanical multibody simulation computer modeling is
to consider the characteristics of a musculoskeletal system through the use of knowl‐
edge from the fields of mechanics, anatomy, and physiology in the model in an appro‐
priate manner, in order to obtain as accurately as possible a realistic simulation of the
biomechanical behavior of the system. Various application examples of a lumbar spine
model that takes the spinal structures with their specific material properties into account
are presented:  effects  of  different  spine alignments  in standing position,  effects  of
overweight on the spinal biomechanics, and application possibilities of biomechanical
computer models in medicine.

Keywords: multibody simulation, lumbar spine model, biomechanical behavior, load
determination, preoperative planning

1. Introduction

According to the World Health Organization (WHO), back pain of the lower spine has reached
epidemic proportions, being reported by about 80% of people at some time in their life [1]. Hoy
notes that lower back pain causes more global disability than any other condition [2]. The causes
of back pain are manifold. Reasons may be degenerative changes of intervertebral discs, spinal
stenosis,  spondylolisthesis,  spinal  stenosis,  traumatic  injury,  skeletal  irregularities,  and
osteoporosis. But there is also a correlation between increased body weight and low back pain
[3–5]. These overloads may result in sequelae such as instability or dysesthesia with narrow‐
ing of the spinal canal and compression of the associated nerve roots may be a consequence. If

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



a conservative treatment does not achieve a pain relief anymore, only a surgically induced
stabilization like a therapeutic option remains. Mayer [6] indicates that no validated results exist
about the success of these operations over a period of two years, and thus provide clear evidence
of reduced adjacent segment degeneration. Furthermore, statements about the sustainability of
clinical and radiological results with respect to a reconstruction of the segmental mobility are
still missing. A modern non-invasive method for assessing the effect of medical operational
measures is the load determination in various spinal structures by means of computer modeling.

To capture the load distribution of the lumbar spine, highly developed so-called finite-element
(FE) models [7–11] can be used which allow a very detailed calculation of force and torque
transmission—both in the rigid bones and in the elastic proportions as intervertebral discs,
ligaments, and implants. The complexity of the models, however, requires high computing
times for each load case. Is the aspect of the holistic approach of the human movement in the
focus of interest, the multibody simulation (MBS) is a suitable simulation method? Due to the
highly efficient short computation times, even complex motion sequences can be simulated.

2. Basics of model building and simulation

Computer modeling is a widely used method for determining the biomechanical behavior of
a system. A distinction is made between the FE modeling and MBS modeling. Both simulation
methods are used to aid engineers and researchers in investigating and analyzing mechanical
and mechatronic systems in various fields such as the car, railway, engine, aerospace indus‐
tries, and medical applications. The difference between the FE modeling and MBS modeling
lies in the basic model structure, and thus in the field of application. For analyzing highly
sophisticated problems, the FE modeling is the appropriate modeling method. Within this
mathematical method, based on the numerical solution of partial differential equations, the
system is divided into a finite number of simple geometric elements, the finite elements [12].
An FE model is composed of geometric elements starting with points in space, which are linked
to each other by so-called edges. Three points define a triangular plane. The corners are called
vertices. Connected triangles result in faces which have a contour defined by a sequence of
vertices, which is called a polygon. For visualization purposes, the faces can be colored and

Figure 1. Different elements of polygon mesh modeling.
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textured. This information is attached to the vertices, as it is common in computer graphics
(Figure 1).

For each junction of elements, the so-called nodes, boundary, and transition conditions are
defined in accordance with a specific material law [13]. In this way, highly detailed analyses
of material properties can be carried out by an FE model. However, FE modeling requires a
relatively long computational time. According to Berkley [14], the model's accuracy increases
with the number of finite elements that are used to describe the geometry. But each additional
element also means additional computational time. Solving such large numbers of FE equa‐
tions leads to an enormously time-consuming calculation as in [15, 16]. The accuracy of the
system and the expected computing time must therefore be carefully matched. A much faster
calculation method is the MBS. The MBS describes the interaction of individual bodies with
each other and with their environment, that is, the forces and torques acting on the bodies and
between the bodies as well as the resulting movements [17].

The modeled bodies are assumed to be rigid and thus not deformable. The different bodies are
linked through massless joints and kinematic constraints, which allow certain relative motions
and restrict others [12]. Each body has a specific mass and a moment of inertia. This mass and
inertia characteristics are associated with a single point, the center of gravity of the body.
Thereby, every rigid body is provided with its own coordinate system (reference system).
Based on this coordinate system, the exact location in space can be determined with respect to
the inertial frame.

The degrees of freedom (DoF) of a rigid body are described by independent coordinates. A
rigid body has a maximum of six DoF. It can move along the x-, y-, and z-axis (Figure 2, left),
and rotate about these axes (Figure 2, right).

Figure 2. Degrees of freedom of a rigid body [18]: A rigid body is free to move along the x-, y-, and z-axis (left) and
rotate about the x-, y-, and z-axis (right).
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Possible translations and rotations relative to the inertial system can be realized through the
implementation of appropriate joint types. If a model is composed of two or more rigid bodies,
they are connected by a massless joint. The joints provide certain DoF. Depending on the
definition of joint type, the joint

1. allows bodies or a body and a reference frame to be connected to each other with no DoF,

2. provides free movement to the body, with six DoF,

3. applies kinematic excitations to a body, as a rheonomic joint.

Furthermore, it is possible that forces and torques can be transferred between two body
markers, which are generally located on different bodies, by a so-called force element. The
type of interaction depends on the implemented force law. According to [19], the DoF of a
model are determined by a number of independent state variables, which characterize the
movement of the body. Furthermore, the movement of the MBS system depends on the inertial
properties of its bodies, masses, inertia tensors, and its centers of gravity. The kinematics of
the model is defined by a system of coupled differential equations. These equations of motion
give the relation between motion and forces. For this reason, they can be solved in two ways:
the forward or direct dynamics and the inverse dynamics. In the case of forward dynamics,
the movement is determined by known internal forces or torques, whereas the reconstruction
of the internal forces or torques from movements and external forces, like the gravity, is called
inverse dynamics [20].

It should be noted that the presented modeling styles MBS and FE can be used independently
of each other, but can also be combined with each other.

3. MBS lumbar spine models

The aim of our biomechanical computer modeling is to consider the characteristics of a
musculoskeletal system through the use of knowledge from the fields of mechanics, anatomy,
and physiology in the model in an appropriate manner, in order to obtain as accurately as
possible a realistic simulation of the biomechanical behavior of the system. In the following,
various application examples of a lumbar spine model that takes all spinal structures with their
specific material properties into account are presented.

3.1. Structure of the spine model

The MBS models of the lumbar spine consist of vertebrae L1–L5, os sacrum and os ilium. These
bony parts are connected by joints with appropriate DoF and ligament structures, which are
attached to characteristic points of the skeletal parts. The facet joints are realized as three-
dimensional (3D) contact areas, so that the acting contact forces avoid the penetration of two
corresponding joint surfaces. All the individual structures are modeled with specific material
properties in order to simulate their realistic mechanical behavior.
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3.2. Surface generation

The 3D surface models of the vertebral bodies are based on computed tomography (CT) data
sets of artificial vertebrae of Europeans. These data sets are generated through the use of
segmentation and visualization plugins to visualize the data sets and make them available for
simulation as Computer Aided Design (CAD) data sets (Figure 3) [21, 22].

Figure 3. Surface generation through segmentation (left) and visualization (right) plugins [29].

3.3. Modeling of the biomechanical behavior of the spinal structures

The surface models are extended to biomechanical models by adding specific biomechanical
properties to all spinal structures. The biomechanical property of the translational movement
of the intervertebral discs is described by a force law, which is composed of a geometry-based
stiffness term and a damping term [18, 23]. Most movements of the intervertebral discs do not
consist of purely translational movements but also of intervertebral rotations. If the disc is
deflected from its initial position, a deflection-dependent reaction torque will be developed
[24].

As already said, in the model also the anterior and posterior longitudinal ligament (ALL/PLL),
the ligamentum flavum (LF), the capsular ligament (CL), the interspinous ligament (ISL), the
supraspinous ligament (SSL) as well as the intertransverse ligament (ITL) are implemented.
Because a ligament can be defined only between two points, broad ligament structures are
realized by a bundle of several fibers. The biomechanical properties of the ligaments are
represented by characteristic curves of appropriate literature [25].

In the following models, the facet joints are simulated by a 3D contact surface whose dimen‐
sions and orientation are directed to the inclinations of the facet joints of the surface model. In
this way, the modeling considers the different individual dimensions and specific orientations
of the facet joints in all lumbar levels. Is exclusively a detailed analysis of the load behavior of
the facet joints in focus, the facet surfaces are simulated by a 3D layer of cartilage (see Section
4). It should be noted that a detailed modeling of the facet surfaces is accompanied by a large
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increase of computation time. Therefore, prior to the model building a specific question should
be defined, in order to decide whether such a detailed facet joint modeling is needed.

A further important structure to stabilize the human body in upright position is the muscu‐
lature. According to [7], the four muscle groups, left and right musculus erector spinae and
left and right rectus abdominis muscle, are modeled. The force representing the musculus
erector spinae is varied so, that additional torque on the upper endplate of the vertebra L1 is
no longer necessary to maintain the lumbar spine in a state of equilibrium. The model
parameters used for muscles are taken from [7, 26]. These muscular structures are implemented
at the moment just in the models of Chapter 4.1. A comparison of the different spine models
with the corresponding muscle models is performed (see Section 4).

3.4. Validation and sensitivity analysis of the model

For the validation process, there is the difficulty of developing a suitable method, which
confirms the accuracy of the modeling. An established method compares the simulation results
with results from accepted publications. But it has to be mentioned that not all parameters
which may have a significant influence on the result are always published. If such a factual
circumstance is known, which is at the same time the model limitation, this has to be considered
in the discussion of the model validity.

The model validation was performed by comparing the simulation results with FE results and
in-vivo data as found in references [7, 27–29]. A detailed presentation of the validation is to be
taken from reference [24]. Another difficulty lies in the selection of suitable input parameters
from the literature. The values of these parameters differ significantly in some cases [30]. The
validation and modeling cannot be seen as complete, and are successively continued to
develop MBS models that get closer to the reality.

4. Practical application examples of simulation

To gain an insight into the practical applications of computer modeling in the field of biome‐
chanical modeling of human structures, selected examples of different spinal simulation cases
are shown below. In the first examples, the effects of different spinal alignments and obesity
in adults and children on the lumbar spine are discussed. Subsequently practical examples of
possible use of computer models in medicine will be introduced.

4.1. Effects of different spine alignments in the standing position

Due to different physical constitution and daily physical stress, an individual characteristic
alignment of the spine is developed in the course of life. Therefore, the double-S shape of the
human spine is subject to a wide range of variations [31–34]. To investigate the effects of such
different spinal curvatures on the intradiscal pressure, five models of the lumbar spine with
different lordosis angles are created (Figure 4). In this work, the lordosis angle is defined by
the line through the upper endplate of L1 and the endplate of os sacrum.
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Figure 4. MBS lumbar spine models with different alignments: The model located in the middle has to be understood
as a basic model concerning the anthropometrical and biomechanical properties for the further models A, B, C, and D.
The basic model has a lumbar angle of 60°, model A of 64°, model B of 61°, model C of 59°, and model D 56°. It should
be noted that the proportions in this figure should be understood as an approximation to the real model dimensions.
Therefore, deviations can occur from the model.

Upright standing of a normal-weight person is chosen as simulation case because it represents
the natural load case. The models are applied with the weight of the upper body. The force
application point is located in the center of gravity. This gravitational force causes a deforma‐
tion of the intervertebral discs, and a corresponding reaction force in the intervertebral discs
is built. Therefore, the average intervertebral disc force, calculated from the different values
of corresponding functional spinal units (FSUs) of the five models, increases from the lowest
FSU to the uppermost FSU. In this context, the term FSU is understood as the smallest
physiological motion unit consisting of two adjacent vertebrae, the corresponding interverte‐
bral disc and all adjoining ligament [25].

Figure 5 shows the intradiscal pressure of all functional spine units of the different aligned
models in comparison. Because of the different spine alignments, it could be assumed that also
the intradiscal pressures of the various models should greatly differ from each other. But this

Figure 5. Interdiscal pressure of the differed aligned lumbar spinal models.
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assumption is not immediately evident from Figure 5. However, the percentage difference of
the maximum and minimum intradiscal pressure value of an FSU is determined, and the
percentage difference of the FSUs L5-Sac and L4-L5 is 8% and of the FSU L2-L3 even 13%. For
the intervertebral discs, the resulting percentages of L3-L4 and L1-L2 are 3% and 5% respec‐
tively.

To sum up, it can be stated that the individual spinal alignment has an impact on the load
distribution of the intervertebral disc.

4.2. Effects of overweight on the spinal biomechanics

The WHO called being overweight and obesity the leading chronic health problems [35]. In
the world more than 1.9 billion adults, 18 years and older, were overweight in 2014 and of
these over 600 million were obese [36]. Overweight and obesity are contributing factors for
many ailments and can lead to the development of chronic diseases, like diabetes, cardiovas‐
cular disease, coronary heart disease, or osteoarthritis [37–39]. While there are a large number
of studies on the effects of these factors on the cardiovascular system and the psyche of the
concerned person [40, 41], the potential consequences of orthopedic damage, particularly of
the spine, associated with obesity are hardly known yet. In [3–5], a direct correlation between
back pain and obesity is described. The exact load changes within the various spinal structures
have not been sufficiently explored yet. With the help of computer modeling, the effects of
obesity on the kinematics and kinetics of various spine structures can be analyzed. In the
following the potential effects of obesity of an adult and an adolescent human are illustrated
by specific MBS models exemplary.

Example 1: Simulation of the effects on the spinal structures of body weight of a normal-weight
and an overweight adult male

The modeling was carried out in three steps: step 1 is the creation of an MBS model of the
lumbar spine, step 2 the creation of a suitable surface models of the two weight classes,
including the determination of their anthropometric characteristics, and step 3 the fusion of
the MBS lumbar spine model with the surface model [42]. In this example, the force application
point is also located in the center of gravity. Taking into account the body weight, body height
(1.85 m), sex (male), age (37), and the original two surface models, a normal-weight man (75
kg) and an obese man (127 kg, grade II) are created with the help of an open-source software
for the creation of human 3D surfaces. By means of the mass-distribution model of Zatsiorskj
[43], the mass distribution of the individual body segments is determined. All other model
parameters are identical in both models. By fusing the surface models with the detailed
biomechanical model of the lumbar spine, two new simulation models are built up, so that the
effects of a normal-weight and obese man on the spinal structures can be analyzed.

Due to the body weight, the intervertebral discs are deformed. In the case of the normal-weight
person, in general the intervertebral deformations in all FSUs are very small (Figure 6). The
cranial located intervertebral discs are more deformed than the caudal intervertebral discs.
Comparing the deformation values of the obese with those of normal weight, it can be seen
that they are about 1.7 times greater. The validation of the deformation values is difficult,
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because we are not aware of studies, whose study design corresponds exactly to ours.
Brinkmann investigated the fatigue fracture of human lumbar vertebra under cyclic axial
compression and presented an example of force versus deformation curve of a specimen with
material properties characterized as “tough” [44]. The force versus deformation curve indicates
that a force of 500 N causes a deformation of about 0.025 cm and a force of 750 N a deformation
of 0.044 cm. Because the simulated acting weight force of the upper body segments is in the
case of normal body weight approximately 460 N, and in the case of overweight approximately
780 N and the deformations are in the range of 0.025 cm–0.04 cm (normal weight) and between
0.042 cm and 0.068 cm (obese), it is seen that the magnitude of this values corresponds to those
of Brinkmann.

Figure 6. Deformations of the intervertebral discs.

Each intervertebral disc develops a disc force, which depends on the deformation and
deformation velocity of the corresponding FSU. Figure 7 shows the force component acting

Figure 7. Intervertebral disc force of the different FSUs.
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perpendicular to the disc. It can be clearly seen that the intervertebral discs of the obese are
much more stressed than those of normal weight. The intervertebral disc force of the obese is,
as well as in the above-discussed case of deformation, 1.7 times higher than the intervertebral
disc force of the normal weighted. It could therefore be concluded that the deformation value,
as opposed to the deformation velocity (see Section 3.3), has a great impact on the intervertebral
disc force.

Figure 8 shows the intersegmental rotations of the intervertebral discs. Whereas all interver‐
tebral discs of the obese person perform flexions, the intervertebral discs of the normal-weight
person are deflected in different directions. The lowest two intervertebral discs of normal-
weight person perform flexion. The FSU L4-L3 and L2-L1 rotate backwards and the uppermost
FSU L2-L1 rotates forward. Particularly evident is the high rotation values of the obese person.
The FSU L1-L2 performs with about 17°, the largest rotational movement. In the literature [45,
46], the maximum range of motion (RoM) of FSU L1-L2 is specified by values between 2 and
13°. Consequently, our simulation values differ from these values. But the difference is
relativized by the therein given standard deviations of about 2.5°. Further, it has to be analyzed
whether the model of the obese person sufficiently reflects the reality, because identical
biomechanical parameters are used in both simulation models. It is necessary to investigate in
further work whether the biomechanical properties of the spinal structures are adapted in
reality to the body weight, in order to avoid such rotations and prevent overloading or
degenerative damage. Moreover, in this model, the stabilizing muscles are not considered,
which could prevent such rotation.

Figure 8. Intervertebral rotations of the different FSUs: Positive rotation angles represent flexion and negative rotation
angles extension movements.

The movements of the FSUs can affect the biomechanical behavior of posterior located facet
joints (Figure 9). It is striking that the loads of the FSU L1-L2 respectively L2-L3 are not loaded.
Further it can be seen, that in the case of obesity the loads decrease to cranial. A possible reason
may be, in this section, the pure ventral directed rotations. The two corresponding joint
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surfaces of the facets are distracted, and thus no contact force is build. To achieve a complete
clarification of this, a model specification in the form of a sophisticated 3D facet joints modeling
is required (see Section 5).

Figure 9. Contact forces of the facet joints.

Example 2: Simulation of the effects on the spinal structures of body weight of a normal-weight,
an overweight, and an obese child

More than 42 million children under the age of five were overweight in 2013 worldwide [35].
According to Deckelbaum [47], not only in the USA the number of overweight children and
adolescents has doubled in the last two to three decades but also the similar doubling rates are
being observed worldwide. Therefore, the WHO called overweight and obesity as the leading
chronic health problem [35].

Three MBS models of the child's lumbar spine were created to quantify the effects of normal-
weight, overweight, and obese children to the kinematics and transmitted forces and torques
of the different spinal structures. With the help of these 3D models, dynamic movements and
static situations can be simulated. For simulation and load calculation of the effects of different
weight classes, the masses of the body segments are adapted to these weight classes [48].
Therefore, the first lumbar vertebra L1 is loaded with the weight of the upper body segments
of a normal weight, an overweight, and an obese child in different simulations. The total mass
fractions of the segment parts is mnormal = 22.91 kg for normal-weight child, moverweight = 27.73 kg
for overweight child, and mobese = 32.56 kg for obese child. In the case of overweight and obesity,
the intervertebral discs are more heavily loaded in comparison to the normal-weight child. In
both cases, the intervertebral discs of the FSU L4-L5 are most loaded (Figure 10). The slightest
load undergoes the FSU L1-L2. The increase in body weight has a direct influence on the
loading structure of the intervertebral discs. If the normal-weight child would become
overweight, the loads of the intervertebral discs would rise by an average of 1.5 times. In the
case of obesity, the intervertebral discs are more than 2.3 times higher loaded.
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Figure 10. Percentage load of the intervertebral disc.

Through the increased body weight, the intervertebral discs perform pure flexion (Figure 11).
Here, the amount of flexion of the obese child is mostly more than doubled compared with the
movement of the normal-weight child. Particularly obvious is the difference in the FSU L3-L4.
In the case of obesity, this FSU is deflected more than 3.5 times larger from its initial position
(normal weight).

Figure 11. Percentage intersegmental rotation.

Through the forward rotations of the intervertebral discs, the approach and origin points of
the posterior ligaments move away from each other. As a result, the corresponding ligaments
are stretched and develop in an opposite direction acting as reaction force (Figure 12). In the
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case of an obese child, the posterior ligaments are 2 to 2.5 times more loaded than under normal
body weight. Under obesity, a particularly extreme ligament load occurs in the FSU L3-L4.
This more than 4 times larger load may result from the above-described extensive interseg‐
mental rotations in these FSU.

Figure 12. Percentage load of the posterior ligaments.

It seems to be evident that by the increase of body weight, the loads of the internal structures
rise to the same extent. This correlation, which can be predicted even before the simulation,
was confirmed by the simplest load case, the upright standing. Further investigations, such as
the analysis of load distribution in different structures of an overweight or obese child during
everyday activities or during highly dynamic movements, like they occur in sports, can give
additional insights into the effects of obesity on the musculoskeletal system.

4.3. Application possibilities of biomechanical computer models in medicine

Because the MBS features very short computation times and surgical planning is increasingly
computer-based, preoperative simulations can be used to predict the effects of different
surgical methods and to identify the best possible surgical option. Furthermore, in future a
transfer of topographic and kinematic simulation data of implants in 3D planning and
navigation procedures is conceivable. In this process, coordinates of the implants from the
computer model and the 3D model data of the spine may be transferred to the navigation
system in the appropriate data format. It should be noted that the MBS modeling of the
biomechanical properties of the intervertebral disc represents an initial approach. Therefore,
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the implementation of FE parts is indispensable to simulate patient-specific biomechanical
properties.

To demonstrate the medical application possibilities of the simulation, the effect of a spinal
fusion under different load cases is exemplified by an appropriate computer model (Figure
13). For that the mechanical properties of the MBS model were adjusted, so that no residual
movement in FSU L4-L5 is possible. Thus, two models of the lumbar spine were created [49].
As in previous models, the upright position is used as the load case in this simulation, and also
an external load of 600 N and 700 N is applied at the center of the vertebral endplate of L1.

Figure 13. Detailed MBS lumbar spine model with fused FSU L4-L5.

Considering only the disc force of the model without fused FSU L5-L4, it can be seen that the
pressures in all FSUs increase with higher external force (Figure 14). Comparing the pressure
of the intervertebral discs of both models, the disc loads of the FSU L1-L2 are almost the same.
A deviation results for the other functional units. The pressure in the FSU’s L5-Sac to L2-L3,
of the model with fused FSU L4-L5, is lower than without fusion.

Figure 14. Effect of a spinal fusion under different load cases: intradiscal pressure.
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In this case, a spinal fusion affects especially the loads of the facet joints. Figure 15 clearly
shows that after fusion, the forces in the facet joints are particularly higher in the upper FSU.
Through such an increased load situation degenerative changes can be caused in the facet joints
in long term.

Figure 15. Effect of a spinal fusion on the facet loads.

Comparing the intersegmental rotation of the discs (Figure 16) with and without fused L4-L5
disc, it can be seen that the discs of the fused model perform less deflection in the FSUs L5-Sac
to L2-L3. The lower lumbar spine thus has lower mobility than in the non-fused state. This
means that after an intervertebral disc stiffening, the lower lumbar spine would have a lower
mobility than in a non-fused state.

Figure 16. Effect of a spinal fusion on the intersegmental rotation.

In summary, it can be stated that a fusion can lead to load redistribution. In this simulation
case, especially the posterior structures that are located above the fused FSUs are stressed more
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than the ventrally located structures. A further example in the field of medicine is studying
the effects of different body weights on selected surgical procedures.

5. Meaningfulness and limitation of MBS modeling

It is clearly pointed out that modeling has to be understood as an approximation to the reality.
In near future, it will probably not be possible that all influencing factors can be simulated
completely as in reality. Often, input parameters based on literature data representing the
average of a specific cohort. Because each person has a very specific anthropometric and
morphological characteristic, the standard deviations of such investigations may be relatively
large. For example, the standard deviation for geometric parameters that describe the sagittal
alignment of the spine is partially enormous. The deviation from average of the pelvic
incidence is partly more than 20% [31], of the pelvic tilt 53% [32] respectively 70% [33], and of
the total lumbosacral lordosis 19% [34], etc. But based on sensitivity analysis, the exact
influence of individual parameters can be determined. However, because of the complexity of
the models, it is very important to know the exact configuration of the model and the limita‐
tions of its input parameters. Therefore, the modeling and the validation process should to be
understood as an evolving process and will be advanced in future research.

Opportunities for improvement and expansion of the different model components will be
summarized in the following:

In the presented models, the biomechanics of the intervertebral disc is defined by a force law,
which can be understood as an initial approach. To precise the biomechanical properties of the
annulus fibrosis and nucleus pulposus, a 3D hybrid model consisting of MBS and FE units will
be built. The aim is to analyze whether the implementation of FE-disc features contributes to
a significant gain of knowledge concerning load distribution of the intervertebral discs and
the adjacent spinal structures.

Currently, a highly accurate modeled individual cartilaginous contact layer for all facet joints
is in development. These individually formed layers of cartilage (Figure 17) allow us to do a
3D calculation of the resulting forces.

Figure 17. Facet joints with a 3D layer of cartilage.
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An extremely important spinal structure that describes the dynamics of the musculoskeletal
system is the spinal musculature. Up to now, the muscle groups of the erector spinae and the
rectus abdominis implemented in the models are very rudimentary. In focus of current work
are corresponding muscle models that describe the dynamics of muscle contraction in an
appropriate manner [50, 51].

The aim of our research is the creation of patient-specific 3D hybrid computer models of the
human spine for preoperative planning in neurosurgical and orthopedic stabilizing spinal
operations. Known and alternative surgical procedures are simulated and a comparison of
these possible surgical procedures is presented to determine the biomechanical effects. The
simulation is realized highly efficient with short computation times, which will allow a later
use in real systems. That means, the 3D coordinates of the optimized implant position can be
exported out of the individual models as data sets and can be transferred, to position the
implants very accurately, to a navigation system.
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Abstract

The brain is an organ that takes the central role in advanced information processing.
There exist great many neurons in our brain, which build complicated neural net‐
works. All information processing in the brain is accomplished by neural activity in the
form of neural oscillations. In order to understand the mechanisms of information
processing, it is necessary to clarify functions of neurons and neural networks. Although
the current progress of experiment technology is remarkable,  only experiments by
themselves  cannot  uncover  the  behavior  of  only  a  single  neuron.  Computational
neuroscience  is  a  research  field,  which  fills  up  the  deficiency  in  experiments.  By
modeling the essential features of a neuron or a neural network, we can analyze their
fundamental  properties  by  computer  simulation.  In  this  chapter,  one  aspect  of
computational neuroscience is described. At the first, the cell membrane and a neuron
can be modeled by using an RC circuit. Next, the Hodgkin-Huxley model is intro‐
duced, which has the function of generation of action potentials. Furthermore, many
neurons  show the  subthreshold  resonance  phenomena,  and  the  cell  membrane  is
necessary to be modeled by an RLC circuit. Finally, some simulation results are shown,
and properties of such neuronal behaviors are discussed.

Keywords: cell membrane, action potential, neural oscillation, subthreshold reso‐
nance phenomenon, RLC circuit

1. Introduction

Our brain is an extraordinary microsome and has been completely shrouded in mystery.
However, its mystery has been just a little bit by bit solved owing to recent advances in
experimental technologies and tremendous development of computers. Many people can simply
say “brain,” but it is a general term for a collection of six main regions, that is, cerebrum,
diencephalon, midbrain, cerebellum, pons, and medulla oblongata. The brain is an organ that

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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takes the central role in advanced information processing, such as visual, auditory, speech or
language faculties, motion control, recognition, emotion, and so on. According to advances of
experiment and computer technology, the research of brain science or neuroscience has been
made not only in the fields of medicine, biology, biochemistry, pharmacology, and psycholo‐
gy but also in the field of engineering.

The present-day computers have outstanding processing capacity. For example, they can find
the data that satisfy some requirements among huge quantities of data (database) or can
calculate over five trillion figures of pi(π). Therefore, many people are inclined to think that
our brain will be able to be replaced by computer in near future. Surely, computers excel at
processing of digitized data and processing by following a standard algorithm. However, it
can hardly execute processing, such as recognition of ambiguity figures (such as illusionism)
or inference based on imperfect information, which our brain can instantaneously carry out.
Reason for this comes from differences in ways of information processing of the computer and
our brain. The current computers, called von Neumann computer, are grounded in sequential
processing by using central processing units (CPUs) and memory storages, while on the other
hand, our brain bases on parallel and distributed processing through neural networks whose
components are neurons.

There exist tens of billions of neurons in our brain, which build neural networks in complicated
arrangement. All information processing in the brain is accomplished by neural activity in the
form of neural oscillations that cause cortical oscillations (delta, theta, alpha, beta, or gamma
oscillation). In order to clarify the mechanisms of advanced information processing in the
brain, such as learning and memory, it is necessary to understand functions and features of
neurons and neural networks. Although the current progress in experiment technology and
measuring system is remarkable, only experiments by themselves cannot uncover the behavior
of only a single neuron, because even a single neuron has complex biophysical characteristics
and never stops growth. Computational neuroscience is a research field which fills up such a
deficiency in experiments. By modeling the essential features of a neuron or a neural network
at multiple spatial-temporal scales, we can capture and analyze the fundamental properties of
a neuron or a neural network by computer simulation. Moreover, we can even offer some
suggestions to experimental study by taking into account the probable results obtained from
the simulation.

2. Neuron model with a low-pass filter property

2.1. Electrical circuit model of the cell membrane

Neurons play a key role in almost all brain functions. Fundamental function of neurons is to
generate action potentials when they received sufficient stimuli from the environment. Once
action potentials are generated, they are transmitted to other neurons so as to communicate
information from one neuron to another. There exist many types of neurons in the brain, such
as pyramidal neurons in the hippocampus and neocortex (Figure 1(a)), motor neurons in motor
cortex (Figure 1(b)), or Purkinje cells in the cerebellum (Figure 1(c)) [1]. Although their shapes
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are different, they have basically the same structure. As shown in Figure 2(a), a neuron is
composed of three parts, that is, the soma (cell body) where action potentials are generated,
the dendrite that receives inputs from other neurons, and the axon along which action
potentials are transmitted to axon terminals. One thing especially worth mentioning, the
dendrite of a neuron has hundreds to thousands of spines, on which axon terminals of other
neurons connect. This junction is called a synapse, through which information are transmitted
from one neuron to another (Figure 2(b)). Actually, there exist two kinds of synapses, one of
which is an electric synapse and the other is a chemical synapse [1]. The former is a junction
where neurons are directly contacted each other and information are electrically conducted
from one neuron to another. This junction is also called a gap junction. On the other hand, the
latter one is a junction with a cleft, called a synaptic cleft, into which neurochemical transmit‐
ters are released from the axon terminal and they bind to receptors on the spine head. Electrical
synapses are found at the sites that require the fastest possible response, such as nociceptive
reflex, whereas chemical synapses are found in almost all neurons of the brain. Figure 2(b)
shows an example of a chemical synapse. Both synapses have a very important role in signal
processing between neurons.

Figure 1. Various types of neurons. (a) Pyramidal neuron (cortex), (b) motor neuron (spinal cord),and (c) Purkinje cell
(cerebellum).

Figure 2. (a) Schematic neuron (Structure of neuron). (b) Synaptic connection at the synapse.
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Surfaces of a neuron are covered with the cell membrane, which separates the interior of cell
from the exterior environment. The cell membrane is composed of protein, lipid, and carbo‐
hydrate [1]. As shown in Figure 3(a), it is composed of two layers of phospholipid molecules,
each of which has a hydrophilic head (circle) and hydrophobic tail (two waved lined), and
both hydrophobic tails face each other inside the cell membrane. This structure is called lipid
bilayer. Furthermore, the concentration of the extracellular ions, such as Na+, Cl-, or Ca2+, is
higher than the intracellular one. Contrarily, the concentration of intracellular ion, such as K+,
is higher than the extracellular one. In addition, many types of ion channels (protein) are
penetrating the cell membrane. Those ion channels are normally closed. If neurochemical
transmitters released from the presynaptic axon terminal bind to receptors of the correspond‐
ing ion channels on the spine head, those ion channels are activated and open. Subsequently,
specific ion flow occurs according to their ionic gradients. At the resting state, those channels
are closed and no ionic flows occur except for small leakage.

Figure 3. Cell membrane. (a) Cross section of a cell membrane lipid bilayer and (b) equivalent RC circuit model of cell
membrane.

Based on the above properties, the cell membrane has the following electrical properties:

a. It is lipid bilayer, that is, it is composed of two parallel plates. Thus, the cell membrane
has characteristics similar to “capacitance,” C.

b. The difference between intracellular and extracellular ion concentrations corresponds to
“power source,” Ei (i = Na+, K+, Cl− or Ca2+).

c. The ionic flowability of opening ion channels is thought of as “resistance” Ri or “conduc‐
tance” 1/Ri.

d. The corresponding flows of Na+, K+, Cl−, or Ca2+ through ion channels are “current,” INa, IK,
ICl, or ICa.

With these points in mind, the cell membrane can be modeled by an equivalent RC circuit,
which is shown in Figure 3(b). Once an RC circuit is obtained, we can obtain its dynamics by
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using Ohm’s law, Kirchhoff’s law, or other knowledge of electrical circuit theory. From Figure
3(b), the following equation is obtained:

1 1( ) ( ) ,L
L

i inp
i

dVC V E V E I
dt R R

= - × - - × - + (1)

where V is the membrane potential of the cell membrane, C is the membrane capacitance, RL

is the leakage resistance, EL is the reversal potential, Ri is the flowability of ion i(i = Na+, K+,
Cl−, or Ca2+), Ei is the corresponding ionic equilibrium potential, and Iinp is the specific input
current given to the cell membrane. As a neuron is covered with the cell membrane, a synapse
or a soma can be also expressed by using an RC circuit. Accordingly, we can study the
synaptic properties or neuronal characteristics by using computer simulations.

2.2. Generation of action potentials (Hodgkin-Huxley model)

In this section, we give one model that can generate an action potential, which is the basic
function of a neuron. When a dendritic spine receives stimuli from an axon terminal of other
neuron, the membrane potential of a spine head changes depending on that stimulus. Those
potential changes are transmitted to the soma (strictly speaking, the axon hillock in the
neighborhood of the soma) through dendrites and integrated there. If the accumulated
potential of the soma exceeds the threshold, an action potential is generated. Generated action
potentials are transmitted to axon terminals along the axon. Based on this knowledge,
McCulloch and Pitts expressed a neuron as a product-sum threshold element in 1943 [2]. Their
model is a formal neuron model, called McCulloch-Pitts model, and is shown in Figure 4.

Figure 4. Formal neuron model (The McCulloch-Pitts model).

The McCulloch-Pitts model is expressed as follows:
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where xi(t) is an input from ith neuron, wi(t) is a weight from a neuron i, u(t) is a state (potential)
of a neuron, y(t) is its output, and θ is a threshold. In this model, if a state u(t) exceeds a
threshold θ, output 1 is send to other neurons. Notice that, however, McCulloch-Pitts model
does not consider a refractory period, during which neurons cannot or find it hard to generate
the next action potential.

As the McCulloch-Pitts model was a very easy model for engineers to understand the
mechanism of generation of action potentials, many engineers have applied this model to
study basic neuronal behaviors. The most prominent example is the application to the
perceptron, which was known as one of the powerful tools for some kinds of pattern rec‐
ognition problems. Although there exist many variations of the McCulloch-Pitts model,
one of them uses a sigmoid function instead of a step function expressed by Eq. (3). This
kind of model is applied to the back propagation algorithm and recently the deep learn‐
ing method, because a sigmoid function is a differentiable function. However, the practi‐
cal neurons are not so simple as the McCulloch-Pitts model and the back propagation
algorithm. Therefore, more profound considerations were necessary to describe complicat‐
ed neuronal behaviors.

In 1952, Hodgkin and Huxley developed one mathematical model that explains the generation
of an action potential (impulse or spike) based on physiological experiments for a squid giant
axon [3]. As described in the previous section, the extracellular concentration of Na+ is higher
than the intracellular one, and the intracellular concentration K+ is higher than the extracellular
one, and the cell membrane has both Na+ permeable channel (Na channel) and K+ permeable
channel (K channel). Hodgkin and Huxley found that both Na and K channels are voltage-
dependently activated, that is, the activation and inactivation of these channels are affected by
the membrane potential of the cell membrane. They also elucidated that action potentials are
generated by increased or decreased activation and inactivation of Na channel and increased
or decreased activation of K channel. Based on the results of physiological experiments for a
squid giant axon, they showed that an action potential is generated whenever the cell mem‐
brane is depolarized over the threshold. They proposed a schematic electrical circuit model
that can explain the mechanism for generation of action potentials, called the Hodgkin-Huxley
model (HH model).
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Figure 5. The Hodgkin-Huxley model. (a) Conductance-based electrical circuit of the Hodgkin-Huxley model and (b)
simulation result.

Figure 5(a) shows the HH model and its dynamics is given as follows:

,L Na Kinp
dVI C I I I
dt

= + + + (4)

where V is the membrane potential of the cell, C is the capacitance, IL is the leak current, INa

and IK are currents through Na channel and K channel, respectively, and Iinp is the input current.
They proposed the empirical formulae, which appropriately indicate activation and inactiva‐
tion properties of Na channel and activation properties of K channel, that is, the change of ionic
permeability of Na+ and K+. Currents IL, INa, and IK are given as follows [3]:

( ),L L LI g V E= × - (5)

3( , ) ( , ) ( ),NaNa NaI g m V t h V t V E= × × × - (6)

4( , ) ( ),KK KI g n V t V E= × × - (7)

where ḡL is the leakage conductance, ḡ  and ḡK are the amplitude of Na channel conductance
and K channel conductance, respectively, EL is the resting potential, and ENa and EK are
equilibrium potentials of Na channel and K channel. m(V, t) and h(V, t) are activation and
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inactivation variables of Na channel, and n(V,t) is an activation variable of K channel. They
gave the following empirical formula:

d ( , ) ( ) (1 ( , )) ( ) ( , ), ( , , )
d x x

x V t V x V t V x V t x m h n
t

a b= × - - × = (8)
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Figure 5(b) shows one example of computer simulation results for the HH model. When a
continuous DC input is given to the HH model, action potentials can be generated at certain
interval, that is, with a refractory period. Regardless of the strength of inputs, action potentials
have the same shape and size. All differential equations were solved by the fourth-order Rung-
Kata method by using C++. Parameters used here were as C = 1μF/cm2,
ḡ L =0.3 mS/cm2, ḡ =0.3 mS/cm2, ḡ K =0.3 mS/cm2, ENa= 115 mV, EK = −12 mV, Iinp = 10 mA/cm2, and
the resting potential = 0 mV.

3. Neuron model with a band-pass filter property

3.1. Subthreshold resonance phenomenon

As described in Section 2.2, neurons can generate action potentials depending on the strength
of DC input stimuli. As shown in Figure 6(a), for small DC inputs (dark blue, light blue, dashed
red lines), action potentials are not generated by reason that membrane potentials do not
exceed the threshold. However, if a larger input (red line) is given to a neuron, the membrane
potential can exceed the threshold and as a result, an action potential is generated. On the
contrary, when AC inputs are given to a neuron, outputs of a neuron are unlike the cases of
DC inputs, apart from whether the membrane potential exceeds the threshold or not. We
consider three AC inputs (blue, red, and green in Figure 6(b)), whose amplitudes are equal
but their frequencies are different (f1<f2<f3). By using an AC input with frequency f1(blue), the
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membrane potential (blue line) is assumed to be obtained under the threshold level, that is, in
a subthreshold level. If the input frequency increases from f1 to f2 (red), the membrane potential
(red line) is still in a subthreshold level, but its amplitude becomes larger than that of frequency
f1 (blue line). However, if the input frequency further increases to f3 (green), the amplitude of
the membrane potential (green line) reduces and becomes smaller than that of frequency f2

(red line). Instead of AC inputs with a single frequency, let an AC input whose frequency
increases with time be given to this neuron. This kind of AC is called a chirp current. Then, its
membrane potential has the shape with an expanded center section as shown in Figure 6(c),
that is, the membrane potential takes the maximum at a specific frequency, however, remains
at a subthreshold level. As its FFT shows, this neuron has a band-pass property, that is,
frequency selectivity. These kinds of oscillatory phenomena in a subthreshold level are called
the subthreshold resonance phenomena.

Figure 6. Subthreshold resonance phenomena. (a) DC inputs with different amplitudes, (b) AC inputs with different
frequencies, and (c) a chirp current input whose frequency increases as time increases.

Subthreshold resonance oscillations have been found in many excitatory and/or inhibitory
neurons in the whole brain. Mauro et al. first reported a subthreshold resonance oscillation in
squid giant axon [4]. Koch discussed these resonance oscillations in relation to the cable theory
[5]. Since then, these resonance phenomena have been observed in many neurons in various
regions of the brain, such as trigeminal root ganglion [6], inferior olive [7], and thalamus [8,
9]. These subthreshold resonance phenomena have been also reported in cortical neurons [10–
14], and in the 2000s, also in hippocampal neurons in CA1 [15, 16]. Although it is suspected
that frequency selectivity of neurons should play an important role in behavioral or perceptual
functions in animals, their practical roles have still been unclear. Recently, Narayanan and
Johnston [17] reported that subthreshold resonance oscillations in hippocampal CA1 neurons
are closely related to the long-term synaptic plasticity, which is currently considered as one of
possible foundations of learning and memory [18, 19]. So, it is very interesting and attractive
to study those resonance oscillatory features, in order to clarify the mechanisms of higher
information processing functions in the brain, such as learning, short-term memory, or
working memory.
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As already described, the cell membrane is usually modeled by an RC circuit. However, if a
chirp current is given to an RC circuit, a membrane potential shows only a property of low-
pass filter shown in Figure 7(a). On electrical circuit theory, resonance circuit must contain
inductive elements, that is, inductance L. Indeed, if a chirp current is given to an RLC circuit,
a membrane potential shows a band-pass property shown in Figure 7(b). Having many
neurons, the subthreshold resonance phenomena indicate that those neurons must have some
kind of inductive factor. So exactly, what is a distinguishing major role of such inductive
characteristics in the cell membrane? By advances of experimental technique, it has been
reported that many kinds of voltage-dependent ion channels have an important role in
subthreshold phenomena. Such ion channels involved in the subthreshold resonance phe‐
nomena are different from neuron to neuron that belongs to brain regions. Among them, slow
non-inactivating K+ channel (Krs channels) [10], hyperpolarization-activated cationic channel
(h channel) [12], and persistent Na+ channels (NaP channel) [13] are well known. In addition
to these channels, voltage-dependent Ca2+ channels in neurons and/or dendritic spines [8] are
also concerned in the subthreshold resonance oscillation.

Figure 7. Calculated membrane potential for a chirp current and its magnitude of FFT. (a) RC circuit and (b) RLC cir‐
cuit.

3.2. Inductive property of voltage-dependent ion channels

A hyperpolarization-activated cation channel (h channel) and a persistent sodium channel
(NaP channel) are known to mediate the subthreshold resonance oscillation observed in
entorhinal cortical neurons [12, 14]. In this section, we show how such voltage-dependent ion
channels have inductive properties. We consider a compartment neuron model with h channel
and NaP channel as shown in Figure 8. Its dynamics are expressed by the following conduc‐
tance-based equations [13]:

d ,
d inpL NaPh
VC I I I I
t
= - - - - (12)
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Figure 8. A compartmental neuron model with h channel and NaP channel.

where V is the membrane potential, IL is the leak current, Ih and INaP are the currents through h
channel and NaP channel, respectively, and Iinp is the input current. The leak current IL is given
by

( ).L L LI g V E= × - (13)

where ḡ L  is the leak conductance and EL is the resting potential. Currents Ih and INaP are given
as follows:

( ) ( ) {0.65 ( ) 0.35 ( )} ( ).hfh h h h hI g V V E g m V m V V E= × - = × + × -hs (14)

( ) ( ) ( ) ( ).NaP NaP N NaP NaP NI g V V E g m V V E= × - = × × - (15)

where gh(V) and gNaP(V) are, respectively, the h channel conductance and the NaP channel
conductance, ḡ h  and ḡ  are, respectively, the maximum amplitude of gh(V) and gNaP(V), and Eh

and EN are the equilibrium potentials for K+ through h channel and Na+ for NaP channel,
respectively. mhf(V) and mhs(V) are, respectively, the fast activation and slow activation
variables of h channel, and mNaP(V) is an activation variable of NaP channel. They satisfy the
following equations:

d 1 ( ), ( , , )
d

x
x x

x

m m m x hf hs NaP
t t ¥= × - = (16)
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3.2.1. Equivalent admittance (impedance) of h channel

Let V* be the equilibrium potential, Ih
* be the h-current at V*. From Eq. (14), Ih

* satisfies the
following relation:

* * * *{0.65 ( ) 0.35 ( )} ( ).hf hsh h hI g m V m V V E= × + × - (20)

When the membrane potential V(t) changes from V* to V* + δV(t), where δV(t) is a small
variation of the membrane potential from V*, the current Ih(t) also changes from Ih

* to

Ih
* + δIh

*(t), where δIh(t) is a small variation of h current caused by δV(t). Ih
* + δIh(t) satisfies the

following relation:

* * * *( ) {0.65 ( ( )) 0.35 ( ( )) } ( ( ) ).h h h hf hf hI I t g m V V t m V V t V V t Ed d d d+ = × + + + × + - (21)

Let mhf(V* + δV) approximate by mhf (V*) + δmhf and mhs(V* + δV) by mhs(V*) + δmhs for a small
variation δV. Then, Eq. (21) can be expressed by the following equation:

* * * *

*

* *

( ) {0.65 ( ) 0.35 ( ) } ( )

{0.65 0.35 } ( )

{0.65 ( ) 0.35 ( ) } ( )

{0.65 0.35 } ( ).

h h h hf hs h

h hf hs h

h hf hs

h hf hs

I I t g m V m V V E

g m m V E

g m V m V V t

g m m V t

d

d d

d

d d d
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+ × + × -
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+ × + ×

(22)

By subtracting Eq. (20) from Eq. (22) and dropping the higher-order variation terms than the
second, which appeared on the right-hand side of Eq. (22), the following equation is obtained:

* **{0.65 0.35 } ( ) {0.65 0.35 } .hf hs hf hsh h h hI g m m V E g m m Vd d d d» × + × - + × + × (23)
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As an activation variable mhf(V) satisfies Eq. (16), mhf(V*) and mhf(V* + δV) must satisfy the
following equations:

d ( *) 1 { ( *) },
d ( *)

hf
hf hf

hf

m V
m V m

t V ¥t
= × - (24)

( * ) 1 { ( * ) ( * )},
( * )

hf
hf hf

hf

dm V V
m V V m V V

dt V V
d

d d
t d ¥

+
= × + - +

+
(25)

where left terms of Eqs. (24) and (25), dm (V *) / dt  and dm (V * + δV ) / dt , represent the quantity
dm / dt  evaluated at V* and V* + δV, respectively. By approximating also τ (V * + δV ) by
τ (V *) + δτhf, where δτ  is a small variation caused by δV, Eq. (25) is written as follows:
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(26)

By dropping the higher-order variation terms than the second and subtracting Eq. (24) from
Eq. (26), the following equation is obtained:

1 { }.
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hf
hf hf

hf

d m
m m

dt V
d

d d
t ¥» × - (27)

Furthermore, as a small variation δm∞ may be approximately expressed by

dm∞(V *) / dV ⋅δV , Eq. (27) becomes as follows:
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d m dm V
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Using the differential operator p instead of time derivative (d/dt), Eq. (28) can be written as
follows:
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From this relation, a small variation δmhf is definitely expressed by δV as follows:
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Notice that dmhf∞ (V*)/dV in the numerator of the right-hand side can be directly calculated from
Eq. (17), that is, it is given by

2
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Exactly in the same way, a small variation δmhs is expressed by δV as follows:
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By substituting Eqs. (30) and (32) into Eq. (23), δIh is finally expressed by δV(t) as follows:
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(33)

As δI (t) / δV (t) represents admittance, Eq. (33) shows an equivalent admittance of h channel
for a small variation δV and its admittance can be expressed by parallel coupling circuits of
one conductance and two admittances. That is, the first term of Eq. (33) represents a conduc‐
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From this relation, a small variation δmhf is definitely expressed by δV as follows:
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Notice that dmhf∞ (V*)/dV in the numerator of the right-hand side can be directly calculated from
Eq. (17), that is, it is given by
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Exactly in the same way, a small variation δmhs is expressed by δV as follows:
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By substituting Eqs. (30) and (32) into Eq. (23), δIh is finally expressed by δV(t) as follows:
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As δI (t) / δV (t) represents admittance, Eq. (33) shows an equivalent admittance of h channel
for a small variation δV and its admittance can be expressed by parallel coupling circuits of
one conductance and two admittances. That is, the first term of Eq. (33) represents a conduc‐
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tance of h channel, which is expressed by the inverse of a pure resistance Rh; the second term
is an admittance of a fast activation variable Yhf, which can be expressed by the inverse of series
coupling of an inductance Lhf and a resistance Rhf, that is, Yhf = 1/(Rhf + p ⋅ Lhf); and the third term
is an admittance element of a slow activation variable Yhs, which is also expressed by the inverse
of series coupling of an inductance Lhs and a resistance Rhs, that is, Yhs = 1/(Rhs+ p ⋅ Lhs). Figure
9 shows an equivalent RLC circuit of h channel, where Rh, Rhf, Rhf, Rhs, and Lhs are given as
follows:
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Figure 9. An equivalent RLC circuit for h channel.

3.2.2. Equivalent admittance (impedance) of NaP channel

As in the case of with h channel, let V* be the equilibrium potential and I * be the NaP current
at V*. From Eq. (15), I * satisfies the following relation:

* * *( ) ( ).NaP NaP NaP NI g m V V E= × × - (37)
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When the membrane potential V(t) changes from V* to V* + δV(t), the current INaP (t) also changes
from INaP

*  to INaP
* + δINaP(t), where δINaP(t) is a small variation of NaP current caused by δV(t).

Then, INaP
* + δINaP(t) satisfies the following relation:

( ) ( ( )) ( ( ) ).NaP NaP NaP NaP NI I t g m V V t V V t Ed d d* + = × * + × * + - (38)

Let mNaP(V* + δV) approximate by mNaP(V*) + δmNaP for a small variation δV. Then, Eq. (38) can
be expressed by the following equation:

( ) ( ) ( ) (
( ) ( ) ( ).
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I I t g m V V E g m V E
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(39)

By subtracting Eq. (37) from Eq. (39) and dropping the higher-order variation terms than the
second, which appeared on the right-hand side of Eq. (39), the following equation is obtained:

*δ *δ ( ) δ .NaP NaPNaP NaP N NaPI g m V E g m V» × × - + × × (40)

By following the same procedure from Eq. (24) to Eq. (26) except that τNaP is constant (0.15 ms),
a small variation δmNaP can be expressed as follows:

d 1 { }.
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NaP NaP

m m m
t
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By approximating a small variation δmNaP∞ by [dmNaP∞ (V*)/dV] ⋅ δV, Eq. (41) becomes

d 1 d ( )
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(42)

By using the differential operator p, a small variation δmNaP can be expressed by δV as follows:
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(43)

By substituting Eq. (43) into Eq. (40), δINaP is finally expressed by δV(t) as follows:
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Eq. (44) shows an equivalent admittance of NaP channel for a small variation δV, and it can be
expressed by parallel coupling circuits of one conductance and one admittance. That is, the
first term of Eq. (44) represents a conductance of NaP channel, which is expressed by the inverse
of a pure resistance RNaP, and the second term is an admittance of an activation variable YNaP,
which is expressed by the inverse of series coupling of an inductance LP and a resistance RP,
that is, YNaP = 1/(RP+ p ⋅ LP). Figure 10 shows an equivalent RLC circuit of NaP channel, where
RNaP, RP, and LP are given as follows:

*
1 ,

( )NaP
NaP

NaP
R

g m V
=

×
(45)

*

1 , 0.15 ,1 d ( *) ( )
0.15 d

NaP
P P P

NaP N

R L Rm Vg V E
V
¥

×

= = ×
× - (46)

Figure 10. An equivalent RLC circuit for NaP channel.

Figure 11. An equivalent RLC circuit for a compartment model with h channel and NaP channel.
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3.2.3. Equivalent RLC circuit of a neuron with h channel and NaP channel

By combining the results of Sections 3.2.1 and 3.2.2, an equivalent RLC circuit for a neuron
model with h channel and NaP channel is obtained. Figure 11 shows its equivalent RLC circuit.
In this section, we show some simulation results for a compartment neuron model (Figure 8)
and its equivalent RLC circuit(Figure 11). A chirp current given to both a compartment neuron
model and its equivalent RLC circuit is described as follows:

sin ( ( ) ) , ( ) 2 ,inp inp
tI A t t id t f
T

w w p= × + = (47)

where the angular frequency ω(t) increases from 0 to 2πf over the period [0, T]. id is a DC bias
current, which is set to zero in this subsection. The following parameter values were used in
simulations; C = 1.5 μF/cm2, ḡ L =0.15 mS/cm2, EL = −65 mV, ḡNaP =0.5 mS/cm2, ḡ h =1.5 mS/cm2,
EN = 55 mV, EK = −90 mV, Eh = −20mV.

Figure 12. Membrane potential and the magnitude and the phase of its FFT. Simulation result for (a) a compartment
model (Figure 8) and (b) its equivalent RLC circuit (Figure 11).

Figure 12(a) shows one simulation result for a compartment model with h channel and NaP
channel. The membrane potential V and the amplitude and the phase of its FFT are shown. As
the magnitude of FFT shows, this neuron model has a band-pass property. Figure 12(b) shows
the simulation result for its equivalent RLC circuit. Comparing Figure 12(a) and (b), the
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EN = 55 mV, EK = −90 mV, Eh = −20mV.

Figure 12. Membrane potential and the magnitude and the phase of its FFT. Simulation result for (a) a compartment
model (Figure 8) and (b) its equivalent RLC circuit (Figure 11).

Figure 12(a) shows one simulation result for a compartment model with h channel and NaP
channel. The membrane potential V and the amplitude and the phase of its FFT are shown. As
the magnitude of FFT shows, this neuron model has a band-pass property. Figure 12(b) shows
the simulation result for its equivalent RLC circuit. Comparing Figure 12(a) and (b), the

Numerical Simulation - From Brain Imaging to Turbulent Flows68

membrane potentials and their FFTs are exactly similar. This fact indicates that the derived
RLC circuit represents almost the same properties of a compartment neuron model within a
small variation of the membrane potential. In other words, voltage-dependent h channel and
NaP channel may surely have inductive properties and contribute to the subthreshold
resonance phenomena.

3.3. Properties of voltage responses to oscillatory current inputs

A neuron can generate action potentials whenever its membrane potential exceeds the
threshold except during a refractory period. If the membrane potential of a neuron stays in a
subthreshold level, a neuron cannot generate action potentials. However, as described in the
previous section, many neurons in the brain have the subthreshold resonance properties. This
fact indicates that a neuron may be able to generate an action potential when AC inputs whose
frequencies are close to the resonance frequency of a neuron are given, because the resulting
membrane potential for that input has the potential to exceed the threshold by the effects of
the subthreshold resonance property. Actually, this fact has been observed in neurons of the
brain. For example, Hutcheon et al. studied subthreshold voltage responses to AC inputs in
neurons from the sensorimotor cortex of rats [11]. Figure 13 shows one of their results. Cases
1–3 show effects of the input amplitude: (Case 1) if a chirp current with a small amplitude is
given to a neuron, the membrane potential does not exceed the threshold and no action
potentials are generated; (Case 2) if its input amplitude increases a little bit, the membrane
potential becomes larger but it still stays in a subthreshold level and no action potentials are
generated; and (Case 3) if its amplitude increases more, the membrane potential exceeds for
AC inputs with frequencies close to a resonance frequency of a neuron. As a result, action
potentials are generated around that frequency. Cases 4 and 5 show effects of a DC bias input:
(Case 4) if a DC-bias in the input current increases a little bit from 0μA/cm2, the membrane
potential cannot exceed the threshold and no action potentials are generated and (Case 5) if
the value of a DC bias is raised more, the membrane potential can exceed the threshold and
action potentials are generated.

Figure 13. Experimental results: Subthreshold voltage responses for a chirp current input with different amplitudes
and DC bias currents observed in sensory cortex of rats [11].
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We consider here a compartment neuron model with h channel and NaP channel described in
the previous section, into which the HH model is incorporated in order to generate action
potentials. Figure 14 shows its integrated neuron model, and the following equation is
obtained:

.= - - - - - + inpL NaP Na Kh
dVC I I I I I I
dt

(48)

Figure 14. A compartment model with h channel and NaP channel into which the Hodgkin-Huxley model (the HH-
model) is incorporated.

Eq. (48) is an extension form of Eq. (12), into which two currents IN and IK of the HH model are
added. Detail dynamics of IL, Ih, and INaP are given by Eqs. (13)–(15) in Section 3.2. Dynamics
of INa and IK are also given by Eqs. (6) and (7) in Section 2.2. In addition to parameter values
shown in the previous section, the following values were used in simulations:
ḡNa =52 mS/cm2, ḡ K =52 mS/cm2, EN = 55 mV, and EK = −90 mV.

Figure 15(a) shows the membrane potential for a chirp current input with Ainp = 2.5 μA/cm2

and id = 0 μA/cm2. For this input, the membrane potential cannot exceed the threshold, and no
action potentials are generated. However, if the amplitude of AC input (Ainp) increases, the
situation changes. Figure 15(b) shows the membrane potentials for a chirp current input whose
amplitude increases to 3.3 μA/cm2. In this case, the membrane potential exceeds the threshold
for the input frequency close to the resonance frequency of this neuron model. As shown in
Figure 12, it is 13 Hz in this neuron model. On the other hand, Figure 15(c) shows the membrane
potential for a chirp input with Ainp = 2.5 μA/cm2 and increased id = 1 μA/cm2. Almost the same
response as Figure 12(b) is obtained. However, resulting membrane potentials in Figures 13
and 15 are not completely identical, because neurons used in experiments by Hutcheon et al.
and a neuron model used in this simulations are different. However, simulation results follow
a similar tendency as experimental results by Hutcheon et al.[11].

By computer simulations, effects of the amplitude of AC input, its frequency, and a DC-bias
current on the membrane potential were studied [20]. Some results are shown here. Figure
16 shows the membrane potentials for the AC inputs with a single frequency, setting Ainp = 3.3
μA/cm2. Figure 16(a) shows the results for 2 Hz input frequency. In this case, no action
potentials are generated, because the membrane potential cannot exceed the threshold at all.
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Figure 15. Simulated membrane potential for a chirp current input with different amplitude and DC bias current. (a)
Response for Ainp = 2.5 μA/cm2 and id = 0 μA/cm2. (b) Response for Ainp = 3.3 μA/cm2 and id = 0 μA/cm2. (c) Response for
Ainp = 2.5 μA/cm2 and id = 1 μA/cm2.

Figure 16. Simulated membrane potential for an AC input with a single frequency (Ainp is fixed to 2.5 μA/cm2). (a) Re‐
sponse for id = 0 μA/cm2 and f = 2 Hz. (b) Response for id = 0 μA/cm2 and f = 13 Hz. (c) Response for id = 0 μA/cm2 and f =
30 Hz. (d) Response for id = 1 μA/cm2 and f = 13 Hz. (e) Response for id = 1 μA/cm2 and f = 30 Hz.
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Figure 16(b) shows that action potentials are generated, because the input frequency is 13 Hz,
which is close to the resonance frequency of this neuron model. Thus, the maximum amplitude
of membrane potentials exceeds the threshold by the effect of the subthreshold resonance
property. In the case of Figure 16(c), for 30 Hz input frequency, no action potentials are
generated, because the membrane potential is less than the threshold. On the other hand, if a
DC bias current input increases to 1μA/cm2, as Figure 16(d) shows, more action potentials are
generated for 13 Hz input frequency input than the case of no DC bias input. This indicates
the effect of a DC bias current on generation of action potentials. Comparing Figure 16(b) and
(d), it is clarified that the more spikes are observed than the case of no DC bias current input.
For the case of id= 1 μA/cm2,a neuron model can also generate an action potential for 30Hz
input frequency, as shown in Figure 16(e). As no action potential is generated for the case of
id= 0 μA/cm2, this is also caused by the effect of a DC bias current input.

4. Conclusion

Until now, it has been mainly proposed that the cell membrane and neurons are modeled by
an RC circuit. However, from the fact that many neurons in various regions of the brain have
band pass properties, a neuron should be modeled by an RLC circuit. In this chapter, an
equivalent RLC circuit was developed for a neuron model with h and NaP channels, and it was
clarified that the subthreshold resonance property of this neuron model comes from inductive
properties of h and NaP channels, especially, h channel. Furthermore, by incorporating the
Hodgkin-Huxley dynamics into this neuron model, we showed the relation between the
subthreshold resonance oscillation and the generation of action potentials. By computer
simulations, it was shown that the amplitude of an AC input and a DC bias current input
strongly play a role in the generation of action potentials, coupled with AC input frequencies.

It is presumed that the subthreshold resonance phenomena may relate closely to various
practical neuron activities and behaviors in our brain, such as the sensitivity to external noises
in sensory system. So, it is very important and interesting to study firing patterns of a neuron
or properties of burst oscillations by using computer simulations, in order to clarify the
mechanisms of higher information processing in the brain.

Needless to say, mutual collaboration of experimental research and modeling research is of
large significance, in order to create more sophisticated models based on the most recent
findings from experiments, and in order to develop new experimental methods to verify the
facts suggested from simulation results.
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Abstract

A proposed model consisting of two coupled van der Pol models is considered as a
description of the heart action potential. A system of ordinary differential equations
is used to recreate pathological behaviour in the conducting system of the heart such
as  Wolff-Parkinson-White  (WPW)  syndrome  and  the  most  common  tachycardia:
atrioventricular  nodal  reentrant  tachycardia  (AVNRT).  Part  of  the  population  has
abnormal accessory pathways: fast and slow. These pathways in the atrioventricu‐
lar  node  (AV  node)  are  anatomical  and  functional  excipients  of  supraventricular
tachycardia. However, the appearance of two pathways in the AV node may be an
excipient of arrhythmia—the WPW syndrome. The difference in the conduction time
between these pathways is  the most  important  factor.  This  is  the reason to  intro‐
duce three types of couplings and delay to our system in order to reproduce different
types of the AVNRT. In our research, the result of introducing the feedback loops
and couplings entails  the creation of  waves which can correspond to the re-entry
waves  which  occur  in  the  AVNRT.  Our  main  aim  is  to  study  solutions  of  the
equations of the system and to take into consideration the influence of feedback and
delays which occur in the pathological modes. The proposed models made it possible
to reproduce the most important physiological properties of the discussed patholo‐
gies. Since the model is phenomenological, the results are accurate as far as a simple
model can describe the potential found in one of the more complex oscillators found
in biology.

Keywords: van der Pol model, ordinary differential equations, delay, feedback,
couplings, action potential, WPW syndrome, AVNRT, numerical analysis
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1. Introduction

In  this  chapter,  the  research  on  the  electrical  conduction  system of  the  human heart  is
concerned. The parts of this system are pacemaker centres made of special cells similar to
embryonic cells which form the following concentrations: sino-atrial node (SA), atrioven‐
tricular node (AV) and His-Purkinje system [1]. The key elements of the conduction system
considered include SA node and AV node.  Modelling the  formation and conduction of
electrical impulses in the heart is one of the most developed areas of mathematical biolo‐
gy. For years, the most popular models of action potentials which occur in the heart have
included the  Hodgkin-Huxley  model  and the  Purkinje  cells  model.  These  models,  even
though very effective, are not very suitable for studying the dynamics of the system, which
is  described  in  view of  high  dimensionality  of  the  phase  space  and very  broad spatial
parameters. In this chapter, we propose ordinary differential system which is based on the
van der Pol models and which makes it possible to reconstruct pathological behaviours in
the system of the heart, such as the WPW syndrome and different types of AVNRT. The
motivation for writing this chapter was that there is a problem with making the appropri‐
ate diagnosis and therefore with treating the disease effectively. This kind of problem is
observed mainly in different types of AVNRT. The reasons of those problems are not fully
known  and  the  mechanisms  of  these  pathologies  are  not  fully  understood.  Also,  the
symptoms are often mistakenly taken for other heart diseases. It should be emphasized that
the  clinical  pictures  of  these  disease  are  also  non-specific.  In  the  past  few  years,  we
understood that the structure of the AV node has a multi-level architecture in which there
may be many pathways (slow and fast) at different locations in the AV node [2, 3]. This
helped to recognize many types of  AVNRT,  which previously were understood as  one,
although the mechanisms of action were different. In literature, there are no mathematical
models that would specifically model the various types of AVNRT. There were attempts to
model AVNRT only as a single pathology having the slow and fast pathways [4, 5]. Part of
the population has abnormal accessory pathways: fast and slow, cf. [1, 6]. The pathways in
the AV node are anatomical and functional contributions of the most popular supraventric‐
ular tachycardia, which is a re-entry tachycardia from the AV node. The atrioventricular
nodal re-entrant tachycardia is caused by re-entries. A condition for AVNRT to occur is that
two  electric  pathways  occur  in  and  around  the  AV  node  (for  example,  slow  and  fast
pathways). This gives way to the occurrence of re-entry. We can distinguish five different
forms of the AVNRT (typical: slow/fast, atypical: fast/slow and other forms: slow/slow, more
than two re-entries waves, one fast pathway with depolarization of slow pathway) [7, 8, 9].
This depends on the multi-level architecture of the AV node. The AVNRT circuit involves
larger areas including atrioventricular junction, adjacent atrial structures and in particular
so-called atrial  inputs including at least antero-superior and postero-inferior entries,  and
sometimes  also  the  left  atrial  entry.  Based  on  the  van  der  Pol  equation,  we  study  the
influence of feedback which occurs in the normal heart action mode as well as in patholog‐
ical modes. Particularly, it is important to introduce the time delay into this feedback. Delay
values used in our research correspond to those which occur in the electrical conduction
system,  for  example,  in  the  case  of  an  accessory  conducting  pathway,  so-called  Wolff-
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Parkinson-White syndrome. In the conduction system of the heart, the only correct electri‐
cal  conduction  pathway  between  atria  and  ventricles  is  the  bundle  of  His.  Part  of  the
population has abnormal accessory pathways through which electrical pulses are directly
conducted from atria to ventricles. The extra electrical pathway is presented at birth and is
fairly rare. The WPW syndrome is detected in about 4 out of every 100000 people. People
of  all  ages,  including  infants,  can  experience  the  symptoms  related  to  the  WPW  syn‐
drome. Additional path conducts electrical impulses to the ventricles in the case of WPW.
This conduction takes place without proper synchronization.  Usually,  this extra conduc‐
tion pathway does not cause serious disturbances. Sometimes, however, there is a reflec‐
tion of the electrical impulse, and it returns to the atria after each heartbeat. This causes the
coupling in which each atrial contraction is followed by chambers contraction and then atrial
contraction again. The heart rate can reach about 200 beats per minute when the normal
rhythm at rest is about 72 beats per minute.

As already mentioned, synchronization is very important for a correctly functioning heart in
the sense of cardiovascular conduction. The impact of different types of couplings related to
the pathologies which are presented in this research and how do they affect the synchroniza‐
tion of the two oscillators will be discussed in this chapter. The analysis of synchronization of
various modifications of the van der Pol model has been considered in many works. For
example, paper [10] presents synchronization areas near the main parametric resonance and
transition conditions from regular to chaotic motion. In paper [11], authors analyse the
phenomenon of complete synchronization in a network of four coupled oscillators. Reference
[12] considered mechanisms of various bifurcation phenomena occurring in Bonhoffer van der
Pol neurons coupled with a time delay through the characteristics of synaptic transmissions.
The phenomenon of synchronization in van der Pol oscillators coupled by a time-varying
resistor is researched in ref. [13]. However, in these papers there are no examples of application
of this model for recreating a pathological behaviour of the electrical-conduction system of the
human heart, and therefore the considered ranges of parameters are wider than those which
can be used in medical applications. The van der Pol oscillator provides rich dynamical
behaviour [14] and also synchronization phenomena. In order to better understand the
mechanisms that cause these arrhythmias in paper are proposed models of AVNRT and WPW
syndrome.

2. Modelling techniques

The van der Pol model was used in this research because it is a two-dimensional model with
small number of parameters and it is a relaxation oscillator. The van der Pol equation is often
used to describe an action potential occurring in the heart. The model with a delay and often
with a term including a coupling coefficient has been a topic of many articles, e.g. [15–17].
However, in these articles there are no exact examples of application of this model for
recreating a pathological behaviour of the electrical conduction system of the human heart
such as the AVNRT and the WPW, and therefore the range of parameters considered by them
is wider than that which can be used in medical applications. Below, the author will present
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one of the most important existing mathematical models of the action potential. Basing on the
knowledge of van der Pol model given below will be carried out construction of the proposed
models.

2.1. Van der Pol model

Since every node is a self-exciting pacemaker, it can be described using the van der Pol
oscillator which is the relaxation oscillator. It was first introduced by van der Pol and van der
Mark as a model in the electronic circuit theory in 1927, [19]:

( )2 1 0 x a x x x+ - + =&& & (1)

where

( ) ( )20.5 1f x a x= - (2)

f (x) is a damping coefficient, which is negative for | x | <1 and positive for | x | >1. Never‐
theless, the van der Pol model requires some changes to be introduced in order to reproduce
features of heart’s action potential. In paper [20], Postnov substituted a linear term by a non-
linear cubic force called the Duffing term
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where a, μ, d  are positive control parameters.

In this way, he introduced modifications which allowed maintaining the required structure of
the phase space. Such model can be applied to model either SA or AV node. The main property
of a modified relaxation oscillator is the mutual interaction of a limit cycle which is presented
around an unstable focus with a saddle and a stable node. This allows reproducing correctly
the refraction period and non-linear phase sensitivity of an action potential of node cells.

A solution of Eq. (3) in time presents the action potential whereas a solution in velocity makes
it possible to obtain very important phase portrait. We can easily see that the main qualitative
difference between Eqs. (1) and (3) is the appearance of two additional steady states, x2 = −d
and x3 = −2d . As before, x1 =0 is an unstable node or a focus surrounded by a stable unique limit
cycle, x2 = −d  is a saddle and x3 = −2d  forms a focus or a node and can be either stable or unstable,
depending on the sign of 4d 2 −μ. In the case considered by Postnov [20], the first steady state
is an unstable focus, the third one is a stable node. In the considered model (5), the problem is
the adjustment of the position of stationary states in the phase space. In order to reproduce
behaviour of the heart, a new parameter e is added. For better regulation of the frequency, the
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e ⋅d  factor is substituted with an independent coefficient f  corresponding to harmonic
oscillator’s frequency, [20]. We present the final version of the model in its two variable first-
order form that reads [20]:
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The system that we use as a reference one is given in following form:
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where a1 =a2 =5; f 1 = f 2 =3; d1 =d2 =3; e1=7; e2=4.5 are control parameters. In the next part of this
paper, a modified van der Pol system with delayed feedback and couplings describes various
pathologies observed in heart action, for example, WPW syndrome and different types of
AVNRT pathology.

3. Construction and analysis of proposed models

In this section we turn to constructing new models for specific pathologies we would like to
describe. All the models we propose below consist of two modified van der Pol models. The
system with delayed feedback describes various pathologies observed in the heart action, e.g.
WPW syndrome and different types of AVNRT.

A numerical model was created using Dynamics Solver and a program which was written in
C++. The explicit Runge-Kutta formula with a variable integration step was used. Results were
confirmed and plots were made with Matlab standard dde23 solver.

For the single node model (Eq. (4)) of an electrical conduction system with no feedback, a
periodic potential and the corresponding limit cycle (with a transient state) are obtained like
in Figures 1 and 2. Potential period equals 1.4.

The reference parameters have values which are given below:

1 2 1 2 1 2 1 2a a 5,  d d 3,  e 7,e 4.5,  f f 3.= = = = = = = = (6)
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Figure 1. Time series for reference model without feedback and delay, see Eq. (5).

Figure 2. Phase portrait for reference model without feedback and delay, see first part of Eq. (5).
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Figure 2. Phase portrait for reference model without feedback and delay, see first part of Eq. (5).
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The addition of coupling (especially feedback with delay) to the x1 term allows modelling the
re-entry wave which causes the exceptional situation when AV node is the master for SA node.
Such situation takes place in case of WPW syndrome, this situation is presented by the
following equations:

ẋ1 = y1 + k(x1(t−τ)−x1)
ẏ1 = −a1(x12−1)y1− f 1x1(x1 + d1)(x1 + e1)

Parameters have the following values: k =2, τ =0.25 and other parameters are the same as in the
reference system. In the time series of the modified model with feedback, there is a ’delayed
impulse’. The result of introducing feedback to the system is the creation of a wave similar to
the initial wave—action potential, but delayed. It can be assumed that such a feedback can be
treated as an external, periodic excitation of the wave. In Figure 3 we can observe a kind of
tachycardia which is a typical symptom of the Wolff-Parkinson-White syndrome. The period
of oscillations is about 0.9 whereas the reference period of physiological action potential is 1.4.

Figure 3. Dynamics of action potential during WPW syndrome.

Now we consider the AVNRT pathology. We would like to propose a mechanism which
reproduces the dynamics of action potential occurring at the phenomenon of AVNRT. In this
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case, we have a coexistent conduction by two or more pathways: slow and fast. In this model,
we assume that the fast pathway is described by the first van der Pol model, but the slow
pathway is treated as an action potential in other characteristic, so we use the second model
of van der Pol to describe the pathway.

Next, we focus on such a type of AVNRT in which only one fast pathway with depolariza‐
tion of slow pathway occurs. The conduction is only out of the fast pathway, because de‐
scending depolarization of slow pathway prevents conduction. To describe that situation,
we add only one unidirectional coupling to our model. This coupling does not change the
main rhythm x1 (see Figure 4). In this case, the model could be written in the following
form:
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where k is the coupled coefficient, τ is the delay and other parameters are fixed as
a =5, f =3, d =3, e =7.

Figure 4. Time series for fast type of AVNRT.
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Now, we consider a situation where the difference in the refractive state of both pathways
leads to an excitation of one of them causing the re-entry wave [20]. In Figure 5, the result for
a typical AVNRT (fast/slow) is presented. This type of AVNRT is described by the following
system:
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Figure 5. Dynamics of action potential for a typical AVNRT, given in Eq. (8).

The mechanism of the typical AVNRT is similar to this which is observed in the WPW syn‐
drome. Also, we have a feedback with delay in the first part of the given model.

The atypical AVNRT (slow/fast type of AVNRT) is described in the following way:
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In both of those types of AVNRT (fast/slow and slow/fast) we obtain regular fast rhythm, which
is a typical behaviour for this kind of pathology (during this type of tachycardia, the rhythm
of the heart is about 35% more frequent than normal rhythm, which is in accordance with our
results).

The last case is for the situation where there are two re-entry waves but both go through slow
pathways (slow/slow type of AVNRT), which we reflect by the following system of equations:
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In this variant, we also observe shortening (like in Figure 5) of the period of oscillations. In
this pathology, the presence of more than two conduction paths is possible which is associated
with more re-entry waves. Increasing the number of feedbacks modelling re-entry waves of
slow pathways causes a progressive shortening of the period of oscillation, while the rhythm
remains regular. The conclusion is that a regular excitation may evoke a regular answer.

After examining the influence of excitation with modified van der Pol oscillator wave, we have
analysed behaviour of the modified van der Pol oscillator with feedback excited with a single
rectangular pulse. In this way, two excitations co-exist in the system—the wave brought by
the oscillator’s feedback and the one from the external pulse. The pulse is defined by a step
function H for the amplitude A=4 and the length of pulse L =0.05 and it is applied to the
oscillator with k =1 and T =1. The function H is defined as:
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Influence of the pulse is treated as an appearance of the accessory current in the system. For
this reason, this pulse is introduced to the equation describing the potential change (the x
variable):
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where tp denotes the moment in time when the pulse starts.

The influence of the pulse, which results in the period length change, depends on in which
phase of oscillations it is applied. As mentioned before, the excitation influences the system
having the regular behaviour.

Figure 6. Numerical solution of the system with feedback (k =1, T =0.5), excited with the rectangular pulse.

Numerical solution of the system with feedback (k =1, T =0.5), excited with the rectangular
pulse is presented in Figure 6. Red colour presents modified van der Pol model with feed‐
back, whereas blue one shows the modified van der Pol model with feedback, which is addi‐
tionally excited with the rectangular pulse. In this case application of the external pulse does
not influence oscillator’s period length, oscillations are stable. There are phase ranges for
which oscillations are sensitive to a disturbance. Phase response curves for modified van der
Pol system without feedback and for two cases with feedback (k =1, T =1 and k =1, T =0.5)
which are excited with the rectangular pulse (A=4, L =0.05) are shown in Figure 7. A phase
response curve is a graphic presentation of the influence of excitation for oscillation phases
of modified van der Pol system. Its shape depends on in which phase of oscillation the exci‐
tation is exerted. This curve describes the dependence between the change of length of one
cycle of oscillation and the excitation phase φ. For example, the application of the excitation
in a moment when the system abides in the refraction state does not change the behaviour of
the system.
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Figure 7. Phase response curves for models with rectangular pulse.

The system is phase-sensitive, and that, depending on the phase, excitation may change the
potential period length. Models with feedback are much less phase-sensitive, Figure 7. The
feedback strongly modifies the properties of the modified van der Pol model.

The human heart rhythm with feedback about AV node is low-variable. The results of this
study were consulted with the medical doctor from the Institute of Cardiology in Anin near
Warsaw, who confirmed that the very stable heart rhythm is typical for patients with AV nodal
re-entrant tachycardia.

One of the most important features of oscillators is synchronization. The behaviour of cardiac
pacemaker cells resembles those relaxation oscillators. A characteristic property of relaxation
oscillators is that they may be synchronized by an external signal, if the latter has a periodicity
similar to spontaneous frequency of the oscillator [14]. We investigate a phenomenological
model for the heartbeat which consists of two coupled van der Pol oscillators. The coupling
between these oscillator (action potential) can be either unidirectional or bidirectional, with or
without feedback. Below, we present our model with possible couplings and feedbacks and
try to analyse all of them for behaviour of given system and its synchronization.
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If we consider physiological coupling between nodes, then the s2 coupling is introduced to our
system. It means that the SA node directs AV node. For small value of s2 (in Figure 8,
s2 =1, k1 =0, s1 =0, k2 =0) the result is similar to ref. [1], Figure 8.

Figure 8. Time series: physiological coupling between nodes, the parameters are given in Eq. (9).

Figure 9. Time series: physiological coupling for s2 =5.

Numerical Simulations of Dynamics Behaviour of the Action Potential of the Human Heart's Conduction System
http://dx.doi.org/10.5772/63017

87



But for bigger value (e.g. 10 or 100), parts of amplitudes are synchronized in-phase with x1 and
aperiodic behaviour appears, which is presented in Figures 9 and 10.

Figure 10. Time series: physiological coupling for s2 =100.

Figure 11. Projection of the phase space for s1=1.
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This causes the attempt of fitting the AV frequency to SA which slows down the heart rate.

We study here the synchronization properties of such an association with respect to the nature
and intensity of coupling.

Figure 12. Projection of the phase space for s1=10.

Figure 13. Projection of the phase space for s1=1000.
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In Figures 11–13, we can observe an influence of unidirectional coupling for strength of
synchronization of given oscillators (Eq. (11)). We must remember that complete synchroni‐
zation of oscillators, characterized by x1(t)= x2(t) and y1(t)= y2(t), is unlikely to be observed in
practice, due to the non-similarity of the coupled oscillators [21]. But oscillators, which are
considered, are similar. In case when there is added unidirectional coupling to the system
(s1 ≠0 or  s2 ≠0), it is assumed that the coupling coefficient is a variable parameter in the analysed
system. This parameter denotes the strength of the unidirectional coupling, all the remaining
parameters being held constant. For small s1 there is no synchronization, but for large s1 there
is complete synchronization, which is shown in Figure 13. Similar results are obtained for s2.
When bidirectional coupling occurs in the system (s1 ≠0 and  s2 ≠0), it can also obtain complete
synchronization but there must be big asymmetry of value of coupling coefficients:
s1 ≪ s2 or s1 ≫ s2.

Finally, the influence of the bidirectional coupling for behaviour of the model was studied. It
would seem that the bidirectional coupling should operate so that when we enter it in relation
2:1 between oscillators, the rhythm of the fast pathway should be slowed down, while the
rhythm of the fast pathway should accelerate.

In the model without feedback, periodic potential x1 and x2 are obtained, which is a dynamics
of a physiological rhythm. But there is no synchronization for these parameters. When
coupling coefficients are added to the system: k1 ≠0 and k2 ≠0, we obtain a set of projections of
the phase space for different values of couplings, Figures 14–16.

Figure 14. Projection of the phase space for k1=2 and k2=1.
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Figure 15. Projection of the phase space for k1=5 and k2=10..

Figure 16. Projection of the phase space for k1=10 and k2=10.

However, with bigger values of k1, k2, a partial synchronization can be found in the system,
Figure 15. Further increasing the value of the coefficients causes, however, the most significant
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changes in the portrait of the phase space. We can observe partial synchronization, but this
synchronization has asymmetric character, Figure 16.

We investigated the synchronization between oscillators themselves despite that the genera‐
tion of cardiac dysrhythmias are associated with a lack of synchronization between autono‐
mous pacemakers [22]. But we showed that we can obtain certain types of synchronization:
phase synchronization, partial synchronization or lag synchronization. This depends on the
strength of coupling coefficients. Corresponding large coefficient may cause synchronization,
but often setpoints are not the values of the physiological range.

4. Conclusions

Main aim of the paper was to propose the system of differential equations describing the
dynamics of action potential that accompanies the WPW syndrome and five different forms
of AVNRT. In this work, by using the proposed models we were able to reproduce the most
important physiological properties of the discussed pathologies. In literature, there are no
mathematical models of AVNRT. By using one of the proposed models, we can try to add an
equation which is responsible for modelling the pharmacological treatment of the pathologies
of our interest. These type of models then can help to determine an optimal treatment. On the
other hand, we should keep in mind that the proposed models are phenomenological, so the
results are accurate as far as a simple model can describe the potential found in one of the more
complex oscillators appearing in real biological phenomena. We can continue the validation
of these models with the use of medical data. However, to collect the necessary data, only the
invasive methods can be used, which constitutes an important difficulty.
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Abstract

This chapter offers a numerical simulation of fractional differential equations by utilizing
Chebyshev-simulated annealing neural network (ChSANN) and Legendre-simulated
annealing neural network (LSANN). The use of Chebyshev and Legendre polynomials
with simulated annealing reduces the mean square error and leads to more accurate
numerical approximation. The comparison of proposed methods with previous methods
confirms the accuracy of ChSANN and LSANN.

Keywords: neural network, fractional Riccati, Legendre polynomial, Chebyshev poly‐
nomial, simulated annealing

1. Introduction

During the last few decades, fractional calculus has gained massive attention of physicists and
mathematicians  because  of  its  numerous  interdisciplinary  applications.  Many  recent
researches  are  ended  up  demonstrating  the  significance  of  fractional-order  differential
equations as valuable instruments to model several physical phenomena such as the non-
linear oscillation of earthquake and the fluid dynamics traffic can be elegantly modelled with
fractional derivatives [1, 2]. Various physical processes show fractional-order behaviour that
might change with respect to time or space. The adoption of fractional calculus concepts is
well known in many scientific areas such as physics, diffusion and wave propagation, heat
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transfer,  viscoelasticity  and  damping,  electronics,  robotics,  electromagnetism,  signal
processing, telecommunications, control systems, traffic systems, system identification, chaos
and fractals, biology, genetic algorithms, filtration, modelling and identification, chemistry,
irreversibility, as well as economy and finance [3–5].

Modelling of different physical phenomena gave rise to a special differential equation
known as Riccati differential equation that was named after an Italian mathematician Count
Jacopo Francesco Riccati. Due to many applications of fractional Riccati differential
equations such as in stochastic controls and pattern formation, many researchers studied
it to get the exact or approximate solutions. Such as fractional variational iteration method
was applied in [6] to give an approximate analytical solution of non-linear fractional Riccati
differential equation. His modified homotopy perturbation method (MHPM) was used on
quadratic Riccati differential equation of fractional order [7]. The results of fractional Riccati
differential equation were also obtained on the basis of Taylor collocation method [8].
Fractional Riccati differential equations were solved by means of variational iteration
method and homotopy perturbation Pade technique [9, 10], and the numerical results were
attained by using Chebyshev finite difference method [11]. Adomian decomposition method
was presented for fractional Riccati differential equation [12], the problem was described
by means of Bernstein collocation method [13], and enhanced homotopy perturbation
method (EHPM) was used to study this problem [14]. Recently, artificial neural network
and sequential quadratic programming have been utilized to obtain the solution of Riccati
differential equation [15]. The problem was also explained by Legendre wavelet operational
matrix method [16] and the results of fractional Riccati differential equation by new
homotopy perturbation method (NHPM) [17] were obtained.

In recent years, artificial neural network (ANN) is one of the methods that are attaining
massive attention of researchers in the area of mathematics as well as in different physical
sciences. The concept of ANN started to develop in 1943 when a neurophysiologist and a
young mathematician [18] gave the idea on working of a neuron with the help of an electric
circuit. Later, a book [19] was written to clarify the working of neurons then in 1949.
Bernard Widrow and Marcian Hoff developed a model MEDALIN that was used to study
the first real-world problem of neural network. Researchers continued to study the single-
layered neural network, but in 1975, the concept of multilayer perceptron (MLP) was
introduced, which was computationally exhaustive due to multilayer architecture. The
excessive training time and high computational complexity of MLP gave rise to functional
neural network by which the complexity of multilayers was overcome by introducing
variable functions [20]. Functional link neural network has been implemented to several
problems such as modified functional link neural network for denoising of image [21],
active control of non-linear noise processes through functional link neural network [22],
and the problem of channel equalization in a digital communication system was solved by
functional link neural network [23]. Due to less computational effort with easy to implement
procedure, functional link neural network was also implemented to solve differential
equations [24, 25].
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2. Definitions and preliminaries

The Riemann-Liouville, Grünwald-Letnikov and Caputo definitions of fractional derivatives
of order α >0 are used more frequently among several definitions of fractional derivatives and
integrals, but in this chapter, the Caputo definition will be used for working out the fractional
derivative in a subsequent procedure. The definitions of commonly used fractional differential
operators are discussed in the study of Sontakke and Shaikh [26].

Definition 1: The Riemann-Liouville fractional derivative operator can be defined as follows:
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where here α >0, x >a, α, a andx∈R.

Definition 2: The definition of fractional differential operator was introduced by Caputo in
late 1960s that can be defined as follows [27]:
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where here α >0, x >a, α, a andx∈R.

The Caputo fractional derivative satisfies the important attribute of being zero when applied
to a constant. In addition, it is attained by computing an ordinary derivative followed by the
fractional integral, while the Riemann-Liouville is acquired in the contrary order.

3. ChSANN and LSANN

3.1. Methodology

The functional mapping of (LSANN) and (ChSANN) is shown in Figure 1 demonstrating the
structure of both methods, but for the convenience of the reader, a stepwise explanation of
both the methods is also presented.

Numerical Simulation Using Artificial Neural Network on Fractional Differential Equations
http://dx.doi.org/10.5772/64151

99



Figure 1. Model diagram of ChSANN and LSANN.

The combined steps for both the methods are explained because of the structural similarity in
them, except the polynomial basis that affects the accuracy of the results.

Step 1: The summation of the product of network adaptive coefficients (NAC) and Chebyshev
or Legendre polynomials is calculated for the independent variable of fractional differential
equation for an arbitrary value of m as shown in Figure 1.

Step 2: The activation of μ or η will be performed by the first three terms of the series of tangent
hyperbolic function tanh (•), these terms have been mentioned in Figure 1.

Step 3: The trial solution will be calculated by using initial conditions as in the study of Lagaris
and Fotiadis [28].

Step 4: Required derivatives of the trial solution will be calculated.

Step 5: The optimization of mean square error (MSE) or learning of NAC will be executed by
the thermal minimization methodology known as simulated annealing. The equation used to
calculate MSE would be discussed in next section. Before optimization, the independent
variable will be discretized by an array of trial points.
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Step 6: If the value of MSE is in an acceptable range, then the values of trial points and NAC
will be replaced in trial solution to get the output. On the other hand, the procedure will be
repeated from step 1 with a different value of m.

3.2. Implementation on fractional Riccati differential equation

In this section, the ChSANN and LSANN are employed for the fractional Riccati differential
equation of the type:

( )( ) , ,     (0)  ,   0 1d y t f t y y A
dt

a

a a= = < £ (1)

For implementing both methodologies, Eq. (1) can be written in the following form:

[ ]( , ) ( , ( , )) 0,      0,1tr try t F t y t ta y yÑ - = Î (2)

ytr(t , ψ) can be defined as trial solution, where ψ is defined as NAC, generally known as
weights, and ∇  is defined as differential operator. Trial solution will be obtained by applying
Taylor series on the activation of μ by using the initial conditions, while μ being the sum of
the product of network adaptive coefficients and Chebyshev polynomials. For obtaining the
trial solution of LSANN, the above procedure will be pursued, but η will be calculated in spite
of μ, that is the sum of the product of NAC and Legendre polynomials. Here, tanh (•)is used
as activation function, but for fractional derivative based on Caputo sense, first three terms of
the Taylor series of tanh (•) are considered that are given for ChSANN as follows:

3 52
3 15

N m mm= - + (3)

while for ChSANN, μ can be defined as follows:
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m
i ii
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where here Ti−1 are Chebyshev polynomials with the following recursive formula:
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while hile T0(x)=1  and T1(x)= x.

For LSANN, the activation function and η can be defined as follows:
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whereas hereas L i−1 are the Legendre polynomials with the recursive formula:

1 1
1 1 (2 1)  ( )  ( ),   2

( 1) ( 1)m m mL m x L x m L x m
m m+ -= + - ³
+ + (8)

where here L 0(x)=1  and L 1(x)= x, and value of m is adjustable to reach the utmost accuracy.

For Eq. (1), the trial solution can be written as defined in the study of Lagaris and Fotiadis [28],

but N will be used according to the method.
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Trial solution can be written in expanded form for ChSANN at m =2 as follows:
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Fractional derivative in Caputo sense of Eq. (10) is as follows:

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3 5
1 5 41 1

1 1 2

6 5 2 2 4
2 2 1 2 1 2

3
3 3 2 2 4 2 3 2

1 2 1 2 1 2

2 2 2 6( , )
2 3 15 3 7

2 7 3 2    
15 7 3 3

4 4 5 4 
4 3 5 3 3

try t t t

t t

t t

a a a

a a

a a

y yy y yy
a a

y y y y y y
a a

yy y yy y y
a a

- -

- -

- -

æ öG Gæ öÑ = - + +ç ÷ ç ÷G - G -è øè ø
G Gæ ö æ ö+ + - +ç ÷ ç ÷G - G -è ø è ø

æ öG Gæ ö+ - + -ç ÷ç ÷G - G -è ø è ø

(11)

The mean square error (MSE) of the Eq. (1) will be calculated from the following:
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whereas here as n can be defined as number of trial points. The learning of NAC will be
performed from Eq. (10) by minimizing the MSE to the lowest possible acceptable minimum
value. The thermal minimization methodology and simulated annealing is applied here for
the learning of NAC. The process of simulated annealing can be described as a physical model
of annealing, where a metal object is first heated and then slowly cooled down to minimize
the system energy. Here, we have implemented the procedure by Mathematica 10, but the
interested readers can learn the details of simulated annealing from the study of Ledesma et
al. [29].

Example 1:

Consider the following Riccati differential equation with initial condition as:

( ) ( ) ( )2 1 0,     y 0 0 ,  0 1
d y t

y t
dt

a

a a+ - = = < £

The exact solution for  α =1 is given by the following:
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The above fractional Riccati differential equation is solved by implementing the ChSANN and
LSANN algorithms for various values of α and the results are compared with several methods
to exhibit the strength of proposed neural network algorithms. The ChSANN and LSANN
methods are employed on the above equation for  α =1 with 20 equidistant training points and
6 NAC and attained the mean square error up to 5.501631×10−9and 1.21928×10−9 for ChSANN
and LSANN, respectively. Figure 2 shows the combined results of ChSANN for different

Figure 2. ChSANN results at different values of α =1.
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values of α. Table 1 depicts the comparison of results obtained from both the methods with
exact solution and the absolute error values for both the methods. Absolute error (AE) values
for ChSANN and LSANN can be viewed in Table 1 but can be better visualized in Figure 3.
Implementation of ChSANN and LSANN for α =0.75 with 10 equidistant training points and
6 NAC on the above equation gave the mean square error up to 1.66032×10−7 for ChSANN and
4.8089×10−7 for LSANN. Table 2 shows the numerical comparison for α =0.75 with 10 equidis‐
tant training points of ChSANN and LSANN with the methods in [13, 14], while Tables 3 and
4 demonstrate the numerical comparison of the proposed methods with the methods in [7, 13,
14] for α =0.5and α =0.9 correspondingly. Numerical values of ChSANN for  α =1 at  t =1 are
presented in Table 5.

 x Exact ChSANN LSANN AE of ChSANN AE of LSANN

0.05 0.049884 0.0499572 0.0499441 1.20167 × 10−6 1.49267 × 10−5

0.10 0.099668 0.0996676 0.0996552 4.32269 × 10−6 1.27675 × 10−5

0.15 0.148885 0.148884 0.148876 1.13944 × 10−6 9.07723 × 10−6

0.20 0.197375 0.197372 0.197367 2.91448 × 10−6 7.92946 × 10−6

0.25 0.244919 0.244915 0.244909 4.13612 × 10−6 9.23796 × 10−6

0.30 0.291313 0.291309 0.291301 3.63699 × 10−6 1.12070 × 10−5

0.35 0.336376 0.336374 0.336363 1.41863 × 10−6 1.22430 × 10−5

0.40 0.379949 0.379949 0.379937 1.42762 × 10−6 1.17881 × 10−5

0.45 0.421899 0.421902 0.421889 3.33093 × 10−6 1.03088 × 10−5

0.50 0.462117 0.462117 0.462108 3.05535 × 10−6 8.76900 × 10−6

0.55 0.500520 0.500521 0.500512 3.81254 × 10−6 7.95700 × 10−6

0.60 0.537055 0.537046 0.537042 3.62984 × 10−6 8.00729 × 10−6

0.65 0.571670 0.571663 0.571662 6.95133 × 10−6 8.33268 × 10−6

0.70 0.604368 0.604360 0.604360 7.47479 × 10−6 8.04113 × 10−6

0.75 0.635149 0.635145 0.635142 4.22458 × 10−6 6.62579 × 10−6

0.80 0.664037 0.664038 0.664032 1.57001 × 10−6 4.48924 × 10−6

0.85 0.691069 0.691076 0.691067 6.23989 × 10−6 2.58549 × 10−6

0.90 0.716298 0.716303 0.716298 5.13615 × 10−6 2.66632 × 10−7

0.95 0.739783 0.739780 0.739793 3.29187 × 10−6 9.67625 × 10−6

1.00 0.761594 0.761584 0.761644 9.94216 × 10−6 4.97369 × 10−5

Table 1. Numerical comparisons of ChSANN and LSANN values with exact values for fractional Riccati differential
equation.
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Figure 3. Absolute error of ChSANN and LSANN at α =1 for test example 1.

 x ChSANN LSANN IABMM [14] EHPM [14] MHPM [7] Bernstein [13]

0 0 0 0 0 0 0

0.2 0.30018 0.29937 0.3117 0.3214 0.3138 0.30997

0.4 0.47512 0.47486 0.4885 0.5077 0.4929 0.48163

0.6 0.59334 0.59320 0.6045 0.6259 0.5974 0.59778

0.8 0.67572 0.67571 0.6880 0.7028 0.6604 0.67884

1.0 0.73748 0.73430 0.7478 0.7542 0.7183 0.73683

Table 2. Numerical comparison for α =0.75.

 x ChSANN LSANN MHPM [7]

0 0 0 0

0.1 0.299658 0.299416 0.273875

0.2 0.422837 0.422808 0.454125

0.3 0.494204 0.494145 0.573932

0.4 0.545856 0.545773 0.644422

0.5 0.585660 0.585619 0.674137

0.6 0.616648 0.616647 0.671987

0.7 0.641558 0.641543 0.648003

0.8 0.662486 0.662452 0.613306

0.9 0.681101 0.681237 0.579641

1.0 0.702813 0.703857 0.558557

Table 3. Numerical comparison for α =0.5.
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 x ChSANN LSANN IABMM [14] EHPM [14] MHPM [7] Bernstein [13]

0 0 0

0.2 0.234602 0.236053 0.2393 0.2647 0.2391 0.23878

0.4 0.419229 0.419898 0.4234 0.4591 0.4229 0.42258

0.6 0.563627 0.564474 0.5679 0.6031 0.5653 0.56617

0.8 0.672722 0.673241 0.6774 0.7068 0.6740 0.67462

1.0 0.753188 0.755002 0.7584 0.7806 0.7569 0.75458

Table 4. Numerical comparison for α =0.9.

No of NAC No of training points Mean square error  y(t) Absolute error

4 10 9.7679 × 10−5 0.760078 1.51570 × 10−3

5 20 2.3504 × 10−7 0.761644 5.02121 × 10−5

6 20 5.5016 × 10−9 0.761584 9.94216 × 10−6

Table 5. Numerical values of ChSANN at  t =1 and for  α =1.

Example 2:

Consider the nonlinear Riccati differential equation along with the following initial condition:

( ) ( ) ( ) ( )2 2 1 0,     0 0 ,   0 1
d y t

y t y t y
dt

a

a a+ - - = = < £

The exact solution when  α =1 is given by [7]:
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y t t
æ öæ ö-

= + +ç ÷ç ÷ç ÷ç ÷+è øè ø

ChSANN and LSANN algorithms are executed on the above test experiment with 6NAC, α =1

and 20 equidistant points that gave the mean square error up to 1.6127×10−7and 4.68641×10−6

for ChSANN and LSANN, respectively. Table 6 shows the absolute errors and the numerical
comparison with exact values for both the methods, while graphical comparison can be better
envisioned through Figure 4. Tables 7 and 8 display the numerical comparison of the proposed
methods with the results obtained in [7] for α =0.75and [13] for α =0.9, respectively, whereas
the mean square error, number of training points, and NAC for different values of α are
presented in Table 9. The effects on accuracy of results with variable NAC and training points
can be understood through Table 10.
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= + +ç ÷ç ÷ç ÷ç ÷+è øè ø

ChSANN and LSANN algorithms are executed on the above test experiment with 6NAC, α =1

and 20 equidistant points that gave the mean square error up to 1.6127×10−7and 4.68641×10−6

for ChSANN and LSANN, respectively. Table 6 shows the absolute errors and the numerical
comparison with exact values for both the methods, while graphical comparison can be better
envisioned through Figure 4. Tables 7 and 8 display the numerical comparison of the proposed
methods with the results obtained in [7] for α =0.75and [13] for α =0.9, respectively, whereas
the mean square error, number of training points, and NAC for different values of α are
presented in Table 9. The effects on accuracy of results with variable NAC and training points
can be understood through Table 10.
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 x ChSANN LSANN Exact AE of ChSANN

0.05 0.052620 0.053034 0.052539 8.0725 × 10−5

0.10 0.110385 0.110899 0.110295 8.9742 × 10−5

0.15 0.173488 0.173936 0.173419 6.8944 × 10−5

0.20 0.242027 0.242359 0.241977 5.0509 × 10−5

0.25 0.315977 0.316226 0.315926 5.0577 × 10-5

0.30 0.395175 0.395419 0.395105 6.9946 × 10−5

0.35 0.479313 0.479634 0.479214 9.9086 × 10−5

0.40 0.567937 0.568390 0.567812 1.2488 × 10−4

0.45 0.660455 0.661048 0.660318 1.3690 × 10−4

0.50 0.756146 0.756840 0.756014 1.3149 × 10−4

0.55 0.854184 0.854907 0.854071 1.1284 × 10−4

0.60 0.953657 0.954329 0.953566 9.0888 × 10−5

0.65 1.053601 1.054165 1.053524 7.6914 × 10−5

0.70 1.153027 1.153472 1.152949 7.8337 × 10−5

0.75 1.250962 1.251332 1.250867 9.4552 × 10−5

0.80 1.346479 1.346852 1.346364 1.1576 × 10−4

0.85 1.438740 1.439172 1.438614 1.2625 × 10−4

0.90 1.527024 1.527452 1.526911 1.1292 × 10−4

0.95 1.610762 1.610859 1.610683 7.8852 × 10−5

1.00 1.689559 1.688555 1.689498 6.1063 × 10−5

Table 6. Numerical comparison of ChSANN and LSANN values with exact values at  α =1 for fractional Riccati
differential equation test example 2.

Figure 4. Absolute error of ChSANN and LSANN at α =1 for test example 2.
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 x ChSANN LSANN MHPM [7]

0 0 0 0

0.1 0.22983 0.21885 0.216866

0.2 0.46136 0.45018 0.482292

0.3 0.69478 0.68545 0.654614

0.4 0.92279 0.91423 0.891404

0.5 1.13531 1.12664 1.132763

0.6 1.32357 1.31532 1.370240

0.7 1.48314 1.47660 1.594278

0.8 1.61485 1.61045 1.794879

0.9 1.72401 1.71972 1.962239

1.0 1.81844 1.80882 2.087384

Table 7. Numerical comparison for  α =0.75.

 x ChSANN LSANN Reference [13]

0.2 0.31018 0.30567 0.314869

0.4 0.69146 0.68661 0.697544

0.5 0.89758 0.89230 0.903673

0.6 1.10220 1.09708 1.107866

0.8 1.47288 1.46889 1.477707

1.0 1.76276 1.76355 1.765290

Table 8. Numerical comparison for  α =0.9.

 α ChSANN LSANN
NAC Training points MSE NAC Training points MSE

1 6 20 1.6127 × 10−7 6 20 4.68641 × 10−6

0.9 6 10 7.2486 × 10−6 6 10 7.36985 × 10−6

0.75 6 20 6.9229 × 10−5 6 10 1.91318 × 10−5

Table 9. Value of mean square error at different values of  α.

No. of NAC No of training points MSE  y(t) AE

4 10 1.1531 × 10−5 1.67997 9.52973 × 10−3

5 10 4.9226 × 10−7 1.69016 6.61306 × 10−4

6 20 1.6127 × 10−7 1.68956 6.10629 × 10−5

Table 10. Numerical values of ChSANN at  t =1 and for  α =1.
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4. Results and discussion

In this chapter, two new algorithms have been developed and verified for the Riccati differ‐
ential equation with fractional order, based on the functional neural network, Chebyshev and
Legendre polynomials and simulated annealing for fractional differential equations. Substan‐
tiation of the methods is carried out by examining two benchmark examples that were already
solved by some previously renowned methods. The numerical evaluation with previously
obtained results for fractional-order derivative exhibited the achievement of proposed
methods.

For test example 1, better results with less value of mean square error were obtained for each
method. Comparison of the mean square errors 5.501631×10−9 and 1.21928×10−9 for ChSANN
and LSANN, respectively, showed that the mean square error is less for LSANN when α =1.
However, it can be observed from Table 1 and Figure 2 that ChSANN gave the better results
with slightly more mean square error than LSANN. It can be noted from Table 5 that better
results can be attained with variable number of weights and training points, while the trend
witnessed from Table 5 indicated that for ChSANN, decreasing value of mean square error is
directly proportional to the absolute error for  α=1.

The test example 2 showed quite similar trends as of example 1. Tables 6 and 9 exhibited that
for  α =1, less mean square error for ChSANN than LSANN was noted due to which, more
accurate results were achieved by ChSANN at α =0.9 as compared to LSANN that can be
viewed in Figure 4. The results obtained for fractional values of derivatives are compared with
MHPM for α =0.75 and a collocation-based method of Bernstein polynomials for  α =0.9 as
presented in Tables 7 and 8. The comparison showed that the results achieved by ChSANN
and LSANN are quite similar to the results obtained by MHPM and collocation-based method
of Bernstein polynomials. However, according to the observations from the case of  α =1, it can
be assumed that the results obtained for α =0.75 will be accurate up to 2–3 decimal places
because the MSE was detected up to 6.9229×10-5 for ChSANN and 1.91318×10-5 for LSANN.
While the results achieved for α =0.9 will be accurate up to 3–4 decimal places as the MSE was
noticed up to 7.2486×10-6  for ChSANN and 7.36985×10-6 for LSANN.

The methods proposed in this study are capable of handling highly non-linear systems. Both
the proposed neural architectures are less computational and exhaustive than MLP. With ease
of computation, the suggested activation function has made fractional differential equations
possible to solve. Training of NAC by simulated annealing with Chebyshev and Legendre
neural architecture minimized the MSE up to a tolerable level that leads to more accurate
numerical approximation. Simulated annealing is a probabilistic procedure that is mostly free
of initial values and can easily escape from local optimum to global optimum unlike other
methods. As well as it can successfully optimize the functions with crests and plateaus. The
methods can be enhanced by introducing more advanced optimization techniques. The
motivation behind the work is the successful implementation of neural algorithms in the field
of calculus that gave the solution of fractional differential equations a new direction with ease
of implementation.
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5. Conclusion

In this chapter, ChSANN and LSANN have been developed for fractional differential equa‐
tions and successfully employed on two benchmark examples of Riccati differential equations.
The proposed methods gave the excellent numerical approximation of the Riccati differential
equation of fractional order. The most remarkable advantage of the proposed methods is the
accurate prediction of the result for the fractional values of derivative. These procedures are
easy to implement and can be used to find the exact solution in the fractional values of
derivative. ChSANN displayed more accurate results than LSANN for the similar applied
conditions. Both the proposed algorithms are non-iterative and can be implemented through
mathematical software and Mathematica 10 was used in this study to obtain all the results
displayed in Tables 1–10 and Figures 2–4.
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Abstract

In this chapter,  some real-life model problems that can be formulated as ordinary
differential equations (ODEs) are introduced and numerically studied. These models are
the variable-order fractional Hodgkin–Huxley model of neuronal excitation (VOFHHM)
and other models with the variable-order fractional (VOF) time delay, such as the 4-
year life cycle of a population of lemmings model, the enzyme kinetics with an inhibi‐
tor molecule model, and the Chen system model. A class of numerical methods is used to
study the above-mentioned models such as non-standard finite difference (NSFD) and
Adams-Bashforth-Moulton (ABM) methods. Numerical test examples are presented.

Keywords: Ordinary differential equations, Variable and fractional order real-life
mathematical models, Adams-Bashforth-Moulton method, Non-standard finite differ‐
ence method, Error analysis in numerical computations

1. Numerical simulations for VOFHHM of neuronal excitation

1.1. Introduction

Hodgkin and Huxley proposed the famous Hodgkin–Huxley equations which quantitatively
describe the generation of action potential of squid giant axon [1].

,m
m ext ionic

dVC I I
dt

= - (1)
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where Cm is the membrane capacitance, Vm is the intracellular potential, t is the time, Iionic is
the net ionic current flowing across the membrane, and Iext is the externally applied current [2].

The ionic current described in Hodgkin and Huxley’s giant squid axon can be divided into
three different cases: sodium current, potassium current, and leakage current, for example,
voltage-gated persistent K+ current with four activation gates (resulting in the term n4, where
n is the activation variable for K+), voltage-gated transient Na+ current with three activation
gates and one inactivation gate (the term m3 ħ) [3].

The total ionic current is therefore

( ) ( ) ( ),
Na K LI I I

ionic Na Na K K L LI G V E G V E G V E= - + - + -
6447448 64748 64748 (2)

where INa and IK are the currents through Na+ and K+ channels, respectively. The current IL is
the leak current and denotes all the residue currents through a cell membrane other than Na+

and K+ currents. G denotes conductance value for each individual ionic component, and E is
an equilibrium potential.

Hodgkin and Huxley defined the probability for a gate that can be found in its permissive state
to depend on the membrane potential, therefore incorporating the voltage-dependent con‐
ductance [4, 5]. A probability p ranging from 0 to 1 can be defined for each gate, but since a
large population of channels (and therefore gates) has to be considered, this leads to the
following:

1 ( ) ( )p

p
p t p tb

a- =

where 1−p(t) is the fraction in non-permissive state, p(t) is the fraction in permissive state, and
αp and βp are called rate functions.

Transitions between permissive and non-permissive states are assumed to obey the relation:

( )( ) ( )1 , , , ,p p
dp V p V p p m n
dt

a b= - - = h (3)

where m and n are the activation variables for the sodium and the potassium, respectively,
and represent the sodium de-inactivation.

In the literature, Alan Lloyd Hodgkin and Andrew Huxley authored a succession of five papers
describing the nonlinear ODEs that model how action potentials can be initiated and propa‐
gated through an axon [1–5]. HHM can be considered one of the most successful mathematical
models in quantity lively describing biological phenomena, and it is the method which can be
used in deriving the model of a squid that is directly applicable to many kinds of neurons and
other excitable cells [5–7].
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Action potentials occur in excitable cells, including neurons, muscle cells, and endocrine cells.
It is known that the brain is a complicated network of a tremendous number of neurons. A
neuron has a very special shape, which is much different from usual sphere-shaped or disk-
like cells [8]. A soma is the main body of neuron from which a long cable called an axon is
extended. Neurons transmit and exchange electric signals called action potentials or spikes.
Then, the electric signals or information is transmitted in the direction from a dendrite to an
axon, see Figure 1 [8].

Figure 1. Neurons cells.

Doi et al. [8] have briefly explained the framework of the Hodgkin–Huxley formalism to model
the action potential generation of neuron sand of other excitable cells. In 2012, Siciliano [9] has
studied different numerical methods to solve the HHM. Six different numerical methods are
first introduced and compared using a simple and arbitrary ODE. In 2014, Sweilam and Nagy
[6] have presented numerical method for solving fractional Hodgkin–Huxley model (FHHM),
described as follows:

( ) ( ) ( )
( )( ) ( )

3 4 ,

1 , , , ,
ext Na Na K K L L

p p

CD V I g m h V E g n h V E g V E

D p V p V p p m n

h

h a b

= - - - - - -

= - - = h

where 0 < η ≤ 1.

In this work, the above-described model in [6] will be extended to VOFHHM, which is more
general than fractional model.
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The main aim of studying the VOFHHM is to show the behavior of the action potential when
the derivative expressed as the VOF in order to explain the extent of this impact on the gating
variables.

1.2. VOFHHM

It is well known that HHM is based on the parallel thought of a simple circuit with batteries,
resistors, and capacitors [9]. Current can be carried through the circuit as ions passing through
the membrane (resistors) or by charging the capacitors of the membrane. In this circuit, current
flow across the membrane has two major components: one, IC (μA cm−2) associated with
charging the membrane capacitance C(μF cm−2) and, the other, Iionic associated with the
movement of specific types of ions across the membrane.

For the VOF model, we suggest that:

( ) ,t
CI CD Vh= (4)

where V is the membrane voltage ((mV), measured in volts), 0 < η (t) ≤ 1, and Dη(t) is defined
by Grünwald–Letinkov approximation for the VOF derivative as follows:

( ) ( )( )
[ ]

0 0
li

( )
( )m) ( 1 ,t t i

t
h

h i

t
D y t h y t ih

i
h h h

® =
- æ ö

= - -ç ÷
è ø

å (5)

where [t] denotes the integer part of t and h is the step size.

Substituting (4) into (1), we obtain:

( ) ( .)t
ext ionicCD V I I th = - (6)

Transitions between permissive and non-permissive states are assumed to obey the relation:

( ) ( )(1 ) ( ) , , , ,t
p pD p V p p m nV ph a b- =-= h (7)

The conductance for each current component can be written in the form [5]:

3 4, , ,Na Na Na K L LG g m h G g n G g= = = (8)

where ḡ Na and ḡ K  are the maximal conductance of sodium and potassium, respectively, and
gL is a constant. Substituting (2) and (8) into (6), we obtain:
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( ) ( ) ( )( ) 3 4 .t
ext Na Na K K L LCD V I g m h V E g n h V E g V Eh = - - - - - - (9)

Eqs. (9) with (7) are a generalization of HHM [5], and it can be described as follows:

( ) ( ) ( )( ) 3 4 ,t
ext Na Na K K L LCD V I g m h V E g n h V E g V Eh = - - - - - -

( )( ) ( )( ) 1 , , , .t
p pD p V p V p p m nh a b= - - = h

The variable p approaches the steady-state value [5]:

( )* , , , ,p

p p

p V p m n
a

a b
= =

+
h (10)

when the membrane potential V remains constant.

1.3. Discretizations of the model using NSFD method

The aim of this part is to introduce numerical discretization for Eqs. (7) and (9). The NSFD
method [10–17] is used where the step size h in the FDM is replaced by a function ψ(h). Also,
the Grünwald–Letinkov definition will be used with V(tk)=Vk, p(tk), p(tk) = pk, and then, we claim

( ) ( )1
10

1 , , , ,k t
i k i p k k p k ki

c p V p V p p m nh a b=

+ -=
= - - =å h (11)

( ) ( ) ( ) ( )
1

2 3
1 1 1

0

.
k

t
i k i m Na k k k Na K k k k K L k L

i

C c V I g m m V E g n n V E g V Eh
+

+ - - -
=

= - - - - - -å h h (12)

Doing some algebraic manipulation to Eqs. (11) and (12) yields the following equations:

( ) ( )k 1 η t
i k 1 i p k k p k ki 1

k 1 η( )
0

c p V 1 p V p
p , p m,n, ,

c t

a b
+

+ -=
+

- + - -
= =å h (13)

( ) ( ) ( ) ( )1 2 3
1 1 11

1 ( )
0

k t
ext i k i Na k k k Na K k k k K L k Li

k t

I c V m m V E n n V E g V E
V

C
g g

c

h

h

+

+ - - -=
+

- - - - - - -
= å h h

(14)

where c0
η(t ) =ψ(h )−η(t ), ψ(h )= e h −1.
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1.4. Numerical experiments

VOFHHM can be summarized neatly into four separate variable-order fractional ODEs with
some supporting functions. These equations are described in Eqs. (7) and (9), where the rate
functions are listed below [5]:

( ) ( ) ( )
1

10V 0.01 V 1 , 0.125 ,
10 80n n

V Vexp V expa b
-

é ù+æ ö æ ö= + =ç ÷ ç ÷ê úè ø è øë û

( ) ( ) ( )
1

25V 0.1 V 25 , 4 ,
10 18m m

V Vexp V expa b
-

é ù+æ ö æ ö= + =ç ÷ ç ÷ê úè ø è øë û

( ) ( )
1

30V 0.07 , ,
20 10
V Vexp V expa b

-
é ù+æ ö æ ö= =ç ÷ ç ÷ê úè ø è øë û

h h

and

ḡNa =120mS / cm2, ḡK =36mS / cm2, gL =0.3mS / cm2, ENa =120mV, EK = −12mV, EL =10.6mV,
with the initial conditions V(0) = V0, and p(0) = p0 = p* (V0). The behavior of the neuron can be
simulated for different initial values of V. Figure 2 shows an action potential simulated by the
solver ode45, i.e., fourth-order Runge–Kutta method, and NSFD method at η(t) = 1, of the
variable-order Hodgkin–Huxley equations for zero Iext, and V0 = −40 mV. Also, in this figure,
all parts of the action potential are presented including the rapid upraise, downfall, and
unexcitable phase, according to the number sequence as follows:

i. Number 1 means that the action potential begins to fire, the sodium channels are now
open, and an influx of sodium occurs.

ii. Number 2 means that the membrane becomes more positive at this point due to
sodium entering the cell. Now, the potassium channels open and leave the cell.

iii. Number 3 means that the sodium channels have now become refractory and no more
sodium is allowed to enter.

iv. Number 4 means that the sodium channel is still in its refractory stage and only the
potassium ions are passing through the membrane. As the potassium ions continue
to leave the cell, the membrane potential moves toward the resting value.

v. Number 5 means that the potassium channels close and the sodium channels begin
to leave the refractory phase and reset to its resting phase.
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Figure 2. An action potential created by using ode45 and NSFD method at η (t) = 1.

Finally, the potassium returns to its resting value where it can wait another action potential
(for more details see [8, 9]). Moreover, in Figure 3, the gating variables are correctly constrained
between 0 and 1 as expected using ode45 and NSFD method, respectively.

Figure 3. Plot of the different gating variables using ode45 (left) and NSFD method (right) at η (t) = 1.

Figure 4. The approximated action potential (left) and the gating variables (right) using the NSFD method at (t) = 0.99 –
(0.01/100)t.

Figures 4–8 show the approximated action potential and the gating variables using the NSFD
method obtained for different values of (t), where η(t) = 0.99 − (0.01/100)t, η(t) = 0.87 −
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(0.01/100)t, η(t) =0.79 − (0.001)t, and η(t) = 0.67 − (0.001)t, respectively. These figures show an
example of a numerically solved solution of the Hodgkin–Huxley equations. Figures 4–8 (left)
are a waveform of the membrane potential. A pulsatile input applied at a time t = 5 ms ((ms)
time measured in second) induces an action potential. Figures 4–7 (right) show the dynamics
of all three gating variables m, n, and h. Sodium activation, m, changes much more rapidly
than either h or n. Figure 9 (left) describes the relationship between the variables n and h,
where n is the activation variable of potassium channel expressed in a dark color, while h is
inactivation variable of sodium channel expressed in a light color. The action potential, n, be
in stillness stage and begins to enter the cell until it reaches the highest activity, unlike the
action potential, h, at the top of its activity. Step by step, the action potential, h, decreases its
activities and continues to leave the cell and moves toward the resting value. At a certain
moment in time, the intersection between them are occurred, where n increased while h
decreased. Figure 9 (right) describes the relationship between the variables m and h, where m
is the activation variable of potassium channel expressed in a dark color, while h is inactivation
variable of sodium channel expressed in a light color. The dynamics variables m and h have
the same dynamics similar to n and h, where m increased while h decreased. Figure 10
describes the dynamics of gating variables n and m in 3D. The variables n and m are the
activation variables of K+ and Na+ ionic channels, respectively. They are expressed in a dark
color and a light color, respectively. They are in stillness stage and begin to enter the cell until
they reach the highest activity, where they are in the case of increasing.

Figure 5. The approximated action potential (left) and the gating variables (right) using the NSFD method at (t) = 0.87 –
(0.01/100)t.

Figure 6. The approximated action potential (left), and the gating variables (right) using the NSFD method at (t) = 0.79
– (0.001)t.
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Figure 7. The approximated action potential (left) and the gating variables (right) using the NSFD method at (t) = 0.67 –
(0.001)t.

Figure 8. An action potential created from the NSFD method using different values of η (t).

Figure 9. The waveforms of the gating variables n and h (left), and m and h (right) in 3D.
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Figure 10. The waveforms of the gating variables n and m in 3D.

2. Real-life models governed by nonlinear delay differential equations
(DDEs)

2.1. Introduction

DDEs are differential equations in which the derivatives of some unknown functions at present
time are dependent on the values of the functions at previous times. In real-world systems,
delay is very often encountered in many practical systems, such as control systems [18], lasers,
traffic models [19], metal cutting, epidemiology, neuroscience, population dynamics [20], and
chemical kinetics [21]. Recent theoretical and computational advancements in DDEs reveal
that DDEs are capable of generating rich and plausible dynamics with realistic parameter
values. Naturally, occurrence of complex dynamics is often generated by well-formulated DDE
models. This is simply due to the fact that a DDE operates on an infinite-dimensional space
consisting of continuous functions that accommodate high-dimensional dynamics.

For example, the Lotka–Volterra predator prey model [22] with crowding effect does not
produce sustainable oscillatory solutions that describe population cycles. However, the
Nicholson’s blowflies model [23] can generate rich and complex dynamics. Delayed fractional
differential equations (DFDEs) are correspondingly used to describe dynamical systems [23].
In recent years, DFDEs begin to arouse the attention of many researchers [7, 19, 20, 25–27].
Simulating these equations is an important technique in the research, and accordingly, finding
effective numerical methods for the DFDEs is a necessary process. Several methods based on
Caputo or Riemann–Liouville definitions [28] have been proposed and analyzed. For instance,
based on the predictor–corrector scheme, Diethelm et al. introduced the ABM algorithm [29–
31] and mean while some error analysis was presented to improve the numerical accuracy. In
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2011, Bhalekar and Daftardar-Gejji [25] have been extended the ABM algorithm to solve DDEs
of fractional order and presented numerical illustrations to demonstrate utility of the method.
In 2012, Ma et al. [32] have presented the numerical solution of a VOF financial system which
is calculated by using the ABM method.

This section presents class of numerical method for solving the variable-order fractional
nonlinear delay differential equations (VOFDDEs). The main aim of this part is to study
VOFDDEs numerically.

2.2. ABM method for the VOFDDEs

In this section, the ABM algorithm has been extended to study the VOFDDEs, where the
derivative is defined in the Caputo VOF sense. Special attention is given to prove the error
estimate of the proposed method. Numerical test examples are presented to demonstrate
utility of the method. Chaotic behaviors are observed in variable-order one-dimensional
delayed systems.

In the following, we apply the ABM predictor–corrector method to implement the numerical
solution of VOFDDEs.

Let us consider the following VOF system:

( ) ( ) ( ) ( )( ) [ ], , , , ,0 ( ) 1.t
tD y t f t y t y t t o T ta t a= - Î < £ (15)

( ) ( ) [ ], ,0 ,y t g t t t= Î - (16)

where f is in general a nonlinear function.

Also, consider a uniform grid {tn = nh: n = −k, −k + 1,…, −1,0,1,…, N} where k and N are integers

such that h = τ/k. Let

( ) ( ) , , 1, , 1,0,h j jy t g t j k k= = - - + ¼ - (17)

and note that

( ) ( ) ( ) , 0,1,2, , .h j h h j ky t y jh kh y t j Nt -- = - = = ¼ (18)

Applying the integral Jtn+1

α(tn+1), which is defined by the Riemann–Liouville variable-order

integral as
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-= - (19)

on both sides of (15) and using (16), we claim to:
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Further, the integral in Eq. (20) is evaluated using product trapezoidal quadrature formula [29–
31, 33]. Then, we have the following corrector formula:
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where
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(23)

0 ≤ δ < 1 and the unknown term yh(tn+1) appears on both sides of (21).
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0 ≤ δ < 1 and the unknown term yh(tn+1) appears on both sides of (21).
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Due to nonlinearity off, Eq. (21) cannot be solved explicitly for yh(tn+1), so we replace the term
yh(tn+1) on the right-hand side by an approximation yh

p(tn+1),  which is called predictor. The
product rectangle rule is used in (20) to evaluate the predictor term
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where b j ,n+1 = h
α(tn+1)

α(tn+1)
((n − j + 1)α(tn+1) + (n − j)α(tn+1).

2.3. Error analysis of the algorithm

In this subsection, we aim to introduce the following lemma, which will be used in the proof
of main theorem.

Lemma 2.1. [31] (a) Let z ∈ C1[0, T], then
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(b) Let z ∈ C2[0, T], then
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Proof. To prove statement (a), by construction of the product rectangle formula, we find that
the quadrature error has the representation [31]
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Apply the mean value theorem of differential calculus to the second factor of the integrand on
the right-hand side of the above equation
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Here, the term in parentheses is simply the remainder of the standard rectangle quadrature
formula, applied to the function t α(tn+1) and taken over the interval [0, n + 1]. Since the integrand
is monotonic, we may apply some standard results from quadrature theory to find that this
term is bounded by the total variation of the integrand, thus

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1 11

1 , 1
0 10

.1
n tn

n n

t n
t t h

n j n j
j n

t t z t dt b z t z n
t

aa a

a

+ + +
+ +-

+ + ¥
= +

¢- - £ +åò
1 W

Similarly, we can prove (b).

Now, let us consider that f(⋅) in (15) satisfies the following Lipschitz conditions with respect
to its variables

( ) ( )1 2 1 1 2, , , , ,f t y u f t y u L y y- £ -

( ) ( )1 2 2 1 2, , , , ,f t y u f t y u L u u- £ - (27)
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where L1 and L2 are positive constants.

Theorem 1. Suppose the solution y(t) ∈ C2 [0, T], of the Eqs. (15) and (16), satisfies the following
two conditions:
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with some γ1,γ2 ≥ 0, and δ1, δ2 < 0, then for some suitable T > 0, we have

0
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where q = min (δ1+ α (t), δ2), N = [T/h], and C is a positive constant.

Proof. We will use the mathematical induction to prove the result. Suppose that the conclusion
is true for j = 0, 1,…, n, then we have to prove that the inequality also holds for j = n + 1. To do
this, we first consider the error of the predictor yn+1

p . From (27), we have
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2.4. Numerical examples

We present the purpose of this subsection to show that the proposed scheme designed provides
good approximations for VOFDDEs. Throughout this subsection, we discuss four examples
and their numerical solutions.

Example 2.1. Consider a VOFDDE:

( ) ( ) ( )9.65

2 ( 2) ,
1 ( 2)

t
t

y tD y t y t
y t

a -
= -

+ -

( ) 0.5, 0y t t= £ (29)
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Figure 11. The numerical behavior of system (29) and chaotic attractors at α = 1.

Figure 12. The numerical behavior of system (29) and chaotic attractors at α(t) = 0.97.

Figure 13. The numerical behavior of system (32) and chaotic attractors at α(t) = 0.99 – (0.01/100)t.

In Figures 11 and 1(a, b) show the solutions y(t) and y(t − 2) of the system (29), for α = 1 and h
= 0.1, whereas Figure 1(c) shows phase portrait of the system, i.e., plot of y(t) versus y(t − 2)
for the same value of α. In this figure, it observed that the system (29) shows aperiodic chaotic
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behavior. Moreover, Figure 12 shows the plot of the numerical solutions y(t) and the plot of
y(t) versus y(t − 2), respectively, at α(t) = 0.97. In the following, we choose different cases for
α(t). Figures 13 and 14 show the solutions y(t) and y(t − 2) of the given system for a(t) = 0.99
− (0.01/100)t and α(t) = 0.95 − (0.01/100)t, respectively. The chaotic portrait for these values of
α(t) is shown. In Figure 15, we have decreased the value of α(t), where α(t) = 0.85 − (0.01/100)t,
and observed that the system becomes periodic.

Figure 14. The numerical behavior of system (29) and chaotic attractors at α(t) = 0.95 – (0.01/100)t.

Figure 15. The numerical behavior of system (29) and chaotic attractors at α(t) = 0.85 – (0.01/100)t.

2.5. The four-year life cycle of a population of lemmings model

Lemmings are small rodents, usually found in or near the Arctic, in tundra biomes. It used to
be that every three to 4 years, there were massive numbers of lemmings in the mountains and
then the next year it was gone. Therefore, it has been an interesting thing to try to find out
why. Are there factors that affect the lemming population such as climate, temperature,
precipitation, and the like, that is, what we refer to as the lemming cycle. The modern scientific
study of lemmings started with work carried out by the Norwegian Professor of Zoology
Robert Collett, who at the end of the nineteenth century gathered a great deal of information
about lemmings. To try to understand why lemmings fluctuate both regularly and extensively
is indeed an important problem in ecology [34]. In [27], Tavernini has solved a model of the 4-
year life cycle of a population of lemmings in an integer order. In [25], Bhalekar and Daftardar-
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Gejji have studied the model in a fractional order. In the following example [27], we study the
extension of the lemming model:

Example 2.2. Consider the variable-order version of the four-year life cycle of a population of
lemmings

( ) ( ) ( ) ( ) ( ) ( )0.74
3.5 1 , 0 19.00001, 19, 0.

19
t

t

y t
D y t y t y y t ta æ - ö

= - - = <ç ÷
è ø

(30)

Figure 16. The numerical behavior of system (33) and plots of the (t), y(t – 0.74) relation for α = 1.

Figure 17. The numerical behavior of system (33), and plots of the y(t), y(t – 0.74) relation for α(t) = 0.97.

Figure 18. The numerical behavior of system (33) and the stretching phenomena for α(t) = 0.99 – (0.01/100)t.
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Figure 16 shows the solutions y(t) and y(t − 0.74) of system (33) for α = 1 and h = 0.1 and shows
phase portrait of y(t) versus y(t − 0.74) for the same value of α. Figure 17 shows the plot of the
numerical solutions y(t) and the plot of y(t) versus y(t − 0.74), respectively, at (t) = 0.97. The
numerical results for VOFDDEs at different values of α(t) are given in Figures 18–22. These
figures show the stretching phenomena between the numbers of lemmings in y(t) versus y(t
− 2), for the values α(t) = 0.99 − (0.01/100)t, α(t) = 0.98 − (0.02/100)t; α(t) = 0.95 − (0.01/100)t, α(t)
= 0.87 − (0.02/100)t, and α(t) = 0.85 − (0.01/100)t, respectively. It is observed that the phase portrait
gets stretched as the value of α(t) decreases, and this stretching is towards positive side of the
axis.

Figure 19. The stretching.

Figure 20. The stretching phenomena for α(t) = 0.98 − (0.02/100)t. Phenomena for α(t) = 0.95 − (0.01/100)t.
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Figure 21. The stretching phenomena for α(t) = 0.87 − (0.02/100)t.

Figure 22. The stretching phenomena for α(t) = 0.85 − (0.01/100)t.

2.6. The enzyme kinetics with an inhibitor molecule model

An enzyme inhibitor is a molecule that binds to an enzyme and decreases its activity or
completely inhibits the enzyme catalytic activity. It is well known that all these inhibitors
follow the same rule to interplay in enzyme reaction. Furthermore, there are many factors that
affect enzyme’s activity, such as temperature and pH. Many drug molecules are enzyme
inhibitors, so their discovery and improvement are an active area of research in biochemistry
and pharmacology to protect enzyme from any change. Therefore, studying the enzyme
kinetics and structure–function relationship is vital to understand the kinetics of enzyme
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inhibition that in turn is fundamental to the modern design of pharmaceuticals in industries
[35]. The frequency conversion mechanism in enzymatic feedback systems has been investi‐
gated with computer simulations in 1984 by Okamoto and Hayashi [36]. In [25], Bhalekar and
Daftardar-Gejji have been study the enzyme kinetics with an inhibitor molecule model in a
fractional order. In the following, we will study the model in [25] in general form where the
derivative is given in a VOF.

Example 2.3. Consider the variable-order version of four-dimensional enzyme kinetics with
an inhibitor molecule

( ) ( ) 1
1 3

4

( )10.5 ,
1 0.0005 ( 4)

t
t

y tD y t
y t

a = -
+ -

( ) ( ) ( )1
2 23

4

( ) ,
1 0.0005 ( 4)

t
t

y tD y t y t
y t

a = -
+ -

( ) ( ) ( ) ( )3 2 3 ,t
tD y t y t y ta = -

( ) ( ) ( ) ( )4 3 40.5 ,t
tD y t y t y ta = -

( ) [60,10,10,20] , 0.Ty t t= £ (31)

Figure 23. The numerical behavior of system (34) at α = 1 (left) and α = 95 (right).

Figure 23 shows the solutions y(t), (1≤ i ≤ 4), with step size h= 1, for = 1, and α = 95, respectively.
Whereas Figures 24–26 show the numerical results in case of variable order at (t) = 0.99 −
(0.01/100)t, α(t) = 0.95 − (0.01/100)t, α(t) = 0.91 − (0.01/100)t, and α(t) = 0.83 − (0.01/100)t,
respectively. For 0.90 < α(t) ≤ 1, the height of oscillations of the solutions increases as t increases
as shown in Figures 24 and 25, while in Figure 26, the system settles down for sufficiently large
t, for α(t) < 90.
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Figure 24. The numerical behavior of system (34) at α(t) = 0.99 – (0.01/100)t (left) and α(t) = 0.95 – (0.01/100)t (right).

Figure 25. The numerical behavior of system (34) at α(t) = 0.91 – (0.01/100)t.

Figure 26. The numerical behavior of system (34) at α(t) = 0.83 – (0.01/100)t.

Numerical Simulation - From Brain Imaging to Turbulent Flows136



Figure 24. The numerical behavior of system (34) at α(t) = 0.99 – (0.01/100)t (left) and α(t) = 0.95 – (0.01/100)t (right).

Figure 25. The numerical behavior of system (34) at α(t) = 0.91 – (0.01/100)t.

Figure 26. The numerical behavior of system (34) at α(t) = 0.83 – (0.01/100)t.
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2.7. The Chen system model

The atmosphere is a layer of gases surrounding the planet Earth that has, at each altitude above
each point of the Earth’s surface, a density, a pressure, a temperature, etc., and all these vary
over time. It is of course unthinkable to know all this infinite number of data and to understand
something about it. Approximations must be made. Edward Norton Lorenz (1917–2008) is a
pioneer of chaos theory. He introduced the strange attractor notion and coined the term
butterfly effect. In 1963 [37], he developed a simplified mathematical model for atmospheric
convection when he studied the atmospheric convection. His model of the atmosphere was
reduced to only three numbers x, y, and z and the evolution of the atmosphere to a tiny
equation, where each point x, y, and z in space symbolizes a state of the atmosphere and the
evolution follows a vector field. Later, several dynamical systems exhibiting chaos have been
presented in various branches of science [24]. For example, in 1999, Chen and Ueta found
another simple three-dimensional autonomous system, which is not topologically equivalent
to Lorenz’s system and which has a chaotic attractor [38]. In [39], Chen proved that “The Chen
system is a special case of the Lorenz system.” In 2004, Li and Peng [40] have presented Chen
system with a fractional order. In 2012, Bhalekar et al. [41] proposed the fractional-order Chen
system with time delay. In the following example, we will extend Chen system to a VOF, which
can be more general.

Example 2.4. Consider the generalization of the delay fractional-order version of the Chen
system [3] which involves the variable order:

( ) ( ) ( ) ( )( ) ,t
tD x t a y t x ta t= - -

( ) ( ) ( ) ( ) ( ) ( ) ( ),t
tD y t c a x t x t z t cy ta t= - - - +

( ) ( ) ( ) ( ) ( ) ,t
tD z t x t y t bz ta t= - -

( ) ( ) ( ) [ ]0.2, 0, 0.5 ,0 ,x t y t z t fort t= = = Î - (32)

on the interval [0,30] and with step size h = 0.001.

At = 1, Figure 27 shows the numerical solution for τ = 0.005 and shows chaotic yz phase portrait
for this case. Figure 28 shows the numerical solution and chaotic yz phase portrait at α = 0.97
and τ = 0.005. Moreover, for the variable order, we choose different cases for α(t):

At α(t) = 0.97 – (0.01/100)t, Figure 29 shows the numerical solution y(t) and chaotic yz phase
portrait of this example for τ = 0.005. When we increase the value of τ to 0.015, the results of
the numerical solution and chaotic yz phase portrait become stable as shown in Figure 30. At
α(t) = 0.94 – (0.01/100)t, Figure 31 shows the numerical solution for τ = 0009, and a limit cycle
phase portrait was observed. When we increase the value of τ to 0.011, the chaotic yz phase
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portrait becomes stable as shown in Figure 32. Figure 33 shows the numerical solution for τ =
0.005 and chaotic yz phase portrait at α(t) = 89 − (0.01/100)t. It is observed that even in one-
dimensional delayed systems of variable order, chaotic behavior can be shown, and subjected
to some critical order, the system changes its nature and becomes periodic. In some cases, it is
observed that the phase portrait gets stretched as the order of the derivative is reduced.
According to the numerical test examples, it can be concluded that the proposed numerical
technique is a powerful technique to calculate approximate solution of VOFDDEs.

Figure 27. The numerical behavior and chaotic attractors for = 1, and τ = 0.005.

Figure 28. The numerical behavior and chaotic attractors for α = 0.97 and τ = 0.005.

Figure 29. The numerical behavior and chaotic attractors for α(t) = 0.97 – (0.01/100)t and τ = 0.005.
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Figure 30. The numerical behavior and chaotic attractors for α(t) = 0.97 – (0.01/100)t and τ = 0.015.

Figure 31. The numerical behavior and chaotic attractors for α(t) = 0.94 – (0.01/100)t and τ = 0.009.

Figure 32. The numerical behavior and chaotic attractors for α(t) = 0.94 – (0.01/100)t and τ = 0.011.

Figure 33. The numerical behavior and chaotic attractors for α(t) = 0.89 – (0.01/100)t and τ = 0.005.
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Abstract

In this work, we explore the application of a novel multi-domain spectral collocation
method for solving general non-linear singular initial value differential equations of the
Lane-Emden type. The proposed solution approach is a simple iterative approach that
does not employ linearisation of the differential equations. Spectral collocation is used
to discretise  the  iterative scheme to  form matrix  equations that  are  solved over  a
sequence of non-overlapping sub-intervals of the domain. Continuity conditions are
used to advance the solution across the non-overlapping sub-intervals. Different Lane-
Emden equations that have been reported in the literature have been used for numerical
experimentation. The results indicate that the method is very effective in solving Lane-
Emden type equations. Computational error analysis is presented to demonstrate the
fast convergence and high accuracy of the method of solution.

Keywords: Multi-domain, Lame-Emden, Spectral Relaxation method, Collocation, As‐
trophysics

1. Introduction

In the most general form, Lane-Emden type equations are given as

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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where the prime denotes differentiation with respect to x, f(x, y) is a non-linear function, g(x)
is a prescribed function and γ, α0, β0 are known constants. In recent years, problems described
by this class of differential equations have been widely investigated by many researchers
because of their applications in astronomy, mathematical biology, mathematical physics, non-
Newtonian fluid mechanics, and other areas of science and engineering. From a solution
method viewpoint, it has been observed that, owing to the singularity at x = 0, Lane-Emden
type equations are not trivial to solve. For this reason, the equations are normally used as
benchmark equations for testing the effectiveness and robustness of new analytical and
numerical methods of solution.

Analytical approaches that have recently been used in solving the Lane-Emden equations are
mostly based on truncated series expansions. Examples include the Adomian decomposition
method [1–3], differential transformation method [4, 5], Laplace transform [6, 7], homotopy
analysis method [8–10], power series expansions [11–14] and variational iteration method [15–
17]. Being power series based, the above methods have a small region of convergence and are
not suitable for generating solutions in very large values of x. For this reason, most analytical
approaches have only reported solutions of Lane-Emden type equations on small interval 0,1
on x axis. Despite this limitation, analytical approaches have been found to be desirable because
they easily overcome the difficulty caused by the singularity at x = 0.

To overcome the limitations of analytical solution methods, several numerical approaches
have been proposed for the solution of Lane-Emden type equations. Numerical methods based
on spectral collocation have been found to be particularly effective. Collocation methods that
have been reported recently for the solution of Lane-Emden type equations include the Bessel
collocation method [18, 19], Jacobi-Gauss collocation method [20], Legendre Tau method [21],
Sinc-collocation method [22], Chebyshev spectral methods [23], quasi-linearisation based
Chebyshev pseudo-spectral method [24, 25] and a collocation method based on radial basis
functions [26]. The discretisation scheme of collocation based methods is only implemented
on interior nodes of the discretised domain. This property makes it possible for these colloca‐
tion methods to overcome the difficulty of dealing with the singular point.

In this work, we present a multi-domain spectral collocation method for solving Lane-Emden
equations. The method is based on the innovative idea of reducing the governing non-linear
differential equations to a system of first-order equations which are solved iteratively using a
Gauss-Seidel–like relaxation approach. The domain of the problem is divided into smaller non-
overlapping sub-intervals on which the Chebyshev spectral collocation method is used to solve
the iteration scheme. The continuity condition is used to advance the solution across neigh‐
bouring sub-intervals. The advantage of the approach is that it does not use Taylor-series based
linearisation methods to simplify the non-linear differential equations. The method is free of
errors associated with series truncation. The algorithm is also very easy to develop and yields
very accurate results using only a few discretisation nodes. The accuracy of the method is
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very accurate results using only a few discretisation nodes. The accuracy of the method is
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validated against known results from the literature. The aim of the study is to explore the
applicability of the multi-domain spectral collocation method to Lane-Emden type equations
over semi-infinite domains. The results confirm that the method is suitable for solving all types
of Lane-Emden equations.

2. A multi-domain pseudospectral relaxation method

In this section, we describe the development of the multi-domain collocation algorithm for the
solution of Lane-Emden type equations. This algorithm addresses some limitations of standard
collocation methods. Without loss of generality, we express the second-order generalised
Lane-Emden Eq. (1) as a system of first-order ordinary differential equations (ODEs). If we let
h – y0, the initial value problem (1) transforms to

0( ) = ( ), (0) = ,y x h x y a¢ (2)

0( ) ( , ) = ( ), (0) = ,h x h f x y g x h
x
g b¢ + + (3)

where y′(x) = h(x). The following iterative scheme for solving (2) and (3) is introduced:

1 1 0( ) = ( ), (0) = ,i i iy x h x y a+ +¢ (4)

1 1 1 1 0( ) ( ) ( , ) = ( ), (0) = .i i i ih x h x f x y g x h
x
g b+ + + +¢ + + (5)

Assuming that an initial approximation h 0(x) is given, Eq. (4) can be solved for yi+1(x) and the
solution can be used immediately in Eq. (5) which is, in turn, solved for h i+1. Thus, at each
iteration level i + 1, Eqs. (4) and (5) form a pair of linear decoupled first-order differential
equations. The solution procedure is discussed below.

Below, we describe the development of the multi-domain approach for solving the system of
first-order Eqs. (4) and (5). The multi-domain technique approach assumes that the main
interval can be decomposed into p non-overlapping sub-intervals. Let x∈Λ, where Λ= a, b  is
the interval where the solution of Eq. (1) exists. The sub-intervals are defined as

1 0 1 2= ( , ), = 1,2, , , with, = < < < < = .k k k px x k p a x x x x b-L L L (6)

The solution procedure assumes that the solution at each sub-interval Λk , denoted by y (k )(x),
can be approximated by a Lagrange interpolation polynomial of the form

A Multi-Domain Spectral Collocation Approach for Solving Lane-Emden Type Equations
http://dx.doi.org/10.5772/63016

145



∑( ) ( )

=0
( ) ( ) ( ),

N
k k

s s
s

y x y x L x (7)

which interpolates y (k )(x) at selected points, chosen to be the Chebyshev-Gauss-Lobatto,
defined by
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(8)

The choice of the interpolation function (7) with Lagrangre polynomial basis and grid points
(8) enables the use of simple formulas for converting the continuous derivatives to discrete
matrix-vector form at the collocation points τs. The function Ls(x) is the characteristic Lagrange
cardinal polynomial defined as

=0
( ) = ,

M
k

s
s s k
s k

x xL x
x x

¹

-
-Õ (9)

that obey the Kronecker delta equation:

0   if   
( ) = = .

1   if   = .s k sk

s k
L x

s k
d

¹ì
í
î

(10)

The solution method seeks to solve each of the system of first-order ODEs independently in
each kth sub-interval Λk  using the solutions obtained in the preceding interval Λk−1 as initial

conditions. In the first interval the solution is computed on x0, x1  and is labelled y (1)(x). The

value of the solution at the last node y (1)(x1) is used as an initial condition when seeking a
solution in the second sub-interval Λ2. This procedure is repeated in each Λk  interval with the
solutions marched across each interval using the following continuity condition:

( ) ( 1) ( ) ( 1)
1 1 1 1( ) = ( ), ( ) = ( ).k k k k

k k k ky x y x h x h x- -
- - - - (11)

Therefore, in each sub-interval Λk , the following system of ODEs is solved:

( )
( ) ( )1

1 1 1
( ) ( ), ( )

k
k ki

i i k k
dy x h x y x

dx
a+

+ - -= = (12)
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( )
( ) ( ) ( )1

1 1 1 1 1
( ) ( ) ( ) ( , ), ( ) ,

k
k k ki

i i i k k
dh x h x g x f x y h x

dx x
g b+

+ + + - -+ = - = (13)

where

( 1) ( 1)
1 1 1 1= ( ), = ( ), = 1,2, , .k k

k k k ky x h x k pa b- -
- - - - K

Eqs. (12) and (13) cannot be solved exactly because of the non-linear function f(x, y). Accord‐
ingly, we employ the spectral collocation at the grid points xj for j =0,1,2,⋯ , N  for each sub-

interval Λk . Before the spectral method is applied, each sub-interval xk −1, xk  is transformed

to −1,1  using the linear transformation:

1 1= , [ 1,1].
2 2

k k k kx x x xx t t- -- +
+ Î - (14)

The derivatives at the collocation points are evaluated as

( )
( ) ( ) ( )

0 0 0

( ) ( )2( ) ( ) ( ),
k N N N

s j s jk k k
s s js s

s s skx x j

dL x dLdy y x y D y
dx dx x d

t
t t

t= = ==

= = =
Då å å (15)

where Δxk = xk − xk −1, D js = 2
Δxk

D js with D js =
d L s(τj)

dτ  being the jth and sth entry of the standard

first derivative Chebyshev differentiation matrix of size (N + 1)× (N + 1) as defined in [27].
Evaluating Eqs. (12) and (13) at the grid points τj for j =0,1,2,⋯ , N  gives

( ) ( ) ( )
1 1 1

=0
( ) = ( ), ( ) = ,

N
k k k

js i s i j i N k
s

y h yt t t a+ + -åD (16)

( ) ( ) ( ) ( )
1 1 1 1 1

=0
( ) ( ) = ( ) ( , ( )), ( ) = .

N
k k k k

js i s i j j s i j i N k
s j

h h g x f x y h
x
gt t t t b+ + + + -+ -åD (17)

Including the relevant initial conditions in Eqs. (16) and (17) yields

1
( ) ( )

1
=0

( ) = ( ),
N

k k
js i s i j

s
y Vt t

-

+åD (18)
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where

( ) ( ) ( )
1( ) = ( ) ( ),k k k

i j i j jN i NV h yt t t+- D (20)

( ) ( ) ( )
1 1( ) = ( ) ( , ( )) ( ),k k k

i j j j i j jN i NW g x f x y ht t t+ +- - D (21)

Eqs. (18) and (19) can be expressed in matrix form as follows:

( ) ( )
1 = ,k k

i i+DY V (22)

( ) ( ) ( )
1 = ,k k

i iz ++D H W (23)

where the vectors Y(k ), H(k ), V(k ) and W(k ) are respectively given by

( ) ( ) ( ) ( ) ( )
0 1 2 1= [ ( ), ( ), ( ), , ( )] ,k k k k k T

Ny y y yt t t t -Y L (24)

( ) ( ) ( ) ( ) ( )
0 1 2 1= [ ( ), ( ), ( ), , ( )] ,k k k k k T

Nh h h ht t t t -H L (25)

( ) ( ) ( ) ( ) ( )
0 1 2 1= [ ( ), ( ), ( ), , ( )] ,k k k k k T

Nv v v vt t t t -V L (26)

( ) ( ) ( ) ( ) ( )
0 1 2 1= [ ( ), ( ), ( ), , ( )] ,k k k k k T

Nw w w wt t t t -W L (27)

and T denotes the transpose of the vector. The N × N diagonal matrix ζ is given by

0

1

1

= .

N

x

x

x

g

g
z

g

-

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
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(28)
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The approximate values of y (k )(x) and d y (k )(x)
dx  are obtained by iteratively solving Eqs. (22) and

(23), respectively, for i =0,1,2,…, starting from suitable initial approximation.

3. Numerical experiments

In this section, we discuss the numerical experiments to be used to demonstrate the accuracy
and general performance of the multi-domain pseudospectral relaxation method. In these
numerical experiments, we have selected equations with known exact solutions, and to
determine the accuracy of the method, we find the relative error. The relative error is defined
as

| ( ) ( ) |
=

| ( ) |
e j a j

j
e j

y x y x
E

y x
-

(29)

where Ej is the relative error at a grid point xj, ye(xj) and ya(xj) are the exact and approximate
solutions at a grid point xj, respectively.

Example 1

We first consider the linear, homogeneous Lane-Emden equation, with variable coefficients:

22 2(2 3) = 0, > 0, subject to (0) = 1 and (0) = 0,y y x y x y y
x

¢¢ ¢ ¢+ - + (30)

which has the exact solution:

2
( ) = .xy x e

Eq. (30) has been solved by various researchers using different techniques such as the varia‐
tional iteration method and the homotopy-pertubation method [16, 28, 29].

Example 2

Secondly, the non-linear, homogeneous Lane-Emden equation, with variable coefficients is
considered:

/ 22 4(2 ) = 0, > 0, subject to (0) = 0 and (0) = 0y yy y e e x y y
x

¢¢ ¢ ¢+ + + (31)

which has the exact solution:
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2( ) = 2ln(1 ).y x x- +

Eq. (31) has been solved by [29, 30, 31] using the lie symmetry, the homotopy-pertubation
method and the variational iteration method.

Example 3

In this example, we consider the non-linear, variable coefficients, homogeneous Lane-Emden
equation:

2 6 = 4 ln( ), > 0, subject to (0) = 1 and (0) = 0y y y y y x y y
x

¢¢ ¢ ¢+ - (32)

which has the exact solution:

2
( ) = .xy x e

Ramos [28] solved Eq. (32) using the variation iteration method, while Yildirim [16] solved the
same equation using the linearisation method.

Example 4

We consider the non-linear, homogeneous Lane-Emden equation:

26 2 (7 ln( )) = 0, > 0, subject to (0) = 1 and (0) = 0y y y y x y y
x

¢¢ ¢ ¢+ + + (33)

which has the exact solution [32]:

2
( ) = .xy x e-

This example was solved by Wazwaz [32] using the Adomian decomposition method.

Example 5

We consider the non-linear, homogenous Lane-Emden equation, which represent an infinite
circular cylinder in astrophysics:

3 62 6 = 0, > 0, subject to (0) = 0 and (0) = 0,y y y x x y y
x

¢¢ ¢ ¢+ + - - (34)
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which has the exact solution [33]:

2( ) = .y x x

This example was solved by Yin et al. [33] using the modified Laplace decomposition method.

Example 6

Lastly, we consider the Lane-Emden equation with the general form:

2 = 0, > 0, subject to (0) = 1 and (0) = 0.my y y x y y
x

¢¢ ¢ ¢+ + (35)

Eq. (35) is the standard Lane-Emden equation that models the thermal behaviour of a spherical
cloud of glass acting under the mutual attraction of its molecules and subject to classical laws
of thermodynamics [34]. The values of m in the interval 0,5  are most physically interesting to
study. The equation is linear when m = 0 and m = 1 and non-linear for values of m >1. Wazwaz
[35] gave the general solution of Eq. (35) in series form as

2
2 4 6 8

2 3
10

1 (8 5) (70 183 122 )( ) = 1
6 120 3.7! 9.9!

(3150 1080 12642 5032 ) .
45.11!

m m m m m my x x x x x

m m m m x

- - +
- + - +

- + -
+ +K

(36)

Analytical solutions for m =0,1 and m =5 are given as [35]

1
2 2

21 sin( ) = 1 , ( ) = , and ( ) = 1 ,
3! 3

x xy x x y x y x
x

-
æ ö

- +ç ÷
è ø

(37)

respectively. In this example, we consider the Lane-Emden Eq. (35) for m = 5. We therefore
consider the equation:

52 = 0, > 0, subject to (0) = 1 and (0) = 0y y y x y y
x

¢¢ ¢ ¢+ + (38)

with the exact solution:
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æ ö
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è ø

(39)

4. Results and discussion

In this section, we discuss and present the results obtained using the proposed algorithm. We
used the six examples in the previous section. The results were generated using MATLAB 2013.
To validate the accuracy, computational time and general performance of the method, we
computed relative errors and computational time of each of the numerical examples. The level
of accuracy of the algorithm at a particular level is determined by the relative error Rk defined
by

( ) ( )
= , 0 ,

( )
e k a k

k
e k

y x y x
R k N

y x
-

£ £ (40)

where N is the number of grid points, ya(xk ) is the approximate solution and ye(xk ) is the
exact solution at the grid point xk. The graphs were all generated using N = 4. For each
numerical experiment, we present the relative error and the corresponding approximate
solution for N = 4 and N = 6 in a tabular form. The central processing unit computational
time is displayed. Graphs showing an excellent agreement between the analytical and
approximate solutions are presented for each numerical experiment. These graphs validate
the accuracy of the method. Error graphs showing the distribution of the relative errors are
also presented. These error graphs are in excellent agreement with the results presented in
the tables for all the numerical experiments used in this chapter.

N = 4 N = 6
x Exact Approximate Relative error Approximate Relative error
0.2 1.060313 1.060313 1.884728e−14 1.060313 4.251109e−014

0.4 1.140018 1.140018 3.505912e−14 1.140018 6.505415e−014

0.6 1.371416 1.371416 7.852585e−14 1.371416 1.066980e−013

0.8 1.787189 1.787189 1.413886e−13 1.787189 1.474757e−013

1.0 2.522988 2.522988 2.355112e−13 2.522988 1.864022e−013

1.2 3.858367 3.858367 3.776361e−13 3.858367 2.234047e−013

1.4 6.391979 6.391979 5.987445e−13 6.391979 2.591455e−013

1.6 11.471251 11.471251 9.227679e−13 11.471251 2.937560e−013

1.8 22.301278 22.301278 1.396995e−12 22.301278 3.316738e−013

2.0 46.966942 46.966942 2.066546e−12 46.966942 3.633883e−013

CPU Time (sec) 0.659414 0.629082 0.659414

Table 1. Analytical, approximate solutions and relative errors for Example 1.
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Table 1. Analytical, approximate solutions and relative errors for Example 1.
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Table 1 shows the exact, approximate solution and the relative error for Eq. (30). For N = 4, the
multi-domain spectral relaxation method gives a relative error of approximately 10−12 and for
N = 6, the relative error is on average 10−13. Increasing the number of grid points results in a
more accurate solution. The results obtained from the multi-domain spectral relaxation
method are remarkable since few grid points give accurate results in a large domain. Using a
few grid points ensures that the numerical method converges within few seconds.

Figure 1. Error graph.

Figure 1 shows the relative error displayed in Table 1 for N = 4. The results in Figure 1 are in
excellent agreement with those in Table 1. Figure 2 shows the analytical and approximate
solutions. Since the approximate solution is superimposed on the exact solutions, this implies
that the multi-domain pseudospectral relaxation method converged to the exact solution over
the domain x∈ 0,2 . Table 1 and Figures 1 and 2 validate the accuracy and computational
efficiency of the multi-domain pseudospectral relaxation method for Eq. (30).

Figure 2. Comparison of analytical and approximate solutions for Example 1.

The results obtained from approximating the solution to Eq. (31) using the multi-domain
pseudospectral relaxation method are shown in Table 1 and Figures 3 and 4. In Table 2, we
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display the exact solution, approximate solution and the relative error of Eq. (31) in Example
2. For N = 4, the multi-domain spectral relaxation method gives a relative error of approxi‐
mately 10−11. For N = 4 the relative error is approximately 10−13. We observe that increasing the
number of grid points decreases the relative error. The multi-domain pseudospectral relaxa‐
tion method uses a few grid points to achieve accurate results in the domain x ∈ 0,20 . A
maximum of N = 6 grid points ensured that the numerical method converged to an error of
10−13 within a fraction of a second.

Figure 3. Error graph.

Figure 4. Comparison of analytical and approximate solutions for Example 2.

Figure 3 shows the relative error displayed in Table 2 for N = 4. The results in Figure 3 are in
excellent agreement with those in Table 2. Figure 4 shows the analytical and approximate
solutions of Eq. (31). The approximate solution superimposed on the exact solutions shows
that the multi-domain pseudospectral relaxation method converged to the exact solution over
the domain x ∈ 0,20 . The match between the exact and approximate solutions in Table 2 and
Figures 3 and 4 validates the accuracy and computational efficiency of the multi-domain
pseudospectral relaxation method for Eq. (31).
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the domain x ∈ 0,20 . The match between the exact and approximate solutions in Table 2 and
Figures 3 and 4 validates the accuracy and computational efficiency of the multi-domain
pseudospectral relaxation method for Eq. (31).
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N = 4 N = 6
x Exact Approximate Relative error Approximate Relative error

2 –3.271943 –3.271943 8.810376e−011 –3.271943 2.704972e−014

4 –5.697684 –5.697682 1.000287e−011 –5.697684 6.202217e−014

6 –7.243401 –7.243399 8.316853e−012 –7.243401 2.136148e−014

8 –8.365152 –8.365151 1.308867e−011 –8.365152 3.825343e−015

10 –9.243421 –9.243420 1.383787e−011 –9.243421 4.807193e−015

12 –9.964487 –9.964487 1.318604e−011 –9.964487 5.172115e−015

14 –10.575872 –10.575872 1.205994e−011 –10.575872 6.720993e−015

16 –11.106445 –11.106445 1.080384e−011 –11.106445 3.199792e−016

18 –11.575028 –11.575028 9.561315e−012 –11.575028 6.293749e−015

20 –11.927621 –11.927622 8.504839e−012 –11.927621 1.738910e−014

CPU Time (sec) 0.649135 0.602359 0.649135

Table 2. Analytical, approximate solutions and relative errors for Example 2.

The results obtained from approximating the solution to Eq. (32) are given in Table 3 and
Figures 5 and 6. Table 3 shows the exact solution, the approximate solution and the relative
error of Eq. (32). For N = 4, the multi-domain spectral relaxation method gives a relative error
of approximately 10−12, while for N = 6, the relative error is approximately 10−13. We observe
that increasing the number of grid points decreases the relative error and hence increases the
accuracy of the method. This pseudospectral method uses a few grid points to achieve accurate
results in the domain x∈ 0,2 . N = 6 grid points ensured that the numerical method converged
to an error of 10−13 within few seconds.

N = 4 N = 6
x Exact Approximate Relative error Approximate Relative error

0.2 1.029322 1.029322 2.502345e−014 1.029322 1.682611e−014

0.4 1.146713 1.146713 1.316722e−013 1.146713 4.124439e−014

0.6 1.383892 1.383892 3.732052e−013 1.383892 6.915367e−014

0.8 1.809228 1.809228 8.178657e−013 1.809228 1.078787e−013

1.0 2.562286 2.562286 1.581696e−012 2.562286 1.493997e−013

1.2 3.931024 3.931024 2.814656e−012 3.931024 1.883216e−013

1.4 6.53322 6.53322 4.761036e−012 6.53322 2.300241e−013

1.6 11.762306 11.762306 7.722919e−012 11.762306 2.750095e−013

1.8 22.940410 22.940410 1.211045e−011 22.940410 3.176323e−013

2.0 48.467816 48.467816 1.845750e−011 48.467816 3.667955e−013

CPU Time (sec) 1.069773 1.010628 1.069773

Table 3. Analytical, approximate solutions and relative errors for Example 3.
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Figure 6. A comparison of analytical and approximate solutions in Example 3.

The relative error shown in Table 3 is displayed in Figure 5. The results in Figure 5 are in
excellent agreement with those in Table 3. Figure 6 shows the analytical and approximate
solutions of Eq. (32). The approximate solution being superimposed on the exact solutions
implies that the multi-domain pseudospectral relaxation method converged to the exact
solution over the domain x∈ 0,2 . The match between the exact and approximate solutions in
Table 3 and Figures 5 and 6 validates the accuracy and computational efficiency of the multi-
domain pseudospectral relaxation method for Eq. (32).

The results obtained from approximating the solution to Eq. (33) are given in Table 4 and
Figures 7 and 8. Table 4 shows the exact solution, the approximate solution and the relative
error of Eq. (33). For N = 4, the multi-domain spectral relaxation method gives a relative error
of approximately 10−13. For N = 6, the relative error is also approximately 10−13. Increasing the
number of grid points decreases the relative error. Thus, a maximum of N = 6 grid points
ensures convergence of the method. N = 6 grid points ensured that the numerical method
converged to an error of 10−13 in a fraction of seconds.
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The results obtained from approximating the solution to Eq. (33) are given in Table 4 and
Figures 7 and 8. Table 4 shows the exact solution, the approximate solution and the relative
error of Eq. (33). For N = 4, the multi-domain spectral relaxation method gives a relative error
of approximately 10−13. For N = 6, the relative error is also approximately 10−13. Increasing the
number of grid points decreases the relative error. Thus, a maximum of N = 6 grid points
ensures convergence of the method. N = 6 grid points ensured that the numerical method
converged to an error of 10−13 in a fraction of seconds.
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N = 4 N = 6
x Exact Approximate Relative error Approximate Relative error
0.2 0.974097 0.974097 7.978218e−015 0.974097 2.803774e−014

0.4 0.877179 0.877179 1.215047e−014 0.877179 6.999178e−014

0.6 0.729173 0.729173 1.248514e−014 0.729173 1.079508e−013

0.8 0.559538 0.559538 1.805602e−014 0.559538 1.341305e−013

1.0 0.396355 0.396355 3.221242e−014 0.396355 1.606419e−013

1.2 0.259177 0.259177 6.232707e−014 0.259177 1.756296e−013

1.4 0.156446 0.156446 1.011254e−013 0.156446 1.754615e−013

1.6 0.087174 0.087174 1.525094e−013 0.087174 1.404105e−013

1.8 0.044840 0.044840 1.897188e−013 0.044840 3.528213e−014

2.0 0.021292 0.021292 1.404623e−013 0.021292 2.123230e−013

CPU Time (sec) 1.080828 1.046274 1.080828

Table 4. Analytical, approximate solutions and relative errors for Example 4.

Figure 7. Error graph.

Figure 8. A comparison of analytical and approximate solutions in Example 4.
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Figure 7 shows the relative error displayed in Table 4 for N = 4. The results in Figure 7 are in
excellent agreement with those in Table 4. Figure 8 shows the analytical and approximate
solutions. Since the approximate solution is superimposed on the exact solutions, this implies
that the multi-domain pseudospectral relaxation method converged to the exact solution over
the domain x∈ 0,2 . Table 4 and Figures 7 and 8 validate the accuracy and computational
efficiency of the multi-domain pseudospectral relaxation method for Eq. (33).

The results obtained from approximating the solution to Eq. (34) are given in Table 5 and
Figures 9 and 10. Table 5 shows the exact solution, the approximate solution and the relative
error of Eq. (34). The multi-domain pseudospectral relaxation method gives a relative error of
approximately 10−14. For N = 6, the relative error is approximately 10−14. Increasing the number
of grid points decreases the relative error and thus implying that the numerical method
converged to the exact solution. The pseudospectral collocation method uses a few grid points
to achieve accurate results in the domain x∈ 0,2 . The numerical method converged to an error
of 10−14 in a fraction of a second.

N = 4 N = 6

x Exact Approximate Relative error Approximate Relative error

0.2 0.026244 0.026244 4.759186e−015 0.026244 1.692155e−014

0.4 0.131044 0.131044 1.397903e−014 0.131044 3.473577e−014

0.6 0.315844 0.315844 2.495721e−014 0.315844 5.518706e−014

0.8 0.580644 0.580644 3.537301e−014 0.580644 6.864276e−014

1.0 0.925444 0.925444 4.138845e−014 0.925444 8.445643e−014

1.2 1.350244 1.350244 3.880967e−014 1.350244 9.981979e−014

1.4 1.855044 1.855044 4.093663e−014 1.855044 1.098825e−013

1.6 2.439844 2.439844 3.749517e−014 2.439844 8.700337e−014

1.8 3.104644 3.104644 2.445989e−014 3.104644 4.706026e−014

2.0 3.849444 3.849444 4.614580e−016 3.849444 6.575777e−015

CPU Time (sec) 0.705910 0.638383 0.705910

Table 5. Analytical, approximate solutions and relative errors for Example 5.

Figure 9 shows the relative error displayed in Table 5 for N = 4. The results in Figure 9 are in
excellent agreement with those in Table 5. Figure 10 shows the analytical and approximate
solutions. Since the approximate solution is superimposed on the exact solutions, this implies
that the multi-domain pseudospectral relaxation method converged to the exact solution over
the domain x∈ 0,2 . Table 5 and Figures 9 and 10 validate the accuracy and computational
efficiency of the multi-domain pseudospectral relaxation method for Eq. (34).
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0.4 0.131044 0.131044 1.397903e−014 0.131044 3.473577e−014
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0.8 0.580644 0.580644 3.537301e−014 0.580644 6.864276e−014

1.0 0.925444 0.925444 4.138845e−014 0.925444 8.445643e−014

1.2 1.350244 1.350244 3.880967e−014 1.350244 9.981979e−014

1.4 1.855044 1.855044 4.093663e−014 1.855044 1.098825e−013

1.6 2.439844 2.439844 3.749517e−014 2.439844 8.700337e−014

1.8 3.104644 3.104644 2.445989e−014 3.104644 4.706026e−014

2.0 3.849444 3.849444 4.614580e−016 3.849444 6.575777e−015

CPU Time (sec) 0.705910 0.638383 0.705910

Table 5. Analytical, approximate solutions and relative errors for Example 5.

Figure 9 shows the relative error displayed in Table 5 for N = 4. The results in Figure 9 are in
excellent agreement with those in Table 5. Figure 10 shows the analytical and approximate
solutions. Since the approximate solution is superimposed on the exact solutions, this implies
that the multi-domain pseudospectral relaxation method converged to the exact solution over
the domain x∈ 0,2 . Table 5 and Figures 9 and 10 validate the accuracy and computational
efficiency of the multi-domain pseudospectral relaxation method for Eq. (34).
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Figure 9. Error graph.

Figure 10. A comparison of analytical and approximate solutions in Example 5.

The results obtained from approximating the solution to Eq. (38) are given in Table 6 and
Figures 11, 12 and 13. Table 6 shows values obtained for the exact and approximate solution
together with the respective relative error values of Eq. (38). For N = 4 the multi-domain
pseudospectral collocation method gives a relative error of approximately 10−11 and 10−13 for
N = 6. An increase in the number of grid points results in a decrease in the relative error. This
implies that the numerical method converges to the exact solution of Eq. (38). The multi-
domain pseudospectral relaxation method used a few grid points to achieve accurate results
in the domain x∈ 0,20 . N = 6 grid points ensured that the numerical method converged to an
error of 10−13 within a few seconds as shown in Table 6.
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N = 4 N = 6

x Exact Approximate Relative error Approximate Relative error

2 0.650926 0.650926 1.991857e−011 0.650926 3.189482e−014

4 0.395693 0.395693 2.135316e−011 0.395693 3.745701e−014

6 0.276499 0.276499 6.204217e−012 0.276499 5.842239e−014

8 0.211100 0.211100 8.877991e−012 0.211100 1.519920e−013

10 0.170333 0.170333 2.323778e−011 0.170333 2.328536e−013

12 0.142624 0.142624 3.707619e−011 0.142624 3.096185e−013

14 0.122609 0.122609 5.055364e−011 0.122609 4.021536e−013

16 0.107492 0.107492 6.378059e−011 0.107492 4.983484e−013

18 0.095677 0.095607 7.683911e−011 0.095677 5.994828e−013

20 0.087057 0.087057 8.847457e−011 0.087057 6.926360e−013

CPU Time (sec) 1.199892 1.046417 1.199892

Table 6. Analytical, approximate solutions and relative errors for Example 6.

Figure 11 shows the plot for different values of m. The results are in good agreement with those
obtained by [25, 26]. Figure 12 displays the relative error graph of Eq. (38). The results in Figure
12 are in excellent agreement with those obtained in Table 6. The comparison between the
exact solution and approximate solution of Eq. (38) is shown in Figure 13. The superimposition
of the approximate solution on the exact solution implies that the multi-domain pseudospec‐
tral relaxation method converged to the exact solution over the domain x ∈ 0,20 . Table 6 and
Figures 11, 12 and 13 give a validation of the accuracy and computational efficiency of the
multi-domain pseudospectral relaxation method for Eq. (38).

Figure 11. Plot showing solutions to Eq. (35) for some values of m.
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Figure 12. Error graph.

Figure 13. A comparison of analytical and approximate solutions in Example 6.

5. Conclusion

In this work, we presented a multi-domain spectral collocation method for solving Lane-
Emden equations. This numerical method was used to solve six Lane-Emden equations. The
results obtained were remarkable in the sense that using few grid points, we were able to
achieve accurate results. We were able to compute the results using minimal computational
time. The approximate solutions were in excellent agreement with the exact solutions in all the
numerical experiments. We presented error graphs, approximate and exact solution graphs to
show accuracy of the method. Tables showing relative errors were also generated to show
accuracy and computational efficiency of the numerical method presented.
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This approach is useful for solving other nonlinear, singular initial value problems. This
approach is an alternative to the already existing list of numerical methods that can be used
to solve such equations. This numerical approach can be extended to solve time-dependent
Lane-Emden equations and other singular value type of equations.
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Abstract

Fractional  calculus  and fuzzy  calculus  theory,  mutually,  are  highly  applicable  for
showing different aspects of dynamics appearing in science. This chapter provides
comprehensive  discussion  of  system of  fractional  differential  models  in  imprecise
environment.  In  addition,  presenting  a  new  vast  area  to  investigate  numerical
solutions  of  fuzzy  fractional  differential  equations,  numerical  results  of  proposed
system are carried out by the Grünwald‐Letnikov's fractional derivative. The stability
along with truncation error of the Grünwald‐Letnikov’s fractional approach is also
proved. Moreover, some numerical experiments are performed and effective remarks
are  concluded  on  the  basis  of  efficient  convergence  of  the  approximated  results
towards the exact solutions and on the depictions of error bar plots.

Keywords: fuzzy‐valued functions, fuzzy differential equations, fractional differential
equations, Grünwald‐Letnikov’s derivative

1. Introduction

It is worthwhile mentioning, since last few decades, the theory of fractional calculus has gained
significant importance in almost every branch of science, for having the capability to consider
integrals and derivatives of any arbitrary order. The characteristic feature of generalizing the
classic integer‐order differentiation and n‐fold integration to arbitrary fractional order have
broadened its  application in  modeling several  phenomena of  physics,  mathematics,  and
engineering. The differential models of fractional order, due to the nonlocal properties of
fractional operator, are excellent instruments for providing information about the current as
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well as the historical state of the system. For these reasons, it is intensively developed and
advanced, and existence of its solution is studied by well‐known authors, Euler, Laplace,
Liouville, Riemann, Fourier, Abel, Caputo, etc., to further widen its scope in describing various
real‐world problems of science, for instance see [1–6]. Another wide‐spreading exploration of
mathematics is theory of fuzzy calculus, which has a lot of interesting applications in physics,
engineering, mechanics, and many others. It is the theory of a particular type of interval‐
valued functions, in which mapping is made in such a way that it takes all the possible values
in 0, 1  and not only the crisp values as found in usual interval‐valued functions. After the
inception of fuzzy set theory by Zadeh [7], its attributes have been extended and established to
overcome impreciseness of parameters and structures in mathematical modeling, reasoning,
and computing [8–12].

Advanced development of mathematical theories and techniques has gained very high
standard. On the basis of classical theories, new theories are pioneered by undergoing its
inadequacies and widening its scope in many disciplines. In a similar manner, the aforemen‐
tioned theories have been brought together in modeling different aspects of applied sciences,
to analyze the change in the respective system at each fractional step with the uncertain
parameters. Agarwal et al. [13] initiatively incorporated uncertainty into dynamical system,
modeled fractional differential equations with uncertainty, and studied its possible solutions.
Ahmad et al. [14] described the situation of impreciseness of initial values of fractional
differential equations and discussed its solutions by utilizing Zadeh’s extension principle. In
[15, 16], authors considered the concept of Caputo and Riemann fractional derivative, respec‐
tively, together with the Hukuhara differentiability and demonstrated the fuzzy fractional
differential equations and a lot of others [17–23].

In light of noteworthy applications of above‐mentioned theories, in this chapter, we demon‐
strate fractional order dynamical models in fuzzy environment to depict unequivocal frac‐
tional differential equations of dynamical system. Moreover, we investigate its numerical
solutions using the well‐known Grünwald‐Letnikov's fractional definition. This definition is
widely applicable as a numerical scheme to solve linear and nonlinear differential equations
of fractional order [24–26]. It is considered as an extended form of the classical Euler method.
Here it will be utilized, for the first time, to solve fractional differential equations of imprecise
functions. Sequentially, this chapter features description of fuzzy theory and fuzzy‐valued
functions for the explanation of impreciseness, modeling of system of nonlinear fractional
order differential equations with imprecise functions, deliberation of Grünwald‐Letnikov’s
fractional approach in conjunction with its truncation error for the proposed system, tabulated
and pictorial investigations of some examples, and conclusive remarks of the undergone
experiments and findings of the whole manuscript.

2. Basic descriptions

Fuzzy calculus theory is the branch of mathematical analysis that deals with the interval
analysis of imprecise functions. This section comprises some rudiments of fuzzy calculus
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theory and acquaints the necessary notations that are prerequisite for the whole paper. All the
below‐mentioned descriptions are widely elaborated and used in literature, for instance [13–
23].

2.1. Fuzzy numbers

Let E  be the set of subsets of the real axis R . If τ ∈E  and τ : 0, 1 → R  such that, τ is
normal, fuzzy convex, upper semi‐continuous membership function and compactly supported

on the real axis R , then E  is said to be the space of fuzzy numbers τ. Any τ ∈E  can be

represented in level sets explicitly, i.e. 
[ ] ( ) ( ),τ τ τ =  
  

 for [ ]0,1∈ , where ( )τ   and ( )τ 

signify as the lower and upper branches of τ, respectively, that satisfy the following conditions:

a. ( )τ   is bounded non‐decreasing lower function, left continuous on (0, 1  and right

continuous at 0=

b. ( )τ   is bounded non‐increasing upper function, left continuous on (0, 1  and right

continuous at 0=

c. ( ) ( )τ τ≤ 

The sum and scalar product of any fuzzy number is the consequence of Zadeh’s extension
principal. Let ⊕ , •  and Θ  be the symbols of addition, multiplication and subtraction,
accordingly, for fuzzy numbers, which will be greatly used throughout the paper, then, for

[ ]0,1∈ :

i. [ ] [ ] [ ] ( ) ( ) ( ) ( ), ,τ υ τ υ τ υ τ υ τ υ ⊕ = ⊕ = + + ∈ 
  

    E

ii.

For 

iii.

[ ]
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

min , , , ,

max , , ,

τ υ τ υ τ υ τ υ
τ υ

τ υ τ υ τ υ τ υ

 
 • =  
  

       


       

iv. ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }min , ,max ,τ υ τ υ τ υ τ υ τ υ Θ = − − ℘ − −       

The distance between any two fuzzy numbers τ and υ is given by the Hausdorff metric  as:
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( )
[ ]

[ ] [ ]( )
[ ]

( ) ( ) ( ) ( ){ }
0,1 0,1

, sup , sup max ,τ υ τ υ τ υ τ υ
∈ ∈

= = − −D D
 

 

    (1)

Thus, ( E , ) defines a complete metric space with the properties of Hausdorff metric for fuzzy
numbers.

2.2. Fuzzy-valued Function and its fractional derivative

Any interval‐valued function  is said to be a fuzzy‐valued function if  is defined as

. Its ‐level set can be represented by real‐valued functions  and 

as its lower and upper branches, accordingly, i.e. ,

. Moreover, if  and  exist as finite fuzzy numbers, then

 exists. Consequently, let  be the space of continuous fuzzy‐valued functions, then

 if  and  are continuous. The arithmetic for any two fuzzy‐valued

functions  and  can be defined as previously mentioned in Section 2.1 for fuzzy numbers.

Subsequent to existence of limit and continuity of , the fuzzy‐valued function (t) is said

to be differentiable at each t0 ∈ a, b , if  exists, such that

( ) ( ) ( )0 0
0 0

Lim
h

t h t
t

h→

+ Θ
′ =

 
 F F

F (2)

where h  is taken in a way that (t0 + h )∈ (a, b). For ,  is said to

be differentiable at t ∈ a, b  if its lower function  and upper function  are

differentiable at t ∈ a, b , i.e. for all  ∈ 0, 1 ,

( ) ( ) ( ) ( ) ( )min ; , ; ,max ; , ;
d d d d

t t t t t
dt dt dt dt

    ′ =         
    F F F F F (3)

In a similar manner, fractional order differential of  can be defined as, for all  ∈ 0, 1 , if

 and  are differentiable of order ω >0, then  is differentiable of order ω >0,
i.e.
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( ) ( ) ( ){ } ( ) ( ){ }min ; , ; ,max ; , ;t t t t tt D t D t D t D tω ω ω ω ω =  
    F F F F FD (4)

where  can be either fuzzy Riemann‐Liouville fractional differential operator or fuzzy
Caputo-type fractional differential operator [15, 16, 19, 22, 23]. Here it is considered as fuzzy
Caputo‐type fractional derivative that is approximated by Grünwald‐Letnikov's approach,
illustrated in the next sequel.

2.3. System of fractional order fuzzy differential equations

In particular, modeling of differential equations of fractional order in imprecise characteristics

is obtained by encompassing fuzzy‐valued functions. Let , then fuzzy differ‐
ential equation of fractional order ω∈ (0, 1 , subjected to initial conditions, is structured as:

( ) ( )( ),t t t tω = Ψ X XD (5)

( )0 0t = X U (6)

where the unknown fuzzy‐valued function  can be written in form of ‐levels as, for all 

∈ 0, 1 , , where as  can be linear or nonlinear term in the

form of fuzzy‐valued function and  is the fuzzy number, which can also be expressed as

, for all . Concisely, Eq. (5) is considered to have a unique and stable

solution, for the reason that  is continuous and satisfies the Lipschitz condition, i.e.
there exists L >0 such that for 

( ) ( )( ) ( ) ( ) ( ), , , . , , , ,t t L t tΨ Ψ ≤ ∀ ∈ ∈D D       X W X W X W ,X,WR E (7)

Many papers [14, 15, 22] comprise the theorems of stability and uniqueness of the solution of
Eq. (5).

Here, we consider the system of fractional order fuzzy differential equations of the following
form:

( ) ( ) ( ) ( )( )1 , , ,t t t t tω = Ψ   1 1 2 nX X X XD

( ) ( ) ( ) ( )( )2 , , ,t t t t tω = Ψ   2 1 2 nX X X XD
(8)
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( ) ( ) ( ) ( )( ), , ,n
t t t t tω = Ψ   n 1 2 nX X X XD

with the initial conditions,

( ) ( ) ( )0 1 0 2 0, , , nt t tν ν ν= = =    1 2 nX X X (9)

where ν̃1, ν̃2, …, ν̃n are the fuzzy numbers that can be written as, for all

, n≥1, ω1, ω2, …, ωn are the fractional orders such that ωn ∈ (0, 1  and
the right hand side of Eq. (8) represent a system of fuzzy nonlinear equations with crisp
coefficients kij, i ≥1, j ≤n, i.e.

( ) ( ) ( )( ) ( )
1

, , , , 1
n

ij
j

t t t k t m
=

Ψ = ≥∑    m
1 2 n jX X X X (10)

Therefore, Eq. (8) can be remodeled as:

(11)

And as mentioned earlier,  are taken as the fuzzy Caputo‐type fractional differential
operators and are numerically interpreted using Grünwald‐Letnikov’s fractional derivative
definition.

3. Grünwald‐Letnikov’s fractional derivative

This section comprises the description of Grünwald‐Letnikov’s fractional derivative in
conjunction with the algorithm to solve the system of Eq. (11) and undergoes some requisite
theorem and lemma of the governing approach.
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Consider a function  in finite interval [0, T], let the interval be divided into equidistant
grids of step size h as:

0 1 10 witht h hs s sh h h s h h -= < < < = = - =L (12)

( ) ( ) ( )
0

0

1
lim 1

t

h
iGL

t h
i

D t t ih
ih

ω
ω

ω
 
  

→
=

 
= −−  

 
∑Y Y (13)

where (ωi ) are the binomial coefficients that are obtained by the formula:

( )
( )

1

! 1i i i

ω ω
ω

Γ + 
=  Γ − + 

(14)

and t
h  represents the integral part.

3.1. Lemma

Let  be a smooth function in 0, T , such that it can be expressed as a power series for
t <T , where t  is the integral part of t , then the Grünwald‐Letnikov’s approximation for each

0< t <T , a series of step size h  and t =σh  can be stated as:

( ) ( ) ( ) ( ) ( )
0

1
1 0

iGL
t i

i

D t t O h h
ih

σ
ω

σω

ω
−

=

 
= − + → 

 
∑Y Y (15)

This definition is considered to be equivalent to the definition of Riemann‐Liouville fractional
derivative and for equivalence to Caputo’s fractional definition the following term of initial
value is added to the right hand side of Eq. (15), i.e.

( ) ( ) ( ) ( ) ( )
0

1
1 0

1
iGL

t i
i

t
D t t

ih

ωσ
ω σ

σω

ω
ω

−

−
=

 
= −−   Γ − 

∑Y Y Y (16)

That becomes zero if initial values of Caputo‐type differential equations are homogeneous and
again reduces to that of Riemann‐Liouville definition. Since here the fuzzy Caputo‐type
fractional differential equations are considered with inhomogeneous initial values, the
definition in Eq. (16) will be used for the approximation of Eq. (11).
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Now let  be a fuzzy‐valued function such that , then Grünwald‐Letnikov’s

fractional derivative of (t) is expressed as:

(17)

and in ‐level sets it is sorted out as, for all ∈ 0, 1 ,

( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

1
1 , 0, ,

1

1
1 , 0,

1

i

i
iGL

t
i

i
i

t
t

ih
t

t
t

ih

ωσ
σ

σω
ω

ωσ
σ

σω

ω
ω

ω
ω

−

−
=

−

−
=

  
− −   Γ −  =    − −  Γ −  

∑

∑

 



 

F F

F

F F

D (18)

Next consider the fractional system in Eq. (11), for the cases of inhomogeneous initial values.
Assume the uniform grids tσ =σ h , where σ =1, …, M , such that Mh =T , M ∈ . Applying
Grünwald‐Letnikov’s fractional derivative on left hand sides of Eq. (11) we get,

(19)

Solving above system fuzzy-valued functions of respective fuzzy functions are generated at
different grid points.

3.2. Theorem: truncation error

Let fuzzy‐valued functions  be the approximations to the true
solutions X̃ 1(tσ), X̃ 2(tσ), ⋯ , X̃ n(tσ), respectively and consider Ψ satisfies Lipchitz condition,

then the local truncation error of the proposed numerical approach is O(h 1+ωn), for n ≥1, i.e.
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Next consider the fractional system in Eq. (11), for the cases of inhomogeneous initial values.
Assume the uniform grids tσ =σ h , where σ =1, …, M , such that Mh =T , M ∈ . Applying
Grünwald‐Letnikov’s fractional derivative on left hand sides of Eq. (11) we get,

(19)
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Proof:

Assume the nth equation of the system (19) and on applying Grünwald‐Letnikov’s fractional
derivative we have,
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for n ≥1 and from Lemma 3.1 we can attain,
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Subtracting Eq. (22) from Eq. (21),
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Let, for i =0, 1, …σ −1, , then on further manipulation we get,
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or it can be rearranged as:
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D       n 1 2 nX X X X
(25)

where  defines Hausdroff distance. On using Lipschitz condition, i.e. Eq. (7), proof is
completed by obtaining the following equation:

( ) ( ) ( ) ( )11   1n n
n nL h t X t O h  nω ω

σ σ
+ − Θ ≤ ∀ ≥ 

 
nX (26)

4. Numerical illustrations

Subsequent to the algorithm demonstrated in Section 3, here numerical experiments of some
system of fuzzy fractional differential equations are presented. Results for fuzzy‐valued
functions are depicted in tabular form in the finite interval 0, 1  at different values of
ω∈ (0, 1 . In addition, error bar pictorials are given for each respective example. All the exact
values and calculations are carried out through Mathematica 10.

4.1. Example 1

Following nonlinear fractional system is solved in [27] using homotopy analysis method, here

the system is restructured with imprecise functions  and  as:

( ) ( )1 0.5t t tω = 
1 1X XD

( ) ( ) ( )2
t t t tω = ⊕   2

2 2 1X X XD (27)

with ω1, ω2 ∈ (0, 1  and subjected to initial conditions

( ) [ ] ( ) [ ]0 0.75 0.25 ,1.125 0.125 , 0 1,1= + − = − −    1 2X X (28)

On applying Grünwald‐Letnikov’s fractional definition on left hand side of Eq. (27) and
following the algorithm, the differential equations are reduced to nonlinear algebraic equa‐
tions as:
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which on expanding to ‐levels of  and  convert into system of four nonlinear

equations, i.e. for all  ∈ 0, 1 ,

(30)

Exact solutions Approx. solutions Absolute error

0 [0.7881, 1.1821] [0.7881, 1.1821] [9.7543×10-6, 1.4632×10-5]

0.2 [0.8406, 1.1558] [0.8406, 1.1558] [1.0404×10-5, 1.4307×10-5]

0.4 [0.8931, 1.1296] [0.8931, 1.1296] [1.1055×10-5, 1.3982×10-5]

0.6 [0.9457, 1.1033] [0.9457, 1.1033] [1.1705×10-5, 1.3656×10-5]

0.8 [0.9982, 1.0770] [0.9982, 1.0770] [1.2355×10-5, 1.3331×10-5]

1 [1.0508, 1.0508] [1.0508, 1.0508] [1.3006×10-5, 1.3006×10-5]

Table 1. Numerical results and absolute errors of  for Example 1 at ω1 =1, ω2 =1, h =0.001 and t =1.

Solving this system, numerical approximations of Eq. (27) are obtained. Tables 1 and 2 rep‐

resent absolute error of  and , respectively, for ω1 =ω2 =1, h =0.001, t =1 and at dif‐
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ferent values of , whereas Table 3 shows the approximations of  and  for

ω1 =0.95, ω2 =0.87, h =0.1 and t =1, at different values of  . In Figures 1 and 2, the pointwise

error variations of  and X̃ 2(t), accordingly, at each time within the given interval for
ω1 =ω2 =1, h =0.1 and  = 0.6, are plotted. In these graphs, each approximated point is plotted
against the value of σ in a discrete manner and each bar line on respective approximated
point illustrates the measure of the absolute error at that point. Absolute error is obtained by
taking the point‐to‐point difference between exact and the solutions calculated by Grün‐
wald‐Letnikov’s fractional approach. Since these variations show small differences, this im‐
plies our results are in good agreement with the exact solutions.

Exact solutions Approx. solutions Absolute error

0 [-1.0426, 1.2424] [-1.0426, 1.2426] [9.1289×10-6, 1.9828×10-4]

0.2 [-0.8133, 1.0155] [-0.8133, 1.0157] [2.8859×10-5, 1.8104×10-4]

0.4 [-0.5835, 0.7888] [-0.5834, 0.7889] [4.9162×10-5, 1.6393×10-4]

0.6 [-0.3531, 0.5621] [-0.3530, 0.5623] [7.0025×10-5, 1.4696×10-4]

0.8 [-0.1222, 0.3356] [-0.1221, 0.3358] [9.1457×10-5, 1.3014×10-4]

1 [0.1093, 0.1093] [0.1094, 0.1094] [1.1346×10-4, 1.1346×10-4]

Table 2. Numerical results and absolute errors of  for Example 1 at ω1 =1, ω2 =1, h =0.001 and t =1.

 

0  [1.2745, 1.9117] [-1.0584, 8.2274]

0.2  [1.3594, 1.8692] [-0.1017, 7.3564]

0.4  [1.4444, 1.8267] [0.8747, 6.4903]

0.6  [1.5294, 1.7842] [1.8707, 5.6291]

0.8  [1.6143, 1.7418] [2.8863, 4.7728]

1  [1.6993, 1.6993] [3.9215, 3.9215]

Table 3. Approximations of  and  of Example 1 for ω1 =0.95, ω2 =0.87, h =0.1 and t =1.
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Figure 1. Bar plot of σ of of Example 1 for h =0.1, ω1 =ω2 =1 and  = 0.6.

Figure 2. Bar plot of approximate solutions and absolute error versus σ of  of Example 1 for
h =0.1, ω1 =ω2 =1 and  = 0.6.

4.2. Example 2

Consider the following nonlinear fractional system [27] with imprecise functions ,

and  as:

( ) ( )1 ,t t tω = 
1 1X XD

( ) ( )2 2t t tω =  2
2 1X XD
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( ) ( ) ( )3 3t t t tω = •  
3 1 2X X XD (31)

with ω1, ω2, ω3 ∈ (0, 1  and subjected to initial conditions

( ) ( ) [ ] ( ) [ ]0 0 0.75 0.25 ,1.125 0.125 , 0 1,1= = + − = − −     1 2 3X X X (32)

On employing Grünwald‐Letnikov’s approach, the differential equations are converted into
nonlinear algebraic equations as:

( ) ( )( ) ( )
( ) ( ) ( )
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∑    
3 3 1 2X X X X (33)

and in ‐levels of , , and X̃ 3(t) the system above converts into six nonlinear equations,

i.e. for all ,
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(34)

Thus, numerical results of Eq. (31) are obtained from the above system. Tables 4–6 present

absolute error of , and X̃ 3(t), respectively, for ω1 =ω2 =ω3 =1, h =0.001, t =1 and at

different values of  . In Table 7, the approximations of , and X̃ 3(t) are rendered
for h =0.1, ω1 =0.95, ω2 =0.87, ω3 =0.79 and t =1, at different values of . Additionally, the

pointwise error variations between approximated and exact solutions of , and X̃ 3(t)

at each time within the given interval for ω1 =ω2 =ω3 =1 and  = 0.6 are plotted in Figures 3–5,
respectively. It is to be noted that the small length of bar lines on each point is illustrating small
differences between the exact and the result obtained by the proposed approach that shows
the acceptable convergence of the solution towards the exact values.

Exact solutions Approx. solutions Absolute errors

0 [0.8281, 1.2421] [0.8281, 1.2421] [4.1012×10-5, 6.1521×10-5]

0.2 [0.8832, 1.2145] [0.8833, 1.2145] [4.3747×10-5, 6.0154×10-5]

0.4 [0.9384, 1.1869] [0.9385, 1.1869] [4.6482×10-5, 5.8788×10-5]

0.6 [0.9937, 1.1593] [0.9937, 1.1593] [4.9217×10-5, 5.7421×10-5]

0.8 [1.0489, 1.1317] [1.0489, 1.1317] [5.1952×10-5, 5.6054×10-5]

1 [1.1041, 1.1041] [1.1041, 1.1041] [5.4688×10-5, 5.4688×10-5]

Table 4. Numerical results and absolute errors of  for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.

Exact solutions Approx. solutions Absolute errors

0 [0.8732, 1.4021] [0.8733, 1.4024] [1.2956×10-4, 2.9153×10-4]

0.2 [0.9401, 1.3649] [0.9403, 1.3652] [1.4742×10-4, 2.7872×10-4]

0.4 [1.0082, 1.3280] [1.0084, 1.3283] [1.6644×10-4, 2.6619×10-4]

0.6 [1.0774, 1.2914] [1.0776, 1.2917] [1.8658×10-4, 2.5397×10-4]

0.8 [1.1476, 1.2551] [1.1478, 1.2553] [2.0789×10-4, 2.4202×10-4]

1 [1.2189, 1.2189] [1.2192, 1.2192] [2.3036×10-4, 2.3036×10-4]

Table 5. Numerical results and absolute errors of  for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.
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Exact solutions Approx. solutions Absolute errors

0 [-0.8102, 1.4429] [-0.8099, 1.4438] [2.6067×10-4, 7.7596×10-4]

0.2 [-0.5829, 1.2225] [-0.5827, 1.2232] [3.0938×10-4, 7.2979×10-4]

0.4 [-0.3538, 1.0026] [-0.3534, 1.0032] [3.6373×10-4, 6.8548×10-4]

0.6 [-0.1226, 0.7831] [-0.1222, 0.7838] [4.2389×10-4, 6.4299×10-4]

0.8 [0.1106, 0.5642] [0.1111, 0.5648] [4.9030×10-4, 6.0228×10-4]

1 [0.3458, 0.3458] [0.3464, 0.3464] [5.6330×10-4, 5.6330×10-4]

Table 6. Numerical results and absolute errors of 
( )t

3X
 for Example 2 at ω1 =ω2 =ω3 =1, h =0.001 and t =1.

   

0  [2.2517, 3.3776] [5.9374, 12.7914] [16.8425, 57.0920]

0.2  [2.4018, 3.3025] [6.7016, 12.2538] [20.5781, 53.4113]

0.4  [2.5519, 3.2274] [7.5119, 11.7278] [24.7487, 49.8770]

0.6  [2.7020, 3.1524] [8.3682, 11.2134] [29.3793, 46.4859]
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( )t

3X
 of Example 2 for ω1 =0.95, ω2 =0.87 ω3 =0.79, h =0.1 and

t =1.

Figure 3. Bar plot of approximate solutions and absolute error versus σ of  of Example 2 for
h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.
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Exact solutions Approx. solutions Absolute errors
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( )t
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h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.

Figure 5. Bar plot of approximate solutions and absolute error versus σ of X̃ 3(t) of Example 2 for

h =0.1, ω1 =ω2 =ω3 =1 and  = 0.6.

5. Conclusion

In this chapter, system of fractional differential equations with fuzzy‐valued functions was
constructed to study the system in imprecise environment. We assessed numerical interpre‐
tations of the system using Grünwald‐Letnikov’s fractional derivative scheme, which has not
been considered for fuzzy differential equations in literature hitherto. In addition, we illus‐
trated the stability of the scheme for the system of fuzzy fractional differential equations.
Furthermore, we conducted experiment on some nonlinear fuzzy fractional systems and
successfully attained the approximated solutions. From the entire discussion and analysis,
collectively, we come up with the following remarks:
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• Scrutinizing differential models with arbitrary fractional order in combination with fuzzy
theory is effectively advantageous to analyze the change in the system at each fractional
step with imprecise parameters rather than crisp values.

• Grünwald‐Letnikov’s fractional definition is equivalent to either Riemann‐Liouville
fractional definition or Caputo-type fractional definition in case of homogeneous and
inhomogeneous initial values, respectively. Since Riemann‐Liouville fractional definition
and Caputo‐type fractional definition are greatly applicable for defining fractional deriva‐
tive of fuzzy‐valued functions, so is Grünwald‐Letnikov’s fractional definition found to be.

• Approximations of examples attained by undertaking Grünwald‐Letnikov’s fractional
derivative approach are efficaciously convergent towards the exact solutions that prove the
method to be appropriate for the solutions of fuzzy differential equations of fractional order
to a great extent.

• Pointwise explanation of errors through bar graph is conspicuously helpful in locating the
error between exact and calculated solutions at each time by simply measuring the length
of the bar at the respective point.
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Abstract

In this chapter, an analysis of convection heat transfer in an experimental heat exchanger
using experimental data and numerical simulation data (by means computational fluid
dynamics  (CFD)) is presented. Work was realized in four stages. In the first stage,
experimental data were obtained from a heat exchanger installed in Thermohydraulic
Laboratory from CIICAp. Analytic calculus with experimental data was realized in the
second stage to  establish proper values in boundary and operation conditions for
numerical simulation. The third stage includes numerical simulation using CFD of the
heat exchanger domain with both working fluids (air-water). At the fourth stage, an
analysis of the results was performed.

The obtained results are a fair representation of theoretical behavior since phenomena
such as thermal and hydrodynamic boundary layers can be observed, which are in
function of the flow, either laminar or turbulent. The production of vortices in the case
of air in the area of wake is also observed, all this information is useful for optimiza‐
tion and to propose other arrangements that are to be studied in order to achieve
improvements in efficiency of heat exchanger. The averaged errors between analytical
calculus estimated using experimental data and numerical simulations did not exceed
20%. The ratio between simulation and real heat exchange is 85%.

Keywords: Heat Exchanger, Heat Transfer, computational fluid dynamics, CFD

1. Introduction

Analysis of heat transfer is necessary for optimization and better use of energy resources of the
heat exchangers; we provide the necessary information in terms of the behavior of fluids in

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



certain areas or arrangements to which more heat is transferred so that the more information
about the process is known; it will be possible to have a device with lower maintenance costs or
energy supply. Currently, computational fluid dynamics (CFD) has been emerged as a powerful
tool for the analysis of various processes that deal with fluids, and in the case of heat exchang‐
ers it is widespread and has proven to be a reliable tool for analysis. An example is the study by
Z.C. Liu and W. Liu. about the geometry of the pipes used in heat exchangers of shell and tube
type, which has been shown to modifying the geometry of the tube and modifying the fluid flow
patterns, which results in variations in heat transfer as well as the various flow regimes, and
that as the fluid velocity increases thereby increasing the turbulence the heat transfer also
increases [1].

The study of the loss of efficiency in heat exchangers because of corrosion or malfunction of
the system is also important, as presented in the work of Torres-Tamayo et al., which explains
how it affects resource consumption; in this work the coefficients of heat transfer by convection
are determined as well as the impact of this corrosion decreased the system efficiency because
it showed a decrease in the thermal efficiency of 70% in heat exchangers due to such problems
[2, 3].

1.1. Experimental heat exchanger

The experimental heat exchanger is of tubular type, cross flow occurs at 90°, it comprises
vertical tubes placed in a 10 × 4 matrix in an arrangement of square type [4] as shown in
Figure 1.

Figure 1. Frontal, lateral, and isometric view from heat exchanger (dimension in millimeters).

The heat exchanger is provided with an acrylic duct that is used to conduct the air to the tube
arrangement (Figure 2). Water flows through 40 tubes vertically and constantly by means of
a recirculation circuit which comprises a pump and a reservoir, and the air is supplied by a
vertical fan.

Numerical Simulation - From Brain Imaging to Turbulent Flows190



certain areas or arrangements to which more heat is transferred so that the more information
about the process is known; it will be possible to have a device with lower maintenance costs or
energy supply. Currently, computational fluid dynamics (CFD) has been emerged as a powerful
tool for the analysis of various processes that deal with fluids, and in the case of heat exchang‐
ers it is widespread and has proven to be a reliable tool for analysis. An example is the study by
Z.C. Liu and W. Liu. about the geometry of the pipes used in heat exchangers of shell and tube
type, which has been shown to modifying the geometry of the tube and modifying the fluid flow
patterns, which results in variations in heat transfer as well as the various flow regimes, and
that as the fluid velocity increases thereby increasing the turbulence the heat transfer also
increases [1].

The study of the loss of efficiency in heat exchangers because of corrosion or malfunction of
the system is also important, as presented in the work of Torres-Tamayo et al., which explains
how it affects resource consumption; in this work the coefficients of heat transfer by convection
are determined as well as the impact of this corrosion decreased the system efficiency because
it showed a decrease in the thermal efficiency of 70% in heat exchangers due to such problems
[2, 3].

1.1. Experimental heat exchanger

The experimental heat exchanger is of tubular type, cross flow occurs at 90°, it comprises
vertical tubes placed in a 10 × 4 matrix in an arrangement of square type [4] as shown in
Figure 1.

Figure 1. Frontal, lateral, and isometric view from heat exchanger (dimension in millimeters).

The heat exchanger is provided with an acrylic duct that is used to conduct the air to the tube
arrangement (Figure 2). Water flows through 40 tubes vertically and constantly by means of
a recirculation circuit which comprises a pump and a reservoir, and the air is supplied by a
vertical fan.

Numerical Simulation - From Brain Imaging to Turbulent Flows190

Figure 2. Isometric view of air duct and heat exchanger.

1.2. Instrumentation

The experimental heat exchanger is implemented with 32 fixed thermocouples, a flow meter
is used to measure the flow of water, and readings of air velocity are taken during the test with
an anemometer. Thirty-two thermocouples are connected to a data acquisition system in which
the analogic signals received are changed to digital signals and then processed and captured
in a computer using the LAB-VIEW software. In Figure 3, a diagram of the device with basic
instrumentation installed therein to monitor the variables of interest is shown.

Figure 3. Diagram of instrumentation.
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An anemometer was used to measure the velocity of the air entering to feed channel to heat
exchanger (Figure 4).

Figure 4. Hot-wired anemometer.

A flowmeter is installed in the water supply pipe before entering into the arrangement of heat
exchanger tubes (Figure 5).

Figure 5. Turbine flow meter installed in the water supply pipe.

The procedure for data collection is as follows:

1. Ingress of air.

2. Ingress of water (just to fill pipes).
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3. Resistances are turned on for heating the air.

4. Temperatures are expected to stabilize and begin to measure air velocity in anemometer.

5. Water circulation starts and flow meter readings are taken.

6. Once the desired output and inlet temperatures on heat exchanger are achieved, about 15
min of data are taken.

Temperatures

Water

Variable °C K

T inlet 18.8000 291.9500

Inner wall (calculated) 28.9000 302.1500

T outlet 20.1600 293.3100

Air

T inlet 63.1600 336.3100

T outer wall (action) 29.0000 302.1500

T outlet 32.8900 306.0400

Operation data

Water flow rate 1.99 × 10−04 m3/s

Air speed 1.2835 m/s

Table 1. Averaged variables from experimental measurements.

Water properties at 19°C (average)

Density 998.8800 kg/m3

Cp 4184.4000 J/kg K

K 0.5962 W/m K

Viscosity 1.11 × 10−03 kg/m s

Pr 7.8740

Air properties at 48°C (average)

Density 1.0970 kg/m3

Cp 1007 J/kg K

K 0.0272 W/m K

Viscosity 1.95 × 10−05 kg/m s

Pr 0.7233

Table 2. Averaged properties of fluids.
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On the completion of the measurements and obtaining the data needed, these are organized
and averages are computed, which are used for numerical simulation. The averages of the
main variables measured are presented in Table 1. With the acquired data and obtaining the
properties of both fluids, it is possible to calculate the rate of heat transfer and convective
coefficients, and then they are used to perform numerical simulation. It is also necessary to
calculate the average of fluid properties (Table 2).

1.3. Theoretical approach

The aim of the presented calculations is to obtain heat transfer and convective coefficients for
both fluids. In reality, the convection phenomenon is complex and a constant numerical value
for the heat convective coefficient is obtained; while stationary the heat transfer phenomenon
is impossible; however, it is possible to obtain a representative average performing theoretical
assumptions that are valid; in this case, the variables will be obtained with a theoretical model
in which the same amount of heat is transferred with constant convective coefficients per unit
average value area along the entire contact surface for both fluids [5]. The nomenclature of
variables used on analytical calculation can be found in Table 3.

Variable Symbol Units

Density ρ kg/m3

Specific heat Cp J/kg K

Thermal conductivity coefficient k W/m K

Dynamic viscosity μ kg/m s

Prandtl number Pr –

Temperature T K

Heat transfer Q W

Velocity v m/s

Volumetric flow ύ m3/s

Mass flow ṁ kg/s

Temperature gradient ΔT K

Convective coefficient h W/m2 K

Nusselt number Nu –

Reynolds number Re –

Transversal section area AST m2

Heat transfer area ATC m2

Inner diameter Di m
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Variable Symbol Units

Outer diameter De m

Diagonal passage SD m

Longitudinal passage SL m

Transversal passage ST m

Thickness l m

Hydrodynamic inlet length L H  m

Thermal inlet length L T  m

Table 3. Nomenclature.

Subindex 1: Property or variable belonging to air.

Subindex 2: Property or variable belonging to water.

From equation for energy balance:

2 2 2  balanceQ m Cp T= D& (1)

The total water mass flow:

2 2 2 m ύ r=& (2)

The temperature gradient for the energy balance is:

2 2 2  balance outlet inletT T TD = - (3)

As the heat transfer rate is known, the heat transfer coefficient can be obtained from:

( )2 2 2 2conv T CQ h A T= D (4)

ΔTC2 can be obtained from:

2 inner wall water avC erageT T T-D =

where

Analysis of Heat Transfer in an Experimental Heat Exchanger Using Numerical Simulation
http://dx.doi.org/10.5772/63957

195



2 outlet 2 inlet

2water average
T TT +

=

the temperature of the inner wall is not known; however, the temperature of the outer wall,
the tube thickness 1 mm, and thermal conductivity of copper tube, which is 380 W/m K and
also has 40 tubes, are known; and as Qcond =Qconvection =Q2 it follows that:

( )( )1 ln40

2

conduction
inn

outter

outt
er

innerwal e al rw ll

rQ
r

T T
Lkp

æ ö
ç ÷
è ø= -

(5)

As the temperature of the inner wall and the average water temperature are known, it is
possible to obtain the heat transfer coefficient, which from Eq. (4) yields

( )
2 

2
2 2

 convection

T C

Qh
A T

=
D

Now we can calculate the energy balance for air. First, the volumetric flow must be obtained:

1 1 1= stύ Av (6)

The air mass flow is calculated with the following equation:

r=& 1 1 1m ύ (7)

Then, Q2 = Q1 and it is possible to obtain the heat transfer coefficient of air, using h from Eq. (4):

( )
2

1
1 1T C

Qh
A T

=
D

The area for convection transfer to the air is

1 40 oTA D Lp=

And the temperature gradient ΔT1C  would be
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1  C airaverage outterwallT T TD = -

As the temperature of the outer wall is known, the average temperature is obtained
as follows:
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All the above calculations are based on energy balances, but it is possible based
on Nusselt numbers for comparison calculations. To calculate the Nusselt number
for water, first obtain the Reynolds number to determine the conditions of the
fluid:

2 2
2

2

 iv DRe
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r
= (8)

The water velocity is given by
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 ύv
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= (9)

The area AST 1 of the cross section for the flow of water is
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o
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The Reynolds number describes the flow rate of fluids according to their size, and
flow in a tube is considered laminar if it holds that Re < 2300. It is considered in
transition if 2300 <Re <4000. And it is considered turbulent if Re > 4000 [5, 6].

The Nusselt number for a constant flow of heat per unit area for a fully developed
flow and laminar flow along a circular pipe is 4.36. In this case, the water has a
laminar flow and therefore the Nusselt number for this fluid is already known.

The heat transfer coefficient would be described by the following equation:

2 2
2

i

Nu kh
D

= (10)
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And the heat transfer is obtained from Eq. (4):

( )2 2 2 2conv T CQ h A T= D

where

2 40T iA D Lp=

Now the mass coefficient is calculated based on the Nusselt number for air leaving the heat
transferred by air which is absorbed by water Q2 =Q1.

It is necessary to know the hydraulic diameter of the cross section that crosses in air:

4 C
h c

AD L
P

= = (11)

As the air flows through the matrix or tube bank, the speed will remain unchanged because
the volume of air flow will be lower in the area where this is in contact with the tubes, and to
maintain flow mass, the speed increases accordingly. Then, it is interesting to know the
maximum speed reached by the air; this is the type of arrangement of the tube bank, and this
case is rectangular arrangement type and the equation for the maximum speed is defined as

T
max

T o

Sv v
S D

=
- (12)

And the Reynolds number according to Eq. (8) is

c
2  maxv LRe

µ
r

= (13)

If the Reynolds number is the turbulent regime as in this case, the equation determined by
Churchill and Bernstein can be applied, which is valid for all Reynolds numbers [6]:
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As the thermal conductivity of air is known from Eq. (10), it is possible to know the mass
coefficient:

1 1
1

o

Nuh k
D

=

2. Numerical simulation

The geometry used for the analysis has exactly the same dimensions as that of the heat
exchanger installed on the laboratory (1:1 scale) in order to obtain data and represent both
volumes of fluid (water and air) within the domain. This geometry was formed using the Solid
Works software. Once completed, it is exported to the ICEM CFD software that is used to
discretize the domain and to assign the name of the frontiers or boundaries of the total domain.

The discretization of the model is the partition or geometry in small elements called control
volumes, where the Navier-Stokes equations will be evaluated, which govern fluid dynamics.
For discretization, it is necessary to define the existing volumetric bodies; in this case, there
are total 41 bodies; 40 of them are tubes, which represent the total volume of water, and the
remaining body represents the air passing through them.

The discretization or (or mesh) selected was unstructured. Then, the parameters for the
partition of the total volume into smaller volumes are set; these parameters are set in order to
have the maximum size and the minimum size that can have the volume or item in a specific
area.

Once meshed, the next step is to establish the boundary conditions in the domain; these
conditions are very important because the solution is based on them and must be known before
carrying out numerical simulation as these represent the actual phenomenon being simulated;
and if they are not representative, it is impossible to validate such a simulation.

2.1. Preprocessing

For numerical simulation, the software ANSYS CFX was used, which is generally used to
provide the numerical solution of differential equations of fluid dynamics. For solving such
equations, the first step is known as preprocessing; at this stage, the discrete model is loaded
and disclosed to the program boundary conditions, and to the parameters for the convergence
of the solution. It was decided to separate the model into two domains as there are two fluids:
one represents the total volume of water and the other the total volume of air as well as the
respective boundaries. The boundary conditions are presented in Table 4.

2.2. Processing

At this stage, the Navier-Stokes equations are solved for each subdomain global system of
equations.
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1. The partial differential equations are integrated into all generated control volumes; the
Navier-Stokes and models of thermal energy and turbulence are assigned to each node of
each element or subdomain.

2. These integral equations become a global system of equations because each control
volume is connected to the adjacent nodes.

3. The global system of equations is solved iteratively; this is necessary because of the
nonlinear nature of the equations, and then the exact solution is approached for the
solution. That is, the numerical solution obtained by each iteration should converge
toward and approach a condition previously considered.

Zone Boundary type Condition Variables

External domain (turbulent air) Magnitude Temperature

Case Wall Adiabatic no slip – –

Air inlet Inlet Mass flow ṁ =0.1284 kg / s 336.3100 K

Air outlet Outlet Pressure 0 Pa 306.0400 K

Outer tube wall Wall Convection No slip h1 =77.6200W / m2 K 302.1500 K

Internal domain (laminar water) Condition Temperature

Water inlet Inlet Mass flow ṁ  = 0.1987 kg/s 291.9500 K

Water outlet Outlet Pressure 0 Pa 293.3100 K

Inner tube wall Wall Convection no slip h2 =   184.1873 W / m2 K 302.0400 K

Table 4. Boundary conditions for numerical simulation.

2.3. Postprocessing

Postprocessing is the final stage of CFD simulation, which allows visualizing the results of
flow behavior inside the domain. There are several options to observe it, for example, contours,
streamlines, and vectors. In the next section, the examples of post-processing are presented.

3. Results

As the results of the numerical simulation, fluids behave as expected according to the theory;
for the case of water, as has flow within pipes, it is expected that the hydrodynamic and thermal
layers are fully formed and have a length region input and a fully developed area.

As can be seen from Figure 6, tubes have an overall length sufficient for the water flow
developing hydrodynamically and with a predominance of the fully developed flow as
established in the calculations in Section 1.3.
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Figure 6. Formation and development of the hydrodynamic boundary layer, velocity vectors in the inlet region, and
development of the velocity boundary layer in the total length tubes.
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The temperature of tubes wall is not constant for the thermal boundary layer, and, therefore,
the thermal boundary layer has different temperatures at the interface of the tube wall and the
fluid; as can be observed, it behaves correctly. Figure 7 shows that the fluid cooler is located
at the center of the tube, and the fluid is at a higher temperature at the boundary.

Theoretically, the air velocity should be higher where the circulating cross section (Figure 8)
is reduced; wake vortices should also be formed, generated by the effect of separation of the
hydrodynamic boundary layer in the tube wall (Figure 9).

Figure 7. Development of thermal boundary layer: middle plane of tubes and transversal plane at different heights.
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Figure 8. Air velocity contour in a cross section cut of 24 cm of the water inlet to the arrangement of pipes.

Figure 9. Close-up view of streamlines of airflow at the transversal plane.

Figure 10. Contour static gauge pressure in the matrix of tubes.
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Figure 11. Outline temperature air flowing through the tube arrangement.

The maximum speed calculated theoretically was 1.711 m/s and from simulation it is 1.565 m/
s, which represents a percentage error of 8.5% that can be considered small due to the com‐
plexity of the phenomenon. In the simulation results, it is possible to observe the formation of
high-pressure areas where air directly enters the wall of the tube and low-pressure zones where
the hydrodynamic wake zone (Figure 10) is generated.

For air temperatures, in a manner analogous to the water, the lower temperature is found at
the boundary between the outer tube wall and the fluid as shown in Figure 11.

The average temperature difference in the tubes is approximately 4°C between numerical
simulation and experimentally obtained (Figure 12) whereas the average temperature
difference at the air outlet is about 6°C (Figure 13).

Figure 12. Temperatures measured vs. numerically simulated in the outer wall of tubes from the heat exchanger.
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Figure 13. Temperatures measured vs. numerically simulated in the air outlet of the heat exchanger.

Although temperatures are not exactly the same, the differences are relatively small as well as
the behavior is expected theoretically; it should also be noted that when working with heat
transfer convection errors in physical quantities will usually be larger than with phenomena
such as conduction, which is a complex phenomenon, as there are a greater number of variables
involved.

Table 5 shows the results of calculus of heat transfer rate from both working fluids that are
obtained by energy balances. In addition, the Nusselt number was calculated to subsequently
obtain the convective coefficients of both fluids.

Magnitude Error

QWater 1131.1976 W 15.1500 %

Qair 1333.1700 W

NuWater 1489.5220 W 19.0130 %

Nuair 1839.2200 W

Table 5. Comparison of the magnitudes of the rate of heat transfer test analyzed.

In order to represent the efficiency of numerical simulations, the following ratio was calculated:

Re 1131.19 0.85
1333.17

al

Simulation

Q
Q

h = = =

which is quite acceptable for such heat transfer problems.
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4. Conclusion

Numerical simulations were performed using different operational parameters for various
measurements with experimental data in order to have a comprehensive approach to the
analysis and comparison of experimental and simulated data.

The results of the numerical simulations were validated with calculations and the data
obtained by measurements on the heat exchanger, with the average errors of 19% and 15%,
respectively, for heat transfer calculus, considering that the phenomenon of convection is
difficult to simulate perfectly because the equations and assumptions made to be represented
analytically are not accurate enough.

Theoretically, the behavior of fluids and heat transfer was as expected. That is, it was possible
to find out the results of the simulation of all phenomena involved in the convection generation
of hydrodynamic and thermal boundary layers, the wake regions and production of vortices,
and the areas of high and low pressures.
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Abstract

The  chapter  presents  solving  steady-state  inverse  heat  transfer  problems  using
Computational Fluid Dynamics (CFD) software. Two examples illustrate the applica‐
tion of the proposed method. As the first inverse problem determining the absorbed
heat flux to water walls in furnaces of steam boilers is presented in detail. Three different
measurement devices (flux tubes) were designed to identify steady-state boundary
conditions in water wall tubes of combustion chambers. The first meter is made of a
short eccentric tube in which four thermocouples on the fire side below the inner and
outer tube surfaces are installed. The fifth thermocouple is situated at the rear of the
tube on the housing side of the water wall tube. The second meter has two longitudi‐
nal fins that are welded to the bare eccentric tube. In the third option of the instru‐
ment, the fins are attached to the water wall tubes but not to the flux tubes as in the
second version of the flux tubes. The first instrument is used to measure the heat flux
to water walls made from bare tubes, while another two heat flux tubes are designat‐
ed for measuring the heat flux to membrane walls. Unlike the existing devices, the flux
tube is not attached to neighboring water-wall tubes. The absorbed heat flux on the
outer surface and the heat transfer coefficient at the inner surface of the flux tube are
determined from temperature measurements at internal points. The thermal conduc‐
tivity of the flux-tube material is a function of temperature. The nonlinear inverse
problem of heat conduction (IHCP) is solved using the least-squares method. Three
unknown parameters are determined using the Levenberg–Marquardt method. In each
iteration, the temperature distribution in the cross section of the heat flux instrument is
determined using the ANSYS/CFX software.

Another inverse heat transfer problem will be a CFD simulation carried out for the
platen superheater placed in the combustion chamber of the circulating fluidized bed
(CFB) boiler. Velocity, pressure, and temperature of the steam, as well as the tempera‐
ture of the tube wall with the complex cross section, were computed using the ANSYS/
CFX software. The direct and inverse problems were solved. In the first inverse problem,
the heat transfer coefficient on the flue-gas side was determined based on the meas‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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ured steam temperature at the inlet and outlet of the three pass steam superheater. In
the second inverse problem, the inlet steam temperature and the heat transfer coefficient
on the flue-gas side were estimated using measured steam temperatures at selected
locations of the superheater. The Levenberg–Marquardt method was also used to solve
the second inverse problem. At every iteration step, a direct conjugate heat transfer
problem was solved using the ANSYS/CFX software. The CFX program was called and
controlled  by  an  external  program  written  in  Python  language.  The  Levenberg–
Marquardt algorithm was also included in the Python program.

Keywords: CFD modeling, inverse heat transfer problem, heat flux measurement,
pulverized coal-fired boiler, furnace, water wall, circulating fluidized bed boiler, plat‐
en superheater

1. Introduction

The aim of direct conjugate heat transfer problems was determining the distribution of
pressure, velocity, and temperature of the fluid and solid in the analyzed area when boundary
conditions are known. In inverse problems, based on temperature measurements at chosen
points located within the analyzed domain, boundary conditions are determined. Nonlinear
inverse problems are solved iteratively. At every iteration, the direct problem is solved. When
analyzed domain has a complex shape, then it is necessary to apply CFD software to solve the
direct problem. In particular, when conjugate boundary problem is solved, that is, when the
temperature fields in the liquid and solid are determined simultaneously, use of CFD software
becomes indispensable. Two inverse problems are solved in this chapter. Identification of
boundary conditions in the tube of membrane water wall was carried out in the first example.
The subject of the second inverse problem is to identify the temperature of the steam entering
the superheater and the identification of the heat transfer coefficient on the outer surface of
the superheater. The Levenberg–Marquardt method was used to solve both inverse problems.
At every iteration step, a direct conjugate heat transfer problem was solved using the ANSYS/
CFX software. The CFX program was called and controlled by an external program written in
Python language. The Levenberg–Marquardt method that was used for solving nonlinear least
squares problem was also included in the Python program. This chapter is based mainly on
two papers published earlier [1, 2].

2. Measurements of heat flux absorbed by water walls in combustion
chambers

Measurements of steady-state heat flux and heat transfer coefficient are subject of many
current studies [3–10]. Heat flux measurements absorbed by the water walls of the com‐
bustion chamber are used in the design of the steam boilers or in the control systems of
the soot blowers. A method for online measurement of the heat flux to the refractory lin‐
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ing in steam generators of municipal solid waste incinerators is presented in [9, 10]. The
heat flux measurement can be used for the online monitoring of the refractory lining as
well as for determining the build up of deposits on the membrane walls [9, 10]. Various
methods are used for solving inverse heat conduction problem (IHCP) to estimate surface
heat flux or heat transfer coefficient. A proper understanding of combustion and heat
transfer in furnaces and heat exchange on the water-steam side in tubes needs an accurate
measurement of heat flux which is taken over by membrane furnace walls [1, 8–23]. Iden‐
tification of boundary conditions has also great practical meaning in boiler superheaters
[2]. There are three wide categories of heat flux measurements of the boiler water-walls:
(1) portable heat flux devices inserted in inspection ports [11–15], (2) Gardon-type heat
flux meters welded to the sections of the boiler tubes [11–14], (3) tubular-type instruments
located between two neighboring boiler tubes [1, 2, 7, 8, 16–21]. Tubular-type and Gardon
meters placed on the furnace tube wall in intense slagging areas can be important boiler
diagnostic device for monitoring of slag deposition [2, 22–24]. If a heat flux instrument is
to measure the absorbed heat flux accurately, it must be similar to the boiler tube as
closely as possible. It is crucial for radiant heat exchange between the flame and measur‐
ing instruments. Two main factors in this respect are the emissivity and the temperature
of the absorbing surface. Because the instrument will almost always be coated with ash,
mainly the properties of the ash and not the instrument dominate the situation. Due to
the significant variation of the thermal conductivity, accurate measurements can be per‐
formed only if the deposit on the meter is corresponding to that on the surrounding
tubes. The tubular-type instruments known also as flux tubes satisfy this requirement. In
these devices, the measured heat flux tube temperatures are used for indirect measure‐
ment of heat flux.

The measuring tube is equipped with two thermocouples in holes of known radial loca‐
tions r1 and r2. The thermocouples are led out to the junction box where they are connect‐
ed differentially to give a flux-related electromotive force.

The use of the one-dimensional heat conduction equation for determining temperature
distribution in the tube wall gives the simple relationship:

1 2
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ln( / )m

o

k f fq
r r r

-
= (1)

where f1 and f2 are measured wall temperatures at the locations r1 and r2, respectively, and
ro is the outer radius of the tube. The symbol k denotes the thermal conductivity of the
tube material. The accuracy of this equation is low because of the circumferential heat
conduction in the tube wall.
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Figure 1. Flux tubes made of bare tubes; (a) flux tube with three temperature sensors, (b) flux tube with five tempera‐
ture sensors.

Therefore, the measurement of the heat flux absorbed by water-walls with satisfactory
accuracy is a challenging task. Considerable work has been done in recent years in this field
[1, 2, 9–21, 24]. Previous studies to precisely measure the local heat flux to membrane water
walls in steam boilers failed due to unknown water-side heat transfer coefficients. The heat
flux can be only determined accurately if the water-side heat transfer coefficient will be
identified experimentally [7, 8, 15–18]. In this section, a numerical method for determining the
heat flux in boiler furnaces, based on measured interior flux-tube temperatures, is presented.
The tubular type device has been designed (Figures 1 and 2) to provide a highly accurate
measurement of absorbed heat flux qm, water-side heat transfer coefficient hf, and water-steam
temperature Tf. The number of thermocouples is greater than or equal to three. Unlike existing
devices, the developed flux tubes are manufactured from bare or longitudinally finned tubes
which are not welded to adjacent water-wall tubes. Temperature distribution in the flux tube
is symmetric and not distorted by different temperature fields in neighboring tubes. Significant
differences in water temperature can occur in the neighboring water wall tubes of sub- and
supercritical once-through boilers due to the nonuniform heat flux distribution across the
width of the combustion chamber wall. For this reason, the flux tubes presented in the chapter
are especially useful for measurements in the once-through boilers. The thermal conductivity
of the flux-tube material depends on temperature. The meter is made from a short piece of the
eccentric tube. It contains two or four thermocouples on the fireside below the inner and outer
surfaces of the tube. The third (Figure 1a) or the fifth thermocouple (Figures 1b, 2a, and 2b) is
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located at the rear of the tube (on the casing side). The boundary conditions on the outer and
inner surfaces of the water flux tube must then be determined from temperature measurements
at the interior locations. Two (Figure 1a) or four (Figures 1b and 2) K-type sheathed thermo‐
couples, 1 mm in diameter, are inserted into holes, which are parallel to the tube axis, that is,
parallel to the direction of flow of the water–steam mixture. The end of the sheathed thermo‐
couple, where the hot junction is situated, was bonded to the bottom of the hole using ceramic
adhesive to reduce the contact resistance between the thermocouple jacket and tube flux
material. The heat transfer by conduction along the thermocouple is minimized because the
thermocouples pass through isothermal holes with a depth of 60 mm. The thermocouples are
brought to the rear of the tube in the slot machined in the tube wall. An austenitic guard strip
with a thickness of 3 mm—welded to the tube—is used to protect the thermocouples from the
incident flame radiation. A K-type sheathed thermocouple with a pad is used to measure the
temperature at the rear of the flux tube. This temperature is very close to the water-steam
temperature. Because the heat flux on the rear surface of the measuring tube is zero (membrane
water-walls are perfectly insulated) or very small (bare tube water-walls), the rear part of the
tube is almost unheated. For this reason, there is very little difference in temperature between
the wall and the fluid in the rear part of the flux tube. This was proved both, by experiments
and computer calculations.

Figure 2. Flux tubes for membrane water walls; (a) fins welded to the flux tube, (b) fins welded to adjacent water wall
tubes.

An IHCP was solved using the least squares method. Three unknown parameters were
determined using the Levenberg–Marquardt method. At every iteration step, the temperature
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distribution in the cross section of the heat flux tube was computed using the ANSYS/CFX
software [25]. Test calculations were conducted to estimate the accuracy of the presented
method. The uncertainty in determined parameters was calculated using the Gauss uncer‐
tainty propagation rule. The technique presented in this chapter is appropriate for water walls
made of bare tubes (Figure 1a and b) and membrane water-walls (Figure 2a and b). The new
technique has advantages in view of the simplicity and accuracy.

The method can be used to determine the resistance of scale or iron oxide on the inner surface
of the water wall tubes. The thermal resistance R of deposits on the inner surface of the
measuring device can be determined experimentally using the following relationship

1 1 ,
f c

R
h h

= - (2)

where the symbol hf stands for the equivalent heat transfer coefficient for the tube inner surface
with a scale layer.

The thermal resistance Rs = δs/ks of the scale layer can be determined analytically, but the
thickness δs and thermal conductivity ks of the scale layer are difficult to measure in practice.

The heat transfer coefficient hc can be identified after the beginning of the boiler operation
when the tube inner surface is clean. Also, the value of hc can be estimated after chemical
cleaning of the tube internal surfaces. An equivalent heat transfer coefficient hf is monitored
online during the boiler operation. Another measure of scale presence on the tube inner surface
is the maximum temperature of the outer surface of the heat flux tube, which increases with
the growth of scale thickness on the inner surface. If the thermal resistance of the scale and the
maximum temperature of the heat flux tube is greater than the limit values, the boiler should
be cleaned chemically.

2.1. Theory

The water walls can be made of plain tubes or tubes which are welded together with steel flat
bars (longitudinal fins) to form membrane wall panels. The water walls are insulated on the
rear side and exposed on the front side to radiation from a combustion chamber. The thermo‐
metric inserts were manufactured in the laboratory and then securely welded to the water wall
tubes at various levels in the combustion chamber of the steam boiler.

The following assumptions in a heat conduction model of the flux tube are made:

• the temperature distribution is two dimensional and steady state,

• the thermal conductivity of the flux tube and membrane wall may depend on temperature,

• the heat transfer coefficient hc and the scale thickness δs are uniform on the inner tube
circumference.

The temperature distribution T is governed by the nonlinear partial differential equation
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[ ( ) ] 0k T TÑ × Ñ = (3)

The unknown boundary conditions may be expressed as

( ) ( )
S

Tk T q s
n

¶é ù =ê ú¶ë û
(4)

where q(s) is the radiation heat flux absorbed by the exposed flux tube and membrane wall
surface. The local heat flux q(s) is a function of the view factor ψ(s)

( ) ( )mq s q sy= (5)

where qm is measured heat flux (thermal loading of the heating surface), and s denotes the
coordinate along the boundary (Figure 2). The view factor ψ(s) from the infinite flame surface
to the differential element on the membrane wall surface ds can be determined graphically [17],
or numerically [25].

In this chapter, ψ(s) was evaluated analytically for bare tubes and numerically for membrane
water-walls using the finite element program ANSYS/CFX [25] as a function of extended
coordinate s.

The boundary condition on the inner surface of the tube Sin is defined by Newton’s law of
cooling

( ) | ( | )
in ins f s f

Tk T h T T
n

¶é ù- = -ê ú¶ë û
(6)

where Tf designates the temperature of the water–steam mixture.

The rear side of the membrane water wall is perfectly insulated. Instead of the boundary
condition on the outer surface of the water wall tube, measured values fi of metal temperature
at internal locations of the flux tubes are known

( ) , 1, ,e i iT f i m= = ¼r (7)

where m = 3 or m = 5 designates the number of thermocouples (Figures 1 and 2). The unknown
parameters: x1 = qm, x2 = hf, and x3 = Tf were estimated using the least-squares method. The
symbol rin = df/2 = dt/2 stands for the inner tube radius. The symbols df and dt designate the inner
diameter of the flux and water wall tube, respectively. Unknown parameters x = (x1, …, xn)tr

for n = 3 are selected so that computed temperatures T(x, ri) agree within certain limits with
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the experimentally measured temperatures fi. The location of the thermocouple is defined by
the position vector ri. This may be expressed as

( , ) 0, 1, , .i iT f i m- @ = ¼x r (8)

The least-squares method is used to determine parameters x. The sum of squares

2

1

( ) [ ( , )]
m

i i
i

S f T
=

= -åx x r (9)

can be minimized by a general unconstrained method.

However, the properties of (9) make it worthwhile to use methods designed specifically for
the nonlinear least-squares problem. In this work, the Levenberg–Marquardt method [26, 27]
is used to determine the parameters x1, x2 and x3. The Levenberg–Marquardt method performs
the k-th iteration as

( 1) ( ) ( )k k kd+ = +x x (10)

where

( ) ( ) ( ) 1 ( ) ( )[( ) ] ( ) [ ( )], 0,1,k k tr k k tr k km -= + - = ¼J J I J f T xnd (11)

where μ is the multiplier, and In is the identity matrix. The Levenberg–Marquardt method
is a combination of the Gauss–Newton method (μ(k) → 0) and the steepest-descent method
(μ(k) → ∞). The latter method is used far from the minimum, changing continuously to the
former as the minimum is approached. Initially, a small positive value of μ was selected,
for example, μ(1) = 0.01. If, at the kth iteration, the step δ(k) of (10) reduces S(x), then μ(k) is
decreased by a factor of 10 and trial solution is updated, that is, x(k+1) = x(k) + δ(k). In this
way, the algorithm is pushed closer to Gauss–Newton method. If within the kth iteration,
the step δ(k) does not reduce S(x), μ(k) is progressively increased by a factor of 10, for ex‐
ample, μ(k) = 10μ(k), each time recomputing δ(k) until a reduction in S(x) is achieved. The m
× n Jacobian matrix J of T(x(k), ri) is defined as
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where T(x(k ))  =  (T1(k ),  ...,  Tm(k ))tr. A finite-difference method was used to estimate the
Jacobian matrix at the approximate solution. The sensitivity coefficient defined in Eq. (12) is
important indicators of the ability to estimate the unknown parameters. Very small sensitivi‐
ties indicate the parameters difficult to estimate. The inverses of the sensitivities appear in the
variance propagation rule given by Eq. (16). Although the unknowns x1, x2, and x3, are not of
the same order of magnitude, the normalized and not normalized vector x gave the same
solutions. Therefore, the vector x was not normalized prior to the solution of the problem. The
iterative procedure is continued until the variations in xi

(k ), i  =  1,  …,  n are less than a small
preset tolerance ε. At every k-th iteration step, the temperature distribution T(x(k), ri) is
calculated using the element-based FVM method.

The estimates for the initial values of the parameters x1
(1), x2

(1), and x3
(1) are

(1)
(1) 1 2 3 4
1

1 2
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r r r

+ - +
= (13)
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(14)

(1)
3 5x f= (15)

where the radii are: ro = 0.035 m, rin = 0.020 m, r1 = 0.033 m, r2 = 0.026 m. The thermal conductivity
k(1) is evaluated at the mean temperature:
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Figure 3. Flux tube with constant thickness used to determine initial values of unknown sought parameters.

The relationships (13)–(15) were derived assuming one-dimensional temperature distribution
in the heat flux tube with constant thickness (Figure 3). In the formula (14), the tube wall
temperature at the distance: 0.2 (r2 – rin) from the inner surface was taken as the temperature
of the tube inner surface, which results in a lower initial value of the heat transfer coefficient
x2

(1).

The Levenberg–Marquardt method allows determining the desired parameters even for an
inaccurate estimation of their starting values since the steepest-descent method is used at the
beginning of the iteration process. The use of Eqs. (13–15) to select the initial values of
parameters makes it possible to find quickly a convergent solution with a small number of
iterations. By selecting other starting values, the correct solution is also obtained but with a
larger number of iterations.

The Levenberg–Marquardt method works very well in practice and has become the standard
of nonlinear least-squares procedures [26, 27]. The boundary value problem that is given by
Eq. (3) and boundary conditions (4) and (6) was solved at each iteration step by the element
based finite volume method using the ANSYS/CFX software. The CFX program was called
and controlled by an external program written in Python programming language [28]. The
Levenberg–Marquardt algorithm was also incorporated into the Python program.

2.2. Uncertainty analysis

The uncertainties of the determined parameters x* will be estimated using the error propaga‐
tion rule of Gauss [29–33]. The propagation of uncertainty in the independent variables:
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measured wall temperatures fj, j = 1, …, m, thermal conductivity k, radial rj and angular ϕj, j =
1, …, m, coordinates of the thermocouples is estimated from the following expression
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The symbols,σ f j

2 , σrj

2, σφj

2, and σk
2 designate variances of measured temperatures, radial, and

angular thermocouple locations and thermal conductivity.

The 95% uncertainty in the estimated parameters can be expressed in the form xi = xi
* ± 2σxi

,

where xi = xi
*, i = 1, 2, 3 represent the value of the parameters obtained using the least squares

method.

The sensitivity coefficients ∂xi/∂fj, ∂xi/∂rj, ∂xi/∂ϕj, and ∂xi/∂k in Eq. (16) were approximated by
the central difference quotients
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where δ is a small positive number.

The error propagation rule given by Eq. (16), which is also known as the principle of the
variance propagation, is used extensively to assess the uncertainty of indirect steady-state
measurements.

2.3. Test computations

Four thermometric inserts will be investigated. In the first flux tube (Figure 1a) made from a
plain eccentric tube, the wall temperature is measured at two locations at different radii on the
fire side. The third thermocouple is placed on the outer tube surface on the insulated side of
the water wall. In the second flux tube (Figure 1b), made also from the bare tube, four
thermocouples are placed at the forward tube part. The fifth temperature sensor is situated at
the same position as in the first heat flux. The third flux tube (Figure 2a) has two longitudinal
fins, which are not welded to the adjacent water wall tubes, so the temperature distribution in
the measuring device is not disturbed by the water wall tubes. The fourth device (Figure 2b)
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is without fins, which are welded to the neighboring water wall tubes. There are four ther‐
mocouples located at different radii and angles in the flux-tube wall on the fire side, and one
thermocouple is attached to the outer tube surface on the back side of the water wall.

2.3.1. Flux tube made from bare tube

First, the temperature distribution in the cross section of the flux tube will be determined.
The following data were adopted for the calculation: absorbed heat flux, qm,e = 250 000
W/m2, heat transfer coefficient, hf,e = 30 000 W/(m2 K), and the temperature of the water-
steam mixture, Tf,e = 318°C. The view factor ψ(ϕ) was evaluated analytically and numeri‐
cally using the ANSYS software. The consistency of analytical and numerical results is
quite good (Figure 4).

Temperature, °C 100 200 300 400

Thermal conductivity, W/(m K) 50.69 48.60 46.09 42.30

Table 1. Thermal conductivity k(T) of steel 20G, as a function of temperature.

The view factor at φ = 180° is about 0.08 since a part of the incident radiation heat flux from
the combustion chamber passes through spaces between bare tubes and is reflected by the
adiabatic boiler refractory. The material of the heat flux tube is 20G steel. The composition of
the 20G mild steel is as follows: 0.17–0.24% C, 0.7–1.0% Mn, 0.15–0.40% Si, 60.04% P, 60.04%
S. The thermal conductivity of the heat flux tube is assumed to be temperature dependent
(Table 1).

Figure 4. Comparison of view factor calculated analytically and numerically using ANSYS/CFX for the flux tubes
shown in Figure 1. The origin of the cylindrical coordinate system is at the center of the outer flux-tube surface.
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The 95% uncertainty interval for thermal conductivity was assumed ±0.5 W/(m K) [34]. The
thermal conductivity of the flux-tube material (mild steel 20G) was approximated using a
simple linear function

( ) 53.26 0.0238k T T= - (18)

First, measured temperatures were generated artificially to test the method developed in the
chapter. The division of the flux-tube model into finite elements is shown in Figure 5. Three
different finite element meshes were used to compute the temperature at the locations 1–5.
The temperature distribution in the flux tube was calculated using ANSYS/CFX v13.0.

The coordinates of the temperature measuring points 1–5 are as follows:

P1 r1 = 33 mm, ϕ1 = 0°,

P2 r2 = 33 mm, ϕ2 = 15°,

P3 r3 = 26 mm, ϕ3 = 0°,

P4 r4 = 26 mm, ϕ4 = 15°,

P5 r5 = 35 mm, ϕ5 = 180°,

The temperature at the points 1–5 obtained for various meshes shown in Figure 5 are sum‐
marized in Table 2.

The analysis of the results listed in Table 2 shows that the temperature calculated using the
different grids are very close to each other.

Measuring point Temperature, °C Finite element mesh

Figure 5a Figure 5b Figure 5c

1 T1 418.31 418.36 418.55

2 T2 415.66 415.77 415.84

3 T3 374.08 373.75 374.14

4 T4 372.22 372.17 372.22

5 T5 321.11 321.10 321.12

Table 2. Flux-tube temperature at the points P1–P5 computed for different finite element meshes shown in Figure 5.
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Figure 5. Division of geometrical model of the heat flux tube into finite elements; (a) hexahedral mesh–1150 elements
hex8, 1692 nodes; (b) tetrahedral mesh—1909 elements tet4, 518 nodes; (c) hexahedral mesh—59520 elements hex8,
66759 nodes.
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Figure 6. Flux-tube temperature at the outer and inner surfaces as a function of angular coordinate φ1.

The temperature changes at the inner and outer surface on the flux-tube circumference which
were obtained using the mesh shown in Figure 5a are depicted in Figure 6.

First, the temperatures for the mesh shown in Figure 5a were taken as “measured data”:
f1 = 418.31°C, f2 = 415.66°C, f3 = 374.08°C, f4 = 372.22°C, f5 = 321.11°C (Table 2).

Taking the calculated temperatures as measured temperatures and using the same finite
element mesh, the following results are obtained:

• For three measuring points: P1, P3, and P5 (Figure 1a):

2  250 000.19 W/m ,mq =

2  30 000.38 W/(m  K),h =

  318.00 CfT = °

• For five measuring points: P1, P2, P3, P4, and P5 (Figure 1b):

2  249 999.94 W/m ,mq =

2  30 000.16 W/(m  K),h =

  318.00 C.fT = °
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When the temperature values obtained for the mesh illustrated in Figure 5c were adopted as
“measured data” then an inverse calculation using the mesh shown in Figure 5a gives little
different results:

• For three measuring points: P1, P3, and P5 (Figure 1a):

2  250 892.94 / m ,mq =

2  30 418.33 / (m  K),h =

  318.00 C.fT = °

• For five measuring points: P1, P2, P3, P4, and P5 (Figure 1b):

2  250 898.22 W/m ,mq =

2  30 498.66 W/(m ·K),h =

  318.01 C.fT = °

Analysis of the results demonstrates that for exact “measurement data,” the obtained results
are in very good agreement with the input values. The impact of measuring point number on
the results of the inverse problem solution can be better estimated when the measured
temperatures are assumed to be disturbed with pseudorandom errors, which are characterized
by the 95% uncertainty intervals: 2σ f j

= ± 0.2 K ; 2σrj
= ± 0.05 mm; 2σφj

= ± 0.5 ,  j = 1, …, 5;

2σk = ± 0.5 W / (m ⋅ K ). At first, the uncertainties in the estimated parameters: x1 = qm, x2 = h,
x3 = Tf will be determined when the flux tube illustrated in Figure 1a is used. To estimate
uncertainties in determined parameters, Eq. (16) was used. The partial derivatives appearing
in Eq. (16) were calculated using the central difference approximation (17). The results are
listed in Table 3.

The analysis of the results presented in Table 3 shows that the largest absolute values have
the following coefficients: ∂qm/∂fj, ∂hf/∂fj, ∂qm/∂rj, and ∂hf/∂rj.

For this reason to obtain small uncertainties in the heat flux qm and the heat transfer coefficient
hf, the random errors in measured temperatures and radial locations of the thermocouples
should be small.

Applying Eq. (16) yields: 2σ(x1)= 4073.50 W/m2; 2σ(x2)= 3921.12W/(m2·K); 2σ(x3)= 0.22 K. The 95%
uncertainties in the estimated parameters are as follows:
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2  250 000.2  4073.5 W/m ,mq = ±

2  30 000.4  3921.1 W/(m  K),fh ×= ±

  318.0  0.22 C.fT = ± °

Thermocouple number, j ∂xi/∂fj
∂qm/∂fj, W/(m2K) ∂hf/∂fj, W/(m2K2) ∂Tf/∂fj

–

1 2825.19 1656.70 −0.0018

2 2663.14 1589.09 0.0179

3 −2718.39 −3037.09 −0.0536

4 −2784.89 −3019.57 −0.0342

5 −119.11 2798.77 1.0722

Thermocouple number, j ∂xi/∂rj

∂qm/∂rj, W/(m2·mm) ∂hf/∂rj, W/(m2·K·mm) ∂Tf/∂rj, K/mm

1 −16347.09 −9468.39 0.0143

2 −15136.96 −8846.43 −0.1046

3 18012.69 27039.19 0.3659

4 18156.25 26298.52 0.2319

5 51.72 −1268.71 −0.4674

Thermocouple number, j ∂xi/∂ϕj

∂qm/∂ϕj, W/(m2·deg) ∂hf/∂ϕj, W/(m2·K·deg) ∂Tf/∂ϕj, K/deg

1 114.55 133.76 −0.0002

2 −1104.76 −670.19 −0.0079

3 −134.66 −150.88 −0.0027

4 768.36 812.51 0.0090

5 −0.24 0.88 0.0004

∂xi/∂k

∂qm/∂k, K/m ∂hf/∂k, 1/m ∂Tf/∂k, m·K2/W

5696.11 742.42 −0.0006

Table 3. Partial derivatives appearing in Eq. (16) for the evaluation of measurement uncertainty.
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If the device with five temperature measurement points is used (Figure 1b) then the uncer‐
tainties become smaller: 2σx1

= 3557.73 W/m2;2σx2
= 2379.85W/(m2K);2σx3

= 0.22 K.

The limits of the 95% uncertainty interval are as follows:

2  249 999.9  3557.7 W/m ,mq = ±

2  30 000.16  2379.9 W/(m  K),fh = ±

  318.0  0.22 C.fT = ± °

Inspection of the results demonstrates the good accuracy in both cases. If the number of
temperature measurement points is equal five then the uncertainties in the estimated heat flux
and heat transfer coefficient become smaller, because an imprecise location of one thermo‐
couple has a smaller influence on the estimated parameters. For two temperature sensors
placed at the forward part of the heat flux tube, an inaccurately situated temperature sensor
influences to a larger extent the results.

If the standard deviations of the variables measured directly are greater also standard
deviations of the determined parameters: qm, hf, and Tf will be greater. If the random errors will
be doubled, the standard deviation will also be doubled. This conclusion follows from the
analysis of Eq. (16). This has no effect on the convergence of the solution. For larger random
errors in measured temperatures, a convergent solution is obtained, but with a slightly larger
number of iterations.

To demonstrate the influence of the selection of parameter initial values on the solution
convergence and on the number of iterations, the computations will be carried out for five
measuring temperature points and using two sets of initial values:

• qm
(1) =  100  000  W / m2, h f

(1)  =  40  000  W / (m2  K), Tf
(1) =  316°C,

• qm
(1) =  400  000  W / m2, h f

(1)  =  10  000  W / (m2  K), Tf
(1) =  317°C,

Adopting “measured data” from Table 2 for the mesh shown in Figure 5a, the following results
were obtained:

• qm =249999.80W / m2, h f =29999.78W / (m2K), Tf =318.00°C after 27 iterations,

• qm =250000.15W / m2, h f =30000.03W / (m2K), Tf =318.00°C after 27 iterations.

Because the start values of parameters are far from the input values (exact solution) the number
of iteration is large. However, the solution found is correct in both cases.

If one of the temperature measurements is affected by a significant measurement error
then the incorrect temperature measurement must be removed from the analysis. It was
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assumed that the measured temperature at the point 4 is equal to the measured tempera‐
ture at the point 5 to assess the influence of the large measurement error. Using the finite
element mesh depicted in Figure 5a and disturbed “measurement data”: f1 = 418.31°C, f2 =
415.66°C, f3 = 374.08°C, f4 = 321.11°C, f5 = 321.11°C, the following values of the parameters
were found: qm = 303 248.29 W/m2, hf = 5 705 392.54 W/(m2 K), Tf = 306.16°C. One can see
that the determined parameters considerably differ from the exact values: qm = 250 000
W/m2, hf = 30 000 W/(m2 K), Tf = 318°C. In practice, it is easy to notice that one of the
measuring points is damaged because during correct measurements the temperatures
measured at the points 1 and 2 should be similar, as well as temperatures at the points 3
and 4 should be close to each other.

2.3.2. Flux tube for membrane water walls–fins attached to the flux tube

In combustion chambers with membrane water walls, heat flux tube with longitudinal fins
may be used (Figure 2a). To eliminate the influence of neighboring water wall tubes on the
temperature field in the heat flux tube, the longitudinal fins are not welded to the adjacent
tubes.

Figure 7. View factor distribution on the outer surface of the flux tube and adjacent water-wall tube which are shown
in Figure 2a.

The distribution of the view factor on the surface of the flux tube, fin, and water wall tube is
depicted in Figure 7. The origin of the s coordinate is shown in Figure 2. Because of the
symmetry, only the representative water wall section illustrated in Figure 8 needs to be
analyzed.
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Figure 8. Temperature distribution in the flux-tube cross section for: qm = 150000 W/m2. Tf = 317°C and
hf = 27000 W/(m2 K).

To illustrate that the maximum temperature of the fin tip is lower than the allowable temper‐
ature for the 20G steel, the flux-tube temperature was calculated using ANSYS/CFX package
[25]. Variations of the view factor on the flux-tube weld and fin surface were also calculated
with ANSYS/CFX. An inspection of the results shown in Figure 8 shows that the maximum
temperature of the fin does not exceed 375°C. Next to illustrate the effectiveness of the
presented method test calculations were carried out. The thermal conductivity of the 20G steel
was approximated by the function (18).
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Figure 9. Temperature distribution (a) in the flux tube obtained from the solution of the inverse problem for the “ex‐
act” data: f1 = 419.66°C. f2 = 417.31°C. f3 = 374.90°C. f4 = 373.19°C. f5 = 318.01°C and iteration number (b) for the tem‐
perature T1.

The “measured” temperatures fi, i = 1, 2, …, 5 were generated artificially by means of ANSYS/
CFX for: qm = 250 000 W/m2, hf = 30 000 W/(m2 K) and Tf = 318°C. The following values of
“measured” temperatures were obtained f1 = 419.66°C, f2 = 417.31°C, f3 = 374.90°C, f4 = 373.19°C,
f5 = 318.01°C. The temperature distribution in the flux-tube cross section reconstructed on the
basis of five measured temperatures is shown in Figure 9a. The inverse method presented in
the chapter is very accurate because the estimated parameters:
qm = 250 000.063 W/m2, hf = 30 000.054 W/(m2 K), and Tf = 318.0°C differ slightly from the input
values.

Figure 10. Temperature distribution (a) in the flux tube obtained from the solution of the inverse problem for the “per‐
turbed” data: f1 = 420.16°C. f2 = 416.81°C. f3 = 375.40°C. f4 = 372.69°C. f5 = 318.01°C and iteration number (b) for the
temperature T1.
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To show the influence of the measurement errors on the determined parameters, the 95%
confidence intervals were estimated. The following uncertainties of the measured values were
assumed (at 95% confidence interval): 2σ f j

= ± 0.4K, 2σrj
= ± 0.10mm, 2σφj

= ± 1.0° ,
j =1, …, 5, 2σk = ± 1.0W / (mK). For these test calculations, the 95% uncertainties in the param‐
eters measured directly were taken two times greater than the uncertainties in the previous
case analyzed in Section 4.1. The limits of the 95% uncertainty interval are as follows:

2  250 000.06  7102.46 W/m ,mq = ±

2  30 000.05  4735.71 W/(m  K),fh = ±

  318.00  0.41 C.fT = ± °

Despite the doubling of uncertainties, the results are quite good. Larger relative errors in
determined the heat transfer coefficient are due to a small difference in temperature between
the inner surface of the flux tube and the fluid temperature. For this reason, the impact of the
uncertainties in direct measurements on the estimated heat transfer coefficient is greater.

The uncertainties (95% confidence interval) of the coefficients xi were determined using the
error propagation rule (16). The calculated uncertainties are: ±4.1% for qm, ±27.3% for hf and
±0.1% for Tf. The accuracy of the results obtained is acceptable.

Then, the inverse analysis was carried out for perturbed data: f1 = 420.16°C, f2 = 416.81°C,      f3

= 375.40°C, f4 = 372.69°C, f5 = 318.01°C. The reconstructed temperature distribution is illustrated
in Figure 10a. The obtained results are qm = 250 118.613 W/m2, hf = 30 050.041 W/(m2 K) and Tf

= 317.99°C. The influence of the error in the measured temperatures on the estimated param‐
eters is small.

The number of iterations in the Levenberg–Marquardt procedure is small in both cases
(Figures 9b and 10b).

2.4. Flux tube for membrane water walls—fins attached to the adjacent water wall tubes

The variation of the view factor on the surface of the flux tube, fin, and water wall tube is
illustrated in Figure 11. The origin of the cylindrical coordinate system is at the center of the
outer flux-tube surface (Figure 2b). Because of the symmetry, only the half of the flux tube was
considered.

The measured temperatures: f1 = 418.28°C, f2 = 415.61°C, f3 = 374.05°C, f4 = 372.18°C, f5 = 318.00°C
were generated artificially for the following input data qm = 250 000 W/m2, hf = 30 000 W/(m2

K), Tf = 318.00°C. The inverse analysis yields the values of unknown parameters: qm = 249 999.43
W/m2, hf = 29 999.60 W/(m2 K), Tf = 318.00°C, which are very close to the input values. The

Numerical Simulation - From Brain Imaging to Turbulent Flows230



To show the influence of the measurement errors on the determined parameters, the 95%
confidence intervals were estimated. The following uncertainties of the measured values were
assumed (at 95% confidence interval): 2σ f j

= ± 0.4K, 2σrj
= ± 0.10mm, 2σφj

= ± 1.0° ,
j =1, …, 5, 2σk = ± 1.0W / (mK). For these test calculations, the 95% uncertainties in the param‐
eters measured directly were taken two times greater than the uncertainties in the previous
case analyzed in Section 4.1. The limits of the 95% uncertainty interval are as follows:

2  250 000.06  7102.46 W/m ,mq = ±

2  30 000.05  4735.71 W/(m  K),fh = ±

  318.00  0.41 C.fT = ± °

Despite the doubling of uncertainties, the results are quite good. Larger relative errors in
determined the heat transfer coefficient are due to a small difference in temperature between
the inner surface of the flux tube and the fluid temperature. For this reason, the impact of the
uncertainties in direct measurements on the estimated heat transfer coefficient is greater.

The uncertainties (95% confidence interval) of the coefficients xi were determined using the
error propagation rule (16). The calculated uncertainties are: ±4.1% for qm, ±27.3% for hf and
±0.1% for Tf. The accuracy of the results obtained is acceptable.

Then, the inverse analysis was carried out for perturbed data: f1 = 420.16°C, f2 = 416.81°C,      f3

= 375.40°C, f4 = 372.69°C, f5 = 318.01°C. The reconstructed temperature distribution is illustrated
in Figure 10a. The obtained results are qm = 250 118.613 W/m2, hf = 30 050.041 W/(m2 K) and Tf

= 317.99°C. The influence of the error in the measured temperatures on the estimated param‐
eters is small.

The number of iterations in the Levenberg–Marquardt procedure is small in both cases
(Figures 9b and 10b).

2.4. Flux tube for membrane water walls—fins attached to the adjacent water wall tubes

The variation of the view factor on the surface of the flux tube, fin, and water wall tube is
illustrated in Figure 11. The origin of the cylindrical coordinate system is at the center of the
outer flux-tube surface (Figure 2b). Because of the symmetry, only the half of the flux tube was
considered.

The measured temperatures: f1 = 418.28°C, f2 = 415.61°C, f3 = 374.05°C, f4 = 372.18°C, f5 = 318.00°C
were generated artificially for the following input data qm = 250 000 W/m2, hf = 30 000 W/(m2

K), Tf = 318.00°C. The inverse analysis yields the values of unknown parameters: qm = 249 999.43
W/m2, hf = 29 999.60 W/(m2 K), Tf = 318.00°C, which are very close to the input values. The

Numerical Simulation - From Brain Imaging to Turbulent Flows230

reconstructed temperature distribution is shown in Figure 12. The uncertainty analysis was
omitted because the results are very similar to the results obtained in Section 4.2.

Figure 11. Comparison of view factor calculated analytically and by FEM for the flux tube shown in Figure 2b.

Figure 12. Temperature distribution in the flux tube obtained from the solution of the inverse problem for the unper‐
turbed data: f1 = 418.28°C, f2 = 415.61°C, f3 = 374.05°C, f4 = 372.18°C, f5 = 318.00°C; (a) temperature distribution; (b) itera‐
tion process.
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2.5. Boiler test

The pulverized coal-fired boiler produces 58.3 kg/s superheated steam at 11 MPa and 540°C.
Experimental studies were conducted in this boiler for a mass flow rate of live steam equal to
210 · 103kg/h. Measuring heat flux tubes were installed in the middle of the water wall at
different levels of the boiler combustion chamber. Despite the boiler is operated in a steady
state load, slow time variations in the measured temperatures are observed. This phenomenon
is characteristic for the combustion of coal in large boilers. However, time changes of the meter
temperature are very slow and the temperature distribution in the meter can be considered as
a steady state. Temperature measurement results for the heat flux tubes located at a level of

Figure 13. Measured temperature histories at five points for heat flux tube located at the level of 15.4 m (a) and esti‐
mated parameters: absorbed heat flux qm. Heat transfer coefficient hf and fluid temperature Tf (b).
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15.4 m are depicted in Figure 11a, and the estimated parameters as functions of time are
depicted in Figure 11b.

Figure 14. Temperature distribution in the cross section of the flux tube located at the level of 15.4 m. which was deter‐
mined on the basis of measured temperatures: f1 = 413.509°C; f2 = 412.227°C; f3 = 372.855°C; f4 = 372.227°C; f5 =
322.209°C. The estimated parameters are: qm = 230425.8 W/m2; hf = 24128.8 W/(m2 K); Tf = 319.19°C.

The differences between the measured and computed temperatures for the measurements at
the elevation 15.4 m (Figures 13a and 14) are reported in Table 4. The time points in the first
column of Table 4 are the same as indicated in Figure 13a and b.

Time f1, °C T1, °C f1− T1, K f2, °C T2, °C f2− T2, K f3, °C T3, °C f3−T3, K

00:05:00 419.55 419.58 −0.03 416.89 416.88 0.01 375.53 375.67 −0.15

00:11:00 415.87 415.76 0.11 412.85 413.19 −0.34 374.19 374.21 −0.02

00:17:00 408.98 409.76 −0.78 408.17 407.36 0.82 370.00 370.40 −0.40

00:23:00 413.61 413.79 −0.18 411.39 411.27 0.12 372.83 372.93 −0.10

00:29:00 413.74 414.16 −0.42 412.09 411.65 0.44 373.01 373.23 −0.22

00:35:00 413.51 414.09 −0.58 412.23 411.61 0.61 372.86 373.43 −0.57

00:41:00 418.98 419.28 −0.30 416.99 416.67 0.32 375.99 376.46 −0.47

00:47:00 417.67 418.30 −0.62 416.34 415.68 0.66 374.86 375.27 −0.41

00:53:00 413.76 414.56 −0.80 412.87 412.04 0.83 372.60 373.04 −0.44

00:59:00 413.05 412.94 0.10 410.38 410.51 −0.13 373.15 373.39 −0.24
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Time f4, °C T4, °C f4-T4, K f5, °C T5, °C f5-T5, K S, K2

00:05:00 373.88 373.76 0.12 319.49 319.49 0.00 0.04

00:11:00 372.18 372.38 −0.19 319.60 319.60 0.00 0.17

00:17:00 369.06 368.69 0.38 320.18 320.20 −0.02 1.58

00:23:00 371.17 371.14 0.04 319.96 319.96 −0.01 0.06

00:29:00 371.66 371.45 0.21 320.96 320.98 −0.01 0.46

00:35:00 372.23 371.67 0.56 322.21 322.23 −0.02 1.35

00:41:00 375.06 374.61 0.46 322.36 322.38 −0.01 0.62

00:47:00 373.82 373.42 0.40 321.41 321.43 −0.02 1.14

00:53:00 371.67 371.26 0.42 321.36 321.38 −0.02 1.69

00:59:00 371.88 371.66 0.22 322.39 322.39 0.00 0.14

Table 4. The differences between measured and calculated temperatures.

The residuals and the sum of temperature difference squares are small. The obtained results
show that the proposed method can be successfully applied to identify the operating condi‐
tions of water walls in boilers.

Similar measurements and calculations were performed for the insert located at a height of
19.2 m. The results of measurements and calculations are shown in Figures 15 and 16.

Measuring insert at an elevation of 15.4 m is situated directly above the burners which makes
the value of absorbed heat flux qm higher in comparison with the absorbed heat flux at a height
of 19.2 m. At the level of 15.4 m, heat flux is approximately 230 000 W/m2 while at the height
of 19.2 m is about 168 000 W/m2. It is worth mentioning a very high lifetime of measuring heat
flux tubes, which is more than 5 years.

Numerical Simulation - From Brain Imaging to Turbulent Flows234



Time f4, °C T4, °C f4-T4, K f5, °C T5, °C f5-T5, K S, K2

00:05:00 373.88 373.76 0.12 319.49 319.49 0.00 0.04

00:11:00 372.18 372.38 −0.19 319.60 319.60 0.00 0.17

00:17:00 369.06 368.69 0.38 320.18 320.20 −0.02 1.58

00:23:00 371.17 371.14 0.04 319.96 319.96 −0.01 0.06

00:29:00 371.66 371.45 0.21 320.96 320.98 −0.01 0.46

00:35:00 372.23 371.67 0.56 322.21 322.23 −0.02 1.35

00:41:00 375.06 374.61 0.46 322.36 322.38 −0.01 0.62

00:47:00 373.82 373.42 0.40 321.41 321.43 −0.02 1.14

00:53:00 371.67 371.26 0.42 321.36 321.38 −0.02 1.69

00:59:00 371.88 371.66 0.22 322.39 322.39 0.00 0.14

Table 4. The differences between measured and calculated temperatures.

The residuals and the sum of temperature difference squares are small. The obtained results
show that the proposed method can be successfully applied to identify the operating condi‐
tions of water walls in boilers.

Similar measurements and calculations were performed for the insert located at a height of
19.2 m. The results of measurements and calculations are shown in Figures 15 and 16.

Measuring insert at an elevation of 15.4 m is situated directly above the burners which makes
the value of absorbed heat flux qm higher in comparison with the absorbed heat flux at a height
of 19.2 m. At the level of 15.4 m, heat flux is approximately 230 000 W/m2 while at the height
of 19.2 m is about 168 000 W/m2. It is worth mentioning a very high lifetime of measuring heat
flux tubes, which is more than 5 years.

Numerical Simulation - From Brain Imaging to Turbulent Flows234

Figure 15. Measured temperature histories at five points for heat flux tube located at the level of 19.2 m (a) and esti‐
mated parameters: absorbed heat flux qm heat transfer coefficient hf and fluid temperature Tf (b).

Figure 16. Temperature distribution in the cross section of the flux tube located at the level of 19.2 m. which was deter‐
mined on the basis of measured temperatures: T1 = 382.170°C; T2 = 379.040°C; T3 = 352.270°C; T4 = 351.460°C;
T5 = 317.300°C. The estimated parameters are: qm = 166 577.5 W/m2; hf = 29 489.5 W/(m2 K); Tf = 315.21°C.

3. Identification of thermal boundary conditions in heat exchangers of
fluidized bed boilers

Circulating fluidized bed (CFB) boilers burning coal or biomass are in use for several years.
Fluidized bed combustion is widely used in power boilers due to its impressive environmental
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performance and also its fuel flexibility. Therefore, the studies of combustion and heat transfer
are the subject of many recent investigations aimed at improving the design and operation of
CFB boilers. Sun et al. [35] applied wide size biomass and investigated its combustion, heat
transfer, and emission characteristics in CFB [35]. They found that co-firing wide screening
crushed biomass pellets in CFB may reduce emissions and enhance heat transfer. Sundaresan
and Kolar [36] conducted experiments to determine the total surface-average heat transfer
coefficients from the tube to suspension for vertical tubes of different heights, which were
placed in the core of a square cold CFB riser.

Superheaters and reheaters are the surfaces that achieve the highest temperatures in a boiler
and for this reason require a lot of attention in the design, fabrication, operation, and mainte‐
nance to ensure that the permissible metal temperatures are never exceeded. A standard
method for hydraulic calculation and design of boilers is described in [37]. The hydraulic
calculation of superheater aims to provide the safe temperature of superheater tubes, efficient
flow arrangement, and determination of pressure losses. Considerable attention has been
given to hydraulic maldistribution in steam superheater tubes. A standard method for thermal
design of steam boilers, including superheaters, was developed in [38]. Although the boiler
standards are extensively used by manufacturers of boilers, they adopt for the calculation of
the superheaters procedures which are used in design or performance calculations of usual
heat exchangers assuming constant physical fluid properties [37–40]. For superheated steam,
a constant value of the specific heat cannot be assumed because of the strong dependence on
temperature. The specific heat of the water steam can decrease even twice over the length of
the superheater tube.

The basic superheater and reheater design principles are discussed in detail by Rayaprolu [39].
Thermal and flow process in large steam boilers are the subject of the book [40]. Design and
performance procedures for calculating of coal-fired boilers were described. Much attention
has been paid to analyzing start-ups of steam boilers. Approximately 40% of all boiler failures
are caused by damage of steam superheaters due to the overheating of the tube material [41].
Because of this, steam superheaters are modeled mathematically or monitored to avoid
overheating of tubes. CFD simulations and optimization results of a 300 MW lignite-fired
power boiler are presented by Tzolakis et al. [42]. A heat recovery steam generator (HRSG)
was optimized by Behbahaninia using the genetic algorithm [43]. The results show that the
thermodynamic optimization is not capable of decreasing significantly the total cost of the
HRSG. Mathematical modeling of the boiler superheater was presented in not many publica‐
tions despite a great interest of boiler manufacturers. This is mainly due to the difficulty of the
description of complex flow and heat transfer processes taking place in the steam superheaters
both in pulverized coal and fluidized boilers. A numerical method for modeling of the
superheaters in pulverized coal-fired boilers was developed in [44, 45]. Much trouble causes
the flue-gas temperature unevenness in a duct where a superheater is situated. A thermal load
deviation model for the superheater and reheater in a utility boiler is presented by Xu et al.
[46]. Many failure analyses on the superheaters were carried out to reveal the causes of tube
overheating or tube rapture. The unevenness of the steam temperature is one of the main
reasons for boiler tube failures. The 320 MW natural gas-fired boiler was simulated using the

Numerical Simulation - From Brain Imaging to Turbulent Flows236



performance and also its fuel flexibility. Therefore, the studies of combustion and heat transfer
are the subject of many recent investigations aimed at improving the design and operation of
CFB boilers. Sun et al. [35] applied wide size biomass and investigated its combustion, heat
transfer, and emission characteristics in CFB [35]. They found that co-firing wide screening
crushed biomass pellets in CFB may reduce emissions and enhance heat transfer. Sundaresan
and Kolar [36] conducted experiments to determine the total surface-average heat transfer
coefficients from the tube to suspension for vertical tubes of different heights, which were
placed in the core of a square cold CFB riser.

Superheaters and reheaters are the surfaces that achieve the highest temperatures in a boiler
and for this reason require a lot of attention in the design, fabrication, operation, and mainte‐
nance to ensure that the permissible metal temperatures are never exceeded. A standard
method for hydraulic calculation and design of boilers is described in [37]. The hydraulic
calculation of superheater aims to provide the safe temperature of superheater tubes, efficient
flow arrangement, and determination of pressure losses. Considerable attention has been
given to hydraulic maldistribution in steam superheater tubes. A standard method for thermal
design of steam boilers, including superheaters, was developed in [38]. Although the boiler
standards are extensively used by manufacturers of boilers, they adopt for the calculation of
the superheaters procedures which are used in design or performance calculations of usual
heat exchangers assuming constant physical fluid properties [37–40]. For superheated steam,
a constant value of the specific heat cannot be assumed because of the strong dependence on
temperature. The specific heat of the water steam can decrease even twice over the length of
the superheater tube.

The basic superheater and reheater design principles are discussed in detail by Rayaprolu [39].
Thermal and flow process in large steam boilers are the subject of the book [40]. Design and
performance procedures for calculating of coal-fired boilers were described. Much attention
has been paid to analyzing start-ups of steam boilers. Approximately 40% of all boiler failures
are caused by damage of steam superheaters due to the overheating of the tube material [41].
Because of this, steam superheaters are modeled mathematically or monitored to avoid
overheating of tubes. CFD simulations and optimization results of a 300 MW lignite-fired
power boiler are presented by Tzolakis et al. [42]. A heat recovery steam generator (HRSG)
was optimized by Behbahaninia using the genetic algorithm [43]. The results show that the
thermodynamic optimization is not capable of decreasing significantly the total cost of the
HRSG. Mathematical modeling of the boiler superheater was presented in not many publica‐
tions despite a great interest of boiler manufacturers. This is mainly due to the difficulty of the
description of complex flow and heat transfer processes taking place in the steam superheaters
both in pulverized coal and fluidized boilers. A numerical method for modeling of the
superheaters in pulverized coal-fired boilers was developed in [44, 45]. Much trouble causes
the flue-gas temperature unevenness in a duct where a superheater is situated. A thermal load
deviation model for the superheater and reheater in a utility boiler is presented by Xu et al.
[46]. Many failure analyses on the superheaters were carried out to reveal the causes of tube
overheating or tube rapture. The unevenness of the steam temperature is one of the main
reasons for boiler tube failures. The 320 MW natural gas-fired boiler was simulated using the

Numerical Simulation - From Brain Imaging to Turbulent Flows236

CFD code by Rahimi et al. [47]. The main goal of the computational analysis was to detect the
reason for the tube rupture inside the boiler. A new procedure for determining heat flux in
superheater and reheater tubes based on the empirical formulas and the finite element
modeling is presented by Purbolaksono et al. [48]. The finite element simulations were
performed by Othman et al. [49] to find the main reason for superheater tube deformations. It
was revealed that the failure of the tubes occurred due to the restriction of the tube deforma‐
tions. Local short-term overheating of the tubes due to concentrated flue-gas flow was the
primary cause of superheater tube failure [50]. A failure analysis was carried out using visual
inspections and in situ measurements of hardness the experimental examination was supple‐
mented by finite element analyzes. The rate of corrosive wear in superheaters of supercritical
boilers was presented in the paper by Pronobis and Wojnar [51]. The slagging and fouling
processes in superheaters influence the efficiency and lifetime of the boiler. Harding and
O’Connor used the ten-year database to determine the lost generated through forced outages
due to the coal quality or slagging and fouling issues [52]. A computer system for monitoring
slagging and fouling of superheaters is described in [24].

Direct and inverse problems in a platen superheater situated in the combustion chamber of a
CFB boiler were studied in [2].

The review of the state of the art in the field of superheaters shows that published papers on
the superheaters present mostly experimental results and relate to search for the causes of
failures of superheater tubes or analyze ash fouling.

In this work, the finite volume modeling of a platen superheater is presented. The fluidized
bed boilers steam superheaters are placed in the combustion chamber and are made of tubes
with non-circular cross sections, to avoid erosion and slagging (Figure 17). Due to the complex
shape of the cross section of superheater tubes (Figure 18), numerical modeling has been
applied to correctly determine the temperature distribution of steam and tube wall. Accurate
calculating the superheater tube wall temperature is necessary because of the high prices of
alloy steels used in superheater manufacturing.

A CFD simulation will be carried out for the platen superheater located in the combustion
chamber of the CFB boiler. The second stage superheater is situated in the upper part of the
combustion chamber of a circulating fluidized bed boiler (CFB boiler) with the capacity of 425
· 103 kg/h steam. The steam boiler with a live steam temperature equal 560°C and a pressure
of 16.1 MPa has an atmospheric circulating fluidized bed furnace. The superheater is a three-
pass heat exchanger. The water steam flows inside the tubes while the flue gas with a constant
temperature flows upwards in a perpendicular direction to the tube axes. Two inverse
problems will be solved. First, the flue-gas side heat transfer coefficient hg will be determined
using temperatures measured at the outlet and inlet of the heat exchanger. This coefficient is
essential for the proper design of superheaters in fluidized bed boilers. In the second inverse
problem, in addition, to the heat transfer coefficient hg will also be searched the steam tem‐
perature at the inlet to the superheater based on the measured steam temperatures at three
points located at the ends of the superheater passes. Such inverse problem is encountered in
a superheater steam temperature controllers.

Solving Inverse Heat Transfer Problems When Using CFD Modeling
http://dx.doi.org/10.5772/63807

237



Figure 17. The arrangement of heating surfaces in circulating fluidized bed boiler with a steam capacity of
425·103 kg/h.

On modern large steam boilers, the temperature must be held close to design values since
excessive temperatures have a serious effect on the metal lifetime of all parts of a boiler which
are subject to it. The inlet steam temperature will be determined from the solution of the inverse
problem. Based on this temperature, a correct flow rate of cooling water to the spray-type
desuperheater (attemperator) is calculated. Despite the great practical importance, this type
inverse heat transfer problems have not yet been analyzed.
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Figure 18. Platen superheater made from “omega” tubes; (a) cross section of omega tube, (b) platen superheater cross-
section.
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4. Description of the numerical method

Velocity, pressure, and temperature of the steam, as well as the temperature of the tube wall
with the complex cross section, will be computed using the ANSYS/CFX v13.0 software [25].

The direct and inverse problems will be solved. In the inverse problem, the steam temperature
at the superheater inlet and the heat transfer coefficient on the flue-gas side will be determined
using measured steam temperatures at selected locations in the superheater. If the flue-gas
side heat transfer coefficient is determined based on the measured steam temperature at the
superheater outlet, the secant method is used. In this case, it is assumed that the inlet steam
temperature is also measured. The Levenberg–Marquardt method is used to solve the least
squares problem when the inlet steam temperature and the flue-gas side heat transfer coeffi‐
cient are determined based on the measured steam temperature at the selected points along
the steam flow path. At every iteration step, a direct problem was solved using the
ANSYS/CFX v13.0 software. Time-averaged three-dimensional equations of conservation of
mass, momentum and energy are solved using an element-based finite volume method. The
heat transfer in the flowing steam was modeled using equations of mass, momentum, and
energy conservation which can be written as follows [25]:

( ) 0
t
r r¶
+Ñ × =

¶
U (19)

( ) ( ) p
t
r r t¶

+ Ñ × Ä = -Ñ +Ñ × +
¶ M

U U U S (20)

( ) ( ) ( ) :h p h k T p
t t
r r t¶ ¶

- +Ñ × = Ñ × Ñ + ×Ñ + Ñ +
¶ ¶ EU U U S (21)

where the stress tensor τ is related to the strain rate by

2( ( ) )
3

Tt m d= Ñ + Ñ - Ñ ×U U U (22)

Temperature distribution in double omega tube walls (Figure 18) is governed by the heat
conduction equation
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Two equation turbulence model SST (Shear Stress Transport), which was developed based on
the Wilcox k–ω and k–ε turbulence models [53], was used to model the flow turbulence. The
baseline k–ω model is a two equations turbulence model that offers a good compromise
between numerical effectiveness and computational accuracy. This model is a combination of
the k–ω and k–ε models.

The Wilcox k–ω model is given by two equations:
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To develop the baseline k–ω turbulence model, the transformed k–ε model is also used:
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Multiplying Eqs. (24) and (25) of the Wilcox model by weighting function F1, the transformed
k–ε Eqs. (26) and (27) by a weighting function (1 – F1) and adding the transformed equations
gives the baseline k–ω model:
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The baseline k–ω model has the advantages of the Wilcox k–ω, and the k–ε but is not able to
predict onset and amount of flow separation from smooth surfaces [53]. The main reason for
this drawback is neglecting of the transport of the turbulent shear stress. This causes an over-
prediction of the eddy-viscosity. In order to eliminate this deficiency, the shear stress transport
(SST) turbulence model was developed [53], in which the turbulent viscosity νt is limited by
the following equation:
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Figure 19. One-fourth of a tube cross section.

Because of the symmetry, only one-fourth of a tube cross section was analyzed (Figure 19).
Heat is transferred by convection from the combustion chamber to the tube through the surface
E–F. The surfaces A–F and B–C–D–E are thermally insulated. The tube inner surface A–B is
cooled by the flowing live steam. The following boundary conditions were assumed for the
tube wall (Figure 19):
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Also, the fluid temperature and the steam mass flow rate or steam velocity are known at the
inlet of the tube. The steam pressure is given at the outlet of the tube. The direct conjugate heat
transfer problem described by Eqs. (19) and (29) with appropriate boundary conditions was
solved using the ANSYS/CFX software.

5. Results of the superheater modeling using ANSYS//CFX

The ANSYS CFX commercial software v13.0 [25] was used for the numerical calculations.
Computer calculations were carried out for the second stage of the steam superheater which
is made of omega tubes from 10CrMo 910 low alloy steel. At first, direct and inverse problems
were solved for the single tube representing the first pass of the superheater. A finite element
mesh contains 1 233 999 elements and 747 945 finite element nodes. The cross section of the
tube is shown in Figure 18. The length of the modeled tube is 8 517 mm. Thermal properties
of the superheated steam were calculated using the industrial standard IAPWS-IF97 [54].
Changes in thermal conductivity with temperature for the 10CrMo 910 steel are shown in
Figure 20.

At first, test simulations were performed for the following data:

• Tin = 462°C—temperature of the superheated steam at tube inlet,

• Pout = 16.5 MPa—pressure of the steam at tube outlet,

• Tg = 850°C—flue-gas temperature in the combustion chamber,

• hg = 200 W/(m2 K)—heat transfer coefficient on the gas side.

Two different steam inlet velocities uin: 16.7 m/s and 10 m/s were assumed at the inlet of the
tube to illustrate the influence of the steam side conditions on the steam and tube wall
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temperature. The steam velocity of 16.7 m/s corresponds to 100% boiler load, while the steam
velocity equal to 10 m/s corresponds to the partial boiler load. Then, to assess the impact of
the gas side heat transfer coefficient hg on the temperature of the steam and tube, calculations
for uin = 16.7 m/s and hg = 250 W/(m2 K) were also carried out.

The results of the computer simulation for uin = 16.7 m/s and hg = 200 W/(m2 K) are shown in
Figures 21–23.

Figure 20. The thermal conductivity of 10CrMo 910 and T91 steels as a function of temperature.

Figure 21. Tube wall temperature; (a) changes of mean and maximum tube wall temperature over the tube length, (b)
temperature of the tube wall at the nodes: 1, 2, 3, 4, 5, 7, 8, and 9 over the tube length; uin = 16.7 m/s, hg = 200 W/(m2 K).
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Figure 22. The temperature distribution in the tube wall and steam in two cross sections; (a) at the distance of 2839 mm
from the inlet; (b) at the distance of 5678 mm from the inlet; uin = 16.7 m/s, hg = 200 W/(m2 K).

Figure 23. Mass-average steam temperature and the temperature of the steam at the tube axis.
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From the analysis of the results shown in Figure 21a and b, it can be seen that the steam
temperature over the tube length grows almost linearly. Only, in the region close to the tube
inlet the wall temperature is lower. This is due to much higher heat transfer coefficient in the
developing flow which occurs at the inlet region of the tube. The steam in the boundary layer
is cool at the inlet section, which contributes to a better cooling tube wall. It should be noted
that the difference between the maximum and average temperature over the tube cross section
is large but does not exceed 30 K (Figure 21a).

The rise of the tube wall temperature is almost linear over a length of the tube due to the
constant value of the heat transfer coefficient in the region of the developed flow. At the
entrance section of the tube, the heat transfer coefficient is higher because of developing a fluid
flow. In this region, the temperature difference over the boundary layer is greater, so the heat
flux and heat transfer coefficient are larger, and tube temperature is lower. Figures 22a and 6b
show the temperature distribution in the tube wall and steam at two cross sections away from
the inlet, respectively at the distance of 2 839 mm and 5 678 mm. The maximum temperature
of the wall is at the tube edge (Figure 22a). This temperature is 539.2°C at the distance of 2 839
mm and 551.3°C at the distance of 5678 mm from the inlet of the tube. The increase of the mass-
average steam temperature over the entire length of the tube is 41 K (Figure 23).

Figure 24. Tube wall temperature; (a) changes of mean and maximum tube wall temperature over the tube length, (b)
temperature of the tube wall at the nodes: 1, 2, 3, 4, 5, 7, 8, and 9 over the tube length; uin = 10 m/s, hg = 200 W/(m2 K).

The value obtained from the numerical simulation is in good agreement with the measured
rise in the steam temperature. Steam temperature is highest near the inner surface of the tube.
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For the two different steam velocities at the inlet to the pipe: 16.7 m/s and 10 m/s the difference
between the mass-average temperature of the steam and temperature in the axis of the tube is
small (Figure 23). Tube wall temperatures are higher when the steam velocity at the inlet is
lower and equal to uin = 10 m/s. The results of the computer simulation for uin = 10 m/s and hg

= 200 W/(m2 K) are shown in Figures 24 and 25. A similar effect on the tube wall temperature
has the heat transfer coefficient on the flue-gas side. The CFD simulation was thus performed
for the velocity of the steam at the tube inlet: uin = 16.7 m/s and the heat transfer coefficient on
the gas side: hg = 250 W/(m2 K), that is, the heat transfer coefficient was increased by 50
W/(m2 K). The CFD simulation results are shown in Figures 26 and 27. If the heat transfer
coefficient on the gas side is hg = 250 W/(m2 K) then the steam and tube wall temperature is
higher, because the heat flow rate transferred from flue gas to the steam is larger (Figures 26
and 27).

Figure 25. The temperature distribution in the tube wall and steam in two cross sections; (a) at the distance of 2839 mm
from the inlet; (b) at the distance of 5678 mm from the inlet; uin = 10 m/s, hg = 200 W/(m2·K).
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Figure 26. Tube wall temperature; (a) changes of mean and maximum tube wall temperature over the tube length, (b)
temperature of the tube wall at the nodes: 1, 2, 3, 4, 5, 7, 8, and 9 over the tube length; uin = 16.7 m/s, hg = 250 W/(m2 K).
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Figure 26. Tube wall temperature; (a) changes of mean and maximum tube wall temperature over the tube length, (b)
temperature of the tube wall at the nodes: 1, 2, 3, 4, 5, 7, 8, and 9 over the tube length; uin = 16.7 m/s, hg = 250 W/(m2 K).
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Figure 27. The temperature distribution in the tube wall and steam in two cross sections; (a) at the distance of 2839 mm
from the inlet; (b) at the distance of 5678 mm from the inlet; uin = 16.7 m/s, hg = 250 W/(m2 K).

The correctness of the results obtained using CFD simulation was examined using the energy
balance equation. The heat flow rate Q̇out  transmitted through the outer surface of the tube
with an area of Aout, which is given by the integral

out

out out
A

q dAQ = ò &&
(35)

should be equal to the heat flow rate Q̇in transmitted through the inner surface

in

in in
A

q dAQ = ò &&
(36)

and to the heat flow rate Q̇s absorbed by the steam

( )s outlet inletQ m h h= -& & (37)

where hinlet and houlet stand for the steam enthalpy at the inlet and the outlet of the superheater
tube, respectively, and ṁ denotes the steam mass flow rate. The symbols q̇out  and q̇in designate
the heat flux at the outer and inner tube surface. It has been proved that the solution is
independent of the finite volume mesh. Twelve different meshes were examined. The finite
element number ranged from 790 179 to 3 789 699. For the CFD simulations presented in the
work, the mesh consisting of 1 233 999 elements with the total number of nodes equal to 747
945 was selected. The quality requirements for the finite element mesh, given in the CFX
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Reference Guide, were satisfied. The mesh statistics like the orthogonal angle, expansion factor,
and aspect ratio were confirmed by the CFX solver that they are correct [25].

For the analyzed case: uin = 16.7 m/s, hg = 200 W/(m2 K) and for the mesh consisting of 1 233 999
elements, the following values of the heat flow rate were obtained:

   57.266 kW and 57.644 kW.out inQ Q= = =& &

The relative difference defined as:

0.5( ) 100,%
0.5( )

in out s
Q

in out

Q Q Q
Q Q

e + -
=

+

& & &
& &

is:εQ = −0.656%

If the number of elements was increased to 3 789 699, then the relative difference is almost the
same and equal to: εQ = −0.655%.

The consistency of the results is very good. Taking into account that in the inverse problem is
solved iteratively, the direct problem is repeatedly solved so the element mesh cannot be too
fine because of computing time.

6. Inverse problem

Ten platens of the superheater SH II are located at combustion chamber of the circulating
fluidized bed boiler (Figure 17). Steam temperature is measured outside of the combustion
chamber at the points 1–4. Because these points are located outside of a fire region, it is easy
to measure steam temperature by attaching the thermocouple to the tube outer surface that is
thermally insulated (Figure 28).

Figure 28. Three pass single superheater coil.
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Figure 29. Inverse problem for a three pass second stage platen superheater, (a) flue-gas side heat transfer coefficient
αg is determined based on steam temperature measured at point number 4, (b) flue-gas side heat transfer coefficient hg

and inlet steam temperature T1 are determined based on steam temperature measured at points 2, 3, and 4.

No. Input data Results

ṁ, kg/s Tg, °C P4, MPa f1, °C f4, °C αg, W/(m2K) P1, MPa

1 0.2644 812.7 8.73 366.54 508.45 115.54 8.82

2 0.3148 826.78 10.12 379.35 505.74 123.83 10.22

3 0.4616 866.11 13.71 393.79 501.04 160.59 13.86

Table 5. Input data and results for the first inverse problem (Figure 27a).

Two different inverse problems were solved. The first and second inverse problems are
presented in Figure 29a and b, respectively. At first, a flue-gas side heat transfer coefficient hg

was estimated based on the measured steam temperature at the outlet and at the end of the
three pass platen superheater made from omega tubes with the length of 8517 mm (Fig‐
ure 29b). Also flue-gas temperature Tg, steam mass flow rate ṁ per one tube, and the outlet
steam pressure P4 are known from measurements Figure 27a. The inverse problem was solved
for three data sets (Table 5). The heat transfer coefficient hg was adjusted to obtain the outlet
steam temperature T4 equal to the measured value f4. The following nonlinear algebraic
equation

4 4 0T f- = (38)

was solved iteratively using the secant method [27, 28] to determine the flue-gas side heat
transfer coefficient hg. At every iteration step, the temperature distribution in the tube wall and
steam was determined using ANSYS/CFX. The three pass steam superheater was divided into
finite element mesh which has 3 603 132 finite elements and 2 207 434 nodes (Figure 30). The
solution of the inverse problem (Table 6) was obtained only after a few iterations. The CFD
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simulation also enabled the determination of pressure P1 at the inlet to the superheater
(Table 5).

Figure 30. Finite volume mesh for a tube quarter.

No. Input data Results

ṁ, kg/s Tg, °C P4, MPa f2, °C f3, °C f4, °C hg, W/(m2·K) T1, °C P1, MPa

1 0.2644 812.70 8.73 414.89 463.02 508.45 114.95 365.66 8.82

2 0.3148 826.78 10.12 422.43 464.00 505,74 121.65 379.68 10.22

3 0.4616 866.11 13.71 427.88 463.65 501.04 158.81 393.54 13.85

Table 6. Input data and results for the second inverse problem (Figure 29b).

Figure 31. Steam and tube wall temperature distribution at the outlet of the three pass superheater for the data set
number 1—three measurement points (Table 6).
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ṁ, kg/s Tg, °C P4, MPa f2, °C f3, °C f4, °C hg, W/(m2·K) T1, °C P1, MPa

1 0.2644 812.70 8.73 414.89 463.02 508.45 114.95 365.66 8.82

2 0.3148 826.78 10.12 422.43 464.00 505,74 121.65 379.68 10.22

3 0.4616 866.11 13.71 427.88 463.65 501.04 158.81 393.54 13.85

Table 6. Input data and results for the second inverse problem (Figure 29b).

Figure 31. Steam and tube wall temperature distribution at the outlet of the three pass superheater for the data set
number 1—three measurement points (Table 6).
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In the second inverse problem, the flue-gas side heat transfer coefficient x1 = hg and steam
temperature x2 = T1 at the inlet of the superheater are two unknowns which were determined
based on measured steam temperatures f2, f3, and f4 at three points 2, 3, and 4 located at the
outlets of each pass (Figure 29b). The number of measured temperatures is greater than the
number of unknown parameters to increase the accuracy of the solution of the inverse problem.
If the number of measuring points is greater, then the effect of random errors in temperature
measurements on the results obtained from the solution of the inverse problem is smaller.

The least-squares method was used to determine parameters hg and T1. The sum of squares

4
2

2

( )i i
i

S f T
=

= -å (39)

was minimized using the Levenberg–Marquardt method [26]. At every k-th iteration step, the
steam temperature distribution T(x(k), ri) is calculated, where ridesignates the position vector
of the steam measurements points. The steam and tube wall temperature were calculated at
each iteration step using ANSYS/CFX software. The CFX program was called and controlled
by an external program written in Python language [28]. The Levenberg–Marquardt algorithm
was also included in the Python program. Three data sets were used in the inverse analysis
(Table 6). From the analysis of the results shown in Table 7, it can be seen that the agreement
between the calculated and measured steam temperature at the superheater inlet is very
satisfactory. Also, the minimum value of the sum of squared temperature differences (39) is
very small (Table 7). The similar values of the heat transfer coefficients hg were obtained from
the solution of the first and second inverse problems (Tables 5 and 7).

The actual measured data were adopted for the inverse analysis: tube material—T91 steel, pass
length—8517 mm. The thermal conductivity of T91 steel as a function of temperature is shown
in Figure 20. The experimental data sets adopted for the inverse analysis and the estimated
heat transfer coefficients αg and steam inlet temperatures T>1 are shown in Table 6. The
computed temperatures at the measurement locations are very close to the measured values
(Table 7). The minimum sum of the temperature difference squares is small.

The analysis of the results listed in Table 7 shows that steam temperature increase is almost
the same in each pass. Despite the decreasing temperature difference between the flue gas and
steam the increases in steam temperature are: (T2 − T1) = 42.51 K, (T3 − T2) = 42.31 K, and (T4 −
T3) = 40.98 K for the first, second, and third pass, respectively (Table 7, data set no. 2). The
reason for this is a large reduction in the specific heat of the steam with the temperature. To
achieve the same steam temperature rise in the third pass, much less heat flow rate is needed
in comparison with the first pass.

The uncertainties of the determined parameters x* were estimated using the error propagation
rule of Gauss [29–33]. The propagation of uncertainty in the independent variables, that is, in
measured steam temperatures f2, f3, and f4, is estimated from the following equation:
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The 95% uncertainty in the estimated parameters can be expressed in the form xi = xi
* ± σxi

,

where xi = x *
i
, i =1, 2, 3 represent the value of the parameters obtained using the least squares

method.

Assuming that the 95% uncertainty in measured steam temperatures is equal 2σfj = 0.5 K for j
= 2, 3, 4 the uncertainties in calculated temperature T1 and heat transfer coefficient hg are:
2σT 1

= 0.74 K and 2σh g
= 0.99 W/(m2K). The results are quite satisfactory.

No. f1, °C f2, °C f3, °C f4, °C
e =

f 1 −T 1

f 1
⋅100, %

Smin, K2

T1, °C T2, °C T3, °C T4, °C

1 366.54 414.89 463.02 508.45 0.240 0.0006

365.66 414.88 463.04 508.44

2 379.35 422.43 464.00 505.74 −0.087 0.3752

379.68 422.19 464.50 505.48

3 393.79 427.88 463.65 501.04 0.064 0.0384

Table 7. Comparison of measured and calculated steam temperatures at the inlet to the superheater and at measuring
points 3, 4, and 5.

7. Conclusions

The chapter presents an effective method for solving nonlinear inverse heat transfer problems
using CFD software. Application of the method is illustrated by the identification of the
boundary conditions in water wall tubes and boundary conditions in a platen superheater of
a CFB boiler.

A CFD-based method for determining heat flux absorbed by water-wall tubes, heat transfer
coefficient at the inner flux-tube surface and temperature of the water-steam mixture has been
presented. New heat flux tubes were proposed. The flux tubes are not welded to the adjacent
water-wall tubes, so the temperature distribution in the measuring device is not affected by
neighboring water-wall tubes. Based on the measured flux-tube temperatures the nonlinear
inverse heat conduction problem was solved. The number of thermocouples placed inside the
heat flux tube including the thermocouple on the rear outer tube surface is greater than the
number of unknown parameters because additional measurement points reduce the uncer‐
tainty in determined parameters. To achieve a good accuracy of measurements, the uncer‐
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tainties in measured heat flux-tube temperatures and the radial thermocouple locations should
be small since they have the largest impact on the accuracy of the parameter estimation. The
proposed flux tubes and the inverse procedure for determining absorbed heat flux can be used
both when the inner surface of the heat flux tube is clean and when the scale or corrosion
deposits are present on the inner surface what can occur after a long time service of the heat
flux tube. The flux tubes can work for a long time in the destructive high-temperature
atmosphere of a coal-fired boiler.

The CFD simulation of the thermal-hydraulic processes occurring in the platen steam super‐
heater, located in the combustion chamber of the fluidized bed boiler, was carried out.

The temperature distributions in the tube wall of complex shape and the flowing steam were
computed. The steam velocity and pressure distributions can be determined with high
accuracy. The CFD modeling is a useful tool to explore the real fluid and heat flow phenomena
which occur in platen superheaters operating at high thermal loads. It is well known that even
a small increase in tube operating temperature over the design temperature will reduce stress
rapture life significantly. The CFD simulation allows calculation of the maximum tube wall
temperature along the steam flow path for complex cross section shape of the tubes and
complicated flow arrangement of the superheater. The detailed CFD prediction makes possible
the proper selection of the steel grade for the analyzed superheater stage or superheater pass.

The temperature-dependent physical properties of the steam and tube material can be easily
taken into account. The specific heat of water steam decreases significantly with increasing
temperature. The calculations show that the temperature rise in each of the three passes is
almost the same in spite of decreasing the temperature difference between the flue gas and
steam. If the specific heat were constant, the steam temperature increase in the third pass would
be much smaller compared to the first pass. It should be stressed, that it would be impossible
to calculate accurately the steam and tube wall temperature if the classical methods for heat
exchanger calculations, which assume constant physical steam properties, were used.

Accurate calculation of the heat transfer coefficient on the flue-gas side of the platen super‐
heater placed in the boiler furnace is critical for boiler design. The inaccurate calculation of the
heat transfer coefficient is the reason for tubes damage due to an excessive steam temperature
which frequently happens in power plants. A new method for determining of the flue-gas side
heat transfer coefficient was developed.

The flue-gas side heat transfer coefficient or the inlet steam temperature and flue-gas side heat
transfer coefficient were determined based on the measured steam temperatures at selected
points along the steam flow path. To solve the inverse problems, the secant method was used
when only one temperature measurement point was applied, and one unknown, that is, the
heat transfer coefficient on the flue-gas side was searched. The Levenberg–Marquardt method
was used to solve the over-determined heat transfer problem. For the solution of the direct
conjugate heat transfer problem, which is encountered at every iteration step, while the inverse
problem is being solved, ANSYS/CFX software was used.
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Identifying the flue-gas side heat transfer coefficients for various boiler loads using the inverse
method, a simple mathematical model of the platen superheater can be developed and used
in the control system of the superheated steam temperature.

The proposed method of solution can be successfully applied to solve other inverse prob‐
lems occurring in industrial practice.

Nomenclature

cw specific heat capacity, J/(kg K)

fi i-th measured steam temperature, K or °C

F weighting function

F2 blending function

h specific enthalpy, J/kg

h1, hg heat transfer coefficient on the inner and outer tube surface, W/(m2 K)

I identity matrix

J Jacobian matrix

k turbulence kinetic energy, m2/s2

kw tube wall thermal conductivity, W/(m K)

m number of temperature measurements points

ṁ steam mass flow rate, kg/s

n outward normal, m

n number of unknowns parameters

p pressure, Pa

Pk production rate of turbulence energy, kg/(m s3)

Pω turbulent frequency production term, s/m2

q̇ heat flux, W/m2

Q̇ heat flow rate, W/m3

r radius, m

S invariant measure of the strain rate, 1/s

SE energy source, kg/(m s3)

SM momentum source, kg/(m2 s2)

t time, s

T fluid temperature, K or °C

Tg flue-gas temperature

Tw tube wall temperature, K or °C

u steam velocity, m/s

U vector of velocity
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Uj j-th velocity component

x, y, z Cartesian coordinates

x1,x2,x3 unknown parameters

xj jth coordinate

Greek letters

α,β,β’ model constant in the Wilcox k-ω turbulence model

δ identity matrix

ε turbulence eddy dissipation, m2/s3

μ dynamic viscosity, kg/(m·s)

μt turbulent dynamic viscosity, kg/(m·s)

νt turbulent kinematic viscosity, m2/s

ρ density, kg/m3

ρw tube wall density, kg/m3

σ standard deviation

σk turbulence model constant in kinetic energy equation

σω> k-ω turbulence model constant

τ stress tensor

Ω turbulent frequency, 1/s

∇ gradient operator (nabla)

⊗ dyadic operator (tensor product)
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Chapter 11

A Numerical Procedure for 2D Fluid Flow Simulation in
Unstructured Meshes

António M. G. Lopes

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63077

Abstract

The  present  work  addresses  the  numerical  simulation  of  fluid  flow for  2D prob‐
lems.  The physical  principles  and numerical  models  implemented in  the  software
package EasyCFD are presented in a synthetic and clear way. The 2D form of the
Navier-Stokes equations is considered, using the eddy-viscosity concept to take into
account turbulence effects upon the mean flow field. The k-ε and the k-ω Shear Stress
Transport (SST) turbulence models allow for the calculation of the turbulent viscosity.
The numerical model is based on a control volume approach, using the SIMPLEC
algorithm on an unstructured quadrilateral mesh. The mesh arrangement is a non-
staggered type. The coordinate transformation, integration discretization and solution
method for the governing equations are fully described. As an example of applica‐
tion,  the airflow around a NACA 0012 airfoil  is  calculated and the results  for the
aerodynamic coefficients are compared with available experimental data.

Keywords: CFD, SIMPLEC, unstructured mesh, fluid flow, 2D simulation

1. Introduction

The software EasyCFD [1] is a 2D simulation tool aimed at an initiation in the field of compu‐
tational fluid dynamics. The main guiding lines on its development were the simplicity and the
intuitiveness of utilization, in a self-contained package. The physical domain is discretized with
quadrilateral unstructured meshes, allowing the simulation to deal with complex geometries
of any configuration virtually. The present work synthesizes the main physical principles and
numerical models implemented for the solution of 2D fluid flow problems, including heat
transfer, in arbitrarily shaped geometries.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Basic transport equations

For the description of the transport equations, the x and z coordinates of the Cartesian system
will be taken as the independent variables, to which correspond, for velocity, the u and the w
components. The coordinate transformation for the generalized mesh will be presented later
on the present work.

The Navier-Stokes equations describe momentum conservation and, for a 2D situation, may
be stated as follows:

( ) ( ) ( )
¶ r ¶¶ ¶ ¶ ¶ ¶ ¶ ¶r r G G
¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

é ù é ùæ ö æ ö
+ + = - + + -ê ú ê úç ÷ ç ÷
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where p [N/m2] stands for pressure and I represents the buoyancy forces. The diffusion
coefficient includes the contributions of the dynamic and turbulent viscosity, i.e.,
Γ =μ + μt N s / m2

In turn, the conservation of mass law, or continuity equation, is

( ) ( )¶r ¶ ¶r r
¶ ¶ ¶

+ + =u w 0
t x z

(2)

The energy conservation equation is obtained considering the transport equation for the
enthalpy ϕ = cp T , where cp J/kg K  is the specific heat and T [K] is its temperature. For a fluid
medium, the corresponding equation is

( ) ( ) ( )w
¶ r ¶ ¶ ¶ ¶ ¶ ¶r r G G

¶ ¶ ¶ ¶ ¶ ¶ ¶
é ù é ù

+ + = + +ê ú ê ú
ë û ë û

p
p p T

c T T Tc uT c T S
t x z x x z z

(3)

with the source term ST representing the heat generation rate per unit volume [W/m3] and
Γ =(μ / Pr + μt / Prt)cp, with Pr and Prt as the laminar and the turbulent Prandtl number. For solid
regions, heat transfer is governed by conduction:

( )p
T

c T T T S
t x x z z

¶ r ¶ ¶ ¶ ¶l l
¶ ¶ ¶ ¶ ¶

æ ö æ ö= + +ç ÷ ç ÷
è ø è ø

(4)
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where λ W/mK  is the material thermal conductivity. In a multi-component fluid flow
situation, different fluids are present, sharing the same velocity, pressure, temperature and
turbulence quantities. The concentration of one of the components (the secondary fluid) is
computed with a normal transport equation for a scalar:

( ) ( ) ( )c2 c2 c2
c2 c2u w

t x z x x z z
¶ rf ¶f ¶f¶ ¶ ¶ ¶r f r f G G

¶ ¶ ¶ ¶ ¶ ¶ ¶
æ ö æ ö+ + = +ç ÷ ç ÷
è ø è ø

(5)

where ϕc2 is the mass fraction, or concentration, of the secondary fluid. The diffusion coefficient
is given by

c
t

t
D

Scf
m

G r= + (6)

where Dϕc
[m2/s] is the kinematic diffusivity that characterizes the fluids pair and Sct is the

turbulent Schmidt number. The concentration of the secondary fluid plays an active role in the
flow field since fluid properties depend on the concentration of each component. The mixture
properties (such as viscosity, specific heat, etc.) are determined by a weighted average of the
properties of the components. Thus, for a generic property X, we have

c1 1 c2 2X X Xf f= + (7)

where the constraint ϕc1 + ϕc2 =1 holds. Exception is made for density, where a simple analysis
may prove that the mixture density ρ is given by

2

1
cc1

1 2

ff
r

r r

-
æ ö

= +ç ÷ç ÷
è ø

(8)

3. Turbulence modelling

Two of the most popular turbulence models are presented next.

3.1. The k-ε turbulence model

The standard formulation of this turbulence model is described in, e.g., [2]. The turbulent
viscosity is given by

2

t
kCm

rm
e

= (9)
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The turbulence kinetic energy, k [m2/s2], and its dissipation rate, ε [m2/s3], are computed with
the following transport equations:

( ) ( ) ( ) t t
k T

k k

k k kuk wk P G
t x z x x z z
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The term Pk represents the production rate of k as the results of the velocity gradients:

2 2 2
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x z z x

m
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(12)

while the term GT accounts for the production or destruction of k and ε due to the thermal
gradients:

Pr
t

T
t

TG g
z

m
b ¶

= -
¶ (13)

with g [m/s2] being the gravity acceleration and β [K−1] being the fluid dilatation coefficient.
The remaining constants are

2; ; ; ; ;k 1 3C 0.09 1.0 1.3 C 1.44 C 1.92 C 1.44m es s= = = = = = (14)

In the proximity of a wall, the previous equations should be modified to account for the viscous
effects that become predominant. Wall functions ensure the connection between the viscous
sub-layer and the inertia layer, at a location established by the y+ value:

0.25C k yu yy mt rr
m m

+ = = (15)

where uτ represents the friction velocity and y [m] is the distance to the wall. The utilization
of wall laws does not require mesh nodes in the viscous sub-layer, which is a major advantage
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from the computational standpoint. The momentum flux per unit area along the direction
normal to the wall is given by the wall shear stress, which is computed differently depending
on the location of the wall neighbour node relatively to the transition between the viscous and
the inertia sub-layers. Denoting by v the generic velocity component parallel to the wall (which
may, actually, be u or w) and by y the distance to the wall, we have

0
0

v vy 11.63
y

t m+ -
£ Þ = (16)

( ) ( )*ln

0.25

0 0
C k

y > 11.63 v v
E y

mr c
t m+

+
Þ = - (16a)

where v0 is the wall velocity, E*=9.793 for smooth walls and χ=0.4187 is the von Karman
constant. In the wall neighbourhood, the production term given by Eq. (12) is computed
assuming a Couette flow:

2

k t
vP
y

m
æ ö¶

= ç ÷¶è ø
(17)

where, once again, v is the generic velocity component parallel to the wall and y is the generic
distance to the wall. Due to its significant variations near the wall, ε is averaged for the term
ρε in Eq. (10):

( )
Pr
m+ £ Þ = -& p

0
c

y 12 q T T
y

(18)

( )*
0.75 1.5

ln
11.63

E y
y C k

ymre r
c

+

+ > Þ = (18a)

For the turbulence kinetic energy, a zero flux along the direction perpendicular to the wall is
assigned. For the dissipation rate, Eq. (11) is not employed in the node adjacent to the wall.
Instead, the dissipation rate is given by

0.75 1.5

0
C k

y
me
c

= (19)
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As for momentum, the energy flux is computed differently depending on the y+ values. In this
case, we have

( )
Pr
m+ £ Þ = -& p

0
c

y 12 q T T
y

(20)

( )
( )

.

* *Pr ln

mr

c

+

+
> Þ = -

é ù
+ê ú

ë û

&
0 25

p
0

t

c C k
y 12 q T T

1 E y P
(20a)

where T0 is the wall temperature and P* is the so-called Jayatillaka function:

(21)

3.2. The k-ωSST turbulence model

The k-ω SST model [3] represents a combination of the k-ε and the k-ω models. According to
Menter et al. [4], the k-ω model is more accurate near the wall but presents a high sensitivity
to the ω values in the free-stream region, where the k-ε model shows a better behaviour. The
k-ω SST model represents a blend of the two, through a weighting factor computed based on
the nearest wall distance. The governing equations are

( ) ( ) ( ) * ( ) ( )k k t k t
k uk wk k kP k

t x z x x z z
r r r

b rw m s m m s m
¶ ¶ ¶ ¶ ¶ ¶ ¶æ ö æ ö+ + = - + + + +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

(22)

( ) ( ) ( ) ( ) ( )t t
u w

t x z x x z zw w
rw r w r w w wm s m m s m

¶ ¶ ¶ ¶ ¶ ¶ ¶æ ö æ ö+ + = + + + +ç ÷ ç ÷¶ ¶ ¶ ¶ ¶ ¶ ¶è ø è ø

( )1
2k

2
t

P 1 k k2 1 F
v x x z zw
a w wbrw rs

w
¶ ¶ ¶ ¶æ ö+ - + - +ç ÷¶ ¶ ¶ ¶è ø

(23)

where ω is the frequency of dissipation of turbulent kinetic energy [s-1]. The production of
turbulent kinetic energy is limited to prevent the build-up of turbulence in stagnant regions:

( )min , *k kP P 10 kb r w= (24)
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where ω is the frequency of dissipation of turbulent kinetic energy [s-1]. The production of
turbulent kinetic energy is limited to prevent the build-up of turbulence in stagnant regions:

( )min , *k kP P 10 kb r w= (24)

Numerical Simulation - From Brain Imaging to Turbulent Flows268

The weighting function F1 is given by

4

tan h min max ; ;
*

2
1 2 2

k

4 kk 500vF
y y CD y
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w

rs
b w w

ì üì üé ùæ öïï ï ï= ê úç ÷íí ý ýç ÷ê úïï ï ïè øë ûî þî þ

(25)

and

max ,w w
wrs

w
-æ ö¶ ¶

= ç ÷ç ÷¶ ¶è ø

10
k 2

j j

1 kCD 2 10
x x

(26)

where y represents the distance to the neighbour wall and v is the laminar dynamic viscosity.
F1 is zero away from the wall (k-ε model) and changes to unit inside the boundary layer (k-ω
model) with a smooth transition based on y. The turbulent viscosity is computed as

( )max ;
1

t
1 2

a kv
a SFw

= (27)

where S is the invariant measure of the strain rate given by

;
æ ö¶¶

= = ç + ÷ç ÷¶ ¶è ø

ji
ij ij ij

j i

uu1S S S S
2 x x

(28)

and

2tanh max ;
*

2

2 2
k 500vF

y yb w w

ì üé ùæ öï ï= ê úç ÷í ýç ÷ê úï ïè øë ûî þ
(29)

The constants are computed as a blend of the k-ε and k-ω models by the following generic
equation:

( )11 1 1 2F Fa a a= + - (30)
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The constants are α1= 5/9; β1= 3/40; σk1 = 0.85; σω1 = 0.5; α2= 0.44; β2 = 0.0828; σk2 = 1; σω2 = 0.856;
β* = 0.09.

The near wall treatment for momentum and turbulence equations follows the proposal
described in [5]. The basic principle behind the automatic wall functions is to switch from a
low-Reynolds number formulation to a wall function based on the grid nodes proximity to the
wall. According to these authors, the automatic wall treatment avoids the deterioration of
results typical of low-Reynolds models when applied on too coarse meshes.

The known solutions for ω in the viscous (linear) and in the logarithmic near wall region are

log;
..
tnw w
c

= =vis 2
u6

0 3 y0 075 y
(31)

The imposed value for ω at the first node close to a wall is

logw w w= +2 2
1 vis (32)

For the turbulence kinetic energy, a zero flux along the direction perpendicular to the wall is
assigned. In turn, for the momentum equations, a similar reasoning applies, with expressions
for the shear velocity in the viscous and in the logarithmic region:

( )
log;

ln
t t

c
+ +

= =vis 1 1U Uu u
y E y (33)

with U1 being the fluid velocity relative to the wall velocity. The wall shear stress is computed
as follows:

( ) ( )log4 4vis4u u ut t t= + (34)

4. Numerical method

4.1. Transformation of coordinates

Discretizationand integration of the transport equations described previously are performed
using a non-orthogonal generalized mesh as shown in Figure 1. The independent Cartesian
coordinates (x, z), describing the physical domain, are thus replaced by a boundary-fitted
coordinate system (ξ, ζ), defined by the mesh lines which may have, locally, any orientation
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coordinates (x, z), describing the physical domain, are thus replaced by a boundary-fitted
coordinate system (ξ, ζ), defined by the mesh lines which may have, locally, any orientation
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and inclination. The computational domain (as opposed to the physical domain) is the space
considered in terms of the boundary-fitted coordinate system(ξ, ζ) as depicted in Figure 1. In
the computational domain, the mesh spacing is considered, for convenience, as unitary, i.e.,
Δξ =Δζ =1, and the mesh lines are always horizontal (ξ lines) or vertical (ζ lines). The mesh
arrangement is of the collocated type (as opposed to the staggered mesh) with the two velocity
components and scalar quantities (temperature, pressure, turbulence kinetic energy and its
dissipation rate or frequency, as well as concentrations) located at the control volume (CV)
centre.

Figure 1. The two domains. (a) Physical domain, showing the mesh lines; (b) Computational domain.

Transformation of the original equations is accomplished by replacing the independent
variables, using the chain rule, which states that, generically:

f f x f z f fx z
x z x z

¶ ¶ ¶ ¶ ¶ ¶ ¶
= + = +

¶ ¶ ¶ ¶ ¶ ¶ ¶x xx x x (35)

The Jacobian of the transformation

x x
J x z x z

z z
x z

x z z x
x z

= = - (36)
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represents the ratio between the physical size of the control volume and its computational size
(unitary). The derivatives ξx, ξz, ζx ζz are the contravariant metrics of the transformation. They
are computed from the covariant metrics, xξ, zξ, xζ, zζ as follows:

/ ; / ; / ; /z z x xx x z z= = - = - =x z x zz J x J z J x J (37)

To obtain the strong conservative form in the boundary-fitted coordinate system (ξ, ζ), the
transport equations are transformed through the application of the chain rule (35) and
multiplied by the Jacobian of the transformation. The metric identity

( ) ( ) ( ) ( );x x z zJ J 0 J J 0x z x z
x z x z
¶ ¶ ¶ ¶

+ = + =
¶ ¶ ¶ ¶

(38)

is then used to recast some terms. The result, for a generic variable ϕ, is

( ) ( ) ( )

11 33 13 13

J J U J W
t

Jg Jg Jg Jg JSf

¶ rf ¶ ¶r f r f
¶ ¶x ¶z

¶ ¶f ¶ ¶f ¶ ¶f ¶ ¶fG G G G
¶x ¶x ¶z ¶z ¶x ¶z ¶z ¶x

+ + =

é ù é ù é ù é ù
+ + + +ê ú ê ú ê ú ê ú

ë û ë û ë û ë û

(39)

The terms g11, g13 and g33 are the contravariant metric relations given by

; ;x x z z x z x z= + = + = +11 2 2 33 2 2 13
x z x z x x z zg g g (40)

The non-orthogonal term g13 is null if the mesh is locally orthogonal. U and W, in Eq. (39), are
the contravariant velocities. The terms JρU and JρW represent mass fluxes through the control
volume faces along the computational directions ξ and ζ, respectively, and are computed as
follows:

( )F J U z u x wx z zr r= = - (41)

( )F J W x w z uz x xr r= = - (42)

Note that, in this case, the sub-index for the fluxes (such as in Fξ ) represents the flux direction
(and not a derivative, such as for the metrics). Eq. (39) may be rewritten as
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¶ rf ¶ ¶ ¶ ¶f ¶ ¶ff f G G
¶ ¶x ¶z ¶x ¶x ¶z ¶z

é ù é ù
+ + = + + +ê ú ê ú

ë û ë û
(43)

where the cross-derivatives were incorporated into the source term Scross. A similar procedure
is applied to obtain the generalized form of remaining equations, leading to the following form
for the Navier-Stokes and continuity equations:

( ) ( ) ( )
11 33

crossu

u
J F u F u

t
u u p pJg Jg z z S

x z

z x

¶ r ¶ ¶
¶ ¶x ¶z
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+ - + +ê ú ê ú

ë û ë û

(44)

( ) ( ) ( )x z

z x

¶ r ¶ ¶ ¶ ¶ ¶ ¶G G
¶ ¶x ¶z ¶x ¶x ¶z ¶z
¶ ¶
¶x ¶z

é ù é ù
+ + = +ê ú ê ú

ë û ë û
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11 33
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w w wJ F w F w Jg Jg
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( ) ( ) ( ) ( )pJ z u x w x w z u J J U J W 0
t tz z x x

¶r ¶ ¶ ¶ ¶ ¶r r r r
¶ ¶x ¶z ¶ ¶x ¶z

é ù é ù+ - + - = + + =ë û ë û (46)

4.2. Integration

The integration and solution method for the transport equations are entirely based on the
methodology in [6], with some of the suggestions described in [7] and incorporating the
necessary modifications for the generalized mesh approach. The general Eq. (43) may be
written as

( ) ( )11 11
crossJ F Jg F Jg J S S

t x z f
¶ rf ¶ ¶f ¶ ¶ff G f G
¶ ¶x ¶x ¶z ¶z

æ ö æ ö
+ - + - = +ç ÷ ç ÷

è ø è ø
(47)

The integration of the previous equation in its control volume leads to

( ) ( ) ( )

( ) ( ) ( )1 2P P

e e e E P o o o P O

t t t T P b b b P B P

J F D F D
t

F D F D J S S

rf
f f f f f f

f f f f f f f

¶
+ é - - ù - é - - ù +ë û ë û¶

é - - ù - é - - ù = +ë û ë û

(48)
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where the source term has been written as a linear combination involving ϕP. F and D represent
the advective fluxes and the diffusive coefficients, respectively:

( ) ( );e e o oe o
F F z u x w F F z u x wx z z x z zr ré ù é ù= = - = = -ë û ë û

( ) ( );t t b bt b
F F x w z u F F x w z uz x x z x xr ré ù é ù= = - = = -ë û ë û (49)

( ) ( ) ( ) ( ); ; ;G G G G= = = =11 11 33 33
e o t be o t b

D Jg D Jg D Jg D Jg (50)

In the previous expressions, the subscripts indicate the location relative to the CV centre, in
the computational domain, with the uppercase denoting neighbour nodes and the lowercase
denoting neighbour faces: E,e: East; O,o: West; T,t: Top; B,b: Bottom. For simplicity, in
Eq. (48), the subscripts ξ and ζ  were dropped from the fluxes F (in fact, fluxes across the eastern
and western faces are always along the ξ direction and fluxes across the top and bottom faces
are always along the ζ  direction).

For the solution of the equations, it is necessary to evaluate the values of ϕ in the CV faces (i.e.,
ϕe,  ϕo,  ϕt ,  ϕb). These values are computed as a function of both ϕP  and the values in the
neighbour nodes ϕE ,  ϕO ,  ϕT ,  ϕB according to the adopted advection scheme (to be descri‐
bed later on). Eq. (48) may, then, be written in the following standard form:

f f f f f= + + + +P P E E O O T T B Ba a a a a b (51)

or, in a more compact manner,

P P nb nb
nb

a a u bf = å + (51a)

with “nb” indicating that the sum is to be performed for all the neighbouring locations.

It is necessary to compute the face values ϕe,  ϕo,  ϕt ,  ϕb as a function of ϕP ,  ϕE ,  ϕO ,  ϕT ,  ϕB

in order to obtain the coefficients aE ,  aO ,  aT ,  aB of Eq. (51). It is known that a simple arithmetic
average is not a physically plausible solution since, due to the presence of a flow, the property
ϕ, being advected, tends to assume a value closer to the upwind value. Several advection
schemes may be adopted, being the simplest one the upwind scheme. According to this scheme,
the property ϕ in the CVface takes the upwind value, i.e.,for example, Fe >0 ⇒ϕe =ϕP ;
Fe <0 ⇒ϕe =ϕE  . The complete mathematical formulation for the upwind scheme is
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§ ¨ § ¨
§ ¨ § ¨

, ; ,

, ; ,
E e e O o o

T t t B b b

a D F 0 a D F 0

a D F 0 a D F 0

= + - = +

= + - = +
(52)

Due to its first-order character, the upwind scheme is often not used due to associated
numerical diffusion. The Quick scheme is third-order accurate. The deferred correction version
of Hayase [8] combines the first-order upwind scheme with a third-order correction, bquick,
added to the source term as follows:

§ ¨( ) § ¨( )

§ ¨( ) § ¨( )

§ ¨( ) § ¨( )

§ ¨( ) § ¨( )

, ,

, ,

, ,

, ,

quick

e O P E e P E EE

o O P E o OO O P

t B P T t P T TT

b B P T b BB B P

b

1 1F 0 2 3 F 0 3 2 3
8 8
1 1F 0 3 2 F 0 2 3
8 8
1 1F 0 2 3 F 0 3 2 3
8 8
1 1F 0 3 2 F 0 2 3
8 8

f f f f f f

f f f f f f

f f f f f f

f f f f f f

=

- - + - - - - +

- - - - - - + +

- - + - - - - +

- - - - - - + +

(53)

The Quick scheme, although third-order accurate, presents oscillations that may lead to some
unrealistic behaviour. Total variation diminishing (TVD) schemes, also implemented in the
present code, were developed to provide second-order accurate solutions that are free or
nearlyfree from oscillations. For further information on this, please refer to, e.g., [9].

4.3. Pressure-velocity coupling

EasyCFD adopts the SIMPLEC algorithm (Semi-Implicit Method for Pressure-Linked Equa‐
tions-Consistent) [7], which is based on the original formulation SIMPLE [6]. Due to the non-
staggered mesh arrangement (collocated mesh), the Rie-Chow interpolation procedure [10],
with the modifications proposed in [11] and [12], is implemented. Let us consider the u
momentum conservation Eq. (44). After integration, the evaluation of this equation leads to

P P nb nb crossu
nb

p pa u a u z z Sz x
¶ ¶
¶x ¶z

= å - + + (54)

During the iterative process, velocities u* are computed from the available velocity field um and
pressure field p* obtained at the previous step as follows:

* *
* *

z x
¶ ¶
¶x ¶z

æ ö+ = + - + +åç ÷
è ø P P

mP
P nb nb crossu

nb

1 a p pa 1 u a u u z z S
E E

(55)
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where E is the under-relaxation factor [7]. During the iterative process, unless convergence is
reached, the velocity field u* obtained from the solution of the momentum equations does not
satisfy the continuity requirement unless the correct pressure field p is employed (instead of
an incorrect pressure field p*). This means that, if the correct pressure field was employed, a
mass-conservative velocity field would be obtained:
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Thus, the pressure and velocity fields p* and u* should be corrected by a certain amount p' and
u' :

'* * ¢= + = +P P Pp p p ; u u u (57)

Subtracting Eq. (56) from Eq. (55) and taking into account Eq. (57), one obtains
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The keystone of the SIMPLECalgorithm consists on the subtraction of the term ∑
nb

anbuP
'  on both

sides of the equation and subsequent dropping, leading to
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or, for simplicity:
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The equations for the velocity correction are obtained through the pressure correction field,
recurring to the previous equation:
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leading to
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4.4. The pressure correction equation

As previously stated, the objective of the pressure correction is to produce a pressure field such
that the solution of the momentum equations is a mass-conservative velocity field. Conse‐
quently, the equations for solving the p’ field must be obtained from the continuity equation.
The discretized form of this equation is obtained directly from the integration of Eq. (2):
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As one may see, velocities are, now, needed at the control volume faces. Taking Eq. (63), for
the u velocity component, at the “e “ and “o” faces and the same equation for the w component
at the “t” and “b” faces, substituting into Eq. (64) and rearranging the terms leads to
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The terms gij are the covariant metric relations defined as

x x z z x z x z= + = = + = = + = -2 2 33 2 2 2 11 2 13 2
11 33 13g x z g J ; g x z g J ; g x x z z g J (66)

The derivatives are evaluated as
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and, for the cross-derivatives,
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Introducing the discretization expressed by Eqs. (68) and 67 into Eq. (65) allows us to obtain
the pressure correction equation:
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The  symbol denotes a linear interpolation from the control volume centre (where the
momentum equations are defined) to the control volume faces (where the fluxes for the
continuity equations are needed). The pressure correction field p’ obtained from the solution
of Eq. (69) is employed for correcting pressure and velocity corrections are obtained from
Eq. (63). Note that, since these equations are defined at the control volume centre, p’ derivatives
are evaluated as
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One may note that pressure values at the control volume centre are not included in the
evaluation of these derivatives (the same applies for the pressure derivatives in the momentum
equations). This may lead to the well-known checkerboard pattern for the pressure field. To
avoid this effect, the Chie-Row interpolation method proposes that the mass fluxes, to be
evaluated at the control volume interfaces for all the transport equations (Fe, Fo, Ft and Fb, in
Eq. (48)), be corrected using the pressure correction p’ field (instead of being computed from
the corrected control volume centre velocities). The correction equations for fluxes are obtained
from the correction equations for velocities:
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The “starred” fluxes F* at the control volume interfaces are obtained by interpolating the
momentum equation. The keystone of the method is that the pressure gradient is not interpo‐
lated, but, instead, is obtained directly from the pressure at contiguous control volume centres.
Considering Eq. (55), evaluated in terms of fluxes, one may write
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The terms F̂ e,o and F̂ t ,b represent the fluxes

, , ,
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where the revised velocities û and ŵ are obtained from the momentum equations as follows:
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Note that the source term b includes all the contributions (e.g., transient term, cross-derivatives
and buoyancy for the w velocity component), except the under-relaxation and pressure
gradient.

4.5. Solution of the equations

The solution of the equations previously described is carried out with an iterative procedure.
For accelerating the convergence rate, two relaxation factors (described next) are applied.

The solution of the equation is sub- or over-relaxed in the following manner:

( )computed previousf 1 ff f f= + - (82)

Values of flower than unity lead to sub-relaxation, while values greater than unity over-relax
the solution process. In the present code, the value f =1.1 is employed for the transport
equations, while, for the pressure correction equation, the Point Successive Over Relaxation
(PSOR) method [13] combined with the additive correction multigrid method [14] is employed.

The whole flow field calculation is considered to be converged when all the normalized
residuals are lower that a predefined value Rconv :

, , , , ,u w m T k convR R R R R R Re <§ ¨ (83)

The total normalized residual for the transport equations of ϕ (ϕ =u, w, T , k , ε, ω) is deter‐
mined as follows:
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where (ϕmax−ϕmin) quantifies the amplitude of the variable ϕ in the calculation domain.

5. Examples of application

To exemplify the numerical method described previously, two test cases are presented next
along with a comparison of results with published data.

5.1. Flow past an airfoil

A calculation was performed to compute the aerodynamic coefficients of a NACA 0012 airfoil
operating at a Reynolds number of 6×106. The obtained values for the drag and lift coefficients
are compared with existing experimental data. The first step is to define the calculation domain,
which should be large enough in order to avoid numerical blockage effects. Figure 2 represents
the domain, for a 1 m airfoil cord length. Lateral boundaries are assigned a free slip condition
and a uniform velocity profile with 5% turbulence intensity is imposed at the inlet. A mass
conservative condition is applied at the outlet boundary. After a mesh independency study, a
total of approximately 250,000 mesh nodes were employed, with three mesh refinement
regions. Particular care was taken near the airfoil surface, were y+ values ranging from,
typically, 0.1 to 6, with an average value of 1.7 all around, were obtained. Figure 3 depicts the
mesh employed.

For the present simulations, both the first-order hybrid [6] and the Quick advection schemes
were employed, along with the k-ε and k-ω SST turbulence models. Experimental data are
reported by Abbott and Von Doenhoff [15] and Ladson [16].

Figure 2. Domain dimensions. Airfoil cord is 1 m.
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Figure 3. Non-structured quadrilateral mesh.

Results for the dependence of the lift coefficient with the airfoil angle of attack α are shown in
Figure 4. As expected, the lift coefficient presents a linear dependence with the angle of attack
α up to the onset of separation, which occurs at α =16  . The two advection schemes give similar
results up to separation, after which the lift drop in the stall region is more pronounced with
the hybrid scheme. Separation is completely established at α =18  and for α ≥20  the flow
becomes unsteady. Both turbulence models perform very well in the linear region. After
separation, data are more spread. The difficulty to obtain reliable experimental data in this
circumstance is commonly recognized as the flow is unsteady and presents a 3D behaviour.
Comparing the two advection schemes, the Quick scheme performs better, particularly after
separation.

Figure 4. Lift coefficient vs. angle of attack. Influence of (a) turbulence modeland (b) advection scheme.

Figure 5 depicts the relation between lift and drag coefficients. In this case, the k-ω SST
turbulence model performs substantially better than the k-ε model. This is certainly due to the
fact that the friction component plays an important role in drag, and thus correctly resolving
the boundary layer in the very proximity of the wall is crucial for the drag computation. It is
also interesting to note that the advection scheme plays a very important role, with the higher

Numerical Simulation - From Brain Imaging to Turbulent Flows282



Figure 3. Non-structured quadrilateral mesh.

Results for the dependence of the lift coefficient with the airfoil angle of attack α are shown in
Figure 4. As expected, the lift coefficient presents a linear dependence with the angle of attack
α up to the onset of separation, which occurs at α =16  . The two advection schemes give similar
results up to separation, after which the lift drop in the stall region is more pronounced with
the hybrid scheme. Separation is completely established at α =18  and for α ≥20  the flow
becomes unsteady. Both turbulence models perform very well in the linear region. After
separation, data are more spread. The difficulty to obtain reliable experimental data in this
circumstance is commonly recognized as the flow is unsteady and presents a 3D behaviour.
Comparing the two advection schemes, the Quick scheme performs better, particularly after
separation.

Figure 4. Lift coefficient vs. angle of attack. Influence of (a) turbulence modeland (b) advection scheme.

Figure 5 depicts the relation between lift and drag coefficients. In this case, the k-ω SST
turbulence model performs substantially better than the k-ε model. This is certainly due to the
fact that the friction component plays an important role in drag, and thus correctly resolving
the boundary layer in the very proximity of the wall is crucial for the drag computation. It is
also interesting to note that the advection scheme plays a very important role, with the higher

Numerical Simulation - From Brain Imaging to Turbulent Flows282

order scheme Quick showing much better than the hybrid scheme, when results are compared
with the experimental data.

Figure 5. Drag coefficient vs. lift coefficient. Influence of (a) turbulence model and (b) advection scheme.

5.2. Natural convection inside a cavity

The natural convection flow in a cavity is a classical test for numerical methods in fluid
dynamics. The cavity is a square shape (cf. Figure 6) with adiabatic horizontal walls. A constant
temperature is imposed in each the vertical wall.

Figure 6. Problem definition for the natural convection inside a cavity.

The problem is governed by the following non-dimensional parameters:

Prandtlnumber vPr,
a

= (85)

where the thermal diffusivity is α =λ / (ρcp), ν is the kinematic viscosity, λ is the thermal
conductivity, ρ is the density and cp is the specific heat:

A Numerical Procedure for 2D Fluid Flow Simulation in Unstructured Meshes
http://dx.doi.org/10.5772/63077

283



Rayleigh number Pr3

2, g T LRa
v

b D
= (86)

where β is the thermal expansion coefficient, g is the gravity acceleration and ΔT =Th −Tc is the
temperature difference between the vertical walls. The transition between laminar and
turbulent flow takes place approximately for Ra =10 7 . In the present work, simulations were
conducted for Ra =10 5 (laminar regime). Air is the operating fluid, for which Pr = 0.71. The
hybrid advection scheme was used and the Boussinesq approximation was adopted. Compu‐
tations were performed in a non-uniform grid, with 82 × 82 = 6400 nodes. Reference results are
reported in [17] and [18] for several Rayleigh numbers in laminar regime, comparing solutions
given by several authors. Results for laminar and turbulent flow are also presented in [19].

Figure 7(a) and (b) displays isothermal lines generated using a constant value spacing between
the minimum and the maximum verified within the domain. Figure 8(a) and (b) shows the
flow streamlines. The flow, in the steady-state situation, is characterized by a large vortex
filling the cavity, rotating in the clockwise direction. Two small vortices rotating in the same
direction are located near the cavity centre. For this case, the minimum and the maximum
streamline values used in the visualization do not correspond to the total amplitude of the
stream function within the domain. These values were, instead, adjusted in EasyCFD to
correspond to those employed in [19]. The agreement between the calculations and those
reported in the literature is very good. Vahl Davis and Jones [18] present normalized maximum
values for the u and for w components of velocity

a a
* *= =

uL wLu ; w (87)

occurring in the vertical and horizontal symmetry lines, respectively. Table 1 shows the results
obtained with EasyCFD, the reference values in [17] and the range of variation for the 37
contributions reported in [18]. This range does not include the minimum and maximum
reported values since these clearly fall outside the general trend of the remaining contributions.

Figure 7. Isothermal lines. Ra = 105. (a) EasyCFD and (b) Dixit and Babu [19].
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Figure 8. Streamlines. Ra = 105. (a) EasyCFD and (b) Dixit and Babu [19].

EasyCFD Vahl Davis [17] Variation range [18]

34.44 34.81 34.2–41.2

68.21 68.68 65.8–70.45

Table 1. Normalized maximum values for the u and w velocity components.

6. Concluding remarks

The numerical simulation of fluid flow for 2D problems was addressed. The physical principles
and numerical models here presented correspond to the implementation in the software
package EasyCFD. Transformation of the original equations to cope with a non-orthogonal
generalized mesh is described in detail, along with the coupling of momentum and continuity
with an adapted SIMPLEC algorithm for non-staggered meshes. Although not addressed in
the present chapter, this software package was developed entirely based on a graphical
interface, aiming at an easy and intuitive utilization. With a fast learning curve, this package
is very suitable for learning the principles and application methods in computational fluid
dynamics and has a great value both as a didactic and an applied tool. Although, at first, the
restriction to 2D situations may seem very limitative, a great number of practical situations
may be addressed with this approach.
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Abstract

The problem of MHD micropolar fluid, heat and mass transfer over unsteady stretch‐
ing sheet through porous medium in the presence of a heat source/sink and chemical
reaction is presented in this chapter. By applying suitable similarity transformations, we
transform the governing partial differential equations into a system of ordinary differential
equations. We then apply the recently developed numerical technique known as the
Spectral Quasi-Linearization Method. The validity of the accuracy of the technique is
checked against the bvp4c routine method. Numerical results for the surface shear stresses,
Nusselt number and the Sherwood number are presented in tabular form. Also numerical
results for the velocity, temperature and concentration distribution are presented in
graphical forms, illustrating the effects of varying values of different parameters.

Keywords: micropolar fluid, unsteady stretching sheet, porous media, heat source/
sink, Spectral Quasi-Linearization Method

1. Introduction

The boundary layer flows, heat and mass transfer in a quiescent Newtonian and non-Newto‐
nian fluid driven by a continuous stretching sheet are of significance in a number of industrial
engineering processes such as the drawing of a polymer sheet or filaments extruded continu‐

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



ously from a die, the cooling of a metallic plate in a bath, the aerodynamic extrusion of plastic
sheets, the continuous casting, rolling, annealing and thinning of copper wires, the wires and
fibre coating. During its manufacturing process, a stretched sheet interacts with ambient fluid
thermally and mechanically. Both the kinematics of stretching and the simultaneous heating or
cooling during such processes have a decisive influence on the quality of the final product. In
[1], the effects of chemical reaction and magnetic field on viscous flow over a non-linear stretching
sheet were reported. Mabood et al. [2] studied numerically MHD flow and heat transfer of
nanofluid over a non-linear stretching sheet. Abel et al. [3] investigated the steady buoyancy-
driven dissipative magneto-convective flow from a vertical non-linear stretching sheet. In [4],
an analysis of heat transfer over an unsteady stretching sheet with variable heat flux in the
presence of heat source or sink was made. Several other studies have addressed various aspects
of regular/nanofluids [5–10].

Micropolar fluids are fluids with microstructure and asymmetrical stress tensor. Physically,
they represent fluids consisting of randomly oriented particles suspended in a viscous
medium. These types of fluids are used in analysing liquid crystals, animal blood, fluid flowing
in brain, exotic lubricants, the flow of colloidal suspensions, etc. The theory of micropolar fluids
was first proposed by Eringen [11]. In this theory, the local effects arising from the micro‐
structure and the intrinsic motion of the fluid elements are taken into account. The compre‐
hensive literature on micropolar fluids, thermomicropolar fluids and their uses in engineering
and technology was presented by Kelson and Desseaux [12]. Gorla and Nakamura [13]
discussed the combined convection from a rotating cone to micropolar fluids with an arbitrary
variation of surface temperature. Prathap Kumar et al. [14] studied the effect of surface
conditions on the micropolar flow driven by a porous stretching sheet. In [15], the case of mixed
convection flow of a micropolar fluid past a semi-infinite, steadily moving porous plate with
varying suction velocity normal to the plate in the presence of thermal radiation and viscous
dissipation was discussed. Mansour et al. [16] studied heat and mass transfer effects on the
magnetohydrodynamic (MHD) flow of a micropolar fluid on a circular cylinder. El-Hakiem
[17] proposed the dissipation effects on the MHD-free convective flow over a non-isothermal
surface in a micropolar fluid. Joule heating and mass transfer effects on the MHD-free
convective flow in micropolar fluid are investigated by El-Hakiem et al. [18] and El-Amin [19],
respectively. In [20], the derivation of the unsteady MHD-free convection flow of micropolar
fluid past a vertical moving porous plate in a porous medium was presented. Many researchers
investigated different aspects of micropolar fluid [21–23].

The study of heat source/sink effects on heat transfer is another important issue in the study
of several physical problems. The effect of non-uniform heat source, only confined to the case
of viscous fluids, was also included in [24–27], while Mabood et al. [28] investigated non-
uniform heat source/sink effects and Soret effects on MHD non-Darcian convective flow past
a stretching sheet in a micropolar fluid with radiation.

Combined heat and mass transfer problems with chemical reactions are important in many
processes of interest in engineering and have received significant attention in recent years.
These processes include drying, evaporation at the surface of a water body, energy transfer in
a wet cooling tower and the flow in a desert cooler [29]. Chemical reactions are classified as
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either homogeneous or heterogeneous. A homogeneous reaction is one which occurs uni‐
formly through a given phase, while a heterogeneous reaction takes place in a restricted region
or within the boundary of a phase. A reaction is said to be a first-order reaction if the rate of
reaction is directly proportional to the concentration [30, 31]. The effect of chemical reaction
on thermal radiation for MHD micropolar flow and heat and mass transfer was investigated
by Das [32]. Hayat et al. [33] considered MHD flow and mass transfer of an upper-convected
Maxwell fluid past a porous shrinking sheet with chemical reaction. The behaviour of
chemically reactive solute and distribution in MHD boundary layer flow over a permeable
stretching sheet were investigated by Bhattacharyya and Layek [34]. Kandasamy et al. [35]
studied the effect of transfer of chemically reactive species in MHD-mixed convective flow
past over a porous wedge. The solution for diffusion of chemically reactive species in a flow
of a non-Newtonian fluid over a stretching sheet immersed in a porous medium was reported
by Afify [36], while Mabood et al. [37] reported the effects of chemical reaction and transpira‐
tion on MHD stagnation point flow and heat transfer over a stretching sheet.

The main objective of this chapter is to apply a recently developed numerical technique known
as Spectral Quasi-Linearization Method (SQLM) in solving MHD micropolar fluid, heat and
mass transfer over an unsteady stretching sheet through porous media in the presence of a
heat source/sink and chemical reaction. The SQLM was first implemented by Motsa et al. [38].

2. Mathematical formulation

We consider an unsteady two-dimensional, mixed convection flow of a viscous incompressible
micropolar fluid, heat and mass transfer over an elastic vertical permeable stretching sheet in
the presence of a heat source/sink and chemical reaction. Following [39], the sheet is assumed
to emerge vertically in the upward direction from a narrow slot with a velocity,

( ), ,
1w

axU x t
ta

=
-

(1)

where both a and α are positive constants with dimension per unit time. We measure the
positive x direction along the stretching sheet with the top of the slot as the origin. We then
measure the positive y coordinate perpendicular to the sheet and across the fluid flow. The
surface temperature (Tw) and the concentration (Cw) of the stretching sheet vary along the x
direction and in time t as

( )
( )

( )
( )2 2, , , ,

1 1
w w

bx cxT x t T C x t C
t ta a

¥ ¥= + = +
- - (2)

where b and c are constants with dimension temperature and concentration respectively, over
length. It is noted that the expressions for Uw(x, t), Tw(x, t) and Cw(x, t) are valid only for
t <α −1. We also remark that the elastic sheet which is fixed at the origin is stretched by applying
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a force in the x-direction and the effective stretching sheet rate a / (1−αt) increases with time.
Analogously, the sheet temperature and concentration increase (reduce) if b and c are positive
(negative), respectively, from T∞ and C∞ at the sheet in the proportion to x. We assume that
the radiation effect is significant in this study. The fluid properties are taken to be constant
except for density variation with temperature and concentration in the buoyancy terms. Under
those assumptions and the Boussinesq approximations, the governing two-dimensional
boundary layer equations are given as:
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¶ ¶
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where u and v are the velocity components along the x andy axes, respectively, T is the fluid
temperature, μ is the component of the microrotation vector normal to the x y plane, γ is the
spin gradient viscosity, α0 is the thermal conductivity, Cp is the heat capacity at constant
pressure, g is the acceleration due to gravity, βt and βc are the coefficients of thermal expression
and concentration expansion, respectively, β0 is the transverse magnetic field, C is the concen‐
tration of the solutes, T∞ and C∞ denote the temperature and concentration far away from the
plate, respectively, and j is the microinertia density or microinertia per unit mass. The
appropriate boundary conditions for the current model are:

( ) ( ) ( ), , , 0, , , , at 0,w w w wu U x t v V N T T x t C C x t y= = = = = = (8)

0, , as .u T T C C y¥ ¥= ® ® ®¥ (9)
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3. Similarity analysis

In this section, we transform the partial differential equations into ordinary differential
equations. Similarity techniques reduce the number of parameters, as well as improve insight
into the comparative size of various terms present in the equations.

3.1. Transformation of the governing equations

In order to transform the governing Eqs. (3)–(7) into a set of ordinary differential equations,
we introduce the following transformation variables [40]:

( ) ( ) ( )
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where  is the physical stream function which automatically satisfies the continuity
equation. Upon substituting similarity variables into Eqs. (3)–(7), we obtain the following
system of ordinary equations:
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Boundary conditions

The corresponding boundary conditions become:

( ) ( ) ( ) ( ) ( )0 1, 0 , 0 0, 0 1, 0 1,wf f f h q f¢ = = = = = (15)
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3.2. Quantities of engineering interest

The quantities of engineering interest in the present study are the skin-friction coefficient Cfx,
the local wall couple stress Mwx, the local Nusselt number Nux and the local Sherwood number
Shx. The quantities are, respectively, defined by:
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4. Method of solution

In this section, we give a brief overview of the Spectral Quasi-linearization Method (SQLM).
The SQLM uses the Newton-Raphson-based quasi-linearization method (QLM) to linearize
the governing non-linear equations. The QLM was developed by [41]. The SQLM then
integrates the QLM using the Chebyshev Spectral collocation method.
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The quantities of engineering interest in the present study are the skin-friction coefficient Cfx,
the local wall couple stress Mwx, the local Nusselt number Nux and the local Sherwood number
Shx. The quantities are, respectively, defined by:
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4. Method of solution

In this section, we give a brief overview of the Spectral Quasi-linearization Method (SQLM).
The SQLM uses the Newton-Raphson-based quasi-linearization method (QLM) to linearize
the governing non-linear equations. The QLM was developed by [41]. The SQLM then
integrates the QLM using the Chebyshev Spectral collocation method.

Numerical Simulation - From Brain Imaging to Turbulent Flows294

4.1. Spectral Quasi-Linearization Method (SQLM)

4.1.1. Main idea

Consider the problem of solving nth order non-linear differential equation

( )( ) ( ) ( ) ( ), , ,..., or ,nF u u u u g x F g x¢ ¢¢ = =u (22)

subject to prescribed boundary conditions, where a ≤ x ≤b. The SQLM consists of two basic
steps: quasi-linearization and Chebyshev differentiation in that order.

Quasi-linearization: If we expand left-hand side of Eq. (22) in Taylor series about
v(v, v ′, v ″, ..., v (n)) = g(x) and re-arrange the terms in the resulting equation we get:

( ) ( ) ( ) ( ). v . v v .F F F g xÑ = Ñ - +u v (23)

If v is given then the previous equation can be used to solve for u. Keeping this in mind, we
replace v and u with approximations ur and ur+1 of u at the end of r and r+1 iterations, respec‐
tively. This results in the nth order linear differential equation

2
2 2 2

0, 1 1, 2, n,2 ...
n

r r r
r r r r r rn

du d u d ua u a a a R
dx dx dx

+ + +
+ + + + + = (24)

Where am,r = Fu (m)(ur), Fu (m) =
∂ F

∂ u (m)  and

( ) ( )( )
0, 1, 2, n,... m

r r r r r r r r r rR a u a u a u a u F g x¢ ¢¢= + + + + - +u (25)

Chebyshev differentiation: To solve the differential Eq. (24) we start by performing the following
preliminary steps.

1. Using the linear mapping

( ) 1 1
2 2

x a bx xx - +
= + (26)

we transform Eq. (24) on the physical interval [a, b], say, on the x axis to its equivalent
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2
21 1 1

0, 1 1, 2, n,2 ...
n

nr r r
r r r r r rn

du d u d ua u a a a R
d d d

b b b
x x x

+ + +
+ + + + + = (27)

on the computational interval [−1, 1] on the ξ axis, where β = 2
b − a .

2. Partition interval [−1, 1] using the collocation points ξ = πi
N  where i = 0, 1, 2, ..., N.

Next we calculate differential Eq. (27) at each collocation point ξi. This is followed by
approximating each derivative using the formula:

( ) ( )
0

p N
pr

i r ip
j ij

d u D u
d

x x
x =

é ù= ë ûå

where D is the (N+1)×(N+1) Chebyshev differentiation matrix [1]. This process is called
Chebyshev differentiation. The differential Eq. (27) is then evaluated at points ξ0, ξ1, .....ξN

with a linear system

( )
( )

( )

( )
( )

( )

0 0

1 1

. .

. .

. .

r r

r r

r N r N

u R
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u R

x x
x x

x x

é ù é ù
ê ú ê ú
ê ú ê ú
ê ú ê ú

=ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê ú
ê ú ê úë û ë û

which upon including the boundary conditions and solving for each r generates a
sequence {ur} of approximation which we expect to converge.

4.2. Application to current problem

Eq. (14) is of the form

( ), , , , 0,F f f f f f¢ ¢ ¢¢ = (28)

where

( ) ( )1, , , , 4 .
2
AF f f f f K

Sc
f f f f f f f f hf¢ ¢ ¢¢ ¢¢ ¢ ¢ ¢= + - - - + (29)
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Hence quasi-linearization as directed in Section 4.2.1 replaces non-linear differential Eq. (28) with
its linear counterpart

( )3
0 1 1 1 2 1 3 1 4 1r r r r r r r r r r rd f d f d d d Rf f f+ + + + +¢ ¢ ¢¢+ + + + = (30)

where

( )3
0 1 2 3 4

1, , 2 , , , .
2r r r r r r r r r r r r r r r
Ad d d f K A d f d R f f

Sc
f f h f f¢ ¢ ¢¢= = - = - - = - = = - +

Chebyshev differentiation replaces differential Eq. (30) with a linear system

{ } { }41
ˆdiag diag ,r rA D¢= -Φ Φ (31)

{ } ( ) 2
44

1ˆ ˆdiag 2 diag ,
2r r r
AA K A I D D

Sc
hì ü¢= + - - + - +í ý

î þ
F F

(4)R r r r r r¢ ¢=- +F Fo oF F

( ) ( ) ( )1 1 0 1 1 1... ,
T

r r r r Nf f fx x x+ + + += é ùë ûF

( ) ( ) ( )1 1 0 1 1 1... .
T

r r r r Nf x f x f x+ + + += é ùë ûΦ

Therefore the use of Quasi-linearization followed by Chebyshev differentiation replaces
differential Eq. (14) with a linear system (31). Similarly, differential Eqs. (11)–(13) are re‐
placed by linear systems, which if combined with a linear system (30) yield a larger linear
system
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(32)

subject to boundary conditions
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( ) ( ) ( ) ( ) ( )1 1 1 1
0

ˆ, 1, , 1, 1,
N

r w Nk r N N r N r N
k

f f D f hx x x x q x f x+ + + +
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= = = = =å (33)

( ) ( ) ( ) ( )0 1 0 1 0 1 0
0

0, 0, 0, 0,
N

k r r r
k

D f hx x q x f x+ + +
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= = = =å (34)

where
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è ø î þ
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(3)

1ˆ ˆA diag{ } 2 diag ,
2 Pr

(1 )

ì ü=- + - + + - +í ý
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¢¢ ¢ ¢= + D + o o

r x r r

r r r r

AA Q I D D

Ec

hF F

R F F FQ - Q,
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{ } ( )
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2
42

(4)

ˆA diag diag ,

1ˆ ˆA diag 2 diag ,
2

,

r r

r r r

r r r

D

AK A I D D
Sc

h

¢= -

ì ü= - - + + - +í ý
î þ

¢ ¢=- +

Φ Φ

F F

R F Fo oF F

A о B denotes the Hadarmard product (element-wise multiplication) of matrices A and B of
the same order, and I and O are the identity and zero matrices, respectively. Boundary
conditions (33) and (34) of linear system (32) are in the same manner as done in [2]. This is
followed by solution of linear system (32) to get approximations f r(ξc), h r(ξc), θr(ξc), ϕr(ξc)
for each r =1, 2, ... and c =0, 1, 2, ..., N . However, this last step requires suitable initial approx‐
imation for which we choose
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( ) ( ) ( ) ( )0 0 0 01 , , , ,wf f e h e e eh h h hh h h q h f h- - - -= + - = = =

so as to satisfy boundary conditions (33) and (34).

5. Results and discussion

The non-linear differential Eqs. (11)–(14) with boundary conditions (15)–(16) depend on
several parameters, such as micropolar Δ, unsteadiness A, thermal buoyancy λ1, solutal
buoyancy λ2, non-dimensional material λ3, magnetic field M, local porous Kp, non-dimensional
parameter B, Eckert number Ec, heat generation and/or absorption and chemical reaction. All
the SQLM results presented in this work were obtained using N = 50 collocation points, and
we are glad to highlight that convergence was achieved in just about five iterations. We take
the infinity value η∞ to be 40. Unless otherwise stated, the default values for the parameters
are taken as:

Pr = 0.71, B = 0.1, M = 1, Ec = 0.1, Sc = 0.22, Δ Δ = 0.1, λ1 = λ2 = 0.5, Kp = 1, K = 0.5, f_w = 0.5, λ3.
In order to validate our numerical method, it was compared to MATLAB routine bvp4c
which is an adaptive Lobatto quadrature iterative scheme. This is depicted in Table 1. In
Table 1, we observe that the current results completely agree with the results generated by
bvp4c. It is worth noting that convergence of SQLM occurs as early as at the sixth iteration
and the method is extremely faster, saving cpu time. This gives confidence to our proposed
method. We also observe in Table 1 that the rates of transfers are greatly affected by the
micropolar parameter Δ.

−f″ (0) −θ′(0) − ϕ′(0)

Δ bvp4c SQLM bvp4c SQLM bvp4c SQLM

0.1 1.51831796 1.51831796 0.969700948 0.96700948 2.2273423 2.22734623

0.5 1.29335523 1.29335523 0.89967685 0.89967685 2.23825301 2.23825301

1 1.10530824 1.10530824 0.82937070 0.82937070 2.24887626 2.24887626

Table 1. Comparison of the SQLM results of f  −f″ (0), −θ′(0), ϕ ′(0) with those obtained by bvp4c for different values
of the micropolar parameter Δ.

We observe in Table 2 that the wall stresses, the Nusselt and Sherwood numbers are signifi‐
cantly affected by the changing values of the unsteadiness parameter. The skin-friction
coefficient as expected increases with increasing values of the stretching parameter.
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A − f ″(0) h ′(0) −θ′(0) −θ′(0)

0 1.18860026 0.03277007 0.22581676 1.34959740

1 1.51530691 0.02767645 1.21557294 1.75188835

2 1.86832868 0.02329578 2.06905446 2.36549832

Table 2. The effects of the unsteadiness parameter on − f ″(0), h ′(0), −θ′(0), −ϕ′(0).

Table 3 depicts the influence of the thermal buoyancy parameter on the skin friction coefficient,
the local couple wall stress, the local Nusselt and Sherwood numbers. Both local wall stresses
are reduced as the values of buoyancy parameters are increased but the Nusselt and Sherwood
numbers increase with increasing values of the buoyancy parameters.

λ1 − f ″(0) h ′(0) −θ′(0) − ϕ′(0)

−0.5 1.77407269 0.03036702 1.17144784 1.73796915

0 1.64314463 0.02897505 1.19450881 1.74511388

0.5 0.46281664 0.01845219 1.34838298 1.80239822

Table 3. The influence of the thermal buoyancy parameter on the skin friction coefficient, couple stress and rate of heat
and mass transfer coefficient.

Kp − f ″(0) h ′(0) −θ′(0) − ϕ′(0)

0.1 −0.51158820 0.01764248 1.36287821 1.81467597

5 0.33757366 0.01499546 1.39049894 1.82865098

10 0.63059835 0.01202912 1.41759309 1.84519070

Table 4. The effects of the local porous parameter on the skin friction coefficient, couple stress, rate of heat and mass
transfer coefficient.

M − f ″(0) h ′(0) −θ′(0) − ϕ′(0)

1 1.51550691 0.02767645 1.21557294 1.75188835

3 1.91685662 0.03972746 1.16026663 1.73369138

5 2.24935200 0.03274343 1.11815954 1.72039545

Table 5. The influence of the magnetic field parameter on the skin friction coefficient, couple stress, rate of heat and
mass transfer coefficient.

The effect of medium porosity on the wall stresses and the Nusselt and Sherwood numbers is
depicted in Table 4. Porosity significantly affects the transfer rates. The effect of magnetic field
parameter is depicted in Table 5. As expected, the presence of the magnetic field has prominent
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effects on the skin-friction coefficient as well on the heat and mass transfer rates. The drag force
that is generated by the presence of magnetic field causes significant resistance to the velocity
of the fluid thus increases the wall stresses but reduces the rates of heat and mass transfer.

Table 6 shows the effects of the micropolar parameter and the non-dimensional material
parameter on the wall stress. The micropolar parameter increases the values of the wall couple
stress, but the non-dimensional material parameter reduces the values of the wall stress.

Δ h ′(0) λ3 h ′(0)
0.1 0.05465849 0.1 0.22157402

0.5 0.23205149 0.2 0.08984383

1 0.39106943 0.3 0.05861008

Table 6. The effects of the micropolar parameter and the non-dimensional material parameter on the couple stress.

The influence of the micropolar parameter Δ on the axial velocity is depicted in Figure 1. It
can be observed in Figure 1 that axial velocity is an increasing function of the micropolar
parameter. Physically, micropolar fluids show reduced drag compared to viscous fluids.

Figure 1. Velocity profile for various values of Δ.

In Figure 2 we display the effect of unsteadiness parameter on the axial velocity f '(η)
Increasing the values of the unsteadiness parameter (A) causes the velocity boundary layer
thickness to decrease, thereby reducing the velocity profiles. This is due to increased drag force
on the surface. Surface stretching can therefore be used as a stabilizing mechanism in an effort
to delay the transition from laminar flow to turbulent fluid flow.

On a New Numerical Approach on Micropolar Fluid, Heat and Mass Transfer Over an Unsteady Stretching Sheet
Through Porous Media in the Presence of a Heat Source/Sink and Chemical Reaction

http://dx.doi.org/10.5772/63800

301



Figure 2. Velocity profile with A.

The effect of the permeability of the porous medium parameter (Kp) on the translational
velocity distribution profiles is depicted in Figure 3. The translational velocity increases with
increasing values of the porosity parameter. Physically, increasing the porosity of the medium
implies that the holes of the medium become larger, thereby reducing the resistivity of the
medium.

Figure 4 displays the effect of the thermal buoyancy parameter on the translational velocity
distribution. The velocity profiles are reduced for the opposing flows (λ1 <0). However λ1

becomes more positive and favourable pressure gradients are enhanced, thereby accelerat‐
ing the fluid flow as can be clearly observed in Figure 4. It is interesting to note that for large
values of the thermal buoyancy parameter, the translational velocity over-shoots near the wall
over the moving speed of the sheet. This substantiates the notion that buoyancy accelerates

Figure 3. Variation of the porosity parameter on the axial velocity.
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transition from laminar flow to turbulent flow; therefore, this must always be properly
regulated in systems where turbulence is destructive. We also remark that solutal buoyancy
as expected has the same effect as thermal buoyancy.

Figure 4. The influence of the thermal buoyancy on the axial velocity.

Figure 5. Variation of angular velocity with A.

The influence of the unsteadiness parameter on the angular velocity h (η) is displayed in
Figure 5. The unsteadiness parameter has pronounced influence on the angular velocity with
values of h (η) picking up at η =1,  as can be clearly seen in Figure 5. However, the angular
velocity approaches zero as η increases infinitely and the unsteadiness parameter (A) increases.
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Figure 6 shows the effect of the microrotation parameter (B) on the angular velocity. We
observe that the microrotation effect is more pronounced as expected near the surface.
Increasing values of B results in much increasing values of the angular velocity profiles.

Figure 6. Influence of B on the velocity.

We observe in Figure 7 that the angular velocity is significantly affected by the micropolar
parameter (Δ) The angular velocity is greatly induced due to the vortex viscosity effect as Δ
increases.

Figure 7. Variation of the angular velocity with Δ.

The effect of thermal buoyancy parameter (λ1) is displayed in Figure 8. We observe that the
angular velocity h (η) increases with increasing values of the thermal buoyancy parameter λ1.
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Figure 8. Angular velocity profiles for various values of thermal buoyancy.

In Figure 9, we display the effect of the metrical parameter on the angular velocity. The angular
velocity is greatly reduced by increasing value of λ3. This means that either the spin gradient
coefficient increases or the microinertia density is reduced.

Figure 9. Variation of angular velocity with material parameter.

The effect of the unsteadiness parameter is displayed in Figure 10. The thermal boundary layer
thickness is greatly reduced by increasing values of the unsteadiness parameter thus reduc‐
ing the fluid temperature distribution

Figure 11 displays the effect of viscous dissipation on the temperature distribution resulting
in increased Eckert number that causes heat energy to be stored in the region as a result of
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dissipation. This dissipation is caused by viscosity and elastic deformation, thus generating
heat due to the frictional heating.

The effect of thermal buoyancy parameter is depleted in Figure 12. The thermal boundary layer
thickness is reduced when the value of the thermal buoyancy is increased. The fluid temper‐
ature is reduced at every point, except at the wall with increasing values of the thermal
buoyancy parameter.

Figure 10. Temperature profile for various values of A.

Figure 11. Variation of temperature with the Eckert number.
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Figure 12. Temperature profile for various values of thermal buoyancy.

Figure 13 displays the variation of temperature distribution within the fluid flow for various
values of the heat source/sink parameter. As expected, the fluid temperature increases with
increasing values of heat at the source but decreases with increasing values of heat at a sink.

Figure 13. Temperature profile for various values of heat source/sink.

Figure 14 shows the variation of the unsteadiness parameter on the concentration profiles. It
is clearly observed that increasing values of A reduces both the solutal boundary layer
thickness thus reduces the concentration distributions
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Figure 14. Concentration profile for various values A

Lastly, the influence of a chemical reaction parameter on the concentration profiles is depict‐
ed in Figure 15. Physically, the concentration profiles decreases as the chemical reaction
parameter increases.

Figure 15. Variation.

6. Conclusions

The problem of MHD micropolar fluid, heat and mass transfer over unsteadiness stretching
sheet through porous medium in the presence of a heat source/sink and chemical reaction is
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sheet through porous medium in the presence of a heat source/sink and chemical reaction is
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studied in this chapter. By applying suitable similarity transformations, we transformed the
governing partial differential equations into a system of ordinary differential equations. We
then applied the recently developed numerical technique known as the SQLM to solve the
resultant set of non-linear ordinary differential equations. The accuracy of the SQLM was
validated against the bvp4c routine method. We observed that the SQLM performs much better
than the bvp4c in terms of rate of convergence as well cpu time.

Based on the present study, the following conclusions are made:

1. Buoyancy forces accelerate the fluid flow near the velocity boundary layer in cases of
assisting flows but retard the fluid flow in cases of opposing flows.

2. The unsteadiness parameter significantly affects the fluid properties as expected.

3. Both velocity components are increasing functions of the micropolar parameter, while the
temperature and concentration distributions are reduced as the micropolar parameter
increases.

4. The presence of the viscous dissipation produces heat due to friction between the fluid
particles which in turn causes an increase of fluid temperature.

5. The transfer rates of a micropolar fluid are greatly enhanced as either the values of the
buoyancy parameter unsteadiness Prandtl or Schmidt number are increased. But these
rates are reduced as either the values of the micropolar parameters, magnetic field
parameter, Eckert number or chemical reaction parameter are increased.
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Abstract

This  chapter  is  intended  to  present  to  readers  a  general  scope  of  the  technical,
theoretical,  and numerical  applications of  computational  fluid dynamics using the
finite volume method, restricted to incompressible turbulent flows (Ma < 0.3).  The
main objective of this chapter was to provide readers of a starting point to select an
adequate numerical model for the flow regime of interest. Such knowledge could be
a  key  at  the  moment  of  extending  the  analysis  to  more  complex  problems,  for
example,  the  ones  found  in  heat  transfer  and  fluid  flows,  multiphase  flows,  and
compressible flows.

Keywords: CFD, finite volume technique, circular cylinder, large eddy simulation,
conservation equations

1. Introduction

Computational fluid dynamics (CFD) is a scientific tool capable of producing information about
the main structures of a flowing fluid. As a knowledge area, it finds its origins in the discrete
solution of the fundamental equations used in fluid dynamics, such as the mass conservation
equation, the momentum conservation equations (based on Newton’s second law), and the
energy conservation equation (based on the first law of Thermodynamics). All the equations
are solved in an approximate way using iterative algorithms to solve lineal algebraic equa‐
tions systems using matrices [1, 2].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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A CFD model has three sequential stages known as preprocessing, solving, and post-process‐
ing. In the first stage or preprocessing, the governing equations, properties, and boundary
conditions are defined within a domain composed by small interconnected volumetric
elements to model the fluid movement. During the second stage or solving process, the
adequate selection of discretization schemes (temporal and spatial) for the governing equa‐
tions is carried out. Also, the convergence criteria or number of iterations, relaxation factors,
and pressure and velocity coupling algorithm are set up at this stage. Finally, the post-
processing stage involves the analysis and interpretation of the obtained solutions using flow,
temperature, and pressures fields [3].

Nowadays, there are different commercial codes developed in a friendly interface, such as
ANSYS FLUENT, OPEN FOAM, CFX, X-FLOW, and COMSOL. All of them are capable of
helping researchers and engineers at the three aforementioned CFD stages. Generally, the
modules of these commercial softwares have been validated comparing the results obtained
for specific information such as separation point, circulation length, drag and lift coefficients,
and velocities, with experimental and/or analytical results. Very often, the experimental results
used for comparison are obtained from carefully controlled experiments about topics such as
flow around circular cylinders, flow over forward or backward facing step, flow over a venture,
and jet flow, among others [4]. Respecting the programming languages commonly used to
develop the CFD codes used in commercial software, the most frequently used are C++,
FORTRAN, and lately MATLAB.

2. Governing equations in computational fluid dynamics

The governing equations in computational fluid dynamic mathematically express the three
fundamental physical principles that describe the movement of any fluid. These equations are
as follows:

• Continuity equation or mass conservation principle.

• Newton’s second law or momentum conservation principle.

• The first law of thermodynamics or energy conservation principle.

A fluid is a substance that, due to molecular distances, does not present a defined form and
adopts the form of the vessel that contains it. Therefore, it is difficult to analyze a fluid from
the universal approach used for solids. In general, a fluid can be defined as a substance that
deforms continually under the action of a shear stress. If a fluid is in movement, the velocity
can be different at different positions within the studied domain, and their particles can rotate
and deform at the same time. Considering the fluid as a continuum, there are two ap‐
proaches that can be used to understand its movement, making it susceptible to be analyzed
using the fundamental principles: The first one is based on the study of a volume element of
infinitesimal size and fixed in the space with the fluid flowing through it (known as the
Eulerian approach) and an infinitesimal fluid element that moves along a streamline with a
velocity equal to the local velocity of the flow at each point (Lagrangian approach) [5].
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When a differential element of a fluid moving along a streamline, and considering the motion
of a particle with a defined velocity through a differential volume defined in a Cartesian space,
the governing equations for a compressible viscous flow are as follows:

(a) Continuity equation:

( ) 0¶
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(b) Navier-Stokes equations:
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z-direction component (k̂)
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where e is the internal energy per unit of mass, f
→

 represents the body forces that act on the
centroid of the fluid element (like gravitational, electrical or magnetic forces), “k” is thermal
conductivity, P is the static pressure, q̇ is the heat transfer rate per unit of mass in the vol‐
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ume element (it can be heat that is a combustion product, a chemical reaction, or an electron
flow), t is time, T is temperature, ρ is density, τ are viscous stresses, and ∇ = ∂

∂ x i
→
+ ∂

∂ y j
→

+ ∂
∂ z k

→
 is

the DEL vector operator for Cartesian coordinates. It is necessary to point out that viscous
stresses (normal and shear stresses) are related to the deformation rate of the fluid element.
Shear stresses are related to the temporal deformation caused by the constant shear force acting
on the fluid element. Conventionally, τij represents a stress in the “j” direction, exerted on a
plane perpendicular to i-axis. Normal stresses are related to the volume change rate in the fluid
element (compression or tension); these stresses have in general a lower value than shear
stresses.

At the end of the seventeenth century, Isaac Newton established that the shear stress in a fluid
is proportional to its temporal deformation rate (velocity gradients, for example). Fluids that
follow this behavior are known as Newtonian fluids, and they have many applications in fluid
dynamics. For this kind of fluids, Stokes found, in 1845, the following relationships:

( )

( )

( )

2

2

2

æ ö¶ ¶ ¶
= = + = Ñ × +ç ÷¶ ¶ ¶è ø

¶ ¶ ¶æ ö= = + = Ñ × +ç ÷¶ ¶ ¶è ø
æ ö¶ ¶ ¶

= = + = Ñ × +ç ÷¶ ¶ ¶è ø

xy yx xx

xz zx yy

yz zy zz

v u uV
x y x
w u vV
x z y

w v wV
y z z

t t m t l m

t t m t l m

t t m t l m

(1.6)

where μ is the molecular viscosity and λ is the second viscosity (which is not a term of common
use in engineering). For gases, a good approximation can be obtained using the value λ = −2/3μ.

Non-Newtonian fluids are those that do not present a linear relationship between stresses and
deformation rates due to shear stresses (velocities gradients). A non-Newtonian fluid can
present viscoelastic and thixotropic properties as well as different kinds of relationships among
density, pressure, and temperature in comparison with a Newtonian fluid. This kind of fluid
requires a more specialized treatment to study them, which is out of the scope of this document.

The governing equations presented (1.1)–(1.5) contain seven unknown flow variables
expressed in a set of five differential equations. For practical applications, additional equa‐
tions can be used to “close” the system (equal number of equations and unknowns). For
example, in the study of an aerodynamic phenomenon, it is in general possible to assume that
a gas behaves as an “ideal gas”. For an ideal gas, the state equation is = ρRT, where R is the
gas constant. This equation provides the equation system with a sixth equation. It can also be
considered a seventh equation to close the equation system using a thermodynamic relation‐
ship among state variables, for example: e = e(T, P) For an ideal gas (with constant specific
heats), this relationship becomese = CvT where Cv is the constant volume-specific heat.

Finally, applying the substantial derivative definition for Cartesian coordinatesD/Dt = ∂/∂t +
u ∂

∂ x + v ∂
∂ y + w ∂

∂ z  Eqs. (1.1)–(1.5) can be written as follows:
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The governing equations presented (1.1)–(1.5) or (1.7)–(1.11) are widely known as the Navier–
Stokes equations to honor the French physicist Claude Louis Navier and the English mathe‐
matician George Gabriel Stokes, who in an independent way, both obtained the equations in
the first half of the nineteenth century. Originally, the Navier–Stokes equations terminology
was only defined for the momentum equations. However, current CFD literature has been
expanded to include the equations of mass and energy conservation. It should be noted that
the governing equations can be also expressed in cylindrical and spherical coordinates, or even
in generalized curvilinear coordinates.

It has to be kept in mind that these equations were originally formulated to reproduce the
physics present in single-phase and non-reactive Newtonian flows. The governing equations
for reactive flow systems with multiple components (like the ones found in combustion and
multiphase flow problems) can be also established. However, they are more complex be‐
cause they involve multiple species and phases. It is necessary to note that for this complex
flow systems, it becomes a necessity to include approximation models or empirical correla‐
tions because several terms are not constant anymore and they become functions for exam‐
ple of temperature, pressure, location, introducing new nonlinearities in the diffusive terms.

The governing equations constitute a coupled nonlinear partial differential equations system;
therefore, an analytical solution is difficult to obtain. At the present time, there is not a general
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solution in a closed form for this equation system. In fact, this is one of the most important
reasons of the use of CFD, since it provides numerical approximations to the equations
solutions, which have not been found yet using analytical methods, except for idealized cases
for one-dimensional or two-dimensional flows in laminar or creeping flows.

The mathematical character of the equations has a significant impact on CFD. First of all, it is
very important that the problem is adequately posed, and it means that the solution of the
problem exists and it is unique. Furthermore, this solution is only affected by initial and
boundary conditions. It is also important to classify the governing equations as elliptical,
parabolic, or hyperbolic. Elliptical equations have to be solved simultaneously in the com‐
plete flow domain, whereas hyperbolic and parabolic equations propagate from one posi‐
tion to another one.

Mathematically, parabolic and hyperbolic equations are susceptible to be solved using time
steps. On the other hand, for the elliptical equations, the flow variables in a given point should
be solved simultaneously with the flow variables in other positions. It can be stated that the
Navier-Stokes equations have, in general, a mixed nature. They are parabolic in the time
domain and elliptical in the space domain [1, 3].

As it was mentioned before, the governing equations can be applied for laminar and turbu‐
lent flows by means of the use of additional terms to represent the influence of the fluctuat‐
ing eddies. In a basic and rigorous way, direct numerical simulation (DNS) works solving
numerically these equations to a desired accuracy degree without any additional model or
correlation. However, its application is still limited because of the large quantity of resour‐
ces required to solve the majority of the existent problems, which exceed the capacity of
conventional computers.

For turbulent flows, there is a wide spectrum of time and length scales that have to be solved
that increase the computational time in DNS simulation. However, from a scientific point of
view, the information obtained using DNS is very valuable because it is considered a valida‐
tion means for turbulent models (with less complexity). The traditional performance of the
CFD methods for turbulent flows has been focused on predicting the average influence of the
main characteristics of turbulence. Very often, such influence is approached including new
transport equations to replicate the effects of generation or dissipation of Reynolds stresses ,
which represent the transport of momentum in the streamwise direction (x-direction) caused
by the turbulent eddies in the “i” and “j” directions. Frequently, average stress models adjust
to semi-empirical models, which depend on a number of constants obtained using experi‐
mental correlations. These correlations are very often obtained from experiments where the
working fluid is air or water, and very frequently, the experimental setup includes a flat plate.
In the literature, this kind of closing model is known as a Reynolds Average Navier–Stokes
(RANS) turbulence model. This kind of model is the most frequently used for engineering
applications today. Unfortunately, for complex turbulent flows there is not a “universal”
model that can be applied to any kind of flow, since boundary layer effects can be very
different. In fact, the description of what happens within the boundary layer is the main
weakness of the RANS models. For many years, RANS models have had success reproduc‐
ing turbulent zones far away from the wall for fully developed flows. However, they still have
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problems reproducing unsteady flows or flow separation phenomena (as a result of an adverse
pressure gradient) [6, 7]. Even though it is true that for very complex turbulent flows, there
exists new and more powerful RANS models, capable of giving useful information to make
decisions in an industry for example. Nevertheless, in the scientific world, those models do
not seem to have universal validity. Due to that, alternative approaches such as large eddy
simulation (LES) and DNS, with the help of the technological evolution of computers, have
gained more attention in the last three decades.

3. The ANSYS FLUENT software

The software ANSYS FLUENT is one of the most used tools to discretely solve the govern‐
ing equations in fluid dynamics. It is very useful as a tool oriented to reproduce the behav‐
ior and give information for a wide range of fluid flows (compressible or incompressible,
laminar or turbulent, steady or unsteady). It also possesses a wide variety of mathematical
models for transport phenomena (such as heat transfer and chemical reactions) that can be
applied to both simple and more complex geometries. FLUENT can be applied to laminar or
turbulent flows within devices, such as heat exchangers, nozzles, complex-shaped ducts,
turbomachinery (heat transfer and aerodynamic), heat engine components, external flows,
flow through compressors, pumps, fans, and multiphase flows, among others.

In order to make a generalization of the governing equations to include compressibility effects
and interactions among different phases, the continuity equation used by FLUENT can be
described as follows:
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where the source term Sm represents the mass added to the continuous phase by the disperse
phase. Other source terms can be defined by the user.

With respect to the other quantities transported by the fluid, they are modeled based on an
integral general equation, where variable ϕ can be substituted by different flow variables
before being discretized in its matrix form. For that Eq. (1.13), represents a dissipation constant
for the transported fluid, which can be, for example, the dynamic viscosity μ for the momen‐
tum transport equations in any direction, or the Eddie viscosity μt associated with the energy
production–dissipation models for the turbulent kinetic energy, whose magnitude depends
on secondary factors such as turbulent kinetic energy intensity and some semi-empirical
correlations.
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Table 1 shows some equivalencies associated to the general variable.

Equation Variable (φ)

Continuity 1

X momentum u

Y momentum v

Z momentum w

Transport of turbulent kinetic energy k

Dissipation of the turbulent kinetic energy ò

Table 1. Different variables used in the general equation.

Figure 1. The coupled and segregated solvers comparison diagram, adapted with permission from [8].

The FLUENT solvers work based on a logical sequence to solve the discretized equations in
two ways, the segregated one or the coupled one [8]. The segregated mode is recommended
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for flow problems where it can be expected the formation of large velocity gradients. These
gradients can be produced by a boundary layer formation with or without flow separation
where the compressibility effects are minimal (Mach < 0.3) and with or without temperature
gradients at the boundary. Some examples of the application of the segregated solver are as
follows: vehicular aerodynamics problems, internal flows, centrifugal pumps velocity fields’
analysis, cyclone separator flows, flows in refrigeration ducts, flow pattern in cooling fins, etc.
Regarding the coupled solver, it is widely used for the solution of problems related to large
compressibility effects in the fluid, such as supersonic flows, hypersonic flows within nozzles
combustion chambers, the movement of projectiles, and other objects where the shock waves
are produced due to large pressure gradients and density changes.

Numerically speaking, the biggest difference between both solver modes is the way the flow
governing equations are solved. The segregated mode solve them sequentially, taking the
velocity and pressure equations (or corrected pressure equations) as the main variables, the
coupled one solves globally the equations for continuity, momentum, and species exchange.
Figure 1 shows a diagram of both solver modes’ performances.

3.1. Main parameters and boundary conditions

Although ANSYS FLUENT is a very friendly application, its implementation requires of an
adjustment for some predetermined parameters, which will guide the solution process.

Before uploading the mesh associated with the physical domain to be studied, the software
requires to define the number of dimensions used to reach the solution; it can be two-dimen‐
sion (2D) or 3D. To analyze uniform cross sections in bodies with infinite length, it is recom‐
mended to use 2D analysis, suppressing the third coordinate because gradients along the depth
are not significant. The software offers an option to choose double precision (more signifi‐
cant ciphers). This option is recommended when large gradients in the flow variables are
expected, especially at very close nodal position, cells with very large aspect ratio or simply
when a better convergence is desirable.

Another important characteristic is the capacity to adjust the number of core processors to be
used internally in parallel. This characteristics is especially helpful for problems that require
many iterations to be solved (e.g.,, non-stationary models), multiphase and reactive prob‐
lems, very large grid sizes, and very complex geometries such as airplanes and vehicles.

Finally, this computer program allows to scale the grid physical dimensions to required sizes
using both English and international systems. It can be used to work on problems such as the
flow between building zones located hundreds of meters from each other or problems related
to microfluids. It also allows to select constant values to calculate non-dimensional parame‐
ters such as friction coefficient and lift and drag coefficients.

In any CFD model, boundary conditions have to represent faithfully the real conditions at the
boundary. According to the mathematical characteristics of the differential equations,
boundary conditions can be classified as follows:
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Dirichlet boundary condition: The value of the flow variable is specified at the boundary.
This kind of boundary condition is typically linked to problems involving flow inlets and
isothermal walls.

Neumann boundary condition: For this kind of boundary condition, the value of the gradient
normal to the flow variable is specified. These boundary conditions are often associated with
symmetric boundaries and adiabatic walls.

Mixed boundary conditions: These are the conditions resulting from a combination of
boundary conditions of the kind of Neumann and Dirichlet.

The boundary conditions can be classified by its physical meaning as follows: physical
boundaries, such as solid walls, or artificial boundaries, such as outflow. The latter are
mathematical approximations to the real behavior of the flow in certain zones. Artificial
boundaries can be applied, if the computational domain constitutes part of the total flow field,
to research the most interesting region and to reduce computational costs. Artificial boun‐
dary conditions require mathematical formulations that are physically significant to the real
flow behavior.

Regarding ANSYS FLUENT, there are different types of boundary conditions that can be used
to simulate different flow problems. Next, a general description of the most common boun‐
dary conditions used in most hydrodynamic studies is presented. The authors recommend
readers to consult Ref. [8] for more detailed information.

3.1.1. Velocity inlet

The “velocity inlet” condition was conceived to prescribe a uniform velocity profile at the
entrance of a computational domain (bi-dimensional or tri-dimensional). This boundary
condition was created to analyze incompressible flows, such as external flows over complex
geometries or internal flows in different sections of piping or machinery. It is not recommend‐
ed for compressible flows. It also allows to specify the magnitude and the direction of a uniform
velocity profile. Other velocity profiles such as parabolic, sinusoidal, and logarithm can be
imposed using a user-defined function code (UDF). For turbulent flows, the software allows
prescribing the turbulence levels required at the entrance or the domain using different
methods. A hydraulic diameter and a value of turbulence intensity can be used to do so for
internal flows. For example, for square ducts, the hydraulic diameter can be calculated as 4A/
P, where A is the cross section area and P is the perimeter of the same area, also known as the
wetted perimeter. For external flows, it is required to provide a characteristic length (for
example, the diameter of a cylinder if the flow over a circular cylinder is studied). In this case,
the turbulence intensity represents a percentage of the value of the fluctuating values of
velocity based on the mean value. For example, if the magnitude of the fluid velocity is 5 m/s
and a turbulence level of 10% is prescribed, the inlet velocity would present values from 4.5
to 5.5 m/s. Additionally, different parameters like flow temperatures or heat flux can be
established at the entrance of the domain, which are important for energy studies and heat
and mass transfer analysis.
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3.1.2. Pressure inlet

The “pressure inlet” boundary condition is used to define the pressure characteristics at the
entrance of the domain for cases where the mass flow or the velocity is unknown at the inlet
of the domain. This boundary condition can be used for compressible and incompressible
flows. For incompressible flows, the total pressure can be modeled as follows:

21
2

= +total estaticP P Vr (1.14)

where the total pressure or “gauge total pressure” is known, and it is equivalent to the sum of
the static pressure at the inlet, also known as supersonic/initial gauge pressure and a dynam‐
ic pressure, which is not necessarily known, but can be manually calculated and compared to
the velocity assigned to the normal direction to the boundary condition.
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Regarding the compressible flows, Eq. (1.15) is used, where “k” is the specific heats ratio and
M is the Mach number.

3.1.3. Outflow

The “outflow” boundary condition represents and artificial cut through the flow field, similar
to the velocity inlet condition, but set up at the outlet of the flow domain. The outflow
conditions are used when the characteristics looked for in the flow are developed at a fraction
of the total flow field. When this is true, this boundary condition allows to avoid numerical‐
ly modeling the complete domain (which can be computationally expensive). In those cases,
a distance from the domain inlet is defined as the flow outlet, imposing there the outflow
condition. The main difference between an inflow and an outflow condition is that there is not
flow information available outside the computational domain for an outflow condition. In
contrast, for the inflow condition, there is always information about the entering flow.

The flow variables in an outflow condition have to be approximated in a physically signifi‐
cant way in a manner that does not affect the solution of the governing equations in the
computational domain. For an outflow boundary condition, the numerical effects found
upstream that are generated have to be eliminated or reduced. Conventionally, in the CFD
programming for laminar and steady RANS models, the fully developed conditions in the
streamwise direction are expressed by ∂φ/∂xi = 0. However, for more complex cases where
recirculating flow structures exist, there can be problems due to the reentrance of mass
circulating in a vortex for example. For these cases, a generalized convective boundary
condition is used:
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The correct use of that equation warrants the vortices can get near or cross the outlet boun‐
dary without significantly perturbing the computational solution inside the domain. In the last
equation, xi represents the main flow direction, and Uconv denotes the mean convective velocity
at the outlet position, approximated using the outlet mass flow value [9].

3.1.4. Pressure outlet

The “pressure outlet” boundary condition is conventionally used for the solution of coupled
problems (high Mach number values and compressibility effects), where the outflow boun‐
dary condition is not convenient. It requires to specify the static pressure (gauge pressure) at
the domain outlet. Such value is exclusively respected for subsonic flow cases (M < 1). When
the flow is supersonic, the specified pressure will not be used, and a new value will be
extrapolated based on previous values.

Figure 2. Pressure components of the pressure outlet boundary condition, adapted with permission from [10].

To use this boundary condition correctly, it is required to establish a set of flow relations for
reversing flow at the outlet during the solution process (a set of backflow relations). Such
relations are important because incorrect values for these parameters can cause convergence
problems.

Specifically for the coupled solver in the option density based, pressure values at the outlet
faces are calculated using a splitting procedure based on the AUSM scheme developed by
Liou [11].

For subsonic flow conditions at the outlet, pressure is determined using a weighted average
based on the left and right states at the domain boundary (Figure 2). This average value is a

Numerical Simulation - From Brain Imaging to Turbulent Flows326



0¶ ¶
+ =

¶ ¶conv
i outlet

U
t x
f f

(1.16)

The correct use of that equation warrants the vortices can get near or cross the outlet boun‐
dary without significantly perturbing the computational solution inside the domain. In the last
equation, xi represents the main flow direction, and Uconv denotes the mean convective velocity
at the outlet position, approximated using the outlet mass flow value [9].

3.1.4. Pressure outlet

The “pressure outlet” boundary condition is conventionally used for the solution of coupled
problems (high Mach number values and compressibility effects), where the outflow boun‐
dary condition is not convenient. It requires to specify the static pressure (gauge pressure) at
the domain outlet. Such value is exclusively respected for subsonic flow cases (M < 1). When
the flow is supersonic, the specified pressure will not be used, and a new value will be
extrapolated based on previous values.

Figure 2. Pressure components of the pressure outlet boundary condition, adapted with permission from [10].

To use this boundary condition correctly, it is required to establish a set of flow relations for
reversing flow at the outlet during the solution process (a set of backflow relations). Such
relations are important because incorrect values for these parameters can cause convergence
problems.

Specifically for the coupled solver in the option density based, pressure values at the outlet
faces are calculated using a splitting procedure based on the AUSM scheme developed by
Liou [11].

For subsonic flow conditions at the outlet, pressure is determined using a weighted average
based on the left and right states at the domain boundary (Figure 2). This average value is a

Numerical Simulation - From Brain Imaging to Turbulent Flows326

mix of polynomial adjustments of fifth order based on the Mach number values at the outlet
face. Then, the pressure value is finally stated Pf = f(Pc, Pe, Mn) where Pc is the pressure at the
pressure value at the inside neighbor cell next the exit face f, being Pe the specified pressure
and Mn the Mach number at the normal direction. If there is a supersonic flow, the pressure at
the exit face is extrapolated from the inlet cell value. For incompressible flow, the exit face
pressure is calculated as an average between the outlets specified pressure and the average
pressure value.

( )1
2

= +f c eP P P (1.17)

The “pressure outlet” boundary condition does not guarantee a constant pressure along the
outlet of the domain. However, once the solution of the model converges, the average pressure
value at the outlet will tend to reach a value close to the static pressure imposed at the exit.

3.1.5. Walls

For viscous flows, the nonslip condition has to be imposed at the walls. This can be attained
prescribing u= v = w = 0 at the walls, to reproduce the formation of the dynamic boundary layer.
In some cases, when solving the flow within the boundary layer is not needed (e.g., in external
flows over an immerse body, there is no need to solve the boundary layer on the walls that
delimitate the domain), values of shear stresses equal to zero are imposed, which is known as
slip walls [12]. In addition to prescribing values for shear stresses, temperature values
(Dirichlet type) or normal heat flux values (Neumann type) can be imposed and they are
particularly useful for thermal analysis. It is also possible to define wall roughness values,
which are especially useful in turbulent flows studies, as well as translational and rotational
movement of the walls related to the same frame of reference.

Figure 3. Rotational periodicity of a cylindrical recipient, adapted with permission from [10].
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Figure 4. Translational periodicity in a heat exchanger array.

3.1.6. Periodic boundary condition

Periodic boundary condition is useful to cut down the size of the studied domain, saving
simulation time in cases where the geometry of the given problem and the flow pattern have
characteristics that are repetitive and periodic along a certain characteristic length “L”. The
periodic flow behavior can be found in many applications such as heat exchanger channels,
flow over pipe banks, and fully developed flow in pipes and ducts. There exist two types of
periodicity, such as translational and rotational periodicity (Figure 3). For rotational perio‐
dicity a constant pressure is defined along the periodicity planes, also defining a rotational
axis in the fluid in studies related to turbomachinery.

Regarding translational periodicity, a finite pressure drop can be defined between two periodic
Planes (Figure 4). Also, a mass flow can be defined.

3.2. Some technical suggestions for an adequate solving

To solve adequately a CFD problem, it is recommended a series of best practices whose
Application can help to obtain better convergence values for CFD simulations. The first one is
to verify that the skewness value of most of the mesh elements is between 0 and 0.5, being the
values closest to 0 the most desirable ones. This is to minimize the numerical dissipation for
the algorithms responsible of carrying out the flow balances at the cell faces. Another important
suggestion to improve initial convergence in fluid, heat transfer, and multiphase flow
problems is to first obtain solutions using single precision and first-order discretization
models. After that, based on these solutions, change the discretization models to second order
models. This should be carried out considering that second-order schemes produce lower error
values. From this point, it is recommended to activate the energy equation (if needed) or any
multiphase flow or reactive flow parameters (if needed) to obtain adequate convergence. It is
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also needed to consider that final runs have to be performed using double precision. Finally,
having previously obtained convergence, relaxation factor values can be increased to obtain a
better solution in each iterative process. It is necessary to remember the importance of the
results validation, using for that, experimental values of the same phenomenon in a control‐
led environment.

3.3. Pressure–velocity coupling

In the Navier-Stokes Eqs. (1.7)–(1.10), calculated velocities are related to the momentum
transport in two or three dimensions. These velocities should satisfy the mass conservation
equation. However, continuity equation does not depend on the pressure as it does the
momentum exchange. The convective and dissipative terms of the momentum conservation
equation, which depends on the pressure, have second-order, nonlinear terms. When
governing equations have to be solved, it is necessary to find the velocity and pressure fields
for stationary and time-dependent problems. If the flow is incompressible, continuity equation
can be used as a transport equation for density, energy conservation equation represents
temperature transport, and the existing pressure gradients can be obtained using equations
such as the ideal gas law or any valid state equation. For incompressible flow, however, density
has a constant value and there is not a direct link among the governing equations for the mass
and momentum transport equations. This situation provokes unpredictable oscillations in the
solving process making it considerably difficult.

Regarding the semi-implicit method for pressure-linked equations (SIMPLE) algorithm
proposed by Patankar and Spalding in 1972 [13], it has been used for many years as a useful
and convenient solving strategy. This algorithm is depicted in Figure 5. Unit mass flows go
through the faces of the cells, and are evaluated from an initial guessed velocity value in two
or three dimensions. From these velocity and pressure fields, a momentum transport equa‐
tion solution is obtained. Then, from this solution, a corrected pressure is obtained using a
series of relationships obtained from the continuity equation.

Finally, such corrected pressure values will be used for the transport and continuity equa‐
tions solving. The whole process has to be repeated in an iterative manner until a conver‐
gence criterion is reached. As it was mentioned before, to reach a solution, it is necessary to
initialize the flow using arbitrary values for the velocity and pressure fields. Such values are
often selected from meaningful flow quantities such as free stream velocity and the atmos‐
pheric pressure for external flows. In the case of an internal flow, the main velocity value(the
one with larger magnitude when several inlets are present) and the internal pressure are used.

Nowadays, there are a series of improvements made to the SIMPLE algorithm. One of them
is the SIMPLEC algorithm also known as SIMPLE-Consistent [14], which is one of the most
popular. This algorithm works similarly to SIMPLE, being its main difference that the
momentum conservation equations are modified in a way that allows the velocity correction
equations are simplified. The result of this change is that for some cases, the convergence time
decreases. This algorithm is optimal to solve laminar flow problems without temperature
gradients. It requires less convergence time than the conventional SIMPLE algorithm.
Nevertheless, its use is not recommendable to solve turbulent flow, species transport,
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combustion problems, or any problem involving not only fluid movements, but also a more
complex physical problem.

Figure 5. Overall stages in the SIMPLE algorithm, adapted with permission from Versteeg and Malalesekera [3].

The pressure implicit with splitting of operators (PISO) algorithm is an improved version of
the SIMPLE algorithm. It was created for non-iterative calculations in the numerical solution
of non-steady flows. It has been adopted for iterative solution process for steady and non-
steady flows, being especially useful for the last ones. This algorithm involves a stage where
velocities and pressures are arbitrarily predicted, and two correcting stages. Therefore, it has
an additional correcting stage with respect to SIMPLE and SIMPLEC. In the prediction and
correction stages, the obtained pressures involve functions that contain within the continui‐
ty equation [15].

Even though the PISO algorithm requires additional memory to store the values of the added
correction equations, and in general, it requires relaxation factors to stabilize the calculation
process, it performs in a quick and efficient way.
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In relation to periodic or transient problems, although less popular than PISO and SIMPLE,
the fractional step method (FSM) algorithm is a method created as a solving alternative of non-
iterative nature (NITA–non-iterative time advancement). Even though its use is less popular
than the SIMPLE algorithm and its modifications, due to its formulation, involving a decou‐
pling of the mass and momentum conservation equations using mathematical operators is
capable of decreasing the simulation time [16].

Regarding the pressure–velocity coupling algorithm known as COUPLED, it is recommend‐
ed to solve problems involving steady-state single-phase flows. For this algorithm, the solving
process of all flow components is carried out using vectors. This means using a square
coefficients matrix derived from flows entering or leaving the control volume through each
control surface. This matrix is then algebraically associated with a unidimensional unknown
vector. The product of both matrices is then equivalent to a solution vector where boundary
conditions are included. The COUPLED algorithm is an alternative to SIMPLE and its spin-
offs in the segregated solver, and it is recommended for cases where the domain presents low-
quality elements for non-steady problems.

Finally, before starting a solution process, it is recommended to take a careful look into the
most adequate coupling schemes for the problem at hand. This can be done considering the
most important flow characteristics and looking for a similar case in any classic study case
where a benchmark has already been performed (e.g., jets, flow over a flat plate, internal flows).

3.4. Turbulent flows CFD

Reynolds number (Re = ρ Uℓ/μ) is above a certain limit several events take place and cause
that the flow behaves in a random manner, and its velocity components fluctuate along the
three spatial directions. The flow will also present an unstable nature, promoting large-scale
mixing and energy dissipation at small scales. Such regime is known as turbulent regime or
turbulence. To include the effect of such fluctuations in the flow, it is necessary to substitute
the flow variables that depend on the velocity vector V

→
= f (u, v, w), as well as the scalar P for

the sum of an average component ī and is fluctuating counterpart “i′” having then:

; ; ;¢ ¢ ¢ ¢ ¢= + = + = + = + = +
r rr

V V V u u u v v v w w w P P p (1.18)

Such decomposition of the different flow variables has to be included in the governing
equations, provoking the appearing of three normal stresses and three shear stresses, which,
due to its units, are known as the Reynolds stresses, and are Represented as follows:

2 2 2; ;¢ ¢ ¢ ¢ ¢ ¢ ¢= = - = - = -xy yx yy zzu u ut t r t r t r

'; '; '¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢= = - = = - = = -xy yx xz zx yz zyu v u w v wt t r t t r t t r (1.19)
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The vector expression for the mass conservation equation and the Navier–Stokes equations
are as follows:
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Laminar Turbulent

It can be noted that the mass conservation equation is practically the same for laminar and
turbulent flows. However, it is necessary to point out that this equivalence is valid only for the
average values with a significant number of samples, meaning that the average of the
fluctuating quantities becomes zero.

Because these stresses vary in their frequencies and sizes as a function of the distance from the
walls, turbulent models take into account such variations to solve the closure problem of these
extended equations.

4. RANS models

In 1972, Jones and Launder [17] proposed a model with two differential equations in addi‐
tion to the mass and momentum conservation equations. In that model, an equation approxi‐

mated the effect of the turbulent kinetic energy production rate k = 1
2 (u'2̄ + v'2̄ + w'2̄ ) and the

other one contained the effects of the turbulent kinetic energy dissipation rate “ε”. Together,
the use of both equations proved to be adequate to obtain good results in turbulent flows whose
interest was focused on the study of the influence of average turbulent effects. Both equa‐
tions are as follows:
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where σK and σ are the “effective Prandtl numbers”, which relate the eddy diffusion of K and
 to the eddy viscosity: νt/νK and σ = νt/ν. Eddy viscosity is modeled as follows:

2

»t

C kmn
ò

(1.25)

The five constants of this model are obtained in an experimental way for cases of boundary
layer calculations in non-detached flows. They are as follows:

1 20.09 1.44 1.92 0.09 1.0 1.3= = = = = =KC C C Cm m s sò (1.26)

Unfortunately, the above presented values cannot be used for any kind of flows (they are not
universal). They need to be modified to model the behavior of wakes, jets, and recirculating
flows. To deal with this difficulty, different and more sophisticated models have been
proposed, which try to reproduce these flow patterns. Some of them are as follows:

1. The k –  model, d on the group renormalization, Yakhot y Smith [18].

2. The k – ω model, Wilcox [19].

3. The k –  – v2 – f model, Durbin [20].

5. The LES technique

Large eddy simulation is a technique based on the assumption that the largest eddies in a flow
are of sizes relative to the characteristic length of the flow, whereas the smallest ones that form
on the walls are isotropic and very similar for different kinds of flow, and therefore being more
susceptible to be modeled. Under this consideration, the LES technique solve the largest eddies
in an explicit way and the effects of the smallest eddies on largest eddies are modeled using a
subgrid scale stress model. The justification for both assumptions is that the largest eddies
contain the most part of the kinetic energy in a moving fluid, they transport the majority of
conservative properties and they vary the most from flow to flow. Meanwhile, the smallest
eddies are considered more “universal” and less important in the total flow; therefore, when
they are modeled, it is expected that the error introduced is small. Unlike RANS models, LES
technique uses a filtering process instead of an averaging process. It means that the informa‐
tion obtained for the largest scales is instantaneous and does not represent an average
information. Instead of considering the influence of the velocity fluctuations equal to zero
u ′

ij
¯=0 like in the RANS models, it has a value that locally influences the solutions, it means
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u ′
ij

¯ ≠0. In general, the use or the LES technique has produced better results in flow simula‐
tions when RANS models usually fail, like turbulent boundary layers subjected to adverse
pressure gradients, the prediction of drag coefficients for immerse bodies in periodic re‐
gimes [21] and other unsteady flows. Governing equations for the LES model in an incom‐
pressible flow are as follows:
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( 1,2,3)=i

In the Eqs. (1.27) and (1.28), ūi represents the filtered velocity components at different Cartesian
positions xi, where P̄ represents the filtered pressure component, “v” and “ρ” represent the
kinematic viscosity and density, respectively. Regarding the local influence of the Reynolds
stresses, one of the most used models is the classic Smagorinsky model, which is expressed as
follows:

= -ij i j i ju u u ut (1.29)
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where the strain tensor of the fluid in each cell is ‖S‖= 2S̄ ijS̄ ij, being S̄ ij the filtered strain tensor,
vt the subgrid scale turbulent viscosity, “Δ̄”the filter characteristic length. Generally, the size
of the filter is proportional to the volume “Ω” of the cell Δ̄=2(Ω)1/3, and the Smagorinsky
constant Cs can be varied from 0.05 to 0.1 [22].

6. RANS and LES capacities for turbulent flows analysis

Originally, RANS models were conceived to include the turbulence average effect in the
Navier–Stokes equations solution. Therefore, they are widely recommended to simulate
steady-state fully developed turbulent flows, being especially good reproducing off-wall
phenomena. When the problem needed to solve is highly depended on the adequate
prediction of pressures and forces on the wall, it is recommended to apply functions for
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“enhanced wall treatment” and to have at least one nodal element positioned within the
viscous sublayer (y+ < 5), with at least ten nodal elements along the whole boundary layer
to achieve acceptable results [23]. Another use of RANS models is to provide preliminary
results that allow to shorten the simulation time for unsteady problems based on the same
technique or the use of LES. Regarding the kind of flows that RANS models have been
successful reproducing, it can be said that internal flows, flows over boundary layers,
turbulence prediction in a fluid that floats due to density changes, combustion coupled
problems, two-phase flows, agitated wall induced turbulence, etc. have had successful
results. As for problems where RANS models perform poorly, these are periodic or
oscillatory flows, boundary layers affected by large pressure gradients, flow regimes that
depend on separation point, and jets.

On the other hand, the LES technique is capable of giving average and instantaneous
information about the main structures of turbulent flows without the complete dependence
on the average modeling of Reynolds stresses found in the traditional RANS approach. This
is advantageous to capture velocities and flow patterns in three dimensional problems.
Among the successes of the LES model, it can be mentioned the prediction of separation
points and fluctuating forces in external flows for geometries such as circular cylinders, eolic
turbines blades, as well as structures and frequencies in jets and atomization systems, etc.
Unfortunately, due to the large number of temporal and spatial scales that requires
modeling for an acceptable performance, computer time and requirements are still high. The
walls produce high demands since it requires the use of grids with nodal elements
positioned at y+ ≈ 1, very short temporal steps and the size of the eddy scales that the
smallest grid elements are capable of capture. This has made impossible the massive
application of this technique for flow problems that have many complex geometries and
many scales. It results evident that for compressible flows, the Reynolds stresses are more
complex than for incompressible flow, being that SGS models for complex flows those that
involve multiple phases and reactive flows found in combustions are still in a stage of
development and validation [24].
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Abstract

A novel three-dimensional (3D) model based on Reynolds turbulence stress model
(RSTM) closure of equations of carrier and particulate phases was elaborated for channel
turbulent flows. The essence of the model is the direct calculation of normal and shear
components of the Reynolds stresses for the particulate phase similar to the carrier fluid.
The model is  based on the Eulerian approach, which is applied for the 3D RANS
modeling of the carrier flow and the particulate phase and the statistical probability
dense function (PDF) approach focusing on the mathematical description of the second
moments of the particulate phase.

The obtained numerical results have been verified and validated by comparison with
experimental data obtained on turbulent dispersion of solid particles ejected from point
source for turbulent uniform linear shear flow. Two cases of spatial orientation of shear
of the flow mean velocity were examined: in the direction of gravity and in the direction
perpendicular  to  gravity.  Numerical  data  on turbulent  dispersion of  particles  and
spatial displacement of the maximum value of the concentration distribution show
satisfactory agreement with experimental results.

Keywords: turbulent channel flows, solid particles, closure equations, PDF of particu‐
late phase velocity, shear flow

1. Introduction

Turbulent channel particulate flows have numerous engineering applications ranging from
pneumatic conveying systems to coal gasifiers, chemical reactor design and are one of the most

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



thoroughly investigated subject in the area of the particulate flows. These flows are very
complex and influenced by various physical phenomena, such as particle-turbulence and
particle-particle interactions, deposition, gravitational and viscous drag forces, particle
rotation and lift forces, turbulent dispersion, etc.

One of the most applicable approaches in computational fluid dynamics (CFD) is the Reynolds-
averaged Navier-stokes (RANS) equation approach, which is found in many industrial
implementations and is very likely to be claimed and applied in the foreseeable future.

The procedure of analysis of the predicted fluid parameters becomes much more complicat‐
ed in case of the three-dimensional (3D) dense particulate flows, with additional inclusion of
two or/and four coupling phenomena of inter-particle collisions. Within a frame of the RANS
modeling, one of the challenging and advantaged theoretical approaches is the Reynolds
turbulence stress model (RSTM), since k-ε closure model cannot describe properly the flow of
complex geometry.

For the proper modeling of the particulate flows, which may include multifold processes, e.g.,
the particle-turbulence, or/and particle-particle, and particle-wall interactions and other
relevant effects, one can apply the probability dense function (PDF) approach, which gives
reasonable formalism for the closure of the governing mass and momentum equations of the
particulate phase. Within the PDF approach, the closure of the governing equations of the
particulate phase is based on a solution of the differential transport equations written for each
particle velocity covariance, taking into account possible mechanisms of the particle-turbu‐
lence and particle-particle interactions. Such procedure is similar to the RSTM closure.

Currently, the probability dense function (PDF) approach is widely applied for the numeri‐
cal modeling of the particulate flows. The PDF models, e.g., [1, 2], contain more complete
differential transport equations, which are written for various velocity correlations and
consider both the turbulence augmentation and attenuation due to the presence of particles.

As opposed to the round channel flows, the rectangular or/and square channel flows, even in
case of unladen flows, are considerably anisotropic with respect to the components of the
turbulence energy, that is more expressed near the channel walls and corners being notable
for the secondary flows. In addition, the presence of particles enhances such anisotropy. Such
particulate flows are studied by RSTM, which are based on the transport equations written for
all components of the Reynolds stress tensor-associated with the particulate phase.

The RSTM approach allows to completely analyze the influence of particles on axial, trans‐
verse, and spanwise components of the turbulence kinetic energy, including also possible
modifications of the cross-correlation velocity moments.

A number of studies based on the RSTM approach showed its good performance and capability
for simulation of the complicated flows [3], as well for the turbulent subsonic [4] and super‐
sonic flows [5] and viscoelastic flows [6].

Taulbee [7] used the RSTM approach to calculate the particle-laden shear flow by applying the
direct numerical simulation (DNS). The flow Reynolds number was low (Re = 952). There‐
fore, the method by [7] cannot be applied to the real turbulent flows characterized by consid‐
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erably higher Reynolds numbers, unlike the present numerical simulation which handles with
the flow Reynolds numbers of 56,000 and 140,000.

The RSTM approach was also applied in the model [8]. The only difference was in the fact that
the closure of equations of motion of the particulate phase was based on the Boussinesq
hypothesis, where the turbulent viscosity of the particulate phase was introduced and
calculated using the algebraic expressions obtained in the PDF approach [9]. However, the
model [8] was inherently eclectic, since it applied the RSTM closure for a carrier flow and at
the same time the Boussinesq hypothesis for the particulate phase.

Recently, Mukin and Zaichik [10] have proposed the nonlinear algebraic Reynolds stress
model for the gas flow laden with small heavy particles based on the PDF approach. The
original equations written for each component of Reynolds stress were reduced to their general
form in terms of the turbulence energy and its dissipation rate with additional effect of the
particulate phase. However, the model [10] does not enable a direct solution of the differen‐
tial transport equations and it applies the k-ε solution.

The study of the particle dispersion that occurs in the velocity uniform shear turbulent flow
assumes knowing the internal structure, general relationships, and methods of the flow
generation.

Based on the analysis of results of numerous investigations of turbulent dispersion of finite
inertia particles, it should be singled out three effects that are of high importance and should
be considered: (i) the inertia effect implying that the dispersion of solid particles might exceed
the dispersion of the fluid particles in the absence of a body force [11, 12]; (ii) the crossing
trajectory effect [13] meaning that in the presence of a drift velocity a finite inertia particle will
disperse less than a fluid particle; and (iii) the continuity effect [14] where the dispersion in
the direction of the drift velocity exceeds the dispersion in other two directions.

In the mathematical description of the particle turbulent dispersion, there are a number of
models and numerical simulations, which can be classified into the Lagrangian and Eulerian
(two-fluid) approximations. They relate to the specific flow structures, such as confined flows
in pipes and channels or free jets, wakes, and wall boundary flows.

Taylor [15] made the Lagrangian analysis of the dispersion of a particle in a stationary
homogeneous turbulence, which showed that turbulent dispersion varies in time and derived
the asymptotic expressions of dispersion for short and large times. Later on, the Lagrangian
approach for the turbulent dispersion of particles was further developed in [16–21].

One of the most comprehensive numerical research of the particle dispersion in the uniform
shear flow, based on the Lagrangian approach, was carried out in [22]. Ahmed and Elghoba‐
shi [22] applied DNS to the investigation of the particle inertia effect, effect of direction of
gravitation as well as magnitude of a shear number. In particular, Ahmed and Elghobashi [22]
have revealed that gravity reduces the particle turbulent dispersion and diffusivity in all
directions due to the drift velocity effects.

Two-Fluid RANS-RSTM-PDF Model for Turbulent Particulate Flows
http://dx.doi.org/10.5772/63338

341



On the contrary, there are very less studies on the particle turbulent dispersion, which are
based on the Eulerian approach. The most significant are the numerical investigations [9, 23],
where the statistical PDF models were applied to the particle behavior in the turbulent flows.

The 3D RSTM approach presented here applies the closure of equations of motion of the
particulate phase, which is carried out similarly to the closure of the carrier flow, i.e., the
equations are written for the normal and shear components of the Reynolds stress. The
Reynolds stress equations are derived from the PDF model [9] and presented in a general case.
The advantage of the given model is in use of the same closure for both the carrier flow and
particulate phase, namely, the Reynolds differential equations.

The given 3D RSTM model has been applied for the turbulent dispersion of solid particles in
a turbulent horizontal channel flow imposed to uniform shear.

The obtained numerical results have been verified and validated by comparison with the
experimental data.

2. Numerical model

The present numerical model being proposed for the evaluation of the particle dispersion is
the Eulerian approach, which applies both the 3D RANS modeling of the carrier flow and the
particulate phase [24] and the statistical PDF approach focusing on the mathematical descrip‐
tion of the second moments of the particulate phase [9]. Within the Eulerian approach, the
particulate phase is considered as the diluted medium; therefore, the effect of the particle
collision is negligible that means the application of the one-way coupling.

The numerical simulation considered the turbulent dispersion of solid particles in horizontal
channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity
is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is direct‐
ed normally to gravity (Figure 1b). Here u is the mean axial velocity of gas.
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Figure 1. Shear of the mean flow velocity in horizontal channel flow. (a) shear of the mean flow velocity is along the
direction of gravity; (b) shear of the mean flow velocity is directed normally to gravity.

The particles were brought into the uniform shear gas flow, which has been preliminarily
computed to obtain the velocity flow field.

The system of the momentum and closure equations of the gas phase are identical for the
unladen flows, while the particle-laden flows are under the impact of the viscous drag force.
The Cartesian coordinates are used here.

2.1. Governing equations for the particulate phase

The 3D governing equations for the particulate phase are written as follows:

The particle mass conservation equation:
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y-component of the momentum equation:
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z-component of the momentum equation:

( )2 2 ,s
s s s s s s s s s s D

p

w w
u w u w v w v w w w C

x y z
a a a a

t
-¶ ¶ ¶ é ùé ù é ù¢ ¢ ¢ ¢ ¢ ¢- + - + - =ê úë û ë û¶ ¶ ¶ ë û

(4)

where u, v, and w are the axial, transverse, and spanwise time-averaged velocity compo‐

nents of gas, respectively; us, vs and ws are the axial, transverse, and spanwise time-averaged

velocity components of particulate phase, respectively; ρ is the material density of gas; ρp is

the material density of particles; α is the particle mass concentration; gy is the y-component of

gravity.

The relative friction coefficient CD
'  is calculated according to [25].

The closure model for the transport equations of the particulate phase was applied to the PDF

model [26], where Ds is the coefficient of the turbulent diffusion of the particulate phase.

The equations for the second-order moments of the fluctuating velocity (turbulent stresses) of

the particulate phase are written based on the PDF approach in [9]. These equations describe

convective and diffusive transfer, generation of particle velocity fluctuations due to the

velocity gradient, generation of fluctuations resulting from particle entrainment into the

fluctuating motion of carrier gas flow, and dissipation of turbulent stresses of the particulate

phase caused by interfacial forces:

Equation of the x-normal component of the Reynolds stress:
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Equation of the y-normal component of the Reynolds stress:
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Equation of the xz shear stress component of the Reynolds stress:
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Equation of the yz shear stress component of the Reynolds stress:
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where gu
l , gu

n, and gu
k  are the coefficients characterizing the entrainment of particles into the

fluctuating motion of the flow [9] for x, y, and z directions, respectively.

2.2. Boundary conditions

The wall conditions are set for the gas at the side walls of the channel based on the control
volume method by [27, 28] in a similar way as in the case of the coincidence of shear of the
mean flow velocity and gravity.

The numerical simulation considers the turbulent dispersion of solid particles in horizontal
channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity
is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is direct‐
ed normally to gravity (Figure 1b). Therefore, two sets of the boundary conditions are used
for the calculations.

The boundary conditions for the particulate phase are set at the flow axis as follows:

Case 1 for z = 0:
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Case 2 for y = 0:
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channel uniform shear turbulent flow for two different cases: i) shear of the mean flow velocity
is along the direction of gravity (Figure 1a) and ii) shear of the mean flow velocity is direct‐
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for the calculations.
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Case 2 for y = 0:
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The boundary conditions for the particulate phase are set at the channel walls according to [9]:

Case 1 for y = 0.5hy:
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and applying the expression u ′sv ′s¯= −ηxv ′s
2̄, where ηx is the coefficient of friction between the

particles and the wall,
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ex is the coefficient of restitution in the axial direction, which is modeled as:
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Here, the parameter ξx =ηx(1 + er)tanθx, where er is the coefficient of restitution of the particle
velocity normal to the wall; θx =tan−1(vs / us) is the angle of attack between the trajectory of the
particle and the wall; χ is the reflection coefficient, which is the probability of the particles
recoiling off the boundaries and back to the flow. The coefficient of restitution reflects the loss
of the particle momentum as the particle hits the walls. In the given model, χ= 1/3, er= 1 and ηx

= 0.39 [29].

The conditions for the transverse and spanwise components of the gas velocity are set at the
channel walls in terms of impenetrability and no-slip.

The set of boundary conditions for gas and particulate phase at the exit of the channel is written,
respectively, as follows:
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2.3. Computational method

The control volume method was applied to solve the 3D partial differential equations written
for the unladen flow and the particulate phase (Eqs. (1)–(11)), taking into account the boun‐
dary conditions (Eqs. (12)–(21)). The governing equations were solved using the implicit lower
and upper (ILU) matrix decomposition method with the flux-blending-differed correction and
upwind-differencing schemes by [27]. This method is utilized for the calculations of the
particulate turbulent flows in channels of the rectangular and square cross sections. The
calculations were performed in the dimensional form for all the flow conditions. The num‐
ber of the control volumes was 1120000.

3. Laboratory experiments

The obtained numerical results have been verified and validated in comparison with the
data obtained by the experimental facility of Tallinn University of Technology.
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The experimental method for the determination of the particle dispersion was based on
recording the particle trajectories by means of a high-speed video camera on separate re‐
gions of a flow that locate at various distances from a point source of particles, and the
subsequent processing of the frames [30].

The experimental setup for the investigations of particle dispersion (Figure 2) allowed to
generate the shear flow similarly to [31] by means of flat plates installed with a varied
pitch. The test section was 2 m long with 400 × 200 mm cross section.

Figure 2. Experimental setup.

Two cases of spatial orientation of shear of the mean flow velocity were investigated. Figure
2 shows the top view of the setup for the case when shear is along the direction of gravity
(Figure 1a). For investigations of the particle dispersion when shear is directed normally to
gravity (Figure 1b), the setup was turned sideways as a whole at an angle of 90° around the
axis of the flow.

The mean flow velocity was 5.1 m/s. Glass spherical particles (physical density of 2500 kg/m3)
with an average diameter of 55 μm were used in the experiment runs. The root-mean-square
deviation of the diameter of particles did not exceed 0.1. The particles were entered into the
flow through the source point which was the L-shaped tubule of 200 μm inner diameter.

All measurements and data processing were carried out at the flow location x = 1212 mm.

The data processing technique [30] was applied to determine the particle spatial displace‐
ment along the y-axis, namely Dy, which characterizes quantitatively the particle turbulent
dispersion. Dy is calculated as the axial displacement of the maximum value of distribution of
the particle mass concentration determined at the location x = 1212 mm relative to the initial
flow location that disposes near the exit of the source point.
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4. Results and discussions

The numerical results presented below have been obtained at two locations of the flow: initial

location signed “ini” and disposed at the exit of the particle source point and the location

2x/hy= 12.63 from the exit of the particle point source. The turbulent dispersion of 55-μm glass

spherical particles was examined. The flow mass loading was about 10−6 kg dust/kg air.

Figures 3–15 show the numerical data obtained by the presented model for two cases of spatial

orientation of shear of the mean flow velocity: shear is along the direction of gravity (case 1),

and shear is directed normally to gravity (case 2).

Figure 3. Transverse distributions of axial velocities of gas and particles, case 1. Here and below u0 is the mean flow
velocity; u0 = 5.1 m/s.

Figure 4. Spanwise distributions of axial velocities of gas and particles, case 2.
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Figure 5. Transverse distributions of a turbulence kinetic energy; cases 1 and 2.

Figure 6. Spanwise distributions of a turbulence kinetic energy, cases 1 and 2.

Figure 7. Transverse distributions of xy shear stress component of the Reynolds stress of gas and particles, case 1. Here
u ′v ′̄=u ′v ′̄ / u0

2.
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Figure 8. Spanwise distributions of xz shear stress component of the Reynolds stress of gas and particles, case 2. Here
u ′w ′̄=u ′w ′̄ / u0

2.

Figure 9. Transverse distributions of x-normal components of the Reynolds stress of gas and particles, case 1. Here
u ′2̄ =u ′2̄ / u0

2 and u ′s2̄ =u ′s2̄ / u0
2.

Figure 10. Transverse distributions of particles mass concentration, case 1.
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Figure 11. Spanwise distributions of axial velocities of gas and particles, case 1, location 2x/hy= 12.63.

Figure 12. Spanwise distribution of particles mass concentration, case 1.

Figure 13. Transverse distribution of particles mass concentration, case 2.
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Figure 14. Spanwise distribution of particles mass concentration, case 2.

Figure 15. Transverse distributions of axial velocities of gas and particles, cases 1 and 2, location 2x/hy= 12.63.

Figure 3 shows the transverse distributions of axial velocities of gas and particles for case 1. It
is evident that the linear profiles of the averaged axial velocity components of gas and
particulate phase across the flow are almost preserved starting from the initial cross section
till the pipe exit. Besides, they occupy almost the whole turbulent core of the flow with slight
increase of the values in the turbulent core and decrease near the walls due to the effect of a
viscous dissipation. The similar profiles are observed with respect of distribution of the same
averaged axial velocity components for gas and particulate phase along the spanwise
direction (Figure 4).

Since the axial velocity increases toward the bottom wall, the profiles of a turbulence kinetic
energy have their higher values near the bottom wall area (Figure 5). However, along the
spanwise direction, the profiles of the turbulence kinetic energy are symmetrical, since there
is no change of the axial velocity along this direction (Figure 6).

The profiles of the Reynolds shear stresses of gas and particulate phase are shown in Figures 7
and 8. Here it is evident that there is some kind of plateau in the turbulent core. This con‐
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firms that we deal with the shear flow; hence, it must be the constant value of the Reynolds
shear stresses observed for cases 1 and 2, i.e., for the xy-plane (case 1) and xz-plane (case 2)
Reynolds shear stress components. Here, the linear distributions of the averaged axial velocity
components across the flow take place along the spanwise direction.

Figure 9 show the transverse distributions of x-normal components of the Reynolds stress of
gas and particulate phase obtained for case 1. It can be seen that unlike u ′2̄, the maximum value
of u ′

s
2̄ distribution located near the channel top wall is larger than the one near the bottom wall.

This is due to the effect of particle inertia and their crosswise motion that cause different axial
particle accelerations near the top and bottom walls (Figure 3).

Figures 10–13 present the transverse and spanwise distributions of the particle mass concen‐
tration c/c0 across the flow at the initial location and the location 2x/hy= 12.63 for both the cases
of spatial orientation of shear of the mean flow velocity. Here c0 is the value of the particle mass
concentration at the initial location at the flow axis. These distributions reflect the character of
the particle turbulent dispersion that occurs in the given channel shear flow. It is obvious that
a) due to gravity the particles go down, and thus the mass concentration profile shifts toward
the bottom wall (case 1) and b) the profiles become wider relative to their initial distribu‐
tions due to the particle turbulent dispersion (Figure 10).

Since in case 1 there is symmetrical distribution of parameters along the spanwise direction
(Figures 6 and 11), the symmetrical distribution of the mass concentration along this direc‐
tion (Figure 12) can be observed, both at the initial and exit cross sections.

A similar situation is observed for case 2, when the linear change of the axial velocity takes
place along the spanwise direction. Here the particles go down due to gravity (see Figure 13),
and simultaneously there is no shift of the distribution of the mass concentration along the
spanwise direction (Figure 14).

Table 1 presents the values of the particle spatial displacement Dy obtained experimentally
and numerically for two cases of spatial orientation of shear of the mean flow velocity. This
displacement characterized quantitatively the particle turbulent dispersion. It is evident that
the numerical values of displacement fit satisfactory with the experimental ones that vali‐
date the reliability of the presented model.

Case 1 Case 2

Experiment Modeling Experiment Modeling

Dy, mm 46.0 43.7 48.2 50.0

Table 1. Particle displacement.

Table 1 shows that the particle dispersion in case 1 is smaller than in case 2. This fact can be
explained by the particle axial velocity taking place in case 2 is smaller than the one for case 1
in the same y location (Figures 10, 13, and 15).
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5. Conclusions

The 3D Reynolds stress turbulence model (RSTM) based on the 3D RANS and statistical PDF
approaches has been elaborated for the turbulent dispersion of solid particles in particulate
horizontal channel shear flow domain.

The main distinctive feature of the given model is in use of the same closure for both the carrier
flow and particulate phase, namely the Reynolds differential equation.

The presented model has several important advantages over the Lagrangian approach:

1. direct simulation of the particle concentration;

2. direct simulation of the particles influence on a carrier flow;

3. there is no basic limit for the parameters of a particulate flow, namely the flow Rey‐
nolds number and value of the particle concentration.

Based on the given model, two cases of spatial orientation of shear of the mean flow velocity
have been examined. It has been obtained that the effect of orientation of shear appears through
decrease of the particle dispersion in case of directional coincidence between shear and gravity
as compared with the case of their mutual perpendicularity.

The validity of the elaborated model has been confirmed by experimental investigations of
effect of shear of the mean flow velocity on the turbulent particle dispersion.
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Abstract

Viscous flow with moving free surface is an important phenomenon in nature which
has broad applications in engineering. For these flows, temporal and spatial position of
this moving free surface in unsteady or non‐uniform conditions is very complicated. In
this  chapter,  free  surface  simulation  methods  based  on  computational  grid  are
presented. Volume of fluid (VOF) is a powerful and the most prevailing method for
modeling two immiscible incompressible fluid‐fluid interfaces. Herein, the governing
equations  of  fluid  flow  including  Navier‐Stokes  coupled  with  VOF  equation  are
discussed and the most prominent VOF schemes hierarchically presented to the readers.
Meanwhile,  Compressive  Interface  Capturing  Scheme  for  Arbitrary  Meshes  (CIC‐
SAM), Higher Resolution Artificial Compressive (HiRAC), High Resolution Interface
Capturing  (HRIC),  Switching  Technique  for  Advection  and Capturing  of  Surfaces
(STACS), and some other newly proposed methods are introduced, and the accuracy
and time calculation of each method are evaluated. Moreover, surface tension modeling
and its discretization as one of the most demanding phenomena in the nature are
brought to the readers.  Finally,  two schemes of parametric  study of interfaces are
discussed.

Keywords: viscous flow, free surface modeling, Eulerian approach, volume of fluid,
interface simulation

1. Introduction

Simulations of free surface flows have progressed rapidly over the last decade, and it is now
possible to simulate the motion of complicated waves and their interactions with structures
considering even deformable bubbles in turbulent flows. In the continuum mechanics, there are
two methods to express the motion in the environment. The first description is the Eulerian
approach. In this method, attention is paid to a special volume in the space. A mesh remains

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



fixed in the Eulerian method and fluid regions change in shape and location on the mesh. It uses
a fixed grid system which is not transformed during the solution procedure. The fluid is studied
while passing this volume and continuously replaced in time. Therefore, this method is not
appropriate for formulation of basic equations of fluid movement. The Eulerian method has
some limitations. For example, when the portion of the perimeter to the area of a zone of fluid
is large, the error of this method is increased. In the Eulerian method, it is not possible to
decompose the equation on the boundaries with the same precision of inner region of fluid and
accordingly, the finer mesh should be used near the boundaries. Therefore, when the free surface
of a discontinuous region is modeled by this method, finer grid should be employed in order to
achieve more precise results, specifically if this surface has large deflections. This is crucial when
the portion of the area to the perimeter of a zone is low, for example on phase of a multiphase
fluid. In this case, using finer mesh could increase the portion of the number of the inner elements
to the boundary elements, which in turn, increases the precision of the numerical solution. The
main superiority of the Eulerian description is the possibility of modeling of complicated
surfaces. For example, the collapse of a column of a fluid could be modeled in the Eulerian grid
which is shown in Figure 1.

Figure 1. Fluid column in Eulerian grid: (a) before collapse and (b) collapsing flow.

Figure 2. A sample of Lagrangian grid in vertical direction.
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In Lagrangian method, the flow field of the considered fluid is covered by a mesh moving with
the fluid. The fluid boundaries always coincide with the grid boundaries and the fluid inside
each cell of the grid always remains in that computational cell. Although this method is not
applicable to flows undergoing large distortions, where meshes can be twisted into unaccept‐
able shapes, but its advantage is the ease with which it handles free surfaces and interfaces,
which makes it applicable to a wide variety of problems. For example, the grid shown in
Figure 2 is Lagrangian in the vertical coordinate. For free surface problems, if the free surface
movement or the tangential acceleration gradient in the perpendicular direction to its surface
is not large, the Lagrangian method can be used to simulate free surfaces. The grid lines are
located on the free surface and move with it. Therefore, there is no need for any special
boundary condition in this location [1].

2. Governing equations

Governing equations for a compressible viscous fluid flow with no phase change are as follows:

( ) 0
t
r r¶
+Ñ× =

¶
u (1)

( ) ( ) ( )T
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r

r r m
¶ é ù+ Ñ × + Ñ = + +Ñ × Ñ +Ñë û¶

u
uu g F u u (2)

In these equations, ρ, u, t , P , μ, g =(gx, gy), and Fs are density, velocity vector, time, total
pressure, kinematic viscosity, gravity acceleration, and body forces, respectively. Body forces
include forces due to surface tension in the interface. Here, properties of a fluid such as density
and viscosity are included in the equations. However, it should be kept in mind that the
information changes from one fluid to another. Thus for mesh‐based numerical methods, new
properties based on fluid properties of both materials should be considered for Eq. (2) in the
cell containing the free surface, and the governing equations should be rewritten in the
following form:
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where indices 1 and 2 show first and second fluids properties, and α is a scalar phase indica‐
tor function which is defined as follows:

1 Control volume is filled only with phase 1
0 Control volume is filled only with phase 2
0 1 Interface present

a
a

ì
ï= í
ï < <î

(7)

This phase indicator function is the fluid property or volume fraction, which moves with it
and can be derived as follows:

0i

i

U
t x
a a¶ ¶
+ =

¶ ¶ (8)

This function can be used to calculate the fluid properties in each phase as a weight function.
In order to use a set of governing equations using the weight function, each fluid property
should be calculated based on the volume occupied by this fluid in the surface cell as ex‐
pressed in Eqs. (9) and (10) [2]:

( )1 21r a r a r= × + - × (9)

( )1 21m a m a m= × + - × (10)

Free surfaces considered here are those on which discontinuities exist in one or more varia‐
bles. This has been the challenge for researchers to omit or reduce this problem as much as
possible. The transient state as well as phenomena such as surface tension, changing of fluid
phase and Kelvin‐Helmholtz instability makes numerical simulation of such problems
cumbersome. It is expected that methods used to simulate interface of fluids have a number
of characteristics. These include mass conservation, simulating the interface as thin as possible,
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being able to reproduce complicated topologies, generalization of expansion to 3D problems,
and being able to model surface phenomena and be computationally efficient.

3. Free surface modeling methods

There are different methods to simulate free surface flow, each of which has its own advan‐
tages and disadvantages:

3.1. Donor‐acceptor method

The main idea of donor‐acceptor approach is that the value of volume fraction in downwind
cell, the acceptor cell, is used for anticipation of transferring fluid in each time step. The
problem in this approach is that using downwind cell in calculations may lead to unreal
situations which are values out of zero and unity domain in surface cells. Figure 3a shows this
method with the first fluid with gray color and volume of fluid equals to unity. It could be
seen that using donor‐acceptor approach with downwind differencing scheme results in
values greater than unity in donor cell. It is because the second fluid in the acceptor cell is
greater than the value needed in the donor cell. Similarly in Figure 3b, using downwind
differencing scheme leads to negative values for volume of fluid, which is because the needed
fluid in acceptor cell is more than what is in the donor cell [3].

Figure 3. Schematic view of donor‐acceptor approach [4].

In order to be assured that volume of fluid is between zero and one, the amount of fluid or
volume of fluid in donor cell should be used to regulate the estimated fluid transferring
between two adjacent cells [5].

One drawback of donor‐acceptor method is that this method changes any finite gradient into
step, and consequently increases the slope of the surface model in the direction of flow. This
problem was alleviated by proposing a method to consider the slope of interface for flux
transferring in adjacent cells by Hirt and Nichols [6]. For this purpose, a donor‐acceptor
equation was proposed so that it could detect the direction of the flow in interface and then
define the upwind and downwind cells accordingly. Thereafter, this model was expanded
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for 3D domains by Torrey et al. [7]. The Surfer method is one version of volume of fluid which
deals with merging and fragmenting of interfaces in multiphase flows [8].

The volume of fluid method is one of the most popular methods for anticipation of interfa‐
ces, and many researches have been conducted based on this method including dam break,
Rayleigh‐Taylor instability, wave generation and bubble movement [6, 9–12]. This method was
modified in 2008 to get more accurate results by considering diagonal changes in fluxes of
adjacent cells for structured grid domains [13, 14].

3.2. The Hirt‐Nichols method

The volume of fluid (VOF) method was first proposed by Hirt and Nichols [6]. In this method,
similar to the SLIC method, free surfaces can be reconstructed based on parallel lines with
respect to one of the principal coordinates of the system. However, nine neighboring cells are
considered for flux changes and defining the normal vector in a desired cell. Then, free surface
is considered as either a horizontal or a vertical line in cell with respect to the relative normal
vector components. Figure 4 shows the actual free surface and what was simulated by Hirt‐
Nichols method.

Figure 4. Free surface (a) actual surface and (b) reconstructed surface based on Hirt‐Nichols method [6].

Figure 5. Hirt‐Nichols scheme (a) actual surface and (b) reconstructed surface.
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Upwind fluxes are used for fluxes parallel to the reconstructed interface, while donor‐acceptor
fluxes are used for those fluxes normal to it. For instance according to Figure 5a, the inter‐
face in the cell (i, j) is considered to have positive celerity direction with respect to x coordi‐
nate in the face i + 1

2
 in donor‐acceptor method. Therefore, the reconstructed surface in the (i, j)

cell is vertical (Figure 5b), and this cell is considered a downwind cell for the cell (i + 1, j),
(αi , j >αi+1, j). According to donor‐acceptor method, transferred flux from the face (i + 1

2
, j) can

be calculated as follows:

( ) ( )( ){ }1 1 1
2 2 2, 1, 1, ,, , ,min , max 0, 1 1i j i j i j i ji j i j i jF y x U t U t xd a d a d a d a d+ ++ + +

é ù= + - - -ë û (11)

where αi , jδx is the maximum fluid available for exiting the cell (i, j); U
i+

1

2
, j
αi+1, jδt is the esti‐

mation of downwind flux for the volume of the fluid, α; U
i+

1

2
, j

(1−αi+1, j)δt  is the estimation of

downwind flux resulted from the convey of void portion of the cell (i, j); and (1−αi , j)δx is

the maximum void portion which can exit from the cell (i, j).

The “min” operator has been designed to ensure the fluid leaving the cell (i, j) is not more
than the calculated available fluid in it from the previous time step. As the fluid in a cell
transfers, so does the whole void space in the cell. Thus, the “max” operator has been designed
in order to assure that amount of void exits the cell is bounded by what was in it calculated
from the previous step. In this scheme, the combination of downwind and upwind fluxes has
been considered in such a way that not only the solution stability is guaranteed, but also avoids
the numerical diffusion.

3.3. Flux Corrected Transport (FCT) method

The FCT method is based on the idea to present a formulation which combines the upwind
and downwind fluxes. This formulation aimed to leave out upwind numerical diffusion and
instability of downwind scheme [15]. Idea of neighboring fluxes based on higher order
translate scheme was first proposed by Boris and Book [16] and then developed by Zalesak [17]
to multidimensional.

In this method calculations consist of some steps. First, an intermediate value of volume of
fluid, α *, must be defined based on a first‐order scheme. Figure 6 shows schematically the
solution for a 1D governing equation of fluid volume fraction for cell i as:
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i i i iF F

x
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Figure 6. Three adjacent typical cells in FCT method.

where F L  is the flux in the downwind cell, and Ff  is defined in the face f  as:

f f fF U td a= (13)

Thereafter, an anti‐diffusive flux is needed to be defined (FL) in order to correct the diffusion
of the previous step. This is the difference between upwind and downwind fluxes as:

1 1 1
2 2 2

A H L
i i iF F F+ + += - (14)

To make this stable, a correction factor, q, is needed to modify the fluxes values. Finally, a value
for fluid fraction in next time step is defined as:
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3.4. Youngs’ method

This method was first proposed by Youngs in 1982 [18]. It was then developed by Rudman [19]
with more details. In this method, at first the slope of the interface position is estimated. Then,
the free surface is defined as a straight line with the slope of β in each cell of the numerical
domain. The position of this line segment in each cell is defined such that the area reconstruct‐
ed from the line and the perimeter of the cell is equal to the amount of volume of fluid, α. The
geometry of the polygon from this reconstruction is used to calculate the flux transferred from
the cell faces.

Assuming that αi , j is predefined in every cell, the first step is to calculate first‐order upwind
fluxes. Then, the Youngs exiting fluxes of every cell can be calculated by considering the values
in each cell. To do so, the angle β, between free surface and x‐coordinate, must be calculated.
Different methods can be used for calculation of β. One of them is first using the gradient
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function of fluid volume fraction for defining unit normal vector of the free surface, and then
calculating β [20]. The method of defining the normal vector, however, can affect the accura‐
cy of the final results. This formulation for uniform grid is as follows:

Figure 7. Four possible positions for free surface in Youngs’ method [19].
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Using components of the normal unit vector, the angle β can be calculated as:
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The angle γ is also defined as:
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- æ ö
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It is possible to set 0 ≤γ ≤90  by rotating the cell. Therefore, there are only four possible
positions for the free surface, which are depicted in Figure 7.

What is behind this conclusion is as follows:
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Case I Case II

if  Ub >0 if  Ubδt ≥ srδy
Fb =αδxδy

else

Fb = 1
2 Ubδt(2−U bδt

srδy)sbδx

if  Ubδt ≤ slδy
Fb =Ubδtδx

elseif  Ubδt ≤ srδy

Fb =Ubδtδx − 1
2 (Ubδt − slδy)2cotγ

else
Fb =αδxδy

if  Ul >0 if  Ulδt ≤ (1− sb)δx
Fl =0

else

Fl = 1
2 Ulδt − (1− sb)δx 2tanγ

Fl =Ulδt(slδy + 1
2 Ulδttanγ)

Case III Case IV

st α − 1
2 cotγ 1− 2αcotγ

sr 1 1

sb α + 1
2 cotγ 1

sl 0 1− 2αtanγ

if  Ut >0 Ft =Utδt(stδx + 1
2 Utδtcotγ) if  Utδt ≥ (1− sl)δy

Ft =Utδtδx − (1−α)δxδy
else

Ft =Utδt(stδx + 1
2 Utδtcotγ)

if  Ur >0 if  Urδt ≤ stδx
Fr =Urδtδy

elseif  Urδt ≤ sbδx

Fr =Urδtδy − 1
2 (Urδt − stδx)2tanγ

else
Fr =αδxδy

if  Urδt ≤ stδx
Fr =Urδtδy

else

Fr =Urδtδy − 1
2 tanγ(Urδt − stδx)2

if  Ub >0 Fb =Ubδt(sbδx − 1
2 Ubδtcotγ) if  Ubδt ≤ slδy

Fb =Ubδtδx
else

Fb =Ubδtδx − 1
2 (Ubδt − slδy)2cotγ

Free Surface Flow Simulation Using VOF Method
http://dx.doi.org/10.5772/64161

375



Case III Case IV

if  Ul >0 if  Ulδt ≤ sbδx
Fl =0

elseif  Ulδt ≤ stδx

Fl = 1
2 Ulδt − (1− sb)δx 2tanγ

else
Fl =Ulδtδy − (1−α)δxδy

if  Ulδt ≥ (1− st)δx
Fl =Ulδtδy − (1−α)δxδy

else

Fl =Ulδt(slδy + 1
2 Ulδttanγ)

Table 1. Calculation of exiting flux in Youngs’ method.

Four side fractions (sl , sb, sr , st) for up, right, down, and left faces can be calculated with the
selection of the free surface position in a cell. Thereafter, flow fluxes can be geometrically
computed for each face (Fl , Fb, Fr , Ft) based on these side fractions. More details are present‐
ed in Table 1. In this table, positive value is set for velocities towards the outer edges of a cell,
and there is no flux calculation for negative velocities into the cell.

3.5. Piecewise Linear Interface Calculation (PLIC) method

To solve fluid volume transfer equation with FDM or FVM, diffusion error in interface
reconstruction occurs. This leads to poor modeling of free surfaces, specifically in the inter‐
face of two adjacent fluids with large density difference. PLIC is one of the methods to
reconstruct the interface between fluids with second‐order accuracy [20]. It can increase the
accuracy of transferred flux estimation and geometric fluid distribution in each cell. In this
method, unit normal vectors of the surface are calculated based on the volume fraction of fluid
using Youngs’ least square method as:
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where (∇α) is defined as:
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reconstruction occurs. This leads to poor modeling of free surfaces, specifically in the inter‐
face of two adjacent fluids with large density difference. PLIC is one of the methods to
reconstruct the interface between fluids with second‐order accuracy [20]. It can increase the
accuracy of transferred flux estimation and geometric fluid distribution in each cell. In this
method, unit normal vectors of the surface are calculated based on the volume fraction of fluid
using Youngs’ least square method as:

( ) ( )
,

,
2 2

, , , ,

i j
i j

x i j y i j

n
a

a a

æ ö
Ñç ÷= -ç ÷

ç ÷Ñ + Ñè ø

r
(20)

where (∇α) is defined as:
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Figure 8. Different positioning of the interface for (0≤θ≤π / 4).

where θ is the angle between the normal vector and the horizontal coordinate varies be‐
tween zero and 2π. For θ in the first one‐eighth space (0≤θ ≤π / 4), eight different conditions
are possible for the position of free surfaces as illustrated in Figure 8 [21]. All other situa‐
tions can be achieved with a mirror reflection of the first quarter with respect to the x and y
axes and bisectors between them. The exact position of the free surface is determined defin‐
ing surface unit normal vector using volume fraction of fluid in each cell. To do this, ex‐
treme values of αlim,1 and αlim,2 are determined as:

min
lim,1 lim,2 lim,1

max

, 1
2
n
n

a a a= = - (23)

in which v(i + 1, j − 1

2
) and nmax are calculated as:
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( ) ( )min maxmin , , max ,x y x yn n n n n n= = (24)

αlim,1 and αlim,2 are shown in Figure 9.

When unit normal vector of a surface is defined, the true position of the interface can be easily
determined using volume of fluid in each cell.

Figure 9. Various positions of an interface in a cell.

3.6. Higher order differencing schemes

Another method to reconstruct the interface between two fluids is to discretize the convec‐
tion term using higher order differencing schemes or blended differencing scheme. The
accuracy of less/non‐diffusive schemes and compressive schemes was compared by Davis [22].
Less/non‐diffusive schemes prevent the interface profile from being diffused. Compressive
schemes not only prevent the interface from being diffused, but also omit any diffusion in the
neighboring of the interface. Thus, they are considered as powerful tools for thin interface
simulation.

Ghobadian [23] applied the higher order scheme proposed by Van Leer [24]. However, his
results showed that this scheme has poor ability in terms of removing diffusion. Therefore, he
proposed solutions for decreasing numerical diffusion. Other methods for omitting diffu‐
sion proposed by Pericleous and Chen [25] proved to be associated with interface diffusion.
Although first‐order upwind or downwind schemes lead to diffusion, higher order methods
result in numerical fluctuations in the interface. There are other methods for reducing the
interface as follows:

3.6.1. Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) scheme

The CICSAM scheme, presented by Ubbink, is a combined method to reduce the diffusion
problem in interface modeling. This method imposes some limitations on the fluid fraction
value. It is obvious that the value of a fluid in a cell should be constant in the absence of a
source. The CICSAM approach presents an equation for free surface volume fraction as:
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where α̃D is defined based on the following equation:
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More details on determining α̃ f  can be derived based on the combined schemes such as
Normalized Variable Diagram (NVD) and discussed by Ubbink and Issa [26]. Accordingly, a
local boundedness is defined for α̃ f UQ

. In Eq. (25), γf  is a weight factor which is defined as:
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where kγ is a constant, usually set to unity, and θf  is the angle between free surface normal
vector, (∇α)D, and the vector d

⇀
f  such that it connects the center of the adjacent cells based on

Figure 10, and defined as:
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The CICSAM method well satisfies the bounds defined within it, and can be accurately
reconstruct the free surface. The basis of the method, however, is on the 1D equations and
linearization, which makes it less accurate for 3D modeling reconstructions.

Figure 10. Calculation of the upwind value for an arbitrary mesh.

3.6.2 THOR scheme

This scheme is based on the CICSAM and switches smoothly between the upper bound of the
universal limiter and ULTIMATE‐QUICK, a combination of the universal limiter and QUICK,
considering the angle between the interface and the direction of motion [27].

Analogous to CICSAM, this scheme is an algebraic advection scheme for the interface, which
is designed for the implicit time advancing algorithm. In this method αf  is calculated using a
weighting factor βf as follows:

( )1f f D f Aa b a b a= - + (31)

where

1
f D

f
D

a
a

b
a-

=
-

% %
% (32)

α̃f and α̃D can be calculated by Eqs. (25) and (27), respectively.

3.6.3. Higher Resolution Artificial Compressive (HiRAC) scheme

HiRAC scheme is another modification of the CICSAM method [28]. This newly proposed
method tries to improve the computational efficiency and maintain the accuracy. In this
method, the weighing factor, γf , of Eq. (29) can be redefined as:
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( )( ),1
m

f fming q= (33)

where  θf  was previously defined in Eq. (30). For m=2, the new formulation reduces to the
weighting function of Ubbink and Issa [26]. As m increases, the interpolation becomes more
biased towards the diffusive higher resolution scheme. It is shown that m=2 provides a good
balance between the compressive and diffusive higher resolution schemes.

3.6.4. High Resolution Interface Capturing (HRIC) scheme

This method is somehow similar to CICSAM, which benefits from a combined interpolation
scheme. In HRIC method, the difference between two upwind schemes is calculated based on
the normal vector angle of the free surface as [29]:
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The portion of each of the two terms in the above equations can be defined as:

* cos (1 cos )f f Da a q a q= + -% % % (36)

In this way, αf  is discretized based on the neighboring cells.

It should be noted that an improved scheme of HRIC, called Flux-Blending Interface-Capturing
Scheme (FBICS), has been recently proposed. In this method, analogous to CICSAM and HRIC,
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the difference between two upwind schemes is calculated based on the normal vector angle
of the free surface. Based on FBICS, Eq. (33) can be reformulated to obtain a more accurate
scheme as:
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Some other modifications are also proposed by Tsui et al. [30].

3.6.5. Switching Technique for Advection and Capturing of Surfaces (STACS) method

One of the drawbacks of HRIC and CICSAM schemes is high Courant numbers. Both methods
lack a proper switching strategy to accurately model the interface when Courant number
increases. The Courant number, Cn, in HRIC method can be written as follows:

( )* * 0.7
0.7 0.3f f f D

Cna a a a -
= + -

-
% % % % (38)

which is suitable for Courant numbers between 0.3 and 0.7. For a Cn below 0.3 the scheme is
not modified, while for a Courant number above 0.7 the upwind scheme is used. This is true
for CICSAM when the Cn is equal to unity.

STACS method has been proposed to improve the accuracy and stability of the results
specifically in high Courant numbers by Darwish and Moukalled [31]. It uses an implicit
transient discretization, i.e. no transient bounding is applied, and in order to minimize the
stepping behavior of HRIC scheme, a modification is proposed. In this method, applying cos4θ
term is designed instead of cosθ in Eq. (36) as follows:

( )* 4 * 4
, , 1f f sup f stoiccos cosqa a a q= + -% % % (39)

where  α̃*
f , sup

 and α̃*
f , stoic

 are calculated as follows:
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This enables a rapid but smooth switching strategy that works very well, especially where the
normal to the free‐surface face is not along the grid direction.

3.6.6. Inter‐gamma scheme

In this method, presented by Jasak and Weller [32], free surface compression is modeled using
additional compressive artificial terms.

( ) ( )( )1 0r

t
g g g g¶
+ Ñ × + Ñ × - =

¶
U U (41)

where Ur  is a velocity field for compressing the free surface. This artificial term is activated
only in the presence of free surface because of having the term γ(1−γ). The solution to this
equation is bounded from zero to unity with the inter‐gamma scheme. Eq. (40) can be rewritten
as:
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where ϕ =S⋅U f  is the volume flux and ϕrb
=(1−γ)

f (−ϕ r ,S )ϕ
r . Eq. (43) is used to calculate ∅r  as:
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where n * is the free surface normal unit vector and Kc is an adjustable coefficient, with an
appropriate value of 1.5, which defines the compression rate of free surface. The inter‐gamma
scheme is also similar to CICSAM and is based on a donor‐acceptor equation and normal‐
ized variable diagram, NVD. The formulation is as:
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Figure 11 shows the NVD for inter‐gamma scheme.

Figure 11. NVD for inter‐gamma scheme.

3.7. Integrated methods

As mentioned before, volume of fluid is among the most popular methods in free surface
modeling. Having in mind that this method is based on defining a discontinuous function, the
color function, there is not a unique form for free surface. Therefore, it is required to recon‐
struct the free surface using volume of fraction function. In one hand, VOF method satisfies
the conservation of mass while it is unable to calculate free surface parameters including
curvature radius and normal unit vector directly. On the other hand, in level set methods as
the distance function is smooth, the surface geometry can be easily calculated, while satisfy‐
ing the conservation of mass is very demanding. In order to resolve the problems of level set
methods, a number of different researches have been conducted. For example, higher order
schemes were proposed to improve the conservation of continuity equation by Peng et al. [33].
Adaptive mesh refinement techniques were also proposed to increase the accuracy of the local
mesh consistency. In 2009, an integrated method known as hybrid Particle Level Set (PLS) was
proposed to improve the accuracy of the results. However, the problem still remained in
relation with mass conservation.

In order to take the advantages of both methods and eliminate their disadvantages, integra‐
tion of volume of fluid and level set methods was proposed in a new scheme known as coupled
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level set and volume-of-fluid (CLSVOF) method to model two‐phase incompressible flows by
Sussman and Pucket [34]. It should be noted that although accurate, this method cannot be
easily employed, because these two methods, VOF and level set, should be individually solved
and their effects need to be coupled based on the reconstructed interface.

4. Calculating surface tension

Defining the pressure difference inserted on the surface of two fluids with different densities
and tension stresses is one of the most demanding problems in fluid mechanics. One meth‐
od to do this is the Pressure Calculation based on the Interface Location (PCIL) method which
is presented here. Surface tension, that changes the value of variables in momentum equa‐
tions, imposes a discontinuity at the position of the interface between two fluids [21].

Stress from surface tension inserts a force upon the interface. The resultant force is perpen‐
dicular to the surface and its curvature is dependent on the geometry of the surface. Surface
tension can be considered in two ways. In the first approach, it is considered as a boundary
condition in the equations for the surface. This needs using an iterative method for true
approximation of pressure, which in result, increases the time and cost of calculation and
consequently makes it inefficient. In order to address this problem, some other methods have
been proposed in which the precise calculation of interface position is not necessary. In these
methods, the direct force of surface tension has been replaced with the body force in the
momentum equation. The Continuum Surface Force (CSF) method is a base method for
calculation of body forces of fluid surface tension [2]. The body forces can be considered to act
smoothly on a narrow strip of cells in interface zone. In this method the surface stresses are
replaced with the body forces which are calculated as:

( )s s
S

dSs k d= -òF n x x (45)

where σ, κ, n, δ(x−xs) and Xs are surface tension force, curvature of the surface, normal unit
vector, Dirac delta function, and the position of a given base point on the interface S , respec‐
tively. This equation has been discretized for numerical methods of two‐phase fluids.

Another approach based on CSF method was proposed by Torrey et al. [7] called Contin‐
uum Surface Stress (CSS), in which body forces of CSF method were replaced by tension
tensors of surface tension based on the following equation:

( ),s s ssk d s d= = -Ñ × = - - ÄF n T T I n n (46)

where I and T are unit tensor and tangential tension tensor of the interface respectively.

It should be mentioned that employing CSF or CSS methods has some drawbacks. For instance,
spurious velocities of the thinner fluid near the interface is one the reported problems.
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A number of researches have been performed in order to resolve the problem of spurious
velocities [35, 36]. In one approach, using virtual particles moving along with the surface could
improve the results [37]. One of the latest methods presented in this field is PCIL. This method
shows that having more precise border cells and calculating their associated pressure based
on the momentum equation can lead to significant reduction of bothersome flows near this
region. PCIL is a simple and efficient method of calculating free surfaces. The total pressure
on the left side of the cell can be calculated as (see Figure 12):

Figure 12. Cells on the interface in contact with left and right cells of the free surface [38].

( ) ( )1 2 1 2 2 1 21L L
L L L L L L L L L L L

l y lP P P P H P H P H P P
y y

D -
= + = + - = + -

D D (47)

where PL  is the mean pressure on the left side of the given cell. In the same way, mean pressure
can be calculated for other faces of the cell as follows:

( )2 1 2R R R R RP P H P P= + - (48)

( )2 1 2T T T T TP P H P P= + - (49)

( )2 1 2B B B B BP P H P P= + - (50)

where H  is a dimensionless number which shows the position of free surface in different
directions. For faces completely immersed in the main fluid, H is equal to 1, and for those
completely in the secondary fluid, H  is zero. For other cases, H  varies between zero and unity.
Note that for 3D models, it is just needed to replace edge faces with surfaces faces.
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On the other hand, the change in pressure Ps in every point of the interface is calculated as:

1 2sP P P sk= - = (51)

Accordingly, the above equation can be reformulated for pressure in the Kth face of every
common cell as follows:

2k k kP P H sk= + (52)

where the second term introduces the normal force of the surface tension per unit area of the
interface. This can be presented in the vector form as:

s Hsk=F n (53)

where Fs is the surface tension force vector.

One of the most fundamental steps to perform surface tension calculations is defining the
curvature of the interface. Defining this curvature is not so demanding as long as the precise
position of the interface is known. However, using volumetric tracing methods and equiva‐
lent alternatives representing the interface position make the estimation of the curvature
cumbersome.

The method of volume of fluid presented by Hirt and Nichols [6] is one of the earliest methods
in this field. In this method, a curve y(x) is fitted to the nine neighboring cells of the inter‐
face. In this way, summation of the volume of fluid of three cells located in a column creates
a value for y. By fitting parabolic curve to the values of three neighboring columns and then
two times differentiating of these values, one can define the curvature of the surface. This
method, however, suffers from low accuracy and some limiting conditions. Another method
is presented by Chorin [39] in which a circle is defined based on trial and error in order to
satisfy the nine‐cell set in the best possible way. Thereafter, curvature of the surface can be
defined on the basis of the calculated circle. However the main problem of this method is its
dependency on the several times of trials and errors in order to calculate the best way of
estimating the circle, the thing that makes it practically inefficient. Ashgriz and Poo [40]
proposed another method in which a parabolic curve is fitted to the 9 or 25 neighboring cells.
This method is more accurate than the previous one; however, its applications are very limited
to specific cases.

The value of the surface curvature can be defined based on the distance function as:

fk
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To discretize the above equation, it is required to first calculate the normal vector of the surface
based on Figure 13 and the following relations, and consequently estimate the curvature:

1 1
2 2

1, , 1, , 1 1, 1 1, 1
, , , ,

1 1 1

2 ,
2

i j i j i j i j i j i j
x i j y i j

i i j j j

div div
x x y y y

f f f f f f+ + - + + + -
+ +

+ + -

- - + -
= =

D + D D + D + D (55)

1
2

1 1 1 1
2 2 2 2

1
2

, , 2 2
, , , , , , ,

,

,x i j
x i j i j x i j y i j

i j

div
n div div+

+ + + +

+

= = +n
n (56)

1 1 1 1
2 2 2 2, , , , , , , ,

,
x i j x i j y i j x i j

i j
i j

n n n n
x y

k + - + -- -
= - -

D D
(57)

Figure 13. Position of the normal vectors of the surface in the cell faces.

One of the advantages of this approach, the level‐set method, is using a distance function which
is smooth and uniform, so that it increases the simplicity of the calculation and accuracy of the
results.

The value of the body force from surface tension of the cell faces can be calculated in CSF
method as:

[ ]s s

a
sk d sk

a
Ñ

= =F n n (58)
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One of the advantages of this approach, the level‐set method, is using a distance function which
is smooth and uniform, so that it increases the simplicity of the calculation and accuracy of the
results.

The value of the body force from surface tension of the cell faces can be calculated in CSF
method as:
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where δs is the delta Dirac function which is infinite on the interface and zero otherwise, and
its integration is equal to unity. The bar sign in Eq. (58) shows a smoothed (or filtered) value
of volume fraction. The bracket sign shows the difference between maximum and minimum
of volume of the fluid fraction. In CSF method, this function is estimated using |∇ ᾱ | / α .
Some other references use the following equation to improve the results’ accuracy [41]:

[ ] [ ]s s

a rsk d sk
a r
Ñ

= =F n n (59)

in which the ratio of the densities is inserted in order to reduce spurious velocities of the thinner
fluid. The discretized version of Eq. (58) can be obtained as follows:
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Based on what was discussed for PCIL method, the following relation is adopted to the present
method:
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+ +
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It can be seen that in this equation, the ratio of densities is replaced by the variable H.

5. Parametric method for calculation of curvature of free surfaces

This newly proposed method is based on two sub‐models, the Four-Point Method (FPM) and
the Three-Line Method (TLM). In the former sub‐model, a curve is fitted to the intersection of
the points of grid lines for central and two neighboring cells, while the latter fits a curve to the
free surface so that the distance between the curve and its linear interface approximation is
minimized [42].

5.1. The Four-Point Method (FPM)

In the four‐point method, free surface (as illustrated in Figure 14) is approximated using a
continuous function f (⋅ )∈C 2(x1, x4) (a set of functions with continuous second derivation) so
that the distance between the function and the points is minimized according to Eq. (62), and
variations of curvature are bounded based on Eq. (63). In this case, the radius curvature can
be calculated as in Eq. (64).
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Figure 14. Free surface modeling in FPM.

where ε is a small arbitrary given number.

In this method, the desired function is approximated using an n‐degree polynomial function
with unknown constant coefficients. Therefore, we have:
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where  κ is the curvature of the free surface.
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where ε is a small arbitrary given number.

In this method, the desired function is approximated using an n‐degree polynomial function
with unknown constant coefficients. Therefore, we have:
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where  κ is the curvature of the free surface.
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It is supposed that Q is the set of f (⋅ )∈C 2(x1, x4) such that Eq. (62) is feasible and Q(n) is the
set of Pn(.) such that Eq. (64) is feasible. Then, the following theorem proves that the se‐
quence of solutions for Eqs. (65) and (66) converges to the solution of Eqs. (62) and (64) as n
goes towards infinity.

Theorem 1: if η = in f QI ( f (.)) and η(n)= in f Qn
I (Pn(.)) then η = limn→∞η(n).

Proof. It is obvious that Q(1)⊂Q(2)⊂ ...⊂Q, then η(1)≥η(2)≥ ...≥η. Therefore, {η(n)} is a non‐

increasing and bounded sequence. Then it converges to a number called ξ. Set W =∪
n=1

∞

Q(n);

therefore, infQn
I (Pn(⋅ ))=ξ. Since W ⊂Q,  then ξ ≥η. By the properties of infimum, for every ε >0,

there exists f (⋅ )∈Q such that:

( )( )I fh h e< × < + (67)

As we have f (⋅ )∈C 2(x1, x4), there is a set of polynomials such that {Pn(⋅ )}, {Ṗn(⋅ )}, {P̈n(⋅ )} are
uniformly convergent. Therefore, there exists a natural number such that for every n ≥N  we
have:

( ) ( )n nP f d
¥

× - × < (68)

( ) ( )n nP f d
¥

× - × <&& (69)

( ) ( )n nP f d
¥

× - × <&&&& (70)

Now, it is claimed that there is an N1≥N  such that for i =1, 2, 3, 4, the relation
|κn(x)−Ci | ≤ε; ∀ x∈ (xi, xi+1  is true. Since otherwise for every n ≥N , there is a
|κn(x)−Ci | ≤ε; ∀ x∈ (xi, xi+1 . Therefore, limn→∞ |κn(x)−Ci | >ε which contradicts the assump‐
tion of f (⋅ )∈Q. Thus, PN (⋅ )∈Q(N1)⊂W ⊂Q. Based on what was mentioned,

| I (PN 1
(⋅ ))− I ( f (⋅ ))| <ε or I (PN 1

(⋅ ))< I ( f (⋅ )) + ε <η + 2ε or η ≤ξ + 2ε; therefore, ξ =η, or

limn→∞η(n)=η.

Thus, our aim is to solve Eqs. (63) and (64), and one can write them in the following forms:
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such that Ein(x)= ∥κn(x)−Ci | −ε + ∥κn(x)−Ci | −ε∥ .

Now, the intervals x1, x2 , x2, x3  and x3, x4  are divided into three equal sections, m1, m2, m3,

respectively. This means that h 1 =
x2 − x1

m1
, h 2 =

x3 − x2

m2
 and h 3 =

x4 − x3

m3
. Thus, using a numerical

integration method such as trapezoidal rule, the problem above can be reformulated as:

( )
4

1
inf

=

-å n i i
i

P x y

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1
1 1 1 1 1 1 1

2
2 2 2 2 2 2 2

3
3 3 3 3 3 3 3

... 0
2

... 0
. 2

... 0
2

0 1,2,3. 1,2,...

n n n

n n n

n n n

i

h E x E x h E x m h

h E x E x h E x m h
S t

h E x E x h E x m h

C i n

ì é + + + + + ù =ë ûï
ï
ï é + + + + + ù =ï ë û= í
ï

é + + + + + ù =ï ë û
ï
ï ³ = =î

(73)
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This is a nonlinear set of equations and can be easily solved using Matlab or Lingo software.

5.2. The Three-Line Method (TLM)

In this method as illustrated in Figure 15, the main goal is to find a function as f (⋅ )∈C 2(x1, x4)
within x ∈ xj, x j+1  such that the distance between the function f (x) and the line L i(x) which
connects the given points (xi, yi) and (xi+1, yi+1) is minimized for i =1, 2, 3. Thus, variation of
curvature is bounded according to Eq. (74):
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Figure 15. Free surface modeling by TLM.

Similar to what was discussed in the four‐point method, in this method the function f (⋅ ) can
be replaced with an n‐degree polynomial, Pn(⋅ ) as below:
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Theorem 2: Sequence of the solution of Eq. (75) converges to the solution of Eq. (74).

Proof: The method of proof of this theorem is similar to the previous theorem. In the same
approach of FPM, the following problem is achieved:
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(76)

The steps of using the above equations are as follows:

Step 1: Read ε, and set n =1.

Step 2: Solve Eq. (73) or (76) in the FPM or the TLM, respectively.

Step 3: If the previous step is infeasible, set n=n+1, and go to step 2, else set the value of target
function in In.

Step 4: Set n=n+1, and solve Eq. (73) or (76) in the FPM or the TLM, respectively.

Then set the value of target function in In.

Step 5: If | In − In−1 | >ε1 then go to step 4, else In is the final answer.

6. Conclusions

In this chapter volume of fluid (VOF) scheme was introduced. This is one of the most effective
methods employed in the simulation of two fluid flows interfaces with dramatic changes in
density and viscosity. . These interfaces are represented implicitly by the values of a color
function which is the fluid volume fraction. The advantage of the method is its ability to deal
with arbitrarily shaped interfaces and to cope with large deformations, as well as interface
rupture and coalescence in a natural way. In VOF the mass is rigorously conserved, provid‐
ed the discretization is conservative. However, advecting the interface without diffusing,
dispersing, or wrinkling is a big issue. This can either be performed algebraically, in schemes
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function which is the fluid volume fraction. The advantage of the method is its ability to deal
with arbitrarily shaped interfaces and to cope with large deformations, as well as interface
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ed the discretization is conservative. However, advecting the interface without diffusing,
dispersing, or wrinkling is a big issue. This can either be performed algebraically, in schemes
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such as CICSAM or geometrically, in schemes such as PLIC. Herein, the viscous fluid
governing equations which are Navier‐Stokes coupled with VOF equation were presented.
Then the most popular VOF schemes such as donor‐acceptor, Hirt‐Nichols, FCT, Youngs, and
PLIC were explained. CICSAM, HiRAC, HRIC, STACS, and some other up‐to‐date pro‐
posed methods were introduced and the accuracy and time calculation of each method were
evaluated. Moreover, surface tension modeling and parametric study of interfaces were
discussed. The author hopes this brief presentation of the VOF method will be beneficial for
scientists and students in their further researches and will help them to massively and
continuously expand this very challenging field of fluid mechanics.
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Abstract

Many mixing processes in engineering applications are turbulent. At high‐Schmidt
regime, the scalar scales are much lower than those of the velocity field, making difficult
instantaneous measurements and direct numerical simulation for studying systems of
practical interest. The use of large eddy simulation (LES) for analyzing transport and
mixing of passive and reactive scalars at high‐Schmidt (Sc) regime is addressed in this
article. We present two different approaches for studying scalar transport and mixing
in LES: the conventional approach is based on the modeling of the unclosed subgrid‐
scale scalar flux term in the filtered scalar equation by models commonly used for high‐
Sc flows. The second approach presented in this review for dealing with high‐Sc flows
is  based  on  the  use  of  a  filtered  mass  density  function  (FDF)  of  the  scalar  field.
Conclusions are presented about the relative merits of the two approaches.

Keywords: mixing, large eddy simulation, high Schmidt, filtered mass density func‐
tion

1. Introduction

At molecular scale, the mixing of two or more fluids having different composition is driven
by diffusion, a rather slow process. Turbulence increases the rate of mixing by the action of
large‐scale motions, making higher the contact surface area between adjacent unmixed fluid
“elements.” Turbulent mixing plays an important role in many engineering, biological, and
environmental applications. In the case of reactive systems, chemical reactions can only take
place after reactants are mixed at molecular level; in many of such systems, the availability of
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mixed reactants at the molecular scale limits the reaction rate; consequently, the mixing process
can be a controlling rate.

In the chemical and pharmaceutical industries, an inadequate mixing can raise the produc‐
tion costs due to the reduction in selectivity, low yield, undesired product accumulation, and
scale‐up and process development problems. Some costs related to mixing are reported by
Paul et al. [1]: in 1989, the cost of poor mixing in the U.S. chemical industry was estimated at
$1 to $10 billion; yield losses of 5% due to poor mixing are typical. In the pharmaceutical
industry, the costs due to lower yield and due to problems in scale‐up and process develop‐
ment are on the order of $100 and $500 million, respectively. In the 1980s, the pulp and paper
industry reported savings averaging 10–15% by introducing medium consistency mixer
technology in their processes.

Numerous studies have dealt with transport and mixing of passive scalars in systems where
the Schmidt number (Sc) is close to one, as it is the case for gas flows in which the smallest
scalar scale (the Obukhov‐Corrsin scale) is of the same order of magnitude or higher than the
smallest flow scale, the Kolmogorov scale (see Refs. [2–5]). However, in many industrial and
biological applications that take place in the liquid phase, the ratio of the fluid momentum
diffusivity to molecular diffusivity of the scalar is much greater than 1; so, the scalar field holds
finer structures than the velocity field (see Refs. [6–9]).The smallest scalar length‐scale when
the Schmidt number is greater than 1 is named the Batchelor scale (ηB) and is much smaller
than the Obukhov‐Corrsin scale, ηoc, and the smallest velocity length‐scale,—the Kolmogor‐
ov scale (η). The small dimension of the Batchelor scale makes accurate measurement of the
instantaneous concentration in turbulent liquid flows scarce and only possible with rather
sophisticated systems [10].

To overcome many of the difficulties found in mixture‐based processes, numerical simula‐
tion appears as an important tool for design and process improvement, as it can predict
important information about the flow and scalar fields, which is hard to measure. When
numerical simulations of industrial process are carried out, key requirements are the compu‐
tational efficiency, algorithm robustness, and accurate representation of the process.

Models that correctly represent the mixing processes in turbulent flows are important for the
design of various engineering and environmental applications where turbulence plays an
important role. While the current understanding of turbulence allows a reasonable descrip‐
tion of the flow field, a universal description of turbulent mixing processes remains a
challenge [11, 12].

Direct numerical simulation (DNS) gives the most detailed information about the flow, as it
resolves all the scalar length‐ and timescales by setting up the spatial resolution according to
the smallest scalar/flow scale. No empirical closure or turbulence model assumptions are
required. DNS has been useful for the study of transition and turbulent flows [13]. Because
physics and chemistry are properly represented, DNS has also been used for the analysis of
complex phenomena in combustion systems [14]. The use of DNS has been increasing as a
complementary means of study of turbulent mixing process [15]. Sophisticated discretiza‐
tion schemes are used by DNS, imparting low flexibility when complex geometries are used
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[13]. The full‐scale resolution requirement makes very expensive the computational cost, and
sometimes prohibitive, even for future computational capabilities. The computational cost
rises as Re3. Approximately 99% of calculations are used to solve the dissipation scales [16].
For these reasons, DNS is not a viable choice for systems of practical importance at high
Reynolds and Schmidt numbers.

A more realistic alternative to DNS is the utilization of spatial filtering or temporal ensemble
averages, such as large eddy simulation (LES) and unsteady Reynolds averaged Navier‐Stokes
equations (U‐RANS) [17]. When LES and U‐RANS formulations are used, additional terms
appear in the transport equations. These terms need to be modeled. The information given by
DNS has been useful to validate the unclosed terms of LES and RANS approaches [18].

RANS is based on the application of the Reynolds decomposition to any quantity
Q(x, t)=Q(x, t )̄ + Q '(x, t), where Q(x, t )̄ is the mean of Q, and Q '(x, t) is the deviation from the
mean. The temporal average must be done for time intervals greater than any flow time‐
scales. Averaged equations contain additional unknown terms: Reynolds stresses, scalar
fluxes, and averaged source terms. These terms are unclosed, and turbulence models must be
provided in order to close the mathematical system. In RANS, the largest scales are solved,
and the turbulent spectrum information is provided by turbulence models. By using RANS, a
good balance between results and computational cost is obtained. RANS is useful in engi‐
neering, especially for industrial and environmental sectors [19]. It is possible to perform
parametric studies, considering its low computational cost. The main limitation of RANS
models is that they only give limited information about turbulence, because all turbulent scales
are modeled. Although RANS has achieved reasonable good precision for simple flows, in the
reproduction of large‐scale organized and nonstationary turbulence structures, when strong
streamline curvature or nongradient transport is present, RANS has achieved limited
success [20]. Some inaccuracies arise from the turbulent viscosity hypothesis, the equation for
ε and the nonuniversality of the model's constants which have to be tuned in order to improve
the simulation results [16]. Although RANS provides a reasonable computational cost‐
precision ratio, it does not always predict the concentration fluctuation distributions [21] in
turbulent reacting liquid flows; in the case of stirred tank reactors (STR), the turbulent kinetic
energy is unpredicted in the impeller region and discharge stream [22–25].

On the other hand, LES can be viewed as an intermediate approach between DNS and RANS,
because in the former all turbulent structures are calculated, while in the latter they are
modeled. The idea of LES is to solve the large, nonuniversal, anisotropic turbulent scales and
to model the small turbulent scales, which contain less kinetic energy and are nearly univer‐
sal and isotropic. These small scales are easier to model than the whole turbulent spectrum.
The LES approach was proposed by Leonard [26]. A higher fidelity on the representation of
the flow structure than RANS is expected, since the geometry‐dependent, large turbulent
scales are calculated.

The cut‐off length must be proportional to the longitudinal integral length‐scale [16], LEI.
Typically, 92% of the kinetic energy is resolved for a one‐dimensional flow and 80% for a three‐
dimensional flow [16]. The proportionality constant depends on the filter specification. The
uncertainty about residual motions is lowered by reducing the filter width; therefore,
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constitutive LES equations are grid‐dependent, that is, LES is an incomplete model. Referenc‐
es [27–29] review the LES literature.

Compared to DNS, LES saves the computational cost of solving the lower turbulent scales (99%
of DNS calculations), and can be used for the simulation of systems of practical importance.
However, it is more expensive than a k‐ε model for a given grid resolution.

In shear flows, LES prediction capabilities are diminished by the fact that in the viscous region,
the energy‐containing structures are of the same order of magnitude as the viscous length‐
scales (δv =v ρ / τw), and LES cannot solve them. To face this issue, it is possible to refine the
computational mesh in near‐wall zones in order to consider the small coherent structures
developed on those zones, but this refinement implies more computational effort. There are
three additional possibilities: incorporating the fluid behavior in the wall region by wall
models, simulating those zones with RANS (hybrid RANS‐LES), or incorporating wall‐
adapted SGS closures.

Most research efforts in LES for reactive flows are concentrated on the SGS fluxes and Favre‐
filtered source terms [30]. In diffusion flames, chemical reactions take place after mixing of
reactive species is achieved at the smallest scales of turbulence (unresolved in LES); so, in LES
the combustion process must be modeled.

According to Ref. [31], the uncertainty initially contained in the nonresolved scales is propa‐
gated to the resolved ones; hence, it is said that SGS modeling is not a well‐posed problem.
LES results can be interpreted as a different realization of the flow. They could have the same
statistical properties of the flow and may predict the same spatially organized structures but
at a different location.

LES has been successfully applied to turbulent flows, in particular to complex geometries in
liquid phase such as stirred tank reactors (see Refs. [10, 24, 32–34]). Because LES equations are
unclosed, SGS models must be supplied in order to specify the SGS stresses, SGS scalar fluxes,
and filtered reaction terms.

There are still unanswered questions about the behavior of high Schmidt turbulent flows. LES
could be an alternative method for studying these flows, as long as the flow's physical behavior
can be captured by the subgrid‐scale models [15]. The LES equations are presented in the
following section.

2. Large eddy simulation (LES)

Spatial scale separation is done by applying a low‐pass filter to the governing balance
equations. This set of filtered equations governs the dynamics of the large scales. Spatial
fluctuations, lower than a defined filter cut‐off length ‐Δ‐, are smoothed or removed. The
spatial filtering operation of a flow variable Q, being a function of time and space, is defined
by the convolution integral:
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(1)

where Q = Q L + Q”. Favre filtering has been applied to Eqs. (1) and (2). G is the filter kernel
defined over the entire domain. The filter kernel depends on the filter width, Δ, and must
satisfy a set of conditions (see Ref. [16]). Favre‐filtered mass, momentum, and scalars’ balance
equations are as follows:

(2)

(3)

(4)

where the symbol ∂ denotes the partial differential operator, and the summation convention
is used for repeated indices. Time (t) and spatial coordinates (xj) are the independent varia‐
bles; ρ is the fluid mass density; ϕα is the mass‐weighted value of the scalar field (e.g., internal
energy, mass fraction); uj is the mass‐averaged velocity in the j‐direction; p denotes pressure;
τij is the shear stress tensor; and J  is the diffusive flux of the scalar.

New terms appear in LES equations, as it occurs in RANS. These terms account for resolved
and subgrid scales’ interactions. The SGS stresses (τij

SGS) and SGS scalar fluxes ( jα, j
SGS ) are

defined by

(5)

In addition, a model is needed for filtered source terms. Subgrid‐scale (SGS) models must be
supplied in order to specify the SGS stresses, SGS scalar fluxes, and filtered reaction terms.

The main task of SGS stress tensor model is to dissipate the energy transferred from turbu‐
lent large scales. The dynamics of the subgrid scales affect that of the resolved flow field
through the subgrid‐scale stress tensor.

There are several SGS stress tensor models (for review, see Refs. [17, 35]). The simplest models
are based on the gradient assumption. More complex models are of first and second order. As
the model complexity increases, so does the required number of equations. Those models
based on eddy viscosity show good balance between accuracy and numerical computation
and present good prediction abilities in turbulent combustion and other highly interacting
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processes. It is also possible to close the LES approximation by PDF methods, such as the
velocity‐filtered density function (VFDF) [36] and the velocity‐scalar filtered mass density
function (VSFMDF) [37], but this approach increases considerably the number of equations to
be solved. This procedure increases the computational cost 15–30 times longer than the
Smagorinsky [38] and dynamic Smagorinsky [39, 40] models, respectively.

2.1. The Smagorinsky model

The Smagorinsky model [38] is one of the pioneer SGS models in the development of LES. Its
simple formulation and good performance have made it very popular, and it is used in this
work. The Smagorinsky model is an eddy‐viscosity based model, which assumes equilibri‐
um between the turbulent kinetic energy dissipation and production rates to obtain a relation
between the characteristic velocity and the resolved strain rate. A Boussinesq approximation
is applied to the deviatoric part of the SGS stress.

(6)

where νT  is the subgrid eddy viscosity of residual motions and δ is the Dirac delta function.
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The subgrid eddy viscosity is modeled in a similar way as the mixing length:
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where Cs is the Smagorinsky coefficient. This Model parameter is not universal and depends
on the flow configurations. While for isotropic turbulence, the Smagorinsky coefficient is
about 0.17 [41], for other configurations this value may not be correct; for a channel flow, the
Smagorinsky coefficient is about 0.1 [42]. In addition, the spatial variation of this coefficient
makes it difficult to find a proper value. This model parameter can be dynamically calculat‐
ed by using the dynamic procedure [39, 40], in which, by assuming scale invariance, a test filter
greater than the filter width, Δ, can be used for calculating Cs from the resolved flow field.

2.2. The dynamic Smagorinsky model

The major drawback of the Smagorinsky model is that a single universal constant cannot
correctly represent different turbulent flows. Germano et al. [39] proposed a dynamic
procedure for computing the Smagorinsky model coefficient, based on the instantaneous
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information given by the filtered velocity field. The coefficient is locally recalculated during
the simulations; so, it is no longer necessary to specify its value as an input parameter.

The dynamic procedure is based on the idea that the information given by the smallest resolved
scales can be used to model the largest unresolved scales, as they have a similar behavior. The
latter can be done by employing a test filter, with the test filter width larger than the filter
width (Δ), usually taken as Δ̂ =2Δ.

A model for the SGS stress is

(9)

where Cdyn is a Model parameter, and the term should be modeled. If the test filter is applied
to the filtered momentum equation, the filter stress has the form:

(10)

As it was the case for the SGS stress, a model for the filter stress is

(11)

The coefficient has been assumed to be independent of the filtering process. By applying the
test filter on the unresolved SGS scalar flux (τij

SGS) and subtracting it from the test filter stress
(Tij), the resolved part of the SGS stress tensor is obtained. This is the Germano identity [40]:

(12)

The Germano identity can be partially satisfied by replacing model equations for the SGS and
filter stresses [Eqs. (9) and (11), respectively] into Eq. (12), giving an approximation for the
model coefficient (Cdyn):

(13)

Equation (13) is overspecified, because there are five independent equations and one un‐
known value. There are different ways to calculate the coefficient. By applying a least‐squares
methodology, Lilly [40] minimized the error incurred in the calculation of the coefficient. The
error is

Transport and Mixing in Liquid Phase Using Large Eddy Simulation: A Review
http://dx.doi.org/10.5772/63993

405



(14)

The minimum corresponds to

(15)

leading to

(16)

The calculation of the parameter generates spatial and temporal fluctuations, as well as
negative values [43]. Regions with a negative coefficient may be interpreted as regions where
backscatter takes place. According to Carati et al. [44], the dynamic Smagorinsky model does
not have information about the amount of energy that is available in the subgrid scales.

3. Subgrid‐scale scalar flux models

In the context of mixing of scalars, the interaction between resolved and nonresolved scalar
structures is accounted for by the unknown SGS scalar flux term, which must be provided via
SGS scalar flux models. In the context of mixing, the aim of LES closures is to express the SGS
scalar flux in terms of the known filtered values in order to close the numerical set or partial
differential equations. Accounting for the nature of turbulent mixing, where various regimes
are present in the scalar spectrum, modeling of the SGS scalar flux models is a complex task
that is far from trivial [45].

Macromixing, mesomixing, and micromixing happen simultaneously as the mixing process is
taking place. The spatial and temporal transport of large‐scale structures describes the
macromixing, and they can be solved in LES. Mesomixing is driven by turbulent fluctua‐
tions in the energy‐containing range, and viscous convective deformations of fluid elements
and molecular diffusion are responsible mechanisms for micromixing. Because the inertial
range of the velocity spectrum is modeled in LES, mesomixing can be expressed by gradient
correlations. On the other hand, characterization of micromixing can be based on the second
statistical moment (variance) of the local concentration distribution [46–48]. A physical
meaning of the concentration variance is that it provides a measure of the scalar distribution
from small‐scale homogeneity. The variance production, then, is dependent on the scalar flux.

There are many published works proposing SGS scalar flux models; most of them were
developed for gas flow. For review of SGS scalar flux models in gas flows, see Refs. [27, 49].
Even though gas‐based SGS scalar flux models have some limitations on the prediction of
mixing where high Schmidt number effects are important [48], physically based models for
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the SGS scalar flux have been rarely proposed. One exception is the study of Jaberi and
Colucci [50].

According to experimental data and DNS results, the assumption of isotropy at inertial and
dissipation scales of the scalar field is no longer valid for structured functions and derivative
skewness, when a mean scalar gradient is taking place [4, 8, 35]. Different models have been
proposed in order to take into account the anisotropic behavior of micromixing, mainly
focused on gas‐phase (see Refs. [50–52]), but their application for fluids with high Sc num‐
bers is scarce.

Few models have been developed or used for high Schmidt flows. The eddy diffusivity
model [53] with constant and dynamically calculated turbulent Schmidt number [39, 54] has
been widely used on the simulation of mixing at high Schmidt numbers [40, 55].

Other models used in the simulation of high Schmidt flows have been adapted from SGS stress
tensors or extended from their RANS counterpart. These models include the following:

1. The dynamic mixed model, originally developed by Zang et al. [55] to represent the SGS
stress tensor extended to the LES of scalar field by Na [56] in a turbulent channel (Sc/Pr
=1, 3, 10); The model was also used by Tkatchenko et al. [57] in the near‐field of a coaxial
jet mixer (Sc = 1000).

2. The dynamic structure model proposed by Chumakov et al. [58] and a priori tested using
DNS data of a nonreacting mixing layer and decaying isotropic turbulence.

3. The multifractal SGS stress tensor model introduced by [59, 60] and extended to model
the SGS scalar flux in a low Schmidt flow [61, 62] in a homogeneous isotropic turbu‐
lence at Sc = 100 [15] and a jet mixer [63].

4. The implicit method (non‐SGS model), in which discretization methods are developed,
so that the truncation error itself acts as an implicit SGS model. This approach was applied
to a stirred tank reactor by Revstedt et al. [32] and isotropic turbulence and channel
flow (Sc = 1, 3, 10, and 25) by Hickel et al. [45].

On the other hand, the anisotropy model [48] was proposed for the simulation of mixing of
passive and active scalars. Simulation results of mixing at low and high Schmidt regime have
shown its superior performance among other SGS scalar flux models. The anisotropy and the
eddy diffusivity models are presented in the following subsections.

3.1. The eddy diffusivity model

In analogy to the Smagorinsky model, most of the SGS scalar flux models are based on the
eddy diffusivity assumption. The eddy diffusivity model [53] can be viewed as a counter‐
part of the Smagorinsky model for the scalar field. The eddy diffusivity model relates the SGS
flux to the local filtered scalar strain rate, and the transport is assumed to be aligned to the
filtered scalar gradient [15]. The proportionality constant is called the turbulent Schmidt
number, which appears as an adjustable parameter. However, the turbulent Schmidt num‐
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ber can be dynamically calculated by using the methodology proposed by Germano et al. [39]
and further refined by Moin et al. [54].

(17)

where ScT is the turbulent Schmidt number, which is given by the ratio of SGS viscosity to the
SGS diffusivity (ScT =vT / DT ).

The eddy diffusivity model has been often used due to its simplicity, and it shows good results
for gas flows. The model has been widely used in simple and complex geometries, some
involving reactive scalars.

The turbulent Schmidt number appears as an adjustable parameter that can be tuned in order
to minimize the error with reference data. According to Durbin and Patterson [63], the value
is dependent on the type of flow, and is in the range 0.1–1 [27]. Various authors (see Table 1)
have proposed different values for the nondimensional parameter ScT in high Schmidt flows.

Configuration ScT Reference

Stirred tank
reactors

0.8 [23]

0.7 [24]
[113], [114]

Channel 0.25 [110]

Inclined channel 0.7 [109]

Confined
impinging jets

0.4 [108]

Coaxial jet 0.7 [107]

Jet in channel 1.0 [48]

Mixing layer 1.0 [48]

Co‐flowing jet 0.7 [99]

Table 1. Turbulent Schmidt number used in LES of high Schmidt flows.

In turbulent shear flows, different orientations of the mean scalar gradient yield different
values for the turbulent Schmidt number [49]. A constant value of ScT is, therefore, not
adequate. The turbulent Schmidt number can be thought of as a parameter that characteriz‐
es the dissipative/diffusive cut‐off scales of the velocity and scalar fields. The behavior of the
scalar mixing spectrum, presented in Section 2.2, indicates that a universal distribution of an
effective turbulent Schmidt number cannot exist [27].
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3.2. The eddy diffusivity model with dynamic procedure

Similar to the dynamic Smagorinsky model, in the dynamic model, the ScT in Eq. (17) can be
dynamically calculated by using the methodology proposed by Germano et al. [39], which was
further extended to scalar transport and compressible flow by Moin et al. [54]. By applying a
test filter over the filtered velocity and scalar fields, the turbulent Schmidt number can be
computed as follows [64].

The filter scalar flux is

(18)

where

(19)

Configuration Sc
(Pr)

Reference

Channel 0.1–200 [105], [106]

1–100 [104]

0.1–100 [103], [104]

Mixing layer 600 [10]

600 [34]

3300 [48]

Coaxial jet 1000 [57]

Jet in channel 3300 [48]

Grid‐generated turbulent flow 600 [102]

Co‐flowing jet 2000 [98], [99]; [102]

Table 2. Previous works of turbulent mixing of Sc >> 1 using the dynamic procedure.

On implementation of the dynamic procedure, negative values are clipped to zero, and a
relaxation process is imposed to instantaneous values.

The dynamic procedure is one of the most popular SGS scalar flux models in LES of high
Schmidt flows. Table 2 summarizes the geometry and Schmidt numbers of previous works,
using the dynamic eddy diffusivity model.
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Theoretical considerations suggest that the dynamic procedure should be adequate for LES,
where the scalar fluctuations are resolved but the velocity fluctuations are not, so that SGS
kinetic energy transfer takes place [27]. This is the case of low Schmidt flows.

Since the eddy diffusivity model assumes the alignment of the scalar flux with the scalar
gradient, this approach does not predict realistic values of the scalar flux components [45, 48].
In addition, errors are introduced, as the model does not account for the different dynamics
of the velocity and scalar fields.

3.3. The dynamic anisotropy model

Another recent SGS scalar flux model is the anisotropy model [48]. Contrary to the eddy
diffusivity and dynamic models, the anisotropic model [48] accounts for the nonlinear
contributions of the SGS to the turbulent scalar flux. If it is assumed that the turbulent flow
field (mean velocities and turbulence characteristics) is available from LES using the dynam‐
ic‐based Smargorinsky SGS model [39], the anisotropy model is the simplest explicit aniso‐
tropic‐resolving algebraic form, and consists of a cubic formulation in terms of the scalar
gradients. This model is thermodynamically consistent as it agrees with the irreversibility
requirement of the second law of thermodynamics [47, 65]. It combines the linear eddy
diffusivity model with an additional term coupling the (deviatoric) SGS stress tensor and the
gradient of the filtered scalar field. Pantangi et al. [65] present a detailed analysis:

(21)

where Ddev is the anisotropy model coefficient. Both DT and Ddev depend on the invariants of

τij
SGS  and ∂ ϕ L

∂ xj
. The tensor diffusivity is defined by

(22)

The anisotropy model may lead to other models proposed in the literature, according to the
modeling level used for the deviatoric part of the SGS stress tensor. Note that the additional
term is a measure of how local mixing, dependent on the molecular Schmidt number through
the SGS timescale, is influenced by the nonresolved flow structures (see Eq. (9) in Ref. [65]).

If the turbulent flow field (mean velocities and turbulence characteristics) is available from the
LES solver using the dynamic‐based Smargorinsky SGS model, the anisotropy model is the
simplest explicit algebraic model that solved accounts for the anisotropy found in turbulent
flows. In the context defined by the Smagorinsky model, the anisotropy model can be
developed by expressing the SGS timescale using the filter size and the subgrid viscosity. The
anisotropy model reads:
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(23)

The anisotropy coefficient, Dan, can be either specified or calculated by the dynamic proce‐
dure as well as the ScT. A preliminary evaluation of this procedure was reported in Ref. [47]
for chemical liquid flows and for gases in Ref. [46]. In order to compute the anisotropy
coefficient, the turbulent Schmidt number must be calculated using Eqs. (21)–(23). Then, the
calculation of the anisotropy model coefficient is done as follows:

(24)

4. The filtered density function (FDF) approach

A second approach in the LES mixing context is to solve the joint probability function of the
SGS scalars [66], named filtered density function (FDF), in conjunction with the filtered
momentum equations from LES. In this approach a filtered density function (FDF) is used to
quantify the probability to find a filtered variable of the flow (Y) in the range (Y*–ΔY/2, Y*
+ΔY/2). The fundamental property of the FDF method is to account, in a probabilistic way, for
the effects of SGS fluctuations. The advantage of the FDF approach over other methods is that
the chemical source term appears in a closed form, so that the turbulent/chemistry interac‐
tion can be correctly included. The counterpart of the FDF equation in the RANS context is
named probability density function (PDF) equation. The main difference between PDF and
FDF is that temporal fluctuations over different flow realizations are characterized by the use
of PDF, while the instantaneous subgrid‐scale fluctuations are characterized by the use of
FDF [67]. The PDF is the expected value of the FDF in the limit of vanishing filter width [68].

The statistical information of the reactive scalar fields can be obtained explicitly from a
transport equation. Pope [66] introduced the mathematical definition of the FDF transport
equation. Pope [66] highlighted one of the major advantages of the FDF approach: the chemical
reaction term in the FDF transport equation is closed; so, the modeling of this term is no longer
required. Drozda et al. [69] present an overview of the state of progress in FDF.

The mass‐filtered mass density function (FDF) is defined as

(25)

where Ψ is the sample space variable for each composition and f ' is the fine‐grained joint FDF
of compositions [16], defined as
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(26)

Based on the properties of Dirac delta functions and, after some manipulation, the FDF
equation is [70]

(27)

The introduction of the scalar balance equation into Eq. (19) gives

(28)

The zeroth, first, and second order moments of FDF are

(29)

.

Conditionally filtered terms of equations are unclosed. The conditional advection term can be
modeled by the conventional gradient diffusion [70]:

(30)

where DT is the SGS diffusion coefficient. The conditional diffusion term in Eq. (30) accounts
for transport in the physical space and mixing in the composition space. It has to be mod‐
eled by mixing models. The interaction by exchange with the mean model (IEM) or linear mean
square estimation (LMSE) [71, 72] is described by Eq. (32) [70]:

(31)

where CΩ is the frequency of mixing within the subgrid, and it can be modeled as
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where CΩ is the frequency of mixing within the subgrid, and it can be modeled as
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(32)

where CΩ is the SGS mixing time constant. The solution of the FDF equation by convention‐
al difference schemes is intractable due to the high‐dimensionality of the equation: the
computational cost rises exponentially as the number of scalars increases [73]. To overcome
this problem, stochastic methods have been used for the solution of the equation, because the
computational cost rises linearly with the number of scalars [74].

The FDF approach also has a modeling requirement, because the conditional convective flux
and conditional diffusion terms in the FDF transport equation are unknown. By deducing an
equation for the conditional convective flux based on the velocity‐scalar filtered density
function formulation, Ref. [75] showed that a gradient transport hypothesis model performs
well under many conditions. This model is usually implemented in FDF methods.

On the other hand, the conditional diffusion term accounts for transport of the FDF in the
physical space and mixing in the composition space by the action of molecular diffusivity, and
it has to be modeled by mixing models. From a theoretical point of view, McDermott and
Pope [30] developed a set of desirable properties that an ideal FDF mixing model should fulfill.
These properties differ from the corresponding PDF mixing models (see Ref. [16]). Most of the
FDF mixing models have been adapted from their RANS counterpart.

A widely used mixing model is the interaction by exchange with the mean (IEM) model [71,
72]. The IEM model has a deterministic origin, initially formulated for PDF methods in RANS.
The IEM states that the stochastic particle only interacts with itself, and the rate of change is
proportional to the distance to the mean in the scalar space. Equivalently, the model relaxes
the solution in the composition space toward the mean value; the relaxation is done over a
subgrid‐scale mixing time. The major drawback of the IEM model is that it preserves the shape
of the PDF, avoiding the relaxation toward a Gaussian distribution [76], being an unphysical
situation. However, as pointed by [77], large‐scale mixing in inhomogeneous turbulent mixing
problems also affects the shape of the distribution, and then limitation of the preservation of
the distribution becomes less critical.

Numerical solution of the RANS/PDF equations has shown that the IEM model does not have
good predictive capabilities (see Refs. [78, 79] for comparison of the accuracy of different PDF
mixing models). On the contrary, the IEM model performs reasonably well in FDF/LES
simulations. It has been used in most LES/FDF studies (see Refs. [70, 74, 78, 80–84] and others).
There are few LES/FDF works in which other mixing models were used.

Mitarai et al. [78] and Olbricht et al. [74] implemented the modified Curl model—MCurl [85],
which is a particle interaction model based on Curl's model [86]. In the Curl model, the PDF
of the composition field is described by N stochastic particles. Mixing results from the
movement of these particles in the composition space. According to the “simple” model, the
mixing processes take place randomly between two stochastic particles, and the resulting
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composition of the new particle in the following time step is taken as the mean of the preced‐
ing particles. The Curl model produces a correct decay rate, but it relaxes the PDF to a bell‐
shaped curve instead of the Gaussian shape. This problem can be reduced by using improved
models. In the modified Curl model of [85], the particle gradually mixes with the other one at
a random mixing rate (for each pair of particles), instead of the originally instantaneous mixing
assumption.

The Euclidean minimum spanning tree model (EMST) from Ref. [87] was evaluated by Mitarai
et al. [78] and Shetty et al. [77]. The EMST is a sophisticated particle interaction model, where
local mixing in composition space occurs between the selected group of particles, in contrast
with the previous models (IEM, MCurl, etc.). Briefly, a Euclidean minimum spanning tree is
constructed on the ensemble of particles which are selected based on a defined state variable.
The Euclidean minimum spanning tree is formed by minimizing the length of the spanning
tree. Mixing occurs between pairs of particles connected by a common branch of the tree. The
EMST model has a superior performance over other PDF mixing models; however, it de‐
mands more computational time. In comparison to the IEM and MCurl, the implementation
in the numerical solvers is more complicated.

Cleary et al. [88] implemented the multiple mapping conditioning (MMC) mixing model [89].
In the MMC model, a reference space is mapped to the physical space in order to attain local
mixing in the composition space. This is done by choosing one or more reference variables
(e.g., mixture fraction, sensible enthalpy, scalar dissipation, and others). Mixing occurs
between particles that are close in both physical and reference spaces. The main difference of
the MMC model with the EMST model is that local mixing in the former model is indirectly
enforced in the composition space by assuring localness in the reference space, while it is
directly enforced in composition space in the latter model [90]. Therefore, the principle of
independence of scalars is assured in MMC. An advantage of the MMC model in FDF is that
the averaged joint scalar distribution can be well predicted by using fewer particles in the
computational domain than other models. However, the model has two unknown constants,
and the reference space has to be solved in LES.

A recent PDF mixing model is the parameterized scalar profile (PSP), developed by Meyer and
Jenny [91] and used by Shetty et al. [77] in LES/FDF. In this approach, it is assumed that one‐
dimensional effects dominate the dynamics of molecular diffusion at molecular interfaces. The
PSP model is based on a parameterization of one‐dimensional scalar profile in high Rey‐
nolds number flows. These scalar profiles are composed of scaled sinusoidal shaped sections,
which move with the fluid within a reference frame. There are three parameters used by the
scalar profiles; so, they become as additional properties of the particles. The latter makes the
model very expensive, because three additional equations must be solved.

A mixing model developed in the LES framework is the fractal IEM (FIEM) [77]. The FIEM is
a modified version of the IEM in which it is considered that the behavior of the system at the
small scales is repeated at the large scales. It is done by splitting the control volume into many
smaller control volumes, each one having the same size, allowing strong mixing in the smaller
control volumes and further weak mixing in the larger control volume. The model uses two
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additional empirical parameters that account for the relative importance of the two mixing
steps into the global mixing process. These constants are tuned by trial and error.

The performance of different mixing models was evaluated by Mitarai et al. [78]. These authors
compared the numerical results of IEM, EMST, and MCurl in RANS/PDF and LES/FDF with
DNS data of a gas diffusion flame with one‐step reaction. The predicted filtered temperature
was in an acceptable agreement with DNS results; the results from MCurl and IEM models
were similar, while a better agreement was achieved with the EMST model. The mean and
variance of the mixture fraction were accurately predicted by all mixing models. Their results
also showed that LES/FDF approach provides much better results than the RANS/PDF in
which marked differences between PDF mixing models were observed.

Shetty et al. [77] compared the predictions with IEM, EMST, PSP, and the FIEM mixing models
in LES/FDF when modeling a low Schmidt three‐stream turbulent jet. Comparisons with
experimental data were done in the near‐field of the configuration [max. downstream
location = 7.2 jet diameters]. The simulation results of the mean and RMS of the radial scalar
distribution obtained with all models followed the experimental observations. However, the
FIEM results were in better agreement with the mean experimental observations at the largest
downstream location. Results showed fast mixing of the scalar of the inner jet and slow mixing
of the scalar of the annular jet, but, conversely, this did not happen when the FIEM was used.
Large scale motions play an important role in mixing at the unstable shear layers formed
between the inner, annular, and co‐flowing streams, mainly due to entrainment processes. In
the inner part of this jet, the scalar field may behave similar to the velocity field. Because the
filtered velocity field is supposed to be the same for all tests [not showed in the chapter], little
variations are expected in the performance of different mixing models, as was the case for the
IEM, EMST, and PSP models. This suggests that the performance of the FIEM could be the
result of artificial diffusion transport in the calculations.

Another aspect in the development of FDF is the fact that in LES there may be computation‐
al zones where the velocity field is locally fully resolved (the DNS limit). The mixing model
has to take into account this aspect. McDermott and Pope [30] showed that the latter can be
accomplished by using a mean drift term in the particle composition equation, rather than a
random walk in physical space. The model developed by McDermott and Pope [30] correct‐
ly reduces to DNS in the limit of vanishing filter width and is able to deal with differential
diffusion.

On a discrete representation of the FDF at a given time, the particles in the sample space
correspond to particles in physical space, and distance between particles in the subgrid volume
is small [67]. In a LES/FDF computational domain, the numerical solution of a FDF equation
using a particle‐based method may involve 106–108 stochastic particles. Therefore, the scalar
resolution increases and may approximate to that of DNS, depending on the Schmidt number.

According to Klimenko [92], in the DNS limit, when the physical distance between particles
becomes infinitesimally small (particle‐based solutions of the FDF equation), many mixing
models behave essentially the same. Furthermore, recalling the differences between PDF and
FDF methods, the modeling requirements are different: in the RANS context, the PDF aims to
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solve mean scalar values, and fluctuations about the local mean value must be represented by
the mixing models; contrarily, spatially filtered scalar values are sought in the LES approach,
and the role of mixing models is to deal with SGS fluctuations about the local spatially filtered
scalar. For these reasons, it is expected that simple mixing models used by the FDF method
can provide a good approximation [68, 93]. In contrast, RANS has higher levels of sensitivity
on the mixing model selection; so, the closure of the conditional diffusive term is the main
difficulty in the application of PDF methods [88].

For review of the FDF method, see Haworth [93] who presents a comprehensive paper about
theoretical aspects, physical models, numerical algorithms, and applications of PDF‐FDF
methods. Drozda et al. [69] present an overview of the state of progress of LES/FDF methods
applied to the particular case of turbulent combustion.

The application of the FDF method to high Schmidt flows is scarce. Schwertfirm et al. [94–96]
used the FDF approach to study high Schmidt number flows using the DNS of the flow field
(a priori analysis). Schwertfirm et al. [94–96] showed for three different Schmidt numbers (Sc
= 3, 25), that if a correct definition of the SGS mixing frequency is done then the statistical and
instantaneous behavior of the scalar field can be well predicted by using the IEM mixing model.
One important finding is that the SGS scalar variance transport can be neglected in the SGS
mixing frequency definition.

Van Vliet et al. [97] applied the LES/FDF approach to a tubular reactor with a moderated
Reynolds number (Re = 4000) and high Schmidt number (Sc = 2000). They used IEM mixing
model. They compared the mean and variance concentration distribution in the axial direc‐
tion with a few experimental data, and without reaction (conserved scalar). From a qualita‐
tive point of view, simulation results are in agreement with experimental observations.
However, the quantitative comparison of simulation results with experimental information
shows that the simulated concentration (mean) decays faster. A similar behavior was exhibit‐
ed by the scalar variance, showing a poor agreement with experiments. The discrepancy
between experiments and simulations indicates that the mixing rate is overpredicted due to
an inaccurate estimation of the subgrid‐scale mixing time, rather than a feature of the IEM
model. The performance of the reactor was studied by the LES/FDF approach by changing the
Damköhler number over eight (8) orders of magnitude. A LES/FDF numerical study of a low‐
density polyethylene tubular reactor was done by Van Vliet et al. [81], at the vicinity of the
initiator injection point. Multiple reactive scalars were solved (concentration and tempera‐
ture), and a mechanism of six chemical reactions was used.

Experimental studies indicate that in gas flows, the subgrid mixing time constant is not
universal, having values between 0.6 and 3.1 in the RANS context [76]. Different values of the
SGS mixing time constant have been reported, mostly in the range 2–10 for gas flows. For liquid
flows, Van Vliet et al. [97] used a value of 3. Mejía et al. [98] evaluated four values (between 4
and 10) in a turbulent round jet. They found that as the subgrid mixing time constant increas‐
es, the jet decay rate as well as the mixing rate decreases. The nonuniversality of this con‐
stant can affect the predictive capability of LES.
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The works of Van Vliet et al. [81, 97] and Schwertfirm et al. [94–96] demonstrate the feasibili‐
ty of performing (advanced) numerical simulations of systems of practical interest (e.g.,
industrial reactors), with minimum assumptions and complex chemistry. The numerical
simulation is a valuable tool for designing, optimizing, and evaluating such processes. Their
simulations showed that the calculation of the SGS mixing time, a common parameter in many
mixing models, is an Achilles heel in their simulation of the high Schmidt flow, and it may be
also the case for other high Schmidt systems.

5. Comparison between different SGS scalar flux models and the FDF
method

In previous works [98, 99], we simulated a turbulent round jet (Re = 10,000) discharging diluted
rhodamine B in a co‐flowing stream of water (Sc = 2000), using large eddy simulation. The flow
configuration is detailed by Antoine et al. [100]. Three different models for the unknown
subgrid‐scale (SGS) scalar flux term were used for closing the filtered scalar balance equa‐
tion: eddy diffusivity model with both constant turbulent Schmidt number (ScT = 0.7) and
dynamically calculated turbulent Schmidt number, and the dynamic anisotropy model. In
addition, the filtered density function (FDF) method was implemented. The interaction by
exchange with the mean (IEM) mixing model was used for closing the conditional diffusion
term in the transported FDF equation. The FDF transport equation was solved using a Monte
Carlo method.

Figure 1. Radial mean concentration distribution across the jet. Experimental data (symbols) from Ref. [100]: + = 70; ● =
80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line: anisotropy;
dashed‐dotted line: FDF.
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Figure 2. Radial mean (a) and fluctuation (b) concentration distribution across the jet. Experimental data (symbols) from
Ref. [100]: + = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted
line: anisotropy; dashed‐dotted line: FDF.

Figures 1 and 2 compare the simulated radial mean and fluctuation distribution of the scalar
concentration [98, 99], normalized by the centerline value (η = r/x, where r is the radial
coordinate and x is the downstream distance from the nozzle exit), with the experimental
data [101].

Having in mind the limitations of the eddy diffusivity model, it is noted in Figure 1 that the
mean concentration distribution is predicted reasonably well. On the other hand, Figure 2
reveals that the three SGS scalar flux models fail to reproduce the concentration fluctuations
at higher values of the nondimensional radial coordinate (η). Although the LES simulation
results of the concentration distribution in radial direction are similar for the tested SGS scalar
flux models in Figures 1 and 2, the dynamic anisotropy model provides a better perform‐
ance. In LES, a mesh grid refinement would improve the simulation results. Mejía et al. [98]
also showed that if the mesh grid is further refined, the dynamic eddy diffusivity improved
its predictive capabilities.

Figure 3. Streamwise velocity‐concentration correlation across the jet. Experimental data (symbols) from Antoine et al.
[100]: + = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line:
anisotropy; dashed‐dotted line: FDF.
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its predictive capabilities.
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Figure 4. Radial velocity‐concentration correlation across the jet. Experimental data (symbols) from Antoine et al. [100]:
+ = 70; ● = 80; × = 90. Simulation results (lines) from Refs. [98, 99]: Solid line: eddy; dashed line: dynamic; dotted line:
anisotropy; dashed‐dotted line: FDF.

The simulation results of the FDF approach are in good agreement with the mean and
fluctuations concentration distribution for all regions of the jet. The radial distributions of the
axial and radial scalar fluxes are presented, respectively, in Figures 3 and 4.

Figures 3 and 4 show that the dynamic eddy diffusivity and anisotropy models reproduce the
behavior of the scalar fluxes for low and intermediate values of the radial coordinates.

The agreement of the simulations of the FDF method (Figures 3 and 4) with the experimen‐
tal data is good, and much better than that obtained with LES simulations using advanced SGS
scalar flux models, such as the anisotropy model (see, e.g., Figures 1 and 2 ). The LES/FDF can
capture strong intermittency effects that take place on the surroundings of the superviscous
layer formed between the jet and the co‐flowing streams, leading toward anisotropy of the
scalar field. Contrary to the SGS scalar flux models evaluated in [98, 99], the FDF equation does
not spread the scalar away from the superviscous layer, as seen in the predicted rms and scalar
fluxes distributions.

The computational costs of the dynamic and anisotropy models were 1.2 and 1.7 times that of
the eddy diffusivity model, respectively. When a higher level model has to be considered, it
is usual that more computational resource is required. From an engineering point of view, the
dynamic model captures the most important mixing characteristics at a rather low computa‐
tional cost. The computational time of the FDF, compared to the one required by using the
eddy diffusivity model is approximately 1.9 times higher though [101].

6. Conclusions

Large eddy simulation of transport and mixing in high Schmidt flows remains a challenge, in
particular for engineering applications. The appraisal of conventional and advanced SGS scalar
flux models as well as the FDF method has to done based on the object of study. However,
some of the merits of the approximations can be highlighted. The SGS scalar flux models have
the advantage over FDF methods in that the simplest ones (e.g., eddy diffusivity model) are
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available in many CFD solvers. This closure strategy uses the same mesh grid of the flow solver
as well as the numerical methods used for the numerical solution of the N‐S equations.
Therefore, one important consequence is that the programming of advanced SGS scalar flux
models is straightforward. Having in mind the computational cost, simple SGS scalar flux
models can reproduce important characteristics of the scalar field such as mean quantities on
a moderate grid resolution. However, if the application requires a deeper understanding of
mesomixing and micromixing (such as combustion and flow instability studies), the use of
advanced SGS scalar flux models becomes mandatory. On the other hand, the main advant‐
age of FDF method is that it allows for a detailed description and simulation of the scalar field.
The FDF transport equation can be solved using particle‐based methods, which are very simple
to implement and to couple to LES solvers. The computational domain can be simpler than
the one used by LES, since it only has to account for the spatial domain where the scalar field
evolves.
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