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Preface

The human brain is a natural model for building intelligent machines. An obvious idea for
Artificial Intelligence is to simulate the brain into a computer. Learning in complex network
representations is one of the most current topics in science, which promises great applica‐
tions in computer science, neurobiology, psychology, and physics. A neural network is a
computational model that shares some of the properties of the brain: it consists of many sim‐
ple units working in parallel without any central control, connected by lines of communica‐
tion. The connections between the units have numerical weights that can be modified by
learning.

The neural network is a dynamic system, moving from one state to the next. As such, it has
a mathematical rule that governs this movement. An infinite number of such rules is possi‐
ble. However, we usually want to limit the models to influence the activation of a given
node based only on the activation of the nodes connected to it and the weights of the con‐
nections to these nodes. Many criticisms of the connectionist model come from the fact that
this approach is biologically impoverished. To enable the computer implementation, we
simplify the model.

Neural networks are not explicitly programmed as conventional computers. In other words,
they obey to laws, or rules, such as a physical system. You should program a conventional
computer, but a neural network is simply conducted. The designers of neural networks see
this as an advantage, since it provides a mechanism through which intelligence can arise
from physical law.

Currently there has been a growing interest in the use of neural network models, also
known as connectionist models. They are applicable to many complex problems.

This book presents some up-to-date models and several recent applications of artificial neu‐
ral networks and brings to the reader chapters dealing with architectures or models of artifi‐
cial neural networks, as well as various applications in various fields of knowledge. The
researcher or student interested in this machine learning tool will certainly be excited about
the presented models and applications, ranging from assisted speech therapy to gas turbine
diagnosis, from thunderstorm prediction to urban contamination by air pollution. Enjoy
your reading!

João Luís G. Rosa, Ph.D.
University of São Paulo

São Carlos, São Paulo, Brazil
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Zhang Neural Networks for Online Solution of Time-

Varying Linear Inequalities

Dongsheng Guo, Laicheng Yan and Yunong Zhang

Additional information is available at the end of the chapter
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Provisional chapter

Zhang Neural Networks for Online Solution of Time-
Varying Linear Inequalities

Dongsheng Guo, Laicheng Yan and Yunong Zhang

Additional information is available at the end of the chapter

Abstract

In this chapter,  a special type of recurrent neural networks termed “Zhang neural
network” (ZNN) is presented and studied for online solution of time-varying linear
(matrix-vector  and  matrix)  inequalities.  Specifically,  focusing  on  solving  the  time-
varying  linear  matrix-vector  inequality  (LMVI),  we  develop  and  investigate  two
different ZNN models based on two different Zhang functions (ZFs). Then, being an
extension,  by  defining  another  two  different  ZFs,  another  two  ZNN  models  are
developed and investigated to solve the time-varying linear matrix inequality (LMI).
For such ZNN models, theoretical results and analyses are presented as well to show
their computational performances. Simulation results with two illustrative examples
further substantiate the efficacy of the presented ZNN models for time-varying LMVI
and LMI solving.

Keywords: Zhang neural network (ZNN), Zhang function (ZF), time-varying linear
inequalities, design formulas, theoretical results

1. Introduction

In recent years, linear inequalities have played a more and more important role in numerous
fields of science and engineering applications [1–9], such as obstacle avoidance of redundant
robots [1, 2], robustness analysis of neural networks [3] and stability analysis of fuzzy control
systems  [5].  They,  including  linear  matrix-vector  inequality  (LMVI)  and  linear  matrix
inequality (LMI), have now been considered as a powerful formulation and design technique

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



for solving a variety of  problems [7–11].  Due to their  important roles,  lots  of  numerical
algorithms and neural networks have been presented and studied for online solution of linear
inequalities [7–17]. For example, an iterative method was presented by Yang et al. for linear
inequalities solving [12]. In [13], three continuous-time neural networks were developed by
Cichocki and Bargiela to solve the system of linear inequalities. Besides, a gradient-based
neural network and a simplified neural network were investigated respectively in [10] and [11]
for solving a class of LMI problems (e.g., Lyapunov matrix inequalities and algebraic Riccati
matrix inequalities).

It is worth pointing out that most of the reported approaches are designed intrinsically to solve
the time-invariant (or say, static) linear inequalities. In view of the fact that many systems in
science and engineering applications are time-varying, the resultant linear inequalities may
be time-varying ones (i.e., the coefficients are time-varying). Generally speaking, to solve a
time-varying problem, based on the assumption of the short-time invariance, such a time-
varying problem can be treated as a time-invariant problem within a small time period [8].
The corresponding approaches (e.g., numerical algorithms and neural networks) are thus
designed for solving the problem at each single time instant. Note that, as for this common
way used to solve the time-varying problem, the time-derivative information (or say, the
change trend) of the time-varying coefficients is not involved. Due to the lack of the consid-
eration  of  such  an  important  information,  the  aforementioned  approaches  may  be  less
effective, when they are exploited directly to solve time-varying problems [7–9, 17–19].

Aiming at solving time-varying problems (e.g., time-varying matrix inversion and time-
varying quadratic program), a special type of recurrent neural networks termed Zhang neural
network (ZNN) has been formally proposed by Zhang et al. since March 2001 [7–9, 17–21].
According to Zhang et al.’s design method, the design of a ZNN is based on an indefinite Zhang
function (ZF), with the word “indefinite” meaning that such a ZF can be positive, zero, negative
or even lower-unbounded. By exploiting methodologically the time-derivative information of
time-varying coefficients involved in the time-varying problems, the resultant ZNN models
can thus solve the time-varying problems effectively and efficiently (in terms of avoiding the
lagging errors generated by the conventional approaches) [18, 19]. For better understanding
and to lay a basis for further investigation, the concepts of ZNN and ZF [18] are presented as
follows.

Concept 1. Being a special type of recurrent neural networks, Zhang neural network (ZNN)
has been developed and studied since 2001. It originates from the research of Hopfield-type
neural networks and is a systematic approach for time-varying problems solving. Such a ZNN
is different from the conventional gradient neural network(s) in terms of the problem to be
solved, indefinite error function, exponent-type design formula, dynamic equation, and the
utilization of time-derivative information.

Concept 2. Zhang function (ZF) is the design basis of ZNN. It differs from the common error/
energy functions in the study of conventional approaches. Specifically, compared with the
conventional norm-based scalar-valued positive or at least lower-bounded energy function,
ZF can be bounded, unbounded or even lower-unbounded (in a word, indefinite). Besides,
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corresponding to a vector- or matrix-valued problem to be solved, ZF can be vector- or matrix-
valued to monitor the solving process fully.

In this chapter, focusing on time-varying linear (matrix-vector and matrix) inequalities solving,
we present four different ZNN models based on four different ZFs. Specifically, by defining
the first two different ZFs, the corresponding two ZNN models are developed and investigated
for solving the time-varying LMVI. Then, being an extension, by defining another two different
ZFs, another two ZNN models are developed and investigated to solve the time-varying LMI.
For such ZNN models, theoretical results and analyses are also presented to show their
computational performances. Simulation results with two illustrative examples further
substantiate the efficacy of the presented ZNN models for time-varying LMVI and LMI solving.

2. Preliminaries

As mentioned in Concept 2, the ZF is the design basis for deriving ZNN models to solve time-
varying LMVI and LMI. Thus, for presentation convenience, in this chapter, the ZF is denot-
ed by () with ̇() being the time derivative of (). Based on the ZF, the design procedure
of a ZNN model for time-varying LMVI/LMI solving is presented as follows [18, 19].

1. Firstly, an indefinite ZF is defined as the error-monitoring function to monitor the solving
process of time-varying LMVI/LMI.

2. Secondly, to force the ZF (i.e., ()) converge to zero, we choose its time derivative (i.e.,̇()) via the ZNN design formula (including its variant).

3. Finally, by expanding the ZNN design formula, the dynamic equation of a ZNN model is
thus established for time-varying LMVI/LMI solving.

In order to derive different ZNN models to solve time-varying LMVI and LMI, the following
two design formulas (being an important part in the above ZNN design procedure) are
exploited in this chapter [7–9, 17–21]:

 ( ) = ( ( )),-&E t E tgF (1)

0 ( ) = SGN( ) ( ( )),E t E E tg-& eF (2)

where  > 0 ∈ , being the reciprocal of a capacitance parameter, is used to scale the conver-
gence rate of the solution, and ℱ ( ⋅ ) denotes the activation-function array. Note that, in general,
design parameter  should be set as large as the hardware system would permit, or selected
appropriately for simulation purposes [22]. In addition, function ( ⋅ ), being a processing
element of ℱ ( ⋅ ), can be any monotonically increasing odd activation function, e.g., the linear,
power-sigmoid and hyperbolic-sine activation functions [19, 23]. Furthermore, 0 = ( = 0)

Zhang Neural Networks for Online Solution of Time-Varying Linear Inequalities
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denotes the initial error, and the unipolar signum function sgn( ⋅ ), being an element ofSGN( ⋅ ), is defined as
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Note that, as for the presented design formulas (1) and (2), the former is the original ZNN
design formula proposed by Zhang et al. to solve the time-varying Sylvester equation [20],
while the latter is the variant of such a ZNN design formula constructed elaborately for time-
varying linear inequalities solving [9]. Thus, for presentation convenience and better under-
standing, (1) is called the original design formula, while (2) is called the variant design formula
for time-varying LMVI and LMI solving in this chapter.

Remark 1. For the variant design formula (2), when the initial error 0 > 0, it reduces tȯ() = −  ℱ (()), which is exactly the original design formula (1) for various time-varying
problems solving [17–21]. In this case (i.e., ̇() = −  ℱ (())), different convergence per-
formances of () can be achieved by choosing different activation function arrays [17–21, 23].
For example, (2) reduces to ̇() = − () with a linear activation function array used and
with 0 > 0. Evidently, its analytical solution is () = exp( − )0, which means that () is
globally and exponentially convergent to zero with rate γ. By following the previous successful
researches [17–21, 23], superior convergence property of () can be achieved by exploiting
nonlinear activation functions, e.g., the power-sigmoid and hyperbolic-sine activation func-
tions [23]. In addition, the convergence property can be further improved by increasing the γ
value. Therefore, in the case of 0 > 0, the global and exponential convergence property is

guaranteed for (). Note that, in the case of 0 ≤ 0, (2) reduces to ̇() = 0, meaning that() = 0 as time t evolves. In this situation, there is no need to investigate the convergence

performance of () with the different activation function arrays and different γ values used.

According to the presented design formulas (1) and (2), by defining different ZFs (i.e., ()
with different formulations), different ZNN models are thus developed and investigated for
time-varying LMVI and LMI solving.
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3. Time-varying linear matrix-vector inequality

In this section, we introduce two different ZFs and develop the resultant ZNN models for time-
varying linear matrix-vector inequality (LMVI) solving. Then, theoretical results and analyses
are provided to show the computational performances of such two ZNN models.

Specifically, the following problem of time-varying LMVI [7, 9] is considered in this chapter:

( ) ( ) ( ),£A t x t b t (3)

in which () ∈  ×  and () ∈  are smoothly time-varying matrix and vector, respectively.

In addition, () ∈  is the unknown time-varying vector to be obtained. The objective is to
find a feasible solution () such that (3) holds true for any time instant  𑩥𑩥 0. Note that, for
further discussion, () is assumed to be nonsingular at any time instant  ∈ [0, + ∞] in this
chapter.

3.1. ZFs and ZNN models

In this subsection, by defining two different ZFs, two different ZNN models are developed
and investigated for time-varying LMVI solving.

3.1.1. The first ZF and ZNN model

To monitor and control the process of solving the time-varying LMVI (3), the first ZF is defined
as follows [7]:

2( ) = ( ) ( ) ( ) ( ) ,+ L - Î nE t A t x t t b t R (4)

where Λ2() = Λ() ⊙ Λ() with the time-varying vector Λ() beingΛ() = [1(), 2(),⋯,()]T ∈ . In view of the fact that Λ2() 𑩥𑩥 0, when () = 0, then we

have

2( ) ( ) ( ) = ( ) 0.- -L £A t x t b t t

That is to say, time-varying LMVI (3) solving can be equivalent to solving the time-varying

equation ()() + Λ2() − () = 0. For further discussion, the following diagonal matrix() is defined:
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t

with Λ̇() being the time derivative of Λ().
On the basis of ZF (4), by exploiting the original design formula (1), the dynamic equation of
a ZNN model is established as follows:

2( ) ( ) 2 ( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( ) ( )),+ L - + - + L -&&&&A t x t D t t A t x t b t A t x t t b tgF (5)

where ̇(), ̇() and ̇() are the time derivatives of (), () and (), respectively. As for (5),
it is reformulated as

[ ] [ ]( ) ( ) ( )
( )  2 ( ) = ( )  0 ( ) ( ( )  ( ) ( )).

( ) ( ) ( )
é ù é ù é ùé ù- + - -ê ú ê ú ê úë ûL L Lë û ë û ë û

& &&
&
x t x t x t

A t D t A t b t A t D t b t
t t t

gF (6)

By defining the augmented vector () = [T(), ΛT()]T ∈ 2, (6) is further rewritten as
follows:

( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -&&C t y t P t y t b t Q t y t b tgF (7)

with ̇() being the time derivative of (), and the augmented matrices are being defined as
below:

TT TT TT
2 2 2

T T

( ) ( )( )
( ) = , ( ) =  and ( ) = .

2 ( ) ( )0
´ ´ ´é ùé ù é ù-

Î Î Îê úê ú ê ú
ë û ë ûë û

&
n n n n n nA t A tA tC t R P t R Q t R

D t D t

In order to make (7) more computable, we can reformulate (7) to the following explicit form:

† † †( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -&&y t C t P t y t C t b t C t Q t y t b tg F (8)
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where †() = T()(()T())−1 ∈ 2 ×  denotes the right pseudoinverse of () and the

MATLAB routine “pinv” is used to obtain †() at each time instant in the simulations.
Therefore, based on ZF (4), ZNN model (8) is obtained for time-varying LMVI solving. Besides,
for better understanding and potential hardware implementation, ZNN model (8) is expressed
in the ith (with  = 1,2,⋯,2) neuron form as

=1 =1 =1
= ( ( ))d ,+ - -å å åò &

n m m

i ik kj j k kj j k
k j j

y c p y b f q y b tg

where  denotes the ith neuron of (8),  = 2 and ( ⋅ ) is a processing element of ℱ ( ⋅ ). In
addition, time-varying weights 𝀵𝀵, 𝀵𝀵𝀵𝀵 and 𝀵𝀵𝀵𝀵 denote the 𝀵𝀵th element of †(), the 𝀵𝀵𝀵𝀵th
element of () and 𝀵𝀵𝀵𝀵th element of (), respectively. Moreover, time-varying thresholds ̇𝀵𝀵
and 𝀵𝀵 denote, respectively, the kth elements of ̇() and (). Thus, the neural-network

structure of (8) is shown in Figure 1.

Figure 1. Structure of the neurons in ZNN model (8) for time-varying LMVI (3) solving.
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3.1.2. The second ZF and ZNN model

Being different from the first ZF (4), the second ZF is defined as follows [9]:

( ) = ( ) ( ) ( ) .- Î nE t A t x t b t R (9)

On the basis of such a ZF, by exploiting the variant design formula (2), another ZNN model is
developed as follows:

0( ) ( ) ( ) ( ) ( ) SGN( ) ( ( ) ( ) ( )),= - + - -& e&&A t x t A t x t b t E A t x t b tg F (10)

where the initial error 0 = ( = 0) = (0)(0) − (0). Therefore, based on ZF (9), ZNN model

(10) is obtained for time-varying LMVI solving. Besides, for better understanding and potential
hardware implementation, the block diagram of ZNN model (10) is shown in Figure 2, where𑨈𑨈 𑨈𑨈 𑨈𑨈 ×  denotes the identity matrix.

Figure 2. Block diagram of ZNN model (10) for time-varying LMVI (3) solving.

3.2. Theoretical results and analyses

In this subsection, theoretical results and analyses of the presented ZNN models (8) and (10)
for solving the time-varying LMVI (3) are provided via the following theorems.

Theorem 1. Given a smoothly time-varying nonsingular coefficient matrix () 𑨈𑨈 𑨈𑨈 ×  and a

smoothly time-varying coefficient vector () 𑨈𑨈 𑨈𑨈 in (3), if a monotonically increasing odd

Artificial Neural Networks - Models and Applications10
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activation function array ℱ ( ⋅ ) is used, then ZNN model (8) generates an exact time-varying
solution of the time-varying LMVI (3).

Proof: To lay a basis for discussion, we define *() as a theoretical time-varying solution of
(3), i.e., ()*() ≤ (). Then, a time-varying vector Λ*() would exist, which results in the
time-varying matrix-vector equation as follows:

* *2( ) ( ) ( ) = ( ).+ LA t x t t b t (11)

By differentiating (11) with respect to time t, we have

* * *2( ) ( ) ( ) ( ) ( ) = ( ),+ + L && &&A t x t A t x t t b t (12)

with ̇*() and Λ̇ * 2() being respectively the time derivatives of *() and Λ * 2(). Based on (7),
(11) and (12), we further have

* * 2 *2

* 2 *2

( )( ( ) ( )) ( )( ( ) ( )) ( ) ( )
= ( ( )( ( ) ( )) ( ) ( )),

- + - + L - L

- - + L - L

& & && &A t x t x t A t x t x t t t
A t x t x t t tgF

which is rewritten as

( ) = ( ( )),-&% %E t E tgF (13)

where () = ()(() − *()) + Λ2() − Λ * 2() ∈  with ̇() being the time derivative of().
As for (13), its compact form of a set of  decoupled differential equations is written as follows:

( ) = ( ( )),-&% %i ie t f e tg (14)

where  = 1,2,⋯,. To analyze (14), we define a Lyapunov function candidate () = 2()/2 ≥ 0
with its time derivative being

d ( )( ) = = ( ) ( ) = ( ) ( ( )).
d

-&& % % % %i
i i i i i

v tv t e t e t e t f e t
t

g

Since ( ⋅ ) is a monotonically increasing odd activation function, i.e., ( − ()) = − (()),
then we have
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> 0,  if  ( ) 0,
( ) ( ( ))

= 0,  if  ( ) = 0,
¹ì

í
î

%
% %

%
i

i i
i

e t
e t f e t

e t

which guarantees the negative definiteness of ̇(). That is to say, ̇() < 0 for () ≠ 0, whilė() = 0 for () = 0 only. By Lyapunov theory, () converges to zero for any  𑨈𑨈 1,2,⋯, ,

thereby showing that () is convergent to zero as well.

Besides, based on (11), we have ()*() + Λ * 2() = (). Then, () is rewritten as() = ()() + Λ2() − (), which is equivalent to ()() − () = − Λ2() + (). Note that,
as analyzed previously, () 0 with time  + ∞. Thus, as time evolves,

2 2( ) ( ) ( ) = ( ) ( ) ( ).- -L + ® -L%A t x t b t t E t t

Since −Λ2() ≤ 0 (i.e., each element is less than or equal to zero), then we have()() − () ≤ 0. This implies that () (being the first n elements of () of (8)) would
converge to a time-varying vector which satisfies the time-varying LMVI (3); i.e., () *()
to make (3) hold true. In summary, the presented ZNN model (8) generates an exact time-
varying solution of the time-varying LMVI (3). The proof is thus completed. □
Theorem 2. Given a smoothly time-varying nonsingular coefficient matrix () 𑨈𑨈  ×  and a

smoothly time-varying coefficient vector () 𑨈𑨈  in (3), if a monotonically increasing odd
activation function array ℱ ( ⋅ ) is used, then ZNN model (10) generates an exact time-varying
solution of the time-varying LMVI (3).

Proof: Consider ZNN model (10), which is derived from the variant design formula (2). Thus,
there are three cases as follows.

1. If the randomly generated initial state (0) 𑨈𑨈  is outside the initial solution set (0) of
(3), i.e., 0 > 0 in (10), based on Remark 1 and the previous work [9], the global and

exponential convergence of the error function () is achieved (or say,() = ()() − () 0 globally and exponentially). This also means that the neural
state () of ZNN model (10) is convergent to the theoretical time-varying solution of the
matrix-vector equation ()() − () = 0. Note that ()() − () = 0 (i.e.,()() = ()) is a special case of ()() ≤ (). Therefore, ZNN model (10) is effective
on solving the time-varying LMVI (3), in terms of () being convergent to the time-varying
solution set () of (3).

2. If (0) is inside (0) of (3), i.e., 0 ≤ 0 in (10), based on Remark 1, the error function ()
would remain 0 with  + ∞. That is, () = 0 ≤ 0, no matter how time t evolves. In

this situation, ZNN model (10) is still effective on solving the time-varying LMVI (3), in
terms of its neural state () always being inside () of (3).

Artificial Neural Networks - Models and Applications12



> 0,  if  ( ) 0,
( ) ( ( ))

= 0,  if  ( ) = 0,
¹ì

í
î

%
% %

%
i

i i
i

e t
e t f e t

e t

which guarantees the negative definiteness of ̇(). That is to say, ̇() < 0 for () ≠ 0, whilė() = 0 for () = 0 only. By Lyapunov theory, () converges to zero for any  𑨈𑨈 1,2,⋯, ,
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3. If some elements of (0) are inside (0) of (3) while the others are outside (0), i.e., some
elements of 0 are greater than zero while the rest elements of 0 are less than or equal to

zero, then, (i) for the elements of () that have positive initial values (i.e., their initial
values are greater than zero), they can be convergent to zero globally and exponentially;
and (ii) for the rest elements of (), they can be always equal to their initial values that
are less than or equal to zero. In view of the fact that, as time evolves, each element of() = ()() − () is less than or equal to zero, ZNN model (10) is thus effective on
solving the time-varying LMVI (3).

By summarizing the above analyses, the time-varying LMVI (3) is solved effectively via ZNN
model (10), in the sense that such a model can generate an exact time-varying solution of (3).
The proof is thus completed. □
Remark 2. On the basis of two different ZFs (i.e., (4) and (9)), two different ZNN models (i.e.,
(8) and (10)) are obtained for online solution of the time-varying LMVI (3). Note that the former
aims at solving (3) aided with equality conversion (i.e., from inequality to equation) and the
original design formula (1), while the latter focuses on solving (3) directly with the aid of the
variant design formula (2). The resultant ZNN model (8) is depicted in an explicit dynamics
(i.e., ̇() = ⋯), and ZNN model (10) is depicted in an implicit dynamics (i.e., ()̇() = ⋯). As
analyzed above and as demonstrated by the simulation results shown in Section 5, such two
ZNN models are both effective on solving the time-varying LMVI (3). In summary, two
different approaches for time-varying LMVI solving have been discovered and presented in
this chapter; i.e., one is based on the variant of the original ZNN design formula, and the other
is based on the conversion from inequality to equation. This can be viewed as an important
breakthrough on (time-varying or static) inequalities solving [7–9].

4. Time-varying linear matrix inequality

In this section, being an extension, by defining another two different ZFs, another two ZNN
models are developed and investigated for time-varying linear matrix inequality (LMI)
solving.

Specifically, the following problem of time-varying LMI is considered [9]:

( ) ( ) ( ),£A t X t B t (15)

where () ∈  × and () ∈  ×  are smoothly time-varying matrices, and () ∈  × 
is the unknown matrix to be obtained. Note that (15) is a representative time-varying LMI
problem which is studied here. The design approaches presented in this chapter (more
specifically, summarized in Remark 2) can be directly extended to solve other types of time-
varying LMIs [8, 10, 11].
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4.1. The first ZF and ZNN model

In order to solve the time-varying LMI (15), the first ZF is defined as follows:

2( ) = ( ) ( ) ( ) ( ) ,´+ L - Î m nE t A t X t t B t R (16)

where Λ2() = Λ() ⊙ Λ() with the time-varying vector Λ() being

11 12 1

21 22 2

1 2

( ) ( ) ( )
( ) ( ) ( )

( ) = .

( ) ( ) ( )
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é ù
ê ú
ê úL Î
ê ú
ê ú
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M M O M
L

n

n m n

m m mn

t t t
t t t

t R

t t t

l l l
l l l

l l l

In addition, for matrices Λ() and Λ2(), we have

2vec( ( )) = ( )vec( ( )),L Lt D t t

where operator vec( ⋅ ) ∈ 𝀵𝀵𝀵𝀵 generates a column vector obtained by stacking all column
vectors of a matrix together [8, 18, 19]. In addition, the diagonal matrix () is defined as
follows:

1

2

( ) 0 0
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ê úÎê ú
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ê úë û
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with the ith (with  = 1,⋯,𝀵𝀵) block matrix being
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By defining () = vec(()) ∈ 𝀵𝀵𝀵𝀵, () = vec(Λ()) ∈ 𝀵𝀵𝀵𝀵 and () = vec(()) ∈ 𝀵𝀵𝀵𝀵, ZF

(16) is reformulated as () = ()() − () + ()() ∈ 𝀵𝀵𝀵𝀵, where() = 𑪗𑪗𑪗𑪗 𑪗𑪗() ∈ 𝀵𝀵𝀵𝀵 ×𝀵𝀵𝀵𝀵 with 𑪗𑪗 ∈ 𝀵𝀵 × 𝀵𝀵 being the identity matrix and 𑪗𑪗 denoting the
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Kronecker product [18, 19]. Thus, on the basis of (16), by exploiting the original design for-
mula (1), we have

( ) ( ) = ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -& &C t y t P t y t w t Q t y t w tgF (17)

where the augmented vector () = [T(), T()]T ∈ 2𝀵𝀵𝀵𝀵, and ̇() ∈ 2𝀵𝀵𝀵𝀵 and ̇() ∈ 𝀵𝀵𝀵𝀵 are
the time derivatives of () and (), respectively. In addition, the augmented matrices are
defined as

T TT T
2 2

T

TT
2

T

( ) ( )
( ) = , ( ) =

2 ( ) 0

( )
 and ( ) = ,

( )

´ ´

´

é ù é ù-
Î Îê ú ê ú

ë û ë û

é ù
Îê ú

ë û

mn mn mn mn

mn mn

M t N t
C t R P t R

D t

M t
Q t R

D t

where () = ̇() = 𑪗𑪗 𑪗𑪗 �̇�𑪗() ∈ 𝀵𝀵𝀵𝀵 ×𝀵𝀵𝀵𝀵 with �̇�𑪗() being the time derivative of 𑪗𑪗().
Similarly, to make (17) more computable, we can reformulate (17) as the following explicit
form:

† † †( ) = ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( )),+ - -& &y t C t P t y t C t w t C t Q t y t w tg F (18)

where †() = T()(()T())−1 ∈ 2𝀵𝀵𝀵𝀵 ×𝀵𝀵𝀵𝀵. Therefore, based on ZF (16), ZNN model (18)
is obtained for time-varying LMI solving. Note that the neural-network structure of (18) is
similar to the one shown in Figure 1, and is thus omitted here. Besides, as for ZNN model (18),
we have the following theoretical result, with the related proof being generalized from the
proof of Theorem 1 and being left to interested readers to complete as a topic of exercise.

Corollary 1. Given a smoothly time-varying nonsingular coefficient matrix 𑪗𑪗() ∈ 𝀵𝀵 ×𝀵𝀵 and

a smoothly time-varying coefficient matrix () ∈ 𝀵𝀵 × 𝀵𝀵 in (15), if a monotonically increasing
odd activation function array ℱ ( ⋅ ) is used, then ZNN model (18) generates an exact time-
varying solution of the time-varying LMI (15).

4.2. The second ZF and ZNN model

In this subsection, being different from the first ZF (16), the second ZF is defined as follows:

( ) = ( ) ( ) ( ) .´- Î m nE t A t X t B t R (19)
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On the basis of such a ZF, by exploiting the variant design formula (2), the following ZNN
model for time-varying LMI solving is developed:

0( ) ( ) = ( ) ( ) ( ) SGN( ) ( ( ) ( ) ( )),A t X t A t X t B t E A t X t B tg- + - -&& & eF (20)

where the initial error 0 = ( = 0) = (0)(0) − (0). Note that, due to similarity to the block
diagram of (10), the block diagram of ZNN model (20) is omitted. Besides, as for ZNN model
(20), we have the following theoretical result, of which the proof is generalized from the proof
of Theorem 2 (and is also left to interested readers to complete as a topic of exercise).

Corollary 2. Given a smoothly time-varying nonsingular coefficient matrix () ∈  × and

a smoothly time-varying coefficient matrix () ∈  ×  in (15), if a monotonically increasing
odd activation function array ℱ ( ⋅ ) is used, then ZNN model (20) generates an exact time-
varying solution of the time-varying LMI (15).

5. Simulative verifications

In this section, one illustrative example is first simulated for demonstrating the efficacy of the
presented ZNN models (8) and (10) for solving the time-varying LMVI (3). Then, another
illustrative example is provided for substantiating the efficacy of the presented ZNN models
(18) and (20) for solving the time-varying LMI (15).

Example 1 In the first example, the following smoothly time-varying coefficient matrix () and
coefficient vector () of (3) are designed to test ZNN models (8) and (10):

3 3

3

3 sin(3 ) cos(3 ) / 2 cos(3 )
( ) = cos(3 ) / 2 3 sin(3 ) cos(3 ) / 2

cos(3 ) cos(3 ) / 2 3 sin(3 )

sin(3 ) 1
  and  ( ) = cos(3 ) 2 .

sin(3 ) cos(3 ) 3

´

+é ù
ê ú+ Îê ú
ê ú+ë û

+é ù
ê ú+ Îê ú
ê ú+ +ë û

t t t
A t t t t R

t t t

t
b t t R

t t

The corresponding simulation results are shown in Figures 3 through 9.

Specifically, Figures 3 and 4 illustrate the state trajectories synthesized by ZNN model (8)
using  = 1 and the power-sigmoid activation function. As shown in Figures 3 and 4, start-
ing from five randomly generated initial states, the () trajectories (being the first 3 ele-
ments of () in (8)) and the Λ() trajectories (being the rest elements of ()) are time-
varying. In addition, Figure 5 presents the characteristics of residual error
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∥ ()() − () ∥2 = ∥ ()() + Λ2() − () ∥2 (with symbol ∥ ⋅ ∥2 denoting the two norm

of a vector), from which we can observe that the residual errors of ZNN model (8) (corre-
sponding to Figures 3 and 4) are all convergent to zero. This means that the () and Λ()
solutions shown in Figures 3 and 4 are the time-varying solutions of()() + Λ2() − () = 0. In view of −Λ2() ≤ 0, such a solution of () is an exact solution
of the time-varying LMVI (3), i.e., ()() ≤ (). For better understanding, the profiles of
the testing error function () = ()() − () (i.e., ZF (9)) are illustrated in Figure 6. As
shown in the figure, all the elements of () are less than or equal to zero, thereby meaning
that the () solution satisfies ()() ≤ () (being an exact time-varying solution of (3)).
These simulation results substantiate the efficacy of ZNN model (8) for time-varying LMVI
solving. Besides, Figure 7 shows the simulation results synthesized by ZNN model (8) using
different γ values (i.e.,  = 1 and  = 10) and different activation functions (i.e., linear, hyper-
bolic-sine and power-sigmoid activation functions). As seen from Figure 7, the residual er-
rors all converge to zero, which means that ZNN model (8) solves the time-varying LMVI (3)
successfully. Note that, from Figure 7, we have a conclusion that superior computational
performance of ZNN model (8) can be achieved by increasing the γ value and choosing a
suitable activation function.

Figure 3. State trajectories of () ∈ 3 synthesized by ZNN model (8) with  = 1 and the power-sigmoid activation
function used for time-varying LMVI (3) solving.
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Figure 4. State trajectories of Λ() ∈ 3 synthesized by ZNN model (8) with  = 1 and the power-sigmoid activation
function used for time-varying LMVI (3) solving.

Figure 5. Residual errors ∥ ()() − () ∥2 of ZNN model (8) for time-varying LMVI (3) solving.
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Figure 6. Profiles of () = ()() − () ∈ 3 synthesized by ZNN model (8) with  = 1 and the power-sig-
moid activation function used for time-varying LMVI (3) solving.

Figure 7. Residual errors ∥ ()() − () ∥2 of ZNN model (8) with γ fixed and different activation functions

used for time-varying LMVI (3) solving.
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Figure 8. State trajectories of () ∈ 3 synthesized by ZNN model (10) with  = 1 and the power-sigmoid activa-
tion function used for time-varying LMVI (3) solving.

It is worth pointing out here that, in general, it may be difficult to know whether the initial
state (0) used for simulation/application is outside the initial solution set (0) of the time-
varying LMVI (3) or not. Thus, as for ZNN model (10), we focus on investigating its compu-
tational performance when some elements of (0) are outside (0) while the others are inside(0). In this case, some elements of the initial error 0 = (0)(0) − (0) are greater than zero,

while the rest are less than or equal to zero. The corresponding simulation results synthesized
by ZNN model (10) using  = 1 and the power-sigmoid activation function are illustrated in
Figures 8 and 9. As shown in Figure 8, starting from five randomly generated initial states, the() trajectories of ZNN model (10) are time-varying. Besides, from Figure 9 which shows the
profiles of the testing error function () = ()() ≤ (), we can observe that the elements of() with positive initial values are convergent to zero, while the rest elements remain at their
initial values. This result implies that the () solutions shown in Figure 6 are the time-varying
solutions of (3), i.e., ()() ≤ (), thereby showing the efficacy of ZNN model (10) for time-
varying LMVI solving. That is, ZNN model (10) generates an exact time-varying solution of
the time-varying LMVI (3). Note that the computational performance of ZNN model (10) can
be improved by increasing the value of γ and choosing a suitable activation function (which
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is similar to that of ZNN model (8)). Being a topic of exercise, the corresponding simulative
verifications of ZNN model (10) are left for interested readers.

Figure 9. Profiles of () = ()() − () ∈ 3 synthesized by ZNN model (10) with  = 1 and the power-sig-
moid activation function used for time-varying LMVI (3) solving.

In summary, the above simulation results (i.e., Figures 3 through 9) have substantiated that
the presented ZNN models (8) and (10) are both effective on time-varying LMVI solving.

Example 2 In the second example, the following smoothly time-varying coefficient matrices ()
and () of (15) are designed to test ZNN models (18) and (20):

2 2

2 2

sin(10 ) cos(10 )
( ) =   and  

cos(10 ) sin(10 )

cos(10 ) 1 sin(10 ) 1.5
( ) = .

sin(10 ) 1.5 cos(10 ) 1

´

´

é ù
Îê ú-ë û

+ +é ù
Îê ú- + - +ë û

t t
A t R

t t
t t

B t R
t t

The corresponding simulation results are illustrated in Figures 10 through 13.
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Figure 10. Neural states synthesized by ZNN model (18) with  = 1 and the hyperbolic-sine activation function used
for time-varying LMI (15) solving.

Figure 11. Profiles of residual errors ∥ ()() − () ∥2 and () = ()() − () synthesized by ZNN

model (18) with  = 1 and the hyperbolic-sine activation function used for time-varying LMI (15) solving.

Figure 12. Residual errors ∥ ()() − () ∥2 of ZNN model (18) with γ fixed and different activation functions

used for time-varying LMI (15) solving.
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Figure 13. Simulation results synthesized by ZNN model (20) with  = 1 and the hyperbolic-sine activation function
used for time-varying LMI (15) solving.

On one hand, as synthesized by ZNN model (18) using  = 1 and the hyperbolic-sine activation
function, Figure 10 shows the trajectories of () (being the first 4 elements of () in (18)) andΛ() (being the rest elements of ()), which are time-varying. In addition, Figure 11(a) shows

the characteristics of residual error ∥ ()() − () ∥2 = ∥ ()() + Λ2() − () ∥F (with

symbol ∥ ⋅ ∥F denoting the Frobenius norm of a matrix), from which we can observe that the

residual errors of ZNN model (18) all converge to zero. This means that the solutions of ()
and Λ() shown in Figure 10 are the time-varying solutions of ()() + Λ2() − () = 0. That

is, () satisfies ()() = () − Λ2() ≤ (), showing that such a solution is an exact time-
varying solution of the time-varying LMI (15). For better understanding, Figure 11(b) shows
the profiles of the testing error function () = ()() − (), from which we can observe that
all the elements of () are less than or equal to zero. These simulation results substantiate the
efficacy of ZNN model (18) for time-varying LMI solving. Besides, Figure 12 shows the
simulation results synthesized by ZNN model (18) using different γ values and different
activation functions. As seen from Figure 12, the residual errors all converge to zero, which
means that the time-varying LMI (15) is solved successfully via ZNN model (18). Note that, as
for ZNN model (18), its computational performance can be improved by increasing the γ value
and choosing a suitable activation function (as shown in Figure 12).

On the other hand, as synthesized by ZNN model (20) using  = 1 and the hyperbolic-sine
activation function, Figure 13 shows the related simulation results, where some elements of
the initial state (0) are outside the initial solution set (0) of the time-varying LMI (15) while
the others are inside (0). From Figure 13(a), we can observe that the () trajectory of ZNN
model (20) is time-varying. In addition, as shown in Figure 13(b), the errors 11() and 21()
(being the elements of the testing error function () = ()() − ()) converge to zero, and
the errors 12() and 22() are always equal to 12(0) < 0 and 22(0) < 0. This means that the
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() solution shown in Figure 13(a) is the time-varying solution of (15), i.e., ()() ≤ (),
thereby showing the efficacy of ZNN model (20). That is, ZNN model (20) generates an exact
time-varying solution of the time-varying LMI (15). Besides, the investigations on the compu-
tational performance of (10) using different γ values and different activation functions are left
to interested readers to complete as a topic of exercise.

In summary, the above simulation results (i.e., Figures 10 through 13) have substantiated that
the presented ZNN models (18) and (20) are both effective on time-varying LMI solving.

6. Summary

In this chapter, by exploiting two design formulas (1) and (2), based on different ZFs (i.e., (4),
(9), (16) and (19)), four different ZNN models (i.e., (8), (10), (18) and (20)) have been developed
and investigated to solve the time-varying LMVI (3) and time-varying LMI (15). For such ZNN
models, theoretical results and analyses have also been presented to show their computational
performances. Simulation results with two illustrative examples have further substantiated
the efficacy of the presented ZNN models for time-varying LMVI and LMI solving.
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Abstract

Artificial neural networks (ANN) mimic the function of the human brain and they
have  the  capability  to  implement  massively  parallel  computations  for  mapping,
function approximation, classification, and pattern recognition processing. ANN can
capture  the  highly  nonlinear  associations  between  inputs  (predictors)  and  target
(responses)  variables  and can adaptively learn the complex functional  forms.  Like
other  parametric  and  nonparametric  methods,  such  as  kernel  regression  and
smoothing  splines,  ANNs  can  introduce  overfitting  (in  particular  with  highly-
dimensional data, such as genome wide association -GWAS-, microarray data etc.) and
resulting predictions can be outside the range of  the training data.  Regularization
(shrinkage) in ANN allows bias of parameter estimates towards what are considered
to be probable. Most common techniques of regularizations techniques in ANN are
the Bayesian regularization (BR) and the early stopping methods. Early stopping is
effectively limiting the used weights in the network and thus imposes regularization,
effectively  lowering  the  Vapnik-Chervonenkis  dimension.  In  Bayesian  regularized
ANN  (BRANN),  the  regularization  techniques  involve  imposing  certain  prior
distributions on the model parameters and penalizes large weights in anticipation of
achieving smoother mapping.

Keywords: artificial neural network, Bayesian regularization, shrinkage, p>>n, predic-
tion ability

1. Introduction

The issue of dimensionality of independent variables (i.e. when the number of observations is
comparable to or larger than the sample size; small n big p; p>>n) has garnered much attention
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over the last few years, primarily due to the fact that high-dimensional data are so common
in up-to-date applications (e.g.  microarray data,  fMRI image processing,  next generation
sequencing, and many others assays of social and educational data). This issue is of particular
interest in the field of human molecular genetics as the growing number of common single
nucleotide polymorphisms (minor allele frequency > 0.01) available for assay in a single
experiment, now close to 10 million (http://www.genome.gov/11511175), is quickly outpacing
researchers’ ability to increase sample sizes which typically number in the thousands to tens
of thousands. Further, human studies of associations between molecular markers and any trait
of interest include the possible presence of cryptic relationships between individuals that may
not be tractable for use in traditional statistical models. These associations have been investi-
gated primarily using a naïve single regression model for each molecular marker and linear
regression models using Bayesian framework and some machine learning techniques typically
ignoring interactions and non-linearity [1]. Soft computing techniques have also been used
extensively to extract the necessary information from these types of data structures. As a
universal approximator, Artificial Neural Networks (ANNs) are a powerful technique for
extracting information from large data, in particular for p>>n studies, and provide a compu-
tational approach with the ability to optimize the learning algorithm and make discoveries
about functional forms in an adaptive approach [2, 3]. Moreover, ANNs offer several advan-
tages,  including  requiring  less  formal  statistical  training,  an  ability  to  perfectly  identify
complex nonlinear relationships between dependent and independent variables, an ability to
detect  all  possible  interactions  between  input  variables,  and the  availability  of  multiple
training algorithms [4]. In general, the ANN architecture, or “model” in statistical jargon, is
classified by the fashion in which neurons in a neural network are connected. Generally
speaking, there are two different classes of ANN architecture (although each one has several
subclasses).  These are feedforward  ANNs and recurrent  ANNs. Only Bayesian regularized
multilayer perceptron (MLP) feedforward ANNs will be discussed in this chapter.

This chapter begins with introducing of multilayer feedforward architectures. The regulari-
zation using other backpropagation algorithms to avoid overfitting will be explained briefly.
Then Bayesian regularization (BR) for overfitting, Levenberg-Marquardt (LM) a training
algorithm, BR, optimization of hyper parameters, inferring model parameters for given value
of hyper parameters, pre-processing of data will be considered. Chapter will be ended with a
MATLAB example for Bayesian Regularized feedforward multilayer artificial neural network
(BRANN).

2. Multilayer perceptron feedforward neural networks

The MLP feedforward neural network considered herein is the most popular and most widely
used ANN paradigm in many practical applications. The network is fully connected and
divided into layers as depicted in Figure 1. In the left-most layer, there are input variables. The
input layer consists of pi (p=4 in Figure 1 for illustration) independent variables and covariates.
Then input layer is followed by a hidden layer, which consists of S number of neurons (S=3 in
Figure 1), and there is a bias specific to each neuron. Algebraically, the process can be repre-
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sented as follows. Let ti (the target or dependent variable) be a trait (quantitative or qualitative)
measured in individual i and let pi= {pij} be a vector of inputs (independent variables) or any
other covariate measured for each individual. Suppose there are S neurons in the hidden layer.
The input into neuron k (k=1, 2,…, S) prior to activation, as described in greater detail later in
this chapter, is the linear function w’k pi, where w’k = {wkj} is a vector of unknown connection
strengths (slope in regression model) peculiar to neuron k, including a bias (e.g. the intercept
in regression model). Each neuron in the hidden layer performs a weighted summation (ni in
Figure 1) of the inputs prior to activation which is then passed to a nonlinear activation function (1) + ∑ = 1  . Suppose the activation function chosen in the hidden layer is the

hyperbolic tangent transformation () =  − − + − , where f(xi) is the neuron emission for

input variables [3]. Based on the illustration given in the Figure 1, the output of each neuron
(shown as purple, orange, and green nodes) in the hidden layer (th) with hyperbolic tangent
transformation are calculated as in equation (1).

Figure 1. Artificial neural network design with 4 inputs (pi). Each input is connected to up to 3 neurons via coefficients
w(l)

kj (l denotes layer; j denotes neuron; k denotes input variable). Each hidden and output neuron has a bias parameter
b(l)

j. Here P = inputs, IW = weights from input to hidden layer (12 weights), LW = weights from hidden to output layer
(3 weights), b1 = Hidden layer biases (3 biases), b2 = Output layer biases (1 bias), n1 = IWP + b1 is the weighted summa-
tion of the first layer, a1 = f(n1) is output of hidden layer, n2 = LWa1 +b2 is weighted summation of the second layer, and = 2 =  2  is the predicted value of the network. The total number of parameters for this ANN is 12+3+3+1 =19.
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The hidden layer outputs from neurons (orange, purple, and green) are the input of the next
layer. After the activation function, the output from the hidden layer is then sent to the output

layer again with weighted summation as ∑ = 1 ′  (1) + ∑ = 1  + (2) , where wk are

weights specific to each neuron and b(1) and b(2) are bias parameters in the hidden and output
layers, respectively. Finally, this quantity is again activated with the same or another activa-

tion function g(.) as  ∑ = 1 ′ ( . ) + (2) = 2 =  , which then becomes the predicted value  of the target variable in the training set. For instance, the predicted value   of the output

layer based on details given in Figure 1 and equation (1) can be calculated as,
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This can be illustrated as,

The activation function applied to the output layer depends on the type of target (dependent)
variable and the values from the hidden units that are combined at the output units with
additional (potentially different) activation functions applied. The activation functions most
widely used are the hyperbolic tangent, which ranges from 1 to 1, in the hidden layer and linear
in the output layer, as is the case in our example in Figure 1 (the sigmoidal type activation
function such as tangent hyperbolic and logit in the hidden layer are used for their convenient
mathematical properties and these are usually chosen as a smooth step function). If the

Artificial Neural Networks - Models and Applications30



The hidden layer outputs from neurons (orange, purple, and green) are the input of the next
layer. After the activation function, the output from the hidden layer is then sent to the output

layer again with weighted summation as ∑ = 1 ′  (1) + ∑ = 1  + (2) , where wk are

weights specific to each neuron and b(1) and b(2) are bias parameters in the hidden and output
layers, respectively. Finally, this quantity is again activated with the same or another activa-

tion function g(.) as  ∑ = 1 ′ ( . ) + (2) = 2 =  , which then becomes the predicted value  of the target variable in the training set. For instance, the predicted value   of the output

layer based on details given in Figure 1 and equation (1) can be calculated as,

1 1 1 1 1 1 1 1 1 1
21 11 1 12 2 13 3 14 4 1 11 1 12 2 13 3 14 4
11 1 1 1 1 1 1 1 1 1

1 11 1 12 2 13 3 14 4 1 11 1 12 2 13 3 14 4

1
2 ' (2) 2

1

exp( ) exp( )
exp( ) exp( )

exp(ˆ (.)
S

k k
k

b w p w p w p w p b w p w p w p w p w
b w p w p w p w p b w p w p w p w p

b wt a g w f b g
=

æ ö+ + + + - - - - - -
+ç ÷

+ + + + + - - - - -è ø

+é ù= = + =ê ú
ë û
å

1 1 1 1 1 1 1 1 1
221 1 22 2 23 3 24 4 2 21 1 22 2 23 3 24 4
21 1 1 1 1 1 1 1 1 1

2 21 1 22 2 23 3 24 4 2 21 1 22 2 23 3 24 4

1 1 1 1 1 1 1
3 31 1 32 2 33 3 34 4 3 31

) exp( )
exp( ) exp( )

exp( ) exp(

p w p w p w p b w p w p w p w p w
b w p w p w p w p b w p w p w p w p

b w p w p w p w p b w p

æ ö+ + + - - - - - -
+ç ÷

+ + + + + - - - - -è ø

+ + + + - - -

2

1 1 1
21 32 2 33 3 34 4
31 1 1 1 1 1 1 1 1 1

3 31 1 32 2 33 3 34 4 3 31 1 32 2 33 3 34 4

)
exp( ) exp( )

b

w p w p w p w
b w p w p w p w p b w p w p w p w p

é ùæ ö
ç ÷ê ú
ç ÷ê ú
ç ÷ê ú
ç ÷ê ú+ç ÷ê ú
ç ÷ê ú
ç ÷ê úæ ö- - -
ç ÷ê úç ÷ç ÷+ + + + + - - - - -ê úè øè øë û

(2)

This can be illustrated as,

The activation function applied to the output layer depends on the type of target (dependent)
variable and the values from the hidden units that are combined at the output units with
additional (potentially different) activation functions applied. The activation functions most
widely used are the hyperbolic tangent, which ranges from 1 to 1, in the hidden layer and linear
in the output layer, as is the case in our example in Figure 1 (the sigmoidal type activation
function such as tangent hyperbolic and logit in the hidden layer are used for their convenient
mathematical properties and these are usually chosen as a smooth step function). If the

Artificial Neural Networks - Models and Applications30

activation function at the output layer g(.) is a linear or identity activation function, the model
on the adaptive covariates fk(.) is also linear. Therefore, the regression model is entirely linear.
The term “adaptive” denotes that the covariates in ANN are functions of unknown parameters
(i.e. the {wkj} connection strengths), so the network can “learn” the association between
independent (input) variables and target (output) variables, as is the case in standard regres-
sion models [1]. In this manner, this type of ANN architecture can also be regarded as a
regression model. Of course, the level of non-linearity in ANNs is ultimately dictated by the
type of activation functions used.

As depicted in Figure 1, a MLP feed forward architecture with one hidden layer can virtually
predict any linear or non-linear model to any degree of accuracy, assuming that you have a
suitable number of neurons in the hidden layer and an appropriate amount of data. But adding
more neurons in hidden layers to the ANN architecture offers the model the flexibility of
prediction of exceptionally complex nonlinear associations. This also holds true in function
approximation, mapping, classification, and pattern recognition in approximating any
nonlinear decision boundary with great precision. By adding additional neurons in the hidden
layer to a MLP feedforward ANN is similar to adding additional polynomial terms to a
regression model through the practice of generalization. Generalization is a method of
indicating the appropriate complexity for the model in generating accurate prediction
estimates based on data that is entirely separate from the training data that was used in fitting
the model [5], commonly referred to as the test data set.

3. Overfitting and regularization

Like many other nonlinear estimation methods in supervised machine learning, such as kernel
regression and smoothing splines, ANNs can suffer from either underfitting or overfitting. In
particular, overfitting is more serious because it can easily lead to predictions that are far
beyond the range of the training data [6–8]. Overfitting is unavoidable without practicing any
regularization if the number of observations in the training data set is less than the number of
parameters to be estimated. Before tackling the overfitting issue, let us first consider how the
number of parameters in multilayer feedforward ANN is calculated. Suppose an ANN with
1000 inputs, 3 neurons in hidden and 1 neuron in output layer. The total number of parameters
for this particular ANN is 3*1000 (number of weights from the input to the hidden layer) + 3
(number of biases in the hidden layer) + 3 (number of weights from the hidden to the output
layer) + 1(bias in output) = 3007. The number of parameters for the entire network, for example,
increases to 7015 when 7 neurons are assigned to the hidden layer. In these examples, either
3007 or 7015 parameters need to be estimated from 1000 observations. To wit, the number of
neurons in the hidden layer controls the number of parameters (weights and biases) in the
network. Determination of the optimal number of neurons to be retained in the hidden layer
is an important step in the strategy of ANN. An ANN with less number of neurons may fails
to capture the complex patterns between input and target variables. In contrast, an ANN with
excess number of neurons in hidden layer will suffer from over-parameterization, leading to
over-fitting and poor generalization ability [3]. Note that if the number of parameters in the
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network is much smaller than the total number of individuals in the training data set, then that
is of no concern as there is little or no chance of overfitting for given ANN. If data assigned to
the training set can be increased, then there is no need to worry about the following techniques
to prevent overfitting. However, in most applications of ANN, data is typically partitioned to
derive a finite training set. ANN algorithms train the model (architecture) based on this
training data, and the performance and generalizability of the model is gauged on how well
it predicts the observations in the training data set.

Overfitting occurs when a model fits the data in the training set well, while incurring larger
generalization error. As depicted in Figure 2, the upper panel (Figure 2a and b) shows a model
which has been fitted using too many free parameters. It seems that it does an excellent fitting
of the data points, as the difference between outcome and predicted values (error) at the data
points is almost zero. In reality, the data being studied often has some degree of error or random
noise within it. Therefore, this does not mean our model (architecture) has good generaliza-
bility for given new values of the target variable t. It is said that the model has a bias-variance
trade-off problem. In other words, the proposed model does not reproduce the structure which
we expect to be present in any data set generated by function f(.). Figure 2c shows that, while
the network seems to get better and better (i.e., the error on the training set decreases; repre-
sented by the blue line in Figure 2a), at some point during training (epoch 2 in this example)
it truly begins to get worse again (i.e. the error on test data set increases; represented by the

Figure 2. Function approximation of different regression models. Significant overfitting can be seen in (a)–(c).
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red line in Figure 2a). The idealized expectation is that during training, the generalization error
of the network progresses as shown in Figure 2d.

In general, there are two ways to deal with the overfitting problem in ANN (not considering
ad hoc techniques such as pruning, greedy constructive learning, or weight sharing that
reduces the number of parameters) [9]. These are weight decay and early stopping, both of
which are known as regularization techniques. Regularization is the procedure of allowing
parameter bias in the direction of what are considered to be more probable values, which
reduces the variance of the estimates at the cost of introducing bias. Put in another way,
regularization can be viewed as a way of compromising to minimize the objective function
with regard to parameter (weights and bias) space. Next, we will briefly discuss early stopping
before proceeding to the topic of weight decay (BR).

3.1. Early stopping

In the standard practice of backpropagation learning with early stopping, the data set is
allocated into three sources: a training data set, a validation data set, and a testing data set. In
most ANN practices, the biggest part of data is assigned to training data (by default a 60% of
data is assigned for training in MATLAB). Each of these data sets have different task during
the ANN prediction process. The training data set is used to estimate the neural network
weights, while the validation data set is used to monitor the network and calculate the
minimum error during the iterations till network is stopped. The last data set (test data set) is
unseen data by network and task of the test data set is to decrease the bias and generate
unbiased estimates for predicting future outcomes and generalizability. The test data set is
used at the end of the iterative process for evaluating the performance of the model from an
independently drawn sample [10]. With early stopping methods, a gradient descent algorithm
is applied to the training and validation data sets. First, the training data set is used to calculate
the weight and bias estimates, and then these parameter estimates are applied in the validation
data set to calculate error values. The practice iterates substituting parameter estimates from
the training data set into the validation data set to catch the likely smallest average error with
respect to the prediction of the validation data set. Training ends when the error in the
validation data set increases by certain epochs (“iterations” in statistical jargon) in order to
avoid the problem of overfitting (the number of epoch is six by default in MATLAB) and then
the weights at the minimum of the validation error are returned. The network parameter
estimates with the best performance in the validation set are then used in analysis of the testing
data to evaluate the predictive ability of the network [11].

Let the data set be D = {t, (pi)i = 1,….,n}, where pi is a vector of inputs for individual i and t is a
vector of target variables (input = independent and target = dependent variable in classical
estimation terms in statistics). Once a set of weight values w is assigned to the connections in
the networks, this defines a mapping from the input pi to the output  . Let M denote a specific

network architecture (network architecture is the model in terms of numbers of neurons and
choice of activation functions), then the typical objective function used for training a neural
network using early stopping is the sum of squared estimation errors (ED):
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for n input-target pairs defining D. Early stopping is effectively limiting the used weights in
the network and thus imposes regularization, effectively lowering the Vapnik-Chervonenkis
dimension. However, while early stopping often improves generalization, it does not do so in
a mathematically well-defined way. It is crucial to realize that validation error is not a good
estimate of generalization error. Early stopping regularization has a vital advantage over the
usual regularized least square learning algorithm such as ridge regression (so-called penal-
ized L2) or Tikhonov regularization methods.

4. Bayesian regularization

The brief explanation given in the previous section described how early stopping works to
deal with the overfitting issue in ANN. Another regularization procedure in ANN is BR, which
is the linear combination of Bayesian methods and ANN to automatically determine the
optimal regularization parameters (Table 1). In Bayesian regularized ANN (BRANN) models,
regularization techniques involve imposing certain prior distributions on the model parame-
ters. An extra term, Ew, is added by BRANN to the objective function of early stopping given
in equation (3) which penalizes large weights in anticipation of reaching a better generalization
and smoother mapping. As what happens in conventional backpropagation practices, a
gradient-based optimization technique is then applied to minimize the function given in (4).
This process is equal to a penalized log-likelihood,

( , ) ( ),D WF E D M E Mb a= +w w (4)

where EW (w|M), is the sum of squares of architecture weights, M is the ANN architecture
(model in statistical jargon), and α and β are objective function parameters (also referred to as
regularization parameters or hyper-parameters and take the positive values) that need to be
estimated adaptively [3]. The second term on the right hand side of equation (4), αEW, is known
as weight decay and α, the weight decay coefficient, favors small values of w and decreases
the tendency of a model to overfit [12].

To add on a quadratic penalty function EW (w|M), α yielding a version of nonlinear ridge
regression with an estimate for w equivalent to the Bayesian maximum a prior (MAP) [1].
Therefore, the quadratic form (weight decay) favors small values of w and decreases the
predisposition of a model to overfit the data. Here, in equation (4), training involves a tradeoff
between model complexity and goodness of fit. If α>>β, highlighting is on reducing the extent
of weights at the expense of goodness of fit, while producing a smoother network response
[13]. If Bayes estimates of α are large, the posterior densities of the weights are highly concen-
trated around zero, so that the weights effectively disappear and the model discounts connec-
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for n input-target pairs defining D. Early stopping is effectively limiting the used weights in
the network and thus imposes regularization, effectively lowering the Vapnik-Chervonenkis
dimension. However, while early stopping often improves generalization, it does not do so in
a mathematically well-defined way. It is crucial to realize that validation error is not a good
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usual regularized least square learning algorithm such as ridge regression (so-called penal-
ized L2) or Tikhonov regularization methods.

4. Bayesian regularization

The brief explanation given in the previous section described how early stopping works to
deal with the overfitting issue in ANN. Another regularization procedure in ANN is BR, which
is the linear combination of Bayesian methods and ANN to automatically determine the
optimal regularization parameters (Table 1). In Bayesian regularized ANN (BRANN) models,
regularization techniques involve imposing certain prior distributions on the model parame-
ters. An extra term, Ew, is added by BRANN to the objective function of early stopping given
in equation (3) which penalizes large weights in anticipation of reaching a better generalization
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gradient-based optimization technique is then applied to minimize the function given in (4).
This process is equal to a penalized log-likelihood,

( , ) ( ),D WF E D M E Mb a= +w w (4)

where EW (w|M), is the sum of squares of architecture weights, M is the ANN architecture
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predisposition of a model to overfit the data. Here, in equation (4), training involves a tradeoff
between model complexity and goodness of fit. If α>>β, highlighting is on reducing the extent
of weights at the expense of goodness of fit, while producing a smoother network response
[13]. If Bayes estimates of α are large, the posterior densities of the weights are highly concen-
trated around zero, so that the weights effectively disappear and the model discounts connec-
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tions in the network [12, 14]. Therefore, α and β are adaptively predicted to deal with tradeoff
model complexity and goodness of fit.

MATLAB Commend Explanations
load myData Loading data

net=newff(x,y,5,{'tansig',
'purelin'},'trainbr');

Creates a new network with a dialog box.
The properties of architecture created here are:
tangent sigmoid (tansig) and linear
activation function (purelin) in hidden
and output, respectively. The number
of neuron in hidden layer is 5 and the
number of neuron in output layer
1 (by default). The Bayesian regularized
training algorithm (trainbr) takes play
for training of data.

[net,tr]=train(net,x, y)

randn('state',192736547) Lets you seed the uniform random number generator.

y_t=sim(net, x) Simulate net

net = init(net) Reinitiate net to improve results

net = train(net,x,y) Re-train net

net.trainParam.epochs 1000 Maximum number of epochs to train

net.trainParam.goal 0 Performance goal

net.trainParam.mu 0.005 Marquardt adjustment parameter

net.trainParam.mu_dec 0.1 Decrease factor for mu

net.trainParam.mu_inc 10 Increase factor for mu

net.trainParam.mu_max 1e10 Maximum value for mu

net.trainParam.min_grad 1e-7 Minimum performance gradient

net.trainParam.show 25 Epochs between displays
(NaN for no displays)

net.trainParam.
showCommandLine

False Generate command-line output

net.trainParam.
showWindow

True Show training GUI

Table 1. Training occurs according to Bayesian regularization algorithms (trainbr) training parameters, shown here
with their default values (commends given in bold face are required).

As stated in the early stopping regularization section of this chapter, the input and target data
set is typically divided into three parts; the training data set, the validation data set, and the
test data sets. In BRANNs, particularly when the input and target data set is small, it is not
essential to divide the data into three subsets: training, validation, and testing sets. Conversely
all available data set is devoted to model fitting and model comparison [15]. This implemen-
tation is important when training networks with small data sets as is thought that BR has better
generalization ability than early stopping (http://www.faqs.org/faqs/ai-faq/neural-nets/part3/
section-5.html).
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The strength connections, w, of the network are considered random variables and have no
meaning before training. After the data is taken, the density function for the weights can be
updated according to Bayes’ rule. The empirical Bayes approach in [12] is as follows. The
posterior distribution of w given α, β, D, and M is

( , , ) ( , )
( | , , , ) ,

( | , , )
P D M P M

P D M
P D M

b a
a b

a b
=

w w
w (5)

where D is the training data set and M is the specific functional form of the neural network
architecture considered. The other terms in equation (5) are:

• P(w|D, α β, M) is the posterior probability of w,

• P(D|w, β, M) is the likelihood function of w,

• P(w|α, M) is the prior distribution of weights under M, which is the probability of observing
the data given w and

• P(D|α, β, M) is a normalization factor or evidence for hyperparameters α and β.

The normalization factor does not depend on w (Kumar, 2004). That is,

( | , , ) ( , , ) ( , ) .P D M P D M P M da b b a= ò w w w

The weights w, were assumed to be identically distributed, each following the Gaussian
distribution (w| α, M)~N(0, α-1). Given this, the expression of joint prior density of w in
equation (5) is
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After normalization, the prior distribution is then [2]
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where () = 2 2 .
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As target variable t, is a function of input variables, p, (the same association between dependent
and independent variables in regression model) it is modeled as ti = f(pi) + e, where e ~N(0, β-1)
and f(pi) is the function approximation to E(t|p). Assuming Gaussian distribution, the joint
density function of the target variables given the input variables, β and M is [2]:
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where ED(D|w,M) is as given in equation (3) and (4). Letting

() = ∫exp −2  , = 2 2 , the posterior density of w in equation (5) can be

expressed as
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where (, ) = ()()( , ,   and F= βED + αEW. In an empirical Bayesian
framework, the “optimal” weights are those that maximize the posterior density P(w|D, α,
β, M). Maximizing the posterior density of P(w|D, α, β, M) is equivalent to minimizing the
regularized objective function F given in equation (4). Therefore, this indicates that values of
α and β need to be predicted by architecture M, which will be further discussed in the next
section.

While minimization of objective function F is identical to finding the (locally) maximum a
posteriori estimates wMAP, minimization of ED in F by any backpropagation training algorithm
is identical to finding the maximum likelihood estimates wML [12]. Bayesian optimization of
the regularization parameters require computation of the Hessian matrix of the objective
function F evaluated at the optimum point wMAP [3]. However, directly computing the Hessian
matrix is not always required. As proposed by MacKay [12], the Gauss-Newton approximation
to the Hessian matrix can be used if the LM optimization algorithm is employed to locate the
minimum of F [16].

4.1. Brief discussion of Levenberg-Marquardt optimization

The LM algorithm is a robust numerical optimization technique for mapping as well as
function approximation. The LM modification to Gauss-Newton is
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(J'J +μI)= J'e (9)

and the Hessian matrix can be approximated as:

' ,=H J J (10)

where J is the Jacobian matrix that contains first derivatives of the network errors with respect
to network parameters (the weights and biases), μ is the Levenberg`s damping factor, and δ is
the parameter update vector. The δ indicates how much the magnitude of weights needs to be
changed to attain better prediction ability. The way to calculate J matrix is given in equation
(11). The gradient of the ANN is computed as g=J’e. The μ in equation (9) is adjustable in each
iteration, and guides the optimization process during ANN learning with the training data set.
If reductions of the cost function F are rapid, then the parameter μ is divided by a constant (c)
to bring the algorithm closer to the Gauss-Newton, whereas if an iteration gives insufficient
reduction in F, then μ is multiplied by the same constant giving a step closer to the gradient
descent direction (http://crsouza-blog.azurewebsites.net/2009/11/neural-network-learning-
by-the-levenberg-marquardt-algorithm-with-bayesian-regularization-part-1/#levenberg).
Therefore, the LM algorithm can be considered a trust-region modification to Gauss-Newton
designed to serve as an intermediate optimization algorithm between the Gauss-Newton
method and the Gradient-Descent algorithm [17].

The Jacobian matrix is a matrix of all first-order partial derivatives of a vector-valued func-
tion. The dimensions of the matrix are formed by the number of observations in the training
data and the total number of parameters (weights + biases) in the ANN being used. It can be
created by taking the partial derivatives of each output with respect to each weight, and has
the form:
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The parameters at l iteration are updated as in equation (12) when the Gauss-Newton approx-
imation of the Hessian matrix by LM in Bayesian regularized neural network (BRANN) is used.
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imation of the Hessian matrix by LM in Bayesian regularized neural network (BRANN) is used.
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Therefore, this approach provides a numerical solution to the problem of minimizing a
nonlinear function over the parameter space. In addition, this approach is a popular alternative
to the Gauss-Newton method of finding the minimum of a function (http://crsouza-blog.azur-
ewebsites.net/2009/11/neural-network-learning-by-the-levenberg-marquardt-algorithm-
with-bayesian-regularization-part-1/#levenberg). Next, let’s compare the equations for some
common training algorithms and use this information to decipher how parameters are updated
after each iteration (epoch) in ANN: Updating the strength connection in standard backpro-

pagation training  + 1 =  − ∂ ,
updating the strength connection in Quasi-Newton training  + 1 =  − −1∂ , and

updating the strength connection in LM training  + 1 =  −  + 𝀵𝀵 𝀵𝀵 −1.

Therefore, Quasi-Newton is necessary for actual calculation of the Hessian matrix H while LM
is used to approximate H. The α coefficient in the first two equations is referred to as the
learning rate. The performance of the algorithm is very sensitive to proper setting of the
learning rate. If the learning rate is set too high, the algorithm can oscillate and become
unstable. On the other hand, too low learning rate makes the network learn very slowly and
converging of ANN will take a while. In gradient descent learning, it is not practical to
determine the optimal setting for the learning rate before training, and in fact, the optimal
learning rate changes during the training process, as the algorithm moves across the perform-
ance surface [18].

5. Tuning parameters α and β

As discussed earlier, minimizing the regularized objective function F = βED(D|w,M) + αEW (w|
M) in equation (4) is equivalent to maximization of the posterior density P(w|D, α, β, M). A
typical procedure used in neural networks infers α and β by maximizing the marginal
likelihood of the data in equation (5). The joint probability of α and β is

( , , ) ( , )
( , | , ) .

( | )
P D M P M

P D M
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a b a b
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Essentially, we need to maximize the posterior probability P(α β | D, M) with respect to
hyperparameters α and β which is equivalent to maximization of P(D | α, β, M). P(D | α, β, M)
is the normalization factor given for the posterior distribution of w in equation (5).

If we apply the unity activation function in equation (5), which is the analog of linear regression,
then this equation will have a closed form. Otherwise, equation (5) does not have a closed form
if we apply any sigmoidal activation function, such as logit or tangent hyperbolic in the hidden
layer. Hence, the marginal likelihood is approximated using a Laplacian integration completed
in the area of the current value w=wMAP [3]. The Laplacian approximation to the marginal
density in equation (5) is expressed as
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where K is a constant and  = ∂2∂𑨂𑨂∂𑨂𑨂′  ,   is the Hessian matrix as given in equation (10)

and (11). A grid search can be used to locate the α, β maximizers of the marginal likelihood in
the training set. An alternative approach [12, 14] involves iteration (updating is from right to
left, with wMAP evaluated at the “old” values of the tuning parameters)
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The expression γ = m – 2αnewtr(HMAP)-1 is referred to as the number of effective parameters
in the neural network and its value ranges from 0 (or 1, if an overall intercept b is fitted)
to m, the total number of connection strength coefficients, w, and bias, b, parameters in
the network. The effective number of parameters indicates the number of effective
weights being used by the network. Subsequently, the number of effective parameters is
used to evaluate the model complexity and performance of BRANNs. If γ is close to m,
over-fitting results, leading to poor generalization.
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in the neural network and its value ranges from 0 (or 1, if an overall intercept b is fitted)
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6. Steps in BRANN

A summary of steps in BRANN is given in Figure 3. Initialize α, β and the weights, w. After
the first training step, the objective function parameters will recover from the initial setting.

Figure 3. Flow chart for Bayesian optimization of regularization parameters α and β in the neural networks;
MAP=maximum a posteriori [partially adapted from 16 and 2].

1. Take one step of the LM algorithm to minimize the objective function F(α,β) and find the
current value of w.

i. Compute the Jacobian as given in equation (11).

ii. Compute the error gradient g = JTe.

iii. Approximate the Hessian matrix using H = JTJ.

Calculate the objective function as given in equation (4).

Solve the J’J + μI)δ = J’e.
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Update the network weights w using δ.

2. Compute the effective number of parameters γ = N - 2atr(H)-1 making use of the Gauss-
Newton approximation to the Hessian matrix available from the LM training algorithm.

3. Compute updated αnew and βnew as𝀵𝀵𝀵𝀵𝀵𝀵 = 2(𝀵𝀵𝀵𝀵𝀵𝀵) 𝀵𝀵𝀵𝀵𝀵𝀵 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 = 𑨒𑨒𑨒𑨒 2(𝀵𝀵𝀵𝀵𝀵𝀵) ; and

4. Iterate steps 2-4 until convergence.

7. Practical considerations

In general, there are three steps between input and predicted values in ANN training. These
are pre-processing, network object (training), and post-processing. These steps are important
to make ANN more efficient as well as drive optimal knowledge from ANN. Some of these
steps will be considered in the following sections.

7.1. Data cleaning

Before training, the data sets should be checked in terms of constant, corrupt, and incorrect
values from the input and target data set. After checking for suspicious and improper data,
the dimension of the input vector could be an important issue for efficient training. In some
situations, the dimensions of the data vectors could be large, but the components in the data
vectors can be highly correlated (redundant). Principal component analysis (PCA) is the most
common technique for dimensionality reduction and orthogonalization.

7.2. Normalization

Normalization or scaling is not really a functional requirement for the neural networks to learn,
but it significantly helps as it converts the input and target (independent and dependent
variables in statistical jargon) into the data range that the sigmoid activation functions lie in
(i.e. for logistic [0, 1] and tanh [−1, 1]. For example, in MLP, non-linear functions in hidden
layers become saturated when the input is larger than six (exp(-6)~0.00247). Consequently,
large inputs cause ill-conditioning by leading to very small weights. Further with large inputs,
the gradient values become very small, and the network training will be very slow.

By default, before initiating the network processing, MATLAB Neural Network Toolbox®
rescales both input and output variables such that they lie -1 to +1 range, to boost numerical
stability. This task is done spontaneously in MATLAB Neural Network Toolbox® using the
“mapminmax” function. To explain this, consider the simple data vector as x’=[8, 1, 5]. Here
the xmin = 1 and xmax = 8. If values are to range between Amin = -1 and Amax = +1, one redefine the
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common technique for dimensionality reduction and orthogonalization.

7.2. Normalization

Normalization or scaling is not really a functional requirement for the neural networks to learn,
but it significantly helps as it converts the input and target (independent and dependent
variables in statistical jargon) into the data range that the sigmoid activation functions lie in
(i.e. for logistic [0, 1] and tanh [−1, 1]. For example, in MLP, non-linear functions in hidden
layers become saturated when the input is larger than six (exp(-6)~0.00247). Consequently,
large inputs cause ill-conditioning by leading to very small weights. Further with large inputs,
the gradient values become very small, and the network training will be very slow.

By default, before initiating the network processing, MATLAB Neural Network Toolbox®
rescales both input and output variables such that they lie -1 to +1 range, to boost numerical
stability. This task is done spontaneously in MATLAB Neural Network Toolbox® using the
“mapminmax” function. To explain this, consider the simple data vector as x’=[8, 1, 5]. Here
the xmin = 1 and xmax = 8. If values are to range between Amin = -1 and Amax = +1, one redefine the
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data vector temporarily as xtemp’= [−1, 1, 5], so only x3 = 5 needs to be rescaled to guarantee that
all variables reside between -1 and +1. This is done by using the following formula:

3 min
3, min max min

max min
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x x

- -
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When the input and target data is normalized, the network output always falls into a normal-
ized range. The network output can then be reverse transformed into the units of the original
target data when the network is put to use in the field [18].

7.3. Multiple runs

Each time a neural network is trained, the output obtained from each run can result in a
different solution mainly due to: a) different initial weight and bias values, and b) different
splitting of data into training, validation, and test sets (or into training and testing). As a result,
function approximation using different neural network architectures trained on the same
problem can produce different outputs for the same input fed into the ANN. For example,
depending on the initial weights of the network, the algorithm may converge to local minima
or not converge at all. To avoid local minima convergence and overtraining, improve the
predictive ability of ANN, and eliminate spurious effects caused by random starting values.
Several independent BRANNs, say 10, should be trained for each architecture. Results are then
recorded as the average of several runs on each architecture.

7.4. Analyses and computing environment

Determination of the optimal number of neurons in the hidden layer is an essential task in
ANN architectures. As stated earlier, network with only a few neurons in hidden layer may
be incapable of capturing complex association between target and input variables. However,
if too excessive neurons are assigned in hidden part of the network then it will follow the noise
in the data due to overparameterization, leading to bad generalization and poor predictive
ability of unseen data [3, 19]. Therefore, a different number of neurons in the hidden layer
should be tried, and architecture performance should be assessed after each run with a certain
number of neurons in the hidden layer. Because highly parameterized models are penalized
in BRANN, the complexity of BRANN architectures using sum of squares weights as well as
the degree of shrinkage attained by BRANN can be used to determine the optimal number of
neurons. The number of parameters (weights and biases) is a function of the number of
neurons. More neurons in the hidden layer imply that more parameters need to be estimated.
Therefore, one criteria for model selection in complex BRANN concerns the number of weights.
The more weights there are, relative to the number of training cases, the more overfitting
amplifies noise in the target variables [1–3]. As demonstrated in Figure 4, BRANN also
calculates the effective number of parameters to evaluate the degree of complexity in ANN
architecture. BRANN uses the LM algorithm (based on linearization) for computing the
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posterior modes in BR. The penalized residual sum of squares is also used to determine the
number of neurons in the hidden part of the network.

7.5. Stopping training of BRANN

In MATLAB applications, training of BRANN is stopped if:

1. The maximum number of epochs (number of iterations in statistical jargon) is reached

2. Performance of the network with the number of neurons and combinations of the
activation functions has met a suitable level

3. The gradient (J’e) was below a suitable target

4. The LM μ parameter exceeded a suitable maximum (training stopped when it became
larger than 1010).

Each of these targets and goals are set as the default values in MATLAB implementation. The
maximum number of iterations (called epochs) in back-propagation was set to 1000, and
iteration will stop earlier if the gradient of the objective function is below a suitable level, or
when there are obvious problems with the algorithm [20].

8. Interpreting the results

8.1. Degree of complexity

This example illustrates the impact of shrinkage and how regularized neural networks deal
with the “curse of dimensionality”. The example given here has 500 inputs and the number of
neurons in the hidden layer is 5, such that the total of nominal parameters (weights and biases)
is 2511. However, the effective number of parameters is 316 (Figure 4). In other words, the
model can be explained well with only with 316 parameters when BR is used for training the
networks. In practice, different architectures (different activation functions and different
numbers of neurons in the hidden layer) should be explored to decide which architecture best
fits the data. Hence, incremental increasing of the number of neurons from one to several is
the best practice to cope with the “curse of dimensionality”.

8.2. Predictive performance

The predictive correlation is 0.87 (Figure 4) in the given example, which is quite high, implying
that the predictive ability of the model used is sufficient. However, as stated earlier, to eliminate
spurious effects caused by random starting values, several independent BRANNs should be
trained for each architecture and the average value of multiple runs should be reported.
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Figure 4. Output screens from MATLAB runs.

8.3. Shrinkage

The distribution of connection strengths (network parameters) in an ANN gives an evi-
dence of the degree of regularization achieved by BRANNs. Conventionally, weight val-
ues are shrinkage with model complexity, in the same approach that estimates of network
parameters become smaller in BR implementations. This is true when inputs p increase
and training sample size remains constant. Moreover, the distribution of weights in any
architecture is often associated with the predictive ability of network; small value weights
tend to lead to better generalization for unseen data [1, 19]. Figure 4 shows the distribu-
tions of weights for the nonlinear regularized networks with five neurons in the hidden
layer. It is suggested that a linear activation function in the hidden and output layers, as
well as a nonlinear activation function with different numbers of neurons in the hidden
and a linear activation function in output layer should be tried. This provides a good op-
portunity to compare models for the extent of regularization attained. For example, the
sum of squared weights for about 2500 parameters is only 4.24 in the given example (see
Figure 4), indicating how Bayesian neural networks reduce the effective number of
weights relative to what would be obtained without regularization. In other words, the
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method by which highly parameterized models are penalized in the Bayesian approach
helps to prevent over-fitting.

9. Conclusion

Small n and big p (p>>n) is key issue for prediction of complex traits from big data sets, and
ANNs provide efficient and functional approaches to deal with this problem. Because the
competency of capturing highly nonlinear relationship between input and outcome variables,
ANNs act as universal approximators to learn complex functional forms adaptively by using
different type of nonlinear functions. Overfitting and over-parameterization are critical
concerns when ANN is used for prediction in (p>>n). However, BRANN plays a fundamental
role in attenuating these concerns. The objective function used in BRANN has an additional
term that penalizes large weights to attain a smoother mapping and handle overfitting
problem. Because of the shrinkage, the effective number of parameters attained by BRANN is
less than the total number of parameters used in the model. Thus, the over-fitting is attenuated
and generalization ability of the model is improved considerably.
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Abstract

The aim of this research was to apply a generalized regression neural network (GRNN)
to predict neutron spectrum using the rates count coming from a Bonner spheres system
as the only piece of information. In the training and testing stages, a data set of 251
different types of neutron spectra, taken from the International Atomic Energy Agency
compilation, were used. Fifty-one predicted spectra were analyzed at testing stage.
Training and testing of GRNN were carried out in the MATLAB environment by means
of a scientific and technological tool designed based on GRNN technology, which is
capable  of  solving the  neutron spectrometry  problem with  high performance  and
generalization  capability.  This  computational  tool  automates  the  pre-processing  of
information,  the  training  and  testing  stages,  the  statistical  analysis,  and  the  post-
processing of the information. In this work, the performance of feed-forward backpro-
pagation neural networks (FFBPNN) and GRNN was compared in the solution of the
neutron spectrometry problem. From the results  obtained,  it  can be observed that
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despite very similar results, GRNN performs better than FFBPNN because the former
could be used as an alternative procedure in neutron spectrum unfolding methodolo-
gies with high performance and accuracy.

Keywords: artificial intelligence, statistical artificial neural networks, neutron spec-
trometry, unfolding codes, spectra unfolding

1. Introduction

Artificial Intelligence or AI is one of the newest fields of intellectual research that attempts to
understand the intelligent entities [1]. Intelligence could be defined by the properties it exhibits:
an ability to deal with new situations, to solve problems, to answer questions, to devise plans,
and so on [2]. The phrase AI was coined by John McCarthy in the 1940s and to date evades a
concise and formal definition [3]. A simple definition might be: AI is the study of systems that
act in a way, that to any observer would appear to be intelligent, and involves using methods
based on the intelligent behavior of humans and other animals to solve complex problems.

AI has been classified into three periods: the classical, the romantic, and the modern periods
[1–4]. The major area of research covered under the classical period, in the 1950s, was intelligent
search problems involved in game-playing and theorem proving. In the romantic period, from
the mid-1960s until the mid-1970s, people were interested in making machines “understand,”
by which they usually meant the understanding of natural languages. The modern period
started from the latter half of 1970s to the present day and includes research on both, theories
and practical aspects of AI. This period is devoted to solving relatively simple or complex
problems that are integral to more complex systems of practical interest.

The aim of the study of AI is to use algorithms, heuristics, and methodologies based on the
ways in which the human brain solves problems. In the most recent decades, AI areas of
particular importance include multi-agent systems; artificial life; computer vision; planning;
playing games, chess in particular; and machine learning [5–6].

1.1. Machine learning and connectionism

Learning and intelligence are intimately related to each other. Learning is an inherent charac-
teristic of human beings [3]. By virtue of this, people, while executing similar tasks, acquire
the ability to improve their performance with the self-improvement of future behavior based
on past experience. In most learning problems, the task is to learn to classify inputs according
to a finite, or sometimes infinite, set of classifications [2]. Typically, a learning system is
provided with a set of training data, which have been classified by hand. The system then
attempts to learn from these training data how to classify the same data, usually a relative easy
task, and also how to classify new data that are not seen [7].

The principles of learning can be applied to machines to improve their performance [8]. A
system capable of learning is intelligent and is usually expected to be able to learn based on
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past experience. Such learning is usually referred to as “machine learning” (ML) which is an
important part of AI and can be broadly classified into three categories: supervised, unsuper-
vised, and reinforcement learning.

Supervised learning requires a trainer who supplies the input-output training instances. The
learning system adapts its parameters using some algorithms to generate the desired output
patterns from a given input pattern. In absence of trainers, the desired output of a given input
instance is not known; consequently, the learner has to adapt its parameters autonomously.
Such type of learning is termed unsupervised learning.

Reinforcement learning bridges the gap between the supervised and unsupervised categories.
In reinforcement learning, the learner does not explicitly know the input-output instances, but
it receives some form of feedback from its environment. The feedback signals help the learner
to decide whether its action on the environment is rewarding or punishable. The learner thus
adapts its parameters based on the states (rewarding/punishable) of its actions.

Recently, the connectionist approach for building intelligent machines with structured models
like artificial neural networks (ANN) is receiving more attention [9]. Connectionist models are
based on how computation occurs in biological neural networks. Connections play an essential
role in connectionist models, hence the name connectionism [10]. The term connectionism was
introduced by Donald Hebb in the 1940s, and it is a set of approaches in the fields of AI that
models mental or behavioral phenomena as the emergent processes of interconnected
networks of simple units [11]. The central connectionist principle is that mental phenomena
can be described by interconnected networks of simple and uniform units.

Figure 1. The unit: the basic information processing structure of a connectionist model.

Units are to a connectionist model what neurons are to a biological neural network: the basic
information processing structures. Since the flow of information in a network occurs through
its connections, the link through which information flows from one member of the network to
the next is known as synapses. Synapses are to neural networks what an Ethernet cable or
telephone wire is to a computer network. Without synapses from other neurons, it would be
impossible for a neuron to receive input and to send output from and to other neurons,
respectively. Given the crucial role that connections play in a network of neurons, synapses in
a biological neural network matter as much as the neurons themselves [12].

Most connectionist models are computer simulations executed on digital computers. In a
connectionist computer model, units are usually represented by circles as shown in Figure 1.
Because no unit by itself constitutes a network, connectionist models typically are composed
of many units as illustrated in Figure 2. However, neural networks are organized in layers of
neurons. For this reason, connectionist models are organized in layers of units as shown in
Figure 3. Figure 3 is still not a network because no group of objects qualifies as a network
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unless each member is connected to other members; it is the existence of connections that make
a network, as illustrated in Figure 4 [13].

Figure 2. Connectionist model with 11 units.

Figure 3. Connectionist model organized in layers.

Figure 4. Network connectionist model.

In Figure 4, it can be seen that network connections are conduits through which information
flows between the members of a network. In the absence of such connections, no group of
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objects qualifies as a network. There are two kinds of network connections: input and output.
An input connection is a conduit through which a member of a network receives information.
An output connection is a conduit through which a member of a network sends information.
Although it is possible for a network connection to be both an input connection and an output
connection, a unit does not qualify as a member of a network if it can neither receive informa-
tion from other units nor send information to other units.

There are many forms of connectionism, but the most common forms use neural network
models [14]. The form of the connections and the units can vary from model to model as shown
in Figures 5–9, where it can be seen that any number of units may exist within each layer, and
each unit of each layer is typically linked via a weighted connection to each node of the next
layer. Data are supplied to the network through the input layer.

Figure 5. Single-layered recurrent net with lateral feedback structure.

Depending on the nature of the problems, neural network models are organized in different
structural arrangements (architectures or topologies) [10]. The neural network architecture
defines its structure including the number of hidden layers, number of hidden nodes, and
number of nodes at the input and output layers. There are several types of ANN architectures.
As illustrated in Figures 5–9, most of the widely used neural network models can be divided
into two main categories: feed forward neural networks (FFNN) and feedback neural networks
(FBNN) [10–14].

Figure 6. Two-layered feed-forward structure.
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As shown in Figures 6 and 8, FFNNs allow signals to travel one way only; data enters the
inputs and passes through the network, layer by layer, until it arrives at the output. There is
no feedback or loops between layers. These networks are extensively used in pattern recogni-
tion and classification. FBNN can have signals traveling in both directions by introducing loops
in the network as shown in Figures 5, 7, and 9. FBNNs are dynamic; their state changes
continuously until they reach an equilibrium point. They remain at the equilibrium point until
the input changes and a new equilibrium needs to be found.

Figure 7. Two-layered feedback structure.

Figure 8. Three-layered feed-forward structure.
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Figure 9. Single-layered recurrent structure.

In most connectionist models, units are organized into three layers: an input layer, one or more
“hidden” layers, and an output layer [10–14]. Figures 4 and 8 show a 3-layered FFNN
consisting of 3 layers of units, where each unit is connected to each unit above it, and where
information flows “forward” from the network’s input units, through its “hidden” units, to its
output units. The nodes of the hidden layer process input data they receive as the sum of the
weighted outputs of the input layer. Nodes of the output layer process input data they receive
as the sum of the weighted output of the units within the hidden layers, and supply the system
output.

Figure 10. Supervised learning of ANN.

As mentioned earlier, the principles of learning can be applied to machines to improve their
performance [15]. In FFNN, network learning is a very important process. The learning
situation can be divided into two major categories: supervised and unsupervised. With
supervised learning, the ANN must be trained before it becomes useful. Training consists of
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presenting input and output data to the network. Figure 10 shows the distinguishing nature
of supervised neural network, which incorporates an external trainer in which input and
output are known, and its objective is to discover a relationship between the two. In this mode,
the actual output of ANN is compared to the desired output.

An important issue concerning supervised learning is the problem of error convergence: the
minimization of error between the desired and computed values. The performance of the
network is evaluated based on the comparison between the computed (predicted) output and
actual (desired) output value [10–15]. There are several types of measurements of prediction
accuracy; the most common measurements used are as follows:
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where Yi is the actual value of output,  is the predicted value, and (n) is the number of
observations.

Unlike supervised learning, unsupervised neural network uses no external feedback and it is
based upon only local information. As can be seen from Figure 11, in unsupervised learning
only the input is known and the goal is to uncover patterns in the features of the input data.
It is also referred to as self-organization, in the sense that it self-organizes data presented to
the network and detects their emergent collective properties. Unsupervised learning’s goal is
to have the computer learn how to do something that we do not tell it how to do. The common
applications of unsupervised learning are classification, data mining, and self-organizing maps
(SOM), also called Kohonen Neural Network (KNN).
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Figure 11. Unsupervised learning of ANN.

In FFNN with supervised training, two very different types of neural networks exist: FFNN
trained with Backpropagation (BP) algorithm (FFBPNN) and Statistical Neural Networks
(SNN) [10, 11, 14]. FFBPNNs use equations that are connected using weighting factors [11].
The selection of the weighting factors makes these neural nets very powerful. The multilayer
perceptron (MLP) is the most common and successful neural network architecture with FFNN
topologies, while the most common supervised learning technique used for training artificial
neural networks is the multilayer backpropagation (BP) algorithm [10–15].

BP is a systematic method for training multilayer FFNN as shown in Figure 8. Since it is a
supervised training algorithm, both the input and the target patterns are given (Figure 10). For
a given input pattern, the output vector is estimated though a forward pass on the network.
After the forward pass is over, the error vector at the output layer is estimated by taking the
component-wise difference of the target pattern and the generated output vector. A function
of errors of the output layered nodes is then propagated back through the network to each
layer for adjustment of weights in that layer. The weight adaptation policy in BP algorithm is
derived following the principle of steepest descent approach of finding minima of a multi-
valued function.

BPFFNNs consist of neurons organized into one input layer and one output layer and several
hidden layers of neurons as shown in Figure 8. Neurons perform some kind of calculation
using inputs to compute an output that represents the system. The outputs are given on to the
next neuron. An edge indicates to which neurons the output is given. These arcs carry weights.

Generally, BP learning consists of two passes: a forward pass and a backward pass. In the
forward pass, an activity pattern is applied to the sensory nodes of the network. It is at last

Generalized Regression Neural Networks with Application in Neutron Spectrometry
http://dx.doi.org/10.5772/64047

57



that a set of outputs is produced as the actual responses of the network. During this path, the
synaptic weights are fixed. During backward pass, the synaptic weights are adjusted in
accordance with an error correction rule.

BPFFNNs have the desirable characteristic of being very flexible. They can be used for pattern
recognition as well as for decision-making problems. Another advantage is that like for every
other neural network, the process is highly parallel and therefore the use of parallel processors
is possible and cuts down the necessary time for calculations. However, BPNNs have negative
characteristics. The training of the network can need a substantial amount of time [16]. The
size of the training data for BPFFNN has to be very large. In some instances, it is almost
impossible to provide enough training.

On the other hand, SNNs use statistical methods to select the equations within the structure
and do not weigh these functions differently [17].

1.2. Statistical neural networks

SNNs are an important and very popular type of neural networks that mainly depend on
statistical methods and probability theory [18]. Three of the most important types of these
networks are Radial Basis Function Neural Network (RBFNNs), Probabilistic Neural Network
(PNNs), and General Regression Neural Network (GRNNs) [19].

1.2.1. Radial basis function neural network

RBFNN was introduced by Broomhead and Lowe in 1988 and is a popular alternative to
FFBPNN [20]. The behavior of the network depends on the weights and the activation of a
transfer function F, specified for the units [21]. Activation functions are mathematical formulas
that determine the output of a processing node [22]. The activation function maps the sum of
weighted values passed to them by applying F into the output value, which is then “fired” on
to the next layer.

There are several kinds of transfer or activation functions, typically falling into four common
categories: Linear function (LF), Threshold function (TF), Sigmoid Function (SF), and Radial
Basis Function (RBF) [23]. RBFs are a special class of activation functions which form a set of
basis functions, one for each data set. The general form of RBF is:

( )G X m- (5)

where G(.) is a positive nonlinear symmetric radial function (kernel); X is the input pattern and
μ is the center of the function. Another important property of RBF is that its output is symmetric
around the associated center μ. Thus, f(Xi) can be taken to be a linear combination of the outputs
of all the basis functions:
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There are several common types of radial basis functions represented in Table 1 [19–23]:

Function name Mathematical form

Thin plate spline G(x) = (x − μ)2 log(x − μ)

Multi-quadratic   =  𑨒𑨒 𑨒𑨒 2  + 2
Inverse multi-quadratic   = 1 𑨒𑨒 𑨒𑨒 2  + 2
Gaussian   = 𝀵𝀵𝀵𝀵 𑨒𑨒  𑨒𑨒 𑨒𑨒 2 2
Table 1. Types of radial basis functions.

where these function parameters are the center (μ) and the radius (σ2). A Gaussian function,
also called “bell shaped curve” or normal distribution, is the most common applicable type of
RBF. It is suitable not only in generalizing a global mapping but also in refining local features.
The Gaussian function tends to be local in its response and is biologically more acceptable than
other functions. RBF is unique, because unlike the others, it monotonically decreases with
distance from the center, and forms the classic bell shaped curve which maps high values into
low ones, and maps mid-range values into high ones. A plot of a Gaussian function is repre-
sented in Figure 12.

Figure 12. Plot representing a Gaussian function.
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The mathematical form of this function for the case of a single variable is given by:
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μ: is the mean (center) of the distribution.

σ2: is the variance (width or radius) of distribution.

Extending the formula (7) to multiple dimensions, we can get the general Gaussian probability
density:
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where p is the number of dimensions, μ is the mean p-dimensional vector and Σ is the
covariance p x p matrix.

RBFNNs are useful in solving problems where the input data are corrupted with additive noise
and can be used for approximating functions and recognizing patterns [24]. As shown in
Figure 13, the RBFNN has a feed forward architecture, and it is composed of many intercon-
nected processing units or neurons organized in three successive layers. The first layer is the
input layer. There is one neuron in the input layer for each predictor variable. The second layer
is the hidden layer. This layer has a variable number of neurons. Each neuron consists of a RBF
centered on a point with as many dimensions as there are predictor variables.

The standard euclidean distance is used to measure how far an input vector is located from
the center. The value coming out from the neuron in the hidden layer is multiplied by a weight
(Wi) associated with the neuron, also a bias value that is multiplied by a weight (Wo), is passed
to the summation layer which adds up the weighted values and presents this sum as the
network outputs.

The training of RBFNNs is radically different from the training of FFNNs [19–24]. RBFNN
training may be done in two stages: First, calculating the RBF parameters, including centers
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and the scaling parameter. Various parameters, such as the number of neurons in the hidden
layer, the coordinates of the center of each hidden layer function, the radius (width) of each
function in each hidden unit, and the weights between the hidden and output units, are
determined by the training process; second, estimating the weights between the hidden and
output layers. Opposed to BPFFNN, in RBFNN training, there is no changing of the weights
with the use of the gradient method for function minimization. In RBFNNs, training resolves
itself into selecting the centers and calculating the weights of the output neuron.

Figure 13. Network architecture of RBFNN.

The center (μ) and width radius (σ) of the radial function and final weights are the parameters
of the model. Many algorithms have been designed to determine these parameters by mini-
mizing the error between the target and actual output. Determination of centers is important
for the success of the RBFNN and there are several methods to choose suitable centers for
network, such as random selection from data set, randomly fixed, and clustering approach.

Determination of the width is very important for the success of the RBFNN. If the width values
are large, the model will not be able to closely fit the function; on the other hand, a large width
parameter would give better generalization but poorer output. A small width parameter gives
good recall of the training patterns but poor generalization, and the model will over fit the data
because each training point will have too much influence. There are several methods to
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determine the width. Two of the common methods for width selection are fixed method and
distance averaging.

The number of hidden units is very important and plays a major role in RBFNN performance.
It is very difficult to find a suitable number of hidden units. If the number of hidden units is
too low, the network cannot reach a desired level of performance because of an insufficient
number of hidden neurons. Many researchers assumed that the number of hidden units is
fixed and is chose a priori.

There are several types of learning that can be used in RBFNNs, such as General Regression
Neural Network (GRNN), Orthogonal Least Squares, K-Means Clustering, and P-Nearest
Neighbour.

1.2.2. Probabilistic neural network

Specht first introduced the probabilistic neural network (PNN) in the 1990s. It closely related
to “the Bayes Strategy for Pattern Classification” rule and Parzen nonparametric probability
density function estimation theory. It performs classification where the target variable is
categorical [19–24].

Figure 14. Block diagram of a probabilistic neural network (PNN).
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PNNs are often more accurate than FFNNs and it is usually much faster to train PNNs than
FFNNs. The greatest advantages of PNNs are the fact that the output is probabilistic which
makes interpretation of output easy, and the training speed. Training a PNN is very fast because
it requires that each pattern be presented to the network only once during training, unlike
BPFFNNs, which require feedback of errors and adjusting weights and many presentations of
training patterns. These PNNs, with variation can be used for mapping, classification, and
associative memory. The greatest disadvantage is the network size since PNNs require more
memory space to store the model.

The general structure of PNN, which is presented in Figure 14, consists of four layers. The first
layer is the input layer. The input unit nodes do not perform any computation and simply
distribute the input to the neurons in the first hidden layer (pattern layer). There is one neuron
in the input layer for each predictor variable.

The second layer is the pattern layer. Each pattern unit represents information on one training
sample. Each pattern unit calculates the probability of how well the input vector fits into the
pattern unit. The neurons of the pattern layer are divided into K groups, one for each catego-
ry. The i-th pattern neuron in the k-th group computes its output using a Gaussian kernel with
the form:
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where:

i: is the pattern number.

p: denotes the dimension of the pattern vector x.

σ: is the smoothing parameter of the Gaussian Kernel.

XAi: is the center of the kernel.

The third layer is the summation layer. In the summation layer, there is one pattern neuron for
each category of the target variable. The neurons of this layer compute the approximation of
the conditional class probability function through a combination of the previously computed
densities as the following equation:
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The fourth layer is the output layer (also called decision layer). At the output layer, we have a
hard-limiting threshold: (+1) whenever an input pattern X belongs to category (A), and (-1) if
it is from category (B).

The use of PNN is especially advantageous due to its ability to converge to the underlying
function of the data with only few training samples available. The additional knowledge
needed to get the fit in a satisfying way is relatively small and can be done without additional
input by the user. GRNN falls into the category of PNN. This neural network, like other SNNs,
needs only a fraction of the training samples a BPFFNN would need, mainly because the data
available from measurements of an instance is generally never enough for a BPFFNN. This
makes GRNN a very useful tool to perform predictions and comparisons of system perform-
ance in practice.

The invention of GRNN was a great turn in the history of neural networks. Researchers from
many fields including medicine, engineering, commerce, physics, chemistry, geology, statis-
tics, etc., benefited from this technique for their research.

1.2.3. Generalized regression neural network

GRNN is a type of supervised FFNN and is one of the most popular neural networks. Donald
F. Specht first introduced it in 1991. Specht’s GRNN is related to his probabilistic neural
network (PNN) classifier. Like PNN networks, GRNNs are known for their ability to train
quickly on sparse data sets. Rather than categorizing data like PNN, GRNN applications are
able to produce continuous valued outputs. An important by-product of the GRNN network
is Bayesian posterior probabilities. The training of GRNN networks is very fast because the
data only needs to propagate forward once, unlike most other BPNNs, where data may be
propagated forward and backward many times until an acceptable error is found [19–24].

GRNNs work well on interpolation problems. However, because they are function approxi-
mators, they tend to trade accuracy for speed. The GRNN is used for estimation of continuous
variables, as in standard regression techniques. It uses a single common radial basis function
kernel bandwidth (σ) that is tuned to achieve optimal learning.

The regression performed by GRNN is in fact the conditional expectation of Y, given X = x. In
other words, it outputs the most probable scalar Y given specified input vector x. Let f(x, y) be
the joint continuous probability density function of a vector random variable, X, and a scalar
random variable, Y. Let x be a particular measured value of the random X. The regression of
Y given x (also called conditional mean of Y given x) is given by:
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If the relationship between independent (X) and dependent (Y) variables is expressed in a
functional form with parameters, then the regression will be parametric. Without any real

Artificial Neural Networks - Models and Applications64



The fourth layer is the output layer (also called decision layer). At the output layer, we have a
hard-limiting threshold: (+1) whenever an input pattern X belongs to category (A), and (-1) if
it is from category (B).

The use of PNN is especially advantageous due to its ability to converge to the underlying
function of the data with only few training samples available. The additional knowledge
needed to get the fit in a satisfying way is relatively small and can be done without additional
input by the user. GRNN falls into the category of PNN. This neural network, like other SNNs,
needs only a fraction of the training samples a BPFFNN would need, mainly because the data
available from measurements of an instance is generally never enough for a BPFFNN. This
makes GRNN a very useful tool to perform predictions and comparisons of system perform-
ance in practice.

The invention of GRNN was a great turn in the history of neural networks. Researchers from
many fields including medicine, engineering, commerce, physics, chemistry, geology, statis-
tics, etc., benefited from this technique for their research.

1.2.3. Generalized regression neural network

GRNN is a type of supervised FFNN and is one of the most popular neural networks. Donald
F. Specht first introduced it in 1991. Specht’s GRNN is related to his probabilistic neural
network (PNN) classifier. Like PNN networks, GRNNs are known for their ability to train
quickly on sparse data sets. Rather than categorizing data like PNN, GRNN applications are
able to produce continuous valued outputs. An important by-product of the GRNN network
is Bayesian posterior probabilities. The training of GRNN networks is very fast because the
data only needs to propagate forward once, unlike most other BPNNs, where data may be
propagated forward and backward many times until an acceptable error is found [19–24].

GRNNs work well on interpolation problems. However, because they are function approxi-
mators, they tend to trade accuracy for speed. The GRNN is used for estimation of continuous
variables, as in standard regression techniques. It uses a single common radial basis function
kernel bandwidth (σ) that is tuned to achieve optimal learning.

The regression performed by GRNN is in fact the conditional expectation of Y, given X = x. In
other words, it outputs the most probable scalar Y given specified input vector x. Let f(x, y) be
the joint continuous probability density function of a vector random variable, X, and a scalar
random variable, Y. Let x be a particular measured value of the random X. The regression of
Y given x (also called conditional mean of Y given x) is given by:

[ ]
. ( ,  )

/ . ( / )
( , )

Y f x Y dy
E Y x Y f Y x dy

x Y dy

¥

¥
-¥

¥-¥

-¥

= = òò
ò

(13)

If the relationship between independent (X) and dependent (Y) variables is expressed in a
functional form with parameters, then the regression will be parametric. Without any real

Artificial Neural Networks - Models and Applications64

knowledge of the functional form between the x and y, nonparametric estimation method will
be used. For a nonparametric estimate of f(x, y), we will use one of the consistent estimators
that is a Gaussian function. This estimator is a good choice for estimating the probability
density function, f, if it can be assumed that the underlying density is continuous and that the
first partial derivatives of the function evaluated at any x are small. The good choice for
probability estimator (, ) is based on sample values xi and yi of the random variables X and
Y is given by:
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p: is the dimension of the vector variable.

n: is the number of training pairs (xi → yi).

σ: is the single learning or smoothing parameter chosen during network training.

Yi: is desired scalar output given the observed input xi.

The topology of GRNN presented in Figure 15 consists of four layers: The first layer is the
input layer that is fully connected to the second layer. The input units are merely distribution
units, which provide all of the (scaled) measurement variables X to all of the neurons on the
second layer, the pattern units. The second layer is the first hidden layer (also called the pattern
layer). This layer consists of N processing elements or nodes, where N is the number of sample
within a training data set and each node represents the input vector, Xi, associated with the
vector assigned with the jth sample in training data. In each node, each input vector is
subtracted from the vector assigned to the node, Xj. This difference is then squared by the
node. The result is fed into a nonlinear kernel, which is usually an exponential function. The
pattern unit outputs are passed on to the summation units.

Note that the second hidden layer always has exactly one more node than the output layer.
When you need a multidimensional (vector) output, the only change to the network is to add
one additional node to the second hidden layer, plus an additional node in the output layer
for each element of the output vector.

The third layer is the second hidden layer (Summation layer) which has two nodes. The input
to the first node is the sum of the first hidden layer outputs, each weighted by the observed
output yj corresponding to Xj. The input of the second node is the summation of the first hidden
layer activations.

The fourth layer is the output layer. It receives the two outputs from the hidden layer and
divides them to yield an estimate for y (or to provide the prediction result).

In the GRNN architecture, unlike other network architectures as in BP, there are no training
parameters such as learning rate and momentum, but there is a smoothing factor (σ) that is
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applied after the network is trained. The choice of smoothing factor (parameter) of the kernel
σ is very important. It has the effect of smoothing the training examples. Small values of σ tend
to make each training point distinct, whereas large values force a greater degree of interpola-
tion between the training observations. For GRNNs, the smoothing factor must be greater than
0 and can usually range from 0.01 to 1 with good results. We need to experiment in order to
determine which smoothing factor is most appropriate for our data.

Figure 15. The basic GRNN architecture.

A useful method of selecting an appropriate σ is the Holdout method. For a particular value
of σ, the Holdout method consists in removing one sample at a time and constructing a network
based on all of the other samples. The network is then used to estimate Y for the removed
sample. By repeating this process for each sample and storing each estimate, the mean square
error can be measured between the actual sample values Yi and the estimates. The value of σ
giving the smallest error should be used in the final network.
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Fortunately, in most applications there is a unique σ which produces the minimum MSE
between the network output and the desired output for the testing set that can be found quickly
by trial and error.

2. Neutron spectrometry by means of generalized regression neural
networks

2.1. Neutron spectrometry

In general, neutrons are more difficult to detect than gamma rays because of their weak
interaction with matter and their large dynamic range in energy [25]. Neutrons have mass but
no electrical charge [26]. Because of this, they cannot directly produce ionization in a detector,
and therefore cannot be directly detected. This means that neutron detectors must rely upon
a conversion process where an incident neutron interacts with a nucleus to produce a secon-
dary charged particle [27]. These charged particles are then directly detected and from them
the presence of neutrons is deduced.

The derivation of the spectral information is not simple because the unknown is not given
directly as a result of measurements [28]. The spectral information is derived through the
discrete version of the Fredholm integral-differential equation of first type [29]. Normally,
researchers solve a discrete version of this equation, which gives an ill-conditioned system of
equations which have no explicit solution, may have no unique solution, and are referred to
as ill-posed [30].

Since the 1960s, the Bonner Sphere Spectrometer (BSS) has been the most used method for
radiological protection purposes [28]. The isotropy of the response, the wide energy range
(from thermal to GeV neutrons), and the easy operation make these systems still applicable.
BSS consists of a thermal neutron detector located at the center of several high-density
polyethylene spheres of different diameters [29]. By measuring the count rates with each
sphere individually, an unfolding process can, in principle, provide some information about
the energy distribution of the incident neutrons.

The most delicate part of neutron spectrometry based on BSS is the unfolding process [30]. The
unfolding spectrum of the neutrons measured consists of establishing the rate of energy
distribution of fluency, known as response matrix, and the group of carried-out measures.
Because the number of unknowns overcomes the number of equations, this ill-conditioned
system has an infinite number of solutions. The process of selecting the solution that has
meaning for the problem is part of the unfolding process.

To solve the system of equations for BSS unfolding, several approaches have been used [29]:
iterative procedures, Monte Carlo, regularization, and maximum entropy methods. The
drawbacks associated with these traditional unfolding procedures have motivated the need
for complementary approaches. Novel methods based on AI have been suggested. In neutron
spectrometry, the theory of ANN has offered a promising alternative to the classic calculations
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with traditional methods. Previous researches indicate that BPFFNNs perform well and have
been the most popular networks used in neutron spectrometry [30–35].

BPFFNN have the characteristic of being very flexible; the process is highly parallel and can
be used to solve diverse problems; however, this neural network topology has some draw-
backs: the structural and learning parameters of the network are often determined using the
trial-and-error technique [36]. This produces networks with poor performance and generali-
zation capabilities which affect its application in real problems. Training can require a
substantial amount of time to gradually approach good values of the weights. The size of the
training data has to be very large and often it is almost impossible to provide enough training
samples as in the case of the neutron spectrometry problem.

Another drawback is that adding new information requires retraining the network and this is
computationally very expensive for BPFFNN, but not for GRNN which belongs to SNNs.
GRNNs use a statistical approach in their prediction algorithm given the bases in the Bayes
strategy for pattern recognition. To be able to use the Bayes strategy, it is necessary to estimate
the probability density function accurately. The only available information to estimate the
density functions is the training samples. These strategies can be applied to problems con-
taining any number of categories as in the case of the neutron spectrometry problem.

2.2. Neutron spectrometry by means of generalized regression neural networks

A GRNN has certain differences compared to BPFFNN approach [24]. The learning of BPFFNN
can be described as trial and error. This is no longer the case of the GRNNs because they use
a statistical approach in their prediction algorithm which is capable of working with only few
training samples. The experience is learned not by trial but by experience others made for the
neural network. GRNNs are very flexible and new information can be added immediately with
almost no retraining. The biggest advantage is the fact that the probabilistic approach of GRNN
works with one-step-only learning.

A further big difference that exists between BPFFNN and GRNN is the difference in the process
inside the neurons. A GRNN uses functions that are based on knowledge resulting from the
Bayes strategy for pattern classification. The structure of the calculations for the probabilistic
density function in GRNN has striking similarities to a BPFFNN. The strength of a GRNN lies
in the function that is used inside the neuron.

It would be desirable to approach the parameters in one-step-only approach. The Bayes
strategy for pattern classification extracts characteristics from the training samples to come to
knowledge about underlying function.

In this work, both BPFFNN and GRNN architectures were trained in order to solve the neutron
spectrometry problem using customized technological tools designed with this purpose. A
comparison of the performance obtained using both architectures was performed. Results
obtained show that the two architectures solve the neutron spectrometry problem well, with
high performance and generalization capabilities; however, the results obtained with GRNN
are better than those obtained with BPFFNN, mainly because GRNN does not produce
negative values and oscillations around the target value.
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As mentioned, a GRNN is a BPFFNN based on non-linear regression. It is suited to function
approximation tasks such as system modeling and prediction. While the neurons in the first
three layers are fully connected, each output neuron is connected only to some processing units
in the summation layer. The function of the pattern layers of the GRNN is a Radial Basis
Function (RBF), typically the Gaussian kernel function.

In this work, a neutron spectrum unfolding computer tool based on neural nets technology
was designed to train a GRNN capable of solving the neutron spectrum unfolding problem
with high performance and generalization capabilities. The code automates the pre-process-
ing, training, testing, validation, and post-processing stages of the information regarded with
GRNN. The code is capable of training, testing, and validating GRNN. After training and
testing the neural net, the code analyzes, graphs, and stores the results obtained.

2.3. Methods

The use of GRNN to unfold the neutron spectra from the count rates measured with the BSS
is a promising alternative procedure; however, one of the main drawbacks is the lack of
scientific and technological tools based on this technology. In consequence, a scientific
computational tool was designed to train, to test, to analyze, and to validate GRNN in this
research domain.

Statistical methods tend to put more emphasis on the structure of the data. For neural network
methods, the structure of the data is secondary. Therefore, the amount of data needed for
statistical methods is a lot smaller than the amount of data needed for ANN approaches.
GRNNs are frequently used to classify patterns based on learning from examples. PNNs base
the algorithm on the Bayes strategy for pattern recognition.

Figure 16. Neutron spectra data set expressed in energy units, used to train the GRNN.
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In order to train both BPFFNNs and GRNNs, the only available information is a neutron spectra
compilation of the International Atomic Energy Agency (IAEA) which contains a collection of
251 different neutron spectra [37]. This compendium was made with the aim to provide specific
technical information that could be used by radiation protection specialists for proper selection
of dosimeters and survey instruments, and for interpretation of data obtained with these
detectors.

The developed code based on GRNNs technology utilizes these 251 neutron spectra and both,
the response matrixes from IAEA’s compilation and those that could be introduced by the user.
The designed technological tool automates the following activities:

• Read the neutron spectra data set coming from IAEA’s compendium, which are expressed
in 60 energy bins.

• Read a response matrix used to train the neural network.

• Because the neutron spectra coming from IAEA’s compendium are expressed in lethargy
units, the code converts these spectra in energy units.

• The neutrons expressed in energy units are multiplied by the selected response matrix in
order to calculate the count rates.

• To train the GRNN, the code uses the 251 calculated count rates as entrance data, and their
corresponding neutron spectra are expressed in energy units as the output data as shown
in Figure 16.

• The code randomly generates the training data set, 80% of the whole data, and the testing
data set, remaining 20%, as shown in Figure 17.

• Using the earlier calculated information, the following stage is to determine the spread
constant value. To calculate this value, the computer tool trains several neural networks
varying this value from 0 in increments of 0.01 through 2 and compares the mean square
error (MSE), which is used to determine the performance of the network. The minimum
value obtained is selected as the spread constant value (Figure 18).

• After the developed code selects the spread constant value, a final GRNN is trained.

• After training, a testing stage is performed in order to analyze the performance and
generalization capabilities of the trained network. In this stage only the input is proportio-
nated to the network. Fifty neutron spectra are randomly selected by the code to test the
performance and generalization capabilities of the trained network. In order to analyze the
performance of the trained network, chi square and correlation tests are performed.

• Finally, the code plots and stores the generated information.

In this work, a comparison of the performance obtained in the solution of the neutron spec-
trometry problem using two different neural network architectures, BPFFNN and GRNN, is
presented. Both BPFFNN and GRNN were trained and tested using the same information: 251
neutron spectra, extracted from IAEA’s compilation. Eighty percent of the whole data set,
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randomly selected, was used at training stage and remaining 20% at testing stage. Fifty neutron
spectra were used as testing data set.

Figure 17. Neutron spectra data set used at testing stage, compared with target spectra.

Figure 18. Optimum spread constant value, sigma, and determination.

The architectural and learning parameters of BPFFNN were optimized using a statistical
methodology known as Robust Design of Artificial Neural Networks Methodology
(RDANNM) [36]. In GRNN, the only parameter determined was the spread constant value,
known as sigma. For both architectures, BPFFNN and GRNN, customized scientific compu-
tational tools were used for the training, testing, analysis, and storage of the information
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generated in the whole process of both network architectures. It can be observed from the
results obtained that although the two network architectures present very similar performance
and generalization capabilities, GRNN performs better than BPFFNN in the solution of the
neutron spectrometry problem. BPFFNNs produce negative values and high oscillations
around the target values, which makes this type of network unusable in the solution of the
problem mentioned.

2.4. Results

In this work, by using two different technological tools, two different artificial neural networks
architectures, BPFFNN and GRRN, were trained and tested using the same information. The
performance of the networks was compared. From the results obtained, it can be observed that
GRNN performs better than BPFFNN in the solution of the neutron spectrometry problem.

Network parameters BPNN (trial and error) BPNN (RDANNM) GRNN

Networks tested before training Undetermined 50 in 150 minutes 2000 in 154 seconds

Hidden layers Undetermined 1 Fixed architecture

Neurons in hidden layer Undetermined 10 According input

Training algorithm Undetermined Trainscg Statistical methods

Learning rate Undetermined 0.1 –

Momentum Undetermined 0.01 –

Spread constant – – 0.2711

Performance (MSE) Undetermined 2.12E-4 2.48E-4

Training time (seconds) Several hours 170.40 0.058

Epochs Often millions 50E3 1

Best chi-square test BPNN – 2.3525 0.049

Statistical margin 34.7

Best correlation test BPNN – 0.9928 0.99571

Statistical margin 1

Worst chi-square test BPNN – 0.44704 0.3223

Worst correlation test BPNN – 0.2926 0.46023

Table 2. Comparison between BPFFNN and GRNN values in neutron spectrometry.

By using the RDANNM, around 50 different network architectures were trained in 150 minutes
average, before the selection of the near-optimum architecture. By testing different network
architectures according to RDANNM, each network was trained in 50E3 epochs and 180
seconds average, stopping the training when the network reached the established mean square
error (MSE) equal to 1E-4, the value used to measure the network performance. After selecting
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the near-optimum architectural and learning parameters of the BPFFNN, the network was
trained and tested using the values shown in Table 2: one hidden layer with 10 neurons, a
trainscg training algorithm, and a learning rate and momentum equal to 0.1 and 0.01, respec-
tively.

As can be seen in Table 2, contrary to BPFFNN the spread constant or sigma was the only value
determined in GRNN. Using the same training and testing data sets used for BPFFNN, around
2000 neural networks were trained in 154 seconds average in order to determine the spread
constant equal to 0.2711. Each GRNN was trained in 0.058 seconds average in only one-step-
only learning. Further, a final GRNN was trained and tested in 0.058 seconds average in only
one epoch.

Table 2 shows the values obtained after training the two network architectures compared in
this work. As can be seen, when the trial-and-error technique is used, it is very difficult to
determine if the performance of the network is good or bad, mainly because a scientific and
systematic methodology is not used for determining the near-optimum learning and archi-
tectural values as when RDANNM is used.

As can be appreciated in Table 2, after training both network architectures, BPFFNN was
optimized using RDANNM and GRNN, the performance, MSE, reached by the two networks
is very close to each other. In BPFFNNs, the MSE is a value optimized by the network designer
using RDANNM; in GRNN network the value was automatically obtained by the network
based on the training information used by the automated code. The anterior demonstrates the
powerful RDANNM in the optimization of the near-optimum values of BPFFNN architectures.

Figure 19. Chi-square test comparison for BPFFNN and GRNN.

Figures 19 and 20 show that at testing stage, the chi square and correlation tests are very close
in both BPFFNN and GRNN network architectures. The same 50 neutron spectra were used
for testing the two network architectures. At testing stage, only the count rates were propor-
tionated to the trained networks. The output produced by the networks was compared with
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the expected neutron spectrum taken from IAEA’s compilation by means of chi square and
correlation tests. In the trained networks, two spectra are above the statistical margin of the
chi-square test. In correlation tests, two values are below 0.5. This shows the high performance
of the networks.

Figure 20. Correlation test comparison for BPFFNN and GRNN.

As can be seen from Figures 19 and 20, the 50 chi-square and correlation tests of trained
networks are very similar. In both cases, the average value is around 0 and 0.8 respectively,
which is near the optimum values equal to 0 and 1. This means that BPFFNN and GRNN have
high performance and generalization capabilities and demonstrates the effectiveness of the
RDANNM in the design of near-optimum architectures of BPFFNN.

Figure 21. Best spectrum obtained with BPFFNN.
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As mentioned earlier, 50 neutron spectra were randomly selected at the testing stage. The same
training and testing data sets were used to train and to test the performance and generalization
capability of the networks. The best and the worst cases for both BPFFNN and GRNN are
showed in Figures 21–28. Figures 21–22 and 23–24 show the best cases observed at testing
stage for BPFFNN and GRNN, respectively. From these figures, it can be observed that the chi-
square and correlations tests for both BPFFNN and GRNN are near 0 and 1, respectively, which
means that the compared neutron spectra are very similar.

Figure 22. Best chi-square and correlation tests for spectrum obtained with BPNN.

Figure 23. Best spectrum obtained with GRFFNN.
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Figure 24. Best chi-square and correlation tests for spectrum obtained with GRNN.

As can be appreciated in Figures 21–28, despite the good results obtained with BPFFNN, one
drawback is that the calculated neutron spectra produce negative values which have no
meaning in real problems. These negative values are eliminated from the output produced by
the network; however, when the BPFFNN is applied in real workplaces, because the training
received, the network tends to produce negative values and oscillations around the target
value. GRNN networks do not produce these negative values and oscillations and therefore
the performance is better than BPFFNN in the solution of the neutron spectrometry problem.

Figure 25. Worst spectrum obtained with BPFFNN.
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Figure 26. Worst chi-square and correlation tests for spectrum obtained with BPNN.

Figures 25–28 show the worst case observed at the testing stage for BPFFNN and GRNN
networks, respectively. As can be seen from these figures, both BPFFNN and GRNN selected
the same neutron spectra as the worst. This could be because of the 50 energy bins that the
neural networks calculated; 49 values are very similar and only one value is far from the
expected target value, which causes that the chi-square and correlation tests to produce low
values. From Figures 25–28, it can be observed that in the GRNN architecture, the output is
closer to the target values of the neutron spectra if compared with BPFFNN. This shows that
in the worst case, GRNNs have better performance than BPFFNN.

Figure 27. Worst spectrum obtained with BPFFNN.
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Figure 28. Worst chi-square and correlation tests for spectrum obtained with GRNN.

The results observed in this work indicate that GRNN is able to predict the unknown neutron
spectrum presented to the network with good accuracy. As can be seen from Figures 21–24,
due to proper selection of the spread constant value, the GRNN calculated values, each one of
the 60 energy bins of the spectrum, are around the target value (the spectrum from IAEA’s
compendium). As opposed to BPFFNN, non-negative values and oscillations around the target
value are generated when GRNNs are used.

Since there is only one parameter in GRNN, this type of ANN is also called a nonparametric
model. It stores the training data as the parameter, rather than calculating and modifying the
weights and bias in each hidden layer as the input data imported into the model. When the
query comes, the model will calculate the value by summing the values of the other points
weighted by the RBF function. Therefore, unlike parametric models such as BP, there are no
weights and bias information produced to characterize the trained model.

3. Discussion and conclusions

Different approaches exist to model a system with available data. Each one of them has its own
qualities and therefore advantages. GRNN falls into the category of PNN. This neural network,
like other PNNs, needs only a fraction of the training samples a BPNN would need. The data
available from measurements of an instance is generally never enough for a BPNN. Therefore,
the use of GRNN is especially advantageous due to its ability to converge to the underlying
function of the data with only few training samples available. The additional knowledge
needed to get the fit in a satisfying way is relatively small and can be done without additional
input by the user.
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Statistical methods tend to put more emphasis on the structure of the data. For neural network
methods, the structure of the data is secondary. Therefore, the amount of data needed for
statistical methods is a lot smaller than the amount of data needed for ANN approaches.

Most methods are asymptotically good but most of them have severe drawbacks as well.
BPNNs need a very large number of training samples and need a lot of time to gradually
approach good values of the weights. Addition of new information requires retraining and
this is computationally very expensive for BPNN but not for PNN. PNNs have the big
advantage that the prediction algorithm works with only few training samples. Other big
advantage is that they are very flexible and new information can be added immediately with
almost no retraining.

PNNs use a statistical approach in their prediction algorithm. The bases for the statistical
approach are given in the Bayes strategy for pattern recognition. These strategies can be applied
to problems containing any number of categories as in the case of the neutron spectrometry
problem. To be able to use the Bayes strategy, it is necessary to estimate the probability density
function accurately. The only available information to estimate the density functions is the
training samples.

The structure of the calculations for the probabilistic density function has striking similarities
to a backpropagation feed-forward neural network. PNNs are frequently used to classify
patterns based on learning from examples. PNNs base the algorithm on the Bayes strategy for
pattern classification. Different rules determine patterns statistics from the training samples.
BPNN uses methods that are not based on statistical methods and need a long time and many
iterations and feedback until it gradually approaches the underlying function. It would be
desirable to approach the parameters in one-step-only approach. The Bayes strategy for pattern
classification extracts characteristics from the training samples to come to knowledge about
underlying function.

In this work, two different artificial neural networks architectures, BPNN and GRRN, were
trained and tested using the same information. The performance of the networks was com-
pared. From the results obtained, it can be observed that GRNN performs better than BPNN
in the solution of the neutron spectrometry problem.

PNNs have a very simple structure and are therefore very stable procedures. PNNs perform
very well for only few available training samples and the quality increases as the number of
training samples increases. This makes GRNN a very useful tool to perform predictions and
comparisons of system performance in practice. GRNN is a promising technological tool that
can be applied to solve with high efficiency the problems related to neutron spectrometry.
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Abstract

Equalization and channel decoding are “traditionally” two cascade processes at the
receiver side of a digital transmission. They aim to achieve a reliable and efficient
transmission. For high data rates, the energy consumption of their corresponding algo-
rithms is expected to become a limiting factor. For mobile devices with limited battery’s
size, the energy consumption, mirrored in the lifetime of the battery, becomes even more
crucial. Therefore, an energy-efficient implementation of equalization and decoding
algorithms is desirable. The prevailing way is by increasing the energy efficiency of the
underlying digital circuits. However, we address here promising alternatives offered by
mixed (analog/digital) circuits. We are concerned with modeling joint equalization and
decoding as a whole in a continuous-time framework. In doing so, continuous-time
recurrent neural networks play an essential role because of their nonlinear characteristic
and special suitability for analog very-large-scale integration (VLSI). Based on the pro-
posed model, we show that the superiority of joint equalization and decoding (a well-
known fact from the discrete-time case) preserves in analog. Additionally, analog circuit
design related aspects such as adaptivity, connectivity and accuracy are discussed and
linked to theoretical aspects of recurrent neural networks such as Lyapunov stability
and simulated annealing.

Keywords: continuous-time recurrent neural networks, analog hardware neural net-
works, belief propagation, vector equalization, joint equalization and decoding

1. Introduction

Energy efficiency has been increasingly attracting more interest due to economical and environ-
mental reasons. Mobile communications sector has currently a share of 0.2% in global carbon
emissions. This share is expected to double between 2007 and 2020 due to the ever-increasing
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demand for wireless devices [1, 2]. The sustained interest in higher data rate transmission is
strengthening this impact. While major resources are being invested in increasing the energy
efficiency of digital circuits, there is, on the other hand, a growing interest pointing at alterna-
tives to the digital realization [3], including a mixed (analog/digital) approach. In such an
approach, specific energy consuming (sub)tasks are implemented in analog instead of a “con-
ventional” digital realization. The analog implementation possesses a high potential to signif-
icantly improve the energy efficiency [4] because of the inherent parallel processing of signals
that are continuous in both time and amplitude. This has been shown in the field of error
correction coding with a focus on decoding of low-density parity-check (LDPC) codes. Our
ongoing research on equalization reveals similar results. We do not intend “analog” for linear
signal processing with all its disadvantages like component inaccuracies and susceptibility to
noise and temperature dependency [5] but for nonlinear processing instead. The work of Mead
[6] and others on Neuromorphic analog very-large-scale integration (VLSI) has shown that “analog
signal processing systems can be built that share the robustness of digital systems but outperform digital
systems by several orders of magnitude in terms of speed and/or power consumption” [5].

The nonlinearity makes the analog implementation of an algorithm as robust as its digital
counterpart [3, 5]. This profits from the match between the needed nonlinear operations for the
algorithm and the physical properties of analog devices [7].

The capability of artificial neural networks (in the following neural networks) to successfully
solve many scientific and engineering tasks has been shown oftentimes. Moreover, mapping
algorithms to neural network structures can simplify the circuit design because of the regular
(and repetitive) structure of neural networks and their limited number of well-defined arith-
metic operations. Digital implementations can be considered precise (reproducibility of results
under similar circumstances) but accurate (closeness of a result to the “true” value) only to the
extent to which they have enough digits to represent [8]. This means, accuracy in digital
implementations is achieved at the cost of efficiency (e.g., relatively larger chip area and more
power consumption) [9]. An analog implementation is usually efficient in terms of chip area
and processing speed [9], however, at the price of an inherent lack of the reproducibility of
results [8] (because of a limited accuracy of the network components as an example [9]).
However, by exploiting the distributed nature of neural structures the precision of the analog
implementation can be improved despite inaccurate components and subsystems [8]1. In other
words, it is the distributed massively parallel nonlinear collective behavior of an analog
implementation (of neural networks) which offers the possibility to make it as robust as its
digital counterpart but more energy efficient2 (additionally to smaller chip area). Particularly
for recurrent neural networks (the class we focus on when considered as nonlinear dynamical
systems), the robustness can be additionally achieved by exploiting “attracting” equilibrium
points. In the light of this discussion, we map in this chapter a joint equalization and decoding
algorithm into a novel continuous-time recurrent neural network structure. This class of neural
networks has been attracting a lot of interest because of their widespread applications. They
can be either trained for system identification [10], or they can be considered as dynamical

1
For a clear distinction between accuracy and precision when used in hardware implementation context, we refer to [8].

2
Energy efficiency is defined later as appropriate.
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systems (dynamical solver). In the latter case, there is no need for a computationally complex
and time-consuming training phase. This relies on the ability of these networks (under specific
conditions) to be Lyapunov stable.

Equalization and channel decoding (together, in the following detection) are processes at the
receiver side of a digital transmission. They aim to provide a reliable and efficient transmis-
sion. Equalization is needed to cope with the interference caused by multipath propagation,
multiusers, multisubchannels, multiantennas and combinations thereof [11]. Channel (de)cod-
ing is applied for further improving the power efficiency. Equalization and decoding are
nonlinear discrete optimization problems. The optimum solutions, in general, are computa-
tionally very demanding. Therefore, suboptimum solutions are applied, often soft-valued
iterative schemes because of their good complexity-performance trade-off.

For high data rates, the energy consumption of equalization and decoding algorithms is
expected to become a limiting factor. The need for floating-point computation and the
nonlinear and iterative nature of (some of) these algorithms revive the option of an analog
electronic implementation [12, 13], embedded in an essentially digital receiver. This option has
been strengthened since the emergence of the “soft-valued” computation in this context [4]
since soft-values are a natural property of analog signals. In contrast to analog decoding,
analog equalization did not attract that amount of attention.

Furthermore, joint equalization and decoding (a technique where equalizer and decoder
exchange their local available knowledge) further improves the efficiency of the transmission
as an example in terms of lower bit error rates, however, at the cost of more computational
complexity [14]. Most of the work related to joint equalization and decoding is limited to the
discrete-time realization. One of the very few contributions focusing on continuous-time joint
equalization and decoding is given in [13]. The consideration in [13] is not “neural networks-
based”. Stability and convergence are observed but not “deeply” considered.

We introduce in this chapter a novel continuous-time joint equalization and decoding struc-
ture. For this purpose, continuous-time single-layer recurrent neural networks play an essen-
tial role because of their nonlinear and recursive characteristic, special suitability for analog
VLSI and since they serve as promising computational models for analog hardware imple-
mentation [15]. Both, equalizer and decoder are modeled as continuous-time recurrent neural
networks. An additional proper feedback between equalizer and decoder is established for
joint equalization and decoding. We also review individually, both continuous-time equaliza-
tion and continuous-time decoding based on recurrent neural network structures. No training
is needed since the recurrent neural network is serving as a dynamical solver or a computa-
tional model [15, 16]. This means, transmission properties are used to define the recurrent
neural network (number of neurons, weight coefficients, activation functions, etc.) such that no
training is needed. In addition, we highlight challenges emerging from the analog hardware
implementation such as adaptivity, connectivity and accuracy. We also introduce our devel-
oped circuit for analog equalization based on continuous-time recurrent neural networks [3].
Characteristic properties of recurrent neural networks such as stability and convergence are
addressed too. Based on the introduced model, we show by simulations that the superiority of
joint equalization and decoding can be preserved in the analog “domain”.
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The main motivation for performing joint equalization and decoding in analog instead of using
conventional digital circuits is to improve the energy efficiency and to minimize the area
consumption in the VLSI chips [17]. The proposed continuous-time recurrent neural network
serves as a promising computational model for analog hardware implementation.

The remainder of this chapter is organized as follows: In Section 2, we describe the block
transmission model. Sections 3 and 4 are dedicated to the equalization process, the application
of continuous-time recurrent neural networks and the analog circuit design and its
corresponding performance and energy efficiency. Sections 5 and 6 are devoted to the channel
decoding and the application of continuous-time recurrent neural networks for belief propa-
gation (a decoding algorithm for LDPC codes). For both equalization and decoding cases,
analog hardware design aspects and challenges and the behavior of the continuous-time
recurrent neural network as a dynamical system are discussed. The continuous-time joint
equalization and decoding based on recurrent neural networks is presented in Sections 7
and 8. Simulation results are shown in Section 9. We finish this chapter with a conclusion in
Section 10.

Throughout this chapter, bold small and bold capital letters designate vectors (or finite discrete
sets) and matrices, respectively.3 All nonbold letters are scalars. diagm{B} returns the matrix B
where the nondiagonal elements are set to zeros. diagυfbg returns a matrix where the vector b
is put on the diagonal. 0N is the all-zero vector of length N. 0, 1 and I represent the all-zero, all-

one and the identity matrix of suitable size, respectively. We consider column vectors. ð�ÞH
represents the conjugate transpose of a vector or a matrix, whereas ð�ÞT represents the trans-
pose. zr ¼ ℜðzÞ, zi ¼ ℑðzÞ returns the real and imaginary part of the complex-valued argument

z ¼ zr þ ιzi, respectively. ι ¼
ffiffiffiffiffi
−1

p
. t and l are designated to the continuous-time variable and

the discrete-time index, respectively.

2. Block transmission model

The block transmission model for linear modulation schemes is shown in Figure 1. For details,
see [18]:

• SRC (SNK) represents the digital source (sink). SRC repeatedly generates successive
streams of k bits, i.e., q1, q2, ⋯ ,qM.

• q ðq̂Þ ∈ {0; 1}k is the vector of source (detected) bits of length k.

• qc ∈ {0; 1}n is the vector of encoded source bits of length n > k. For an uncoded transmission
qc ¼ q (and thus k ¼ n).

• COD performs a bijective map from q to qc where n > k (adding redundancy). We con-
sider in this chapter binary LDPC codes. Only 2k combinations of n bits out of overall 2n

3
Except for L, �L and Lch which are vectors.
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combinations are used. The set of the 2k combinations represent the code book C. rc ¼ k=n
is the code rate.

• x ∈ ψN is the transmit vector of length N.

• N is the block size. Successive transmit vectors are separated by a guard time to avoid
interference between different blocks. Thus, Figure 1 describes the transmission for a
single block and stays valid for the next block (possibly with a different R).

• ψ¼ fψ1;ψ2;…;ψ2mg, m ∈ ℕ=f0g is the symbol alphabet. There exist 2m�N possible transmit
vectors. The set of all possible transmit vectors is χ. The mapping from qc to x is performed
by M. Each symbol ψ represents m bits. A special class of symbol alphabets are the so-

called separable symbol alphabet ψðsÞ [19, 20].

• ~x is the receive vector of length N. In general ~x ∈ℂN.

• We distinguish:

– For an uncoded transmission M · k ¼ m ·N.

– For a coded transmission andN < n=m: One codeword lasts over many transmit blocks.

– For a coded transmission and N ¼ n=m: One codeword lasts exactly over a single
transmit block.

– For a coded transmission and N ¼ M ·n=m: M codewords are contained in a single
transmit block.

• R¼ {rij : i; j∈{1; 2;⋯;N}} is the block transmit matrix of size N ·N. R is hermitian and
positive semidefinite. The block transmit matrix R contains the whole knowledge about
the transmission scheme (transmit and receive filters) and the physical propagation chan-
nel between transmitter(s) and receiver(s) [18].

Figure 1. Block transmission model for linear modulation schemes. SRC (SNK) represents the digital source (sink). DET
is the detector. COD performs the encoding process (adding redundancy). M maps encoded bits to complex-valued
symbols. R is the block transmit matrix.
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• ~n is a sample function of an additive Gaussian noise vector process of length N with
zero mean and covariance matrix Φ~n~n ¼ N0

2 � R where N0
2 is the double-sided noise power

spectral density.

• DET is the detector including equalization and decoding.

The model in Figure 1 is a general model and fits to different transmission schemes like
orthogonal frequency division multiplexing (OFDM), code division multiple access (CDMA),
multicarrier CDMA (MC-CDMA) and multiple-input multiple-output (MIMO). The relation
with the original continuous-time (physical) model can be found in [11, 18]. The model in
Figure 1 can be described mathematically as follows [11]:

~x ¼ R � xþ ~n: (1)

By decomposing R into a diagonal part Rd = diagm{R} and a nondiagonal part R\d = R−Rd,
Eq. (1) can be rewritten as:

~x ¼ Rd � x
|fflffl{zfflffl}
signal

þ R\d � x
|fflffl{zfflffl}

interference

þ ~n
|{z}

additive noise

: (2)

For the j-th element of the receive vector j∈ {1; 2;⋯;N} Eq. (2) can be expressed as

~xj ¼ rjj � xj þ ∑
N

m ¼ 1
m ≠ j

rjm � xm þ ~nj: (3)

We notice from Eqs. (2), (3) that the nondiagonal elements of R describe the interference
between the elements of the transmit vector at the receiver side. For interference-free transmis-
sion R\d = 0. For an interference-free transmission over an additive white Gaussian noise
(AWGN) channel R = I.

Figure 2 shows the channel matrix for a MIMO transmission scheme for different number of
transmit/receive antennas. Figure 3 shows the channel matrix for OFDMwith/without spread-
ing. Figure 4 shows the channel matrix for MIMO-OFDM. In Figures 2–4, the darker the
elements, the larger the absolute values of the entries of the corresponding matrix R, and hence
larger the interference [21].

Remark 1. For a clear distinction between channel matrix and block transmit matrix, we refer to
[11, 18]. Generally speaking, the block transmit matrix R is a block diagonal matrix of “many”
channel matrices.

The detector DET in Figure 1 has to deliver a vector q̂ with a minimum bit error rate compared
to q (conditional to the available computational power) given that COD, M and R are known
at the receiver side. The optimum detection (maximum likelihood detection) for realistic cases
is often infeasible. Therefore, suboptimum schemes are used, mainly based on separating the
detection into an equalization EQ (to cope with interference caused by R\d) and a decoding
DEC (to utilize the redundancy added by COD). In this case, we distinguish between separate
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Figure 2. Visualization of the channel matrix for a MIMO transmission scheme with eight transmit antennas and different
receive antennas.

Figure 3. Visualization of the channel matrix for OFDM with 16 subcarriers and spreading over four subcarriers with/
without interleaving.

Figure 4. Visualization of the channel matrix for a MIMO-OFDM transmission scheme with eight subcarriers and three
transmit antennas.
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and joint equalization and decoding, cf. Figure 5. The superiority of the latter one is widely
accepted: The separate equalization and decoding as in Figure 5(a) in general leads to a
performance loss since the equalizer does not utilize the knowledge available at the decoder
[14]. Each of the components DET, EQ and DEC can be seen as a pattern classifier. By separat-
ing the detection into equalization and decoding, an optimum detection in general cannot be
achieved anymore (even if optimum equalization and optimum decoding are individually
applied). Nevertheless, this is a common practice.

DECI in Figure 5 is a hard decision function. For a coded transmission, DECI is a unit step
function. For an uncoded transmission, COD and DEC are removed from Figure 1 and Figure 5,
respectively. DECI in this case is a stepwise function depending on the symbol alphabetψwhich
maps the (in general complex-valued) elements of the equalized vector �x to the vector of detected
symbols x̂ ∈ψN cf. Figure 8. The map from x̂ to q̂ is then straightforward. In summary

• For an uncoded transmission DECI: ℂN ! ψN.

• For a coded transmission DECI: ℝk ! f0; 1gk.

3. Vector equalization

For an uncoded transmission, the detection DET reduces to a vector equalization EQ as shown
in Figure 6.

The optimum vector equalization rule (the maximum likelihood one) is based on the minimum
Mahalanobis distance and is given as [21]

x̂ML ¼ arg min
ξ∈χ

1
2
� ξH � R � ξ−ℜfξH � ~xg

� �
: (4)

For each receive vector ~x, the optimum vector equalizer calculates the Mahalanobis distance
Eq. (4) to all possible transmit vectors χ of cardinality 2m�N and decides in favor of that possible
transmit vector x̂ML with the minimum Mahalanobis distance to the receive vector ~x, i.e.,
exhaustive search is required in general. This can be performed for small 2m�N which is usually

Figure 5. Detection: EQ is the equalizer, DEC is the decoder, DECI is a hard decision function. Notice the feedback from
the decoder to the equalizer in (b), i.e., the turbo principle.
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not the case in practice. Therefore, suboptimum equalization schemes are applied, which trade-
off performance against complexity.

4. Continuous-time single-layer recurrent neural networks
for vector equalization

The dynamical behavior of continuous-time single-layer recurrent neural networks of dimen-
sion N′, abbreviated in the following by RNN4, is given by the state-space equations [22]:

ϒe � duðtÞdt
¼ −uðtÞ þW � v ðtÞ þW0 � e,

vðtÞ ¼ ϕðuðtÞÞ ¼ ½ϕ1ðu1ðtÞÞ, ϕ2ðu2ðtÞÞ, ⋯ , ϕN′ðuN′ðtÞÞ�T :
(5)

In Eq. (5), Υe is a diagonal and positive definite matrix of size N′ + N′. v(t) is the output, u(t) is

the inner state, e is the external input. v; u ; e∈ℂN′
.ϕj (·) : j ∈ {1, 2, …, N′} is the j-th activation

function. W ¼ fwjj′ : j; j
′ ∈ {1; 2;⋯;N′}g∈ℂN′ ·N′

, W0 ¼ diagvf½w10;w20;⋯;wN′0�Tg∈ℝN′ ·N′
are

the weight matrices. The real-valued RNN (all variables and functions in Eq. (5) are real-
valued) is shown in Figure 7, which is known as “additive model” or “resistance-capacitance

model” [23]. In this case, wjj′ ¼ Rj

Rjj′
is the weight coefficient between the output of the j′-th

neuron and the input of the j-th neuron, wj0 ¼ Rj

Rj0
is the weight coefficient of the j-th external

input. We also notice that the feedback W � v in Eq. (5) and Figure 7 is a linear function of the

output v. Moreover, Υe can be given in this case as Υe¼ diagvf½R1 � C1; R2 � C2;…; RN′ � CN′ �Tg.
As a nonlinear dynamical system, the stability of the RNN is of primary interest [16]. This has
been proven under specific conditions by Lyapunov’s stability theory in [24] for real-valued
RNN and in [22, 25] for complex-valued ones, among others. The RNN in Eq. (5) represents a
general purpose structure. Based on N′, ϕ, W, W0 a wide range of optimization problems can
be solved. First and most well-investigated applications of the RNN include the content
addressable memory [24, 26], analog-to-digital converter (ADC) [27] and the traveling sales-
man problem [28]. In all these cases, no training is needed since the RNN is acting as a
dynamical solver. This feature is desirable in many engineering fields like signal processing,
communications, automatic control, etc., and has first been exploited by Hopfield in his

Figure 6. Uncoded block transmission model. Neither encoding at the transmitter nor decoding at the receiver. The
detection reduces to a vector equalization EQ.

4
The abbreviation RNN in this chapter inherently includes the continuous-time and the single-layer properties.
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pioneering work [24, 29], where information has been stored in a dynamically stable RNN. We
focus in the following on the vector equalization.

Remark 2. The dimension of a real-valued RNN is the same as the number of neurons.

Remark 3. Two real-valued RNNs each of N′ neurons are required to represent one complex-
valued RNN (with dimension N′). This is possible by separating Eq. (5) into real and imaginary
parts. However, this doubles in general the number of connections per neuron (and hence the
number of multiplications) because of the required connections (represented by Wi) between
the two real-valued RNNs as it can be seen from the following equation:

Figure 7. Continuous-time single-layer real-valued recurrent neural network. v(t) is the output, u(t) is the inner state, e is
the external input and ϕ(�) is the activation function. This model is known as “additive model” or “resistance-capacitance
model” [23].
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ϒe � ddt
�
urðtÞ
uiðtÞ

�
¼ −

�
urðtÞ
uiðtÞ

�
þ
�
Wr −W i
W i Wr

�
�
�
vrðtÞ
viðtÞ

�
þ
�
W0 0
0 W0

�
�
�
er
ei

�
: (6)

Υe in this case is a diagonal positive definite matrix of size 2 · N′ + 2 · N′ and

uðtÞ ¼ urðtÞ þ ιuiðtÞ ; e ¼ er þ ιei
vðtÞ ¼ vrðtÞ þ ιviðtÞ ; W ¼ Wr þ ιW i:

A. Vector equalization based on RNN

The usage of the RNN for vector equalization became known for multiuser interference
cancellation in CDMA environments [30, 31]. However, this was limited to the binary phase-
shift keying (BPSK) symbol alphabet ψ = {−1, +1}. This has been generalized to complex-valued
symbol alphabets in [21] by combining the results of references [20, 22, 32]5. Based thereon, it
has been proven that the RNN ends in a local minimum of Eq. (4) if the following relations are
fulfilled [21], cf. Eqs. (1), (2), (5) and Figures 6 and 7.

e ¼ ~x v ¼ �x N
0 ¼ N

W0 ¼ R−1
d W ¼ I−R−1

d � R ϕð�Þ ¼ θðoptÞð�Þ (7)

and therefore x̂ ¼ DECIðvÞ. Figure 8 shows an example of an eight quadrature amplitude
modulation (8 QAM) symbol alphabet and its corresponding DECI function. The relations in
Eq. (7) are obtained by the comparison between the maximum likelihood function of the vector
equalization and the Lyapunov function of the RNN.

The dynamical behavior of the vector equalization based on RNN can be given as, cf. Eqs. (1),
(5), (7)

ϒe � duðtÞdt
¼ −uðtÞ þ �xðtÞ þ R−1

d � R � ½x−�xðtÞ� þ R−1
d � ~n;

�xðtÞ ¼ θðoptÞ
�
uðtÞ

�
¼ ½θðoptÞ

1

�
u1ðtÞ

�
;θðoptÞ

2

�
u2ðtÞ

�
;⋯;θðoptÞ

N

�
uNðtÞ

�
�T :

(8)

The locally asymptotical stability of Eq. (8) based on Lyapunov functions has been proved in
[21] (based on [22]) for separable symbol alphabets ψ(s). When Eq. (8) reaches an equilibrium
point uep, i.e., duðtÞ

dt ¼ 0N ) u ¼ uep, Eq. (8) can be rewritten as

uep ¼ �xep þ R−1
d � R � ½x−�xep� þ R−1

d � ~n: (9)

If additionally, a correct equalization is achieved, i.e., �xep ¼ x, the inner state is

5
For discrete-time single-layer recurrent neural networks for vector equalization, we refer to references [19, 33].
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uep ¼ xþ R−1
d � ~n
|fflfflffl{zfflfflffl}

ne

: (10)

Thus, the RNN as vector equalizer, Eq. (8) acts as “analog dynamical solver” and there is no
need for a training. The covariance matrix of ne is Φnene ¼ N0

2 � R−1
d � R � R−1

d . We define

Σne ¼ diagvf½σ21; σ22;⋯; σ2N�Tg ¼ diagm{Φnene } ¼
N0

2
� R−1

d : (11)

In Eq. (7), θ(opt) (·) is the optimum activation function and depends on the symbol alphabet ψ.
For BPSK (a real-valued case)

θðoptÞðuÞ ¼ tanh
u
σ2

� �
: (12)

where σ2 is given in Eq. (11).

Remark 4. For separable symbol alphabets, ψ ¼ ψðsÞ ) θðoptÞðu ¼ ur þ ιuiÞ ¼ θðoptÞ
r ðurÞ

þ ιθðoptÞ
i ðuiÞ [19].

B. Analog hardware implementation aspects: equalization

The analog signal processing as a matter of topical importance for modern receiver architec-
tures was recognized in [34], where an analog vector equalizer—designed in BiCMOS

Figure 8. An example of an 8 QAM symbol alphabet and its corresponding DECI function. Each element of the symbol
alphabet (marked with + ) has its own “decisions region” visualized by different colors. The function DECI delivers that
element of the symbol alphabet, where the input argument lies in its corresponding decision region.
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alphabet (marked with + ) has its own “decisions region” visualized by different colors. The function DECI delivers that
element of the symbol alphabet, where the input argument lies in its corresponding decision region.
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technology—was considered as a promising application for the analog processing of baseband
signals. The equalizer accepts sampled vector symbols in analog form with an advantage that
the equalizer does not require an ADC at the input interface. At very high data rates, the
exclusion of an ADC softens the trade-off between chip area requirement and overall power
consumption. We discuss in the following section the main features/challenges of the analog
implementation of the vector equalizer based on RNN.

Structure: An RNN of dimension N′ (in general 2 ·N′ neurons) is capable to act as a vector
equalizer as long as the block size at the transmitter side N (over all possible symbol alphabets,
coding schemes and block sizes) is as maximum as N′, i.e., N ≤ N′.

Activation function: The definition of the optimum activation function θ(opt)(·) is not general,
but depends on the symbol alphabet under consideration. Different symbol alphabets need
different activation functions. However, we have proven in [20] that for square QAM symbol
alphabets—the most relevant ones in practice—θ(opt) (·) can be approximated as a sum of a
limited number of shifted and weighted hyperbolic tangent functions. Square QAM symbol
alphabets are separable ones, cf. Remark 4. The analog implementation of the hyperbolic
tangent well befits the large-signal transfer function of transconductance stages based on
bipolar differential amplifiers [3, 34].

Adaptivity: A vector equalizer must be capable to adapt to different and time-variant interfer-
ence levels. The adaptivity is regulated by the measurement of the block transmit matrix R, a
task performed by a “channel estimation unit” (CEU). The weight matricesW andW0 are then
computed as in Eq. (7) and forwarded to the RNN (Figure 9). Thus, the weight matricesW and
W0 are not the outcome of any training algorithm but related directly to R, cf. Eq. (7). This
represents a typical example for the mixed-signal integrated circuit, where the weight coeffi-
cients are (obtained and) stored digitally, converted into analog values, later used as weight
coefficients for the analog RNN [8].

For the j-th neuron in the additive model Figure 7, the ratio between two resistors Rj and Rjj′

(Rj and Rj0) is used to configure each weight coefficient wjj′ (wj0). According to the additive

Figure 9. Uncoded block transmission model. The detection reduces to a vector equalization EQ. The channel estimation
unit (CEU) estimates the block transmit matrix R.
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model, Rjj′ and Rj0 can assume both positive and negative values, and the absolute value
theoretically extends from Rj to infinite (for wjj′ ∈ [−1, +1]). This puts serious limitations to the
direct implementation of the model. In [3], we showed how this difficulty can be overcome by
using a Gilbert cell as a four-quadrant analog multiplier. A Gilbert cell [35] is composed of two
pairs of differential amplifiers with cross-coupled collectors, and is controlled by a differential
voltage input Gji applied at the base gate of the transistors. When biased with a differential tail
current Iji ¼ Iþji −I

−
ji , the differential output current Iji;w ¼ Iþji;w− I

−
ji;w is a fraction w of the tail

current Iji, as a function of the input voltage Gji:

Iji;w ¼ Iþji;w− I
−
ji;w ¼ f GcðIji ¼ Iþji − I

−
ji ;GjiÞ ¼ w � Iji ∈ ½−Iji;þIji�: (13)

Accuracy: Locally asymptotical Lyapunov stability can be guaranteed for the RNN in Eqs. (5),
(8) if, among others, the hermitian property is verified for the weight matrix W (the symmetric
property in the real-valued case). Inaccuracies in the weights’ representation may jeopardize
the Lyapunov stability and impact the performance of the vector equalizer. The first cause of
weights’ inaccuracy may arise from the limited accuracy of the analog design in terms of
components’ parasitics, devices’ mismatch, process variation, just to name a few. Those inac-
curacies (if modest) are expected to slightly degrade the performance without causing a
catastrophic failure, thanks to the high nonlinearity of the equalization algorithm. Moreover,
it has been shown in [8, 36] that in some cases, they produce beneficial effects: These imperfec-
tions incorporate some kind of simulated annealing which enables escaping local minima by
allowing occasionally “uphill steps” since the Lyapunov stable RNN is a gradient-like system.
This feature is emulated in discrete-time by stochasticHopfield networks [23]. Non-precision of
the weights may also arise from an insufficient resolution of the digital-to-analog converter
(DAC) (Figure 9). On the other hand, an overzealous DAC design increases the chip area, the
power consumption and adds complexity to the interface between the analog vector equalizer
and the digital CEU. In this case, a conservative approach suggests to use a DAC with enough
resolution to match the precision used by the CEU.

Interneuron connectivity and reconfigurability: Scaling the architecture of an analog VLSI
design is not straightforward. A vector equalizer based on recurrent neural networks is com-
posed by the repetition of equal sub-systems, i.e., the neurons. Using a bottom-up approach,
the first step to scale the system involves the redesign of the single neuron in order to handle
more feedback inputs. In a successive step, the neurons are connected together and a system-
level simulation is performed to check the functionality of the system. However, several design
choices must be made during the process and it is not guaranteed that the optimum architec-
ture for a certain number of neurons is still the best choice when the number of neurons
changes. For large N, the block transmit matrix R, defining the weight matrix W, is usually
sparse. If a maximum number of nonzero elements over the rows of R is assumed, the
requirement for a full connectivity between the neurons in Figure 7 can be relaxed, and only a
maximum number of connections per neuron will be necessary. In this case, however, in
addition to the “adaptivity”, the RNN must be reconfigured according to the position of the
nonzero elements in R. The hardware simplification given by the partial connectivity may be
counterbalanced by the necessity of a further routing (e.g., multiplexing/demultiplexing) of the
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feedback. For special cases, where the block transmit matrix can be reordered around the
diagonal, more independent RNNs can be simply used in parallel. In Figures 3(b) and 3(c),
four independent RNNs, each of dimension four, can be used in parallel. Additionally, for
specific transmission schemes such as MIMO-OFDM in Figure 4, the connectivity can be
assumed limited (number of transmit antennas minus one) and fixed (crosstalk only between
same subcarriers, when used simultaneously on different transmit antennas).

Example 1. In Figure 4, eight RNNs (number of subcarriers) each of dimension of three
(number of transmit antennas) can be used in parallel. Each neuron has two feedback inputs.

C. Circuit design

We review here the main features of the analog circuit design of an RNN as vector equalizer
working with the BPSK symbol alphabet and composed of four neurons. Detailed explanation
can be found in reference [3]. The RNN is realized in IHP 0.25 μm SiGe BiCMOS technology
(SG25H3). A simplified schematic of a neuron is shown in Figure 10. Schematics of gray boxes
are presented in Figure 11.

The dynamical behavior of the circuit in Figures 10 and 11 is described as [3]

ϒ � du
′ðtÞ
dt

¼ −u′ðtÞ þW � v′ðtÞ þW0 � e′;
R � It
N−1

� tanh u′ðtÞ
2 � Vt

� �
¼ v′ðtÞ;

τ � I ¼ ϒ:

(14)

which is equivalent to Eq. (5). τ = R · C is the time constant of the circuit. R is shown in
Figure 10 and C is a fictitious capacitance between the nodes and uþj and u−j .Vt is the thermal

voltage and It is the tail current in Figure 11. The circuit is fully differential and the differential
currents and voltages are denoted as, cf. Figures 10 and 11:

Iji ¼ Iþji −I
−
ji Ij ¼ Iþj −I

−
j Io ¼ Iþo −I

−
o ;

Iji;w ¼ Iþji;w−I
−
ji;w u′j ¼ uþj −u

−
j e′j ¼ eþj −e

−
j

(15)

(1) Performance: Simulation results based on the above described analog RNN are shown in
Figure 12. The interference is described by the channel matrix Rtest.

Rtest ¼
1 0:24 −0:34 −0:57

0:24 1 0:32 0:29
−0:34 0:32 1 0:25
−0:57 0:29 0:25 1

2
664

3
775

The black dashed line shows the bit error rate (BER) for a BPSK symbol alphabet in an AWGN
channel (an interference-free channel). Performance achieved by the maximum likelihood

A Continuous-Time Recurrent Neural Network for Joint Equalization and Decoding – Analog Hardware...
http://dx.doi.org/10.5772/63387

99



Figure 10. A simplified schematic of a single neuron as a part of a (four neurons) RNN analog vector equalizer. u′ j is the
inner state, e′ j is the external input and Gji is used for adapting the weight coefficient wji from the output of the i-th neuron
to the input of the j-th neuron. The circuit is fully differential [3].

Figure 11. Details of the circuit building blocks. Gilbert cell used as a four-quadrant analog multiplier, buffer stages, BJT
differential pairs for the generation of the hyperbolic tangent function and a metal-oxide-semiconductor field-effect
transistor (MOSFET) switch used as a sequencer [3].
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algorithm in Eq. (4) is included as a solid black line. The performance of the analog RNN
vector equalizer6 is presented in a solid red line with square markers. Compared to the
optimum algorithm, the signal-to-noise ratio (SNR) loss for the analog RNN vector equalizer
can be quantified in approximately 1.7 dB at a BER of 10−4. This loss in SNR emphasizes the
suboptimality of the RNN as vector equalizer and depends on the channel matrix. Figure 13
shows an example of a transient simulation for the analog RNN vector equalizer. The time
constant is approximately τ = 40 ps. The SNR ratio is set to 2 dB and a series of three receive
vectors are equalized in sequence. Because of the channel matrix and noise, the sampled
vectors at the input of the equalizer ~x present different signs and values, compared to the sent

Figure 12. BER vs. Eb=N0 for the analog RNN vector equalizer. Evolution time equals 10 � τ. BPSK symbol alphabet and
channel matrix Rtest .

Figure 13. An example of a transient simulation for the analog RNN vector equalizer. (a) Inputs ~x (b) Outputs: soft
decisions �x and hard decisions �x .

6
Analog RNN vector equalizer refers to the described analog hardware-implemented RNN for vector equalization.
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vectors x (shown in square brackets). The equalization of each receive vector lasts 10 � τ. First
half of this interval (evolution time) is used to reach a stable state, while the second half of the
interval (reset time) is used to return to a predefined inner state (all-zero state) before the
equalization of a new vector starts. At the end of the evolution time, a decision is made based
on the sign of the output vector (the decision function DECI for BPSK is a sign function). In our
example, a comparison between the sent and the recovered bits shows an error of one bit out of
twelve, equivalent to a BER≈ 1

12, a result in line with the BER shown in Figure 12.

Remark 5. The evolution and reset times are the two limiting factors for the maximum
throughput of the analog RNN vector equalizer. However, they cannot be unlimitedly mini-
mized since the RNN needs a minimum evolution time to reach an equilibrium point
representing a local minimum of the Lyapunov function, i.e., a local minimum of Eq. (4).

(2) Energy efficiency: The energy efficiency of a hardware “architecture” is the ratio between the
power requirement (Watt) of the architecture and its achievement in a given time period. In
our case, the throughput of the equalizer represents the achievement. Combining the value of τ
and the power consumption, the abovementioned analog vector equalizer is expected to win
the competition versus common digital signal processing, thanks to three to four orders of
magnitude better energy efficiency [3].

5. Channel coding

Channel coding (including encoding at the transmitter side COD and decoding at the receiver
side DEC) aims to enable an error-free transmission over noisy channels with maximum
possible transmit rate. This is done by adding redundancy (extra bits) at the transmitter side,
i.e., the bijective map from q to qc (Figure 14,) such that the codewords qc are sufficiently
distinguishable at the receiver side even if the noisy channel corrupts some bits during the
transmission. Figure 14 shows a coded transmission over an AWGN channel.

For every received codeword, the optimum decoding (the maximum likelihood one) needs to
calculate the distance between the received codeword and all possible codewords C, which
makes it infeasible for realistic cases (except for convolutional codes which are not considered
here). We focus on binary LDPC codes and their corresponding suboptimum decoding algo-
rithm: the belief propagationwith BPSK symbol alphabet. LDPC codes [37] belong to the class of
binary linear block codes and have been shown to achieve an error rate very close to the
Shannon limit (a performance lower bound) for the AWGN channel and have been
implemented in many practical systems such as the satellite digital video broadcast (DVB-S2)

Figure 14. Coded transmission over an BER channel.
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[38]. A binary linear block code is characterized by a binary parity check matrix H of size
(n − k) + n for n > k.

6. Continuous-time single-layer high-order recurrent neural
networks for belief propagation

One of the largest drawbacks of RNNs is their quadratic Lyapunov function [39]. Optimization
problems associated with cost functions of higher degree cannot be solved “satisfactorily” by
RNNs. Increasing the order of the Lyapunov function leads to a nonlinear feedback in the
network. In doing so, we obtain the single-layer high-order recurrent neural network, named
differently in literature, depending on the nonlinear feedback [39–42].

Remark 6. High-order recurrent neural networks are in the literature exclusively real-valued.

Figure 15 shows the continuous-time single-layer high-order recurrent neural network, abbre-
viated in the following by HORNN7.

The dynamical behavior is given by

ϒd � d
�uðtÞ
dt

¼ −�uðtÞ þ �W � �f
�
�vðtÞ

�
þ �W0 � �e;

�vðtÞ ¼ �ϕ
�
�uðtÞ

�
¼
h
�ϕ1

�
�u1ðtÞ

�
; �ϕ2

�
�u2ðtÞ

�
;⋯;�ϕ�n

�
�u�nðtÞ

�iT
;

ϒd ¼ diagv

�h
�R1 � �C1;

�R2 � �C2;…;�R�n � �C�n

iT�
: (16)

The parameters in Eq. (16) can be linked to Figure 15 in the same way as Eq. (5) linked to

Figure 7. �f ð�vÞ is a real-valued continuously differentiable vector function. In addition,
�f ð0�nÞ ¼ 0�n. It is worth mentioning that the term “high-order” in this case refers to the inter-
connections between the neurons rather than the degree of the differential equation describing
the dynamics. As for RNNs, this is still of first order, cf. Eq. (16).

Remark 7. In the special case �f ð�vÞ ¼ �v, the HORNN reduces to the (real-valued) RNN.

In order to apply HORNNs to solve optimization tasks, their stability has to be investigated. A
property without which the behavior of dynamical systems is often suspected [39]. This was
the topic of many publications [39–42]. A common denominator of the locally asymptotical
stability proof of the HORNN based on Lyapunov functions is

• �ϕ( � ) is continuously differentiable and a strictly increasing function.

• The right side of the first line of Eq. (16) can be rewritten as a gradient of a scalar function.

7
The abbreviation HORNN in this chapter inherently includes the continuous-time, single-layer and real-valued proper-
ties.
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A. Belief propagation based on HORNN

Originally proposed by Gallager [37], belief propagation is a suboptimum graph-based
decoding algorithm for LDPC codes. The corresponding graph is bipartite (n parity nodes
and n – k check nodes) and known as Tanner graph [43]. This is shown in Figure 16 for the
Hamming code with the parity check matrixHHamming Eq. (17) where n = 7, k = 4. The belief
propagation algorithm iteratively exchanges “messages” between parity and check
nodes.

Figure 15. Continuous-time single-layer real-valued high-order recurrent neural network. �vðtÞ is the output, �uðtÞ is the
inner state, �e is the external input and �ϕð�Þ is the activation function. �f ð�vÞ is a real-valued continuously differentiable
vector function with �f ð0�nÞ ¼ 0�n [21].
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HHamming ¼
0 1 1 1
1 0 1 1
1 1 0 1

1 0 0
0 1 0
0 0 1

������

3
5

2
4 (17)

For every binary linear block code characterized by the binary parity check matrix H of size (n
− k) + n for n > k, three binary matrices Pnh · nh , Snh ·nh and Bnh ·n can be uniquely defined [44,
45] such that Eq. (16) and Figure 15 perform continuous-time belief propagation if the follow-
ing relations are fulfilled:

Figure 16. Tanner graph of the systematic Hamming code n = 7 and k = 4.
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�u ¼ L, (18a)

�e ¼ B � Lch, (18b)

�ϕð�Þ ¼ tanh
�
2

� �
; (18c)

�v ¼ �ϕðLÞ, (18d)

�W ¼ P, (18e)

�W0 ¼ Inh ·nh , (18f)

�f j ¼ 2 � atanh
(

∏
j′∈pos½Sðj, :Þ¼1�

�vj′

)
for j; j′∈f1; 2; …; nhg; (18g)

�n ¼ nh: (18h)

In Eq. (18)8,

• k is the length of the information word (q in Figures 1 and 14).

• n is the length of the codeword (qc in Figures 1 and 14).

• nh ¼ 1T�
1 · ðn−kÞ

� �H � 1ðn · 1Þ ∈ ½kþ 1; n � ðn−kÞ� is the number of nonzero elements in H.

• Lch;ðn · 1Þ is the vector of intrinsic log-likelihood ratio (LLR), which depends on the
transition probability of the channel. For qc;j (the j-th element of qc for j ∈ {1; 2;⋯;n}) it is
given as

Lch;j ¼ ln
pð _xj ¼ ~xjjqc;j ¼ 0Þ
pð _xj ¼ ~xjjqc;j ¼ 1Þ: (19)

In the last relation, _xj is the variable of the conditioned probability density function

pð _xjjqc;jÞ. ln(�) is the natural logarithm. For an AWGN channel, N ð0, σ2nÞ : Lch;j ¼ ~xj
2�σ2n .

• Lðnh · 1Þ is the “message” sent from the variable nodes to the check nodes.

• �fðnh · 1Þ is the “message” sent from check nodes to variable nodes.

• Iðnh ·nhÞ is an identity matrix of size nh ·nh.

• pos½Sðj, :Þ ¼ 1� delivers the positions of the nonzero elements in the j-th row of the matrix
S.

8
L, �L and Lch are vectors.
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• pos½Sðj, :Þ ¼ 1� delivers the positions of the nonzero elements in the j-th row of the matrix
S.

8
L, �L and Lch are vectors.
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The dynamical behavior of belief propagation can be described based on Eqs. (16), (18) and
Figures 14, 15, and 16 [45]

ϒd � dLðtÞdt
¼ −LðtÞ þ P � �f

�
�vðtÞ

�
þ B � Lch;

�vðtÞ ¼ tanh
LðtÞ
2

� �
;

�LðtÞ ¼ BT ��f
�
�vðtÞ

�
þ Lch:

(20)

�LðtÞ is the soft-output of the decoding algorithm, cf. Figures 5 and 14. The discrete-time
description is given as [44]

L½lþ 1� ¼ P � �f ð�v½l�Þ þ B � Lch;

�v½l� ¼ tanh
L½l�
2

� �
;

�L½l� ¼ BT ��fð�v½l�Þ þ Lch:

(21)

B. Dynamical behavior of belief propagation

In a series of papers, Hemati et. al. [12, 17, 46–49] also modeled the dynamics of analog belief
propagation as a set of first-order nonlinear differential equations Eq. (20). This was motivated
from a circuit design aspect, where ϒd (the same is valid for ϒe) can be seen as a bandwidth
limitation of the analog circuit, realized taking advantage of the low-pass filter behavior of
transmission lines Figure 17. We have shown in [45] that the model in Figure 17 also has
important dynamical properties when compared with the discrete-time belief propagation
Eq. (21) [44]. Particularly, the equilibrium points of the continuous-time belief propagation of
Eq. (20) coincide with the fixed points of the discrete-time belief propagation of Eq. (21). This
has been proved in [45]. In both cases

Lep ¼ P ��f tanh
Lep

2

� �� �
þ B � Lch: (22)

The absolute stability of belief propagation Eqs. (20), (21) was proven for repetition codes (one
of the simplest binary linear block codes) in [44, 45]. In this case

�Lep¼ 1ðn· nÞ � Lch: (23)

Far away from repetition codes, it has been noticed that iterative decoding algorithms (belief
propagation is one of them) exhibit depending on the SNR a wide range of phenomena
associated with nonlinear dynamical systems such as existence of multiple fixed points, oscil-
latory behavior, bifurcation, chaos and transit chaos [50]. Equilibrium points are reached at
“relatively” high SNR. The analysis in reference [50] is limited to the discrete-time case.

Remark 8. The HORNN in Figure 15, Eqs. (18), (20) for belief propagation acts as a computa-
tional model.
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C. Analog hardware implementation aspects: decoding

Many analog hardware implementation aspects have been already mentioned in Section 4-B.
We mention here only additional aspects exclusively related to the analog belief propagation
based on HORNN.

Structure: In practice, different coding schemes (different parity check matrices H) with vari-
ous (k, n) constellations are applied to modify the code rate rc ¼ k=n depending on the channel
state. The HORNN in Figure 15 is capable to act as a continuous-time belief propagation
(decoder) as long as the number of neurons �n in Figure 15 equals (or is larger than) the
maximum number of nonzero elements over all parity check matrices and all (k;n) constella-
tions, i.e., �n ≥ maxH nh.

Adaptivity: No training is needed. �W0 and �W are directly related to the parity check matrix
H. In contrast to the analog RNN vector equalizer, the weight coefficients are binary, i.e., the
weight matrices �W0 and �W define a feedback to be either existent or not. In such a case for

Figure 15, �Rjj′ ,
�Rj0 ∈ f�Rj;∞g. Moreover, there is no need for high-resolution DAC for the

weight coefficients.

Interneuron connectivity: No full connection is needed since the matrix P for LDPC codes is
sparse. The number of connections per neuron must equal the maximum number of nonzero
elements in P row-wise over all considered coding schemes and equals maxH P � 1ðnh · 1Þ. If this
is fulfilled and if interneuron connectivity control is available, the structure in Figure 15
becomes valid for all considered coding scheme.

Vector function connectivity: For different coding schemes, the number of the arguments �v′j
to evaluate the function �f j changes, cf. Eq. (18g). The maximum number of the arguments

depends on the number of the nonzero elements in S row-wise and equals maxH S � 1ðnh · 1Þ.
Thus, implementing the function �f j according to this maximum number enables evaluating the

function �f j for all considered coding schemes.

Figure 17. A simple model for analog decoding as presented in [46].
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Remark 9. For a specific coding scheme, the interneuron connectivity can be made fixed. The
resulted HORNN structure in this case is valid also for all codeword lengths resulted after
performing a puncturing of the original code.

Remark 10. Both, the interneuron connectivity and the weight adaptation play a significant
role, in the equalization as well as in the decoding. It can safely be said that they represent the
major challenge of the circuit, since the analog circuit must be capable to perform equalization
and decoding for a given number of possible combinations of block size, symbol alphabet,
coding scheme, etc. Particularly for the decoding, the advantage of having a non-full connec-
tivity is counterbalanced by a double (and very complex) (de)multiplexing of the signals (once
for the vector function �f and once for the interneuron connectivity).

7. Joint equalization and decoding

Turbo equalization is a joint iterative equalization and decoding scheme. In this case, a symbol-
by-symbol maximum aposteriori probability (s/s MAP) equalizer exchanges in an iterative
way reliability values L with a (s/s MAP) decoder [51, 52]. This concept is inspired from the
decoding concept of turbo codes, where two (s/s MAP) decoders exchange iteratively reliabil-
ity values [53]. Despite its good performance, the main drawback of the turbo equalizer is the
very high complexity of the s/s MAP-equalizer for multipath channels with long impulse
response (compared with symbol duration) and/or symbol alphabets with large cardinality.
Therefore, a suboptimum equalization (and a suboptimum decoding) usually replace the s/s-
MAP ones (Figure 18).

One discrete-time joint equalization and decoding approach has been introduced in [52] and is
shown in Figure 19. ~x,Rd andR are as in Eq. (2) and z−1 is a delay unit. We notice that there are two
different (iteration) loops in Figure 19: the equalization loop (the blue one) on symbol basis (in the
sense of ψ) and the decoding loop (the dashed one) on bit basis. a ¼ f1; 2; 3;⋯g; ρ ∈ ℕ, i.e., after
each ρ equalization loops, one decoding loop is performed. The conversion between symbol basis

and bit basis (u to Lch) is performed by θS=Lð�Þ, the way around (�L to �x) by θL=Sð�Þ. The expressions
for θL=Sð�Þ and θL=Sð�Þ can be found in [52]. However, for BPSK, they are given as

θS=LðuÞ ¼ 2
σ2

� u;

θL=Sð�LÞ ¼ tanh
�L
2

 !
:

(24)

Figure 18. Two examples for joint equalization and decoding. Notice the feedback from the decoder to the equalizer, i.e.,
turbo principle.
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σ2 is given in Eq. (11). If we consider only the equalization loop in Figure 19, we notice that it
describes exactly the dynamical behavior of discrete-time recurrent neural networks [19, 25, 33,
54–56]

u½lþ 1� ¼ ½I−R−1
d � R� � �x½l� þ R−1

d � ~x;
�x½l� ¼ θL=SðθS=Lðu½l�ÞÞ: (25)

Remark 11. If θL=S

�
θS=LðuÞ

�
¼ θðoptÞðuÞ, Eqs. (8), (25) share the same equilibrium/fixed points.

For BPSK, it can be easily shown based on Eqs. (12), (24) that this is fulfilled.

8. Continuous-time joint equalization and decoding

Motivated by the expected improvement of the energy efficiency by analog implementation
compared with the conventional digital one, we map in this section the joint equalization
and decoding structure given in Figure 19 to a continuous-time framework. s/s MAP DEC in
Figure 19 is replaced by a suboptimum decoding algorithm: the belief propagation. Moreover,
equalization and decoding loops in Figure 19 are replaced by RNN and HORNN as
discussed previously in Sections 4-A and 6-A, respectively. The introduced structure serves
as a computational model for an analog hardware implementation and does not need any
training.

Figure 20 shows a novel continuous-time joint equalization and decoding based on recurrent
neural network structures. The dynamical behavior of the whole system is described by the
following differential equations:

Figure 19. Joint equalization and decoding as described in [52]. Lext represents the “knowledge” obtained by exploiting
the redundancy of the code.
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ϒe � duðtÞdt
¼ −uðtÞ þW � �xðtÞ þW0 � ~x; (26a)

LchðtÞ ¼ θS=L

�
uðtÞ

�
; (26b)

ϒd � dLðtÞdt
¼ −LðtÞ þ P � f

�
LðtÞ

�
þ B � LchðtÞ; (26c)

�LðtÞ ¼ BT � f
�
LðtÞ

�

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
LextðtÞ

þLchðtÞ; (26d)

�xðtÞ ¼ θL=S

�
�LðtÞ

�
; (26e)

f j ¼ 2 � atanh ∏
j′∈ pos½Sðj, :Þ¼1�

tanh
Lj′

2

� �( )
: (26f)

• Eq. (26a) and Figure 20(a) describe the continuous-time vector equalization, cf. Eqs. (1),
(5), (7), (8).

• Eq. (26c) and Figure 20(b) describe the continuous-time belief propagation, cf. Eqs. (16),
(18), (20).

Comparing Figure 20 with Figures 7 and 15, we notice that

• The functionϕ(�) in Figure 7 (the optimum activation function θðoptÞð�Þ) has been split into
two functions θS=Lð�Þ and θL=Sð�Þ in Figure 20(a). For BPSK symbol alphabet and based on

Eqs. (12), (24), it can be easily shown that θðoptÞðuÞ ¼ θL=S

�
θS=LðuÞ

�
, cf. Remark 11.

• The functions �ϕð�Þ and �f ð�Þ in Figure 15, Eq. (18) have been merged to one function f ð�Þ in
Figure 20(b), Eq. (26f) f ðLÞ ¼ �f

�
�ϕðLÞ

�
. �LðtÞ and �xðtÞ are the soft output of the decoder

and the equalizer, respectively.

A. Special cases

The novel structure in Figure 20 is general and stays valid for the following cases:

• Separate equalization and decoding: In this case, Figure 20(a) is modified such that no
feedback from decoder to equalizer is applied. This is shown in Figure 21(a). Only at the
end of the separate equalization and decoding process, the output is given as
�L ¼ Lext þ Lch. We distinguish between two cases

1. Equalization and decoding take place separately at the same time.

2. Successive equalization and decoding: only after the end of the equalization process,
Lch are forwarded to the decoder and the decoder starts the evolution. We focus on
this case.
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• Coded transmission over an AWGN channel: In this case, R ¼ I and hence based on
Eq. (7) W ¼ 0, W0 ¼ I. Under these conditions, Eq. (26a) becomes linear and can easily be
solved uðtÞ ! ~x and LchðtÞ in Eq. (26b) becomes time independent Lch. In this case,
Eq. (26c) reduces to Eqs. (16), (18).

• Uncoded transmission over an “interference-causing” channel: In this case, P ¼ 0, B ¼ 0
and Eq. (26c) becomes L ¼ 0nh . Under these conditions, Eq. (26a) reduces to Eqs. (5), (7), (8)
(notice, however, Remark 11).

B. Throughput, asynchronicity and scheduling

The diagonal elements in Υd define the duration of the transient response the HORNN needs
in order to converge eventually (in case of convergence). The larger they are, the longer is the
transient response and consequently the less is the decoding throughput. The same is valid for
Υe. The diagonal elements of Υe based on our analog RNN vector equalizer are in the range of
a few tens of picoseconds.

Unequal diagonal elements in Υe (and Υd) represent some kind of continuous-time
asynchronicity [46]. Asynchronicity in discrete-time RNNs is desirable since it provides the ability
to avoid limit cycles, which can probably occur in synchronous discrete-time RNNs [54, 57].

Assuming Υd ¼ τd � I and Υe ¼ τe � I, we notice that the ratio τe=τd is comparable to the
scheduling problem in the discrete-time joint equalization and decoding case. More precisely,
how many iterations ρ within the equalizer should be performed before a decoding process
takes place, cf. Figure 19. This is optimized usually by simulations and is case dependent.

From a dynamical point of view, the case τe=τd ≪ 1 (or τd=τe ≪ 1) could be seen as a singular
perturbation (in time). In this case, one part of Figure 20 can be seen as “frozen” compared
with the other part.

Remark 12. We notice that the parameters of the transmission model (block transmit matrix,
symbol alphabet, block size, channel coding scheme) are utilized to define the parameters of
the continuous-time recurrent neural network structure in Figure 20 such that no training is
needed. This represents in practice a big advantage especially for analog hardware. However,
to enable different coding schemes and symbol alphabets, either a full connectivity or a vector
and interneuron connectivity controls are needed. Both structures are challenging from a
hardware implementation point of view.

Remark 13. For the ease of depiction, Figures 20 and 21 assume that one transmitted block
contains exactly one codeword. This is not necessarily the case in practice. As an example, if
one transmitted block contains two codewords, one RNN and two parallel HORNNs will be
needed. On the other hand, if one codeword lasts over two transmitted blocks, two parallel
RNNs and one HORNN is needed.

9. Simulation results

We simulate the dynamical system as given in Eq. (26) and Figure 20 based on the first Euler
method [58]. We assume:
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• BPSK modulation scheme (symbol alphabet ψ ¼ {−1;þ 1}).

• Each transmitted block contains one codeword, cf. Remark 13.

• Υd ¼ Υe ¼ τ � I.
• Channel coding scheme: An LDPC code with k ¼ 204, code rate 0:5 (n ¼ 408) and column

weight 3 taken from [59].

• Multipath channels [60]:

–Proakis-a abbreviated in the following by its channel impulse response ha leading to a
small interference.

–Proakis-b abbreviated in the following by its channel impulse response hb leading to a
moderate interference.

The impulse response of ha and hb are

ha ¼ ½ 0:04 −0:05 0:07 −0:21 −0:5 0:72 0:36 0 0:21 0:03 0:07 �;
hb ¼ ½ 0:407 0:815 0:407 �:

The block transmission matrix R is a banded Toeplitz matrix of the autocorrelation function of
the channel impulse response [61]. The following cases are considered:

• Uncoded transmission over AWGN channel. The bit error rate can be obtained analyti-

cally and is given as 1
2 � erfc Eb

N0

n o
[62]. erfcð�Þ is the complementary error function and Eb is

the energy per bit.

• Coded transmission over AWGN channel and continuous-time decoding at the receiver
(HORNN-belief propagation).

• Uncoded transmission over (the abovementioned) multipath channels and continuous-
time equalization at the receiver (RNN-equalization).

• Coded transmission over (the abovementioned) multipath channels. We distinguish
between joint equalization and decoding (Figure 20) and separate equalization and
decoding (Figure 21). In the latter case, equalization is performed firstly, and consequently
the decoding.

The evolution time for the whole system in all cases is 20 � τ, i.e., all simulated scenarios deliver
the same throughput. For separate equalization and decoding, the evolution time of the
equalization equals the evolution time of the decoding and equals 10 τ. The simulation results
are shown in Figure 22. We notice the following:

• Joint equalization and decoding outperforms the separate one, which is a fact we know
from the discrete-time case. Our proposed model in Figure 20 is capable of
“transforming” this advantage to the continuous-time case.

• For the channel ha, the BER (for continuous-time joint equalization and decoding) is close
to the coded BER curve.
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• For the channel hb, there exists a gap between the obtained results and the coded AWGN
curve. This was expected, since hb represents a more severe multipath channel compared
with ha.

• If only equalization performance is considered, we compare between “Uncoded & EQ”
curves and “Uncoded BER” curves. In Figure 22(a), the vector equalizer based on contin-
uous-time recurrent neural networks is capable to remove already all interferences caused
by the multipath channel ha, whereas in Figure 22(b), the “Uncoded & EQ” curve
approaches an error floor.

Remark 14. Interleaving and antigray mapping often encountered in the context of iterative
equalization and decoding can be easily integrated in the proposed model in Figure 20.
Antigray mapping will influence the functions θS=Lð�Þ and θL=Sð�Þ, whereas interleaving affects
the matrix B.

10. Conclusion

Joint equalization and decoding is a detection technique which possesses the potential for
improving the bit error rates of the transmission at the cost of additional computational
complexity at the receiver. Joint equalization and decoding is being considered only for the
discrete-time case. However, for high data rates, the energy consumption of a digital imple-
mentation becomes a limiting factor and shortens the lifetime of the battery. Improving the
energy efficiency revives the analog implementation option for joint equalization and
decoding algorithms, particularly taking advantage of the nonlinearity of the corresponding
algorithms.

Continuous-time recurrent neural networks serve as promising computational models for analog
hardware implementation and stand out due to their Lyapunov stability (the proved existence of

Figure 22. BER vs. Eb=N0 for evolution time equals 20 � τ. Continuous-time (joint) equalization and decoding. BPSK
symbol alphabet.
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attracting equilibrium points under specific conditions) and special suitability for analog VLSI.
They have often been applied for solving optimization problems even without the need for a
training. The drop of the training is particularly favorable for analog hardware implementation.

In this chapter, we introduced a novel continuous-time recurrent neural network structure,
which is capable to perform continuous-time joint equalization and decoding. This structure is
based on continuous-time recurrent neural networks for equalization and continuous-time
high-order recurrent neural networks for belief propagation, a well-known decoding algo-
rithm for low-density parity-check codes. In both cases, the behavior of the underlying dynam-
ical system has been addressed, Lyapunov stability and simulated annealing are a few
examples. The parameters of the transmission system (channel matrix, symbol alphabet, block
size, channel coding scheme) are used to define the parameters of the proposed recurrent
neural network such that no training is needed.

Simulation results showed that the superiority of joint equalization and decoding preserves, if
this is done in analog according to our proposed model. Compared with the digital implemen-
tation, the analog one is expected to improve the energy efficiency and consume less chip area.
We confirmed this for the analog hardware implementation of the equalization part. In this
case, the analog vector equalization achieves an energy efficiency of a few picojoule per
equalized bit, which is three to four orders of magnitude better than the digital counterparts.
Additionally, analog hardware implementation aspects have been discussed. We showed as an
example the importance of the interneuron connectivity, especially pointing out the challenges
represented either by the hardware implementation of a massively distributed network, or by
the routing of the signals using (de)multiplexers.
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Abstract

Functional network (FN) has been successfully applied in many fields, but so far no
methods of direct signal detection (DSD) using FN have been published. In this chapter,
a novel DSD approach using FN, which can be applied to cases with a plural source
signal sequence, with short sequence, and even with the absence of a training sequence,
is presented. Firstly, a multiple‐input multiple‐output FN (MIMOFN), in which the
initial input vector is devised via QR decomposition of the receiving signal matrix, is
constructed to solve the special issues of DSD. In the meantime, the design method for
the neural function of this special MIMOFN is proposed. Then the learning rule for the
parameters  of  neural  functions  is  trained  and  updated  by  back‐propagation  (BP)
algorithm.  The  correctness  and effectiveness  of  the  new approach  are  verified  by
simulation results, together with some special simulation phenomena of the algorithm.
The proposed method can detect the source sequence directly from the observed output
data by utilizing MIMOFN without a training sequence and estimating the channel
impulse response.

Keywords: direct signal detection, MIMO, functional neural network, QAM, back
propagation

1. Introduction

Signal detection has become an integral part of applications in many areas, including wireless
communications, optical telecommunications, automatic control system, magnetic resonance
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imaging, underwater acoustics, and radio astronomy. Typical digital communication environ‐
ments involve transmission of analog pulses over a dispersive medium, inevitably corrupting
the  received  signal  by  inter‐symbol  interference  (ISI).  The  present  sequence  estimation
approaches, for example, maximum‐likelihood sequence estimation (MLSE) [1] and ‘Buss‐
gang’ [2–4], usually estimate first the communication channel impulse response and then the
transmitted sequence by an optimum method. MLSE is a useful approach for equalization of
ISI but requires knowledge of the possibly time‐variant channel impulse response, and its
complexity increases exponentially with the length of the channel delay spread. Consequently,
adaptive channel estimation algorithms have to be employed [1]. “Bussgang” and its modified
algorithms [2–4] are well‐known channel estimation algorithms but are costly and indirect due
to their necessity for a long block of data to achieve algorithm convergence since they exploit
implicit (embedded) statistical knowledge. Direct signal detection (DSD) is a new emerging
method in communication systems, which can directly estimate the input sequence without
estimating the channel impulse response [5–7].

In this work, we propose a new method that merges the functional network (FN) [8–9] models
into a DSD technique for removing ISI without the training sequence. FN is a very useful
general framework for modeling a wide range of probabilistic, statistical, mathematical, and
engineering problems [10]. For instance, Iglesias et al. [11] adopted FN to improve the results
of a determined artificial neural networks (ANN) application for the estimation of fishing
possibilities, Zhou et al. [12] employed FN to solve classification problem, Emad et al. [13]
found that FN (separable and generalized associativity) architecture with polynomial basis
was accurate, was reliable, and outperforms most of the existing predictive data mining
modeling approaches for the issue of permeability prediction, and Alonso‐Betanzos et al. [14]
applied FN to predict the failure shear effort in concrete beams. As mentioned above, FN has
been successfully applied in many fields, but so far methods of DSD using FN have not been
reported.

The chapter is organized as follows. In Section 2, a system model is described. Then the network
structure of MIMOFN to solve the special issues of DSD is constructed in Section 3. A multiple‐
input multiple‐output FN (MIMOFN), in which the initial input vector is devised via QR
decomposition of receiving signal matrix, is constructed to solve the special issues of DSD. The
design method of the neural function of this special MIMOFN is proposed. Then the learning
rule for the parameters of neural functions is trained and updated by back‐propagation (BP)
algorithm in Section 4. In Section 5, simulation results are shown to verify the new approach's
correctness and effectiveness, and some special simulation phenomena of this algorithm are
given out followed by Conclusion and Discussion in Section 6.

2. The system model and basic assumptions

This system model is a linear single‐input multiple‐output (SIMO) (see Figure 1) finite impulse
response channel with N output [15]. The following basic assumptions are adopted [16].

A1: Channel order Lh is assumed to be known as a priori.
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A2: The input signal s(t) is zero‐mean and temporally independent and identically distributed
(i.i.d).

A3: Additive noise is spatially and temporally white noise and is statistically independent of
the source.

Figure 1. Example of SIMO channel.

For the simplification of the presentation of the proposed DSD without loss of generality, the
i‐th sub‐channel output of an SIMO channel system in a noise‐free environment is expressed
as

( ) ( ) ( )
1

0

hL

i ix t h s t
t

t t
-

=

= -å (1)
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Thus, the received data matrix can be formulated as
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3. The FN structure for DSD

FN is a generalization of neural networks achieved by using multi‐argument and learnable
functions, that is, in these models, transfer functions, associated with neurons, are not fixed
but learned from data. There is a need to include weights to ponder links among neurons since
their effect is subsumed by the neural functions. Figure 2 shows an example of a general FN
topology, where the input layer consists of the units  = , ,  ; the first layer contains neurons
P, G, N, Q; the second layer contains neurons J, K, F, L; and the output layer contains,  ,  ,  . According to Castillo's approach, each neuron function, P, G, N, Q, J, K, F, L, is
represented as a linear combination of the known functions of a given family such as polyno‐
mials, trigonometric functions, and Fourier expansions and is estimated during the learning
process. Generally, instead of fixed functions, FNs extend the standard neural networks by
allowing neuron functions P, G, N, Q , J, K, F, L to be not only true multi‐argument and multi‐
variate functions but also different and learnable. Two types of learning methods exist:
structural learning and parametric learning. The latter estimates the activation functions with
the consideration of the combination of “basis” functions such as the least square, steepest
descent, and mini‐max methods [13]. In this chapter, the least square method for estimating
sequence is used.
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Figure 2. A basic FN topology model.

Definition 1: Assume there exists a function set  that transforms an n‐dimensional input

vector into an m‐dimensional output vector in a complex regime : , and

𑨈𑨈 𑨈𑨈 , 𑨈𑨈 = 1, 2,⋯,  , 1 = 1 1, 2,⋯,  , 2 = 2 1, 2,⋯,  , ⋯, =  1, 2,⋯,  , then the FN model  =  1, 2,⋯,   is a basic MIMOFN model.

Definition 2: Let 𑨈𑨈 be a linear combination of a column in , and  = ∑ = 1  + , = 1, 2,⋯, ,  𑨈𑨈 𑨈𑨈,  = 1, 2, …, , where both  and  are constant values, then =  1, 2,⋯,   is a linear MIMOFN.

Generally, FNs are driven by specific problems, that is, the initial architecture is designed based
on problems in hand. Here, an MIMOFN, shown in Figure 3, is designed for the special issue
of DSD. In this topology, w1, w2,…, wN is the input vector, and f(.), g(.), and h‐1(.) denote the
neuron functions of the first, second, and output layer, respectively. Re(.) and Im(.) denote the
real part and imaginary part, respectively.
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Figure 3. The MIMOFN topology for DSD.

In this case,  + 1 is the output of MIMOFN and its elements are
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where all of f(.), g(.), and h‐1(.) are arbitrary continuous and strictly monotonic functions, and
j is the imaginary unit.

4. DSD using MIMOFN

4.1. The input vector of MIMOFN

Our objective is to detect the source sequence directly from the observed output data by
utilizing MIMOFN without training sequence and estimating the channel impulse response.
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Since 𑨈𑨈 𑨈𑨈 𑨈𑨈 ×  + 1 
 with  𑩥𑩥  + 1 , QR decomposition can be applied to 𑨈𑨈, and thus𑨈𑨈 can be rewritten as

=X QR (8)

where  𑨈𑨈 𑨈𑨈 ×  + 1 
 is a matrix with orthonormal columns and  𑨈𑨈 𑨈𑨈  + 1  ×  + 1 

is an upper triangular matrix such that  ,  ≠ 0,  = 1,⋯,  + 1  [17].

For the DSD issues, there is a well‐defined gap in the singular values of 𑨈𑨈; in other words, it
exists as an index  that ( + 1) ≪ (), where  ⋅  denotes the singular of 𑨈𑨈, and then the
subset selection will tend to produce a subset containing the most important columns (rules)
of 𑨈𑨈.

In order to obtain the full QR factorization, we proceed with SVD and extend  to a unitary

matrix 1. Then, 𑨈𑨈 = 11 with unitary 1 𑨈𑨈 𑨈𑨈 ×  and upper triangular

1 𑨈𑨈 𑨈𑨈 ×  + 1 
, with the last  𑨒𑨒  + 1  rows being zero. So we obtain
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where  is a permutation matrix. The ‐values are arranged in decreasing order and incline to
track the singular values of 𑨈𑨈.

Thus, the input matrix of MIMOFN  can be formulated as

H=W QQ (10)

where superscript H denotes conjugate transpose of a matrix. Clearly,  is a non‐negative
definite idempotent Hermitian matrix.

Since the column vectors of  are a base set of signal space, they can be adopted to the input
vector of MIMOFN and remain unchanged.

4.2. Cost function

The next issue to be considered is construction of a cost function. The cost function of MIMOFN
can be formulated as

Direct Signal Detection Without Data‐Aided: A MIMO Functional Network Approach
http://dx.doi.org/10.5772/63213

129



( ) ( ) ( )( )( )22 1
1 12 2

1 1- -
2 2n n n nJ E E h g-

- += =c c c c Wc (11)

where ℎ−1  = ,  .  is expectation operation, and ∥ ⋅ ∥22 is two‐norm. Clearly, it is true that𝀵𝀵𝀵𝀵(𑨒𑨒 − 𑨒𑨒) = 𝀵𝀵(𑨒𑨒 − 𑨒𑨒) is satisfied, here (𑨒𑨒 − 𑨒𑨒) 𑨒𑨒 = 0,⋯, ℎ +  , the value of cost function

is minimum.

4.3. Design of neural functions

Neural function g(.) must be easy to compute and complement, and hence needs to satisfy the
following conditions:

1. g(.) should be simple, easy to calculate, continuously differentiable, and bounded.

2. The derivative of g(.) should be simple too, and it is the ordinary transformation of g(.).

3. A priori knowledge of special issue must be considered, which makes the network easy
to be trained with strong generalization ability in a smaller scale.

Since both the in‐phase and quadrature‐part of QAM signals belong to , we only consider
the in‐phase part of QAM signals and design the following neural function f (.) as
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where  = ( + 1) − 2,  = 1, 2,⋯,,  are the number of multi‐levels and the unstable

inflexion points of the basis function ( + ) = 1 + −( + ) −1, here ( + ) is the

arbitrary continuous and strictly monotonic function.  is the attenuation factor of the basis
function. Furthermore, the derivative of g(.) can be calculated by
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Figure 4 shows the curves of g(.) neural function and its derivatives g'(.) for 16QAM with  in
the Descartes coordinate. The value of  influences the convergence rate and performance of
the algorithm significantly. A small value of  (e.g. a = 5) will accelerate the convergence rate
of algorithm.
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Figure 4. 16QAM, the curves of g(.) neural function and its derivative g'(.) with  = 5,10 in the x–y plane.

5. The learning rule for the parameters of neural functions

Herein, the input vector and the cost function of MIMOFN are determined, and the following
mission is design of a learning strategy of the MIMOFN's neural function.

(1) The learning strategy of the parameters of f(.).

A back‐propagation(BP) algorithm is adopted to update the parameters of f(.). Since the error
function has been shown in Eq. (11), we can obtain the following equation

( )( )1 'n n n
n

J g
c

m m+

¶
= - = -

¶
c c c I W Wcn‐ (14)

where 𑨈𑨈 𑨈𑨈 0, 1  is the learning rate factor.

Let us look into the i‐th neuron. At the first iteration, the neural functions  .  are multi‐
dimensional linear functions.
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where 0, 1, 0, 2,⋯, 0,  are the parameters of f(.) and , 1, , 2,⋯,,  denote the input

variables.

At the n‐th iteration, we have
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and  .  become
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( )( ) ( )0,1 ,1 0,2 ,2 0, ,Im Imn N i i N i Nf c w c w c w= + + +c w L (19)

To quicken the learning rate, an adaptive BP training algorithm with a momentum term is
adopted, has shown in Eq. (20), is used

( )( ) ( )( ) ( )1 1' 'n n n n n n n nm m+ -= - + D = - + -c c I Wg Wc c c I Wg Wc c c‐ ‐ (20)

(2) The learning strategy of the parameters of g(.).

The attenuation factor  of the g(.) function is not fixed but adjusted in accordance with the
value of error function. First, when the value of error function is large,  takes the small value
in order to expedite the adjusting proceedings of MIMOFN output signals, in other words, to
accelerate the convergence rate, making the input sequence leave the origin of coordinate
quickly. As the iteration proceeds, the value of error function will become smaller and smaller,
and then a large value of  should be taken to make the output sequence go to the ideal
constellation points.
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To quicken the learning rate, an adaptive BP training algorithm with a momentum term is
adopted, has shown in Eq. (20), is used

( )( ) ( )( ) ( )1 1' 'n n n n n n n nm m+ -= - + D = - + -c c I Wg Wc c c I Wg Wc c c‐ ‐ (20)

(2) The learning strategy of the parameters of g(.).

The attenuation factor  of the g(.) function is not fixed but adjusted in accordance with the
value of error function. First, when the value of error function is large,  takes the small value
in order to expedite the adjusting proceedings of MIMOFN output signals, in other words, to
accelerate the convergence rate, making the input sequence leave the origin of coordinate
quickly. As the iteration proceeds, the value of error function will become smaller and smaller,
and then a large value of  should be taken to make the output sequence go to the ideal
constellation points.
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where    is the unit step function, B and C are constants, and A is the iteration times of J(cA
+1) <J(cA. The curve of    when A = 10, B = 10, and C = 5 is shown in Figure 5.

Figure 5. The curve of a(t) when A = 10,B = 10, and C = 5, respectively.

6. Simulation and results

In this section, simulation results are provided to illustrate and verify the developed theory.
Unless noted otherwise, these experiments are based on a multi‐path channel

ℎ() = ∑ = 1
  ℎ(,  𑨒𑨒 𑨒𑨒) + 𑫅𑫅 𑫅𑫅  ℎ(,  𑨒𑨒 𑨒𑨒 ) , with an over‐sampling factor  = 4 and a

multi‐path number  = 5. Here ℎ ,  𑨒𑨒 𑨒𑨒  and ℎ(,  𑨒𑨒 𑨒𑨒 ) are the raised cosine roll‐off finite

impulse responses with a roll‐factor  = 0.1, delay factors 𑨒𑨒 and 𑨒𑨒  are random constants, and and  ∈ (0, 1  are random weight coefficients (see Figure 6). And the order  of f(.) is [5,

18]. The signal modulation type is 16QAM and satisfies block‐fading feature. Results are
averaged over 500 Monte Carlo runs.

Direct Signal Detection Without Data‐Aided: A MIMO Functional Network Approach
http://dx.doi.org/10.5772/63213

133



Figure 6. The sample of the real part of ℎ().

Figure 7. The average Bit Error Rate (BER) of DSD using the MIMOFN approach with the learning rate  when data
length N = 500.

Figure 7 shows the average BER curves of DSD using an MIMOFN approach with the
learning rate  when data length N = 500. This improved performance results from the decrease
of . In the meantime, it is shown that the performance will stop improving when  is small
enough (e.g.  𑩤𑩤 0.05). As we all know that increasing  will lead to faster convergence rate of
this approach, however, too large  (e.g.  = 0.5) will make the approach fail. In the meantime,
Figure 7 also illustrates that the MIMOFN approach can work well even if the signal‐to‐noise
ratio (SNR) = 12 dB, which is hard to reach for most existing DSD.
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Figure 8. The curves of the average cost function J of the MIMOFN approach with several different lengths of data N =
(100, 150, 200, 250, 500), when  = 0.05 and SNR = 15 dB, respectively.

Figure 8 illustrates the curves of the average cost function J of the MIMOFN approach with
several different lengths of data N = (100, 150, 200, 250, 500), when  = 0.05 and SNR = 15 dB,
respectively. In the initial iteration stage, the elements of sequence are amplified from the
original point to the whole area of −3, 3 . This makes the value of cost function to progressively
increase. Regardless of the initial iteration stage, it is obvious that the average cost function
keeps decreasing until its value is not changed, which means the algorithm is always conver‐
gent. In addition, the iteration is only about 150 times for 16QAM input case. Furthermore, it
is implied that the cost function value is independent of data length.

Figure 9. The 3D surface of the rate of correct recognition  with  and N.
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N

μN 100 150 200 250 300 350 400 450 500

0.01 50.4 90 98.8 100 100 100 100 100 100

0.05 40.0 84.8 97.8 100 100 100 100 100 100

0.10 32.4 80.8 96.2 100 100 100 100 100 100

0.15 24.0 73.4 90.8 93.2 100 100 100 100 100

0.20 10.8 46.0 80 91.2 93.2 100 100 100 100

0.25 6.8 30.8 60.4 75.2 80.8 80.8 88.4 95.2 100

Table 1. The relation of the rate of correct recognition  (%) with  and N.

Figure 9 and Table 1 illustrate the rate of correct recognition  of the MIMOFN approach with
several different learning rate factors  (= 0.01, 0.05, = 0.1, 0.15, 0.2, 0.25) and N = (100, 150 ,…,
500) for SNR = 15 dB.

( )% 100%hr
x

= ´ (22)

where ,  are the total number of independent trials and the total number of correct recogni‐
tion, respectively. The rate of correct recognition of the MIMOFN approach is inversely
proportional to the values of  and N.

Figure 10. BER performance comparison between sequence estimation algorithms for N = 500.
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We compare our method (MIMOFN) with the classical subspace algorithm (SSA), linear
prediction algorithm (LPA), and outer‐product decomposition algorithm (OPDA) [15], which
are shown in Figure 10. It is found that the MIMOFN approach is superior to those of the
above‐mentioned DSD in performance.

The following experiments are based on 16QAM, SNR = 15 dB, N = 200, and  = 0.05. These
figures are drawn by one independent trial.

In Figure 11, the solid circles and hollow circles denote ideal 16QAM signal constellation
points and the positions of the signal points with the iteration, respectively. Figure 12 il‐
lustrates the phase trajectories of signal points using the MIMOFN approach. All lines de‐
note the phase trajectories of signal points with the iteration, respectively, and the eight
bold lines express the trajectories of the given different signal points, respectively. We can
see that the phase trajectories are different and irregular, but all of them will reach their
respective true signal points when the algorithm is convergent. In addition, the iteration is
only about 150 times even for 16QAM input case.

Figure 11. The constellations of input and output sequences for 16QAM signal when the MIMOFN approach is per‐
formed.
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Figure 12. The phase trajectories of signal points using the MIMOFN approach with (a) N = 200 and (b) N=500, when 
and SNR = 15 dB, respectively.

7. Conclusions

In this chapter, a unified approach based on MIMOFN to solve DSD issues, even if the sequence
is short and the training sequence is absent, is shown. The proposed method can be applied
to those cases where the constellation of the source signal is dense and the data frame is short.
The structure of MIMOFN not only is suitable to the DSD of square‐QAM (e.g. 16QAM) issues
but also can be extended to the cross‐QAM (e.g. 8QAM, 32QAM) cases.
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Abstract

Neutrinos play a fundamental role in the understanding of the origin of ultrahigh-
energy cosmic rays (UHECR). They interact through charged and neutral currents in
the atmosphere generating extensive air showers. However, the very low rate of events
potentially generated by neutrinos is a significant challenge for detection techniques
and  requires  both  sophisticated  algorithms  and  high-resolution  hardware.  We
developed the FPGA trigger which is generated by a neural network. The algorithm can
recognize various waveform types. It has been developed and tested on ADC traces of
the Pierre Auger surface detectors. We developed the algorithm of artificial neural
network on a MATLAB platform. Trained network that we implemented into the largest
Cyclone V E FPGA was used for the prototype of the front-end board for the Auger-
Prime. We tested several variants, and the Levenberg–Marquardt algorithm (trainlm)
was the most efficient. The network was trained: (a) to recognize ‘old’ very inclined
showers (real Auger data were used as patterns for both positive and negative markers:
for reconstructed inclined showers and for triggered by time over threshold (ToT),
respectively, (b) to recognize ‘neutrino-induced showers’. Here, we used simulated data
for positive markers and vertical real showers for negative ones.

Keywords: FPGA, trigger, cosmic rays, detection, neural network, neutrino, inclined
showers, Pierre Auger Observatory

1. Introduction

The study of  ultrahigh-energy cosmic rays (UHECR) of  energy 1018–1020  eV significantly
speeds up both understanding and activities in both experimental as well as theoretical fields
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of astroparticle physics [1]. Although many mysteries remain unsolved, such as the origin of
the UHECRs, their production mechanism and composition, we are aware that it would be
very difficult to explain the production of these energetic particles without associated fluxes
of ultrahigh-energy neutrinos (UHEνs) [2, 3].

Generally, we can classify astrophysical models as: ‘bottom-up’ and ‘top-down’. In the first
one, protons and nuclei are accelerated from low to higher energies, while pions are produced
in interactions of cosmic rays with matter or radiation at the source [4]. The ‘top-down’ models
(based on Grand Unified Theories or Super-symmetries) consider that quark and gluon
fragmentations of very heavy particles are a source of protons and neutrons, with an excess of
pions compared with nucleons [5]. However, the Pierre Auger Observatory (Figure 1) rather
disqualifies ‘top-down’ models because an observed photon stream is much lower than
expected from the models [6]. From the other side, the Pierre Auger Observatory [7, 8] confirms
the Greisen–Zatsepin–Kuzmin (GZK) cutoff [9, 10] observed also by Fly’s Eye [11].

Figure 1. Location of the Southern part of the Pierre Auger Observatory.

In the downward-going channels, neutrinos of all flavours (generated via both charged and
neutral current interactions) can develop extensive air showers in the entire path in the
atmosphere, also very close to the ground [12].

In the Earth-skimming channel, showers can be induced by products of lepton decays after
the interaction of an upward-going inside the Earth [13]. The surface detector of the Pierre
Auger Observatory has potentially capabilities to detect neutrino-origin showers (for both the
Earth-skimming and downward-going channels) from showers induced by regular cosmic
rays for a large zenith angle (θ ≥ 70°) [14].

In the bottom-up scenarios, protons and nuclei are accelerated in astrophysical shocks, while
pions are produced by cosmic ray interactions with matter or radiation at the source. In the
top-down models, protons and neutrons are produced from quark and gluon fragmentations
with a production of many more pions than nucleons.

The UHECR flux above ~5 × 1019 eV is significantly suppressed according to expectations based
on the UHECRs interaction with the cosmic microwave background (CMB) radiation. For
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primary protons, the photo-pion production is responsible for the GZK effect; thus, UHEνs
are produced from decayed charged pions. However, their fluxes are doubtful and if the
primaries are heavy nuclei, the UHEνs should be strongly suppressed [15].

Neutrinos can directly show sources of their production because there is no deflection in
magnetic fields. Unlike photons, they travel inviolate from the sources and may give hints for
production models. UHEνs can be detected with arrays of detectors at ground level that are
currently being used to measure extensive showers produced by cosmic rays [16]. The main
challenge is an extraction from the background, induced by regular cosmic rays showers
initiated by neutrinos. Due to a very small neutrino cross section for interactions, a higher
probability of a detection is at high zenith angles because a bigger atmosphere slant depth
provides a thicker target for neutrino interactions. Inclined showers that begin their develop-
ment deep in the atmosphere can be a signature of neutrino events.

2. Surface detector in the Pierre Auger Observatory

One of the most frequently used detection techniques is a ground array of water Cherenkov
tanks, scintillator, calorimeters, utilizing water, liquid or solid plastics, lead as radiators, etc.
The parameters of such a ground array (altitude, surface area, spacing between the detector
stations) must be adapted to the energy range aimed for. The water Cherenkov tanks are filled
by de-ionized water. Ultra-relativistic secondary from extensive air showers (EAS) passing
through the water emits Cherenkov light. The light is converted by the PMTs into an electric
signal for further processing. The tank is lined with the high-performance DuPont™ Tyvec®
protective material (usually used as in a weather-resistant barrier) as a diffuse reflector on the
walls. The reflector and high transparency of the super-pure water, with large attenuation
length, assure multiple photon reflections and in consequence long electric signal as a response
to the light excitation (Figure 2).

Figure 2. Water Cherenkov tank schematics. Each tank contains 12 tons of water as a radiator. The light is detected by
three PMT, and each connected to a high- and a low-gain channel in the local station electronics.
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EAS on the ground level hit usually several tanks. The number of hit tanks depends on the
energy of the shower and the angle of arrival. The response of the surface detectors to EAS
allows an estimation of the energy of the primary cosmic ray. This is obtained through the
calculation of the integrated signal at the given distance from the shower axis. The distance is
usually chosen to minimize shower-to-shower fluctuations (1000 m in the Pierre Auger
Observatory). This signal, called hereafter S(1000) and expressed in vertical equivalent muon
(VEM) units, is interpolated after a fit of a lateral distribution function to the observed signals
in a given event. Simulations show that it does not depend much on the choice of the lateral
distribution function. Calculation of the primary energy from S(1000) by simulation is an
advanced topic and may depend on the modelling. The estimation of the primary energy from
S(1000) by comparison with simulations is not a sufficient technique. The energy of showers
is calculated from the SD data but calibrated from the FD data.

One of the crucial measured parameters allowing inferring characteristics of EAS is the timing
of registered signals. ‘Time shape’ of a signal tells about the size of EAS and on a distance from
the core, sharpness of rising edge enriches information on the muon composition, relative
timing between neighbouring detectors determines the geometrical configuration and arrival
direction of the shower. Time resolution should be good enough not to lose important time-
dependent structure.

Muons tend to arrive earlier than electrons and photons and to create shower with relatively
flat front, because they suffer much less scattering and so have more direct paths to the ground.
Signal differences between muon and electron/photon components of EAS increases with the
showers age. Inclined and deeply penetrating showers are muon rich. Muon flat front gives in
PMTs a short, sharp response (electric spike). Electrons and photons give much smooth PMT
signal profiles, which spread over longer interval. ‘Rise time’ measurements are the most
robust diagnostics of composition for the surface array. Iron showers, which are both muon
rich and develop higher in the atmosphere relative to proton showers, have a signal, arriving
in a shorter time than that from a proton shower with the same total energy.

A practical realization of very high time resolution system meets significant difficulties.
Digitalization of very wide range of signals with high speed requires not only expensive FADC
but also very high-speed processing electronics. The measurement system should fetch a
reasonable compromise between a speed and performance needed from the physics point of
view and the costs, a level of complication, power consumption, longevity and reliability from
the point of view of the practical implementation. The current technology provides a sampling
of the analogue signals with the speed 40–100 Msps, with reasonable costs, high component
integrity and expected reliability in long-term operation.

3. Triggers in the surface detector

The large background coming from small air showers, electronic noise and random coinci-
dences imposes special constraints on triggers, which have to select EAS. Triggers have been
accomplished in a hierarchical way both in hardware and in software to select possible
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3. Triggers in the surface detector

The large background coming from small air showers, electronic noise and random coinci-
dences imposes special constraints on triggers, which have to select EAS. Triggers have been
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interesting events and verify their structure in the consecutive levels. A splitting of triggers on
hardware and software implementation is a consequence of the compromise between the speed
(the processing of high-rate signals possible by hardware only) and the performance of
relatively complicated algorithms investigating timing and relationships between neighbour-
ing detectors (a software realization, possible due to much lower event rate and not necessarily
too complicated for a hardware implementation).

The cosmic ray particle flux generates ~2.5 kpps event rate in the water Cherenkov tank. PMT
noise adds next few kpps rate. The total background rate (single muon + small showers + PMT
dark noise) is estimated on the level ~5 kpps per station. The first level-trigger selects poten-
tially interesting data from an uncorrelated background of several kpps to ~100 pps. The main
tasks of the first-level trigger are clipping muon signals to reduce both: the trigger sensitivity
to the primary composition and bias from small showers close to the detector, from which the
signal is spread over relatively short time. The first function is motivated by the strong
dependence of the muon content on the primary species, and the muon content of the shower
providing the best handles of the primary composition. The second function is motivated by
the increase in the time duration of the signal farther from the shower core. The first-level
trigger reduces the contribution of muons to the trigger sum by truncating the pulse height at
the programmable threshold and integrating the signal below the clip level. The integration
of the truncated signal biases the trigger against nearby small showers, with energy deposit
over short time interval. The parallel implementation accepts events with large energy
deposition and neglecting their time structure, coming from close to the core of large showers.

The trigger/memory circuit registers and analyses the set of FADC samples in six channels
corresponding to the profile of showers. The only high-gain sub-channel generates the trigger.
The low-gain channel provides additional information, if the high-gain channel is saturated.
The gain tuning of both sub-channels assures 15-bit dynamic range (each channel provides 10-
bit dynamic range, with 5-bit overlapping).

Each surface detector generates two-level triggers (T1 and T2). T1 trigger works in two modes:

• a simple threshold trigger (TH) requiring threefold coincidences of three PMTs each above
1.75 Ipeak

VEM. The TH rate is dynamically set on ~100 Hz by the adjustment of high voltages
on PMTs. This trigger suppresses an atmospheric muons dependence. It is used to select
large signals that are not necessarily spread in time.

• the ‘time over threshold’ (ToT), which needs at least 13 bins in 120 ADC-bins of a sliding
window of 3 μs being above 0.2 Ipeak

VEM threshold in coincidence in 2 out of 3 PMTs. This
trigger is especially efficient for small signals spread in time, for example low-energy
showers with a dominated EM component or for high-energy showers but far from the
detector (Figure 3).

The T1 triggers start DAQ in each surface detector: event data are stored on a local memory
for 10 s waiting for a possible T3 to be transferred to central data acquisition system (CDAS).
T3 trigger is generated by CDAS, when there are spatial and temporal correlations between
the local triggers.
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Figure 3. Sample of signals from the same event (#01307007). Signals from Clairon suggest that the shower core passed
very close to this tank (Threshold trigger). Signals from Fray F. Inalican relatively weak and spread in time suggest far
distance of this tank from the shower core time over threshold trigger).

4. Signal waveform analysis

In very inclined ‘old’ showers, the EM component is suppressed to a negligible level relatively
early in a shower development. On a detection level, only the muon component survives as a
muon ‘pancake’ of ~1 m thick. Such ‘pancake’ generates a very short signal in surface detectors
with a very fast rising edge. These types of ADC traces (very fast jump from a pedestal level
with an exponential attenuation tail) are relatively easy to recognize, especially by the
algorithm based on the discrete cosine transform. The DCT trigger was already tested on the
SD test detector in Malargüe (Argentina). The algorithm precisely can recognize signals of
predefined shapes. The ANN algorithm is an alternative approach.

‘Young’ showers are spread in time over hundreds of nanoseconds. They contain also a part
of EM component, which extends the signal waveforms in time. Nevertheless, the muonic
component of ‘young’ showers overtakes the EM one and gives an early bump. The rising edge
of the bump is softer than the ‘old’ showers, but this signal is also relatively quickly attenuated,
till the EM component starts to give its own contribution. The ANN approach focuses on the
early bump, to select traces potentially generated by neutrinos. Simulations of showers in
CORSIKA and a calculation of the response of the surface detectors in offline showed that for
neutrino showers (initiated either by νμ or ντ) for relatively big zenith angle (i.e. >70°) and low
altitude (<9 km) give relatively short signal waveforms and they can be analysed also by 16-
point pattern engines.

5. CORSIKA and offline simulations

5.1. Artificial neuron network: data preparation

The main motivation of an ANN implementation as a shower trigger is that up to now, and
the entire array did not register any neutrino-induced event. Our idea was to use the ANN
approach as a pattern recognition technique. The input data for the ANN are simulated traces
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of protons and muon neutrinos, which hit the atmosphere at high zenith angles—80°, 85° and
89°, respectively. The chosen energies of primary particles are 3 × 108, 109, 3 × 109 and 1010 GeV,
respectively. The distances from the place of the first interaction to the detector used for
simulations are dependent of the angle and the type of particle (Table 1). We decided not to
simulate protons that are very close to the detector, because the probability that the protons
will not interact to detector is very low. Additionally, traces produced by this kind of interac-
tions may also include the electromagnetic part of the shower. These traces would look
completely different than the rest and may significantly decrease the efficiency of the ANN.

500 1000 2000 3000 4000 5000 10,000

80° p YES YES YES

ν YES YES YES YES YES

85° p YES YES YES YES

ν YES YES YES YES YES YES

89° p YES YES YES YES YES

ν YES YES YES YES YES YES YES

All distances are in g/cm2. Distances are correlated with an angle.

Table 1. Distances from the place of the first interaction to detector for proton and muon neutrinos in dependence of
zenith angle.

We investigated 120 different categories of events (30 active categories from Table 1 × 4
energies). These categories are used as input by the CORSIKA simulation platform. The
CORSIKA program simulates the cosmic ray shower initiated by the specific particle. The result
of this simulation is the distribution of the position and energies of the particles on the level
of the detector. Simulations are relatively fast. The simulated cosmic ray showers are the input
for the offline package, which provides a response to the water Cherenkov detector and
generates the ADC traces (signal waveforms). These simulations are very time-consuming. As
a result, we obtained simulated traces from the photo-multipliers, as if they were triggered by
a standard T1 trigger. We have proven that a 16-point input is sufficient for the ANN pattern
recognition [17] (Figure 4). The next step was to find in the 16-point trace, which corresponds

Figure 4. Simulated signal waveforms for 1019 and 1018 eV for initial νμ and ντ, respectively, at 9350 m and 70° zenith
angle.
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to triggered events. To see the beginning of the event clearly, we decided that first two points
should be on the pedestal level. Afterwards, we subtracted the pedestal level from all used
data.

5.2. Training and testing steps

For a training procedure, we decided to use half of the data available for the testing procedure.
We arranged the data, to have proton and neutrino traces alternately. The proton traces were
treated as negative signals (‘0’ for the ANN), and the neutrino traces were treated as positive
ones (‘1’ for the ANN). This step allowed the ANN to be taught faster and to have fewer errors
while training. The testing procedure consisted of assigning a specific value to the trace. This
value depends on the coefficients of the trained ANN. If the value is greater than the threshold,
the trace is treated as a neutrino trace; otherwise, it is treated as a proton trace. The efficiency
of the neutrino recognition with a specific threshold level can be defined as the number of
neutrino traces recognized correctly divided by the number of all neutrino traces. The proton
mistakes level is defined as the number of proton traces treated as neutrino traces divided by
the number of all proton traces.

The testing procedure was divided into two stages. First, we wanted to find out if we could
use the data from the specific category to distinguish muon neutrinos and protons for all the
angles or all the energies. Simulated data contains only three different angles: 80°, 85° and 89°,
respectively, but we did not expect the zenith angle of the particle to be exactly like them. If
the ANN trained on the specific category with an angle of 85° can also distinguish neutrinos
and protons for 89° and 80° with acceptable efficiency, we assumed it could also distinguish
protons and neutrinos for a full angle range: 80°–89°. The same assumptions have been
established for energies. The ANN had been also trained by the data of the specific energy, and
it was then tested on the other values of the chosen parameter. The second step of the testing
procedure consisted of training the ANN by the randomly taken data from all categories.

5.3. Increasing the efficiency

The efficiency of the ANN strongly depends on the data used for training. The positive and
negative signals should be as different as possible in order to increase the distinction of proton
and neutrino traces. Our first results have shown that ANN does not work properly. There was
no separation between protons and neutrinos. When we looked at the data we used for teaching
the ANN, we found that some of the neutrino and proton traces looked very similar to each
other. Moreover, the simulated traces produced by neutrino showers with various distances
to the detector, but with the same energy and angle, and were diametrically different. We
observed the same effect in the other angles and energies (Figure 5) and in the traces produced
by protons. This effect is directly connected to the electromagnetic (EM) part of the shower. If
the distance to the detector is short, the EM part of the shower gives a second component in
the traces, in addition to the standard muonic one.
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Figure 5. Plots contain averaged muon neutrino signal waveforms (ADC traces) for various angles, energies and initial-
ization points. The exponents of the traces at distances 500 and 1000 g/cm2 are different than on the rest of distances.
This effect does not depend on the energy and slightly depend on the angle.

At high zenith angles, the proton showers should not have the EM component, because it
should disappear after 2000–3000 g/cm2. Old neutrino showers looked like old proton–
neutrino showers, so we decided to separate the data and focus on recognizing only the young
neutrino showers, where the EM component was still visible. We also decided to remove proton
showers with a visible EM component, because the traces that they generated looked similar
to traces generated by young neutrino showers.

Moreover, for these showers, the probability of occurrence at this angle was low. The data we
decided to keep were for all neutrino traces with distances 500 and 1000 g/cm2, and all proton
traces with two maximal distances for each angle.
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Figure 6 shows the average traces for data at 80 after the separation. Neutrino and proton traces
have completely different shapes, so it should be easier to recognize the neutrino traces when
ANN is learned and tested based on this data.

Figure 6. Plots show the differences between the traces produced by old proton showers (without markers) and young
neutrino showers (with markers). Traces can be recognized on a base of exponential attenuation factors especially for
relatively low angles (80°). Graphs show that for large zenith angles and very wide energy ranges, ‘old’ proton show-
ers are attenuated faster than ‘young’ neutrino showers.

Figure 7 shows the histogram of the average exponents of rejected and accepted proton and
neutrino categories. We can see that the exponents of the rejected neutrino categories corre-
spond with exponents of the accepted proton categories. This was probably the main reason
for the low distinction of protons and neutrinos by ANN. Additionally, the average exponents
of the accepted proton and neutrino categories are separated.

Figure 7. Histograms of exponents of rejected and accepted traces for protons and neutrinos. The accepted neutrino
traces exponents are separated from the accepted proton traces exponents.

The rejected neutrino traces look very similar to traces made by old proton showers. This may
cause problems with ANN training and may increase the level of the proton traces recognized
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as neutrino traces by the ANN. Nevertheless, the last graph shows that a proton–neutrino
pattern recognition seems to be possible. Training by patterns for only ‘old’ proton showers
and ‘young’ neutrino showers seems to be justified as protons start their interactions just in
the beginning of the atmosphere, while the probability of neutrino interactions high in the
atmosphere is negligible.

6. MATLAB analysis

Figure 8 shows the ANN efficiency versus angles and energies. If all data from simulation,
independently of the origin point (of old and young, and of both proton and neutrino events),
are taken for teaching, the network recognitions is poor. Proton background (spuriously
recognized) is relatively high, and the efficiency of the neutrino event recognition is also poor.
However, if in the teaching process we use dedicated young neutrino and old proton patterns
the recognition efficiency significantly increases. The ANN tested on non-separated traces has
problems distinguishing the proton and neutrinos on every level of the threshold. The
efficiency of a recognition of neutrino traces and the level of proton mistakes differ only slightly.
The ANN, tested on the separated traces, can recognize protons and neutrinos with acceptable
efficiency. The proton mistakes level is much lower than the recognition efficiency of neutrino
traces; moreover, the efficiency of finding neutrino traces is higher than in the previous case.

Figure 8. The graphs show the separation efficiency of the neutrino events from the proton background as a function of
the threshold for various angles and energies of the initial particle. The ‘standard’ graphs show the efficiency for a net-
work teaching on the basis of a wide range of initial points of the first interaction. The ‘dedicated’ graphs show the
efficiency when the network is trained by patterns corresponding to ‘young’ neutrino events and ‘old’ proton ones. A
higher level of the proton background (spuriously recognized) for lower angles (80°) comes with a higher probability
of the EM.
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Right graph on Figure 8 shows our choice for future tests. The efficiency of neutrino recognition
is independent of energy and on a relatively high level (0.5–0.6), while proton spuriously
recognized events are on a low level especially for low energies: 3 × 108–109 GeV. For higher
energies, signals are generally stronger, and there is a much higher probability of their
recognition by a standard threshold triggers.

Preliminary results show that more complicated networks do not improve a pattern recogni-
tion on a level that justified an increment of structure complication, resources occupancy, or,
finally, of much greater requirements for a budget. We did not notice that the structure from
Figure 9a was superior over Figure 9b. Moreover, the much more complicated networks,
24-16-1 and 36-24-1 showed minimal improvement in comparison with a much simpler
network, 12-8-1. The networks 24-16-1, and especially 36-24-1, require a huge amount of FPGA
resources (especially DSP blocks). The biggest chip 5CEA9F31I7 from the low-cost FPGA
family Cyclone® V contains 684 of 18 × 18 DSP embedded multipliers, while the biggest chip
5AGXB7 from the Arria® V family contains 2312 of 18 × 18 DSP blocks (the biggest chip
10AT115 from the Arria® 10 medium-cost FPGA family contains 3036 of 18 × 19 multipliers).
However, the prices of Arria FPGAs are unacceptable for a mass production of the front-end
boards (Figure 12).

Figure 9. An internal structure of an FPGA neuron network with tansig function scaling output neuron data between
consecutive layers. This right net contains more advanced last layer, which tries to separate patterns with higher effi-
ciency.

Independently of the FPGA prices, the crucial factor becomes power consumption. Mid-size
FPGAs (Arria® V or 10 as well as Stratix® IV or V families) are optimized for maximum
performance, while a power budget is not a priority. Nevertheless, our estimations show that
more complicated networks 24-16-1 or 36-24-1 minimally improve a neutrino–proton
separation; a significantly higher cost for the implementation these networks with a much
more expensive FPGA is not justified (Figure 11).

For training of the neural networks, we used real Auger ADC traces triggered either by the
TH-T1 or by the ToT trigger [14] (Figure 10). Due to relatively high thresholds, the TH-T1
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trigger trespasses relatively strong signals. We know that up to now the Pierre Auger Observ-
atory did not register any event potentially generated by neutrinos. The reason may be the
configuration of the standard trigger (threefold coincidence in a single time slot), which does
not take into account a de-synchronization of signals [18]. The probability of de-synchroniza-
tion increases for higher sampling frequencies. The Cherenkov light can simultaneously reach
all PMT only for specific conditions of the angle and the input position of the trespassing ultra-
relativistic particle due to a geometry of the surface detector (<8%).

Figure 10. The MATLAB neural network tool used for teaching according to Levenberg-Marquardt algorithm (left).
The right graph shows a convergence during training.

Figure 11. Efficiency of neutrino-proton separation for 24-16-1 and 36-24-1 neural networks.

Practically only twofold coincidences can give events of very inclined showers. A reflected
light reaches the third PMT with a delay ‘firing’ the PMT in later time slots and also too low
amplitude of signals for low energetic initial particles maybe the reason. We were teaching the
network to recognize patterns with decreased amplitudes. The database was artificially
extended by the real signal waveforms with reduced amplitudes by factors of 0.67, 0.5 and
0.25, respectively, keeping the same pedestals and shapes.
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Figure 12. The front-end board with Cyclone V E FPGA used for high-resolution tests in the Pierre Auger Engineering
Array.

7. FPGA implementation

Figure 9 shows an internal structure of an FPGA neuron network with tansig function scaling
output neuron data between consecutive layers. Each neuron (Figure 13) output (before a
connection to the next layer) has to be scaled by a neural transfer function to focus a response
on a most important data region. Typically, the transfer function is a hyperbolic tangent
sigmoid (tansig—Figure 14). The constant coefficients were implemented in the ROM (Figure
17). We selected dual-port memory (two addresses inputs and two independent data outputs
by the same content) to reduce a resource occupancy.

The fundamental algorithm for each neuron is as follows:
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We implemented 16,384-word dual-port ROM with 14-bit output in order to keep a sufficient
accuracy with a reasonable size of the embedded memory
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The ADC output is connected to 12-bit shift registers whose sequential outputs drive neuron
inputs. A teaching process of MATLAB generates a set of coefficients represented by ‘double’
variables. An implementation of floating point coefficients in the FPGA slows down signifi-
cantly a register performance and dramatically increases resource occupancy. Practically, the
accuracy in a fixed-point approach is absolutely sufficient. There is no need to calculate an
individual neuron response in a very high precision due to general uncertainties in this
estimation process.

At least two embedded DSP multipliers have to be used for a single multiplication of 12-bit
input data. If we select 32-bit data width, the maximal width of the coefficients is 20-bit.

Figure 14 shows shapes of tansig function for various parameterizations. For our training data,
the best scaling factor is sf = 1536, which corresponds to the range of (−5.33,…,+5.33).

Figure 13. Altera IP floating-point procedures. A multiplication of 64-bit variables requires at least five clock cycles, a
summation at least seven clock cycles, respectively.

A floating-point variables in the FPGA contain from sign bit (MSB), mantisa and exponent.
Double variables require 64-bit representations (52-bit mantisa and 11-bit exponent). Summa-
tion and multiplication require at least seven and five clock cycles latency, respectively (Figure
13).

Signed variables in the FPGA logic require two-component representation. Altera provides
fixed-point IP-core routine (ALTMULT_ADD) for four parallel multiplications and partial
results summation (Figure 15). In order to keep 32-bit output size, coefficients must be 18-bit
only (Figure 16).
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Figure 14. Tested parameterizations of tansig function for the best optimization.

Figure 15. Altera ALTMULT_ADD IP-core procedure for a neural implementation.

Artificial Neural Networks - Models and Applications156



Figure 14. Tested parameterizations of tansig function for the best optimization.

Figure 15. Altera ALTMULT_ADD IP-core procedure for a neural implementation.
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Figure 16. An internal structure of the 16-point FPGA neuron.

Figure 17. An implementation of the tansig function into ROM (above).
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Layer SFS SFL SFX SFB SHP SHN

1 2 131,072 8 524,288 – 6

2 4 32,768 8 32,768 14 1

3 2 32,768 2 32,768 13 1

Table 2. Scaling, suppression and shift factors.

Figure 18. A structure of connections in two last layers: eight 12-input neurons + 4 ROM blocks with tansig functions +
the last 8-input neuron (left graph).
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Table 2 shows all factors for scaling, suppressions and finally shifts of data. At first, coefficients
(coeff and bias) calculated by MATLAB are suppressed [by the factors SFS and SFX, respec-
tively, to get a range (−1.0,…+1.0)]. Next, they are scaled by factors SFL and SFB, respectively.

, , int ,k layer fixed po k layer
SFLcoeff coeff
SFS- = (3)

, , int ,k layer fixed po k layer
SFBbias bias
SFX- = (4)

The 32-bit signed output of neuron (starting from the second layer) is shifted right before a
summation with the bias due to very large values from the tansig transfer function (mostly
either ~−8192 or ~8191).
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Addresses for tansig function are additionally optimized to use the most sensitive function
response region. The highest bits from the neuron are neglected as irrelevant for a big argument
of the tansig transfer function. Addresses are cropped to the range 0,…,16,383 (Figure 18).

8. Simulations for the FPGA

A relatively old tool—the Quartus simulator was used for simulations as much faster than
currently recommended ModelSim. The structure of the neuron network has been imple-
mented into several FPGA families: Cyclone III, Stratix III and Cyclone V. A response of neural
network on trained patterns was verified for 16-point inputs with fixed coefficients calculated
in MATLAB.

Figure 19 show Quartus simulations of selected traces. Inclined showers correspond to posi-
tive markers, and vertical showers correspond to negative markers. A recognition of selected
patterns is on very high level. We simulated 160 events (totally 122,880 samples). One hun-
dred and sixty one patterns were recognized as positive markers: 160 inclined showers and
only a single false event. Among 160 vertical showers used as reference ones (with negative
markers), the network recognized 39 events faulty; however, 12 with high amplitudes,
which should be detected also by a standard trigger.
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Figure 19. Graphs show the output of 12-8-1 neural network for positive-marked inclined showers (upper graph) and
negative-marked vertical showers. Each graph shows 122,880 samples (768 samples/event). Outputs from the third
neural layer are scaled to a range (−1,…,+1).

9. Conclusion

We simulated several showers initialized by νμ and ντ using the CORSIKA package. Output
CORSIKA data (particles energies, momentum, coordinates, etc.) calculated for 1450 m a.s.l (a
level of the Pierre Auger Observatory) were used offline package for simulations of a surface
detector response, that is shape of ADC traces after a digitization of PMTs Cherenkov light-
induced signals. These ADC waveforms were the patterns for a training process of the neural
network. Analysis of results for Cyclone V E FPGA 5CEFA7F31I7 is very promising. It shows
that the ANN algorithm can recognize neutrino events that are at present neglected by the
standard Auger triggers.
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The recognition efficiency of the neutrino traces by the ANN algorithm strongly depends on
the differences between the data used for the ANN training. If we teach the ANN with the data
containing only traces produced by young neutrino and old proton cosmic air showers, we
can reach an acceptable level of recognition. Moreover, we can distinguish protons and
neutrinos, which means that the ANN works on a very promising level.
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Abstract

This chapter addresses the following question: What are the advantages of extending a
fuzzy expert system (FES) to an artificial neural network (ANN), within a computer‐
based speech therapy system (CBST)? We briefly describe the key concepts underlying
the principles  behind the FES and ANN and their  applications in  assisted speech
therapy. We explain the importance of an intelligent system in order to design an
appropriate model for real‐life situations. We present data from 1‐year application of
these concepts in the field of assisted speech therapy. Using an artificial intelligent
system for improving speech would allow designing a training program for pronunci‐
ation, which can be individualized based on specialty needs, previous experiences, and
the child's prior therapeutical progress. Neural networks add a great plus value when
dealing with data that do not normally match our previous designed pattern. Using an
integrated approach that combines FES and ANN allows our system to accomplish three
main objectives: (1) develop a personalized therapy program; (2) gradually replace some
human expert duties; (3) use “self‐learning” capabilities, a component traditionally
reserved for humans. The results demonstrate the viability of the hybrid approach in
the context of speech therapy that can be extended when designing similar applications.

Keywords: fuzzy expert system, artificial neural network, assisted speech therapy, ar‐
tificial intelligent system, hybrid expert system

1. Speech therapy: key concepts and facts

Dyslalia is a pronunciation deficiency manifested by an alteration of one or more phonemes
due to several causes such as: omissions, substitutions, distortions, and permanent motor
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and reproduction in any medium, provided the original work is properly cited.
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impairments. Dyslalia can be simple when it is related with only one sound (eventually in an
attenuated form). An extension of pronunciation–articulation disorder related with more
sounds and/or groups of syllables is called polymorphic dyslalia [1].

The existence of a dyslalia with defectological significance can be diagnosed after the age of
four. Until that, dyslalia is called physiological and it is caused by the insufficient development
of the speech‐articulator apparatus and the neurological systems implicated in the speech
process. This is the age that allows maximization of the therapeutic effects and offers a good
prognosis for improvement/correction. The later the therapy begins, the weaker the effect [2].

There are many causes for dyslalia: the imitation of persons with deficient pronunciation, lack
of speech stimulation, adults encouraging the preschool child to stabilize wrongful habits,
defects in teeth implantation, different anomalies of the speech‐articulator apparatus, cerebral
deficiencies, hearing loss, weak development of phonetic hearing. Also, in severe dyslalias,
heredity is considered an important factor in diagnosing and explaining this deficiency.

Impairment type Number of

subjects

Impairment

frequency (%)

Overall impairment

frequency (%)

Dyslalia 434 91.2 14.8

Dysarthria – – –

Rhinolalia 7 1.5 0.2

Reading‐writing difficulties – – –

Rhythm and

fluency difficulties

17 3.7 0.6

Language impairments Selective mutism 4 0.8 0.1

General development

delays

8 1.6 0.3

Voice impairments – – –

Language impairments in

association with:

Autism 4 0.8 0.1

Down syndrome 2 0.4 0.1

Intellectual deficiencies – – –

Deafness – – –

Total 476 100.0 16.2

Table 1. Speech and language impairments distribution (unpublished data from Suceava—Romania Regional Speech
Therapy Centre).

In dyslalia, the sounds are not equally affected. Thus, the sounds most affected are the ones
that appear later in the child's speech: vibrant—r (very important in Romanian language),
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affricates—c, g, t, hissing—s, z. In fact, the sounds mostly affected are the ones that require a
greater effort to synchronize the elements of the phono‐articulator apparatus (elements en‐
gaged in the emission of sounds: larynx, vocal cords, tongue, lips, teeth, and cheeks). Their
pronunciation involves a certain position of all these elements and a certain intensity of the
exhausted air jet [1].

Regarding the frequency of speech impediments and especially the frequency of dyslalia, the
statistics from the Suceava Romanian Regional Speech Therapy Centre (Table 1; Figure 1)
reveals the following aspects [2]: (i) Disorders that affect speech are more frequent that the
ones affecting the language; (ii) Dyslalia is the most frequent pronunciation disorder, with
sounds r and s most affected; (iii) the proportion of children with speech impediments:

• Decreases constantly until first grade;

• Suddenly decreases between first and second grade;

• Decreases slower and slower between second and fourth grade.

Figure 1. Evolution of speech impairments frequency across subjects’ age.

The characterization of the dyslalia dynamics is of great interest also, in regard to the age of
the subjects as depicted in Figure 1. Before age four no logopedic evaluation was conducted
for children since possible speaking problems might be due to insufficient maturation of the
phono‐articulatory organs and of the involved cortical areas.

After this age, children with speech impairments are integrated in the speech therapy pro‐
grams. The therapy determines the progressive decrease of the proportion of children with
speech problems in relation to their age. At the beginning of the school, the frequency of
children with speech disorders decreases suddenly, mainly because of the acquisition of
writing and reading skills. Moreover, the corrective effort from the teaching community is
highly emphasized. After this age, language disorders are present mainly in children with
organ related disorders—structural disorders of the central or peripheral organs of speech.

The main steps of speech therapy together with the place of fuzzy expert system in therapeutic
process are presented in Figure 2. Each therapy process contains a formative evaluation, which
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can be followed by the therapy within the family. After 3 months, the speech therapist can
finalize the therapy or can reevaluate it [3].

The expert system incorporates information generated from social, cognitive, and affective
examination, as well as from the homework reports and results’ trends [4]. This allows the
expert system to provide critical answers related to the length and frequency of the therapy
session as well as the type of exercise to be used and its content.

Figure 2. Speech therapy process and fuzzy expert system [3].

The therapy customization assumes a differentiated report related to the therapy stages. Thus,
for each subject, there are different weights for each stage within the program structure. The
therapy is generally a formative assessment because the speech therapists permanently
evaluate the evolution of the patient during the exercises. The therapy is continued in familial
environment during home training sessions. Thus, between the weekly sessions, family must
provide the child with the adequate environment to consolidate the skills initiated at the
specialty clinic.

A summative assessment is conducted every 3 months, and the child's evolution is analyzed
over a longer period of time. This is the time for the reconsideration of the therapy and,
eventually, for finalizing the therapeutic process.
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The expert system is designed to function as a true assistant of the speech therapist. It provides
suggestions based on several recordings from the integrated system. Moreover, depending on
the assessments performed by the speech therapist at each session and on the homework
solving, the human expert receives suggestions regarding the most appropriate exercises to
recommend [5].

It is necessary for the speech therapist to have the possibility to intervene in modifying the
knowledge database when the suggestion given by the expert system contradicts the speech
therapist decision. The system has to self‐notify the presence of a contradiction and to ask the
human expert to remove the conflict. This principle is useful for the therapeutic system (in
general) and for the expert system (in particular), especially in the case of the beginner speech
therapist (with less practical training experience). Even if the computer decisions cannot be
considered absolutely correct, they can contribute to the overall success of the therapy by
raising questions which require further clarifications by consulting a human expert.

2. Expert system validation

Since 2006 we have developed Logomon, the computer‐based speech therapy system (CBST)
for Romanian language. The modules of the integrated system are briefly presented in Figure 3
(modules 1,…,9). All administrative tasks are grouped in the Lab Monitor Application. The
expert system takes the information it needs from the database of this module. In the first
scenario, the child exercises in SLT's Lab using Lab Monitor Application.

Figure 3. Architecture of Logomon CBST.

From Fuzzy Expert System to Artificial Neural Network: Application to Assisted Speech Therapy
http://dx.doi.org/10.5772/63332

169



Another scenario involves the utilization of a dynamic 3D model, a module that indicates the
correct positioning of elements of phono‐articulator apparatus for each phoneme in Romanian
language (the model can translate and rotate; the transparency of each individual elements—
teeth, tongue, cheeks—can also be modified). Homework is mainly generated by the fuzzy
expert system that indicates the number, the duration, and the content of home exercises. These
exercises are played on a mobile device (Home Monitor), without SLT intervention [6]. The
relations between input and output variables are presented in Figure 4.

Figure 4. The relation between input and output variables.

The expert system is fed with information taken from three sources: socio‐psychological
parameters (Lab Monitor Application), tests scores (Lab Exercises), and homework scores
(Home Monitor). These numbers are grouped in nine input variables [3].

1. number of affected phonemes (in order to differentiate between simple and polymorphic
dyslalia);

2. average test score (indicates the intensity of impairment);

3. parents’ attitude regarding speech impairment (the parents’ attitude is a key factor in
therapy prognosis);

4. parents–child relation (offer important clues regarding the importance of home training
sessions);

5. relation between parents (describes the emotional quality of familial environment);

6. child's age (the therapeutical strategy largely vary with subject's age);
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6. child's age (the therapeutical strategy largely vary with subject's age);
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7. child's attention (this variable was taken into consideration due to increasing frequency
of ADHD—attention deficit disorders—among the children);

8. collateral diseases (AIDS, Down syndrome, intellectual disabilities, nutrition diseases);

9. psychological trauma (shows the child's emotional health).

The expert system outputs five numbers that configure the personalized therapy:

1. number of weekly sessions (how many times in a week the child should encounter SLT?);

2. number of homeworks (how many homework sessions should be?);

3. duration of a homework (how long a homework should last?);

4. collaboration with family (should SLT rely on child's family support?);

5. collaboration with physician (does SLT have to collaborate with a physician?).

One major limitation of such a system is the inability to express and/or mimic emotions such
as empathy and to recognize emotional states. To improve this, some studies used the human–
computer interaction (HCI) model in which trained individuals reflecting a particular emo‐
tional state are used. In our previous work, we explored the possibility of adapting and
integrating the classical techniques of emotion recognition in the assisted therapy for children
with speech problems [6].

The fuzzy expert system is based on forward chaining of over 200 rules written in fuzzy control
language (FCL). The expert system engine is coded in Java language and is integrated in our
speech therapy platform. In order to adjust and validate the inferential process, we used our
platform for more than 100 children from 2008 to 2015. The extension of our system using an
artificial neural network (ANN) is demanding especially because it is relative hard for a SLT
to change a fuzzy rule. Thus, in the case of a contradiction between human and artificial expert,
an ANN could facilitate the re‐training process [7, 8].

3. State of the art in fuzzy expert systems, artificial neural network and
medical application

Because of the emergence of interdisciplinary technologies during the past few years, the
interaction between doctors and engineers opened unprecedented opportunities, and the
medical specialists are employing computerized technologies to assist in diagnosis of, and
access to, related medical information.

3.1. Fuzzy expert systems for medical diagnosis

The rapid progress in computer technology plays a key role in the development of medical
diagnostic tools that call for the need of more advanced intelligent and knowledge‐based
systems [9]. This is important since medical diagnosis is characterized by a high degree of
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uncertainty that can be improved through the application of fuzzy techniques that provide
powerful decision support, expert systems knowledge, and enhanced reasoning capabilities
in the decision‐making process. Also, it provides a powerful framework for the combination
of evidence and deduction of consequences based on knowledge stored in the knowledge base
[9]. Therefore, fuzzy expert system (FES) can be used in applications for diagnosis, patient
monitoring and therapy, image analysis, differential diagnosis, pattern recognition, medical
data analysis [10–14].

The areas in which diversified applications are developed using fuzzy logic are fuzzy models
for illness, heart and cardiovascular disease diagnosis, neurological diseases, asthma, abdomi‐
nal pain, tropical diseases, medical analogy of consumption of drugs, diagnosis and treatment
of diabetes, syndrome differentiation, diagnosis of lung and liver diseases, monitoring and
control in intensive care units and operation rooms, diagnosis of chronic obstructive pulmo‐
nary diseases, diagnosis of cortical malformation, etc. The non‐disease areas of applications
are in X‐ray mammography, interpretation of mammographic and ultrasound images,
electrographic investigation of human body. Other areas for the applications of fuzzy logic are
prediction of aneurysm, fracture healing, etc.

Recent research studies have contributed to the development of diagnostic techniques,
quantification of medical expertise, knowledge technology transfer, identification of usage
patterns, and applications of FES in practice by the medical practitioners [15]. According to
[15], 21% of studies present the development of methodologies and models and 13% studies
contributed to the development of neuro‐fuzzy‐based expert systems [9]. These studies
contributed to the development of innovative diagnostic techniques, quantification of medical
expertise, and application of fuzzy expert systems and their implementation in practice.

The rationale behind the decision‐making process in medical diagnosis is a complex endeavor
that involves a certain degree of uncertainty and ambiguity. The computer‐assisted expert
system that incorporates the fuzzy model has been used to aid the physician in this process
[15]. As such, several computer‐assisted applications for patient's diagnosis and treatments as
well as web‐based FES have been recently developed and include ways of handling vagueness

Figure 5. Fuzzy expert system architecture.
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and complexity (Figure 5). Furthermore, disease‐focused intelligent medical systems are
rapidly emerging and are designed to handle more complex variables such as patient moni‐
toring, predictive values, as well as taking into account assessment and performance param‐
eters.

The architecture of a generic medical fuzzy expert system showing the flow of data through
the system is depicted in Figure 6 [9]. The knowledge base for developed medical FES contains
both static and dynamic information. There are qualitative and quantitative variables, which
are analyzed to arrive at a diagnostic conclusion. The fuzzy logic methodology involves
fuzzification, inference engine, and defuzzification as the significant steps [9].

Figure 6. The architecture of a generic medical fuzzy expert system.

The FES uses both quantitative and qualitative analyses of medical data and represents a useful
tool in achieving a high success rate in medical diagnosis. These computer‐based diagnostic
tools together with the knowledge base have proved very useful in early diagnosis of pathol‐
ogies. On the other hand, the web‐based applications and interfaces allow health practitioners
to readily share their knowledge and know‐how expertise [15].

3.2. Application of artificial neural network in medicine

An artificial neural network (ANN) is a computational model that attempts to account for the
parallel nature of the human brain [16]. Analyzing approaches in different scientific proce‐
dures, the ability to learn, tolerance to data noises and capability to model incomplete data
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have made them unique, and once the network has been trained, new data in similar domain
may be analyzed and predicted [17].

In the medical field, ANN applications that have been developed use the “classification”
principle‐based on which patients are assigned to a particular set of classes based on specific
biological measures. For example, ANN applications have been used in the diagnosis of
diabetes (using blood and urine analyses) [18, 19], tuberculosis [20, 21], leukemia [22],
cardiovascular conditions [23] (such as heart murmurs [24]), liver [25], and pulmonary [26]
diagnosis, as well as in urological dysfunctions [27], including expert pre‐diagnosis system for
automatic evaluation of possible symptoms from the uroflow results [28], and ANN applica‐
tions have also been used in image analyses [29, 30] and in analysis of complicated effusion
samples [31]. Finally, a neural networks‐based automatic medical diagnosis system has been
developed for eight different diseases [32], and in detection and diagnosis of micro‐calcifica‐
tions in digital format mammograms [33].

An ANN is a network of highly interconnecting processing elements (inspired by biological
nervous systems—neurons) operating in parallel. The connections between elements largely
determine the network function. A subgroup of processing element is a layer in the network.
Each neuron in a layer is connected with each neuron in the next layer through a weighted
connection [34]. The structure of a neural network is formed by layers. The first layer is the
input layer, and the last layer is the output layer, and between them, there may be additional
layer(s) of units (hidden layers) [16]. The number of neurons in a layer and the number of layers
depend strongly on the complexity of the system studied [34]. Therefore, the optimal network
architecture must be determined. The general scheme of a typical three‐layered ANN archi‐
tecture is illustrated in Figure 7.

Figure 7. General structure of a neural network (modify after [34]).

Based on the way they learn, all artificial neural networks are divided into two learning
categories: supervised and unsupervised. In unsupervised networks, the training procedure

Artificial Neural Networks - Models and Applications174



have made them unique, and once the network has been trained, new data in similar domain
may be analyzed and predicted [17].

In the medical field, ANN applications that have been developed use the “classification”
principle‐based on which patients are assigned to a particular set of classes based on specific
biological measures. For example, ANN applications have been used in the diagnosis of
diabetes (using blood and urine analyses) [18, 19], tuberculosis [20, 21], leukemia [22],
cardiovascular conditions [23] (such as heart murmurs [24]), liver [25], and pulmonary [26]
diagnosis, as well as in urological dysfunctions [27], including expert pre‐diagnosis system for
automatic evaluation of possible symptoms from the uroflow results [28], and ANN applica‐
tions have also been used in image analyses [29, 30] and in analysis of complicated effusion
samples [31]. Finally, a neural networks‐based automatic medical diagnosis system has been
developed for eight different diseases [32], and in detection and diagnosis of micro‐calcifica‐
tions in digital format mammograms [33].

An ANN is a network of highly interconnecting processing elements (inspired by biological
nervous systems—neurons) operating in parallel. The connections between elements largely
determine the network function. A subgroup of processing element is a layer in the network.
Each neuron in a layer is connected with each neuron in the next layer through a weighted
connection [34]. The structure of a neural network is formed by layers. The first layer is the
input layer, and the last layer is the output layer, and between them, there may be additional
layer(s) of units (hidden layers) [16]. The number of neurons in a layer and the number of layers
depend strongly on the complexity of the system studied [34]. Therefore, the optimal network
architecture must be determined. The general scheme of a typical three‐layered ANN archi‐
tecture is illustrated in Figure 7.

Figure 7. General structure of a neural network (modify after [34]).

Based on the way they learn, all artificial neural networks are divided into two learning
categories: supervised and unsupervised. In unsupervised networks, the training procedure
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uses inputs only, and there are no known answers and the network must develop its own
representation of the input stimuli by calculating the acceptable connection weights. On the
other hand, training in the supervised learning involves both input and output patterns so
that the neural weights can be changed to generate the desired output [16]. In medical ap‐
plications, supervised networks may be used as alternatives to conventional response sur‐
face methodology (RSM) while the unsupervised ones can serve as alternatives to principal
component analysis (PCA) in order to map multidimensional data sets onto two‐dimen‐
sional spaces [17].

Models from ANNs are multifactorial models which can predict, classify, approximate
function, or recognize patterns. Theoretically, ANNs are able to estimate any function and if
used properly, it can be used effectively in medicine. Outputs from artificial neural networks
models are generated from nonlinear combinations of input variables, and such models can
be effectively employed to deal with experimental data routinely observed in medicine and to
find rules governing a process from raw input data [17].

3.3. Neuro‐fuzzy models

The development of intelligent systems in the health field is based on the complementarity
between technologies that use the combination between fuzzy logic and neural networks
models. This generated the neuro‐fuzzy model that takes advantage of both the capability in
modeling uncertain data by the artificial neural networks as well as of handling qualitative
knowledge. The neuro‐fuzzy approaches have been used in several studies to build more
intelligent decision‐making systems as additional supportive tools for the physicians.

For example, an application of artificial neural networks in typical disease diagnosis using a
fuzzy approach was investigated in [35]. The real procedure of medical diagnosis which
usually is employed by physicians was analyzed and converted to a machine implementable
format. Similarly, in [16], a series of experiments were described and advantages of using a
fuzzy approach were discussed.

Neuro‐fuzzy (NF) computing becomes a popular framework for solving complex problems
based on knowledge expressed in linguistic rules for building a FES, and on data, for learning
from a simulation (training) using ANNs. For building a FES, we have to specify the fuzzy
sets, fuzzy operators, and the knowledge base. For constructing an ANN for an application,
the user needs to specify the architecture and the learning algorithm. Both approaches have
their own drawbacks, and they should be combined when building an integrated system [36].
This way we can take advantage of the learning capabilities, which is essential for the fuzzy
expert system as well as the linguistic base knowledge that constitutes part of the artificial
neural networks.

Therefore, FES and ANNs have attracted the attention of many scientists, and also a huge
number of successful applications of them are found in the literature, reporting problems
solving in various areas of sciences, such as computing, engineering, medicine, nanotechnol‐
ogy, environmental science, and business.

From Fuzzy Expert System to Artificial Neural Network: Application to Assisted Speech Therapy
http://dx.doi.org/10.5772/63332

175



4. Fuzzy expert system vs. neuro‐fuzzy expert system

The fuzzy expert systems (FES) and artificial neuronal network (ANN) have common origin
and purposes. They may carry out the logical reasoning, simulating artificial intelligence, by
combining the quantitative and qualitative information and meta‐knowledge. The advantages
and disadvantages of these techniques are complementary. The main disadvantages of FES as
regards to the acquisition of knowledge can be easily eliminated using ANN, due to its ability
to learn from typical examples. On the other hand, limitations of the ANN related to the man–
machine interface and capabilities to explain the reasoning leading to a certain conclusion can
be theoretically compensated using the FES [10].

The FES has the following properties: (i) sequential processing; (ii) the acquisition process of
knowledge takes place outside the expert system; (iii) the logic is a deducible; (iv) the knowl‐
edge is presented in the explicit form; (v) the system is based on the knowledge acquired from
human experts; (vi) the rules in the chain of the rules have their origin in the logic of mathe‐
matics and fuzzy logic; and (vi) the extraction of the conclusion (implementation of the
diagnosis) is done by correlating the exact amount of information and data [10].

The ANN, due to the fact that is designed according to the model of the human brain, has the
ability: (i) to learn; (ii) has the advantage of a parallel processing; (iii) the acquisition of
knowledge takes place inside the system; (iv) the logic is inductively; (v) the knowledge is the
default and gained through examples; (vi), uses parameters and statistical methods for
classification and data clustering; and (vii) the extraction of the learned conclusion is made by
the approximate correlation of data.

A significant difference between the two instruments lies in the basis of reasoning. As such,
the FES is based on the algorithms and deductions, while the ANN is based on the inference
from simulating the learning mechanisms of specialized neurons. Based on the techniques
used for processing information, the ESF uses sequential methods of processing while ANN
has parallel processing, that is, each neuron performs functions in parallel with other neurons
in the network.

In the case of learning processes and reasoning in the FES, learning is made outside of the
system and the knowledge is obtained from outside and then coded in the knowledge base.
For ANN, the knowledge accumulates in the form of weights of the connections between the
nodes (neurons), the learning process being internal, permanently adjusting the knowledge
deployments as new examples. The FES is based on the method of deductive reasoning, unlike
the ANN, in which the methods are inductive. The algorithms of inference of the FES are based
on the logic of the sequence “forward or backward” method in the knowledge base, and the
ANN uses the approximate correlation of the components of the knowledge base in order to
return to items previously learned. The ANN may acquire knowledge through direct learning
from examples, which constitutes an advantage, on the basis of algorithms of specific learning
with the possibility to learn from the incomplete or partially incorrect or contradictory input
data, having the capacity to generalize. On the other hand, the FES has the advantage of a
friendly user interface with the possibility of incorporating elements of heuristic reasoning.
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One of the basic paradigms of artificial intelligence, with applications in the medical field, is
to find a tool which will make it possible to the representation of a large number of meta‐
knowledge, consistent, and usable for the user. There are two approaches of a computerized
system based on knowledge: the first approach is one in which the field of knowledge
representation is based on the rules. This involves the necessity that human experts extract
rules from its experience and express them in the form of explicit and comprehensible rules.
The system has the explanatory and perfect skills and performs well with incomplete infor‐
mation and inaccurate (fuzzy) using the factors of trust, but the construction of such base of
knowledge is a difficult task.

The second approach has a connection with the development of the theory of the neuronal
networks which is automatically created by a learning algorithm from a variety of inference
examples. The knowledge representation is based on the weights of the connections between
the neurons. Due to the default representation of knowledge, there is no possibility to identify
a problem at the level of the singular neuron. In this case, both working with incomplete
information and the provision of evidence of the inference are limited.

From these considerations, combining fuzzy expert system with the neuronal networks will
lay the base for the construction of a practical application for strategic decisions, (especially
medical decisions), both tactical and operative, and will integrate the advantages of both types
of information systems (neuro‐fuzzy system expert) [10].

The main challenge in the integration of these two approaches is the creation of the knowledge
base when they are only available the rules and examples of data. Additional problems may
also occur when incomplete and unreliable information is encoded in neuronal networks.
Therefore, it is necessary that the “learning” network is able to work with incomplete infor‐
mation during training in place of using of special heuristic inference.

The inputs and outputs values in a neuro‐fuzzy expert system are coded using the analog
statuses of neuronal values. An inference is a pair consisting of a vector of the typical inputs
and the vector to the corresponding outputs obtained by the expert answers to these questions.
Knowledge base of the neuro‐fuzzy expert system is a multilayer neuronal network.

To solve the problems raised by the irrelevant values and unknown inputs and outputs of the
expert system, the range neuron should be created. The value of the irrelevant or even
unknown input and output of the expert system is coded using the full range of status of
neurons.

The expert systems become effective and efficient not only to resolve problems of high
complexity but also for the decision‐making problems, which contain a high degree of
uncertainty.

More recently, a hybrid system that includes fuzzy logic, neuronal networks, and genetic
algorithms has been developed this required inclusion of additional techniques. The funda‐
mental concept of these hybrid systems consists in complementarity and addresses the
weaknesses of each other. The fuzzy expert systems are appropriate especially in the case of
systems that have a mathematical model that is difficult to comprehend, for example, when
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the values of the inputs and of the parameters are vague, imprecise, and/or incomplete. It
facilitates the decision‐making process in the case of use of the estimated values for the
inaccurate information (if the decision is not correct, it may be modified later when more
information becomes available). Fuzzy models allow us to represent the descriptive phrases/
qualitative, which are subsequently incorporated in the symbolist instructions (fuzzy rules).

Neuro‐fuzzy expert system has the following two functions: (i) the generalization of the
information derived from the training data processed by the entries with fuzzy learning and
incorporation of knowledge in the form of a neuronal fuzzy network; (ii) the extraction of fuzzy
rules “IF THEN” using the importance of linguistic relative diversity of each sentence in a
prerequisite (“IF” part), using for this purpose a trained neuro‐fuzzy network. The neural
network is similar to the standard multilayer network, having in addition, direct connections
between the input and output nodes. Activation of nodes is muted, taking the values of +1, 0,
or ‐1.

To work with various fuzzifications in the input and the output layers of the system, it is
necessary to interpret the subjective input data. The neuronal network may include groups of
fuzzy neurons and groups of non‐fuzzy neurons involving shades and accurate data. The
output layer will contain only fuzzy neurons.

By incorporating the factor of certainty (groups of non‐fuzzy neurons) extends the traditional
logic in two ways: (i) sets are labeled from the point of view of quality, and the elements in the
same set are assigned different degrees of membership; (ii) any action which results from a
valid premise will be executed with a weighting in order to reflect the degree of certainty.

The entrances of the system “suffer” three transformations to become exits: (i) fuzzification of
the inputs which consists in the calculation of a value to represent the factor of membership
in the qualitative groups; (ii) assessing the rules that consists in the elaboration of a set of rules
type “IF THEN”; (iii) outputs defuzzification in order to describe the significance of vague
actions through the functions of membership and to resolve the conflicts between competing
actions which may trigger [10].

The factor of membership is determined by the function of membership, which is defined on
the basis of intuition or experience. To implement a fuzzy system, the following data structure
is required: (i) the entries in the system; (ii) the functions of the input membership; (iii) the
previous values; (iv) a basis for the rules; (v) the weightings of the rules; (vi) the functions of
the output membership; and (vii) exits from the system.

The use of fuzzy logic leads to finding answers and allows drawing conclusions on the basis
of vague, ambiguous, and inaccurate information. Fuzzy techniques adopt reasoning similar
to human, which allows a quick construction of technical, feasible, and robust systems. The
application of the fuzzy methods involves less space of memory and a lot of calculation power
in comparison with conventional methods. This fact leads to less expensive systems. The fuzzy
expert systems should be constructed in such manner that the overall results are able to change
in a way that is smooth and continuous, regardless of the type of inputs. Artificial neural
networks have the advantage that it can be included in the fuzzy expert systems, becoming
parts of it in the framework of a hybrid neuro‐fuzzy expert system. In the majority of the
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medical applications, the ANN can be used for quick identification of the conditions on the
base of FES rules, laying down quickly the rules that should be applied for a given set of
conditions.

In conclusion, the specialized literature presents several models of integrating the FES with
ANN in the hybrid systems (neuro‐fuzzy expert systems), with medical applications. In the
strategy of the human expert (programmer), the ANN is driven to solve a problem, and then,
the responses are analyzed in order to extract a set of rules. The integrated systems jointly use
the data structures and knowledge. Communication between the two components is carried
out with both the symbolic and heuristic information, FES characteristics, and with their ANN
structures, that is, using weighted coefficients.

5. Results and discussion

To solve issues related to classification, the objects should be grouped in clusters (in our case
patients with speech disorders) based on their characteristics (feature vectors) in predefined
classes. Classifiers are then built from examples of correct classification by a supervised
learning process as opposed to unsupervised learning, where categories are not predefined.

For the classifier design, based on examples of classification, we grouped data into three main
sets:

• Training data: data used in the training process to determine the classifier parameters (for
example, in the case of the artificial neural networks, it is necessary to determine the weights
of connections between neurons) (1).

• Validation data: data used to analyze the behavior during learning algorithm; the perform‐
ance on the validation set during the learning process is used to decide whether or not
learning should be continued (2);

• Test data: used to analyze the performance of a trained classifier (3).

ANN is composed of simple elements operating in parallel. Knowledge of ANN is stored as
numerical values that are associated with connections between artificial neurons, named
weights. ANN training means changing and/or adjusting the weights values. Most often,
ANNs are trained so that for a given input, output returns a value as close to the desired output,
a process exemplified in Figures 8 and 9.

For this process, a set of training data (pairs input–output) is required. To solve classification
problems, we used the tools package offered by Matlab R2014, specifically the neural network
Matlab package (nntool—the tool for classification).

We used a feedforward architecture characterized in [37]:

• An entry level that has as many units (attributes) as the input data;
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• One or more hidden levels (the higher the number of hidden units, the greater the com‐
plexity of the model extracted from the network; however, this can be a disadvantage leading
to decreased network capacity to generalization process);

• A level of output with as many units as the number of classes.

There are two main types of artificial neural networks:

• feedforward—with progressive propagation; the main characteristic of these networks is
that a neuron receives signals only from neurons located in previous layer(s).

• feedback—with recurrent or regressive propagation; these networks are characterized by
the fact that there is a feedback signal from the higher‐order neurons, for those on lower
layers or even for themselves.

We used a feedforward network for illustration (see Figure 9).

To design a simple Matlab neural network for classification (“Pattern Recognition”), we used
“nprtool” tool that opens a graphical interface that allows specification of a network element
characterized by the following:

• a level of hidden units (the number of hidden units can be chosen by the user);

• the logistics activation (logsig) for both hidden units and for the output [(output values
ranged between (0.1)];

• the backpropagation training algorithm based on minimization method of conjugate
gradient.

The artificial neural networks have the ability to learn, but the concrete way by which the
process is accomplished is dictated by the algorithm used for training. A network is considered
trained when application of an input vector leads to a desired output, or very close to it.
Training consists of sequential application of various input vectors and adjusting the weights
of the network in relation to a predetermined procedure. During this time, weights of the
connections gradually converge toward certain values so that each input vector produces the
desired output vector. Supervised learning involves the use of an input–output vector pair
desired [37].

After input setting, the output is calculated by comparing the calculated output with the
desired output, and then, the difference is used to change the weights in order to minimize the
error to an acceptable level. In a backpropagation neural network, learning algorithm has two
stages: the training patterns for the input layer and the updated error propagation. The ANN
propagates the training pattern layer by layer, until it generates the output pattern. If this is
different from the desired target pattern, it will calculate the error and will be backpropagated
from the output to the input. The weights are updated simultaneously with error propagation
[37].
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Figure 8. Create network using Matlab.

Figure 9. Neural network design and training.
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The proposed artificial neural network uses supervised learning with two rules (see Figures 10
and 11):

1. extraction of a subset from the training dataset for testing dataset (not used during setting
network parameters)

2. maintaining an acceptable level of error in the training set to avoid over learning (learning
insignificant details of examples used for training).

The training process is controlled by means of a technique of cross‐validation, which consists
in splitting the initial random set of data in three subsets: for actual training (training); for
controlling learning (validation); and for classifier's quality assurance (testing).

We used backpropagation as the correction algorithm (regressive propagation of errors) with
propagation of the error signal in the opposite direction compared to how the signal travels
during the working phase.

Figure 10. Network training parameters and best validation performance.

Artificial Neural Networks - Models and Applications182



The proposed artificial neural network uses supervised learning with two rules (see Figures 10
and 11):

1. extraction of a subset from the training dataset for testing dataset (not used during setting
network parameters)

2. maintaining an acceptable level of error in the training set to avoid over learning (learning
insignificant details of examples used for training).

The training process is controlled by means of a technique of cross‐validation, which consists
in splitting the initial random set of data in three subsets: for actual training (training); for
controlling learning (validation); and for classifier's quality assurance (testing).

We used backpropagation as the correction algorithm (regressive propagation of errors) with
propagation of the error signal in the opposite direction compared to how the signal travels
during the working phase.

Figure 10. Network training parameters and best validation performance.

Artificial Neural Networks - Models and Applications182

Figure 11. Neural network after 1000 iterations.

The training of the neural network lasted 1000 epochs. Matlab interface allows us to display
graphs of the statistical parameters, for example, the mean square error, regression (the
correlation between desired values and targets, and the values ??obtained; The R correlation
close to 1 means a value very close?? to the desired one). Mean values ??for MSE and R are
available after training in the main window, under Results section. Identification of classes of
subjects from the dataset tested with ANN was achieved with high specificity and accuracy
(see Figures 12 and 13).

One of the trivial artificial neural network is SOM—self‐organizing map, which is mainly used
for data clustering and feature mapping (see Figures 14 and 15).

The quality of a classifier in terms of correct identification of a class is measured using
information from confusion matrix that contains the following:

• The number of data correctly classified as belonging to the class interests: true positive cases
(TP);
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• The number of data correctly classified as not belonging to the class of interest: true negative
cases (TN);

• The number of data misclassified as belonging to the class of interest: false positive cases
(FP);

• The number of data misclassified as not belonging to the class of interest: false negative
cases (FN).

Figure 12. Neural network training regression.

Figure 13. Train the network to fit the input and targets.
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Figure 14. Neural network training self‐organizing map (SOM) Input Planes, epoch 200.

Figure 15. Neural network training Self‐Organizing Map (SOM) Weight Positions, epoch 200.

Based on these values, we calculated the following measures:

Sensitivity = TP/(TP + FN)

Specificity = TN/(TN + FP)
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Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F = 2 × precision × recall/(precision + recall)

Figure 16. A multilayer perceptron network (MLP) best performance.

The results show that the best performance was obtained using a multilayer perceptron
network (MLP). MLP is a feedforward neural network comprising one or more hidden layers.
Like any neural network, a network with backpropagation is characterized by the connections
between neurons (forming the network architecture), activation of functions used by neurons
and learning algorithm that specifies the procedure used to adjust the weights. Usually, a
backpropagation neural network is a multilayer network comprising three or four layers fully
connected [37].

Each neuron computes its output similar to perceptron. Then, input value is sent to the
activation function. Unlike perceptron, in a backpropagation neural networks, the neurons
have sigmoid‐type activation functions. Derivative function is very easy to calculate and ensure
the output range [0, 1]. Each layer of a MLP neural network performs a specific function. The
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input layer accepts input signals and computational rarely contains neurons that do not
process input patterns. Output layer supports output signals (stimuli coming from the hidden
layer) and lays it out on the network. Detects hidden layer neurons traits and their weight is
hidden patterns of input traits. These characteristics are then used to determine the output
layer to the output pattern.

The backpropagation algorithm is a supervised learning algorithm named generalized delta
algorithm. This algorithm is based on minimizing the difference between the desired output
and actual output by descending gradient method. The gradient tells us how the function
varies in different directions. The idea of the algorithm is finding the minimum error function
in relation to relative weights of connections. The error is given by the difference between the
desired output and the actual output of the network. The most common error function is the
mean square error (Figures 16 and 17).

RMSE is the mean square error and is used to characterize the scattering of the data in relation
to the average. In our case, in all three stages of ANN testing, we obtained RMSE values below
0.5, with 100% identification of classes as shown in Figure 18.

Figure 17. Performance metrics. A multilayer perceptron network (MLP) best classification results (100% for training
data vs. 100% for validation data vs. 100% for testing data).
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Figure 18. Performance metrics.

In medical applications, it is required to use a neuro‐fuzzy hybrid system that can be fitted
with a neural network that presents many advantages such as: flexibility, speed, adaptability.
The structure of a hybrid system is represented in Figure 19:

Figure 19. Hybrid neuro‐fuzzy expert system [37].

The human expert knowledge is translated as symbolic (1) and is used for ANN initialization
(2). The network is trained on a real inputs and outputs system (3). The knowledge obtained
using ANN (4) is processed in a fuzzy manner for the determination of fuzzy rule, which are
finally communicated to the human expert (5) [37]. These hybrid systems are suitable for the
acquisition of knowledge and learning, and they can achieve inclusive process using weighting
of the fuzzy neural network connections. Using a simple learning algorithm, such as backpro‐
pagation, neuro‐fuzzy hybrid systems can identify fuzzy rules and then learn the associated
functions of inferences. In summary, the hybrid system can also learn linguistic rules (fuzzy)
as well as optimizing existing rules.

During generation and validation of expert system rules, we observed a positive correlation
between speech disorders and eating disorders (obesity), so that a higher Body Max Index
(BMI) exacerbated learning and speech difficulties in children. This is consistent with previous
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work demonstrating that risk of being obese in young adulthood was increased if the child
had learning difficulties, scholastic proficiency below the class average, received special
education, or had scholarly difficulties in childhood [38]. Therefore, our future studies will
address the causal relationship between overweight, obesity, and various functions related to
speech disorders and learning abilities during a longer period of time.

6. Conclusions

Each decision technique has specific advantages and drawbacks when it is used in medical
field. Thus, a FES is able to make inferences with approximate data and, more importantly, it
can track the decision‐making process (i.e., the chain of activated rules). However, the rules
must be written and, eventually, modified by human expert only. On the other hand, the
artificial neural networks are the best choice when dealing with a large quantity of data and
wish to obtain the related pattern but unable to provide useful information on how a specific
conclusion is reached.

Due to the complementarity of expert system and artificial neural networks, several attempts
to integrate these techniques have emerged. For example, combining qualitative modeling
(based on fuzzy if‐then rules) with quantitative modelling (used when all we have is chunks
of already classified data) represents a major step forward. The hybrid neuro‐fuzzy expert
system is able to both learn by examples and organize knowledge and meta‐knowledge in the
form of fuzzy rules. For this type of system, we first fuel neural network with symbolic
information and then adapt the raw model using individual examples. At the end of the
process, we are able to extract symbolic information from trained neural network.

To the best of our knowledge, there are few, if any, studies based on the utilization of above‐
mentioned hybrid techniques in speech and language therapy of children. In this chapter, we
have proposed and validated this original approach using Logomon, the first CBST for
Romanian language. We have demonstrated that it is possible to use the equivalent relation
between a fuzzy expert system and an artificial neural network in order to capitalize on the
advantages of both techniques. The results are very encouraging and provide strong impetus
to continue these studies by extending rules database and by optimizing integration between
the two parts of inferential system.
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Abstract

The  present  chapter  addresses  the  problems  of  gas  turbine  gas  path  diagnostics
solved using artificial neural networks. As a very complex and expensive mechanical
system, a gas turbine should be effectively monitored and diagnosed. Being universal
and  powerful  approximation  and  classification  techniques,  neural  networks  have
become  widespread  in  gas  turbine  health  monitoring  over  the  past  few  years.
Applications  of  such  networks  as  a  multilayer  perceptron,  radial  basis  network,
probabilistic neural network, and support vector network were reported. However,
there is a lack of manuals that summarize neural network applications for gas turbine
diagnosis.

A monitoring system comprises many elements, and many factors influence the final
diagnostic  accuracy.  The  present  chapter  generalizes  our  investigations  that  are
devoted  to  the  enhancement  of  this  system by  choosing  the  best  option  for  each
element.  In  these  investigations,  a  diagnostic  process  is  simulated on the  basis  of
neural networks, and we focus on reaching the highest accuracy by choosing the best
network and its optimal tuning to the issue to solve. Thus, helping with enhancement
of a whole monitoring system, neural networks themselves are objects of investigation
and optimization. As a result of the conducted investigations, the chapter provides
the  recommendations  on  choosing  and  tailoring  the  network  for  a  particular
diagnostic task.

Keywords: gas turbines, gas path diagnosis, fault classification, pattern recognition,
artificial neural networks

1. Introduction

As complex and expensive mechanical systems, gas turbine engines benefit a lot from the
application of advanced diagnostic technologies, and the use of monitoring systems has
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become a standard practice. To perform effective analysis, there are different diagnostic
approaches that cover all gas turbine subsystems. The diagnostic algorithms based on
measured gas path variables are considered as principal and pretty complex. These variables
(air and gas pressures and temperatures, rotation speeds, fuel consumption, etc.) carry
valuable information about an engine’s health condition and allow to detect and identify
different engine abrupt faults and deterioration mechanisms (for instance, foreign object
damage, fouling, erosion, tip ribs, and seal wear). Malfunctions of measurement and control
systems can be diagnosed as well. Thousands of technical publications devoting to the gas path
diagnosis can be found. They can be arranged according to input information and mathemat‐
ical models applied.

Although advancement of instrumentation and computer science has enabled extensive field
data collection, the data with gas turbine faults are still infrequent because real faults rarely
appear. Some intensive and practically permanent deterioration mechanisms, for example,
compressor fouling, allow their describing on the basis of real data. However, to describe the
variety of all possible faults, mathematical models are widely used. These models and the
diagnostic methods that use them fall into two main categories: physics‐based and data‐driven.

A thermodynamic engine model is a representative physics‐based model. This nonlinear
model is based on thermodynamic relations between gas path variables. It also employs mass,
energy, and momentum conservation laws. Such a sophisticated model has been used in gas
turbine diagnostics since the work of Saravanamuttoo H.I.H. (see, e.g., [1]). The model allows
to simulate the gas path variables for an engine baseline (healthy engine performance) and for
different faults embedded into the model through special internal coefficients called fault
parameters. Applying system identification methods to the thermodynamic model, an inverse
problem is solved: Unknown fault parameters are estimated using measured gas path
variables. During the identification, such parameters are found that minimize the difference
between the model variables and the measured ones. Besides the better model accuracy, the
simplification of the diagnosing process is reached because the fault parameter estimates
contain information of current engine health. The diagnostic algorithms based on the model
identification constitute one of two main approaches in gas turbine diagnostics (see, for
instance, [1–4]).

The second approach uses a pattern recognition theory. Since model inaccuracy and measure‐
ment errors impede a correct diagnosis, gas path fault localization can be characterized as a
challenging recognition issue. Numerous applications of recognition tools in gas path diag‐
nostics are known, for instance, genetic algorithms [5], correspondence and discrimination
analysis [6], k‐nearest neighbor [7], and Bayesian approach [8]. However, the most widespread
techniques are artificial neural networks (ANNs). The ANNs applications are not limited by
the fault recognition, they are also applied or can be applied at other diagnostic stages: feature
extraction, fault detection, and fault prediction.

At the feature extraction stage, differences (a.k.a. deviations) between actual gas path meas‐
urements and an engine baseline are determined because they are by far better indicators of
engine health than the measurements themselves are. To build the necessary baseline model,
the multilayer perceptron (MLP), also called a back‐propagation network, is usually em‐
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ployed [9, 10]. To filter noise, an auto‐associative configuration of the perceptron is sometimes
applied to the measurements [11].

At the fault localization stage, fault classes can be presented by sets of the deviations (patterns)
induced by the corresponding faults. Such a pattern‐based classification allows to apply the
ANNs as recognition techniques, and multiple applications of the MLP (see, e.g., [4, 5]) as well
as the radial basis network (RBN) [5], the probabilistic neural network (PNN) [12, 13], and
support vector machines (SVM) a.k.a. Support vector network (SVN) [7, 12] were reported. In
spite of many publications on gas turbine fault recognition, comparative studies, which allow
to choose the best technique [4, 5, 7, 12], are still insufficient. They do not cover all of the used
techniques and often provide differing recommendations.

The fault detection stage can also be presented as a pattern recognition problem with two
classes to recognize: a class of healthy engines and a class of faulty engines. If the classification
for the fault localization stage is available, it does not seem a challenge to use the patterns of
this classification for building the fault detection classification. However, the studies applying
recognition techniques, in particular the ANNs, for gas turbine fault detection are absent so
far. Instead, the detection problem is solved by tolerance monitoring [14, 15].

The fault prediction stage is less investigated than the previous stages, and only few ANNs
applications are known. Among them, it is worth to mention book [16] analyzing the ways to
predict gas turbine faults and study [17], comparing a recurrent neural network and a
nonlinear auto‐regressive neural network. We can see that in total for all stages, the perceptron
is by far the highest demand network. It is used for filtering the measurements, approximating
the engine baseline, and recognizing the faults.

Thus, a brief observation of the neural networks applied for gas turbine diagnosis has revealed
that the multiple known cases of their use need better generalization and recommendations to
choose the best network. The areas of promising ANNs application were also found. In the
present chapter, we generalize our investigations aimed at the optimization of a total diagnostic
process through the enhancement of each of its elements. On the one hand, the neural networks
help with process realization being its critical elements. On the other hand, the networks
themselves are objects of analysis: For known applications, they are compared to choose the
best network, and one new application is proposed. During the investigations, the rules of
proper network usage have also been established.

The rest of the chapter describes these investigations and is structured as follows: description
of the networks used (Section 2), network‐based diagnostic approach (Section 3), diagnostic
process optimization (Section 4), feature extraction stage optimization (Section 5), fault
detection stage optimization (Section 6), and fault localization stage optimization (Section 7).

2. Artificial neural networks

The four networks mentioned in the introduction have been chosen for investigations: MLP,
RBN, PNN, and SVN. The PNN is a realization of the Parzon Windows and has the important

Neural Networks for Gas Turbine Diagnosis
http://dx.doi.org/10.5772/63107

197



property of probabilistic outputs, that is, the gas turbine faults are recognized on the basis of
their confidence probabilities. These probabilities are computed through numerical estimates
of probability density of fault patterns. For the purpose of comparison, a similar recognition
tool, the K‐nearest neighbor (K‐NN) method has been involved into the investigations.
Foundations of the chosen techniques can be found in many books on classification theory, for
example, in [18, 19, 20]. The next subsections include only a brief description of techniques
required to better understand the present chapter.

2.1. Multilayer perceptron

The perceptron can solve either approximation or classification issues. The scheme shown in
Figure 1 illustrates structure and operation of the MLP [18, 19]. We can see that the perceptron
presents a feed‐forward neural network in which no feedback is observed, and all signals go
only from the input to the output.

Figure 1. Multilayer perceptron.

To determine a hidden layer input vector, the product of a weight matrix W1 and a network

input vector (pattern)   is summed with a bias vector 1. A hidden layer transfer function f1

transforms this vector in an output vector 1. A network output 2 is computed similarly

considering the vector  1  as an input. In this way, perceptron operation can be expressed by = 2 = 2 21(1 + 1) + 2 . When we apply the MLP to classify patterns, elements of

the vector 2 show how close the pattern   is to the corresponding classes. The nearest class

is chosen as a class to which the pattern belongs, and such classifying can be considered as
deterministic.
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To find unknown matrixes 1 and 2 and vectors 1 and 2, a back‐propagation learning

algorithm distributes a network output error on these unknown quantities. In every learning
iteration (epoch), they vary in the direction of error reduction. The iterations continue unless
the minimum error has been reached. This algorithm requires differentiable transfer functions,
and a sigmoid type is commonly used.

2.2. Radial basis network

Figure 2 illustrates operation of an RBN. It includes two layers: a hidden radial basis layer and
an output linear layer. Operation of radial basis neurons is different from the perceptron
neurons operation [18, 19, 20]. The neuron's input n is formed as the Euclidean norm  of a
difference between a pattern vector   and a weight vector  , multiplied by a scalar b (bias). In
this way,  =  −  . Using this input, a radial basis transfer function determines an output = exp( − 2). Where there is no distance between the vectors, the function has the maxi‐
mum value a=1, and the function decreases when the distance increases. The bias b allows
changing the neuron sensitivity. The output layer transforms the radial basis output  1 to a

network output  2. Operation of this layer does not differ from the operation of a perceptron

layer with a linear transfer function. The radial basis layer usually needs more neurons than
a comparable perceptron hidden layer because the radial basis neuron covers a smaller region
compared with the sigmoid neuron.

Figure 2. Radial basis network.

2.3. Probabilistic neural networks

The PNN is a specific variation of radial basis network [18]. It is used to solve classification
problems. Figure 3 presents the scheme of this network and helps to understand its operation.
Like the RBN, the probabilistic neural network has two layers.
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Figure 3. Probabilistic neural network.

The hidden layer is formed and operates just like the same layer of the RBN. It is built from
learning patterns united in a matrix 1. Elements of an output vector  1 indicate how close

the input pattern is to the learning patterns.

The output or classification layer differs from the RBN output layer. Each class has its output
neuron that sums the radial basis outputs  corresponding to the class patterns. To this end,

a weight matrix W2 formed by 0‐ and 1‐elements is employed. A vector 2 1 contains

probabilities of all classes. A transfer function f2 finally chooses the class with the largest
probability. In this way, the probabilistic network classifies input patterns using a probabilistic
measure that is more realistic than the perceptron classifying. The PNN is the most used
realization of a Parzen Windows (PW) [18], a nonparametric method that estimates probability

density in a given point (pattern)   using the nearby learning patterns.

2.4. k-Nearest neighbors

Like the Parzen Windows (PNNs), the k‐nearest neighbors is a nonparametric technique [18].
For a given class and point (pattern)  , it counts the number k of class patterns in a nearby
region of volume V and estimates the necessary probability density in accordance with a simple
formula

k nρ
V

= (1)

where n stands for a total number of class patterns.

To ensure the convergence of the estimate ρ, we need to satisfy the following requirements
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n n n
 V ;  k ;  k n . 
®¥ ®¥ ®¥
= = ¥ = (2)

To this end, we increase n and can let V be proportional to 1 .

In contrast to the Parzen Window method that fixes the volume V and looks for the number
k, the K‐nearest neighbor method specifies k and seeks for the sphere of volume V. Since the
PW uses constant window size, it may not capture patterns when the actual density is low. The
density estimate will be equal to zero, and the classification decision confidence will be
underestimated. A solution to this problem is to use the window that depends on learning
data. Using this principle, the K‐NN increases a spherical window individually for each
class until k patterns (nearest neighbors) fall into the window. A sphere radius will change
class by class. The greater the radius is, the lower probability density estimate will be according
to Eq. (1).

2.5. Support vector network

Any hyperplane can be written in the space  as the set of points   satisfying:

0
T

p  w b+ =
ur ur

(3)

where   is a vector perpendicular to the hyperplane and b is the bias. Let us present learning

data of two classes as pattern vectors   ∈ ,  = 1,  and their corresponding labels ∈ ( − 1, 1), indicating the class to which the pattern   belongs.

If the learning data are linearly separable, two parallel hyperplanes without points between

them can be built to divide the data. The hyperplanes can be given by   +  = 1 and  +  = − 1. The margin is defined to be the distance between them and is equal to 2/ 
(Figure 4). Intuitively, it measures how good the separation between the two classes is. The
points divided in this manner satisfy the following constraint:

y ( ) 1
T

i iw  p b+ ³
ur ur

(4)
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Figure 4. SVN: hyperplanes and separation margin.

The objective of the SVN is to find the hyperplanes that produce the maximal margin or
minimum vector   [19, 20]. In this way, SVN needs to solve the following primal optimization
problem:

1min
2

T
w w 
ur ur

(5)

subject to (  + ) ≥ 1, for  = 1,…,
Introducing the Karush‐Kuhn‐Tucker (KKT) multipliers  ≥ 0, objective function (5) can be

transformed to:

, 1

1min max (y ( ) 1)
2

NT T
i i iw b i

w w w  p b
a

a
-

- + -å
ur ur ur ur

(6)

As can be seen, expression (6) is a function of  , b, and α. This function can be transformed
into the dual form:

1 1 1

1min
2

N N NT
i j i j ii j

i j i
L y y p  p

a
a a a

= = =

= -å å å
ur ur

(7)
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subject to α ≥ 0 and ∑i=1N αiyi = 0 for i = 1,…, N
It can be also expressed as:

1min 1
2

T
TL Q

a
a a a
® ® ®

= - (8)

where Q is the matrix of quadratic coefficients. This expression is minimized now only as a
function of  , and the solution is found by Quadratic Programming.

In SVM classification problems, a complete separation is not always possible, and a flexible
margin is suggested in reference [21] that allows misclassification errors while tries to maxi‐
mize the distance between the nearest fully separable points. The other way to split not
separable classes is to use nonlinear functions as proposed in reference [22]. Among them,
radial basis functions are recommended [23].

SVMs were originally intended for binary models; however, they can now address multi‐class
problems using the One‐Versus‐All and One‐Versus‐One strategies.

A gas turbine diagnostic process using the techniques above described is simulated according
to the following approach.

3. Neural networks-based diagnostic approach

The approach described corresponds to the diagnostic stages of feature extraction and fault
localization and embraces the steps of fault simulation, feature extraction, fault classification
formation, making a recognition decision, and recognition accuracy estimation.

3.1. Fault simulation

Within the scope of this chapter, faults of engine components (compressor, turbine, combustor,
etc.) are simulated by means of a nonlinear gas turbine thermodynamic model

Y( U, )
® ® ®

Q (9)

The model determines monitored variables Y  as a function of steady‐state operating conditionsU  and engine health parameters Θ = Θ0 + ΔΘ . Each component is presented in the model by
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its performance map. Nominal values Θ0 correspond to a healthy engine, whereas fault

parameters ΔΘ  imitate fault influence by shifting the component maps.

3.2. Feature extraction

Although gas turbine monitored variables are affected by engine deterioration, the influence
of the operating conditions is much more significant. To extract diagnostic information from
raw measured data, a deviation (fault feature) is computed for each monitored variable as a
difference between the actual and baseline values. With the thermodynamic model, the
deviations Zi i=1,m induced by the fault parameters are calculated for all m monitored variables
according to the following expression

Zi = Yi U,Θ0 + ΔΘ − Y0i U,Θ0Y0i U,Θ0 + εi /ai (10)

A random error εi makes the deviation more realistic. A parameter ai normalizes the deviation

errors, resulting that they will be localized within the interval [−1, 1] for all monitored variables.
Such normalization simplifies fault class description.

Deviations of the monitored variables united in an (m×1) deviation vector Z  (feature vector)

form a diagnostic space. Every vector Z  presents a point in this space and is a pattern to be
recognized.

3.3. Fault classification formation

Numerous gas turbine faults are divided into a limited number q of classes 1, 2, ..., . In the

present chapter, each class corresponds to varying severity faults of one engine component.
The class is described by component’s fault parameters ΔΘj. Two types of fault classes are

considered. The variation of one fault parameter results in a single fault class, while inde‐
pendent variation of two parameters of one gas turbine component allows to form a class of
multiple faults.

To form one class, many patterns are computed by expression (10). The required parametersΔΘj and εi are randomly generated using the uniform and Gaussian distributions correspond‐

ingly. To ensure high computational precision, each class is typically composed from 1000
patterns. A learning set Z1 uniting patterns of all classes presents a whole pattern‐based fault
classification. Figure 5 illustrates such a classification by presenting four single fault classes in
the diagnostic space of three deviations.
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Figure 5. Pattern-based fault classification.

3.4. Making a fault recognition decision

In addition to the given (observed) pattern Z  and the constructed fault classification Z1, a
classification technique (one of the chosen networks) is an integral part of a whole diagnostic
process. To apply and test the classification techniques, a validation set Z2 is also created in
the same way as set Z1. The difference between the sets consists in other random numbers that
are generated within the same distributions.

3.5. Recognition accuracy estimation

It is of practical interest to know recognition accuracy averaged for each fault class and a whole
engine. To this end, the classification technique is consequently applied to the patterns of set
Z2 producing diagnoses dl. Since true fault classes Dj are also known, probabilities of correct

diagnosis (true positive rates) P(d /j Dj  can be calculated for all classes resulting in a probability

vector P . A mean number P__ of these probabilities characterizes accuracy of engine diagnosis

by the applied technique. In this chapter, the probability P__ is employed as a criterion to compare
the techniques described in Section 2.

4. Optimization of the neural networks-based diagnostic process

The structure and efficiency of a diagnostic algorithm depend on many factors and the options
that can be chosen for each factor. The classification of these factors and options is given in
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Figure 6 , where the factors are shown in the first line. On the basis of accumulated knowledge
and experience, every research center (even a single researcher) chooses an appropriate option
for each factor and develops its own diagnostic algorithm. To be optimal, this algorithm should
take into account all peculiarities of a given engine, its application, and other diagnostic
conditions. Thus, it is not likely that the algorithm be optimal for other engines and applica‐
tions. As a result, every monitoring system needs an appropriate diagnostic algorithm.

Figure 6. Factors that influence structure and efficiency of gas path diagnostic algorithms.

Thus, comparing complete diagnostic algorithms does not seem to be useful. Instead, com‐
paring options for each above factor and choosing the best option are proposed. When options
of one factor are compared, the other factors (comparison conditions) are fixed forming a
comparison case. To draw sound conclusions about the best option, the comparison should be
repeated for many comparison cases. To form these cases, each comparison condition varies
independently according to the theory of the design of experiments. Since every new condition
drastically increases the volume of comparative calculations, the most significant conditions
are considered first.

To perform the comparative calculations, a test procedure based on the above‐described
approach has been developed in Matlab (MathWorks, Inc.). For each compared option, the
procedure executes numerous cycles of gas turbine fault diagnosis by the chosen technique
and finally computes a diagnosis reliability indicator, which is used as a comparison criterion.

Three gas turbine engines (Engine 1, Engine 2, and Engine 3) of different construction and
application have been chosen as test cases. Engine 1 and Engine 2 are free turbine power plants.
Engine 1 is a natural gas compressor driver; it is presented in the investigations by its ther‐
modynamic model and field data recorded. Engine 2 is intended for electricity production and
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is given by field data. Engine 3 is a three‐spool turbofan for a transport aircraft; its thermody‐
namic model is used. The field data called hourly snapshots present filtered and averaged
steady‐state values recorded every hour during about one year of operation of Engine 1 and
Engine 2. Since the data include periods of compressor fouling and points of washing, they
are very suitable for testing diagnostic techniques.

Using the network‐based approach described in Section 3 and the information about the test
case engines, many investigations have been conducted to improve the diagnostic process at
the stages of feature extraction, fault detection, and fault localization. The results achieved for
the feature extraction stage are described in the next section.

5. Feature extraction stage optimization

As stated in Section 3, the deviations are useful diagnostic features. Although the thermody‐
namic model can be used as a baseline model for computing the deviations, it is too complex
for real monitoring systems and has intrinsic inaccuracy. As mentioned in the introduction, to
build a simple and fast data‐driven baseline model, only neural networks, in particular the
MLP, are applied. On the other hand, in the previous studies we successfully used a polynomial
type baseline model. It was therefore decided [24] to verify whether the application of such a
powerful approximator as the MLP instead of polynomials yields higher adequacy of the
baseline model and better quality of the corresponding deviations.

Given a measured value * and data‐driven baseline model  0( ), the deviation is written as
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For one monitored variable, a complete second‐order polynomial function of four arguments
(operating conditions) is written as
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For all m monitored variables and measurements at n operating points, equation (12) is
transformed to a linear system =𝀵𝀵𝀵𝀵 with matrixes Y (n×m) and V (n×k) formed from these
data, where k=15 is number of coefficients. To enhance coefficient estimates (matrix A), great
volume of input data (n>>k) is involved and the least‐squares method is applied.

As to the perceptron, its typical input is formed by four operating conditions, and the output
consists of seven monitored variables. Hidden layer size determines a network’s capability to
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approximate complex functions and varies in calculations. As a result of MLP tuning, we chose
12 nodes at this layer. Thus, the perceptron structure is written as 4×12×7. Since the MLP has
tan‐sigmoid transfer functions, and the output varies within the interval (−1, 1), all monitored
quantities are normalized.

Many cases of comparison on the simulated and real data of Engines 1 and 2 were analyzed.
The MLP was sometimes more accurate at the learning step. At the validation step, the
deviations computed with the MLP had a little worse accuracy for Engine 1. For Engine 2, the
best MLP validation results are illustrated in Figure 7 . As can be seen here, both polynomial
deviations dTtp and network deviations dTtn reflect the fouling and washing effects equally
well. However, in many other cases the polynomials outperformed. Why does the network
approximate well a learning set and frequently fail on a validation set? The answer seems to
be evident because of an overlearning (overfitting) effect. Due to a greater flexibility, the
network begins to follow data peculiarities induced by measurement errors in the learning set
and describes worse a gas turbine baseline performance for the validation set.

Figure 7. EGT deviations computed on the Engine 2 real data validation set (dTtn—network‐based deviation; dTtp—
polynomial‐based deviation).

Although the MLP as a powerful approximation technique promised better gas turbine
performance description, the results of the comparison have been somewhat surprising. No
manifestations of network superiority were detected. When comparing these techniques, it is
also necessary to take into consideration that an MLP learning procedure is more complex
because it is numerical in contrast to an analytical solution for polynomials. Thus, a polynomial
baseline model can be successfully used in real monitoring systems along with neural
networks. At least, it seems to be true for simple cycle gas turbines with gradually changed
performance, like the turbines considered in this chapter.

6. Fault detection stage optimization

As mentioned in the Introduction, the fault detection is actually based on tolerances (thresh‐
olds). However, it seems reasonable to present it as a pattern recognition problem like we do
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at the fault recognition stage. Classification 1, 2, ...,  created for the purpose of fault

localization and presented in Figure 5 corresponds to a hypothetical fleet of engines with
different faults of variable severity. To form the classification for fault detection, we can
reasonably accept that the engine fleet and the distributions of faults are the same. Paper [25]
explains how to use patterns of the existing classification 1, 2, ...,  for two new classes of

healthy and faulty engines. The boundary between these classes corresponds to maximal error
of the normalized deviations and is determined as a sphere of radius R = 1. The patterns, for
which a vector of true deviations (without errors) is situated inside the sphere, form the healthy
engine class; the others create the faulty engine class. It is clear that the patterns (deviation
vectors with noise) of these two classes are partly intersected, resulting in α‐ and β‐errors
during the detection. Figure 8 illustrates the new classification; the intersection is clearly seen.
Two variations of the new classification based on single and multiple original classes have been
prepared.

Figure 8. Patterns‐based classification for monitoring.

Since new patterns‐based classification (learning and testing sets) is ready, we can use any
recognition technique to perform fault detection, and the MLP has been selected once more.
It conserved sigmoid transfer functions and the hidden layer size of 12. Given that a threshold‐
based approach, which classifies pattern vectors according to their length, is traditionally used
in fault detection, the algorithm with a distance measure (r‐criterion) was also developed and
compared with the MLP. Since the consequences of α‐ and β‐errors are quite different (α‐error

is always considered as more dangerous), reduced losses  =  +  were introduced to
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quantify monitoring effectiveness, where  and  are probabilities of α‐ and β‐errors,  and

 denote the corresponding losses, and 
are equal to 10.

Figure 9 shows the plots of the reduced losses versus the radius r. For the MLP the change of
r was simulated by the corresponding change of the boundary radius R during pattern
separation in the learning set. It can be seen that the introduction of an additional threshold
r, which is different from the boundary, reduces monitoring errors for both techniques. The
best results correspond to the minimums of the curves. By comparing them, we can conclude
that the network (MLP) provides better results for single classes, and the techniques are equal
for multiple classes. In general for all comparison cases, the MLP slightly outperforms the r‐
criterion‐based technique. Thus, the perceptron can be successfully applied for real gas turbine
fault detection.

Figure 9. Reduced losses due to monitoring errors versus the threshold radius r.

7. Fault localization stage optimization

To draw sound conclusions about the ANN applicability for gas turbine fault localization, the
comparison of the chosen networks was repeated for many comparison cases formed by
independent variation of the main influencing factors: engines, operating modes, simulated
or real information, and class types. In this way not only the best network is chosen but also
the influence of these factors on diagnosis results is determined helping with the optimization
of a total diagnostic process. For the purpose of correct comparison, the networks were tailored
to a concrete task to solve.
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7.1. Neural network tuning

We started to use ANNs applications and their tuning with the MLP [26]. The numbers of
monitored variables and fault classes unambiguously determine the size of input and output
layers of this network. As to the hidden layer, the number of 12 nodes was estimated as optimal

using the probability P__ as a criterion. To choose a proper back‐propagation algorithm, 12
variations were compared by accuracy and execution time. The resilient back‐propagation
(“rp”‐algorithm) provided the best results and has been chosen. It was also found that 200
batch mode training epochs are sufficient for good learning; however, a learning stop by an
Early Stopping Option may be useful as well.

Figure 10 illustrates other example of the tuning. Averaged probabilities computed for the
PNN are plotted here against spread b, unique PNN tuning parameter. To determine this

probability that has high precision of about ±0.001, calculations of P__ were repeated 100 times
for each spread value, each time with a different seed (quantity that determines a consequence
of random numbers), and an average value was computed. Such computations to find the best
value b were repeated for two operating modes of Engine 1 and for two fault class types. It can
be seen in the figure that the highest values of probability 𝀵𝀵𝀵𝀵 does not depend on operating

mode. These values are b=0.35 for the single fault type and b=0.40 for the multiple one.

Figure 10. Probabilities versus spread parameter.

For all networks, the value 1000 simulated patterns per fault class has been selected as tradeoff

between the required computer resources and the accuracy of the probabilities P__ and 𝀵𝀵𝀵𝀵.

It is worth mentioning that the networks tuning is very time consuming. A tuning time can
occupy up to 80% of a total investigation time, leaving 20% for the calculations related to final
learning and validation of the networks.

7.2. Neural network comparison

The comparison of three tuned networks: MLP, RBN, and PNN, was firstly performed in
reference [27], then the SVN was also evaluated. The variations of comparison conditions
embraced independent changes of two engines, two operating modes, and two classification
variations. The resulting probabilities 𝀵𝀵𝀵𝀵 are given in Table 1. We can see that all networks

are practically equal in accuracy for all comparison cases.
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Paper [28] provides some additional results extending the comparison on the K‐NN technique.
The data given in Table 2 confirm the conclusion about equal performances, now for five
different techniques.

Class type ANN Engine 1 Engine 3

Mode 1 Mode 2 Mode 1 Mode 2

Single MLP

RBN

PNN

SVN

0.8184

0.8186

0.8134

0.8190

0.8059

0.8058

0.8004

0.8064

0.7338

0.7349

0.7287

‐

0.7470

0.7485

0.7456

‐

Multiple MLP

RBN

PNN

SVN

0.8765

0.8783

0.8739

0.8770

0.8686

0.8701

0.8653

0.8698

0.7749

0.7787

0.7730

‐

0.7596

0.7643

0.7617

‐

Table 1. Results of the network comparison (probabilities computed for Engine 1 and Engine 3).

Technique Class type

Single Multiple

PNN

K‐NN

MLP

0.8134

0.8154

0.8193

0.8739

0.8735

0.8765

Table 2. Additional results of the technique comparison (probabilities for Engine 1).

The PNN and K‐NN have probabilistic output, and every pattern recognition decision is
accompanied with a confidence probability. This is an important advantage for gas turbine
diagnosticians and maintenance staff. It can be taken into account for choosing the best

technique when mean diagnosis reliability P__ is equal for all techniques considered. The PNN
and K‐NN are nonparametric techniques that estimate a probability density for each fault class
by counting the patterns that fall into a given volume (window). To accurately estimate the
probability density in a multidimensional diagnostic space, the number 1000 of available
patterns can be insufficient. To assess possible imprecision of the density and confidence
probability estimation by the PNN and K‐NN techniques, a more precise analytical density
estimation (ADE) technique has been proposed and developed [28]. It analytically determines
the density and is employed as a reference to assess imprecision of the PNN and K‐NN. To
verify the newly developed technique, it was firstly compared with the others by the criterion𝀵𝀵𝀵𝀵. The results were reasonably good: the performances of all the techniques remained very

close, but the ADE had the highest probability with the increment of 0.366–0.771 relatively the
others.
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The results of comparison by the estimated confidence probability are illustrated in Figure
11 , when the PNN, K‐NN, and MLP errors are plotted for 100 patterns. One can see that the
bias and scatter for the K‐NN estimates are by far greater. As to the MLP outputs, these non‐
probabilistic quantities look by far more precise than the K‐NN probability estimates and seem
to have the same precision level as the PW‐PNN estimates.

Figure 11. Errors of probability estimation by PW‐PNN, K‐NN, and MPL techniques (Engine 1, first 100 patterns of the
first single fault class).

Table 3 presents the mean estimations errors for the case of the single fault classification. The
table data confirm the above conclusion on the compared techniques: The bias and standard
deviation of the K‐NN errors are by far greater. The table also shows that on average the MLP
outputs are even more exact than the PNN probabilities. It is one more argument to apply the
perceptron in real gas turbine monitoring systems.

Bias σ

PNN K‐NN MLP PW‐PNN K‐NN MLP 

‐0.0444 ‐0.3293 ‐0.0419  0.0845 0.2020 0.0791

Table 3. Mean errors of confidence probability estimation (Engine 1, single fault classification).

7.3. Fault classification extension

In the investigations previously described, only two rigid classifications were maintained: one
formed by single fault classes and the other constituted from multiple fault classes created by
two fault parameters. However, the classification can vary a lot in practice even for the same
engine, and it is difficult to predict what classification variation will be finally used in a real
monitoring system. To verify and additionally compare the networks for different classification
variations, the test procedure was modified for easily creating any new fault classification,
more complex and more realistic than the classifications previously analyzed.
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Twelve classification variations have been prepared and three networks: MLP, RBN, and PNN,
were examined in reference [29]. These classifications have from 4 to 18 gas path and sensor
fault classes, 1 to 4 fault parameters to form each class, positive and negative fault parameter
changes. All the networks operated successfully for all fault classifications. Table 4 shows the
resulting averaged probabilities of correct diagnosis. Analyzing them, one can state that the
differences between the networks within the same classification remain not great (except
variation 6), about 0.015 (1.5%), while the difference between the variations can reach the value
0.10. Thus, these results reaffirm once more the conclusion drawn before that many recognition
techniques may yield the same gas turbine diagnosis accuracy.

Variation MLP RBN PNN

1 0.8172 0.8169 0.8099

2 0.8732 0.8759 0.8720

3 0.8091 0.8072 0.8037

4 0.8490 0.8524 0.8474

5 0.8033 0.8080 0.8036

6 0.6805 0.7319 0.7316

7 0.7362 0.7616 0.7567

8 0.7828 0.7965 0.7910

9 0.9279 0.9280 0.9260

10 0.7909 0.8017 0.7930

11 0.8075 0.7867 0.7775

12 0.8209 0.8184 0.8076

Table 4. Technique comparison for new classification variations (probabilities 𝀵𝀵𝀵𝀵, for Engine 1).

7.4. Real data-based classification

Gas path mathematical models are widely used in building fault classification required for
diagnostics because faults rarely occur during field operation. In that case, model errors are
transmitted to the model‐based classification. Paper [30] looks at the possibility of creating a
mixed fault classification that incorporates both model‐based and data‐driven fault classes.
Such a classification will combine a profound common diagnosis with a higher diagnostic
accuracy for the data‐driven classes. Engine 1 has been chosen as a test case. Its real data with
two periods of compressor fouling were used to form a data‐driven class of the fouling. Figure
12 illustrates simulated (without errors) and real data.
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Figure 12. Simulated and real compressor fouling deviations (Engine 1: M—simulated deviations, F1 and F2—real de‐
viations for the first and second fouling periods).

Different variations of the classification were considered and compared using the MLP. In spite
of irregular distribution of real patterns, the MLP normally operated at the learning and
validation steps. We also found that the perceptron trained on simulated data has 30%
recognition errors when applied to real compressor fouling data. However, the use of mixed
learning data allows to reduce these errors up to 3%. It was shown as well how to form a
representative real fault class, which ensures minimal recognition errors.

Paper [31] presents another way to enhance gas turbine fault classification using real infor‐
mation. Diagnostic algorithms widely use theoretical random number distributions to
simulate measurement errors. Such simulation differs from real diagnosis because the
diagnostic algorithms work with the deviations, which have other error components that differ
from simulated errors by amplitude and distribution. As a result, simulation‐based investi‐
gations might result in too optimistic conclusions on gas turbine diagnosis reliability. To make
error presentation more realistic, it was proposed in reference [31] to extract an error compo‐
nent from real deviations and to integrate it in fault description.

Using simulated and real data of Engine 1, six alternative variations of deviation error were
integrated in the fault classification. Diagnosis was performed by the MLP, and the diagnosis
reliability was estimated for each variation. Despite irregular real error distribution, the MLP
successfully operated for all the variations. Experiments with error representation variations
have shown what can happen when the classification formed with accurate simulated
deviations is applied to classify less accurate real deviations. In that case, the diagnosis
accuracy can fall from  ≈ 92% to  ≈ 54%, but this low diagnostic accuracy can be considerably
elevated by including real errors into the description of fault classes.

The fault classifications with integrated real errors were used in reference [32] to compare three
networks: MLP, RBN, and PNN, one more time. All networks operated well and they differed
in accuracy indicators 𝀵𝀵𝀵𝀵 by less than 1%, thus confirming again the conclusion about equality

of recognition techniques.
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7.5. Different operating conditions

Many known studies show that grouping the data collected at different engine operating
modes for making a single diagnosis (multipoint diagnosis) yields higher diagnostic accuracy
than the accuracy provided by traditional one‐point methods. But it is of a practical interest to
know how significant the accuracy increment is and how it can be explained. The diagnosis of
engines at dynamic modes poses the similar questions. To make one diagnosis, this technique
combines data from successive measurement sections of a transient operation mode and in
this regard looks like multipoint diagnosis.

Paper [33] analyzes the influence of the operating conditions on the diagnostic accuracy by
comparing the one‐point, multipoint, and transient options. The MLP is used as a pattern
recognition technique. In spite of significant increase of the input dimensionality, the percep‐
tron operated well for all options.

The calculations have revealed that the process of network training has peculiarities for
multipoint diagnosis. They are illustrated in Figure 13 , which shows the plots of the perceptron
error versus training epochs for the cases of one‐point and multipoint diagnosis. As can be
seen, the curves of the error function for the training and validation processes almost coincide
for the one‐point option, they slow down along with training epochs, and a total epoch number
300 is relatively large. These are indications of no over‐training effect. The behavior of the
perceptron applied for the multipoint diagnosis is quite different. We can see that the validation
curve falls behind the training curve after the 30th epoch, this gap rapidly increases, and the
training process stops earlier (108 epochs) because of the over‐training phenomenon. We can
conclude that the Early Stopping Option is more required here. The differences indicated above
can be explained by the ratio of input data volume to the unknown perceptron parameter
number. For both cases, the volume of the training set is equal to 7000 patterns, but the numbers
of unknown quantities significantly differ: 144 for the first case and 1540 for the second.
Consequently, in the case of multipoint diagnosis, the trained network is much more flexible
and the over‐training becomes possible. An increase of the reference set volume can improve
the training process; however, this increase is presently limited by the computation time.

Figure 13. Training process (Engine 1, left plot—one‐point diagnosis, right plot—multipoint diagnosis).
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The results of the option comparison (probabilities ) are grouped in Table 5. One can see that
a total growth of diagnosis accuracy due to switching to the multipoint diagnosis and data
joining from different steady states is significant: The diagnosis errors decrease by two to five
times. The diagnosis at transients causes further accuracy growth, but it is not great. It has been
found that this positive effect of the data joining is mainly explained by averaging the input
data and smoothing the random measurement errors.

Option Single fault classification Multiple fault classification

One‐point 0.7316 0.7351

Multipoint 0.8915 0.9444

Transient 0.9032 0.9561

Table 5. Comparison of the one‐point, multipoint, and transient options (Engine 1).

8. Conclusions

A monitoring system comprises many elements, and many factors influence the final diag‐
nostic accuracy. The present chapter has generalized our investigations aimed to enhance this
system by choosing the best option for each element. In every investigation, a diagnostic
process was simulated mainly on the basis of neural networks, and we focused on reaching
the highest accuracy by choosing the best network and its optimal tuning to the issue to solve.
As can be seen, all the examined techniques (MLP, RBN, PNN, SVN, and K‐NN) use a pattern‐
based classification. Such a classification can be formed from complex classes in which faults
are simulated by the nonlinear thermodynamic model. Moreover, this classification allows its
description by real fault displays that completely exclude a negative effect of model inaccuracy.
Thus, being objects of investigation and optimization, neural networks help with enhancement
of a whole monitoring system. As a result of the conducted investigations, some methods to
elevate diagnostic accuracy were proposed and proven. The chapter also provides the
recommendations on choosing and tailoring the networks for different diagnostic tasks. For
solving many tasks, the utility of the multilayer perceptron has been proven on simulated and
real data.
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Abstract

The defect classification is as important as the defect detection in fabric inspection
process. The detected defects are classified according to their types and recorded with
their names during manual fabric inspection process. The material is selected as “undyed
raw denim” fabric in this study. Four commonly occurring defect types, hole, warp
lacking, weft lacking and soiled yarn, were classified by using artificial neural network
(ANN) method. The defects were automatically classified according to their texture
features. Texture feature extraction algorithm was developed to acquire the required
values from the defective fabric samples. The texture features were assessed as the
network  input  values  and  the  defect  classification  is  obtained  as  the  output.  The
defective images were classified with an average accuracy rate of 96.3%. As the hole
defect was recognized with 100% accuracy rate, the others were recognized with a rate
of 95%.

Keywords: artificial neural network (ANN), fabric defect classification, pattern recog‐
nition, texture feature extraction, denim fabric

1. Introduction

The woven fabric is formed by interlacing warp and weft yarns at right angles. The fabric has
a unique pattern construction along length (warp direction) and width (weft direction). The
deformations that damage the appearance and performance of the fabric are called as “fabric
defect.” In the literature, it is stated that there are 235 different fabric defect types [1]. The
defects are evaluated as "major" and "minor" in relation to their size and types. After the
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weaving process is achieved, the fabric defects are inspected by a quality‐control worker
(Figure 1). As the fabric is wound by passing over an illuminated surface, the quality‐control
worker scans approximately 2 m width. She/he then records the type and location of the
defects. The quality of the detected fabric is evaluated by means of the 4‐point system, either
Graniteville or a 10‐point system. The main concept of all these systems is that the operator
calculates the number of major and minor defects. This is taken as the point values in meter
square,  and then the fabric  quality is  considered as “first” and “second” quality.  Defect
detection procedure is time consuming and tiring. Thus, many different attempts are seen to
replace the traditional inspection system by automated visual systems.

Figure 1. Traditional fabric inspection.

Artificial intelligence methods, such as fuzzy logic (FL), neural network (NN), or genetic
algorithm (GA), are generally preferred for fabric defect classification problems. Neural
network is most frequently used method for defect classification. The input parameters of the
neural network are obtained by using different types of feature extraction methods (FEMs).
Different textile problems considered from fiber classification, color grading, and yarn and
fabric property prediction can be given as examples. Hybrid modeling applications include
neuro‐fuzzy, Sugeno‐Takagi fuzzy system, neuro‐genetic, and neuro‐fuzzy‐genetic methods.
Better results are obtained when they are used in combination [2]. The artificial intelligence
system is based on learning the texture features and distinguishing them into the categories.
Thus, the defect classification process is carried out as a solution of pattern recognition
problem. The spatial filtering methods, morphological operations, noise‐removing filters, and
artificial intelligence methods must be used together. They can be combined properly for a
robust defect detection and classification algorithm [2].

In the present study, Artificial Neural Network (ANN) method has been applied for a fabric
defect classification problem. A texture feature extraction (TFE) algorithm was developed to
acquire the required values from the defective fabric samples. The defects were automatically
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classified according to their texture features by using ANN method. The texture features were
assessed as the network input values and the defect classification is obtained as the output.
Four most common fabric defects, such as hole, warp lacking, weft lacking, and soiled yarn,
are classified. Success in defect classification was given by using statistical measures at the end.

2. Previous studies

Artificial Neural Network methods are used from fiber to fabric in all textile product studies.
Fiber identification is made by using ANN. Fiber properties according to the process param‐
eters are also predicted by means of ANN. As far as yarns are concerned, the thrust of research
is certainly on yarn property prediction particularly on the tensile properties. Researchers have
tried to model the structure of a yarn with the ultimate aim of being able to predict its properties
before the yarn is actually spun. In the area of fabric property prediction, traditionally
subjective areas such as handle and drape have received considerable attention. Also some
physical properties of the fabric; strength, elongation, air permeability, stiffness etc. are tried
to predict before the fabric production. Most of the studies on fabric property prediction are
performed for the identification and classification of faults in fabrics and carpets. These
processes are attempted to automate. As far as dyeing is concerned, the prediction of dye
concentration in the dye bath and dye recipes has been attempted [3].

In the literature survey, it is seen that Artificial intelligence techniques such as Artificial Neural
Network, fuzzy logic, and genetic algorithm are especially preferred for fabric defect detection
and also for classification. The texture features of the fabric samples are extracted by using
different methods and these features are used as input. The artificial intelligence system learns
the texture features and distinguishes them into categories [2, 3].

Huang and Chen have proposed a neuro‐fuzzy system by combining FL and NN methods [4].
Nine categories were classified as normal fabrics and eight kinds of fabric defects. The results
of the neuro‐fuzzy system and NN systems were compared and it is concluded that better
results are obtained with neuro‐fuzzy system.

Tilocca et al. have presented a method using a different optical image acquisition system and
ANN to analyze the acquired data [5]. The different light sources were used to illuminate the
sample in order to acquire the different features. A three‐layered Feed‐Forward Neural
Network (FFNN) with sigmoidal activation function and back propagation (BP) was used in
this work. Four different types of defects, large knot, slub, broken thread, and knot, were
classified by the given system. The percentage of correctly classified patterns was found as
92%.

Kumar has presented an approach for the segmentation of local textile defects using FFNN
and fast‐web inspection method using linear neural network (LNN) [6]. A twill‐weave fabric
sample with defect miss pick was tested by using FFNN method. Fabric inspection image with
the defects slack end, dirty yarn, miss pick, and thin bar were tested. Linear neural network
method is used. Plain‐weave fabric samples with defect types, double weft, thin bar, broken
ends, and slack pick, were used for real‐time defect detection.
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Islam et al. have developed an automated textile defect detection system based on adaptive
NN [7]. The study was mainly based on to combine thresholding techniques and ANN for
defect classification. In this system, defect types such as hole, scratch, stretch, fly yarn, dirty
spot, slub, cracked point, color bleeding, etc. would be immediately recognized. Then, the
system was triggered with the laser beams in order to display the upper offset and the lower
offset of the faulty portion. The performance of recognition was stated as 72% in identifying
hole-classified faults, 65% in identifying scratch-classified faults, 86% in identifying other
classified faults, and 83% identifying no fault defects. The total performance of the system was
found as 77%.

Liu et al. have presented an article about fabric defect classification [8]. Particle Swarm
Optimization (PSO) was applied in BP-NN training. PSO-BP Neural Network was applied to
the classification of fabric defect. PSO algorithm was introduced into BP-NN training to
determine neural network connection weight and threshold values reasonably. Three types of
fabric defects such as broken warp, broken weft, and oil stain were used in this article. As a
result, it was stated that PSO-BP-NN had less hidden unit numbers, a shorter training period,
and a higher accuracy of classification.

Suyi et al. have presented a study [9]. The fabric image was decomposed into sub-images by
using DB3 wavelet transform function. The energy, entropy, and variance features of both
horizontal and vertical detail coefficients are extracted. These features were used as inputs to
PSO-BP-NN for classification. There were five types of defects such as warp direction, weft
direction, particle, hole, and oil stain in this study.

Suyi et al. have proposed a defect detection algorithm by combining cellular automata theory
and fuzzy theory [10]. Edge detection method was used to mark the boundary of the defective
area. Broken warp, double weft, broken weft, and broken-filling type defects were chosen in
this study.

Jianli and Baoqi have proposed a method consisting of Gray Level Co-occurrence Matrix
(GLCM), Principle Component Analysis (PCA), and NN [11]. Denoising operation was applied
to the fabric image by using wavelet thresholding. Then, Laplacian operation was applied to
smooth the image. GLCM of the image was obtained and 13 different features of the matrix
were extracted by using Haralick method. The feature vectors were prepared for NN input.
Principle component analysis method was used to reduce the dimension of the input vector.
The NN was trained for four types of fabric defects: warp lacking, weft lacking, oil stain, and
hole. The defects were classified successfully by using a three-layer BP-NN.

Kuo and Su have made fabric defect classification by using GLCM and NN methods [12]. The
GLCM of the fabric sample images was obtained and then the features such as energy, entropy,
contrast, and dissimilarity were extracted. The features were used as input vector and the
defect types were introduced to the NN. After the NN was trained, it was tested by using
different fabric defect images. The NN was trained for four types of fabric defects: warp lacking,
weft lacking, oil stain, and hole.

Kuo and Lee have classified the warp lacking, weft lacking, hole, and oil stain defects by
training a three-layer BP-NN [13]. Plain-weave white fabric was used as the material. The
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this study.
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to the fabric image by using wavelet thresholding. Then, Laplacian operation was applied to
smooth the image. GLCM of the image was obtained and 13 different features of the matrix
were extracted by using Haralick method. The feature vectors were prepared for NN input.
Principle component analysis method was used to reduce the dimension of the input vector.
The NN was trained for four types of fabric defects: warp lacking, weft lacking, oil stain, and
hole. The defects were classified successfully by using a three-layer BP-NN.

Kuo and Su have made fabric defect classification by using GLCM and NN methods [12]. The
GLCM of the fabric sample images was obtained and then the features such as energy, entropy,
contrast, and dissimilarity were extracted. The features were used as input vector and the
defect types were introduced to the NN. After the NN was trained, it was tested by using
different fabric defect images. The NN was trained for four types of fabric defects: warp lacking,
weft lacking, oil stain, and hole.

Kuo and Lee have classified the warp lacking, weft lacking, hole, and oil stain defects by
training a three-layer BP-NN [13]. Plain-weave white fabric was used as the material. The

Artificial Neural Networks - Models and Applications224

images of the fabric sample were acquired via an area scan camera. The image was transmitted
to a computer for filtering and thresholding. After thresholding operation, the maximum
length, maximum width, and gray level of the detected region were extracted as inputs for
NN. The classification was achieved with high recognition for all types of defects.

Celik et al. have developed a machine vision system. Five types of fabric defects, such as warp
lacking, weft lacking, hole, soiled yarn, and yarn flow or knot, have been detected by using
different image analysis approaches: Linear filtering (LF), Gabor filter (GF), and Wavelet
analysis (WA) [14–18]. The defect types have then been classified automatically by using ANN
method.

3. Description and fundamentals of ANN method

An artificial neuron is a computational model inspired in the natural neurons. A neuron system
consists of dendrites, cell body, axon, and synapses (output dendrites) connected to the
dendrites of other neurons. The cell body is taken at the center of neuron. Dendrites and axon
branch establish the connection between other neurons. Activity such as remember, think, and
actions as a response to the environmental states passes from one neuron to another in terms
of electrical triggers. This certainty is considered as an electrochemical process of voltage‐gated
ion exchange.

Figure 2. ANN architecture [3].

Synapses are the branches of the axon interface with the dendrites of other neurons through
certain specialized structures. The input is taken by the triggering signal coming from the other
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neurons to the cell body of the dendrites. The cell body response is transmitted along the axon
[3, 14, 19].

ANN is a simple analog of the neural structure of the human brain. The basic element of the
brain is taken as a natural neuron. The basic element of every neural network is considered as
an artificial neuron. ANN is then built by putting the neurons in layers and connecting the
outputs of neurons from one layer to the inputs of the neurons from the next layer (Figure 2).
There are three distinct functional operations happening in ANN architecture. First, the in‐
puts from x1 to xn are multiplied by the corresponding weight (wkl,wk2 ..….wkn) in the layer to
from the product of wp. The second operation, the weighted input wp, is added to the bias
wk0 to form the input n. The bias can then be considered as a weight having a constant value
of 1. The weighed inputs are summed to form the parameter of uk (Eq. (1)):
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k kj j
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u w x
=
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Finally, the output y k is produced by passing the parameter u k through the activation function
[19–21]. The activation functions modify the signal input according to its nature. The most
commonly used activation functions are given as “Linear transfer function,” “Log-sigmoid
function,” and “Tangent-sigmoid function.” The activation functions are determined according
to the problem by trial and error method.

3.1. The architecture of artificial neural network (ANN)

The neurons are combined in a layer. The network may consist of one or more layers. The
neurons in different layers are connected to each other with a particular pattern. The
connections between the neurons and the number of layers are generally called as architecture
of the neural network [20]. The networks are categorized into two main groups according to
their architecture: feed‐forward and feedback networks. Feed‐forward networks have no loops
and feedback networks have loops because of feedback connections. The networks are also
classified into subgroups according to the layer connections: single layer network and
multilayer network with hidden layers [22]. The network establishes a relation between input
and output values. The network is untrained when it is first built. The weight and the bias
values are selected randomly, and so the output pattern totally mismatches the desired pattern.
The network first uses the input pattern to produce its own output pattern. The actual output
pattern is compared with the desired output pattern (target) and the weights are changed
according to the difference. The procedure continues until the pattern matching occurs or the
desired amount of matching error is obtained. This process is called as “training network.” When
the training is achieved, the network is able to not only recall the input‐output patterns but
also interpolate and extrapolate them. This network is then called as “trained” or “learned” [3,
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19]. After the network is trained, the network parameters such as the number of hidden layers,
the number of units in the hidden layer, the learning rate, and the number of training cycles
that is known as epochs must be optimized.

4. Texture feature extraction (TFE)

The surface or structure property of an object is defined as texture [23]. A fabric has got a
regular pattern property in all regions. This uniform pattern provides a regular texture to the
fabric. Due to the defective regions, the uniform texture property is deformed and a difference
arises between them. Since every defect type causes a different change on the fabric texture,
the fabric defects can be distinguished and classified by applying texture analysis and pattern
recognition methods.

Two main approaches, “statistical” and “spatial approaches,” are used for measuring the texture
properties. The statistical approach most frequently used one for texture analyzing and
classification is based on the statistical properties of the intensity histogram. The spectral
approach is based on the Fourier spectrum and suited for describing directionality of periodic
patterns in an image [24]. The feature vector of a fabric image is composed of the first- and
second-order statistical properties of the texture. The feature vectors of whole fabric images
used for the application are extracted separately. The first- and second-order statistics are given
in the following sections.

4.1. First-order statistics

The first-order statistical properties consist of average gray level (m), average contrast (σ),
smoothness (R), third moment (μ 3), uniformity (U), and entropy (e) (Table 1). These properties
are derived from the intensity histogram of the gray-level image [25]. The statistical moments
are used to measure some statistical properties. The expression for the nth moment is given
by Eq. (2):
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1
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. ( )
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n
n i i

i

z m p zm
-

=

= -å (2)

where z i is a random variable indicating the pixel intensity, p(z) is the histogram of the intensity
levels in a region, and L is the number of possible intensity levels [25].

4.2. Second-order statistics

The second-order statistical properties include energy (f1), contrast (f2), correlation (f3),
variance (f4), inverse difference moment (f5), sum average (f6), sum variance (f7), sum entropy
(f8), entropy (f9), difference variance (f10), difference entropy (f11), and Information Measure of
Correlation (IMC) 1 (f12) and 2 (f13) (Table 2) [26–28].
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Statistical property Formula

Average gray level (mean)  = ∑ = 0
𑨒𑨒 𑨒𑨒 1 ()

Average contrast (standard deviation)  = 2  = 2
Smoothness  = 1 𑨒𑨒 1/(1 + 2)
Third moment 3 = ∑ = 0

𑨒𑨒 𑨒𑨒 1  𑨒𑨒  3 . ()
Uniformity  = ∑ = 0

𑨒𑨒 𑨒𑨒 1 2()
Entropy  = 𑨒𑨒 ∑ = 0

𑨒𑨒 𑨒𑨒 1 ()log2()
Table 1. First‐order statistics [14].

Statistical property Formula

Energy (angular second moment) 1 =∑   ∑ (, )2
Contrast 2 = ∑ = 0

𑨒𑨒 𑨒𑨒 1 2𑨒𑨒 𑨒𑨒 𑨒𑨒()    
Correlation 3 = ∑   ∑   ,  𑨒𑨒 𑨒𑨒𑨒𑨒𑨒𑨒𑨒𑨒
Variance (sums of squares) 4 =∑   ∑ ( 𑨒𑨒 )2
Inverse difference moment 5 =∑   ∑ 11 +  𑨒𑨒  2(, )
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Statistical property Formula

Sum average 6 =∑ = 22𝀵𝀵𝀵𝀵 + ()
Sum variance 7 = ∑ = 2

2𝀵𝀵 ( 𑨒𑨒 6)2𝀵𝀵 + ()
Sum entropy 8 = 𑨒𑨒∑ = 2

2𝀵𝀵 𝀵𝀵 + ()log(𝀵𝀵 + ())
Entropy 9 = 𑨒𑨒∑   ∑ 𝀵𝀵(, )log(𝀵𝀵(, ))
Difference variance 10 = 𑨒𑨒 ∑ = 0

𝀵𝀵 𑨒𑨒 1  𑨒𑨒 𑨒𑨒 𑨒𑨒  2𝀵𝀵 𑨒𑨒 ()
Difference entropy 11 = 𑨒𑨒 ∑ = 0

𝀵𝀵 𑨒𑨒 1 𝀵𝀵 𑨒𑨒 ()log(𝀵𝀵 𑨒𑨒 ())
Information measure of correlation 1 12 = 9 𑨒𑨒 𝀵𝀵𝀵𝀵𝀵𝀵1max HX,HY
Information measure of correlation 2 13 = (1 𑨒𑨒 exp 𑨒𑨒2.0 𝀵𝀵𝀵𝀵𝀵𝀵2 𑨒𑨒 9 )12
Table 2. Second‐order statistics [14].

Figure 3. GLCM calculation.
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The second‐order statistics are derived from GLCM of images by using the methodology pro‐
posed by Haralick [26]. GLCM is the statistical method of examining texture that considers the
spatial relationship of pixels [29]. GLCM measures how often a pixel p 1 occurs in specific spatial
relationship to a pixel p 2 as shown in Figure 3. GLCM is a square matrix of size N × N where
N is the number of gray level. Generally, the statistical measures are made from this matrix.
When a single GLCM is not enough to describe the textural features of the input image, an
additional parameter “offset” could be specified to allow detection of patterns in different di‐
rection [29]. The offsets define pixel relationships of varying direction and distance given in
Figure 4. An offset array is defined to create a different GLCM for multiple directions.

Figure 4. Offset directions.

The notations given in the following (Eqs. (3)–(6)) are used in the formulas for the second‐order
statistics of the image texture [26–28],(, ) : (i,j)-th entry in a GLCM, and called as “probability density” with N being the number of
gray levels.

( )
1

( , )
N

x
j

p i p i j
=

=å (3)

( )
1

( , )
N

y
j

p j p i j
=

=å (4)

( ) ( , ), : for 2,3, 4 2p i j
x yp k i j i j k k N+ = + = = ¼¼¼¼å (5)

( ) ( , ), : for 0,1, 2 1p i j
x yp k i j i j k k N- = - = = ¼¼¼¼ -å (6)
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where  is the mean of (, ) , ,  are the means of p x and p y, respectively, and

 𑨒𑨒  = ∑ = 0
𑨒𑨒 𑨒𑨒 1  𑨒𑨒  .    𝀵𝀵𝀵𝀵𝀵𝀵    are the standard deviations, and HX and HY are the

entropies of p x and p y, respectively. They are calculated as follows:
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4.3. Description of texture feature extraction method

The algorithm consisting of Discrete Wavelet Transform (DWT), Soft Wavelet Thresholding
(SWT) and GLCM methods is formed to extract the required texture features of the defective
fabric images. The procedure of the algorithm includes seven steps as follows:

i. The image noises are removed by means of Wiener filter to get a smoother image.

ii. The image is then decomposed into sub‐images by applying DWT at level 2 with
“db3” wavelet base. The approximation image is then applied to SWT (Eq. (9)) [30]:

( )( )0 0

0

,

0,

sgn X X T X T
Y

X T

ì - ³ï= í
<ïî

(9)

where Y is the wavelet coefficient and T 0 is the threshold level. The threshold value “T

0” is determined according to Eq. (10):

[ ] [ ]1.2 ( , ) * ( ( , ))T mean a i j w mean std a i j= ± (10)

T 1 is the upper limit, T 2 is the lower limit of the double thresholding processes, and
“w” is the weighting factor which is determined experimentally between 2 and 4. The
upper and lower thresholding limits are determined by using a defect‐free fabric
image as a template.
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iii. The regular texture patterns should be made smoother and the defective regions
should be accentuated in order to distinguish the defect boundaries. The image frame
applied to soft thresholding is convolved with “Laplacian” operator.

iv. The first-order statistics (Table 1) are then extracted from the convolved image.

v. The woven fabric pattern is produced by interlacing the warp and weft yarns with a
perpendicular angle. They are arranged to the horizontal (weft yarns) and vertical
(warp yarns) directions in the fabric. The co-occurrence matrices with offset [0, 1] are
formed for horizontal and vertical detail coefficients of the defective fabric. Basically,
they represent the latitude and the longitude properties of the fabric.

vi. The second-order statistics are extracted from the co-occurrence matrices by using
Haralick method.

vii. The feature column vector having 32 elements is then formed by using the first- and
second-order statistics.

The procedure given above is repeated for each defective fabric image.

5. Preparation of defect database

The material selected for defect classification is “undyed denim fabric.” Denim is a strong and
heavy warp-faced cotton cloth. The classical denim is made from 100% cotton and woven from
coarse indigo dyed warp and gray undyed weft yarn. Weft yarn passes under two or more
warp yarns and three and one twill construction is obtained. Generally, brown- or blue-colored
yarns are used in warp and bleached yarns are used in weft [31, 32]. The name of denim comes
from a strong fabric called serge, originally made in Nimes, France, which is then shortened
to denim [31, 32]. Denim fabric is first produced as “working cloths.” Since the denim fabric is
strong and durable, it was used as a working cloth in the 18th century and as a mineworker
cloth in the 19th century. The mass production of the denim fabrics was begun in 1853 by Levi
Strauss. Overtime, the denim fabric was used in the production of different cloth types such
as short, shirt, skirt, jacket, and different products such as hat and bag. It is being estimated
that 85% of the produced denim fabric is used in the production of trousers.

The sample fabric used in this study has got the specifications given in Table 3. The material
is supplied by Prestij Weaving Company in Gaziantep/Turkey, as an undyed denim fabric. It
is woven on Picanol Gammax rapier weaving machines with a production speed of 450 rpm
and a production efficiency of 85%. The fabric has got a size of 2000 cm length and 43 cm width.
The fabric sample has four types of defects: warp lacking, weft lacking, hole, and soiled yarn
(Figure 5). Since the required number of defect cannot be encountered on a fabric with such a
length, some of the defects are made randomly with different widths and lengths on the
sample [14].
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Pattern 3/1 (s) twill

Warp yarn number Ne 16/1 Open end

Weft yarn number Ne 10/1 Open end

Warp sett 45 ends/cm

Weft sett 20 picks/cm

Warp crimp (%) 12

Weft crimp (%) 1.5

Weight per square meter (with sizing) 323 g/m2

Cover factor 33.8

Reed number 110 dents/10cm

Table 3. Fabric sample specifications [14].

Figure 5. Fabric defect samples.

The image frames of the defective fabrics that will be used for network training and testing are
acquired by using a prototype machine vision system [14] (Figure 6). The system consists of
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an industrial fabric inspection machine, a camera system, camera attachment equipment, an
additional lightening unit, a rotary encoder, and host computer. The camera system includes
charge‐coupled device (CCD) line‐scan camera, frame grabber card, lens, and camera link
cable. The fabric sample was placed on a fabric inspection machine. As the fabric was wound,
the image frames were captured and then memorized on the computer. The fabric motion and
the camera exposure are synchronized with a rotary encoder via a frame grabber card.

Figure 6. Machine vision system for fabric inspection.

6. Case study: neural network architecture for fabric defect classification

The most commonly preferred method in AI among the studies on fabric defect classification
problem [9–13] is Artificial Neural Network. In this study, four defect types, hole, warp lacking,
weft lacking, and soiled yarn are classified by using MATLAB® Neural Network Toolbox. The
toolbox consists of some tools such as neural fitting, neural clustering, pattern recognition, and
neural network. The pattern recognition tool is used to classify inputs into a set of target
categories for the fabric defect classification problem. The pattern recognition tool consists of
a two‐layer feed‐forward network (Figure7). The network is trained with scaled conjugate
gradient back propagation. Tan‐sigmoid transfer function is used in both the hidden and the
output layers [21].
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The input and target matrices are formed for each defect type. Twenty-five defective fabric
images for each defect type are taken to be used for the feature extraction. This results in an
input matrix with 32 × 100 size. Each feature vector of the input matrix is assigned to the target
vector, which has a size of 4 × 1 (binary vector). It is defined in Table 4.

Figure 7. Pattern Recognition Tool GUI of MATLAB® NN toolbox.

Defect type Column vector

Hole [1; 0; 0; 0]

Warp lacking [0; 1; 0; 0]

Weft lacking [0; 0; 1; 0]

Soiled yarn [0; 0; 0; 1]

Table 4. Defect type and corresponding vector definition.

Target vector is formed for each defective fabric image and the target matrix’s size is 4 × 100.
The input and target matrices are introduced into Neural Network Pattern Recognition Tool
(nprtool) (Figure 8). The input data set is randomly divided as 80, 10, and 10% for training,
validation, and testing samples, respectively (Figure 9). The number of neurons is then
determined for the hidden layer of the network (Figure 10). The number of neurons in the
output layer is determined automatically according to the number of elements in the target
vector, and it is taken as four in this study. Since four defect types are to be classified having
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performed many trials, the best results are obtained for 37 neurons in the hidden layer after
many trials. The network is finally trained using the scaled conjugate gradient back propaga‐
tion (Figure 11). The Mean‐Square‐Error (MSE) algorithm adjusts the biases and weights so as
to minimize the mean square error. MSE of training, testing, and validation operations is
calculated by using Eq. (11). They are determined as 0.0021, 0.00014, and 0.00027, respectively
(Figure 12):

2( )i i
j

E t o= -å (11)

where t i is the desired output and o i is the actual output of neuron "i" in the output layer [10].

Figure 8. Input and target matrix introduction.

Figure 9. Random division of data set.
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Figure 10. Number of neurons in the hidden layer.

Figure 11. Network training.

6.1. Classification accuracy of the network

The classification accuracy of the network is specified by confusion matrices (Figure 12), and
Receiver Operating Characteristic (ROC) curves (Figure 13) for training, testing, validation,
and overall (three kinds of data combined). In the confusion matrices, the green squares
indicate the correct response and the red squares indicate the incorrect responses. The lower‐
right blue squares illustrate the overall accuracies. As the number of green squares gets higher,
the classification accuracy of the network increases. As in Figure 12, 100% correct responses
are obtained for all confusion matrices with this network.
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Figure 12. Confusion matrices [14].

Receiver Operating Characteristic curve is useful for recognizing the accuracy of predictions [33].
ROC curve illustrates the classification performance of a binary system as its distinguishing
threshold level is varied. It is plotted as True-Positive Rate (TPR) versus False-Positive Rate (FPR).
TPR is also known as sensitivity, and FPR is one minus the specificity. Four possible outcomes
are seen as follows:

i. If the sample is positive and it is classified as positive, it is counted as a true positive
(TP).

ii. If the sample value is positive and it is discriminated as negative, it is counted as a
false negative (FN).

iii. If the sample is negative and it is detected as negative, it is counted as a true negative
(TN).

iv. If the sample has a negative value and it is detected as positive, it is counted as a false
positive (FP).

As the curve gets closer to the left upper corner, it means that the higher classification accuracy
is obtained. A perfect test shows points in the upper‐left corner, with 100% sensitivity and
100% specificity. When the true‐positive rate of ROC value is 1, it means the true positives are
perfectly separated from the false positives. For this classification problem, ROC value 1 is
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obtained for training, testing, validation, and overall (Figure 13). The network performs almost
perfectly [34].

Figure 13. Receiver Operating Characteristic (ROC) curves.

6.2. Defect classification software

Finally, a user interface is prepared for the classification of the defective fabric images. It is
automatically used to determine the defect type of a selected defective image. The user
interface consists of three buttons as “Exit,” “Reset Data,” and “Load-Defective Image” as
shown in Figure 14.

The exit button is used to exit the window. After the required image samples are classified, the
counters of the defect classes can be made zero by using “reset data” button (Figure 15). The
counts of the defect classes come to the initial zero number. The classification operation can be
continued with a different defective image folder. The image to be classified is selected from
the directory by using the “load-defective image” button. The folder browser window is opened
and the required fabric image is selected when this button is activated (Figure 16). The selected
image is applied to the feature extraction algorithm. The statistical texture features of the image
are then extracted. The feature column vector is formed and it is simulated with the network
previously built above. The selected image is displayed on the screen. The detect type is then
titled for the image. The related defect‐type counter is increased by one. These steps are
shown in Figures 17–20 [14].
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Figure 14. Defect classification program user interface.

Figure 15. Reset the counters.

Figure 16. Selection of the defective image.
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Figure 17. Classification of hole defect.

Figure 18. Classification of warp‐lacking defect.

Figure 19. Classification of weft‐lacking defect.
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Figure 20. Classification of soiled yarn defect.

7. Statistical evaluation of network testing results

The defective fabric images are stored. They are then used for network training and testing.
The features of the 25 defective fabric images are extracted for each defect type and the input
matrix of the network is formed. After the neural network is trained successfully, 20 samples
of each type of defects are used to test the network classification accuracy.

The neural network simulation results of hole, warp‐lacking, weft‐lacking, and soiled yarn
defects are given in Tables 5–8, respectively. The overall accuracy rate of each type of defect is
then presented in Table 9 and Figure 21 [14].

The defective images are classified with an average accuracy rate of 96.3%. As the hole defect
is recognized with 100% accuracy rate, the others are recognized with a rate of 95%. Since many
weft yarns are removed and the large spaces occur between the yarns, one of the weft‐lacking
images is recognized as the hole. One of the soiled yarn images is recognized as warp lacking
because of having large vertical soil. Since only a small part of the fabric image is different
from the regular pattern, it is more difficult to classify them than the classification of completely
different textures.

1 1.0000 0.0090 0.0000 0.0000

2 1.0000 0.0004 0.0000 0.0000

3 1.0000 0.0000 0.0000 0.0000

4 1.0000 0.0000 0.0000 0.0000

5 0.9999 0.0001 0.0000 0.0000

6 1.0000 0.0000 0.0000 0.0000

Artificial Neural Networks - Models and Applications242



Figure 20. Classification of soiled yarn defect.

7. Statistical evaluation of network testing results

The defective fabric images are stored. They are then used for network training and testing.
The features of the 25 defective fabric images are extracted for each defect type and the input
matrix of the network is formed. After the neural network is trained successfully, 20 samples
of each type of defects are used to test the network classification accuracy.

The neural network simulation results of hole, warp‐lacking, weft‐lacking, and soiled yarn
defects are given in Tables 5–8, respectively. The overall accuracy rate of each type of defect is
then presented in Table 9 and Figure 21 [14].

The defective images are classified with an average accuracy rate of 96.3%. As the hole defect
is recognized with 100% accuracy rate, the others are recognized with a rate of 95%. Since many
weft yarns are removed and the large spaces occur between the yarns, one of the weft‐lacking
images is recognized as the hole. One of the soiled yarn images is recognized as warp lacking
because of having large vertical soil. Since only a small part of the fabric image is different
from the regular pattern, it is more difficult to classify them than the classification of completely
different textures.

1 1.0000 0.0090 0.0000 0.0000

2 1.0000 0.0004 0.0000 0.0000

3 1.0000 0.0000 0.0000 0.0000

4 1.0000 0.0000 0.0000 0.0000

5 0.9999 0.0001 0.0000 0.0000

6 1.0000 0.0000 0.0000 0.0000

Artificial Neural Networks - Models and Applications242

1 1.0000 0.0090 0.0000 0.0000

7 0.9750 0.0000 0.0000 0.0495

8 0.9995 0.0000 0.0000 0.0009

9 0.9995 0.0000 0.0000 0.0005

10 0.9997 0.0000 0.0000 0.0022

11 0.6396 0.0033 0.0000 0.0036

12 0.8833 0.0003 0.0000 0.0311

13 1.0000 0.0009 0.0000 0.0000

14 0.9997 0.1108 0.0000 0.0000

15 0.8559 0.0087 0.0001 0.0000

16 0.9993 0.0004 0.0000 0.0000

17 1.0000 0.0001 0.0001 0.0000

18 0.9992 0.0025 0.0001 0.0000

19 0.8551 0.0020 0.3635 0.0000

20 1.0000 0.0000 0.0000 0.0001

Table 5. Classification results of “hole” defect.

1 0.0084 0.9601 0.0002 0.0000

2 0.0024 0.7283 0.0012 0.0000

3 0.0000 0.8354 0.1381 0.0000

4 0.0000 0.9938 0.0033 0.0000

5 0.0000 0.9997 0.0000 0.0001

6 0.0030 0.1955 0.0035 0.0001

7 0.0369 0.9362 0.0000 0.0000

8 0.0000 0.9824 0.0005 0.0024

9 0.0000 0.8589 0.5104 0.0000

10 0.0000 0.9983 0.0000 0.0003

11 0.0000 0.7221 0.0000 0.5606

12 0.0000 0.9999 0.0000 0.0000

13 0.0000 0.8850 0.0225 0.0000

14 0.0285 0.9988 0.0000 0.0000

15 0.0013 0.9998 0.0000 0.0000

16 0.0000 0.9910 0.0098 0.0000

17 0.0010 0.0099 0.0367 0.0042
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1 0.0084 0.9601 0.0002 0.0000

18 0.0013 0.9238 0.0000 0.0001

19 0.0000 0.9993 0.0011 0.0000

20 0.0000 0.8986 0.1990 0.0000

Table 6. Classification results of “warp-lacking” defect.

1 0.0001 0.0015 0.9996 0.0000

2 0.0001 0.0017 0.9999 0.0000

3 0.9989 0.0003 0.0265 0.0000

4 0.0037 0.0127 0.9974 0.0000

5 0.0249 0.0467 0.9831 0.0000

6 0.0000 0.0014 1.0000 0.0000

7 0.0020 0.0094 0.2899 0.0000

8 0.0000 0.5929 0.8806 0.0000

9 0.0000 0.0001 1.0000 0.0000

10 0.0122 0.0476 0.8142 0.0000

11 0.0145 0.0004 0.9565 0.0000

12 0.0000 0.0000 1.0000 0.0000

13 0.0000 0.0001 1.0000 0.0000

14 0.0003 0.0010 1.0000 0.0000

15 0.0241 0.0846 0.5240 0.0000

16 0.0000 0.0001 1.0000 0.0000

17 0.0000 0.0036 1.0000 0.0000

18 0.0011 0.0007 0.9999 0.0000

19 0.0005 0.0006 0.9999 0.0000

20 0.0001 0.0007 0.9997 0.0000

Table 7. Classification results of “weft–lacking” defect.

1 0.0000 0.0000 0.0000 1.0000

2 0.0001 0.0024 0.0000 0.9991

3 0.0000 0.0003 0.0000 1.0000

4 0.0000 0.0002 0.0000 1.0000

5 0.0000 0.0233 0.0000 0.9897
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1 0.0000 0.0000 0.0000 1.0000

6 0.0033 0.0916 0.0000 0.4757

7 0.0000 0.0010 0.0000 0.9999

8 0.0000 0.1733 0.0000 0.7789

9 0.0000 0.0392 0.0000 0.8368

10 0.0000 0.0008 0.0000 0.9995

11 0.0000 0.0000 0.0000 1.0000

12 0.0000 0.0000 0.0000 1.0000

13 0.0000 0.1266 0.0000 0.8657

14 0.0064 0.0073 0.0000 0.9998

15 0.0002 0.7885 0.0000 0.1102

16 0.0009 0.0000 0.0000 1.0000

17 0.0000 0.0075 0.0000 0.9987

18 0.0004 0.0000 0.0000 1.0000

19 0.0005 0.0149 0.0000 0.9924

20 0.0000 0.0001 0.0000 1.0000

Table 8. Classification results of “soiled yarn” defect.

Defect type Hole Warp lacking Weft lacking Soiled yarn Number of sample Classification accuracy (%)
Hole 20 0 0 0 20 100

Warp lacking 0 19 1 0 20 95

Weft lacking 1 0 19 0 20 95

Soiled yarn 0 1 0 19 20 95

Table 9. Defect classification accuracy rates.

Figure 21. Classification accuracy rates of defects [14].
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8. Conclusion

The experimental setup developed in this study has an operation speed of 7.5 m/min and it
can detect the defects as small as 0.5 mm. This system was designed for the inspection of
denim fabrics. The defective fabric images acquired via the developed machine vision sys‐
tem were classified by using ANN method. The classification was achieved according to
their texture properties like a pattern recognition problem. The texture features of each de‐
fective image were extracted by using an algorithm based on DWT, SWT, and GLCM meth‐
ods. Four defect types, hole, warp lacking, weft lacking, and soiled yarn, were classified. The
first‐ and second‐order statistical properties were extracted and the feature vector was
formed for each defective fabric image. The feature extraction algorithm is applied for 25 im‐
ages of each defect type. The input matrix with the size of 32 × 100 is obtained. The target
vector indicated to which the input vector was assigned. It was made of a binary vector T
(size = 4 × 1). The network was built by using MATLAB® Neural Network Toolbox and Pat‐
tern Recognition Tool.

Two layers were included in the network. The best results were obtained for 37 neurons in the
hidden layer after many trials. The number of neurons in the output layer was determined
automatically according to the number of elements in the target vector; it was taken as four in
this study. The network was finally trained by using the scaled conjugate gradient BP method.
Having trained the neural network successfully, 20 samples of each type of defects were used
to test the network classification accuracy. The defective images were then classified with an
average accuracy rate of 96.3%. As the hole defect was recognized with 100% accuracy rate,
the others were recognized with a rate of 95%.
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Abstract

Artificial neural network (ANN) model classifiers were developed to generate ≤ 15 h
predictions of thunderstorms within three 400-km2 domains. The feed-forward, multi-
layer perceptron and single hidden layer network topology, scaled conjugate gradient
learning algorithm, and the sigmoid (linear) transfer function in the hidden (output)
layer were used. The optimal number of neurons in the hidden layer was determined
iteratively based on training set performance. Three sets of nine ANN models were
developed: two sets based on predictors chosen from feature selection (FS) techniques
and one set with all 36 predictors. The predictors were based on output from a numerical
weather prediction (NWP) model. This study amends an earlier study and involves the
increase in available training data by two orders of magnitude. ANN model perform-
ance was compared to  corresponding performances  of  operational  forecasters  and
multi-linear regression (MLR) models. Results revealed improvement relative to ANN
models  from  the  previous  study.  Comparative  results  between  the  three  sets  of
classifiers, NDFD, and MLR models for this study were mixed—the best performers
were a function of prediction hour, domain, and FS technique. Boosting the fraction of
total  positive  target  data  (lightning  strikes)  in  the  training  set  did  not  improve
generalization.

Keywords: thunderstorm prediction, artificial neural networks, correlation-based fea-
ture selection, minimum redundancy maximum relevance, multi-linear regression

1. Introduction

A thunderstorm or convective storm is a cumulonimbus cloud that produces the electric discharge
known as lightning (which produces thunder) and typically generates heavy rainfall, gusty
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surface wind, and possibly hail [1]. Meteorologists use the term convection/convective to refer
to the vertical component of convective heat transfer owing to buoyancy [2–4]. The term deep
moist convection (DMC), which refers to the overturning of approximately the entire troposphere
due to convective motions and involving condensation of water vapor associated with rising
parcels [5], is part of the literature and includes both thunderstorms and moist convection not
involving  thunder  [4].  The  terms  thunderstorm,  convective  storm,  and  convection  are  used
interchangeably in this chapter to refer to thunderstorms. Thunderstorms adversely affect
humans and infrastructure. An estimated 24,000 deaths and 240,000 injuries worldwide are
attributable to lightning [6, 7]. In the USA, lightning is the third leading cause of storm-related
deaths based on averages during the period 1985–2014 [8]. Additional hazards that can occur
include large hail, flash flooding associated with heavy rainfall, and damage from wind from
tornadoes and/or non-rotational (straight-line) wind. During the period 1980–2014, 70 severe
thunderstorm events each totaling ≥ 1 billion US dollar damage occurred in the USA, which
totaled to 156.3 billion US dollars (adjusted for inflation to 2014 dollars) [9]. Further, convection
exacts an economic cost on aviation in terms of delays [10]. Given the adverse socioeconomic
impact associated with thunderstorms, there is motivation to predict thunderstorm occurrence
and location to inform the public with sufficient lead time.

However, the complexity of thunderstorm generation (hereafter convective initiation, or CI),
given the myriad of processes (operating on different scales) that influence the vertical
thermodynamic structure of the atmosphere (that directly influences the thunderstorm
development) and the CI itself [11], the characteristic Eulerian (with respect to a fixed point at
the surface) time and linear space scales of individual thunderstorms [12], and the inherent
predictability limitations of atmospheric phenomena on the scale of individual thunder-
storms [13, 14], renders the skillful prediction of thunderstorm occurrence, timing, and location
very difficult. This chapter begins by explaining the thunderstorm development process in
order to help the reader understand the predictor variables used in the artificial neural network
(ANN) models. Next, the variety of methods used to predict thunderstorms are presented in
order to acquaint the reader with the relative utility of the ANN model option. The main section
starts with an account of the previous methods developed by the authors and presents a new
approach to the development of ANN models to predict thunderstorms with high temporal
and spatial resolution. Finally, concluding remarks, including a discussion of future research.

2. Thunderstorm development

To properly understand the process of thunderstorm development, it is essential to define the
terms parcel and environment. The environment refers to the ambient atmospheric conditions.
In general, a parcel is an imaginary volume of air that can be assigned various properties [1].
A parcel in this discussion is infinitesimal in dimension and is assumed to be thermally
insulated from the surrounding environment which allows for adiabatic temperature changes
owing to vertical displacement, and it has a pressure that immediately adjusts to the environ-
mental pressure [15]. One method used by meteorologists to assess the potential for the
development of thunderstorms is the parcel method [3]. This method is used to assess atmos-
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pheric stability and involves the finite vertical displacement of a parcel from hydrostatic
equilibrium (balance between vertical pressure force and gravity) while the environment
remains unchanged. After the displacement, the temperature contrast between the parcel and
the environment at the same level results in buoyancy forces that determine stability.

Consider an environment of depth H with a temperature lapse rate (decrease in temperature

with height) Γ satisfying the condition Γm < Γ < Γd, where d = 9.8°Ckm−1 and m = 6.5°Ckm−1
are the dry and moist adiabatic/pseudoadiabatic lapse rates, respectively. Now consider a
surface-based parcel, defined as a parcel originating in the convective planetary boundary layer
(PBL) (also called mixing layer) that eventually contribute to the primary thunderstorm updraft
if thunderstorms develop [16]. The convective PBL refers to the bottom layer of the atmosphere
in contact with the earth surface with a diurnal depth varying between tens of meters (near
sunrise) to 1–4 km (near sunset) [1]. Let us begin with an unsaturated parcel located at a
particular position , ,  = ℎ  within the PBL and at the same temperature, density, and
pressure as the environment (hydrostatic equilibrium.) Consider an upward vertical displace-
ment of this parcel and apply the parcel method. Since the parcel is unsaturated, it will initially
cool at the dry adiabatic lapse rate. Since Γ < Γd, the parcel will become cooler than its sur-
rounding environment. Applying the ideal gas law and the assumption that the parcel’s
pressure instantly adjusts to the environmental pressure, the parcel’s density becomes greater
than environmental air density. Thus, the parcel is negatively buoyant, a condition known as
positive static stability [15]. If this parcel is released, it will return to its original height h with
negative buoyancy acting as the restoring force. However, let us assume that the parcel
overcomes this negative buoyancy via certain upward-directed external force. The parcel
eventually reaches the lifted condensation level (LCL), whereby the parcel becomes saturated
followed by condensation. (The condensation of parcels is manifested by the development of
cumulus clouds.) Due to the associated latent heat release, the parcel cools at the pseudoadia-
batic rate during subsequent lift. Since Γm < Γ, the parcel now cools at a lesser rate than the
environmental rate and (with the help of the external force) will eventually reach the envi-
ronmental temperature at the level referred to as the level of free convection. Afterward, the parcel
becomes warmer than the environment and thus positively buoyant. If the parcel is released,
it will continue to rise without the aid of an external force, a condition known as static
instability. Thus, a parcel with sufficient vertical displacement within an environment with
lapse rates following the Γm < Γ < Γd constraint may become positively buoyant. This condition
is known as conditional instability.

The parcel will remain positively buoyant until it reaches the equilibrium level (EL). The
magnitude of the energy available to a given parcel for convection is the convective available
potential energy (CAPE) [3] which is the integrated effect of the parcel’s positive buoyancy
between its original height h and the EL:

( )
h

EL

p

h d vp ve
p

CAPE R T T dlnp= -ò (1)
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The variables Tvp, Tve, Rd, and p refer to the virtual temperatures of the parcel and environment,
specific gas constant for dry air, and air pressure, respectively. Recall that before the surface-
based parcel reached the LFC, an external force was needed. The amount of energy required
of the external force to lift the parcel to its LFC is known as convective inhibition (CIN) [1],
represented as follows:

( )
LFC

h

p

h d vp ve
p

CIN R T T dlnp= - -ò (2)

Now, consider a separate case whereby the environment is absolutely stable with respect to a
surface-based parcel (Γm > Γ). This condition is characterized by negative buoyancy during the
parcel’s entire vertical path of depth H within the troposphere. Hence, the parcel method would
suggest that convection is not possible. However, consider a layer of depth l ≤ H within this
environment where water vapor content decreases rapidly with height. Owing to this moisture
profile, if the entire layer lis lifted, parcels at the bottom of the layer will reach their LCL before
parcels at the top of the layer. The differential lapse rates within this layer resulting from
continued lifting will transform the layer from absolutely stable to conditionally unstable. This
condition is known as convectively (or potential) instability [3, 15]. A convectively unstable layer
is identified as one that satisfies:

0e
z
q¶

<
¶

(3)

The symbols θe and z refer to equivalent potential temperature and geometric height, respectively.
It must be emphasized that CAPE is necessary for the potential for convection [3]. Recall that
a convectively unstable layer is not necessarily unstable. In this example, the environment is
absolutely unstable, devoid of positive buoyancy, and thus CAPE = 0. A mechanism is required
to lift the convectively unstable layer to one characterized by conditional instability.

Air parcels extending above the LFC accelerate upward owing to positive buoyancy and draw
energy for acceleration from CAPE. The relationship between maximum updraft velocity
(wmax) and CAPE (parcel theory) is as follows:

( )1 22maxw CAPE= (4)

The moist updraft is integral to the development of a supersaturated condition that results in
excess water vapor that (with the aid of hygroscopic aerosols that serve as cloud condensation
nuclei or CNN) condenses to form water in liquid and solid form (condensate) manifested as
the development of a cumulus cloud, followed by the transition to cumulus congestus, then
ultimately to cumulonimbus. With respect to the production of rain during convection, the
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stochastic collision-coalescence mechanism is likely the predominant process that transforms
cloud droplets (with broad drop-size distribution) to liquid hydrometeors large enough
(diameter 500 μm) to combine with gravity and fall as rain on convective time scales [17].

As saturated parcels rise to the region with environmental temperatures colder than −4°C, the
likelihood that ice crystals will develop within the cloud increases. Further, a fraction of water
remains in liquid form (supercooled water) until around −35°C [15]. Thus, a region character-
ized by water in all three phases (vapor, liquid, and solid) develops. The development of the
solid hydrometeors known as ice crystals and graupel within this mixed phase region contribute
to the development of lightning. In particular, ice-graupel collisions contribute to the transfer
of negative (positive) charge to the larger graupel (smaller ice crystal) particles with charge
separation caused by gravity, resulting in a large-scale positive dipole within the cumulonim-
bus [18]. A smaller positively charged region exists near the cloud base. Intracloud (IC) lightning
occurs in response to the foregoing dipole, cloud-to-ground (CTG) lightning involves a transfer
of negative charge from the dipole to the earth surface, and the less common cloud-to-air (CTA)
lightning variety links the large-scale negative charge with the smaller positive charge near
cloud base [18]. The temperatures in the air channel through which lightning occurs exceed
the surface of the sun and result in a shockwave followed by a series of sound waves recognized
as thunder that is heard generally 25 km away from the lightning occurrence [1, 15].

Straight-line thunderstorm surface winds develop as negative buoyancy (owing to cooling
associated with evaporation of water/melting of ice), condensate loading (weight of precipi-
tation dragging air initially downward before negative buoyancy effects commence), and/or
downward-directed pressure gradient force (associated with convection developing within
strong environmental vertical wind shear) contribute to the generation of the convective
downdrafts which are manifested as gust fronts (also called outflow boundaries) after contact with
the earth surface [19]. Hail associated with a thunderstorm involves a complex process
whereby graupel and frozen raindrops serve as pre-existing hail embryos and transition to
hailstones by traveling along optimal trajectories favorable for rapid growth within the region
of the cumulonimbus composed of supercooled water [20].

Given the foregoing thunderstorm development process, the simultaneous occurrence of three
conditions are necessary for CI: sufficient atmospheric moisture, CAPE, and a lifting/triggering
mechanism. Moisture is necessary for the development of the cumulonimbus cloud condensate
which serves as a source material for the development of hydrometeors rain, ice crystals,
graupel, and hail. The environmental moisture profile contributes to the development
conditional and convective instability. CAPE provides the energy for updraft to heights
necessary for the development of the cumulonimbus cloud and the associated mixed phase
region that contributes to lightning via charge separation. A mechanism is necessary to lift
surface-based parcels through the energy barrier to their LFC, and to lift convectively unstable
layers necessary for the development of conditional instability. A myriad of phenomena can
provide lift, including fronts, dry lines, sea breezes, gravity waves, PBL horizontal convective
rolls, orography, and circulations associated with local soil moisture/vegetation gradients [11,
21].
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A myriad of synoptic scale [12] patterns/processes can alter the thermodynamic structure of
the environment at a particular location to one favorable for the development of CAPE or
convective instability [22]. One scenario in the USA involves the advection of lower-level moist
air toward the north across the Southern Plains from the Gulf of Mexico in advance of an upper-
level disturbance approaching from the west and advecting midtropospheric dry air originat-
ing from the desserts of northern Mexico. The thermodynamic profile over a location
influenced by those air masses (e.g., Oklahoma City, Oklahoma) would become one charac-
terized by both conditional and convective instabilities owing to the dry air mass moving over
the moist air mass [3].

The foregoing discussion is not exhaustive with respect to thunderstorms. The transition to
severe convective storms (defined as thunderstorms which generate large hail, damaging
straight-line wind, and/or tornadoes), flash flooding, and convective storm mode (squall lines,
single cells, multi-cells, supercells, etc.) are not relevant to the development of non-severe (also
called ordinary) thunderstorms in general and are not discussed. Further, slantwise convection
owing to conditional symmetric instability due to the combination of gravitational and centrifugal
forces [1] is not considered.

3. Thunderstorm prediction methods

We classify thunderstorm prediction based on the following methods: (1) numerical weather
prediction (NWP) models, (2) post-processing of NWP model ensemble output, (3) the post-
processing of single deterministic NWP model output via statistical and artificial intelligence
(AI)/machine learning (ML), and (4) classical statistical, AI/ML techniques.

3.1. Secondary output variables/parameters from Numerical Weather Prediction (NWP)
models

NWP models are based on the concept of determinism which posits that future states of a
system evolve from earlier states in accordance with physical laws [23]. Meteorologists
describe atmospheric motion by a set of nonlinear partial differential conservation equations
—derived from Newton’s second law of motion for a fluid, the continuity equation, the
equation of state, and the thermodynamic energy equation—that describe atmospheric heat,
momentum, water, and mass referred to as primitive equations, Euler equations, or equations of
motion [24–26]. These equations cannot be solved analytically and are thus solved numerically.
Further, the earth’s atmosphere is a continuous fluid with 1044 molecules (Appendix A) which
the state-of-the-art NWP models cannot resolve. Thus, NWP model developers undertake the
process known as discretization, which involves the representation of the atmosphere as a three-
dimensional (3D) spatial grid (which divides the atmosphere into volumes or grid cells), the
representation of time as finite increments, and the substitution of the primitive equations with
corresponding numerical approximations known as finite difference equations solved at the grid
points [26]. Atmospheric processes resolved by the NWP equations are termed model dynamics
while unresolved processes are parameterized via a series of equations collectively known as
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model physics [25]. Parameterization involves using a set of equations on the resolved scale to
implicitly represent the unresolved process. These unresolved (sub-grid-scale) processes
include solar/infrared radiation and microphysics (which occur on the molecular scale),
cumulus convection, earth surface/atmosphere interactions, and planetary boundary layer/
turbulence [27]. If these primary unresolved processes are not taken into account, the quality
of NWP output would deteriorate in less than 1 h when simulating the atmosphere at hori-
zontal grid scales of 1–10 km [25]. The NWP model prediction process is an initial value
problem. A process known as data assimilation is used to provide the requisite initial values. A
predominate data assimilation technique involves the use of balanced (theoretical and
observed winds in phase) short-term output from an earlier NWP model run to serve as a first
guess, followed by the incorporation of meteorological observations to create a balanced
analysis which serve as the initial condition for the NWP model [26]. Next, the finite difference
equations are solved forward in time. The primary output variables include temperature, wind,
pressure/height, mixing ratio, and precipitation. At the completion of the NWP model run,
post-processing is performed which includes the calculation of secondary variables/parameters
(CAPE, relative humidity, etc.) and the development of techniques to remove model biases [25,
26, 28].

The state-of-the-art high-resolution NWP models have the ability to explicitly predict/simulate
individual thunderstorm cells rather than parameterize the effects of sub-grid-scale convec-
tion [29]. NWP output identified as thunderstorm activity involves assessment of NWP output
parameter/secondary variable known as radar reflectivity defined as the efficiency of a radar
target to intercept and return of energy from radio waves [1]. Operational meteorologists in
the NWS use radar technology to diagnose/analyze thunderstorms. With respect to hydrome-
teor targets (rain, snow, sleet, hail, graupel, etc.), radar reflectivity is a function of hydrometeor
size, number per volume, phase, shape, and is proportional to six times the effective diameter
of the hydrometeor [1]. Radar reflectivity magnitudes ≥ 35dB at the −10°C level are generally
regarded as a proxy for CI and for the initial CG lightning flash [30, 31]. Further, the increase
in the reflectivity within the mixed-phase region of cumulonimbus clouds correlates strongly
with lightning rate [32]. An example of a high-resolution (≤4-km) NWP model that can
simulate/predict radar reflectivity is version 1.0.4 of the 3-km High-Resolution Rapid Refresh
(HRRR) Model, developed by National Oceanic and Atmospheric Administration (NOAA)/
Oceanic and Atmospheric Research (OAR)/Earth Systems Research Laboratory implemented
by the National Weather Service (NWS) National Centers for Environmental Prediction
(NCEP) Environmental Modeling Center (EMC) on 30 September 2014 to support NWS
operations [33]. The specific model dynamical core, physics, and other components are detailed
in Appendix B. Yet, we emphasize here that the HRRR does not incorporate cumulus/
convective parameterization (CP), thus allowing for the explicit prediction of thunderstorm
activity. One of the output parameters relevant to thunderstorm prediction is simulated radar
reflectivity 1-km (dBZ), which is an estimate of the radar reflectivity at the constant 1-km level.

Despite the utility of NWP models, there exist fundamental limitations. In particular, the
atmosphere is chaotic—a property of the class of deterministic systems characterized by
sensitive dependence on the system’s initial condition [13, 14, 23]. Thus, minor errors between
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the initial atmospheric state and the NWP model representation of the initial state can result
in a future NWP solution divergent from the future true atmospheric state. Unfortunately, a
true, exact, and complete representation of the initial state of the atmosphere using the state-
of-the-art NWP models is not possible. Even if the NWP model could perfectly represent the
initial atmospheric state, errors associated with imperfections inherent in model formulation
and time integration would grow. Model discretization and physics parameterizations
introduce errors. Further, the gradient terms in the finite difference equations are approxi-
mated using a Taylor series expansion of only a few orders [26, 34], thus introducing truncation
error. Errors associated with the initial condition, discretization, truncation, and parameteri-
zation limits predictability; an intrinsic finite range of predictability exists that is positively
correlated to spatial scale [14]. A high-resolution NWP simulation of a tornadic thunderstorm
can result in inherent predictability with lead times as short as 3–6 h [35].

Accurately predicting the exact time and location of individual convective storms is extremely
difficult [36]. High-resolution (≤4-km) NWP models can accurately simulate/predict the
occurrence and mode of convection (e.g., whether a less common left-moving and devastating
supercell thunderstorm will develop), yet have difficulty with regard to the time and location
(exactly when and where will the supercell occur) [37, 38]. Even very high-resolution (≤1-km)
NWP models that can resolve and predict individual convective cells [29] will not necessarily
provide greater accuracy and skill relative to coarser resolution NWP models [39].

3.2. Post processing of NWP model ensembles

Methods exist to generate more optimal or skillful thunderstorm predictions/forecasts when
using NWP models. One such method is known as ensemble forecasting [40], which is
essentially a Monte Carlo approximation to stochastic dynamical forecasting [28, 41]. Stochastic
dynamical forecasting is an attempt to account for the uncertainty regarding the true initial
atmospheric state. The idea is to run an NWP model on a probability distribution (PD) that
describes initial atmospheric state uncertainty. Due to the impracticability of this technique, a
technique was proposed whereby the modeler chooses a small random sample of the PD
describing initial state uncertainty [41]; the members are collectively referred to as ensemble
of initial conditions. The modeler then conducts an NWP model run on each member of the
ensemble, hence the term ensemble forecasting [28]. In practice, each member of the ensemble
represents a unique combination of model initial condition, dynamics, and/or physics [27, 42].
An advantage of ensemble forecasting over prediction with single deterministic NWP output
is the ability to assess the level of forecast uncertainty. One method to assess this uncertainty
is to assume a positive correlation between uncertainty and the divergence/spread in the
ensemble members [28]. Prediction probabilities can be generated by post-processing the
ensemble. Applying ensembles to thunderstorm forecasting, the NWS Environmental
Modeling Center developed the short-range ensemble forecast (SREF), a collection of selected
output from an ensemble of 21 mesoscale (16-km) NWP model runs. The NWS Storm Predic-
tion Center (SPC) post-processes SREF output to create a quasi-real-time suite of products that
includes the calibrated probabilistic prediction of thunderstorms [42]. There exist utility in the use
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of ensembles in thunderstorm forecasting. According to [16], the timing of CI within selected
mesoscale regions can be predicted accurately using an ensemble-based approach.

One limitation of NWP ensembles to support operational forecasters is the tremendous
computational cost necessary to run since each ensemble member is a separate NWP model
run. Another limitation is the realization that the true PD of the initial condition uncertainty
is unknown and changes daily [28].

3.3. Post-processing of single deterministic NWP model output using other statistical and
artificial intelligence/machine learning techniques

Statistical methods can be utilized to post-process NWP output to correct for certain systematic
NWP model biases and to quantify the level of uncertainty in single NWP deterministic
output [28, 43]. Statistical post-processing methods include model output statistics (MOS) [44]
and logistic regression [28].

MOS involves the development of data-driven models to predict the future state of a target
based on a data set of past NWP output (features/predictors) and the corresponding target/
predictand. Following [28], a regression function fMOS is developed to fit target Y at future time
t to a set of predictors/features (from NWP output known at t = 0) represented by vector x. The
development and implementation is as follows:

( )t MOS tY f x= (5)

One limitation of the MOS technique involves NWP model changes made by the developers.
If NWP model adjustments alter systematic errors, new MOS equations should be formulated
[28]. Model changes can occur somewhat frequently. Consider the North American Mesoscale
(NAM), which is the placeholder for the official NWS operational mesoscale NWP model for
the North American domain. On 20 June 2006, the NAM representative model switched
from the hydrostatic Eta to the Weather Research and Forecasting (WRF)-Non-hydrostatic Mesoscale
Model (NMM), a change in both the model dynamical formulation and modeling framework.
Then, on 1 October 2011, the NAM representative model switched to NOAA Environmental
Modeling System Non-hydrostatic Multiscale Model on the B-grid (NEMS-NMMB) resulting in
changes to the model framework (WRF to NEMS) and model discretization (change from
Arakawa E to B grid) (Appendix C).

The NWS uses multiple linear regression (MLR) (with forward selection) applied to opera-
tional NWP model predictors and corresponding weather observations (target) to derive MOS
equations to support forecast operations [43]. The NWS provides high-resolution gridded
MOS products which include a 3-h probability of thunderstorms [45] and thunderstorm
probability forecasts as part of the NWS Localized Aviation Model Output Statistics Program
(LAMP) [46].

Logistic regression is a method to relate the predicted probability pj of one member of a binary
target to the jth set of n predictors/features 1, 2, …..,   to the following nonlinear equation:
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The regression parameters are determined via the method of maximum likelihood [28].

Logistic regression models were used by [47] to develop MOS equations to generate probability
of thunderstorms and the conditional probability of severe thunderstorms in twelve 7200
km2 regions at 6-h projections out to 48-h in the Netherlands. The NWP output was provided
by both the High-Resolution Limited-Area Model (HIRLAM) and the European Centre for
Medium-Range Weather Forecasts (ECMWF) NWP model. The Surveillance et d’Alerte Foudre
par Interférométrie Radioélectrique (SAFIR) lightning network provided the target data.
Verification results suggest that the prediction system possessed good skills.

Artificial intelligence (AI) involves the use of computer software to reproduce human cognitive
processes such as learning and decision making [1, 48]. More recently, the term machine learning
(ML) is used to describe the development of computer systems that improve with experience
[1, 49]. Specific AI/ML techniques involving the post-processing of NWP output include expert
systems [50], adaptive boosting [51], artificial neural networks [52, 53], and random forests [31].

A random forest [54] is a classifier resulting from an ensemble/forest of tree-structured
classifiers, whereby each tree is developed from independent random subsamples of the data
set (including a random selection of features from which the optimum individual tree
predictors are selected) drawn from the original training set. The generalization error (which
depends on individual tree strength and tree-tree correlations) convergences to a minimum as
the number of trees becomes large, yet overfitting does not occur owing to the law of large
numbers. After training, the classifier prediction is the result of a synthesis of the votes of each
tree.

In one study, selected thermodynamic and kinematic output from an Australian NWP model
served as input for an expert system using the decision tree method to assess the likelihood of
thunderstorms and severe thunderstorms [50]. Further, an artificial neural network model to
predict significant thunderstorms that require the issuance of the Convective SIGMET product
(called WST), issued by the National Weather Service’s Aviation Weather Center, for the 3–7 h
period after 1800 UTC; the model demonstrated skill, including the ability to narrow the WST
outlook region while still capturing the subsequent WST issuance region [52]. Logistic
regression and random forests were used to develop models to predict convective initiation
(CI) ≤1 h in advance. The features/predictors included NWP output and selected Geostationary
Operational Environmental Satellite (GOES)-R data. The performance of these models was an
improvement of an earlier model developed based on GOES-R data alone [31].

3.4. Classical statistical and artificial intelligence/machine learning techniques

Statistical methods not involving the use of NWP model output (classical statistical) that have
been used to predict thunderstorm occurrence include multiple discriminate analysis (MDA),
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scatter diagrams, and multiple regression. Corresponding AI/ML techniques include expert
systems, artificial neural networks, and logistic regression.

MDA is essentially a form of multiple linear regression used to predict an event. In particular,
a discriminant function relates a nonnumerical predictand to a set of predictors; the value of
the function that distinguishes between event groups [1, 55]. An MDA was used to obtain 12
h prediction functions to distinguish between the following two or three member groups
within selected domains in portions of the Central and Eastern USA: thunderstorm/no-
thunderstorm, thunderstorm/severe thunderstorm, and thunderstorm/severe
thunderstorm/no-thunderstorm. The verification domains were within 1° latitude radius
relative to the position of the data source that provided the predictor variables. The MDA
prediction system provided skill in the 0-12 h period [55].

In one study, the utility of both a graphical method and multiple regression was tested to
predict thunderstorms [56]. The graphical method involved scatter diagrams that were used
to analyze multiple pairs of atmospheric stability index parameters in order to discover any
diagram(s) whereby the majority of thunderstorm occurrence cases were clustered within a
zone while the majority of the non-thunderstorm occurrence cases were outside of the zone.
Two such diagrams were found—scatter diagrams of Showalter index versus Total Totals
index, and Jefferson’s modified index versus the George index. The multiple regression
technique involved the stepwise screening of 274 potential predictors to 9 remaining. Both
prediction models provided thunderstorm predictions in probabilistic terms. Objective
techniques were used to convert probabilistic predictions to binary predictions for the purpose
of verification. Results indicate that the multiple regression model performed better.

An expert system is a form of artificial intelligence that attempts to mimic the performance of
a human expert when making decisions. The expert system includes a knowledge base and an
inference engine. The knowledge base contains the combination of human knowledge and
experience. Once the system is developed, questions are given to the system and the inference
engine uses the knowledge base and renders a decision [57]. An expert system was developed
using the decision tree method to forecast the development of thunderstorms and severe
thunderstorms [58]; the tree was based on physical reasoning using the observation of
meteorological parameters considered essential for convective development. An expert
system named Thunderstorm Intelligence Prediction System (TIPS) was developed to predict
thunderstorm occurrence [59]. Selected thermodynamic sounding data from 1200 UTC and
forecaster assessment of likely convective triggering mechanisms were used to forecast
thunderstorm occurrence for the subsequent 1500–0300 UTC period. Critical values of five (5)
separate atmospheric stability parameters for thunderstorm occurrence and corresponding
consensus rules served as the knowledge base. The forecaster answer regarding trigger
mechanism and the values of the stability parameters served as input to the inference engine,
which interrogated the knowledge base and provided an answer regarding future thunder-
storm occurrence. Verification of TIPS revealed utility.

The artificial neural network (ANN) has been used to predict thunderstorms. Thermodynamic
data from Udine Italy rawinsondes, surface observations, and lightning data were used to
train/optimize an ANN model to predict thunderstorms 6 h in advance over a 5000-km2 domain
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in the Friuli Venezia Giulia region [60]. An ANN model was developed (also using thermo-
dynamic data) to predict severe thunderstorms over Kolkata India during the pre-monsoon
season (April–May) [61].

Logistic regression was used to develop a binary classifier to predict thunderstorms 6–12 h in
advance within a 6825–km2 region in Spain. A total of 15 predictors (combination of stability
indices and other parameters) were chosen to adequately describe the pre-convective envi-
ronment. The classifier generated satisfactory results on the novel data set [62].

A limitation of classical statistics to weather prediction is that utility is bimodal in time;
confined to very short time periods (less than a few hours) or long time periods (10 days) [28].
The utility of AI/ML techniques without NWP may not be as restrictive. Convective storm
prediction accuracies associated with expert systems may be similar to that of NWP models
[36].

4. The utility of post-processing NWP model output with artificial neural
networks to predict thunderstorm occurrence, timing, and location

The rapid drop in prediction/forecast accuracy per unit time for classical statistical techniques
renders it less than optimal for thunderstorm predictions over time scales greater than
nowcasting (≤ 3 h).

Predicting thunderstorms with the use of deterministic NWP models allows for the prediction
of atmospheric variables/parameters in the ambient environment that directly influence
thunderstorm development. As discussed previously, limitations of NWP models include
predictability limitations owing to a chaotic atmosphere and inherent model error growth [13,
14, 23]. NWP model ensembles attempt to account for the uncertainty in the NWP model’s
initial condition which contributes to predictability limitations in NWP models [40]. The post-
processing of NWP model ensembles can generate useful probabilistic thunderstorm output
[42]. However, there is a much greater computational cost to generate an ensemble of deter-
ministic runs relative to a single run. The post-processing of output from a single deterministic
NWP model can improve skill by minimizing certain systematic model biases, yet predicta-
bility limitations associated with single deterministic NWP model output remain.

The authors explored the use of the artificial neural network (ANN) to post-process output
from a single deterministic NWP model in an effort to improve thunderstorm predictive skill,
based on an adjustment to the author’s previous research [53]. As mentioned earlier, this
approach involves a much lower computational cost relative to model ensembles. In particular,
the single NWP model used in the development of the thunderstorm ANN (TANN) models
discussed in this chapter is the 12-km NAM (North American Mesoscale), which refers to either
the Eta, NEMS-NMMB, or WRF-NMM model (only one model used at a time; see Appendix
C). The model integration cost to run the 21-member SREF ensemble would be of the order of
20 times the cost required to run the 12-km NAM (Israel Jirak 2016, personal communication.)
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Given that ANN was developed to capture the parallel distributed processing thought to occur
in the human brain and has tremendous pattern recognition capabilities [63–65], we posit that
the ANN will learn the limitations/errors associated with a single NWP deterministic model
solution to generate skillful forecasts, notwithstanding NWP predictability limitations. Thus,
AI/ML rather than NWP model ensembles would be utilized to deal with atmospheric chaos.
The remainder of this chapter focuses on the development of ANN models to predict thun-
derstorms (TANN) that are part of the ongoing research.

5. Artificial neural network models to predict thunderstorms within three
South Texas 400-km2 domains based solely on a data set within the same
domain of each

In an earlier study [53], a thunderstorm ANN (TANN) was developed to predict thunderstorm
occurrence in three separate 400-km2 square (box) domains in South Texas (USA), 9, 12, and
15 h (+/−2 h) in advance, by post-processing 12-km NWP model output from a single deter-
ministic NWP model (Appendix C) and 4-km sub-grid-scale output from soil moisture
magnitude and heterogeneity estimates. A framework was established to predict thunder-
storms in 286 box domains (Figure 1), yet predictions were only performed for three. The three
box regions were strategically located to access model performance within the Western Gulf
Coastal Plain region (boxes 103 and 238), the more arid Southern Texas Plains region (box 73),
and within the region with the greatest amount of positive target data/thunderstorm occur-
rences based on CTG lightning density (box 238.) A skillful model was envisioned based on
the combination of the deterministic future state of ambient meteorological variables/param-
eters related to thunderstorm development and sub-grid-scale data related to CI. TANN
models were trained with the foregoing NWP model output and sub-grid data as predictors
and corresponding CTG lightning data as the target. Each TANN model was trained using the
feed-forward multi-layer perceptron topology with one hidden layer, the log-sigmoid and
linear transfer functions in the hidden and output layers, respectively, and the scaled conjugate
gradient (SCG) learning algorithm. The SCG algorithm makes implicit use of the second-order
terms of the Hessian, searches the weight space/error surface in conjugate directions, avoids
problems associated with line searches, and converges more efficiently than gradient descent
[66]. The nomenclature X-Y-Z was used to describe the topology, where X, Y, and Z are the
number of neurons in the input, hidden, and output layers, respectively. The data set consisted
of a training/validation set (2004–2006; 2009–2012) and a testing set (2007–2008) for final
performance and comparison with human forecasters and MLR. For each TANN model
variant, the number of neurons in the hidden layer was determined iteratively For Y hidden
layers, where  = 1 − 10, 12, 15, 17, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 , the TANN model
was trained 50 times. After each training, receiver operating characteristic (ROC) curves were
generated to determine the optimal threshold, defined as the case where the Peirce Skill Score
(PSS) was greatest [67]. The trained ANN with optimal threshold was then used to make
predictions on the testing set (2007–2008); the corresponding performance results were
calculated. The mean PSS of the 50 results from both the training and testing sets, for each Y,
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was archived. The chosen Y corresponded to the least number of hidden layer neurons with a
PSS standard error which overlaps the standard error associated with the maximum PSS. Once
Y is chosen, the performance results of the TANN are simply the mean of the 50 runs previously
archived that corresponds to the chosen Y.

Figure 1. TANN and TANN2 grid domain. This grid is represented as 286 20  km× 20 km regions (boxes). The label
inside each box is the identification number (ID). The boxes with ID values in larger font (73, 103, and 238) are the
subject of this study. Image from Collins and Tissot [53].

Eighteen (18) TANN classifiers were developed with half based on a reduced set of predictors/
features due to feature selection (FS) and the other half using the full set of 43 potential
predictors. FS involves a determination of the subset of potential predictors that describes
much of the variability of the target/predictand. This is very important for very large dimen-
sional models which may suffer from the curse of dimensionality, which posits that the amount
of data needed to develop a skillful data-driven model increases exponentially as model
dimension increases linearly [68]. When the features in the subset generated by the FS method
are used to train an ANN model, it is important that such features are both relevant and non-
redundant. Irrelevant features can adversely affect ANN model learning by introducing noise,
and redundant features can result in reduced ANN model predictive skill by increasing the
likelihood of convergence on local minima on the error surface during training [69]. The FS
technique used was correlation-based feature selection (CFS) [70–72]. CFS is a filtering-based FS
technique, meaning that statistical associations between the features and the target are assessed
outside of the model. Specifically, CFS uses an information theory-based heuristic known as
symmetric uncertainty to assess feature-target and feature-feature correlations to assess
relevance and redundancy, respectively. The search strategy is the Best First search with a
stopping criterion of five consecutive non-improving feature subsets.

The optimized TANN binary classifiers were evaluated on a novel data set (2007–2008), and
performance was compared to MLR-based binary classifiers, and to operational forecasts from
the NWS (National Digital Forecast Database, NDFD, Appendix D).
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The MLR models were developed via stepwise forward linear regression (SFLR). For each MLR
model, the SFLR process began with an empty set of features (constant value y = β0. At each
subsequent forward step, a predictor is added (from the list of 36 predictors in Tables 2 and
3, less the predictors already chosen) based on the change in the value of the Akaike informa-
tion criterion (AIC) [73], while also considering removal of previously selected predictors
based on the same criterion. The optimal MLR model chosen has the smallest AIC which is
essentially a trade-off between model size and accuracy based on the training data. The
MATLAB® function stepwiselm was used to perform SFLR to determine the regression equation
coefficients. The resultant MLR models in this study are of the form:

0 1

k
i j ij ij

y xb b e
=

= + +å (7)

where yi is the ith predictand response, βj is the jth regression coefficient, β0 is a constant, xij is
the ith observation for the jth predictor, for j = 1, …, k. Finally, εi represents error. Each MLR
model was transformed into a binary classifier using the same method used in ANN classifier
development, except that each MLR model was calibrated on the entire training sample to
determine the coefficients, unlike ANN calibration which involved the splitting of the training
sample into training and validation data sets. (However, one could argue that the ANN is also
using the entire training sample as the validation set is inherently necessary to properly
calibrate a model.)

The results were mixed—the TANN, MLR, and human forecasters performed better than the
other two depending on the domain, prediction hour, and performance metric used. Results
revealed the utility of an automated TANN model to support forecast operations with the
limitation that a larger number of individual ANNs must be calibrated in order to generate
operational predictions over a large area. Further, the utility of sub-grid-scale soil moisture
data appeared limited given the fact that only 1/9 of the TANN models with reduced features
retained any of the sub-grid parameters as a feature. The NWP model convective precipitation
(CP) feature was retained in all the nine feature selection TANN models, suggesting that CP
adequately accounted for the initiation of sub-grid-scale convection. This result is consistent
with another study [47] which found that model CP was the most relevant predictor of
thunderstorm activity.

6. Artificial neural network models to predict thunderstorms within three
South Texas 400-km2 domains based on data set from two-hundred and
eighty-six 400-km2 domains

With respect to TANN skill, the endeavor to predict thunderstorms in a small domain relative
to domains used in other studies restricted the amount of CG lightning cases. A large number
of thunderstorm cases would be beneficial to the model calibration and verification process;
the amount of target data in [53] may have been insufficient to train this data-driven model
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with sufficient skill owing to the curse of dimensionality [67]. Further, the method of training/
optimizing TANN models for each 400-km2 domain limits operational applicability since it
would require the development of literally thousands of TANN models at a country scale. In
order to retain thunderstorm predictions in 400-km2 domains while increasing predictive skill,
a new approach was developed (TANN2), whereby for each prediction hour (9, 12, 15), a single
TANN model is trained over all two-hundred and eighty six 400-km2 continuous domains.
This approach dramatically increased the amount of positive target data (thunderstorm cases)
and total cases/instances. Table 1 depicts the quantity of data utilized in this project. The total
number of cases over the study period was 1,148,576 with 939,510 cases used for model
calibration and 209,066 cases contained in the 2007–2008 testing set.

Prediction hour Total instances (training sample) Positive target data Percent positive target

9 663,519 22,139 3.3

12 646,073 16,904 2.6

15 659,801 12,682 1.9

Table 1. Quantity of data available to train TANN2 models.

Relative to the previous study [53], only the NWP model and Julian date predictor variables
(features) were retained (resulting in 36 potential features used in this study; see Tables 2 and
3.) Given that in [53], only one sub-grid parameter was chosen for only 1/9 of the box/prediction
hour combinations, and that the model including this sub-grid-scale parameter did not result
in classifier performance improvement, the utility of the sub-grid-scale data appeared very
limited. As mentioned in [53], the NWP model CP parameter was a ubiquitous output of the
FS technique and thus considered a skillful predictor of convection. Physically, it was surmised
that CP adequately accounted for the effects of sub-grid-scale convection. The use of FS was
retained in order to eliminate irrelevant and redundant features to improve model skill and to
reduce model size. The reduction in model size/dimension (owing to FS) and the increase in
both the training data set and the amount of target CG lightning cases are expected to result
in a more accurate/skillful model when considering the curse of dimensionality.

Abbreviation Description (Units) Justification as thunderstorm predictor

PWAT Total precipitable water

(mm)

Atmospheric moisture

proxy

MR850 Mixing ratio at 850 hPa

(g kg−1)

Lower level moisture necessary for convective cell to reach

horizontal scale ≥4 km in order to overcome dissipative effects [84]

RH850 Relative humidity at 850 hPa

(%)

When combined with CAPE, predictor of subsequent thunderstorm

location independent of synoptic pattern [85]

CAPE Surface-based convective

available potential energy

(J kg−1)

Instability proxy; the quantity 2𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 0.5 is the theoretical limit

of thunderstorm updraft velocity [11]
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Abbreviation Description (Units) Justification as thunderstorm predictor

CIN Convective inhibition (J kg−1)
Surface-based convective updraft magnitude must exceed (𝀵𝀵𝀵𝀵𝀵𝀵)0.5
for parcels to reach level of free convection [11]

LI Lifted index (K) Atmospheric instability proxy; utility in thunderstorm prediction

[86]

ULEVEL,VLEVEL U,V wind components at

surface, 850 hPa (LEVEL = 

surface, 850 hPa) (ms−1)

Strong wind can modulate or preclude surface heterogeneity

induced mesoscale circulations [87, 88]

VVLEVEL Vertical velocity at 925, 700,

and 500 hPa (LEVEL = 925,

700, 500 hPa) (Pa s−1)

Account for mesoscale and synoptic scale thunderstorm triggering

mechanisms (sea breezes, fronts, upper level disturbances) that are

resolved by the NAM

DROPOFFPROXYPotential temperature dropoff

proxy (K)

Atmospheric instability proxy; highly sensitive to CI [89]

LCL Lifted condensation level (m) Proxy for cloud base height; positive correlation between cloud base

height and CAPE to convective updraft conversion efficiency [90]

T_LCL Temperature at the LCL (K) T_LCL ≥ −10°C essential for presence of supercooled water in

convective cloud essential for lightning via graupel-ice crystal

collision mechanism [91]

CP Convective precipitation

(kg m−2)

By-product of the Betts-Miller-Janjic convective parameterization

scheme [92] when triggered; proxy for when the NAM anticipates

existence of sub-grid-scale convection

VSHEARS8 Vertical wind shear: 10 m to

800 hPa layer (×10−3 s−1)

The combination of horizontal vorticity (associated with ambient 0–2

km vertical shear), and density current (e.g., gust front) generated

horizontal vorticity (associated with 0–2 km vertical shear of

opposite sign than that of ambient shear can trigger new convection

[93]

VSHEAR86 Vertical wind shear: 800–600 hPa

layer

(×10−3 s−1)

Convective updraft must exceed vertical shear immediately above

the boundary layer for successful thunderstorm development [58,

89]

Table 2. Description of NAM predictor variables/parameters used in TANN and TANN2 (from [53]).

Abbreviation Description (units) Justification as thunderstorm predictor

ULEVEL,VLEVEL U,V wind at the surface,

900, 800, 700, 600, 500

hPa levels (LEVEL=

surface, 900, 800, 700,

600, 500) (ms−1)

Thermodynamic profile modification owing to veering

of wind (warming) or backing of wind (cooling); backing

(veering) of wind in the lowest 300 hPa can

suppress (enhance) convective development [94]

HILOW Humidity index (°C) Both a constraint on afternoon convection and an

atmospheric control on the interaction between soil
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Abbreviation Description (units) Justification as thunderstorm predictor

moisture and convection [94]

CTP Proxy Proxy for convective

triggering potential

(dimensionless)

Both a constraint on afternoon convection and an

atmospheric control on the interaction between soil

moisture and convection [95]

VSHEARS7 Vertical wind shear:

surface to 700 hPa

layer (×10−3 s−1)

Strong vertical shear in the lowest 300 hPa

can suppress convective development [94]

VSHEAR75 Vertical wind shear: 700

to 500 hPa layer (×10−

3s−1)

Convective updraft must exceed vertical shear immediately

above the boundary layer for successful

thunderstorm development [58, 89]

Table 3. Description of NAM initialization variables/parameters used in TANN and TANN2 (from [53]).

With respect to model training, validating, optimizing, and testing, the same strategy was
utilized as in [53], with two differences. First, when determining the optimal number of hidden
layer neurons, the range of neurons was extended to Y = {1−10, 12, 15, 17, 20, 25, 30, 35, 40, 45,
50, 60, 70, 80, 90, 100, 125, 150, 200}. Second, before each split of the training sample into training
and validation components, a training set of the same size of the total training data available
was drawn randomly from the training set with replacement. This technique allows for an
exploration of training data set variability.

Figure 2. Determination of the optimal number of hidden layer neurons (Y) for the 12 h TANN2 36-Y-1 model (all 36
potential predictors used). Each point and corresponding error bar represents the mean Peirce Skill Score (PSS) and
standard error resulting from 50 iterations with results computed based on the training portions of the training sample
including the generation of ROC curves based on the same data; the selected thresholds/models correspond to the
maximum PSS along the respective ROC curve. The number of hidden layer neurons chosen is the least number of
hidden layer neurons with a PSS standard error which overlaps the standard error corresponding to the maximum
PSS. Thus, in this example, 150 hidden layer neurons corresponds to the maximum mean PSS = 0.694 ± 0.005 (within
the red circle.) The performance of the TANN2 model with 125 hidden neurons, PSS = 0.689 ± 0.005, overlapped with
the 150 hidden neuron confidence interval and hence was selected as the optimum number of hidden neurons, thus
TANN 36-125-1.
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Figure 2 depicts an example of how the optimal Y is chosen. The light red highlight identifies
the number of hidden neurons leading to the largest mean PSS while the green highlight
indicates the number of hidden neurons selected as the two cases standard errors overlap.
Table 4 depicts the optimal topologies for the TANN2 X-Y-1 and 36-Y-1 models.

With respect to FS, an exhaustive search involving the 36 potential features, although ideal,
would have been computationally unrealistic. The FS methods used for this work were filter
based, information theoretic, and designed to choose feature subsets relevant to the corre-
sponding target while non-redundant to each feature in the subset. The methods used were
multi-variate in the sense that feature-feature relationships were also considered, rather than
the univariate strategy of assessing only feature-target relationships sequentially. The methods
used are CFS (described earlier) and minimum Redundancy Maximum Relevance (mRMR) [74].
The mRMR classic function from the mRMRe package as part of the R programming language
[75] was used to calculate mRMR. The following is an explanation of the mRMR technique in
the context of mRMR classic as described in [76]: Consider r(x, y) the correlation coefficient
between features x and y. The mRMR technique uses the information-theoretic parameter
known as mutual information (MI), defined as

( ) ( )2 11 , ,
2
-

- =r x y MI x y ln (8)

Let t be the target/predictand and  = 1,…..,   represent the set of n features. We desire to

rank X such that we maximize relevance (maximize MI with t) and minimize redundancy
(minimize mean MI with all previously selected features.) First, we selected xi, the feature with
the greatest MI with t:

( ),
i

i i
x X

x arg  max MI x t
Î

= (9)

Thus, we initialize the set of selected features S with xi. For each subsequent step j, features are
added to S by choosing the feature with the greatest relevance with t and lowest redundancy
with previously selected features to maximize score Q:

( ) ( )1, ,
k

j j j k
x S

Q MI x t MI x x
S

Î

= - å (10)

The mRMR classic function requires the user to select the size of S, which we chose to equal
the maximum number of features. We then choose the subset by choosing only those features
corresponding to Qj > 0.

Table 4 depicts the reduced set of features chosen via CFS and mRMR. Table 5 summarizes
the resulting TANN2 topologies.
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Prediction hour CFS mRMR

9 h PWAT,

CP

U800(0), HILOW, CP, VV925, VV500 RH850, CIN, LCL, T_LCL, CAPE,

VSHEAR86, V600(0), PWAT, CTP_PROXY, VSHEAR75(0)

12 h CP CP, VV500 ,VV925, PWAT, RH850, CTP_PROXY, CAPE, VSHEAR86,

HILOW, DROPOFFPROXY, U800(0), VV700

15 h CP CP, LI, CAPE,VV925, PWAT,

RH850, CTP_PROXY, VV700 V500(0), USFC(0), VV500, HILOW

Table 4. Variables/parameters chosen by the CFS and mRMR feature selection techniques; variables followed by zero
depict NAM initialization variables.

Prediction hour Optimal 36-Y-1 topology Optimal X-Y-1 topology (CFS) Optimal X-Y-1 topology (mRMR)

9 36-150-1 2-60-1 15-100-1

12 36-125-1 1-1-1 12-90-1

15 36-70-1 1-1-1 12-90-1

Table 5. Optimal TANN2 topologies based on iterative method to determine the optimal number of hidden layer
neurons.

Forecast Observed

Yes No Total

Yes a (hit) b(false alarm)  + 
No c(miss) d(correct rejection)  + 
Total a + c b + d  +  +  +  = 
Table 6. Contingency Matrix from which scalar performance metrics (Table 7) were derived (from [53]).

Performance metric (value range) Symbol Equation

Probability of detection [0,1] POD /  + 
False alarm rate [0,1] F /  + 
False alarm ratio [0,1] FAR /  + 
Critical success index [0,1] CSI /  +  + 
Peirce skill score [−1,1] PSS  𝀵𝀵  /  +   + 
Heidke skill score [−1,1] HSS 2  𝀵𝀵  /  +   +  +  +   + 
Yule’s Q (odds ratio skill score) [−1,1] ORSS  𝀵𝀵  /  + 
Clayton skill score [−1,1] CSS  𝀵𝀵  /  +   + 
Gilbert skill score [−1/3,1] GSS  𝀵𝀵  /  +  +  𝀵𝀵  ;  =  +   +  /
Table 7. Relevant scalar performance metrics for binary classifiers used to evaluate TANN2 and MLR Models and
NDFD (from [53]).
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Tables 6 and 7 depict the contingency matrix and the corresponding performance metrics for
binary classifiers used in this study.

Tables 8–11 depict the performance results of the TANN2 models, trained over all 286 boxes,
and applied to boxes 73, 103, 238, and 1–286 (all boxes.) For each skill-based performance metric
(PSS, CSI, HSS, ORSS, CSS, GSS), the Wilcoxon Sign Rank Test was used to determine whether
TANN2 median performance (based on the 50 runs on the 2007–2008 testing set corresponding
to the optimal number of hidden neurons) was statistically significantly different (5% level)
than the corresponding MLR model and human forecaster performances. The relevant human
forecasters were operational forecasters from the National Weather Service (NWS) (Appendix
D). A summary of the results follow.

There is a significant improvement in the value of selected performance metrics for TANN2
over TANN in absolute terms. For example, with respect to the TANN models developed
without FS, the PSS metric for the TANN2 models increased over the corresponding TANN
models, by approximately 10–70%, 55–74%, and 10–120%, respectively, for boxes 238, 103, and
73.

When comparing TANN2 model performance relative to the operational forecasters (NDFD),
and defining superior performance as statistically significant superior performance with
respect to at least one skill-based performance metric (PSS, CSI, HSS, ORSS, CSS, and GSS),
the results are as follows: For box 238, at least one of the TANN2 model performances exceeded
that of the forecasters (NDFD), for all three prediction hours; all three TANN2 models (TANN
36-150-1, TANN 2-60-1 CFS, and TANN 15-100-1 mRMR) performed superior to NDFD for
prediction hour 9, both TANN 36-150-1 and TANN 2-60-1 CFS performed better for prediction
hour 12, and only TANN 2-6-1 CFS performed better for prediction hour 15. With respect to
box 103, results were mixed. None of the TANN2 models performance was superior to NDFD
for prediction hour 9, the TANN 36-125-1 and TANN 12-90-1 mRMR performed better for
prediction hour 12, and only the TANN 1-1-1 CFS performed superior to the forecasters for
prediction hour 15. Results were again mixed with regard to box 73. TANN 36-150-1 and TANN
15-100-1 mRMR performed superior to NDFD for prediction hour 9, none of the TANN2
models performed better than NDFD for prediction hour 12, and only TANN 36-70-1 per-
formed superior to NDFD for prediction hour 15.

Conducting the same analysis with respect to TANN2 model compared to MLR, namely
assessing statistically significant superior performance with respect to at least one skill-based
performance metric, the results are as follows: For box 238, all three TANN2 models performed
better than MLR at 9 h, none of the TANN2 models performed better at 12 h, and only the
TANN 1-1-1 CFS model performed superior to MLR at 15 h. Regarding box 103, the TANN
36-125-1 and TANN 15-100-1 mRMR performed better than MLR for both 9 h and 12 h, while
TANN 36-70-1 and TANN 1-1-1 CFS performed better than MLR for 15 h. For box 73, only
TANN 36-150-1 performs better than MLR at 9 h, only TANN 1-1-1 CFS performs better at both
12 h and 15 h.
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POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.94 0.80 0.30 0.63 0.20 0.24 0.94 0.19 0.13

TANN 2-60-1 CFS 0.98 0.81 0.33 0.65 0.19 0.22 0.98 0.19 0.13

TANN 15-100-1 mRMR 0.91 0.80 0.30 0.63 0.20 0.23 0.93 0.19 0.13

MLR 0.96 0.80 0.32 0.64 0.19 0.23 0.96 0.19 0.13

9 h Operational public forecasts

NDFD 0.94 0.81 0.35 0.59 0.19 0.21 0.93 0.18 0.12

12 h Model predictions

TANN 36-125-1 0.81 0.93 0.28 0.53 0.07 0.09 0.83 0.06 0.04

TANN 1-1-1 CFS 0.56 0.93 0.20 0.36 0.06 0.08 0.67 0.05 0.04

TANN 12-90-1 mRMR 0.75 0.94 0.32 0.42 0.05 0.06 0.71 0.05 0.03

MLR 0.88 0.93 0.30 0.57 0.07 0.09 0.88 0.07 0.05

12 h Operational public forecasts

NDFD 0.67 0.92 0.28 0.39 0.07 0.08 0.67 0.06 0.04

15 h Model predictions

TANN 36-70-1 0.64 0.95 0.23 0.41 0.05 0.06 0.71 0.04 0.03

TANN 1-1-1 CFS 0.45 0.91 0.08 0.37 0.08 0.13 0.81 0.08 0.07

TANN 12-90-1 mRMR 0.64 0.96 0.28 0.36 0.04 0.04 0.63 0.03 0.02

MLR 0.73 0.95 0.27 0.46 0.05 0.06 0.76 0.04 0.03

15 h Operational public forecasts

NDFD 0.92 0.92 0.23 0.69 0.08 0.11 0.95 0.07 0.06

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denotes TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the NDFD (MLR) values.

Table 8. Performance results of TANN X-Y-Z models for box 238 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.93 0.87 0.31 0.62 0.13 0.15 0.93 0.12 0.08

TANN 2-60-1 CFS 0.90 0.88 0.33 0.57 0.12 0.14 0.89 0.11 0.07

TANN 15-100-1 mRMR 0.87 0.87 0.29 0.56 0.13 0.15 0.87 0.12 0.08

MLR 0.97 0.88 0.36 0.61 0.12 0.14 0.96 0.12 0.08

9 h Operational public forecasts

NDFD 1.00 0.85 0.31 0.69 0.15 0.19 1.00 0.15 0.10

Artificial Neural Networks - Models and Applications272



POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.94 0.80 0.30 0.63 0.20 0.24 0.94 0.19 0.13

TANN 2-60-1 CFS 0.98 0.81 0.33 0.65 0.19 0.22 0.98 0.19 0.13

TANN 15-100-1 mRMR 0.91 0.80 0.30 0.63 0.20 0.23 0.93 0.19 0.13

MLR 0.96 0.80 0.32 0.64 0.19 0.23 0.96 0.19 0.13

9 h Operational public forecasts

NDFD 0.94 0.81 0.35 0.59 0.19 0.21 0.93 0.18 0.12

12 h Model predictions

TANN 36-125-1 0.81 0.93 0.28 0.53 0.07 0.09 0.83 0.06 0.04

TANN 1-1-1 CFS 0.56 0.93 0.20 0.36 0.06 0.08 0.67 0.05 0.04

TANN 12-90-1 mRMR 0.75 0.94 0.32 0.42 0.05 0.06 0.71 0.05 0.03

MLR 0.88 0.93 0.30 0.57 0.07 0.09 0.88 0.07 0.05

12 h Operational public forecasts

NDFD 0.67 0.92 0.28 0.39 0.07 0.08 0.67 0.06 0.04

15 h Model predictions

TANN 36-70-1 0.64 0.95 0.23 0.41 0.05 0.06 0.71 0.04 0.03

TANN 1-1-1 CFS 0.45 0.91 0.08 0.37 0.08 0.13 0.81 0.08 0.07

TANN 12-90-1 mRMR 0.64 0.96 0.28 0.36 0.04 0.04 0.63 0.03 0.02

MLR 0.73 0.95 0.27 0.46 0.05 0.06 0.76 0.04 0.03

15 h Operational public forecasts

NDFD 0.92 0.92 0.23 0.69 0.08 0.11 0.95 0.07 0.06

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denotes TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the NDFD (MLR) values.

Table 8. Performance results of TANN X-Y-Z models for box 238 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.93 0.87 0.31 0.62 0.13 0.15 0.93 0.12 0.08

TANN 2-60-1 CFS 0.90 0.88 0.33 0.57 0.12 0.14 0.89 0.11 0.07

TANN 15-100-1 mRMR 0.87 0.87 0.29 0.56 0.13 0.15 0.87 0.12 0.08

MLR 0.97 0.88 0.36 0.61 0.12 0.14 0.96 0.12 0.08

9 h Operational public forecasts

NDFD 1.00 0.85 0.31 0.69 0.15 0.19 1.00 0.15 0.10
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POD FAR F PSS CSI HSS ORSS CSS GSS

12 h Model predictions

TANN 36-125-1 0.80 0.95 0.23 0.58 0.05 0.07 0.87 0.05 0.04

TANN 1-1-1 CFS 0.50 0.96 0.18 0.32 0.04 0.05 0.64 0.03 0.03

TANN 12-90-1 mRMR 0.90 0.95 0.27 0.63 0.05 0.07 0.92 0.05 0.04

MLR 0.80 0.95 0.25 0.55 0.05 0.06 0.85 0.05 0.03

12 h Operational public forecasts

NDFD 0.80 0.94 0.24 0.56 0.06 0.08 0.86 0.06 0.04

15 h Model predictions

TANN 36-70-1 0.83 0.96 0.21 0.62 0.04 0.05 0.90 0.03 0.03

TANN 1-1-1 CFS 0.50 0.92 0.06 0.44 0.07 0.12 0.89 0.07 0.06

TANN 12-90-1 mRMR 0.83 0.97 0.29 0.55 0.03 0.04 0.86 0.03 0.02

MLR 0.83 0.97 0.24 0.60 0.03 0.05 0.88 0.03 0.02

15 h Operational public forecasts

NDFD 1.00 0.97 0.19 0.81 0.04 0.07 1.00 0.04 0.04

Values corresponding to each TANN X–Y–Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denote TANN X–Y–Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the corresponding NDFD (MLR).

Table 9. Performance results of TANN X-Y-Z models for box 103 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.94 0.81 0.22 0.71 0.19 0.25 0.96 0.19 0.14

TANN 2-60-1 CFS 0.94 0.85 0.30 0.64 0.14 0.18 0.95 0.14 0.10

TANN 15-100-1 mRMR 0.97 0.83 0.26 0.70 0.17 0.22 0.98 0.17 0.12

MLR 0.97 0.82 0.25 0.72 0.18 0.23 0.98 0.17 0.13

9 h Operational public forecasts

NDFD 0.91 0.83 0.26 0.65 0.16 0.21 0.93 0.16 0.12

12 h Model predictions

TANN 36-125-1 0.86 0.90 0.29 0.57 0.10 0.12 0.88 0.09 0.07

TANN 1-1-1 CFS 0.77 0.88 0.21 0.56 0.11 0.15 0.85 0.11 0.08

TANN 12-90-1 mRMR 0.91 0.91 0.35 0.56 0.08 0.10 0.90 0.08 0.05

MLR 0.68 0.10 0.13 1.00 0.10 0.07
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POD FAR F PSS CSI HSS ORSS CSS GSS

12 h Operational public forecasts

NDFD 0.91 0.86 0.23 0.68 0.14 0.19 0.94 0.14 0.11

15 h Model predictions

TANN 36-70-1 0.92 0.93 0.25 0.68 0.07 0.10 0.95 0.07 0.05

TANN 1-1-1 CFS 0.33 0.96 0.15 0.18 0.04 0.04 0.47 0.03 0.02

TANN 12-90-1 mRMR 0.83 0.96 0.34 0.47 0.04 0.05 0.79 0.04 0.02

MLR 0.92 0.94 0.30 0.62 0.06 0.07 0.93 0.05 0.04

15 h Operational public forecasts

NDFD 0.85 0.93 0.24 0.61 0.07 0.10 0.89 0.07 0.05

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denote TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the corresponding NDFD (MLR) value.

Table 10. Performance results of TANN X–Y–Z models for box 73 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.92 0.86 0.24 0.68 0.14 0.18 0.95 0.13 0.10

TANN 2-60-1 CFS 0.93 0.89 0.31 0.62 0.11 0.14 0.93 0.11 0.07

TANN 15-100-1 mRMR 0.93 0.87 0.27 0.66 0.13 0.17 0.94 0.12 0.09

MLR 0.92 0.87 0.27 0.65 0.13 0.16 0.94 0.12 0.09

12 h Model predictions

TANN 36-125-1 0.85 0.93 0.26 0.59 0.07 0.10 0.89 0.07 0.05

TANN 1-1-1 CFS 0.68 0.92 0.19 0.49 0.07 0.10 0.80 0.07 0.05

TANN 12-90-1 mRMR 0.88 0.94 0.31 0.58 0.06 0.08 0.89 0.06 0.04

MLR 0.88 0.93 0.27 0.61 0.07 0.09 0.90 0.07 0.05

15 h Model predictions

TANN 36-70-1 0.83 0.94 0.24 0.59 0.06 0.08 0.88 0.06 0.04

TANN 1-1-1 CFS 0.53 0.92 0.11 0.42 0.08 0.11 0.80 0.07 0.06

TANN 12-90-1 mRMR 0.81 0.95 0.30 0.51 0.05 0.06 0.82 0.04 0.03

MLR 0.88 0.95 0.28 0.59 0.05 0.07 0.89 0.05 0.04

Table 11. Performance results of TANN X–Y–Z models for all 286 boxes for the 2007–2008 independent data set and
corresponding comparisons to the NWS forecasters (NDFD), multi-linear regression (MLR) models.
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POD FAR F PSS CSI HSS ORSS CSS GSS

12 h Operational public forecasts
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TANN 36-70-1 0.92 0.93 0.25 0.68 0.07 0.10 0.95 0.07 0.05

TANN 1-1-1 CFS 0.33 0.96 0.15 0.18 0.04 0.04 0.47 0.03 0.02

TANN 12-90-1 mRMR 0.83 0.96 0.34 0.47 0.04 0.05 0.79 0.04 0.02

MLR 0.92 0.94 0.30 0.62 0.06 0.07 0.93 0.05 0.04

15 h Operational public forecasts

NDFD 0.85 0.93 0.24 0.61 0.07 0.10 0.89 0.07 0.05

Values corresponding to each TANN X-Y-Z model represent the median of 50 separate trial runs of the model. Yellow
(blue) denote TANN X-Y-Z median values of skill-based metrics (PSS, CSI, HSS, ORSS, CSS, and GSS only) NOT
statistically significantly different (based on the Wilcoxon Sign Rank Tests, 2 sided, 1 sample, 5% significant level) from
the corresponding NDFD (MLR) value.

Table 10. Performance results of TANN X–Y–Z models for box 73 for the 2007–2008 independent data set and
corresponding comparisons to the WFO CRP forecasters (NDFD), multi-linear regression (MLR) models.

POD FAR F PSS CSI HSS ORSS CSS GSS

9 h Model predictions

TANN 36-150-1 0.92 0.86 0.24 0.68 0.14 0.18 0.95 0.13 0.10

TANN 2-60-1 CFS 0.93 0.89 0.31 0.62 0.11 0.14 0.93 0.11 0.07

TANN 15-100-1 mRMR 0.93 0.87 0.27 0.66 0.13 0.17 0.94 0.12 0.09

MLR 0.92 0.87 0.27 0.65 0.13 0.16 0.94 0.12 0.09

12 h Model predictions

TANN 36-125-1 0.85 0.93 0.26 0.59 0.07 0.10 0.89 0.07 0.05

TANN 1-1-1 CFS 0.68 0.92 0.19 0.49 0.07 0.10 0.80 0.07 0.05

TANN 12-90-1 mRMR 0.88 0.94 0.31 0.58 0.06 0.08 0.89 0.06 0.04

MLR 0.88 0.93 0.27 0.61 0.07 0.09 0.90 0.07 0.05

15 h Model predictions

TANN 36-70-1 0.83 0.94 0.24 0.59 0.06 0.08 0.88 0.06 0.04

TANN 1-1-1 CFS 0.53 0.92 0.11 0.42 0.08 0.11 0.80 0.07 0.06

TANN 12-90-1 mRMR 0.81 0.95 0.30 0.51 0.05 0.06 0.82 0.04 0.03

MLR 0.88 0.95 0.28 0.59 0.05 0.07 0.89 0.05 0.04

Table 11. Performance results of TANN X–Y–Z models for all 286 boxes for the 2007–2008 independent data set and
corresponding comparisons to the NWS forecasters (NDFD), multi-linear regression (MLR) models.
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9-h Prediction 12-h Prediction 15-h Prediction

ORSS

Box 73 NDFD TANN 36-70-1

Box 103 NDFD NDFD

Box 238 TANN 2-60-1 TANN 36-125-1 NDFD

PSS

Box 73 TANN 36-150-1 NDFD TANN 36-70-1

Box 103 NDFD NDFD

Box 238 TANN 2-60-1 TANN 36-125-1 NDFD

HSS

Box 73 36-150-1 NDFD NDFD

Box 103 NDFD NDFD TANN 1-1-1

Box 238 TANN 1-1-1

Gray boxes indicate that a single performer did not distinguish itself.

Table 12. Best performers (based on the equitable ORSS, PSS, and HSS performance metrics) between the TANN2
models and NWS forecasters (NDFD) using the combination of Wilcoxon Sign Rank Tests (2 sided, 1 sample, 5%
significant level) to compare each TANN model to NDFD, and the Nemenyi post-hoc analyses of pairwise combination
of TANN2 models (5% significance level).

An alternative analysis was performed to determine the single best-performing classifiers for
each box and prediction hour based only on performance metrics PSS, HSS, and ORSS. HSS
and PSS are truly equitable and ORSS is asymptotically equitable (approaches equitability as

size of the data set approaches infinity) and truly equitable for the condition  +  = 0.5 (see

contingency matrix.) [77]. Equitability includes the desirable condition whereby the perform-
ance metric is zero for random or constant forecasts. For each of the three performance metrics
and for each box and prediction hour combination, comparisons were made between the
TANN2 models and NDFD. Such a comparison was performed separately between the TANN2
models and MLR. The best performers were determined in the following manner: First, the
output from the Wilcoxon sign rank test was used to determine statistically significant differ-
ences between the TANN2 models and NDFD or MLR (Tables 8–10). Next, the Friedman rank
sum test was used to determine whether significant differences existed only between the three
TANN2 models. If differences existed, the Nemenyi post-hoc test [78] was performed to deter-
mine statistical significance between pairwise combinations of TANN2 models. The best
performer was based on a synthesis of the Wilcoxon and Friedman/Nemenyi results (see
Appendix E). The Friedman and Nemenyi post-hoc tests were performed using the fried-
man.test and posthoc.friedman.nemenyi.test functions from the Pairwise Multiple Comparison of
Mean Rank (PMCMR) package in the R programming language [74]. Results are depicted in
Tables 12 and 13. The results are mixed. With respect to comparisons between the TANN2
models and NDFD, the best performer is a function of the performance metric, box number,
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and prediction hour. The same is true for the TANN2 model-MLR comparisons. However, it
is noteworthy to mention that none of the TANN2 models based on the mRMR FS method
were determined to be the single best performer for 15 h (Tables 12 and 13).

9-h Prediction 12-h Prediction 15-h Prediction

ORSS

Box 73 MLR MLR TANN 36-70-1

Box 103 MLR

Box 238 TANN 2-60-1 MLR TANN 1-1-1

PSS

Box 73 MLR TANN 36-70-1

Box 103

Box 238 TANN 2-60-1 MLR MLR

HSS

Box 73 TANN 36-150-1 TAN 1-1-1 TAN 36-70-1

Box 103 TANN 1-1-1

Box 238 TANN 1-1-1

Gray boxes indicate that a single performer did not distinguish itself.

Table 13. Best performers (based on the equitable ORSS, PSS, and HSS performance metrics) between the TANN2
models and MLR using the combination of Wilcoxon Sign Rank Tests (2 sided, 1 sample, 5% significant level) to
compare each TANN model to MLR, and the Nemenyi post-hoc analyses of pairwise combination of TANN2 models
(5% significance level).

The increase in data as compared to the previous study [53] likely contributed to performance
enhancements. Figure 3 depicts the change in performance of the 36-Y-1 12 h model as a
function of training data used. Note that performance improvement was positively correlated
with the quantity of training data. This adds credence to the argument that the amount of data
in [53] may have been insufficient. Further, note that for ≤1% of available data (~6000 instances),
performance decreased after the number of neurons in the hidden layer (Y) exceeded 100,
possibly due to the curse of dimensionality. Figure 4 depicts the relationship between an
overfitting metric, defined as AUCval − AUCtrain /AUCtrain, and the number of hidden layer

neurons. Note that overfitting generally increases with the number of hidden layer neurons
when the training set is reduced to ≤ 10 of the total available training data, and particularly
apparent when only 1 of available, or about 6000 cases. In [53], only a few thousand cases were
available. This partially explains why the original TANN models are relatively smaller (Y ≤ 35)
than the TANN2 models. The ability to obtain similar performance while training on a smaller
portion of the data set would have allowed substantial gains in computational efficiency. ANNs
were trained using MATLAB® R2015b on several multi-core personal computers (PCs) and on
a computer cluster with compute nodes with two Xeon E5 with 10 core processors each and
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The increase in data as compared to the previous study [53] likely contributed to performance
enhancements. Figure 3 depicts the change in performance of the 36-Y-1 12 h model as a
function of training data used. Note that performance improvement was positively correlated
with the quantity of training data. This adds credence to the argument that the amount of data
in [53] may have been insufficient. Further, note that for ≤1% of available data (~6000 instances),
performance decreased after the number of neurons in the hidden layer (Y) exceeded 100,
possibly due to the curse of dimensionality. Figure 4 depicts the relationship between an
overfitting metric, defined as AUCval − AUCtrain /AUCtrain, and the number of hidden layer

neurons. Note that overfitting generally increases with the number of hidden layer neurons
when the training set is reduced to ≤ 10 of the total available training data, and particularly
apparent when only 1 of available, or about 6000 cases. In [53], only a few thousand cases were
available. This partially explains why the original TANN models are relatively smaller (Y ≤ 35)
than the TANN2 models. The ability to obtain similar performance while training on a smaller
portion of the data set would have allowed substantial gains in computational efficiency. ANNs
were trained using MATLAB® R2015b on several multi-core personal computers (PCs) and on
a computer cluster with compute nodes with two Xeon E5 with 10 core processors each and
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256 gigabytes (GB) of memory. For the full data set (Table 1), training times varied from less
than 1 h to more than two days per batch of 50 ANNs when increasing the number of hidden
layer neurons from 1 to 200. When reducing the size of the training set to 1%, training times
decreased to less than 3 min for each Y case (not shown.) evaluated. Reducing the size of the
training set to 10% of the full set decreased training times by about one order of magnitude
for each Y case.

Figure 3. 12 h 36-Y-1 TANN performance versus hidden layer neuron quantity (Y) as a function of the percentage of
total training data available.

Figure 4. 12 h 36-Y-1 TANN overfitting index versus hidden layer neuron quantity (see text).

With regard to data set size and composition, it was hypothesized that performance gains may
be obtained when artificially increasing the proportion of positive targets (CTG lightning
strikes) in the training set. All possible inputs were included and the total number of training
cases was maintained constant with positive and negative cases randomly selected (with
replacement) to create target vectors with 5, 10, 25, and 50% of CTG lightning strikes. Sub-
stantial increases in performance were obtained for the training sets for all prediction lead
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times; Figure 5 depicts the 12 h prediction example. Maximum PSS increased progressively
while increasing proportion of lightning strikes in the data set. However, as the percent of
positive targets was raised, the performance over the 2007–2008 independent testing de-
creased. Efforts are continuing to further modify the training of the TANN to improve
performance.

Figure 5. 12 h 36-Y-1 TANN performance versus hidden neuron quantity (Y) as a function of the proportion of positive
target (CG lightning) data in the training set.

7. Conclusion

We presented here the results of an ANN approach to the post processing of single determin-
istic NWP model output for the prediction of thunderstorms at high spatial resolution, 9, 12,
and 15 h in advance (TANN2.) ANNs were selected to take advantage of a large data set of
over 1 million cases with multiple predictors and attempt to capture the complex relationships
between the predictors and the generation of thunderstorms. This study represents an
adjustment to a previous ANN model framework, resulting in the generation of a significantly
larger data set. The larger data set allowed for more complex ANN models (by increasing the
number of neurons in the hidden layer). Three groups of TANN2 model variants were
generated based on two filtering-based feature selection methods (designed to retain only
relevant and non-redundant features) and one group based on models calibrated with all
predictors.

The skills of these TANN2 models within each of the three 400-km2 boxes were substantially
improved over previous work with the improvements attributed to the increase of the size of
the data set. TANN2 model performance was compared to that of NWS operational forecasters
and to MLR models. Results regarding the best-performing classifiers per prediction hour and
box were mixed. Several attempts were made to further improve model performance or
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decrease training time. Training the models using a small fraction of the data set reduced model
calibration time yet resulted in lower performance skill. Altering the target by artificially
boosting the proportion of positive outcomes (lightning strikes) resulted in substantial
performance improvements over the training sets but did not lead to substantial improvements
of performance on the independent 2007–2008 cases.

Given that the atmosphere is chaotic, or deterministic with highly sensitive dependence on the
initial condition, one future research plan includes the prediction of thunderstorms by the post-
processing of single deterministic NWP model output using ANN models that account for
chaotic systems [79]. Such a strategy would be an alternative to the state of the art practice of
using NWP model ensembles to account for the sensitive dependence on the initial condition.
In addition, another plan involves the development of ensemble ANN models [80]. Specifically,
an optimal TANN prediction can be developed by integrating output from 50 unique TANN
models.

Appendix A

The total mean mass of the atmosphere: 5.1480 × 1021g [81]

Total mol of dry air: 5.1480 × 1021g × 128.97gmol−1 = 1.777 × 1020mol
Total molecules of dry air: 1.777 × 1020mol × 6.02214 × 1023mol−1 = 1.0701 × 1044molecules
(Mass of dry air: 28.97gmol−1; Avogadro’s number: 6.02214 × 1023mol−1)

Appendix B

Version 1.04 of the HRRR uses the Advanced Research WRF (ARW) dynamic core within the
WRF modeling framework (version 3.4.1 WRF-ARW). The HRRR uses GSI 3D-VAR data
assimilation. With respect to parameterizations, the RRTM longwave radiation, Goddard
shortwave radiation, Thompson microphysics (version 3.4.1), no cumulus/convective param-
eterization, MYNN planetary boundary layer, and the rapid update cycle (RUC) land surface
model [33].

Appendix C

At any given time, only one NWP model was utilized in the TANN. Yet, three different
modeling systems were used, each during a unique time period—the hydrostatic Eta model
[82] (1 March 2004 to 19 June 2006), the Weather Research and Forecasting Non-hydrostatic
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Mesoscale Model (WRF-NMM) [83] (20 June 2006 to 30 September 2011), and the NOAA
Environmental Modeling System Non-hydrostatic Multiscale Model (NEMS-NMMB) (Octo-
ber 2011 to December 2013.)

Appendix D

NWS operational forecasts were obtained from the NWS National Digital Forecast Database [96]
(NDFD) [96], a database of archived NWS forecasts; the forecasts are written to a 5-km
coterminous USA (CONUS) grid (or to 16 pre-defined grid sub-sectors) and provided to the
general public in Gridded Binary Version 2 (GRIB2) format [97]. The forecasts for most of the
286 boxes (Figure 1) originated from the NWS Weather Forecast Office (WFO) in Corpus
Christi, Texas (CRP) in the USA.

Appendix E

The following are three examples to explain how the “best performers” where determined in
Tables 12 and 13.

Example 1: Table 12 (Determining the best performers between the three TANN model
variants and NDFD) Box 238 Prediction Hour 9 ORSS: Step 1: Based on the Wilcoxon Sign
Rank Test, the performer with the largest ORSS value was TANN 2-60-1, and that value (0.98)
was statistically significantly larger than the corresponding NDFD value (0.93) (Table 8). Step
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Test, the performer with the largest PSS value was MLR, and that value (0.68) was statistically
significantly greater than the corresponding PSS values from each of the three TANN variants
(Table 10.) Thus, the best performer is MLR. No additional steps are required.
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Abstract

In this study, particulate matter (PM), total suspended particulate (TSP), PM10, and
PM2.5 fractions) concentrations were recorded in various cities from south of Romania
to build the corresponding time series for various intervals. First, the time series of each
pollutant were used as inputs in various configurations of feed-forward neural networks
(FANN) to find the most suitable network architecture to the PM specificity. The outputs
were evaluated using mean absolute error (MAE), mean absolute percentage error
(MAPE), root mean square error (RMSE), and Pearson correlation coefficient (r) between
observed series and output series. Second, each time series was decomposed using
Daubechies wavelets of third order into its corresponding components. Each decom-
posed component of a PM time series was used as input in the optimal feed-forward
neural networks (FANN) architecture established in the first step. The output of each
component was re-included to form the modeled series of the original pollutant time
series.

The final step was the comparison of FANN outputs with wavelet-FANN results to
retrieve the wavelet utilization outcomes. The last section of the study describes the
ROkidAIR cyberinfrastructure that integrates a decision support system (DSS). The DSS
system  uses  artificial  intelligence  techniques  and  hybrid  algorithms  for  assessing
children’s exposure to the pollution with particulate matter, in order to elaborate PM
forecasted values and early warnings.

Keywords: air pollution, wavelet transformation, batch-learning algorithm, respirato-
ry health, cyberinfrastructure
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1. Air pollution with particulate matter in urban areas

Quantifying the human exposure to air pollutants is a challenging task because air pollution
is characterized by high spatial and temporal variability. The atmospheric physicochemical
parameters of interest from the point of view of air pollution in urban areas are carbon
monoxide (CO), sulfur dioxide (SO2), nitric oxide (NO), nitrogen dioxide (NO2), various
fractions of particulate matter (PM10, PM2.5, PM1, and UFPs or ultrafine particles), ozone (O3),
volatile organic compounds (VOCs), and polycyclic aromatic hydrocarbons (PAHs). The levels
of these parameters are significantly influenced by meteorological factors (such as speed and
direction of wind, precipitations, temperature, relative humidity, and solar radiation), seasonal
and diurnal fluctuations, geographical factors (e.g., local topography, buildings), emission
sources i.e., industrial activities and traffic in the area, as well as the air mass trajectories (e.g.,
long-range transport of pollutants).

Class Description Size (in diameter)

TSP Airborne particles or aerosols that constantly enter the atmosphere from

many sources having below 100 μm are collectively referred to as total

suspended particles (TSP). TSP is assessed with high-volume samplers.

Below 100 microns (<100

μm)

Large

particulates

Particles are retained by the nasopharynx area. Over 10 microns (>10 μm)

PM10 Particulates that can be inhaled below the nasopharynx area (nose and

mouth) and are thus called inhalable particulates (coarse fraction).

Below 10 microns (0–10 μm)

PM2.5 Fine particulates travel down below the tracheobronchial region, that is,

into the lungs (fine fraction).

below 2.5 microns (0–2.5

μm)

UFP Ultrafine particulates can penetrate into the deepest parts of lungs and

can be dissolved into blood (ultrafine fraction).

below 0.1 microns (0–0.1

μm)

The most hazardous size classes to humans are PM2.5 and UFP as they penetrate into the lungs and can even be
dissolved into the blood.

Table 1. Airborne particulate matter classification depending on particle size [8].

In many urban agglomerations around Europe, the concentrations of airborne particles, NOx,
and O3 exceed at least occasionally the limit or target values. Therefore, air pollution control
focuses mostly on the surveillance of the above-mentioned pollutants [1]. Urban agglomera-
tions are areas of increased emissions of anthropogenic pollutants into the atmosphere having
adverse health effects on population.

Consequently, a major issue of environmental policy at regional level is the reduction of their
concentrations in the ambient air [2].

Particle sizes range from a few nanometers up to more than 100 μm, and depending on particle
size, there are several classes of particles (Table 1). However, epidemiological studies have
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shown that the most hazardous size classes to human health are PM2.5 and UFP, as they
penetrate into the lungs and can even enter into the blood following the gas exchange. Diseases
caused by UFP exposure primarily relates to lung cancer and heart disorders. Since the
measurement of UFP is a difficult task requiring sophisticated equipment, one can monitor the
submicrometric fraction that includes UFP using a reliable optical system, for example,
Dusttrak DRX 8533 [3].

In the recent years, the most common size fraction that is usually monitored in the national air
quality infrastructures at large scales in urban areas is PM2.5. Recent long-term studies show
the associations between PM and mortality at levels significantly below the current annual
WHO air quality guideline level for PM2.5, that is, 10 μg/m3 (WHO, 2013).

The issue of studying the fine particulate matter is very complex and has many unknown
variables mainly due to the multitude of sources from which it directly originate, as well as
due to the physicochemical transformations that occur in the atmosphere, resulting in the
formation of secondary PM2.5 particulates [4–6]. Other major setbacks are the difficulties of
compliance assessment and the setup of measurement methods equivalence. Furthermore, the
methods of PM2.5 measurement are still in the development period and the reference method
was recently revised in EN 12341: 2014 standard [7].

2. Forecasting of particulate matter using neural networks

The analysis of environmental processes involves highly complex phenomena, random
variations of parameters, and difficulty to perform accurate measurements in certain situa-
tions. In these conditions, the available data are incomplete, imprecise, and current applied
models require further improvements.

Measuring and forecasting of atmospheric conditions is important for understanding the
processes of formation, transformation, dispersion, transport, and removal of the pollutants.
Reliable overall estimates regarding the identification of sources, effects on mixing, transfor-
mation, and transportation support the control of air quality and the implementation of
preventive actions to reduce the anthropogenic emissions [8].

The performance of environmental management can be improved using forecasting tools of
the potential pollution episodes that can affect the population from inner and surrounding
areas where the episode might occur. Prediction of the evolution of an atmospheric parameter
can be done for short term (1 h, 1 day, 1 month) or long term (1 or more years).

The interest in improving the forecasting performances of time series algorithms and models
in air pollution studies has considerably grown. The applied methods may vary from statistical
methods, artificial intelligence (AI) techniques, and probabilistic approaches to hybrid
algorithms and complex models. The final purpose is to supplement monitored data and/or
to complete the missing values in the time series of air pollutants.

The field of statistics, which deals with the analysis of time dependent data, is called time series
analysis (TSA). One of the most widespread types of processing is the time series forecasting.

Analyzing the Impact of Airborne Particulate Matter on Urban Contamination...
http://dx.doi.org/10.5772/63109

291



Many of these techniques are used in practice. We can mention, for example, random walks,
moving averages, trend models, seasonal exponential smoothing, autoregressive integrated
moving average (ARIMA) parametric models, Boltzmann composite lattice, etc.

Some of the traditional statistical models such as the moving average, exponential smoothing,
and ARIMA model are linear techniques, which have been in the past the main research and
application tools in air pollution research. Predictions of future values are constrained to be
linear functions of past observations, under the assumption that the data series is stationary
[9]. The general model ARIMA introduced by Box and Jenkins [10] involves the autoregressive
and moving averages parameters, and explicitly includes differentiations in the formulation
of the model. Three types of parameters are required in the model as follows: autoregressive
parameter; differentiation passes, and moving averages parameters [10]. The ARIMA model
assumes that a parametric model relating the most recent data value to previous data values
and previous noise gives the best forecast for future data. However, one weakness of the
ARIMA model resides in the assumption that the examined time series is stationary and linear,
and therefore has no structural changes [9].

Air pollutants have a random evolution, which requires non-deterministic approaches.
Advantages of neural computing techniques over conventional statistical approaches rely on
faster computation, learning ability, and noise rejection [11]. Artificial neural networks (ANN),
for example, succeeded to give good results for time series processing when the data present
noise and nonlinear components. Their capacity of learning and generalization recommend
them as valuable tools in a wide area of applications. The most popular architecture used in
practice is the multilayer feed-forward neural network. Their processing units (neurons) are
organized in layers and there exist only forward connections (i.e., their orientation is from the
input layer toward the output). This type of networks started to be extensively used in the late
1980s when the standard back-propagation algorithm was introduced. Since that time, the
multilayer feed-forward ANNs had a large applicability in various domains, that is, financial,
health, meteorology, environmental protection, etc.

The research has been oriented to find faster algorithms for training the network and to provide
algorithms to automate the design of an optimal network topology for a specific problem. We
can mention the standard back-propagation with momentum or with variable learning rate,
the adaptive Rprop, or algorithms based on the standard numerical optimization techniques
(Fletcher-Powel, conjugate gradient, quasi-Newton algorithm, Levenberg-Marquardt, etc.).

Rprop algorithm introduced by Riedmiller and Braun [12] is a supervised batch learning which
accelerates the training process in the flat regions of the error function and when the iterations
get nearby a local minimum. This algorithm allows different learning rates for each weight.
These rates are changed adaptively with the change of sign in the corresponding partial
derivative of the error function. They change progressively but without getting out of an
initially prescribed interval. The algorithm is described by four parameters denoted by η+, η−,
Δmax and Δmin. The first two parameters give the increasing and decreasing factor for adjusting

the update size and they are chosen such that 0 < − < + < 1 . The size step of the update is
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bounded by Δmin and Δmax . The following values of the parameters were used in our tests:+ = 1.25, − = 0.5, Δmax = 50, Δmin = 0 [13].

Quickprop is a batch training algorithm introduced by Fahlman [14], which takes in consid-
eration the information about the second-order derivative of the performance error function.
Literature showed that Quickprop is a particular case of the multivariate generalization of the
secant method for nonlinear equation [15]. The local minimum of the batch error function
reached a critical point that is a zero of the gradient [13]. In practice, Newton’s iteration is
replaced by a quasi-Newton iteration, which uses an approximate of the Jacobian and saves
the involved amount of computation. The approximation of the Jacobian by a diagonal matrix
with its entries computed with finite difference formulas proves that Quickprop belongs to
this category of quasi-Newton iterations. Its convergence is not anymore quadratic, but it
remains linear in the vicinity of the solution. We have used the same value (equal to 1.75) for
the maximum growth factor denoted by µ in [14], in all our tests with Quickprop algorithm.

3. Experimental setup

We used the resources of an AI forecasting system called RNA-AER [13] for the domain of air
pollution forecasts in urban regions. RNA-AER stands for the Romanian abbreviation of ANN
for air pollution. This is a part of a complex system for PM2.5 forecasting based on various
techniques of artificial intelligence (multi-agents, knowledge base system, ANNs, and neuro-
fuzzy) and that is designed to analyze the pollution level of air within ROkidAIR system (http://
www.rokidair.ro/en) [16]. A feed-forward neural network with a single hidden layer was used
to perform the tests presented in this work (Figure 1).

Figure 1. Example of feed-forward artificial neural network with one hidden layer.
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Figure 2. Front panel of the RNA-AER software with the feed-forward ANN configuration settings, error analysis, and
observed and simulated time series.

The activation function used for the hidden and output layers was the symmetric sigmoid
function (tanh). Since this function transforms the real axis into the range of (-1,1), the data
were normalized before their use and transformed back in their real values after simulation.

In the training stage, we used various learning algorithms, but the most satisfactory results
were obtained with Rprop and Quickprop. The application offers a friendly user interface from
which one may choose various parameters that describe the network and the training algo-
rithm. The program takes the raw data from one column text file and applies the necessary
transformations in the preprocessing stage. After training, the application tests the network
on the validation set of samples and shows the error. Then, the user is able to see the graphics
for the evolution of the error in the training process and the observed and forecasted data
(Figure 2). Best results were obtained with 4 or 6 units in the input layer, 6 neurons in the
hidden layer and 1 output neuron. The output represents the one value ahead forecasted data.
The network training comprised four learning algorithms. The first two were given by the
batch and incremental implementations of the standard back-propagation learning [17]. These
standard algorithms were tested with different values of the learning rate and momentum.
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The other two algorithms were the resilient back-propagation Rprop and Quickprop. In this
study, we present only the Rprop and Quickprop algorithms, which provided better results.

3.1. Steps for the development of a feed-forward neuronal model (FANN)

The use of raw data may rarely give satisfactory outputs. In this case, the training of the ANN
will catch only general properties of the data series without being able to identify character-
istics that are more refined. Therefore, a preprocessing step is often required in which the initial
data are transformed such that the new data series eliminates some redundant characteristics
from the analysis (e.g., interpolation, smoothing, wavelet decomposition, etc.).

The resulted series is then used to extract the required samples for training the network. Since
our goal was to obtain one value ahead forecasting, each sample had the form𑨒𑨒 𑨒𑨒 𑨒𑨒 + 1, 𑨒𑨒 𑨒𑨒 𑨒𑨒 + 2,…, 𑨒𑨒, 𑨒𑨒 + 1  , and the whole set of samples was obtained by moving

window technique. Here, 𑨒𑨒 + 1 represents the forecasting data while the other numbers are

the corresponding inputs. Three-fourth of this set was used for training, while the rest was
used in the validation process.

Inputs: particulate matter measurements of various PM fractions made in a certain default time
window; outputs: one-step-ahead forecast of the PM pollutant.

Step 1. Data preprocessing. This stage involves the data processing, elimination of incomplete
records, data interpolation to complete the missing values in the time series, data normalization
validated by experts, and their redirection so that the database is compatible with the software
used for forecasting.

Step 2. Establishing the method of avoiding the overtraining of the ANN. A common method is to
divide the database into three sets of data: one for training (e.g., 75%), one for validation (e.g.,
15%) and another one for testing (e.g., 15%). In some cases, the proportions that include the
data in one of the datasets differ slightly around the value of 70–80% for the training set, 18–
28% for the validation, and about 2% for the testing set. Alternatively, the cross-validation with
10 sets—9 sets used for training and the 10th for validation might be considered. This process
is repeated until each of the 10 sets is used for validation.

Step 3. Setting the ANN architecture. This involves the establishing of the number of nodes in
the input layer (optimal window time for the next value forecast of the pollutant), the number
of nodes in the hidden layer, activation functions, etc.

Step 4. Adjustment of training parameters. The optimal number of epochs for network training,
the learning rate, and momentum parameter are established experimentally, avoiding the over-
training of the network or an undertrained situation.

Step 5. Network training taking into account the parameters established in step 4 and step 5.

Step 6. Validation of the resulted network architecture.

Step 7. Testing of the ANN.
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Step 8. Analysis of the ANN performances. At this stage, statistical parameters can be used such
as the correlation coefficient between variables, mean absolute error (MAE), root mean square
error (RMSE), the training error (MSE), and mean absolute percentage error (MAPE). The
values of these parameters can be compared with the conventional limits established in the
literature and those obtained with other models developed for forecasting the amount of
particulate matter fractions.

The following tests present how different parameters, which describe the neural network
model, affect the accuracy of the forecasted data. The topology of the neural network is
denoted as n 1 –n 2 –n 3, where n 1 is the number of nodes in the input layer, n 2 is the number
of nodes in the hidden layer, and n 3 is the number of nodes in the output layer. Since the
training is sensitive to the initial values of the weights, 10 tests for each algorithm were
performed and the mean of the resulted values was considered for all tables provided.

4. Results and discussion

4.1. Analysis of total suspended particulates time series

In the first test, we present the monthly average concentrations values of total suspended
particulate (TSP) recorded between 1995 and 2006 in Targoviste, Romania. During that period,
TSP often exceeded the limit value (75 μg/m3) and the city was considered as a PM risk area
at national level due to emissions from metallurgical industries. Later on, Romanian technical
norms replaced the earlier TSP air quality standard with a PM10 standard.

We compared various (p, d, q) setups of ARIMA model [10] to identify the statistical model
with the smallest magnitude of the errors during the estimation period. ARIMA (4,0,3)
presented the smallest MAE and MAPE. A significant relationship (p < 0.001) with a correlation
coefficient of 0.8 was noticed between the ARIMA (4,0,3) forecasted variables and observed
data [9].

The tests performed with the feed-forward neural network using the TSP observed series
provided good forecasting results with the Quickprop (4,6,1) algorithm. The correlation
coefficient of ANN Quickprop (4,6,1) indicated a strong relationship between the forecasted
variables and observed data (Table 2).

Indicator ARIMA statistical model (4,0,3) ANN model (4,6,1)

Quickprop

ANN model (4,6,1)

Incremental

ANN model (6,6,1)

Rprop

r 0.801 0.946 0.779 0.652

Table 2. Correlation coefficients of forecasted/observed series of the ARIMA model and ANN algorithms using the
time series of total suspended particulates (TSP) concentrations in Targoviste city.

Artificial Neural Networks - Models and Applications296



Step 8. Analysis of the ANN performances. At this stage, statistical parameters can be used such
as the correlation coefficient between variables, mean absolute error (MAE), root mean square
error (RMSE), the training error (MSE), and mean absolute percentage error (MAPE). The
values of these parameters can be compared with the conventional limits established in the
literature and those obtained with other models developed for forecasting the amount of
particulate matter fractions.

The following tests present how different parameters, which describe the neural network
model, affect the accuracy of the forecasted data. The topology of the neural network is
denoted as n 1 –n 2 –n 3, where n 1 is the number of nodes in the input layer, n 2 is the number
of nodes in the hidden layer, and n 3 is the number of nodes in the output layer. Since the
training is sensitive to the initial values of the weights, 10 tests for each algorithm were
performed and the mean of the resulted values was considered for all tables provided.

4. Results and discussion

4.1. Analysis of total suspended particulates time series

In the first test, we present the monthly average concentrations values of total suspended
particulate (TSP) recorded between 1995 and 2006 in Targoviste, Romania. During that period,
TSP often exceeded the limit value (75 μg/m3) and the city was considered as a PM risk area
at national level due to emissions from metallurgical industries. Later on, Romanian technical
norms replaced the earlier TSP air quality standard with a PM10 standard.

We compared various (p, d, q) setups of ARIMA model [10] to identify the statistical model
with the smallest magnitude of the errors during the estimation period. ARIMA (4,0,3)
presented the smallest MAE and MAPE. A significant relationship (p < 0.001) with a correlation
coefficient of 0.8 was noticed between the ARIMA (4,0,3) forecasted variables and observed
data [9].

The tests performed with the feed-forward neural network using the TSP observed series
provided good forecasting results with the Quickprop (4,6,1) algorithm. The correlation
coefficient of ANN Quickprop (4,6,1) indicated a strong relationship between the forecasted
variables and observed data (Table 2).

Indicator ARIMA statistical model (4,0,3) ANN model (4,6,1)

Quickprop

ANN model (4,6,1)

Incremental

ANN model (6,6,1)

Rprop

r 0.801 0.946 0.779 0.652

Table 2. Correlation coefficients of forecasted/observed series of the ARIMA model and ANN algorithms using the
time series of total suspended particulates (TSP) concentrations in Targoviste city.

Artificial Neural Networks - Models and Applications296

Figure 3. Comparison of monthly averages of total suspended particulates observations vs. the ARIMA (4,0,3) and
Quickprop (4,6,1) simulations in Targoviste city (1995–2006) [9].

The ANN Quickprop (4,6,1) model presented a higher correlation coefficient (r = 0.94) than
ARIMA (4,0,3) model. The neural network prediction algorithm provided a better fit to the
TSP measured time series (Figure 3). Consequently, we observed that the use of a proper
configuration of ANN could provide better results for TSP prediction than linear statistical
models [9].

4.2. Analysis of PM10 time series

In the next test, we used daily time series of PM10 recorded by an optical analyzer in Targoviste
city. We present a case with a time series of 101 values to test the influence of a short time series
on the efficiency of the training.

Figure 4. Observed and forecasted concentrations of PM10 (2-4-1) and PM10 (6-4-1) ANN configurations [13].
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ANN Rprop Quickprop

Network configuration MSE

Training data

MSE

Validation data

MSE

Training data

MSE

Validation data

2-4-1 0.00993 0.01095 0.01153 0.00866

4-4-1 0.00498 0.01659 0.00957 0.00950

6-4-1 0.00412 0.02069 0.00881 0.00949

8-4-1 0.00314 0.02285 0.00738 0.01368

Table 3. Dependence of training and validation errors with various topologies of feed-forward artificial neural network
using short PM10 time series.

Figure 4 presents the graphics for the utilization of 2 and 6 neurons in the input layer.

We observed that the number of network inputs has a major influence over the forecasting
performances. Table 3 shows how the training error depends on the number of network inputs.
For each case, we used the same number of values, that is, 80. Increasing the number of network
inputs results in the decrease in the number of testing samples. Yet, the table shows an increase
in the MSE of the validation data. This suggests that increasing the number of input neurons
will improve the capability of the network to have a better response for the data close to ones
used in the training process. On the other hand, the network loses its generalization abilities.

Table 4 shows how the network training and testing depend on the number of training
samples. The selected network topology was 2-4-1.

The error of training data decreases with the increase in the number of samples, while the error
of validation data increases for both tested algorithms.

ANN Rprop Quickprop

No of training samples MSE

Training data

MSE

Validation data

MSE

Training data

MSE

Validation data

70 0.01060 0.00968 0.01242 0.00748

80 0.00991 0.01093 0.01151 0.00864

90 0.00962 0.01306 0.01075 0.01270

Table 4. Dependence of training and validation errors with the number of samples used in training a feed-forward
artificial neural network (2-4-1).
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Figure 5. Plots of observed PM10 time series with daily averages from two automated stations i.e. PH-1 and PH-3 locat-
ed in Ploieşti city in 2013.

Figure 6. Decompositions of PM10 time series recorded at PH-1 and PH-3 automated stations in four components i.e.
A3, D1, D2, and D3 using Daubechies wavelets of third order.
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4.3. Analysis of PM10 time series

In this test, the daily averaged PM10 time series recorded at two automated stations located in
Ploieşti city in 2013, that is, PH-1 and PH-3 were analyzed using the method of wavelet
processing described in [11]. Data gaps (missing values 4 at PH-1 and 15 at PH-3) were
interpolated based on existing measured values (Figure 5). Each air pollutant series (n = 365
values) was decomposed using the MATLAB Wavelet Toolbox in four components, that is, A3,
D1, D2, and D3 using Daubechies wavelets of third order (Figure 6).

Automated station for monitoring air quality PH-1 (F) PH-1 (WF) PH-3 (F) PH-3 (WF)

Training data MSE 0.0098 A3: 0.00099

D1: 0.00355

D2: 0.00099

D3: 0.00099

0.0067 A3: 0.00096

D1: 0.00289

D2: 0.00104

D3: 0.00099

Validation data MSE 0.0312 A3: 0.00053

D1: 0.00677

D2: 0.00335

D3: 0.00274

0.0498 A3: 0.00263

D1: 0.01225

D2: 0.00238

D3: 0.00214

RMSE 7.7 3.4 9.9 4.4

MAE 5.5 2.5 6.8 3.2

Pearson coefficient (r) 0.78 0.96 0.75 0.95

Forecasted value (μg m-3) 33.2 36.7 56.8 61.5

Observed value (μg m−3) 39.9 65.6

Studentized residuals >3.0 6 4 10 5

Table 5. Averages of 10 validation tests resulted from the Rprop (6-4-1) application to PM10 time series recorded in
Ploiesti vs. Daubechies db3 wavelet—Rprop (6-4-1) results after recomposing the series; F—Rprop FANN, WF—
Daubechies db3 wavelet—Rprop FANN.

The components resulted from decomposition of time series (A3, D1, D2, and D3) was used as
input in an optimal FANN architecture established prior to this analysis, that is, Rprop (6-4-1).
The simulated FANN output of each component was recomposed to form the modeled series
of the original pollutant time series and the network performance was analyzed using MSE,
MAE, RMSE, and r. The comparison of outputs when FANN is solely used with wavelet-FANN
results allowed the evaluation of wavelet contribution to the improvement of forecasting
abilities [11].

The application of Daubechies db3 wavelet as a decomposing preprocessor of daily averages
time series has significantly improved the out-of-sample forecasted values (Table 5). The
results showed that the exclusive use of Rprop (6-4-1) configuration was less fitted to the
observed data at both stations. Wavelet preprocessing followed by the individual training of
resulted components has substantially increased the r coefficient from 0.7 to 0.9 and decreased
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the error indicators for both time series as compared to the exclusive use of FANN. Further-
more, the forecasted values were closer to the corresponding real observations.

Figure 7. Plots of residuals resulted after correlating the daily averages of PM10 (μg m−3) and Rprop FANN (6-4-1) mod-
eled data, and Daubechies db3 wavelet—Rprop WFANN (6-4-1) data, respectively, recorded at two automated moni-
toring stations in Ploiesti.

A reduction of Studentized residuals number greater than 3.0 was observed using the wavelet
processing of data from both stations compared to FANN (Figure 7), that is, from 6 Studentized
residuals to 4 (PH-1), and from 10 to 5 (PH-3).

These aspects suggested that wavelet integration in processing of daily averages of PM10 series
provided significant improvements of the forecasting ability recommending the use of the
hybrid model. Compared to these results, the application of the hybrid model to hourly
recorded PM10 time series at other Romanian stations showed also the improvements of
correlation coefficient. However, the wavelet processing increased errors and provided more
potential outliers [11]. Wavelet integration did not provide computational benefits taking into
account the increase in time required for data processing. On the other hand, application of
Rprop FANN to hourly recorded PM10 produced overfitting. For improved results when neural
network is solely used, overfitting is required to be adjusted by using additional techniques,
for example, early stopping [18], dropout [19], etc.

We observed in our study that wavelet integration diminished the overfitting tendencies.
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4.4. Analysis of PM2.5 time series

The section presents the results of Daubechies db3 wavelet—Rprop neural network (6-4-1)
modeling using PM2.5 time series of 24-h daily averaged concentrations recorded in Râmnicu
Vâlcea city, south-west of Romania at VL-1 monitoring station. We selected this station for tests
because VL-1 station was one of the two stations that recorded a substantial exceeding of the
annual limit value (25 μg/m3) at national level in 2012. The maximum value reached 149.13
μg/m3 and the annual geometric mean was 23.8 μg/m3.

Automated monitoring station in Ramnicu Valcea city (VL-1) 2012 (F) 2012 (WF)

RMSE 6.3 26.1

MAE 3.8 16.3

MAPE 31.6 50.4

Pearson coefficient (r) 0.86 0.93

Studentized residuals > 3.0 7 7

Table 6. Averages of 10 validation tests resulted from the Rprop (6-4-1) application to PM2. 5 time series recorded at
VL-1 station vs. Daubechies db3 wavelet—Rprop (6-4-1) results after recomposing the series; F—Rprop FANN, WF—
Daubechies db3 wavelet—Rprop FANN.

A significant increasing of the r coefficients was observed after the application of wavelet
preprocessing. RMSE, MAE, and MAPE showed higher values compared to the exclusive use
of Rprop configuration (Table 6). Both models overestimated the forecasted values in the last
quarter of time series. However, the fluctuations observed in the original time series were
simulated better by using Daubechies wavelets [11].

These results suggest that other models or algorithms with noise-filtering/smoothing proper-
ties may be applied in various stages of the simulation in conjunction with the Daubechies db3
wavelet—Rprop FANN utilization. The expected outcome would be a superior refining of the
initial PM2.5 forecasted values [11].

5. A cyberinfrastructure for the protection of children’s respiratory health
by integrating hybrid neural networks for PM forecasting—ROkidAIR

ROkidAIR cyberinfrastructure is currently developed in a European Economic Area (eea-
grants.org) research project to facilitate the protection of children’s respiratory health in two
Romanian cities, that is, Targoviste and Ploiesti.

Recent developments in the management of urban atmospheric environment demonstrated
the imperative need to ensure quick, efficient, and easy-to-understand information regarding
the status of air quality. The negative impact of air pollution on human health requires
improvements of contemporary systems for air quality management to reduce the human
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exposure to various pollutants. Providing full and comprehensive information concerning the
air quality is regarded as a mandatory service for citizens in the current air quality management
systems. The authorities should establish an appropriate framework, especially in urban areas,
where adverse health effects caused by poor air quality are more pronounced, to ensure the
integration of relevant data regarding the maintaining of air quality at required standards. The
systems for air quality management need to be adapted to decision makers’ requirements (in
order to reduce the ambient air quality issues through adequate policies) and citizens (for early
warning and for providing useful recommendations). Aiming to reduce their exposure,
citizens should receive adequate information on the spatiotemporal variation of air quality or
the forecasts on short, medium, and long term. To achieve this goal, it is necessary to collect,
integrate, and analyze data from multiple sources. Air quality forecast is one of the essential
elements of modern air quality management in urban areas. However, the efficiency of the
used forecasting methods is limited by the complex relationships between air quality, mete-
orological parameters, and specific characteristics of each study area. In addition, an important
issue that needs to be considered in choosing the forecasting method is the variation of the
input data quality. The methods to be used should be less sensitive to this factor [20]. Infor-
mation related to air quality in urban areas is obtained by using specific methods and tools for
processing the time series recorded by the monitoring stations. Mathematical methods and
tools can provide air quality forecasting, so that decision makers can act with preventive
measures that would "mitigate" or change the results of a foreseen critical pollution episode.
There is an increasing demand regarding the development of cyber-platforms that may
facilitate the air quality management providing real health benefits to the end user (e.g.,
ROkidAIR, http://www.rokidair.ro).

Figure 8. The architecture of the ROkidAIR system.

The main goal of the ROkidAIR project is to develop and deploy a monitoring network system
and an adjacent early warning structure that provide synthesized data concerning the PM2.5
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levels obtained from simplified but reliable monitoring micro-stations and AI forecasting
algorithms developed within the project . The architecture of the ROkidAIR system is pre-
sented in Figure 8. The ROkidAIR cyberinfrastructure is a pilot system, which is focused on
fine particulate matter effects on children’s health in two towns of Romania, that is, Targoviste
and Ploiesti. It provides early warnings concerning the PM levels, tailored to the end-user
requirements via several communication channels [3]. Collected time series obtained from the
self-developed monitoring network system, based on PM micro-stations, are preprocessed and
adapted to feed the forecasting module based on AI algorithms. All data are presented in a
dedicated geo-portal adapted to be used by smartphones and other portable equipment. The
main stream of information is transmitted both to the responsible authorities and to the
sensitive persons, who are registered in the system. The expert advises and recommendations
are transmitted via e-mails and SMSs to the registered users providing support for children’s
health management under the impact of air quality stressors and pressures. Early warnings
are developed in cooperation with pediatric specialists, which synthesize the most relevant
information concerning the protection of children’s health against air pollution threats. The
early warning data packages are also transmitted to the authorities (e.g., local EPAs—Envi-
ronmental Protection Agencies and DPH—Public Health Protection Directions) for informa-
tional purposes. The monitoring network comprises eight PM micro-stations (four in each city),
which are developed during the implementation of ROkidAIR project. These micro-stations
provide continuous PM monitoring data that are processed to be used as inputs in forecasting
algorithms based on AI. The raw data obtained from the eight micro-stations are also used in
other modules of the cyber-platform: the ROkidAIR web-based geographic information
systems (GIS) geoportal, and the decision support system (DSS) including the early warning
module. The DSS system uses artificial intelligence techniques (ANNs and predictive data
mining) and hybrid algorithms and models (Neuro-fuzzy ANFIS, and wavelet neural network,
WNN) for assessing children’s exposure to the pollution with particulate matter, in order to
elaborate forecasted values and early warnings [16].

In ROkidAIR AI model, forecasting knowledge is extracted by using ANFIS (generating the
fuzzy rules set), and other methods (e.g., a combination between some machine learning
techniques) on the specific datasets (continuous monitoring data, historical data, meteorolog-
ical data, and medical data). All the extracted forecasting rules and knowledge are included
in a forecasting knowledge base that provide expert knowledge (heuristics) for a faster and
optimal air pollution forecasting in a critical polluted area [21].

6. Conclusions

The contribution of artificial intelligence to the air quality monitoring systems under devel-
opment relates to evolutionary computing, which provides stochastic search facilities that can
efficiently assess complex spaces described by mathematical, statistical, neural network, or
fuzzy inference models applied to assess the population exposure to air pollution in urban
environments. Machine-learning techniques are currently contributing to the online air quality
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monitoring and forecasting. Statistical and neural modeling techniques can also provide
approximations to supplement results from computationally expensive analytic methods.

Significant results for PM data forecasting were obtained with Rprop (PM1010 and PM2.5), and
Quickprop (TSP) algorithms. The exclusive use of the ANN algorithms showed difficulties in
predicting pollutant peaks and limitations due to limited continuous observations and large
local-scale variations of concentrations. WNNs is an alternative to overcome these drawbacks
related to time series predictions by integrating a proper wavelet in the hidden nodes of WNNs
or as a preprocessing step. The results of numerical tests provided that the application of
wavelet transformation is a significant factor for improving the accuracy of forecasting. Further
investigations are required using hourly, daily, and monthly air-quality data from other
locations and regional level, by assessing and verifying the reliability, relevance, and adequacy
of ANN data forecasting. An important step for reliable air quality forecasting is the optimal
selection of ANN learning algorithm. The automation of this component is required to
optimize the informational fluxes and to facilitate the decision-making process.
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Abstract

The main artificial neural networks (ANN)‐based retrieval algorithms developed at the
Institute  of  Applied  Physics  (IFAC)  are  reviewed  here.  These  algorithms  aim  at
retrieving the main hydrological parameters, namely the soil moisture content (SMC),
the plant water content (PWC) of agricultural vegetation, the woody volume of forests
(WV) and the snow depth (SD) or snow water equivalent (SWE), from data collected by
active (SAR/scatterometers) and passive (radiometers) microwave sensors operating
from space. Taking advantage of the fast computation, ANN are able to generate output
maps of the target parameter at both local and global scales, with a resolution varying
from hundreds of meters to tens of kilometres, depending on the considered sensor. A
peculiar strategy adopted for the training, which has been obtained by combining
satellite measurements with data simulated by electromagnetic models (based on the
radiative transfer theory, RTT), made these algorithms robust and site independent. The
obtained  results  demonstrated  that  ANN  are  a  powerful  tool  for  estimating  the
hydrological parameters at different spatial scales, provided that they have been trained
with consistent datasets, made up by both experimental and theoretical data.

Keywords: microwave satellite sensors, soil moisture content, vegetation water con‐
tent, snow water equivalent, woody volume

1. Introduction

Nowadays, global phenomena such as climate warning, stratospheric ozone depletion and
troposphere pollution are threatening the long‐term habitability of the planet. The Earth is a
complex evolving system where regional as well as global processes at all spatial and temporal
scales are strongly interrelated. These include surface exchanges of water, energy, carbon and
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other bio‐geological processes, and exchange between land surface atmosphere, ocean and
ground water. The human activity further complicated all these processes, because it transforms
continuously the land surface to meet human needs associated with basic food production,
population expansion and economic development.

Consequently, an ever‐increasing interest in meteorological events and climate changes has
led to a greater focus on the study of hydrological processes and their dynamics. The hydro‐
logical cycle involves the circulation of water from ocean to water vapour through the
evaporation processes, the transformation of water vapour into precipitation and its return to
the cycle through infiltration and evapotranspiration again. However, considering the spatial
and temporal coverage needed to have reliable estimates, direct measurements of all the
parameters involved in the hydrological cycle are difficult and extremely expensive. This led
to an increasing interest for the observation from space, since it can meet the temporal and
spatial requirements for an operational monitoring of the parameters related to the hydrolog‐
ical cycle. Earlier initiatives, such as the launch of a number of satellites having on‐board
sensors dedicated to the Earth's parameters observation, have already developed long‐term
applications and provided fundamental contributions in understanding global and regional
ocean processes and enhancing land surface studies.

Among the instruments operating from space for the Earth surface observation, the sensors
operating in the microwave portion of the electromagnetic (e.m.) spectrum have a great
potential because these frequencies are capable of estimating some parameters of atmosphere,
vegetation and soil that cannot be observed in the visible/near‐infrared and thermal wave‐
length. Moreover, the scattering and emission at microwaves are related directly to the water
content of the observed target. Microwave sensors, which can be classified in active (real
aperture radar—RAR, and synthetic aperture radar—SAR), and passive (radiometers) are
therefore particularly suitable for monitoring the key parameters of the hydrological cycle. In
particular, these sensor represent a powerful tool for monitoring the soil water content or soil
moisture content (SMC), the vegetation biomass, expressed as plant water content (PWC) for
agricultural crops and woody volume (WV) for forests, and the snow depth (SD) or its water
equivalent (SWE).

SMC is one of the driving factors in the hydrological cycle, being able to influence the runoff,
the evapotranspiration, the surface heat fluxes and the biogeochemical cycles. The knowledge
of SMC and its dynamics is mandatory in a wide range of activities concerning the forecasting
of weather and climate, the prevention of natural disasters such as floods and landslides, the
management of water resources and agriculture‐related activities and many others. A huge
amount of experimental and theoretical studies on the SMC retrieval from microwave
acquisitions was therefore carried out since the late 1970s. The dielectric constant of soil (DC)
at microwave frequencies is strongly dependent on the water content of the observed soil. At
L‐band, for example, the large variation in real part of the dielectric constant from dry to
saturated soil results in a change of about 10 dB in radar backscatter and of 100 K in the
radiometric brightness temperature. An important component required in the soil moisture
inverse problem is the knowledge of the relationship between the soil dielectric constant to its
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moisture content: widely adopted empirical models for assessing such relationship are given
in [1, 2].

Snow is another driving factor of the hydrological cycle, since it is able to influence the Earth's
climate and its response to global changes. Snow is the main component of the cryosphere,
and its accumulation and extension are related to the global climate variations. The monitoring
of the snow parameters, and in particular SD and SWE, is essential for the forecasting of snow–
water runoffs (flash floods) and for the management of the water resources. Currently, satellite
microwave radiometers are employed for generating low‐resolution SD or SWE products at
global scale, while the operational mapping of snow at high resolution mainly rely with optical
sensors, being the microwave application still at the research stage for this application. In both
cases, the currently available snow products are based on the single sensors, and thus, the
temporal and spatial coverage is given by the sensor characteristics, which may not fulfil the
requirements for the operational use of remote sensing data in monitoring and management
of snow.

Vegetation cover on the Earth's surface is an important variable in the study of global changes,
since vegetation biomass is the most influential input for carbon cycle models. The frequent
and timely monitoring of vegetation parameters (such as vegetation biomass and leaf area
index) is therefore of vital importance to the study of climate changes and global warming.

The retrieval of the aforementioned parameters from active and/or passive microwave
measurements is nonetheless not trivial, due to the nonlinearity of the relationships between
radar and radiometric acquisitions and target parameters. Moreover, in general, more than
one combination of surface parameters (SMC, surface roughness—HSTD, PWC and so on)
give the same electromagnetic response. Thus, in order to minimize the uncertainties and
enhance the retrieval accuracy from remote sensing data, statistical approaches based on the
Bayes theorem and learning machines are widely adopted for implementing the retrieval
algorithms [3–5].

In this framework, the artificial neural networks (ANN) represent an interesting tool for
implementing accurate and flexible retrieval algorithms, which are able to operate with radar
and radiometric satellite measurements and to easily combine information coming from
different sources. ANN can be considered a statistical minimum variance approach for
addressing the retrieval problem, and, if properly trained, they are able to reproduce any kind
of input‐output relationships [6, 7].

During the training, sets of input data and corresponding target outputs are provided
sequentially to the ANN, which iteratively adjusts the interconnecting weights of each neuron,
in order to minimize the difference between actual outputs and corresponding targets, basing
on the selected learning algorithm.

Many examples of ANN application to inverse problems in the remote‐sensing field can be
found in literature, in particular concerning the retrieval of soil moisture at local scale from
SAR [8–10] or radiometric [11] observations. The comparison of retrieval algorithms carried
out in [9] demonstrated that ANN, with respect to other widely adopted statistical approaches
based on Bayes theorem and Nelder–Mead minimization [12], offer the best compromise
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between retrieval accuracy and computational cost. Other comparison between ANN,
Bayesian, SVM and other retrieval approaches can be found in [13–15]. All these works
demonstrated that the ANN are able to provide accuracy results in line with (or better than)
the other methods, with the advantages of a fast computation, that is mandatory for the online
processing of high‐resolution images, and the possibility of updating the training if new data
are available. The cited publications refer to the retrieval of soil moisture; however, these
considerations remain valid for the retrieval of the other parameters investigated here.

Basing the training on data simulated by forward electromagnetic models, namely models that
are able to simulate the microwave signal emitted or scattered by the target surface, the ANN
can be regarded as a method for estimating the hydrological parameters from satellite
microwave acquisitions through the inversion of the given model. Following this approach,
the ANN act for inverting the forward model, similarly to other physically based algorithms,
but without the approximations needed for an analytical inversion. Moreover, the additional
inclusion of experimental data in the training set allows retaining the advantages of the
experimental‐driven approaches in adapting the algorithm to the particular features of a given
test site [16].

The main advantages of this technique consist of the possibility of quick updating the training
with new datasets, thus adapting the algorithm to work on a given test area, but without losing
the accuracy on a larger scale. Moreover, the method has the capability of easily merging data
coming from different sources for improving the retrieval accuracy. The poor robustness to
outliers represents instead the main disadvantage of ANN: outliers are input data out of the
range of the training set. In such case indeed, the ANN may return large errors or fail com‐
pletely the retrieval, requiring therefore a ‘robust’ training, which has to be representative of
a variety of surface conditions as wide as possible.

Besides the other considerations, it should be remarked that the strategy adopted for setting
up and training the ANN is fundamental for obtaining a valid retrieval algorithm. An
inappropriate training can turn indeed the ANN from a powerful retrieval instrument into an
inadequate approach to the given problem. Some examples can be found in literature, in which
the training set is insufficient for defining all the interconnection weights of the complex
architecture proposed, or in which the architecture definition and the related overfitting and
underfitting have not been properly addressed. Another fundamental consideration is that
ANN are able to represent any kind of input–output relationships, and therefore, a deep
knowledge of the physic of the problem is mandatory for avoiding the risk of relating input
and output quantities that are instead completely uncorrelated, thus generating relationships
that have no physical basis.

In this work, a review of the main ANN‐based algorithms developed at IFAC for estimating
the soil moisture (SMC, in m3/m3), the water content of agricultural vegetation (PWC, in kg/
m2), the forest woody volume (WV, in t/ha) and the snow depth/water equivalent (SD, in cm,
and SWE, in mm) is presented. These algorithms take advantage of an innovative training
strategy, which is based on the combination of satellite measurements with data simulated by
electromagnetic models, based on the radiative transfer theory (RTT).
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2. Implementing and training the Artificial Neural Networks

The ANN considered in this work are feed‐forward multilayer perceptron (MLP), having two
or three hidden layers of nine to twelve neurons each between the input and the output. The
training was based on the back‐propagation learning rule, which is an iterative gradient‐
descent algorithm able to adjust the connection weights of each neuron, in order to minimize
the mean square error between the outputs generated by the ANN at every iteration and the
corresponding target values.

It should be noted that the gradient‐descent method sometimes suffers from slow convergence,
due to the presence of one or more local minima, which may also affect the final result of the
training. This problem can be solved by repeating the training several times, with a resetting
of the initial conditions and a verification that each training process led to the same conver‐
gence results in terms of R and RMSE, by increasing it until negligible improvements were
obtained.

2.1. Defining architecture

In order to define the optimal ANN architecture in terms of number of neurons and hidden
layers, the most suitable strategy is to start with a simple ANN architecture, generally with
one hidden layer of few neurons. These ANN are trained by means of a subset of the available
data, tested on the rest of the dataset, and the training and testing errors are compared. The
ANN configuration is then increased by adding neurons and hidden layers; training and
testing are repeated and errors compared again, until a further increase of the ANN architec‐
ture is found to have a negligible decrease of the training error and an increase in the test error.
This procedure allows defining the minimal ANN architecture capable of providing an
adequate fit of the training data, preventing overfitting or underfitting problems. NNs, like
other flexible nonlinear estimation methods, can be affected indeed by either underfitting or
overfitting. ANN configurations not sufficiently complex for the given problem can fail to
reproduce complicated data set, leading to underfitting. ANN configurations too complex may
fit also the noise, leading to overfitting. Overfitting is especially dangerous because it can easily
lead to predictions that are far beyond the range of the training data. In other words, the ANN
are able to reproduce the training set with high accuracy but fails the test and validation phases.

2.2. Selecting the transfer function

Another key issue for defining the ANN best architecture is in the selection of the most
appropriate transfer function: in general, linear transfer functions give less accurate results in
training and testing; however, they are less prone to overfitting and are more robust to outliers,
that is input data out the range of the input parameters included in the training set. Logistic
Sigmoid (logsig) and Hyperbolic Tangent Sigmoid (tansig) transfer functions are instead
characterized by higher accuracies in the training and test; however, they may lead to large
errors when the trained ANN are applied to new datasets. Logsig generates outputs between
0 and 1 as the neuron's net input goes from negative to positive infinity and describes the
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nonlinearity, g(a), as 1/(1 + e‐a). Alternatively, multilayer networks can use the tansig function,
tanh(a) = (ea‐e‐a)/(ea + e‐a).

2.3. Generating the training set

Nevertheless, besides these problems, the main constraint for obtaining good accuracies with
the ANN approach consists of the statistical significance of the training set, which shall be
representative of a variety of surface conditions as wide as possible, in order to make the
algorithm able to address all the situations that can be encountered on a global scale. The
datasets derived from experimental activities are in general site dependent and cannot be
representative of the large variation of the surface features that can be observed on a larger
scale. Therefore, a training set only based on experimental data is not sufficient for training
the ANN for global monitoring applications.

Figure 1. Strategy adopted for defining the raining and validation datasets, starting from the experimental data and
using the forwards e.m. models (after [16]).

By combining the experimental in situ measurements with simulated data obtained from the
e.m. models, it is possible to fill in the gaps of the experimental datasets and to better charac‐
terize the microwave signal dependence on the target parameter for a variety of surface
conditions as wide as possible. The consistency between experimental data and model
simulations can be obtained by deriving the range of model input parameters from the
available measurements. After defining the minimum and maximum of each parameter
required by the model, namely SMC, PWC, soil moisture, surface roughness (HSTD) and
surface temperature (LST), the input vectors are generated by using a pseudorandom function,
rescaled in order to cover the range of each parameter. Thousands of inputs vectors for running
the model simulations can be generated by iterating this procedure, thus obtaining datasets of
surface parameters and corresponding simulated microwave data for training and testing the
ANN. The flowchart of Figure 1 represents the main steps for generating the training from the
experimental data. The same procedure allows generating the independent dataset for
validating the ANN after training. In general, the available data are divided in two subsets
with a random sampling; the first subset is divided again in 60–20–20% for training, test and
validation phases, respectively, and the second subset is reserved for an independent test of
the algorithm. The random sampling of the dataset is reiterated 5–6 times, and the training is
repeated each time, in order to avoid any dependence of the obtained results on the sampling
process.
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This strategy has been successfully adopted for implementing and training the ANN‐based
algorithms that are presented in the following sections.

3. HydroAlgo ANN algorithm for AMSR‐E and AMSR2

The ‘HydroAlgo’ algorithm [11] applies the ANN for estimating simultaneously SMC, PWC
and SD from the acquisitions of the low‐resolution spaceborne radiometers, like the Advanced
Microwave Scanning Radiometer for the Earth observing system (AMSR‐E) [17], which is no
more operating, and its successor, AMSR2 [18]. We refer to [11] for a detailed algorithm
description. The main characteristic of the algorithm is the exclusive use of AMSR‐E/2 data,
taking advantage of the multifrequency acquisitions of these sensors. It includes a disaggre‐
gation procedure, based on the smoothing filter‐based intensity modulation (SFIM) technique
[19], which is able to enhance the spatial resolution of the output SMC product up to the
nominal sampling of AMSR‐E/2 (∼10 × 10 km2). The algorithm flowchart is represented in
Figure 2: it should be noted that the algorithm applies the already trained ANN to the input
data, without repeating the training for each new set of satellite acquisitions. The trained ANN
are generated once, saved and recalled for processing the available data. In particular, specific
ANN have been trained for each given output product, basing on training sets composed by
a combination of experimental data and simulations from e.m. models, obtained following the
scheme of Section 2.

Figure 2. HydroAlgo flowchart.
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3.1. SMC processor

The SMC processor was developed and tested using a set of several thousand of data, which
was obtained by combining the experimental data collected in Mongolia and Australia with
10,000 values of Tb simulated by the ‘tau‐omega’ model [20]. The experimental dataset was
provided by JAXA, within the framework of the JAXA ADEOS‐II/AMSR‐E and GCOM/
AMSR2 research programs.

The core of the algorithm is composed by two feed‐forward multilayer perceptron (MLP)
ANN, trained independently for the ascending and descending orbits, and using the back‐
propagation learning rule. Inputs of the algorithm are the brightness temperature at C‐band
in V‐polarization, the polarization indices (PI) at 10.65 and 18.7 GHz (X‐ and Ku‐bands),
defined as PI = 2 × (TbV ‐ TbH)/(TbV + TbH), and the brightness temperature at Ka‐band
(36.5 GHz) in V‐polarization. C‐band, that is the lowest AMSR‐E frequency, was chosen for its
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indices at X‐ and Ku‐bands are considered for compensating the effect of vegetation on soil
emission [21], and for flagging out the densely vegetated targets, where SMC cannot be
retrieved. The brightness temperature at Ka‐band, V‐polarization, was assumed as a proxy of
the surface physical temperature, to account for the effect of diurnal and seasonal variations
of the surface temperature on microwave brightness [22].

Figure 3. HydroAlgo SMC product validation (after [11]).

The SMC product validation on the Australian and Mongolian data, which were not used for
the training, resulted in a determination coefficient R2 = 0.8 (ANN output vs estimated SMC),
root‐mean‐square error RMSE = 0.03 m3/m3, and BIAS = 0.02 m3/m3 (Figure 3).

The peculiar characteristics of ANN allowed adapting this algorithm for working on given test
areas with a specific updating of the training process, which is devoted to maximize the
performances of the algorithm on the area, losing something of the algorithm capabilities for
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the global retrieval. Following this approach, it was possible to obtain the algorithm for the
SMC retrieval in central Italy, which was presented in [23]. In that work, HydroAlgo‐derived
SMC has been compared with simulated SMC data obtained from the application of a well‐
established soil water balance model (SWBM) [24] in central Italy (Umbria region), with the
aim of exploiting the potential of AMSR‐E/2 for SMC monitoring on a regional scale and in
heterogeneous environments too. For this application, the 10% of about 450,000 AMSR‐E
acquisitions collected over the test area and corresponding SMC values simulated by SWBM,
obtained with a random sampling, were added to the training set of the original HydroAlgo
implementation. The algorithm trained with this updated dataset was validated on the
remaining 90% of the available data, allowing an appreciable improvement of the accuracy
with respect to the original implementation. In detail, this ‘supervised’ approach allowed
obtaining an overall increase of the average R from 0.71 to 0.84 and a corresponding decrease
of RMSE from 0.058 to 0.052 m3/m3, with respect to the original implementation of HydroAlgo
applied to the same dataset.

3.2. PWC processor

The PWC processor was based on the well‐demonstrated sensitivity of the polarization
difference, expressed as the polarization index, at various AMSR‐E frequencies to PWC. Past
research has shown that the microwave polarization index (PI), defined as the difference of the
first two Stokes parameters (H‐ and V‐polarization) divided by their sum, especially at X‐ and
Ku‐bands, is directly related to τ and therefore to the seasonal changes in PWC and LAI.

It is generally known indeed that microwave emission, expressed as brightness temperature
(Tb), depends on canopy growth but also on plant geometry and structure. Therefore, Tb
temporal trends vary according to the vegetation type in terms of scatterer dimensions and
observation frequency. Tb tends to increase as the biomass of plants characterized by small
leaves and thin stems increases, whereas it has an opposite behaviour for crops characterized
by large leaves and thick stalks. On the other hand, the PI at the same frequency usually
decreases as the biomass of different vegetation types increases, resulting rather independent
on crop type [25, 26].

This allowed using PI at higher frequencies with the twofold purpose of compensating the
vegetation effect on soil emission at lower frequencies and of estimating directly the PWC.

The capabilities of ANN in merging different inputs into a single retrieval algorithm allowed
making synergistic use of PI at C‐, X‐ and Ku‐bands from the AMSR‐E acquisitions. In order
to implement, train and validate the algorithm, we identified a suitable test area in a wide
portion of Africa (0–20°N/16°–17°E), which extended from the Sahara desert to Equatorial
forest, and therefore included a wide range of vegetation types, biomass amount and land‐
scapes. The area was also chosen for the presence of large and homogeneous regions, which
allowed mitigating the effects related to the coarse resolution of AMSR‐E. Several AMSR‐E
swaths on the area have been collected and resampled on a fixed grid, in order to be repre‐
sentative of the entire seasonal cycle of vegetation. This process resulted in a dataset of about
10,000 radiometric acquisitions at the considered frequencies, from C‐ to Ka‐bands. Consid‐
ering the difficulties in obtaining ‘ground truth’ data of PWC for validating the algorithm on
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large or global scale, the validation was carried out referring to PWC values derived from NDVI
thanks to the relationship established by [22]. Although this relationship was initially devel‐
oped for corn and soybean crops, it can be considered valid for other types of vegetation too.

In detail, the ‘reference’ PWC was derived from NDVI data obtained from http://
free.vgt.vito.be/home.php, resulting from 10 days of SPOT4 acquisitions on the African
continent. These data were resampled on the fixed grid and compared with the corresponding
satellite acquisitions, in both ascending and descending orbits. Two different ANN have been
defined and trained independently, in order to better account for the large differences between
Tb data collected in ascending and descending orbits.

A subset of 15% of the data available was considered for generating the datasets for training,
testing and validating each ANN (60–20–20%, randomly sampled), and the remaining 85% of
data (about 8500 samples) was considered for the independent validation of the algorithm, to
which the result presented in Figure 4 is referred.

Figure 4. Validation results: PWC estimated by the algorithm as a function of the PWC derived from NDVI and consid‐
ered as ground truth.

The ANN optimization process resulted in an architecture with two hidden layers of 11 + 11
neurons, with a transfer function of type ‘tansig’. The validation returned encouraging results,
with a RMSE error on the PWC retrieval <1 kg/m2, and a correlation coefficient R = 0.97.

3.3. SD processor

As per the SMC processor, the implementation of the SD processor was based on a dataset
provided by JAXA and composed of AMSR‐E acquisitions and direct SD and air temperature
measurements collected in the eastern part of Siberia. The measurements covered a flat area
of about 20’ in latitude, 45’ in longitude, at an average altitude of 300 m asl, covered by low
vegetation. In this region, snow was generally present from the beginning of October to the
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end of May, with a depth that did not exceed 50 cm. The ground measurements were covering
seven winter seasons, from October 2002 to May 2009. By combining the AMSR‐E acquisitions
and the related direct measurements of SD and air temperature, it was possible to obtain a
dataset of 17,000 values for training and testing the ANN. As for the previously described
processors, two ANN have been developed and trained separately for the ascending and
descending orbits.

The validation was carried out on a different area of about 200 × 200 km located between
Finland and Norway, obtaining the following statistics: R = 0.88, RMSE = 9.13 cm and BIAS 
= ‐0.95 cm.

Figure 5. Validation results: SD estimated by the ANN algorithm as a function of the SD derived from ground meas‐
urements (after [26]).

The algorithm was then adapted for working on alpine areas, in which snow properties suffer
dramatic spatial variations that cannot be easily reproduced by spaceborne microwave
radiometers, due to their coarse spatial resolution. This limitation was overcome by setting up
a method for evaluating and correcting the effects of the complex orography, of the different
footprint in the different AMSR‐E channels, and of the forest coverage. The detailed description
of this method can be found in [27]. The test and validation were carried out on a test area of
about 100 × 100 km2 located in the eastern Italian Alps, using AMSR‐E data collected during
the winters between 2002 and 2011. The obtained results were encouraging: the correlation
between SD estimated by the algorithm and the corresponding ground truth resulted in R = 
0.85 and RMSE = 13 cm considering the descending orbits, while the retrieval accuracy
worsened when considering the ascending ones (Figure 5).

In this case, the training of the ANN was updated by adding to the original training set a subset
of the data collected on the area and the validation was carried out on the remaining part of
the dataset, for a total of more than 1400 daily AMSR‐E acquisitions and corresponding ground
truth.
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4. The SAR ANN algorithm for SMC, PWC and SWE

Similarly to HydroAlgo, a further ANN‐based algorithm has been implemented for working
with SAR data at C‐ and X‐bands, aiming at generating SMC maps of bare or slightly vegetated
soils, PWC maps of agricultural vegetation and SWE maps of snow covered surfaces. The
algorithm takes advantage of the high resolution of the considered sensors, which can,
however, provide data at local or regional scale, since SAR images cover usually areas not
larger than 100 × 100 km2. The other main difference in respect to HydroAlgo is that the existing
SAR systems work at a single frequency and the obtainable product depends on the frequency,
polarizations and ancillary information available. For instance, C‐band cannot retrieve SD and
it is more suitable for monitoring SMC, being less affected to the vegetation effects which drive
instead the scattering mechanism at X‐band. Depending on the input SAR data, the output
resolution ranges between 10 × 10 and 100 × 100 m2. Figure 6 represents the algorithm
flowchart: after a common pre‐processing, the algorithm splits in three different branches, one
for each output product. Details on the implementation of each processor can be found in [28,
29] for SMC processor [30], for PWC processor and [30] for SWE processor.

Figure 6. Flow chart of the SAR algorithm.
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4.1. SMC processor

The recent generation of SAR sensors can operate in several acquisition modes and provide
images at different polarizations and acquisition geometries. For enhance the retrieval
accuracy, the algorithm has been implemented with a dedicated ANN for each configuration
of inputs, namely the backscattering coefficients (σ°) in VV‐ or HH‐polarization with and
without the ancillary information on vegetation, represented by co‐located NDVI from optical
sensor, and VV + VH or HH + HV combinations. Consequently, the algorithm was composed
by 6 + 6 ANN trained independently for C‐ and X‐band, respectively. Following the strategy
presented in Section 2, the dataset implemented for the ANN training was obtained by
combining the available SAR images, the corresponding direct measurements of the surface
parameters, and a large set of data simulated using e.m. forwards models.

Simulated backscattering values at all polarizations were obtained by coupling OH [31] and
vegetation water cloud [33] models. This quite simple but widely validated combination offers
several advantages with respect to more sophisticated formulations, namely the reduced set
of input parameters needed for simulating the backscatter, the fast computation and the
reliable accuracy. In detail, the OH model simulates the surface scattering from bare rough
surfaces: with respect to IEM/AIEM, it is able to simulate both co‐ and cross‐polarizations,
accounting for the soil surface roughness by only using the height standard deviation (HSTD,
in cm) parameter. The VWC model is a simplified implementation of RTT. It accounts for
volume scattering of vegetation over the soil, for the attenuation effect on the soil scattering
(simulated by OH model) and for the soil—vegetation interaction, requiring as inputs PWC
and observation angle only. Inputs of the ‘coupled’ model are SMC, HSTD, PWC and the
observation angle theta.

Minimum and maximum values of the soil parameters measured during the experimental
campaigns (SMC, HSTD and PWC) were considered in order to define the range of variability
of each soil parameter. Using a pseudorandom function drawn from the standard uniform
distribution on the open interval (0, 1), rescaled in order to cover the range of each soil
parameter, we generated input vectors for the e.m. model, in order to simulate the backscat‐
tering at VV, HH and HV/VH‐polarizations.

This procedure was then iterated 10,000 times, thus obtaining a set of backscattering coeffi‐
cients for each input vector of the soil parameters. The consistency between the experimental
data and the model simulations was verified before proceeding to the training phase. The ANN
training was carried out by considering the simulated σ° at the various polarizations and the
incidence angle as input of the ANN, and the soil parameters, in particular the SMC, as outputs.
It should be remarked that the soil surface roughness parameter HSTD was added to the ANN
outputs in order to enhance the training performances. However, an operational retrieval of
surface roughness is not in the scopes of this algorithm and the roughness parameters are then
disregarded in the algorithm. After training, the ANN were tested on a different dataset that
was obtained by re‐iterating the model simulations as described above. The use of a pseudor‐
andom function prevented a correlation between these two datasets: this fact was particularly
important in order to evaluate the capabilities of ANN to generalize the training phase and to
prevent the overfitting problem. Incorrect sizing of the ANN or inadequate training could
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cause the overfitting: the ANN return outputs outside the training range (outliers) when tested
with input data that are not included in the training set.

The algorithm was validated using a set of experimental data collected on several test areas,
mainly agricultural fields and grasslands, located worldwide. The total dataset was composed
by about 700 field‐averaged values of σ° at C‐band from Envisat/ASAR and about 600 at X‐
band from Cosmo‐SkyMed (CSK), collected at various polarizations.

Figure 7. Validation of the SAR SMC algorithm.

Figure 7 shows the overall validation obtained by comparing the SMC values retrieved by the
algorithm with the corresponding ground truth, and it corresponds to R = 0.86, RMSE = 4.6 and
BIAS = 0.65. Analysing separately the two frequencies, the best results were achieved at C‐
band, which is more sensitive to SMC and less influenced by the vegetation than X‐band. At
the latter frequency, instead, the vegetation effect is dominant, although some sensitivity to
SMC is detectable at least for bare and scarcely vegetated surfaces.

4.2. PWC processor

The algorithm for PWC estimate was very similar to the one for estimating SMC, and it is based
on a feed‐forward multilayer perceptron (MLP) ANN, trained by using the back‐propagation
(BP) learning rule and a RTT discrete element model, more sophisticated than the WCM [29].

The model was first validated with the experimental data collected in the ‘Sesto’ agricultural
area located in central Italy, close to the city of Florence, mainly covered by wheat crops, and
then used for generating the training set of ANN in combination with experimental data.
Model simulations were iterated 10,000 times by randomly varying each input parameter in
the range derived from experimental data, thus obtaining a training set able to complete the
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training phase and fully define all the neurons and weights of the ANN. The dataset was split
randomly in two parts, the first part for training and the second one for testing the ANN. A
configuration with two hidden layers of ten perceptrons each was finally chosen as the optimal
one. The validation results gave R = 0.97 and RMSE = 0.345 kg/m2 (Figure 8).

Figure 8. PWC algorithm validation: PWC estimated vs. PWC observed.

4.3. SWE processor

In the last years, the remote‐sensing community has shown a growing interest in the new
generation X‐band SAR satellites, such as CSK and Terra‐SARX (TSX), with the aim of better
understanding if at this frequency, the information on snow parameters can be retrieved and
under which conditions. Although X‐band is not the most suitable frequency for the retrieval
of SD or SWE, since the dry snow is almost transparent at this frequency, the freezing of
dedicated missions such as the ESA cold regions hydrology high‐resolution observatory
(CoReH2O), put more interest in evaluating the potential of such a frequency for snow
parameter retrieval. Basing on encouraging experimental results pointing out the relationship
between σ° and SD for several winter seasons in the Italian Alps [30, 34], we have implemented
an ANN‐based retrieval algorithm able to estimate the SWE/SD of snow‐covered surfaces from
X‐band SAR data.

This algorithm, which has been preliminary described in [30], is composed of two steps: first,
the dry snow is identified and separated from the wet snow and from the snow‐free surfaces
using a well‐known threshold criterion [35]. Then, the SWE retrieval by means of the ANN
algorithm is attempted on the areas of the image identified as dry snow.
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Inputs to the ANN are the X‐band σ° measured in the available polarizations, the correspond‐
ing reference value measured in snow‐free conditions, and the local incidence angle informa‐
tion. SWE is the ANN output.

The main problem we had to face in developing this algorithm was related to the lack of
extensive sets of measurements of snow parameters, which posed some constraints in defining
the training set. The available measurements are indeed sparse, and, besides being site
dependent, are numerically inadequate for training the ANN and define all its neurons and
weights. The training of the ANN was therefore performed by using data simulated by the
dense medium radiative transfer model implementation [36, 37]. As for the other algorithms,
the training set was generated by running the model simulation for the input values of snow
parameters in a range derived from the direct measurements, obtaining output backscattering
coefficients at the given polarizations for each input vector of snow parameters. In order to
match all the acquisition modes of CSK, several ANN have been set up and trained separately,
according to the combination of polarizations available from the dataset.

Figure 9. Validation of the SAR SWE algorithm.

Although the algorithm is not able to consider some model parameters, such the average
crystal dimension, which are unavailable from in situ measurements, the training process
converged successfully. In particular, for a configuration with 2 hidden layers of 13 neurons
each and an activating function of ‘tansig’ type, assuming the availability of CSK data in two
polarizations (co‐ and cross‐polar), the validation resulted in R > 0.9, with an associated
probability value (P‐value) of 95% and RMSE = 50 mm of equivalent water [30]. After the test
on simulated data, the algorithm was validated considering CSK images and corresponding
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ground truth available on the Cordevole and Bardonecchia test areas, located in the eastern
and western part of Italian Alps, respectively. The direct comparison with ground truth data
resulted in an R > 0.85, RMSE = 50 mm and Bias = 5.6 mm (Figure 9).

5. The P + L‐band SAR ANN algorithm for WV

A final example of the ANN capabilities in adapting to the retrieval of hydrological parameters
from microwave remote‐sensing acquisitions is represented by this ANN application to the
forest WV retrieval. The algorithm takes advantage of the well‐known sensitivity of low
microwave frequencies such as L‐ and P‐bands to forest biomass. However, L‐ and P‐band SAR
data available from satellite and corresponding in situ measurements were not sufficient for
implementing and validating such algorithm. Therefore, we selected a dataset of airborne SAR
measurements derived from the ESA project BioSAR 2010, which has been obtained through
the ESA eopi portal: https://earth.esa.int/web/guest/pi‐community. The dataset was composed
of airborne SAR fully polarimetric images at P‐ and L‐bands acquired in fall 2010 in Sweden
by the airborne system ONERA SETHI and corresponding LiDAR measurements of forest
height, which were considered as target values for training and testing the algorithm.

The WV ANN algorithm considers as inputs the co‐ and cross‐polarized backscattering at both
P‐ and L‐bands, along with the corresponding incidence angles, without any ancillary
information from other sensors. The training set was implemented by considering as ground
truth the WV estimated by LiDAR. In this case, the model simulations considered for increasing
the training set were based on an implementation of the water cloud model with gaps, which
was initially proposed in [38, 39] and it was based on the original VWC by [32]. The model has
been modified by adding a term able to account for the backscattering dependence on the
observation angle. The independent validation of this algorithm was carried out on some plots
for which conventional measurements of WV were available. Although the validation set was
limited, the results were encouraging, with R = 0.98, RMSE = 22 t/ha and Bias = 11 t/ha.

6. Generation of maps of the target parameter at regional and global scale

The fast computation is another important advantage of the ANN‐based algorithms with
respect to other statistical methods. The training represents indeed the only time‐consuming
process; however, it is only once carried out at the beginning and it deals with the algorithm
implementation, not with its application. A trained ANN are indeed able to process the input
satellite data in real or near‐real time. This characteristic allows an operational application of
the ANN for generating maps of the target parameter at high resolution and large or global
coverage. In [27], the ANN retrieval algorithm was demonstrated to be able to process 200,000
pixels/s, which correspond to about 80 s for generating a SMC map at 25 × 25 m2 resolution
from an input SAR image of 100 × 100 km2. Besides these considerations, the output maps
represent also an effective tool for verifying qualitatively the validity of the training process,
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although these maps cannot be considered a real validation of the retrieval algorithms, since
adequate ground truth for comparing extensively the algorithm outputs at large and global
scale is barely available.

Figure 10. Global SMC and snow extent maps obtained as weekly average of AMSR‐E acquisitions collected in Febru‐
ary and June 2010 (after [11]).

Figure 11. SD maps obtained as weekly average of AMSR‐E acquisitions collected in different seasons between Decem‐
ber 2009 and February 2010 (after [11]).
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Figure 12. Global PWC maps (kg/m2) of agricultural and herbaceous vegetation from a weekly average of AMSRE as‐
cending and descending orbits in February (top) and June (bottom) 2010.

Extreme variations of the target parameter between adjacent pixels, the presence of large
percentages of outliers, and the absence of clearly detectable patterns indicate indeed that the
training was not achieved successfully, although the validation in the control points resulted
satisfactory. In these cases, the ANN should be retrained, by verifying that the training set is
representative of the entire range of the input microwave data and output parameters
considered for the specific application.

Figure 13. SMC maps from CSK images (© ASI)” for four different dates between 2011 and 2012 in the ‘Sesto’ test area.

As an example of the operational capabilities of the algorithms proposed here, Figures 10 and
11 represent some examples of SMC and SD maps generated by using microwave radiometric
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data through HydroAlgo and reprojected on a fixed grid spaced 0.1° × 0.1°, while examples of
outputs generated by the PWC processor are represented in Figure 12.

Figure 14. PWC maps from CSK images (© ASI) covering the entire seasonal cycle of wheat from march to June 2012 in
the ‘Sesto’ test area.

Figure 15. Maps of SWE derived from the proposed algorithm for a test area in the Italian Alps.

Maps have been obtained as weekly average of the AMSR‐E acquisitions in both ascending
and descending orbits for different seasons: winter and summer for SMC and PWC and two
different winter periods for SD, in order to point out the sensitivity to the global spatial and
temporal variations of the investigated parameter.
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Examples of outputs maps generated by the SAR SMC and PWC algorithm from CSK images
are represented in Figures 13 and 14, while maps of SWE derived from the proposed algorithm
for a test area in the Italian Alps are shown in Figure 15. Map dimensions range between 30 
× 30 and 40 × 40 km2, depending on the input images. White and blue colours represent
masking for urban areas and water bodies respectively.

Finally, a WV map (t/ha) has been produced for the area where SAR data at P‐and L‐bands
have been acquired (Figure 16). Different colours represent different levels of forest biomass
in accordance with the ground truth data collected simultaneously to the BioSAR acquisitions.

Figure 16. Forest biomass map (WV, in t/ha) from BioSAR data on the Sweden test site.

7. Conclusions

The overview of the retrieval algorithms presented here demonstrated that ANN are a
powerful tool for implementing inversion algorithm, which are able to estimate the hydro‐
logical parameters from microwave satellite acquisitions, provided ANN have been trained
with consistent datasets made up by both experimental and theoretical data. The flexibility of
this method and the possibility of using it for both active and passive sensors with high
accuracy and computational speed were confirmed. Moreover, the possibility of repeating the
training with new datasets easily enables the improvement of the retrieval accuracy, making
this technique flexible and adaptable to new datasets and sensors.

A further advantage of these algorithms is in their capability of merging data coming from
different sources, as other sensors or ancillary information, into a unique retrieval approach.
It was the case of the algorithm implemented for C‐ and X‐band SAR, which takes advantage
of the NDVI information from optical sensors (Landsat/Modis), when available, for improving
the SMC retrieval accuracy.
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The main constraint for accurate retrievals is due to the training process: the retrieval error
may be large if the ANN are tested with data not correctly represented in the training. Large
datasets are therefore needed for properly training the ANN, in order to cover the whole range
of the microwave data and corresponding surface parameters. It should be noted that there is
not a unique way for defining the training set. Some a priori knowledge and the support of
model simulations help in setting the range of each surface parameter, in order to make the
training set as representative as possible of the observed surface. Testing and validation on
independent datasets (i.e. not related to the data considered for training) may indicate if the
training has been achieved properly. In particular, the use of electromagnetic models for
generating large training dataset is one of the best methods for avoiding the danger of ‘black
box’ algorithms and to make sure that the results are based on physical assumptions. Since the
training is performed off‐line, before starting the data processing, the computational speed of
ANN is not hampered by this procedure.
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Abstract

Artificial neural networks (ANNs) are powerful tools that are used in various engi‐
neering fields. Their characteristics enable them to solve prediction, regression, and
classification problems. Nevertheless, the ANN is usually thought of as a black box, in
which it is difficult to determine the effect of each explicative variable (input) on the
dependent variables (outputs) in any problem. To investigate such effects, sensitivity
analysis is usually applied on the optimal pre‐trained ANN. Existing sensitivity analysis
techniques suffer from drawbacks. Their basis on a single optimal pre‐trained ANN
model produces instability in parameter sensitivity analysis because of the uncertainty
in neural network modeling. To overcome this deficiency, two successful sensitivity
analysis paradigms, the neural network committee (NNC)‐based sensitivity analysis
and the neural network ensemble (NNE)‐based parameter sensitivity analysis, are
illustrated in this chapter. An NNC is applied in a case study of geotechnical engineering
involving strata movement. An NNE is implemented for sensitivity analysis of two
classic problems in civil engineering: (i) the fracture failure of notched concrete beams
and (ii) the lateral deformation of deep‐foundation pits. Results demonstrate good
ability to analyze the sensitivity of the most influential parameters, illustrating the
underlying mechanisms of such engineering systems.

Keywords: civil engineering, neural networks, sensitivity analysis, NNC‐based sensi‐
tivity analysis, NNE‐based sensitivity analysis
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1. Introduction

In solving complex civil engineering problems, conventional analytical and empirical method‐
ologies suffer from many difficulties. This is mainly because of the limitations of such methods
in handling large, complex structures that may require time‐consuming and exhausting tasks.
In such situations, soft‐computing techniques come into the picture. They are effective estimation
tools that reduce the cost and time of design and analysis. Neural networks are useful soft‐
computing tools that can be used for classification and prediction in complex civil engineering
problems [1–3].

Sensitivity analysis is a necessary approach for understanding the relationship and the
influence of each input parameter on the outputs of a problem. The key point behind sensitivity
analysis is that by slightly varying each explicative input parameter and registering the
response in the output, the explicative parameters with the highest sensitivity values gain the
greatest importance. Sensitivity analysis of the most significant parameters can be very useful
for analyzing complex engineering problems.

Neural network‐based parameter sensitivity analysis in civil engineering systems is gaining
more importance due to the remarkable ability of neural networks to explain the nonlinear
relationships between the explicative and response variables of a problem [1, 4]. Commonly,
a specific training technique is used to develop one optimal neural network to be a system
model, and this model is then used for sensitivity analysis [5–10]. Yet, it is relatively difficult
to determine the most optimal neural network model, for reasons such as random initialization
of the underlying connection weights in the neural network model, different features of various
learning techniques used to train the neural network, the absence of a reliable technique for
defining the optimal structure in neural network modeling, etc. To overcome these difficulties,
two potential techniques, namely neural network committee (NNC)‐based sensitivity analy‐
sis [1] and neural network ensemble (NNE)‐based sensitivity analysis [11], are illustrated.
These two paradigms utilize a group of pre‐trained optimal neural networks to handle the
neural network modeling, thereafter implementing parameter sensitivity analysis individually
and lastly defining the sensitivity of parameters. This chapter is organized as follows. A
complete explanation is given of some traditional neural network‐based sensitivity analysis.
Thereafter, the NNC‐based parameter sensitivity analysis method is presented, followed by a
geotechnical engineering case study of strata movement and two case studies related to
classical civil engineering. Then, the NNE‐based sensitivity analysis paradigm is described,
followed by two illustrative case studies. Finally, a complete summary of the chapter is
presented.

2. Typical neural networks-based sensitivity analysis algorithms

Many studies have been concerned with improving existing neural network‐based sensitivity
analysis methods [9]. Among the different techniques, the partial derivative algorithm [5] and
the input perturbation algorithm [10] have superior performance compared to other techni‐
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ques based on the magnitude of weights [6, 7]. Therefore, these two algorithms are explored
in detail in this chapter, along with some other techniques.

2.1. Partial derivative algorithm

The partial derivative algorithm is a famous neural network‐based sensitivity analysis
technique [5, 11]. Its characteristics enable it to deal with neural networks that apply first‐
derivative activation functions, such as back‐propagation neural networks (BPNNs) and radial
basis function neural networks (RBFNNs) [1, 8]. By implementing the partial derivative
algorithm, it is possible to identify the variations of output parameters of neural networks with
respect to small changes in each input parameter, thereby defining the contribution of each
such input on the output parameters. This can be done by deriving the output parameters of
the neural network with respect to input parameters, in other words, by calculating the
Jacobian matrix that contains the partial derivatives of outputs with respect to inputs [5, 11].
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where  is the ith input variable ℎ, ℎ 𑨒𑨒 1,…, and ℎ are the hidden neurons from the nth to
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where , ℎ, and ℎ1 are the biases of the kth output neuron, the hidden neuron hn, and, h1,

respectively.

For p training samples of each input  on the output  of the neural network,  can be

calculated as
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For each input parameter, the value of c can be used as a factor for classification of the influence
of total inputs on the outputs of the neural network model. The most important or crucial input
parameter may have the highest c value [1].

2.2. Input perturbation algorithm

The input perturbation algorithm is another common method for neural‐network‐based
sensitivity analysis [6, 9]. It implements a small perturbation on each input of the neural
network model and measures the corresponding change in the outputs. This perturbation is
applied on one input individually at a time while all other inputs are fixed, and the response
for perturbation of each output is registered. Sensitivity analysis is performed by giving a rank
for each response of the output generated by the same perturbation in every input parameter.
The input that has the highest effect on the outputs after perturbation is considered the most
influential or important [1].

In essence, when a larger amount of perturbation is added to the selected input parameter, the
mean square error (MSE) of the neural network increases. The variance of the input parameter
can be represented as  =  + 𝀵𝀵, where  is the current selected input variable and 𝀵𝀵 is
the perturbation. The perturbation can be varied from 0 to 50% by steps of 5% of the input
value. Depending on the increasing value of the MSE corresponding to each perturbed input,
outputs can be ranked and thus sensitivity analyses are performed [1, 8].

2.3. Weights method

This method was proposed by Garson [12] and Goh [13]. In this method, for each hidden
neuron, the connection weights are divided into components related to each input neuron.
This method was simplified by Gevrey et al. [8] to give the same results as the initial method.
For the purpose of illustration, a multilayer neural network with a single hidden layer is
considered; thereafter, for each hidden neuron the following calculations are used:

For  = 1 to 
For  = 1 to 
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where  and  are the number of input and hidden neurons, respectively;  is the weight

corresponding to input neuron i and hidden neuron j. The percentage relative contribution of
all inputs 𝀵𝀵𝀵𝀵 is then calculated as
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End

2.4. Profile method

This method was proposed by Lek et al. [14–16], and further explained by Gevrey et al. [8].
The key point behind this method is to analyze one particular input at a time while fixing the
values of all other inputs. The procedure starts by dividing the value of each input parameter
into equal subintervals, whereas all other inputs are set prior to minimum, quarter, half, three
quarters of the maximum and maximum, respectively. At the end of this task, patterns of five
values corresponding to different input parameters result and the median value for each
pattern is calculated. The median values are plotted with respect to the subintervals to form a
profile that explains the contribution of the input parameter. Finally, for all inputs, a set of
curves explaining the relative importance for all input parameters is obtained [8].

2.5. Stepwise method

In this method, one input parameter is blocked and the responses of the outputs are recorded.
This process is performed step by step for all input parameters and the responses of the outputs
are recorded by means of the MSE. Depending on the MSE, the relative importance of each
input variable is ranked correspondingly. There are two main strategies for the stepwise
method. The first is to construct a number of neural network models by evolving the input
parameters one by one. This strategy is called forward stepwise, while the backward stepwise
strategy can be implemented in the reverse way, that is, constructing neural network models
by first using all input parameters and then blocking each input parameter [8, 17].

This method can be improved to reduce the difficulty of producing many neural network
models by using a single model. In this model, one input parameter is blocked and the MSE
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is calculated. The parameter with the maximum MSE value is ranked as the most important
and can then be either removed from the model or fixed at its mean value so that the contri‐
bution of other parameters can be found, and so on.

3. Neural network committee-based sensitivity analysis

Consider a neural network model with a sensitivity analysis‐ranking vector  = [1, 2, …, ]
and the actual sensitivity analysis‐ranking vector 0 = [1, 2, …, ], where  and  are the

calculated and actual ranks of ith input parameter, respectively, and n is the number of input
parameters. To reduce the difference between R and 0 to minimum, it is not efficient to use

single neural network model to perform sensitivity analysis. The reason is the absence of
persistence in sensitivity analysis of one neural network model even when a major sensitivity
analysis strategy is implemented. In recognition of this fact, it is more effective to utilize a set
of good pre‐trained neural network models instead of using a single optimal model for
sensitivity analysis. This procedure is well used in neural network committee (NNC)‐based
sensitivity analysis [1].

The mathematical foundation of NNC‐based sensitivity analysis starts from the weak law of
large numbers in probability. Having 1, 2, … infinite set of random variables with no corre‐

lation between any two of them, each having the exact value of  and variance 2, the sample
average convergence in probability can be written as [18]
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x x x
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+ +¼+
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or, in other words, for a small number , the following can be expressed:
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®¥
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By considering single neural network sensitivity analysis‐ranking vector R, the elements1, 2, … can be defined as random variables; in other words, R is composed of n random
variables. In the case of neural network ensemble‐based sensitivity analysis, a set of random
variables 1, 2, …,  related to  are obtained. Depending on the weak law of large numbers,
for a large number m, the mean of 1, 2, …,  can converge to the actual ranking values  in0. Therefore, in NNC‐based sensitivity analysis, it is possible to find a ranking vector R that
is close to the actual ranking vector 0.

As the number of input variables is specified and the input variables are not completely
random, due to the many specifications that appear during neural network model training,
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the condition of the weak law of large numbers that is applied on an infinite number of random
variables is not satisfied. For this reason, optimization strategy can be an efficient tool to select
a number of good pre‐trained neural network models and skip those with weak performance.
By electing the best neural network elements and eliminating the bad ones, optimization can
generate good predictions of sensitivity analysis‐ranking vectors [1].

Depending on the above principles, we can summarize NNC‐based sensitivity analysis in three
basic procedures. First, groups (seeds) of successful neural network models are prepared using
neural network‐training techniques such as back propagation (BP) or radial basis functions,
etc. Then, a set of best‐performance models are chosen to compose the optimal NNC that is
used in performing ensemble neural network sensitivity analysis by individual applications
of sensitivity analysis, giving large numbers of R. Finally, the mean of R is calculated to find
the accurate approximation of 0. A schematic diagram of NNC‐based sensitivity analysis
strategy is given in Figure 1.

Figure 1. A schematic diagram of NNC‐based sensitivity analysis strategy.

Figure 2. NNC‐based sensitivity analysis strategy stepwise procedure: A–N, the neural network model seeds;1 – , 1 – , and 1 – , the candidate groups of neural network models; 1 – , 1 – , and1 – , the superior neural network models; ellipse refers to a sensitivity analysis ranking of an input parameter.
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The basic steps for the NNC‐based sensitivity analysis algorithm are shown in Figure 2 and
can be explained as follows:

1. Select the best available types of neural network model empirically. These are called
“seeds” for NNC‐based sensitivity analysis.

2. Each seed involves a set of neural network models. These models are varied by means of
a number of hidden neurons or hidden layers to produce a candidate group of neural
network models.

3. Depending on the MSE, a subset k of superior neural network models is picked up, where = 310 has been experimentally specified and m is the number of neural network models

in the candidate group. Thereafter, sensitivity analysis is employed on each model to
generate a group of sensitivity analysis‐ranking vectors R.

4. For each input parameter, the mean of the related ranking number in the sensitivity
analysis‐ranking vector R is calculated to form a predicted ranking vector close to the
actual ranking vector 0, which is calculated as

1 1

1ˆ , 1,2, ,N K st
i i is t

a a r i l
NK = =

» = = ¼å å (8)

where  is the predicted value of  in 0 for variable  in R, K is the number of elements

in the candidate group of neural network models (committee), N is the number of neural
network seeds, and l is the number of input parameters.

4. NNC-based sensitivity analysis of strata movement

Strata movement is a critical problem in geotechnical engineering because of the complex
highly nonlinear properties involved. It is necessary to define the most significant factors
involved in strata movement. Therefore, NNC‐based sensitivity analysis strategy is used. The
dataset of strata movement is composed of 168 samples taken from multiple typical observa‐
tion stations of earth surface movement above underground metal mines. The dataset has six
input parameters and three output parameters as shown in Table 1. These parameters
characterize the working operation of strata movement of underground metal mines.

In NNC‐based sensitivity analysis, four scenarios are chosen, depending on the output
variables (Table 1): scenario (1) all output parameters, (2) only MAU, (3) only MAL, and (4)
only AA. At the beginning, radial basis function and BP neural networks are selected as seeds,
because of their proven ability to handle nonlinear features. Then, 50 neural network models
are generated by each seed to construct two candidate sets of neural network models. There‐
after, 15 superior neural network models are chosen from each set to form a committee
containing the best‐performed neural network models. After that, sensitivity analysis is
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applied to each model by utilizing both a perturbation algorithm and a partial derivative
algorithm to produce a group of ranking vectors R. Next, the sum of corresponding ranking
numbers that is considered as a score for input parameters is calculated. The score is a reflection
of the near actual ranking 0. The sum is used instead of the mean to prevent the repetition of

the identical values for different parameters, in order to have fewer neural network models
from which to decide the final ranking. The best‐performed neural networks and the input
parameter ranking for scenario (1) are illustrated in Table 2.

Parameter Characteristics Parameter type

MCU Mean consistency of upper wall rock Input

LCL Mean consistency of lower wall rock Input

SAO Slope angle of ore body Input

TO Thickness of ore body Input

LO Length of ore body Input

DE Depth of excavation Input

MAU Movement angle of upper wall rock Output

MAL Movement angle of lower wall rock Output

AA Avalanche angle Output

Table 1. Measured parameters of strata movement [1].

Best-performed neural network model MCU LCL SAO TO LO DE

RBF1 5 6 1 4 3 2

RBF2 2 1 6 5 4 3

RBF3 3 6 5 2 4 1

RBF4 5 6 3 1 4 2

RBF5 4 6 3 2 5 1

RBF6 5 4 2 3 6 1

RBF7 4 6 5 2 3 1

RBF8 2 6 3 5 4 1

RBF9 4 6 5 2 3 1

RBF10 2 5 6 3 4 1

RBF11 3 4 1 6 5 2

RBF12 3 4 2 6 5 1

RBF13 2 4 3 6 5 1

RBF14 2 4 3 6 5 1

RBF15 4 2 3 5 6 1

BP1 1 4 3 6 5 2
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Best-performed neural network model MCU LCL SAO TO LO DE

BP2 2 4 3 6 5 1

BP3 4 2 3 5 6 1

BP4 4 3 2 6 5 1

BP5 2 3 4 6 5 1

BP6 4 2 1 5 6 3

BP7 5 3 2 6 4 1

BP8 4 3 1 5 6 2

BP9 4 3 2 6 5 1

BP10 4 3 1 5 6 2

BP11 3 4 2 5 6 1

BP12 3 5 1 4 6 2

BP13 4 3 2 5 6 1

BP14 4 3 1 6 5 2

BP15 3 5 1 4 6 2

Table 2. Sensitivity analysis rankings produced by best‐performed neural network model groups [1].

Scenarios Score and ranking MCU LCL SAO TO LO DE

(1) Score 101 120 80 138 148 43

Ranking 3 4 2 5 6 1

(2) Score 96 114 64 162 145 49

Ranking 3 4 2 6 5 1

(3) Score 96 81 87 75 155 136

Ranking 4 2 3 1 6 5

(4) Score 109 121 113 103 86 98

Ranking 4 6 5 3 1 2

Table 3. NNC‐based sensitivity analysis results for strata movement.

The outcome sensitivity analysis for the four scenarios is illustrated in Table 3. It is clear from
the table that for scenario (1), DE has the highest importance, followed by SAO, MCU, LCL,
TO, and LO, respectively. In scenario (2), the degree of importance is the same as in scenario
(1), but LO is more significant than TO. Nevertheless, in scenario (3), TO has the highest
significance, above that of LCL, SAO, and MCU, which have approximately similar signifi‐
cance, and then DE and LO have the least significance. Finally, in scenario (4) LO has the highest

Artificial Neural Networks - Models and Applications344



Best-performed neural network model MCU LCL SAO TO LO DE

BP2 2 4 3 6 5 1

BP3 4 2 3 5 6 1

BP4 4 3 2 6 5 1

BP5 2 3 4 6 5 1

BP6 4 2 1 5 6 3

BP7 5 3 2 6 4 1

BP8 4 3 1 5 6 2

BP9 4 3 2 6 5 1

BP10 4 3 1 5 6 2

BP11 3 4 2 5 6 1

BP12 3 5 1 4 6 2

BP13 4 3 2 5 6 1

BP14 4 3 1 6 5 2

BP15 3 5 1 4 6 2

Table 2. Sensitivity analysis rankings produced by best‐performed neural network model groups [1].

Scenarios Score and ranking MCU LCL SAO TO LO DE

(1) Score 101 120 80 138 148 43

Ranking 3 4 2 5 6 1

(2) Score 96 114 64 162 145 49

Ranking 3 4 2 6 5 1

(3) Score 96 81 87 75 155 136

Ranking 4 2 3 1 6 5

(4) Score 109 121 113 103 86 98

Ranking 4 6 5 3 1 2

Table 3. NNC‐based sensitivity analysis results for strata movement.

The outcome sensitivity analysis for the four scenarios is illustrated in Table 3. It is clear from
the table that for scenario (1), DE has the highest importance, followed by SAO, MCU, LCL,
TO, and LO, respectively. In scenario (2), the degree of importance is the same as in scenario
(1), but LO is more significant than TO. Nevertheless, in scenario (3), TO has the highest
significance, above that of LCL, SAO, and MCU, which have approximately similar signifi‐
cance, and then DE and LO have the least significance. Finally, in scenario (4) LO has the highest

Artificial Neural Networks - Models and Applications344

contribution followed by DE, TO, MCU, SAO, and LCL, respectively. However, the contribu‐
tions of DE and TO are very close to those of MCU, SAO, and LCL.

Figure 3. Activity analysis of dependent variables for strata movement based on NNC‐based sensitivity analysis re‐
sults [1].

The working condition of strata movement is defined by the predictability of response
parameter (output parameters). For this reason, the scores of the input variables after sensi‐
tivity analysis for three scenarios (MAU, MAL, and AA) that are related to the response
variables are plotted in Figure 3. The response variable with the highest sensitivity against
explicative variables has the highest predictability, and this can be calculated by finding the
variance of the score vector of the explicative variables. The result of that procedure is 1965.6,
1068.4, and 150, corresponding to the response variables MAU, MAL, and AA, respectively. It
is obvious that MAU has the highest predictability, followed by MAL and AA. Therefore, we
can consider the angles of the upper wall rocks as the most significant feature, ahead of the
lower wall rocks and the avalanche angle that are less important.

5. NNE-based parameter sensitivity analysis

The NNE‐based parameter sensitivity analysis technique is a modified version of the NNC‐
based sensitivity analysis. It reduces the time‐consuming procedure of using different neural
network types as seeds by using just one preferred neural network type as the seed [4]. NNE‐
based parameter sensitivity analysis incorporates the following steps: (1) one preferred type
of neural network is considered as the seed, (2) a set of k‐neural network models that are varied
with regard to the number of hidden neurons and hidden layers is defined, (3) from k‐neural
network models, a group of n best‐performed models ( < ) is picked up and the other poorly
performed models are eliminated to form an NNE model, and (4) a sophisticated sensitivity
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analysis algorithm is performed on the NNE model to obtain a sensitivity ranking of all input
variables of the engineering problem under consideration. A schematic diagram of NNE‐based
parameter sensitivity analysis is shown in Figure 4.

Figure 4. A schematic representation of NNE‐based parameter sensitivity analysis.

6. Illustrative case studies

To highlight the application of NNE‐based parameter sensitivity analysis technique, two civil
engineering case studies are explained. The first is the determination of the importance of
material properties in the fracture failure of a notched concrete beam and the second is the
specification of significant parameters in the lateral deformation of a deep‐foundation pit [4].

6.1. Fracture failure of notched concrete beam

Fracture failure is the most common problem facing engineers in the analysis and usage of
concrete structures [19,20]. Good knowledge of appropriate material properties is necessary
during modeling of the fracture behavior of concrete structures. Such material properties are
defined by a three‐point bending of a notched concrete specimen. Therefore, the NNE‐based
parameter sensitivity analysis strategy is used to find the most crucial material properties in
the fracture failure of a notched concrete beam. The geometry of the notched concrete beam is
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shown in Figure 5, with experimentally determined mean values of material properties [21]:
modulus of elasticity  = 35 GPa, tensile strength  = 3 MPa, compressive strength = 65 MPa, fracture energy  = 100 N/m, and compressive strain at compressive strength

in the uniaxial compressive test  = 0.003. A group of 20 notched concrete beam samples is

prepared depending on a stratified Monte Carlo‐type simulation called Latin hypercube
sampling (LHS) [22], using FReET software [23] with a correlation control procedure [24].

Figure 5. Notched concrete beam under three‐point bending [4].

Figure 6. Force‐displacement curves at the notch tip S from 20 simulated realizations of notched concrete beams [4].

The 20 notched concrete beam samples are determined by employing the following steps: (1)
material properties are considered as random variables and mean values are obtained by
experiments; (2) for each property, the LHS stochastic simulation is utilized to produce 20

random realizations of , , , ,   that feature variation of 0.15 and that obey a rectan‐
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gular probability distribution, to impose variability for the creation of the training set. Each
random realization determines a numerical nonlinear fracture mechanic calculation of a
notched concrete beam; and (3) the finite element method (FEM) software ATENA [25] is
applied to each realization to simulate the tensile fracture of the corresponding notched
concrete beam. The fracture failure is described by a force‐displacement curve at the notch tip
S (Figure 5). A set of 20 force‐displacement curves is illustrated in Figure 6. This set can be
used as input data for the NNE‐based sensitivity analysis. These curves describe the correlation
between material fracture‐mechanical properties and the nonlinear response of the beam. The
sensitivity of the material properties to tensile fracture is studied depending on three forces:0.02, the force corresponding to 0.02‐mm displacement; max the maximum force; and 0.15
the force corresponding to 0.15‐mm displacement. For each force, NNE‐based parameter
sensitivity analysis is applied to determine the significance of the material properties.

Parameter Characteristics Parameter type
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Force Ranking
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Table 5. Sensitivity analysis results of material parameters in fracture failure [4].

In NNE‐based sensitivity analysis paradigm, a BP neural network with five input neurons and
one output neuron (Table 4) is used as the seed to create a set of k‐candidate neural network
models. These models correlate the relationship between the material properties and the
fracture failure. Depending on the performance of these models, the three best‐performed
neural network models are selected in the NNE model and the input perturbation algorithm
is used for parameter sensitivity analysis. The result of the sensitivity analysis in this case is
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shown in Table 5. It is obvious from the table that , followed by  and , are the most

important parameters in the fracture failure of the notched concrete beam.

6.2. Lateral deformation of deep-foundation pit

The construction of underground structures such as subway system tunnels, etc. requires deep‐
foundation pits. The working condition of a deep‐foundation pit is usually defined by means
of lateral deformation [26]. This lateral deformation usually involves a group of variables
(Table 6), namely surface load q, deformation modulus of soil E, Poisson’s ratio λ, soil cohesion
C, and internal friction angle of soil ϕ. To analyze the working process of the deep‐foundation
pit, it is essential to study the sensitivity of these variables in order. Therefore, NNE‐based
parameter sensitivity analysis is applied to determine the importance of parameters in the
lateral deformation of deep‐foundation pits. For such analysis, a deep polygon‐shaped
foundation pit, as in [27], is utilized, having an excavation depth of 9.71 m, a width of earth‐
retaining wall of 8.7 m, and a length of reinforcement piles of 19.0 m, with the insertion ratio
about 1.0. For testing cases, an orthogonal design of experiments is used to generate 25 testing
cases, as shown in Table 7 [27]. The testing cases are employed within the NNE‐based
sensitivity analysis paradigm to finally specify the contribution of each parameter to the lateral
deformation y of the deep‐foundation pits.

Parameter Characteristics Parameter type

q Surface load Input

E Deformation modulus of soil Input

ε Poisson’s ratio Input

C Soil cohesion Input

ϕ Internal friction angle of soil Input

y Lateral deformation of deep‐foundation pit Output

Table 6. Properties in lateral deformation of deep‐foundation pit [4].

No. q (kPa) E (kPa) ε C (kPa) ϕ (rad) y (cm)

1 1 (5.0) 1 (3855) 1 (0.325) 1 (5.63) 1 (0.1386) 63.7

2 1 2 (6168) 2 (0.376) 2 (7.44) 2 (0.1834) 35.3

3 1 3 (7710) 3 (0.410) 3 (8.65) 3 (0.2133) 26.7

4 1 4 (9252) 4 (0.444) 4 (9.86) 4 (0.2432) 20.9

5 1 5 (11,565) 5 (0.478) 5 (11.68) 5 (0.2731) 12.5

6 2 (8.0) 1 2 3 4 55.8

7 2 2 3 4 5 32.1
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No. q (kPa) E (kPa) ε C (kPa) ϕ (rad) y (cm)

8 2 3 4 5 1 21.9

9 2 4 5 1 2 16.3

10 2 5 1 2 3 25.2

11 3 (10.0) 1 3 5 2 47.8

12 3 2 4 1 3 26.1

13 3 3 5 2 4 16.2

14 3 4 1 3 5 30.4

15 3 5 2 4 1 22.1

16 4 (12.0) 1 4 2 5 37.1

17 4 2 5 3 1 18.0

18 4 3 1 4 2 34.9

19 4 4 2 5 3 25.8

20 4 5 3 1 4 18.9

21 5 (15.0) 1 5 4 3 25.2

22 5 2 1 5 4 42.4

23 5 3 2 1 5 30.1

24 5 4 3 2 1 22.4

25 5 5 4 3 2 15.6

Table 7. Orthogonal experimental design for producing testing samples [27].

Model Ranking

q E λ C ϕ

NNM1 5 1 2 3 4

NNM2 5 1 2 3 4

NNM3 5 1 2 3 4

Table 8. Sensitivity analysis results in lateral deformation of deep‐foundation pit [4].

As in the previous case study, a BP neural network is chosen as the seed in NNE‐based
sensitivity analysis to generate a set of k‐candidate neural network models having five inputs
and one output as listed in Table 6. By selecting three superior neural network models, namely
NNM1, NNM2, and NNM3, and implementing input perturbation algorithm for sensitivity
analysis, the ranking of each input parameter corresponding to each neural network model is
shown in Table 8. It is clear that E is the most important parameter, followed by , , , and q,
respectively.
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7. Summary

A short review of traditional neural network sensitivity analysis techniques was illustrated,
followed by the presentation of two advanced techniques, NNC‐based sensitivity analysis and
NNE‐based sensitivity analysis. These two techniques utilized selective superior neural
network models along with some mathematical concepts to analyze the sensitivity of signifi‐
cant explicative variables. The efficiency of NNC‐based sensitivity analysis paradigm was
verified by studying the underlying influential parameters in strata movement. The effective‐
ness of NNE‐based sensitivity analysis paradigm was proved by two case studies in civil
engineering, the fracture failure of notched concrete beams and the lateral deformation of deep‐
foundation pits. These paradigms are essential for understanding the neural‐network‐based
sensitivity analysis of critical engineering problems, due to their ability to determine the most
and least important parameters, thereby reducing the inputs of neural network models to
generate better predictability. They are good tools for analyzing the mechanism of engineering
problems that black‐box neural network models cannot explain.
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Abstract

With the development of artificial intelligence, the artificial neural networks (ANN) are
widely used in the control, decision‐making and prediction of complex discrete event
manufacturing systems. Wafer fabrication is one of the most complicated and high
competence manufacturing phases. The production scheduling and yield prediction are
two critical issues in the operation of semiconductor wafer fabrication system (SWFS).
This chapter proposed two fuzzy neural networks for the production rescheduling
strategy decision and the die yield prediction. Firstly, a fuzzy neural network (FNN)‐
based  rescheduling  decision  model  is  implemented,  which  can  rapidly  choose  an
optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines
according to the current system disturbances. The experimental results demonstrate the
effectiveness of proposed FNN‐based rescheduling decision mechanism approach over
the  alternatives  (back‐propagation  neural  network  and  Multivariate  regression).
Secondly, a novel fuzzy neural network‐based yield prediction model is proposed to
improve prediction accuracy of die yield in which the impact factors of yield and critical
electrical test parameters are considered simultaneously and are taken as independent
variables. The comparison experiment verifies the proposed yield prediction method
improves  on three  traditional  yield prediction methods with respect  to  prediction
accuracy.

Keywords: semiconductor wafer fabrication system, rescheduling, fuzzy neural net‐
works, yield prediction, decision mechanism
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1. The production scheduling and yield prediction of semiconductor wafer
fabrication system (SWFS)

The semiconductor wafer fabrication system (SWFS) is one of the most sophisticated manufac‐
turing systems. This kind of manufacture system is characterised by a different type of wafer
process (batch and single process), hundreds of process steps, the large and expensive device,
production unforeseen circumstances and re‐entrant flow [1]. Semiconductor manufacturing
orders are usually global, dynamic and customer driven since the 1990s. As a result, semicon‐
ductor manufacturers strive to achieve high‐quality products using advance manufacturing
technologies (such as process planning and scheduling and digitized indicators’ prediction
technologies) [2]. In recent years, production scheduling and yield prediction are always two
issues above all in the complex SWFS.

An organization's competitive advantage is increasingly dependent on its response to market
changes and opportunities, and in response to unforeseen circumstances (i.e. Machine
breakdown, rush orders), so it is important to reduce inventory and cycle time, and improve
resource utilization. Therefore, production scheduling is required to optimize the operation
of SWFS and has been reviewed by Uzsoy and his colleagues [3]. SWFS operates in uncertain
dynamic environments, facing with a lot of disturbances, such as machine failure, a lot of
rework and rush orders [4]. Production rescheduling has been viewed as an efficient approach
in responding to these uncertainties raised by the external environment and internal conditions
of production [5]. In job shop and flow shop, heuristic algorithms and discrete event simulation
methods are mainly applied in production scheduling problems [6–8]. However, the SWFS is
large‐scaled, complicated system with re‐entrant flows, which is different from typical job and
flow shop. Many rescheduling strategies improving traditional job shop rescheduling methods
have been proposed and applied in SWFS in the recent decade [9, 10]. These methods using a
single rescheduling strategy are not enough for the real‐time dynamic manufacturing envi‐
ronment, which is more complex with disruptive events every day. For this reason, a layered
rescheduling framework is needed to select rescheduling methodologies in SWFS according
to the present system status.

Yield prediction plays an indispensable role in the semiconductor manufacturing factory for
its powerful function of reducing cost, increasing production and maintaining a good rela‐
tionship with customers. Before a malfunction is detected, the accurate prediction model of
yield will serve as a warning role and help people take proactive measures to reduce the
number of defect's wafers and increase the total yield of SWFS. An accurate prediction of yield
plays a useful role in releasing the plan of production and optimizing the process of produc‐
tion, which will make the cycle time shorter and reduce fabrication cost of average units. To
offer a reasonable and acceptable price and satisfy the customers, the prediction of manufac‐
turing costs for products is necessary if they are still under development and the accurate
prediction of yield can provide some advice for Ref. [11]. To maintain the good relationship
with the customers, the order's due data should be guaranteed and the accurate prediction of
yield is also useful in this aspect. Some organic problems located on the wafer such as
microscopic particles, cluster defects, photo‐resist, critical processing parameters would be the
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factors which affect the yield of the semiconductor wafer. With the statistic analysis models
[12] and traditional artificial neural network (ANN) models [13], the prediction of semicon‐
ductor fabrication system's yield is difficult. A fuzzy neural network (FNN)‐based yield model
for yield prediction of semiconductor manufacturing systems is proposes in this chapter. In
this system, the impacted factors, which are cluster defects, the defect's key attributed param‐
eters, key electrical test parameters, should be considered in the same time. By this way, the
precision of the wafer yield's prediction is improved.

2. The application of ANN in production scheduling and yield prediction
of the SWFS

For selecting a scheduling strategy, the FNN approach is widely used. FNN is also an effective
methodology for prediction of discrete event manufacturing systems, control and decision‐
making [14, 15]. For demonstrating the relationship between the monitoring features of a
flexible manufacturing system and the conditions of tools, Li et al. [16] presented a fuzzy neural
network approach. For controlling manufacturing process, Zhou et al. [17] used a fuzzy neural
network approach. Chang et al. [18] created a FNN model of flow time estimation with data,
which are generated from a foundry service company. The product design time was estimated
with the FNN approach by Xu and Yan [19]. Chang et al. [20] used FNN approach to estimate
the influence of the process on the results of the wafer fabrication in SWFS. However, the FNN
approach has not been used to solve the problem of SWFS rescheduling problem. This chapter
proposes the FNN‐based rescheduling decision mechanism for SWFS. This methodology can
solve the uncertainty problem and express the expert knowledge in weighted values. In the
neural network, the evaluation of local weight values is the knowledge modelling of control
rules. Rescheduling strategies, SWFS state parameters, disturbance parameters can be
identified and analysed in this model. In this model, we can build the nonlinear relationship
between these three components. With this approach, the layered rescheduling approach will
be selected that make the yields rapid responsiveness and high productivity of the SWFS in
an environment full of randomness.

To predict the wafer yield, Tong et al. [21] proposed a neural network‐based approach through
considering the clustering phenomenon of the defects in integrated circuit manufacturing. It
was proved that the proposed approach was effective. For predicting wafer yield for integrated
circuit with clustered defects, Tong and Chao [22] used a general regression neural network
(GRNN) approach. Defect clustering patterns are simulated from three aspects: the size of chip,
percentage of defects and the cluster pattern. A case study demonstrated the effectiveness of
the approach of the model. For the lack of reliability and accuracy in the prediction of yield,
an approach of a fuzzy set for yield learning was proposed by Chen and Wang [23]. A few of
examples enhanced the reliability and precision of the forecasting of the yield. Chen and Lin
[24] proposed a fuzzy‐neural system with expert opinions, which can increase the precision of
semiconductor yield prediction. The artificial intelligent‐based yield forecasting models
demonstrated above have some limitations that it only takes consideration of the physical
parameters of wafer and the important attributed parameters of defects in wafer without
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considering the influence of variation of the key electrical test parameters. With the combining
of neural network (NN) and memory‐based reasoning (MBR), an integrated framework for a
yield management system with techniques of hybrid machine learning was given by Chung
and Sang [25]. In the forecasting model of the yield, some key electrical test parameters have
been taken into consideration. With the use of wafer level electrical test data, a parametric
neural forecasting model was constructed by Kim et al. [26] and Kim [27]. However, these yield
forecasting models have not taken the attributed parameters of defects in wafer into consid‐
eration. This chapter proposes a yield forecasting model with the consideration of the wafer
electrical test parameters and important attributed parameters of defects in wafer.

3. Artificial neural network for rescheduling decision mechanism in the
SWFS

3.1. Layered rescheduling framework of SWFS

A layered rescheduling framework is proposed in order to reschedule the SWFS for the
unstable environment which is shown in Figure 1. In the process of rescheduling framework,
a three layers of rescheduling strategies are used. a three layers are machine group layer,
machine layer and the system layer. The strategies of the rescheduling implement the dynamic
scheduling, the global scheduling of SWFS and the machine scheduling. To choose the
particular rescheduling strategy, the optimal rescheduling decision mechanism based on FNN
approach. The layered rescheduling framework is described in detail in the following para‐
graph.

Global scheduling of SWFS. If there are some changes in the large‐scale SWFS's condition or
there are some disturbances, the rescheduling is needed and the global rescheduling of SWFS
is managed for the adjustment of the global scheduling [28]. With the machine group layer's
adjusted scheduling objectives, a local dynamic scheduling algorithm is applied for scheduling
in the machine group layer [29]. In the end, with the machine group layer's adjusted scheduling
objectives, machine scheduling is processed in real‐time and the optimal machine real‐time
scheduling solutions are achieved.

Dynamic scheduling of SWFS. If there are some changes in the medium‐scale SWFS's condition
or there are some disturbances, the rescheduling in the machine group layer is needed and the
local dynamic scheduling of SWFS is managed. In order to adjust the local scheduling of a
machine group, a local dynamic scheduling algorithm is applied. With the adjusted scheduling
objectives of the machine layer taken into consideration, machine scheduling of SWFS is
processed.

Machine scheduling of SWFS. If there are some changes in the large‐scale SWFS's condition or
there are some disturbances, the rescheduling is just accomplished and in the same time, the
machine scheduling is processed. Though they are same in the operation sequences of the lots,
they are different in the operation start times of delayed lots.
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FNN‐based optimal rescheduling decision mechanism. With the consideration of the statuses
and disturbances to SWFS, the rescheduling layer is chosen by optimal rescheduling decision
mechanism. According to the fuzzy neural network, an algorithm for the system is stated in
this paper.

Figure 1. Layered rescheduling framework of SWFS.

3.2. FNN‐based decision mechanism for rescheduling

Fuzzy neural network (FNN) is an ingenious combination of fuzzy logic and neural network,
which inherits the advantages from both fuzzy system and neural network. The FNN has the
characteristics of processing fuzzy information with fuzzy algorithms and learning with a
high‐speed parallel structure. The FNN approach is therefore adaptable and robust, and is well
suited for the SMS rescheduling problem.

The FNN‐based rescheduling decision model consists of an input layer, several hidden layers
and an output layer. Input parameters connected with disturbances and state parameters are
accepted in the input layer. The hidden layers calculate and transform the input parameters
using fuzzy logic theory. The output layer produces the decision‐making response of the
rescheduling model. More details of this method are described.

3.2.1. Input factors in the proposed FNN model

The SMS's state and disturbance parameters are treated as input of the FNN, which can be
detailed as: system disturbances parameter, average queue length, stability of SMS, average
relative load and average slack time.
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3.2.1.1. System disturbances parameter

Since the operating environments of SMS are uncertain and dynamic, disturbances mainly
include: machine failures, lot reworks and rush orders. Once a disturbance has happened, an
optimal rescheduling strategy must be selected and carried out to guarantee the stability and
efficiency of SMS. Disturbances are converted into machine work times to quantify their effect.
The mapping of disturbances to machine work times is defined as follows.

(1) Machine failures. The processing time in SMS increases if machine failures happen.

Suppose that  refers to the increased process time caused by all machine failures, then,

f ff
jij j

f f
ji

M F m M

t t
Î Î

= å å (1)

where  is the failed machine group j, 𝀵𝀵 refers to the failed machine i of machine group j,𝀵𝀵  represents the repair time of machine i of machine group j, and  is the set of failed machine
group.

(2) Lot reworks. Lot reworks raise the output requirement of SMS. Suppose that  is the
additional process time incurred by all lot reworks, then,

r r r
j jk j

r r
jk

M F p R

t t
Î Î

= å å (2)

where  refers to the machine group j operating the rework lots,  refers to the set of the
rework lots operated by the machine group j, 𝀵𝀵 refers to the rework lot k operated by the

machine group j, 𝀵𝀵  refers to the process time of the rework lot k operated by the machine

group j,  refers to the set of the machine group that operate rework lots.

(3) Rush orders. Rush orders also demand more of the production requirement of SMS.

Suppose that  is the process time required by all rush orders, then,

o o o
j jk j

o o
jk

M F q R

t t
Î Î

= å å (3)

where  represents the machine group j, that operates the rush orders in current plan time

phase,  represents the set of the lots operated by machine group j in the rush orders; 𝀵𝀵
represents the lot k in the rush orders operated by machine group j, 𝀵𝀵  is the process time of
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the lot k operated by the machine group j in the rush orders,  represents the set of the machine
group which are related with rush orders.

(4) System disturbances parameter. Suppose that 𝀵𝀵𝀵𝀵 is the system disturbances parameter,
denoting the total effect of disturbances on SMS scheduling. The formula to calculate 𝀵𝀵𝀵𝀵 is
shown as the (4).

f r otd t t t= + + (4)

3.2.1.2. Average queue length

Average queue length of machine groups reflecting the utility of the machine group is affected
by disturbances. L is the average queue length of machine groups affected by disturbances;
and the formula is shown in (5).
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where  denotes the machine group  ,  means queue length of machine group ,  refers

to the number of machine group that affected by disturbances.

3.2.1.3. Stability of SMS

The stability of SMS is defined as the deviation in predicted average start time of a rescheduled
strategy from the real start time.  denotes the stability of SMS, which is shown in (6).
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where 𝀵𝀵𝀵𝀵′𝀵𝀵𝀵𝀵 is practical start time of process stage s of product i, 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 is computational start time

of process stage s of product i which optimized with a global scheduling algorithm or re‐
scheduling strategy, 𝀵𝀵𝀵𝀵 is the number of process stage s of product i, 𝀵𝀵𝀵𝀵 is the current time when

disturbance happens,  is set of tasks of all machine group in SMS.

3.2.1.4. Average relative loads

Average relative loads denote the loads of machine groups measured from the current time to
the end of the scheduling horizon which can be affected by disturbances. Let  represent the
average relative loads, the formula for calculation is shown in (7).
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where 𝀵𝀵𝀵𝀵𝀵𝀵𝀵𝀵 denotes process time of process stage s of product i, 𝀵𝀵𝀵𝀵 denotes the time point when

scheduling is ended,  denotes the number of machine of machine group ,  represents

set of tasks of machine group which affected by disturbances.

3.2.1.5. Average slack time

Average slack time represents the space that the machine groups can be adjusted when
disturbances happen. Suppose 𝀵𝀵𝀵𝀵 is the average slack time, shown in (8).
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3.2.2. Output variables

The output variables in the FNN output layer are related to the layered rescheduling strategies,
which consists of the rescheduling in system layer, machine group layer, and machine layer.
If a particular layered rescheduling strategy is selected, then the corresponding output variable
is close to 1, otherwise it equals to 0. In FNN‐based rescheduling decision model, suppose that1, 2, 3 are defined as output variables, then 1, 2, 3 correspond to the rescheduling in

system layer, rescheduling in machine group layer, and rescheduling in machine layer,
respectively.

3.2.3. The structure of FNN

There are five layers in the rescheduling decision model based on FNN, as illustrated in
Figure 2.

a. The input vector is X = [x1, x2, x3, x4, x5]T = [L, , , 𝀵𝀵𝀵𝀵, 𝀵𝀵]T. The function of node input‐
output is:

(1) (1)(0) (1) (1); ; 1,2, 5i i i i i if x x x g f i= = = = = L (9)

b. In the second layer which is the fuzzifer layer, the function of the Gauss membership is
adopted.
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In this formula, cij is the centre and σij is width. The node input–output function is:
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c. In the third layer as the rule layer, each node in the layer is a fuzzy rule which not only
matches the front part of the fuzzy rule but also calculates the adaptive of the rule,

5

1
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In this layer, the input‐–output function is:
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d. In the fourth layer which is the normalized layer. In this layer, the node numbers are the
same in the third layer. It normalized the adaptive values of these rules. And the input‐
output function is:

( 4 )

( 4 )

(3)

(3)
1 1

(4) (4)

;

; ,

j j
j n n

i i
i i

j j j

x a
f

x a

x g f j n
= =

= =

= = =

å å
L1,2,

(14)

e. The last layer is the output layer. It defuzzify the output variables. And each node
describes a rescheduling strategy. While a rescheduling strategy is chose, the correspond‐
ing output is 1 or 0. The input‐output function is:
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where 𝀵𝀵𝀵𝀵 is the connection weight parameter.

Figure 2. FNN structure.

3.2.4. The strategy of the fuzzy inference

The Mamdani‐based fuzzy inference is applied in this FNN‐based rescheduling decision
model with a assumption that the fuzzy rule Ri describes the relationship between input and
output. Then,
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3.2.4. The strategy of the fuzzy inference

The Mamdani‐based fuzzy inference is applied in this FNN‐based rescheduling decision
model with a assumption that the fuzzy rule Ri describes the relationship between input and
output. Then,
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Ri:

IF x1 is A1i and x2 is A2i and … and xm is Ami,

THEN y1 is B1i and y2 is B2i and … and ym is Bki,

where

i = 1, 2, …, n.

n: number of rules.

m: number of input variables.

k: number of output variables.

Aji: value of fuzzy linguistic variable xj.

Bji: value of fuzzy linguistic variable yj.

3.3. Result and discussion

3.3.1. Experiment on the proposed FNN approach

In this section, the experiments are conducted to evaluate the effectiveness of the proposed
FNN rescheduling decision mechanism. A discrete event simulation model is run to gather
the experiment data, which is based on a 6‐in. SWFS in Shanghai. This SWFS is composed by
eleven machine groups, which add up to thirty‐four machines in total. And three types of
wafers are put into the SWFS. The processes of all three types of wafer lots are divided into
dozes of stages, which is composed by a key step and several successive normal steps. One
hundred and fifty records of rescheduling decision are collected from the simulation model,
and shown in Table 1. Ninety records are used in model training, and 60 are taken to evaluate
the model. The presented FNN approach is compared with the back propagation network
(BPN) approach and the multivariate regression methodology, since the BPN and multivariate
regression approaches are widely used in the rescheduling strategy decision and proven to be
competitive [30, 31]. Furthermore, the detail numerical comparison of the FNN approach,
BPNN approach and multivariate regression are demonstrated as follows.

Now, it's going to compare the experimental results which are made by these three methods.
Figure 3 shows the optimal rescheduling decision value and the model outputs. It shows that
the FNN rescheduling method has the best convergence. We also contrast the RMSE and the

decision coefficients 2 of these three methodologies in Table 2. The FNN has the best

performance for the RMSE which is 0.042 and has the largest of the 2 values which is 0.9941.
Hence, the rescheduling decision based on FNN has the best performance in these three
methods.
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Samples

no

Average

queue

length of

disturbed

machine

stations x1

(lot)

Stability of

scheduling

x2 (h)

Average

load of

disturbed

machine

stations x3

(100%)

Average

slack time

of

disturbed

machine

stations x4

(h)

Disturbance

x5 (h)

Optimal rescheduling decision objective

Rescheduling

in machine

layer y1

Rescheduling

in machine

group layer y2

Rescheduling

in system

layer y3

1 1 1.10 0.59 6.42 2.14 1 0 0

2 2 0.78 0.52 6.51 2.01 1 0 0

3 0 0.81 0.46 5.16 1.76 1 0 0

4 0 0.48 0.1 5.81 1.21 1 0 0

5 2 0.49 0.14 4.62 1.42 1 0 0

6 1 0.52 0.12 5.54 1.79 1 0 0

7 2 0.74 0.17 5.16 1.13 1 0 0

8 0 0.76 0.07 4.49 1.64 1 0 0

9 6 0.38 0.29 4.86 1.4 1 0 0

10 5 0.37 0.26 5.17 2.21 1 0 0

.. .. .. .. .. .. .. .. ..

141 6 4.23 0.75 3.81 9.81 0 0 1

142 4 4.15 0.76 5.64 9.18 0 0 1

143 5 4.01 0.76 4.97 9.77 0 0 1

144 2 0.81 0.38 1.87 9.87 0 0 1

145 4 0.87 0.37 2.41 10.11 0 0 1

146 2 0.68 0.42 2.18 9.42 0 0 1

147 2 0.72 0.35 2.18 9.76 0 0 1

148 2 0.91 0.23 2.7 9.13 0 0 1

149 1 0.87 0.21 2.97 9.73 0 0 1

150 2 0.87 0.31 2.77 10.18 0 0 1

Table 1. One hundred and fifty records for numerical experiments.
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Figure 3. The relationship between the rescheduling strategy output and ideal target output for the FNN, BPNN and
multivariate regression methods. (a) FNN‐based output value, (b) BPNN‐based output value and (c) multivariate re‐
gression‐based output value.

Rescheduling strategy model RMSE R2

R2
Y1

R2
Y2

R2
Y3

FNN 0.0042 0.9880 0.9762 0.9941

BPNN 0.0132 0.9745 0.9178 0.9274

Multivariate regression 0.0897 0.85887 0.75566 0.70813

Table 2. Comparison of RMSE and decision coefficients among the FNN, BPNN and multivariate regression methods.
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3.3.2. Experiment on the proposed rescheduling decision mechanism

The FNN rescheduling decision mechanism is used in our layered rescheduling method
(Method 1). There are two other different rescheduling methods. One is the monolayer‐based
rescheduling approach (Method 2). Another one is the first come first served (FCFS) approach
(Method 23). In our method, the FNN rescheduling decision mechanism figures out the optimal
rescheduling approaches which include the global scheduling of SWFS, the dynamic sched‐
uling and the machine scheduling. By contrast, the Method 2 only considers the rescheduling
of the machine group layer. But in practice, the Method 3 is widely used in the Fab. In order
to prove the efficiency of our approach, we also compared these three rescheduling methods
in terms of the machine utilization and the daily movement, which are the important system
targets for SWFS.

In the case study, the data are collected from a 6‐in. SWFS in Shanghai. It products three kinds
of lots which are renamed as A, B and C. The whole process is shown in Table 4. This SWFS
has eleven key machine groups (shown in Table 3). which has 34 machines with MTTF and
MTTR parameters. They are explained in Section 5. The SWFS simulation model is built by
eM‐plant 7.0 software. In the simulation, it took 12 days, including a 5‐day warm‐up. Ten times
repeated trials of the same stimulation, in which the initiated loads of machines were different,
were performed (3 rescheduling methods 10 replications). The results are shown in Figures 4
and 5, which illustrate:

1. Method 1 performs well in the rescheduling decision in the SWFS.

2. Method 1 outperforms method 2 and 3, which indicates the layered rescheduling method
is more suitable than the conventional FCFS rescheduling approach and monolayer‐based
rescheduling approach in the complex SWFS.

Machine
group
number

Processing
type

Number
of
machine

Batch
size

MTBF MTTR

1 Ion implant 3 1 70 1

2 Ion implant 4 1 70 1

3 Diffusion 3 5 100 2

4 Diffusion 4 5 110 2

5 Etching 2 1 90 1

6 Etching 4 1 80 1

7 Etching 3 1 60 1

8 Etching 2 1 70 1

9 Lithography 4 1 90 1

10 Lithography 3 1 80 1

11 Lithography 2 1 100 1

Table 3. Configuration of SWFS.
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Stage
number

Number of
time
period by
product A

Machine
group
number of
product A

Process
time of
product A
by key
machine
t/hour

Number
of time
period by
product B

Machine
group
number of
product
B

Process
time of
product B
by key
machine
t/hour

Number
of time
period by
product C

Machine
group
number of
product C

Process
time of
product C
by key
machine
t/hour

1 1 8 1 1 10 1 1 10 1

2 1 7 1 1 8 1 1 8 1

3 1 10 1 4 5 1 2 5 1

4 1 9 1 1 10 1 1 8 1

5 5 0 1 1 1 1 1 0 1

6 3 0 1 1 6 1 4 3 6

7 4 2 4 1 10 1 1 8 1

8 1 8 1 1 9 1 2 5 1

9 1 5 1 6 0 1 2 2 3

10 1 3 3 1 0 1 1 8 1

11 1 0 1 1 4 1 2 5 3

12 2 10 1 1 8 1 1 0 1

13 1 0 1 2 1 1 2 3 6

14 4 4 2 3 2 3 1 8 1

15 1 6 1 1 10 1 2 9 1

16 2 1 1 1 8 1 2 4 1

17 3 4 2 2 5 2 3 0 1

18 1 9 1 1 3 1 1 8 1

19 1 5 1 2 5 1 3 6 1

20 1 8 1 1 9 1 2 1 1

21 3 3 3 1 1 1 1 8 1

22 1 5 1 2 5 1 3 7 1

23 4 2 4 1 9 1 2 2 3

24 1 9 1 3 0 1 2 5 1

25 3 4 2 3 2 3 1 0 1

26 2 0 1 2 10 1 1 9 1

27 1 8 1 2 7 1 2 4 1

28 1 7 1 – – – 1 1 1

29 2 3 3 – – – – – –

30 1 2 1 – – – – – –

Table 4. Lot products whole process.
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Figure 4. The utilization of machine group.

Figure 5. The utilization of machine group.
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4. Artificial neural network approach for die yield prediction in the SWFS

4.1. FNN‐based yield prediction model

The yield prediction model based on FNN is composed of three parts, which are an input layer,
an output layer and several hidden layers. The three parts do the different jobs respectively.
The input layer serves to accept input parameters connected with yield. The output layer does
the job to get the yield response of the prediction model. The hidden layers are applied to
compute and convert the input parameters which are on the basis of fuzzy logical theory. The
following sections show a more detailed yield prediction model based on FNN.

4.1.1. Variables in FNN input layer

The input variables in the FNN prediction model include the following parameters: the critical
electrical test parameters, wafer physical parameters and key parameters of defects in wafer.
Critical process parameters refer to those electrical test parameters which are generally tested
at the end of the wafer processing, and they have notable influences on the yield. Wafer physical
parameters mainly refer to the size of the chip. Key parameters of defects in wafer Contain a
number of defects, clustering parameter, mean number of defects in each chip and mean a
number of defects in each unit area. Among these input variables, the critical electrical test
parameters and clustering parameters are complex, and we will discuss them in the following
sections.

4.1.1.1. Critical electrical test parameters

In the process of fabricating complex semiconductor wafer, there are more than one hundred
electrical test parameters related to the probed wafer. This paper mainly does the research on
establishing the exact relationship of a small number of critical electrical test parameters with
yield. These critical electrical test parameters have significant influence on yield, and they have
high correlating coefficients or exhibit a ‘cliff’ in the correlation graphs which means they can
quickly improve the yield. Wong [32] proposed the hybrid statistical correlation analysis
method, and the critical electrical test parameters are identified based on this method. Here,
we remove some details of these electrical test parameters for confidentiality.

4.1.1.2. Clustering parameter

Clustering parameter displays cluster or clumps degrees of wafer defects in the defect map
[33]. Suppose that the clustering parameter is expressed by c, shown in Eq. (1).

2 2

2 2min ,v ws sc
v w

ì ü
= í ý

î þ
(22)
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where the sample mean and variance of  is represented by 2 and 2; and the sample mean

and variance of  are represented by 2 .  and  are a series of defect intervals on the x and

y axis defined as:

( ) ( 1) , 1,2,...,i i iV x x i n-= - =
(23)

( ) ( 1) , 1,2,...,i i iW y y i n-= - = (24)

where x(i) refers to the ith smallest defect coordinates on x axis, and similarly, y(i) refers to the
ith smallest defect coordinates on y axis, x(0) = y(0) = 0, and n refers to the quantity of defects
on one wafer. If the defects are randomly scattered, the value of CI is close to 1, and when
clustering of defects appears, the value of CI is likely to be greater than 1.

4.1.2. FNN structure

There are five layers in the rescheduling decision model based on FNN, as illustrated in
Figure 6.

Figure 6. FNN model structure.

a. The input vector is X = [x1, x2, x3, …, xm]. The function of node input‐output is:
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(1) (1) (1) (1); ; 1,2,i i i i if x x g f i m= = = = L (4‐4)

b. In the second layer which is the fuzzifer layer, the function of the Gauss membership is
adopted.

2

2

( )

( )
i ij

ij

x c

ij iu x e s

-
-

= (25)

In this formula, cij is the centre and 𝀵𝀵𝀵𝀵 is width. The node input‐output function is:

2

( 2) 2

( )(1) 2
(2) (2) (1) (2)

2

( )
; ( )

i ij

ij ij

x c

fi ij
ij ij ij i ij

ij

x c
f x u x g e e s

s

-
--

= - = = = = (26)

where 𝀵𝀵 = 1, 2,⋯ and 𝀵𝀵 = , ,⋯, 𝀵𝀵.
c.

In the third layer as the rule layer, each node in the layer is a fuzzy rule which not only
matches the front part of the fuzzy rule but also calculates the adaptive of the rule,

(1)

1
( ), 1,2, ,

i

m

j il ii
a u x j n

=
= P = L (27)

In this layer, the input‐output function is:

(3) (2) (1) (3) (3) (3)

1 1
( ); ; 1,2, ,

i i

m m

j il il i j j j ji i
f x u x x a g f j n

= =
= P = P = = = = L (28)

d.
In the fourth layer which is the normalized layer. In this layer, the node numbers are the
same in the third layer. It normalized the adaptive values of these rules. And the input‐
output function is:

1

, 1,2, ,j
j n

i
i

a
b j n

a
=

= =

å
L

(29)

Node input‐output function in this layer is as follows.
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(3)
(4) (4) (4) (4)

(3)

1 1

; ; 1,2, ,j j
j j j j jn n

i i
i i

x a
f x b g f j n

x a
= =

= = = = = =

å å
L

(30)

e. The last layer is the output layer. It defuzzify the output variables. And each node
describes a rescheduling strategy. While a rescheduling strategy is chose, the correspond‐
ing output is 1 or 0. The input‐output function is:

(5) (4) (5) (5) (5)

1 1
;

n n

j j j j out
j j

f w x w b O x g f
= =

= = = = =å å (31)

where  is connection weight parameter of output layer, and 𝀵𝀵𝀵𝀵𝀵𝀵 is the output of FNN
model.

4.2. Case study

In this section, the experiments are conducted to evaluate the effectiveness of the proposed
FNN method. This section presents a numerical experiment study to demonstrate the
effectiveness of the approach proposed. Seven hundred and twenty wafer samples are obtained
from a 6 in. SWFS in Shanghai, and each sample includes 360 records of wafer yield. Five
hundred and fifty‐two records are used in model training, and 168 are taken to evaluate the
model. The attributes contained in each record are, in order, number of defects, clustering
parameter, die yield, mean number of defects per unit area, chip size parameter, mean number
of defects per chip, and 28 electrical test parameters, which is shown in Table 5. Each feature
is acquired by test during the critical manufacturing process. The presented FNN approach is
compared with the Poisson model, negative binomial model and BPNN approaches, since the
three approaches are widely used in research on yield predicting and have been proved to be
competitive [34–36]. Furthermore, the detail numerical comparison of the FNN approach,
Poisson model, negative binomial model and BPNN approaches are demonstrated as follows.

Record Number

of

defects  

Mean

number

of

defects/

chip 

… Chip

size

parameter

(cm2) 

Clustering

parameter 

Process

parameter

1 

Process

parameter

2 

… Process

parameter

28 

Yield

(%) 

1 21 0.14094 … 1 0.51836 322.7498 0.060865 … 1.169573 0.86577

2 45 0.30201 … 1 0.70814 324.4634 0.061573 … 1.172481 0.73826

3 16 0.10738 … 1 0.65597 322.1903 0.060648 … 1.176223 0.89262

4 21 0.14094 … 1 1.0277 313.9659 0.065036 … 1.162216 0.87248
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of

defects  

Mean

number

of

defects/

chip 

… Chip

size

parameter

(cm2) 

Clustering

parameter 

Process

parameter

1 

Process

parameter

2 

… Process

parameter

28 

Yield

(%) 

5 46 0.30872 … 1 0.59023 313.0953 0.068286 … 1.183461 0.73826

6 35 0.2349 … 1 0.73168 323.9832 0.061867 … 1.164384 0.81879

7 7 0.04698 … 1 0.73807 315.9001 0.059539 … 1.177436 0.95302

8 49 0.32886 … 1 0.75913 310.9356 0.060887 … 1.180799 0.72483

9 9 0.060403 … 1 0.57871 310.6571 0.06439 … 1.168414 0.9396

10 33 0.22148 … 1 0.83289 310.0921 0.068695 … 1.179983 0.80537

11 37 0.24832 … 1 0.69348 322.2567 0.068536 … 1.160716 0.77181

12 48 0.32215 … 1 0.9089 323.7277 0.069959 … 1.162259 0.73154

13 12 0.080537 … 1 0.6154 321.1246 0.067403 … 1.176334 0.91946

14 33 0.22148 … 1 0.85056 313.0574 0.068778 … 1.170839 0.78523

15 47 0.31544 … 1 1.0109 313.5133 0.063245 … 1.172714 0.72483

… … … … … … … … … … …

705 31 0.31959 … 1.44 1.0678 310.2484 0.065854 … 1.168734 0.82474

706 35 0.36082 … 1.44 0.67849 321.1613 0.06883 … 1.166041 0.83505

707 61 0.62887 … 1.44 1.00661 314.3752 0.066945 … 1.184936 0.75258

708 71 0.73196 … 1.44 0.95411 321.3472 0.061456 … 1.164627 0.7732

709 82 0.84536 … 1.44 1.5379 311.5562 0.060457 … 1.160369 0.73196

710 32 0.3299 … 1.44 1.2404 313.4114 0.067197 … 1.160229 0.80412

711 79 0.81443 … 1.44 1.5407 317.3192 0.067454 … 1.175912 0.7732

712 72 0.74227 … 1.44 2.4467 323.099 0.062285 … 1.171942 0.76289

713 58 0.59794 … 1.44 2.32601 318.6861 0.068344 … 1.174814 0.76289

714 57 0.58763 … 1.44 1.0014 316.3194 0.065981 … 1.173957 0.79381

715 73 0.75258 … 1.44 1.3139 322.1991 0.065962 … 1.180853 0.73196

716 46 0.47423 … 1.44 1.6882 320.4291 0.069517 … 1.166221 0.79381

717 80 0.82474 … 1.44 1.57021 316.6195 0.062461 … 1.16293 0.74227

718 38 0.39175 … 1.44 2.0034 317.0604 0.06606 … 1.171795 0.79381

719 18 0.18557 … 1.44 0.81646 323.2213 0.064985 … 1.167234 0.8866

720 72 0.74227 … 1.44 0.95479 319.6768 0.068621 … 1.175982 0.73196

Table 5. Partial wafer measurements parameters and yield.
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4.2.1. Experiment on fuzzy neural network

The algorithm was programmed in Matlab 6.5, and ten factors were treated as input of the
model, which are mean number of defects per chip, chip size, clustering parameter, mean
number of defects per unit area, the number of defects per wafer and another five critical
electrical test parameters.

Twenty‐six rules for classification were identified the fuzzifier layer in the model. The 552
samples were utilized in the training of the FNN model with fivefold cross‐validation. The
learning process was explored in Figure 7. Afterward, the trained model was assessed by
another 168 samples, which is demonstrated in Table 6. Furthermore, the linear regression
analysis of the output of the FNN model is detailed in Figure 8.

Figure 7. Fuzzy neural network learning curve.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.72514 0.000432

2 0.69128 0.69118 0.000146

3 0.8255 0.8337 0.009929

4 0.75168 0.74329 0.011168

5 0.75839 0.758 0.000513

6 0.73154 0.73031 0.001677

7 0.89933 0.89876 0.000632

8 0.75168 0.75211 0.000576

9 0.74497 0.74409 0.001179

10 0.75168 0.75002 0.002209

11 0.7651 0.7637 0.001824
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Samples The actual yield The predicted yield Relative error

12 0.85235 0.85658 0.004967

13 0.89933 0.90485 0.006143

14 0.9396 0.93918 0.000452

15 0.81208 0.81559 0.00432

… … … …

160 0.75258 0.73323 0.025707

161 0.86598 0.84315 0.026365

162 0.74227 0.74376 0.002008

163 0.8866 0.88606 0.000609

164 0.73196 0.72817 0.005175

165 0.7732 0.76827 0.006381

166 0.75258 0.7456 0.009278

167 0.82474 0.83413 0.011391

168 0.83505 0.82249 0.01504

Table 6. The predicted yield based on FNN.

Figure 8. The linear regression analysis of the output of the FNN model.

4.2.2. Experiment of Poisson model

The Poisson model was built to predict wafer yield as follows.

0D AY e-= (38)
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In the model, Y means the wafer yield, 0 denotes the defect density, and  is the chip size.

The yield was forecasted by Poisson model, and the results of 168 samples can be found in
Table 7. The lineal correlation analysis between the actual wafer yield and the prediction value
is shown in Figure 9.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.57675 0.20429

2 0.69128 0.48117 0.30395

3 0.8255 0.79597 0.035769

4 0.75168 0.6552 0.12836

5 0.75839 0.66853 0.11849

6 0.73154 0.58064 0.20627

7 0.89933 0.89218 0.007953

8 0.75168 0.65081 0.13419

9 0.74497 0.61679 0.17206

10 0.75168 0.61267 0.18493

11 0.7651 0.59644 0.22044

12 0.85235 0.83988 0.014634

13 0.89933 0.87439 0.027733

14 0.9396 0.92883 0.011459

15 0.81208 0.74932 0.077284

… … … …

160 0.75258 0.55222 0.26623

161 0.86598 0.75422 0.12905

162 0.74227 0.49038 0.33936

163 0.8866 0.84934 0.042026

164 0.73196 0.40431 0.44763

165 0.7732 0.48316 0.37512

166 0.75258 0.43547 0.42137

167 0.82474 0.75422 0.085502

168 0.83505 0.74311 0.1101

Table 7. The predicted yield based on the Poisson model.
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Figure 9. The linear regression analysis of the output of the Poisson model.

4.2.3. Experiment of negative binomial model

The negative binomial model is built to predict wafer yield as follows.

( )1 D A/a0

1
+ aY = (38)

In this model,  means the defect‐limited wafer yield, 0 denotes the defect density, and  is
the cluster coefficient. The yield was forecasted by negative binomial model and the results of
168 samples can be found in Table 8. The lineal correlation analysis between the actual wafer
yield and the prediction value is shown in Figure 10.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.6395 0.11772

2 0.69128 0.57001 0.17543

3 0.8255 0.81257 0.015659

4 0.75168 0.69885 0.070289

5 0.75839 0.70919 0.064881

6 0.73154 0.64239 0.12187

7 0.89933 0.89708 0.002499

8 0.75168 0.69546 0.074787
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Samples The actual yield The predicted yield Relative error

9 0.74497 0.66949 0.10132

10 0.75168 0.66637 0.11349

11 0.7651 0.65417 0.14499

12 0.85235 0.85037 0.002326

13 0.89933 0.88098 0.020408

14 0.9396 0.93102 0.009135

15 0.81208 0.7737 0.047256

… … … …

160 0.75258 0.61346 0.18486

161 0.86598 0.7748 0.10529

162 0.74227 0.5669 0.23626

163 0.8866 0.85746 0.032863

164 0.73196 0.50341 0.31225

165 0.7732 0.56152 0.27377

166 0.75258 0.52626 0.30072

167 0.82474 0.7748 0.06055

168 0.83505 0.76546 0.083336

Table 8. The predicted yield based on the negative binomial model.

Figure 10. The linear regression analysis of the output of the negative binomial model.
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4.2.4. Experiment of back‐propagation neural network

A three layer BPNN is applied to predict wafer yield with ten input factors as same as the
proposed FNN. The number of hidden neurons is determined by the empirical formula and
selected to be 35. The yield was forecasted by BPNN and the results of 168 samples can be
found in Table 9. The lineal correlation analysis between the actual wafer yield and the
prediction value is shown in Figure 11.

Samples The actual yield The predicted yield Relative error

1 0.72483 0.73495 0.013962

2 0.69128 0.7263 0.050661

3 0.8255 0.82385 0.001994

4 0.75168 0.76318 0.015293

5 0.75839 0.75985 0.001919

6 0.73154 0.75042 0.025807

7 0.89933 0.89876 0.000632

8 0.75168 0.76104 0.012456

9 0.74497 0.75932 0.019268

10 0.75168 0.73971 0.015921

11 0.7651 0.76666 0.002033

12 0.85235 0.83068 0.025423

13 0.89933 0.87383 0.028359

14 0.9396 0.93471 0.005204

15 0.81208 0.79469 0.021415

… … … …

160 0.75258 0.72724 0.033671

161 0.86598 0.8581 0.009105

162 0.74227 0.7096 0.044007

163 0.8866 0.89151 0.005535

164 0.73196 0.68805 0.059996

165 0.7732 0.72722 0.059471

166 0.75258 0.71576 0.048929

167 0.82474 0.82683 0.00253

168 0.83505 0.82845 0.007907

Table 9. The predicted yield based on BPNN.
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Figure 11. The linear regression analysis of the output of BPNN.

4.2.5. Results discussion

Aiming to assess the performance the proposed FNN methods, experiment with three contrast
method was conducted for comparison. The lineal correlation analyses between the actual
wafer yield and the prediction value of four methods are shown in Figure 12, which indicates
that the FNN method outperforms other three methods from the view of convergence. The

Figure 12. The relationship between the actual yields and predicted yields based on the FNN, BPNN and Poisson mod‐
el and negative binomial model approach.
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results of four methods in the RMSE and correlation coefficient R is presented in Table 10. The
RMSE of the FNN method is 0.017, which is the smallest value above the four methods, and
the R of the FNN‐based model is 0.941, which is larger than other three methods. It indicates
that the proposed FNN‐based approach is more accurate and effective than other three
methods, which are widely used in the yield predicting.

Yield prediction model The actual yield The predicted yield RMSE R

Average SD Average SD

Poisson model 0.80864 0.06168 0.65394 0.18694 0.0169 0.637

Negative binomial model 0.70047 0.14789 0.0123 0.693

BPNN 0.80691 0.05736 0.0024 0.886

FNN 0.80838 0.05711 0.0017 0.941

Table 10. The comparisons of RMSE and correlation coefficients among the FNN, BPNN, Poisson model and negative
binomial model.

5. Conclusion

The artificial neural networks (ANN) have a wide range of applications. For example, in
complex discrete event manufacturing systems, they can be used to control, make decision and
predict. SWFS is exactly such a complex manufacturing system. It has many characteristics,
such as a mix of different process types, re‐entrant flows, very expensive equipment and
sequence dependent setup times and so on. In order to get more applications of ANN used in
quality analysis and production scheduling in the semiconductor wafer fabrication system,
this chapter implements two novel fuzzy neural networks that are used in the yield prediction
of SWFS and rescheduling decision separately.

In the respect of rescheduling decision, this chapter puts forward a new method using a FNN
model with which a system can make itself adapted to the current states and disturbances. In
uncertain dynamic environments, current states and disturbances of the system are mathe‐
matically characterized. Rescheduling decision model, which assuming FNN builds the
relationship between the inputs (i.e. disturbance, system state parameters) and the outputs
(i.e. disturbance, system state parameters) of FNN. According to the current system distur‐
bances, an optimal rescheduling method which can be used to schedule the semiconductor
wafer fabrication lines is chosen by the make‐decision model. We do experiment studies in
Shanghai, which are based on 6‐in. SWFS. The proposed rescheduling decision mechanism is
proved to be effective by the linear regression between ideal targets and output of FNN. The
rescheduling decision‐making method which is proposed is demonstrated to be accurate by
comparing with regression and traditional BPNN. We also do the comparison between the
layered rescheduling method which is on the basis of FNN rescheduling decision mechanism
and the two methods that are FCFS approach and the rescheduling approach based on the
monolayer. The results indicate that, in respect of machine utilization and daily movement,
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layered rescheduling method, which is on the basis of FNN rescheduling decision mechanism,
is superior to the other two approaches.

A yield prediction method for semiconductor manufacturing systems which is on the basis of
new fuzzy neural networks is proposed for the yield prediction. This method builds the yield
prediction model based on FNN by using the following parameters as input variables, which
are the number of defects in each wafer, mean number of defects in each chip, mean number
of defects in each unit area, clustering parameter, chip size and five critical electrical test
parameters.

According to the data from the experiment studies in Shanghai which are based on 6‐in. SWFS.
The proposed rescheduling decision mechanism is proved to be effective by the linear
regression between ideal targets and output of FNN. The rescheduling decision‐making
method which is proposed is demonstrated to be accurate by comparing with regression and
traditional BPNN. The approach proposed in this paper has the advantage that it considers
more variables’ influences than other model such as negative binomial yield model, BPNN
model and Poisson yield model. The variables here include physical parameters of wafer, key
attributed parameters of defects and wafer electrical test parameters on wafer yield and so on.
In a word, the model proposed in this paper is more accurate than the other traditional yield
prediction approaches.
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Abstract

In  this  chapter,  artificial  neural  networks  (ANNs)  inverse  model  is  applied  for
estimating the thermal performance ( )  in parabolic  trough concentrator (PTC).  A
recurrent neural network architecture is trained using the Kalman Filter learning from
experimental database obtained from PTCs operations. Rim angle (φr), inlet (Tin), outlet
(Tout)  fluid  temperatures,  ambient  temperature  (Ta),  water  flow  (Fw),  direct  solar
radiation (Gb) and the wind velocity (Vw) were used as main input variables within the
neural network model in order to estimate the thermal performance with an excellent
agreement (R2=0.999) between the experimental and simulated values. The optimal
operation conditions of parabolic trough concentrator are established using artificial
neural network inverse modeling. The results, using experimental data, showed that
the recurrent neural network (RNN) is an excellent tool for modeling and optimization
of PTCs.

Keywords: solar concentrating, thermal efficiency, neural networks, Kalman training
optimization, solar energy

1. Introduction

About 80% of the energy consumed worldwide come from conventional energy sources, where
more than 50% is used by the industry being a large part of this demand for the generation of
heat industrial process [1, 2]. However, the use of fossil fuels to satisfy this demand has led to
severe environmental impacts, which together with the decline of this resource has led to global
energy policies focus on replacing fossil fuels with sustainable energy sources. The use of solar
thermal systems could help to reduce CO2 emissions and other pollutants in the atmosphere.
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Solar energy is one of the renewable energies that attract more attention due to its abundance,
cleanliness, and the fact that it does not generate any pollution [3]. On the other hand, in the
industries exist several processes that require thermal energy with temperature range between
60 and 250 °C for heat process generation; industries such as dairies, plastics, canned food,
textile, paper, etc. employ this kind of energy to process such as drying, sterilizing, cleaning,
evaporation, steam and conditioning warehouses space for both heating and cooling [4]. This
energy could be easily supplied by solar collectors using photothermal conversion. The
thermal storage process is used to supply the required power loading when there is no sunlight.
Amongst the middle-temperature solar collectors are the parabolic trough, Fresnel, compound
parabolic collectors (CPCs) and evacuated tubes. In this work, we consider parabolic trough
solar concentrators (PTCs) that could yield the heat within the temperature between 90 and
400 °C. Parabolic trough solar concentrators (PTCs) are one of the most mature technologies
developed in this area [5]. Nevertheless, the use of this technology entails certain difficulties
because of a large number of operational and environmental parameters. This becomes an
extremely complicated study on these systems, creating complex nonlinear equations for
compression, which results in the employment of sophisticated control systems to operate and
optimize the PTC performance, in order to maximize its cost-benefit during the operation. The
modeling and simulation of these systems should take into account the collector, the thermal
load, and the losses to the environment and the power auxiliary supply.

In the last decades, in the area of renewable energy, the employ of computational intelligence
methods such as artificial neural networks (ANN) has been rising to perform modeling and
optimization process [6] because all the information based on renewable energy systems is
very volatile and it has too much noise and also the behavior does not present a linear trend.
In recent years, one of the most promising approaches for modeling and control of the highly
nonlinear processes is the use of recurrent neural network. For most applications on time series
forecasting, recurrent neural network (RNN) using the back-propagation learning algorithm
has presented good results. However, this learning law is based on the gradient descent
method and its convergence speed could not meet the requirements when fast responses are
needed. Another well-known training algorithm is the Levenberg-Marquardt whose main
disadvantage is that it does not guarantee finding the global minimum and its learning speed
could be slow since it depends on the initialization values. To overcome the learning speed
and uncertainties issues, recently, the extended Kalman Filter (EKF)-based algorithms have
been implemented to train neural networks. With the EKF-based algorithm, the learning
convergence is improved [6]. Using the EKF training on recurrent neural networks drives to
improve results mostly in control, identification and predictions applications where the critical
variables are subject to uncertainties and unmodeled dynamics. However, the EKF training
requires the heuristic selection of some design parameters, which is not always an easy task.

This chapter is focused on presenting the methodology used to conduct the process of
modeling the thermal efficiency of an array of PTCs, in order to bring the system to optimal
operating conditions through a desired efficiency by using ANN. The chapter is divided into
five sections: Section 2 describes the experimental system composed by parabolic trough solar
concentrations; Section 3 details the artificial neural network as modeling tool; Section 5
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presents the development of the inverse modeling for optimization; and Section 6 describes
the conclusions.

2. Experimental system: parabolic trough solar concentrations

2.1. Experiment description

The experimental system corresponds to a low enthalpy steam generation plant built according
to the ASHRAE 93-1986 (RA 91) standard [7]; it is composed by:

• three PTCs (with 90° rim angle) with a length of 2.44 m and an aperture of 1.06 m;

• two storage thermic tanks of 120 L capacity which cover two functions: the first is to preheat
the water for the characterization of PTC employing electrical resistances inside the tanks
(the first with 3 kW and second with 6 kW) and the second is to store the energy produced
by PTCs;

• a hydraulic circuit and two centrifugal water pumps of ½ HP is employed to recirculate the
preheated water to PTCs and then return it to the tanks;

• a set of sensors consisting in a Hedland HB2800 flow meters, pressure and temperature
meters at the storage thermic tanks outlet, such as pressure and temperature meters at the
outlet of PTCs.

For the measurement of environmental conditions, a pyranometer, an anemometer and
temperature sensors were employed. Figure 1 shows the diagram of the experimental system.

Figure 1. Operation diagram of parabolic solar concentration experimental system.
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2.2. Performance of parabolic trough solar collector (PTC)

A parabolic trough solar concentrator consists of a shaped channel sheet with parabolic cross-
section whose surface must have a high reflectance value (ρ); at the focus of parabola (f) is
situated an absorber metal tube covered with a selective surface with high absorptivity (α) and
low emissivity (ε). A glass tube with high transmissivity (τ) is placed concentric to the absorber
to minimize the convective losses; in the same way, the space between both tubes must be
evacuated to avoid the conduction losses. Inside the absorber tube, the working fluid gains
energy due to the concentration of solar irradiation at the focal line resulting in the temperature
increase of the working fluid [8]. Figure 2 shows cross-section of a PTC.

Figure 2. Parabolic trough solar concentrator.

Rim angle (φr) a B c

40°  2  1.5795  1.4927 

50°  2  1.7404  1.5199 

60°  18  14.420  5.6055 

70°  2  2.3000  1.5974 

80°  2  2.7846  1.6485 

90°  2  2.8284  2.4142 

Table 1. Constant values respect the rim angle.

One of the most practical ways to calculate the dimensions of a PTC by considering the
curve length S of the reflective surface is given by:
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( )2
2 ln( ) ln( )f a

aS b f a cf= - + (1)

where the coefficients a, b and c are determinates by the angle that form the parabolic surface
with respect to the focal line which is called rim angle (φr). Table 1 shows the values of this
these coefficients for different rim angles.

Another important parameter related to the rim angle (φr) is the aperture of the parabola (Wa).
From Figure 2 and simple trigonometry, it can be found [9] that:

( )p4 t 2anaW f h= (2)

where hp is the latus rectum of the parabola.

2.2.1. Optical performance

The optical efficiency (η0) of a PTC is defined as the ratio of solar energy that falls on the surface
of the absorber tube and that which falls on the reflective surface of the collector. It is commonly
given as [10]:

( )( ) ( )f1 tan coso Ah rtag q qé ù= -ë û (3)

where θ is the factor intersection receptor, θ is the sun rays incident angle and Af is the ratio
of the area of loss and opening area of the PTC (called geometric factor).

There are two types of errors associated with the parabolic surface: random and no random.
The first type of errors is apparent changes in the sun width, scattering effects caused by
random slope errors and associated with the reflective surface; these can be represented by
normal probability distributions. The second class of errors depends on the manufacturing
and operation of the collector. These errors are due to the reflector profile imperfections,
misalignment and receiver location errors [11]. Random errors are modeled statistically to
calculate the standard deviation of the distribution of the total energy reflected at normal
incidence [12]:

2 2 2
Tot sol pend ref4s s s s= + + (4)

where σsol is the standard deviation of the distribution of solar form, σpend is the standard
deviation of the slope errors and σref is the standard deviation of the distribution of the errors
of the reflective surface.

2.2.2. Thermal performance

The experimental evaluation for thermal performing of PTC is realized according to the
ASHRAE 93-1986 (RA 91) standard [7]. This standard provides a widely known method to
obtain the thermal efficiency of solar energy collector that uses single phase fluids, in order to
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be compared with the similar solar collectors [13]. Therefore according to the standard, the
thermal instantaneous efficiency (ηg) on a PTC is evaluated experimentally by considering:

p o i

a b( )
( )

g

m C T T
A G

h
¢ -

= (5)

where Ti and To are the inlet and outlet temperatures, respectively, ′ is the mass flow rate, Cp
is the specific heat, Aa is the aperture area of the collector and Gb is the direct solar irradiation
component in the aperture plane of the collector. To avoid the phase change in the water that
is used as thermal fluid, Ti is restricted between 20 and 90°C.

On the other hand, the PTC thermal efficiency (ηT) employing the first law of thermodynamic
is given by [8]:
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where (ΔT=Ti Ta) is the temperature rise across the receiver, and Ta is the environmental
temperature. As can be seen, Eq. (6) has the form of an equation of line, where FRUL/CO

represents the pediment and FRηo represents the interception. This relation can be applied to
obtain experimentally the heat removal factor FR and the overall heat loss coefficient UL for a
PTC.

3. Artificial neural network as modeling tool

3.1. Artificial recurrent neural networks

Artificial neural networks (ANN) are adaptive systems developed in the form of computational
algorithms or electrics circuits, which are inspired in the biological neuron system operation.
An ANN is composed of a large number of interconnected units called neurons that have a
certain natural tendency for learning information from the outside world [14]. These structures
are used to estimate or approximate functions that may depend on a lot of variables, which
are generally unknown reason for why the ANN have been used in many practical applications
such as pattern recognition, estimation of series time and modeling of nonlinear processes [15].

A model of ANN can be seen as a black box to which is entered a database composed of a series
of input variables; each of these input variables is assigned an appropriate weighting factor
called weight (W). The sum of the weighted inputs and the use of bias (b) for adjustment
produce an input value applied to a transfer function to generate an output (Figure 3). The
main feature of these models is that they do not require specific information on the physical
behavior of the system or how they were obtained data [16].
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Figure 3. Artificial neuron with n inputs.

Figure 4. Recurrent neural network.

Among the many existing ANN models the most widely used is known as multi-layer
perceptron (MLP) [17], which is used to solve multivariable problems by nonlinear equations
using a process called training. The training process is performed through specific learning
algorithms, where the most widely used is known as back-propagation through time [18]. The
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architecture of an MLP is usually divided into three parts known as: input layer, hidden layer
and output layer. During the training process, the MLP learns from past errors to get a model
that describes as closely as possible to the nonlinear phenomenon. To carry out this, during
the training phase they adapt the weight and bias parameters until the approximation error is
minimized [19].

A recurrent neural network responds temporally to an external input signal where the
feedback allows the RNN to have a representation in state space; this versatility makes them
convenient for diverse applications for modeling, optimization and control. The order in an
RNN refers to the form in which the neuron activation potential is defined [20]. When the local
activation potential is combined with products of signals coming from of the feedback or when
products are made between the later and the external input signals to the network, a neural
network of order emerges, where the order represents the number of signals that are multi-
plied. In this work, in order to carry out modeling of the process, a high order recurrent neural
network is designed. The structure is composed by an input vector, one hidden layer and an
output layer composed of just one neuron with a linear activation function. In Figure 4, the
designed recurrent neural network architecture is depicted.

According to Figure 4, ρi(k) is the input i to the neural network, vj(k) is the neuron j activation
potential, yj(k) represents the neuron j output, v(k) is the output neuron activation potential,() is the neuron output in the output layer (neural network output), φ(vj(k)) represents the
neuron j activation function, φ(v(k)) is the activation function of the output layer neuron, wji(k)
is the weight connecting the input i to the neuron j input, wj(k) is the weight connecting neuron
j output to the neuron input in the output layer, and s and A are the inputs total number to the
neurons in the hidden and output layers, respectively.

For the set of weights, we construct a weight vector that will be estimated by means of the
Kalman Filtering. The Kalman Filtering (KF) algorithm was first designed as a method to
estimate the state of a system under noise on the process and on the measurement. Consider
a linear, discrete-time dynamical system described by

1, 1( 1) ( ) ( )kw k F w k v k++ = + (7)

2( ) ( ) ( ) ( )y k H k w k v k= + (8)

Eq. (7) is known as the process equation; Fk+1,k is the transition matrix taking the state w(k) from
iteration k to iteration k+1 and υ₁(k) is the process noise. On the other hand, Eq. (8) is known
as the output measurement, which represents y(k) i.e. the observable part of the state at iteration
k, H(k) is the measurement matrix and υ₂(k) is the measurement noise. Both the process noise
υ₁(k) and the measurement noise υ₂(k) are assumed as white noise with covariance matrices
given by E[υ₁(l)υ₁T(l)]=δk,lQ(k) and E[υ₂(l)υ₂T(l)]=δk,lR(k). To deal with the nonlinear structure
of the recurrent neural network mapping, an EKF algorithm is developed. The learning
algorithm for the recurrent neural network based on the EKF is described as
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where P(k) and P(k+1) are the prediction error covariance matrices, w(k) is the neural weight
vector, y(k) is the measured output vector, y(k) is the neural network output, K(k) is the Kalman
gain matrix, and Q and R are the state and measurement noise covariance matrices. The
matrices P, Q and R are assumed to be diagonal and are initialized using random values P₀,
Q₀ and R₀, respectively.

The H(k) matrix is defined with each derivative of one of the neural network output, (yi), with
respect to one neural network weight, (wj), as follows:
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where NW is the total number of neural network weights and o is the total number of outputs.

4. ANN inverse model

In order to solve the optimization problem proposed, a computational intelligence methodol-
ogy is developed. The proposed approach is divided into two parts: first is the generation of
a mathematical model by RNN and the second part is responsible for performing inverse
neural network for the optimization process. Figure 5 displays the methodology divided into
three steps: (i) the first step consist in generate a database with the most important parameters

Figure 5. Optimization by neural network methodology.
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that could affect the desired output, which is schematized in Figure 6, which in our case is the
thermal efficiency, (ii) in the second step an RNN model is trained to obtain the best approxi-
mation error that relates the inputs with desirable outputs; (iii) in the last step one of the RNN
inputs is selected to function as a control variable to perform the optimization process by an
inverse neural network architecture.

Figure 6. Neural network architecture for the mathematic model of thermal efficiency.

Parameters Min Max Units

Input 

Operational variables 

Inlet flow temperature (Tin)  27.75  86.30  [°C] 

Outlet flow temperature (Tout)  34.70  100.2  [°C] 

Flow working fluid (Fw)  0.94  6.11  [L/min] 

Environmental variables 

Ambient temperature (Tamb)  24.26  33.99  [°C] 

Direct solar radiation (Gb)  830.0  1014  [W/m2] 

Wind velocity (Vw)  0.95  3.98  [m/s2] 

Output       

Thermal efficiency (Eff)  0.16  0.63  [–] 

Table 2. Parameters employed at the ANN prediction model.

Experimental database provided by Jaramillo et al. [13], consists of different  values calculated
from the thermodynamic parabolic trough concentrator model (Eqs. (5) and (6)). The parameter
measurements are divided into two categories: operational variables conformed by inlet
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temperature (Ti) and outlet temperature (To) working fluid, as well as flow working fluid (Fw);
and environmental variables composed by ambient temperature (Ta), direct solar radiation
(Gb) and wind velocity (Vw). Table 2 shows the six parameters that form the database and the
minimum and maximum ranges of each one.

The development of predictive mathematical model of the experimental database was divided
into two processes; the main process (in these case 80%) was destined to RNN learning and
testing process and the other part (20%) was employed for the validation of the results, in order
to obtain a good representation of the data distribution.

At the training process, a normalized database was entered into a MLP architecture, where the
number of neurons at the input and output layers was given by the number of input and output
variables in the process, respectively. The Kalman Filter training algorithm in Eq. (9) was
employed to obtain the optimum weights and bias for the RNN model as the one displayed in
Figure 4.

Figure 7. Thermal efficiency validation. (a) Experimental thermal efficiency not included at training and (b) simulate
thermal efficiency from RNN model.
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To validate the MLP model, a comparison was carried out employing the data not included in
the training process. The output values comparison (thermal efficiency) was made in function
of two variables, the heat loss parameter (ΔT/Gb) and the working fluid flow. Figure 7a shows
the real behavior of the thermal efficiency of the system in function of both parameters (heat
loss parameter and fluid flow) and where can be seen a trend to decrease when ∆T increases
[21]. Furthermore, Figure 7b represents the values of thermal efficiency obtained from the
mathematical model generated with MLP where an appropriate reproduction of the real
efficiency curves can be seen, demonstrating that the model is capable of adapting to the
variations of flow and heat losses.

4.1. Optimization of the inverse artificial neural network

Once generated the desired mathematical model and proven effective, an optimization process
is applied. To perform the optimization analysis, an input variable must be selected as control
input. The selected variable in the present application was the water flow since it can be
manipulated and quickly impact the system behavior. For the optimization process, the output
generated by the ANN model (thermal efficiency) acts as input to a process modeled from
experimental values, generating as output a control variable that minimizes the difference for
the desired thermal efficiency. Figure 8 displays the inverse ANN architecture.

Figure 8. Inverse artificial neural network.
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5. Conclusions

The aim of this chapter was to design an artificial neural network algorithm to predict the
thermal performance of a parabolic trough concentrator, in order to develop a new approach
for the estimation of the optimal operation condition of PTCs for a desired efficiency. A
recurrent neural network was applied to model the nonlinear characteristics of the process
with an excellent approximation of the thermal efficiency.
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