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Preface

This book is a research monograph to detail recent developments of nonlinear systems and
control. The book selected a collection of nonlinear systems, which range from quantum me‐
chanics, chaotic systems to nonlinear dynamical systems such as unmanned vehicle plat‐
form and 3D crane system. More interestingly, the book covers not just scientific and
engineering problems but also earth data assimilation and economic development model‐
ing, that is, from theories to applications in real-world issues. This book has a couple of ana‐
lytic tools for nonlinear control problems, such as feedback linearization, partial differential
equation, Frobenius theorem, Lyapunov theory and its exponents, Nikiforov-Uvarov meth‐
od, eigenvalue/eigenvector, pseudocomposition (predictor-corrector), or stochastic methods
including Kalman filtering. Many practical systems or natural phenomena are nonlinear, so
from a scientist or engineer’s perspective, we interpret the system and represent the system
using scientific approaches, including physics-based analysis and chemical or social analy‐
sis, where the tools are basically mathematics. Then, they interpret the system characteristics
and try to represent the system using scientific approaches to get comprehensive results of
such nonlinear or complex systems. If the scientific structure and analysis are sound, the
system or phenomenon may have unique solutions, or it would not be a surprise if no solu‐
tion exists nor any tools or solutions. During the last couple of decades, serious efforts using
estimation and many control systems with those analysis tools have helped to solve many
complex nonlinear systems. Here we would like to narrow down the contents to some non‐
linear dynamical systems and their controls.

Solving nonlinear system is a daunting challenge, while analyzing nonlinear system is not
easy because no universal solution is available, but the authors in this book have demon‐
strated what would be the system responses and behaviors in their fields, what would be
the appropriate analysis tools, or how to get reasonable results in terms of convergence (re‐
gion of attraction)—those are the kinds of concerns they want to solve first. As the system
goes more complicated or mixed, more analysis tools are needed to understand the system
due to its mutual interaction or independent action. Furthermore, variables are getting big‐
ger, sophisticated, or specialized, and sometimes, only one of analytic tools is not sufficient
to describe. Thanks to the development of hardware/software of electronics with faster com‐
puting technology, detailed analysis tools have been helping researchers or scientists to get
more data or be able to solve higher-order, multidimensional, or more complex nonlinear
control problems and real-world issues. Thus, nonlinear analysis tools, simulation, or exper‐
imental methods got to be advanced, extended to a wide and deep as well as quantitatively
digitalized measurement system that helps to acquire more useful (visualized) data due to
some phenomenal researchers. Hence, many nonlinear systems are resolved alongside the
development of tools and control methods. On the other hand, linear system analysis and a



set of tools such as linearization or partial differential equations are also used to analyze
many nonlinear systems in a piecewise linear manner.

The book consists mainly of two parts as follows: the first section includes design, analysis,
methods, and techniques of nonlinear system and the second section includes controls and
applications of nonlinear systems. The following are brief outlines of each chapter.

In the first section, “Nonlinear Systems: Design, Analysis, and Estimation Methods,” the au‐
thors in Chapter 1 present that quasilinearization technique can be simplified to partial dif‐
ferential equation (PDE) while decomposing time domain into smaller subintervals by
applying spectral allocation method and extending up to boundaries with continuity condi‐
tion. In Chapter 2, the authors suggest an algorithm to find the change of coordinates and
feedback for partial feedback linearization that are useful tools to convert nonlinear control
system into partial linearization with feedback if the system has full rank and is involutive
by Frobenius theorem. The authors in Chapter 3 investigate quantum characteristics of sin‐
gular potential of a particle using Nikiforov-Uvarov method and solved analytically the full
wave functions with the evaluation of eigenfunctions with eigenvalues. Chapters 4 to 7 deal
with estimation methods using Kalman filtering based on stochastic approach while solving
nonlinear systems using iterative approach. The authors in Chapter 4 provide discrete-time
nonlinear stochastic control problem solving iteratively using model-based optimal control
by adding adjustable parameters to a continuous stirred-tank reactor model. In Chapter 5,
the authors compare classical methods with multipoint iterative approaches such as compo‐
sition of known methods, weight function procedure, and pseudocomposition to solve non‐
linear systems. A couple of different iterative Kalman filtering algorithms with simulation
examples is provided with two comparative studies in terms of state accuracies, estimation
errors, and convergence where ISRCDKF provides the most improved state accuracies than
the other techniques. A very thoughtful review of ensemble-based estimation methods is
present in Chapter 7 where the authors provided many analyses, derivations, and discus‐
sions of Kalman filtering and particle filtering approaches. More importantly, the authors
put more weights on those solutions to high dimensional systems in earth sciences where
the novelty of this chapter lies in.

In the second section, “Control and Applications of Nonlinear Dynamical Systems,” we
have selected a couple of control approaches such as optimal, nonlinear, and output feed‐
back. These methods with analytic tools are applied to nonlinear dynamical systems to solve
practical nonlinear control problems. In Chapter 8, the authors deal with optimal control
problem with retarded control of singular situation in which they first optimize the condi‐
tions and obtain necessary conditions, design optimal solution, and then apply the control‐
ler to Legendre equation to demonstrate the results. The authors in Chapter 9 present
simultaneous H-ꝏ control for nonlinear system under strict-feedback form, which is more
challenging, but they used backstepping approach based on systematically control storage
functions (CSF). Chapter 10 provides a control approach over three-dimensional overhead
crane system using two separated subsystems, actuated and unactuated, in which the actu‐
ated subsystem is used to linearize nonlinear feedback states, whereas the unactuated sub‐
system is combined with the linear system. In Chapter 11, the authors develop dynamic
model of twin-rotor helicopter, manufactured by Feedback Instruments Inc., which is a non‐
linear cascaded, coupled structure. They also developed its control algorithm, which carries
out two electrical and mechanical parts and provided numerical results. In Chapter 12, the
authors design a nonlinear controller to target antisynchronization/synchronization states
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based on Birkhoff-Shaw nonautonomous chaotic coupled systems, and the stability of the
systems is ensured by Lyapunov exponent theorem. With electronic circuit that models the
coupling scheme, the authors are to verify the feasibility of their proposed design. Numeri‐
cal methods based on linear matrix inequalities (LMI) provide solutions to stabilization of
nonlinear control problems in Chapter 13. With the design of output feedback laws based on
the sum-of-squares (SoS) decomposition with state-dependent LMI, nonlinear polynomial
systems can be stabilized via generalization as well as provide suitable analysis for stability
through Lyapunov analysis. In the final chapter of this book, the authors try to analyze a
practical nonlinear modeling problem. The authors examine thoroughly whether the stock
return could be a leading indicator of economic growth in the depression period. In order to
analyze nonlinear phenomena between economic development and stock return, a nonlin‐
ear dynamic data model is constructed with new current depth of recession indicator, espe‐
cially fluctuations of stock returns, which are highly correlated with economic activities.
They propose that the stock return can considerably explain the economic growth in the re‐
cession period according to the country’s development level and business cycle stages.

Hence, this book is the culmination of their research and efforts. I hope it will be a good
reference for the researchers and that it could provide good insights to obtain the solution
for practical problems. Also it is an honor to edit these phenomenal papers. Special thanks
go to InTechOpen for the opportunity and Edi Lipović, the Publishing Process Manager.

Dongbin Lee, Ph.D.
Assistant Professor/Director of Oregon Tech Robotics Lab,

Adviser to Oregon Tech Unmanned Systems Club
MMET Dept, Oregon Institute of Technology (Oregon Tech),

Klamath Falls, Oregon, United States of America
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Solving Nonlinear Parabolic Partial Differential

Equations Using Multidomain Bivariate Spectral

Collocation Method

Motsa Sandile Sydney, Samuel Felix Mutua and

Shateyi Stanford

Additional information is available at the end of the chapter
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Provisional chapter

Solving Nonlinear Parabolic Partial Differential

Equations Using Multidomain Bivariate Spectral

Collocation Method

Motsa Sandile Sydney, Samuel Felix Mutua and

Shateyi Stanford

Additional information is available at the end of the chapter

Abstract

In this study we introduce the multidomain bivariate spectral collocation method for
solving nonlinear parabolic partial differential equations (PDEs) that are defined over
large time intervals. The main idea is to reduce the size of the computational domain
at each subinterval to ensure that very accurate results are obtained within shorter
computational time when the spectral collocation method is applied. The proposed
method is based on applying the quasi-linearization technique to simplify the nonlinear
partial differential equation (PDE) first. The time domain is decomposed into smaller
nonoverlapping subintervals. Discretization is then performed on both time and space
variables using spectral collocation. The approximate solution of the PDE is obtained
by solving the resulting linear matrix system at each subinterval independently. When
the solution in the first subinterval has been computed, the continuity condition is used
to  obtain  the  initial  guess  in  subsequent  subintervals.  The  solutions  at  different
subintervals are matched together along a common boundary. The examples chosen for
numerical experimentation include the Burger’s-Fisher equation, the Fitzhugh-Nagumo
equation and the  Burger’s-Huxley  equation.  To demonstrate  the  accuracy and the
effectiveness of the proposed method, the computational time and the error analysis of
the chosen illustrative examples are presented in the tables.

Keywords: bivariate interpolation, spectral collocation, quasi-linearisation, multi-do-
main approach, non-linear evolution PDEs

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

Most practical problems which model systems in nature lead to nonlinear partial differential
equations (PDEs). This is evident in the fields of chemistry, physics, biology, mathematics and
engineering. Many assumptions have been made to make some nonlinear PDEs solvable. It
has been reported that a vast number of nonlinear PDEs that are encountered in these fields
are difficult to solve analytically [1]. The investigation of solutions of such nonlinear PDEs has
then been of key interest to many researchers due to their potential applications and more
effort has been devoted to search for better and more efficient solution methods for these
nonlinear models [2, 3].

The nonlinear PDEs that are solved in this study include the generalized Burger’s-Fisher
equation, the generalized Burger’s-Huxley equation and the Fitzhugh-Nagumo equation. The
generalized Burger’s-Fisher equation appears in many applications such as shock wave
formation, fluid mechanics, turbulence, traffic flows, gas dynamics, heat conduction and sound
waves via viscous medium among other fields of applied science [4–6]. The generalized
Burger’s-Huxley equation models the interaction between reaction mechanisms, diffusion
transports and convection effects [7–11]. The Fitzhugh-Nagumo equation arises in genetics,
biology, and heat and mass transfer [12, 13].

A number of methods have been applied to solve the nonlinear PDEs such as spectral collo-
cation method [7, 8], Adomian decomposition method [9], homotopy perturbation method [14]
and the variational iteration method [4]. The spectral methods have been reported to be
strikingly successful if the problem has a smooth solution and falls into various categories,
namely Galerkin, Tau and collocation-based methods [15], and therefore, recent advances in
the development of numerical methods for solving nonlinear PDEs has focused spectral-based
approaches as they require a few grid points to give very accurate results and take less
computation time. The spectral collocation-based methods are used often, chiefly because they
offer the simplest treatment of boundary conditions. A newly developed spectral collocation
method for solving nonlinear PDEs is the bivariate spectral quasi-linearization method (QLM)
[16]. This method approximates the solution of the PDE using a bivariate Lagrange interpola-
tion polynomial [17]. It applies quasi-linearization method of Bellman and Kalaba [18] to
simplify the nonlinear PDE which is then discretized using spectral collocation on both time
and space variables. The method has successfully been used to solve problems defined over
shorter time intervals [16]. However, it has been observed that when this method is applied to
solve problems defined over large-time intervals, there is no guarantee that the resulting
approximate solution will be accurate [16].

In this study, we describe the multidomain bivariate spectral collocation method (MDBSCM)
to solutions of nonlinear parabolic PDEs defined over large-time intervals. The MDBSCM is
based on decomposing the given domain of approximation in the time variable into smaller
subintervals and then solving the PDE independently in each subinterval using the bivariate
spectral collocation method. The multidomain approach has been applied to solve nonlinear
ordinary differential equations that model chaotic systems described as 1st order systems of
equations [19–21]. In this study the same idea is extended to solutions of nonlinear parabolic
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PDEs. In the description of the method, the algorithm is kept as simple as possible, while
retaining the heart of generality to cover many applications. The extent of the discussion of
multidomain approach in this study is limited to nonoverlapping subintervals only.

2. Method of solution

In this section, we describe the algorithm to describe how the multidomain bivariate spectral
collocation method can be applied to solve nonlinear parabolic PDEs. We shall consider a
general second-order nonlinear PDE,

2

2= , , , ( , ), [0, ],u u uF u x a b t T
t x x

æ ö¶ ¶ ¶
Î Îç ÷¶ ¶ ¶è ø

(1)

subject to boundary conditions

( , ) = ( ), ( , ) = ( ),a bu a t g t u b t g t (2)

and initial condition

( ,0) = ( ),u x f x (3)

where u(x, t) is the required solution, f(x), ga(t) and gb(t) are known functions and F is a nonlinear
operator operating on u and its first and second spatial derivatives.

2.1. The quasi-linearization method

The quasi-linearization method (QLM) of Bellman and Kalaba [18] is a technique that is used
to simplify nonlinear ordinary and partial differential equations. The technique has been
adopted and generalized in further studies presented in [22, 23]. The QLM is based on the
Newton-Raphson method and is constructed from the linear terms of Taylor series expansion
about an initial approximation to solution. The QLM assumes that the difference between
solutions at two successive iterations denoted by us and us + 1 is very small. Applying the QLM
on Eq. (1) yields

( )( ) ( )

( )

( , , ) ( , , ) , , ( , , )

( , , ) ,

¶ ¶¢ ¢¢ ¢ ¢¢ ¢ ¢¢ ¢ ¢¢ ¢ ¢» + - + -
¢¶ ¶

¶ ¢ ¢¢ ¢¢ ¢¢+ -
¢¢¶

s s s s s s s s s s s

s s s s

F FF u u u F u u u u u u u u u u u u u
u u

F u u u u u
u

(4)
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where prime denotes differentiation with respect to x and s denotes the iteration level. Eq. (4)
can be written in compact form as

( )
2

( ) ( )
( )

=0
( , , ) ( , , ) ( , , ) ,g g

g
g

¶¢ ¢¢ ¢ ¢¢ ¢ ¢¢» + -
¶ås s s s s s s

FF u u u F u u u u u u u u
u (5)

where u(0) = u. Using the expanded form of Eq. (5) in Eq. (1), we obtain the QLM scheme for
approximating the solution us + 1(x, t) at the (s + 1)th iteration level as

2, 1 1, 1 0, 1 1( , ) ( , ) ( , ) = ( , ),a a a+ + + +¢¢ ¢+ + - &s s s s s s s sx t u x t u x t u u R x t (6)

where

, ( )

2
( )

,
=0

( , ) = ( , , ), = 0,1,2,

( , ) = ( , ) ( , , ).

g

g
g

a g

a

¶ ¢ ¢¢
¶

¢ ¢¢-å

s s s s
s

s s s s s s

Fx t u u u
u

R x t x t u F u u u

g

g

(7)

The dot here denotes differentiation with respect to the time t. Starting with an initial approx-
imation u0, the QLM scheme is solved iteratively until a solution with desired accuracy
requirements is obtained. The multidomain approach is implemented on the linearized
scheme (6) as illustrated below. For the purpose of this study, we shall apply the multidomain
approach on the time (t) variable only.

Let t ∈ Γ where Γ ∈ [0, T]. The domain Γ is decomposed into p nonoverlapping intervals as

1 1 0= [ , ], < , = 0, = , = 1,2, , .- -G Kk k k k k pt t t t t t T k p (8)

The domain t ∈ [tk − 1, tk] in each of the kth subdomain is first transformed to τ ∈ [−1, 1] using
the linear transformation

( ) ( )1 1
1 1= ,
2 2

t- -- + +k k k kt t t t t (9)

before the spectral collocation is applied. Similarly, the spatial domain x ∈ [a, b] is trans-
formed to η ∈ [−1, 1] using the linear transformation

( ) ( )1 1= .
2 2

h- + +x b a b a (10)
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The collocation nodes are the symmetrically distributed Gauss-Lobatto grid points defined on
the interval [−1, 1] by,

{ } { } =0=0
= cos , = cos .p pt hæ ö æ ö

ç ÷ ç ÷
è ø è ø

M N
j i ij

j i
M N

(11)

To distinguish between the solutions at different subdomains we shall use, u(k), k = 1, 2, …, p,
to denote solution at the kth subinterval. The PDE is solved independently in each subinterval.
In the first subinterval we must solve,

2 (1) (1) (1)
(1) ( )1 1 1

2, 1, 0, 1 12( , ) ( , ) ( , ) = ( , ), [ , ], [0, ],a a a+ + +
+

¶ ¶ ¶
+ + - Î Î

¶ ¶ ¶
ks s s

s s s s s
u u ux t x t x t u R x t x a b t t
x x t

(12)

subject to boundary and initial conditions

(1) (1) (1)( , ) = ( ), ( , ) = ( ), ( ,0) = ( ).a bu a t g t u b t g t u x f x (13)

After the solution in the first interval Γ1 has been computed, the solutions at the subsequent
kth subinterval are computed by using the solution at the right hand boundary of the (k − 1)th
interval as an initial solution. Thus in the next subintervals, k = 2, 3, …, p, we must solve

2 ( ) ( ) ( )
( ) ( )1 1 1

2, 1, 0, 12

1

( , ) ( , ) ( , ) = ( , ),

[ , ], [ , ],

a a a+ + +
+

-

¶ ¶ ¶
+ + -

¶ ¶ ¶
Î Î

k k k
k ks s s

s s s s s

k k

u u ux t x t x t u R x t
x x t

x a b t t t
(14)

subject to boundary and initial conditions

( ) ( ) ( ) ( 1)
1 1( , ) = ( ), ( , ) = ( ), ( , ) = ( , ).-
- -

k k k k
a b k ku a t g t u b t g t u x t u x t (15)

In the solution process, the approximate solution that is searched for takes a form of a bivariate
Lagrange interpolation polynomial. The solution at each subinterval is approximated as

( ) ( ) ( )

=0 =0
( , ) ( , ) = ( , ) ( ) ( ).h t h t h t» åå

N M
k k k

p q p q
p q

u x t U U L L (16)

The first and second spatial derivatives are evaluated at the collocation nodes (ηi, τj) for
j = 0, 1, 2, …, M as follows

Solving Nonlinear Parabolic Partial Differential Equations Using Multidomain Bivariate Spectral Collocation Method
http://dx.doi.org/10.5772/64600

7



( ) 2 ( )
( ) ( ) 2 ( )

2

2 ˆ( , ) = = , ( , ) =h t h t¶ ¶æ ö
ç ÷¶ - ¶è ø

k k
k k k

i j j j i j j
u u
x b a x

DU DU D U (17)

where  = 𑨒𑨒 𑨒𑨒 𑨒𑨒2  of size (N + 1) × (N + 1) is the standard first-order Chebyshev differentiation

matrix as defined in [15]. The time derivative is evaluated at the collocation nodes (ηi, τj) for
i = 0, 1, 2, …, N as

( )
( ) ( )

, ,
=0 =0 1

2 ˆ( , ) = = ,h t
-

æ ö¶
ç ÷

¶ -è ø
å å

k M M
k k

i j j q q j q q
q q k k

u d d
t t t

U U (18)

where  ,  =  𑨒𑨒  𑨒𑨒 12 , , j, q = 0, 1, 2, …, M of size (M + 1) × (M + 1) is the standard first-

order Chebyshev differentiation matrix,

( ) ( ) ( ) ( )
0 1= [ ( , ), ( , ), , ( , )]Kk k k k T

j j j N ju x t u x t u x tU (19)

and T denotes matrix transpose. Using the definitions (17)–(18), we express Eq. (6) in matrix
form as

2 ( ) ( ) ( )
2, 1, 0, ,

=0
( , ) ( , ) ( , ) = ( , ).a a aé ù+ + -ë û å

M
k k k

s j s j s j j j q q s j
q

t t t d tx D x D x U U R x (20)

By changing the indices, Eq. (20) can be written as

1
2 ( ) ( ) ( ) ( )

2, 2, 0, , ,
=0

( , ) ( , ) ( , ) = ( , ) ,a a a
-

é ù+ + - +ë û å
M

k k k k
s i s i s i i i j j s i i M tM

j
t t x t d t dx D x D U U R x U (21)

where

(1) ( ) ( 1)

0
= ( ), for = 1 and = , for = 2,3, , .- Kk k

t t tM M
f x k k PU U U (22)

Eq. (21) constitutes an M(N + 1) × M(N + 1) matrix system given by
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( ) ( )
0,0 0,1 0,2 0, 1 0 0

( ) ( )
1,0 1,1 1,2 1, 1 1 1

( ) ( )
1,0 1,1 1,2 1, 1 1 1

= ,

-

-

- - - - - - -

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú

ê ú ê ú ê úë û ë û ë û

K

K

M M M K M M M

K

k k
M

k k
M

k k
M M M M M M M

A A A A U R
A A A A U R

A A A A U R

(23)

where

2
, 2, 2, 0, ,

, ,

( ) ( ) ( )
,

0

1
,

= ( , ) ( , ) ( , ) ,
= , ,

= ( , ) ,

( , )
( , )

( , ) = , = 0,1,2,

( , )

m

a a a

a
a

m

a

+ + -

- ¹

+

é ù
ê ú
ê ú
ê ú
ê ú
ë û

O

i i s i s i s i i i

i j i j

k k k
i s i i M M

i

i
s i

N i

A t t x t d
A d i j

t d

t
x t

α t

x t

x D x D I
I

R R x U

x

x

(24)

and I is an identity matrix of size (N + 1) × (N + 1). The boundary conditions at the collocation
points are

( ) ( )
0( , ) = ( ), ( , ) = ( ).k k

N i a i i b iU x t g t U x t g t (25)

These boundary conditions are imposed on the main diagonal submatrices of the matrix
system (23) to obtain a new system which takes the form

( )( )
0,0 0,1 0,2 0, 1 00

( ) ( )
1,0 1,1 1,2 1, 1 1 1

( ) ( )
11,0 1,1 1,2 1, 1 1

ˆ ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

= ,

ˆ ˆ ˆ ˆ ˆ

-

-

-- - - - - -

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê ú
ê ú ê úê úë û ë ûë û

K

K

M M M K M M M

K

kk
M

k k
M

k k
MM M M M M M

A A A A RU
A A A A U R

UA A A A R

(26)

where
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, , , ,

1 0 0 0 0 0 0 0 0 0
ˆ ˆ= , = , ,

0 0 0 0 1 0 0 0 0 0

( )
ˆ = .

( )

é ù é ù
ê ú ê ú

¹ê ú ê ú
ê ú ê ú
ë û ë û

é ù
ê ú
ê ú
ê ú
ë û

K K

K K
i i i i i j i i

b i

i i

a i

A A A A i j

g t

g t
R R

(27)

The matrix system (26) is solved for U(k), k = 1, 2, …, p. The solutions at different subdomains
are matched together along common boundaries to give the desired approximate solution. The
patching condition is given by

( ) ( 1)
1 1( , ) = ( , ),-
- -

k k
k ku x t u x t (28)

which denotes the solution at the boundaries of the subintervals.

3. Numerical experimentation

In this section, we illustrate the practical applicability of the multidomain approach in solving
nonlinear parabolic PDEs by considering the solutions of well-known nonlinear PDEs that
have been reported in the literature.

Example 1. We consider the modified Burger’s-Fisher equation

2

2= (1 ), (0,5), [0,10],u u uu u u x t
t x x

¶ ¶ ¶
+ + - Î Î

¶ ¶ ¶
(29)

subject to boundary conditions

1 1 5 1 1 5 5(0, ) = tanh , (5, ) = tanh ,
2 2 8 2 2 8 4

æ ö æ ö+ + -ç ÷ ç ÷
è ø è ø

t tu t u t (30)

and initial condition

1 1( ,0) = tanh .
2 2 4

æ ö- ç ÷
è ø

xu x (31)

The exact solution is given in [24] as
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1 1 5( , ) = tanh .
2 2 8 4

æ ö+ -ç ÷
è ø

t xu x t (32)

Eq. (29) is an example of a generalized Burger’s-Fisher equation that was solved in [4] using
variational iteration method. Applying the QLM, we obtain the linearized system

2, 1 1, 1 0, 1 1( , ) ( , ) ( , ) = ( , ),a a a+ + + +¢¢ ¢+ + - &s s s s s s s sx t u x t u x t u u R x t (33)

where

2
2, 1, 0,( , ) = 1, ( , ) = , ( , ) = 1 2 , ( , ) = .a a a ¢ ¢- - + - - -s s s s s s s s s sx t x t u x t u u R x t u u u (34)

In each subinterval k = 1, 2, …, p, we must solve

2 ( ) ( ) ( )
( ) ( )1 1 1

2, 1, 0, 12

1

( , ) ( , ) ( , ) = ( , ),

(0,5), [ , ],

k k k
k ks s s

s s s s s

k k

u u ux t x t x t u R x t
x x t

x t t t

a a a+ + +
+

-

¶ ¶ ¶
+ + -

¶ ¶ ¶
Î Î

(35)

( ) ( )1 1 5 1 1 5 5(0, ) = tanh , (5, ) = tanh ,
2 2 8 2 2 8 4

æ ö æ ö+ + -ç ÷ ç ÷
è ø è ø

k kt tu t u t (36)

(1) ( ) ( 1)
1 1

1 1( ,0) = tanh , = 0, and ( , ) = ( , ), = 2,3, , .
2 2 4

-
- -

æ ö- ç ÷
è ø

Kk k
k k

xu x k u x t u x t k p (37)

The matrices resulting from application of the spectral collocation in (33) are

2
, 1, 0, ,

, ,

( ) ( ) ( )
, , ,

= ( , ) ( , ) ,
= , when ,

= ( , ) ,

a a+ + -

- ¹

+

i i s i s i i i

i j i j

k k k
i s i s i i M M

t t d I
d I i j

t d

A D x D x
A

B R x U
(38)

The initial condition at different subintervals is given by

(1)

( ) ( 1)

0

1 1= ( ) = tanh , for = 1 and
2 2 4

= , for = 2,3, , .-

æ ö- ç ÷
è ø

K

tM

k k
t tM

xf x k

k p

U

U U
(39)
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The boundary conditions at the collocation points are

( ) ( )
0

1 1 5 1 1 5 5( , ) = ( ) = tanh , ( , ) = ( ) = tanh .
2 2 8 2 2 8 4

æ ö æ ö+ + -ç ÷ ç ÷
è ø è ø

k ki i
N i a i i b i

t tU x t g t U x t g t (40)

Making the relevant substitution, a matrix system similar to (26) is solved to obtain the
approximate solution.

Example 2. We consider the modified Fitzhugh-Nagumo equation

2

2= ( 1)(1 ), (1,5), (0,1],¶ ¶
+ - - Î Î

¶ ¶
u u u u u x t
t x

(41)

subject to boundary conditions

1 1 1 5(1, ) = 1 coth , (5, ) = 1 coth ,
2 4 2 42 2 2 2
é ù é ù- -æ ö æ ö- + - +ê ú ê úç ÷ ç ÷

è ø è øë û ë û

t tu t u t (42)

and initial condition

1( ,0) = 1 coth .
2 2 2
é ù-æ ö-ê úç ÷

è øë û

xu x (43)

The exact solution is given in [12]

1( , ) = 1 coth .
2 42 2
é ù-æ ö- +ê úç ÷

è øë û

x tu x t (44)

Eq. (41) is an example of a generalized Fitzhugh-Nagumo equation [12, 13]. Applying the QLM,
we obtain a linearized system similar to that given in Eq. (33). The coefficients in this example
are given by:

2 2 3
2, 1, 0,( , ) = 1, ( , ) = 0, ( , ) = 1 4 3 , ( , ) = 2 2 .a a a - + - -s s s s s s s sx t x t x t u u R x t u u (45)

In each subinterval k = 1, 2, …, p, we must solve:
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we obtain a linearized system similar to that given in Eq. (33). The coefficients in this example
are given by:

2 2 3
2, 1, 0,( , ) = 1, ( , ) = 0, ( , ) = 1 4 3 , ( , ) = 2 2 .a a a - + - -s s s s s s s sx t x t x t u u R x t u u (45)

In each subinterval k = 1, 2, …, p, we must solve:
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2 ( ) ( ) ( )
( ) ( )1 1 1

2, 1, 0, 12

1

( , ) ( , ) ( , ) = ( , ),

(1,5), ( , ],

a a a+ + +
+

-

¶ ¶ ¶
+ + -

¶ ¶ ¶
Î Î

k k k
k ks s s

s s s s s

k k

u u ux t x t x t u R x t
x x t

x t t t
(46)

( ) ( )1 1 1 5(1, ) = 1 coth , (5, ) = 1 coth ,
2 4 2 42 2 2 2
é ù é ù- -æ ö æ ö- + - +ê ú ê úç ÷ ç ÷

è ø è øë û ë û
k kt tu t u t (47)

(1) ( ) ( 1)
1 1

1( ,0) = 1 coth , = 0, and ( , ) = ( , ),
2 2 2

= 2,3, , .

-
- -

é ù-æ ö-ê úç ÷
è øë û

K

k k
k k

xu x k u x t u x t

k p
(48)

The application of the spectral collocation in (33) results into the following set of coefficient
matrices:

2
, 0, ,

, ,

( ) ( ) ( )
, , ,

= ( , ) ,
= , when ,

= ( , ) ,

a+ -

- ¹

+

i i s i i i

i j i j

k k k
i s i s i i M M

t d I
d I i j

x t d

A D x
A

B R U
(49)

The initial condition at different subintervals is given by:

(1) ( ) ( 1)

0

1 1= ( ) = tanh , for = 1 and = , for = 2,3, , .
2 2 4

-æ ö- ç ÷
è ø

Kk k
t t tM M

xf x k k pU U U (50)

The boundary conditions at the collocation points are given by:

( )

( )
0

1 1( , ) = ( ) = 1 coth ,
2 42 2

1 5( , ) = ( ) = 1 coth .
2 42 2

é ù-æ ö- +ê úç ÷
è øë û

é ù-æ ö- +ê úç ÷
è øë û

k i
N i a i

k i
i b i

tU x t g t

tU x t g t
(51)

Example 3. We consider the modified Burger’s-Huxley equation:

2

2= (1 )( 0.1), (0,1), [0,10],u u uu u u u x t
t x x

¶ ¶ ¶
+ + - - Î Î

¶ ¶ ¶
(52)

subject to boundary conditions
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( ) ( )1 1 1 1 1 1(0, ) = tanh 0.9 , (1, ) = tanh 1 0.9 ,
2 2 2 2 2 2

é ù é ù- - - -ê ú ê úë û ë û
u t t u t t (53)

and initial condition

1 1( ,0) = tanh .
2 2 2

æ ö- ç ÷
è ø

xu x (54)

The exact solution is given in [25] as

( )1 1 1( , ) = tanh 0.9 .
2 2 2

é ù- -ê úë û
u x t x t (55)

Eq. (52) is an example of a generalized Burger’s-Huxley equation [25]. Applying the QLM, we
obtain a linearized system similar to that given in Eq. (33). The coefficients in this example are
given by

2
2, 1, 0,

2 3

( , ) = 1, ( , ) = , ( , ) = 0.1 2.2 3 ,

( , ) = 1.1 2 .

a a a ¢- - - + -

¢- + -
s s s s s s s

s s s s s

x t x t u x t u u u

R x t u u u u
(56)

In each subinterval k = 1, 2, …, p, we must solve

2 ( ) ( ) ( )
( ) ( )1 1 1

2, 1, 0, 12

1

( , ) ( , ) ( , ) = ( , ),

(0,1), ( , ],

a a a+ + +
+

-

¶ ¶ ¶
+ + -

¶ ¶ ¶
Î Î

k k k
k ks s s

s s s s s

k k

u u ux t x t x t u R x t
x x t

x t t t
(57)

( ) ( )( ) ( )1 1 1 1 1 1(0, ) = tanh 0.9 , (1, ) = tanh 1 0.9 ,
2 2 2 2 2 2

é ù é ù- - - -ê ú ê úë û ë û
k ku t t u t t (58)

(1) ( ) ( 1)
1 1

1 1( ,0) = tanh , = 0, and ( , ) = ( , ), = 2,3, , .
2 2 2

-
- -

æ ö- ç ÷
è ø

Kk k
k k

xu x k u x t u x t k p (59)

The application of the spectral collocation in (33) results into the following set of coefficient
matrices
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2
, 1, 0, ,

, ,

( ) ( ) ( )
, , ,

= ( , ) ( , ) ,
= , when ,

= ( , ) ,

a a+ + -

- ¹

+

i i s i s i i i

i j i j

k k k
i s i s i i M M

t t d I
d I i j

t d

A D x D x
A

B R x U
(60)

The initial condition at different subintervals is given by

(1) ( ) ( 1)

0

1 1= ( ) = tanh , for = 1 and = , for = 2,3, , .
2 2 2

-æ ö- ç ÷
è ø

Kk k
t t tM M

xf x k k pU U U (61)

The boundary conditions at the collocation points are given by

( )

( )

( )

( )
0

1 1 1( , ) = ( ) = tanh 0.9 ,
2 2 2
1 1 1( , ) = ( ) = tanh 1 0.9 .
2 2 2

é ù- -ê úë û
é ù- -ê úë û

k
N i a i i

k
i b i i

U x t g t t

U x t g t t
(62)

4. Results and discussion

In this section, we present the results for the absolute error values at selected values of x and
t and the computational time that is obtained when Examples 1–3 are solved using both the
bivariate spectral collocation method (single-domain approach) and the multidomain bivariate
spectral collocation method. The absolute error is evaluated as

, = ( , ) ( , ) , 0 , 0 ,- £ £ £ £x t e i j a i ji j
Abs u x t u x t i N j M (63)

where ue(xi, tj) is the exact solution and ua(xi, tj) is the approximate solution at the collocation
points (xi, tj). In each example, two tables have been presented to compare the performance of
the two approaches that are used in solving each example. The results indicate that multido-
main bivariate spectral collocation method is very accurate and the results are generated faster
when compared to solving the same problem over single domain. The results obtained from
approximating the solution of (29) are given below. Table 1 shows the results generated when
the bivariate spectral collocation method (single domain) is used whereas Table 2 presents the
results obtained when using the multidomain bivariate spectral collocation method. The
bivariate spectral collocation method gives on average absolute errors of 10− 6 whereas those
obtained when the multidomain bivariate spectral collocation method is used are 10− 12, an
indication that the multidomain approach is more accurate. The computational time in the case
of the multidomain approach is lesser (0.019602 sec) than (0.103606 sec) that is obtained when
solving the problem over single domain.
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x t
2.0 4.0 6.0 8.0

0.4775 4.91994e-007 3.31285e-007 1.99894e-008 6.67958e-008

1.3650 4.36608e-007 7.17567e-007 1.76673e-008 1.70637e-007

2.5000 3.26724e-006 1.43695e-006 1.42849e-007 2.19591e-007

3.6350 2.35521e-007 2.54426e-006 1.48557e-007 6.72760e-007

4.5225 7.14695e-006 6.81188e-006 2.08164e-006 2.15409e-007

CPU time (sec) 0.103606

Table 1. MatLab solution: Absolute error values obtained when solving Example 1 using N = M = 20, single domain,
with Lagrange basis and Gauss-Lobatto nodes, iterations=10.

t
x 2.0 4.0 6.0 8.0

0.4775 4.77396e-014 7.99361e-015 1.16573e-014 2.66454e-014

1.3650 7.41074e-013 1.29896e-014 1.13243e-014 2.81997e-014

2.5000 3.31513e-013 3.83027e-014 1.25455e-014 2.44249e-015

3.6350 3.37175e-012 7.40519e-014 8.88178e-015 4.21885e-015

4.5225 2.55729e-012 1.52323e-013 2.68674e-014 2.10942e-014

CPU time (sec) 0.019602

Table 2. MatLab solution: Absolute error values obtained when Example 1 is solved using N = 20, M = 5, p = 10, with
Lagrange basis and Gauss-Lobatto nodes, iterations=10.

The results obtained from approximating the solution of (41) are given in Tables 3 and 4.
Table 3 shows the results generated when the bivariate spectral collocation method (single
domain) is used whereas Table 4 presents the results obtained when using the multidomain
bivariate spectral collocation method. The results are similar to those of Example 1, thus the
multidomain approach is more efficient than single-domain approach when it is applied in
solving nonlinear parabolic PDEs defined over large-time domain.

t
x 0.2 0.4 0.6 0.8

1.0039 1.35033e-006 1.14349e-005 1.42724e-005 2.50691e-006

1.9283 8.19001e-008 1.97335e-008 4.17650e-008 4.41645e-009

3.0000 6.03945e-009 1.22066e-008 9.50467e-009 8.55427e-009

4.0717 8.95142e-011 1.11732e-009 2.53453e-009 3.16956e-009

4.9372 2.23332e-012 2.90505e-011 1.05300e-010 1.94311e-010

CPU time (sec) 0.135906

Table 3. MatLab solution: Absolute error values obtained when solving Example 2 using N = 50, M = 10, single
domain, with Lagrange basis and Gauss-Lobatto nodes, iterations=10.

Nonlinear Systems - Design, Analysis, Estimation and Control16



x t
2.0 4.0 6.0 8.0

0.4775 4.91994e-007 3.31285e-007 1.99894e-008 6.67958e-008

1.3650 4.36608e-007 7.17567e-007 1.76673e-008 1.70637e-007

2.5000 3.26724e-006 1.43695e-006 1.42849e-007 2.19591e-007

3.6350 2.35521e-007 2.54426e-006 1.48557e-007 6.72760e-007

4.5225 7.14695e-006 6.81188e-006 2.08164e-006 2.15409e-007

CPU time (sec) 0.103606

Table 1. MatLab solution: Absolute error values obtained when solving Example 1 using N = M = 20, single domain,
with Lagrange basis and Gauss-Lobatto nodes, iterations=10.

t
x 2.0 4.0 6.0 8.0

0.4775 4.77396e-014 7.99361e-015 1.16573e-014 2.66454e-014

1.3650 7.41074e-013 1.29896e-014 1.13243e-014 2.81997e-014

2.5000 3.31513e-013 3.83027e-014 1.25455e-014 2.44249e-015

3.6350 3.37175e-012 7.40519e-014 8.88178e-015 4.21885e-015

4.5225 2.55729e-012 1.52323e-013 2.68674e-014 2.10942e-014

CPU time (sec) 0.019602

Table 2. MatLab solution: Absolute error values obtained when Example 1 is solved using N = 20, M = 5, p = 10, with
Lagrange basis and Gauss-Lobatto nodes, iterations=10.

The results obtained from approximating the solution of (41) are given in Tables 3 and 4.
Table 3 shows the results generated when the bivariate spectral collocation method (single
domain) is used whereas Table 4 presents the results obtained when using the multidomain
bivariate spectral collocation method. The results are similar to those of Example 1, thus the
multidomain approach is more efficient than single-domain approach when it is applied in
solving nonlinear parabolic PDEs defined over large-time domain.
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1.0039 1.35033e-006 1.14349e-005 1.42724e-005 2.50691e-006

1.9283 8.19001e-008 1.97335e-008 4.17650e-008 4.41645e-009

3.0000 6.03945e-009 1.22066e-008 9.50467e-009 8.55427e-009

4.0717 8.95142e-011 1.11732e-009 2.53453e-009 3.16956e-009
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Table 3. MatLab solution: Absolute error values obtained when solving Example 2 using N = 50, M = 10, single
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t
x 0.2 0.4 0.6 0.8
1.0039 7.57705e-012 3.20854e-012 6.38556e-012 2.23954e-011
1.9283 8.88178e-015 2.10942e-014 3.37508e-014 2.22045e-015
3.0000 1.55431e-015 7.32747e-015 1.77636e-014 1.95399e-014
4.0717 6.83897e-014 5.66214e-014 8.79297e-014 3.50830e-014
4.9372 1.11511e-012 2.31637e-012 7.83817e-014 4.10783e-014
CPU time (sec) 0.026619

Table 4. MatLab solution: Absolute error values obtained when Example 2 is solved using N = 50, M = 5, p = 100, with
Lagrange basis and Gauss-Lobatto nodes, iterations=10.

The results obtained from approximating the solution of (52) are given below. Table 5 shows
the results generated when the bivariate spectral collocation method (single domain) is used
whereas Table 6 presents the results obtained when using the multidomain bivariate spectral
collocation method. The results indicate that the multidomain approach is very accurate and
computationally faster when it is applied to solve nonlinear PDEs defined over large-time
intervals.

t
x 2.0 4.0 6.0 8.0
0.0010 1.61398e-005 9.61285e-005 7.30576e-005 7.70011e-006
0.2321 2.99891e-005 1.09535e-004 9.97674e-005 2.21837e-006
0.5000 2.15105e-00 9.64207e-005 1.07763e-004 7.47171e-006
0.7679 1.07315e-005 1.90612e-005 6.33297e-005 5.44788e-006
0.9843 3.75286e-005 1.10078e-004 2.79722e-005 6.65481e-007
CPU time (sec) 0.026619

Table 5. MatLab solution: Absolute error values obtained when solving Example 3 using N = 50, M = 10, single
domain, with Lagrange basis and Gauss-Lobatto nodes, iterations=10.

t
x 2.0 4.0 6.0 8.0
0.0010 5.21284e-010 4.77699e-010 3.01078e-010 3.88833e-010
0.2321 2.05589e-011 4.15302e-011 4.59769e-011 2.75941e-011
0.5000 2.27406e-011 1.40028e-011 1.33067e-011 1.88674e-011
0.7679 5.37154e-011 3.15495e-011 1.85438e-011 2.47591e-012
0.9843 2.02505e-010 6.77300e-011 2.10308e-010 1.70352e-010
CPU time (sec) 0.028104

Table 6. MatLab solution: Absolute error values obtained when Example 3 is solved using N = 50, M = 5, p = 100, with
Lagrange basis and Gauss-Lobatto nodes, iterations=10.

The lesser computational time that is evident in the case when the multidomain approach is
applied to solve the nonlinear PDE is attributed to the fact that the multidomain approach uses
very few number of collocation points in each subinterval for the time variable than in the
single-domain approach. This reduction in the number of collocation points significantly
reduces the size of the resulting coefficient matrices. The small -sized coefficient matrices are
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less dense and take less CPU time to produce results. The high accuracy and less computational
time substantiate our claim that the multidomain bivariate spectral collocation method is a
powerful numerical method for solving nonlinear parabolic PDEs that are defined over large-
time intervals. The QLM is a powerful technique for simplifying nonlinear PDEs as very
accurate results are obtained after 10 iterations only. The spectral collocation-based methods
yield very accurate results with a few number of grid points as the approximate solution that
is searched for is a higher degree polynomial. In the numerical experimentation, the symmet-
rically distributed Gauss-Lobatto (G-L) collocation points have been used instead of equi-
spaced grid points as the G-L nodes have a feature that tends to uniformly distribute the
approximation errors across the entire interval of approximation [26]. The equispaced nodes,
on the other hand, produce oscillations near the end of interval of approximation, a behavior
referred to as Runge phenomena [27].

5. Conclusion

The multidomain bivariate spectral collocation method has been used successfully to solve
nonlinear parabolic PDEs that arise in a wide range of applications like genetics, biology, heat
and mass transfer and wave processes. The approximate results confirm that the multidomain
bivariate spectral collocation method is very accurate and computationally faster when it is
used to solve nonlinear parabolic PDEs that are defined over large-time domains. This
approach is an alternative to other numerical methods that can be used to solve nonlinear
parabolic partial differential equations. The multidomain bivariate spectral collocation method
being more accurate and computationally faster can therefore be adopted and extended to
solve similar problems that model real-life phenomenon.

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of
South Africa (Grant No. 85596).

Author details

Motsa Sandile Sydney1*, Samuel Felix Mutua1 and Shateyi Stanford2

*Address all correspondence to: sandilemotsa@gmail.com

1 School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal,
Scottsville, Pietermaritzburg, South Africa

2 University of Venda, Thohoyandou, Limpopo Province, South Africa

Nonlinear Systems - Design, Analysis, Estimation and Control18



less dense and take less CPU time to produce results. The high accuracy and less computational
time substantiate our claim that the multidomain bivariate spectral collocation method is a
powerful numerical method for solving nonlinear parabolic PDEs that are defined over large-
time intervals. The QLM is a powerful technique for simplifying nonlinear PDEs as very
accurate results are obtained after 10 iterations only. The spectral collocation-based methods
yield very accurate results with a few number of grid points as the approximate solution that
is searched for is a higher degree polynomial. In the numerical experimentation, the symmet-
rically distributed Gauss-Lobatto (G-L) collocation points have been used instead of equi-
spaced grid points as the G-L nodes have a feature that tends to uniformly distribute the
approximation errors across the entire interval of approximation [26]. The equispaced nodes,
on the other hand, produce oscillations near the end of interval of approximation, a behavior
referred to as Runge phenomena [27].

5. Conclusion

The multidomain bivariate spectral collocation method has been used successfully to solve
nonlinear parabolic PDEs that arise in a wide range of applications like genetics, biology, heat
and mass transfer and wave processes. The approximate results confirm that the multidomain
bivariate spectral collocation method is very accurate and computationally faster when it is
used to solve nonlinear parabolic PDEs that are defined over large-time domains. This
approach is an alternative to other numerical methods that can be used to solve nonlinear
parabolic partial differential equations. The multidomain bivariate spectral collocation method
being more accurate and computationally faster can therefore be adopted and extended to
solve similar problems that model real-life phenomenon.

Acknowledgements

This work is based on the research supported in part by the National Research Foundation of
South Africa (Grant No. 85596).

Author details

Motsa Sandile Sydney1*, Samuel Felix Mutua1 and Shateyi Stanford2

*Address all correspondence to: sandilemotsa@gmail.com

1 School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal,
Scottsville, Pietermaritzburg, South Africa

2 University of Venda, Thohoyandou, Limpopo Province, South Africa

Nonlinear Systems - Design, Analysis, Estimation and Control18

References

[1] A. H. Khater, R. S. Temsah, Numerical solutions of some nonlinear evolution equations
by Chebyshev spectral collocation methods, Int J Comp Math, Vol. 84, pp. 326–339,
2007.

[2] X. Y. Wang, Exact and explicit solitary wave solutions for the generalised Fishers
equation, Phys Lett A, Vol. 131, pp. 277–291, 1988.

[3] W. Hereman, M. Takaoka, Solitary wave solutions of nonlinear evolution and wave
equations using a direct method and MACSYMA, J Phys A, Vol. 23, pp. 34–48, 1990.

[4] M. A. Abdou, A. A. Soliman, Variational iteration method for solving Burger’s and
coupled Burger’s equation, J Comput Appl Math, Vol. 181, pp. 51–62, 2005.

[5] R. Jiwari, Quasilinearization approach for numerical simulation of Burger’s equation,
Comp Phys Commun, Vol. 183, pp. 2413–2423, 2012.

[6] R. Jiwari, Mittal R. C., Sharma K. K., A numerical based on weighed average differential
quadrature method for the numerical solution of Burger’s equation, Appl Math
Comput, Vol. 219, pp. 6680–6691, 2013.

[7] M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation by
pseudospectral method and Darvishi’s preconditioning, Appl Math Comput, Vol. 175,
pp. 16–28, 1990.

[8] M. Javidi, A numerical solution of the generalized Burger’s-Huxley equation by
pseudospectral method, Appl Math Comput, Vol. 15, pp. 99–108, 1990.

[9] I. Hashim, M. S. Noorani, M. R. Al-Hadidi, Solving the generalized Burger’s-Huxley
equation using the Adomian decomposition method, Math Comput Model, Vol. 16, pp.
11–19, 2006.

[10] R. C. Mittal, R. Jiwari, Study of Burger-Huxley equation by differential quadrature
method, Int J Appl Math Mech, Vol. 5, pp. 1–9, 2009.

[11] A. J. Khattak, A computational meshless method for the generalised Burger’s-Huxley
equation, Appl Math Model, Vol. 33, pp. 3718–3729,2006

[12] T. Kawahara, M. Tanaka, Interactions of traveling fronts: an exact solution of a nonlinear
diffusion equations, Phys Lett, Vol. 97, pp. 311, 1983.

[13] M. C. Nucci, P. A. Clarkson, The nonclassical method is more general than the direct
method for symmetry reductions. An example of the Fitzhugh-Nagumo equation, Phys
Lett A, Vol. 164, pp. 49–56, 1992.

[14] J. H. He, Homotopy perturbation method for bifurcation of nonlinear problems, Int J
Nonlinear Sci Numer Simul, Vol. 6, pp. 27–33, 2005.

[15] L. N. Trefethen, Spectral Methods in MATLAB, SIAM, 2000.

Solving Nonlinear Parabolic Partial Differential Equations Using Multidomain Bivariate Spectral Collocation Method
http://dx.doi.org/10.5772/64600

19



[16] S. S. Motsa, V. M. Magagula, P. Sibanda, A Bivariate Chebyshev Spectral Collocation
Quasilinearization Method for Nonlinear Evolution Parabolic Equations, Sci World J,
Vol. 2014, pp 13, 2014. doi:10.1155/2014/581987

[17] S. Ismail, On bivariate polynomial interpolation, East J Approx Vol. 8, pp. 209–218, 2002.

[18] R. E. Bellman, R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value
Problems, Elsevier Publishing Company, New York, 1965.

[19] S. S. Motsa, P. Dlamini, M. Khumalo, A new multi-stage spectral relaxation method for
solving chaotic initial value systems, Nonlinear Dynam, Vol. 72, Issue 1–2, pp. 265–283,
2013.

[20] S. S. Motsa, A new piecewise-quasilinearization method for solving chaotic systems of
initial value problems, Cent Eur J Phys, Vol. 10, Issue 4, pp. 936–946, 2012.

[21] S. S. Motsa, A new piece-wise-quasilinearisation method approach to a four-dimen-
sional hyper-chaotic system with cubic nonlinearity, Nonlinear Dynam Vol. 70, pp. 651–
657, 2012.

[22] V. Lakshmikantham, An extension of the method of quasilinearization, J Optim Theory
Appl Vol. 82, pp. 315–321, 1994.

[23] V. Lakshmikantham, Further improvement of generalized quasilinearization, Nonlin-
ear Anal Vol. 27, pp. 315–321, 1996.

[24] W. Wang, A. J. Roberts, Diffusion approximation for self-similarity of stochastic
advection in Burger’s equation, Commun Math Phys, Vol. 5, pp. 37–48, 2014.

[25] O. Y. Yetimova, N. A. Kudryashov, Exact solutions of the Burgers-Huxley equation, J
Appl Math Mech, Vol. 68, Issue 3, pp. 413–420, 2004.

[26] Q. Chen, Ivo BabuSkab, Approximate optimal points for polynomial interpolation of
real functions in an interval and in a triangle, Comput Methods Appl Mech Eng Vol.
128, pp. 405–417, 1995.

[27] J. F. Epperson, On the Runge example, Amer Math Monthly, Vol. 94, pp. 329–341, 1987.

Nonlinear Systems - Design, Analysis, Estimation and Control20



[16] S. S. Motsa, V. M. Magagula, P. Sibanda, A Bivariate Chebyshev Spectral Collocation
Quasilinearization Method for Nonlinear Evolution Parabolic Equations, Sci World J,
Vol. 2014, pp 13, 2014. doi:10.1155/2014/581987

[17] S. Ismail, On bivariate polynomial interpolation, East J Approx Vol. 8, pp. 209–218, 2002.

[18] R. E. Bellman, R. E. Kalaba, Quasilinearization and Nonlinear Boundary-Value
Problems, Elsevier Publishing Company, New York, 1965.

[19] S. S. Motsa, P. Dlamini, M. Khumalo, A new multi-stage spectral relaxation method for
solving chaotic initial value systems, Nonlinear Dynam, Vol. 72, Issue 1–2, pp. 265–283,
2013.

[20] S. S. Motsa, A new piecewise-quasilinearization method for solving chaotic systems of
initial value problems, Cent Eur J Phys, Vol. 10, Issue 4, pp. 936–946, 2012.

[21] S. S. Motsa, A new piece-wise-quasilinearisation method approach to a four-dimen-
sional hyper-chaotic system with cubic nonlinearity, Nonlinear Dynam Vol. 70, pp. 651–
657, 2012.

[22] V. Lakshmikantham, An extension of the method of quasilinearization, J Optim Theory
Appl Vol. 82, pp. 315–321, 1994.

[23] V. Lakshmikantham, Further improvement of generalized quasilinearization, Nonlin-
ear Anal Vol. 27, pp. 315–321, 1996.

[24] W. Wang, A. J. Roberts, Diffusion approximation for self-similarity of stochastic
advection in Burger’s equation, Commun Math Phys, Vol. 5, pp. 37–48, 2014.

[25] O. Y. Yetimova, N. A. Kudryashov, Exact solutions of the Burgers-Huxley equation, J
Appl Math Mech, Vol. 68, Issue 3, pp. 413–420, 2004.

[26] Q. Chen, Ivo BabuSkab, Approximate optimal points for polynomial interpolation of
real functions in an interval and in a triangle, Comput Methods Appl Mech Eng Vol.
128, pp. 405–417, 1995.

[27] J. F. Epperson, On the Runge example, Amer Math Monthly, Vol. 94, pp. 329–341, 1987.

Nonlinear Systems - Design, Analysis, Estimation and Control20

Chapter 2

Feedback and Partial Feedback Linearization of

Nonlinear Systems: A Tribute to the Elders

Issa Amadou Tall

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64689

Provisional chapter

Feedback and Partial Feedback Linearization of

Nonlinear Systems: A Tribute to the Elders

Issa Amadou Tall

Additional information is available at the end of the chapter

Abstract

Arthur Krener and Roger Brockett pioneered the feedback linearization problem for
control systems, that is,  the transforming of a nonlinear control system into linear
dynamics via change of coordinates and feedback. While the former gave necessary and
sufficient conditions to linearize a system under change of coordinates only, the latter
introduced the concept of feedback and solved the problem for a particular case. Their
work was soon extended in the earlier eighties by Jakubczyk and Responder, and Hunt
and Su who gave the conditions for a control system to be linearizable by change of
coordinates and feedback (full rank and involutivity of the associated distributions). It
turned out that those conditions are very restrictive; however, it was showed later that
systems that fail to be linearizable can still be transformed into two interconnected
subsystems: one linear and the other nonlinear. This fact is known as partial feedback
linearization. For input-output systems with well-defined relative degree, coordinates
can be found by differentiating the outputs. For systems without outputs, necessary and
sufficient geometric conditions for partial linearization have been obtained in terms of
the Lie algebra of the system; however, both results of linearization and partial feedback
linearization lack practicability. Until recently, none has provided a way to actually
compute  the  linearizing  coordinates  and  feedback.  In  this  paper,  we  propose  an
algorithm allowing to find the linearizing coordinates and feedback if the system is
linearizable,  and in  the  contrary,  to  decompose  a  system (without  outputs)  while
achieving the largest linear subsystem. Those algorithms are built  upon successive
applications of the Frobenius theorem. Examples are provided to illustrate.

Keywords: feedback, Frobenius theorem, partial linearization
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1. Introduction

Roger Brockett is considered as the father of feedback linearization, one of the most important
techniques for studying nonlinear systems. The problem of feedback linearization seeks to find
new coordinates in which the system exhibits linear dynamics driven by new control inputs.
The role of linear systems in engineering and mechanical systems has already been demon-
strated in several applications. First, let us consider a linear system

(1)

where 𝀵𝀵𝀵𝀵𝀵 𝀵1,⋯,  are, respectively, on , Hx a linear vector field on , 

denotes the state of the system, and  the control input. To the linear system
Λ, we attach two geometric objects: one called controllability space  as
a n × (nm) matrix whose columns are those of the matrices Fi−1G for  = 1,   2,⋯, ; the other
called observability space  as a p × (nm) matrix whose columns are those
of the matrices Hi−1F for  = 1,   2,⋯, . The system Λ is controllable if and only if  and
the system is observable if and only if . By a linear change of coordinates z = Tx and
a linear feedback  = 𝀵𝀵𝀵𝀵 + 𝀵𝀵𝀵𝀵 where T, K, and L are matrices of appropriate sizes, T and L being
invertible, the system Λ is transformed into a linear equivalent one

(2)

with  = T(F + GK)−1,  = 𝀵𝀵, and C = HT−1.

For the linear system 𝀵̇𝀵 = 𝀵𝀵 𝀵  where A and B are n × n and n × m matrices, respectively, we

denote by  = [      ⋯ − 1] and  = dim . We define  = max       ≥   where

n0 = 0 and ni= mi–mi−1 for 1 ≤ i ≤ n. It is straightforward to notice that 1 ≥ ⋯ ≥  with1 +⋯+  = . It is a classical result of the linear control theory that a certain choice of the

matrices T, K, and L leads to the Brunovsky canonical form Λ = Λ𝀵𝀵 for which = 𝀵𝀵𝀵𝀵𝀵𝀵 𝀵 1,   2,⋯,   and  = 𝀵𝀵𝀵𝀵𝀵𝀵 𝀵 1,   2,⋯,   with (see [1])
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form a canonical pair of dimension ki. Moreover,  = 1 0 ⋯   0 .

Now let us consider a nonlinear control system (control-affine for simplicity)
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where  denotes the state of the system, and  the control
input., , 1,⋯,  are smooth or analytic vector fields with  0 = 0, and ℎ1,⋯, ℎ analytic
functions on .

The problem of finding new coordinates  in which the system Σ, driven by
new inputs , takes the form Λ is referred as the input-output static state
feedback linearization. For input-output systems, the problem of linearization is equivalent to
achieving a relative degree (see details later). When the relative degree is achieved, finding the
coordinates system in which the system becomes linear is a simple differentiation process. For
systems without outputs, we only refer to static state linearization (Problem 1) or static state
feedback linearization (Problem 2) as follows:

Problem 1: Find new coordinates  = Φ() that transform the system Σ   :   ̇ =   +    into
a linear controllable system ̇ = 𝀵𝀵 + 𝀵𝀵.

Problem 2: Find new coordinates  = Φ() and an invertible feedback  =   +    that
transform the system Σ   :   ̇ =   +    into a linear controllable system ̇ = 𝀵𝀵 + 𝀵𝀵.

Arthur Krener [2] formulated and completely solved the first problem by showing that the Lie
brackets of some vector fields have to be zero, that is, a certain set of vector fields associated
with the system have to commute. Roger Brockett [3] solved the second problem under the
assumption that m = 1 (single-input), p = 1 (single-output) and β is constant. The general case
of input-output feedback linearization (Problem 2) was solved by Jakubczyk and Respondek
[4] on one side, and independently by Hunt and Su [5] on the other side. Necessary and
sufficient geometric conditions were obtained and showed that there is only a small class of
nonlinear systems that can be linearized by feedback. Indeed, the system should satisfy the
following two strong conditions:

(F1) an involutive distribution,
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(F2) a distribution with full rank equal to the dimension of the system.

Those conditions are very restrictive, thus making the class of nonlinear systems that can be
linearized by static state feedback very small. To enlarge the class of nonlinear systems that
can be analyzed via feedback linearization, several techniques have been introduced including
dynamic feedback linearization, nonregular state feedback linearization, partial feedback
linearization, orbital feedback linearization, and transverse feedback linearization. Dynamic
feedback linearization differs from static state feedback linearization in the sense that a

compensator ̇ =  , +  , ,𝀵𝀵𝀵,  =  , +  ,  is thought that enlarges the
dimension of the system. This means that one tries to linearize the system

(5)

using an extended state space transformation  =  , 𝀵𝀵ℜ +  . This problem is referred as
regular feedback linearization (( . ) is an invertible matrix). More general feedbacks have been
exploited to enlarge the class of linearizable systems by allowing the matrix ( . ) to be
noninvertible, that is, admitting fewer inputs than the original system [6, 7]. In this case, we
talk about nonregular feedback linearization [8]. Orbital feedback linearization, also known
as time scale feedback linearization, introduces a new time scale τ such that 𝀵𝀵𝀵𝀵 𝀵𝀵𝀵𝀵 = () is a
positive function (preserve orientation). Hence, in the new time scale τ, the problem becomes
to linearize the time-scaled system (see [9] and references therein)

(6)

Transverse feedback linearization [10] deals with transforming a control-affine system coupled
with a controlled invariant manifold into a system whose dynamics, transversal to the invariant
manifold, are linear and controllable.

The feedback linearization problem has been thoroughly investigated in the past four decades
but have regained interest recently with new algorithms developed to circumvent the solving
of partial differential equations associated to the linearization (see [4, 5, 21–28], and the
references therein). Whenever a system fails to satisfy either condition (F1) or (F2), its dynamics
contain nonlinearities in any given coordinate system. The fundamental question is in which
coordinates does the system exhibit the largest linear subsystem. This question was first
addressed naturally for systems with outputs [6, 7, 11–20]. We propose in this paper an
algorithmic way of transforming a control system into a cascade of two systems: one nonlinear
and one linear with the largest dimension. First, we will recall basics about vector fields and
the Frobenius theorem, then Section 3 deals with linearization of control systems with outputs,
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Section 4 contains the partial linearization algorithm. We end the paper with Section 5 with
few examples as an illustration.

2. Vector fields and Frobenius theorem

The theory of differential equations is one of the most productive and useful contributions of
our modern times. Its applications are widespread in all branches of natural sciences, partic-
ularly, in physics, biology, chemistry, engineering, ecology, and in weather predictions, just to
name few. It plays the role of a connector between abstract mathematical theories and appli-
cations in real world problems. Paraphrasing Newton quoted as saying that ”it is useful to
solve differential equations,” a lot has been deserved in solving differential equations with
various methods and techniques provided in the literature. Existence and uniqueness of
solutions have been addressed in many scientific papers and textbooks. Consider the simplest
expression of a linear partial differential equation

( ) ( )∂ ∂
+ + =

∂ ∂
1

1

( )n
n

u uf x f x b x
x x (7)

where 1  ,⋯,   , and b(x) are smooth or analytic functions in the variable x. This partial
differential equation is referred to as a homogeneous (resp. nonhomogeneous) linear first order
partial differential equation when   ≡ 0 (resp. . The vector field    whose
components are 1  ,⋯,    is called the characteristic vector field of the homogeneous
equation and the corresponding dynamical system ̇ = (), its characteristic equation. The
solutions of the system are the integral curves of the characteristic equation and are often
obtained by solving the so-called Lagrange subsidiary equation (also called characteristic
equation)

( ) ( ) ( )= = =

1

1

n

n

dxdx du
f x f x b x (8)

Several methods have been devoted to the solving of such system among them Euler's method
and Natani’s method. Most of the work on ordinary differential equations have been done
around equilibrium points (nonregular or singular point), that is, a point x0 where (fx0 = 0) .
The reason being that regular points, that is, where  0 ≠ 0 are not topologically reach,
because in those neighborhoods all trajectories are straight parallel lines (straightening
theorem). Though this fact remains true and hence often neglected, the straightening theorem
has many important applications. Indeed, a solution of the nonhomogeneous partial differ-
ential equation above can be easily found around a regular point x0 of f by simple quadrature
in new coordinates: If  = () is a change of coordinates around x0 that rectifies the vector
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field f, that is, such that *  = ∂∂ , then the nonhomogeneous equation simplifies as∂∂ = (), where   = (()) and   =    . A solution  (yielding  =  ∘ ) is given

(9)

The dynamical system ̇ = () takes in this case the canonical form

−

 =
 =

 =
 =











1

2 

1

z  0
0

 
0

 1
n

n

z

z
z

(10)

Theorem 1: (Flow-box) Let f be a vector field defined in a neighbourhood of a nonsingular
point , that is, (0) ≠ 0. There exists a local change of coordinates  =  Φ   in a neigh-

bourhood  of x0 such that Φ*   = ∂∂  for all .

The existence and proof of this theorem, as well as its general form, can be found in the
literature. The only difficulty in applying the straightening theorem is in finding the straight-
ening diffeomorphism as one needs to solve the system of highly nonlinear partial differential
equations:

(11)

In earlier work [25], we provided a solution to this problem by giving explicit changes of
coordinates, which will be recalled below. If x0 is a singular point, that is,  0 = 0, the notion

of linearization, and later of normal form, were introduced by Poincare. Before we recall those
facts, let us remind the reader that dynamical systems are a subclass of a largest class named
control systems. Indeed, a control system can be interpreted as a parameterized family of
dynamical systems ̇ = (, ) where for each fixed value of u, :   = (, ) is a vector

field. When u = 0, we rediscover dynamical systems. Poincare was the first to address the
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problem of linearization for dynamical systems around an equilibrium point. He indeed

showed that when ∂∂ 0 =  is a matrix whose spectrum  = (1,⋯, ) is not resonant, then

new coordinates  = () exist where the dynamical system takes the linear form ̇ =  . We
recall that a spectrum  = (1,⋯, ) is called resonant if there are nonnegative integers1,⋯, with 1 +⋯+    ≥ 2 such that 11 +⋯+ =  for some 1 ≤    ≤  . He

further showed that, when resonances are present, the dynamical system can be put in a
normal form

(12)

where  is a vector constant whose jth-component is zero when there is no
resonance of order m associated to the eigenvalue λj.

Notations: For a vector field () = (1  ,⋯,   ) on  and a function h in x-coordinates= (1,⋯, ), we denote by

( ) ( ) ( ) ( )∂ ∂ ∂
= + + +
∂ ∂ ∂

 1 2
1 2

f n
n

h h hh x f x f x f x
x x x (13)

the Lie derivative of h along the vector field f, and recursively, we define the Lie-derivatives

( ) ( ) ( ) ( )−= = = … ∞    10 , , 1, 2, , j j
f f f fh x h x h x h x j (14)

For another vector field () = (1  ,⋯,   ) on , we define the Lie bracket [,   ] between

the two vector fields as a new vector field

( ) ( ) ( ) ( ) ( )( )  = − −     1 1, , ,f g f n g nf g x g x f x g x f x (15)

and, for simplicity, we denote such vector field as 𝀵𝀵𝀵𝀵  = ,     , and recursively, we

define

( ) ( ) ( ) ( )− = = = … ∞ 
10 , , , 1, 2, ,j j

f f fad g x g x ad g x f ad g x j (16)

Let be a local diffeomorphism with Φ 0 = 0, giving rise to new coordinates =  Φ  . The vector field f is transported by Φ into a new vector field, denoted z ≜ Φ*(), whose components  z = 1  ,…,    are given for all 1 ≤ j ≤ n by
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(17)

Below we recall the method we provided in [25] to solve the problem of straightening a vector
field around a nonsingular point. Without loss of generality, we will assume the nonsingular
point to be .

Theorem 2: Let  = 1,…,     be aanalytic vector field on and   = 1() .

i. Define  =  Φ   by its components as following

(18)

The local diffeomorphism Φ satisfies Φ*   = 0,…, 0, 1, 0, …, 0 ≜ ∂∂ .

ii. The local diffeomorphism  = Ψ() whose components are given by

(19)

is the inverse of  = Φ(x), that is, Φ Ψ z = z and Ψ Φ  =  such that ∂Ψ∂ = (Ψ  ).
The series proposed above are not Taylor series or series in the variable xk (resp. zk). Indeed,

the coefficients ℒ𑨒𑨒 𑨒𑨒 1    and ℒ𑨒𑨒 𑨒𑨒 1    are functions that depend on the variables xk

(resp. zk). Above, the notation ∂ ℎ means the ith-derivative of h about the variable zk. We refer

to [tall-adjm] for more details and the generalization of Frobenius theorem to the straightening
of a set of vector fields as stated below.

Theorem 3: Let 1  ,…,    be a set of analytic vector fields on  such that the distribution  = 1  ,…,   1 is involutive and of maximal rank m ≤ n in a neighborhood  of

the origin. There exist an open neighborhood  and a change of coordinates  = Φ()
such that Φ*   = ∂∂  for all  and  = 1,   …,    .
We proposed a constructive way to find the diffeomorphism Φ through successive applications
of Frobenius theorem.
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3. Control systems and feedback linearization

Let us reconsider the control-affine nonlinear system with outputs

(20)

The input-output feedback linearization as stated earlier is to find new coordinates system
 and new inputs  under which the system Σ has linear

dynamics and linear outputs. This problem has been connected directly to the notion of relative
degree. Indeed, one needs to differentiate the outputs repeatedly until the inputs appear.

Formally, if there exists  > 0 such that  for all 1   ≤    ≤  and0   ≤    ≤    − 2 with  for some j, we say that γi is the relative degree of the

jth output. In other words, γi is the smallest integer k for which the kth-derivative () of

yidepends explicitly on the input u. The set 1,⋯,   is called vector relative degree associated

to the outputs of Σ. It is well known that taking  for 1 ≤  ≤    and completing

the coordinates with  + 1 .⋯,  , the system can be expressed into m-subsystems of the form

( ) ( ) ( )

( ) ( ) ( )
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y z

(21)

for 1 ≤ i ≤ m with 1 +⋯+  =  . Thus, the system becomes a connection between a linear

and nonlinear systems and this has been known as partial feedback linearization. A necessary
and sufficient condition for exact linearization, that is, for a multi-input multi-output system
to be transformed into a chain of integrators
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is that it has a vector relative degree 1,⋯,   such that 1 +⋯+  =  .
Obviously, different outputs will lead to different cascade systems: A system can be linearized
with respect to some outputs and fail to be linearizable with respect to a different set of outputs.
If we consider a control-affine system without outputs, then the linearization problem
(Problem 2) is equivalent to solving a system of partial differential equation. Indeed, two affine
control systems

(23)

and

(24)

are feedback equivalent via static state transformations  = Φ() and feedback  =   +   
if and only if

(25)

In particular, the control-affine system Σ is static state feedback equivalent to a controllable
linear system if and only the system of partial differential equations

(26)

is solvable in Φ, α, and β with Φ a diffeomorphism around the origin, and β invertible. A
geometric characterization of feedback linearization was obtained by Jakubczyk and Respon-
dek [4] and independently by Hunt and Su [5]

Theorem 4: The system Σ is feedback equivalent to a controllable linear system Λ around an
equilibrium point x0 = 0 if and only if the following two conditions are satisfied
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(F1) 

(F2) 

Above  stand for distributions defined recursively by

( ) ( ) ( ) ( ){ }−= … ≤ ≤ 1 , , , , 1j j
i f i f ix span g x ad g x ad g x i m (27)

and  as the distribution spanned by all Lie brackets of the two distributions. The first
condition (F1) stands for the rank condition while the second (F2) is referred as the involutivity
condition.

Thus, to find the largest linear subsystem, the outputs need not to be predefined.

In this paper, we consider only systems without outputs and look to find such largest linear
subsystem. First, an affine system  is said to be partially
static state feedback linearizable if there exists a coordinate system  = (1,⋯, ) and feedback

in which the system takes the form

(28)

where 1 = (1,⋯, ) and 2 =  + 1,⋯,  .
Remark 1: Notice that the form above is also equivalent to

( ) ( )


= +


 = +





1
1

2
1 2 1 2, ,

dz Az Bv
dt

dz f z z g z z v
dt

(29)

by reordering the variables accordingly. In the sequel, we will refer more to the former form.
The following result can be found in [17]

Theorem 5: Consider a control affine system Σ.

i. If Σ is locally state space equivalent at x0 to a partially linear system Λp then dim
 in a neighbourhood of x0.

ii. Assume that Σ satisfies dim  and that dim  in a neighbourhood of x0.
Then, Σ is locally state space equivalent at x0 to a partially linear system Λp, such that
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the dimension of the linear subsystem is dim2 = 𑨒𑨒 𑨒𑨒 𑨒𑨒, and moreover, the linear
subsystem is controllable.

We will provide a step-by-step procedure to write the system as a cascade of a nonlinear
subsystem and a linear subsystem with highest dimension. Notice that a geometrical approach
has been used in [14, 16] where the characterization depends on controllability indices
associated to some lie algebras.

4. Algorithm for partial feedback linearization

We first consider a single-input control system

(30)

and we assume that its linear approximation ̇ = 𝀵𝀵 + 𝀵𝀵𝀵𝀵 is controllable with 𝀵𝀵 = ∂∂(0) and𝀵𝀵 = (0). Without loss of generality, we can also assume that the pair (F, G) is in Brunovsky
canonical form.

Step 0: We apply the Frobenius theorem to find coordinates  = φ() that rectifies the vector
field g, that is, such that φ*  = 0,…, 0, 1 ≜  and transform the system as

(31)

Completing this step with the push-forward transformation

( ) ( )

− −

−

− − −

 =


 =
 =
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∂ ∂ ∂
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  




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1 1

1 1

1

1 1 1
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1

( )
n n
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n n n
n

n n

z y

z y
z f y

f f f
v f y f y u

y y y

(32)

the system is transformed as

(33)

where
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Step 1: We reset the original notation, that is, replace the variable z by x, and    by   . Then,

we decompose    as following
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If 𑨒𑨒 𑨒𑨒 2𑨒𑨒 1,⋯, 𑨒𑨒 ≠ 0, then the algorithm stops. This means that the dimension of the largest

linear subsystem is 2. In case 𑨒𑨒 𑨒𑨒 2𑨒𑨒 1,⋯, 𑨒𑨒 =0, we define 𑨒𑨒 the largest j such that𑨒𑨒 1,⋯, 𑨒𑨒 ≠ 0. If 𑨒𑨒 1,⋯, 𑨒𑨒 = 0 for all 1 ≤  ≤ 𑨒𑨒 𑨒𑨒 2, then we put 𑨒𑨒 = 0. We then apply the

Frobenius theorem to straighten the vector field
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(36)

by defining coordinates  = φ() such that φ*  = 0,…, 0, 1, 0 ≜ 𝀵𝀵𝀵𝀵. Notice that, because g

depends only on the variables 1,⋯, 𑨒𑨒 𑨒𑨒 1, so do the first (n–1) components of the diffeomor-

phism φ. Thus, the system is transformed as
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(37)

We thus apply the push-forward transformation
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to bring the system into the form

(39)

or in much compact form

(40)

with  = max , 1 ≤  ≤  𑩤𑩤 2,  1,⋯,  ≠ 0 . Moreover, and more importantly, we also

have

(41)

Nonlinear Systems - Design, Analysis, Estimation and Control34



(37)

We thus apply the push-forward transformation

( )

( ) ( )

( ) ( )

− −

− − −

− − −
−

− −

−
−

 =


 =


=


∂ ∂ ∂ = + + + ∂ ∂ ∂


∂ ∂ ∂ = + + + ∂ ∂ ∂









 

 

1 1

2 2

1 2 1 1

1 1 1
1 2

1 2 1

1 1
1 1

, , 
n n

n n n

n n n
n n n

n n

n n n
n

n n

z y

z y
z f y y

z z z
z f y f y y

y y y
z z z

v f y f y u
y y y

(38)

to bring the system into the form

(39)

or in much compact form

(40)

with  = max , 1 ≤  ≤  𑩤𑩤 2,  1,⋯,  ≠ 0 . Moreover, and more importantly, we also

have

(41)

Nonlinear Systems - Design, Analysis, Estimation and Control34

Remark 2

1. Please notice that the vector field    contains all nonlinearities including terms that

are linear in zn but whose coefficient depends on the variables 1, …,  𑨒𑨒 1 .
2. The Frobeinus theorem applied to the vector field g could have been restricted by taking

the first  components of vector field g equal zero. This is due to the fact that, by applying

the push-forward transformation above, we regenerate those terms as yn depends on all
variables 1, …,  .

Step 2: We reset the original notation, that is, replace the variable z by x. Then, we decompose   as following

(42)

If  𑨒𑨒 3 1,⋯,  ≠ 0, then the dimension of the largest linear subsystem is less or equal to 3.

We denote by  𑨒𑨒 1 the largest j such that  1,⋯,  ≠ 0. If  1,⋯,  = 0 for all1 ≤  ≤  𑨒𑨒 3, then we put  𑨒𑨒 1 = 0. We define  𑨒𑨒 1 = max  𑨒𑨒 1,     as the updated

largest component that cannot be cancelled or, equivalently, such that the dimension of the
largest linear subsystem is less or equal to  𑨒𑨒  𑨒𑨒 1.

We then apply the Frobenius theorem to straighten the vector field
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 
 
 
 =
 
 
 
 
 
 









1 1 2

2 1 2

3 1 2

, , 
, , 

, , 
1
0
0

n

n

n n

g x x
g x x

g x g x x
(43)

Feedback and Partial Feedback Linearization of Nonlinear Systems: A Tribute to the Elders
http://dx.doi.org/10.5772/64689

35



by defining coordinates  = φ() such that φ*  = 0,…, 0, 1, 0, 0 ≜ 2. Notice that, because g

depends only on the variables 1,⋯, 𑨒𑨒 𑨒𑨒 2, so do the first (𑨒𑨒 𑨒𑨒 2) components of the diffeomor-

phism φ. Thus, the system is transformed as

(44)

We thus apply the push-forward transformation
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( ) ( )

( ) ( )

( ) ( )
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(45)

to bring the system into the form
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to bring the system into the form
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(46)

or in much compact form

(47)

with 𑨒𑨒 𑨒𑨒 1 0 = 𑨒𑨒 0 = 0 and either 
∂𑨒𑨒 𑨒𑨒 1𑨒𑨒∂𑨒𑨒 ≠ 0 or 

∂𑨒𑨒 𑨒𑨒 1𑨒𑨒 𑨒𑨒 1∂𑨒𑨒 𑨒𑨒 1 ≠ 0.

General step: Let us assume that the system has been transformed such that it takes the form

(48)

where  + 1 0 = 0 for all 𑩤𑩤 𑩤𑩤  𑩤𑩤 𑨒𑨒 𑨒𑨒 1 and 
∂ + 1∂ + 1 ≠ 0 for some ,   𑩤𑩤 𑩤𑩤  𑩤𑩤 𑨒𑨒 𑨒𑨒 1 with ρ being

the largest nonzero component among those of the vector fields 𑩤𑩤 + 1,…, 𑨒𑨒. We will write

(49)
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Then, we decompose the vector field f as follows
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





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(50)

If the largest nonzero component of the vector field () is less or equal to ρ, then move to the
next step. If that largest component is greater than ρ, then update ρ as this component and
apply Frobenius theorem to straighten the vector field g(x) and follow by a push-forward
transformation. Any time in the process the value of  = 𑨒𑨒 𑨒𑨒 2, the algorithm will stop; if not
until, we reach the last step.

5. Examples

In this section, we consider few examples to illustrate the partial feedback linearization
algorithm.

Example 1: Consider a simplified model of a VTOL with dynamics [29] (see Figure 1).

Figure 1. Forces acting on a VTOL aircraft.

Nonlinear Systems - Design, Analysis, Estimation and Control38



Then, we decompose the vector field f as follows

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

− −

− −

− − − −−

    
    
    
    
    
    = + +
    
    
    
    

   
   

  

  

  

  

 

*

1 1 1 1 1 1 1 1

2 1 1 2 1 1 2 1

2
1 1 2 1 1 2 12

, , , , , , 
, , , , , , 

, , , , , , 
1 00

0 00

k k k

k k k

k kk k k k kk

f x x g x x G x x
f x x g x x G x x

f x x xf x x g x x G x x














(50)

If the largest nonzero component of the vector field () is less or equal to ρ, then move to the
next step. If that largest component is greater than ρ, then update ρ as this component and
apply Frobenius theorem to straighten the vector field g(x) and follow by a push-forward
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Figure 1. Forces acting on a VTOL aircraft.
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(51)

where M, J, l, and g denote the mass, moment of inertia, distance between wingtips and
gravitational acceleration. The control inputs are the thrust T, and the rolling moment due to
the torque F, whose direction forms a fixed angle α with the horizontal body axis. The position
of center mass and the roll angle with respect to the horizon are (x,y), and θ, while (̇,   ̇) and
θ˙ stand for their respective velocities.

Let 1 = ,   2 = ̇,   3 = ,   4 = ̇,   5 = ,   6 = ̇ with control inputs

α=1
2 coslFu

J
(52)

and

(53)

The system rewrites in the form

(54)

with

(55)

where

( ) αη
 −

=   
 

2 2
3 3

3
3

 tan
cos

cos x sin xJx
Ml x

(56)

We showed in [25] that the change of coordinates
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( )

( )η

ϕ
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2 2 4 3 6 3

3 3

4 4
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6 6

tan
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z x x x x x
z xz x
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(57)

transformed the system into  where

(58)

The distribution generated by g1 and g2 is involutive and constant. A simple feedback

=− − + − + + = − − + +2 2
1 1 3 5 6 6 1 2 2 4 5 4 5 2 2 2 2  and v vx x x x x u u x x x x u (59)

transforms the system so as

(60)

We then decompose the vector field f as

( )
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(61)

Here, we rectify the two vector fields (affine in x3 and x5) and find the change of coordinates

Nonlinear Systems - Design, Analysis, Estimation and Control40



( )

( )η

ϕ

 =
 = − −
 == 

=
 =


=



1 1

2 2 4 3 6 3

3 3

4 4

5 5

6 6

tan
z x

z x x x x x
z xz x
z x
z x
z x

(57)

transformed the system into  where

(58)

The distribution generated by g1 and g2 is involutive and constant. A simple feedback

=− − + − + + = − − + +2 2
1 1 3 5 6 6 1 2 2 4 5 4 5 2 2 2 2  and v vx x x x x u u x x x x u (59)

transforms the system so as

(60)

We then decompose the vector field f as

( )

      + − + + −
      

− −      
      
      = = + +
      
      
      

      + − + −      

2 2
41 2 4 4 5 1 2 4

2 2
3 6 6

3 5
5

2 2
4 5 6 4 5 6

0 2  2
1 0
0 00 0
    
0 1 0
0 00 0
0 0

xx x x x x x x x
x x x

f x x x
x

x x x x x x

(61)

Here, we rectify the two vector fields (affine in x3 and x5) and find the change of coordinates

Nonlinear Systems - Design, Analysis, Estimation and Control40

 = −


=
 =


=
 =


=

2
1 1 4
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to transform the system into

 = +
 = −
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
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1 1 2
2

2 3 6
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5 5
2

6 4 6 5

y y y
y y y

y u
y y
y u

y y y y

(63)

If we apply the push-forward transformation given by 3 = 3 − 62,    = ,    𑩠𑩠 3, and the

feedback 1 = 1 − 26 4 + 52 − 6 ,   2 = 2, we take the system into

(64)

with ρ = 4 being the dimension of the largest linear subsystem.
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Abstract

Quantum states of a particle subjected to time‐dependent singular potentials in one‐
dimension are investigated using invariant operator method and the Nikiforov‐Uvarov
method. We consider the case that the system is governed by two singular potentials
which are the Coulomb potential and the inverse quadratic potential. An invariant
operator that is a function of time has been constructed via a fundamental mechanics.
This invariant operator is transformed to a simple one using a unitary operator, which
is a time‐independent invariant operator. By solving the Schrödinger equation in the
transformed system, analytical forms of exact eigenvalues and eigenfunctions of the
invariant  operator  are  evaluated in  a  simple  elegant  manner  with the help of  the
Nikiforov‐Uvarov method. Eventually, the full wave functions in the original system
(untransformed system) are obtained through an inverse unitary transformation from
the wave functions in the transformed system. Quantum characteristics of the system
associated with the wave functions are addressed in detail.

Keywords: time‐dependent Hamiltonian systems, singular potentials, unitary trans‐
formation, wave function, Schrödinger equation

1. Introduction

After a seminal work of Lewis [1] for a quantum time‐dependent harmonic oscillator, much
attention has been paid to investigating quantum properties of time‐dependent Hamiltonian
systems (TDHSs). Any type of the time‐dependent harmonic oscillator is a good example of
TDHSs, and the study of its analytical quantum solutions requires particular mathematical
techniques. The research topic of TDHSs has been gradually extended to more complicated
systems beyond the one‐dimensional time‐dependent harmonic oscillators which are relatively
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simple.  The analytical  forms of quantum wave functions of  the time‐dependent coupled
oscillators have been reported by several researchers [2–4]. The system associated with a class
of time‐dependent singular potentials was investigated [5–10] and some of the corresponding
results were applied to study the problem of a two‐ion trap within a binding potential [7]. A
TDHS that is described by a Hamiltonian that involves (1/) + (1/) term, which in fact is
necessary for the description of radial equation for a central force system, was also studied [11–
13].

In this chapter, quantum features of a time‐dependent singular potential system [14] will be
investigated. The singular potentials that will be considered here are the combination of the
inverse quadratic potential and the Coulomb potential. Singular potentials not only can be
applied for describing many actual physical systems but can also serve as mathematical models
for quantum field theory and elementary particle theory. The research interest for singular
potentials was first shown in a context of relativistic mechanics. Various applications of the
singular potentials include interatomic or intermolecular descriptions of a molecular force, the
scattering problem of elementary particles, and the interaction of relativistic particles such as
quark‐antiquark bound states [14–16].

It was reported by Plesset [17] that there is a difficulty in the derivation of a physically accepted
solution for a relativistic Coulomb‐like singular potential. To overcome such difficulty, the
invariant operator method together with a unitary transformation method will be used in this
chapter. These methods are useful for investigating the mechanics of TDHSs, like the case that
will be represented here. For a TDHS, the eigenstates of the invariant operator are the same as
the Schrödinger solutions of the system when we neglect the phase factors of the wave
functions [18]. The unitary transformation with a suitable operator allows us to manage a
certain complicated system in a transformed space that requires relatively simple mathemat‐
ical treatments for the system.

2. Singular potential system

Let us consider a one‐dimensional quantum system that is described by a time‐dependent
Hamiltonian of the form

m
æ ö

= + -ç ÷
è ø

2 0
2

1 ( )( ) ,
2 ( )

f Z tH t p
t xx

(1)

where  is the position operator and  = − ℏ∂/ ∂, (), and () are time‐dependent
coefficients with () > 0, and 0 is a constant. This system is defined in the half space  𑩥𑩥 0.

The system described by Eq. (1) is different from that in Ref. [9], and a particular case of this
type of Hamiltonian system can be found in Ref. [10]. The quantum problem of this Hamilto‐
nian system is very difficult due to the explicit time dependence of parameters, and we are not
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always possible to derive exact quantum solutions. We will find the condition for solvability
of this quantum system in the subsequent development.

As is well known, a useful method for a quantum mechanical treatment of the system in the
situation where there exist time‐dependent parameters is to use an invariant operator method
[1, 18]. An invariant of the system that is described by a time‐dependent Hamiltonian () is
constructed from the Liouville‐von Neumann equation of the form

¶
= + =
¶ h

1 [ , ] 0 .dI I I H
dt t i

(2)

As represented in this equation, the whole time derivative of the invariant operator  should
be zero because of its definition. Let us suppose that the exact invariant has the form

ha g b
æ ö

= + + + + -ç ÷
è ø

2 2 0
2

( )( , , ) ( ) ( ) ( )( ) ,
f tI x p t t x t p t xp px

xx
(3)

where (), (), (), and () are time‐dependent coefficients that will be derived afterward
[see Eqs. (5)–(8)]. In the case of the counterpart classical system,  and  are no longer operators,
and as a consequence the expression  +  given in Eq. (3) can be reduced to 2.

The substitution of Eqs. (1) and (3) into the Liouville‐von Neumann equation represented in
Eq. (2) gives the following equations for the coefficients:
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= - =
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(4)

By solving these equations, it is possible to determine the time‐dependent coefficients. Hence,
as a result of a minor evaluation, we have

a a= 0( ) ,t (5)

b b a
m

= - ò0 0 0

1( ) ' ,
( ')

t
t dt

t (6)

g g= -0( ) 2 ( ) ,t F t (7)
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01/ 2
0
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where
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with an auxiliary condition for the solvability of the system, which is that the time depend‐
ence of () is chosen in a way that

h
g

g m
-= - 1/ 20

01/ 2
0

( ) [ 2 ( )] .
2 ( )

Z t F t
t (10)

Now, notice that Eq. (3), with the coefficients given in Eqs. (5–8), is the exact invariant operator.
If we express the eigenvalue equation of the invariant operator as ()() = (), the

eigenvalues  are time constants, due to the invariant operator not varying with time. Then

we can specify the eigenstates () for the operators () for overall range of time .
By denoting the wave functions as (), the Schrödinger equation is expressed in the formℏ∂()/ ∂ = ()() . For the TDHS, the wave functions are represented in terms of the

eigenstates of the invariant operator, such that () = exp[𝀵𝀵()]() where 𝀵𝀵() are global

phases.

Considering the Schrödinger equation, we can easily verify that 𝀵𝀵() satisfy the relation [18]:

q
j jæ ö¶

= á - ñç ÷¶è øh
( )

( )| | ( ) .n
n n

d t Ht i t
dt t

(11)

Hence, if the eigenstates of the invariant operator, (), are completely known, the corre‐

sponding global phases 𝀵𝀵() are easily obtained by solving Eq. (11). Concerning this quantum

formulation of the system based on the invariant operator, the solvability of () for a TDHS

is noticeable.

The strategy of our manipulation for deriving exact quantum solutions of the system is that
we transform the operator () into a simple form 0 which is not a function of time. Then, it is

easy to derive the eigenstates of 0 associated with the transformed system because 0 does not

depend on time. The corresponding quantum results in the transformed system will be
inversely transformed to the original system (untransformed system). This may lead to derive
exact eigenfunctions in the original system.

For this purpose, let us first perform a unitary transformation of the eigenstates such that
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where  is a time‐dependent unitary operator given by [8]:
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The transformation of the invariant operator using this operator can be performed in a

straightforward way with Eq. (3), 0 = −1, leading to
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Here, the transformed invariant operator 0 does not depend on time as expected. Through

this procedure, we can represent the eigenvalue equation for the transformed invariant
operator as
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If we put 0 = 00 − 02, it is possible to analyze the system in three cases which are 0 > 0,0 < 0, and 0 = 0. Among them, the only solvable case is the third one. Hence, let us see the

system with 0 = 0 from now on. In this case, the invariant quantity reduces to

h
g
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f
I p

xx
(16)

Then, the eigenvalue equation given in Eq. (15) becomes
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where
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with the condition that  < 0.

3. Spectrum of quantized solutions

In this section, we consider the solvable case that 0 = 0. To evaluate the differential equation

given in Eq. (17), we will use the Nikiforov‐Uvarov (NU) method [19, 20] that is introduced in
Appendix A. Using the transformation  = , Eq. (17) can be transformed into

n n k
æ öF - + +

- + F =ç ÷
è ø

2 2
2

2 2

( ) ( 1) ( ) 0.n
n n

d s a s s
ds s (19)

By comparing this equation with Eq. (A1) in the NU method of Appendix A, we get () = 0 ,() =  , and () = 2 𑨒𑨒 𑨒𑨒(𑨒𑨒 + 1) 𑨒𑨒 22 .
For further development of the theory, we introduce a function () as [see Eq. (12) of Ref. [21]]

s sP = ± - +%

2( ) ( ) ( ) ( ) ( ) ,s A s A s s k s (20)

where () = [′() 𑨒𑨒 ()]/2 . Here,  is determined from the fact that the discriminant
associated with this equation should be zero so that the expression inside the square root in
this equation can be rearranged as the square of a polynomial. From Eq. (20), we have four
possible values of () as [10, 22]
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(21)

where

k n k n= + + = - +2 2
1 22 ( 1 / 2) , 2 ( 1 / 2) .n nk a k a (22)

For the polynomial of () = () + 2(), 𝀵𝀵()/𝀵𝀵 takes a negative value [23] and
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k nP = - +( ) ,ns s (23)

with  = 2 . From the relation (see Appendix A)

l ¢= + P ( ) ,k s (24)

 can be expressed as

l k n= - +2 2 ( 1) .na (25)

For the case of 2 = 2 − 2( + 1/2) , we have [23]

l k= 2 .n nn (26)

Now, let us equate Eq. (25) with Eq. (26) such that

k k n= - +22 2 ( 1) .n nn a (27)

Then, by inserting the first and the second relations in Eq. (18) into the above equation, we
easily confirm that the eigenvalues are given in the form

h
n

g
-= - + +

h

2
20

2
0

( 1) ,
4nE n (28)

where  = 0, 1, 2,⋯. These are bound‐state eigenvalues satisfying the boundary conditions
[24]. This consequence agrees well with the report of Ref. [8] performed without using the NU
method. To find eigenfunctions, we first need to determine the weight function () in
Appendix A. Using Eq. (A5) in Appendix A and considering the condition in Eq. (23), we get() = exp( − 2)2 + 1 . Substituting this into Eq. (A6), we obtain the unnormalized values

of  as [ is defined in Eq. (A2).]:

n k+= 2 1( ) (2 ) ,n n nz x L x (29)

where 2 + 1 is the associated Laguerre polynomials [25] and  is the normalization factor.

Now, using Eq. (A7) in Appendix A, we find
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nk= -( ) exp( ) .n nu x x x (30)

Finally, regarding Eq. (A2) in Appendix A for bound states, the eigenfunctions of the invariant0, that are finite for all , have the form

n n
n k k+F = - 2 1( ) exp( ) (2 ) .n n n n nx C x x L x (31)

where  is the normalization constant. By determining the exact formulae of  from the well‐

known condition

n n

¥
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the corresponding normalized wave functions are found to be
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Because the eigenstates of (, , ) are given by 𝀵𝀵(, ) = −1𝀵𝀵(), the normalized wave

functions are evaluated as

n n n
n

n

n

n
n

y q

h h
g n n g

b h
g g n

h q
g n

-

+

+

+

= F

é ù é ù
= ê ú ê ú+ + + +ê ú ë ûë û

é ùé ù- -
´ ê úê ú + +ë û ë û

æ ö
´ ç ÷

+ +è ø

h h

h h

h

1

1/ 2 1

0
2 2 2

0

2
2

2 1
2

( , ) ( ) exp[ ( )]

! 1 ( )
2 ( 2 1)! ( 1) ( )

( ) ( )exp exp
2 ( ) 2 ( ) ( 1)

( ) exp[ ( )].
( ) ( 1)

n n n

n n

x t U x i t

n t
n n t

i t tx x x
t t n
tL x i t

t n

(34)

There still remains the problem of finding the phases 𝀵𝀵() which satisfy Eq. (11). By carrying

out the unitary transformation by means of (), Eq. (11) becomes
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Because the eigenstates of (, , ) are given by 𝀵𝀵(, ) = −1𝀵𝀵(), the normalized wave

functions are evaluated as
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There still remains the problem of finding the phases 𝀵𝀵() which satisfy Eq. (11). By carrying

out the unitary transformation by means of (), Eq. (11) becomes
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Then, with the help of Eq. (28), this equation can be easily evaluated and, consequently, we
obtain the phase factors in the form
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Now, by substituting Eq. (36) into Eq. (34), we find the exact nth‐order solutions of the
Schrödinger equation associated to the Hamiltonian (, , ) . Eq. (34) is the full wave
functions in the original system and agrees with the results of the report given in Ref. [8], which
is performed for a little different system using another method. The wave functions are
interpreted as probability amplitudes for finding the particle in the potential. These functions
are defined everywhere and possess general properties for physical meaning such as contin‐
uousness and infinite differentiability. On the basis of the wave functions, various quantum
properties of the system, such as expectation values of physical observables, energy eigen
spectrum, and the uncertainty relation, can be investigated.

Let us see for a particular case that () is given by [10]

m e= +0( ) (1 )t m t (37)

where 0 and  are positive real constants. In this case, Eq. (9) can be evaluated to be
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In this formula, we have used 0 = 02/0 according to the condition 0 = 0 (see Section 2). If

we substitute Eq. (38) in Eqs. (7) and (8), we have full expressions of () and (). By using() obtained in such a way, the integration given in Eq. (36) can be fulfilled, and this results
in

e
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Besides, Eq. (10) becomes

Analyzing Quantum Time‐Dependent Singular Potential Systems in One Dimension
http://dx.doi.org/10.5772/64007

53



h b e b
e

g e eg eg

-
é ùæ ö+

= - - +ê úç ÷ç ÷+ ê úè øë û

1/ 2

0 0 0

0 0 0 0 0 0

ln(1 )
( ) 1 2 1 ln(1 ) .

2 (1 ) 2
t

Z t t
m t m m

(40)

If we choose 0 = 00 and 0 = 2000 where 0 is a real constant, Eq. (40) reduces to

e e
=

+ - +
0( ) ,

(1 )[1 ln(1 )]
Z

Z t
t t (41)

within the time interval 0 ≤  < (𑨒𑨒 𑨒𑨒 1)/. Notice that Eq. (1) with Eqs. (37) and (41) is the
same as Eq. (1) of Ref. [10]. Hence, we can confirm that the system treated in Ref. [10] is a
particular case of a more general system that is studied in this chapter.

Figure 1. Time evolution of the phase 𝀵𝀵𝀵𝀵() for several different values of 𝀵𝀵. This is the case when () is given by

Eq. (37). We have used 0 = 1, 0 = 3, 0 = 1, 0 = 1, 𝀵𝀵 = 1, ℏ = 1, and  = 0.1.

Considering the relation given in Eq. (39), we have plotted the phase given in Eq. (36) in
Figures 1 and 2 as a function of time. From Figure 1, the increment of 𝀵𝀵𝀵𝀵() in time becomes
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smaller as the quantum number  increases. We can confirm from Figure 2 that the increment
of 𝀵𝀵() also becomes smaller as  increases.

Figure 2. Time evolution of the phase 𝀵𝀵() for several different values of , where () is given by Eq. (37). We

have used 0 = 1, 0 = 3, 0 = 1, 0 = 1, 𝀵𝀵 = 1, ℏ = 1, and  = 0.

4. Conclusion

The invariant operator method and unitary transformation method were used in order to
derive the quantum solutions of a time‐dependent singular potential system that is described
by the Hamiltonian given in Eq. (1). The quadratic invariant operator of the system has been
determined from the use of its definition as shown in Eq. (3). The wave functions that satisfy
the Schrödinger equation are given by multiplying the eigenstates () of the invariant

operator and the phase factors 𝀵𝀵() [see Eq. (34) with Eq. (12)]. By using the unitary operator,
the original invariant operator () which is a time function was transformed to a simple form0 that is not a function of time. The NU method was used to derive the eigenstates of 0. The

eigenstates of  were derived from the inverse transformation of the eigenstates of 0. The

phases of the system were also derived from a fundamental relation in the framework of the
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invariant operator theory. Through these procedures, the whole wave functions of the system
as well as the eigenvalues of the invariant operator were obtained as shown in Eq. (34).

During the derivation of quantum solutions of the system, no approximation or perturbation
methods were used. In fact, the merit of the invariant operator method for investigating
quantization problem of TDHSs is that the corresponding quantum results are exact [3, 4].
Several methods for numerical treatment of time‐dependent Schrödinger equations are
known. If we enumerate some of them, they are the finite difference time domain (FDTD)
method [26–31], the discretization method that takes advantage of the asymptotic behavior
correspondence (ABC) [32, 33], and the discrete local discontinuous Galerkin method [34]. In
particular, the FDTD method has been widely applied to obtain numerical solutions of
mechanical problems of dynamical systems including Maxwell‐Schrödinger equations for
electromagnetic fields [30, 31]. If the methods for deriving numerical solutions of the Schrö‐
dinger equation for singular potential systems would be known in the future, it will be possible
to compare our results developed in this chapter with them, leading to deepen the knowledge
on quantum characteristics of relevant systems.

Appendices

Appendix A: Summary of the Nikiforov‐Uvarov method

In this appendix, we introduce a useful method for solving Eq. (17) in the text, which is known
as the NU method. This is useful for deriving the solutions of the Schrödinger‐like second‐
order differential equations that play central roles in studying many important problems of
theoretical physics. We first start from an appropriate coordinate transformation  = () for
an arbitrary function  that satisfies the differential equation [19]:

t s
s s

¢¢ ¢+ + =
% %

2

( ) ( )( ) ( ) ( ) 0 ,
( ) ( )
s sg s g s g s
s s (A1)

where () and () are some polynomials which at most are the second degree, and () is a
polynomial of the first degree. A large part of special orthogonal polynomials [19] necessary
in developing physics can be represented in the form of Eq. (A1). By expressing

=( ) ( ) ( ) ,n n ng s u s z s (A2)

where () are appropriate functions that will be chosen depending on the system. Eq. (A1)

can be reduced into an equation of the following hypergeometric type [21]:

s t l¢¢ ¢+ + =( ) ( ) 0 ,n n n ns z s z z (A3)
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where () = () + 2() and  are constants given in the form [23]

l t s¢ ¢¢= - - -( ) ( 1) ( ) / 2.n n s n n s (A4)

Notice that the derivative of () should be negative, while  is obtained from a particular

solution of the form () = () which is a polynomial of degree .

In terms of the weight function () that satisfies the condition [19]

s r
t r- =

[ ( ) ( )] ( ) ( ) 0 ,d s s s s
ds

(A5)

the hypergeometric‐type function () is given by [21]:

s rr-= 1 [ ( ) ( )]( ) ( ) ,
n n

n n n

d s sz s C s
ds

(A6)

where  is the normalization constant. This is known as the Rodrigues relation. Notice that

Eq. (A5) is obtained from Eq. (20).

The relationship between  and  introduced in the expression of Eq. (20) is  =  𑨒𑨒 ′().
Regarding this point, an appropriate formula for  can be evaluated from the condition [21]

¢ - W =( ) ( ) ( ) 0 ,u s s u s (A7)

where () = ()/() . For more details of the NU method, see Refs. [10, 19–23].

Author details

Salah Menouar1 and Jeong Ryeol Choi2*

*Address all correspondence to: choiardor@hanmail.net

1 Laboratory of Optoelectronics and Compounds (LOC), Department of Physics, Faculty of
Science, University of Ferhat Abbas Setif 1, Algeria

2 Department of Radiologic Technology, Daegu Health College, Yeongsong‐ro, Buk‐gu, Dae‐
gu, Republic of Korea

Analyzing Quantum Time‐Dependent Singular Potential Systems in One Dimension
http://dx.doi.org/10.5772/64007

57



References

[1] Lewis,  H.  R.  Jr.  Classical  and  quantum  systems  with  time‐dependent
harmonic‐oscillator‐type  Hamiltonians.  Phys.  Rev.  Lett.,  Vol.  18,  No.  13,  510–
512  (1967).

[2] Abdalla, M. S. Quantum treatment of the time‐dependent coupled oscillators. J. Phys.
A: Math. Gen., Vol. 29, No. 9, 1997–2012 (1996).

[3] Menouar, S., Maamache, M. & Choi, J. R. An alternative approach to exact wave
functions for time‐dependent coupled oscillator model of charged particle in variable
magnetic field. Ann. Phys., Vol. 325, No. 8, 1708–1719 (2010).

[4] Menouar, S., Maamache, M. & Choi, J. R. The time‐dependent coupled oscillator model
for the motion of a charged particle in the presence of a time‐varying magnetic field.
Phys. Scr., Vol. 82, No. 6, 065004(1–7) (2010).

[5] Dodonov, V. V., Malkin, I. A. & Manko, V. I. Even and odd coherent states and excitations
of a singular oscillator. Physica, Vol. 72, No. 3, 597–615 (1974).

[6] Choi, J. R. & Gweon, B. H. Operator method for a nonconservative harmonic oscillator
with and without singular perturbation. Int. J. Mod. Phys. B, Vol. 16, No. 31, 4733–4742
(2002).

[7] Dodonov, V. V., Man'ko, V. I. & Rosa, L. Quantum singular oscillator as a model of a
two‐ion trap: an amplification of transition probabilities due to small‐time variations
of the binding potential. Phys. Rev. A, Vol. 57, No. 4, 2851–2858 (1998).

[8] Menouar, S., Maamache, M., Saadi, Y. & Choi, J. R. Exact wavefunctions for a time‐
dependent Coulomb potential. J. Phys. A: Math. Theor., Vol. 41, No. 21, 215303(1–11)
(2008).

[9] Menouar, S., Maamache, M., Choi, J. R. & Sever, R. On the quantization of one‐
dimensional nonstationary Coulomb potential system. J. Phys. Soc. Japan, Vol. 81, No.
6, 064003(1–5) (2012).

[10] Menouar, S. & Choi, J. R. Quantization of time‐dependent singular potential systems
in one‐dimension by using the Nikiforov‐Uvarov method. J. Korean Phys. Soc., Vol. 67,
No. 7, 1127–1132 (2015).

[11] Choi,  J.  R.  &  Oh,  J.  Y.  Comparison  of  corrected  wave  functions  associated
to  two  different  approaches  for  the  time‐dependent  Hamiltonian  systems
involving  (1/x)p  +  p(1/x)  term.  Int.  J.  Theor.  Phys.,  Vol.  46,  No.  10,  2591–
2598  (2007).

[12] Choi, J. R. Exact wave functions of time‐dependent Hamiltonian systems involving
quadratic, inverse quadratic, and (1/x)p + p(1/x) terms. Int. J. Theor. Phys., Vol. 42, No.
4, 853–861 (2003).

Nonlinear Systems - Design, Analysis, Estimation and Control58



References

[1] Lewis,  H.  R.  Jr.  Classical  and  quantum  systems  with  time‐dependent
harmonic‐oscillator‐type  Hamiltonians.  Phys.  Rev.  Lett.,  Vol.  18,  No.  13,  510–
512  (1967).

[2] Abdalla, M. S. Quantum treatment of the time‐dependent coupled oscillators. J. Phys.
A: Math. Gen., Vol. 29, No. 9, 1997–2012 (1996).

[3] Menouar, S., Maamache, M. & Choi, J. R. An alternative approach to exact wave
functions for time‐dependent coupled oscillator model of charged particle in variable
magnetic field. Ann. Phys., Vol. 325, No. 8, 1708–1719 (2010).

[4] Menouar, S., Maamache, M. & Choi, J. R. The time‐dependent coupled oscillator model
for the motion of a charged particle in the presence of a time‐varying magnetic field.
Phys. Scr., Vol. 82, No. 6, 065004(1–7) (2010).

[5] Dodonov, V. V., Malkin, I. A. & Manko, V. I. Even and odd coherent states and excitations
of a singular oscillator. Physica, Vol. 72, No. 3, 597–615 (1974).

[6] Choi, J. R. & Gweon, B. H. Operator method for a nonconservative harmonic oscillator
with and without singular perturbation. Int. J. Mod. Phys. B, Vol. 16, No. 31, 4733–4742
(2002).

[7] Dodonov, V. V., Man'ko, V. I. & Rosa, L. Quantum singular oscillator as a model of a
two‐ion trap: an amplification of transition probabilities due to small‐time variations
of the binding potential. Phys. Rev. A, Vol. 57, No. 4, 2851–2858 (1998).

[8] Menouar, S., Maamache, M., Saadi, Y. & Choi, J. R. Exact wavefunctions for a time‐
dependent Coulomb potential. J. Phys. A: Math. Theor., Vol. 41, No. 21, 215303(1–11)
(2008).

[9] Menouar, S., Maamache, M., Choi, J. R. & Sever, R. On the quantization of one‐
dimensional nonstationary Coulomb potential system. J. Phys. Soc. Japan, Vol. 81, No.
6, 064003(1–5) (2012).

[10] Menouar, S. & Choi, J. R. Quantization of time‐dependent singular potential systems
in one‐dimension by using the Nikiforov‐Uvarov method. J. Korean Phys. Soc., Vol. 67,
No. 7, 1127–1132 (2015).

[11] Choi,  J.  R.  &  Oh,  J.  Y.  Comparison  of  corrected  wave  functions  associated
to  two  different  approaches  for  the  time‐dependent  Hamiltonian  systems
involving  (1/x)p  +  p(1/x)  term.  Int.  J.  Theor.  Phys.,  Vol.  46,  No.  10,  2591–
2598  (2007).

[12] Choi, J. R. Exact wave functions of time‐dependent Hamiltonian systems involving
quadratic, inverse quadratic, and (1/x)p + p(1/x) terms. Int. J. Theor. Phys., Vol. 42, No.
4, 853–861 (2003).

Nonlinear Systems - Design, Analysis, Estimation and Control58

[13] Menouar, S., Maamache, M., Bekkar, H. & Choi, J. R. Gaussian wave packet for time‐
dependent Hamiltonian systems involving quadratic, inverse quadratic, and (1/x)p +
p(1/x) terms. J. Korean Phys. Soc., Vol. 58, No. 1, 154–157 (2011).

[14] Frank, W. M., Land, D. J. & Spector, R. M. Singular potentials. Rev. Mod. Phys., Vol. 43,
No. 1, 36–96 (1971).

[15] Yoshida, A. Ultra‐relativistic Hamiltonian with various singular potentials. arXiv:hep‐
th/9908145v1 (1999).

[16] Ichinose, T. On three magnetic relativistic Schrödinger operators and imaginary‐time
path integrals. Lett. Math. Phys., Vol. 101, No. 3, 323–339 (2012).

[17] Plesset, M. The Dirac electron in simple fields. Phys. Rev., Vol. 41, No. 3, 278–290 (1932).

[18] Lewis, H. R. Jr. & Riesenfeld, W. B. An exact quantum theory of the time‐dependent
harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field.
J. Math. Phys., Vol. 10, No. 8, 1458–1473 (1969).

[19] Nikiforov, A. F. & Uvarov, V. B. Special Functions of Mathematical Physics. Birkhäuser
Verlag Basel, Germany, 1988.

[20] Berkdemir, C. Application of the Nikiforov‐Uvarov method in quantum mechanics, in
Theoretical Concepts of Quantum Mechanics, M. R. Pahlavani (Ed.), InTech, Rijeka,
2012.

[21] Yacsuk, F., Berkdemir, C. & Berkdemir, A. Exact solutions of the Schrödinger equation
with non‐central potential by the Nikiforov‐Uvarov method. J. Phys. A: Math. Gen.,
Vol. 38, No. 29, 6579–6586 (2005).

[22] Ikhdair, S. M. & Sever, R. Polynomial solution of PT‐/non‐PT‐symmetric and non‐
Hermitian generalized Woods‐Saxon potential via Nikiforov‐Uvarov method. Int. J.
Theor. Phys., Vol. 46, No. 6, 1643–1665 (2007).

[23] Ikhdair, S. M. & Sever, R. Polynomial solution of non‐central potentials. arXiv:quant‐
ph/0702186v1 (2007).

[24] Liboff, R. L. Introductory Quantum Mechanics, 4th ed. Addison Wesley, San Fransisco,
CA, 2003.

[25] Erdély, A. Higher Transcendental Functions, Vol. II, McGraw–Hill, New York, 1953.

[26] Bigaouette, N., Ackad, E. & Romunno, L. Nonlinear grid mapping applied to an FDTD‐
based, multi‐center 3D Schrödinger equation solver. Comput. Phys. Commun., Vol. 183,
No. 1, 38–45 (2012).

[27] Moxley III, F. I., Zhu, F. & Dai, W. A generalized FDTD method with absorbing
boundary condition for solving a time‐dependent linear Schrödinger equation. Am. J.
Comput. Math., Vol. 2, No. 3, 163–172 (2012).

Analyzing Quantum Time‐Dependent Singular Potential Systems in One Dimension
http://dx.doi.org/10.5772/64007

59



[28] Sudiarta, I. W. & Geldart, D. J. W. Solving the Schrödinger equation using the finite
difference time domain method. J. Phys. A: Math. Theor., Vol. 40, No. 8, 1885–1896
(2007).

[29] Dai, W., Li, G., Nassar, R. & Su, S. On the stability of the FDTD method for solving a
time‐dependent Schrödinger equation. Numer. Methods Partial Differ. Eq., Vol. 21, No.
6, 1140–1154 (2005).

[30] Sui, W., Yang, J., Yun, X. H. & Wang, C. Including quantum effects in electromagnetic
system—an FDTD solution to Maxwell‐Schrödinger equations. Proceedings of the
IEEE/MTT‐S International Microwave Symposium (IEEE Xplore, New York), pp. 1979–
1982 (2007).

[31] Ahmed, I. & Li, E. Simulation of plasmonics nanodevices with coupled Maxwell and
Schrödinger equations using the FDTD method. Adv. Electromagn., Vol. 1, No. 1, 76–
83 (2012).

[32] Gordon, A., Jirauschekm, C. & Kartner, F. X. Numerical solver of the time‐dependent
Schrödinger equation with Coulomb singularities. Phys. Rev. A, Vol. 73, No. 4,
042505(1–10) (2006).

[33] Antoine, X. & Besse, C. Unconditionally stable discretization schemes of non‐reflecting
boundary conditions for the one‐dimensional Schrodinger equation. J. Comput. Phys.,
Vol. 188, No. 1, 157–175 (2003).

[34] Wei, L., Zhang, X., Kumar, S. & Yildirim, A. A numerical study based on an implicit
fully discrete local discontinuous Galerkin method for the time‐fractional coupled
Schrödinger system. Comput. Math. Appl., Vol. 64, No. 8, 2603–2615 (2012).

Nonlinear Systems - Design, Analysis, Estimation and Control60



[28] Sudiarta, I. W. & Geldart, D. J. W. Solving the Schrödinger equation using the finite
difference time domain method. J. Phys. A: Math. Theor., Vol. 40, No. 8, 1885–1896
(2007).

[29] Dai, W., Li, G., Nassar, R. & Su, S. On the stability of the FDTD method for solving a
time‐dependent Schrödinger equation. Numer. Methods Partial Differ. Eq., Vol. 21, No.
6, 1140–1154 (2005).

[30] Sui, W., Yang, J., Yun, X. H. & Wang, C. Including quantum effects in electromagnetic
system—an FDTD solution to Maxwell‐Schrödinger equations. Proceedings of the
IEEE/MTT‐S International Microwave Symposium (IEEE Xplore, New York), pp. 1979–
1982 (2007).

[31] Ahmed, I. & Li, E. Simulation of plasmonics nanodevices with coupled Maxwell and
Schrödinger equations using the FDTD method. Adv. Electromagn., Vol. 1, No. 1, 76–
83 (2012).

[32] Gordon, A., Jirauschekm, C. & Kartner, F. X. Numerical solver of the time‐dependent
Schrödinger equation with Coulomb singularities. Phys. Rev. A, Vol. 73, No. 4,
042505(1–10) (2006).

[33] Antoine, X. & Besse, C. Unconditionally stable discretization schemes of non‐reflecting
boundary conditions for the one‐dimensional Schrodinger equation. J. Comput. Phys.,
Vol. 188, No. 1, 157–175 (2003).

[34] Wei, L., Zhang, X., Kumar, S. & Yildirim, A. A numerical study based on an implicit
fully discrete local discontinuous Galerkin method for the time‐fractional coupled
Schrödinger system. Comput. Math. Appl., Vol. 64, No. 8, 2603–2615 (2012).

Nonlinear Systems - Design, Analysis, Estimation and Control60

Chapter 4

Smoothing Solution for Discrete-Time Nonlinear

Stochastic Optimal Control Problem with Model-

Reality Differences

Sie Long Kek , Kok Lay Teo and
Mohd Ismail Abd Aziz

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/64564

Provisional chapter

Smoothing Solution for Discrete-Time Nonlinear
Stochastic Optimal Control Problem with Model-Reality
Differences

Sie Long Kek, Kok Lay Teo and
Mohd Ismail Abd Aziz

Additional information is available at the end of the chapter

Abstract

In this chapter, the performance of the integrated optimal control and parameter
estimation (IOCPE) algorithm is improved using a modified fixed-interval smooth-
ing scheme in order to solve the discrete-time nonlinear stochastic optimal control
problem.  In  our  approach,  a  linear  model-based  optimal  control  problem  with
adding the adjustable parameters into the model used is solved iteratively. The aim
is to obtain the optimal solution of  the original  optimal control  problem. In the
presence of the random noise sequences in process plant and measurement channel,
the state dynamics, which is estimated using Kalman filtering theory, is smoothed
in a fixed interval. With such smoothed state estimate sequence that reduces the
output  residual,  the  feedback optimal  control  law is  then designed.  During the
computation procedure, the optimal solution of the modified model-based optimal
control  problem  can  be  updated  at  each  iteration  step.  When  convergence  is
achieved, the iterative solution approaches to the correct optimal solution of the
original optimal control problem, in spite of model-reality differences. Moreover, the
convergence of the resulting algorithm is also given. For illustration, optimal control
of a continuous stirred-tank reactor problem is studied and the result obtained shows
the efficiency of the approach proposed.

Keywords: fixed-interval smoothing, Kalman filtering theory, model-reality differen-
ces, adjustable parameters, iterative solution
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1. Introduction

Optimal  control  approach provides the solution in solving dynamic real‐world practical
problems.  Particularly,  the  linear  problems,  which  are  disturbed  by  the  random  noise
sequence, have been well‐defined with application of the optimal state estimate in designing
the optimal feedback control law. In such situation, the optimal state estimator and the optimal
controller are designed separately to optimize and control the dynamical systems. This is
called  the  separation  principle  [1–4].  By  virtue  of  this  principle,  the  research  works  on
stochastic  optimal  control  and applications are growing widely,  see for  examples,  linear
systems [5,  6],  fleet  composition  problem [7],  optimal  parameter  selection  problems [8],
Markov jump process [9], power management [10], multiagent systems [11], portfolio selection
model [12], 2‐DOF vehicle model [13], sensorimotor system [14], and advertising model [15].

In fact, the exact solution of stochastic optimal control problems is impossible to be obtained,
especially for the problems involving nonlinear system dynamics. To obtain an optimal
solution of the discrete‐time nonlinear stochastic optimal control problem, the integrated
optimal control and parameter estimation (IOCPE) algorithm has been proposed to solve this
kind of the problem iteratively [16–18]. In this algorithm, the linear quadratic Gaussian (LQG)
model is applied to a model‐based optimal control problem, where the state estimation
procedure is done using the Kalman filtering theory. Based on this model, the adjusted
parameters are added into the model so as system optimization and parameter estimation are
integrated interactively. On this basis, the differences between the real plant and the model
used are measured repeatedly in order to update the optimal solution of the model used. On
the other hand, the output that is measured from the real plant is fed back into the model used
for the state estimator design. When the convergence is achieved, the iterative solution
approaches to the true optimal solution of the original optimal control problem despite model‐
reality differences. This optimal solution is the optimal filtering solution, which is obtained
using the IOCPE algorithm. The efficiency of the IOCPE algorithm has been proven in Refs.
[16–18].

However, the output trajectory of the model, which is obtained from the IOCPE algorithm, is
less accurate in estimating the exact output measurement of the original optimal control
problem. In this chapter, our aim is to improve the IOCPE algorithm using the fixed‐interval
smoothing approach, where the output residual shall be reduced within an appropriate
tolerance to generate a better output trajectory. In our model, the state dynamics, which is
disturbed by Gaussian noise sequences, is estimated by using the Kalman filtering theory, and
then it is smoothed in a fixed‐interval estimation. With such state estimation procedure, we
modify the estimation procedure so that a smoothed state estimate is predicted backward in
time and is used in designing the feedback optimal control law. It is noticed that the output
residual of this smoothed state estimate is smaller than the output residual that is obtained by
using the Kalman filtering theory, see [17]. The procedure of the solution method discussed in
this chapter is almost the same as that was presented in the study of Kek et al. [17], but the
accuracy of the optimal solution with the modified fixed‐interval smoothing would be
definitely increased.
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The structure of the chapter is outlined as follows. In Section 2, the description of a general
discrete‐time nonlinear stochastic optimal control problem and its simplified model‐based
optimal control problem is made. In Section 3, an expanded optimal control model is intro‐
duced, where system optimization and parameter estimation are integrated mutually. The
feedback control law, which is incorporated with the Kalman filtering theory and the fixed‐
interval smoothing, is designed. Then, the iterative algorithm based on principle of model‐
reality differences is derived so that discrete‐time nonlinear stochastic optimal control problem
could be solved. In Section 4, a convergence result for the algorithm proposed is provided. In
Section 5, an example of optimal control of a continuous stirred‐tank reactor problem is
illustrated. Finally, some concluding remarks are made.

2. Problem description

Consider a general class of the dynamical system given below:

( 1) ( ( ), ( ), ) ( )x k f x k u k k G kw+ = + (1a)

( ) ( ( ), ) ( )y k h x k k kh= + (1b)

where () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒, and () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 are the
control sequence, the state sequence, and the output sequence, respectively.() ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, which is the process noise sequence, and () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒,
which is the measurement noise sequence, are stationary Gaussian white noise sequences with

zero mean, and their covariance matrices are given by  ∈ ℜ ×  and  ∈ ℜ × , respec‐

tively. Here, both of these covariance matrices are positive definite matrices. In addition,:ℜ × ℜ ×ℜ ℜ represents the real plant and ℎ:ℜ × ℜ ℜ is the real output measure‐
ment, which both are assumed to be continuously differentiable with respect to their respective

arguments, whereas 𑨈𑨈 ∈ ℜ ×  is a process coefficient matrix.

The initial state is

0(0)x x=

where 0 ∈ ℜ is a random vector with mean and covariance given, respectively, by

T
0 0 0 0 0 0[ (0)] and [( )( ) ] .E x x E x x x x M= - - =
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Here, 0 ∈ ℜ ×  is a positive definite matrix and [ ⋅ ] is the expectation operator. It is

assumed that initial state, process noise, and measurement noise are statistically independent.

Therefore, our aim is to find an admissible control sequence () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1 subject
to the dynamical system given in Eq. (1) such that the scalar cost function

1

0
0

( ) [ ( ( ), ) ( ( ), ( ), )]
N

k

J u E x N N L x k u k kj
-

=

= +å (2)

is minimized, where :ℜ × ℜ ℜ is the terminal cost and :ℜ × ℜ ×ℜ ℜ is the cost under
summation. It is assumed that these functions are continuously differentiable with respect to
their respective arguments.

This problem is regarded as the discrete‐time nonlinear stochastic optimal control problem
and is referred to as Problem (P).

Notice that, in general, the exact solution of Problem (P) is unable to be obtained and estimating
the state of the real plant by applying the nonlinear filtering theory is computationally
demanding. Due to these reasons, a smoothing model‐based optimal control problem, which
is referred to as Problem (M), is proposed by

T1
2( )

1
T T1

2
0

ˆ ˆmin ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ( ) ( ) ( ) ( )) ( ))

m s su k
N

s s
k

J u x N S N x N N

x k Qx k u k Ru k k

g

g
-

=

= +

+ + +å
(3)

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))
ˆ ˆ( ) ( )
s s s

s s

x k x k K k x k x k
y k Cx k

= + + - +

=

with the following state estimation procedure

1ˆ( 1) ( ) ( ) ( )x k Ax k Bu k ka+ = + + (4a)

ˆ( ) ( ) ( )( ( ) ( ))fx k x k K k y k y k= + - (4b)

2( ) ( ) ( )y k Cx k ka= + (4c)
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where () ∈ ℜ,  = 0, 1, ...,  and () ∈ ℜ,  = 0, 1, ...,  are, respectively, the smoothed state

sequence and the smoothed output sequence. The matrices involved are given as follow: A is
an n × n state transition matrix, B is an n × n control coefficient matrix,  is a p × n output
coefficient matrix, S(N) and Q are n × n positive semidefinite matrices, and R is a m × m positive
definite matrix. The extra parameters 1(),  = 0, 1, ...,  𑨒𑨒 1, 2(),  = 0, 1, ..., , and(),  = 0, 1, ...,  are introduced as adjustable parameters.

The state estimation procedure, which is given in (4a), (4b), and (4c), is obviously from the

Kalman filtering theory, where () ∈ ℜ,  = 0, 1, ...,  𑨒𑨒 1 and () ∈ ℜ,  = 0, 1, ...,  are,
respectively, the filtered state sequence and the predicted state sequence, whereas() ∈ ℜ,  = 0, 1, ...,  is the expected output sequence. The filter and smoother gains, which

are () ∈ ℜ ×  and () ∈ ℜ × , are, respectively, given by

T 1( ) ( ) ( )f x yK k M k C M k -= (5a)

T 1( ) ( ) ( 1)s xK k P k A M k -= + (5b)

whereas the state error covariance matrices are

T 1( ) ( ) ( ) ( ) ( )x x y xP k M k M k C M k CM k-= - (6a)

T T( 1) ( )xM k AP k A GQ Gw+ = + (6b)

T( ) ( ) ( )( ( 1) ( 1)) ( )s s s x sP k P k K k P k M k K k= + + - + (6c)

and the output error covariance matrix is

T( ) ( )y xM k CM k C Rh= + (6d)

with the boundary conditions (0) = 0 and () = () The filtered state error cova‐

riance () ∈ ℜ × , the predicted state error covariance () ∈ ℜ × , the smoothed state

error covariance () ∈ ℜ × , and the output error covariance () ∈ ℜ ×  are positive

definite matrices.

Here, the cost function given in Eq. (3) is evaluated from the expectation of the quadratic forms
[2], both for random and deterministic terms with trace matrix tr(⋅), which is simplified by

a.  ()T()() = 𝀵𝀵𝀵𝀵 ()() + ()T()()
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b.  ()T𝀵𝀵() = 𝀵𝀵𝀵𝀵 𝀵𝀵𝀵𝀵() + ()T𝀵𝀵()
c.  ()T𝀵𝀵() = ()T𝀵𝀵()
d.  () = (),  1() = 1(), and  2() = 2().
Follow from this simplification, the trace matrix terms that are depend on the state error
covariance matrix are ignored in the model used since they are constant values. In such a way,
the cost function of the linear model‐based optimal control model could be evaluated.

Notice that the separation principle [1–4] is applied to solving Problem (M), where the optimal
feedback control law and the optimal state estimate are designed separately as discussed in
[16–18]. Further from this, the accuracy of the optimal state estimate is increased by smoothing
the state estimate in the fixed interval [2, 4]. Then, based on this smoothed state estimate, the
smoothing optimal control law is designed. On the other hand, the output measured from the
real plant is fed back into the model used, in turn, to improve the state estimation procedure
and to update the solution of the model used. Moreover, only solving Problem (M) without
adding the adjusted parameters into the model used would not approximate to the optimal
solution of Problem (P). Hence, by taking the adjusted parameters into the model used and
solving Problem (M) iteratively, the correct optimal solution of the original optimal control
problem could be obtained, in spite of model‐reality differences.

3. Modified smoothing with model-reality differences

Now, let us introduce an expanded optimal control problem with smoothing state estimate,
which is referred to as Problem (E), given below:

( )

T1
2( )

1
T T1

2
0

2 21 1
1 22 2

ˆ ˆmin ( ) ( ) ( ) ( ) ( )

ˆ ˆ( ( ) ( ) ( ) ( ) ( ))

ˆ|| ( ) ( ) || || ( ) ( ) ||

e s su k
N

s s
k

s

J u x N S N x N N

x k Qx k u k Ru k k

r v k u k r z k x k

g

g
-

=

= +

+ + +

+ - + -

å (7)

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( )s sy k Cx k=
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T1
2 ( ) ( ) ( ) ( ) ( ( ), )z N S N z N N z N Ng j+ =

T T1
2 ( ( ) ( ) ( ) ( )) ( ) ( ( ), ( ), )z k Qz k v k Rv k k L z k v k kg+ + =

1( ) ( ) ( ) ( ( ), ( ), )Az k Bv k k f z k v k ka+ + =

2( ) ( ) ( ( ), )Cz k k h z k ka+ =

( ) ( )v k u k=

ˆ( ) ( )sz k x k=

where () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1 and () ∈ ℜ,  = 0, 1, ..., 𑨒𑨒 are introduced to separate the
control and the smoothed state from the respective signals in the parameter estimation

problem and ∥ ⋅ ∥ denotes the usual Euclidean norm. The terms 121 ∥ () 𑨒𑨒 () ∥2 and122 ∥ () 𑨒𑨒 () ∥2 are introduced such that the convexity is improved and the convergence

of the iterative algorithm is enhanced. The main purpose of designing the algorithm in this
way is to ensure that satisfying of the constraints () = () and () = () is fulfilled at the

end of the iterations. More specifically, applying the state estimate () and the control ()
for the computation in the parameter estimation and the matching schemes will increase the
practical usage of the algorithm. Moreover, implementing the relevant smoothed state ()
and control () that will be reserved for optimizing the model‐based optimal control problem
leads the iterative solution toward to the true optimal solution of the original optimal control
problem.

Figure 1 shows the block diagram of the approach proposed. The methodology of the approach
proposed is further discussed in the following sections.

From the block diagram in Figure 1, the definition of the principle of model‐reality differences
could be given.

Definition 3.1: Principle of model‐reality differences is a unified framework, which integrates
system optimization and parameter estimation interactively to define an expanded optimal
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control problem, aims to give the correct optimal solution of the original optimal control
problem by solving the model‐based optimal control problem iteratively.

Figure 1. Block diagram of the approach proposed.

3.1. Optimality conditions

Define the Hamiltonian function for Problem (E) as follows:
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where (), (), (), (), (), , (), and () are the proper multipliers to be judged the
value later.

The following necessary conditions for optimality are resulted when applying the calculus of
variation [2, 4, 17] to the augmented cost function given in Eq. (9):

(a) Stationary condition:

T
1( ) ( ) ( 1) ( ) ( ( ) ( )) 0.sRu k B K k p k k r v k u kl+ + - - - = (10a)

(b) Smoothed costate equation:

2ˆ ˆ( ) ( ) ( 1) ( ) ( ( ) ( )).s sp k Qx k p k k r z k x kb= + + - - - (10b)

(c) Smoothed state equation:

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - + (10c)

with the boundary conditions () = () and () =  .
(d) Adjustable parameter equations:

T1
2( ( ), ) ( ) ( ) ( ) ( )z N N z N S N z N Nj g= + (11a)

T T1
2( ( ), ( ), ) ( ( ) ( ) ( ) ( )) ( )L z k v k k z k Qz k v k Rv k kg= + + (11b)

1( ( ), ( ), ) ( ) ( ) ( )f z k v k k Az k Bv k ka= + + (11c)
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2( ( ), ) ( ) ( ).h z k k Cz k ka= + (11d)

(e) Multiplier equations:

( ) ( ) ( ) 0z k S N z NjG -Ñ + = (12a)

T

( ) ˆ( ) ( ( )) ( 1) 0
( )v k
fk L Rv k B p k

v k
l

æ ö¶
+ Ñ - + - + =ç ÷¶è ø

(12b)

T

( ) ˆ( ) ( ( )) ( 1) 0
( )z k
fk L Qz k A p k

z k
b

æ ö¶
+ Ñ - + - + =ç ÷¶è ø

(12c)

with () = 1, () = ( + 1) and () = () = 0.

(f) Separable variables:

ˆ ˆ( ) ( ), ( ) ( ), ( ) ( ).sv k u k z k x k p k p k= = = (13)

In view of these necessary optimality conditions, the conditions (10a), (10b), and (10c) define
the modified model‐based optimal control problem, the conditions (11a), (11b), (11c), and (11d)
define the parameter estimation problem and the conditions (12a), (12b), and (12c) are used to
compute the multipliers. They are further discussed as follows.

3.2. Modified model-based optimal control problem

The modified model‐based optimal control problem, which is referred to as Problem (MM), is
given below:
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subject to
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ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( ).s sy k Cx k=

From the outcome of Problem (E) and Problem (MM), the theorem of the smoothed optimal
control law which is applied to solve Problem (MM) is described.

Theorem 3.1: Suppose the expanded optimal control law for Problem (E) exists. Then, this
control law is the smoothed feedback control law for Problem (MM) given by

ˆ( ) ( ) ( ) ( )s ffu k K k x k u k= - + (15)

where

T 1 T

T 1
1

( ) ( ( ) ( 1) ) ( ( ) ( 1) ( )

ˆ( ) ( 1)(( ( ) ) ( ) ( )))

ff a s s a

s s

u k R B K k S k B B K k s k k

B K k S k A K k x k k

l

a

-

-

= - + + + -

+ + - +
(16a)

T 1 T 1( ) ( ( ) ( 1) ) ( ) ( 1) ( )a s s sK k R B K k S k B B K k S k K k- -= + + + (16b)

1( ) ( 1)( ( ) ( ))a sS k Q S k K k BK k-= + + - (16c)

1
1ˆ( ) ( 1)(( ( ) ) ( ) ( ) ( )) ( 1) ( )s ff as k S k A K k x k Bu k k s k ka b-= + - + + + + - (16d)

with the boundary conditions () given and () = 0, and

 =  + 1;  =  + 2;() = () + 1(); () = () + 2() .
Proof: From the necessary optimality condition (10a), we have

T( ) ( ) ( 1) ( ).a s aR u k B K k p k kl= - + + (17)

Applying sweep method [2, 4],
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ˆ( ) ( ) ( ) ( )sp k S k x k s k= + (18)

we substitute Eq. (18) for  =  + 1 into Eq. (17), which yields

T T( ) ( ) ( 1) ( 1) ( ) ( 1) ( ).a s s s aR u k B K k S k x k B K k s k kl= - + + - + + (19)

Rewrite the smoothed state equation from Eq. (10c),

1ˆ ˆ ˆ( 1) ( 1) ( ( )) ( ( ) ( )).s s sx k x k K k x k x k-+ = + + - (20)

Then, substitute Eq. (20) into Eq. (19). After some algebraic manipulations, the smoothed
control law (15) is obtained, where Eqs. (16a) and (16b) are satisfied.

From the smoothed costate equation (10b), we substitute Eq. (18) for  =  + 1 to give

ˆ ˆ( ) ( ) ( 1) ( 1) ( 1) ( )a s s ap k Q x k S k x k s k kb= + + + + + - (21)

Consider Eq. (20) in Eq. (21), we obtain

1ˆ ˆ ˆ( ) ( ) ( 1)( ( 1) ( ( )) ( ( ) ( )) ( 1) ( ).a s s s ap k Q x k S k x k K k x k x k s k kb-= + + + + - + + - (22)

By doing some algebraic manipulations, it is found that Eqs. (16c) and (16d) are satisfied after
comparing to Eq. (18). This completes the proof.

From Eqs. (4a), (10c), and (15), the smoothed state equation becomes

1

1

ˆ ˆ( ) ( ( ) ( )) (( ( ) ) ( )
ˆ( )( ( 1) ( ) ( )))

s n s n s

s s ff

x k I K k BK k I K k A x k
K k x k Bu k ka

-= - -

+ + - -
(23)

and the smoothed output is measured from

ˆ ˆ( ) ( )s sy k Cx k= (24)

with the boundary condition () = ().
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3.3. Parameter estimation

After solving Problem (MM), the defined separable variables given in Eq. (13) are used for the
further computations. Particularly, in the parameter estimation problem, the differences
between the real plant and the model used are taken into account in which the matching
schemes are established. In view of this, the adjusted parameters, which are resulted from
parameter estimation problem defined by Eq. (11), are calculated from

1( ) ( ( ), ( ), ) ( ) ( )k f z k v k k Az k Bv ka = - - (25a)

2( ) ( ( ), ) ( )k h z k k Cz ka = - (25b)

T1
2( ) ( ( ), ) ( ) ( ) ( )N z N N z N S N z Ng j= - (25c)

T T1
2( ) ( ( ), ( ), ) ( ( ) ( ) ( ) ( ))k L z k v k k z k Qz k v k Rv kg = - + (25d)

3.4. Computation of multipliers

The multipliers, which are related to the Jacobian matrix of the functions f and L with respect
to () and (), are computed from

( ) ( ) ( )z k S N z NjG = Ñ - (26a)

T

( ) ˆ( ) ( ( )) ( 1)
( )v k
fk L Rv k B p k

v k
l

æ ö¶
= - Ñ - - - +ç ÷¶è ø

(26b)

T

( ) ˆ( ) ( ( )) ( 1)
( )z k
fk L Qz k A p k

z k
b

æ ö¶
= - Ñ - - - +ç ÷¶è ø

(26c)

3.5. Iterative algorithm

From the previous sections, the derivation of equations and the formulation of the resulting
algorithm are clearly discussed. Following from these discussions, a summary on this iterative
algorithm is delivered as follows:

Data , , (), , , , , , ,0, 0, , 1, 2, , , , , , ℎ,  . Note that A and B may be

chosen through the linearization of f, and C is obtained from the linearization of h.
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Step 0: Compute a nominal solution. Assume 1() = 0,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, 2() = 0,  = 0, 1, ..., 𑨒𑨒,
and 1 = 2 = 0. Calculate () and () from Eqs. (5a) and (5b), (),(), () and ()
from Eqs. (6a), (6b), (6c), and (6d) for the state estimation, and solve Problem (M) defined by

Eq. (3) to obtain ()0,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, and ()0, ()0, ()0,  = 0, 1, ..., 𑨒𑨒 . Then, with1() = 0,  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, 2() = 0,  = 0, 1, ..., 𑨒𑨒, and 1, 2 from data, calculate () and(), respectively, from Eqs. (16b) and (16c). Set  = 0, ()0 = ()0, ()0 = ()0 and()0 = ()0 .
Step 1: Calculate the adjustable parameters 1(),  = 0 , 1, ..., 𑨒𑨒 𑨒𑨒 1, 2(),  = 0, 1,...,𑨒𑨒, (),  = 0, 1, ..., 𑨒𑨒, from Eq. (25). This is called the parameter estimation step.

Step 2: Compute the modifiers , () and (),  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1, from Eq. (26). This requires

the partial derivatives of , ℎ and L with respect to () and ().
Step 3: With the determined 1(), 2(), (), , (), (), (), and (), solve Problem

(MM) defined by Eq. (14) using the result in Theorem 3.1. This is called the system optimization
step.

a. Obtain (),  = 0, 1, ..., 𑨒𑨒 by solving Eq. (16d) backward, and obtain(),  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1 by solving Eq. (16a), either backward or forward.

b. Calculate the new control (),  = 0, 1, ..., 𑨒𑨒 𑨒𑨒 1 using Eq. (15).

c. Calculate the new state (),  = 0, 1, ..., 𑨒𑨒, using Eq. (23).

d. Calculate the new costate (),  = 0, 1, ..., 𑨒𑨒, using Eq. (18).

e. Calculate the new output (),  = 0, 1, ..., 𑨒𑨒, using Eq. (24).

Step 4: Update the optimal smoothing solution of Problem (P) and test the convergence of the
algorithm. For regulating convergence, a mechanism, which is a simple relaxation method,
shall be provided and given by:

1 ˆ( ) ( ) ( ( ) ( ) )i i i i
z sz k z k k x k z k+ = + - (27a)

1( ) ( ) ( ( ) ( ) )i i i i
vv k v k k u k v k+ = + - (27b)

1ˆ ˆ ˆ( ) ( ) ( ( ) ( ) )i i i i
pp k p k k p k p k+ = + - (27c)
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where , , , range in the interval of (0, 1], are scalar gains. If () + 1 = (),  = 0, 1, ..., ,
and () + 1 = (),  = 0, 1, ...,  𑨒𑨒 1, within a given tolerance, stop; else repeat from Step 1 by
setting  =  + 1.

Remarks:

a. The off-line computation, which is mentioned in Step 0, is done for the state estimator
design, where (), (),  = 0, 1, ...,  𑨒𑨒 1,( ), (),  = 0, 1, ..., , (), (), = 0, 1, ...,  𑨒𑨒 1 are computed, and for the control law design, where(),  = 0, 1, ...,  𑨒𑨒 1, (),  = 0, 1, ...,  are calculated. In fact, these parameters are used
for solving Problem (M) in Step 0 and for solving Problem (MM) in Step 3, respectively.

b. The variables (), 1(), 2(), , (), (), and () are initially zero in Step 0. Their

computed values, where (), 1(), 2() in Step 1, , (), () in Step 2, and () in
Step 3, would be changed from iteration to iteration.

c. The driving input () in Eq. (16a) corrects the differences between the real plant and
the model used, and it also drives the controller given in Eq. (15).

d. The state estimation without the control is done forward using the Kalman filtering, and
then it is followed by the fixed-interval smoothing backward in order to design the
feedback control law.

e. Problem (P) is not necessary to have a cost function in quadratic criterion or to be a linear
problem.

f. The equations () + 1 = () and () + 1 = () can be definitely required to satisfy
for the converged state estimate sequence and the converged optimal control sequence.
On this point of view, the following averaged 2-norms are computed and, then, they are
compared with a given tolerance to verify the convergence of () and ():

1/21
1 1

2
0

1|| || || ( ) ( ) ||
1

N
i i i i

k

v v v k v k
N

-
+ +

=

æ ö
ç ÷- = -
ç ÷-è ø

å (28a)

1/2
1 1

2
0

1|| || || ( ) ( ) ||
N

i i i i

k

z z z k z k
N

+ +

=

æ ö
ç ÷- = -
ç ÷
è ø
å (28b)

g. The relaxation scalars (kv, kz, kp) are the step-sizes in regulating the convergence mecha-
nism. These scalars could be normally chosen as a certain value in the range of (0, 1], but
this choice may not provide the optimal number of iterations. Hence, it is important to
note that the optimal choice of these scalars kv, kz, kp ∈ (0, 1] would be problem dependent.
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As a rule of this case, the algorithm (from Step 1 to Step 4) is required to run few times.
Initially, for first run of the algorithm (from Step 1 to Step 4), these scalars are set at kv = kz
= kp = 1, and then, with different values chosen from 0.1 to 0.9, the algorithm is run again.
The value with the optimal number of iterations can be determined after that. Applying
the parameters r1 and r2 is to enhance the convexity such that the convergence of the
algorithm can be improved.

4. Convergence analysis

In this section, the convergence of the algorithm is discussed. The following assumptions are
needed:

The derivatives of ,  and h exist.

The solution (*, *, *) is the optimal solution to Problem (P). That is, the optimal smoothing
solution.

The convergence result is presented in Theorem 4.1, while the accuracy of the smoothed state
in term of state error covariance is proven in Corollary 4.1.

Theorem 4.1: The converged solution of Problem (M) is the correct optimal smoothing solution
of Problem (P).

Proof: Consider the real plant and the output measurement of Problem (P) with the exact
optimal smoothing solution (*, *, *) as given below:

* * * * *( 1) ( ( ), ( ), ) and ( ) ( ( ), )x k f x k u k k y k h x k k+ = = (29)

In Problem (M), the model used consists of

ˆ ( ) ( ) ( )( ( ) ( ))c c c
fx k x k K k y k y k= + - (30a)

1ˆ( 1) ( ) ( ) ( )c c cx k Ax k Bu k ka+ = + + (30b)

2( ) ( ) ( )c cy k Cx k ka= + (30c)

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))c c c c
s s sx k x k K k x k x k= + + - + (30d)
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ˆ ˆ( ) ( )c c
s sy k Cx k= (30e)

where (), (), (), (), (), and () are, respectively, the converged sequences for

control law, smoothed state estimate, filtered state estimate, expected state estimate, smoothed
output, and expected output. Here, () is the output measured from the real plant.

Applying the adjusted parameters 1() and 2(), which are given by

1() = ((), (), ) − 𝀵𝀵() − 𝀵𝀵()and
2() = ℎ((), ) − 𝀵𝀵(),

into the model used given by Eq. (30b) and (30c), the differences between the real plant and
the model used can be measured at each iteration. Moreover, at the end of iteration, from Eqs.
(29) and (30a) – (30e) yields

ˆ ˆ( 1) ( ( ), ( ), )and ( ) ( ( ), )c c
s sx k f z k v k k y k h z k k+ = =

which () = () and () = () = () are satisfied. Hence, this implies that

() = *(), () = *(), () = *()
This completes the proof.

Corollary 4.1: The smoothed state error covariance is the smallest among the values of state
error covariance.

Proof: From Eq. (6), it is clear that the filtered state error covariance () is less than the
predicted state error covariance () . That is, () < () . Now, to prove () < (),, we

shall show that ( + 1) < ( + 1). Consider the boundary condition () = () and

taking  =  − 1, we have

( 1) ( 1) ( 1).s xP N P N M N- = - < -

For  =  − 2, it shows that

( 2) ( 2) ( 2).s xP N P N M N- < - < -
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This statement can be deduced that

( 1) ( 1) 0for 1.s xP k M k k k+ - + < = +

Thus, we conclude that

( ) ( ) ( ), 0,1,..., 2,s xP k P k M k k N< < = -

which shows the accuracy of the smoothed state estimate. This completes the proof.

5. Illustrative example

Consider a continuous stirred‐tank reactor problem [19], which consists of the state difference
equations

1
1 1 1 2

1

1 1

25 ( )( 1) ( ) 0.02( ( ) 0.25) 0.01( ( ) 0.5)exp
( ) 2

0.01( ( ) 0.25) ( ) ( )

x kx k x k x k x k
x k

x k u k kw

é ù
+ = - + + + ê ú+ë û

- + +

1
2 2 2 2

1

25 ( )( 1) 0.99 ( ) 0.005 0.01( ( ) 0.5)exp ( )
( ) 2
x kx k x k x k k

x k
w

é ù
+ = - - + +ê ú+ë û

for  = 0, ..., 77, and the output measurement () = 1() + (). The initial state (0) = 0 is a

random vector with mean and covariance given, respectively, by 1(0) = 0.05, 2(0) = 0, and0 = 10−22 .
Here, () = [1() 2()]T and () are Gaussian white noise sequences with their respective

covariance given by  = 10−32 and  = 10−3. The expected cost function

1
2 2 2

0 1 2
0

( ) 0.5 [( ( )) ( ( )) 0.1( ( )) ]
N

k

J u E x k x k u k
-

=

= + +å

is to be minimized over the state difference equations and the output measurement.

This problem is referred to as Problem (P).
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To obtain the optimal smoothing solution of Problem (P), we simplify the plant dynamics of
Problem (P) and refer it as Problem (M), given by

1
2 2

( )
0

1 ˆmin ( ) [( ( )) 0.1( ( )) 2 ( )]
2

N

m su k
k

J u x k u k kg
-

=

= + +å

subject to

ˆ ˆ ˆ( ) ( ) ( )( ( 1) ( 1))s s sx k x k K k x k x k= + + - +

ˆ ˆ( ) ( )s sy k Cx k=

with

ˆ( ) ( ) ( )( ( ) ( ))fx k x k K k y k y k= + -

1 111

2 122

ˆ( 1) ( )1.0895 0.0184 ( ) 0.003
( )

ˆ( 1) ( )0.1095 0.9716 ( ) 0.000
x k kx k

u k
x k kx k

a
a

+ -é ùé ù é ùé ù é ù
= + +ê úê ú ê úê ú ê ú+ -ë û ë ûë û ë ûë û

1 2( ) ( ) ( )y k x k ka= +

with the initial condition (0) = 0 and the boundary value () = () . Here, (), 2() and1() = [11() 12()]T are the adjusted parameters.

Model Iteration number Elapsed time Initial cost Final cost Output residual

Filtering 6 0.782772 3.7910 0.021271 0.034731

Smoothing 8 1.026919 3.5095 0.000734 0.018294

Table 1. Iteration result.

The iteration results, both for filtering and smoothing models, are shown in Table 1. The final
cost of the smoothing model is the least compared to the final cost of the filtering model. When
the trace matrix terms are considered in the cost function, the total final cost of the smoothing
model is 0.019188 unit, while the total final cost of the filtering model is 0.039725 unit. The
value of the trace matrix terms is 0.0185 unit. It is noticed that the output residual could be
dropped to almost 52% from the filtering output residual by using the approach proposed in
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this chapter. This statement is valid since the output residual of smoothing model is least than
the output residual of filtering model.

Figure 2. Filtering trajectory for final control.

Figure 3. Filtering trajectory for final state.

To identify the accuracy of the resulting algorithm, the norms of the differences between the
real plant and the model used at the end of iteration, which are 0.0128 unit for filtering model
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and 0.0099 unit for smoothing model, are calculated. These values show that the smoothing
model can approximate closely to the correct optimal solution of the original optimal control
problem rather than the filtering model. Hence, the accuracy of the smoothing model is proven.

Figure 4. Filtering trajectory for final output and real output.

Figure 5. Smoothing trajectory for final control.
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Figure 6. Smoothing trajectory for final state.

Figure 7. Smoothing trajectory for final output and real output.
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Figure 6. Smoothing trajectory for final state.

Figure 7. Smoothing trajectory for final output and real output.
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The trajectories of final control, final state and final output for filtering, and smoothing mod‐
els are shown in Figures 2–7. With the smallest output residual, the output, which is associ‐
ated with the smoothed state estimate, is definitely applicable to measure the real output
trajectory.

6. Concluding remarks

A fixed‐interval smoothing scheme was modified in this chapter for solving the discrete‐time
nonlinear stochastic optimal control problem. The state estimation procedure, which is using
the Kalman filtering theory and is followed by the fixed‐interval smoothing, is applied to
estimate the system dynamics. Then, the smoothed state estimate is used in designing the
feedback optimal control law. By employing this smoothed state estimate, system optimization
and parameter estimation are integrated. During the computation procedure, the differences
between the real plant and the model used are calculated iteratively. On the other hand, the
output measured from the real plant is fed back into the model used, in turn, updates the
iterative solution. Once the convergence is achieved, the iterative solution approaches to the
correct optimal solution of the original optimal control problem, in spite of model‐reality
differences. The illustrative example on the optimal control of the continuous stirred‐tank
reactor problem was studied. The results obtained demonstrated the applicable of the ap‐
proach proposed, and the efficiency of the approach proposed is highly presented.
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Abstract

In  this  chapter,  we present  an overview of  some multipoint  iterative methods for
solving nonlinear systems obtained by using different techniques such as composition
of  known methods,  weight  function  procedure,  and pseudo-composition,  etc.  The
dynamical study of these iterative schemes provides us valuable information about
their  stability  and reliability.  A numerical  test  on a  specific problem coming from
chemistry is performed to compare the described methods with classical ones and to
confirm the theoretical results.

Keywords: system of nonlinear equations, iterative methods, order of convergence,
weight function procedure, stability, basin of attraction

1. Introduction

The problem of solving equations and systems of nonlinear equations is among the most
important in theory and practice, not only of applied mathematics, but also in many branches
of science, engineering, physics, computer science, astronomy, finance, etc. A glance at the
literature shows a high level of contemporary interest.

The search for solutions of systems of nonlinear equations is an old, frequent, and important
problem for many applications in mathematics and engineering (for example, see Refs. [1–5]).

The main goal of this chapter is to describe different methods for approximating a solution ξ
of a system of nonlinear equations F(x) = 0, where F : Ω ⊆ ℝn → ℝn is a sufficiently differentiable
function on the convex set Ω ⊆ ℝn. The most commonly used techniques are iterative methods,
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which, from an initial guess a sequence of iterates is built, were converging to the solution of
the problem under some conditions. Although not as many as in the case of scalar equations,
some publications have appeared in the recent years, proposing different iterative methods
for solving nonlinear systems (see, for example, Refs. [6–8], among others). They have made
several modifications to the classical methods to accelerate the convergence and to reduce the
number of operations and functional evaluations per step of the iterative method. Newton’s
method is the most used iterative technique for solving these kind of problems (see Ref. [9]),
whose iterative expression is

( 1) ( ) ' ( ) 1 ( )[ ( )] ( ), 0,1,+ -= - = ¼k k k kx x F x F x k (1)

where F′ (x(k)) denotes the Jacobian matrix associated to function F on x(k).

We remember the concepts of order of convergence and efficiency index of an iterative scheme.

Definition 1.1. Let {x(k)}k≥0 be a sequence in ℝn convergent to ξ. Then, the convergence is said to be

linear, if there exist M, 0 < M < 1, and k0 ∈ ℕ such that ( + 1) −  ≤  () −  , ∀ 𑩥𑩥 0, and
of order p, p > 1, if there exist M, M > 0, and k0 ∈ ℕ such that( + 1) −  ≤  () −  , ∀ 𑩥𑩥 .

On the other hand, Ostrowski [10] introduced the efficiency index of an iterative method as p1/d,
where p is the order of convergence and d is the number of functional evaluations per iteration.
In the multidimensional case, it is more useful for the efficiency index to be defined as1/( + ), where op is the number of products-quotients per iteration.

The most direct technique is to adapt the methods designed for solving nonlinear equations
to the multidimensional case. This process is easy only if, in the denominators of the iterative
expression, does not appear any evaluation of the nonlinear function that describes the system.
This is the case of Newton’s schemes and Newton-type methods coming from quadrature
formulas, such as those described in Refs. [11–18]. In Refs. [19] and [20], the authors designed
a general procedure called pseudo-composition that allows to obtain predictor-corrector methods
with high order of convergence. These multipoint schemes use any method as a predictor and
a corrector step, where Gaussian quadrature is used.

On the other hand, other multipoint schemes have been developed by using different techni-
ques: Adomian decomposition [21–23], the replacement of the second derivative in one-point
schemes by some approximation that yields multipoint iterative methods [8, 9], the Steffensen-
type methods adapted to multidimensional case (see, for instance, Refs. [17, 24], among others).
In all these papers, the references therein are also important.

A generally used technique for constructing iterative schemes is the composition of known
methods. This technique was introduced by Traub [9]: if two iterative methods with orders of
convergence p1 and p2, respectively, are composed, the resulting scheme has order p1p2. The use
of this technique greatly increases the number of functional evaluations of F and F′. Therefore,
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it is necessary to avoid as much as possible such new evaluations by means of approximation
techniques. In Ref. [25], the authors composed twice Newton’s scheme with itself ‘frozening’
the derivatives and, by means of undetermined coefficients method, obtained the following
fifth-order iterative scheme

( ) ( ) ' ( ) 1 ( )

( 1) ( ) ' ( ) 1 ( ) ( )

5[ ( )] ( ),
1[ ( )] [15 ( ) ( )],
5

k k k k

k k k k k

z y F x F y

x z F x F y F z

-

+ -

= -

= + -

where y(k) is a Newton’s step. Let us observe that it only needs three functional evaluations and
one Jacobian evaluation. Moreover, all the linear systems involved have the same matrix of
coefficients. As a consequence, the efficiency index of this method is the best one, as far as we
know. A similar procedure is used by Cordero et al. [26], getting Newton-Jarratt type methods
of fifth and sixth orders. In addition, the following method described by Arroyo et al. [27]
belongs to the class of Jarratt-type methods, but it has order of convergence five,

( 1) ( ) ' ( ) ' ( ) 1 ' ( ) ' ( ) ' ( ) 1 ( )[ ( ) 5 ( )] [ ( ) 5 ( )][ ( )] ( ),+ - -= + - -k k k k k k k kx y F x F y F x F y F x F y

where y(k) is a Newton’s step.

In recent years, the technique of weight functions has also been developed, mainly for scalar
equations. Weight functions are introduced in the iterative scheme to increase the order of
convergence without increasing the number of functional evaluations. Among others, Sharma
et al. [28] constructed a fourth-order scheme by using this procedure and, more recently,
Artidiello et al. [7, 29] presented different families of high-order iterative methods by using
matrix weight functions.

As we have previously mentioned, most of the iterative methods for nonlinear equations are
not directly extendable to systems. However, in Refs. [6, 30], the authors present a general
procedure to transform any scalar iterative method to the multidimensional case.

On the other hand, the dynamical analysis of an iterative method is becoming a trend in recent
publications on iterative methods for scalar equations because it allows us to classify the
different iterative formulas, not only from the point of view of its order of convergence, but
also analyzing how these formulas behave as a function of the initial estimate that is taken.
Another advantage of this analysis is to select the more stable elements of a parametric family
whose members have the same order of convergence (see, for example, Ref. [31]). A first step
in this direction on nonlinear systems was given by Cordero et al. [32], and a deeper analysis
was made by Cordero et al. [33], studying the behavior of several methods on particular
polynomial systems. In any case, the dynamical study in the multidimensional case is an
emerging research topic with a promising future.

The rest of the chapter is organized as follows. In Section 2, we describe different techniques
for designing iterative methods for nonlinear systems. In Section 3, we give some touches about
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the dynamic study of an iterative method for the scalar case and its extension to the multidi-
mensional case. In order to check the introduced methods and compare them with other
classical ones, in Section 4, we apply them on different test problems.

2. Design of the methods

In this section, we introduce three techniques for designing iterative methods for solving
nonlinear systems of equations: pseudo-composition, weight function procedure, and a
technique for extending scalar methods to the multidimensional case, in a non-trivial way.

The convergence results are going to be demonstrated by means of the n-dimensional Taylor

expansion of the functions involved. Let :   𑪆𑪆 𑪆𑪆 ℝ ℝ be a sufficiently Frèchet differentia-
ble function in Ω. By using the notation introduced by Cordero et al. [26], the qth derivative

of F at 𑨈𑨈 𑨈𑨈 ℝ, 𑩥𑩥 𑩥𑩥 1, is the q-linear function  𑩥𑩥 𑨈𑨈 :ℝ × ℝ⋯ × ℝ ℝ such that 𑩥𑩥 𑨈𑨈 1,…, 𑩥𑩥 𑨈𑨈 ℝ. It is easy to observe that: and F(q)(u)(v1,…,vq−1,·) ∈, (ℝn) and 𑩥𑩥 𑨈𑨈 1,…, 𑩥𑩥 =  𑩥𑩥 𑨈𑨈 1,…, 𑩥𑩥 , for all permutation σ of {1, 2, …, q}. We will use the

notation:

( ) ( )
1 2 1 2

( ) 1 ( ) ( ) ( ) ( ) 1

,( )( , , , ) ( ) and

( ) ( ) ( ) .

q q
q q

q q p p q p q p

F u v v v F u v v v

F u v F v F u F u v- + -

¼ = ¼

=

For  + ℎ 𑨈𑨈 ℝ lying in a neighborhood of a solution ξ of the nonlinear system F(x) = 0 and
assuming that the Jacobian matrix F′(ξ) is nonsingular, Taylor’s expansion can be applied,
obtaining

1
'

1

( ) ( ) [ ],
p

q p
q

q

F h F h C h O hx x
-

=

é ù
+ = + +ê ú

ë û
å

where 𑩥𑩥 = 1𑩥𑩥! ′  −1(𑩥𑩥)  ,q ≥ 2 We observe that 𑩥𑩥𑩥𑩥 𑨈𑨈 ℝ since F(q)(ξ) ∈ (ℝn × ⋯ × ℝn

→ ℝn). In addition, we can express the Jacobian matrix of F, F′ as

1
' ' 1

1

( ) ( ) [ ],
p

q p
q

q

F h F I qC h O hx x
-

-

=

é ù
+ = + +ê ú

ë û
å

where I is the identity matrix. Therefore, 𑩥𑩥𑩥𑩥𑩥ℎ𑩥𑩥 𑩥 1 𑨈𑨈 (ℝn). From this expansion we can

conjecture that
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1 2 3 1
2 3 4[ ( )] [ ][ ( )] [ ]¢ - ¢ -+ = + + + + +L

pF h I X h X h X h F O hx x

and taking into account that ′( + ℎ) −1′  + ℎ = ′  + ℎ ′( + ℎ) −1 = , we obtain

2 3
2 2 3 2 3 4 2 2 3 3 2 42 , 4 3 , 8 6 6 4 , = - = - = - + + - ¼X C X C C X C C C C C C

We denote  = () −  the error in the kth iteration. The equation  + 1 = 𝀵𝀵 +   + 1 ,

where L is a p-linear function 𝀵𝀵 𑨈𑨈 (ℝn×…×ℝn, ℝn), is called error equation, and p is the order of
convergence.

2.1. Pseudo-composition technique

We use the generic formulas of the Gaussian quadrature and develop families of predictor-
corrector iterative methods, variants of Newton’s scheme, for solving nonlinear systems.
Starting with any method of order p as a predictor and correcting over Gaussian quadrature,
we will show that the final order of the obtained method will depend, among other things, on
the order of the last two steps of the predictor. Let

5 1 5 1
( ) 5 ( ) 5[ ] , [ ],

q p
k j q k j p

j k k j k k
j q j p

y M e O e z N e O ex x
- -

= =

= + + = + +å å

be the penultimate and last steps of any iterative method with orders of convergence p and q,
respectively. Taking this scheme as a predictor, we introduce the Gaussian quadrature as a
corrector and we get four cases with the following iterative formulas:

( 1) ( ) 1 ( ) ( 1) ( ) 1 ( )

( 1) ( ) 1 ( ) ( 1) ( ) 1 ( )

(a) 2 ( ), (b) 2 ( ),

(c) 2 ( ), (d) 2 ( ),

k k k k k k

k k k k k k

x y K F y x z K F z

x y K F z x z K F y

+ - + -

+ - + -

= - = -

= - = -

(2)

where for all cases  = ∑ = 1 ω ′(()), () = 12[(1 + )() + (1 − )()], and ωi and τi are

the weights and nodes, respectively, of the orthogonal polynomial of degree m, which defines

the corresponding Gaussian quadrature. Then, () is calculated by using the points obtained
in the last two steps of the predictor.
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To simplify the calculations, we use the following notation: ∑ = 5 − 1 = 1() and∑ = 5 − 1 = 2(), where the subscripts in parentheses denote the value of the smallest

power assumed by j in the sum. By using this notation, () can be expressed as() =  + 12( + )(), where  = 2() + 1() and  = 2() − 1(). By expansion of(()), (()) and ′( ) in the Taylor series around ξ, we obtain

( ) 2 3 4 5
1( ) 2 1(2 ) 3 1(3 ) 4 1(4 )

( ) 2 3 4 5
1( ) 2 1(2 ) 3 1(3 ) 4 1(4 )

( ) 2 3 4

( ) ( )[ ] [ ],
( ) ( )[ ] [ ],

( ) ( )[ ] [ ],

k q
q q q q k

k p
p p p p k

k q
i i i i k

F y F A C A C A C A O e
F z F A C A C A C A O e

F F I B C D E O e

x
x

h x t t t

¢= + + + +
¢= + + + +

¢= + + + + +

where = 1 + 3432 + 1243,  = 2 + 343( + ) + 124(2 +  + 2), = 3432 + 124( + 2 + 2) and  = 1243. We also introduce the following notation:∑ = 1  =  and 1∑ = 1  =  with j = 1, 2, …, which will allow us to simplify the analysis

of the convergence conditions of the described methods.

Now, we develop the expression  = ∑ = 1 ′(()) appearing in Eq. (2) and we obtain = ′   + 1() + 2(2) + 3(3) + [4],where1() = 2( + 1)(),2(2) = 343(2 + 1  +  + 22)(2)and3(3) = [124(3 + 1 2 +  + 2 + 2 2 +  + 2 + 23)(3). Recalling that−1 = , we get −1 = −1  + ′1() + ′2(2) + ′3(3) ′  −1 + [4], where′1() = − 1(), ′2(2) = (12 − 2)(2), and ′3(3) = −13 + 21 + 12 − 3 (3).
Therefore, considering case (a), we obtain for  = 2−1(()) the following expression:

2
1( ) 2 1 1 1 (2 ) 2 1 1 2 1 2 1 (3 )

3 2 4
4 1 1 3 1 2 2 1 3 1 (4 )
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Since ( + 1) = () − , the error equation can be expressed as
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where = 1 + 3432 + 1243,  = 2 + 343( + ) + 124(2 +  + 2), = 3432 + 124( + 2 + 2) and  = 1243. We also introduce the following notation:∑ = 1  =  and 1∑ = 1  =  with j = 1, 2, …, which will allow us to simplify the analysis

of the convergence conditions of the described methods.

Now, we develop the expression  = ∑ = 1 ′(()) appearing in Eq. (2) and we obtain = ′   + 1() + 2(2) + 3(3) + [4],where1() = 2( + 1)(),2(2) = 343(2 + 1  +  + 22)(2)and3(3) = [124(3 + 1 2 +  + 2 + 2 2 +  + 2 + 23)(3). Recalling that−1 = , we get −1 = −1  + ′1() + ′2(2) + ′3(3) ′  −1 + [4], where′1() = − 1(), ′2(2) = (12 − 2)(2), and ′3(3) = −13 + 21 + 12 − 3 (3).
Therefore, considering case (a), we obtain for  = 2−1(()) the following expression:
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Since ( + 1) = () − , the error equation can be expressed as
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We note that if σ = 2 we obtain order of convergence at least 2q. The possibility of obtaining a
convergence order greater than 2q depends on the expression (21 + ′1)1. We develop it

and get 21 + ′1 1 = 12 12 (2) − (1 + 1)2 21 ( + ). Then, σ1 = 0, the error

equation is:
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It is clear that the higher order of convergence in case (a) is min{p+q, 3q}. Finally, it is easy to
prove that in case (b), the order of convergence of the resulting method is at least p. If σ = 2 the
convergence order is p + q unless σ1 = 2 or C2 = 0, being in case the order of convergence is at
least 2q + p. In cases (c) and (d) the convergence order is q, which is lower than the order of the
predictor. It should be noticed that in case (b), two further functional evaluations are required
and a new linear system per step must be solved. This causes the obtained method to be
inefficient, from the standpoint of computational efficiency. In addition, we would like to
remark that the order of convergence can be greater than p + q depending on expressions A1

and A2, which represent the errors of penultimate and last steps of the predictor method, and
also of σ1 in case (b). The comments above allow us to state the following result, whose proof
can be found by Cordero et al. [19], which establishes the order of convergence of the schemes
that are obtained by using any method as a predictor of order p and eventually correcting it
by the use of Gaussian quadrature, in case (a).

Theorem 2.1. Let :Ω ⊂ ℝ ℝ be sufficiently differentiable function in Ω and F′(x) continuous
and nonsingular at ξ ∈ Ω, solution of the nonlinear system. Let y(k) and z(k) be the penultimate and last
steps of orders q and p, respectively, of a certain iterative method. Taking this scheme as a predictor we
get a new approximation x(k + 1) of ξ given by Eq. (2). Then,

i. the methods of the obtained families have an order of convergence at least q,

ii. if σ = 2 is satisfied, then the order of convergence is at least 2q,

iii. if, also, σ1 = 0 the order of convergence is min{p + q, 3q}.

In Table 1, we show the values of σ and σ1 for some Gaussian quadrature.
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In terms of computational efficiency, the most efficient methods are those which use fewer
nodes and few functional evaluations, so we only consider case (a). Also, Theorem 2.1 shows
that the order of convergence does not depend on the number of nodes, it only depends on the
order of convergence of the penultimate and last step of the predictor method. Therefore, it is
computationally more efficient to use one or two nodes. We note that the Gauss-Chebyshev
quadrature does not fulfill the second condition of Theorem 2.1. Then, its order of conver-
gence is q. The method obtained by using Gauss-Radau quadrature of one node does not fulfill
the third condition but it verifies the second one; hence, its order of convergence is at least 2q.
The remaining quadrature with nodes 1, 2, and 3 satisfies the conditions of Theorem 2.1 and
the order of convergence is at least min{p + q, 3q}.

Number of nodes Gaussian Quadrature

Chebyshev Legendre Lobatto Radau

σ σ1 σ σ1 σ σ1 σ σ1

1 π 0 2 0 2 0 2 −1

2 π 0 2 0 2 0 2 0

3 π 0 2 0 2 0 2 0

Table 1. Quadrature formula used.

If we use case (a) and the Gauss-Legendre quadrature with 1 node or Gauss-Lobatto quadra-
ture with one node such as corrector, we obtain the midpoint method, where = 2′   +  2 . In case of using Gauss-Radau quadrature with one node, we obtain

Newton’s method ( = ′(())). Finally, if we use Gauss-Lobatto quadrature with two nodes
or Gauss-Radau quadrature with two nodes such as corrector, we obtain trapezoidal method

with  = 2′ () + ()  and Noor’s scheme where  = 8 ′   + 3′   + 2 3 ,

respectively.

2.2. Weight function procedure

The different methods obtained in the previous section are not optimal in the sense of Kung-
Traub conjecture [34], when they are applied to scalar equations. By using the weight functions
technique, we can increase the order of convergence of the designed methods without adding
new functional evaluations.

We denote by  = ℝ ×  the Banach space of all n × n real square matrices. The weight function
in this context is a Frèchet differentiable function :  satisfying:

(i) ′()() = 1, ′ being the first derivative of ,′: (), 1 ∈ ℝ and () denotes the

space of linear mapping from X to itself.
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(ii) ″(, )() = 2, ″ being the second derivative of ,″: ×  (), 2 ∈ ℝ.

Then, the Taylor expansion of H around the identity matrix I, of size n × n, gives
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Now, by using a relaxed Newton’s method as a predictor and a weight function procedure in
the corrector step, we design the following families of two-point schemes:
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where β is a non-zero real parameter and () = 1∑ = 1  ′(()) −1∑ = 1 ′(()). Here,

we have used the same notations previously introduced. The following result establishes the
order of convergence of this iterative scheme under some conditions of function H.

Theorem 2.2. Let ξ ∈ Ω be a zero of a sufficiently differentiable function :𑪆𑪆 𑪆𑪆 ℝ ℝ. Let us also
suppose that the initial estimation x(0) is close enough to the solution ξ and F′(ξ) is nonsingular. The
iterative methods (Eq. 4) have order of convergence four if
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and a sufficiently differentiable function H is chosen satisfying the conditions
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and H‴ is a bounded operator, where σ and σj j = 1, 2, depend on the Gaussian quadrature used (see
Ref. [35]).

Table 2 shows the values of σ1, σ2, and β, depending on the weights and the nodes of the
orthogonal polynomials used in the Gaussian quadrature and also the corresponding values
of the weight function and its derivatives, which are used in the iterative scheme.
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Quadrature No. of nodes σ σ1 σ2 β H0(I) H1 H2

Gauss-Chebyshev  1  π  0  0  4/3  (π/2)I  π/8  3π/8 

Gauss-Legendre  1  2  0  0  4/3  I  1/4  3/4 

Gauss-Lobatto  1  2  0  0  4/3  I  1/4  3/4 

2  2  0  1  2/3  I  −1/2  6 

Gauss-Radau  1  2  −1  0  0  (1/2)I  −  − 

2  2  0  1/3  1  I  0  2   

Table 2. Nodes, H0(I), H1 and H2, for different Gaussian quadrature.

Let us remark that the class of methods designed allows the use of any Gaussian quadrature.
In fact, when the technique of pseudo-composition was defined in Section 2.1 based also in
Gaussian quadrature, the Chebyshev orthogonal polynomials could not be employed, as they
did not verify the hypothesis of the main theorem. Nevertheless, with this new design, all the
orthogonal polynomials can be applied and all of them derive optimal methods in the scalar
case. In practice, we only use quadrature formulas with one and two nodes because, according
to Theorem 2.2, the order of convergence is independent of the number of nodes.

For the one-dimensional case, according to the Kung-Traub’s conjecture [34], the obtained
fourth-order methods are optimal (in case of Gauss-Radau with one node, classical Newton’s
method is obtained). Other new methods are obtained in the rest of cases.

Quadrature No. of nodes Name H(t)

Gauss-Chebyshev 1 GC1 16 5 − 12 + 1522
Gauss-Legendre 1 GLe1 18(9 − 4 + 32)
Gauss-Lobatto 2 GLo2 92 − 132  + 32
Gauss-Radau 2 GR2 2 − 2 + 2
Table 3. Notation and weight functions for different Gaussian quadrature formulas.

In Table 3, we show the weight functions used for each iterative scheme coming from the
respective Gaussian quadrature rules. Let us note that the iterative method coming from
Gauss-Lobatto with one node is the same as the one resulting from the application of Gauss-
Legendre, also with one node. In this case, both coincide with the fourth-order procedure
recently published by Sharma et al. [28]. Let us note that other weight functions should derive
in other new schemes. For example, the expression of the method obtained by using Gauss-
Legendre quadrature with one node is
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2.3. Divided difference operator

In this section, we present a design published by Cordero et al. [30] of some families of
parametric iterative methods for solving nonlinear equations by means of some known
schemes and afterwards extend one of them to systems of nonlinear equations. For this
purpose, we use Ostrowski’s [10] and Chun’s [36] methods with iterative schemes + 1 =  − ()  − 2() ()′()  and  + 1 =  −   + 2()() ()′() , respectively, where

yk is a Newton’s step. We propose a new family as a generalization of the previous methods in
the following form:
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where α, a1, a2, b1, and b2 are real parameters. In the following result, we show which values of
these parameters are necessary to guarantee at least order of convergence 4.

Theorem 2.3. Let :𑪆𑪆 𑪆𑪆 ℝ ℝ be a sufficiently differentiable function in an open interval I, such that

ξ ∈ I is a simple root of the nonlinear equation f(x) = 0. If  = 1, 2 = 12 2 − 2 , 1 = 1 − 11  and for

all a1 and 2 ∈ ℝ with, 1 ≠ 0 then sequence   𑩥𑩥 0 obtained from (Eq. 5) converges to ξ with local

order of convergence at least four. In this case, the error equation is

2 3 4 5
1 1 2 2 2 3((5 ( 2) ) ) [ ],+ = - - - +k k ke a b c c c e O e

where  =  −  and  = 1! () ′  ,  𑩥𑩥 2.

It is easy to prove this result by using any symbolic software as Wolfram Mathematica. To
extend family (Eq. 5) to multivariate case, we need to rewrite its iterative expression in such a
way that no functional evaluations of f remain at the denominator, as they will become vectors
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in the multidimensional case. So, let us consider that the first step of (Eq. 5) can be rewritten

as   = 1  −  ′  . By using this, we can rewrite quotient 
    as
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where  ,  =   −   −   is the first-order divided difference. By using this transforma-

tion, the proposed family (Eq. 5) is fully extensible to several variables in the following way
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where   ,   ;   denotes the divided difference operator of F on x(k) and y(k), I is the identity

matrix, and ′    is the Jacobian matrix of the system.

Since the analysis of the local convergence is based on Taylor series expansion around the
solution, we need to obtain the corresponding development of the divided difference operator.

Let us denote by [  ,   ; ] the divided difference operator defined by Ortega and Rhein-

boldt [37] as the function ⋅ , ⋅ ;  : ×  𑨈𑨈 ℝ × ℝ (ℝ) that satisfies, ;   −  =   −   , ∀,  𑨈𑨈 . To achieve this, we use the Genocchi-Hermite formula
(see [37])

1

0
[ , ; ] ( ) x x h F F x th dt¢+ = +ò

and, by developing ′( + ℎ) in Taylor series around x, we obtain

1 2 3
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1 1( ) ( ) ( ) ( ) [ ].
2 6
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Assuming that

Nonlinear Systems - Design, Analysis, Estimation and Control98



in the multidimensional case. So, let us consider that the first step of (Eq. 5) can be rewritten

as   = 1  −  ′  . By using this, we can rewrite quotient 
    as

( )
( )

[ ]
( )

,
1 ,k kk

k k

f x yf y
f x f x

a= -
¢

where  ,  =   −   −   is the first-order divided difference. By using this transforma-

tion, the proposed family (Eq. 5) is fully extensible to several variables in the following way

( 1) ( ) ' ( ) 1 ( )

( 1) ( ) ( ) ( ) ( ) ( ) ' ( ) 1 ( )
1 2

( ) ( ) ' ( ) 1 ( ) ( ) 1
1 1 2 2
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k k k k

k k k k k k k k

k k k k k

k k k k k

y x F x F x
x y G x y G x y F x F y

G x y a a I a F x x y F
G x y b b I b F x x y F ],

(6)

where   ,   ;   denotes the divided difference operator of F on x(k) and y(k), I is the identity

matrix, and ′    is the Jacobian matrix of the system.

Since the analysis of the local convergence is based on Taylor series expansion around the
solution, we need to obtain the corresponding development of the divided difference operator.

Let us denote by [  ,   ; ] the divided difference operator defined by Ortega and Rhein-

boldt [37] as the function ⋅ , ⋅ ;  : ×  𑨈𑨈 ℝ × ℝ (ℝ) that satisfies, ;   −  =   −   , ∀,  𑨈𑨈 . To achieve this, we use the Genocchi-Hermite formula
(see [37])

1

0
[ , ; ] ( ) x x h F F x th dt¢+ = +ò

and, by developing ′( + ℎ) in Taylor series around x, we obtain

1 2 3

0

1 1( ) ( ) ( ) ( ) [ ].
2 6

¢¢ ¢¢ ¢¢¢+ = + + +ò F x th dt F x F x h F x h O h (7)

Assuming that
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x

x

x

x
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¢¢ ¢= + + +
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(8)

and replacing these developments in the formula of Genocchi-Hermite, denoting the second
point of the divided difference by y = x + h and the error at the first step by ,  =  𑨒𑨒 𑨒𑨒, we

have , ;  = ′ 𑨒𑨒  + 2(,  𑨒𑨒 ) + 32 +  3 . In particular, if y is the approximation of

the solution provided by Newton's method, i.e., ℎ =  𑨒𑨒  = ′() 𑨒𑨒1(), we obtain, ;  = ′(𑨒𑨒)  + 2 + 22 + 3 2 +  3 . These tools allow us to prove the following

result.

Theorem 2.4. Let :𑪆𑪆 𑪆𑪆 ℝ ℝ be a sufficiently differentiable function in a convex set Ω, and 𑨒𑨒 𑨈𑨈 𑪆𑪆
be a solution of the nonlinear system of equations F(x) = 0. Then, the sequence ()  𑩥𑩥 0 obtained by

using expression (6) converges to ξ with local order of convergence at least four if = 1, 2 = 12(2 𑨒𑨒 2), 1 = 1 𑨒𑨒 11  and for all a1 and 2 𑨈𑨈 ℝ with a1 ≠ 0. The error equation is

2 3 4 5
1 1 2 2 2 3((5 ( 2) ) ) [ ],+ = - - - +k k ke a b C C C e O e

where  = () 𑨒𑨒 𑨒𑨒 and  = 1! ′(𑨒𑨒) 𑨒𑨒1()(𑨒𑨒),  𑩥𑩥 2.

Proof: By using Taylor expansion around ξ, we obtain:

( )

( ) ' 2 3 4 5
2 3 4

'( ) ' 2 3 4
2 3 4

( ) ( )( ) [ ],

( )( 2 3 4 ) [ ].
k

k
k k k k k

x
k k k k

F x F e C e C e C e O e

F F I C e C e C e O e

x

x

= + + + +

= + + + +

Let us consider F' x(k) 𑨒𑨒1 = I+X2ek + X3ek2 + X4ek3 F'(ξ) 𑨒𑨒1 + O ek4 . ForcingF' x(k) 𑨒𑨒1F' x(k) = I, we get X2 = −2C2, X3 = 222 −3C3 andX4 = 𑨒𑨒 4C4 + 6C3C2 𑨒𑨒 4C22 + 6C2C3. These expressions allow us to obtain for first step of

iterative formula (6)

( ) 2 3 4 5
2 3 4(1 ) ( ) [ ],= + - - + + +k

k k k k ky e A e A e A e O ex a a (9)
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where 2 = − 2 − 2, 3 = − 3 − 22 − 3 and 4 = − 4 − 32 − 23 − 4. By using
these results and the Taylor series expansion around ξ, we obtain

( ) ' 2 3 4 5
1 2 3 4( ) ( )( ) [ ],= + + + +k

k k k k kF y F B e B e B e B e O ex

where B1=β, B2=(α + β2)C2, B3=−αA3 + 2αβC2A3 + 3αβ2C3C2 + β4C4, B4=−αA4 + α2C2
3−2αβC2A3

+ 3αβ2C3C2 + β4C4 and β = 1 − α. We calculate the Taylor expansion of [x(k), y(k);F] by using Eq.
(9), [ x(k), y(k);F]= F'(ξ)(I + D2ek + D3ek2 + D4ek3) + O[ek4], where D2= (2−α)C2, D3= αC2

2 + (3−3α + α2)C3

and D4= 2αC2C3 + α(3−2α)C3C2−(4−6α + 4α2−α3)C4.

Then,

' ( ) 1 ( ) ( ) 2 3 4
1 2 2 1 2 3 4( ) [ ( )] [ , ; ] [ ],a -= + - = + + + +k k k

k k k kM a a I a F x x y F a E e E e E e O e

where E2 = αa2C2, E3 = αC2
3 + α(α−3)C3 and E4 = 6αC2C3−2αC2

3−4C4 + 5α(2−α)C3C2 + (4−6α
+ 4α2−α3)C3C4.

Thus, we obtain G1(x(k), y(k)) as the inverse of matrix M: G1(x(k), y(k))=I + Y2ek+Y3ek2+Y4ek3+O[ek4],

where 2 = 𝀵𝀵𝀵𝀵2𝀵𝀵1 2, 3 = 𝀵𝀵𝀵𝀵2𝀵𝀵12 𝀵𝀵𝀵𝀵2 − 3 22 + 𝀵𝀵 𝀵 3 3 ,

4 = 𝀵𝀵𝀵𝀵2𝀵𝀵13 8𝀵𝀵1 + 3𝀵𝀵𝀵𝀵1𝀵𝀵2 + 3𝀵𝀵𝀵𝀵2 − 𝀵𝀵2𝀵𝀵23 23 and G2(x(k), y(k)) = b1+F2ek+F3ek2+F4ek3+F5ek4+O[ek5] where

F2=αb2C2, F3=−αb2[2C2
2−(α−3)C3] and F4=b2[α(6−4α+α2)C4−6α(2−α)C3C2+4(α+1)C2

3−6(α+1)C2C3].

Finally, we obtain the error equation of the proposed method

2 3 4 5
1 1 2 3 4 ,k k k k k ke H e H e H e H e O e+ é ù= + + + + ë û

where 1 = 1𝀵𝀵1 1 + 𝀵𝀵1 1 − 1 (𝀵𝀵 𝀵 1). If α = 1, then H1 = 0 and the error equation takes the

form:  + 1 = 2′ 2 + 3′ 3 + 4′ 4 +  5  where 2′ = − 1𝀵𝀵1 1 + 𝀵𝀵1(1 − 1) 2. We note that if1 = 1 − 1/𝀵𝀵1, then 2′ = 0 We introduce this value of b1 and obtain the new form of the error

equation  + 1 = 3′′3 + 4′′4 +  5  where 3′′ = 1/𝀵𝀵12 𝀵𝀵2 − 𝀵𝀵12(2 − 2) 22. Finally, if𝀵𝀵2 = 𝀵𝀵12(2 − 2), the error equation is:

2 3 4 5
1 1 2 2 2 3[( ( 2) 5) ] [ ]+ = - - - + +k k ke a b C C C e O e
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and the proof is finished.□

By using the same hypothesis as in Theorem 2.4, the iterative scheme of the class (Eq. 6) takes
the form:

1( 1) ( ) ' ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( ) ' ( ) 1 ( )
1 2

1( ) ( ) ' ( ) 1 ( ) ( )
1 1 2 1 1 2

1

( ) ( ) '
2 1 1 2 2

1

( ) ( ),

( ( , ) ( , ))[ ( )] ( ),
1( , ) (1 2 ) ( 2)[ ( )] [ , ; ]

1( , ) ( 1) [

k k k k

k k k k k k k k

k k k k k

k k

y x F x F x

x y G x y G x y F x F y

G x y a b a I a b F x x y F
a

G x y a a b I b F
a

-+

+ -

--

é ù= - ë û
= - +

é ù= + - - -ë û

= + - - ( ) 1 ( ) ( )( )] [ , ; ] .k k kx x y F-é ùë û

(10)

In the following we propose some particular cases:

1. When a1 = 1, the iterative expression, being  (), () = 1 (), () + 2 (), ()
takes the form:

1( ) ( ) ' ( ) 1 ( ) ( )
2 2

' ( ) 1 ( ) ( )
2 2

( , ) ( 1) ( 2)[ ( )] [ , ; ]

[ ( )] [ , ; ]

k k k k k

k k k

G x y b I b F x x y F

b I b F x x y F

--

-

é ù= - - -ë û
+ -

and we have a family of schemes with interesting particular cases, among others,

a) If b2 = 2, Chun's method transferred to systems is obtained

( ) ( ) ( )
( ) ( )1 1

' '( 1) ( ) ( ) ( ) ( )2 , ; .
k kx xk k k k kx y I F x y F F F y

- -
+ æ öé ù é ùé ù= - -ç ÷ë ûê ú ê úë û ë ûè ø

b) If b2 = 0 we get Ostrowski's scheme transferred to systems

( ) ( ) ( )
( ) ( )

11 1
' '( 1) ( ) ( ) ( ) ( )2 , ; .

k kx xk k k k kx y I F x y F F F y
-- -

+ æ öé ù é ùé ù= - - +ç ÷ë ûê ú ê úë û ë ûè ø

2. When b2 = 0 for any a1 ≠ 0, the iterative expression of the parametric family is

( ) 1 ( ) ( )
( ) ( ) 1 1

( ) 1 ( ) ( )
1 1

(3 2 ) 2( 1)[ '( )] [ , ; ]( , ) .
(1 2 ) 2 [ '( )] [ , ; ]

k k k
k k

k k k

a I a F x x y FG x y
a I a F x x y F

-

-

- + -
=

- +
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If we express −2(a1 − 1) = β we get the King's family transferred to systems

( ) ( )
( )

( )( ) ( ) ( )

( ) ( )
( )( ) ( ) ( )

( )( ) ( )( )
1
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1

'1
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1 , ;
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xk k k

x k k

I F x y F
x y F F y

I F x y F

b b

b b

-

-
+

-

é ù é ù+ + ê ú ë û é ùë û= - ê úë ûé ù é ù- + - ê ú ë ûë û

3. When b2 = 1 for any a1 ≠ 0 and a1 ≠ 1 the iterative form, the last step of the method (Eq. 10)
takes the form:

( 1) ( ) ' ( ) 1 ( ) ( ) 1
1 1

1

' ( ) 1 ( ) ( ) ' ( ) 1 ( )
1

1

1( [(1 ) [ ( )] [ , ; ]]

1 [(2 1) [ ( )] [ , ; ]])[ ( )] ( ).

k k k k k

k k k k k

x y a I a F x x y F
a

a I F x x y F F x F y
a

+ - -

- -

= - - -

+ - -

3. Dynamic studies of some methods

In the last years, a new branch of the analysis of iterative methods for solving nonlinear
equations or systems has taken relevance: the dynamical analysis of the rational functions
associated with the fixed point operator associated with the iterative scheme on polynomials.
By using complex or real dynamics techniques, the stability and reliability of a method can be
checked. Indeed, if a parametric family of iterative procedures is considered, this kind of
analysis allows selecting those elements of the class with better stability and also to know which
ones behave chaotically even on the most simple functions, as low degree polynomials.

The use of these dynamical tools is very frequent on scalar iterative methods; see, for example,
Refs. [38–45] and the references therein, but in the multidimensional case, it is a starting area
of research.

Now, let us recall some basic concepts on complex dynamics. Given a rational function
, where  is the Riemann sphere, the orbit of a point 0 ∈  is defined as0, (0), 2(0), …, (0), … . A point * ∈  is called a fixed point of () if it verifies that * = *. Moreover, z* is called a periodic point of period p > 1 if it is a point such that  * = *

but  * ≠ 0, for each k < p. Moreover, a point z* is called pre-periodic if it is not periodic but

there exists a k > 0 such that  *  is periodic.

There exist different types of fixed points depending on their associated multiplier . 

Taking the associated multiplier into account, a fixed point z* is called: superattracting if
, attracting if , repulsive if , and parabolic if . The fixed
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point operator of any iterative method on an arbitrary polynomial p(z) is a rational function.
The fixed points of this rational function that do not correspond to the roots of the polynomial
p(z) are called strange fixed points. On the other hand, a critical point z* is a point satisfying′ * = 0.

The basin of attraction of an attractor α is defined as  The Fatou
set of the rational function R,  is the set of points  𑨈𑨈  whose orbits tend to an attractor
(fixed point, periodic orbit or infinity). Its complement in  is the Julia set, . That means
that the basin of attraction of any fixed point belongs to the Fatou set and the boundaries of
these basins of attraction belong to the Julia set.

Some other concepts are a key fact in this kind of analysis, as the immediate basin of attraction
of an attracting fixed point α (considered as a periodic point of period 1), as the connected
component of the basin containing α. This concept is directly related with the existence of
critical points, as can be seen in the following classical result, due to Fatou and Julia.

Theorem 3.1. Let R be a rational function. The immediate basins of attraction of any attracting periodic
point hold, at least, a critical point.

If a scaling theorem can be established, the qualitative behavior of the class of iterative schemes

is analyzed on a generic quadratic polynomial () = 2 − , its dynamics being analytically
conjugated by affine transformations. Then, the fixed points of their associated rational
function (being or not roots of the polynomial) are calculated and it is studied if they are stable
(that is, if the successive iterations of the method converge to them) or if they are unstable,
repelling the iterations near them. Finally, the calculation of critical points and their use as
starting points of the iterative process will allow us, by applying Theorem 3.1, to find all the
values of the parameter (that is, methods of the family) that do not converge to the roots of the
polynomial, resulting in unstable behavior (attracting periodic orbits, chaos, etc.).

This kind of analysis has been developed by Cordero et al. [46] on the fourth-order bipara-
metric Ostrowski-Chun family, whose iterative expression was shown in Eq. (5). In this
manuscript, the strange fixed points and free independent critical points of the fixed point
rational operator
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have been identified. As the behavior of the elements of the family depends on two parameters,
only real values have been considered in the plane (a1, b2) in order to calculate the multipliers
of the strange fixed points: z = 1 and
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where A, B, C, and D depend on both parameters a1 and b2. In Figure 1, the stability function

of strange fixed point z = 1 is represented, ′ 1, 1, 2 . The orange region corresponds to real

values of parameters a1 and b2 where z = 1 is attracting, meanwhile gray region includes
values of a1 and b2 where this strange fixed point is repulsive, and therefore, the corresponding
iterative methods have better behavior. Similar studies can be made on the rest of strange fixed
points, searching for a more stable position of plane (a1, b2).

Figure 1. Stability function of z = 1 as fixed point of operator Op(z, a1, b2).

On the other hand, as the dynamics of critical points could lead to a Fatou component, their
associated parameter planes are represented to see the behavior of the method when the initial
estimate is a critical point. In this case, z = −1 and 𝀵𝀵𝀵𝀵𘴀𘴀, 𘴀𘴀 = 1, 2, 3, 4, are free critical points of

Op(z,a1, b2) such that 𝀵𝀵𝀵𝀵1 = 1𝀵𝀵𝀵𝀵2  and 𝀵𝀵𝀵𝀵3 = 1𝀵𝀵𝀵𝀵4 , that will be used to calculate the different
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parameter planes associated with the fixed point operator. As z = −1 is a pre-image of z = 1,
only two critical points can be considered as free and independent: cr2 and cr4.

The parameter space of a free critical point is obtained by associating each point of the
parameter plane with real values of free parameters a1 and b2, so every point on the plane
represents a different member of the iterative family. These parameter planes (one of them can
be seen in Figure 2) have been created using a vectorized version of the MATLAB code
programs presented by Chicharro et al. [47], with 800 × 800 different combinations of a1 and
b2. Black points correspond to the parameter values for which the associated iterative method
does not converge to the conjugated values of the zeros of polynomial p(z) with a tolerance of
10−3 after 500 iterations, taking the same free independent critical point as the initial estimate.

Figure 2. Parameter plane of operator Op(z, a1, b2).

Points shown in red in Figure 2 (and also simultaneously red in the rest of parameter planes
corresponding to other free independent critical points of the rational function) correspond to
the most stable methods of the family. In these terms, Figure 3 shows the dynamical plane
associated with one of these stable elements of the family: each point with 800 × 800 mesh in
the complex plane is an initial estimation for the iterative method. This point has an associated
color depending on the convergence of the method after 80 iterations: if it converges to a fixed
point that corresponds to a root of p(z), then a color (orange and blue) is assigned (see
Figure 3a). If not, then it diverges or converges to any other element (attracting strange fixed
point, periodic orbit, etc.), and it is painted in black (see Figure 3b). In the former case, the orbit
of an initial point in a black region is marked in yellow.
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Figure 3. Dynamical plane of operator Op(z, a1, b2).

Selected values of parameters a1 and b2 in these red regions were tested numerically, not only
on scalar equations, but also on multidimensional problems. These tests showed that good
performance of the member of the family observed in the dynamical study could also be
noticed in the multidimensional case.

However, very recently real multivariate dynamical tools have revealed also to be a reliable
implement to analyze the stability of iterative methods, specially designed for solving
nonlinear systems. In order to study the stability of the fixed points of vectorial rational
functions associated with iterative schemes for solving nonlinear systems, a new tool was
presented by Cordero et al. [33]. In it, the authors checked the consistence of this tool by
applying it on known methods as Newton's and Traub's schemes and also on a family of
parametric iterative procedures
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Presented by Hueso et al. [48] and denoted by HMT.

In order to analyze, under a multidimensional point of view, the qualitative behavior of this
family, the Cordero et al. [33] introduced some concepts of multidimensional real discrete
dynamics that we will recall in the following; some of them are the natural extensions of the
defined concepts in complex dynamics, but others will be defined, as being different from
those.

Let us denote by G(x) the vectorial fixed-point function associated with the iterative method

or family on polynomial p(x). The dynamical behavior of the orbit of a point of ℝ can be
classified depending on its asymptotic behavior. In this way, a point x* is a fixed point of G if
G(x*) = x*.
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Theorem 3.2. [43, page 558] Let :ℝ ℝ be  𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 𝀵𝀵  . Assume x* is a period-k point. Let1, 2, …,  be the eigenvalues of G'(x*).

a) If all the eigenvalues  have  < 1, then x* is attracting.

b)
If one eigenvalue 0 has 0 > 1, then x* is unstable, that is, repelling or saddle.

c) If all the eigenvalues  have  > 1, then x* is repelling.

Moreover, a fixed point is called hyperbolic if all the eigenvalues  of G′(x*) have  ≠ 1. Indeed,

if there is an eigenvalue 𝀵𝀵 such that 𝀵𝀵 < 1 and also there exists an eigenvalue  such that > 1, the hyperbolic point is called saddle point.

To avoid the calculation of spectrum of G′(x*), the authors proposed by Cordero et al. [33] a
result that, being consistent with the previous theorem, provided a practical tool to classify
the stability of fixed points in many multidimensional cases.

Proposition 3.1. Let x* be a fixed point of G. then,

a)
if , for all 1, 2, …,  , then x* is attracting.

b)
if , for all 𝀵𝀵, 𝀵𝀵 1, 2, …,  , then x* is superattracting.

c)
if , for all 𝀵𝀵 1, 2, …,  , then x* is unstable and lies at the Julia set.

being the coordinate functions of the fixed point multivariate function G.

Let us remark that if the order of convergence of the iterative method is at least two, then the
roots of the nonlinear function are superattracting fixed points of the vectorial rational function
corresponding to the iterative scheme. If a fixed point is not a root of the nonlinear function,
it is called strange fixed point and its character can be analyzed in the same manner.

The concept of critical point can be defined following the idea of multivariate convergence of
iterative methods.

Definition 3.1. A fixed point x* is a critical point of G if its coordinate functions 𝀵𝀵() satisfy ,

for all 𝀵𝀵,  𝀵𝀵 1, 2, …,  .

From this definition, a superattracting fixed point will also be a critical point of the operator
and, from numerical point of view, the iterative scheme will have, at least, quadratic order of
convergence. A critical point that is not root of p(x) will be called free critical point.

The stability of this family is studied on two systems of real quadratic polynomials, p(x) = 0
and q(x) = 0, where
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It was proved by Cordero et al. [33] that the number of fixed points of the vectorial rational
function G(x) associated with HMT iterative method on p(x) is 64, four of them (those corre-
sponding to the roots of p(x)) are superattractive for any value of θ. Moreover, there are 48
unstable strange fixed points and the character of the final 12 real strange fixed points is
simultaneously attractive for two ranges of values of θ, [−0.3847551, −0.3838109] and
[0.3838109, 0.3847551], being superattractive if 𑩈𑩈 𑩈𑩈 𑩈𑩈 0 . 3838109 or 𑩈𑩈 𑩈𑩈 0 . 3838109.

In Figure 4, we can see the dynamical plane of HMT method for 𑩈𑩈 𑩈𑩈 𑩈𑩈 0 . 3838109, where those
12 attracting strange fixed points appear as white circles, with small basins of attraction. The
roots of p(x) appear as white stars, in their own basins of attraction.

Figure 4. Dynamical plane of multivariate HMT method on p(x) for θ ≈ −0.3838109.

The parametric plots, as the extension of parameter planes in multivariable case, were revealed
to be an interesting procedure that allowed to detect the most stable and unstable elements of
a family of iterative methods. By using the information that gives us the iteration of the
elements of the family on the different free critical points, we can know the global behavior of
the family depending on the value of the parameter. Orbits of each free critical point are
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showed in Figure 5. In each one of these pictures, a different free critical point is used as initial
guess of each member of the class of iterative schemes, taking values of parameter θ in [−5,5].
The values of θ corresponding to the members of the family are placed in the abscissa axis and
the ordinate axis corresponds to 0.1, 0.2, 0.3, or 0.4 if the iterative process has converged to
each one of the solutions of the quadratic polynomial real system, p(x), respectively. Moreover,
the ordinate of a point is −0.1 if the process diverges and it is null in other cases.

Figure 5. Different parameter plots of HMT family on p(x).

Figure 6. 4-Periodic orbits in HMT family.

The goal of these graphics is to show the elements of the family HMT (that is, the values of
parameter θ) that present unstable behavior (attracting strange fixed points, periodic orbits,
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…). These plots were obtained by using 20,000 subintervals, a maximum of 40 iterations and
an error estimation of 10−3, when iterates tend to a fixed point.

Thanks to this analysis, some non-desirable behavior was detected, as attracting periodic orbits
of different periods, as can be observed in Figure 6, where two periodic orbits of period four
are showed in yellow.

4. Numerical results

In this section, we are going to check the numerical performance of some elements of family
(Eq. 10) compared with the multidimensional version of some other known methods of the
same order and also with Newton's one.

Definition 4.1. Let ξ be a zero of function F and suppose that x(k−1), x(k) and x(k+1) are three consecutive
iterations close to ξ. Then, the computational order of convergence p can be approximated using the
formula (see Ref. [12]).

( 1) ( ) ( ) ( 1)

( ) ( 1) ( 1) ( 2)

ln( / )
ln( / )

k k k k

k k k k

x x x xp
x x x x

+ -

- - -

- -
»

- -
P P P P

P P P P

Numerical computations have been carried out in MATLAB, with variable precision arithmetic
that uses floating point representation of 1000 decimal digits of mantissa. If n > 1, every iterate
x(k+1) is obtained from the previous one, x(k), by adding one term of the form A−1b. Matrix A and
vector b are different according to the method used, but in any case the inverse calculation −A
−1b is computed by solving the linear system Ay = −b, by using Gaussian elimination with partial
pivoting. Nevertheless, if several systems with the same matrix A must be solved in iteration,
LU factorization is made once and the corresponding triangular systems are solved by

substitution. The stopping criterion used is  () < 10−700 or( + 1) − () < 10−700.

4.1. Molecular interaction problem

We are going to solve the equation of molecular interaction,

2 ,( , ) [0,1] [0,1],+ = Î ´xx yyu u u x y

with the boundary conditions (, 0) = 22 −  + 1, (, 1) = 2, (0, ) = 22 −  + 1 and u(1, y)
= 2, for all (x, y) in their domain.

For approximating its solution, we are going to use central divided differences procedure to
transform the problem in a nonlinear system of equations. This system is solved by means of
the proposed methods of order four and another known ones.
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The discretization process yields the nonlinear system of equations,

2 2
1, , 1, , 1 , 1 ,4 0, 1,2, , , 1,2, , ,+ - + -- + + + - = = ¼ = ¼i j i j i j i j i j i ju u u u u h u i nx j ny

where ui,j denotes the estimation of the unknown u(xi,yj), where xi = ih with i = 1,2,…, nx and yj
= jk with j = 1,2, …, ny are the nodes in both variables, with ℎ = 1𝀵𝀵𝀵𝀵 ,  = 1𝀵𝀵𝀵𝀵  and nx = ny.

For checking purposes, we consider nx = ny = 4, getting a mesh of 5 × 5 points. Applying the
boundary conditions we have only nine unknowns, which we rename as:

1 1,1 2 2,1 3 3,1

4 1,2 5 2,2 6 3,2

7 1,3 8 2,3 9 3,3

, , ,
, , ,
, , .

x u x u x u
x u x u x u
x u x u x u

= = =
= = =
= = =

Then, the nonlinear system associated with the partial differential equation, including the
boundary conditions, can be expressed as

( ) ( ) 0,= + - =F x Ax x bj

where

0 4 1 0
, 1 4 1

0 0 1 4

M I
A I M I M

I M

- -æ ö æ ö
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I being the 3 × 3 identity matrix, (𝀵𝀵) = ℎ2 𝀵𝀵12, 𝀵𝀵22, …, 𝀵𝀵92  and  = 74, 1, 278 , 1, 0, 2, 278 , 2, 4 
.

In this case,

' 2
1 2 9( ) 2 ( , , ).= + ¼F x A h diag x x x

For solving this system, we apply the extension for systems of Ostrowski's method (OM),
Chun's scheme (CM), Jarratt's method (JM), Newton's method (NM), and three elements of
family (Eq. 10) obtained by selecting stable values of the parameters.
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In Table 4, the approximated computational order of convergence ACOC, the number of
iterations, the difference between the two last iterations and the residual of the function at the
last iteration are shown, for each one of the methods. In all cases, the initial estimation is a null
vector and the Euclidean norm is used in the calculation of the residuals.

Method ACOC Iteration ( + 1) − () (())
NM 1.9999 9 1.482e-413 6.448e-828

JM 3.9954 5 1.482e-413 1.976e-1007

OM 3.9964 5 1.482e-413 1.618e-1007

CM 3.9959 5 1.998e-353 1.618e-1007

MA 4.0519 5 5.362e-510 1.707e-2007

MB 3.9960 5 7.123e-362 1.409e-1449

MC 3.9960 5 3.110e-362 3.811e-1451

Table 4. Numerical results for molecular interaction problem.

All the checked schemes provide the same solution of the nonlinear system. In Table 4, we can
observe that all the fourth-order methods have a similar performance, but we note that the
lowest error corresponds to method MA, duplicating the number of exact digits with respect
to the other ones.

5. Conclusions

Many problems in science and engineering are modeled in such a way that, for their solution,
it is necessary to solve systems of nonlinear equations. Therefore, designing iterative methods
for solving these types of problems is an important task and it is a fruitful area of research. In
this chapter, a review of the different techniques for constructing iterative methods is present-
ed. Moreover, it is shown that real discrete dynamics tools are useful for analyzing the stability
of the designed methods, selecting those with good dynamical behavior. In the numerical
section, a chemical problem is used for testing the presented methods and the theoretical
results are confirmed.
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In Table 4, the approximated computational order of convergence ACOC, the number of
iterations, the difference between the two last iterations and the residual of the function at the
last iteration are shown, for each one of the methods. In all cases, the initial estimation is a null
vector and the Euclidean norm is used in the calculation of the residuals.

Method ACOC Iteration ( + 1) − () (())
NM 1.9999 9 1.482e-413 6.448e-828

JM 3.9954 5 1.482e-413 1.976e-1007

OM 3.9964 5 1.482e-413 1.618e-1007

CM 3.9959 5 1.998e-353 1.618e-1007

MA 4.0519 5 5.362e-510 1.707e-2007

MB 3.9960 5 7.123e-362 1.409e-1449

MC 3.9960 5 3.110e-362 3.811e-1451

Table 4. Numerical results for molecular interaction problem.

All the checked schemes provide the same solution of the nonlinear system. In Table 4, we can
observe that all the fourth-order methods have a similar performance, but we note that the
lowest error corresponds to method MA, duplicating the number of exact digits with respect
to the other ones.

5. Conclusions

Many problems in science and engineering are modeled in such a way that, for their solution,
it is necessary to solve systems of nonlinear equations. Therefore, designing iterative methods
for solving these types of problems is an important task and it is a fruitful area of research. In
this chapter, a review of the different techniques for constructing iterative methods is present-
ed. Moreover, it is shown that real discrete dynamics tools are useful for analyzing the stability
of the designed methods, selecting those with good dynamical behavior. In the numerical
section, a chemical problem is used for testing the presented methods and the theoretical
results are confirmed.
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Abstract

In  this  chapter,  iterated  sigma‐point  Kalman  filter  (ISPKF)  methods  are  used  for
nonlinear state variable and model parameter estimation. Different conventional state
estimation methods, namely the unscented Kalman filter (UKF), the central difference
Kalman filter (CDKF), the square‐root unscented Kalman filter (SRUKF), the square‐
root central difference Kalman filter (SRCDKF), the iterated unscented Kalman filter
(IUKF), the iterated central difference Kalman filter (ICDKF), the iterated square‐root
unscented  Kalman  filter  (ISRUKF)  and  the  iterated  square‐root  central  difference
Kalman  filter  (ISRCDKF)  are  evaluated  through  a  simulation  example  with  two
comparative studies in terms of state accuracies, estimation errors and convergence.
The state variables are estimated in the first comparative study, from noisy measure‐
ments with the several estimation methods. Then, in the next comparative study, both
of  states  and  parameters  are  estimated,  and  are  compared  by  calculating  the
estimation root mean square error (RMSE) with the noise‐free data. The impacts of
the  practical  challenges  (measurement  noise  and  number  of  estimated  states/
parameters) on the performances of the estimation techniques are investigated. The
results of both comparative studies reveal that the ISRCDKF method provides better
estimation accuracy than the IUKF, ICDKF and ISRUKF. Also the previous methods
provide better accuracy than the UKF, CDKF, SRUKF and SRCDKF techniques. The
ISRCDKF method provides accuracy over the other different estimation techniques;
by iterating maximum a posteriori estimate around the updated state, it re‐linearizes
the measurement equation instead of depending on the predicted state. The results
also represent that estimating more parameters impacts the estimation accuracy as
well  as  the  convergence  of  the  estimated  parameters  and  states.  The  ISRCDKF
provides  improved  state  accuracies  than  the  other  techniques  even  with  abrupt
changes in estimated states.
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1. Introduction

Dynamic state‐space models [1–3] are useful for describing data in many different areas, such
as engineering [4–8], biological data [9, 10], chemical data [11, 12], and environmental data [8,
13–15].  Estimation of  the  state  and model  parameters  based on measurements  from the
observation process is an essential task when analyzing data by state‐space models. Bayesian
estimation filtering represents a solution of considerable importance for this type of problem
definition as demonstrated by many existing algorithms based on the Bayesian filtering [16–
25]. The Kalman filter (KF) [26–29] has been extensively utilized in several science applications,
such as control, machine learning and neuroscience. The KF provides an optimum solution
[28], when the model describing the system is supposed to be Gaussian and linear. However,
the KF is limited when the model is considered to be nonlinear and present non‐Gaussian
modeling assumptions. In order to relax these assumptions, the extended Kalman filter (EKF)
[26, 27, 30–32], the unscented Kalman filter (UKF) [33–36], the central difference Kalman filter
(CDKF) [37, 38], the square‐root unscented Kalman filter (SRUKF) [39, 40], the square‐root
central difference Kalman filter (SRCDKF) [41], the iterated unscented Kalman filter (IUKF)
[42, 43], the iterated central difference Kalman filter (ICDKF) [44, 45], the iterated square‐root
unscented Kalman filter (ISRUKF) [46] and the iterated square‐root central difference Kalman
filter (ISRCDKF) [47] have been developed. The EKF [26] linearizes the model describing the
system to approximate the covariance matrix of the state vector. However, the EKF is not
always performing especially for highly nonlinear or complex models. On behalf of linearizing
the model, a class of filters called the sigma‐point Kalman filters (SPKFs) [48] uses a statistical
linearization technique which linearizes a nonlinear function of a random variable via a linear
regression. This regression is done between n points drawn from the prior distribution of the
random variable, and the nonlinear functional evaluations of those points. The sigma‐point
family of filters has been proposed to address the issues of the EKF by making use of a
deterministic sampling approach. In this approach, the state distribution is approximated and
represented by a set of chosen weighted sample points which capture the true mean and
covariance of the state vector. These points are propagated through the true nonlinear system
and capture the posterior mean and the covariance matrix of the state vector accurately to the
third order (Taylor series expansion) for any nonlinearity. As part of the SPKF family, the UKF
[26, 27, 33] has been developed. It uses the unscented transformation, in which a set of samples
(sigma points) are propagated and selected by the nonlinear model, providing more accurate
approximations of the covariance matrix and mean of the state vector. However, the UKF
technique has the limit of the number of sigma‐points which are not so large and cannot
represent complicated distributions. Another filter in the SPKF family is the central difference
Kalman filter (CDKF) [37, 38]. It uses the Stirling polynomial interpolation formula. This filter
has the benefit over the UKF in using only one parameter when generating the sigma‐point.
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regression. This regression is done between n points drawn from the prior distribution of the
random variable, and the nonlinear functional evaluations of those points. The sigma‐point
family of filters has been proposed to address the issues of the EKF by making use of a
deterministic sampling approach. In this approach, the state distribution is approximated and
represented by a set of chosen weighted sample points which capture the true mean and
covariance of the state vector. These points are propagated through the true nonlinear system
and capture the posterior mean and the covariance matrix of the state vector accurately to the
third order (Taylor series expansion) for any nonlinearity. As part of the SPKF family, the UKF
[26, 27, 33] has been developed. It uses the unscented transformation, in which a set of samples
(sigma points) are propagated and selected by the nonlinear model, providing more accurate
approximations of the covariance matrix and mean of the state vector. However, the UKF
technique has the limit of the number of sigma‐points which are not so large and cannot
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To add some benefits of numerical stability, the SRUKF and the SRCDKF [41] have been
developed. The advantage of these filters is that they ensured positive semidefiniteness of the
state covariances. The iterated sigma‐point Kalman filter (ISPKF) methods employ an iterative
procedure within a single measurement update step by resampling the sigma‐point till a
termination criterion, based on the minimization of the maximum likelihood estimate, is
satisfied.

The objectives of this chapter are threefold: (i) To estimate nonlinear state variables and model
parameters  using  SPKF  methods  and  extensions  through  a  simulation  example.  (ii)  To
investigate the effects of practical challenges (such as measurement noise and number of
estimated states/parameters) on the performances of the techniques. To study the effect of
measurement noise on the estimation performances, several measurement noise levels will be
considered. Then, the estimation performances of the techniques will be evaluated for different
noise levels. Also, to study the effect of the number of estimated states/parameters on the
estimation performances of all the techniques, the estimation performance will be studied for
different numbers of estimated states and parameters. (iii) To apply the techniques to estimate
the state variables as well as the model parameters of second‐order LTI system. The perform‐
ances of the estimation techniques will be compared to each other by computing the execution
times as well as the estimation root mean square error (RMSE) with respect to the noise‐free
data.

2. State estimation problem

Next, we present the formulation of the state estimation problem.

2.1. Problem description and formulation

The state estimation problem for a system of nonlinear complex model is described as follows:

(1)

where  𑨈𑨈 𑨈𑨈 Rn is the state variable vector, 𑨈𑨈 𑨈𑨈 Rm is the measurement vector, 𑨈𑨈 𑨈𑨈 Rq is the

unknown vector, 𑨈𑨈 𑨈𑨈 Rp is the input variable vector, 𑨈𑨈 𑨈𑨈 Rn and 𑨈𑨈 𑨈𑨈 Rm are respectively process
and measurement noise vectors, and  and  are nonlinear differentiable functions. The
discretization of the model (1) is presented as follows:

(2)
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which describes the state variables at some time step () in terms of their values at a previous
time step ( 𑨒𑨒 1). Since we are interested to estimate the state vector , as well as the param‐

eter vector , the parameter vector is assumed to be presented as follows:

(3)

This means that it corresponds to a stationary process, with an identity transition matrix,
driven by white noise. In order to include the parameter vector  into the state estimation

problem, let us define a new state vector   that augments the state vector  and the parameter

vector  as follows:

(4)

where   ∈ Rn+q. Also, defining the augmented noise vector as:

(5)

The model (2) can be written as:

(6)

(7)

where ℱ and ℛ  are differentiable nonlinear functions. Thus, the objective here is to estimate
the augmented state vector  , given the measurement vector  .

3. Description of state estimation methods

3.1. UKF

The UKF is a SPKF that uses the unscented transformation. This transformation is a method
for calculating the statistics of a random variable that undergoes a nonlinear mapping. It is
built on the theory that “it is easier to approximate a probability distribution than an arbitrary
nonlinear function”.

The state distribution is represented by a Gaussian random variable (GRV) and by a set of
deterministically chosen points. These points capture the true mean and covariance of the GRV
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and also capture the posterior mean and covariance accurately to the second order for any

nonlinearity and to the third order for Gaussian inputs. Suppose that GRV 𑨈𑨈 𑨈𑨈 𑨈𑨈 characterized
by a mean 𑨈𑨈 and covariance 𑨈𑨈 is used in the model. This variable is transformed by a nonlinear

function  = (𑨈𑨈). To reach the statistics of   , a 2 + 1 sigma vector is defined as follows:

(8)

where L is the dimension of the state z,  = 2  +  −  is a scaling parameter and ( ( + )𑨈𑨈)
denotes the ith column of the matrix square root. The constant 10−4 <  < 1 defines the spread
of the sigma‐points around  𑨈𑨈. The constant  is a scaling parameter which is usually set to zero
or 3 −  [30].

Then, these sigma‐points are propagated through the nonlinear function,

(9)

And the mean and covariance matrix of  can be approximated as weighted sample mean and
covariance of the transformed sigma‐point of  as follows:

(10)

where the weights are given by

(11)

The parameter ξ is used to integrate prior knowledge about the distribution of 𑨈𑨈.
The algorithm of the UKF includes two steps: prediction and update. In the prediction step,

we calculate the predicted state estimate 𑨈𑨈− and the predicted estimate covariance −. In the

update step, we calculate the updated state estimate 𑨈𑨈 and the updated estimate covariance after calculating the innovation residual 𑨈𑨈 and the optimal Kalman gain .
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The UKF technique is summarized in Algorithm 1.

3.2. CDKF method

The CDKF is another filter from the family of SPKF. This filter is based on Sterling polynomial
interpolation formula instead of the unscented transformation used in UKF. The CDKF is
similar to the UKF with the same or superior performance. However, it has an advantage over
the UKF that it uses only one parameter instead of three parameters in the UKF. The CDKF
uses a symmetric set of (2 + 1) sigma‐point which are calculated as follows,

(12)

where  is the dimension of the state , ℎ is a scaling parameter (the optimal value is ℎ = 3)
and  indicates the th column of the matrix.

These sigma‐points are propagated through the nonlinear function to form the set of the
posterior sigma‐point,

(13)

Within the above results, the sterling approximation estimates of the mean  , covariance 
and cross covariance ,  are obtained through a linear regression of weighted point,

(14)

(15)

(16)

The set of corresponding weights for the mean () which are used to compute the posterior
mean is defined as:

(17)

And the set of corresponding weights for the covariance 0() which is used to recover the
covariance and the cross‐covariance is defined as,
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(18)

The CDKF technique is summarized in Algorithm 2.

3.3. SRUKF method

One drawback of the UKF is that it requires the calculation of the matrix square‐root = , at each time step. That is why a square‐root form of the UKF has been developed

to reduce the computational complexity. In this new method the covariance matrix  will be

propagated directly, avoiding to refactorize at each time step [34].

The SRUKF is initialized as follows:

(19)

(20)

Algorithm 1: UKF algorithm

• Initialization step:

• Prediction step:
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Return the augmented state estimation 
Algorithm 2: CDKF algorithm

• Initialization step:
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• Estimation (update) step:
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Return the augmented state estimation 
The Cholesky factorization decomposes a symmetric, positive‐definite matrix into the product
of a lower triangular matrix and its transpose. This new matrix is utilized directly to obtain

the sigma‐point: The scaling constant h is expressed as ℎ = 𝀵𝀵𝀵𝀵2  , where α is a tunable
parameter less than one.

In order to predict the current attitude based on each sigma‐point, these sigma‐points are
transformed through the nonlinear process system

(21)

Then, the state mean and the square‐root covariance are estimated and calculated through the
transformed sigma‐point as follows:

(22)
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(23)

(24)

where 0() = 2 1 − 2 + 12 ,   0() = 1 − 2 and   () = () = 12𝀵𝀵2,    is a tunable

parameter used to include prior distribution. The transformed sigma‐point vector is then used
to predict the measurements using the measurement model:

(25)

The expected measurement − and square‐root covariance of  =  − − (called the inno‐

vation) are given by the unscented transform expressions just as for the process model:

(26)

(27)

(28)

In an attempt to find out how much to adjust the predicted state mean and covariance based
on the actual measurement, the Kalman gain matrix  is calculated as follows:

(29)

(30)

Finally, the state mean and covariance are updated using the actual measurement and the
Kalman gain matrix:

(31)

(32)

(33)
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where  is the process noise covariance,  is the measurement noise covariance, chol is
Cholesky method of matrix factorization, qr is QR matrix decomposition and cholupdate is a
Cholesky factor updating.

The SRUKF technique is summarized in Algorithm 3.

3.4. SRCDKF method

Like the SRUKF, the matrix square‐root  will be propagated directly, avoiding the compu‐

tational complexity to refactorize at each time step in the CDKF. The SRCDKF is initialized
with a state mean vector and the square root of a covariance.

(34)

After the Cholesky factorization we obtain the sigma‐point:

(35)

The sigma‐point vector is then gone through the nonlinear process system, which predicts the
current attitude based on each sigma‐point.

(36)

The estimated state mean and square‐root covariance are calculated from the transformed
sigma‐point using,

(37)

(38)

where (1) = 14ℎ2 ,     2 = ℎ2 − 14ℎ4 ,   0() = ℎ2 − ℎ2   and     () = 12ℎ2 . The next step,

the sigma‐point for measurement update is calculated as,

(39)

The transformed sigma‐point vector is then used to predict the measurements using the
measurement model:
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(40)

The expected measurement − and square‐root covariance of  =  − − (called the inno‐

vation) are given by expressions just as for the process model:

(41)

(42)

In an attempt to find out how much to adjust the predicted state mean and covariance based
on the actual measurement, the Kalman gain matrix  is calculated as follows:

(43)

(44)

Then, the state mean and covariance are updated using the actual measurement and the
Kalman gain matrix is:

(45)

(46)

(47)

The SRCDKF technique is summarized in Algorithm 4.

3.5. ISPKF

In order to achieve superior performance of the statical linearization methods in terms of
efficiency and accuracy, the ISPKFs have been developed. These filters include IUKF, ICDKF,
ISRUKF and ISRCDKF. The major difference between the ISPKFs and the noniterated SPKFs
is shown in the step where the updated state estimation is calculated using the predicted state
and the observation. Instead of relying on the predicted state, the observation equation is
relinearized over times by iterating an approximate maximum a posteriori estimate, so the
state estimate will be more accurate.
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3.5.1. IUKF

The difference between the UKF and the IUKF consists in the iteration strategy.

After generating the prediction and the update steps, and getting both the state estimate 
and the covariance matrix , an iteration loop is set up with the following initializations:

, 0 =  −,   , 0 = −, , 1 =  ,   , 1 =  and  = 2 with j is the jth iterate.

In this loop, for each j, new sigma‐points are generated in the same way as the standard UKF

(48)

Algorithm 3: SRUKF algorithm

• Initialization step: 0 =  0
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Algorithm 4: SRCDKF algorithm
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Return the augmented state estimation 
Then the prediction step and the update step are executed as follows:

(49)
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(50)

where ,  represents the ith component of 
(51)

(52)

(53)

(54)

(55)

(56)

Those steps are repeated many times until a following inequality is not satisfied.

(57)

The IUKF is summarized in Algorithm 5.

3.5.2. ICDKF

The iterated sigma‐point methods have the ability to provide accuracy over other estimation
methods since it relinearizes the measurement equation by iterating an approximate maximum
a posteriori estimate around the updated state, instead of relying on the predicted state.

In the ICDKF, the prediction step is calculated as the standard CDKF and we get −and −.

Then the sigma‐point in measurement updating is calculated as follows:

(58)

After that, the initialization 0 = − is set up and then the iteration step is executed, so the

following equations are repeated m times.
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where ,  represents the ith component of 
(51)

(52)

(53)

(54)

(55)

(56)

Those steps are repeated many times until a following inequality is not satisfied.

(57)

The IUKF is summarized in Algorithm 5.

3.5.2. ICDKF

The iterated sigma‐point methods have the ability to provide accuracy over other estimation
methods since it relinearizes the measurement equation by iterating an approximate maximum
a posteriori estimate around the updated state, instead of relying on the predicted state.

In the ICDKF, the prediction step is calculated as the standard CDKF and we get −and −.

Then the sigma‐point in measurement updating is calculated as follows:

(58)

After that, the initialization 0 = − is set up and then the iteration step is executed, so the

following equations are repeated m times.
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(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

The algorithm of the ICDKF is summarized in Algorithm 6.

3.5.3. ISRUKF

The ISRUKF has the same principle as the IUKF. After executing the standard SRUKF, an

iteration loop is started. The predicted estimated state   −,    and the predicted and esti‐

mated covariance matrix  (−, ) obtained through the prediction and the update steps will

be the initialization inputs for the iteration loop (, 0 =  −,   , 0 = − and, 1 =  ,   , 1 = ) . Also let j=2 where j is the jth iteration.

In the iteration loop, and for each j, the new sigma‐point vector is generated as follows:

(67)

Then, the prediction and the update steps are executed as follows:

(68)

(69)
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(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

(80)

The equations in the iterative loop are repeated m times.

The ISRUKF algorithm is summarized in Algorithm 7.

3.5.4. ISRCDKF

The ISRCDKF has the ability to provide accuracy over other SRCDKF since it relinearizes the
measurement equation by iterating an approximate maximum a posteriori estimate around
the updated state, instead of relying on the predicted state.

The algorithm of the ISRCDKF consists of generating the prediction step as the standard
SRCDKF, then applying m iterations over the update step described as follows:

(81)

(82)
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(83)

(84)

(85)

(86)

(87)

(88)

(89)

The ISRCDKF algorithm is summarized in Algorithm 8.

In the next section, the SPKF method performances will be assessed and compared to ISPKF
methods. The performances of UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and
ISRCDKF methods will be evaluated through a simulation example with two comparative
studies in terms of estimation accuracy, convergence and execution times.

4. Simulation results

4.1. State and parameter estimations for a second‐order LTI system

Consider a second‐order LTI described by the following state variable,

(90)

where  is a Gaussian process noise (; 0, 10−1), and  =   1.9223 −0.96041 0  is a matrix with

scalar parameter  = 0.20.2   .

Algorithm 5: IUKF algorithm

• Initialization step:

[ ]0 0Z E z=
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• Prediction step:

Generate the UKF prediction step and return −𝀵𝀵𝀵𝀵𝀵𝀵   −
• Estimation (update) step:
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Define these equations:
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And  <  then set  =  . ,    =  + 1, and return to the iterated loop.

Otherwise set = ,  And  = ,  Return the augmented state estimation   
Algorithm 6: ICDKF algorithm

• Initialization step:
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Return the augmented state estimation   
Algorithm 7: ISRUKF algorithm

• Initialization step: 0 =  0
( )( ){ }0 0 0 0 0ˆ ˆ 'S chol E z z z z= é - - ùë û

• Prediction step:

• Generate the SRUKF prediction step and return − and Sk
−

• Estimation (update) step:

Generate the SRUKF update step and return 𝀵𝀵𝀵𝀵𝀵𝀵   
• Iteration: Let , 0 =  −,   , 0 = − and , 1 =  ,   , 1 =  . Also let j=2
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Return the augmented state estimation 
Algorithm 8: ISRCDKF algorithm

• Initialization step: 0 =  0
( )( ){ }0 0 0 0 0ˆ ˆ 'S chol E z z z z= é - - ùë û

• Prediction step:

[ ]1 1 1 1 1 1ˆ ˆ            ̂  k k k k k kz z hS z hS- - - - - -Y = + -

[ ]/ 1 1k k kf- -Y = Y

Nonlinear Systems - Design, Analysis, Estimation and Control140



{ }( )
, , 0, , 0, ˆ  , c

yk j yk j j k jS cholupdate S Y y W= -
% %

2
( )

, , , ,
0

ˆ ˆ
L

c
Zkyk i i j j i j j

i
k kP W Z Y y

=

- -é ù é ù= å Y - -ë ûë û

, , , / /T
K j Zkyk yk j yk jK P S S=

% %

( ), , ,ˆˆ ˆk j k j k j k k jz z K y y- -
-= + -

, ,k j yk jU K S=
%

{ }, , 1 , , 1k j k jS cholupdate S U-
-= -

End

, kk m yU K S=
%

{ }, , , 1k k mS cholupdate S U= -

Return the augmented state estimation 
Algorithm 8: ISRCDKF algorithm

• Initialization step: 0 =  0
( )( ){ }0 0 0 0 0ˆ ˆ 'S chol E z z z z= é - - ùë û

• Prediction step:

[ ]1 1 1 1 1 1ˆ ˆ            ̂  k k k k k kz z hS z hS- - - - - -Y = + -

[ ]/ 1 1k k kf- -Y = Y

Nonlinear Systems - Design, Analysis, Estimation and Control140

2
( )

, | 1
0

L
m

k i i k k
i

z W-
-

=
= å Y

( ) ( ){ }1 2( ) ( )
1 1: , | 1 1:2 , | 1 1 1: , | 1 1:2 , | 1 0, | 1 2c c

k L k k L L k k L k k L L k k k kS qr W W-
- + - - + - -

é ù= Y -Y Y + Y - Yë û

( ) ( )
$ ( ) ( ) ( ) ( )| 1 | 1 | 1 | 1 | 1 | 1    ˆ ˆ          k kk k k k k k k k k kz z hS z hS-- - - - -

é ùY = + -ë û

• Estimation(update) step:
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{ }, , 1k kS cholupdate S U-= -

End  = ,
{ }, , , 1k k mS cholupdate S U= -

Return the augmented state estimation 
The nonstationary observation model is given by,

( )2k k ky Cx DU k n= + + (91)

where  = 1 0  and  = 00.2   . The observation noise  is a Gaussian noise (; 0, 3.10−1).
Given only the noisy observations , the different filters were used to estimate the underlying

clean state sequence  for  = 1…100.

4.1.1. Generation of dynamic data

It must be noted that this simulated state is assumed to be noise‐free. They are contaminated
with Gaussian noise. Given noisy observations , the various KFs were used to estimate the

clean state sequence  = 12  for k = 1...100. Figure 1 shows the changes in the state variable1.

Figure 1. Simulated data used in estimation: state variable (x1).
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Here, the number of sigma‐points is fixed to 9 for all the techniques (L = 4). The process noise(; 0, 10−1) was added. The observation noise is (; 0, 3.10−1). The initial value of the state
vector is  0 = 1 0 ' .
4.1.2. Comparative study: estimation of state variables from noisy measurements

The purpose of this study is to compare the estimation accuracy of UKF, IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF methods when they are utilized to estimate the state
variable of the system. Hence, it is considered that the state vector to be estimated  =   and
the model parameters 1, 2 are assumed to be known. The simulation results for state
estimations of state variable xk using UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF
and ISRCDKF methods are shown in Figures 2 and 3, respectively. Also, the performance
comparison of the state estimation techniques in terms of RMSE and execution times is
presented in Table 1.

Figure 2. Estimation of state variables using various state estimation techniques (UKF, CDKF, SRUKF and SRCDKF).

Figure 3. Estimation of state variables using various state estimation techniques (IUKF, ICDKF, ISRUKF and
ISRCDKF).
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Technique x1 (RMSE) x2 (RMSE) Time execution(s) Technique x1 (RMSE) x2 (RMSE) Time execution(s)

UKF 0.3539 0.4658 0.3577 IUKF 0.3342 0.4341 0.5952

CDKF 0.3512 0.4583 0.3367 ICDKF 0.3265 0.4315 0.4351

SRUKF 0.3495 0.4590 0.3354 ISRUKF 0.3254 0.4256 0.5803

SRCDKF 0.3324 0.4593 0.2586 ISRCDKF 0.3121 0.4213 0.4229

Table 1. Comparison of state estimation techniques.

It is easily observed from Figures 2 and 3 as well as Table 1 that the ISRCDKF method achieves
a better accuracy than the other methods.

4.1.3. Comparative study: simultaneous estimation of state variables and model parameters

The state variables and parameters are estimated and performed using the state estimation
techniques UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF. The results
of estimation for the model parameters using the estimation techniques (UKF, IUKF, CDKF,
ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF) are shown in Figures 4 and 5, respectively.
It can be seen from the results presented in Figures 4 and 5 that the IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF methods outperform the UKF method, and that the
ISRCDKF shows relative improvement over all other techniques. These results confirm the
results obtained in the first comparative study, where only the state variable is estimated. The
advantages of the ISRCDKF over the other techniques can also be seen through their abilities
to estimate the model parameters.

Figure 4. Estimation of the model parameters (P1, P2) using UKF, CDKF, SRUKF and SRCDKF.
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of estimation for the model parameters using the estimation techniques (UKF, IUKF, CDKF,
ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF) are shown in Figures 4 and 5, respectively.
It can be seen from the results presented in Figures 4 and 5 that the IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF methods outperform the UKF method, and that the
ISRCDKF shows relative improvement over all other techniques. These results confirm the
results obtained in the first comparative study, where only the state variable is estimated. The
advantages of the ISRCDKF over the other techniques can also be seen through their abilities
to estimate the model parameters.

Figure 4. Estimation of the model parameters (P1, P2) using UKF, CDKF, SRUKF and SRCDKF.
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Figure 5. Estimation of the model parameters (P1, P2) using IUKF, ICDKF, ISRUKF and ISRCDKF.

4.1.3.1. Root Mean Square Error analysis

The effects of the practical challenges on the performances of the UKF, IUKF, CDKF, ICDKF,
SRUKF, ISRUKF, SRCDKF and ISRCDKF for state and parameter estimation are investigated
in the next section.

4.1.3.1.1. Effect of number of state and parameter to estimate on the estimation RMSE

To study the effect of the number of states and parameters to be estimated on the estimation
performances of UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF, the
estimation performance is analyzed for different numbers of estimated states and parameters.
Here, we will consider two cases, which are summarized below. In all cases, it is assumed that
the state  is measured.

Case 1: the state  along with the first parameter 1 will be estimated.

Case 2: the state  along with the two parameters 1 and 2 will be estimated.

The estimation of the state variables and parameter(s) for these two cases is performed using
UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF, and the simulation results
for the state variables and the model parameters for the two cases are shown in Tables 2 and
3. For example, for case 1, Table 2 compares the estimation RMSEs for the two state variables (with respect to the noise‐free data) and the mean of the estimated parameter 1 at steady

state (i.e., after convergence of parameter(s)) using the estimation methods. Tables 2 and 3 also
present similar comparisons for cases 1 and 2, respectively.
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Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

Time

execution (s)

Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

Time

execution (s)

UKF 0.4221 0.5418 2.2453 0.3906 IUKF 0.3854 0.5093 1.9826 0.6963

CDKF 0.4192 0.5205 2.2232 0.3696 ICDKF 0.3827 0.4920 1.9786 0.5160

SRUKF 0.4063 0.4978 2.2228 0.3835 ISRUKF 0.3757 0.4748 1.9661 0.6798

SRCDKF 0.3970 0.4943 2.1858 0.3420 ISRCDKF 0.3737 0.4720 1.9297 0.5154

Table 2. Root mean square errors of estimated state variables and mean of estimated parameter: case 1.

The results also show that the number of parameters to estimate affects the estimation accuracy
of the state variables. In other words, for all the techniques the estimation RMSE of  increases

from the first comparative study (where only the state variables are estimated) to case 1 (where
the states and one parameter 1 is estimated) to case 2 (where the states and two parameters,1 and 2, are estimated). For example, the RMSEs obtained using ISRCDKF for 1 in the first

comparative study and cases 1–2 of the second comparative study are 0.3121, 0.3737 and 0.3846,
respectively, which increase as the number of estimated parameters increases (see Tables 2 and
3). This observation is valid for the other state estimation techniques.

It can also be shown from Tables 2 and 3 that, for all the techniques, estimating more model
parameters affects the estimation accuracy. The ISRCDKF method, however, still provides
advantages over other methods in terms of the estimation accuracy.

Technique x1

(RMSE)

x2

(RMSE)

P1

(mean)

P2

(mean)

Technique x1

(RMSE)

x2

RMSE)

P1

(mean)

P2

(mean)

UKF 0.1962 0.6590 1.9484 ‐0.9798 IUKF 0.4056 0.4927 19408 ‐0.9721

CDKF 0.4170 0.4932 1.9482 ‐0.9786 ICDKF 0.4012 0.4908 1.9389 ‐0.9720

SRUKF 0.4133 0.4977 1.9481 ‐0.9776 ISRUKF 0.3989 0.4843 1.9342 ‐0.9677

SRCDKF 0.4090 0.4956 1.9436 ‐0.9741 ISRCDKF 0.3846 0.4875 1.9305 ‐0.9486

Table 3. Root mean square errors of estimated state variables and mean of estimated parameter: case 2.

4.1.3.1.2. Effect of noise content on the estimation RMSE

It is assumed that a noise is added to the state variable. In order to show the performance of
the estimation algorithms in the presence of noise, three different measurement noise values,10−1,   10−2 and 10−3, are considered. The simulation results of estimating the state  using

the UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF methods when the

noise levels vary in 10−1, 10−2   and   10−3  are shown in Table 4.
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of the state variables. In other words, for all the techniques the estimation RMSE of  increases

from the first comparative study (where only the state variables are estimated) to case 1 (where
the states and one parameter 1 is estimated) to case 2 (where the states and two parameters,1 and 2, are estimated). For example, the RMSEs obtained using ISRCDKF for 1 in the first

comparative study and cases 1–2 of the second comparative study are 0.3121, 0.3737 and 0.3846,
respectively, which increase as the number of estimated parameters increases (see Tables 2 and
3). This observation is valid for the other state estimation techniques.

It can also be shown from Tables 2 and 3 that, for all the techniques, estimating more model
parameters affects the estimation accuracy. The ISRCDKF method, however, still provides
advantages over other methods in terms of the estimation accuracy.
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Table 3. Root mean square errors of estimated state variables and mean of estimated parameter: case 2.

4.1.3.1.2. Effect of noise content on the estimation RMSE

It is assumed that a noise is added to the state variable. In order to show the performance of
the estimation algorithms in the presence of noise, three different measurement noise values,10−1,   10−2 and 10−3, are considered. The simulation results of estimating the state  using

the UKF, IUKF, CDKF, ICDKF, SRUKF, ISRUKF, SRCDKF and ISRCDKF methods when the

noise levels vary in 10−1, 10−2   and   10−3  are shown in Table 4.
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Noise levels UKF CDKF SRUKF SRCDKF IUKF ICDKF ISRUKF ISRCDKF

10‐1 x1 0.3539 0.3512 0.3495 0.3324 0.3342 0.3265 0.3254 0.3121

x2 0.4658 0.4593 0.4590 0.4593 0.4341 0.4315 0.4256 0.4213

10‐2 x1 0.1293 0.1264 0.1208 0.1174 0.1134 0.1095 0.1075 0.1066

x2 0.3564 0.3493 0.3474 0.3457 0.3440 0.3371 0.3355 0.3314

10‐3 x1 0.0460 0.0454 0.0448 0.0446 0.0436 0.0415 0.0394 0.0376

x2 0.3426 0.3360 0.3188 0.3062 0.2989 0.2918 0.2875 0.2830

Table 4. Root mean square errors (RMSEs) of the estimated states for different noise levels.

In other words, for the estimation techniques, the estimation RMSEs of  increase from the

first comparative study (noise value = 10−1) to case (where the noise value = 10−3). For
example, the RMSEs obtained using ISRCDKF for x1 where the noise level in10−1, 10−2   and   10−3  are 0.3121, 0.1066 and 0.0376, which increase as the noise variance
increases (refer to Table 4).

5. Conclusions

In this chapter, various SPKF‐based methods are used to estimate nonlinear state variables and
model parameters. They are compared for the estimation performance in two comparative
studies. In the first comparative study, the state variables are estimated from noisy measure‐
ments of these variables, and the several estimation methods are compared by estimating the
RMSE with respect to the noise‐free data. In the second comparative study, of the state variables
as well as that the model parameters are estimated. Comparing the performances of the several
state estimation extensions, the impact of the number of estimated model parameters on the
convergence and accuracy of these methods is also evaluated. The results of the second
comparative study show that, for all the techniques, estimating more model parameters affects
the estimation accuracy as well as the convergence of the estimated states and parameters. The
iterated square‐root central difference Kalman method, however, still provides advantages
over other methods in terms of the estimation accuracy, convergence and execution times.
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Abstract

In  this  chapter,  the  ensemble-based  data  assimilation  methods  are  introduced,
including  their  developments,  applications  and  existing  concerns.  These  methods
include both traditional methods such as Kalman filter and its derivatives and some
advanced algorithms such as sigma-point Kalman filters and particle filters. Emphasis
is placed on the challenges of applying these methods onto high-dimensional systems
in the earth sciences.

Keywords: data assimilation, Kalman filter, EnOI, EnKF, particle filter

1. Introduction

In this chapter, we will talk about the modelling and simulation using both observed data and
numerical models, that is, the observations will be incorporated into numerical models for
optimal modelling and simulation. In statistics, this is called state-space estimation. In the
earth science, it is called data assimilation. For example, a strict definition of data assimilation
in atmospheric and oceanic sciences is the process to estimate the state of a dynamic system
such as atmospheric and oceanic flow by combining the observational and model forecast data
[1].

In general, assimilation methods can be classified into two categories: variational and sequen-
tial. This chapter is a tutorial on the sequential data assimilation methods such as ensemble
Kalman filter (EnKF) and its variants. A brief introduction of the particle filter (PF) is also
provided in this chapter.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



This tutorial places emphasis on the rationale behind each method, including: (i) the principle
for deriving the algorithm; (ii) the basic assumptions of each method; (iii) the connection and
relation between different methods (e.g. extended Kalman filter (EKF) and EnKF, EnKF and
sigma-point Kalman filters (SPKF), etc.); and (iv)the advantage and deficiency of each method.

This chapter has been written and organized through teaching for under-/graduatestudents in
earth science courses. It can also be a good reference to researchers in the field of modelling
and data assimilation.

2. The general framework of several assimilation approaches

Intuitionally, one might think that an optimal simulation scheme is to directly replace model
variables by observations during numerical integrations. Such a direct replacement is usually
not correct since observations are not perfect and contain errors. A simple replacement will
introduce observation errors into models, and ignore possible impact of observation errors on
model behaviours, easily resulting in imbalance of model dynamics and physics. Thus, the
application of observations into numerical models must consider both model and observation
errors that play a critical role in the assimilation process.

We will start to display the assimilation concept by a simple example. A detail introduction
can be found in [2].

For an unknown true state value, denoted by , there are two samples, denoted by 1(e.g.

model simulation) and 2(observation), which have the errors 1 and 2, respectively. Thus, we

have

1 1,tT T= +ò (1)

2 2.tT T= +ò (2)

We assume the measurement or observation is unbiased, and the variances of errors are known,
i.e. E( 1) = E ( 2) = 0, Var ( 1) = σ1

2, Var ( 2) = σ2
2. The question here is to seek an optimal estimate,

denoted by  (called analysis in the assimilation field), for  using 1 and 2. This optimal

estimate is the central issue of data assimilation.

There are several methods for this solution, as demonstrated below.

2.1. Least-squares method

Assume the analysis is a linear combination of both 1 and 2, that is,  = 11 + 22. Due

to the assumption that both 1 and 2 are unbiased,  should be unbiased, i.e. () = (), so1(1) + 2(2) = (), and then 1 + 2 = 1. The best (optimal) estimate should minimize

the variance of  as below:
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here, we assumed that the errors of 1 and 2 are uncorrelated, i.e. E( 1 2)=0. To minimize 2,
let ∂2/ ∂1 = 0, thus

2
2

1 2 2
1 2

a s
s s

=
+

(4)

Namely,

2
2

1 1 1 2 1 2 12 2
1 2

(1 ) ( ).= + - = + -
+

aT a T a T T T Ts
s s

(5)

Using Eq. (5), the variance of Ta could be minimized.

2.2. Variational approach

In general, assimilation methods can be classified into two categories: variational and sequen-
tial. Variational methods such as three-dimensional variational (3D-Var) method and four-
dimensional variational (4D-Var) method [3, 4] are batch methods, whereas sequential
methods such as Kalman filter (KF) [5] belong to the estimation theory.

They both have had great success. The European Centre for Medium-Range Weather Forecasts
(ECMWF) introduced the first 4D-Var method into the operational global analysis system in
November 1997 [6–8]. The ensemble Kalman filter (EnKF) was first introduced into the
operational ensemble prediction system by Canadian Meteorological Centre (CMC) in January
2005 [9].

This chapter is a tutorial of the ensemble-based sequential data assimilation methods, such as
EnKF and its variants. However, we will briefly demonstrate the idea of variational assimila-
tion by the above example.

First, a cost function should be defined for variational assimilation approach. For this simple
example, we define the cost function as below:

( )
2 2

1 2
2 2
1 2

1 ( ) ( )[ ]
2

T T T TJ T
s s
- -

= + (6)

1 1 2 2.T a T a T= + (7)
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The solution is to seek an analysis , determined by 1 and 2, leading to the cost function
minimum, i.e.   = min () . Obviously, we have ∂ ()/ ∂1 = 0 and ∂ ()/ ∂2 = 0.
Substitute with (6), it is

1 2
2 2

1 1 1 2 1

( ) 0¶ - ¶ - ¶
= + =

¶ ¶ ¶
J T T T T T T T

a a as s (8)

Eq. (7) leads to ∂∂1 = 1. Thus, the solution of (8), denoted by , satisfies

2 2
2 1

1 22 2 2 2
1 2 1 2

.aT T Ts s
s s s s

= +
+ +

(9)

The above is a simple example of the 3D variational assimilation approach, where we only
consider the analysis error (cost function) for a single time. However, in many cases, we need
to consider the error growth during a period, i.e. the sum of errors during the period, in the
cost function Eq. (6). For example, the cost function of 4D-Var is defined as below:

2 2
1 2

2 21
1 2

1 ( ( ) ( )) ( ( ) ( ))( ) [ ].
2 =

- -
= +åN n n n n

n

T t T t T t T tJ T
s s

(10)

Meanwhile () follows a dynamical model, saying () = ∫0(())𝀵𝀵 = ((0)), where

F is a nonlinear dynamical model, Mn is the integral operator and 0 is the initial time. Thus,

the cost function value of (10) is only determined by the initial condition. Namely, the objective
here is to seek optimal initial condition (0) that enables (10) minimum, i.e. minimizing (10)

subject to dynamical model F. This is a standard conditional extreme problem that can be
solved by Lagrange multiplier approach. However, the complexity of dynamical model
excludes the possibility to get the analytical solution. We have to solve the minimum problem
with aid of numerical methods, e.g. Newton conjugate gradient method. All of numerical

methods require the gradient value ∂ ∂0  for solution.

Again, it is almost impossible for obtaining analytical solution of ∂ ∂0  due to the complexity

of F. Usually researchers get the gradient value numerically using an approach of tangent linear
and adjoint models. The details on tangent linear and adjoint models can be found in relevant
references as cited above. It should be noticed that it is very difficult, even intractable some-
times, to construct tangent linear and adjoint models in some cases. Thus, more and more
researchers have started to apply sequential assimilation methods instead of 4D-Var in recent
years. Next, we will introduce the concept of the sequential assimilation method using the
above example.
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2.3. Bayesian approach

Assume 1 and 1 are the mean value and standard deviation of the model prediction that
implies a prior probability distribution of truth T,

2
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2
1

( )
2

1

1( )
2

-
-

=
T T

p T e s

ps
(11)

Obviously, this is a Gaussian distribution function, which can be denoted by N(T1, 1) Given
the observation 2 and its standard deviation 2, the posterior distribution of the truth can be
expressed by Bayes’ theorem:

( ) ( ) ( )
( )
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- -

= µ
T T T Tp T T p T

p T T e e
p T

s s

ps ps
(12)

(2) was ignored in (12) since it is independent of T, and usually plays as a normalization
factor. The likelihood function (2|) describes the probability that the observation becomes2 given an estimation of T. It is commonly assumed to be Gaussian (, 2). The object here
is to estimate the truth by maximizing the posterior probability (|2)(namely, we ask the
truth to occur as much as possible—maximum probability). Maximizing (|2) is equivalent
to maximizing the logarithm of the right item of (12), i.e.

( ) ( )

2 2
2 1

2 2 2
2 12 1

2 2
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2 2
2 1

1 ( ) 1 ( )log( ( | )) log( ) log( )
2 22 2

1const .
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ê úë û
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(13)

Obviously, the maximum of (|2) occurs at the minimum of the second item on the right-

hand side of (13), i.e. the minimum of the cost function J of (6). Thus, under the assumption of
Gaussian distribution, maximizing a posterior probability (Bayesian approach) is equivalent
to minimizing cost function (variational assimilation approach). Further, if the model F is linear
and the probability distribution is Gaussian, it can be further proved that the Kalman filter is
equivalent to 4D-Var adjoint assimilation method.
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3. Optimal interpolation (OI) and Kalman filter (KF)

3.1. Optimal interpolation

The most special case in data assimilation is that the forecast model is linear and the errors are
Gaussian. The solution among sequential methods to this case is provided by Kalman filter.
Typically, the Kalman filter applies to the below state-space model:

1 ,t t tx Mx h+ = + (14)

,t t ty Hx z= + (15)

where M and H are linear operators of model and measurement, respectively. x is model state
and y is the observation, and the subscript implies the time step.  and  are the model errors

and observational errors, respectively, which have variance: 
. The objective here is to estimate model state x using y, making it

close to true state (unknown) as much as possible.

Assuming the estimate of model state  at a time step is a linear combination of model forecast and observation , i.e. the filter itself is linear, so

.a b o bx x K y Hxé ù= + -ë û (16)

Eq. (16) is the standard expression of Kalman filter. K is called Kalman gain that determines

the optimal estimate and  − 𝀵𝀵 is called the innovation. An analysis step is essentially to
determine the increment to the forecast by combining the Kalman gain and the innovation.

Before deriving K, we denote the covariance matrix of the analysis error a by , i.e. Pa = < a ,

( a)T >, where a=  − 𝀵𝀵 and 𝀵𝀵 is the true value of model state. Similarly, observed errors and

forecast errors are defined by o=  − 𝀵𝀵𝀵𝀵 and b=  − 𝀵𝀵, respectively. It should be noticed
that the forecast error b is different from the model error  that is a systematic bias. Also, we

denote B = < b, ( b )T > as the background (forecast) error covariance and R = < o, ( o )T > as the
observational error covariance. It is also assumed that the observation error is not related to
forecast error, so < b, ( o )T > = < o, ( b )T > = 0.

Clearly, we are seeking for K that can lead to  minimum. Subtracting 𝀵𝀵 on both sides of Eq.
(16) leads to the below equation:

.a tr b tr o b tr trx x x x K y Hx Hx Hxé ù- = - + - + -ë û (17)
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Namely,
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Here, we used  = . The optimal estimate asks the trace of  minimum, namely,∂ 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵  / ∂ = 0. It can be computed that

1( ) .T TK BH HBH R -= + (20)

Substitute into (13)

( 1)( ) ( ) ( ) .a T T T T T TP B BH K KHB BH HBH R R HBH K I KH B-= - - + + + = - (21)

Here, we invoked the below properties:

T
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¶ ¶

= =
¶ ¶

(22)
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x

¶
= +

¶
(23)

T T T
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¶ ¶
= =
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(24)

(trace[ ]) ( + )
T

TXAX X A A
x

¶
=

¶
(25)
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(trace[ ])T
TAX A

x
¶

=
¶

(26)

Thus, we have the optimal estimate filter:

,a b o bx x K y Hxé ù= + -ë û (27)

1( ) ,T TK BH HBH R -= + (28)

( ) .aP I KH B= - (29)

In the estimate (27)–(29), if the background error covariance B is prescribed, the estimate is
called optimal interpolation. The OI does not involve state equation (14) and B is unchanged
during the entire assimilation process.

3.2. Kalman filter

Now, we consider that B in (28) changes with the assimilation cycle. This is more realistic since
the model prediction errors should be expected to decrease with the assimilation.

From Eq. (14), we have

1 ,tr tr
t t tx Mx h+ = + (30)

1 ( )b a a
t t t tx E Mx Mxh+ = + = (31)

Eq. (30) indicates that even the true value is input at a time step, model cannot get a true value
for next step due to model bias . Eq. (31) shows a standard procedure for the model prediction
of next step starting from the analysis of previous step.

Subtracting (30) from (31) produces

1 ,b a
t t tM h+ = -ò ò (32)

( )( )1 1 1 [( )( ) ]+ + += = + + = +
Tb b a a T a T

t t t t t t t tB E E M M MP M Qh hò ò ò ò (33)
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where Pt
a = < t

a , ( t
a)T > represents the analysis error covariance for time step t. The above

equation considers the evolution of the background (prediction) error covariance with the time
controlled by the dynamical model operator M. The above equations constitute the framework
of Kalman filter (Table 1), namely

Analysis step  =  + [ − 𝀵𝀵], = 𝀵𝀵(𝀵𝀵   𝀵𝀵 + )−1,
 = 𑨒𑨒 − 𝀵𝀵 ,

Prediction step  + 1 = 𝀵𝀵, + 1 = 𝀵𝀵𝀵𝀵 + 
Table 1. The Kalman filter.

One Kalman filter cycle consists of two parts, namely, one analysis step (Eqs. (27)–(29)) and
one prediction step (Eqs. (31) and (33)). The analysis state  and covariance  are treated as
initial conditions for the prediction step, until the next observation is available. Sometimes, 
is denoted by  in Kalman filter literatures.

3.3. Extended Kalman filter (EKF)

In deriving the Kalman filter, we assume the state model M and measurement model H are
both linear. Further, we also assume the error has Gaussian distribution. Therefore, classic KF
only works for linear models and Gaussian distribution. If the dynamical model and
measurement model are not linear, we cannot directly apply KF. Instead, linearization must
be performed prior to apply KF. The linearized version of KF is called extended KF (EKF),
which solves the below state-space estimate problem:

( )1 ,t t tx f x h+ = + (34)

( ) ,t t ty h x z= + (35)

where f and h are nonlinear models, and  and  are additive noises.

The filter is still assumed to be ‘linear’, i.e.
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[ ( )]a b o bx x K y h x= + - (36)

Actually, it is not a linear combination of the forecast  and observation  if his not linear.
However, we just extend the formulation of Eq. (16), and apply it intuitively in nonlinear cases.
Ignoring high-order terms, the following holds approximately

( ) ( ) ( ) hh x x h x x h x H x
x

d d d¶
+ = + = +

¶
(37)

where H is the linearization of h and ,  = ∂ℎ∂ . So,

( ) ( ) ( ) ( )o b o tr b tr o tr b tr o by h x y h x x x y h x H x x H- = - + - = - - - = -ò ò (38)

( )a b o bx x K H= + -ò ò (39)

Eq. (39) is identical to Eq. (16). Similarly, subtracting 𝀵𝀵𝀵𝀵 on both sides of Eq. (47) leads to the
below equation:

( )a b o bK H= + -ò ò ò ò (40)

which is the same as Eq. (18). Following the same derivation as that for Eq. (18), we can obtain
the equations similar to (27)–(29). Therefore, if the measurement model h is nonlinear, the KF
can be still applied with a linearization of h.

Similar to Eqs. (30) and (31), the state model is as below:

1 ( )tr tr
t t tx f x h+ = + (41)

1 ( ( ) ) ( ).f a a
t t t tx E f x f xh+ = + = (42)

Subtracting Eq. (41) from Eq. (42) produces

1 ( ) ( ) ( ) ( )
( ) ( )

f a tr a tr a a
t t t t t t t t t

a a a a
t t t t t t

f x f x f x f x x x
f x f x M

h h
h h

+ = - - = - - + -
= - - - = -

ò
ò ò

(43)
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where ,  = ∂∂ .
Comparing Eq. (31) with Eq. (33), it reveals that Eq. (33) still works. Thus, the EKF can be
summarized as below (Table 2).

The procedure to perform EKF is similar to that for KF, as listed above. The disparities and
similarities between EKF and KF include

i. Kalman gain K has the same form for both, especially the linear or linearized
measurement model should be used;

ii. the update equation of model error covariance has the same form, with linear and
linearized state model used;

iii. forecast model is different, with KF using linear Eq. (14) and EKF using nonlinear
model Eq. (34); and

iv. the filtering algorithm is different, linear measurement model H used in KF and
nonlinear model h in EKF.

It should be noticed that EKF is only an approximate of KF for nonlinear state model.

Analysis step  =  + [ − ℎ()], = ( + )−1, = 𑨒𑨒 −  ,,  = ∂ℎ∂ .
Prediction step  + 1 = (), + 1 =  + ,  = ∂∂ ,
Table 2. The extended Kalman filter.

4. Ensemble Kalman filter (EnKF)

4.1. Basics of EnKF

A challenge in EKF is to update background (prediction) error covariance, which requires the
linearization of nonlinear model. The linearization of nonlinear model is often difficult
technically, and even intractable in some cases, e.g. non-continuous functions existing in
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models. Another drawback of EKF is to neglect the contributions from higher-order statistical
moments in calculating the error covariance.

To avoid the linearization of nonlinear model, the ensemble Kalman filter (EnKF) was intro-
duced by Evensen [10, 11], in which the prediction error covariance B of Eq. (33) are estimated
approximately using an ensemble of model forecasts. The main concept behind the formulation
of the EnKF is that if the dynamical model is expressed as a stochastic differential equation,
the prediction error statistics, which are described by the Fokker-Flank equation, can be
estimated using ensemble integrations ( [10, 12]; thus, the error covariance matrix B can be
calculated by integrating the ensemble of model states. The EnKF can overcome the EKF
drawback that neglects the contributions from higher-order statistical moments in calculating
the error covariance. The major strengths of the EnKF include the following:

i. there is no need to calculate the tangent linear model or Jacobian of nonlinear models,
which is extremely difficult for ocean (or atmosphere) general circulation models
(GCMs);

ii. the covariance matrix is propagated in time via fully nonlinear model equations (no
linear approximation as in the EKF); and

iii. it is well suited to modern parallel computers (cluster computing) [13].

EnKF has attracted a broad attention and been widely used in atmospheric and oceanic data
assimilation.

Simply saying, EnKF avoids the computation and evolution of the error covariance B as in Eq.
(33), and computes B using below formula as soon as it is required.

1

1 ( )( )
1

N b b b b T
i ii

B x x x x
N =

= - -
- å (44)

where  represents the i-th member of the forecast ensemble of system state vector at step t,

and N is the ensemble size. The use of Eq. (44) avoids processing M, the linearized operator of
nonlinear model. However, the measurement function H is still linear or linearized while
computing the Kalman gain K, which causes concern. To avoid the linearization of nonlinear
measurement function, Houtekamer and Mitchell [14] wrote Kalman gain by

1( ) ,T TK BH HBH R -= + (45)

1

1 [ ][ ( ) ( )] ,
1

NT b b b b T
i ii

BH x x h x h x
N =

º - -
- å (46)

1

1 [ ( ) ( )][ ( ) ( )]
1

,NT b b b b T
i ii

HBH h x h x h x h x
N =

º - -
- å (47)
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where ℎ() = 1∑ = 1 ℎ(). Eqs. (46) and (47) allow direct evaluation of the nonlinear

measurement function h in calculating Kalman gain. However, Eqs. (46) and (47) have not been
proven mathematically, and only were given intuitionally. Tang and Ambadan argued that

Eqs. (46) and (47) approximately hold if and only if ℎ() = ℎ() and  −  is small for = 1, 2, ...,  [15]. Under these conditions, Tang et al. argued Eqs. (46) and (47) actually linearize
the nonlinear measurement functions h to H [16]. Therefore, direct application of the nonlinear
measurement function in Eqs. (46) and (47), in fact, imposes an implicit linearization process
using ensemble members. In next section, we will see that Eqs. (46) and (47) can be modified
under a rigorous framework.

Thus, the procedures of EnKF are summarized as below (Table 3):

1. Imposing perturbations on initial conditions and integrate the model, i.e. , 1 =  0 +  ,
where  = 1, 2..., (ensemble size) and 0 is the initial condition.

2. Using  = 𝀵𝀵𝀵𝀵(𝀵𝀵𝀵𝀵𝀵𝀵 + )−1 and Eqs. (46) and (47) to calculate Kalman gain K.

3. Calculating analysis using

( ) ,a b o i b
i i ix x K y h xeé ù= + + -ë û (48)

after K is obtained. It should be noted that each ensemble member produces an analysis;
the average of all (N) analyses can be obtained.

4. Using ,  + 1 = () to obtain new ensemble members for next round analysis.

5. Repeating Steps 2–4 until the end of assimilation period.

Analysis step  =  + [ +  − ℎ()],  = 1,…, = 𝀵𝀵𝀵𝀵(𝀵𝀵𝀵𝀵𝀵𝀵 + )−1,𝀵𝀵𝀵𝀵 = 1 − 1 ∑ = 1 [ − ][ℎ() − ℎ()],
𝀵𝀵𝀵𝀵𝀵𝀵 = 1 − 1 ∑ = 1 [ℎ() − ℎ()][ℎ() − ℎ()]

Prediction step ,  + 1 =   +  ,    = 1,…,
Table 3. The ensemble Kalman filter.
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It should be noted that the observation should be treated as a random variable with the mean
equal to yo and covariance equal to R. This is why there is  in Eq. (48). Simply,  is often drawn

from a normal distribution  ∼ (0, ).
From the above procedure, we find that Eq. (44) is not directly applied here. Instead, we use
Eqs. (46) and (47) to calculate K. This is because Eqs. (46) and (47) avoid the linearization of
nonlinear model and also avoid the explicit expression of matrix B, which is often very large
and cannot be written in current computer sources in many realistic problems. The measure-
ment function, h, projecting model space (dimension) to observation space (dimension), greatly
reduces the number of dimension.

4.2. Some remarks on EnKF with large dimensional problems

4.2.1. Initial perturbation

The success of EnKF highly depends on the quality of ensemble members produced by initial
perturbations. It is impractical to represent all possible types of errors within the ensemble
because of the computational cost, the method of generating initial perturbations must be
chosen judiciously.

The first issue is the amplitude of initial perturbations. Usually, the following two factors are
considered when selecting the amplitude of initial perturbations: the amplitude of observation
error and the amplitude of model errors induced by model parameters and uncertainty in
model physics. If a model is perfect, the amplitude of the perturbations should be the same as
the amplitude of observation errors. This combined error is used to determine the amplitude
of perturbations.

When the perturbation amplitude is determined, the practical initial perturbation field
generating each ensemble member could be constructed by a normalized pseudorandom field
multiplied by the prescribed amplitude. Considering the spatial coherence, the pseudorandom
field is red noise as proposed by Evensen [17], summarized as below:

1. Calculate the statistical characteristics for the pseudorandom field to meet its variance of
1 and mean of 0 by solving the following nonlinear equation:

2 2 2

2 2 2

2( ) /

,1
2( ) /

,

cos( )
,

- +

-

- +
=

å
å l p

l p

k r
l hl p

k r
l p

e k r
e

e

s

s (49)

where  = 2𝀵𝀵 = 2𝀵𝀵Δ ,  = 2𝀵𝀵 = 2𝀵𝀵Δ , and  and  are the number of grid points

in the x-axis (lon.) and the y-axis (lat.). The l and p are wavenumbers, changing from 1 to
the maximum value of /2 and /2. Δ and Δ are the intervals of two adjacent points,

often set to 1, and ℎ is the decorrelation length. The purpose of Eq. (49) is to derive 2 for
the other feature:
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1
Δ - +
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å l pk r
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c
k e s (50)

2. After c and 2 are obtained, we can construct a two-dimensional pseudorandom field:

( )
( )

( ) ( )
2 2

2 2 ,

,
, .

Δ

+
- + D=å

l p

l n p m

k r
i k x r yi l p

n m
l p

cW x y e e e k
k

p js (51)

3. While ,  cover the whole domain, Eq. (51) produces a  * two-dimensional

random field with spatial coherence structure and the variance of 1 and mean of 0. If the
realistic uncertainty (error) has an amplitude β, the perturbation should be βW. Similarly,
Eq. (51) is often used for the error perturbation  used in the fourth step of the EnKF

procedure.

Sometimes, we need to consider the vertical coherence of pseudorandom fields between
adjacent levels in oceanic models. A simple method for this purpose is to construct the
pseudorandom field at the kth level  by following equation:

2
1 1 ,k k kWe ae a-= + - (52)

where   = 1, ...,   is the pseudorandom field at the kth level without considering vertical
coherence, constructed using the above method. Initially, for the surface perturbation ( = 1),
the vertical coherence is not considered, i.e. equals to zero since  𑨒𑨒 1 does not exist. Eq. (52)
indicates that a practical pseudorandom at the kth level () is composed of  and  𑨒𑨒 1. As
such the  is correlated with  𑨒𑨒 1, i.e. the practical pseudorandom fields of two adjacent
levels ( 𑨒𑨒 1 and ) are coherent with each other. Their correlation or coherent structure is
determined by the coefficient 𑨈𑨈 𑨈𑨈 [0, 1]. Eq. (52) generates a sequence that is white in the vertical
direction if 𑨈𑨈 = 0(i.e.  = ), but a sequence that is perfect correlated in vertical if 𑨈𑨈 = 1(i.e. =  𑨒𑨒 1). Eq. (52) is also often used to construct random field that is temporally coherent,
for example, a continuous random noise that has coherence in time, as used for  in the forecast
model [17]. The random noise  in the EnKF procedure can also be replaced by the random
noise imposed in model forcing. For example, the random noise is continuously added to wind
forcing for oceanic models. Even for some atmospheric models with transition processes, there
are inherent random noises making  not necessary. One important criteria for  and the
amplitude β is to examine ensemble spread by some sensitivity experiments.
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4.2.2. The computational cost of Kalman gain

The Kalman gain K has dimension of  *, where L is the number of model variables and m is
the number of observational variables. In many realistic problems, L and m are very large
numbers ( 𑩫𑩫 𑩫𑩫, the ensemble size), making the inversion very expensive.

A simple procedure is to rewrite the Kalman gain K, as below:

1( ) ,T T T T TK xx H Hxx H ee -= +% % % % (53)

where  indicates that the model ensemble predictions removed the ensemble mean

( = [ − ], for  = 1, 2, ..., 𑩫𑩫).  = 1𑩫𑩫𝀵𝀵𝀵𝀵 was invoked here. If we assume the ensemble

prediction error ( − 𝀵𝀵𝀵𝀵 ≈  −  = ) is not correlated to observation error, i.e. 𝀵𝀵 = 0, the
following is valid [17]:

( ) ( )( ) ,T T T THxx H Hx Hxee e e+ = + +% % % % (54)

where (𝀵𝀵 + 𝀵𝀵) has dimension *𑩫𑩫. Usually, ensemble size N is much less than m. Using the
singular-value decomposition (SVD) technique, we have

( ) Σ THx U Ve+ =% (55)

Eq. (54) then becomes

( )T T T T T T T THxx H U V V U U U U Uee+ = S S = SS = L% % (56)

So,

1 1( )T T T THxx H U Uee - -+ = L% % (57)

where  and Λ are the eigenvector and the square of eigenvalues of (𝀵𝀵 + 𝀵𝀵). There are N non-
zero eigenvalues for (𝀵𝀵 + 𝀵𝀵), therefore the dimension is not large, allowing us to efficiently
compute the inversion for a global analysis in most practical situations.

4.2.3. Stochastic EnKF and deterministic EnKF

In EnKF introduced in the previous section, the observation assimilated into dynamical model

should be treated to be stochastic variable, as expressed by  + 𝀵𝀵 in Eq. (48). It is a must if the
classic EnKF algorithm is used. It has been proven that if the EnKF assimilates deterministic
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where  indicates that the model ensemble predictions removed the ensemble mean

( = [ − ], for  = 1, 2, ..., 𑩫𑩫).  = 1𑩫𑩫𝀵𝀵𝀵𝀵 was invoked here. If we assume the ensemble

prediction error ( − 𝀵𝀵𝀵𝀵 ≈  −  = ) is not correlated to observation error, i.e. 𝀵𝀵 = 0, the
following is valid [17]:

( ) ( )( ) ,T T T THxx H Hx Hxee e e+ = + +% % % % (54)

where (𝀵𝀵 + 𝀵𝀵) has dimension *𑩫𑩫. Usually, ensemble size N is much less than m. Using the
singular-value decomposition (SVD) technique, we have

( ) Σ THx U Ve+ =% (55)

Eq. (54) then becomes

( )T T T T T T T THxx H U V V U U U U Uee+ = S S = SS = L% % (56)

So,

1 1( )T T T THxx H U Uee - -+ = L% % (57)

where  and Λ are the eigenvector and the square of eigenvalues of (𝀵𝀵 + 𝀵𝀵). There are N non-
zero eigenvalues for (𝀵𝀵 + 𝀵𝀵), therefore the dimension is not large, allowing us to efficiently
compute the inversion for a global analysis in most practical situations.

4.2.3. Stochastic EnKF and deterministic EnKF

In EnKF introduced in the previous section, the observation assimilated into dynamical model

should be treated to be stochastic variable, as expressed by  + 𝀵𝀵 in Eq. (48). It is a must if the
classic EnKF algorithm is used. It has been proven that if the EnKF assimilates deterministic
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observations (i.e., observation  not changed at each ensemble member), the analysis error
covariance will be systematically underestimated, typically leading to filter divergence, as
indicated by below [11, 18]:

* ( ) ( )a TP I KH B I KH= - - (58)

Eq. (58) gives the analysis error covariance if the observed is not perturbed. Comparing Eq. (58)

with Eq. (29), a theoretically unbiased estimate,  * is always less than .

However, the perturbed observation approach (i.e.  + ) introduces an additional source of
sampling error that reduces analysis error covariance accuracy and increases the probability
of understanding analysis error covariance [19, 20]. Thus, an approach that only uses a single
observation realization but avoids systematical underestimation of analysis error covariance
was pursued. There are several approaches to implement this goal, as summarized by Tippettet
al. [20]. Below, we will introduce an approach developed by Whitaker and Hamill [19], called
Ensemble squareroot filter (EnSRF).

Denote the deviation of analysis from the analysis mean by  =  − , it is easy to write

a b o bx x K y Hxé ù= + -ë û
%

% % % % (59)

where  =  − . If a single observation realization is assimilated in all ensemble members, = 0 and

( ) ,a b b bx x KHx I KH x= - = -% %

% % % % (60)

( ) ( )* .
TaP I KH B I KH= - -% % (61)

We seek a definition for  that will result in an ensemble whose analysis error covariance equals
to (𑨒𑨒 − 𑨒𑨒), i.e.

( )( ) ( ) .TI KH B I KH I KH B- - = -% % (62)

The solution of Eq. (62) is
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1(1 ) .T
RK K

HBH R
-= +

+
% (63)

Therefore, EnSRF is summarized as below (Table 4):

 =  +   − 𝀵𝀵
 =  − 𝀵𝀵
 =  + 
 = 𝀵𝀵𝀵𝀵(𝀵𝀵𝀵𝀵𝀵𝀵 + )−1, ,
𝀵𝀵𝀵𝀵 = 1𑨒𑨒 − 1∑ = 1

𑨒𑨒 [ − ][ℎ() − ℎ()]

𝀵𝀵𝀵𝀵𝀵𝀵 = 1𑨒𑨒 − 1∑ = 1
𑨒𑨒 [ℎ() − ℎ()][ℎ() − ℎ()]

 = (1 + 𝀵𝀵𝀵𝀵𝀵𝀵 + )−1
Table 4. The analysis scheme of EnSRF.

It should be noted that there are two Kalman gains used in EnSRF, the original K for updating
ensemble mean and a new  for updating the anomalies. It indicates that one single observation
realization of classic EnKF has the same ensemble analysis mean as stochastic observations.

Initially, the term EnKF refers, in particular, to the stochastic ensemble Kalman filter that
requires perturbing the observations. Subsequently, several deterministic EnKFs that avoid the
use of perturbed observations were developed, e.g. the ETKF [21], the EAKF [22] and the
EnSRF. These filter designs are labelled as variants of the EnKF because they are also based on
the Kalman filtering formula and ensemble representations.
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4.2.4. Inflation approach

The forecast error covariance is defined by (44)

1

1 1( )( ) * .
1 1

N b b b b T T
i ii

B x x x x X X
N N=

= - - =
- -å % % (64)

Eq. (64) is an approximation to B using forecast ensemble. Due to limited computational source,
the ensemble size N is often restricted to a small value for many realistic issues. A small
ensemble size may cause a very small ensemble spread, causing the approximation of B by Eq.
(64), which is seriously underestimated. To solve this problem, B is multiplied by an inflator
factor λ (slightly greater than 1). λ is empirically determined, such as some sensitivity
experiments, with the typical value of 1.01. λB is used to replace B in EnKF formula. This
approach is equivalent to the below approach:

( )b b b b
i ix x x xl= - + (65)

4.2.5. Localization of EnKF

When EnKF is applied to high-dimensional atmospheric and oceanic models, the limited
ensemble size will cause the estimated correlations to be noisy [11]. When the ensemble size
is insufficient, it will produce spurious correlations between distant locations in the back-
ground covariance matrix B. Unless they are suppressed, these spurious correlations will cause
observations from one location to affect the analysis in locations an arbitrarily large distance
away, in an essentially random manner [23]. This needs to be remedied by the localization
method.

Another reason for using localization is that the treatment of localization artificially reduces
the spatial domain of influence of observations during the update. The localization dramati-
cally reduces the necessary ensemble size, which is very important for operational systems.
Two most common distance-based localization methods used in practice are local analysis and
covariance localization.

Using local analysis, only measurements located within a certain distance from a grid point
will impact the analysis in this grid point. This allows for an algorithm where the analysis is
computed grid point by grid point. It was found that severe localization could lead to imbal-
ance, but with large enough radius of influence (decorrelation length) for the measurements,
this was not a problem. Hunt et al. use the local analysis method in their ETKF algorithm and
developed a local ensemble transform Kalman filter (LETKF) [23].

To eliminate the small background error covariance associated with remote observations,
Houtekamer and Mitchell uses a Schur (element-wise) product of a correlation function with
local support and the covariance of the background error calculated from the ensemble [14].
That is, the matrix B in Eq. (48) is replaced by ρ  B, where “ ” represents the element-wise
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product and the elements ρ relates to the distance r of the grid point to the observation r as
below:

( )
2 2

1 .
3

rrr r e aar a -æ ö
= + +ç ÷
è ø

(66)

Here, α is a scalar parameter. To the best of author’s knowledge, this is the first case that the
covariance localization is used in EnKF.

Nowadays, a typical covariance localization approach is used to represent prior covariances
using an element-wise product of ensemble covariance and a correlation function with
compact support [24]. Anderson applied this approach to the Data Assimilation Research
Testbed system [25], which has been used for realistic cases.

5. General form of ensemble-based filters for Gaussian models

In proceeding sections, we introduced Kalman-based filters. Originally Kalman filter applies
linear model and linear measurement function. Further, EKF and EnKF were developed to
address nonlinear models. However, the measurement functions are still assumed to be linear.
Eqs. (46) and (47) can directly evaluate nonlinear measurement functions but they were
proposed intuitionally and not proven yet. In this section, we will present a general form for
nonlinear measurement function and further prove Eqs. (46) and (47) mathematically using
the general form.

For generality, we assume the nonlinear model as Eqs. (34) and (35):

( )1 ,t t tx f x h+ = + (67)

( ) ,t t ty h x z= + (68)

where f and h are nonlinear operators of model and measurement. x is model state and y is the
observation.  and  are the model errors and observed errors, respectively, which have

variance . Assuming the estimate of model state  at a

time step is a linear combination of model forecast  and observation , i.e. the filter itself is
linear, so

( )a b o bx x K y h xé ù= + -ë û (69)

Denoting  =  − ,  =  − ,  =  − ℎ(), we have
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ˆ ˆ ˆa bx x Ky= - (70)

( ( )( )

ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

[ )

[ ( ) ( )

é ùù= = - -û ê úë û
= - - +

= - - +

Ta a a T b b

b b T b T T b T T T

b T T
xy yx yy

P E x x E x Ky x Ky

E x x x y K Ky x Kyy K
P P K KP KP K

(71)

The optimal estimate asks the trace of  minimum, namely,

ˆˆ ˆ ˆ ˆ ˆ
[trace( )] 2 0,

a

xy yx yy
P P P KP

K
¶

= - - + =
¶

(72)

where we invoked the below properties:

( ) ( )
trace

2 ,
é ù¶ ë û = + =
¶

T

T
XAX

X A A XA
X

(73)

(trace[ ]) (trace[ ]) .,¶ ¶
= = =

¶ ¶

T T
TXA AX A A

X X
(74)

Thus, we have the optimal estimate filter:

( )a b o b
t t tx x K y h xé ù= + -ë û (75)

ˆˆ ˆ
1

ˆxy yyK P P-= (76)

ˆˆ ,  
a b

xyP P KP= - (77)

Eqs. (75)–(77) give a general algorithm for Gaussian nonlinear model and nonlinear measure-

ment function. The first term of Eq. (74) can be interpreted as the cross-covariance  between

the state and observation errors, and the remaining expression can be interpreted as the
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error covariance  of the difference between model observation and observation itself. Here, is defined as the error between the noisy observation  and its prediction ℎ  .

If the model is linear, obviously,

1 ,,b a
t t tx Mx h+ = + (78)

1 .a T
t tB MP M Q+ = + (79)

If the measurement function is linear, i.e.

( )ˆ ˆo b o b tr b by y h x y Hx Hx Hx Hxz z z z= - - = - - = - - = - (80)

ˆˆ  ,  ˆ ˆb T b T
xyP x y P H=< >= (81)

ˆ ˆ
Tˆ ˆ ,  b T

yyP y y HP H R= < > = + (82)

So, Kalman gain

1( )b T b TK P H HP H R -= + (83)

Eq. (83) is identical to Eq. (28). Therefore, Eq. (28), or KF, EKF and EnKF, is a special case of Eq.
(76) under the assumption of linear measurement function.

In the standard KF, the state error covariance is updated at each analysis cycle during the
measurement update process. Updating the error covariance matrix is important because it
represents the change in forecast error covariance when a measurement is performed. The
EnKF implementation does not require the covariance update equation because it can directly
calculate the updated error covariance matrix from a set of ensemble members. Evensen [17]
has derived the analysis of covariance equation that is consistent with the standard KF error
covariance to update Eq. (28). But the true representation of the updated error covariance
requires a large ensemble size, which is often computationally infeasible.

The general form of the Kalman gain makes use of the reformulated error covariance. In a
broad sense, the above algorithm implicitly uses the prior covariance update equation (or the
analysis error covariance matrix) to calculate the forecast error covariance. Thus, the above
algorithm is fully consistent with the time update and measurement update formulation of the
Kalman filter algorithm. On this basis, one can develop a new type of Kalman filter that chooses
the ensemble members deterministically in such a way that they can capture the statistical
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moments of the nonlinear model accurately. In the next subsection, we will discuss the new
type of Kalman filter, called sigma-point Kalman filter, based on the above algorithm.

6. Sigma-point Kalman filters (SPKF)

6.1. Basics of SPKF

EnKF was developed in order to overcome the linearization of nonlinear models. As intro-
duced earlier, the idea behind EnKF is to ‘integrate’ Fokker-Plank equation using ensemble
technique to estimate the forecast error covariance. Theoretically, if the ensemble size is infinite,
the estimate approaches the true value. However, in reality, we can only use finite ensemble
size, even very small size for many problems, leading to truncation errors. Thus, some concerns
exist such as how to wisely generate finite samples for the optimal estimate of prediction error
covariance, how much the least ensemble size is for an efficient estimate of error covariance
and how much the true error covariance can be taken into account in the EnKF, given an
ensemble size. In this section, we will introduce a new ensemble technique for EnKF, which is
called sigma-point Kalman filter (SPKF).

The so-called sigma-point approach is based on deterministic sampling of state distribution to
calculate the approximate covariance matrices for the standard Kalman filter equations. The
family of SPKF algorithms includes the unscented Kalman filter (UKF [26]), the central
difference Kalman filter (CDKF [27]) and their square root versions [28]. Another interpretation
of the sigma-point approach is that it implicitly performs a statistical linearization of the
nonlinear model through a weighted statistical linear regression (WSLR) to calculate the
covariance matrices [29]. In SPKF, the model linearization is done through a linear regression
between a number of points (called sigma points) drawn from a prior distribution of a random
variable rather than through a truncated Taylor series expansion at a single point. It has been
found that this linearization is much more accurate than a truncated Taylor series linearization
[28]. Eqs. (80)–(82) construct a core of SPKF. A central issue here is how to generate the optimal
ensemble members for applying these equations. There are two basic approaches aforemen-
tioned, UKF and CDKF. For an L-dimensional dynamical system represented by a set of
discretized state-space equations of (67), it has been proven that 2 + 1 ensemble members,
constructed by UKF or CDKF, can precisely estimate the mean and covariance. We ignore the
theoretical proof and only outline the UKF scheme as below.

Denote 2 + 1 sigma points at time k for producing ensemble members by = [, 0, , 1+ , ..., , + , , 1− ,…, , − ], which that is defined according to the following expres-

sions:

,0
a

k kXc = (84)
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, ,[ ]a a
k i k X k iX c Pc + = + (85)

, ,[ ]- = -a a
k i k X k iX c Pc (86)

where  =  +  +  is the sum of the dimensions of model states, model noise and

measurement noise. The augmented state vector  = [; ; ] is a L-dimensional vector. , 
is the covariance of the augmented state vector (analysis) at the previous step. [ ,  ] is the

ith row (column) of the weighted matrix square root of the covariance matrix (L dimension).
c is a scale parameter that will be specified later. The key point here is to produce (2 + 1)
ensemble members by integrating model with 2 + 1 initial conditions of Eqs. (84)–(86); by
these ensemble members, the filter Eqs. (80)–(82) will be performed.

The procedure is summarized as below:

1. Initially, perturb a small amount, denoted by 0 on initial condition 0, using Evensen

method [17]; and also randomly generate perturbation for q and r, drawn from normal
distributions of (0, ) and (0, ). Thus, we can construct the augmented state vector
and corresponding covariance ( = 0)

0 0;0;0 ;aX x= é ùë û (87)

0 0 0 ;x TP x x= % % (88)

0

,0

0 0
0 0 .
0 0

x

X

P
P Q

R

æ ö
ç ÷

= ç ÷
ç ÷
è ø

(89)

2. From the above formula, we can calculate sigma points using Eqs. (84)–(86). Note that
each set of sigma points, denoted by , has dimension L, e.g. the ith sigma point can be

expressed by ,  = [, ; , ; , ].
3. Using the 2 + 1 sigma points to integrate state-space model. For the ith sigma point, we

have  + 1,  = (, , , ). When i varies from 1 to 2 + 1, we produce 2 + 1 ensemble

members, from which analysis mean and covariance will be obtained, which are in turn
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3. Using the 2 + 1 sigma points to integrate state-space model. For the ith sigma point, we

have  + 1,  = (, , , ). When i varies from 1 to 2 + 1, we produce 2 + 1 ensemble

members, from which analysis mean and covariance will be obtained, which are in turn
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used to produce sigma points for next step ( + 1), to form a recursive algorithm. Suppose

we have 2 + 1 ensembles, the analysis mean and the covariance are calculated as follows:
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α and κ are tuning parameters. 0 <  < 1 and 𑩥𑩥 𑩥𑩥 0. Often κ is chosen 0 as default value
and  = 2.

4. From  + 1 , as well choosing random perturbation for model noise η and observation

noise , drawn from Gaussian distribution of (0, ) and (0, ), we calculate sigma points
using Eqs. (84)–(86), and repeat Step 2 and Step 3 and so on until the assimilation is
completed for the entire period.

6.2. Remarks of SPKF

SPKF was recently introduced into the earth sciences [15, 30]. The main differences between
SPKF and EnKF include

i. SPKF chooses the ensemble members deterministically while EnKF uses random
perturbation to generate ensemble members;

ii. the number of sigma points is a fixed value as 2 + 1, while the ensemble size in EnKF
is pre-specified;

iii. SPKF uses Eq. (98) to update the error covariance matrix, while EnKF does not update
explicitly the error covariance matrix; and

iv. Sigma points are calculated using Eqs. (84)–(86) every time when the observation is
available, while the ensemble members in EnKF only perturbed in the initial time.
Recent application of SPKF on a realistic oceanic model indicates that the SPKF is
better than the EnKF in the similar level of computational cost [31].

In SPKF, the number of sigma points is 2 + 1, here L is the dimension of the augmented state
vector  = [; ; ], i.e.  =  +  +  is the sum of model state, model noise and observation

noise. Usually, L is the order 103–104, so the computational expense is a huge challenge in SPKF
for realistic problems. A solution is to use the truncated singular-value decomposition (TSVD)

to reduce the sigma points. As seen from Eqs. (84)–(86), the ,   is a  *  matrix, thus the

dimension of ,   determines the ensemble size. Suppose that ,   can be expressed as
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, , ,( )a a a T
X k X k k X kP E E= S (104)

where  = diag(1, 2, ..., ) is a diagonal matrix of eigenvalues that are sorted in descending

order, i.e. 1 ≥ 2 ≥ ... ≥ , and ,  = [, , 1 , , , 2 , ..., , ,  ]. Truncating the first m modes,

so we can write the sigma points (84)–(86) as below:

,0
a

k kXc = (105)

, , ,
a i a

k i k k X k iX c ec s+ = + (106)

, , ,
a i a

k i k k X k iX c ec s- = - (107)

 = 1, 2, ..., . Thus, the ensemble size becomes 2 * + 1, where  < < . Some fast SVD
algorithms can be used here, such as Lanczos and block Lanczos [32]. The application of the
truncated SVD was also found in [33, 34].

Further simplifying ,   based on its definition (or Cholesky decomposition), i.e.,  = ,  * (,  ), where ,   is the data that has subtracted the ensemble mean. Thus,

Eqs.(82)–(84) can be written as follows:

,0
a

k kXc = (108)

, ,[ ]a a
k i k X k iX cAc + = + (109)

, ,[ ]a a
k i k X k iX cAc - = - (110)

where [𝀵𝀵,  ] = [; ; ],  = 1, 2, ..., , () = () + [ − ]. Eqs.(109) and (110)

transfer the covariance matrix ,   to data matrix ,   in constructing sigma points. The

largest advantage is to avoid explicit expression of ,  , which could be a very large matrix

beyond memory of current computers. However, Eqs.(109) and (110) cannot reduce the
ensemble size 2 + 1 . A solution is to decompose, such as principal component analysis, as
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used in [14]. Further discussions on optimal construction of sigma points should be conducted
for a realistic application of SPKF.

Again, we look at sigma-point generation, i.e. Eqs. (106) and (107) or (109) and (110). As we
defined, an augmented matrix is applied here [; ; ]. Without losing the generality, rewrite
them as below:

,0 ,0
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0
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k k

k
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(112)

Similarly, we can write Eq. (107) or (110) using individual variables. From Eqs. (111) and (112),
we can draw

• Noise and model state analyses in constructing sigma points at k step are independent. It

should be noted that  is from Eq. (97) and noise are draw from a Gaussian distribution. If

we assume that noise is taken randomly each time,  is only relevant to noise that is drawn

at time step k, and independent with model noise and observation noise drawn for analysis
of the time step  + 1, thus, ,  is a diagonal block matrix, i.e.

,

0 0
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(113)

• There are no update equations for noise, so they are randomly taken from Gaussian
distribution, i.e. the index i in  and  actually does not have meaning. Thus, it should be

a reasonable assumption that the  and , used for constructing sigma points at time step + 1, are not related to ,  (time step of k), as argued above. Thus, Eq. (108) always holds

unless the noise is designed considering the temporal coherence such as red noise in time.

• Based on the above, the actual ensemble size is 2 + 1, and not 2 + 1. This is because

neither model noise nor observation noise can produce ensemble alone. Model errors  and,   must be joined together to produce ensemble members with . Let us see this in details:
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at the initial time, initial perturbation on model states plus drawn noise for model errors
and measurement errors are with mean and variance as follows:

0
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Theoretically, there are 2( +  + ) + 1 ensembles, denoted by the ith column of , 0
( = 1, ..., ;  + 1, ...,  + ;  +  + 1, ...,  +  + ) and formula (84)–(86). Howev-

er, at the ith column, the elements of the row, indicating the model inputs (, , ), only have
the non-zero values of . Obviously, the sigma points of zero-values makes the update

equation  + 1,  = (, ) invalid, thus, the actual ensemble size is 2 + 1.

When truncation technique is applied to reduce the ensemble size, the ensemble spread might
be shrunk due to relatively small ensemble size. Like EnKF, an inflation approach of SPKF
might be helpful. It is interested in developing such a scheme for SPKF. Also, we can localize
SPKF, like localized EnKF, to solve memory and computation issues.

All of the remarks of SPKF are from the authors’ thinking and understanding. It is interesting
to further test and validate these ideas and properties using simple models.

7. Beyond Kalman filters: particle filter and its derivatives

7.1. Standard particle filter

We have introduced the Kalman filter (KF), extended Kalman filter (EKF), ensemble Kalman
filter (EnKF) and sigma-point Kalman filter (SPKF) in previous sections. All of those filters
belong to the sequential data assimilation method, i.e. observation data is assimilated into the
model system as soon as it is available. The Bayesian estimation theory provides a general
framework of the sequential data assimilation methods. If we assume the state-space model is
given by Eqs. (34) and (35), the analysis step of a Bayesian-based assimilation method is
deduced by Bayes’ theorem:

( ) ( ) ( )
( )

|
| ,t t t

t t
t

p y x p x
p x y

p y
= (115)

where () plays as a normalization factor.

Recalling Section 2.3, Eq. (12) actually assumes that the prior probability density function ()
and the likelihood function (|) are Gaussian distribution functions, and thus the posterior
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probability density function (|) is also a Gaussian. Based on the Gaussian assumption,

the cost function of 3D-Var (i.e. Eq. (6)) can be derived, and it is equivalent to the Kalman filter
Eqs. (27)–(29). All the Kalman-based filters (e.g. EKF, EnKF, EnSRF, SPKF, etc.) contain the
inherent Gaussian assumption, and they are derived and validated for Gaussian systems in
theory. However, this Gaussian assumption is often not applicable for nonlinear systems. Even
for an initial Gaussian error, it often becomes non-Gaussian while propagating forward with
nonlinear models.

The particle filter (PF) is a sequential data assimilation method that is able to deal with the
nonlinear and non-Gaussian state estimation problem. Like EnKF, PF also uses an ensemble,
but it is used to approximately estimate the full probability density function rather than only
the error covariance B. An ensemble member is also referred to as a particle in PF literatures.
Suppose the prior probability density is the sum of Dirac delta functions

( ) ( )1

N i
t t ti

p x x xd
=

= -å (116)

where ,  = 1, 2, ...,   are particles drawn from (). The posterior probability density is

derived by applying the Bayes’ theorem directly, that is

( ) ( ) ( ) ( ),1
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t t t t t t i t ti
p x y p y x p x w x xd

=
µ = -å (117)

in which ,  ∝ (|), and a normalization step, is required to make , ,  = 1, 2, ...,   sum

up to 1. If we assume the likelihood function is Gaussian, ,  can be computed by

11( | ) exp{ 1 / 2[ ( )] [ ( )] }.
2

-= - - -i i i T
t t t t t tp y x y h x R y h x

Rp
(118)

Or else we can use any specified probability density function of (|) to compute the

likelihood.

With the posterior probability density function (|), the analysis value and covariance can

be computed by

,1
* ( | ) N i

t t t i ti
x x p x y dx w x

=
= =åò (119)

( ) 2 2 2 2
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and higher-order moments of the posterior state can also be estimated.

Before stepping forward to next stage, a resampling step is required to make each particle with
uniform weight. A typical resampling strategy is the sequential importance resampling (SIR)
that removes particles with very small weights and duplicates those with large weights. A
detailed algorithm of SIR can be found in [35]. The resampling algorithm gives the indices and
number of copies of those particles that should be duplicated, i.e. computes 1, 2, …, 
according to the weights, where each  ∈ 1, 2, …, . And then ,  = 1, 2, ...,   are regarded as

new particles.

In summary, the algorithm of standard particle filter is given below:

1. generate the initial ensemble 0 ,  = 1, 2, ...,   as EnKF does;

2. integrate the model until the observation is available;

3. use Eq. (118) to compute the weight for each particle, and normalize them;

4. use Eq. (119) to obtain the analysis and Eq. (120) to obtain the covariance if necessary;

5. apply the resampling algorithm to derive the resampling indices, and derive the new

ensemble ,  = 1, 2, ...,  ; and

6. repeat Steps 2–5 until the end of assimilation period.

The standard particle filter [36] is also known as the bootstrap particle filter or SIR particle
filter.

7.2. Variants of PF

The particle filter is a highly promising technique because it does not invoke any Gaussian
assumptions. It has been widely used and studied in many other fields. The PF estimates the
full probability density function of the forecasted state based on an ensemble of states with
different weights. However, the PF suffers from the problem of filter degeneracy, i.e. the
procedure collapses to a very small number of highly weighted particles among a horde of
almost useless particles carrying a tiny proportion of the probability mass. Even if resampling
techniques are used, the degeneracy cannot be completely avoided with limited ensemble size.
The number of particles must grow substantially with the dimension of the system to avoid
degeneracy [37, 38], a requirement that is apparently too costly for large models such as GCMs.
Various efforts have been made to resolve this issue, as documented in an excellent overview
[39].

Several strategies are often employed to address the problem of filter degeneracy in applica-
tions of the particle filter. For example, Papadakis et al. proposed a weighted ensemble Kalman
filter (WEnKF) [40] that uses an ensemble-based Kalman filter as the proposal density from
which the particles are drawn. Van Leeuwen et al. developed a fully nonlinear particle filter
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by exploiting the freedom of the proposal transition density, which ensures not only that all
particles ultimately occupy high-probability regions of state-space but also that most of the
particles have similar weights [41]. The implicit particle filter uses gradient descent minimi-
zation combined with random maps to find the region of high probability, avoiding the
calculation of Hessians [42]. Luo et al. have proposed an efficient particle filter that uses
residual nudging to prevent the residual norm of the state estimates from exceeding a pre-
specified threshold [43]. These particle filters were very recently proposed and have attracted
broad attention in the community of atmos./ocean. data assimilation. Below, we will briefly
introduce the equivalent weights particle filter (EWPF) by Van Leeuwen [39, 41].

The equivalent weights particle filter is a fully nonlinear data assimilation method that works
in a two-stage process. It uses the proposal density to ensure that the particles have almost
equivalent weights, by which the filter degeneracy can be avoided.

In the standard PF, the particles at time step t are propagated by the original model, i.e. + 1 = () + , which implies that the particles at time step  + 1 are drawn from the

transition density ( + 1|). In that case, the weight of each  + 1  varies greatly and filter

degeneracy is very likely to happen.

In EWPF, another transition density, call the proposal density, is introduced. The proposal

density depends on the future observation  + 1 and all previous particles ,  = 1, 2, ...,  .

With the help of proposal density, the particle  is propagated using a different model

( )1 1, .i i
t t t tx g x y h+ += + (121)

The model g can be anything, for instance, one can add a relaxation term and change random
forcing:

( ) ( )( ) ( )1 1 , 1,...,i i i i
k k k t kx f x A y H x k p kh+ += + + - = (122)

where () is a function of the time between observations, and each k implies each model step
without observation. A is a relaxation term that will ‘drag’ the particle towards future obser-
vation. In [44], it is given by

( ) 1,TA p k QH R-= (123)

where the matrices Q and R correspond to the model error covariance and observation error
covariance, respectively.
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The second stage of EWPF involves updating each particle at the observation time  + 1 via the
formula

1
1 1( ) ( ) ( ( ( )))i i T T i i

t t i t t tx f x QH HQH R y H f xa h-
+ += + + - + (124)

where  are scalers computed so as to make the weights of the particles equal. Using the
expression for weights and setting all weights equal to a target weight (e.g. 1/)

( )( )1 1 target| i
i t t iw p y x wa+ += = (125)

 can be solved by numerical methods.

Eqs. (122)–(125) show an example of how to construct the proposal model g in(121)), it can also
be done by running 4D-var on each particle (implicit particle filter), or using the EnKF as
proposal density. Those methods refer to Morzfeld et al. [42] and Papadakis et al. [40].

7.3. Remarks of PF

7.3.1. Combined method of EnKF and PF

The ensemble Kalman particle filter (EnKPF) is a combination of the EnKF and the SIR particle
filter. It was recently introduced to address non-Gaussian features in data assimilation for
highly nonlinear systems, by providing a continuous interpolation between the EnKF and SIR-
PF analysis schemes [45].

As stated above, both EnKF and PF methods are based on the Bayesian estimation theory, but
they approximate the probability density function of the state in different ways. The EnKF only
approximates the mean and covariance of the state through a series of equally weighted
ensemble members. And the particle filter considers the weights of the ensemble members
according to the likelihoods. The EnKF contains the Gaussian assumption but requires
relatively small ensemble size to prevent filter degeneracy, which is in contrast with the PF.

The EnKPF takes advantage of both methods by combining the analysis schemes of the EnKF
and the SIR-PF using a controllable index (i.e. tuning parameter). In contrast with both the
EnKF and the SIR-PF, the analysis scheme of the EnKPF not only updates the ensemble
members but also considers the weights.

Assume that the forecast ensemble ,  = 1, 2, …,   and the observation data y are available,

and that the forecast covariance  can be calculated using the ensemble, the analysis scheme
of EnKPF is given below.

1. Choose 𑨈𑨈 𑨈𑨈 [0, 1] and apply the EnKF that is based on the inflated observation error
covariance /𑨈𑨈 as follows:
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( ) 1 1
1 ( / ) ( )f T f T f T f TK P H HP H R P H HP H Rg g g g- -= + = + (126)

1( )( )f f
i i iv x K y Hxg= + - (127)

1 1
1 ( ) ( )TQ K RKg g
g

= (128)

2. Compute the weights  for each updated member  as follows:

; ,
1

T
i i

Rw y Hv HQHf
g

æ ö
= +ç ÷-è ø

(129)

and normalize the weights by  = /∑ = 1 , in which ϕ is the probability density

function of a Gaussian.

3. Calculate the resampling index () for each member  according to  using the SIR

algorithm, then set

( ) 1,
( ) 1

iu
i s ix v K g

g
= +

ò
(130)

where 1, i is a random observation error drawn from the Gaussian (0, ).
4. Compute 2(1 − ) = (1 − )𝀵𝀵𝀵𝀵[(1 − )𝀵𝀵𝀵𝀵𝀵𝀵 + ]−1, and generate 2, i from (0, ) and

EnKF with the inflated observation error again as follows:

( ) 2,
2 1

1
ia u u

i i ix x K y Hxg
g

é ù
= + - + -ê ú

-ê úë û

ò
(131)

γ can be determined recursively to match the optimal performance of EnKPF. More details of
EnKPF can be found in [45, 46].

7.3.2. Localization in PF

Previous sections have introduced the localization technique in EnKF, which greatly improves
the performance of EnKF in high-dimensional models. The advantages of localization motivate
the search for a localization procedure in particle filtering.
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Van Leeuwen had a deep discussion on this topic [39]. He argued that one can calculate the
weights locally, but it is not easy for resampling. In the resampling step low-weight particles are
abandoned and high-weight particles are duplicated. However, with local weights, different particles are
selected in different parts of the domain. The problem is that we have to have continuous (in space) model
fields to propagate forward in time with the model. Just constructing a new particle that consists of one
particle in one part of the model domain and another particle in another domain will lead to problems
at the boundary between these two.

The problem of spatial discontinuity makes the localization in particle filter not feasible
currently. Most of the advanced particle filters (e.g. EWPFand implicit particle filter) are using
the idea of global weight, i.e. the weight for each member is a scalar.

However, there are still some attempts on the localization in particle filter. For example,
Poterjoy developed the localized particle filter (LPF) that updates particles locally using ideas
borrowed from EnKF [47]. The paper has demonstrated some advantages of the new filter over
EnKF, especially when the observation networks consist of densely spaced measurements that
relate nonlinearly to the model state. This is a very interesting work about the particle filter, it
also has a potential to work with large atmos./ocean. data assimilation systems.

8. Remarks and conclusions

Data assimilation is the process by which observations of the actual system are incorporated
into a numerical model to optimally estimate the system states. In this chapter, we introduced
several ensemble-based data assimilation methods that are widely used in the earth sciences.
One can read it as an introduction to ensemble-based data assimilation methods, but also can
view it as a brief review of the application of these ensemble-based assimilation methods on
the earth sciences. It is author’s effort to write such a ‘review’ chapter with introductory
language, making it more readable. As found in the chapter, many discussions, derivations
and analyses are actually very thoughtful, not only introducing these methods, but also
deepening the understanding to them. This is emphasized by the analysis of the rationale
behind each method, including: i). the principle for deriving the algorithm; ii) basic assump-
tions of each method; iii). the connection and relation of different methods (e.g., EKF and EnKF,
EnKF and SPKF etc.); iv). the advantages and deficiencies of each method. Especially we put
rather weights to discuss potential concerns, challenges and possible solutions when these
methods are applied to high-dimensional systems in the earth sciences. This chapter can be a
“textbook” for the beginners to learn these data assimilation algorithms, and also a good
reference for researchers for better understanding and applying these methods.
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Abstract

In this chapter, we consider an optimal control problem with retarded control and
study a larger class of singular (in the classical sense) controls. For the optimality of
singular  controls,  the  various  necessary  conditions  in  the  recurrent  forms  are
obtained. These conditions contain also the analogs of Kelly, Koppa-Mayer, Gabasov,
and  equality-type  conditions.  While  proving  the  main  results,  the  Legendre
polynomials are used as variations of control.

Keywords: singular control, optimal control, variation transform method, Legendre
polynomial, necessary optimality conditions

1. Introduction

As is known, optimal control problems described by the dynamical systems with retarded
control are attracting the attention of many specialists, and the results obtained in this field
deal mainly with the first-order necessary optimality conditions [1–8, etc.]. However, theory
of singular controls for systems with retarded control has not been studied enough yet [9, 10].
One of the main reasons here is that the methods proposed and developed for ordinary
systems (for systems without retardation) in [11–18] are not directly applicable to the singular
controls in dynamical systems with aftereffect (see [9, 14–19]). Therefore, to study optimal
control problems in the systems with retarded control is of special theoretical interest. Besides,
such problems have practical significance as well, because mathematical modelling for some
problems of organization of the economic plan and production leads to the problems with
retarded control (see, e.g., [20]).
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As is known, the concept of singular control was first introduced to the theory of optimal
processes by Rozenoer [22] in 1959. First results on the necessary optimality conditions for
singular controls have been obtained by Kelley [12] in the case of open set , and by Gabasov
[11] in the case of arbitrary (in particular, closed) set , where U is a set of values of admissible
controls. Afterward, Kelley and Gabasov’s conditions as well as the methods for treating
singular controls proposed in [11, 13] have been significantly generalized in [10, 14–19, 23–
41, etc.] to the cases of (1) controls with higher-order degeneration, (2) multidimensional
controls, and (3) various classes of control systems. Considering all these cases, the methods
in [11, 13] have been generalized in [17, 37] and for optimality of singular controls, necessary
conditions in the form of recurrence sequences are obtained for dynamical systems with
delayed in state. Similar results for the problem of dynamic systems with retarded control have
been obtained in [10] only for singular controls with full degree of degeneration. Below, by
considering a larger class of singular controls, proposing a modified version of the variations
transform method [13] and matrix impulse method [11], we generalize all results of [10]. While
treating the optimality of singular (in the classical sense) controls, we use the Legendre [[42],
p. 413] polynomials as variations of control because such an approach is more convenient.

1. Problem statement. Consider the following optimal control problem with retarded control:

( ) ( )( )1 min
u

S u x tj= ® (1.1)

( ) ( ) ( ) ( )( ) [ ] ( )0 1 0 0, , , , : , , ,x t f x t u t u t h t t I t t x t x= - Î = =& (1.2)

( ) ( ) [ ) ( )0 0 0, : , , , .ru t w t t I t h t u t U R t I= Î = - Î Ì Î (1.3)

Here,  is an open set in  -dimensional Euclidean space , 1 = :: = −∞, + ∞ , 𑨈𑨈 𑨈𑨈  is
an -vector with phase coordinates, 𑨈𑨈 𑨈𑨈  is an -vector of control actions, ℎ = const > 0, 𑨈𑨈0,0, 1 are fixed points with 1 > 0 + ℎ;  𑨈𑨈 :  ,  𑨈𑨈, 𑨈𑨈, ,  : ×  ×  ×  , ⋅ 𑨈𑨈 + 0 − ℎ, 0 ,   are the given functions, where + 0 − ℎ, 0 ,   is a class of

piecewise continuous (continuous from the right at discontinuity points and continuous from

the left at the point 0 ) vector functions   : 0 − ℎ, 0 .
The function 𑨈𑨈 ⋅  is said to be an admissible control if it belongs to + 1,   and satisfies the

condition (1.3), where .

Note that if the function  ⋅  and its partial derivative 𑨈𑨈 ⋅  are continuous on ×  ×  × , then, by using the method of successive approximations as in [21] it is easy
to show that every admissible control 𑨈𑨈 ⋅  generates a unique absolutely continuous solution
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 ⋅  of the system (1.2), (1.3) where this solution will be assumed as defined everywhere on.
If the admissible control 0  ,  𑨈𑨈 1 is a solution of the problem (1.1)–(1.3), we will call it an

optimal control, while the corresponding trajectory 0  ,  𑨈𑨈  of the system (1.2)–(1.3) will be

called an optimal trajectory. The pair 0 ⋅ , 0 ⋅  will be called an optimal process.

While studying the problem (1.1)–(1.3), we will also use the following assumptions:

(A1) let the functional   :   be twice continuously differentiable in the space ;

(A2) let the function  ⋅  and its partial derivatives  ⋅ ,  ⋅  be continuous in the space ×  ×  × , where  = , ,  ;

(A3) let the function  ⋅  be three times continuously differentiable in the totality of its

arguments in the space  ×  ×  × ;

(A4) let the inclusions ̇ ⋅ 𑨈𑨈  0 − ℎ, 0 ,   and ̇0 ⋅ 𑨈𑨈  1,   hold for the derivatives̇ ⋅  and ̇0 ⋅ , where  ,  ,   is a class of piecewise continuous (continuous from the right

and left at the points a and b, respectively) vector functions   : ,  ;
(A5) let the function  ⋅  be sufficiently smooth in the totality of its arguments in the space ×  ×  × ;

(A6) let the initial function  ⋅ 𑨈𑨈 + 0 − ℎ, 0 ,   and admissible control 0 ⋅  be suffi-

ciently piecewise smooth, that is,  and

Especially note that more precise assumptions on the analytic properties ofφ ⋅ ,  ⋅ ,  ⋅ ,  ⋅  will directly follow from the representation of optimality criteria
obtained below.

2. The second variation of the objective functional and the definition of a
singular (in the classical sense) control

Let assumptions (A1) and (A2) be fulfilled, and 0 ⋅ , 0 ⋅  be some admissible process. If

the process 0 ⋅ , 0 ⋅  is optimal, then, by using the known technique (see, e.g., [27, p. 51]),
it is easy to get
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( )( ) ( )( ) ( ) ( ) ( )1 0 2 0
1 0; 0, ; 0, , , 0, .rS u u S u u u C I R u t t Id d d d d d+× = × ³ " × Î = Î% (2.1)
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ò
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(2.3)

where 1 0;  ⋅  and 2 0;  ⋅  are, respectively, the first and the second variations

of the functional    at the point 0 ⋅ ; 

,

, , 𑨈𑨈 𑨈𑨈 , ,  ;  ⋅  is the variation of the control0 ⋅ , while   ⋅  is the corresponding variation of the trajectory 0  ,  𑨈𑨈 𑨈𑨈, which   ⋅  is
the solution of the system

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )0 0

, ,

0 , 0, ,
x ux t f t x t f t u t f t u t h t I

x t u t t I
ud d d d

d d

= + + - Î

= = =

&

(2.4)

where   : =  0  , 0  , 0  𑨒𑨒 ℎ ,  ,  𑨈𑨈 𑨈𑨈 and  𑨈𑨈 , ,  , while the vector function 

is the solution of the conjugate system

( ) ( ) ( ) ( )( )0 0 0
1 1, , .y y j= - Î = -& x xt H t t I t x t (2.5)

Below, we consider that the following conditions are fulfilled:

andfor (2.6)
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If 0 ⋅ , 0 ⋅  is an optimal process, then, by definition of an admissible control and taking
into consideration (2.2)–(2.4) from (2.1), proceeding the same way as in [27, p. 53], we obtain
the classical necessary conditions of optimality (analogs of the Euler equation and Legendre-
Clebsch condition) [10, 43], that is, the following relations are valid:

a. ( ) ( ) ( ) 0, ;uH t t H t h t Iuc+ + = " Î (2.7)

b. ( ) ( ) ( ) 0, , ;T r
uuu H t t H t h u t I u Ruucé + + ù £ " Î " Îë û% % % (2.8)

c.  1 = 0,   1 − ℎ +  1  ≤ 0, for all  ∈ , if optimal control 0 ⋅  is

continuous at the points  = 1 − ℎ,  = 1, 2. Here,  ⋅  is the characteristic function of the

set 0, 1 − ℎ .

It should be noted that the optimality condition (c) is the corollary of conditions (a) and (b).

Definition 2.1. An admissible control 0  ,  ∈ 𑨈𑨈, satisfying conditions (2.7) and (2.8), is called
singular (in classical sense) if

( ) ( ) ( ) 1rang , .uu vvH t t H t h r r t Icé + + ù = < " Îë û

In this case, the set 𑨈𑨈 is called a singular plot for an admissible control 0 ⋅ . The main goal of
this chapter is to study such singular controls.

Let  = ,  ,  = ,  , where ,  ∈ 0, ,  ∈ 1, 0 + 1 = . Without loss of generality

[[27], p. 138], we assume that the singularity to the control 0 ⋅  is delivered by a vector

component  ∈ 0, that is,

( ) ( ) ( ) 0, .pp ppH t t H t h t Ic+ + = Î
% %

(2.9)

Note that the general inequality (2.8) implies the equality-type optimality condition for a

singular (in classical sense) control 0 ⋅ :

( ) ( ) ( ) 0, .pq pqH t t H t h t Ic+ + = Î
% %

(2.10)

Proposition 2.1. Let assumptions (A1) and (A2) be fulfilled, the admissible control0 ⋅ =  ⋅ ,  ⋅  be singular (in the classical sense) and condition (2.9) be fulfilled along

it. Let also the variations 𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵   ∈ + 𑨈𑨈1,   be non-zero only on ,  +  ,
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where 𑨈𑨈 𑨈𑨈 0, 1  and 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈0 , with the number 𑨈𑨈0 𑨈𑨈 0, ℎ  be such that (1) if 𑨈𑨈 𑨈𑨈 0, 1 − ℎ ,

then 𑨈𑨈0 < 1 − 𑨈𑨈 𑨈 ℎ and (2) if 𑨈𑨈 𑨈𑨈 1 − ℎ, 1 , then 𑨈𑨈0 < 1 − 𑨈𑨈. Then, (a) the variational system

(2.4) becomes

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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(2.11)

(b) the following representation is valid for the second variation (2.3):

(2.12)

Proof. To prove (a), it suffices to consider the definition of the variation𝀵𝀵𝀵𝀵 ⋅ = 𝀵𝀵0 ⋅ , 𝀵𝀵𝀵𝀵 ⋅  in (2.4). The proof of (b) follows directly from (2.3), in view of (2.6),

(2.9), (2.11), and the definition of the variation 𝀵𝀵𝀵𝀵 ⋅ = 𝀵𝀵0 ⋅ , 𝀵𝀵𝀵𝀵 ⋅ .

3. Transformation of the second variation of the functional by means of
modified variant of matrix impulse method (when studying singular (in
the sense of Definition 2.1) of controls)

Let conditions (A1) and (A2) be fulfilled and along the singular control 𝀵𝀵0 ⋅  the equality (2.9)

hold. Use Proposition 2.1. Let the variation 𝀵𝀵𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵   𑨈𑨈 + 1,   have the form:
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where 𑨈𑨈 𑨈𑨈 𑨈𑨈0, 𑨈𑨈 𑨈𑨈 0, 1 , and the number 0 was defined in Proposition 2.1.

Along the singular control 0 ⋅ =  ⋅ ,  ⋅  satisfying condition (2.9), taking into account
(3.1), formula (2.12) takes the form:

(3.2)

where

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

* *
1 2, ,

t
T T T

xx xp xpx t H t x t dt x t H t x t h H t h dt
q e

q q

d d d d x
+

é ùD = D = + + +ë ûò ò %

where 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈 is the solution of the system (2.11).

By the Cauchy formula, we have

( )
( ) ( ) ( ) ( ) ( ) ( ]

[ ]

0 0 1

0

, , ,

0, , ,

t

p ps t f s p s f s p s h ds t t
x t

t t
q

l d d q
d

q

ì
é ù+ - Îï ë û= í

ï Îî

ò %

(3.3)

where  ,  , ,  𑨈𑨈 𑨈𑨈 × 𑨈𑨈 is the solution of the system

( ) ( ) ( ) 0 1, , , ,t xs t f t s t t s t tl l= £ < £ (3.4)

 ,  = 0,  > ,  ,  = 𑨈𑨈 (𑨈𑨈 is a unit  ×  matrix).

As (A2) and 0 ⋅ 𑨈𑨈 + 𑨈𑨈1,   are fulfilled, then by (3.1) and (3.4) and for all 𑨈𑨈 𑨈𑨈 0, 1 , from

(3.3) we get

( )

[ ]
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) [ )
( ) ( ) ( ) ( ) ( ) ( )
( ) [ )

( ) ( ) ( ) ( ) ( ) ( ) [ ]

0

1

0, , ,

, , , ,

, , , ,

, ,

, , ,

, , , ,

p

p

p p

p p

t t

t t f o t t

t f o t h I
x t

t f t h h t f h

o t h t h h I

t f h t f h o t h t I

q

q l q q x q q q e

el q q x e q e q
d

el q q x q c q l q q x

q q q e

e l q q c q l q q x e q e

ì Î
ï

- + - Î +ï
ï

+ Î + + Çï
= í + - - + +ï
ï+ - - Î + + + Çï
ï é ù+ + + + Î + + Çë ûî

%

%

(3.5)
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where  ⋅  is the characteristic function of the set 0, 1 − ℎ ;   / 0, as  0.

By (2.6) and (3.5) and taking into account  ,  =  and  ,  = 0 for  > , we calculate
separate terms of (3.2). As a result, after simple reasoning, we get

(3.6)

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

1
* 2
1

2

, ,

2 , ,

, , ,

t
T T T

p xx p

T T
p xx p

T T
p xx p

f t H t t f

f t H t h t f h

f h h t H t h t f h dt o

q

e x q l q l q q

c q q l q l q q

c q q l q l q q x e

éD = ë

+ + +

ù+ + + + + +û

ò

%

% %

(3.7)

( ) ( ) ( )( ) ( ) ( ) ( ) ( )(

( ) ( ) ( )( )) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*
2

2

2

2

, ,

,

2 ,
2

.

T T T T T
p xp p xp

T T
p xp

T T T T
p xp p xp

T
p xp

f t H t t f t h H t h

f h h t h H t h t dt o

f H f h H h

f h H h o

q e

q

x q l q q c q e q l q

q l q q x e

e x q q c q q l q q q

c q q q x e

+

éD = - + + +ë

ù+ + + + + - +û

é= + + +ë

ù+ + + +û

ò %

% %

%

% %

(3.8)

Following [10, 14, 17], we consider the matrix functions

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1

0

0
1 1 1, , , , , , , ,

t
T T

xx xx
t

s s t H t t dt s t x t t s I It l l t l j l t tY = - Î ´ò (3.9)

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , , , , , , .T T T
p xp p pM p p s f s s H f s s f s I It l t t t t t= + Y Î ´

% %

% (3.10)

where  ⋅ , ⋅  is the solution of the system (3.4).

Thus, substituting (3.6)–(3.8) in (3.2), allowing for (3.9), (3.10) and equality  ,  = 0, for > , ,  ∈  × , we get the validity of the following statement.
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2

2
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2
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T
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f h H h o
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q

x q l q q c q e q l q

q l q q x e

e x q q c q q l q q q

c q q q x e

+

éD = - + + +ë

ù+ + + + + - +û

é= + + +ë
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% %

%

% %
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Following [10, 14, 17], we consider the matrix functions
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t
T T

xx xx
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[ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 , , , , , , .T T T
p xp p pM p p s f s s H f s s f s I It l t t t t t= + Y Î ´

% %
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where  ⋅ , ⋅  is the solution of the system (3.4).

Thus, substituting (3.6)–(3.8) in (3.2), allowing for (3.9), (3.10) and equality  ,  = 0, for > , ,  ∈  × , we get the validity of the following statement.
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Proposition 3.1. Let conditions (A1) and (A2) be fulfilled, and the admissible control0 ⋅ =  ⋅ ,  ⋅  be singular (in the classic sense) and the condition (2.9) be fulfilled along

it. Then, for each 𑨈𑨈 𑨈𑨈 0, 1  and for all 𑨈𑨈 𑨈𑨈 𑨈𑨈0 the following expansion is valid:

( )( ) [ ]( ) ( ) [ ]( ){
( ) [ ]( )} ( ) ( )

2 0 2
0 0

2
0 0

; , , 2 , ,

, , , 0, ,

TS u u M p p M p p h

M p p h h o

d d e x q q c q q q

c q q q x e e e

× = - + +

+ + + + " Î

%

% %

(3.11)

where the number 0 was defined above (see Proposition 2.1),  ⋅  is the characteristic function

of the set 0, 1 − ℎ  and matrix functions 0 ,  𑨈𑨈, 𑨈𑨈 , 0 ,  𑨈𑨈, 𑨈𑨈 + ℎ , 0 ,  𑨈𑨈 + ℎ, 𑨈𑨈 + ℎ
that are defined by (3.10).

4. Transformation of the second variation of the functional by means of
modified variant of variations transformation method

4.1. Expansion of the second variation 2 0;  ⋅  in Kelley-type variation (first-order
transformation)

Let 0 ⋅  be a singular control satisfying condition (2.9), and assumptions (A1), (A3), and (A4)
be fulfilled. Now, we proceed to generalize and apply the variation transformation method
[13].

Introduce the following set dependent on the admissible control 0 ⋅ :

( )( ) [ ){ ( )
} [ ){

( ) }

* 0 0
1 1

0 1

0

: , : the derivative  is continuous

or continuous from the right at the point and , :  the derivative

 is continuous or continuous from the right at the points and .

I I u t h t u

h t t h

u h

q

q q q

q q

= × = Î - ×

È- Î -

× ±

&

&

(4.1)

The following properties are obvious: (1) \* is a finite set and 1 𑨈𑨈 *; (2) for every 𑨈𑨈 𑨈𑨈 *, there

exists a sufficiently small number  > 0 such that 𑨈𑨈, 𑨈𑨈 +  ∪ 𑨈𑨈 + ℎ, 𑨈𑨈 + ℎ +  ∩  𑪂𑪂 *; and (3)

by (1.2), (1.3), and (2.5), the derivatives ̇0 ⋅ , ̇0 ⋅  are continuous or continuous from the
right at every 𑨈𑨈 𑨈𑨈 *. These properties are important for our further reasoning, and we call them
properties of the set *.
Require that the variation  ⋅ = 0 ⋅ ,  ⋅  satisfies additionally the following

conditions as well:
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( ) ( ) ( ) [ ) ( )* *
0 0 10, , 0, 0, \ , , 0, ,p t dt I p t q t t I

q e

q

d q d d q q e e e
+

= Î = = Î + Îò (4.2)

where * = min 0,  , and 0,   were defined above.

Make a passage from the variation 𝀵𝀵𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵   ,  𑨈𑨈 𑨈𑨈1, satisfying (4.2), to a new

variation 𝀵𝀵1𝀵𝀵  = 𝀵𝀵1  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1, where

( ) ( )1 0 1, .
t

p t p d t I
q

d d t t= Îò (4.3)

Obvious,

( ) ( )1 10, \ , .p t t Id q q e= Î + (4.4)

Transform the variation of the trajectory as well: in place of 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈, consider the function𝀵𝀵1𝀵𝀵  ,  𑨈𑨈 𑨈𑨈:
( ) ( ) [ ]( ) ( ) [ ]( ) ( )1 0 1 0 1 , ,x t x t g p t p t g p t p t h t Id d d d= - - - Î% (4.5)

where

[ ]( ) ( ) { }0 : , , , .g t f t t I p pmm m= Î Î % (4.6)

As assumptions (A3) and (A4) are fulfilled, then by virtue of property of the set 𑨈𑨈* we easily

have: the function 𝀵𝀵1𝀵𝀵  ,  𑨈𑨈 𑨈𑨈 is continuous and 𝀵𝀵1𝀵̇𝀵  𑨈𑨈  𑨈𑨈,  .

By direct differentiation, allowing for (A3), (A4) and (2.11), (4.3), (4.4) from (4.5) we obtain that𝀵𝀵1𝀵𝀵  ,  𑨈𑨈 𑨈𑨈 is the solution of the system

( ) ( ) ( ) [ ]( ) ( ) [ ]( ) ( )
( ) ( ) ( ) ( ) [ ]

1 1 1 1 1 1

1, , ,
x

q q

x t f t x t g p t p t g p t p t h

f t q t f t q t h t t

d d d d

d d q

= + + -

+ + - Î
%

& %

(4.7)

( ) [ ] ( ) ( ) [ )1 0 1 00, , , 0, 0, , ,x t t t p t q t t t hd q d d q= Î = = Î - (4.8)
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( ) ( ) ( ) [ ]( ) ( ) [ ]( ) ( )
( ) ( ) ( ) ( ) [ ]

1 1 1 1 1 1

1, , ,
x

q q

x t f t x t g p t p t g p t p t h

f t q t f t q t h t t

d d d d

d d q

= + + -

+ + - Î
%

& %
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where

[ ]( ) ( ) [ ]( ) [ ]( ) { }1 0 0: , , , .x
dg t f t g t g t t I p p
dt

m m m m= - Î Î % (4.9)

Now, let us write down the second variation (2.12) in terms of new variables. By (4.4) from (4.5),
we have 𝀵𝀵𝀵𝀵 1 = 𝀵𝀵1𝀵𝀵 1 . According to this property and (4.2)–(4.6), for any 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈*  the

second variation (2.12), after simple reasoning takes a new form

( )( )
4

2 0

1
; ,i

i
S u ud d

=

× = Då (4.10)

where

( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( )

( ) ( ) ( ) ( ) ( )

1
0

1 1 1 1 1 1 1 1

1 0 1 0 1

1 1

:

2

2 ,

t
T T

xx xx

T T
xx xx

T T
xq xq

x t x t x t x t H t x t dt

x x H t g p t x t h H t h g p t h p t dt

x x H t x t h H t h q t dt

q

q e

q

q e

q

d j d d d

d d d

d d d

+

+

D = -

é ù- + + + + -ë û

é ù- + + +ë û

ò

ò

ò %

% (4.11)

( ){ [ ]( ) ( ) [ ]( ) [ ]( ) ( ) [ ]( ) ( )

( ) [ ]( ) ( ) [ ]( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )}

2 1 0 0 0 0 1

1 0 0

0

:

2

2 ,

T T T
xx xx

T T T
xq xq

T T
pq pq qq qq

p t g p t H t g p t g p t h H t h g p t h p t

p t g p t H t g p t h H t h q t

p t H t H t h q t q t H t H t h q t dt

q e

q

d d

d d

d d d d

+

é ùD = - + + + +ë û

é ù+ + + +ë û

é ù é ù+ + + + + +ë û ë û

ò

%

% % % %

% %

%

(4.12)

( ) ( ) ( ) ( ) ( )3 1 1 0: 2 ,T T
xp xpx t H t x t h H t h p t dt

q e

q

d d d
+

é ùD = - + + +ë ûò %

(4.13)

( ) [ ]( ) ( ) [ ]( ) ( ) ( )4 1 0 0 0: 2 .T T T
xp xpp t g p t H t g p t h H t h p t dt

q e

q

d d
+

é ùD = - + + +ë ûò %

% (4.14)

In the obtained representation, taking into account (A3), (A4), (4.2), (4.3), (4.7), (4.8), (4.13),
(4.14) and the property of the set *, we transform 3, 4 by integration by parts. Then, we have
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( ){ ( )( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) [ ]( ) ( ) [ ]( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) [ ]( ) [ ]

3 1

1 1

1 1 1 1

1

4 0 0 0

: 2

2

2 ,

:

T T
xp x xp

T T
xp x xp

T T T
xp xp

T T
xp q xp q

T

dx t H t f t H t
dt

dx t h H t h f t h H t h p t dt
dt

p t g p t H t g p t h H t h p t dt

p t H t f t H t h f t h q t dt

p t Q p t Q p t

q e

q

q e

q

q e

q

q e

q

d

d d

d d

d d

d

+

+

+

+

é ùD = +ê úë û

üé ù+ + + + + + ýê úë ûþ

é ù+ + + +ë û

é ù+ + + +ë û

D = + +

ò

ò

ò

ò

% %

%

% %

%

% ( ) ( )

( ) [ ]( ) ( )( ) [ ]( ) ( )( ) ( )

1

1 0 0 1 ,T T T
xp xp

h p t dt

d dp t g p t H t g p t h H t h p t dt
dt dt

q e

q

d

d d
+

é ùë û

é ù+ + + +ê úë ûò %

%

where 1  ⋅ ,  𑨈𑨈 ,   is defined by (2.19),

[ ]( ) [ ]( ) ( ) ( ) [ ]( ) { }0 0 0: , , , .T T
x xQ t g t H t H t g t t I p pm mm m m m= - Î Î % (4.15)

By substituting these relations in (4.10), after elementary transformations considering (4.11)
and (4.12), we arrive at the validity of the following statement.

Proposition 4.1. Let assumptions (A1), (A3), (A4), and conditions (2.6) be fulfilled. Also, let the
functions 0  ⋅ , 1  ⋅ , 0  ⋅  be defined by (4.6), (4.9), and (4.15), respectively, and1  ,  𑨈𑨈 𑨈𑨈 be the solution of the system (4.7) and (4.8). Then along the singular control0 ⋅ , satisfying condition (2.9), and on the variations   = 0  , 𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 satisfying

(4.2), (4.3), the following representation (first-order transformation) is valid:

( )( ) ( ) ( ) ( ) ( ) ( )2 22 0 0 0 *
1 1 1 2 0 1; ; , , , ; , , , , 0, .S u u S u p q x S u p p qd d d d d e d d d e e e× = D + D " Î (4.16)

Here

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) [ ]( ) ( ) [ ]( ) ( ){
( ) ( ) ( ) ( ) ( )}

1
2 0 0

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

; , , ,

2

t
T T

xx xx

T T

T T
xq xq

S u p q x x t x t x t x t H t x t dt

x t G p t x t h G p t h p t

x t H t x t h H t h q t dt

q

q e

q

d d d e d j d d d

d d d

d d d

+

D = -

é ù- + + +ë û

é ù+ + + +ë û

ò

ò

%

%

(4.17)
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where 1  ⋅ ,  𑨈𑨈 ,   is defined by (2.19),

[ ]( ) [ ]( ) ( ) ( ) [ ]( ) { }0 0 0: , , , .T T
x xQ t g t H t H t g t t I p pm mm m m m= - Î Î % (4.15)

By substituting these relations in (4.10), after elementary transformations considering (4.11)
and (4.12), we arrive at the validity of the following statement.

Proposition 4.1. Let assumptions (A1), (A3), (A4), and conditions (2.6) be fulfilled. Also, let the
functions 0  ⋅ , 1  ⋅ , 0  ⋅  be defined by (4.6), (4.9), and (4.15), respectively, and1  ,  𑨈𑨈 𑨈𑨈 be the solution of the system (4.7) and (4.8). Then along the singular control0 ⋅ , satisfying condition (2.9), and on the variations   = 0  , 𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 satisfying

(4.2), (4.3), the following representation (first-order transformation) is valid:

( )( ) ( ) ( ) ( ) ( ) ( )2 22 0 0 0 *
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where * was defined above (see (4.2)),

[ ]( ) ( ) [ ]( ) ( ) ( ) ( ) { }1 0: , , , ,T
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(4.21)

4.2. Higher-order transformation

Let 0 ⋅ , 0 ⋅  be some process, where 0 ⋅  is a singular control satisfying condition (2.9),
and assumptions (A1), (A5), and (A6) be fulfilled. Introduce the matrix functions calculated

along the process 0 ⋅ , 0 ⋅  and determined by the following recurrent formulas:
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(4.23)

Furthermore, similar to (4.15), (4.20), (4.21), and (3.10), consider the functions
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[ ]( ) [ ]( ) [ ]( ) [ ]( ) [ ]( ) { }, , , , 0,1,...,T T
i i i i iQ t g t G t G t g t p p t I im m m m m m= - Î Î =% (4.25)
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(4.27)

where  ⋅  and  ⋅  are determined by (3.4) and (3.9), respectively.

Similar to *, we introduce the set  * * when assumption (A6) is fulfilled: * *: =  0 ⋅ = 𑨈𑨈 𑨈𑨈 1 − ℎ, 1 : the admissible control 0 ⋅  is sufficiently smooth or

sufficiently smooth from the right at the points θ and 𑨈𑨈 𑨈 ℎ ∪ 𑨈𑨈 𑨈𑨈 0, 1 − ℎ : the admissible

control 0 ⋅  is sufficiently smooth or sufficiently smooth

}from the right at the points and .hq q ± (4.28)

The following obvious properties hold: (1) \ * * is a finite set, and 1 𑨈𑨈  * *, also  * * ⊂ *; (2)

for every 𑨈𑨈 𑨈𑨈  * * there exists a sufficiently small number  > 0, such that

, furthermore, (3) by (A5), (A6), (1.2), (1.3), and (2.5), the

functions  are continuous and sufficiently smooth or sufficiently smooth from the
right at every point 𑨈𑨈 𑨈𑨈  * *. These properties are important at the next reasoning and we call
them the properties of the set  * *.
Let us consider a variation 𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 1 that in addition satisfies the follow-

ing conditions as well:

( ) ( ) [ )
( ) ( ) ( )
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1 1

0, 0, \ , ,

... 0, \ , ,k
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p t p t t I

d d q q e

d d q q e
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= = = Î +
(4.29)

where
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where  ⋅  and  ⋅  are determined by (3.4) and (3.9), respectively.

Similar to *, we introduce the set  * * when assumption (A6) is fulfilled: * *: =  0 ⋅ = 𑨈𑨈 𑨈𑨈 1 − ℎ, 1 : the admissible control 0 ⋅  is sufficiently smooth or

sufficiently smooth from the right at the points θ and 𑨈𑨈 𑨈 ℎ ∪ 𑨈𑨈 𑨈𑨈 0, 1 − ℎ : the admissible

control 0 ⋅  is sufficiently smooth or sufficiently smooth

}from the right at the points and .hq q ± (4.28)

The following obvious properties hold: (1) \ * * is a finite set, and 1 𑨈𑨈  * *, also  * * ⊂ *; (2)

for every 𑨈𑨈 𑨈𑨈  * * there exists a sufficiently small number  > 0, such that

, furthermore, (3) by (A5), (A6), (1.2), (1.3), and (2.5), the

functions  are continuous and sufficiently smooth or sufficiently smooth from the
right at every point 𑨈𑨈 𑨈𑨈  * *. These properties are important at the next reasoning and we call
them the properties of the set  * *.
Let us consider a variation 𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 1 that in addition satisfies the follow-

ing conditions as well:

( ) ( ) [ )
( ) ( ) ( )

0 1

1 1

0, 0, \ , ,

... 0, \ , ,k

p t q t t I

p t p t t I

d d q q e

d d q q e

= = Î +

= = = Î +
(4.29)

where
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( ) ( ) { }1 1, , 1,2,..., , 1,2,... ,
t

i ip t p d t I i k k
q

d d t t-= Î = Îò (4.30)

𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈 * * , 𑨈𑨈 * * = min 𑨈𑨈0, 𑨈𑨈 , 𑨈𑨈  (𑨈𑨈0, 𑨈𑨈 , 𑨈𑨈 were defined above).

According to (4.30), we have

( ) ( )
( ) ( ) { }

1
**

0 1, , , 1,2,..., , 1,2,... .
1 !

it

i

t
p t p d I t I i k k

iq

t
d d t t q

--
= Î Î = Î

-ò (4.31)

The following statement is valid.

Proposition 4.2. Let assumptions (A1), (A5), (A6), and condition (2.6) be fulfilled. Furthermore,
let the functions   ⋅ ,   ⋅ ,  ,  ⋅ ,  ,  ⋅ ,   ⋅  and   ⋅ , where 𑨈𑨈 ,  ,  = 0, 1, ..., be defined by (4.22)–(4.26), and the set 𑨈𑨈 * * be defined by (4.28). Then

along the singular control 0 ⋅ , satisfying condition (2.9), and on the variations𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 satisfying (4.29) and (4.30), the following representation (-th

order transformation, where  𑨈𑨈 1, 2, ... ) is valid:
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(4.34)

where 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈 * *  (the number 𑨈𑨈 * * was defined above), 𝀵𝀵  ,  𑨈𑨈 𑨈𑨈 is the solution

of the system
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Proof. We carry out the proof of Proposition 4.2 by induction. For  = 1, Proposition 4.2 was
completely proved at item 4 (see Proposition 4.1). Assume that Proposition 4.2 is valid for all
the cases to  𑨒𑨒 1  inclusively,  𑩥𑩥 2 . We prove the validity of representation (4.32) for the

case . Let the variation 𝀵𝀵𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 satisfies the conditions (4.29) and (4.30).

Then by assumption the following representation is valid:
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(4.38)

where   ⋅ ,   , 𝀵𝀵 ⋅ ,   , 𝀵𝀵 ⋅ ,   ⋅ ,   ⋅ ,   𑨈𑨈 ,  ,  = 0, 1, ... are defined by

(4.23)-(4.26), and 𝀵𝀵 𑨒𑨒 1  ,  𑨈𑨈 𑨈𑨈 is the solution of the system:
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Proof. We carry out the proof of Proposition 4.2 by induction. For  = 1, Proposition 4.2 was
completely proved at item 4 (see Proposition 4.1). Assume that Proposition 4.2 is valid for all
the cases to  𑨒𑨒 1  inclusively,  𑩥𑩥 2 . We prove the validity of representation (4.32) for the
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(4.38)

where   ⋅ ,   , 𝀵𝀵 ⋅ ,   , 𝀵𝀵 ⋅ ,   ⋅ ,   ⋅ ,   𑨈𑨈 ,  ,  = 0, 1, ... are defined by

(4.23)-(4.26), and 𝀵𝀵 𑨒𑨒 1  ,  𑨈𑨈 𑨈𑨈 is the solution of the system:
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Apply the modified variant of variations transformations method [13] to the system for𑨒𑨒 𑨒𑨒 1  ,  𑨈𑨈 𑨈𑨈 and representation (4.36). According to the technique of the previous item (see

item 4.1), we introduce a new variation in the following way:

( ) ( ) [ ]( ) ( ) [ ]( ) ( )1 1 1 , .k k k k k kx t x t g p t p t g p t p t h t Id d d d- - -= - - - Î% (4.40)

According to (4.22), (4.30), (4.31), and (4.39) from (4.40) by direct differentiation, we get the
system (4.35) for 𑨒𑨒  ,  𑨈𑨈 𑨈𑨈. Furthermore, as 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, then by (4.40) we get𑨒𑨒 1 = 𑨒𑨒 𑨒𑨒 1 1 . Taking into account this equality and by (4.29), (4.30), and (4.40) in (4.37),

let us transform the representation (4.36) into new variables 𑨒𑨒 ⋅ , 𝀵𝀵 ⋅ , 𑨒𑨒 ⋅ . Then,
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where 22 ⋅  is determined by formula (4.38) as well as 1,  = 1, 2, 3 by (4.22), (4.29), (4.30),

(4.35), (2.6) are calculated in the following way:
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where
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Taking into account (A5), (A6), (4.29), (4.30), (4.35), and the properties of the set  * *, let us
calculate 12* , 12* *. Then, applying the method of integration by parts, we have
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At first, we substitute the last expression 12* , 12* * in (4.43), and then (4.42)–(4.44) in (4.41).

Then by (4.23)–(4.26), (4.33), (4.34), and (4.38), it is easy to get representation (4.32). Conse-
quently, we get the proof for . This completes the proof of Proposition 4.2.

5. Optimality conditions

Based on Propositions 3.1, 4.1, and 4.2, we prove the following theorem.

Theorem 5.1. Let conditions (A1), (A5), and (A6) be fulfilled, and the matrix functions ,  ⋅ , ,  ⋅ ,    ⋅ ,   ⋅ , ,  ⋅ ,   𑨈𑨈 ,  ,  = 0, 1, ... be defined as in
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Taking into account (A5), (A6), (4.29), (4.30), (4.35), and the properties of the set  * *, let us
calculate 12* , 12* *. Then, applying the method of integration by parts, we have
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At first, we substitute the last expression 12* , 12* * in (4.43), and then (4.42)–(4.44) in (4.41).

Then by (4.23)–(4.26), (4.33), (4.34), and (4.38), it is easy to get representation (4.32). Conse-
quently, we get the proof for . This completes the proof of Proposition 4.2.

5. Optimality conditions

Based on Propositions 3.1, 4.1, and 4.2, we prove the following theorem.

Theorem 5.1. Let conditions (A1), (A5), and (A6) be fulfilled, and the matrix functions ,  ⋅ , ,  ⋅ ,    ⋅ ,   ⋅ , ,  ⋅ ,   𑨈𑨈 ,  ,  = 0, 1, ... be defined as in
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(4.24)–(4.27). Let also the set  * * be defined as in (4.28) and along the singular (in the classical

sense) control 0 ⋅  the following equalities be fulfilled:

[ ]( ) ( ) [ ]( ) { }**0, , 0,1,..., , 0,1,... ,i iL p t t L p t h t I i k kc+ + = " Î = Î% (5.1)

where  ⋅  is the characteristic function of the set 0, 1 − ℎ .

Then for the optimality of the admissible control 0 ⋅ , it is necessary that the relations

[ ]( ) ( ) [ ]( ), , 0, 0,1,..., ,i iP p q t P p q h i kq c q+ + = =% % (5.2)
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c q q q x

+ +
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%

% %

(5.3)

[ ]( ) ( ) [ ]( ) 0, 0,1,..., ,i iQ p Q p h i kq c q q+ + = =% (5.4)

(5.5)

be fulfilled for all 𑨈𑨈 𑨈𑨈  * *, 𑨈𑨈 𑨈𑨈 𑨈𑨈0  and 𑨈𑨈 𑨈𑨈 𑨈𑨈1.

Proof. Let 0 ⋅  be an optimal control. We will prove the theorem by induction. Let  = 0, that
is,  = 0. Then, according to (4.24) and (2.10) we get the proof of optimality condition (5.2) for = 0. The proof of optimality condition (5.3) for  = 0 directly follows from (3.11) allowing for
(2.1) (see Proposition 3.1). Now, based on Proposition 4.1 prove the optimality conditions (5.4)
and (5.5) for  = 0.

We first prove the validity of (5.4) for k=0.

Suppose that

( ) { } { }0 1 00, , 1,2,..., \ ,mp t t I m r i jd = " Î " Î (5.6)
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where ,   𑩠𑩠   are arbitrary fixed points of the set 1, 2, ..., 0  and 0 ⋅  is the -th coordi-

nate of the vector 0 ⋅ ; , 𑨈𑨈 𑨈𑨈 𑨈𑨈 and 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * are arbitrary fixed points, the functions1  = , 2  = 322 − 12,  𑨈𑨈 −1, 1  are the Legendre polynomials.

It is clear that the variation , defined by (5.6) satisfies the
condition (4.2) and, according to (5.6) the function 1  ,  𑨈𑨈 𑨈𑨈1, defined by (4.3) is of order ,
and the solution 1  ,  𑨈𑨈 𑨈𑨈 of the system (4.7), (4.8) is of order 2. Also, according to (4.15)

it is easy to see that for every  𑨈𑨈 𑨈𑨈 the matrix 0   +   0   + ℎ  is skew-symmetric.

Therefore, by Proposition 4.1 and condition (2.6), considering (2.1), (4.3), (4.17), (4.18), and the

properties of the set 𑨈𑨈 * *, along the singular optimal control 0 ⋅ , we have
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where 0 𑨈𑨈 , 0 𑨈𑨈  are the elements of the matrix 0  𑨈𑨈 +  𑨈𑨈 0  𑨈𑨈 + ℎ .

Then, we conclude from the arbitrariness of , 𑨈𑨈 𑨈𑨈 𑨈𑨈, 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * and ,  𑨈𑨈 1, 2, ..., 0 ,  𑩠𑩠  that the

skew-symmetric matrix 0  𑨈𑨈 +  𑨈𑨈 0  𑨈𑨈 + ℎ  is also symmetric. Consequently, for
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where ,   𑩠𑩠   are arbitrary fixed points of the set 1, 2, ..., 0  and 0 ⋅  is the -th coordi-

nate of the vector 0 ⋅ ; , 𑨈𑨈 𑨈𑨈 𑨈𑨈 and 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * are arbitrary fixed points, the functions1  = , 2  = 322 − 12,  𑨈𑨈 −1, 1  are the Legendre polynomials.

It is clear that the variation , defined by (5.6) satisfies the
condition (4.2) and, according to (5.6) the function 1  ,  𑨈𑨈 𑨈𑨈1, defined by (4.3) is of order ,
and the solution 1  ,  𑨈𑨈 𑨈𑨈 of the system (4.7), (4.8) is of order 2. Also, according to (4.15)

it is easy to see that for every  𑨈𑨈 𑨈𑨈 the matrix 0   +   0   + ℎ  is skew-symmetric.

Therefore, by Proposition 4.1 and condition (2.6), considering (2.1), (4.3), (4.17), (4.18), and the

properties of the set 𑨈𑨈 * *, along the singular optimal control 0 ⋅ , we have
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where 0 𑨈𑨈 , 0 𑨈𑨈  are the elements of the matrix 0  𑨈𑨈 +  𑨈𑨈 0  𑨈𑨈 + ℎ .

Then, we conclude from the arbitrariness of , 𑨈𑨈 𑨈𑨈 𑨈𑨈, 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * and ,  𑨈𑨈 1, 2, ..., 0 ,  𑩠𑩠  that the

skew-symmetric matrix 0  𑨈𑨈 +  𑨈𑨈 0  𑨈𑨈 + ℎ  is also symmetric. Consequently, for
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every 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * we have 0  𑨈𑨈 +  𑨈𑨈 0  𑨈𑨈 + ℎ = 0. This completes the proof of the optimal-

ity condition (5.4) for  = 0.

To prove statement (5.5) for  = 0, under the conditions (4.2) and (4.3), we write down the

vector components of the variation 𝀵𝀵𝀵𝀵 ⋅ = 𝀵𝀵0 ⋅ , 𝀵𝀵𝀵𝀵 ⋅  in the following form:
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where 1  = ,  𑨈𑨈 −1, 1  is a Legendre polynomial, 𑨈𑨈 𑨈𑨈 𑨈𑨈0,  𑨈𑨈 𑨈𑨈 𑨈𑨈1, 𑨈𑨈 𑨈𑨈 𑨈𑨈 * * are arbitrary

fixed points.
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account the properties of the set 𑨈𑨈 * * and the relations (2.1), (4.3), (4.17), (4.18), and (5.7) from

(4.16), we obtain the following relation along the singular optimal control 𝀵𝀵0 𑨈𑨈 , 𑨈𑨈 𑨈𑨈 𑨈𑨈1:
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Hence, taking into account the arbitrariness of 𑨈𑨈 𑨈𑨈 𑨈𑨈*, 𑨈𑨈 𑨈𑨈 𑨈𑨈0 and 𑨈𑨈 𑨈𑨈 𑨈𑨈1, we easily get the
validity of the optimality condition (5.5) for  = 0.
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Now suppose that all the statements of Theorem 5.1 are valid for  = 1, 2, ..., 𑨒𑨒 𑨒𑨒 1 𑨒𑨒 𑩥𑩥 2  as
well. Prove statements (5.2)–(5.5), for  = 𑨒𑨒. By assumption, the inequality k , ,  𑩥𑩥 0 (see

(5.5) for the case k-1) is valid for all  𑨈𑨈 𑨈𑨈 * *,  𑨈𑨈 𑨈𑨈0 and  𑨈𑨈 𑨈𑨈1. Hence, taking into account
(5.1), we have
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From this inequality, we easily get that 𑨒𑨒 ,   +  𑨒𑨒 ,   + ℎ = 0, that is, we get the

validity of optimality condition (5.2) for  = 𑨒𑨒.

Now, prove the validity of condition (5.3) for  = 𑨒𑨒. In formula (4.32), we put
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where 𑨒𑨒  ,  𑨈𑨈 𑨒𑨒1, 1  is the 𑨒𑨒-th Legendre polynomial , 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈 * *  which the number 𑨈𑨈 * *
is defined above (see (4.30)) and  𑨈𑨈 𑨈𑨈 * *,  𑨈𑨈 𑨈𑨈0.

Obviously, conditions (4.29) and (4.30) are fulfilled for variation (5.8).

As the conditions    +      = 0,  𑨈𑨈 𑨈𑨈 * *,  = 0, 𑨒𑨒 and    +    + ℎ = 0, 𑨈𑨈 𑨈𑨈 * *,  = 0, 𑨒𑨒 𑨒𑨒 1, are fulfilled, then by (4.33), (4.34), and (5.8), formula (4.32) takes the form:
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where

( ) ( ) ( )
1

*
1 ,

t
T

k k xx kx t H t x t dt
q

d dD = ò (5.10)

( ) [ ]( ) ( ) [ ]( ) ( )**
1 .T T
k k k k k kx t G p t x t h G p t h p t dt

q e

q

d d d
+

é ùD = + + +ë ûò % (5.11)

Nonlinear Systems - Design, Analysis, Estimation and Control216



Now suppose that all the statements of Theorem 5.1 are valid for  = 1, 2, ..., 𑨒𑨒 𑨒𑨒 1 𑨒𑨒 𑩥𑩥 2  as
well. Prove statements (5.2)–(5.5), for  = 𑨒𑨒. By assumption, the inequality k , ,  𑩥𑩥 0 (see

(5.5) for the case k-1) is valid for all  𑨈𑨈 𑨈𑨈 * *,  𑨈𑨈 𑨈𑨈0 and  𑨈𑨈 𑨈𑨈1. Hence, taking into account
(5.1), we have

[ ]( ) ( ) [ ]( )( )
( ) ( ) ( )( ) 0 1**

2 , ,

0, , , .
k k

r rT
qq qq

P p q P p q h

H H h I R R

x q c q q h

h q c q q h q x h

+ +

- + + ³ " Î " Î " Î
% %

% %

From this inequality, we easily get that 𑨒𑨒 ,   +  𑨒𑨒 ,   + ℎ = 0, that is, we get the

validity of optimality condition (5.2) for  = 𑨒𑨒.

Now, prove the validity of condition (5.3) for  = 𑨒𑨒. In formula (4.32), we put

( )
( ) [ )

[ )
( )0 1

1

2
1 , , ,

0, ,
0 , \ ,

k

t
l t

p t q t t I
t I

q
x q q e

ed d

q e

ì æ - ö
- Î +ï ç ÷

= = Îí è ø
ï Î +î

(5.8)

where 𑨒𑨒  ,  𑨈𑨈 𑨒𑨒1, 1  is the 𑨒𑨒-th Legendre polynomial , 𑨈𑨈 𑨈𑨈 0, 𑨈𑨈 * *  which the number 𑨈𑨈 * *
is defined above (see (4.30)) and  𑨈𑨈 𑨈𑨈 * *,  𑨈𑨈 𑨈𑨈0.

Obviously, conditions (4.29) and (4.30) are fulfilled for variation (5.8).
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Here, by (4.31), (4.35), (5.8), and the Cauchy formula,  ⋅  and  ⋅  are determined as

follows:
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where  ⋅  is the solution of the system (3.4).

By considering (5.12) in (5.13), we calculate   ,  𑨈𑨈 𑨈𑨈. As 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, then by the properties

of the set 𑨈𑨈 * *, we have
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where
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As   ,  𑨈𑨈 −1, 1  is the -th Legendre polynomial, then it is easy to get
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Taking into account (5.12)–(5.16) and the fact that  ,  = 0 for  >  we calculate separately
each terms of (5.9). As a result, after simple reasoning we get
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(5.17)

Substitute (5.15)–(5.17) in (5.9). Then by (3.9), (4.27), and (5.14), we have
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Hence, taking into account the inequality in (2.1), it is easy to complete the proof of optimality
condition (5.3) for  = .

Continuing the proof of Theorem 5.1, we prove also the validity of optimality condition (5.4)
for  = . Based on Proposition 4.2, let us consider the  + 1 -th order transformation. As the
equalities
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Substitute (5.15)–(5.17) in (5.9). Then by (3.9), (4.27), and (5.14), we have
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Hence, taking into account the inequality in (2.1), it is easy to complete the proof of optimality
condition (5.3) for  = .

Continuing the proof of Theorem 5.1, we prove also the validity of optimality condition (5.4)
for  = . Based on Proposition 4.2, let us consider the  + 1 -th order transformation. As the
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taking into account (2.6), we have
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where 12 0 ⋅ ;  + 1, 𝀵𝀵𝀵𝀵  + 1,   are determined similarly to (4.33) by changing the

index  by  + 1, and  + 1   is the solution of the system (similar to (4.35))
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Choose the variation   = 0  , 𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 in the following way:
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where , 𑨈𑨈 𑨈𑨈  + 1,  + 2  is a Legendre polynomials, 𑨈𑨈 𑨈𑨈 𑨈𑨈, 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *,  𑨈𑨈 0,  * * .
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Obviously, by (5.20), the variation 𝀵𝀵𝀵𝀵 ⋅ = 𝀵𝀵0 ⋅ , 𝀵𝀵𝀵𝀵 ⋅  defined in (5.20) satisfies condi-

tions (4.29), (4.30) for  + 1. Taking into account (5.20), by means of (4.30), (4.31), (4.33), and
(5.19), it is easy to calculate
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By (5.20) and (5.21), from (5.18) we get
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where   ⋅ ,  𑨈𑨈 ,   is determined in (4.25).

Hence, taking into account the skew symmetry of the matrix    +     + ℎ ,  𑨈𑨈 𑨈𑨈
and the properties of the set 𑨈𑨈 * *, and also by (2.1), (4.30), and (5.20), we have

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

2 0 2 2
1

2 2 1
2 12 2 2 2

1

;

4 1 2 1 0
2

k k k
ij ij k i k j

k
kk k k

ij ji

S u u q q p p o

k k ab q q d o

q e

q

d d q q d t d t dt e

e ab q q t t t e

+
+

+

+
+ +

-

é ù= - +ë û

æ ö é ù= + + - - + ³ç ÷ ë ûè ø

ò

ò

where 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *,  = 1 + 1 ! 2 + 1, = 1 + 2 ! 2 + 2, and 𝀵𝀵𝀵𝀵𝀵𝀵 𑨈𑨈 , 𝀵𝀵𝀵𝀵𝀵𝀵 𑨈𑨈  are the elements of

the matrix   𑨈𑨈 +  𑨈𑨈   𑨈𑨈 + ℎ .

From the last inequality, by arbitrariness of 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, , 𑨈𑨈 𑨈𑨈 𑨈𑨈 and 𝀵𝀵, 𝀵𝀵 𑨈𑨈 1, 2, ..., 0 𝀵𝀵 𑩠𑩠 𝀵𝀵  it

follows that for each 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, the skew-symmetric matrix   𑨈𑨈 + 𑨈𑨈   𑨈𑨈 + ℎ  is also

symmetric. Consequently,   𑨈𑨈 + 𑨈𑨈   𑨈𑨈 + ℎ = 0, that is, condition (5.4) is proved for

i=k.

At last, let us prove optimality condition (5.5). Choose the variation𝀵𝀵𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1 in the following way:
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where  + 1  ,  𑨈𑨈 −1, 1  is the 1 +  -th Legendre polynomial, 𑨈𑨈 𑨈𑨈 𑨈𑨈0, 𑨈𑨈 𑨈𑨈 𑨈𑨈1, 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *,𑨈𑨈 𑨈𑨈 , 𑨈𑨈 * * .

Obviously, the variation 𝀵𝀵𝀵𝀵  = 𝀵𝀵0  , 𝀵𝀵𝀵𝀵  ,  𑨈𑨈 𑨈𑨈1defined in (5.22) satisfies the condi-

tions (4.29) and (4.30) for  = 1, 2... + 1
By (4.30), (4.31), (5.12), (5.19), (5.22), and (5.23), the following relations hold:
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Taking into account (5.23)–(5.25) and validity of the equality   +      + ℎ = 0,  𑨈𑨈 𑨈𑨈 * * (see (5.4)), from (5.18), we get
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From this expansion, taking into account (2.1), it follows inequality (5.5).

Therefore, Theorem 5.1 is completely proved.
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Corollary 5.1. Let all the conditions of Theorem 5.1 be fulfilled. Let, in addition, the following
equalities hold:
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Then, for optimality of the singular control 0 ⋅ , it is necessary that the relations
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be fulfilled for all 𑨈𑨈 𑨈𑨈 𑨈𑨈 * *, 𑨈𑨈 𑨈𑨈 𑨈𑨈0.

The proof of the corollary follows immediately from Theorem 5.1.

Remark 5.1. As is seen (see Proposition 3.1 and (4.6), (4.15), and (4.24)), for validity of optimality
conditions (5.2)–(5.4), for  = 0 it is sufficient that assumptions (A1) and (A2) be fulfilled.

Remark 5.2. It is clear that (see Proposition 4.1) for validity of optimality conditions (5.5), for = 0 it is sufficient that assumptions (A1), (A3), and (A4) be fulfilled.

Remark 5.3. If in Definition 2.1 a special plot is some interval ,  ⊂ 𑨈𑨈, then very easily similar
to the proof of Theorem (5.1) we can prove that conditions (5.2)–(5.5) as optimality conditions

are valid for all 𑨈𑨈 𑨈𑨈 ,  ∩ 𑨈𑨈 * * and 𑨈𑨈 𑨈𑨈 𑨈𑨈0, 𑨈𑨈 𑨈𑨈 𑨈𑨈1.

6. Conclusion

As is seen, systems (1.2) and (1.3) are not the most general among all the systems with retarded
control. We have chosen it only for definiteness, just to demonstrate the essentials of our
method. Nevertheless, the optimality conditions (5.2)–(5.5) can be generalized to the case for
more general systems with retarded control.

It should be noted that (1) optimality conditions (5.4) and (5.5), for  = 0, are actually the
analogs of the equality-type conditions and the Kelly [12] condition, while optimality condi-
tion (5.3) is the analog of the Gabasov [11] condition for the considered problem (1.1)–(1.3); (2)
optimality condition (5.5), for  = 1 is the analog of the Koppa-Mayer [33] condition. Condi-
tions (5.3)–(5.5) were obtained in [10] only for singular controls with complete degree of
degeneracy, that is, for the case when 1 = 0 (see Definition 2.1).
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We also note that (1) the analog of the Kelly condition and equality-type condition was obtained
in [24] by another method for systems with retarded state; (2) optimality-type conditions (5.2)–
(5.5) for system with retarded state were obtained in [[31, 32], p. 119]; (3) optimality conditions
of type (5.4), (5.5) for systems without retardation were obtained in the papers [[23, 26, 27], p.
145, [29, 30, 33, 34, 39–41], etc.].

The proof of Theorem 5.1 shows that the optimality conditions (5.3)–(5.5) are independent.
Also, it is clear that, unlike (5.2), (5.3), and (5.5), the optimality condition (5.4) for 1 =  𑨒𑨒 1
(see Definition 2.1) becomes ineffective, though it is effective in the general case for1 <  𑨒𑨒 1. To illustrate the rich content of condition (5.4), we consider a concrete example:

Example. ̇1  = 2  + 12  𑨒𑨒 1 𑨒𑨒 3  𑨒𑨒 1 , ̇2  = 1  𑨒𑨒 2  ,

̇3  = 1  + 2  2  + 32  + 32  𑨒𑨒 1 ,  𑨈𑨈 𑨈𑨈: = 0, 2 ,  0 = 0,   = 0,  𑨈𑨈 𑨒𑨒1, 0 , < 2,  = 1, 2, 3,ℎ = 1,   2 = 3 2 + 1212 2 min.

Check for optimality of the control 0  = 0, 0, 0 ,  𑨈𑨈 𑨒𑨒1, 2 . In this control according to
(2.7), (2.8), (3.9), (3.10), (4.6), (4.9), (4.15), (4.21), and (4.24), we have0  = 0,  = 1, 2, 3, 0  = 0,  = 1, 2, 30  = 𑨒𑨒 1,  𑨈𑨈 𑨈𑨈, 0  , , , ,  = 𑨒𑨒 1 + 2 2 𑨒𑨒 32 𑨒𑨒 32,   : = ℎ𝀵𝀵  ,  𑨈𑨈 𑨈𑨈, where ℎ𝀵𝀵  = 0,, 𝀵𝀵 𑨈𑨈 1, 2, 3 , , 𝀵𝀵 ≠ 3, 3 , ℎ33  = 𑨒𑨒 2;   + 1 = ℎ𝀵𝀵  ,  𑨈𑨈 0, 1 , whereℎ𝀵𝀵  = 0, , 𝀵𝀵 𑨈𑨈 1, 2, 3 ,  , 𝀵𝀵 ≠ 3, 3 , ℎ33  = 𑨒𑨒 2;   + 1 = 0,  𑨈𑨈 1, 2 ;0   = 0 1 01 𑨒𑨒 1 0 , 𑨈𑨈 𑨈𑨈, 0   = 0,  𑨈𑨈 𑨈𑨈, where : = 1, 2 , : = 1, 2 ;

1   = 1   = 0,  𑨈𑨈 𑨈𑨈, 0   = 0 𑨒𑨒 22 0 ,  𑨈𑨈 𑨈𑨈, 0   + 1 = 0,  𑨈𑨈 𑨈𑨈,1   = 1   + 1 = 0,  𑨈𑨈 𑨈𑨈, 0 ,   = 0 ,   = 0, 1 ,   = 1 ,   = 0,0 ,  ,  = 𑨒𑨒1 𑨒𑨒 11 0 , 𑨈𑨈 𑨈𑨈, 0 ,  ⋅ = 0,  0 ,  ⋅ = 0,

  +   + 1 = 𑨒𑨒4,  𑨈𑨈 0, 1 ,𑨒𑨒2,  𑨈𑨈 1, 2 ,  where  = 3,  = 3.

Hence, we have the following: (1) admissible control 0  = 0, 0, 0 ,  𑨈𑨈 𑨒𑨒1, 2  is singular
(in the sense of Definition 2.1) and singularity to it is delivered by the vector component = 1, 2 , that is, equality (5.1) is fulfilled only  = 0; (2) optimality conditions (5.2), (5.3),

(5.5), and the results of the papers [1–3, 6, 9, 10] cannot say that whether the control 0 ⋅  is
an optimal or not. However, optimality condition (5.4) for  = 0 is not fulfilled
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(0   +   0   + 1 = 0 − 22 0 = 0,  𑨈𑨈 𑨈𑨈), that is, by condition (5.4) (for  = 0) we

conclude that the control 0  = 0, 0, 0 ,  𑨈𑨈 −1, 2  cannot be optimal.
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Abstract

Based on the control storage function approach, a constructive method for designing
simultaneous H∞  controllers  for  a  collection of  nonlinear  control  systems in strict-
feedback form is developed. It is shown that under mild assumptions, common control
storage functions (CSFs) for nonlinear systems in strict-feedback form can be construct-
ed  systematically.  Based  on  the  obtained  common  CSFs,  an  explicit  formula  for
constructing simultaneous H∞ controllers is presented. Finally, an illustrative example
is provided to verify the obtained theoretical results.

Keywords: nonlinear control systems, simultaneous H∞ control, state feedback, stor-
age functions, strict-feedback form

1. Introduction

The simultaneous H∞ control problem concerns with designing a single controller which
simultaneously renders a set of systems being internally stable and satisfying an L2-gain
specification. In the last decades, there have been some researchers studying the simultaneous
H∞ control problem in linear case, see references [1–6]. In references [1] and [2], necessary and
sufficient conditions for the simultaneous H∞ control via nonlinear digital output feedback
controllers were derived by using the dynamic programming approach. In reference [3], a
numerical  design  method  was  proposed  for  designing  simultaneous  H∞  controllers.  In
reference [4], it was shown that the simultaneous H∞ control problem is equivalent to a strong
H∞  control  problem.  In  reference  [5],  linear  periodically  time-varying  controllers  were
employed for simultaneous H∞ control. In reference [6], a simultaneous H∞ control problem
was solved via the chain scattering framework.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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All the results mentioned earlier are derived for linear systems case. Till now, only few results
have been reported about simultaneous H∞ control of nonlinear systems, see references [7, 8].
In reference [7], a control storage function (CSF) method was developed for designing
simultaneous H∞ state feedback controllers for a collection of single-input nonlinear systems.
Necessary and sufficient conditions for the existence of simultaneous H∞ controllers were
derived. Moreover, an explicit formula for constructing simultaneous H∞ feedback controllers
was proposed. The CSF approach was first introduced in reference [9]. It is motivated by the
control Lyapunov function (CLF) method (please see references [10–18]) for designing
stabilizing controllers of nonlinear control systems. One difficulty in applying CSFs/CLFs for
solving control problems is that how to derive CSFs/CLFs for nonlinear systems is an open
problem unless they are in some particular forms. No systematic methods for constructing
CSFs have been proposed in reference [7]. It is important to identify those nonlinear systems
whose corresponding CSFs/CLFs exist and can be constructed systematically. In reference [8],
the CSF approach was applied to design simultaneous H∞ controllers for a collection of
nonlinear control systems in canonical form. It was shown that under mild assumptions, CSFs
can be constructed systematically for nonlinear systems in canonical form; and simultaneous
H∞ control for such systems can be easily achieved. In this chapter, we further study the
simultaneous H∞ control problem for nonlinear systems in strict-feedback form. It is known
that the strict-feedback form is more general than the canonical form. Moreover, a restrictive
assumption made in reference [8] is relaxed in this chapter. Based on the CSF approach and
by using the backstepping technique, we develop a systematic method for constructing
simultaneous H∞ state feedback controllers. The proposed results in reference [8] are special
cases of the results presented in this chapter.

2. Problem formulation and preliminaries

In this section, the simultaneous H∞ control problem to be solved will be formulated and some
preliminaries will be presented. For simplifying the expressions, we use the same notations x,
u, w, and z to denote the states, control inputs, exogenous inputs, and the controlled outputs
of all the considered systems.

2.1. Problem formulation

Consider a collection of nonlinear control systems:

1 2

1 11

( ) ( ) ( )
( ) ( ) ,  i 1, , ,

i i i

i i

x f x g x w g x u
z h x k x w q

= + +
= + = ¼

&
(1)

where  = 1, ,⋯,   ∈  is the state, w ∈ Rm is the disturbance input, u ∈ R is the control

input, z∈Rr is the controlled output, : , 1:  ×, 2: , ℎ1: ,
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and 11:  × ,  = 1,…, , are smooth functions. Here we denote the i-th system in Eq.
(1) as system Si. For all i=1,…,q, suppose that fi (0) = 0 and h1i(0) = 0. For convenience, define = [1, 2,⋯, ] ∈ ,  = 1,…, . Suppose that fi(x), g1i(x), and g2i(x), i=1,…,q, have the
following forms:

2 1 1

1
1 2

( 1) 1

( ) 0 0
            

( ) 0 0
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0 0( )
( ) ( )( )

q

q
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(2)

where : , : 1 ×, and : ,  = 1, 2, …, ,  = 1,…, , are smooth functions

with θij(0) = 0 and () ≠ 0 for each x ∈ Rn. Assume that all functions (),  = 1,…, , have the

same sign. Without loss of generality, suppose that () > 0,  = 1,…, . By Eq. (2), the q possible
models can be explicitly expressed as
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(3)

Suppose that the following assumption holds.

Assumption 1: 2𑨒𑨒 𑨒𑨒 11 ()11() > 0. ∀ ∈  and ∀ ∈ 1, ...,  .

It is clear that we can always find a positive (semi)definite function U(x) such that, for all i ∈
{1,…q},

( ) 12
1 1 1 11 11 11 11 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),  .

-
+ - £ " ÎT T T T n

i i i i i i i ih x h x h x k x I k x k x k x h x U x x Rg

The objective of this chapter is to find a continuous function :  such that the state
feedback controller
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( )=u p x (4)

internally stabilizes the systems in Eq. (3) simultaneously; and, for each T > 0 and for each wi

∈ L2[0, T], all closed-loop systems, starting from the initial state x(0) = 0, satisfy (for a given γ
> 0)

  2

 0  0
ˆ ˆ( ) ( ) ( ) ( ) for some .

T TT Tz t z t dt w t w t dtg g g£ <ò ò (5)

2.2. Control storage functions

Here we review some important concepts about the CSF method introduced in references [7, 9].

Definition 1 [7, 9]: Consider the system Si in Eq. (1). A smooth, proper, and positive definite

function :  is a CSF of Si if, for each 𑨈𑨈 𑨈𑨈 \ 0  and each w ∈ Rm,

( ) ( ) ( ) 2
1 2 1 11 1 11

( )inf ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.Î

é ù¶ì ü+ + + + + - <í ýê ú¶î þë û

T Ti
u R i i i i i i i

V x f x g x w g x u h x k x w h x k x w w w
x

g

For ensuring the continuity of the obtained simultaneous H∞ controllers, the L2-gain small control
property (L2-gain SCP) has been introduced in reference [7].

Definition 2 [7]: A CSF :  of Si satisfies the L2-gain SCP if for each ε > 0, there is a δ1 >

0 and a δ2 > 0 such that, if x ≠ 0 satisfies 𑨈𑨈 < 1 and w satisfies  < 2, there is some u with
|u| < ε satisfying

( ) ( ) ( ) 2
1 2 1 11 1 11

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0.¶
+ + + + + - <

¶
T Ti

i i i i i i i
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3. Main results

For a single system, it has been shown in reference [7] that the existence of CSFs is a necessary
and sufficient condition for the existence of H∞ controllers. Therefore, for the existence of
simultaneous H∞ controllers for the systems in Eq. (3), the existence of CSFs for these systems
is necessary. In references [7] and [9], no systematic methods have been proposed for con-
structing CSFs. Here, based on the backstepping method, we first derive CSFs explicitly for
the systems in Eq. (3).

Let
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It is easy to show that we can find a function 1:  and a positive definite function 1: 
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Similarly, we can find functions : ,  = 2,…, 𑨒𑨒 𑨒𑨒 1, and positive definite function: ,  = 2,…, 𑨒𑨒 𑨒𑨒 1, such that
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is positive definite, and radially unbounded.

Now, we discuss the existence of common CSFs for the systems in Eq. (3). For convenience, we
say that a continuous function () is dominated by a continuous function () if there exists

a constant c > 0 such that () < 𝀵𝀵() for all  ≠ 0.
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Theorem 1: Consider the systems in Eq. (3). Suppose that Assumption 1 holds. If the functions: , j=1,…,n-1, are such that () () = 0 is dominated by ∑ = 1 𑨒𑨒 1(), then there

exists a common CSF that satisfies the L2-gain SCP for all the systems in Eq. (3).

Proof: Let () = 𑫅𑫅 𑫅𑫅 (), where K > 0 will be specified later. For system Si, define the corre-
sponding Hamiltonian function as
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Therefore, () = 𑫅𑫅 𑫅𑫅 () is a CSF of Si if
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As () () = 0 is dominated by ∑ = 1 𑨒𑨒 1(), we can choose a K > 0 such that
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This shows that V(x) is a CSF for the i-th system in Eq. (3). Since Eq. (7) holds for all i ∈ {1,…,q},
V(x) is a common CSF for all the systems in Eq. (3).

Now we prove that V(x) satisfies the L2-gain SCP. Note that if we can find a continuous

stabilizing feedback law di(x) with di(0) = 0 such that (, , ()) < 0 for each  𑨈𑨈 𑨈𑨈\ 0  and

each w ∈ Rm, then V(x) satisfies the L2-gain SCP. Let
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where the continuous function () with (0) = 0 is such that ()() > 0 if sn(x) ≠ 0, and
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Note that such () always exists since () () = 0 is dominated by ∑ = 1 𑨒𑨒 1(). Clearly,

di(x) is continuous in Rn and di(0) = 0. By Eq. (6), we have
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This implies that V(x) satisfies the L2-gain SCP and completes the proof.

To derive simultaneous H∞ controllers, define (for i=1,…,q)
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where βi > 0, i=1,…,q, are given constants. Since V(x) satisfies the L2-gain SCP, the functions
pi(x), i=1,…,q, are continuous in Rn [16]. We have the following results.

Theorem 2: Consider the collection of systems in Eq. (3). Suppose that Assumption 1 holds. If

the functions : ,  = 1,…, 𑨒𑨒 𑨒𑨒 1, are such that () 𑨒𑨒() = 0 is dominated by∑ = 1𑨒𑨒 𑨒𑨒 1(), then a continuous function :𑨒𑨒  exists such that the feedback law defined in

Eq. (4) internally stabilizes the collection of systems in Eq. (3) simultaneously; and moreover,
all the closed-loop systems satisfy the L2-gain requirement specified in Eq. (5). In this case,

{1,2,..., }

{1,2,..., }

min { ( )},  if ( ) 0
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(8)

is a simultaneous H∞ controller for all the systems in Eq. (3).

Proof: Since the functions pi(x), i=1,2,…,q, are continuous in Rn, from the definition of p(x), its
continuity is obvious. In the following, we first prove the achievement of L2-gain requirement
[Eq. (5)], and then the internal stability of all the closed-loop systems.

A. L2-gain requirement

Since (, , ) ≤ () + (), if we can show that
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continuity is obvious. In the following, we first prove the achievement of L2-gain requirement
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( ) ( ) ( ) 0 0, 1, , ,+ < " ¹ = ¼i ia x b x p x x i q (9)

Then, with the controller defined in Eq. (8), all the closed-loop systems satisfy the L2-gain
requirement specified in Eq. (5).

1. sn(x) = 0 and x ≠ 0.

In this case, u = p(x) = 0 and bi (x) = 0. Then, by Eq. (7),

( ) ( ) ( ) ( ) 0, 1, , .+ × = < = ¼i i ia x b x p x a x i q

2. () > 0.
In this case, since bi(x) > 0, we have
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3. sn(x) < 0

Similarly, in this case we can show that

( ) ( ) ( ) 0, 1, , .+ < = ¼i ia x b x p x i q

These discussions imply that Eq. (9) holds. That is, all the possible closed-loop systems
satisfy the L2-gain requirement specified in Eq. (5).

B. Internal stability

To prove internal stability, notice that Eq. (6) implies that, along the trajectories of system Si
under w = 0,
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That is, for each i ∈ {1,…,q}, along the trajectories of system Si, we have
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This shows that all the closed-loop systems are internally stable.

Remark 1: The systems considered in reference [8] are special cases of the systems consid-
ered in this chapter. If we let 𝀵𝀵𝀵𝀵(𝀵𝀵) = 0, 𝀵𝀵 = 1, 2, …, , and j=1,2,…,n-1, the systems in Eq. (3)

will reduce to the systems considered in reference [8]. On the other hand, in reference [17], it
is assumed that U(s) is in quadratic form. In this chapter, we relax this restrictive assump-
tion.

Remark 2: In this chapter, we consider the case that the controlled output z is independent of
the control input u. In this situation, a much simpler formula (not a special case of the formula
in reference [7]) is proposed for constructing simultaneous H∞ controllers. In the case that the
controlled output z depends on u, necessary and sufficient conditions for the existence of
simultaneous H∞ controllers and a formula for constructing simultaneous H∞ controllers can
be derived by the results in reference [7].

4. An illustrative example

Consider the following nonlinear systems:
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It can be shown that
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It can be shown that

Nonlinear Systems - Design, Analysis, Estimation and Control236

( ) 12
1 1 1 11 11 11 11 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),      1,2,  and 3T T T T
i i i i i i i ih x h x h x k x k x k x k x h x U x ig

-
+ - £ =

with

2 2
1 2

9 9( ) .
5 5

U x x x= +

Let γ = 3. It can be verified that Assumption 1 holds. Let

1 1 1

1 1 1
2

1 1 1

2 2 2 1 1 1 2

( )
( ) 2

( )
( ) ( ) 2 .

s x x
x x
x x

s x x x x x

j

m
j

=
= -

=
= - = +

Then,

( )2 2
1 1 2 2

1ˆ( ) ( ) ( )
2

V x s x s x= +

is positive, definite, and radially unbounded. By choosing K = 10, it can be shown that

2 21 1 ( ) 0 1( ) ( ) 0, 0.m =- + < " ¹s xK x U x x

Therefore,

( )2 2
1 1 2 2

ˆ( ) ( ) 5 ( ) ( )V x KV x s x s x= = +

is a common CSF for the three systems in Eq. (10). For i = 1, 2, and 3, define

( )

1 1
1 2 1 1 2 2 1 1 1

1

12
11 1 11 11 11 1

2

( )( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( )

T
i i i i i

T
T T T T T

n i i i i i n i i i

i i

xa x K x Ks x s x x x x h x h x
x

K Ks x x k x h x I k x k x s x x k x h x

b x K x s x

jm q q

r g r

h

-

æ ö¶
=- + + - + +ç ÷

¶è ø

æ ö æ ö+ + - +ç ÷ ç ÷
è ø è ø

=

and (with β1 = β2 = β3 = 0.1)
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is a simultaneous H∞ controller for the three systems in Eq. (10). With arbitrarily chosen
disturbance inputs, Figures 1–3 show the states, control inputs, disturbance inputs, and
controlled outputs of these three systems starting at different initial states with the same
controller defined in Eq. (11). It can be seen that all the three closed-loop systems are internally
stable and satisfy the required L2-gain specification. That is, the controller defined in Eq. (11)
is indeed a simultaneous H∞ controller for the three systems in Eq. (10).

Figure 1. Responses of the system S1 controlled by the controller defined in Eq. (11).
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Figure 2. Responses of the system S2 controlled by the controller defined in Eq. (11).

Figure 3. Responses of the system S3 controlled by the controller defined in Eq. (11).
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5. Conclusions

In this chapter, a systematic way for constructing simultaneous H∞ state feedback controllers
of nonlinear control systems in strict-feedback form is proposed. It is shown that the existence
of common CSFs guarantees the existence of simultaneous H∞ controllers. An explicit formula
for constructing simultaneous H∞ controllers is derived. The simulation example is given for
verifying the theoretical results. The simulation results show, as expected, that the designed
controller can simultaneously stabilize the considered systems and such that all closed-loop
systems satisfy the specified disturbance attenuation requirement. Possible further works
include considering nonlinear control systems in more general forms, applying the approach
to time-varying case, and considering the output feedback case.
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Abstract

This chapter presents control of a class of mechanical underactuated system using
feedback linearization technique. The MIMO mechanical system is modeled by a set of
nonlinear  differential  equations  in  which mathematical  model  is  divided into  two
subsystems:  one  for  actuated  outputs  and  the  other  for  unactuated  outputs.  The
nonlinear feedback of states is used to “linearize” the closed-loop system. In other word,
the control structure is constructed by linearly combining two components that are
separately obtained from the nonlinear feedback of actuated and unactuated states.
Lyapunov technique will be applied to investigate the system stability. As illustration
example, nonlinear feedback control of a three-dimensional (3D) overhead crane is
presented to investigate the proposed theory.

Keywords: underactuated mechanical systems, feedback linearization, Lyapunov’s
linearization theorem, overhead cranes

1. Introduction

In practice,  many control  problems involve the “underactuated” behavior of  mechanical
systems. In underactuated systems, the number of equipped actuators is less than that of the
controlled variables. That is, actuators do not directly control several degrees of freedom. For
example, we consider a tracking control problem for a marine vessel (Figure 1). In many cases,
ships are equipped with either two independent aft thrusters or one main aft thruster and one
rudder, without any bow or side thruster. Therefore, no sway control force acting on the ship
is assumed. From the aforementioned condition, Lefeber et al. [1] investigated tracking control
for underactuated ships in which three state variables, namely, surge, sway, and yaw, are

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.
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Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



driven by only two inputs: surge force and yaw torque. We can find many underactuated
systems in engineering, such as mobile robots, aircraft, and gantry cranes, among others.

Figure 1. Tracking control of an underactuated ship [1].

According to the study of Tedrake [2], a mechanical system that can be described mathemat-
ically by

(1)

is regarded an underactuated system if the rank of matrix B(q) is less than the dimension of
vector q, that is,

(2)

Otherwise, system (1) has a “fully actuated” property in configuration , ̇,   if it can control
instantaneous acceleration in an arbitrary direction in q.

(3)

Unlike modern control techniques, such as fuzzy logic and neural networks, traditional
control methods require knowing the physical properties of a system, which are generally
governed by its mathematical model. For dynamical systems, a mathematical model is
constructed based on mechanics principles, such as Newton’s law, Lagrange equation,
Lagrange multiplier method, Euler-Lagrange methodology, and so on. In mechanical systems
with multiple degrees of freedom, system dynamics will comprise a set of second-order
differential equations (1) in terms of displacements q, velocities ̇, and time t. From this point
of view, dynamical systems can be classified according to the type of mathematical model.
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Partial differential equations are used to describe distributed systems mathematically, whereas
ordinary differential equations govern the motions of discrete systems.

Figure 2. Cart-pole system [3].

Most realistic systems exhibit nonlinear behavior. A nonlinear system is generally described
by nonlinear differential equations. Nonlinearities appear in a mathematical model because of
its nonlinear components or geometric relationship. For example, a system that consists of an
inverted pendulum mounted on a cart, as shown in Figure 2, has the following equations of
motion:

(4)

(5)

The nonlinearities of the aforementioned dynamics originate from geometric constraint.

(6)

The other example is a spring-damper system, which is illustrated in Figure 3. The force of
nonlinear spring
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(7)

leads to the nonlinear modeling of the system, as follows:

(8)

The nonlinear feedback technique, also called feedback linearization, is a representative
method for controlling nonlinear systems. The main concept of feedback linearization is to
transfer the original nonlinear system algebraically into the linear system by inserting
equivalent inputs to suppress the nonlinearities of the former. The feedback linearization
control of fully actuated systems has been discussed in several well-known textbooks [4, 5] in
which this theory has been completely developed. Previous studies have pointed out that fully
actuated systems are feedback linearizable through nonlinear feedback [6, 7]. In this chapter,
we introduce the feedback linearization control for a class of multiple-input and multiple-
output (MIMO) underactuated systems. The analysis process is conducted using an algebra
foundation in which the mathematical model is simplified through matrix equations.

Figure 3. Mechanical system with a viscous damper and a nonlinear spring [3].

First, the mathematical model of underactuated mechanical systems is separated into two
subsystems: actuated states and unactuated states. Then, we design a controller in which
nonlinear feedback is partly applied to both actuated and unactuated dynamics. Subsequently,
actuated submodel is “linearized” using a nonlinear feedback method; thus, the unactuated
dynamics is regarded as internal model. Seeing actuated states as system outputs, a nonlinear
control law is designed to drive state trajectories to the references. However, this controller
does not promise the stability of unactuated states. Therefore, its structure should be adjusted
to guarantee the stability of both actuated and unactuated states based on the nonlinear
feedback of all system states. The control scheme now exhibits the linear combination of two
components that are distinctly acquired from the nonlinear feedback of both the actuated and
unactuated submodels.

In comparison with traditional controllers, such as the proportional-integral-derivative (PID)
controller, partial feedback linearization (PFL) exhibits several advantages. In the PID con-
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troller design, most of the nonlinear factors of a system are not mentioned. By contrast, in the
design of PFL, all the nonlinearities of a system considered in the system dynamics are entirely
vanished by the PFL controller. However, the PFL approach requires a precise model to achieve
good control action. Additionally, the approach is not convenient in systems with uncertain
parameters.

As an enhancement of Tuan et al.’s [8] paper, where PFL was applied for three-dimensional
(3D) overhead crane, we introduce the PFL theory in the generalized form for a class of
nonlinear underactuated mechanical systems. The outline of this chapter is as follows. Section 1
introduces the chapter. Section 2 presents the general form of the mathematical modeling of
an underactuated mechanical system. Section 3 constructs a nonlinear controller based on the
partial nonlinear feedback technique. Section 4 discusses system stability. Section 5 provides
an example to illustrate the proposed theory. Finally, Section 6 provides the conclusion of the
chapter.

2. Mathematical model

In general, the physical behavior of a MIMO mechanical system is governed by a set of
differential equations of motion. Consider an underactuated system with n degrees of freedom
driven by m actuators (m<n). The mathematical model, which is composed of n ordinary
differential equations, is simplified in matrix form as follows:

(9)

where  = 1 2 ⋯   ∈Rn is the vector of the generalized coordinates, and F ∈ Rn denotes
the vector of the control inputs. Given that the system has more control signals than actuators,

F has only m nonzero components as  = 𝀵𝀵 𝀵𝀵  𑨒𑨒𑨒𑨒 × 1 , with 𝀵𝀵 = 1 2 ⋯ 𑨒𑨒  ∈Rm being
a vector of nonzero input forces. M(q) = MT(q) = [mij]n × n ∈ Rn × n is the symmetric mass matrix, , ̇ = 𝀵𝀵𝀵𝀵  ×  ∈  ×  is the Coriolis and centrifugal matrix, and  = 1 2 ⋯   ∈  indicates the gravity vector.

As an underactuated system, its n output signals are driven by m actuators. Meanwhile, its
mathematical model is divided into two auxiliary dynamics, namely, actuated and unactuated

systems. Correspondingly,  =   1 2 ⋯ 𑨒𑨒  ∈Rm for actuated states and = 𑨒𑨒 + 1 ⋯   ∈Rn−m for unactuated states are defined. The matrix differential equation

(9) can then be divided into two equations as follows:

(10)
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(11)

where M11(q), M12(q), M21(q), M22(q) are the submatrices of M(q); and11 , ̇ , 12 , ̇ , 21 , ̇ , 22 , ̇  are the submatrices of 11 , ̇ . Therefore, matrices

M(q),  , ̇ , and G(q) of Equation (9) exhibit the following form:

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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Notably, matrix M(q) is symmetric positive definite, 12  = 21  . The actuated equation

(10) shows direct relationship between the actuated states qa and the actuators U. By contrast,
the unactuated equation (11) does not display the constraint between the unactuated states qu

and the inputs U. Physically, input signals U drive the actuated states qa directly and the
unactuated states qu indirectly.

3. Nonlinear feedback control

System dynamics, which is composed of Equations (10) and (11), is transformed into a simpler
model with an equivalent linear form based on the nonlinear feedback method [7]. Note that
M22(q) is a positive definite matrix. The unactuated states qu can be determined from Equation
(11) as

(12)

In underactuated mechanical systems, the unactuated state qu has a geometric relationship
with the actuated state qa. Therefore, control input U indirectly acts on qu through qa. Substi-
tuting Equation (12) into Equation (10) and simplifying the equation yield the following:

(13)

where  = 11  −12  22−1  21  ,

1 , ̇ = 11 , ̇ − 12  22−1  21 , ̇
2 , ̇ = 12 , ̇ − 12  22−1  22 , ̇  and

1  = 1  −12  22−1  2  .
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(11) as

(12)

In underactuated mechanical systems, the unactuated state qu has a geometric relationship
with the actuated state qa. Therefore, control input U indirectly acts on qu through qa. Substi-
tuting Equation (12) into Equation (10) and simplifying the equation yield the following:

(13)

where  = 11  −12  22−1  21  ,

1 , ̇ = 11 , ̇ − 12  22−1  21 , ̇
2 , ̇ = 12 , ̇ − 12  22−1  22 , ̇  and

1  = 1  −12  22−1  2  .
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   is a positive definite matrix for every  =    ∈Rn. Equation (13) is transformed into

(14)

By inserting Equation (14) into Equation (12), we obtain

(15)

where3 , ̇ = 21 , ̇ − 21  −1  1 , ̇ ,4 , ̇ = 22 , ̇ − 21  −1  2 , ̇ ,

and 2  = 2  −21  −1  1  .

Therefore, the dynamic behavior of a mechanical underactuated system can be described by
actuated dynamics (14) and unactuated dynamics (15) in which the mathematical relationships
among qa, qu, and U can be observed clearly.

Considering the actuated states qa as the system outputs, actuated dynamics (14) can be
“linearized” by defining

(16)

with Va ∈ Rm as the equivalent control inputs. Then, the control signals U become

(17)

Controller U is designed to drive the actuated states qa to the desired values qad. To track the
given state trajectories, the following equivalent control inputs are selected:

(18)

Given that qad = const, Equation (18) can be reduced into

(19)

with Kad = diag(Kad1, Kad2, …, Kadm) ∈ Rm × m, Kap = diag(Kap1, Kap2, …, Kapm) ∈ Rm × m as positive
diagonal matrices.
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On the basis of Equation (18) and active dynamics (16), the differential equation of the tracking
error is obtained as described by

(20)

where  =  − 𝑎𝑎 is the tracking error vector of the actuated states. Evidently, the dynamics

of the tracking error (20) is exponentially stable for every Kad > 0 and Kap > 0. That is, the tracking
errors of the actuated states  approach zero (or qa converges to qad) as t becomes infinite. In

particular, the equivalent control Va forces the actuated states qa to reach the references qad
asymptotically.

The control scheme (17), which corresponds to the equivalent input Va, is used only to stabilize
the actuated states qa asymptotically. To stabilize the unactuated states qu, the nonlinear
feedback technique can be applied to subdynamics (15) as follows:

(21)

where Vu ∈ Rn − m refers to the equivalent inputs of the unactuated states.

Kud  = diag (Kud1, Kud2, …, Kud(n − m)) ∈ R(n − m) × (n − m) and Kup = di-
ag (Kup1, Kup2, …, Kup(n − m)) ∈ R(n − m) × (n − m) are positive matrices.

The control input U received from Equations (15) and (21) ensures the stability of the unactu-
ated states qu because the tracking error dynamics, that is,

(22)

is stable for every Kud > 0 and Kup > 0. Hence, if Kud and Kup are selected appropriately, then the
equivalent inputs Vu can drive cargo swings qu toward zero.

To stabilize the unactuated and actuated states, overall equivalent inputs are proposed by
linearly combining Va and Vu as follows:

(23)

with α ∈ Rm × (n − m) being the weighting matrix and V ∈ Rm.

Hence, considering qa as the primary output, the total control scheme is determined by
replacing Va with V in Equation (17). By substituting Equation (23) into Equation (17), the
nonlinear feedback control structure is obtained as
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(24)

The nonlinear controller (23) asymptotically stabilizes all system state trajectories, as illustrated
in an example presented in Section 5.

4. Analysis of system stability

The control law U is obtained from the actuated dynamics (14). The stability of the remaining
part (the unactuated dynamics) of the closed-loop system, called the internal dynamics, is
analyzed. If the internal dynamics is stable, then the tracking control problem is solved.
Substituting the control scheme (24) into the unactuated subsystem (15) yields the internal
dynamics:

( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

21 21 22 211
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&&

a

a
(25)

The local stability of the internal dynamics is guaranteed if the zero dynamics is exponentially
stable. Setting qa = qad in the internal dynamics (25), the zero dynamics of the system is obtained
as

(26)

The zero dynamics is expanded into a set of (n–m) second-order nonlinear differential
equations in which the (n–m) components of vector qu are considered as variables. The stability
of the zero dynamics (26) is analyzed using Lyapunov’s linearization theorem [4]. By defining
2(n–m) state variables z ∈ R2 × (n − m), the zero dynamics (26) is converted into state-space form
as follows:

(27)

where f(z) is a vector of nonlinear functions, and z ∈ R2 × (n − m) is a state vector. System dynamics
(27) is composed of 2(n–m) first-order nonlinear differential equations. This nonlinear zero
dynamics is asymptotically stable around the equilibrium point z = 0 ( = ̇ = ) if the

corresponding linearized system is strictly stable. Linearizing the zero dynamics around z = 0
yields a linearized system in the following form:
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(28)

with

(29)

as a 2(n–m)×2(n–m) Jacobian matrix of components ∂fi/∂xj. The stability of the linear system (28)
can be analyzed by considering the positions of the eigenvalues of A or using several traditional
techniques, such as the Routh-Hurwitz criterion [3], the root locus method, and so on. Thus,
by investigating the stability of the linear system (28), we can understand the dynamic behavior
of the nonlinear system (27), or equivalently, zero dynamics (26), according to Lyapunov’s
linearization theorem [4].

The nonlinear system (26) is asymptotically stable around the equilibrium point ( = ̇ = ) if the

linearized system (28) is strictly stable.

The equilibrium point ( = ̇ = ) of the nonlinear system (26) is unstable if the linearized system

(28) is unstable.

We cannot conclude the stability of the nonlinear system (26) if the linearized system (28) is marginally
stable.

As we will see in the examples provided in Section 5, the analysis of system stability using the
aforementioned theorem yields the constraint equations of the controller parameters.

5. An application example

We apply the aforementioned theory to a 3D crane system to understand the proposed
methodology comprehensively.

5.1. Problem statement

An overhead crane is a symbol of underactuated mechanical systems. Overhead cranes are
typically used to transport cargo over short distances or to small areas, such as automotive
factories and shipyards. We have investigated the nonlinear feedback control problem for a
3D overhead crane [8] with three actuators used to stabilize five outputs. The crane system,
which is composed of four masses, is physically modeled in Figure 4. The distributed masses
of the bridge are converted into a concentrated mass mb, which is placed at the center of the
bridge. ml denotes the equivalent mass of the hoist mechanism, whereas mt and mc are the
masses of the trolley and cargo, respectively. The system includes five degrees of freedom,
which correspond to five generalized coordinates. x(t) is the trolley motion, z(t) is the bridge
movement, and cargo position is characterized by three generalized coordinates (l, θ, and φ).

Therefore, the generalized coordinates of the system are described by  = 𝀵𝀵 𝀵𝀵 𝀵𝀵 𝀵𝀵 𝀵𝀵 .
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Additionally, the friction of cargo hoisting, as well as trolley and bridge motions, is linearly
characterized by damping factors br, bt, and bb, respectively. The control signals ub, ut and ul
correspondingly demonstrate the driving forces of trolley motion, bridge movement, and
cargo lifting translation.

Figure 4. Physical modeling of a 3D overhead crane.

The main objective of this example is to design a controller for simultaneously conducting five
tasks: (1) tracking the bridge, (2) moving the trolley to its destinations, (3) lifting/lowering the
payload to the desired length of the cable, (4) keeping the cargo swing angles small during
transportation, and (5) completely suppressing these swings at payload destinations.

By using Lagrange’s equation to constitute the mathematical model, overhead crane dynamics
can be represented by matrix equation (9) in which the component matrices are determined
by the following formulas:
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The coefficients of the M(q) matrix are given by11 =  + +, 13 = 31 = sincos, 14 = 41 = coscos,
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15 = 51 = −sinsin, 22 =  +, 23 = sin, 25 = 52 = cos,
and 32 = sin, 33 =  + , 44 = 2cos2, 55 = 2 .
The coefficients of the  , ̇  matrix are determined by13 = coscos̇ − sinsin̇,14 = coscos̇ − cossin̇ − sincos̇,15 = −cossin̇ − sinsin̇ − sincos̇,23 = cos̇, 25 = cos̇ − sin̇, 34 = −cos2̇,35 = −̇, 43 = cos2̇, 44 = cos2̇ − 2cossin̇, and

45 = −2cossin̇, 53 = ̇, 54 = 2cossin̇, 55 = ̇ .
The nonzero coefficients of the G(q) vector are given by

3 4 5cos cos , sin cos , cos sinj q j q j q= - = =c c cg m g g m gl g m gl

5.2. Controller design

The overhead crane is an underactuated system in which five output signals are driven by
three actuators. Using the nonlinear feedback methodology, we construct a control law

(30)

with  =     to drive the actuated states  = 𝀵𝀵 𝀵𝀵   to the desired destinations𝑎𝑎 = 𝀵𝀵𝑎𝑎 𝀵𝀵𝑎𝑎 𝑎𝑎  and the actuated states (cargo swings) 2 =    toward zero.

Applying the theory proposed in Sections 1−4, we determine the structure of the controller in
Equation (24), where Kad = diag(Kad1, Kad2, Kad3), Kap = diag(Kap1, Kap2, Kap3), Kud = diag(Kud1, Kud2),

and Kup = diag(Kup1, Kup2) are the positive matrices of control gains, and  = 1 00 20 0  is a

weighting matrix.
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5.3. System stability

As presented in Section 4, we analyze the local stability of the internal dynamics (25), or
equivalently, the zero dynamics (26). Applying Equation (26) to a 3D overhead crane, the zero
dynamics of the system is expanded as

(31)

(32)

The stability of the zero dynamics, which comprises Equations (31) and (32), is analyzed using
Lyapunov’s linearization theorem. First, we represent the zero dynamics in the first-order form
by setting the four state variables as

1 2 3 4, , ,z z z zj j q q= = = = &&

Then, the zero dynamics exhibits the following state-space forms:

(33)

(34)

(35)

(36)

Using  = 1 2 3 4  as the state vector, the nonlinear zero dynamics (33)–(36) are asymp-
totically stable around the equilibrium point z = 0 ( = ̇ = ) if the linearized system is

strictly stable. Linearizing the zero dynamics around z = 0 leads to a linear system as follows:
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(37)

where

(38)

is a Jacobian matrix in which the characteristic polynomial exhibits the following form:

(39)

The linearized system (37) is stable around the equilibrium point z = 0 if A is a Hurwitz matrix.
On the basis of the Hurwitz’s criterion and the results of the calculations, the constraint
condition of the controller parameters is determined as

(40)

(41)

(42)

(43)

Therefore, if Equations (40)−(43) among the control parameters are maintained, then the zero
dynamics is stable around the equilibrium point z = 0, which leads to the local stability of the
internal dynamics (25).
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5.4. Simulation and experiment

The overhead crane dynamics (9) driven by the control inputs (30) is numerically simulated in
the case of a crane system that involves complicated operations. Accordingly, the trolley is
forced to move from its initial position to the desired displacement at 0.4 m. The bridge is
driven from its starting point to the desired location at 0.3 m, and the cargo is lifted with a
cable length of 1–0.7 m of cable reference. These processes (lifting the cargo, moving the trolley,
and driving the bridge) must be initiated simultaneously, with the cargo suspension cable
initially perpendicular to the ground. The parameters used for the simulation are listed in
Table 1.

System dynamics Controller

g = 9.81 m/s2
, mc = 0.85 kg, mt = 5 kg

mb = 7 kg, ml = 2 kg, bt = 20 Nm/s

bb = 30 Nm/s, br = 50 Nm/s

Kad = diag(1.5, 1.5, 2.5), Kud = diag(3, 3)

Kap = diag(0.85, 0.87, 2), Kup = diag(0.5, 0.5)

α1 = α2 = − 1

Table 1. Crane system parameters.

Figure 5. Overhead crane system used for the experiments.

Additionally, an experimental study is conducted to verify the simulation results. Figure 5
shows a laboratory crane system used for the experiment. In this system, three DC motors for
the bridge motion, trolley movement, and cargo hoisting motion are used. Five incremental
encoders are applied for measuring bridge and trolley motions, the movement of the cargo
along the cable, and the two swing angles of the cargo.

Three-dimensional overhead crane is controlled by a target PC in which a control structure is
built based on MATLAB/SIMULINK with an xPC target foundation. A host PC is linked to the
target PC, and the crane system is connected to the target PC by two interface cards. The 6602
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card sends PWM signals to the motor amplifiers and obtains feedback pulses from the
encoders. The 6025E multifunction card is utilized for sending direction control signals to the
motor amplifiers.

Figure 6. Bridge motion.

Figure 7. Trolley motion.

Figures 6–18 describe both the simulation and the experiment results. Figures 6–8 show the
paths of the bridge motion, trolley movement, and payload lifting translation, respectively. All
the responses approach asymptotically to the destinations. However, the simulation paths are
smoother and achieve steady states earlier than the experiment ones. The bridge moves and
stops accurately at the load endpoint after 4 s in the simulation and 6 s in the experiment. The
trolley reaches its destination after 4.1 s in the simulation and 6.2 s in the experiment. The crane
lifts the payload from an initial length (1 m) of cable to the desired length (0.7 m) of cable after
4.2 s.

Figure 8. Cargo hoisting motion.

Nonlinear Systems - Design, Analysis, Estimation and Control258



card sends PWM signals to the motor amplifiers and obtains feedback pulses from the
encoders. The 6025E multifunction card is utilized for sending direction control signals to the
motor amplifiers.

Figure 6. Bridge motion.

Figure 7. Trolley motion.

Figures 6–18 describe both the simulation and the experiment results. Figures 6–8 show the
paths of the bridge motion, trolley movement, and payload lifting translation, respectively. All
the responses approach asymptotically to the destinations. However, the simulation paths are
smoother and achieve steady states earlier than the experiment ones. The bridge moves and
stops accurately at the load endpoint after 4 s in the simulation and 6 s in the experiment. The
trolley reaches its destination after 4.1 s in the simulation and 6.2 s in the experiment. The crane
lifts the payload from an initial length (1 m) of cable to the desired length (0.7 m) of cable after
4.2 s.

Figure 8. Cargo hoisting motion.
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Figure 9. Cargo swing angle φ.

Figure 10. Cargo swing angle θ.

Figure 11. Velocity of bridge motion.

Figure 12. Velocity of trolley motion.

Figures 9 and 10 indicate the responses of the cargo swings. The payload swing angles are in
a small boundary during the payload transportation: φmax = 2.2° and θmax = 2.9° for the
simulation and φmax = 2.3° and θmax = 2.4° for the experiment. The simulated cargo swings are
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completely vanished after short settling periods, ts = 4 s for φ and ts = 4.5 s for θ, within one
vibration period. Slight steady-state errors remain in the experimental responses, which
achieve the approximate steady state after over two oscillation periods.

Figure 13. Cargo hoisting velocity.

The velocity components depicted in Figures 11–15 asymptotically approach to zero. The
movements of the bridge and the trolley, as well as the lifting movement of the payload at
transient states, composed of two phases, namely, the increasing and decreasing velocity
periods. As indicated clearly in the simulated curves, the trolley speeds up within the first 1.7
s and slows down within the last 2.4 s. The cargo is then lifted with increasing speed within
the first 0.7 s and with decreasing speed within the remaining 3.5 s.

Figure 14. Payload swing velocity ̇.

Figure 15. Payload swing velocity ̇.
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Figure 16. Bridge moving force.

Figure 17. Trolley driving force.

The nonlinear control forces are illustrated in Figures 16–18. The simulation responses achieve
steady states after 4, 4.1, and 4.2 s for the bridge moving, trolley moving, and cargo lifting
forces, respectively.

At steady states, 𝀵𝀵𝀵𝀵 = 𝀵𝀵𝀵𝀵 = 0 N and 𝀵𝀵𝀵𝀵 = − = − 9.81 × 0.85 = − 8.34 N.

Evidently, differences in responses still exist between the simulation and the experiment
responses because the dynamic model and the realistic overhead crane do not match com-
pletely. Several nonlinearities that exist in practice, such as the cable flexibility, the backlash of
the gear motors, and nonlinear frictions, are not considered in the system dynamics. If the
mathematical model is close to a realistic system, then the results will certainly be accurate.

Figure 18. Payload hoisting force.
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6. Conclusions

The feedback linearization method provides an effective design tool for controlling nonlinear
systems. We improved this technique for application to a class of underactuated mechanical
systems. We provided two examples to illustrate the proposed method in which PFL was
successfully applied to construct nonlinear controllers for a moving inverted double pendulum
and a 3D overhead crane. In general, a nonlinear feedback controller for an underactuated
mechanical system consists of two components. The first is for canceling the nonlinearities in
the system and the second is for stabilizing state variables.
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Abstract

This research is  focused on the development of  a  nonlinear cascade-based control
algorithm for a laboratory helicopter-denominated Twin Rotor MIMO System (TRMS).
The TRMS is  an underactuated nonlinear multivariable system, characterised by a
coupling effect between the dynamics of the propellers and the body structure, which
is caused by the action-reaction principle originated in the acceleration and deceleration
of the propeller groups. Firstly, this work introduces an extensive description of the
platform’s dynamics, which was carried out by splitting the system into its electrical and
mechanical parts. Secondly, we present a design of a nonlinear cascade-based control
algorithm that locally guarantees an asymptotically and exponentially stable behaviour
of the controlled generalised coordinates of the TRMS. Lastly, a demonstration of the
effectiveness of the proposed approach is provided by means of numerical simulations
performed under the MATLAB®/Simulink® environment.

Keywords: nonlinear control, timescale modelling, twin rotor, MIMO systems, labora-
tory platform

1. Introduction

Currently,  there  are  many  possible  uses  for  unmanned  aerial  vehicles  (UAVs),  such  as
inspection operation, battle field operation, forest fire detection, meteorological observation,
or search and rescue operation, among others. All these applications require achieving precise
control systems. This has motivated an increased interest in the last years from researchers in
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developing effective control algorithms for UAVs [1–4]. In many cases, the development of
new control strategies requires the use of software and platforms which are able to simulate
the operation of the UAVs in order to perform experimental tests for evaluating the different
designs. The use of this kind of tools increases the productivity and reduces the development
time.  For  this  purpose,  different  laboratory test  rigs  have been specifically  designed for
teaching and research in flight dynamics and control. One such platform is the laboratory
helicopter used in this research, namely the Twin Rotor MIMO System (TRMS) [5]. The TRMS
is a nonlinear, multivariable and underactuated system, characterised by a coupling effect
between the dynamics of the propellers and the body structure, which is caused by the action-
reaction principle originated in acceleration and deceleration of the motor-propeller groups.
All these features make the control of the TRMS to be perceived as a challenging engineering
problem (note that the TRMS, and other laboratory platforms with similar dynamics are more
difficult to control than a real helicopter platform [6]). The achievement of an accurate system
dynamics model is a challenging problem, whilst, at the same time, an important issue is to
develop accurate and efficient control systems.

The development of the dynamic model for the TRMS has been studied by an important
number of researches. Ahmad et al. presented mathematical models for the dynamic charac-
terisation of the TRMS, using a black box system identification technique [7] and radial basis
function (RBF) networks [8]. Shaheed modelled the dynamics of the TRMS by means of a
nonlinear autoregressive process through external input (NARX) approach with a feed-
forward neural work and a resilient propagation (RPROP) algorithm [9]. Rahideh and Shaheed
have also contributed to the study of the TRMS dynamics by using both Newton- and
Lagrange-based methods [10], and two models based on neural networks using Levenberg-
Marquardt (LM) and gradient descent (GD) algorithms [11]. Toha and Tokhi presented an
adaptive neuro-fuzzy inference system (ANFIS) network design, which was deployed and
used for the TRMS modelling [12]. Finally, Tastemirov et al. developed a complete dynamic
TRMS model using the Euler-Lagrange method [13].

On the other hand, the design of the control system for the TRMS has been widely discussed
through several investigations. Ahmad et al. developed the dynamic model and implemented
a feed-forward/open-loop control [14] and a linear quadratic Gaussian control [15]. López-
Martínez et al. studied the design of a longitudinal controller based on Lyapunov functions
[16], and the application of a nonlinear L2 controller [17]. Rahideh et al. presented an experi-
mental implementation of an adaptive dynamic nonlinear model inversion control law using
artificial neural networks [18]. Other interesting works are those of Tao et al. who designed a
parallel distributed fuzzy linear quadratic regulator (LQR) controller [19]. Studies of Reynoso-
Meza et al. developed a holistic multi-objective optimisation design technique for controller
tuning [20], or the use of a particle swarm optimisation (PSO) algorithm for the proportional-
integral-derivative (PID) controller optimisation developed by Coelho et al. [21].

The aim of the present research is to develop a nonlinear cascade-based control algorithm in
order to locally guarantee an asymptotically and exponentially stable behaviour of the
controlled generalised coordinates of the TRMS. Additionally, the effectiveness of the proposed
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nonlinear feedback controller in terms of stabilisation and position tracking performance is
demonstrated by means of numerical simulations. Finally, the paper is organised as follows.

Section 2 introduces a description of the TRMS platform by illustrating the details of the
dynamics model obtained into two phases: electrical and mechanical parts. Section 3 describes
the nonlinear cascade-based controller scheme proposed. The results of the numerical
simulations performed under the MATLAB®/Simulink® environment are depicted in Section
4, and, finally, Section 5 is devoted to the conclusions of the work.

2. System description

The TRMS (see Figure 1) is a laboratory helicopter platform manufactured by Feedback
Instruments Ltd©. The TRMS is composed of two propellers that are perpendicular to each other
and placed in the extreme of a beam that can rotate freely in both vertical and horizontal planes.
Each propeller is driven by a DC motor, thus forming the main and tail rotor of the platform.
A main feature of the TRMS is that its movement, unlike a real helicopter, is not achieved by
varying the angle of attack of the blades. In this case, the movement of the platform is gotten
by means of the variation in the angular velocity of each propeller, which is caused by the
change in the control input voltage of each motor.

Figure 1. Twin rotor MIMO system.
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This constructive simplification in the TRMS model substantially complicates the dynamics of
the system, because a coupling effect between rotors dynamics and the body of the model
appears. This effect is caused by the action-reaction principle originated in acceleration and
deceleration of the motor-propeller groups.

In addition, the TRMS is an underactuated system. This implies that the number of variables
that act as control inputs (voltages applied to the main and the tail rotor;  and  respectively)

is lower than the number of degrees of freedom (DoF) of the system. The DoF are: the pitch
() and the yaw () angles, both measured by digital encoders, as well as the angular velocities
of the rotors ( for the main rotor and for the tail), both measured by DC tachometers.

Finally, we have to remark that the laboratory platform is locked mechanically, so it cannot
move more than ±2.82 rad in the horizontal plane from −1.05 to +1.22 rad in the vertical plane
[22]. In other words, −2.82 rad ≤  ≤ + 2.82 rad and −1.05 rad ≤  ≤ + 1.22 rad.

2.1. Dynamic model of the TRMS

The development of an efficient control algorithm requires a model that represents the dynamic
behaviour of the platform under study as accurately as possible. In the particular case of the
Twin Rotor MIMO System, the modelling has been addressed from several approaches [7–
13]. However, not all of them provide a model that represents the entire complex dynamic
behaviour of this experimental platform. For instance, models based on identification techni-
ques have difficulties in representing the effects of coupling, which are characteristic in this
platform [7], and neuronal networks and learning algorithms allow obtaining accurate models,
but limited to a range of input values and frequencies [11]. Based on previous works developed
for the dynamic model of this platform [13, 22–24], a detailed dynamic model of the TRMS has
been developed by dividing the whole dynamics of the system in their electrical and mechan-
ical parts. This approach allows not only to adequately capture the complex dynamics
behaviour of the TRMS but also the development of novel control algorithms based on nested
feedback loops that offer a higher performance than classical control schemes. Moreover, the
use of the Euler-Lagrange method in the modelling of the mechanical structure of the TRMS
allows a higher adjustment with the real control laboratory platform in comparison with other
analytical methods based on the Newtonian approach [25]. The dynamic modelling has been
developed in two stages and validated by our research group by means of experimental
identification trials. It is presented in the following subsections. The first subsection illustrates
the dynamic model of the electrical part, and the second depicts the dynamic model of the
mechanical part of the system.

2.1.1. Dynamics of the electrical part

The electrical part of the system is formed by the interface circuit and the DC motors of the
main and tail rotors. The interface circuit is the internal electrical circuit that adapts the input
control voltages, applied in MATLAB®/Simulink® ( for the main rotor and  for the tail

rotor), to the actual voltage value of the DC motors ( for the main rotor and  for the tail
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rotor). This interface can be modelled as a linear relationship [13], obtaining the following
result:

v =
mm u mk u (1)

v =
tt u tk u (2)

where  and  denote the constant gains for the main and tail rotors, respectively. With

regard to the DC motors, there are two identical permanent magnet motors, one in each rotor
of the TRMS, with the only difference of the mechanical loads (the propellers). Bearing in mind
that the dynamics of the motor´s current can be neglected [13], the DC motor dynamics for the
main rotor and the tail rotor are the following ones:

vv w= +
mm m m mR i k (3)

vv w= +
tt t t tR i k (4)

where  and  are the motor currents (the subscripts m and t mean “main” and “tail”), 
and  represent the motor resistances, and  and  denote the electromotive

forces of each motor ( and  represent the angular velocities of the each motor). On the

other hand, the electromechanical balance of the torques acting on each motor is expressed

as:

1 vw w w w= - -&
m m mm m t m m Q m mI k i f C (5)

1 vw w w w= - -&
t t tt t t t t Q t tI k i f C (6)

being 1 and 1 are the moment of the inertia rotors,  and  denote the electrome-

chanical torques generated by the DC motors,  and  are the friction torques and   and    illustrate the aerodynamic torques.

After substituting the expression for the current intensity of the respective motors [obtained
from Eqs. (3) and (4)] and the linear relationships for the interface circuit Eqs. (1) and (2), in
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Eqs. (5) and (6), and after operating and rearranging terms, the following two equations are
yielded for the main and tail rotors of the TRMS:
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The dynamics of the electrical part of the TRMS is now expressed in a matrix form, using the
following compact notation:

( ) ( ) ( )( )t t t= + Γ&ω Nu ω (9)

where ω  = ,  and u  = ,   represent the vector of angular velocities and the

input control voltages, respectively, and, N= 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵(,   ) and  () = ,   are defined
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Finally, in order to complete the dynamic model of the electrical part of the TRMS, Tables 1
and 2 show the parameters used in the model, indicating the description of the parameters,
their values and their corresponding units. These values, which are based on the data presented
in [13], have been experimentally tuned and validated in the dynamics identification tests that
we have performed during our research.
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Eqs. (5) and (6), and after operating and rearranging terms, the following two equations are
yielded for the main and tail rotors of the TRMS:
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The dynamics of the electrical part of the TRMS is now expressed in a matrix form, using the
following compact notation:

( ) ( ) ( )( )t t t= + Γ&ω Nu ω (9)

where ω  = ,  and u  = ,   represent the vector of angular velocities and the

input control voltages, respectively, and, N= 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵(,   ) and  () = ,   are defined
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Finally, in order to complete the dynamic model of the electrical part of the TRMS, Tables 1
and 2 show the parameters used in the model, indicating the description of the parameters,
their values and their corresponding units. These values, which are based on the data presented
in [13], have been experimentally tuned and validated in the dynamics identification tests that
we have performed during our research.
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Symbol Parameter Value Units Motor velocity constant 0.0202 V rad−1 s Motor armature resistance 8 Ω Motor armature inductance 0.86 × 10−3 H Electromagnetic constant torque motor 0.0202 N m   A−1 Coefficient linear relationship interface circuit 8.5 −
+ Load factor ( ≥ 0) 2.695 × 10−7 N m s2 rad−2
− Load factor ( < 0) 2.46 × 10−7 N m s2 rad−2 Viscous friction coefficient 3.89 × 10−6 N m rad−1 s1 Moment of inertia about the axis of rotation 1.05 × 10−4 kg m2
Table 1. Parameters of the main rotor.

Symbol Parameter Value Units Motor velocity constant 0.0202 V rad−1 s Motor armature resistance 8 Ω Motor armature inductance 0.86 × 10−3 H Electromagnetic constant torque motor 0.0202 N m A−1 Coefficient linear relationship interface circuit 6.5 − Load factor 1.164 × 10−8 N m s2 rad−2 Viscous friction coefficient 1.715 × 10−6 N m rad−1 s1 Moment of inertia about the axis of rotation 2.1 × 10−5 kg m2
Table 2. Parameters of the tail rotor.

2.1.2. Dynamics of the mechanical part

In the development of the dynamic model of the mechanical part, we consider the mechanics
of the TRMS as an assembly of the following three components explained next. The first
component is formed by the two rotors, their shields and the free-free beam that links together
both rotors. The second component consists in the counterbalance and counterweight beam,
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and finally, the third component is the pivoted beam. Figure 2 helps to clarify the different
components considered in the dynamics of the mechanical part of the system. From the
previous division, and bearing in mind the notation used in Figures 3 and 4, the development
of the dynamic model is achieved by means of the application of the Euler-Lagrange formu-
lation. It can be summarised in the following steps:

1. Resolution of the forward kinematics of the three subsystems.

2. Evaluation of the kinetic energy.

3. Evaluation of the potential energy.

4. Obtaining the equations of motion.

Figure 2. Twin rotor MIMO system (TRMS) prototype platform.
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Figure 3. View of the TRMS on a vertical plane.

Figure 4. View of the TRMS on a horizontal plane.
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2.1.2.1. Resolution of the forward kinematics of the system

The problem of direct kinematics of the TRMS consists in determining the spatial position of
the three subsystems considered, according to the reference system located in the upper part
of the platform (see Figures 3 and 4). Using the Denavit-Hartenberg method, we can express
the position of a point on each subsystem (1, 2, 3) parameterised by 1, 2, 3, which
represents the distances between the considerate points and the reference system associated
to each subsystem. The results of these positions are expressed in the following three equations
(where:  ≡ sin,  ≡ cos,  ≡ sin and  ≡ cos):

1 1 1 1 1 1 1 
x y z

T T
P P P R S C hC R C C hS R Sf y f f y f y
é ù é ù= = - + +ê ú ë ûë û

P (12)

2 2 2 2 2 2 2 
x y z

T T
P P P R S S hC R C S hS R Cf y f f y f y
é ù é ù= = - + + -ê ú ë ûë û

P (13)

3 3 3 3 3 3 0
x y z

T T
P P P R C R Sf f
é ù é ù= =ê ú ë ûë û

P (14)

2.1.2.2. Evaluation of the kinetic energy

In order to carry out the evaluation of the total kinetic energy of the TRMS, it is necessary to
calculate the kinetic energy corresponding to each of the three subsystems previously defined.
Starting with the first subsystem, its kinetic energy, T1, yields:

( ) ( ) 1 1 1

2 2 2 2 2 2
1 1 1 1

1 1 1
2 2 2y yf y f fy= = + + -ò & & && &T T TT dm R J C h m hS l mv (15)

( )2 2 2 2 2 2 2
1 1 1 1  2 y yf y fy= + + -& && &R C h R R hSv (16)

where  and  represent the yaw and the pitch angle, respectively, and mT1
, lT1

, and J1 are
obtained from the following expressions:

11 m mr ms t tr ts( ) Tdm R m m m m m m m= + + + + + =ò (17)

1
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t m
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T

m mm m l m m lR dm R
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mdm R

æ ö æ ö+ + - + +ç ÷ç ÷
è øè ø= =ò

ò
(18)

2 2 2 2
1 t tr ts m mr ms ts ts ms ms

1 1 1 
3 3 2t mJ m m m l m m m l m r m ræ ö æ ö= + + + + + + +ç ÷ ç ÷

è ø è ø
(19)
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On the other hand, the kinetic energy for the second subsystem, T2, results in:

( ) ( ) 2 2 2

2 2 2 2 2 2
2 2 2 2

1 1 1
2 2 2y yf y f fy= = + + +ò & & && &T T TT dm R J S h m hC l mv (20)

( )2 2 2 2 2 2 2
2 2 2 2  2 y yf y fy= + + +& && &R S h R R hCv (21)

in which the terms 2, 2 and J2 are the following:

22 b cb( ) Tdm R m m m= + =ò (22)

2
2

b cb2 2

2

   ( )
2

( )

b
mcb

T
T

lm m lR dm R
l

mdm R

+
= =ò
ò

(23)

2 2
2 b cb

1  
3 b cbJ m l m l= + (24)

On the other hand, the kinetic energy for the third subsystem, T3, gives the following result:

( )2 2
3 3 3 3

1 1
2 2

f= =ò &T dm R Jv (25)

2 2 2
3 3 f= &Rv (26)

being 3 = 13ℎℎ2 .
Finally, the total kinetic energy of the TRMS, T, is obtained as the sum of the kinetic energy of
each subsystem (Eqs. (15), (20) and (25)). One obtains the following result:
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2.1.2.3. Evaluation of the potential energy

Following a similar procedure to the one used in the computation of the kinetic energy, the
total potential energy of the TRMS, V, consists of the sum of the potential energy of each of the
three subsystems, the free-free beam (including rotors and shields), the counterbalance beam
and the pivoted beam. The following result is obtained:

( )1 1 2 21 2 3 T T T TV V V V g S l m C l my y= + + = - (28)

where:

( ) ( ) ( )
1 1 11 1 1 1 1zz T TV g r R dm R g P dm R gS l my= = =ò ò (29)

( ) ( ) ( )
2 2 22 2 2 2 2zz T TV g r R dm R g P dm R gC l my= = = -ò ò (30)

( ) ( ) ( )
33 3 3 3 3 0

zzV g r R dm R g P dm R= = =ò ò (31)

2.1.2.4. Equations of motion of the TRMS

The last step in the mechanical dynamic model of the TRMS is obtaining the equations of
motion of the system. The first step is the computation of the Lagrangian of the system, defined
as the difference between the total kinetic energy, defined in Eq. (27), and the total potential
energy, defined in Eq. (28), yielding the following:
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(32)

Once the Lagrangian function has been obtained, the equations of motion of the TRMS can be
derived using Lagrange’s formulation:

iv
d L L M
dt y y
æ ö¶ ¶

- =ç ÷¶ ¶è ø å&
(33)
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Once the Lagrangian function has been obtained, the equations of motion of the TRMS can be
derived using Lagrange’s formulation:

iv
d L L M
dt y y
æ ö¶ ¶

- =ç ÷¶ ¶è ø å&
(33)

Nonlinear Systems - Design, Analysis, Estimation and Control276

ih
d L L M
dt ff
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(34)

where ∑𝀵𝀵𝀵𝀵 and ∑𝀵𝀵𝀵𝀵 represent the sum of the torques of the external forces along the vertical

and horizontal axes, respectively. The following expressions illustrate several partial results
necessary to achieve the equations of motion represented by Eqs. (33) and (34):
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The sum of the external torques in the vertical axis is shown next:
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where  =    expresses the aerodynamic thrust torque caused by the rotation

of the main propeller,  =    denotes the load torque created by air resistance in the

tail rotor,  = ̇ + 𝀵𝀵𝀵𝀵𝀵𝀵 ̇  represents the load torque as a result of the friction

(including the viscous effects and the Coulomb friction), and  = ̇ represents the inertial

counter torque that is caused by the reaction produced by a change in the rotational speed of
the tail rotor.

On the other hand, the sum of the external torques in the horizontal axis is as follows:
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where  =    expresses the aerodynamic thrust torque of the tail propeller, =    represents the load torque created by air resistance in the main rotor, = (̇ + 𝀵𝀵𝀵𝀵𝀵𝀵(̇)) denotes the load torque as a result of the friction (including the

viscous effects and the Coulomb friction),  = ( 𑨒𑨒 0) is the magnitude of torque exerted

by the cable (it has a certain stiffness that allows to model it as a spring)), and finally = ̇ represents the inertial counter torque that is caused by the reaction produced

by a change in the rotational speed of the main rotor.

Upon merging Eq. (33) to Eq. (42), and after performing some rearrangements, one obtains the
following result for the equations of motion:
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If we use matrix notation, the dynamic model of the mechanical part of the TRMS can be
expressed in a compact form:

 (45)

in which () = (),   ()  is the vector of generalised coordinates of the TRMS,() = (),   ()  is the angular velocity vector, and the matrices (()), ((), ̇()),(()), and the vectors () and ((), ̇(), ̇()) are given by:
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expressed in a compact form:

 (45)

in which () = (),   ()  is the vector of generalised coordinates of the TRMS,() = (),   ()  is the angular velocity vector, and the matrices (()), ((), ̇()),(()), and the vectors () and ((), ̇(), ̇()) are given by:
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Finally, after substituting Eqs. (51)–(53) into Eq. (50), the following yields:
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Symbol Parameter Value Unitst Length of the tail part of the free-free beam 0.282 mm Length of the main part of the free-free beam 0.246 mb Length of the counterbalance beam 0.290 mcb Distance between the counterweight and the join 0.276 mms Radius of the main shield 0.155 mts Radius of the tail shield 0.1 mℎ Length of the pivoted beam 0.06 mtr Mass of the tail DC motor and tail rotor 0.221 kgmr Mass of the main DC motor and main rotor 0.236 kgcb Mass of the counterweight 0.068 kgt Mass of the tail part of the free-free beam 0.015 kgm Mass of the main part of the free-free beam 0.014 kgb Mass of the counterbalance beam 0.022 kgts Mass of the tail shield 0.119 kgms Mass of the main shield 0.219 kgh Mass of pivoted beam 0.01 kg

Table 3. Mechanical parameters.

Symbol  Parameter Value Units+ Thrust torque coefficient of the main rotor ( ≥ 0) 1.53 × 10−5 N s2 rad−2
− Thrust torque coefficient of the main rotor ( < 0) 8.8 × 10−6 N s2 rad−2 Load torque coefficient of the tail rotor 9.7 × 10−8 N m s2 rad−2 Viscous friction coefficient 0.0024 N m s rad−1 Coulomb friction coefficient 5.69 × 10−4 N mt Coefficient of the inertial counter torque created by the change in  2.6 × 10−5 N m s2 rad−1
Table 4. Parameters of the pitch movement.

Nonlinear Systems - Design, Analysis, Estimation and Control280



Symbol Parameter Value Unitst Length of the tail part of the free-free beam 0.282 mm Length of the main part of the free-free beam 0.246 mb Length of the counterbalance beam 0.290 mcb Distance between the counterweight and the join 0.276 mms Radius of the main shield 0.155 mts Radius of the tail shield 0.1 mℎ Length of the pivoted beam 0.06 mtr Mass of the tail DC motor and tail rotor 0.221 kgmr Mass of the main DC motor and main rotor 0.236 kgcb Mass of the counterweight 0.068 kgt Mass of the tail part of the free-free beam 0.015 kgm Mass of the main part of the free-free beam 0.014 kgb Mass of the counterbalance beam 0.022 kgts Mass of the tail shield 0.119 kgms Mass of the main shield 0.219 kgh Mass of pivoted beam 0.01 kg

Table 3. Mechanical parameters.

Symbol  Parameter Value Units+ Thrust torque coefficient of the main rotor ( ≥ 0) 1.53 × 10−5 N s2 rad−2
− Thrust torque coefficient of the main rotor ( < 0) 8.8 × 10−6 N s2 rad−2 Load torque coefficient of the tail rotor 9.7 × 10−8 N m s2 rad−2 Viscous friction coefficient 0.0024 N m s rad−1 Coulomb friction coefficient 5.69 × 10−4 N mt Coefficient of the inertial counter torque created by the change in  2.6 × 10−5 N m s2 rad−1
Table 4. Parameters of the pitch movement.

Nonlinear Systems - Design, Analysis, Estimation and Control280

Symbol  Parameter Value Units+ Thrust torque coefficient of the tail rotor ( ≥ 0) 3.25 × 10−6 N s2 rad−1
− Thrust torque coefficient of the tail rotor ( < 0) 1.72 × 10−6 N s2 rad−2
+ Load torque coefficient of the main rotor ( ≥ 0) 4.9 × 10−7 N m s2 rad−2
− Load torque coefficient of the main rotor ( < 0) 4.1 × 10−7 N m s2 rad−2 Viscous friction coefficient 0.03 N m s rad−1 Coulomb friction coefficient 3 × 10−4 N m Coefficient of the elastic force torque created by the cable 0.016 N m rad−10 Constant for the calculation of the torque of the cable 0 rad Coefficient of the inertial counter torque created by the change in  2 × 10−4 N m s2 rad−1
Table 5. Parameters of the yaw movement.

Finally, in order to complete the dynamic modelling for the mechanical part of the TRMS,
Tables 3–5 show in detail the parameters used in the model. For each parameter, its descrip-
tion, its value and the corresponding units is included. The initial approximation of these
values was based in the developments described in [13]. Additionally, some values of the pa-
rameters have been tuned by carrying out several identification trials.

3. Design of the control system

In this section, the proposed nonlinear control for the TRMS platform is described. The
proposed control is based on the division between the electrical and mechanical dynamics of
the system and uses a cascade-type nonlinear control algorithm. Figure 5 displays the
proposed control scheme. As it can be observed, the proposed design is composed of two
independent stages (or control loops) that are utilised to achieve stabilisation and precise
trajectory tracking tasks for the controlled position of the generalised system coordinates. It
should be noted that the proposed solution has been designed to overcome one of the limita-
tions of the TRMS, which is the fact of being an underactuated system. As result of this fact, it
only has two control actions (the input voltages of the main and tail rotors) to control the four
degrees of freedom of the system (the pitch and yaw angles, and the angular velocities of the
propellers). In this way, in order to meet this objective, once the dynamics of the TRMS have
been decoupled, a nonlinear multivariable inner loop is closed to control the vector of the
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angular velocities, and then, a nonlinear multivariable outer loop is closed to control the vector
of the generalised coordinates of the system. This solution, based on a control scheme with
two nested loops, allows a simplification in the design procedure as a result of its division into
two simpler processes. Moreover, the scheme can be implemented more easily and safely than
the standard controllers.

Figure 5. Nonlinear control scheme for the TRMS.

In the following subsections we describe the specifications and objectives of each control loop,
defined as the inner loop or electrical controller and the outer loop or mechanical controller.

3.1. Inner loop control

The objective of the inner loop control is to determine the input voltages of the main and tail

rotors (simulated in the MATLAB®/Simulink® environment), () = ,  , in order to

eliminate the difference between the vector of reference angular velocities, *() = * ,* ,
calculated in the outer loop stage (as will be described in the next subsection), and the current

vector of angular velocities of the propellers of the TRMS, () = , .

The magnitude of the input control voltage vector, (), necessary to achieve an asymptotically
stable convergent behaviour of the tracking error trajectories, is calculated as the following
nonlinear control law:

( ) ( ) ( )1 ( )- é ù= -ë ûγ Γt t tweu N (55)
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where N and  ()  where defined in Eqs. (10) and (11), respectively, and   = γ, γ 
represents a vector of auxiliary control inputs, given by the following expression:

(56)

where  ∈ ℝ2 × 2 is a constant diagonal positive definite matrix that represents the design

elements of a vector-valued classical proportional controller and   = () − *() is the
angular velocity error vector, which satisfies the following predominantly linear dynamic:

(57)

Finally, the coefficients of the matrix KPe are chosen so as to render the closed-loop characteristic
polynomial vectors into a Hurwitz polynomial vector with desirable roots.

3.2. Outer loop control

The aim of the outer loop control (mechanical controller) is to determine the required values

for the angular velocities of the two rotors, ω* () = * ,* , which will be the reference
inputs of the electrical loop (described in the above subsection), in order to eliminate the

difference between the generalised coordinates of the TRMS, q() = ,  , and the reference

trajectories for the generalised coordinates of the TRMS q* () = *, *  .
As a previous step for determining the mechanical control law, a simplification in the dynamic
mechanical modelling of the TRMS has been considered. If we assume that the movement of
the platform is sufficiently smooth, the terms of the inertial counter torques, which are caused
by the reaction produced by the changes in the rotational speed of each rotor,  = ̇ and = ̇ included in Eqs. (53) and (54), can be considered negligible in comparison with

the other terms. In this way, the dynamic equation of the mechanical part of the TRMS can be
rewritten as:

( )( ) ( ) ( ) ( )( ) ( )( ) ( ),+ = Ω&& &t t t t t tM q q D q q E q (58)

where the matrices (()), (()), and () were defined in the previous section and the new

matrix ((), ̇()) = ,  is given by:

( ) ( ) ( )( )1 1 2 2
2

1 2 2
1
2 vy yy y y yf y y= - + + + +& & &T T T T cD J J S g l m C l m S f f sgn (59)
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( ) ( )( ) ( )( ) ( )
1 1 2 2

2
2 1 2 0vf ff y y yy fy f f f f= - + + - + + + -& & && &T T T T c cD h l m C l m S J J S f f sgn C (60)

The following nonlinear feedback control input vector, (), is synthesised as a multivariable
proportional-derivative (PD) controller with a cancellation term:

( ) ( )( ) ( )( ) ( ) ( ) ( )( )1 ,t t t t t t- é ù= +ë ûΩ γ &mE q M q D q q (61)

where () = γ, γ  is given by the following expression:

( ) ( ) ( ) ( )( ) ( ) ( )  ( ) ( )= = - - - -γ && && &&t t t t t t t* m * m *
m D Pq q K q q K q q (62)

in which  and  ∈ ℝ2 × 2 are the diagonal positive definite matrices that represent the

design elements of a vector-valued classical PD controller. Thereby, for the mechanical part,
the closed loop tracking error vector, () = () − *(), evolves governed by:

( ) ( ) ( ) 0+ + =& && t t tm m
q D q P qe K e K e (63)

The controller design matrices  and  have been selected based in the philosophy used

for the electrical controller. They must be selected to render closed-loop characteristic poly-
nomial vectors into a Hurwitz polynomial vector with desirable roots. Finally, the necessary

angular velocity vector values, *() = * ,* , are obtained from the input control vector,() =     , by performing the following operation:

( )
( )

( )

*

*

m m m mm

t t t t t

sgn
t

sgn

w w w ww

w w w w w

é ù×é ù ê úê ú= = ê úê ú ×ê úë û ë û

*ω (64)

4. Results

This section describes the numerical simulations carried out in the MATLAB®/Simulink®

environment for the sake of verifying the efficiency of the proposed control approach in terms
of quick convergence of the tracking errors to a small neighbourhood of zero, smooth transient
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responses and low control effort. In the simulations, the desired reference trajectory for the
pitch () and the yaw () angles have been defined by the next expression:

( )
( ) ( )( )

( ) ( ) ( )( )
* 0 1 1 2

*
1 1 2 2 3

2sin sin

sin sin sin

A A t t
t

A t A t t

y y y y

f f f f f

w wy

f w w w

é ù+ +é ù ê ú
ê ú= = ê ú
ê ú ê ú+ +ë û ê úë û

*q (65)

where *() = *(), *()  is the reference trajectory vector of the generalised coordinates,
and the values of the constants used in the above expressions are given by:

0 1 1 20.4 rad; 0.1 rad; 0.8 rad; 0.3 rad;A A A A
y y f f

= = = = (66)

1 20.0785 rad/s; 0.0157 rad/s;
y y

w w= = (67)

1 2 30.157 rad/s; 0.0785 rad/s;  0.0157 rad/s;
f f f

w w w= = = (68)

On the other hand, the values used in the simulation of the dynamic model of the TRMS,
electrical parameters (main and tail rotors), mechanical parameters and dimensional param-
eters of the platform are detailed in Tables 1–5. The initial position of the TRMS has been

defined as 0() = 0, 0  = 0, 0  rad, representing a different value of the initial position

than the reference trajectory vector. This choice of the starting position has been made to
demonstrate the exponential convergence of the desired trajectories. With regard to the
controller design parameters, it must be remarked that they have been selected to make the
dynamics of the inner loop much faster than the outer loop dynamics, all this in order to ensure
the functioning of the cascade controller [26]. The resulting values are as follows:

(10.5, 6.2);diag=e
PK (69)

( )8.20, 3.85 ; (13.20, 2.205);diag diag= =m m
D PK K (70)

Figures 6 and 7 show the performance of the proposed control scheme. Figure 6 illustrates a

comparative between the desired trajectory, *() = *(), *() , and the real trajectory of the

TRMS, () = (), () . The difference between these trajectories, or, in other words, the

error vector of generalised coordinates, () = () − *() = () − *(), () − *() , is

represented in Figure 7. The exponential convergence of the desired trajectories is observed,
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with the error bounded to a small neighbourhood to zero, and the robustness against large
initial errors.

Figure 6. Real and desired evolution of the vector of generalised coordinates of the TRMS, () = (), () .

Figure 7. Evolution of the error vector of the generalised coordinates of the TRMS,() = () − *() = () − *(), () − *() .

Another graph that shows the excellent performance of the outer control loop is shown in
Figure 8, where the auxiliary control input vector of the mechanical proportional-derivative
(PD) controller (Eq. (62)) can be observed. This figure shows the quick convergence of the
auxiliary control inputs of the mechanical controller to a small value of the origin in the
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reference trajectory tracking vector error phase space, (), in a globally asymptotic expo-

nential dominated manner.

Figure 8. Evolution of the auxiliary control input vector of the mechanical multivariable PD controller,() = γ(), γ() .

Figure 9. Real and desired evolution trajectories of the angular velocity vector, *() = * (),  *()  and() = (),  () .

Nonlinear Cascade-Based Control for a Twin Rotor MIMO System
http://dx.doi.org/10.5772/64875

287



Figure 10. Evolution of the angular velocity error vector, () = () − *() = [() − * (),() − *()] .

Figure 11. Evolution of the input voltage vector of the TRMS, () = (),  () .

On the other hand, the efficiency of the inner loop control (electrical controller) is depicted in
Figure 9, including a comparative between the reference angular velocity vector,*() = * (), *() , obtained from the output of the outer loop, and the real magnitudes
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of angular velocity vector, () = (), () . The evolution of the angular velocity error

vector, () = () − *() = () − * (), () − *() , is also shown in Figure 10.

To conclude this section, the input voltages in the MATLAB®/Simulink® environment,() = (), () , for the main and tail rotors, are represented in Figure 11. From these
graphs, it can be observed that the proposed control scheme has been realised to avoid
saturations on these voltages, which in the simulation MATLAB®/Simulink® environment have
been set to ±2.5 V (similarly to the real prototype platform).

5. Conclusions

In this research, a novel nonlinear cascade-based control has been developed for the TRMS
platform. The performance of the controller shows very satisfactory results in terms of
convergence of the tracking errors for the generalised coordinates of the TRMS to a small
neighbourhood to zero, smooth transient responses, low control efforts and robustness against
large initial errors and parametric uncertainties in the model. The proposed control is an
important base for the subsequent design of novel robust control algorithms in UAV platforms,
which interest is notably increasing in recent years thanks to their multiple possibilities and
applications. This will be the topic of our future research.
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Abstract

In this chapter, the well-known non-autonomous chaotic system, the Birkhoff-Shaw,
which exhibits the structure of beaks and wings, typically observed in chaotic neuronal
models, is used in a coupling scheme. The Birkhoff-Shaw system is a second-order non-
autonomous dynamical system with rich dynamical behaviour, which has not been
sufficiently studied. Furthermore, the master-slave (unidirectional) coupling scheme,
which is used, is designed by using the nonlinear controllers to target synchronization
states, such as complete synchronization and antisynchronization, with amplification
or attenuation in chaotic oscillators. It is the first time that the specific method has been
used in coupled non-autonomous chaotic systems. The stability of synchronization is
ensured by using Lyapunov function stability theorem in the unidirectional mode of
coupling.  The  simulation  results  from  system’s  numerical  integration  confirm  the
appearance  of  complete  synchronization  and  antisynchronization  phenomena
depending on the signs of the parameters of the error functions. Electronic circuitry that
models the coupling scheme is also reported to verify its feasibility.

Keywords: chaos, complete synchronization, antisynchronization, anidirectional cou-
pling, nonlinear controller

1. Introduction

In the past decades, the phenomenon of synchronization between coupled nonlinear systems
and especially of systems with chaotic behaviour has attracted scientists' interest from all over
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the world because it is an interesting phenomenon with a broad range of applications, such
as  in  various  complex  physical,  chemical  and  biological  systems  [1–9],  in  secure  and
broadband communication system [10, 11] and in cryptography [12, 13].

In synchronization two or more systems with chaotic behaviour can adjust a given of their
motion property to a common behaviour (equal trajectories or phase locking), due to forcing
or coupling [14]. However, having two chaotic systems being synchronized, it is a major
surprise, due to the exponential divergence of the nearby trajectories of the systems. Never-
theless, nowadays the phenomenon of synchronization of coupled chaotic oscillators is well-
studied theoretically and proven experimentally.

Synchronization theory has begun studying in the 1980s and early 1990s by Fujisaka and
Yamada [15], Pikovsky [16], Pecora and Carroll [17]. Onwards, a great number of research
works based on synchronization of nonlinear systems has risen and many synchronization
schemes depending on the nature of the coupling schemes and of the interacting systems have
been presented. Complete or full chaotic synchronization [18–23], phase synchronization [24,
25], lag synchronization [26, 27], generalized synchronization [28], antisynchronization [29,
30], anti-phase synchronization [31–36], projective synchronization [37], anticipating [38] and
inverse lag synchronization [39] are the most interesting types of synchronization, which have
been investigated numerically and experimentally by many research groups.

This chapter deals with two of the aforementioned cases: the complete synchronization and
the antisynchronization. In the case of complete synchronization, two identically coupled
chaotic systems have a perfect coincidence of their chaotic trajectories, i.e., x1(t) = x2(t) as t →
∞. In the case of antisynchronization, for initial conditions chosen from large regions in the
phase space two coupled systems x1 and x2, can be synchronized in amplitude, but with
opposite sign, that is x1(t) = –x2(t) as t → ∞.

From our knowledge, chaotic systems exhibit high sensitivity on initial conditions or system’s
parameters and if they are identical and start from almost the same initial conditions, they
follow trajectories which rapidly become uncorrelated. That is why many techniques exist to
obtain chaotic synchronization. So, many of these techniques for coupling two or more
nonlinear chaotic systems can be mainly divided into two classes: unidirectional coupling and
bidirectional or mutual coupling [40]. In the first case, only the first system, the master system,
drives the second one, the slave system, while in the second case, each system’s dynamic
behaviour influences the dynamics of the other.

Furthermore, the subject of synchronization between coupled chaotic systems, especially in
the last decade, plays a crucial role in the field of neuronal dynamics [6, 41]. Neural signals in
the brain are observed to be chaotic and it is worth considering further their possible synchro-
nization [42–46]. These signals are produced by nerve membranes exhibiting their own
nonlinear dynamics, which generate and propagate action potentials. Such nonlinear dynam-
ics in nerve membranes can produce chaos in neurons and related bifurcations.

So, motivated by the aforementioned fact, the Birkhoff-Shaw system [45], which exhibits the
structure of beaks and wings, typically observed in chaotic neuronal models, is chosen for use
in this chapter. It is a second order non-autonomous dynamical system with rich dynamical
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behaviour, which has not been sufficiently studied. Furthermore, the unidirectional coupling
scheme, which is used, is designed by using the nonlinear controllers to target synchronization
states, such as complete synchronization and antisynchronization, with amplification or
attenuation in chaotic oscillators. The stability of synchronization is ensured by using Lyapu-
nov function stability theorem in the unidirectional mode of coupling. The simulation results
from system’s numerical integration confirm the appearance of complete synchronization and
antisynchronization phenomena depending on the signs of the parameters of the error
functions. Electronic circuitry that models the coupling scheme is also reported to verify its
feasibility.

This chapter is organized as follows. In Section 2, the features of chaotic systems and especially
of the proposed Birkhoff-Shaw system by using various tools of nonlinear theory, such as
bifurcation diagrams, phase portraits and Lyapunov exponents, are explored. The synchroni-
zation scheme, by using the nonlinear controller, as well as the unidirectional coupling scheme
is discussed in Sections 3 and 4, respectively. The simulation results of the proposed method
are presented for various cases in Section 5. Section 6 presents the circuital implementation of
the coupling scheme and the results which are obtained by using the SPICE. Finally, the
conclusive remarks and some thoughts for future works are drawn in the last section.

2. The Birkhoff-Shaw chaotic system

As it is known, chaos theory studies systems that present three very important features [46, 47]:

• its periodic orbits must be dense,

• it must be topologically mixing and

• it must be very sensitive on initial conditions.

In more details, the periodic orbits of a chaotic system have to be dense and that means that
the trajectory of a dynamical system is dense, if it comes arbitrarily close to any point in the
domain. The second feature of chaotic systems, the topological mixing, means that the chaotic
trajectory at the phase space will move over time so that each designated area of this trajectory
will eventually cover part of any particular region. Additionally, the third feature, which is the
most important feature of chaotic systems, is the sensitivity on initial conditions. When a small
variation on a system’s initial conditions exists, a totally different chaotic trajectory will be
produced.

Here, as it is mentioned above, the well-known non-autonomous chaotic system of Birkhoff-
Shaw, which has been proposed by Shaw in 1981 [45], is used. The Birkhoff-Shaw system is
described by the 2-D system of differential equations:

2
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where x and y are the states variables and a, B, c and d are positive parameters.

Figure 1. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 1.

Figure 2. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 1.

In this section, the system’s dynamic behaviour is investigated numerically by employing a
fourth order Runge-Kutta algorithm. As a first step in this approach, the bifurcation diagram
and the Lyapunov exponents, which are very useful tools from nonlinear theory, are used. In
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Figures 1–8, two sets of bifurcation diagrams of the variable x versus the parameter B, for c =
0.1 and c = 0.2 and for various values of the parameter d, are displayed. The above bifurcation
diagrams show the richness of system’s dynamical behaviour. Apart from limit cycles, system
(1) has quasiperiodicity and chaos, which makes the system’s control a difficult target in
practical applications where a particular dynamic is desired.

Figure 3. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 1.5.

Figure 4. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 1.5.
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Figure 5. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 2.

Figure 6. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 2.
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Figure 7. Bifurcation diagram of x versus B, for a = 1, c = 0.1 and d = 3.

Figure 8. Bifurcation diagram of x versus B, for a = 1, c = 0.2 and d = 3.
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In greater detail, having small values of the parameter d (i.e. d = 1) the system begins from a
quasiperiodic state and as the amplitude B of the external force increases, the system passes
to a stable periodic behaviour of period-1 (Figures 1 and 2). For example, in the case of a = 1,
c = 0.1 and d = 1, the Lyapunov exponents (LEs) for two respective values of B in the regions of
quasiperiodic and periodic regions are:

• for B = 0.1 (quasiperiodic state): LE1 = 0.000, LE2 = 0.000, LE3 = -1.516

• for B = 2 (periodic state): LE1 = 0.000, LE2 = -0.996, LE3 = -80.998

According to the nonlinear theory, if the number of zeros of LEs is one or two then the system
is in periodic or quasiperiodic behaviour, respectively. So, the calculation of Lyapunov
exponents plays a crucial role to the estimation of the dynamic behaviour of the proposed
system.

However, as the value of the parameter d increases the system’s complexity is also in-
creased. For d = 1.5 (Figures 3 and 4) in both cases of c = 0.1 and c = 0.2, the range of quasi-
periodic region has been significantly enlarged, as compared to the previous case (d = 1).
Nevertheless, with the end of this region, system’s behaviour alternates between periodic
and chaotic ones. The chaotic regions are detected by finding one positive Lypaunov expo-
nent (i.e. for a = 1, B = 2.8, c = 0.1 and d = 1.5, the Lypaunov exponents are: LE1 = 0.157, LE2

= 0.000, LE3 = -1.626). Finally, the system passes from a quasiperiodic state to a stable peri-
odic (period-1) one again.

System’s behaviour remains almost the same as the value of parameter d (i.e. d = 2) increases
(Figures 5 and 6). However, two important conclusions could be drawn. The first is that the
chaotic regions have been enlarged, while the second is that the quasiperiodic region, before
the final system’s periodic state, has been significantly decreased.

Finally, if the value of parameter d has been further increased(i.e. d = 3) then the chaotic regions
have also been increased while the respective periodic regions have been significantly
decreased. Also, the system suddenly passes from chaotic to the final periodic behaviour, as
it is shown in the bifurcation diagram of Figures 7 and 8.

In these diagrams, the region of period-3 dominates, which is characteristic of system’s chaotic
behaviour. Also, this region reveals two more important phenomena from nonlinear theory.
Firstly, this window of period-3 begins with a sudden transition from a chaotic to periodic
behaviour, which in this case is known as Intermittency [48] and ends with an Interior Crisis [49,
50] that causes intermittency induced from crisis.

In Figures 9–12, the phase portraits for various values of the parameter B, in the case of a =
1, c = 0.2 and d = 3, are presented. In more details, Figure 9 shows the quasiperiodic attrac-
tor, that the system is in for low values of the amplitude B (B = 0.5) of the external sinusoi-
dal source, while Figures 10 and 12 display the system’s periodic attractors of period-3 (B =
3) and period-1 (B = 9), respectively. Finally, in Figure 11 the system’s chaotic attractor for B
= 7 is presented.
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Figure 9. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 0.5 (quasiperiodic behaviour).

Figure 10. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 3 (periodic behaviour).
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Figure 11. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 7 (chaotic behaviour).

Figure 12. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 9 (periodic behaviour).
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Figure 12. Phase portrait of y versus x, for a = 1, c = 0.2, d = 3 and B = 9 (periodic behaviour).
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3. The proposed coupling scheme

Two identical unidirectionally coupled chaotic systems can be described by the following
system of differential equations:

( )
( )

X

Y

x f x U
y f y U

ì
í
î

= +
= +
&

&

(2)

where (f(x), f(y)) ∈ Rn are the flows of the systems. Nonlinear controllers (NCs), UX and UY,
define the coupling of the systems, while the error function is given by e = ky - lx, where k and
l are constants [51, 52]. If the Lyapunov function stability (LFS) technique is applied, a stable
synchronization state will be obtained when the error function of the coupled system follows
the limit:

lim ( ) 0
t

e t
®¥

® (3)

so that lx = ky.

The design process of the coupling scheme, is based on the Lyapunov function:

1( )
2

TV e e e= (4)

where T is a transpose of a matrix and V(e). The Lyapunov function (4) is a positive definite
function. Also, for known system’s parameters and with the appropriate choice of the con-
trollers UX and UY, the coupled system has V(e) < 0. This ensures the asymptotic global stability
of synchronization and thereby realizes any desired synchronization state [51, 52].

By using the appropriate NCs functions UX, UY and error function’s parameters k, l, a bidirec-
tional (mutual) or unidirectional coupling scheme can be implemented. Analytically, while if
UX,Y ≠ 0 and k, l ≠ 0, a bidirectional coupling scheme is realized, while if (UX = 0, k = 1) or (UY =
0, l = 1), a unidirectional coupling scheme is realized, respectively. The signs of the constants
k, l play a crucial role to the synchronization case (complete synchronization or antisynchro-
nization), which is observed in this work. However, the ratio of k over l decides the amplifi-
cation of one oscillator relative to another one.

Next, the simulation results in the unidirectional coupling scheme and for various values of
parameters k and l are presented in details.
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4. Unidirectional coupling

In this section, the unidirectional coupling scheme for UX = 0, in the case of coupled systems
of Eq. (1), is presented. The coupled system is described by the following systems of Eqs. (5)
and (6).

Master system:

2
1 2 1 1 2

2 1 ( )
x ax x cx x
x x Bcos dt

ì = + -ï
í

= - -ïî

&

&

(5)

Slave system:

2
1 2 1 1 2 1

2 1 2( ) +
Y

Y

y ay y cy y U
y y Bcos dt U

ì = + - +ï
í

= - -ïî

&

&

(6)

where UY = [UY1, UY2]T is the Nonlinear Controller (NC). The error function is defined by e = ky
- lx, with e = [e1, e2]T, x = [x1, x2]T and y = [y1, y2]T. So, the error dynamics, by taking the difference
of Eqs. (5) and (6), are written as:

2 2
1 2 1 1 2 1 2 1
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Y
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e e B k l dt kU
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í
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(7)

For stable synchronization, e → 0 as t → ∞. By substituting the conditions in Eq. (7) and taking
the time derivative of Lyapunov function

( ) ( )
1 1 2 2

2 2
1 2 1 1 2 1 2 1 2 1 2
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We consider the following NC controllers:
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such that
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2 2
1 2( ) = 0V e e e- - <& (10)

Eq. (10) ensures the asymptotic global stability of synchronization.

5. Simulation results

In this section, the simulation results, with the unidirectional coupling scheme, in three
different cases are presented.

Figure 13. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

5.1. The case for k = l = 1

As it is mentioned, the phenomenon of complete synchronization is achieved for every value
of k, l. Especially for k = -l = 1, the two coupled systems are in the chaotic state, due to the chosen
values of system’s parameters (a = 1, B = 7, c = 0.2 and d = 3) and initial conditions (x1, x2, y1, y2)
= (3, 2, –1, –5). The goal of complete synchronization is achieved as it is shown from the plots
of y1 versus x1, the time-series of x2, y2 and the errors ei in Figures 13–15.
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Figure 14. The time-series of x2, y2, in regards to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 15. The time-series of errors e1, e2, with k = l = 1, for a = 1, B = 7, c = 0.2 and d = 3.

5.2. The case for k = l = 1

In the second case, by using opposing values for the parameters k = –l = 1 and for the same
values of system’s parameters (a = 1, B = 7, c = 0.2 and d = 3), the phenomenon of antisynchro-
nization is achieved. This conclusion is derived from the phase portrait of y1 versus x1
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5.2. The case for k = l = 1

In the second case, by using opposing values for the parameters k = –l = 1 and for the same
values of system’s parameters (a = 1, B = 7, c = 0.2 and d = 3), the phenomenon of antisynchro-
nization is achieved. This conclusion is derived from the phase portrait of y1 versus x1
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(Figure 16), as well as from the time series of x2, y2 (Figure 17). Also, the plot of errors ei = yi +
xi in Figure 18 confirms the antisynchronization of the coupled system.

Figure 16. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 17. The time-series of -x2, y2, in regard to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.
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Figure 18. The time-series of errors e1, e2, with k = l = 1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 19. The phase portraits of x2 versus x1(black colour) and y2 versus y1 (red colour), for a = 1, B = 7, c = 0.2 and d = 3.

5.3. The case for k = 1, l = 2

In this case, the parameters of the error functions are chosen as k = 1 and l = 2. By choosing the
systems' parameters as a = 1, B = 7, c = 0.2 and d = 3 the chaotic attractor of the second system
is enlarged by two times, as it is shown with red colour in Figure 19, as well as by the time-
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Figure 18. The time-series of errors e1, e2, with k = l = 1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 19. The phase portraits of x2 versus x1(black colour) and y2 versus y1 (red colour), for a = 1, B = 7, c = 0.2 and d = 3.

5.3. The case for k = 1, l = 2

In this case, the parameters of the error functions are chosen as k = 1 and l = 2. By choosing the
systems' parameters as a = 1, B = 7, c = 0.2 and d = 3 the chaotic attractor of the second system
is enlarged by two times, as it is shown with red colour in Figure 19, as well as by the time-
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series of signals x2 and y2 (Figure 21). The y1 versus x1 plot in Figure 20 confirms that the coupled
system is in complete synchronization state independently of the values of the error’s param-
eters k, l. The error plot ei = yi - 2xi (i = 1, 2) in Figure 22 shows the exponential convergence to
zero that confirms the realization of system’s complete synchronization state.

Figure 20. The phase portrait of y1 versus x1, for a = 1, B = 7, c = 0.2 and d = 3.

Figure 21. The time-series of 2x2, y2, in regard to the external periodic signal, for a = 1, B = 7, c = 0.2 and d = 3.
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Figure 22. The time-series of errors e1, e2, with k = 1, l = 2, for a = 1, B = 7, c = 0.2 and d = 3.

6. Circuit’s implementation of the coupling scheme

The circuit implementation of the proposed synchronization coupling scheme, with the
electronic simulation package Cadense OrCAD, for k = l = 1, is presented in this section, in
order to prove the feasibility of the proposed method. The coupling system’s circuitry design
consists of three sub-circuits, which are the master circuit, the coupling circuit and the slave
circuit. Also, the circuit is realized by using common electronic components.

Figure 23 shows the schematic of the master circuit, which has two integrators (U1 and U2) and
one differential amplifier (U3), which are implemented with the TL084, as well as two signals
multipliers (U4, U5) by using the AD633. By applying Kirchhoff’s circuit laws, the correspond-
ing circuital equations of designed master circuit can be written as:

( )

2
1 2 1 1 2
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2 1 0

1
100

1 cos( )

Rx x x x x
RC R
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Figure 23. The schematic representation of the master circuit.

where xi (i = 1, 2) are the voltages in the outputs of the operational amplifiers U3 and U2.
Normalizing the differential equations of system (18) by using τ = T/RC we could see that this
system is equivalent to the system (12). The circuit components have been selected as: R = 10
kΩ, R1 = 500 Ω, C = 10 nF, V0 = 7 V and f = 4777 Hz, while the power supplies of all active devices
are ±17 VDC. For the chosen set of components the master system’s parameters are: a = 1, B = 7,
c = 0.2 and d = 3. In Figure 24, the chaotic attractor, which is obtained from Cadence OrCAD
in (x1, x2) phase plane, is proved to be in a very good agreement with the respective phase
portrait from system’s numerical simulation process (Figure 11). So, the proposed circuit
emulates very well the master system.

Figure 24. The chaotic attractor produced by the designed master circuit, obtained from Cadence OrCAD in the (x1, x2)
phase plane.
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In Figure 25, the schematic of the slave circuit, which is similar to the master circuit, is shown.
The difference of this circuit in comparison to the previous one are the signals u1 and mu2,
where u1 is the control signal UY1 and mu2 is the opposite, due to the integrator, of the signal
UY2, of system (6). So, for k = l = 1, the signal mu2 is given as

2 1 2mu e e= - + (12)

Figure 25. The schematic representation of the slave circuit.

The dynamics of the slave circuit is described by the following set of differential equations.
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Finally, the units from which the coupling circuit is consisted, are shown in the schematic of
Figure 26, in which ei, (i = 1, 2) are the difference signals (ei = kyi - lxi, i = 1, 2), with k = l = 1 and
me2 is the opposite of e2. Also, the resistors R2 = 5 kΩ and R3 = 50 kΩ have been used for achieving
the desired values of system’s parameters.
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Figure 26. The schematic representation of the coupling circuit.

Figure 27. The phase portrait of y1 vs. x1, for a = 1, B = 7, c = 0.2 and d = 3, obtained from Cadence OrCAD.
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Figures 27 and 28 depict the phase portraits in (xi, yi) phase planes, with i = 1, 2, for a = 1, B =
7, c = 0.2 and d = 3, obtained from Cadence OrCAD. These figures confirm the achievement of
complete synchronization in the case of unidirectionally coupled circuits with the proposed
method.

Figure 28. The phase portrait of y2 versus x2, for a = 1, B = 7, c = 0.2 and d = 3, obtained from Cadence OrCAD.

7. Conclusion

In this chapter, the case of unidirectional coupling scheme of two chaotic non-autonomous
dynamical systems was studied. The proposed system is the second order Birkhoff-Shaw
system, which is simple but very interesting from the perspective of nonlinear analysis.
Furthermore, the coupling method was based on a recently new proposed scheme based on
the nonlinear controller, which is applied for the first time in non-autonomous systems.

The Birkhoff-Shaw system is one of the simplest 2-D nonlinear systems exhibiting a rich
dynamical behaviour. Besides limit cycles, Birkhoff-Shaw system presents quasiperiodicity
and chaos, which can make the control of the system a difficult target in practical applications,
where a particular dynamic is desired. Also, two well-known phenomena of nonlinear theory,
the Intermittency and the Interior Crisis have been observed. However, the main drawback of
this system is the fact that this system is a non-autonomous dynamical system, which makes
the coupling method weak, especially if it is used in secure communication schemes.

In agreement to the simulation results, the circuital implementation of the proposed system in
SPICE, in the case of unidirectional coupling, confirms the appearance of complete synchro-
nization and antisynchronization, depending on the signs of the parameters of the error
functions, in various cases. With this method, by choosing an appropriate sign for the error
functions, the coupling system can be driven either to complete synchronization or antisynch-
ronization behaviour.
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From our knowledge, the complex behaviour of chaotic systems, like the ones that mentioned
above, makes the synchronization difficult in practical applications where a particular dynamic
is desired. For this reason, the synchronization of chaotic systems has attracted considerable
attention due to its great potential applications, in secure communication, chemical reactions
and biological systems. Especially, the synchronization in coupled neurons is a subject of a
growing interest in the research community. So, due to the fact that Birkhoff-Shaw chaotic
attractor exhibits the structure of beaks and wings, typically observed in chaotic neuronal
models, the proposed coupling scheme showed an interesting research result of achieving the
synchronization or antisynchronization in the case of coupled neuronal models.

As a next step in this direction is the application of the proposed method in non-identical
Birkhoff-Shaw coupled systems in order to satisfy the goal of control of systems, which are in
totally different dynamical behaviours. Also, the case of bidirectional coupling as well as the
case of generalized synchronization, with the proposed scheme, could be examined.
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Abstract

We  consider  the  stabilization  of  nonlinear  polynomial  systems  and  the  design  of
dynamic output feedback laws based on the sums of squares (SOSs) decompositions.
To design the dynamic output feedback laws, we show the design conditions in terms
of  the  state-dependent  linear  matrix  inequalities  (SDLMIs).  Because  the  feasible
solutions of  the SDLMIs are  found by the SOS decomposition,  we can obtain the
dynamic  output  feedback  laws  by  using  numerical  solvers.  We  show  numerical
examples of the design of dynamic output feedback laws.

Keywords: sums of squares polynomials, output feedback stabilization, Lyapunov
methods, state-dependent LMIs

1. Introduction

In the last few decades, control design methods based on numerical methods have appeared
in the control literature. Major progress in the 1980s was the emergence of numerical methods
based on linear matrix inequalities (LMIs) [1]. The methods provide the numerical solutions
to linear control problems in the formulation of the semidefinite programming. The LMI
approach provides the design methods of feedback laws for the asymptotic stabilization, H-
infinity control, and robust control. For the nonlinear control problems, the sums of squares
(SOS) approach is introduced as a generalization of the LMI approach to nonlinear systems [2–
6]. A feature of the sums of squares polynomials is negative semidefiniteness, and this is
suitable for the stability analysis of nonlinear systems based on the Lyapunov theory. The
studies [2,  3]  have shown that  the sums of  squares decomposition can be solved in the
formulation  of  the  semidefinite  programming.  The  result  leads  to  the  development  of

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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numerical methods for the analysis and synthesis of nonlinear polynomial systems. Applica-
tions to control problems are feedback design [7, 8], motion planning [9], modeling, and control
of fuzzy systems [10] to mention a few. Applications of the SOS approach to nonpolynomial
systems are found in reference [11, 12].

The SOS approach has been the basis of numerical methods for the analysis and the synthesis
of nonlinear systems. Although the Lyapunov-based approach offers the methods for the
analysis and the synthesis, the construction of Lyapunov functions is often a difficult task. The
SOS approach provides a technique to find Lyapunov functions by formulating the Lyapunov
inequality conditions into the SOS conditions. The stability of nonlinear systems is analyzed
by a direct application of SOS decompositions to the Lyapunov stability analysis. However,
applications of the SOS approach to Lyapunov-based feedback design are much complicated
because decision variables do not enter the Lyapunov inequalities conditions linearly. So far,
two main approaches have been proposed. One is a method in [8], which formulates the design
conditions into state-dependent linear matrix inequalities (SDLMIs) conditions. The SDLMIs
are solved by the SOS decompositions. The other method is based on an iterative algorithm
shown in reference [7], which also considers the enlargement of the regions of attraction of the
closed-loop systems.

In the actual control problems, we often cannot measure all the values of the state variables of
control systems. This fact leads to the necessity of the design of output feedback laws. The
design of output feedback laws is more complicated task than that of state feedback laws
because the stability conditions of the closed-loop systems become complex. As far as the
authors know, so far, a few output feedback design methods have been proposed, for example,
[[7], Section 3.5] and [13–15]. The further developments of design methods for output feedback
laws have been desired.

It is well known that we often can design dynamic feedback laws even when the design of
static output feedback laws is difficult. This leads to the motivation of developing a design
method based on the SOS approach for the design of dynamic output feedback laws. In
reference [7], an iterative method for the design of dynamic output feedback laws has been
shown. However, we need to give control Lyapunov functions (CLFs) to start the iteration in
the method, and this might be a difficult task especially for complex or high-dimensional
systems. The state-dependent LMI approach can be an alternative approach because it does
not need to give any CLF. However, a concrete method for dynamic output feedback laws has
not been shown in this direction yet.

We provide the design methods of dynamic output feedback laws for the stabilization based
on the SDLMI approach. This method is based on the design method of state feedback laws
based on the SDLMI approach [8]. The proposed method employs a two-step algorithm. We
first design a virtual state feedback law for a given system using the method of reference [8].
Then, we design a dynamic output feedback by using an SDLMI again based on the virtual
state feedback law. The use of the virtual state feedback inherits the design approach of output
feedback laws in reference [16], which indicates the general design approach of output
feedback laws not necessarily for the SOS approach. We also show some numerical examples
to demonstrate the effectiveness of the proposed method to the actual control problems.
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Notation: We denote the set of the real numbers and integers as ℝ and ℤ, respectively. The
notation ℤ+ is the nonnegative integers. The notation ‖x‖ is the Euclidean norm of a vector x.

For , |α| denotes  = ∑ = 1  . For a matrix X ∈ ℝn×n, He (X) denoes He (X)
= X + XT.

2. Preliminary: stability of nonlinear systems

This section provides the stability theory of nonlinear systems. We present the definitions of
stability, and then, we introduce the Lyapunov stability theory. The Lyapunov stability theory
forms the basis for the analysis and synthesis of the stability of dynamical systems. The theory
states that the existence of a kind of functions implies the stability.

This section considers the stability of an autonomous nonlinear system

(1)

where x∈ℝn is the state, f:ℝn → ℝn is the vector fields, and x0 ∈ ℝn is the initial value of the
state. In the following, we assume that the origin x = 0 is the equilibrium of system (1), that is,
f(0) = 0, and we consider the stability of the origin.

To begin with, we show the definitions of the stability.

Definition 1 (stability). The equilibrium x = 0 is said to be Lyapunov stable if for any  > 0,
there exists δ = δ( ) > 0, such that for any ‖x0‖ < δ, the solution x(t) of (1) satisfies that

Definition 2 (asymptotic stability). The equilibrium x = 0 is said to be asymptotically stable if
it is stable and there exists δ > 0, such that for any ‖x0‖ < δ, the solution of (1) satisfies that

Definition 3 (global asymptotic stability). The equilibrium x = 0 is said to be globally asymp-
totically stable if it is stable and for any x0 ∈ ℝn, the solution x(t) of (1) satisfies that

To introduce the Lyapunov stability theory, we provide the definitions of the properties of
functions.

Definition 4 (positive definiteness). A function h: ℝn → ℝ is said to be positive definite if h(x)
> 0 for any x ≠ 0 and h(0) = 0.
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Definition 5 (positive semidefiniteness). A function h: ℝn → ℝ is said to be positive semide-
finite if h(x) ≥ 0 for any x ∈ ℝn.

We say that a function h(x) is negative definite (negative semidefinite) if the function −h(x) is
positive definite (respectively, positive semidefinite).

Definition 6 (properness). A function h: ℝn → ℝ is said to be proper if for any K ∈ ℝ, the
sublevel set

is bounded.

The Lyapunov stability theory is stated as follows [17].

Theorem 1. Let U be an open subset of ℝn which contains the origin. Suppose that a function
V:U → ℝ is continuously differentiable, positive definite, and proper. The equilibrium of
system (1), x = 0, is stable if and only if the function V(x) satisfies that

Moreover, the equilibrium of system (1), x = 0, is asymptotically stable if and only if the function
V(x) satisfies that

When U = ℝn, the global asymptotic stability holds.

The Lyapunov theory is used to investigate the stability of nonlinear systems. However, to
investigate the stability of each system by Lyapunov theory, we need to find a Lyapunov
function for it. However, to find the Lyapunov functions is often a difficult task. Further, when
we try to design stabilizing feedback laws based on the Lyapunov theory, we also need to find
the Lyapunov function candidates for the closed-loop systems. Therefore, we require a method
to find Lyapunov functions for each nonlinear system. The SOS approach provides Lyapunov
functions as solutions to the SOS conditions.

3. Sums of squares polynomials and state-dependent linear matrix
inequalities

This chapter introduces some definitions and results on SOS polynomials. We also introduce
that SDLMIs can be solved by the SOS decomposition.

We begin with the definitions of monomials, polynomials, and sums of squares polynomials.
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function for it. However, to find the Lyapunov functions is often a difficult task. Further, when
we try to design stabilizing feedback laws based on the Lyapunov theory, we also need to find
the Lyapunov function candidates for the closed-loop systems. Therefore, we require a method
to find Lyapunov functions for each nonlinear system. The SOS approach provides Lyapunov
functions as solutions to the SOS conditions.

3. Sums of squares polynomials and state-dependent linear matrix
inequalities

This chapter introduces some definitions and results on SOS polynomials. We also introduce
that SDLMIs can be solved by the SOS decomposition.

We begin with the definitions of monomials, polynomials, and sums of squares polynomials.
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Definition 7 (monomials). Let  and . A monomial of z, mα(z), is
a function given by

Definition 8 (polynomials). Consider monomials of z,   , where  = (1, 2, …, 𝀵𝀵) ∈ ℤ+𝀵𝀵 ,
and ci ∈ ℝ for i = 1,…,m. A polynomial of z, f(z), is a function given in the form of

The degree of polynomial f(z), d, is given by

Let ℛn denote the set of polynomials of n variables. Then, we show the definition of the sums
of squares polynomials.

Definition 9 (sums of squares polynomials, SOSs). Let z = (z1,…,zn). A sum of squares
polynomial σn(z) is a function given in the form of

The decomposition of given polynomials into SOSs is called as the SOS decomposition.
Regarding the SOS decomposition, the following result is shown.

Theorem ([2, 3]). Consider the polynomial of z of degree 2d, f(z). The polynomial f(z) is an SOS
polynomial if and only if there exist a column vector X(z) whose elements are monomials of z
of degree no greater than d and a positive semidefinite matrix Q such that

holds.

We show a simple example of SOSs.

Example 1. Consider a polynomial f(z) given by
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where z ∈ ℝ. Apparently, this polynomial is expressed as the sum of squares polynomial

Regarding Theorem 2, the polynomial is also expressed as

(2)

and the matrix in the right-hand side of (2) is positive definite.

The SOS decomposition can be solved by some numerical solvers, such as YALMIP [18] and
SOSTOOLS [19]. When some coefficients of polynomials are decision variables in an SOS
decomposition, by using the numerical solvers, we can find the feasible solutions such that the
SOS decomposition holds. Therefore, we can adapt the SOS decomposition to the design of
feedback laws in control problems.

With the relation to the stability theory presented in Section 2, the sufficient condition of the
stability is given as the SOS conditions.

Theorem 3. [2] Consider system (1). If there exist a positive definite function  and an
SOS polynomial , such that

then the equilibrium x = 0 is asymptotically stable.

Theorem 3 shows a direct application of the SOSs to the analysis of the stability. This implies
that the SOS decomposition can be applied to the synthesis of the stabilizing feedback laws.
This chapter develops a method to design dynamic output feedback laws based on the SDLMI
approach [8]. The SDLMI is defined as the optimization problem:

where ai ∈ ℝ are the fixed coefficients, ci are the decision variables, the matrix functions Fi:
 are state-dependent symmetric matrices. The constraint should be satisfied for any z

∈ ℝn. This differs from standard LMIs and is the derivation of the word, state-dependent.

A relation of the SDLMIs and the SOS decompositions is shown as follows.
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Theorem 4. ([8]) Let d > 0 and F:  a symmetric polynomial matrix the elements of which
are polynomials of z with degree 2d. Moreover, consider a vector v ∈ . If vT F(z)v is a sum of
squares polynomial, then F(z) ≥ 0 holds for any z ∈ ℝq.

Theorem 4 states that if we find that the polynomial vT F(z)v is decomposed into an SOS with
respect to (z,v), it implies the positive definiteness of F(z) for any z ∈ ℝn. We can derive stability
conditions in terms of SDLMIs. This leads to the design of feedback laws for the stabilization
based on the combination of the SDLMIs and the SOS decomposition. We develop the synthesis
of dynamic output feedback laws based on Theorem 4 in the following sections.

4. Problem setting: stabilization through dynamic output feedback

This chapter considers the stabilization problem via dynamic output feedback laws and the
synthesis of the stabilizing feedback laws. This section states the problem setting.

The approach presented here is based on the SDLMI approach, which derives the sufficient
conditions of the existence of stabilizing feedback laws as the SDLMI conditions. We can obtain
stabilizing feedback control laws and Lyapunov functions by solving the SDLMI conditions
using numerical solvers.

Consider a nonlinear system given as

(3)

where x ∈ ℝn is the state, u ∈ ℝnu is the input, y ∈ ℝny is the output, f: ℝn × ℝnu → ℝn, h: ℝn →
ℝny, and x0 is the initial state. For the nonlinear systems given by (3), we assume that system (3)
is expressed as

(4)

where , A: ℝn → ℝn×N, B: ℝn → ℝn×nu, C: ℝn → ℝny×N. Further, we assume that Z(x) = 0,
if and only if x = 0. We consider the output stabilization of system (4) using a dynamic feedback
law in the form of

(5)

where  is the state of the dynamic feedback law,
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:ℝ × ℝ ℝ × , :ℝ × ℝ ℝ × , :ℝ × ℝ ℝ ×  , and:ℝ × ℝ ℝ × , and 0 is the initial state.

We have the closed-loop system of (4) with the dynamic output feedback law (5), given by

( ) ( ) ( ) ( ){ } ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ ˆ

ˆ ˆ ˆ

, , ,

ˆ , , .
c c

c c

x A x B x D x y C x Z x B x C x y x

x A x y x B x y C x Z x

= + +

= +

&

&

(6)

We consider the stabilization of the closed-loop system (6). To this end, we give a method to
design the matrix functions  ,  ,  ,  ,  ,  ,  ,   in the next section.

Remark 1. We obtain a system in the form of (4) as an expression of a nonlinear affine system

by choosing Z(x) properly. Note that the choice of Z(x) is not unique in general. The systems
in the form of (4) can be seen as a generalization of linear systems, given as

where the matrices A, B, and C are with the appropriate dimensions.

5. Design of dynamic output feedback laws through SOSs

This section provides a design method of dynamic feedback laws (5) for the output stabilization
of system (4). We show stability conditions of the closed-loop system of (6) as SDLMI condi-
tions. We can obtain the stabilizing laws by solving the SDLMI conditions via SOS decompo-
sition using numerical solvers.

The main idea of the proposed method is as follows. Instead of the dynamic feedback law (5),
assume that there exists a static state feedback law

(7)

where , such that the feedback law asymptotically stabilizes the origin of system (4).
Then, according to the converse Lyapunov theorem, we have a Lyapunov function U1 (x). Then,
we consider the design of the dynamic output feedback law (5) so that a function  ,   given
by
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(8)

becomes the Lyapunov function of the closed-loop system (6) with some positive definite
matrix Σ. When we design the output feedback laws, so that the function  ,   of (8) is a
Lyapunov function of the closed-loop system, the value of   of the designed output feedback
laws in (8) will estimate the value of k(x). A design procedure discussed here can be seen in
reference [16], and is called as the direct design. As shown in the following, when we obtain
the static feedback law (7) in polynomial forms, we can obtain the SDLMI conditions where
the stability of the closed-loop system (6) is guaranteed by function (8).

In the following, if the matrix B(x) of (4) has rows all the elements of which are zero, we denote
the corresponding row indices as . We also employ the notation 

As discussed above, we design a stabilizing state feedback law as the first step. The state
feedback law also can be designed by using SDLMIs. We introduce the following result shown
in reference [8].

Theorem 5. ([8]) Suppose that there exist a symmetric polynomial matrix P: ℝn → ℝN×N, a
polynomial matrix  a parameter  and an SOS polynomial  such that

(9)

are SOS polynomials, where  is the j-th row of A(x), and

(10)

Then, the origin of (4) is asymptotically stabilized by a state feedback given by

(11)

For the design of the output feedback laws, we show the following theorem as the main result,
which gives a design condition of the feedback law (5) in terms of state-dependent matrix
inequalities.

Theorem 6. Suppose that there exist a symmetric matrix  a polynomial matrix
 a parameter  and an SOS polynomial  such that
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(12)

are SOS polynomials, where  and M(x) is given as 10. Further, suppose that there exist a

symmetric matrix 2:ℝ( + ) × ( + ), and an SOS polynomial  such that

(13)

is an SOS polynomial where 𑨈𑨈 𑨈𑨈 ℝ+  , and

where the matrices  ,  ,    ,  ,    ,  , 𝀵𝀵𝀵𝀵    ,  , are given in (5). Then, the

dynamic output feedback law (5) globally asymptotically stabilizes the origin of the system (4).

Proof. According to Theorem 6, the function

is the Lyapunov function of the closed-loop system of (4) with the state feedback law

Then, to consider a dynamic output feedback law in the form of (5), we consider a function
given by

(14)

where the function  is given by
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Then, the time derivative of function (14) along the trajectory of the closed-loop system (6) is
given as

where

(15)

and

(16)

Therefore, the time derivative of the function  ,   along the solution of system (6) is given
as

(17)

Then, condition (13) of the theorem and Theorem 4 imply that
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(18)

From (17) and (18), we can conclude that ̇ ,   is negative definite. Therefore, according to
Theorem 1, we can conclude that the origin of the closed-loop system is globally asymptotically
stable. This completes the proof.

When we design the dynamic output feedback law (5) according to Theorem 6, we first solve
the SOS decomposition of condition (12) to find the matrix P1. Then, if we can obtain the feasible
solutions of the matrix P1 and the function K(x) satisfying condition (12), we try to find the
matrix functions  ,  ,  ,  ,  ,  ,  ,  , the matrix P2, and the SOS polynomial 3 >

0 satisfying condition (13). At this time, because the decision variables do not enter in (13)
linearly, we set P2 = I in general. Then, we can consider the SOS decomposition for (13). If we
can find the feasible solution of condition (13), we will obtain the stabilizing feedback laws in
the form of (5).

Remark 2. The condition of (12) in Theorem 6 corresponds to the condition of (9) in Theorem
5. Note that the matrix P1 in Theorem 6 is a constant matrix, although the matrix P(x) in Theorem
5 is the function of x. This is due to the fact that the inverse of the matrix P1 appears in (16). If
the matrix P1 is the polynomial matrix in Theorem 6, we cannot employ the SOS decomposition.
Therefore, we limit ourselves to the case of the constant matrices in Theorem 6.

6. Numerical examples of dynamic output feedback stabilization

6.1. Numerical example 1

This section shows some numerical examples of the dynamic output feedback stabilization by
the proposed method shown in Section 5.

We show the first example of the stabilization. Consider a system given by

(19)

where x = (x1, x2)T is the state, y ∊ ℝ is the output, and u ∊ ℝ is the input. In order to design a
dynamic output feedback law for the stabilization of system (19) based on the result presented
in the previous section, we choose Z(x)=(x1, x2)T. Then, we have the expression of system (19)
in the form of (4), where
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We consider the output feedback stabilization of system (19) using the dynamic feedback law
(5). We consider a low-dimensional dynamic feedback, and we assume that  = 1. According

to Theorem 6, by choosing P2 = I, we obtained the matrix P1 and the function K(x) by solving
the SOS decomposition of (12) using YALMIP. We consider the function K(x) with zero degree.
The obtained matrix P1 and the function K(x) are given as

( )

2 11

1 11 2

3 6

1.2306 10 9.8824 10
,

9.8824 10 5.2061 10

6.9660 10 4.9775 10 .

P

K x

- -

- -

- -

é ù´ - ´
= ê ú- ´ ´ë û

é ù= - ´ - ´ë û

Figure 1. Time responses of x,  , and u of (19) with dynamic output feedback law (5) with degree zero one.

Then, by using P1 and K(x), we found the feasible solution  ,  ,  ,  ,  ,  ,  ,  ,

which are two degree, to the SOS decomposition of condition (13). Therefore, we obtain the
dynamic output feedback laws that stabilizes system (19), given by

(20)
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Figure 1 shows the time responses of the state variables x(t),    and u(t) of the closed-loop
system (19) with the designed dynamic output feedback (20). The initial values are chosen as
x(0) = (3,-1),and  0 = 0.5. In Figure 1, the states x(t) and    converge to the origin.

Then, we also obtain a dynamic output feedback control law in the case where the elements
of K(x) are degree zero, and the elements of  ,  ,  ,  ,  ,  , and  ,   are degree

three with respect to   and y. Again, by solving the SOS decomposition following Theorem 6,
we obtain the value of the matrix P1 and the function K(x) as same as above.

We also obtain the values of  ,  ,  ,  ,  ,  , and  ,   as

Figure 2. Time responses of x,  , and u of (19) with dynamic output feedback law (5) with degree zero one.
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The obtained feedback control law also stabilizes system (19). Figure 2 shows the time
responses of the state   ,     and the input u(t) of the closed-loop systems with the initial
values x(0) = (3,-1), and  0 = 0.5. The state converges to the origin, and the value of u(t) also
converges to zero.

6.2. Numerical example 2

We consider the following example, which models a circuit with negative-resistance oscillator,
taken from reference [17] and modified. Consider a system given by

(21)

where x = (x1, x2)T is the state, u ∊ ℝ is the input, and y is the output. To design the dynamic
output feedback laws, we express system (21) of form (4) as
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Following the design procedure in the previous section, we design the dynamic feedback
control law with  = 1.First, we obtain the constant matrix P1 and the polynomial matrix K(x)

with degree zero. The matrix P1 and K(x) with zero degree are obtained as

Then, we solve the SOS decomposition (13) to find the matrices  ,  ,  ,  ,  ,  , and ,   with degree one. By choosing P2 = I, the feasible solutions are obtained as
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Figure 3 shows the time responses of the states x,   and the input u of the closed-loop systems.
The figure shows that the states x and converge to the origin. Also, the figure shows that the
input values converge to zero as the states converge to the origin.

Figure 3. Time responses of x,  , and u of (21) with dynamic output feedback law (5) with degree zero one.

7. Conclusion

We considered the design of dynamic output feedback laws via the SOS decomposition. For
the design of the feedback laws, we derived the design conditions as the state-dependent
matrix inequalities. According to the derived conditions, we can design the stabilizing
feedback laws as the feasible solutions to the SDLMIs by using the numerical solvers. Future
works include to derive less conservative conditions and to develop design methods of
dynamic output feedback laws for advanced control, such as H-infinity control.
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Figure 3 shows the time responses of the states x,   and the input u of the closed-loop systems.
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Abstract

This chapter examines whether the stock return can be a leading indicator of economic
growth in the depression. A nonlinear dynamic panel data model is constructed with the
use of the new current depth of recession (NCDR) indicator as the regime switched factor.
Our findings show that in the recession period, the stock return can significantly explain
the economic growth. As to the impact of a country’s development level and business
cycle stages, the stock return can serve as a leading indicator of the economic growth in
the Asian emerging markets in the recovery subperiod.

Keywords: stock returns, economic growth, dynamic panel data model, recession pe‐
riod, business cycle

1. Introduction

Fluctuations of stock returns are highly correlated with economic activities. Generally speaking,
the reason why the stock market is called the economy showcase is that the current‐period
stock return could be viewed as a leading indicator of the economic growth in the future. To
some extent, most stock markets are efficient. In an efficient stock market, the current stock
price reveals the discounted value of future dividends and capital returns. The current stock
price also reflects the investors’ expectations of the future of the economy. Therefore, from the
macroeconomics view point, the stock market reveals the economic trend of the country. On
the field studying the relationship between the stock return and economic growth, in the
beginning, most researches use countries such as United States [1, 2], Canada [3, 4], or G7
countries [5, 6] as samples. Later on, members of European Union, members of the Organization
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for Economic Cooperation and Development (OECD), or the Asian emerging markets (such
as Singapore, Korea, the Philippines, Malaysia, Indonesia, and Taiwan) are included as sample
countries as well. Research examples include in [7–11]. Most of these studies find that the
relationship between the stock return and economic growth is statistically significant.

The main focus of this study is to investigate whether the relationship between the stock return
and economic growth would be the same for countries with different development levels in
the depression and recovery subperiods.1 This study employs a 26‐country sample; the sample
period is from the first quarter of 1982 to the fourth quarter of 2009, longer than that of [9].2

The new current depth of recession (NCDR) indicator proposed by Bradley and Jansen [12] is
used here as the switched factors to capture the subperiods in the recession period.

In researches using the nonlinear model to study the relationship between the stock return and
economic growth, authors often construct two regimes to divide the business cycle into two
periods, the expansionary and recession periods. For example, Henry et al. [9] argue that
output is characterized by asymmetry—the so‐called bounce‐back effect.3 In that chapter, the
CDR is used as a proxy variable to examine the significance of the bounce‐back effect and to
divide between the expansionary and recession periods for the nonlinear panel data model.
The changes of the relationship between the stock return and output growth in the expan‐
sionary and recession periods are used to examine whether the relationship would be impacted
by the business cycle.

However, no study has touched the topic whether the recession period contains other impor‐
tant information that can be used to examine the relationship between the stock return and
economic growth. Domain and Louton [2], Henry and Olekalns [13], and Henry et al. [9] find
that the relationship is significantly positive only in the recession period, but the authors do
not explain the reasons for this outcome. Beaudry and Koop [14], Henry and Olekalns [13],
and Henry et al. [9] argue that in the recession period, there is the bounce‐back effect that
contributes to the significance of the relationship; however, the authors do not further inves‐
tigate the bounce‐back effect. The empirical study of [2] finds that there is the nonlinear
threshold effect in the relationship between the stock return and real economic activities. Henry
et al. [9] find that when the economy is in the expansionary stage, the stock return cannot
predict the output growth, while in the recession period, the stock return could well predict
the output growth.

Does the recession period contain information that would impact the relationship between the
stock return and economic growth? The answer can be found in Figure 1.4 During a business
cycle, the economy experiences peak, recession, depression, trough, and recovery and then

1 None study has touched the topic whether the recession period contains other important information that can be used
to examine the relationship between the stock return and economic growth.
2 Most of OECD members are industrial or developed countries.
3 Friedman [15] after the economy passes the bottom of the business cycle and enters a recovery period, the output will
return to the original growth trend, is called the Friedman‐type asymmetry. The bounce‐back effects are one of the
Friedman‐type asymmetry.
4 In Figure 1, the CDR and new CDR (NCDR) criteria are used to divide different stages of the business cycle, which is
different from the criterion listed in most textbooks.
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moves to another peak and completes a cycle. The recession period actually contains the
depression and recovery subperiods. Depression is defined as a period that the economic
situation still deteriorates and there is no sign of improvement. Recovery is defined as a period
that the economy has already passed the trough; there are signs of improvement, but the
economy has not returned to the original growth path. Although both the depression and
recovery subperiods are within the recession period, people would have different expectations
toward the future in the two different subperiods. In addition, since the stock market always
reveals people’s expectations of economic growth in advance, the relationship between the
stock return and economic growth may differ in the two subperiods.

As to the research method on this field, previous studies often employ the time series data and
the linear model; examples include in [16–19]. It is well known that the time series data
structure suffers from the following two problems. First, there may not be enough observations
in each subperiod, if one divides the sample period into several subperiods. Second, applying
individual country data into a multicountry analysis, one may ignore the impact from the
economic integration, which may cause the testing power inefficient problem. There are some

Figure 1. Business cycle process. Note: The CDR and new CDR criteria are adopted to divide the different stages of the
business cycle in this figure, which is different from the criterion listed in most textbooks.
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problems associated with the use of the cross country data as well, for example, ignoring the
impact from the time. To avoid these problems, many researches employ the panel data. This
data structure has both the time and the section dimensions; therefore, the empirical result can
capture the difference among sample countries and the dynamic changes from time to time.
In addition, the two dimensional characteristic also increases the observation numbers, which
enhances the degree of freedom.

In the present chapter, the empirical model is modified from the dynamic panel data model
(DPDM) of [9]. For the DPDM, if one uses the traditional fixed effect method to estimate the
model, it may lead to biased estimation results, because of the correlation between the lagged
explained variables and the residual, a problem not addressed in [9]. One way to conquer this
problem is to estimate the DPDM with the generalized method of moment (GMM) estimation
proposed by Arellano and Bond [20].

The empirical results of this study show that in the recession periods, the stock return
significantly impacts the economic growth. In addition, in some of the Asian emerging
markets, the stock return is the leading indicator of the economic growth only in the recovery
subperiod. As to the developed countries, the stock return is the leading indicator of the
economic growth only in the depression subperiod. The empirical results have the following
implications and contributions. First, for the international companies, the results can be used
to avoid the misunderstandings of the recession process and the relationship between the stock
return and economic growth. Second, for the investment organizations and the financial
professionals, the results can help them better understand the business cycle and teach the
investors the true meaning of the CDR. Third, this study contributes to the filed by further
investigate the recession periods with well‐established research methods.

This chapter is organized as follows. Section 1 is the introduction. Section 2 discusses and
analyzes the data. The research methodology is listed in Section 3. Section 4 shows the
empirical results. Section 5 is the conclusion.

2. Data analysis

The data set of this chapter contains quarterly data of stock index, Gross Domestic Product,
and consumer price index (CPI) (or Gross Domestic Product deflator) of 26 countries, including
the G7 countries (The USA, UK, Canada, France, German, Italy, and Japan), five Asian countries
(the Philippines, Singapore, Hong Kong, Korea, and Taiwan), 12 OECD countries (Australia,
Austria Belgium, Denmark, Finland, Mexico, the Netherlands, New Zealand, Norway, Spain,
Sweden, and Switzerland), Israel, and South Africa. In addition, we divided the sample
countries into three groups, one can see the impact of the development level on the relationship
between the stock return and economic growth. Group A has five Asian countries; group B
has the G7 countries; group C is contains the 12 OECD members. All the data come from the
International Financial Statistics (IFS) database of International Monetary Fund (IMF) and the
AREMOS database. The longest sample period is from the first quarter of 1982 to the fourth
quarter of 2009. Please refer to Appendix A for detailed descriptions of the data.
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The two major variables of this chapter are the economic growth rate (ry) and the stock return
(rs):

log( ) 100, log( ) 100,it it it itry GDP rs ST= D ´ = D ´

where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is the real GDP, 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is the stock index, 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is the economic growth rate, and 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵
is the stock return; i indicates the country and t the time; “Δ” denotes the first difference.

3. Research methodology

Beaudry and Koop [14] propose the CDR indicator to capture the stages of business cycle:

, , 0 ,max{ } 0t
i t i t s s i tCDR Y Y- ³= - ³ (1)

where Yi,t is the output of period t. Eq. (1) tells that the CDR is the output difference between
the largest output of period t − s and the output of period t.5 Although the CDR is very sensitive
at capturing the recession period, the indicator can only differentiate between the expansionary
and recession periods.

Bradley and Jansen [12] argue that the recession period captured by CDR > 0 is a mixed, rather
than a pure, recession period; therefore, the authors proposed a new CDR, the NCDR, to
capture the pure recession period. Utilizing the output growth rate (ΔYt), the NCDR divides
the mixed recession period into two subperiods, the depression period where the economy is
approaching the trough and the recovery period where the economy is approaching the next
peak. Bradley and Jansen [12] name the NCDR established the CDR1 > 0 for the depression
subperiod and the CDR2 > 0 for the recovery subperiod. The CDR1 and CDR2 indicators are
specified as follows:

, , 0 , ,1 max{ } 0 0,t
i t i t s s i t i tCDR Y Y if Y- ³= - ³ D < (2a)

, , 0 , ,2 max{ } 0 0.t
i t i t s s i t i tCDR Y Y if Y- ³= - ³ D ³ (2b)

In the case that CDR1 = 0 and CDR2 = 0, it indicates that the economy is in the expansionary
period, same as the case that CDR = 0 in [14]. Because the NCDR has the benefits of capturing
the pure recession period, in the empirical model of this chapter, the NCDR is employed to
divide business cycle stages.

5 If the CDR > 0, that mean the economy is entering the recession period. With the same rationale, if a country is in the
expansionary period, then the CDR = 0.
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Using the CDR as the switched factor to identify the business cycle periods, Henry et al. [9]
construct the single‐variate nonlinear panel data model:
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where 𝀵𝀵𝀵𝀵,  denotes the economic growth rate; 𝀵𝀵𝀵𝀵,  is the stock return; αi, ϕ, βkj, and δkj are

coefficients; εkit is the error term. k = 1, 2. Substituting the CDR of Eq. (3) with the NCDR
specified in Eqs. (2a) and (2b) and defining Δ,  < 0 the depression subperiod and Δ,  ≥ 0
the recovery subperiod, one can revise the model of Henry et al. [9] as
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where 𝀵𝀵𝀵𝀵,  denotes the economic growth rate; 𝀵𝀵𝀵𝀵,  denotes the stock return; αi, ϕ, βkj, and δkj

are the coefficients; εkit is the error term; CDR1 and CDR2 are the switched factors; DVk(⋅) is
the dummy variable, where DVk = 1 if the condition inside the parenthesis holds, DVk = 0,
otherwise. K = 1~2. Eq. (4) is the primary empirical model of this chapter.

The readers might be curious why not to construct a three‐regime DPDM. The primary reason
is that a three‐regime DPDM would lead to many differences from the model of [9] to compare
the empirical findings. In addition, the three‐regime model costs lots of degrees of freedom.
Because of these two reasons, what is done here is to derive the depression and recovery
subperiods from the recession period, rather than specifying three regimes.

To estimate the nonlinear DPDM, it will be too complicated if one considers the nonlinearity
and the dynamic panel data characteristic at the same time in the estimation.6 A better way to
do is to use the two‐step method to estimate the nonlinear DPDM. First, the exogenously given
switched factors (the CDR or NCDR) are employed to divide the regimes; in the meantime,
the dummy variable can reveal the nonlinear relationship between the variables. Second, the

6 In this paper, the model is a linear panel data model with the characteristic of nonlinearity given by the dummy variables.
Therefore, the GMM estimation still can be used to estimate the DPDM and the heteroskedastic residual problem can be
avoided.
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the recovery subperiod, one can revise the model of Henry et al. [9] as
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where 𝀵𝀵𝀵𝀵,  denotes the economic growth rate; 𝀵𝀵𝀵𝀵,  denotes the stock return; αi, ϕ, βkj, and δkj

are the coefficients; εkit is the error term; CDR1 and CDR2 are the switched factors; DVk(⋅) is
the dummy variable, where DVk = 1 if the condition inside the parenthesis holds, DVk = 0,
otherwise. K = 1~2. Eq. (4) is the primary empirical model of this chapter.

The readers might be curious why not to construct a three‐regime DPDM. The primary reason
is that a three‐regime DPDM would lead to many differences from the model of [9] to compare
the empirical findings. In addition, the three‐regime model costs lots of degrees of freedom.
Because of these two reasons, what is done here is to derive the depression and recovery
subperiods from the recession period, rather than specifying three regimes.

To estimate the nonlinear DPDM, it will be too complicated if one considers the nonlinearity
and the dynamic panel data characteristic at the same time in the estimation.6 A better way to
do is to use the two‐step method to estimate the nonlinear DPDM. First, the exogenously given
switched factors (the CDR or NCDR) are employed to divide the regimes; in the meantime,
the dummy variable can reveal the nonlinear relationship between the variables. Second, the

6 In this paper, the model is a linear panel data model with the characteristic of nonlinearity given by the dummy variables.
Therefore, the GMM estimation still can be used to estimate the DPDM and the heteroskedastic residual problem can be
avoided.
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GMM estimation, named AB‐GMM afterward, is utilized to deal with the “dynamic” panel
data characteristic that is caused by the inclusion of the lagged dependent variable in the
regressors. When one estimates Eq. (4) with AB‐GMM estimation, since the variables will be
first differenced, the constant term will disappear.

4. Empirical results and analyses

To avoid the spurious regression problem, one should examine whether the panel data are
stationary by conducting the unit root test.7 The result of the panel data unit root test is shown
in Table 1, shows that the variables are stationary.

ry rs
Method value p-value value p-value

Null: Unit root
(assumes common unit root process)

Levin, Lin & Chu t* ‐9.48*** (0.00) ‐44.25*** (0.00)

Breitung t‐stat ‐1.11 (0.13) ‐25.93*** (0.00)

Null: Unit root
(assumes individual unit root process)

Im, Pesaran and Shin W‐stat ‐24.39*** (0.00) ‐39.21*** (0.00)

ADF ‐ Fisher Chi‐square 631.40*** (0.00) 1072.45*** (0.00)

PP ‐ Fisher Chi‐square 949.10*** (0.00) 1069.31*** (0.00)

Notes: The “ry” is the economic growth rate, and “rs” is the stock return. The above five types of panel unit root tests:
Levin et al. [22], Breitung [23], Im et al. [24], Fisher‐type tests using ADF and PP tests (Maddala and Wu [25] and Choi
[26]).“*”, “**”, and “***” denote the 1% significant level.

Table 1. Panel unit‐root test.

At this moment, the CDR (or NCDR) is employed as the switched factor in the nonlinear model
to divide between the expansionary and recession periods. The switched factor has been
chosen and the switched point has been determined. The lagged period is 4,8 same as the setting
of [9]. The only thing that is adjustable here is the delay period. We find the 1 and 2 periods
delay CDR are well, which indicates that it is appropriate to use the delay CDR as the switched
factor. In this chapter, the delay period is set to 2 to meet the 5% significant level condition.
Because of this, if an economy has a sequence of negative economic growth rates in two seasons,
then the economy could be viewed as entering the recession period.9

7 For the spurious regression problem, please refer to Ref. [21].
8 There is reason to choose four lagged periods. Because the data are quarterly data, so four lagged periods could cover
the whole year and capture the seasonal characteristics.
9 The way to identify whether an economy is entering a recession period is to see whether GDP is decreasing in sequentially
two seasons. If it is, then this economy is said to experience recession.
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Whole Sample (Expansionary period) (Recession period)

CDRi,t-2=0 CDRi,t-2>0

Variable Coefficient p-value Variable Coefficient p-value
Obs. 1245 Obs. 1449

A 0.04 (0.87)  +  2.37*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.92*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.88*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.02 (0.67) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 ‐0.17** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.63*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 ‐0.23** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.25** (0.03) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.03 (0.44)

𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.04** (0.04) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.06** (0.03)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.01 (0.61) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.11** (0.05)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 ‐0.01 (0.61) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.05** (0.05)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.01 (0.41) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.09 (0.23)∑ = 14 1 =0.05 ∑ = 14 2 =0.13

Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 21 = 22 = 23 = 24 = 0
Chi‐square 8.39* Chi‐square 13.38***

p‐value (0.08) p‐value (0.01)

Notes: The “ry” is the economic growth rate, and “rs” is the stock return; i indicates the country and t the time. “CDR”
is abbreviated from current depth of recession that proposed by [14]. The “Obs” is observation number. “*”, “**”, and
“***” denote the 10%, 5%, and 1% significant levels.

Table 2. Dynamic panel data OLS estimation with CDR switched factor.

After all the parameters have been decided, one can proceed to estimate Eq. (3). For compar‐
ison, both the OLS and AB‐GMM estimations are performed and the results are listed in Tables
2 and 3, respectively. For the coefficient joint test result, in the expansionary period, the stock
return cannot explain the economic growth in Table 3, which is conflict with the result in Table
2. In the recession period, the stock return can significantly explain the economic growth in
both Tables 2 and 3. Please note that the estimation result in Table 3 is more consistent with
what are found in the literatures (including [9]). In addition, the result in Table 3 is obtained
with the AB‐GMM estimation, which can avoid the biased estimation caused by the OLS
estimation.10

10 When there are lagged dependent variables in the regressor, the model becomes the DPDM. If one still estimates the
model with the OLS estimation, then there would be biased estimation results.
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Whole Sample (Expansionary period) (Recession period)

CDRi,t-2=0 CDRi,t-2>0

Variable Coefficient p-value Variable Coefficient p-value
Obs. 1245 Obs. 1449

A 0.04 (0.87)  +  2.37*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.92*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.88*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.02 (0.67) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 ‐0.17** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.63*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 ‐0.23** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.25** (0.03) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.03 (0.44)

𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.04** (0.04) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.06** (0.03)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.01 (0.61) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.11** (0.05)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 ‐0.01 (0.61) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.05** (0.05)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.01 (0.41) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.09 (0.23)∑ = 14 1 =0.05 ∑ = 14 2 =0.13

Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 21 = 22 = 23 = 24 = 0
Chi‐square 8.39* Chi‐square 13.38***

p‐value (0.08) p‐value (0.01)

Notes: The “ry” is the economic growth rate, and “rs” is the stock return; i indicates the country and t the time. “CDR”
is abbreviated from current depth of recession that proposed by [14]. The “Obs” is observation number. “*”, “**”, and
“***” denote the 10%, 5%, and 1% significant levels.

Table 2. Dynamic panel data OLS estimation with CDR switched factor.

After all the parameters have been decided, one can proceed to estimate Eq. (3). For compar‐
ison, both the OLS and AB‐GMM estimations are performed and the results are listed in Tables
2 and 3, respectively. For the coefficient joint test result, in the expansionary period, the stock
return cannot explain the economic growth in Table 3, which is conflict with the result in Table
2. In the recession period, the stock return can significantly explain the economic growth in
both Tables 2 and 3. Please note that the estimation result in Table 3 is more consistent with
what are found in the literatures (including [9]). In addition, the result in Table 3 is obtained
with the AB‐GMM estimation, which can avoid the biased estimation caused by the OLS
estimation.10

10 When there are lagged dependent variables in the regressor, the model becomes the DPDM. If one still estimates the
model with the OLS estimation, then there would be biased estimation results.
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whole
sample

(Expansionary
period)

(Recession
period)

CDRi,t-2=0 CDRi,t-2>0
Obs. 1231 Obs. 1437
Variable Coefficient p-value Variable Coefficient p-value𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.87*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐1.23*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.30*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 ‐0.45** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 1.18*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 ‐0.68*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.14 (0.32) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.11 (0.37)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.02 (0.14) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.04 (0.24)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.02 (0.12) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.13*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.00 (0.97) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.12*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.01 (0.50) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.02 (0.51)∑ = 14 1 = 0.03 ∑ = 14 2 = 0.31
Wald
Test

0: 11 = 12 = 13 = 14 = 0 0:21 = 22 = 23 = 24 = 0
Chi‐square 4.89 Chi‐square 21.86***

p‐value (0.30) p‐value (0.00)

Instrument
rank

104 Instrument
rank

204

J‐statistic 110.41 J‐statistic 220.20

p‐value (0.15) p‐value (0.11)

Notes: When one estimates Eq. (3) with AB‐GMM estimation, since the variables will be first differenced, the constant
term will disappear. The “ry” is the economic growth rate, and “rs” is the stock return; i indicates the country and t the
time. “CDR” is abbreviated from current depth of recession that proposed by [14]. The “Obs” is observation number.
Under the null hypothesis that the over‐identifying restrictions are valid, the reported J‐statistic is simply the Sargan

statistic,  𑨒𑨒 𑨒𑨒2 , where k is the number of estimate coefficients and p is the instrument rank. “*”, “**”, and “***” denote

the 5%, and 1% significant levels.

Table 3. Dynamic panel data AB‐GMM estimation with CDR switched factor.

The AB‐GMM method is used to estimate Eq. (4). Table 4 reports the full sample estimation
result. In the recession period, in the depression or the recovery subperiods, the coefficient
joint test result is significant, which indicates there is no difference between the two subperiods
and that the stock return can significantly explain the economic growth in two subperiods.
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whole sample(Expansionary period) (Recession period)
CDR1i,t-2=0 CDR2i,t-2=0 CDR1i,t-2>0 CDR2i,t-2>0

Obs. 1231 Obs. 1389

Variable Coefficient p‐value Variable Coefficient p‐value𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.87*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐1.37*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.30*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.78** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 1.18*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.37 (0.29)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.14 (0.32) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.28* (0.06)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵1𑨒𑨒 𑨒𑨒 2 > 0)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.02 (0.14) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 *𝀵𝀵𝀵𝀵𝀵0.38* (0.07)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.02 (0.12) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 *𝀵𝀵𝀵𝀵𝀵0.07 (0.52)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.00 (0.97) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 *𝀵𝀵𝀵𝀵𝀵0.16 (0.20)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.01 (0.50) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 *𝀵𝀵𝀵𝀵𝀵0.28** (0.02)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵2𑨒𑨒 𑨒𑨒 2 > 0)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 *𝀵𝀵𝀵𝀵20.00 (0.99)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 *𝀵𝀵𝀵𝀵𝀵0.26* (0.09)𝀵𝀵𝀵𝀵𑨒𑨒 𑨒𑨒 3 *𝀵𝀵𝀵𝀵𝀵 0.05 (0.81)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 *𝀵𝀵𝀵𝀵𝀵‐0.34** (0.03)∑ = 14 1 = 0.03 ∑ = 14 1 = 0.89 ∑ = 14 2 = 𑨒𑨒 0.03
Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 11 = 12 = 13 = 14 = 0
Chi‐square 4.89 Chi‐square 10.27**

p‐value (0.30) p‐value (0.04)0: 21 = 22 = 23 = 24 = 0
Chi‐square 11.19**

p‐value (0.02)

Instrument
rank

104 Instrument
rank

112

J‐statistic 110.41 J‐statistic 117.85

p‐value (0.15) p‐value (0.11)

Note: The NCDR proposed by Bradley and Jansen [12] is employed as the switched factor in the model.
“*” and “***” denote the 10% and 1% significant levels.

Table 4. Dynamic panel data AB‐GMM estimation with NCDR switched factor.
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whole sample(Expansionary period) (Recession period)
CDR1i,t-2=0 CDR2i,t-2=0 CDR1i,t-2>0 CDR2i,t-2>0

Obs. 1231 Obs. 1389

Variable Coefficient p‐value Variable Coefficient p‐value𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐0.87*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 ‐1.37*** (0.00)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.30*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.78** (0.02)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 1.18*** (0.00) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.37 (0.29)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.14 (0.32) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 0.28* (0.06)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵1𑨒𑨒 𑨒𑨒 2 > 0)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 0.02 (0.14) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 *𝀵𝀵𝀵𝀵𝀵0.38* (0.07)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 0.02 (0.12) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 *𝀵𝀵𝀵𝀵𝀵0.07 (0.52)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 0.00 (0.97) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 3 *𝀵𝀵𝀵𝀵𝀵0.16 (0.20)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 ‐0.01 (0.50) 𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 *𝀵𝀵𝀵𝀵𝀵0.28** (0.02)𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵2𑨒𑨒 𑨒𑨒 2 > 0)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 1 *𝀵𝀵𝀵𝀵20.00 (0.99)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 2 *𝀵𝀵𝀵𝀵𝀵0.26* (0.09)𝀵𝀵𝀵𝀵𑨒𑨒 𑨒𑨒 3 *𝀵𝀵𝀵𝀵𝀵 0.05 (0.81)𝀵𝀵𝀵𝀵, 𑨒𑨒 𑨒𑨒 4 *𝀵𝀵𝀵𝀵𝀵‐0.34** (0.03)∑ = 14 1 = 0.03 ∑ = 14 1 = 0.89 ∑ = 14 2 = 𑨒𑨒 0.03
Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 11 = 12 = 13 = 14 = 0
Chi‐square 4.89 Chi‐square 10.27**

p‐value (0.30) p‐value (0.04)0: 21 = 22 = 23 = 24 = 0
Chi‐square 11.19**

p‐value (0.02)

Instrument
rank

104 Instrument
rank

112

J‐statistic 110.41 J‐statistic 117.85

p‐value (0.15) p‐value (0.11)

Note: The NCDR proposed by Bradley and Jansen [12] is employed as the switched factor in the model.
“*” and “***” denote the 10% and 1% significant levels.

Table 4. Dynamic panel data AB‐GMM estimation with NCDR switched factor.
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In the following, the estimation method of Table 4 is repeated on the estimation of groups A
to C. The estimation result of group A to C is combined listed in Table 5 (divide into three
part), group A in the upper, group B in the middle, and group C in the lower.

(Expansionary period) (Recession period)
CDR1i,t-2=0 CDR2i,t-2=0 CDR1i,t-2>0 CDR2i,t-2>0

Upper part group A∑ = 14 1 = 0.05 ∑ = 14 1 = 0.15 ∑ = 14 2 = 0.63
Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 11 = 12 = 13 = 14 = 0
Chi‐square 5.19 Chi‐square 2.15

p‐value (0.27) p‐value (0.71)0: 21 = 22 = 23 = 24 = 0
Chi‐square 10.80***

p‐value (0.03)

Middle part group B∑ = 14 1 = 0.03 ∑ = 14 1 = 0.09 ∑ = 14 2 = 0.04
Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 11 = 12 = 13 = 14 = 0
Chi‐square 1.18 Chi‐square 16.37***

p‐value (0.88) p‐value (0.00)0: 21 = 22 = 23 = 24 = 0
Chi‐square 3.00

p‐value (0.56)

Lower part group C∑ = 14 1 = 0.23 ∑ = 14 1 = 1.54 ∑ = 14 2 = 0.58
Wald Test 0: 11 = 12 = 13 = 14 = 0 0: 11 = 12 = 13 = 14 = 0
Chi‐square 22.53*** Chi‐square 8.66*

p‐value (0.00) p‐value (0.07)0: 21 = 22 = 23 = 24 = 0
Chi‐square 4.06

p‐value (0.40)

Note: Table 5 just show the estimation results of three groups partly.
“*” and “***” denote the 10%, and 1% significant levels.

Table 5. Dynamic panel data AB‐GMM estimation with NCDR switched factor.
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From Table 5 (upper part), one can see that the coefficients are significantly positive only in
the recovery subperiod. This tells that for group A (five Asian emerging countries), the stock
return can explain the economic growth only in the recovery period. Table 5 (middle part)
shows that the coefficients are significantly positive only in the depression subperiod, which
indicates that for group B (the G7 countries), the stock markets will go down before the
economies start to grow.

The economic rationale behind this is as follows. Since the stock return and economic growth
are positively correlated in the G7 countries, when they enter the depression subperiod, the
stock market would go down to reveal the upcoming depressions. When the G7 countries enter
the recovery subperiod, their production and consumption will increase. At this time, the G7
countries will place many orders on the Asian emerging markets, and this will help the Asian
emerging markets grow and their firms perform well. These outcomes will be reflected by the
stock markets in these emerging markets; with more foreign investments from the developed
countries, these stock markets will stay in the bull status for a long time. This is why the stock
market can significantly explain the economic growth in the recovery subperiod. Although
both the Asian emerging markets and the G7 countries are all in the recovery subperiod, the
economies will not grow as fast. Moreover, because developed countries tend to invest in high
return foreign stock markets, there is no significant relationship between the stock return and
economic growth in the G7 countries in the recovery subperiod.

Table 5 (lower part) reports the estimation result for group C (12 OECD members), the
coefficients are significantly positive only in the depression subperiod, same as the result in
Table 5 (middle part). In addition, in the expansionary period, the stock return can significantly
explain the economic growth, which is different from the results of other subperiod estima‐
tions. The results in Table 5 (middle and lower parts) can be used to derive the results of Table
4 that the stock return can explain the economic growth in both the depression and recovery
subperiods.

The results of Tables 5 are not quite the same as the result of Table 4 (the whole sample
estimation), which indicates that one cannot apply the conclusion of Table 4 to every case.
Some of the effects may be “cancelled out” by pooling all the countries into one sample.

The empirical findings of this chapter could benefit the corporations, financial companies, as
well as regular investors. The contribution of this chapter can be summarized as follows. First,
the empirical findings could avoid corporations from misunderstanding the recession period.
In the recession period, the government tends to reduce the interest rate and enhance the
government spending to stimulate the economy. When making future operation and finance
decisions, if the decision maker can seize the chance to adjust the factory size or to raise
corporate debts in the recession period or to finance in the expansionary period, it would be
beneficial to the corporation. Second, the findings help financial companies or financial
supervisors better understand the business cycle. Macroeconomic analyses and business cycles
are crucial factors to investment decisions to maximize capital gains and to minimize risks
from market fluctuations. Third, the findings help regular investors better understand the
business cycle. The business cycle information can help regular investors with medium or long
term investment decisions and avoid capital loss from short term fluctuations in the market.
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Fourth, the empirical findings prove that there does exist useful information in the recession
period.

5. Conclusions

In this study, the existence of the subperiods of the recession period is observed by examine
the business cycle plot of Figure 1, this chapter make up this gap by constructing a nonlinear
DPDM to investigate the relationship between the stock return and economic growth in the
subperiods. The finding of the present chapter can be summarized as follows.

First, the GMM estimation is adopted for the DPDM estimation to avoid possible bias from
the OLS estimation. The NCDR proposed by Bradley and Jansen [12] is employed as the
switched factor in the model. The empirical result shows that the stock market performance
can be a leading indicator for the economic growth, especially in the recession period. This
finding is consistent with the findings in previous studies.

Second, the empirical results show that in the whole sample estimation, the stock return can
significantly explain the economic growth in the two subperiods of the recession period. In the
estimation with different country development levels, it is found that in the Asian emerging
markets, the stock return can significantly explain the economic growth only in the recovery
period. The reason for this outcome is as follows. Generally speaking, the emerging markets
have higher economic growth rates than the most of the developed countries do. When
entering the recovery period, the emerging markets can attract more foreign funding into their
stock markets. As to the developed countries, the stock return can significantly explain the
economic growth only in the depression period. The reason for this result is the following. The
developed countries lead the development of the world economy. When the developed
countries enter the depression period, the investors will withdraw from the stock markets to
avoid the risk of loss, which in turn, causes the stock markets to go down and results in a
positive relationship between the depression and the down‐turn stock market. This result
indicates that various development levels will have different impact on the relationship
between the stock return and economic growth. If one would like to use the stock market
information to predict the economic growth, one must first ascertain the country’s develop‐
ment status.

Appendix A. Data summary (1982Q1–2009Q4)

Country name Stock market index GDP GDP Deflator

Australia SHARE PRICES:(IMF) ○ ○ CPI

Austria SHARE PRICES (IMF) ○ ○ CPI
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Country name Stock market index GDP GDP Deflator

Belgium SHARE PRICES (IMF) ○ ○ CPI

Canada CL.TORONTO STOCK PRICES ○ ○ CPI

Denmark SHARE PRICES(IMF) 89q4~09q4 ○ CPI

Finland SHARE PRICES(IMF) ○ ○ CPI

France SHARE PRICES(IMF) ○ ○ CPI

Germany DAX 30 PERFORMANCE ○ ○ GDP deflator

Hong Kong HANG SENG ○ ○ CPI

Israel SHARE PRICE INDEX (IMF) ○ ○ CPI

Italy SHARE PRICES(IMF) ○ ○ CPI

Japan NIKKEI 225 ○ ○ CPI

Korea KOREA SE COMPOSITE ○ ○ CPI

Mexico SHARE PRICES(IMF) 83q1~09q4 ○ CPI

Netherlands SHARE PRICES(IMF) ○ ○ CPI

Norway SHARE PRICES(IMF) ○ ○ CPI

New Zealand SHARE PRICES:(IMF) ○ 87q2~09q4 CPI

Philippines SHARE PRICES:(IMF) 82q1~09q2 ○ CPI

Singapore SINGAPORE STRAITS TIMES ○ ○ CPI

South Africa SHARE PRICES:(IMF) ○ ○ CPI

Spain MADRID SE GENERAL ○ ○ CPI

Sweden SHARE PRICES: (IMF) ○ ○ CPI

Switzerland SWISS MARKET ‐ 88q3~09q4 ○ CPI

Taiwan TAIWAN SE WEIGHTED ○ ○ CPI

United Kingdom SHARE PRICES: (IMF) ○ ○ CPI

United States of American DJAI‐30 ○ ○ CPI

Note: “○” denotes that the corresponding country has the full sample (1982Q1~2009Q4);
THE“CPI” denotes that the consumer price index, the IMF data code is 64.
The IMF data code of SHARE PRICES is 62.
The IMF data code of GDP is 99b.c.
The IMF data code of GDP deflator is 99blr.
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