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Preface

Pattern recognition has gained significant attention due to the rapid explosion of internet- and
mobile-based applications. Among the various pattern recognition applications, face recogni‐
tion is always being the center of attraction. With so much of unlabeled face images being cap‐
tured and made available on internet (particularly on social media), conventional supervised
means of classifying face images become challenging. This clearly warrants for semi-super‐
vised classification and subspace projection. Another important concern in face recognition
system is the proper and stringent evaluation of its capability. This book is edited keeping all
these factors in mind. This book is composed of five chapters covering introduction, overview,
semi-supervised classification, subspace projection, and evaluation techniques.

Chapter 1 provides a brief introduction to ensure maximum coherence and relatedness of the
remaining four chapters of this book, and also explains the nature and purpose of the book.

Chapter 2 offers a brief overview of the face recognition systems and its components. This
chapter highlights the important applications of face recognition. The authors of Chapter 2
presented a comprehensive overview of various classical face recognition methods. This chap‐
ter helps the new readers in understanding the various inquisitives of face recognition.

Chapter 3 discuses semi-supervised classification method. The authors have beautifully nar‐
rated the need and background for the semi-supervised face recognition. Existing methods of
semi-supervised classification is deeply studied and authors of this chapter have identified the
research gaps. Also, they have proposed a new algorithm as a solution to the gaps by conduct‐
ing extensive experiments.

Chapter 4 focuses on latest technique named linear regression and its variants, over and above
the classical subspace projection techniques. Important and critical issues in face recognition
namely partial occlusion, illumination variance, different expression, pose variance, and low
resolution are all addressed and presented.

Finally, Chapter 5 presents various important and critical metrics that should be used to eval‐
uate the performances of the face recognition system. All the metrics are presented from the
basics, and the authors have also provided case studies to demystify the myths in the perform‐
ance evaluation of face recognition system.

Overall, this book is brief and comprehensive and will be a useful resource for the graduate
students, researchers, and practicing engineers in the field of machine vision and computer
science and engineering.

Dr. S. Ramakrishnan
Professor and Head, Department of Information Technology,

Dr. Mahalingam College of Engineering and Technology,
Pollachi, India





Chapter 1

Introductory Chapter: Face Recognition - Overview,
Dimensionality Reduction, and Evaluation Methods

S. Ramakrishnan

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63995

Face recognition is one of most popular and powerful applications in modern computing
industries [1–4]. It has found applications ranging from person identification (surveillance) [5]
to emotion identification (human–machine interaction) [6]. Over the past few decades,
researchers in field of computers and electrical and electronics engineering have worked
continuously to improve the performances of the face recognition systems. In‐spite of these
continuous efforts, there are still a plenty of scope for the new and additional research in the
field of face recognition. This is due to the popularization of light‐weight computing devices,
increased customer expectations, and business competitions.

Now the world best cameras in terms of resolution are available in smart phones at affordable
price, and CCD cameras are found even in houses and almost in all commercial, business, and
office environments including small‐sized enterprises. Amount of face images being captured
keep on increasing, and recognition of faces among these huge databases makes the task
further challenging. One of most the important subtopics in face recognition is dimensionality
reduction [1], because storing and processing of these high‐resolution face images from huge
database using light‐weight devices require dimensionality reduction.

Several different face recognition systems, including hardware (cameras, memory disk, and
processors) and software, are available in the market. These face recognition systems provide
better performance in one aspect and lack in other aspect. Comprehensive evaluation the
performances of face recognition systems is the need of the hour.

Keeping these factors in mind, this book on “face recognition” is focusing on dimensionality
reduction and evaluation methods. This book is brief but comprehensive. Other than this
introductory chapter, this book has four more chapters, two chapters for dimensionality
reduction and one for an overview of the face recognition systems and evaluation methods.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Rest of this introductory chapter is spared for providing a brief outlines, linkages, importance,
and significances of the four chapters of this book.

Chapter 1: This chapter provides an overview of face recognition, various issues in face
recognition, and different methods of face recognition and applications of face recognition.
We strongly encourage the young readers to thoroughly study this chapter to get the bird's
eye view of face recognition. Advanced readers can proceed to Chapter 2 directly.

Typical complex engineering applications requires various submodules and proper fine tuning
of all those modules to make the application perfect. Face recognition, one of the toughest
complex engineering applications, certainly requires number of submodules. A few important
submodules are pre-processing, face detection and normalization, feature database and
classifier. These building blocks are presented in Chapter 1 in a simple way. Various challenges
in face recognition include [7–10]: scale invariance, rotation invariance, translation invariance,
illumination invariance, and emotion invariance. All these make the task difficult for the face
recognition system. These challenges are discussed in Chapter 1.

Authors of Chapter 1 presented a comprehensive overview of various classical face recognition
methods. Classification of 18 different classical face recognition algorithms based on local and
holistic features is also presented in this chapter nicely. Over and above, the classical face
recognition methods and modern face recognition methods are briefly introduced in Chapter
1. Modern techniques include artificial neural networks, wavelets‐based methods, descriptor‐
based method, 3D methods, and video‐based techniques. Advantages and disadvantages of
both classical and modern methods are narrated in Chapter 1. This will help the students to
choose an appropriate technique for doing their projects. Eight different potential applications
of face recognition systems are highlighted in Chapter 1. Ideally, through reading of Chapter
1 will be of immense help for the young readers.

Chapter 2: Traditional pattern recognition methods can either be a supervised learning or
unsupervised learning. Face recognition methods comes under supervised learning methods.
Supervised learning requires proper and complete labeling of all patterns and objects. Due to
social media and in general internet, the amount of face images being generated is steeply
increasing. Most of these face images are not labeled by required for the face recognition system
to provide satisfactory performance. Hence, a new type of learning method, which is a subtype
of supervised leaning called, semi‐supervised learning method is being applied to modern face
recognition methods [11–16]. This chapter is dealing with this new learning method and also
addressing dimensionality reduction concept in semi‐supervised learning.

Semi‐supervised learning methods can be grouped under transductive learning or induction
learning. Authors of this chapter have systematically presented the state‐of‐the‐art methods
and nicely introduced their contribution in this chapter. Authors of Chapter 2 have proposed
a new and effective algorithm for semi‐supervised dimensionality using local and global
regression. The algorithm proposed in this chapter is capable of reducing dimensions of both
transductive learning and induction learning. Proposed algorithm is explained from the first
principles so that the readers with pattern recognition or image processing background can
easily understand and apply this in their projects. Presentation of the proposed algorithm is
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excellent as it has proper mix of analytical and descriptive treatments. Theorems employed by
the authors are also provided and over and above the proposed concepts are illustrated with
intermediate results. This is a must read subsection for the young learners.

In addition to the smooth and neat presentation of the proposal and related works, the authors
of Chapter 2 have conducted extensive experiments and beautifully presented the results along
with appropriate discussions. Experiments are conducted not only using synthetic dataset but
also using three of the real‐world bench mark datasets, namely UMNIST, extended Yale B, and
MIT‐CBCL. Experimental results are also compared with existing methods. This chapter is
well written and much useful for the both young and senior researchers working in pattern
recognition.

Chapter 3: Among the various challenges of a typical pattern recognition system, dimension‐
ality reduction is one of important tasks. Image processing applications such as face recogni‐
tion should focus on dimensionality reduction for better performance. Subspace projection
techniques are highly useful and classical option in face recognition is useful for reducing the
dimension. Principle component analysis (PCA) and linear discriminant analysis (LDA) are
both popular and powerful subspace projection techniques over the past few decades [17] and
applied in almost all pattern recognition systems [18–26].

In face recognition, input–output pairs are known as it is mostly supervised. Here, linear
regression that used to fit a linear function to a set of input–output pairs is latest technique
and also comes under subspace projection. Chapter 3 is focusing on latest technique named
linear regression and its variants, over and above the classical subspace projection techniques.
Important and critical issues in face recognition, namely partial occlusion, illumination
variance, different expression, pose variance, and low resolution are all addressed and
presented.

This chapter is self‐contained and comprehensive. Authors of this chapter have provided a
brief overview of how face images are represented and recognized. Two of the classical
subspace projection methods, namely PCA and LDA are briefly presented in this chapter. This
quick introduction will help even advanced readers to recall the basics. In addition to this
similarity metrics used in the classifier stage of face recognition systems are also presented.

Various latest subspace optimization techniques, namely linear regression classification,
robust linear regression classification, improved principal component regression, unitary
regression classification, linear discriminant regression classification, generalized linear
regression classification, and trimmed linear regression are all presented. These eight methods
are discussed in this chapter with correct blend of mathematical equations and theoretical
descriptions.

Authors have conducted extensive experiments are presented the results. Performance
analysis is carried out on the benchmark datasets, namely Yale B, AR, FERT, and FEI. Com‐
parative analysis of the various subspace projection methods and linear regression and its
variants are also provided precisely in this chapter. This chapter is self‐reliant and will be useful
to both young and advanced readers.

Introductory Chapter: Face Recognition - Overview, Dimensionality Reduction, and Evaluation Methods
http://dx.doi.org/10.5772/63995
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Chapter 4: Performance evaluation is one of most important aspects in face recognition
applications [2, 3, 27–29]. Recognition rate (or classification accuracy) is the commonly used
metrics to analyze the performance of the face recognition methods. But there are several other
important and critical metrics available for performance evaluation of the system. In this
chapter, those metrics are presented and demonstrated. A brief outline of face recognition
techniques and methods are provided in this chapter. Four important component of a confu‐
sion matrix, namely true positive, true negative, false positive, and false negative are present‐
ed. Based on these four parameters, seven significant evaluation metrics, namely precision,
recall, sensitivity, specificity, fallout, error rate, and accuracy are presented in this chapter.
Receiver operating characteristics (ROC) curve analysis is presented sensitivity and specificity.
Salient points in ROC analysis are illustrated clearly for all possible performances of face
recognition methods.

Like ROC combines sensitivity and specificity, F‐score combines precision and recall, and this
metric is better explained in this chapter. In addition to these metrics, the following metrics
are also briefed: false match rate, false non‐match rate, equal error rate, failure to enroll rate,
and failure to capture rate.

Authors of this chapter have conducted experiments to analyze the performances of the face
recognition using these metrics. Three different case studies are presented using face images
from the benchmark datasets. Whoever developing face recognition system finds this chapter
useful.

Final word: This book has five chapters including this introductory. This book can be a brief
material and will be highly useful for students, researchers, and practicing engineering
working in pattern recognition, image processing, and machine vision.

Author details

S. Ramakrishnan*

Address all correspondence to: ram_f77@yahoo.com

Department of Information Technology, Dr. Mahalingam College of Engineering and
Technology, Pollachi, Coimbatore, India
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Chapter 2

Face Recognition: Issues, Methods and Alternative
Applications
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Abstract

Face recognition, as one of the most successful applications of image analysis,  has
recently gained significant attention. It is due to availability of feasible technologies,
including mobile solutions. Research in automatic face recognition has been conduct‐
ed since the 1960s, but the problem is still largely unsolved. Last decade has provided
significant progress in this area owing to advances in face modelling and analysis
techniques. Although systems have been developed for face detection and tracking,
reliable face recognition still offers a great challenge to computer vision and pattern
recognition researchers. There are several reasons for recent increased interest in face
recognition, including rising public concern for security, the need for identity verifica‐
tion in the digital world, face analysis and modelling techniques in multimedia data
management and computer entertainment.  In this chapter,  we have discussed face
recognition processing, including major components such as face detection, tracking,
alignment and feature extraction, and it points out the technical challenges of build‐
ing a face recognition system. We focus on the importance of  the most successful
solutions available so far. The final part of the chapter describes chosen face recogni‐
tion methods and applications and their  potential  use in areas not  related to face
recognition.

Keywords: face recognition, biometric identification, methods, applications, image
processing
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1. Introduction

Recent advances in automated face analysis, pattern recognition and machine learning have
made it possible to develop automatic face recognition systems to address these applications.
On the one hand, recognising face is natural process, because people usually do it effortlessly
without much conscious. On the other hand, application of this process in area of computer
vision remains a difficult problem. Being part of a biometric technology, automated face
recognition has a plenty of desirable properties. They are based on the important advantage—
non‐invasiveness. The various biometric methods can be distinguished into physiological
(fingerprint, DNA, face) and behavioural (keystroke, voice print) categories. The physiologi‐
cal approaches are more stable and non‐alterable, except by severe injury. Behavioural patterns
are more sensitive to human overall condition, such as stress, illness or fatigue.

The brief analysis of the face detection techniques using effective statistical learning methods
seems to be crucial as practical and robust solutions.

Figure 1 points out the basic elements of the typical face recognition system.

Figure 1. Crucial elements of the typical face recognition system.

Face detection performance is a key issue, so techniques for dealing with non‐frontal face
detection are discussed. Subspace modelling and learning‐based dimension reduction
methods are fundamental to many current face recognition techniques. Discovering such
subspaces so as to extract effective features and construct robust classifiers stands another
challenge in this area. Face recognition has merits of both high accuracy and low intrusive, so
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it has drawn the attention of the researches in various fields from psychology, image processing
to computer vision.

The first stage is face detection in the acquired image that is regardless of scale and location.
It often uses an advanced filtering procedure to distinguish locations that represent faces and
filters them with accurate classifiers. It is notable that all translations, scaling and rotational
variations have to be dealt in the face detection phase. For example, regarding to [1,2], facial
expressions and hairstyle changes or smiling and frowning face still stands important varia‐
tions during pattern recognition stage.

In the next step, anthropometric data set‐based system predicts the approximate location of
the principal features such as eyes, nose and mouth. Of course, whole procedure is repeated
to predict the subfeatures, relative to principal features, and verified with collocation statistic
to reject any mislocated features.

Dedicated anchor points are generated as the result of geometric combinations in the face
image and then it starts the actual process of recognition. It is carried out by finding local
representation of the facial appearance at each of the anchor points. The representation scheme
depends on approach. In order to deal with such complication and find out the true invariant
for recognition, researchers have developed various recognition algorithms.

There are several boundaries for current face recognition technology (FERET). In [3,4] was
provided early benchmark of face recognition technologies. While under ideal conditions,
performance is excellent, under conditions of changing illumination, expression, resolution,
distance or aging, performance decreases significantly. It is the fact that face recognition
systems are still not very robust regarding to deviations from ideal face image. Another
problem is an effective way of storing and access granting to facial code (or facial template)
stored as a set of features and extracted from image or video.

Considering roughly presented elements above of the complex process of face recognition, a
number of limitations and imperfections can be seen. They require clarification or replacing
by new algorithms, methods or even technologies.

In this chapter, we have discussed face recognition processing, including major components
such as face detection, tracking, alignment and feature extraction, and it points out the technical
challenges of building a face recognition system. We focus on the importance of the most
successful solutions available so far.

The final part of the chapter describes chosen face recognition methods and applications and
their potential use in areas not related to face recognition.

The need for this study is justified by an invitation to participate in the further development
of a very interesting technology, which is face recognition.

Despite the fact, there is continual performance improvement regarding several face recogni‐
tion technology areas, and it is worth to note that current applications also impose new
requirements for its further development.
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2. Previous methods

2.1. Classical face recognition algorithms

There has been a rapid development of the reliable face recognition algorithms in the last
decade. The traditional face recognition algorithms can be categorised into two categories:
holistic features and local feature approaches. The holistic group can be additionally divided
into linear and nonlinear projection methods.

Many applications have shown good results of the linear projection appearance‐based
methods such as principal component analysis (PCA) [5], independent component analysis
(ICA) [6], linear discriminate analysis (LDA) [7,8], 2DPCA [9] and linear regression classifier
(LRC) [10].

However, due to large variations in illumination conditions, facial expression and other
factors, these methods may fail to adequately represent the faces. The main reason is that the
face patterns lie on a complex nonlinear and non‐convex manifold in the high‐dimensional
space.

In order to deal with such cases, nonlinear extensions have been proposed like kernel PCA
(KPCA), kernel LDA (KLDA) [11] or locally linear embedding (LLE) [12]. The most nonlinear
methods using the kernel techniques, where the general idea consists of mapping the input
face images into a higher‐dimensional space in which the manifold of the faces is linear and
simplified. So the traditional linear methods can be applied.

Although PCA, LDA and LRC are considered as linear subspace learning algorithms, it is
notable that PCA and LDA methods focus on the global structure of the Euclidean space,
whereas LRC approach focuses on local structure of the manifold.

These methods project face onto a linear subspace spanned by the eigenface images. The
distance from face space is the orthogonal distance to the plane, whereas the distance in face
space is the distance along the plane from the mean image. These both distances can be turned
into Mahalanobis distances and given probabilistic interpretations [13].

Following these, there have been developed: KPCA [14], kernel ICA [15] and generalised linear
discriminant analysis [16].

Despite strong theoretical foundation of kernel‐based methods, the practical application of
these methods in face recognition problems, however, does not produce a significant im‐
provement compared with linear methods.

Another family of nonlinear projection methods has been introduced. They inherited the
simplicity from the linear methods and the ability to deal with complex data from the nonlinear
ones. Among these methods, it is worth to underline: LLE [17] and locality preserving
projection (LPP) [18]. They produce a projection scheme for training data only, but their
capability to project new data items is questionable.

In the second category, local appearance features have certain advantages over holistic
features. These methods are more stable to local changes such as expression, occlusion and
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misalignment. The common representative method names local binary patterns (LBPs) [19,20].
The neighbouring changes around the central pixel in a simple but effective way are described
by LBP. It is invariant monotonic intensity transformation and supports small illumination
variations. Many LBP variants are proposed to improve the original LBP such as histogram of
Gabor phase patterns [21] and local Gabor binary pattern histogram sequence [22,23]. Gener‐
ally, the LBP is utilised to model the neighbouring relationship jointly in spatial, frequency
and orientation domains [22].

It allows to explore efficiently discriminant and robust information in the pattern. Further
development of the mentioned subspace approaches represents discriminant common vectors
(DCVs) approach [24].

The DCV method collects the similarities among the elements in the same class and drops their
dissimilarities. Thus, each class can be represented by a common vector computed from the
within scatter matrix.

In case of testing an unknown face, the corresponding feature vector is computed and
associated to the class with the nearest common vector. Sometimes, kernel discriminative
common vectors [25] or improved discriminative common vectors and support vector machine
(SVM) [26] are introduced for the face recognition task.

Similarly to the LLE method, neighbourhood preserving projection (NPP) and orthogonal NPP
(ONPP) are introduced in [27,28]. These approaches preserve the local structure between
samples. To reflect the intrinsic geometry of the local neighbourhoods, they use data‐driven
weights by solving a least‐squares problem. ONPP forces the mapping to be orthogonal and
then solves an ordinary eigenvalue problem. NPP requires solving a generalised eigenvalue
problem, regarding to imposing a condition of orthogonality on the projected data.

Block diagram of the traditional face recognition approaches is presented in Figure 2.

Figure 2. Traditional face recognition algorithms.

However, it is still unclear how to select the neighbourhood size and how to assign optimal
values for other hyper‐parameters; for them, sparsity preserving projections [29,30] and LPPs
[31] are also applied for face recognition.

In [32], a multi‐linear extension of the LDA method called discriminant analysis with tensor
representation is proposed. It is different from preserving projection methods and implements
discriminant analysis directly on the natural tensorial data to preserve the neighbourhood
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structure of tensor feature space. Another method of supervised and unsupervised multi‐
linear NPP (MNPP) for face recognition is presented in [33]. A survey of multi‐linear methods
can be found in [11]. They operate directly on tensorial data rather than vectors or matrices
and solve problems of tensorial representation for multidimensional feature extraction and
recognition. Multiple interrelated subspaces are obtained in the MNPP method by unfolding
the tensor over different tensorial directions. The order of the tensor space determines the
number of subspaces derived by MNPP [34,35].

2.2. Artificial Neural Networks in face recognition

In [11,36,37], artificial neural networks are used to solve nonlinear problem. To recognise
human faces, a non‐convergent chaotic neural network is suggested in [38].

A radial basis function neural network integrated with a non‐negative matrix factorisation to
recognise faces is presented in [39]. Moreover, for face and speech verifications, [40] utilise a
momentum back propagation neural network. Non‐negative sparse coding method to learning
facial features using different distance metrics and normalised cross‐correlation for face
recognition is applied in [41].

A posterior union decision‐based artificial neural network approach is proposed in [33,34]. It
has elements of both neural networks and statistical approaches and replenishes methods for
recognising face images with partial distortion and occlusion.

Unfortunately, this approach, like other statistical‐based methods, is inaccurate to model
classes given only a single or a small number of training samples [42,43].

2.3. Gabor wavelet‐based solutions

Gabor wavelets have been widely used for face representation by face recognition researchers
[44,45,46], and Gabor features are recognised as better representation for face recognition in
terms of (rank‐1) recognition rate [47]. Moreover, it is demonstrated to be discriminative and
robust to illumination and expression variations [48]. When only one sample image per
enrolled subject is available, [49] propose adaptively weighted sub‐Gabor array for face
representation and recognition.

Moreover, two kinds of strategies to capture Gabor texture information: Gabor magnitude‐
based texture representation (GMTR) and Gabor phase‐based texture representation (GPTR),
are proposed in [50].

Gamma density to model the Gabor magnitude distribution characterises GMTR approach.
The GPTR is characterised by the generalised Gaussian density for modelling the Gabor phase
distribution. It allows the estimated model parameters to be served as texture representation
of the face.

The Gabor wavelet applied at fixed positions, in correspondence of the nodes of a square‐
meshed grid superimposed to the face image, is presented in [51]. Each subpattern of the
partitioned face image is defined as the extracted Gabor features that belong to the same row
of the square‐meshed grid which are then projected to lower dimension space by Karhunen–
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Loeve transform. The obtained features of each subpattern, which are weighted using genetic
algorithm (GA), are used to train a Parzen Window Classifier. Finally, matching process is
done by combining the classifiers using a weighted sum rule.

The learning approach based on Gabor features and kernel supervised Laplacian faces for face
recognition under the classifier fusion framework is introduced in [52]. The Gabor features
obtained from each channel as a new sample of the same class are used to adopt the classifier
fusion strategy. Such approach is useful for improving the performance of the recognition
results.

Histogram of Gabor phase feature is proposed in [53]. In [54,55,56,57,58], the patch‐based
histograms of local patterns are concatenated together to form the representation of the face
image via learned local Gabor patterns. The feature representation problem by providing a
learning method instead of simple concatenation or histogram feature is presented in [59]. In
[60], the Gabor features were adopted for the sparse representation (SR)‐based classification
and a Gabor occlusion dictionary was learned under the well‐known SR framework.

The main drawback of Gabor‐based methods is that the dimensionality of the Gabor feature
space is significantly high since the face images are convolved with a bank of Gabor filters.

To overcome this problem, Adaboost algorithm [61] and entropy and genetic algorithms (GA)
[62] are used to select the most discriminative Gabor features.

However, selecting the most useful method from so many Gabor features is very time‐
consuming [61]. Furthermore, extracting the Gabor features is computationally intensive, so
the features are currently useless for real‐time applications [63]. A simplified version of Gabor
wavelets is introduced in [64]. Unfortunately, the simplified Gabor features are more sensitive
to lighting variations in reference to the original Gabor features.

2.4. Face descriptor‐based methods

Local feature‐based face image description provides a global description. So local features of
the image are evaluated in the neighbouring pixels and then aggregated to form the final global
description [65,66]. This is unlike global methods in which the entire image is utilised to
produce each feature, where the first steps start with the description of the face realised at a
pixel level by making use of the local neighbourhood of each pixel. Then, the image is divided
into a number of subregions, and from each subregion, a local description is formed as a
histogram of the pixel level descriptions calculated in the previous step. Next, the information
of the regions is combined into the final descriptor by concatenating the partial histograms
[67,68].

To determine image descriptors that are able to improve classification performance of multi‐
option recognition as well as pair matching of face images seems to be a complex problem
[65,69,70].

Learning the most discriminant local features that can minimise the difference of the features
between images of a same individual and maximise that between images from other people
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depending on the nature of these descriptors, which compute an image representation from
local patch statistics stands the main idea of the approach.

The face verification accuracy ranked on the LFW benchmark after face verification using
multiple local descriptors designed to capture statistics of local patch similarities is proposed
in [34]. Enhancing the face recognition performance by introducing the discriminative learning
into three steps of LBP‐like feature extraction is presented in [71].

The discriminant image filters, the optimal soft sampling matrix and the dominant patterns
are all learned from images. The general advantage of these methods is compact, highly
discriminative and easy to extract learning‐based descriptor. These methods are discriminative
and robust to illumination and expression changes.

2.5. 3D‐based face recognition

As 3D capturing process is becoming cheaper and faster [72], it is commonly thought that the
use of 3D sensing has the potential for greater recognition accuracy than 2D. The advantage
behind using 3D data is that depth information does not depend on pose and illumination,
and therefore, the representation of the object does not change with these parameters, making
the whole system more robust. 3D‐based techniques can achieve better robustness to pose
variation problem than 2D‐based ones. A comprehensive survey of the 3D face recognition
approaches is presented in [73].

A method for face recognition across variations in pose, which combines deformable 3D
models with a computer graphics simulation of projection and illumination, can be found in
[74]. In this method, faces are represented by model parameters for 3D shape and texture. Their
3D morphable models are combined with spherical harmonics illumination representation [75]
to recognise faces under arbitrary unknown lighting.

Using facial symmetry to handle pose variation in 3D face recognition is presented in [76],
where an automatic landmark detector is used. It helps to estimate pose and detects occluded
areas for each facial scan. Subsequently, an annotated face model is registered and fitted to the
scan. During fitting, facial symmetry is used to overcome the challenges of missing data [77].

There is a generic 3D elastic model for pose invariant face recognition proposed in [29]. It is
constructed for each subject in the database using only a single 2D image by applying the 3D
generic elastic model (3DGEM) approach. Each 3D model is subsequently rendered at different
poses within a limited search space about the estimated pose, and the resulting images are
matched against the test query. Finally, the distances between the synthesised images and test
query are computed by using a simple normalised correlation matcher to show the effective‐
ness of the pose synthesis method to real‐world data.

In [78], a geometric framework for analysing 3D faces, with the specific goals of comparing,
matching and averaging their shapes, is proposed to represent facial surfaces by radial curves
emanating from the nose tips.

3D face recognition approach based on local geometrical signatures called facial angular radial
signature (ARS) that can approximate the semi‐rigid region of the 3D face is proposed in [79].
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The authors employed KPCA to map the raw ARS facial features to mid‐level features to
improve the discriminating power. Finally, the resulting mid‐level features are combined into
one single feature vector and fed into the SVM to perform face recognition [80, 81, 82, 83, 84,
85, 86].

The drawback of using 3D data in face recognition is that these face recognition approaches
need all the elements of the system to be well calibrated and synchronised to acquire accurate
3D data (texture and depth maps). The existing 3D face recognition approaches rely on a
surface registration or on complex feature (surface descriptor) extraction and matching
techniques. They are, therefore, computationally expensive and not suitable for practical
applications. Moreover, they require the cooperation of the subject making them not useful
for uncontrolled or semi‐controlled scenarios where the only input of the algorithms will be a
2D intensity image acquired from a single camera.

2.6. Video‐based face recognition

The analysis of video streams of face images has received increasing attention in biometrics
[87]. An immediate advantage in using video information is the possibility of employing
redundancy present in the video sequence to improve still image systems. Although significant
amount of research has been done in matching still face images, the use of videos for face
recognition is relatively less explored [88]. The first stage of video‐based face recognition (VFR)
is to perform re‐identification, where a collection of videos is cross‐matched to locate all
occurrences of the person of interest [89].

Generally, VFR approaches can be classified into two categories based on how they leverage
the multitude of information available in a video sequence: (i) sequence based and (ii) set based,
where at a high level, what most distinguishes these two approaches is whether or not they
utilise temporal information [90, 91].

The formulation of a probabilistic appearance‐based face recognition approach is extended in
[92]. Originally, it was defined to do recognition from a single still image as previously
explained, to work with multiple images and video sequences. In [93], there is the constrained
subspace spanned from face images of a clip into a convex hull and then calculate the nearest
distance of two convex hulls as the between‐set similarity. Thus, each test and training example
is a set of images of a subject's face, not just a single image, so recognition decisions need to be
based on comparisons of image sets.

In [94], VFR task is converted into the problem of measuring the similarity of two image sets,
where the examples from a video clip construct one image set. The authors consider face
images from each clip as an ensemble and formulate VFR into the joint sparse representation
(JSR) problem. In JSR, to adaptively learn the sparse representation of a probe clip, they
simultaneously consider the class‐level and atom‐level sparsity, where the former structures
the enrolled clips using the structured sparse regulariser and the latter seeks for a few related
examples using the sparse regulariser.

In order to identify the most important advantages and imperfections, discussed above
methods are summarised in Table 1.
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No. Method  Advantages  Disadvantages 

1. Classical face
recognition
algorithms

Focuses on local structure
of the manifold.
These methods project
face onto linear subspace spanned by the
eigenface images. The distance from face
space is
orthogonal to the plane
of mean image, so may be
easily turned to Mahalanobis distances
with probabilistic interpretation

These methods may fail to
adequately represent faces when
large variations in illumination facial
expressions and other factors occur. Regarding to
[34], applying kernel‐based nonlinear methods do
not produce a
significant improvement comparing to linear
methods. LLE, LLP and LBP brought simple and
effective
way to describe neighbouring changes in face
description. Subspace approaches
were applied in DCV‐ and SVM‐based methods.
Preserving the local structure between samples is
the domain of NPP and ONPP methods.
The problem is that it is still
unclear how to select the neighbourhood size or
assign optimal values for them

2. Artificial
neural
networks

Radial basis function artificial
neural network is naturally integrated
with non‐negative
matrix factorisation.
Also other
approaches for process
simplification regarding to
ANNs native linearisation feature and
computation speed up.
Ideal solution, especially
for recognising face
images with partial distortion and occlusion

The main disadvantage
of this approach is
requirement of greater number of
training samples (instead one or limited number). It
is inaccurate in the
same way like other statistically based methods

3. Gabor
wavelets

The Gabor wavelets exhibit
desirable characteristics of capturing
salient visual properties like spatial
localisation orientation
selectivity and spatial
frequency. Different
biometrics applications
favour this approach

The drawback of the
Gabor‐based methods is
significantly high dimensionality of
the Gabor feature space since
face image is convolved with a
bank of Gabor filters.
Approach is computationally
intensive and impractical for real‐time applications.
Additionally, simplified
Gabor features are sensitive
to lightning variations
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face onto linear subspace spanned by the
eigenface images. The distance from face
space is
orthogonal to the plane
of mean image, so may be
easily turned to Mahalanobis distances
with probabilistic interpretation

These methods may fail to
adequately represent faces when
large variations in illumination facial
expressions and other factors occur. Regarding to
[34], applying kernel‐based nonlinear methods do
not produce a
significant improvement comparing to linear
methods. LLE, LLP and LBP brought simple and
effective
way to describe neighbouring changes in face
description. Subspace approaches
were applied in DCV‐ and SVM‐based methods.
Preserving the local structure between samples is
the domain of NPP and ONPP methods.
The problem is that it is still
unclear how to select the neighbourhood size or
assign optimal values for them

2. Artificial
neural
networks

Radial basis function artificial
neural network is naturally integrated
with non‐negative
matrix factorisation.
Also other
approaches for process
simplification regarding to
ANNs native linearisation feature and
computation speed up.
Ideal solution, especially
for recognising face
images with partial distortion and occlusion

The main disadvantage
of this approach is
requirement of greater number of
training samples (instead one or limited number). It
is inaccurate in the
same way like other statistically based methods

3. Gabor
wavelets

The Gabor wavelets exhibit
desirable characteristics of capturing
salient visual properties like spatial
localisation orientation
selectivity and spatial
frequency. Different
biometrics applications
favour this approach

The drawback of the
Gabor‐based methods is
significantly high dimensionality of
the Gabor feature space since
face image is convolved with a
bank of Gabor filters.
Approach is computationally
intensive and impractical for real‐time applications.
Additionally, simplified
Gabor features are sensitive
to lightning variations
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No. Method  Advantages  Disadvantages 

4. Face
descriptor‐
based
methods

The main idea behind developing
image descriptors is to learn
the most discriminant local
features that minimise difference between
images of the same individual
and maximise that between images from the
other people.
These methods are
discriminative and robust
to illumination and expression
changes. They offer compact,
easy to extract and highly discriminative
descriptor

Approach is computationally intensive during
descriptor extraction stage, but encouraging
simplicity and performance in reference to online
applications

5. 3D‐based
face
recognition

Extend traditional
2D capturing process
and has greater
potential for accuracy.
The depth information does not
depend on the pose
and illumination
making solution more robust

Require all the elements of the 3D face recognition
system to be well calibrated and synchronised to
existing 3D data. Computationally expensive and
not suitable for practical applications

6. Video‐based
recognition

The main advantage
of the approach is
possibility of employing redundancy
present in video
to improve still image systems

Relatively poorly investigated.
Multiply problems with measuring similarity of two
(or more) images

Table 1. Face recognition methods overview.

Methods indicated in the Table 1 illustrate the evolution of face recognition technology. The
huge potential of face descriptor‐based methods ought to be emphasised, regarding to the fact
the local descriptor idea has been recently recognised as the most crucial design framework
for face identification and verification tasks [34].

3. Face recognition applications

Many published works mention numerous applications in which face recognition technology
is already utilised including entry to secured high‐risk spaces such as border crossings as well
as access to restricted resources [95, 96, 97]. On the other hand, there are other application areas
in which face recognition has not yet been used. The potential application areas of face
recognition technology can be outlined as follows [34]:
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• Automated surveillance, where the objective is to recognise and track people [98].

• Monitoring closed circuit television (CCTV), the facial recognition capability can be
embedded into existing CCTV networks, to look for lost children or other missing persons
or tracking known or suspected criminals.

• Image database investigations, searching image databases of licensed drivers, benefit
recipients and finding people in large news photograph and video collections [99, 100], as
well as searching in the Facebook social networking web site [101].

• Multimedia environments with adaptive human computer interfaces (part of ubiquitous or
context aware systems, behaviour monitoring at childcare or centres for old people,
recognising customers and assessing their needs) [102].

• Airplane‐boarding gate, the face recognition may be used in places of random checks merely
to screen passengers for further investigation. Similarly, in casinos, where strategic design
of betting floors that incorporates cameras at face height with good lighting could be used
not only to scan faces for identification purposes, but possibly to afford the capture of images
to build a comprehensive gallery for future watch‐list, identification and authentication
tasks [103].

• Sketch‐based face reconstruction, where law enforcement agencies in the world rely on
practical methods to help crime witnesses reconstruct likenesses of faces [104]. These
methods range from sketch artistry to proprietary computerised composite systems [105,
106, 107].

• Forensic applications, where a forensic artist is often used to work with the eyewitness in
order to draw a sketch that depicts the facial appearance of the culprit according to his/her
verbal description. This forensic sketch is used later for matching large facial image
databases to identify the criminals [108, 109]. Yet, there is no existing face recognition system
that can be used for identification or verification in crime investigation such as comparison
of images taken by CCTV with available database of mugshots. Thus, utilising face recog‐
nition technology in the forensic applications is a must as discussed in [110, 111].

• Face spoofing and anti‐spoofing, where a photograph or video of an authorised person's
face could be used to gain access to facilities or services. Hence, the spoofing attack consists
in the use of forged biometric traits to gain illegitimate access to secured resources protected
by a biometric authentication system [112, 113]. It is a direct attack to the sensory input of
a biometric system, and the attacker does not need previous knowledge about the recogni‐
tion algorithm. Research on face spoof detection has recently attracted an increasing
attention [114], introducing few number of face spoof detection techniques [115, 116, 117].
Thus, developing a mature anti‐spoofing algorithm is still in its infancy and further research
is needed for face spoofing applications [118, 119].

There have been envisaged many applications for face recognition, but most of commercial
ones exploit only superficially the great potential of this technology. Most of the applications
are notable limited in their ability to handle pose, lighting changes or aging.
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In reference to access control, face verification during face‐based PC logon has become feasible,
but seems to be very limited. Naturally, such PC verification system can be extended in the
future for authentic single sign‐on to multiple networked services or transaction authorisation
or even for access to encrypted files. For example, banking sector is rather conservative in
deploying such a biometrics. They estimated high risk in loosing customers disaffected by
being falsely rejected than they might gain in fraud prevention. It is the reason for robust
passive acquisition systems development with low false rejection.

The most of physical access control systems uses face recognition combination with other
biometrics, for example speaker identification and lip motion [120].

One of the most interest in face recognition in application domain is associated with surveil‐
lance. Regarding to the generous type of information it contains, video is the medium of choice
for surveillance. For applications that require identification, face recognition is the best
biometric for video data. The biggest advantage of this approach is passive participation of
subject (human). The whole process of recognition and identification can be carried out
without the person's knowledge.

Although the development of face recognition surveillance systems has already begun, the
technology seems to not accurate enough. It also brings additional problems concerning highly
extensive perception in the data gathering and computing side of such complex solutions.

Another future domain, where face recognition is expected to become important, is area of
pervasive or ubiquitous computing. Computing devices equipped with sensors become more
widespread in reference to together networking. Such approach will allow envisage a future
where the most of everyday objects are going to have some computational power, allowing to
precisely adapt their behaviour to various factors including time, user, user control or host.

This vision assumes easy information exchange, also including images between devices of
different types.

Currently, the most of devices have simple user interface, controlled only by active commands
on the part of the user. Some of the devices are able to sense environment and acquire
information about the physical word and the people within their region of interest. One of the
crucial part of smart devices of human awareness is knowing the identity of the users close to
a device, even currently implemented in several smartphones with different results. It is
important when contributed with other biometrics regarding to passive nature of face
recognition.

4. Conclusion

Face recognition is still a challenging problem in the field of computer vision. It has received
a great deal of attention over the past years because of its several applications in various
domains. Although there is strong research effort in this area, face recognition systems are far
from ideal to perform adequately in all situations form real world. Paper presented a brief
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survey of issues methods and applications in area of face recognition. There is much work to
be done in order to realise methods that reflect how humans recognise faces and optimally
make use of the temporal evolution of the appearance of the face for recognition.

Author details

Waldemar Wójcik1, Konrad Gromaszek1* and Muhtar Junisbekov2

*Address all correspondence to: k.gromaszek@pollub.pl

1 Institute of Electronics and Information Technology, Lublin University of Technology,
Lublin, Poland

2 Taraz State University, Taraz, Jambyl, Kazakhstan

References

[1] Lin S.: ‘An introduction to Face Recognition Technology', Informing Science, 2000, 3,
pp.1‐6.

[2] An, L., Kafai, M., Bhanu, B.: ‘Dynamic Bayesian network for unconstrained face
recognition in surveillance camera networks', IEEE J. Emerg. Sel. Top. Circuits Syst.,
2013, 3, (2), pp. 155–164.

[3] Philips, P. J., Moon H., Rauss P., Rizivi S.: ‘The FERET September 1996 Database and
Evaluation Procedure', Audio‐ and Video‐based Biometric Person Authentication,
Lecture Notes in Computer Science, vol. 1206, 395‐402, Springer 1997.

[4] Liao, S., Lei, Z., Yi, D., Li, S.: ‘A benchmark study of large‐scale unconstrained face
recognition'. Int. Joint Conf. on Biometrics (IJCB 2014), Florida, USA, 2014, pp. 1–8.

[5] Turk, M., Pentland, A.: ‘Eigenfaces for recognition', J. Cogn. Neurosci., 1991, 3, (1), pp.
71–86.

[6] Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: ‘Face recognition by independent
component analysis', IEEE Trans. Neural Netw., 2002, 13, (6), pp. 1450–1464.

[7] Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. _sherfaces: recognition
using class speci_c linear projection', IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19,
(7), pp. 711–720.

[8] Hu, H., Zhang, P., De la Torre, F.: ‘Face recognition using enhanced linear discriminant
analysis', IET Comput. Vis., 2010, 4, (3), pp. 195–208.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods20



survey of issues methods and applications in area of face recognition. There is much work to
be done in order to realise methods that reflect how humans recognise faces and optimally
make use of the temporal evolution of the appearance of the face for recognition.

Author details

Waldemar Wójcik1, Konrad Gromaszek1* and Muhtar Junisbekov2

*Address all correspondence to: k.gromaszek@pollub.pl

1 Institute of Electronics and Information Technology, Lublin University of Technology,
Lublin, Poland

2 Taraz State University, Taraz, Jambyl, Kazakhstan

References

[1] Lin S.: ‘An introduction to Face Recognition Technology', Informing Science, 2000, 3,
pp.1‐6.

[2] An, L., Kafai, M., Bhanu, B.: ‘Dynamic Bayesian network for unconstrained face
recognition in surveillance camera networks', IEEE J. Emerg. Sel. Top. Circuits Syst.,
2013, 3, (2), pp. 155–164.

[3] Philips, P. J., Moon H., Rauss P., Rizivi S.: ‘The FERET September 1996 Database and
Evaluation Procedure', Audio‐ and Video‐based Biometric Person Authentication,
Lecture Notes in Computer Science, vol. 1206, 395‐402, Springer 1997.

[4] Liao, S., Lei, Z., Yi, D., Li, S.: ‘A benchmark study of large‐scale unconstrained face
recognition'. Int. Joint Conf. on Biometrics (IJCB 2014), Florida, USA, 2014, pp. 1–8.

[5] Turk, M., Pentland, A.: ‘Eigenfaces for recognition', J. Cogn. Neurosci., 1991, 3, (1), pp.
71–86.

[6] Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: ‘Face recognition by independent
component analysis', IEEE Trans. Neural Netw., 2002, 13, (6), pp. 1450–1464.

[7] Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: ‘Eigenfaces vs. _sherfaces: recognition
using class speci_c linear projection', IEEE Trans. Pattern Anal. Mach. Intell., 1997, 19,
(7), pp. 711–720.

[8] Hu, H., Zhang, P., De la Torre, F.: ‘Face recognition using enhanced linear discriminant
analysis', IET Comput. Vis., 2010, 4, (3), pp. 195–208.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods20

[9] Yang, J., Zhang, D., Frangi, A.F., Yang, J.‐Y.: ‘Two‐dimensional PCA: a new approach
to appearance‐based face representation and recognition', IEEE Trans. Pattern Anal.
Mach. Intell., 2004, 26, (1), pp. 131–137.

[10] Naseem, I., Togneri, R., Bennamoun, M.: ‘Linear regression for face recognition', IEEE
Trans. Pattern Anal. Mach. Intell., 2010, 32, (11), pp. 2106–2112.

[11] Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘Face recognition using kernel direct
discriminant analysis algorithms', IEEE Trans. Neural Netw., 2003, 14, (1), pp. 117–126.

[12] He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.‐J.: ‘Face recognition using Laplacian faces',
IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (3), pp. 328–340.

[13] Perlibakas, V.: ‘Distance measures for PCA‐based face recognition', Pattern Recognit.
Lett., 2004, 25, (6), pp. 711–724.

[14] Kim, K.I., Jung, K., Kim, H.J.: ‘Face recognition using kernel principal component
analysis', IEEE Signal Process. Lett., 2002, 9, (2), pp. 40–42.

[15] Bach, F., Jordan, M.: ‘Kernel independent component analysis', J. Mach. Learn. Res.,
2003, 3, pp. 1–48.

[16] Ji, S., Ye, J.: ‘Generalized linear discriminant analysis: a uni_ed framework and ef_cient
model selection', IEEE Trans. Neural Netw., 2008, 9, (10), pp. 1768–1782.

[17] Roweis, S., Saul, L.: ‘Nonlinear dimensionality reduction by locally linear embedding',
Science, 2000, 290, (5500), pp. 2323–2326.

[18] Xiaofei, H., Partha, N.: ‘Locality preserving projections'. Int. Conf. on Advances in
Neural Information Processing Systems (NIPS'03), 2003, pp. 153–161.

[19] Ahonen, T., Hadid, A., Pietikäinen, M.: ‘Face description with local binary patterns:
application to face recognition', IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (12),
pp. 2037–2041.

[20] Suruliandi, A., Meena, K., Reena, R.R.: ‘Local binary pattern and its derivatives for face
recognition', IET Comput. Vis., 2012, 6, (5), pp. 480–488.

[21] Zhang, B., Shan, S., Chen, X., Gao, W.: ‘Histogram of Gabor phase patterns (HGPP): a
novel object representation approach for face recognition', IEEE Trans. Image Process.,
2007, 16, (1), pp. 57–68.

[22] Yang, B., Chen, S.: ‘A comparative study on local binary pattern (LBP) based face
recognition: LBP histogram versus LBP image', Neurocomputing, 2013, 22, pp. 620–
627.

[23] Zhang, B., Gao, Y., Zhao, S., Liu, J.: ‘Local derivative pattern versus local binary pattern:
face recognition with high‐order local pattern descriptor', IEEE Trans. Image Process.,
2010, 19, (2), pp. 533–544.

Face Recognition: Issues, Methods and Alternative Applications
http://dx.doi.org/10.5772/62950

21



[24] Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: ‘Discriminative common vectors
for face recognition', IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (1), pp. 4–13.

[25] Jing, X.‐Y., Yao, Y.‐F., Yang, J.‐Y., Zhang, D.: ‘A novel face recognition approach based
on kernel discriminative common vectors (KDCV) feature extraction and RBF neural
network', Neurocomputing, 2008, 71, pp. 3044–3048.

[26] Wen, Y.: ‘An improved discriminative common vectors and support vector machine
based face recognition approach', Expert Syst. Appl., 2012, 39, (4), pp. 4628–4632.

[27] Kokiopoulou, E., Saad, Y.: ‘Orthogonal neighborhood preserving projections: a
projection based dimensionality reduction technique', IEEE Trans. Pattern Anal. Mach.
Intell., 2007, 29, (12), pp. 2143–2156.

[28] [Yanwei, P., Lei, Z., Zhengkai, L., Nenghai, Y., Houqiang, L.: ‘Neighborhood preserving
projections (NPP): a novel linear dimension reduction method', Lect. Notes Comput.
Sci., 2005, 3644, pp. 117–125.

[29] Prabhu, U., Jingu, H., Marios, S.: ‘Unconstrained pose‐invariant face recognition using
3D generic elastic models', IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (10), pp.
1952–1961.

[30] Qiao, L., Chena, S., Tan, X.: ‘Sparsity preserving projections with applications to face
recognition', Pattern Recognit., 2010, 43, (1), pp. 331–341.

[31] Jiwen, L., Yap‐Peng, T.: ‘Regularized locality preserving projections and its extensions
for face recognition', IEEE Trans. Syst. Man Cybern. B, Cybern., 2009, 40, (3), pp. 1083–
4419.

[32] Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N., Stan, Z.L.: ‘Ensemble‐based discrimi‐
nant learning with boosting for face recognition', IEEE Trans. Neural Netw., 2006, 17,
(1), pp. 166–178.

[33] Abeer, A.M., Woo, W.L., Dlay, S.S.: ‘Multi‐linear neighborhood preserving projection
for face recognition', Pattern Recognit., 2014, 47, (2), pp. 544–555.

[34] Hassaballah M., Aly S.: ‘Face recognition: challenges, achievements and future
directions', IET Computer Vision, 2015, Vol. 9, Iss. 4, pp. 614–626.

[35] Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘A survey of multilinear subspace
learning for tensor data', Pattern Recognit., 2011, 44, (7), pp. 1540–1551.

[36] Pang, S., Kim, D., Bang, S.Y.: ‘Face membership authentication using SVM classi_cation
tree generated by membership‐based LLE data partition', IEEE Trans. Neural Netw.,
2005, 16, (2), pp. 436–446.

[37] Zhang, B., Zhang, H., Ge, S.: ‘Face recognition by applying wavelet subband represen‐
tation and kernel associative memory', IEEE Trans. Neural Netw., 2004, 15, pp. 166–
177.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods22



[24] Cevikalp, H., Neamtu, M., Wilkes, M., Barkana, A.: ‘Discriminative common vectors
for face recognition', IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (1), pp. 4–13.

[25] Jing, X.‐Y., Yao, Y.‐F., Yang, J.‐Y., Zhang, D.: ‘A novel face recognition approach based
on kernel discriminative common vectors (KDCV) feature extraction and RBF neural
network', Neurocomputing, 2008, 71, pp. 3044–3048.

[26] Wen, Y.: ‘An improved discriminative common vectors and support vector machine
based face recognition approach', Expert Syst. Appl., 2012, 39, (4), pp. 4628–4632.

[27] Kokiopoulou, E., Saad, Y.: ‘Orthogonal neighborhood preserving projections: a
projection based dimensionality reduction technique', IEEE Trans. Pattern Anal. Mach.
Intell., 2007, 29, (12), pp. 2143–2156.

[28] [Yanwei, P., Lei, Z., Zhengkai, L., Nenghai, Y., Houqiang, L.: ‘Neighborhood preserving
projections (NPP): a novel linear dimension reduction method', Lect. Notes Comput.
Sci., 2005, 3644, pp. 117–125.

[29] Prabhu, U., Jingu, H., Marios, S.: ‘Unconstrained pose‐invariant face recognition using
3D generic elastic models', IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (10), pp.
1952–1961.

[30] Qiao, L., Chena, S., Tan, X.: ‘Sparsity preserving projections with applications to face
recognition', Pattern Recognit., 2010, 43, (1), pp. 331–341.

[31] Jiwen, L., Yap‐Peng, T.: ‘Regularized locality preserving projections and its extensions
for face recognition', IEEE Trans. Syst. Man Cybern. B, Cybern., 2009, 40, (3), pp. 1083–
4419.

[32] Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N., Stan, Z.L.: ‘Ensemble‐based discrimi‐
nant learning with boosting for face recognition', IEEE Trans. Neural Netw., 2006, 17,
(1), pp. 166–178.

[33] Abeer, A.M., Woo, W.L., Dlay, S.S.: ‘Multi‐linear neighborhood preserving projection
for face recognition', Pattern Recognit., 2014, 47, (2), pp. 544–555.

[34] Hassaballah M., Aly S.: ‘Face recognition: challenges, achievements and future
directions', IET Computer Vision, 2015, Vol. 9, Iss. 4, pp. 614–626.

[35] Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: ‘A survey of multilinear subspace
learning for tensor data', Pattern Recognit., 2011, 44, (7), pp. 1540–1551.

[36] Pang, S., Kim, D., Bang, S.Y.: ‘Face membership authentication using SVM classi_cation
tree generated by membership‐based LLE data partition', IEEE Trans. Neural Netw.,
2005, 16, (2), pp. 436–446.

[37] Zhang, B., Zhang, H., Ge, S.: ‘Face recognition by applying wavelet subband represen‐
tation and kernel associative memory', IEEE Trans. Neural Netw., 2004, 15, pp. 166–
177.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods22

[38] Li, G., Zhang, J., Wang, Y., Freeman, W.J.: ‘Face recognition using a neural network
simulating olfactory systems', Lect. Notes Comput. Sci., 2006, 3972, pp. 93–97.

[39] Zhou, W., Pu, X., Zheng, Z.: ‘Parts‐based holistic face recognition with RBF neural
networks', Lect. Notes Comput. Sci., 2006, 3972, pp. 110–115.

[40] Park, C., Ki, M., Namkung, J., Paik, J.K.: ‘Multimodal priority veri_cation of face and
speech using momentum back‐propagation neural network', Lect. Notes Comput. Sci.,
2006, 3972, pp. 140–149.

[41] Bhavin, J.S., Martin, D.L.: ‘Face recognition using localized features based on nonneg‐
ative sparse coding', Mach. Vis. Appl., 2007, 18, (2), pp. 107–122.

[42] Jiwen, L., Yap‐Peng, T., Gang, W.: ‘Discriminative multimanifold analysis for face
recognition from a single training sample per person', IEEE Trans. Pattern Anal. Mach.
Intell., 2013, 35, (1), pp. 39–51.

[43] Singh, R., Vatsa, M., Noore, A.: ‘Face recognition with disguise and single gallery
images', Image Vis. Comput., 2009, 72, (3), pp. 245–257.

[44] Gu, W., Xiang, C., Venkatesh, Y., Huang, D., Lin, H.: ‘Facial expression recognition
using radial encoding of local Gabor features and classi_er synthesis', Pattern Recognit.,
2012, 45, (1), pp. 80–91.

[45] Serrano, S., Diego, I., Conde, C., Cabello, E.: ‘Recent advances in face biometrics with
Gabor wavelets: a review', Pattern Recognit. Lett., 2010, 31, (5), pp. 372–381.

[46] Shen, L., Bai, L.: ‘A review on Gabor wavelets for face recognition', Pattern Anal. Appl.,
2006, 9, (2–3), pp. 273–292.

[47] Zhang, W.C., Shan, S.G., Chen, X.L., Gao, W.: ‘Are Gabor phases really useless for face
recognition?', Int. J. Pattern Anal. Appl., 2009, 12, (3), pp. 301–307.

[48] Zhao, S., Gao, Y., Zhang, B.: ‘Gabor feature constrained statistical model for ef_cient
landmark localization and face recognition', Pattern Recognit. Lett., 2009, 30, (10), pp.
922–930.

[49] Kanan, H., Faez, K.: ‘Recognizing faces using adaptively weighted sub‐Gabor array
from a single sample image per enrolled subject', Image Vis. Comput., 2010, 28, (3), pp.
438–448.

[50] Yu, L., He, Z., Cao, Q.: ‘Gabor texture representation method for face recognition using
the Gamma and generalized Gaussian models', Image Vis. Comput., 2010, 28, (1), pp.
177–187.

[51] Nanni, L., Maio, D.: ‘Weighted sub‐Gabor for face recognition', Pattern Recognit. Lett.,
2007, 28, (4), pp. 487–492.

Face Recognition: Issues, Methods and Alternative Applications
http://dx.doi.org/10.5772/62950

23



[52] Zhao, Z.‐S., Zhang, L., Zhao, M., Hou, Z.‐G., Zhang, C.‐S.: ‘Gabor face recognition by
multi‐channel classi_er fusion of supervised kernel manifold learning', Neurocomput‐
ing, 2012, 97, pp. 398–404.

[53] Zhang, B., Shan, S., Chen, X., Gao, W.: ‘Histogram of Gabor phase patterns: a novel
object representation approach for face recognition', IEEE Trans. Image Process., 2007,
16, (1), pp. 57–68.

[54] Xie, S., Shan, S., Chen, X., Chen, J.: ‘Fusing local patterns of Gabor magnitude and phase
for face recognition', IEEE Trans. Image Process., 2010, 19, (5), pp. 1349–1361.

[55] Xu, Y., Li, Z., Pan, J.‐S., Yang, J.‐Y.: ‘Face recognition based on fusion of multi‐resolution
Gabor features', Neural Comput. Appl., 2013, 23, (5), pp. 1251–1256.

[56] Chai, Z., Sun, Z., Mndez‐Vzquez, H., He, R., Tan, T.: ‘Gabor ordinal measures for face
recognition', IEEE Trans. Inf. Forensics Sec., 2014, 9, (1), pp. 14–26.

[57] Liu, C., Wechsler, H.: ‘Gabor feature based classi_cation using the enhanced _sher linear
discriminant model for face recognition', IEEE Trans. Image Process., 2002, 11, (4), pp.
467–476.

[58] Liu, C., Wechsler, H.: ‘Independent component analysis of Gabor features for face
recognition', IEEE Trans. Neural Netw., 2003, 14, (4), pp. 919–928.

[59] Ren, C.‐X., Dai, D.‐Q., Li, X., Lai, Z.‐R.: ‘Band‐reweighed Gabor kernel embedding for
face image representation and recognition', IEEE Trans. Image Process., 2014, 32, (2),
pp. 725–740.

[60] Yang, M., Zhang, L., Shiu, S., Zhang, D.: ‘Gabor feature based robust representation
and classi_cation for face recognition with Gabor occlusion dictionary', Pattern
Recognit., 2013, 46, (7), pp. 1865–1878.

[61] Serrano, A., de Diego, I., Conde, C., Cabello, E.: ‘Analysis of variance of Gabor _lter
banks parameters for optimal face recognition', Pattern Recognit. Lett., 2011, 32, (15),
pp. 1998–2008.

[62] Perez, C., Cament, L., Castillo, L.E.: ‘Methodological improvement on local Gabor face
recognition based on feature selection and enhanced Borda count', Pattern Recognit.,
2011, 44, (4), pp. 951–963.

[63] Oh, J., Choi, S., Kimc, C., Cho, J., Choi, C.: ‘Selective generation of Gabor features for
fast face recognition on mobile devices', Pattern Recognit. Lett., 2013, 34, (13), pp. 1540–
1547.

[64] Choi, W.‐P., Tse, S.‐H., Wong, K.‐W., Lam, K.‐M.: ‘Simpli_ed Gabor wavelets for human
face recognition', Pattern Recognit., 2008, 41, (3), pp. 1186–1199.

[65] Chen, J., Shan, S., He, C., et al.: ‘WLD: a robust local image descriptor', IEEE Trans.
Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 1705–1720.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods24



[52] Zhao, Z.‐S., Zhang, L., Zhao, M., Hou, Z.‐G., Zhang, C.‐S.: ‘Gabor face recognition by
multi‐channel classi_er fusion of supervised kernel manifold learning', Neurocomput‐
ing, 2012, 97, pp. 398–404.

[53] Zhang, B., Shan, S., Chen, X., Gao, W.: ‘Histogram of Gabor phase patterns: a novel
object representation approach for face recognition', IEEE Trans. Image Process., 2007,
16, (1), pp. 57–68.

[54] Xie, S., Shan, S., Chen, X., Chen, J.: ‘Fusing local patterns of Gabor magnitude and phase
for face recognition', IEEE Trans. Image Process., 2010, 19, (5), pp. 1349–1361.

[55] Xu, Y., Li, Z., Pan, J.‐S., Yang, J.‐Y.: ‘Face recognition based on fusion of multi‐resolution
Gabor features', Neural Comput. Appl., 2013, 23, (5), pp. 1251–1256.

[56] Chai, Z., Sun, Z., Mndez‐Vzquez, H., He, R., Tan, T.: ‘Gabor ordinal measures for face
recognition', IEEE Trans. Inf. Forensics Sec., 2014, 9, (1), pp. 14–26.

[57] Liu, C., Wechsler, H.: ‘Gabor feature based classi_cation using the enhanced _sher linear
discriminant model for face recognition', IEEE Trans. Image Process., 2002, 11, (4), pp.
467–476.

[58] Liu, C., Wechsler, H.: ‘Independent component analysis of Gabor features for face
recognition', IEEE Trans. Neural Netw., 2003, 14, (4), pp. 919–928.

[59] Ren, C.‐X., Dai, D.‐Q., Li, X., Lai, Z.‐R.: ‘Band‐reweighed Gabor kernel embedding for
face image representation and recognition', IEEE Trans. Image Process., 2014, 32, (2),
pp. 725–740.

[60] Yang, M., Zhang, L., Shiu, S., Zhang, D.: ‘Gabor feature based robust representation
and classi_cation for face recognition with Gabor occlusion dictionary', Pattern
Recognit., 2013, 46, (7), pp. 1865–1878.

[61] Serrano, A., de Diego, I., Conde, C., Cabello, E.: ‘Analysis of variance of Gabor _lter
banks parameters for optimal face recognition', Pattern Recognit. Lett., 2011, 32, (15),
pp. 1998–2008.

[62] Perez, C., Cament, L., Castillo, L.E.: ‘Methodological improvement on local Gabor face
recognition based on feature selection and enhanced Borda count', Pattern Recognit.,
2011, 44, (4), pp. 951–963.

[63] Oh, J., Choi, S., Kimc, C., Cho, J., Choi, C.: ‘Selective generation of Gabor features for
fast face recognition on mobile devices', Pattern Recognit. Lett., 2013, 34, (13), pp. 1540–
1547.

[64] Choi, W.‐P., Tse, S.‐H., Wong, K.‐W., Lam, K.‐M.: ‘Simpli_ed Gabor wavelets for human
face recognition', Pattern Recognit., 2008, 41, (3), pp. 1186–1199.

[65] Chen, J., Shan, S., He, C., et al.: ‘WLD: a robust local image descriptor', IEEE Trans.
Pattern Anal. Mach. Intell., 2010, 32, (9), pp. 1705–1720.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods24

[66] Jabid, T., Kabir, M., Chae, O.: ‘Facial expression recognition using local directional
pattern (LDP)'. IEEE Int. Conf. on Image Processing (ICIP), Hong Kong, China, 2010,
pp. 1605–1608.

[67] Bereta, M., Karczmarek, P., Pedrycz, W., Reformat, M.: ‘Local descriptors in application
to the aging problem in face recognition', Pattern Recognit., 2013, 46, (10), pp. 2634–
2646.

[68] Bereta, M., Pedrycz, W., Reformat, M.: ‘Local descriptors and similarity measures for
frontal face recognition: a comparative analysis', J. Vis. Commun. Image Represent.,
2013, 24, (8), pp. 1213–1231.

[69] Cao, Z., Yin, Q., Tang, X., Sun, J.: ‘Face recognition with learning‐based descriptor'.
IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010,
pp. 2707–2714.

[70] Farajzadeh, N., Faez, K., Pan, G.: ‘Study on the performance of moments as invariant
descriptors for practical face recognition systems', IET Comput. Vis., 2011, 4, (4), pp.
272–285.

[71] Lei, Z., Pietikäinen, M., Stan, Z.L.: ‘Learning discriminant face descriptor', IEEE Trans.
Pattern Anal. Mach. Intell., 2014, 36, (2), pp. 289–302.

[72] Ira, K.‐S., Ronen, B.: ‘3D face reconstruction from a single image using a single reference
face shape', IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (2), pp. 394–405.

[73] Bowyer, K., Chang, K.P., Flynn, P.: ‘A survey of approaches and challenges in 3D and
multi‐modal 3D + 2D face recognition', Comput. Vis. Image Underst., 2006, 101, (1), pp.
1–15.

[74] Blanz, V., Vetter, T.: ‘Face recognition based on _tting a 3D morphable model', IEEE
Trans. Pattern Anal. Mach. Intell., 2003, 25, (9), pp. 1063–1074.

[75] Zhang, L., Samaras, D.: ‘Face recognition from a single training image under arbitrary
unknown lighting using spherical harmonics', IEEE Trans. Pattern Anal. Mach. Intell.,
2006, 28, (3), pp. 351–363.

[76] Passalis, G., Panagiotis, P., Theoharis, T., Kakadiaris, I.A.: ‘Using facial symmetry to
handle pose variations in real‐world 3D face recognition', IEEE Trans. Pattern Anal.
Mach. Intell., 2011, 33, (10), pp. 1938–1951.

[77] Lei, Y., Bennamoun, M., El‐Sallam, A.: ‘An ef_cient 3D face recognition approach based
on the fusion of novel local low‐level features', Pattern Recognit., 2013, 46, (1), pp. 24–
37.

[78] Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: ‘3D face recognition
under expressions, occlusions and pose variations', IEEE Trans. Pattern Anal. Mach.
Intell., 2013, 35, (9), pp. 2270–2283.

Face Recognition: Issues, Methods and Alternative Applications
http://dx.doi.org/10.5772/62950

25



[79] Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: ‘An ef_cient 3D face recognition approach
using local geometrical signatures', Pattern Recognit., 2014, 47, (2), pp. 509–524.

[80] Andrea, F.A., Michele, N., Daniel, R., Gabriele, S.: ‘2D and 3D face recognition: a
survey', Pattern Recognit. Lett., 2007, 28, (14), pp. 1885–1906.

[81] Cai, L., Da, F.: ‘Estimating inter‐personal deformation with multi‐scale modelling
between expression for three‐dimensional face recognition', IET Comput. Vis., 2012, 6,
(5), pp. 468–479.

[82] Chen, Q., Yao, J., Cham, W.K.: ‘3D model‐based pose invariant face recognition from
multiple views', IET Comput. Vis., 2007, 1, (1), pp. 25–34.

[83] Lu, X., Jain, A.K.: ‘Matching 2.5D face scans to 3D models', IEEE Trans. Pattern Anal.
Mach. Intell., 2006, 28, (1), pp. 31–43.

[84] Al‐Osaimi, F., Bennamoun, M., Mian, A.: ‘An expression deformation approach to non‐
rigid 3D face recognition', Int. J. Comput. Vis., 2009, 81, (3), pp. 302–316.

[85] Bronstein, A.M., Bronstein, M.M., Kimmel, R.: ‘Three‐dimensional face recognition',
Int. J. Comput. Vis., 2005, 64, (1), pp. 5–30.

[86] Chang, K., Bowyer, K., Flynn, P.: ‘An evaluation of multimodal 2D + 3D face biometrics',
IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (4), pp. 619–624.

[87] Marin‐Jimenez, M., Zisserman, A., Eichner, M., Ferrari, V.: ‘Detecting people looking
at each other in videos', Int. J. Comput. Vis., 2014, 106, (3), pp. 282–296.

[88] O'Toole, A., Harms, J., Snow, S., Hurst, D., Pappas, M., Abdi, H.: ‘A video database of
moving faces and people', IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 812–
816.

[89] Poh, N., Chan, C.H., Kittler, J., et al.: ‘An evaluation of video‐to‐video face veri_cation',
IEEE Trans. Inf. Forensics Sec., 2010, 24, (8), pp. 781–801.

[90] Best‐Rowden, L., Klare, B., Klontz, J., Jain, A.: ‘Video‐to‐video face matching: estab‐
lishing a baseline for unconstrained face recognition'. Biometrics: Theory, Applications
and Systems (BTAS), Washington DC, USA, 2013.

[91] Barr, J., Boyer, K., Flynn, P., Biswas, S.: ‘Face recognition from video: a review', Int. J.
Pattern Recognit. Artif. Intell., 2012, 26, (5), pp. 53–74.

[92] Zhang, Y., Martinez, A.: ‘A weighted probabilistic approach to face recognition from
multiple images and video sequences', Image Vis. Comput., 2006, 24, (6), pp. 626–638.

[93] Cevikalp, H., Triggs, B.: ‘Face recognition based on image sets'. IEEE Int. Conf.
Computer Vision and Pattern Recognition (CVPR'10), San Francisco, CA, USA, 2010,
pp. 2567–2573.

[94] Cui, Z., Chang, H., Shan, S., Ma, B., Chen, X.: ‘Joint sparse representation for video‐
based face recognition', Neurocomputing, 2014, 135, (5), pp. 306–312.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods26



[79] Lei, Y., Bennamoun, M., Hayat, M., Guo, Y.: ‘An ef_cient 3D face recognition approach
using local geometrical signatures', Pattern Recognit., 2014, 47, (2), pp. 509–524.

[80] Andrea, F.A., Michele, N., Daniel, R., Gabriele, S.: ‘2D and 3D face recognition: a
survey', Pattern Recognit. Lett., 2007, 28, (14), pp. 1885–1906.

[81] Cai, L., Da, F.: ‘Estimating inter‐personal deformation with multi‐scale modelling
between expression for three‐dimensional face recognition', IET Comput. Vis., 2012, 6,
(5), pp. 468–479.

[82] Chen, Q., Yao, J., Cham, W.K.: ‘3D model‐based pose invariant face recognition from
multiple views', IET Comput. Vis., 2007, 1, (1), pp. 25–34.

[83] Lu, X., Jain, A.K.: ‘Matching 2.5D face scans to 3D models', IEEE Trans. Pattern Anal.
Mach. Intell., 2006, 28, (1), pp. 31–43.

[84] Al‐Osaimi, F., Bennamoun, M., Mian, A.: ‘An expression deformation approach to non‐
rigid 3D face recognition', Int. J. Comput. Vis., 2009, 81, (3), pp. 302–316.

[85] Bronstein, A.M., Bronstein, M.M., Kimmel, R.: ‘Three‐dimensional face recognition',
Int. J. Comput. Vis., 2005, 64, (1), pp. 5–30.

[86] Chang, K., Bowyer, K., Flynn, P.: ‘An evaluation of multimodal 2D + 3D face biometrics',
IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (4), pp. 619–624.

[87] Marin‐Jimenez, M., Zisserman, A., Eichner, M., Ferrari, V.: ‘Detecting people looking
at each other in videos', Int. J. Comput. Vis., 2014, 106, (3), pp. 282–296.

[88] O'Toole, A., Harms, J., Snow, S., Hurst, D., Pappas, M., Abdi, H.: ‘A video database of
moving faces and people', IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (5), pp. 812–
816.

[89] Poh, N., Chan, C.H., Kittler, J., et al.: ‘An evaluation of video‐to‐video face veri_cation',
IEEE Trans. Inf. Forensics Sec., 2010, 24, (8), pp. 781–801.

[90] Best‐Rowden, L., Klare, B., Klontz, J., Jain, A.: ‘Video‐to‐video face matching: estab‐
lishing a baseline for unconstrained face recognition'. Biometrics: Theory, Applications
and Systems (BTAS), Washington DC, USA, 2013.

[91] Barr, J., Boyer, K., Flynn, P., Biswas, S.: ‘Face recognition from video: a review', Int. J.
Pattern Recognit. Artif. Intell., 2012, 26, (5), pp. 53–74.

[92] Zhang, Y., Martinez, A.: ‘A weighted probabilistic approach to face recognition from
multiple images and video sequences', Image Vis. Comput., 2006, 24, (6), pp. 626–638.

[93] Cevikalp, H., Triggs, B.: ‘Face recognition based on image sets'. IEEE Int. Conf.
Computer Vision and Pattern Recognition (CVPR'10), San Francisco, CA, USA, 2010,
pp. 2567–2573.

[94] Cui, Z., Chang, H., Shan, S., Ma, B., Chen, X.: ‘Joint sparse representation for video‐
based face recognition', Neurocomputing, 2014, 135, (5), pp. 306–312.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods26

[95] Anil, K., Arun, A., Karthik, N.: ‘Introduction to biometrics’ (Springer, New York, USA,
2011.

[96] Phillips, P.J., Flynn, P.J., Scruggs, T., et al.: ‘Overview of the face recognition grand
challenge'. IEEE Conf. Computer Vision and Pattern Recognition, San Diego, CA, USA,
2005, pp. 947–954.

[97] Stan, Z.L., Jain, A.: ‘Handbook of face recognition’ (Springer, New York, USA, 2005).

[98] Kamgar‐Parsi, B., Lawson, W., Kamgar‐Parsi, B.: ‘Toward development of a face
recognition system for watchlist surveillance', IEEE Trans. Pattern Anal. Mach. Intell.,
2011, 33, (10), pp. 1925–1937.

[99] Ortiz, E., Becker, B.: ‘Face recognition for web‐scale datasets', Comput. Vis. Image
Underst., 2013, 108, pp. 153–170.

[100] Ozkana, D., Duygulu, P.: ‘Interesting faces: a graph‐based approach for finding people
in news', Pattern Recognit., 2010, 43, (5), pp. 1717–1735.

[101] Pinto, N., Stone, Z., Zickler, T., Cox, D.: ‘Scaling up biologically‐inspired computer
vision: a case study in unconstrained face recognition on Facebook'. IEEE Computer
Vision and Pattern Recognition, Workshop on Biologically Consistent Vision, Colorado
Springs, USA, 2011, pp. 35–42.

[102] Best‐Rowden, L., Han, H., Otto, C., Klare, B., Jain, A.: ‘Unconstrained face recognition:
identifying a person of interest from a media collection'. Technical Report, Technical
Report MSU‐CSE‐14‐1, Michigan State University, 2014.

[103] Introna, L., Wood, D.: ‘Picturing algorithmic surveillance: the politics of facial recog‐
nition systems', Surveillance Soc., 2004, 2, (2/3), pp. 177–198.

[104] Han, H., Klare, B., Bonnen, K., Jain, A.: ‘Matching composite sketches to face photos: a
component‐based approach', IEEE Trans. Inf. Forensics Sec., 2013, 8, (1), pp. 191–204.

[105] Gao, X., Zhong, J., Tian, C.: ‘Sketch synthesis algorithm based on E‐Hmm and selective
ensemble', IEEE Trans. Circuits Syst. Video Technol., 2008, 18, (4), pp. 487–496.

[106] Tang, X., Wang, X.: ‘Face photo‐sketch synthesis and recognition', IEEE Trans. Pattern
Anal. Mach. Intell., 2009, 31, (11), pp. 1955–1967.

[107] Tang, X., Wang, X.: ‘Face sketch recognition', IEEE Trans. Circuits Syst. Video Technol.,
2004, 14, (1), pp. 50–57.

[108] Brendan, F.K., Zhifeng, L., Anil, K.J.: ‘Matching forensic sketches to mug shot photos',
IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (3), pp. 639–646.

[109] Klum, S., Han, H., Jain, A., Klare, B.: ‘Sketch based face recognition: forensic vs.
composite sketches'. Sixth IAPR Int. Conf. Biometrics (ICB'13), Madrid, Spain, 2013, pp.
1–8.

Face Recognition: Issues, Methods and Alternative Applications
http://dx.doi.org/10.5772/62950

27



[110] Jain, A., Klare, B., Park, U.: ‘Face matching and retrieval in forensics applications', IEEE
Multimedia, 2012, 19, (1), pp. 20–28.

[111] Jain, A.K., Klare, B., Park, U.: ‘Face recognition: some challenges in forensics'. IEEE Int.
Conf. on Automatic Face Gesture Recognition and Workshops (FG 2011), Santa
Barbara, CA, USA, 2011, pp. 726–733.

[112] Erdogmus, N., Marcel, S.: ‘Spoo_ng in 2D face recognition with 3D masks and anti‐
spoo_ng with kinect'. The IEEE Sixth Int. Conf. Biometrics: Theory, Applications and
Systems (BTAS 2013), Washington, DC, USA, 2013, pp. 1–6.

[113] Marcel, S., Nixon, M., Li, S.: ‘Handbook of biometric anti‐spoo_ng: trusted biometrics
under spoo_ng attacks’ (Springer, New York, USA, 2014).

[114] Määttä, J., Hadid, A., Pietikäinen, M.: ‘Face spoofing detection from single images using
texture and local shape analysis', IET Biometrics, 2012, 1, (1), pp. 3–10.

[115] Chingovska, I., Anjos, A., Marcel, S.: ‘On the effectiveness of local binary patterns in
face anti‐spoo_ng'. IEEE Int. Conf. Biometrics Special Interest Group (BIOSIG),
Darmstadt, Germany, 2012, pp. 1–7.

[116] de Freitas Pereira, T., Anjos, A., De Martino, J., Marcel, S.: ‘LBP‐TOP based counter‐
measure against face spoo_ng attacks'. Int. Workshop on Computer Vision with Local
Binary Pattern Variants (ACCV), Daejeon, Korea, 2012, pp. 121–132.

[117] Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: ‘A face antispoo_ng database with
diverse attacks'. Fifth IAPR Int. Conf. on Biometrics (ICB), New Delhi, India, 2012, pp.
26–31.

[118] Chingovska, I., Rabello dos Anjos, A., Marcel, S.: ‘Biometrics evaluation under spoo_ng
attacks', IEEE Trans. Inf. Forensics Sec., 2014, 9, (12), pp. 2264–2276.

[119] Hadid, A.: ‘Face biometrics under spoo_ng attacks: vulnerabilities, countermeasures,
open issues, and research directions'. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 2014, pp. 113–118.

[120] Orubeondo A. : ‘A New Face for Security', InfoWorld.com.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods28



[110] Jain, A., Klare, B., Park, U.: ‘Face matching and retrieval in forensics applications', IEEE
Multimedia, 2012, 19, (1), pp. 20–28.

[111] Jain, A.K., Klare, B., Park, U.: ‘Face recognition: some challenges in forensics'. IEEE Int.
Conf. on Automatic Face Gesture Recognition and Workshops (FG 2011), Santa
Barbara, CA, USA, 2011, pp. 726–733.

[112] Erdogmus, N., Marcel, S.: ‘Spoo_ng in 2D face recognition with 3D masks and anti‐
spoo_ng with kinect'. The IEEE Sixth Int. Conf. Biometrics: Theory, Applications and
Systems (BTAS 2013), Washington, DC, USA, 2013, pp. 1–6.

[113] Marcel, S., Nixon, M., Li, S.: ‘Handbook of biometric anti‐spoo_ng: trusted biometrics
under spoo_ng attacks’ (Springer, New York, USA, 2014).

[114] Määttä, J., Hadid, A., Pietikäinen, M.: ‘Face spoofing detection from single images using
texture and local shape analysis', IET Biometrics, 2012, 1, (1), pp. 3–10.

[115] Chingovska, I., Anjos, A., Marcel, S.: ‘On the effectiveness of local binary patterns in
face anti‐spoo_ng'. IEEE Int. Conf. Biometrics Special Interest Group (BIOSIG),
Darmstadt, Germany, 2012, pp. 1–7.

[116] de Freitas Pereira, T., Anjos, A., De Martino, J., Marcel, S.: ‘LBP‐TOP based counter‐
measure against face spoo_ng attacks'. Int. Workshop on Computer Vision with Local
Binary Pattern Variants (ACCV), Daejeon, Korea, 2012, pp. 121–132.

[117] Zhang, Z., Yan, J., Liu, S., Lei, Z., Yi, D., Li, S.Z.: ‘A face antispoo_ng database with
diverse attacks'. Fifth IAPR Int. Conf. on Biometrics (ICB), New Delhi, India, 2012, pp.
26–31.

[118] Chingovska, I., Rabello dos Anjos, A., Marcel, S.: ‘Biometrics evaluation under spoo_ng
attacks', IEEE Trans. Inf. Forensics Sec., 2014, 9, (12), pp. 2264–2276.

[119] Hadid, A.: ‘Face biometrics under spoo_ng attacks: vulnerabilities, countermeasures,
open issues, and research directions'. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), Columbus, OH, USA, 2014, pp. 113–118.

[120] Orubeondo A. : ‘A New Face for Security', InfoWorld.com.

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods28

Chapter 3

A Generally Semisupervised Dimensionality Reduction
Method with Local and Global Regression
Regularizations for Recognition

Mingbo Zhao, Yuan Gao, Zhao Zhang and Bing Li

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/63273

Abstract

The insufficiency of labeled data is an important problem in image classification such
as face recognition. However, unlabeled data are abundant in the real-world applica‐
tion. Therefore, semisupervised learning methods, which corporate a few labeled data
and a large number of unlabeled data into learning, have received more and more
attention in the field of face recognition. During the past years, graph-based semisu‐
pervised learning has been becoming a popular topic in the area of semisupervised
learning.  In  this  chapter,  we  newly  present  graph-based  semisupervised  learning
method  for  face  recognition.  The  presented  method  is  based  on  local  and  global
regression regularization. The local regression regularization has adopted a set of local
classification functions to preserve both local discriminative and geometrical informa‐
tion, as well as to reduce the bias of outliers and handle imbalanced data; while the
global regression regularization is to preserve the global discriminative information and
to calculate the projection matrix for out-of-sample extrapolation. Extensive simula‐
tions based on synthetic and real-world datasets verify the effectiveness of the proposed
method.

Keywords: Semi-supervised Learning, Dimensionality Reduction, Local and Global
Regressions, Face Recognition, Transductive and Inductive Learning

1. Introduction

In the real world, there are ever-increasing vision face data generated from Internet surfing and
daily social communication. These metadata can be labeled or unlabeled, and accordingly be

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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utilized for image retrieval, summarization, and indexing. To handle these datasets for realizing
the above tasks, automatic annotation is an elementary step, which can be formulated as a pattern
classification problem and accomplished by learning-based techniques.  Traditionally,  the
supervised-learning-based methods, such as Linear discriminant analysis (LDA) and Support
Vector Machine (SVM), can deliver satisfactory recognition accuracy given that the number of
labeled data is adequate. But labeling a huge amount of data is expensive and time consum‐
ing. On the other hand, the unlabeled data are sufficient and can be easily obtained from real-
world application. Therefore, semisupervised learning-based methods that utilize a few of
labeled data and a huge amount of unlabeled data are becoming more and more popular than
only relying on the supervised learning methods [27–33].

Recently, since two pioneer semisupervised methods, i.e., Gaussian Fields and Harmonic
Functions (GFHF) and Learning with Local and Global Consistency (LLGC), have been
proposed in 2003 and 2004, respectively, graph-based semisupervised learning methods have
received considerable research interest in the area of semisupervised learning. These methods
usually represent both labeled and unlabeled sets by a graph, and then utilize their graph
Laplacian matrix to characterize the manifold structure. Finally, different learning tasks such
as image classification, clustering, and dimensionality reduction are performed on the graph
Laplacian matrix. For example, GFHF and LLGC work in a transductive way by directly
propagating the class label information from the labeled set to the unlabeled set along the
graph, where the labels of unlabeled data can be estimated. Other similar works include
Random Walk [5] and Special Label Propagation (SLP) [8]. However, the transductive learning
methods cannot predict the class labels of new-coming samples, hence suffering the out-of-
sample problem.

To solve the out-of-sample problem, inductive learning methods are proposed during the past
decades. Typical methods for inductive learning are Manifold Regularization (MR) [1] and
Semisupervised Discriminant Analysis (SDA) [2]. The MR tries to learn a projection matrix by
adding the graph Laplaican regularized term to the cost function of original supervised
methods. Therefore, both unlabeled and new-coming data can be cast into a low-dimensional
subspace, hence the out-of-sample problem can be naturally solved [7, 9, 10, 16]. For example,
MR has extended the regularized least square and SVM to their semisupervised learning
extensions, i.e., Laplacian regularized least squares (Lap-RLS) and Laplacian SVM by adding
a manifold regularized term. Similarly, Cai et al. [2] have extended LDA to SDA for semisu‐
pervised dimensionality reduction.

It should be noted that the success of semisupervised learning is based on how to utilizing the
unlabeled data for characterizing the distribution of labels in data space. Several methods
including Locally Linear Reconstruction [11, 12, 20], Local Regression and Global Alignment
[13, 14], and Local Spline Regression [18, 19] have been developed to discover the intrinsic
manifold structure of data. However, when we do semisupervised classification, the data
points lying far away the data manifold are noisy for learning the correct classifier and can
deteriorate the classification performance. On the other hand, sampling in real-world appli‐
cations is usually not uniform. As a result, the sampled data may be imbalanced or with multi-
density distribution. None of the aforementioned methods focus on solving the two problems.
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In this chapter, we develop an effective semisupervised dimensionality reduction method, i.e.,
Local and Global Regression (LGR), for face recognition with outliers and imbalanced face
data. In order to both handle transductive and inductive learning problems, LGR aims to
sufficiently learn the classification function by using all data. In detail, the presented method
first extends the original supervised regression term to a supervised loss term and a global
regression regularized term, where the loss term is to fix the inconsistency between the
predicted labels and initial labels, while the global regression term is to sufficiently learn the
classification function using all training data and to obtain the projection matrix for handling
out-of-sample problem. Furthermore, to capture the local discriminative information, a set of
weighted local classification functions are adopted for each dataset to estimate the labels of its
nearby data, where the weight is to reduce the outliers bias and to deal with imbalanced data.
Thus, both local and global discriminative information of dataset can be preserved by the
proposed LGR method.

The main contributions of this work are as follows: (1) we propose a new effective method for
semisupervised dimensionality reduction, which can handle both transductive and inductive
learning problems; (2) we develop a graph Laplacian matrix, which can characterize both local
geometrical and discriminative information, as well as reduce the bias of outliers and handle
imbalanced data; (3) we have also established the connection between the proposed method
and other state-of-the-art methods. Theoretical analysis has shown that many popular semi‐
supervised methods such as LRGA can be viewed as the special cases of the proposed method.
Extensive simulations based on synthetic and real-world datasets verify the effectiveness of
the proposed method.

This chapter is organized as follows. In Section 2, the notations and motivations are first given.
We then propose our LGR method for both handling transductive and inductive learning
problems. Finally, we also establish the connection between the proposed method and other
state-of-the-art methods. Section 3 demonstrates the extensive simulations and the final
conclusions are drawn in Section 4.

2. The proposed method

2.1. Notation and motivation

In semi-supervised learning, we define X ={Xl , Xu}= {x1, x2, …, xl+u}∈ R D×(l+u) be the data
matrix where the first l and the remaining u columns are the labeled and unlabeled samples,
respectively; Yl ={y1, y2, …, yj}∈ R c×l  be the binary label matrix with each column yj repre‐
senting the class assignment of xj, i.e. yij =1, as the class matrix, where yij =1, if xj belongs to the
ith class; yij =0, otherwise, D and c are the numbers of features and classes, respectively. We
also let L = D −W  be the graph Laplacian matrix associated with both labeled and unlabeled
sets [17],where W is the weight matrix defined as wij =exp(− ∥ xi − xj∥

2 / 2σ 2), if xi is within the k
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nearest neighbor of xj or if xj is within the k nearest neighbor of xi; wij =0, otherwise, D is a

diagonal matrix satisfying Dii =∑ j=1
l+u wij.

Most semi-supervised learning methods utilize the Gaussian function based affinity matrix.
As point out in references [11, 12], the Gaussian function based affinity matrix is found to be
oversensitive to the Gaussian variance; only a slight variation on the variance may affect the
results dramatically. Thus, Gaussian function based affinity matrix is not a good method for
handling image classification. The method developed should be robust to the parameters.

Second, when carrying out semisupervised classification, the samples lying far away from the
data manifold are outliers which may lead to learn an incorrect classifier and deteriorate the
classification performance. Considering Figure 1(a and b) as examples, we generalize a two-
cycle and two-moon datasets with outliers. Considering the distribution of two data, the ideal
decision boundary should lie in the gap between two data sub-manifolds. However, since there
are many outliers around the data manifold, these outliers will blur the clear distribution of
the whole data and are noisy to learn a correct classifier. Therefore, it is very important to
develop a method that can adaptively reduce the effects of outliers.

Third, in real-world applications, sampling is usually not uniform. Consequently, the sampled
data can be imbalanced or follows multi-density distribution. Figure 1(c) shows a two-plate
dataset with two classes: each class follows a Gaussian distribution but with different cores
and density. Obviously, the data points (left data points) in the high-density area will take
more important part than those (right data points) in the low-density area when to learn a
classifier, which may cause incorrect classification results. The method developed should
handle such imbalanced data with multi-density distribution.

The method developed should also solve the out-of-sample problem. To address the above
problems, we, in this paper, propose a new semisupervised learning method, which is based
on local and global regression.

Figure 1. (a) Two-cycle dataset; (b) two-moon dataset; (c) two-plate dataset.
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2.2. Local and global regression

We start from the supervised least-squares regression. The least-square regression is to fix a
linear model yj =V T xj + b T  by regressing X on Y:

2 2
1

min ,
l T T

j j t Fj F
V x b y Va

=
+ - +å (1)

where V is the projection matrix that is to project the new-coming samples and b is the bias
term. Although the label yj of xj ( j ≤ l) has already been known, since l is usually very small,
the classification function zj =V T xj + b may not be sufficiently trained due to the small sample

size. To solve this problem, we introduce Z ={Zl , Zu}= {z1, z2, …, zl+u}∈ R c×(l+u) as a set of

estimated labels to play the same roll by replacing V T xj + b with zj and add a regression term
to Eq. (1) as follows:

22 2
1 1

min .
l l u T T

i i r j j FFi j F
z y V x b z Va h

+

= =

æ ö
- + + - +ç ÷

è øå å (2)

According to Eq. (2), the classification function zj =V T xj + b can be sufficiently learned by using
all the predicted labels and to fix to their original labels. In other meaning, the global discrim‐
inative information can be preserved by the regression term of Eq. (2). Furthermore, to grasp
the local discriminative information, we induce a local regression function for each data sample
xj. We denote Nk (xj) as the k neighborhood set of xj with itself, Xj ={x j0

, x j1
, …, x jk −1

}∈ R D×k  as

the local data matrix formed by all samples in Nk (xj), where { j1, j1, …, jk } is the index set of

Nk (xj) and j1 = j, x j1
= xj. We also denote Zj ={z j0

, z j2
, …, z jk −1

}∈ R c×k  as the local low-dimensional

label matrix in Nk (xj). Then, the local regression function for all data samples can be given as
follows:

21 2
, , 1 0

min .
j j j i i

l u k T T
Z V b j j j j j Fj i F

V x b z Vh
+ -

= =

æ ö
+ - +ç ÷

è øå å (3)

However, minimizing the above total errors over all data samples tends to force each local
error α ji

= Vj
T x ji

+ bj
T − z ji F  similar to each other. Given some cases that the dataset includes

some outliers, assuming all the local regression errors equally may emphasize the effects from
outliers and weaken the effects from normal data. In this section, to weaken the effects from
outliers, we add a weight vector Γj ={τ j1

, τ j2
, …, τ jk }∈ R 1×k  for each local data patch xj in order

to penalize each regression error, which can be shown as
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In the following section, we will discuss how to select the weight τ ji
. Our motivation is to let

the weight of local error α ji
 be large given x ji

 are the normal data and in the contrast to let the

weight be small given x ji
 is outlier. In detail, to obtain local projection matrix Vj and bias bj, we

perform derivatives to Eq. (4) w.r.t. Vj and bj to zeros. Then, Eq. (4) will be reduced to

( ) ( )1
min min ,

l u T T T
Z j j j Z dj

Tr ZS L S Z Tr ZL Z
+

=
=å (5)

where L j = Hj −Hj Xj
T (XjHj Xj

T + ηI )−1XjHj; Sj∈R (l+u)×k  is the selected matrix satisfying

(Sj) pq =1, if xp is the qth neighbors to xp; (Sj) pq =0, otherwise, L d =∑ j=1
l+u (Sj L jSj

T ) is the local graph

Laplacian matrix. Similarly, by setting the derivatives of Eq. (2) w.r.t. V and b to zero, we have

( )
( ) 1 ,

T T T

T T
c c

b eZ eX V ee

V XL X I XL Zh
-

ì = -ï
í
ï = +î

(6)

where e∈R 1×(l+u) is a unit vector and L c = I − e T e / ee T  is used for centering the samples by
subtracting the mean of all samples. With b and V in Eq. (6), the global regression term in Eq.
(2) can be written as

( )2 2 ,T T T
gFF

V X b e Z V Tr ZL Zh+ - + = (7)

where L g = L c − L c X T (X L c X T + ηI )−1X L c is the global graph Laplacian matrix. By integrating
Eq. (7) with Eq. (2), we formulate our method as follows:

( ) ( ) ( )( ) ( ) ( )min ,T T T
Z m d r gJ Z Tr Z Y U Z Y Tr ZL Z Tr ZL Za a= - - + + (8)

where U ∈R (l+u)×(l+u) is the diagonal matrix with the first l and the remaining u diagonal
elements as 1 and 0, respectively; the second term describes the local discriminative structure
of data; the third term describes the global discriminative structure; and αm and αr  are the two
balancing parameters. Since both local and global regressions are regularized in our method,
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we refer our method as LGR. Finally, by performing derivatives of J (Z ) w.r.t. z to zero, we can
calculate the solution of z as

( ) 1
.m d r gZ YU U L La a

-
= + + (9)

Then, we can obtain the optimal projection matrix and bias term by replacing z in Eq. (6).

2.3. Weight selection for bias reduction

In this section, we consider how to select the weights in the proposed method suggested in
Section 2.2. Note, our goal of using the weights is to weaken the effects of outliers and the
weight τ ji

 should be set to a small value if x ji
 is an outlier. Then we can make the weight τ ji

inversely proportional to the distance between x ji
 and a center μj, i.e., τ ji

=1 / x ji
−μj . Such a

center is expected to represent the idea center of data in the neighborhoods of xj and should
be far away from outliers. Hence, the weight τ j1

 is usually small if x ji
 is an outlier. But this

center μj is unknown. We next present an iterative approach to calculate μj and the weight τ j1

simultaneously. The approach is converged and proved afterward.

1. Initialize μj
0 as the average center of all data points in the local patch of xj.

2. Update τ ji
t  for each x ji

 as τ ji
=1 / ∥ x ji

−μj
t−1 ∥  and form the weight matrix Γj

t .

3. Update μj
t =∑i=0

k −1 τ ji
t x ji / ∑i=0

k −1 τ ji
t = XjΔj

te / e TΔj
te.

4. Iterate steps 2 and 3 until ∑i=0
k −1 ∥ x ji

−μj
t ∥  no changes. Outputτ ji

t .

Table 1. Iterative approach for calculating the weight.

Table 1 shows the basic steps of the iterative approach. Following Table 1, the weight τ ji
t  at

each iteration is updated from the last μj
t−1 and the newly updated center μj

t  is calculated from
current τ ji

t . The whole iterations are continued until convergence, so that the weight τ ji
t  can be

adaptively and iteratively re-weighted to minimize ∑i=0
k −1 ∥ x ji

−μj
t ∥ . In addition, as can be seen

in simulation of Figure 2, the updated μj
t  will be adaptively re-weighted to be close to the main

center of most data points, while the updated τ ji
t  will be weaken if x ji

 is outliers or be strength‐
ened if x ji

 is close to the ideal center. We next discuss a theorem to guarantee the convergence
of the approach of Table 1.

Theorem 1. The approach in Table 1 will monotonically decrease the objective function
∑i=0

k−1 ∥ x ji
−μj

t ∥  until convergence.
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Proof. According to step 3 in Table 1, we know that
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where τ ji
=1 / ∥ x ji

−μj
t−1∥  as in step 2 of Table 1. Following Eq. (10), we have

2 21 11 1 1
0 0

.
i i i i

k kt t t t
j j j j j j j ji i

x x x xm m m m
- -- - -

= =

ì ü ì ü
- - £ - -í ý í ý

î þ î þå å (11)

Based on the lemma in reference [6] that 2 a−a / b≤2 b−b / b holds for any two nonzero value,
we have
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By summing Eqs. (11) and (12) in two sides, we have

1 1 1
0 0

.
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- £ -å å (13)

Eq. (14) indicates that the objective function ∑i=0
k−1 ∥ x ji

−μj
t ∥  is monotonically decreased in each

iteration. Since there is a lower bound in the objective function (∑i=0
k−1 ∥ x ji

−μj
t ∥ ≥0), the iterative

approach will certainly converge. We thus prove Theorem 1. Finally, by incorporating the
weight for reducing the bias for each local regression error into Eq. (4), we can reduce the bias
of outliers of data samples.

Here, in order to show the convergence of the approach, we simply show an example in Figure
2(a), where we generalize eight normal data points and two outliers in R2. Figure 2(b) shows
the converged route of μ, where we start μ 0 as the average mean of all data points and mark
μ t  in each iteration with t. From Figure 2(b), we can observe that the optimal solution μ t  will
iterative close to the main center of normal data while be far away from the outliers. Figure
2(c) shows the converged curve of approach as discussed in Table 1. From Figure 2(c), we can
observe that the objective ∑i=0

k ∥ xi −μ t ∥  will monotonically decrease until convergence. Figure
2(d) shows the converged weight of data points. From Figure 2(d), we can observe the weights
of normal data points are strengthen while those of outliers can be reduced.
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Figure 2. The convergence of the approach in Table 1: (a) original data, (b) the converged route of mean, (c) the con‐
verged curve of objective, (d) the converged weight.

2.4. Normalizing graph Laplacian matrix

It can be easily proved that Ld is a graph Laplacian matrix ( see the Appendix). But Ld may not
be a normalized graph Laplacian matrix. As pointed in references [8, 23], the normalization
can strengthen the local regressions in the low-density region and weaken those in the high-
density region. Since the data sampling is usually uniform in practice, normalization is useful
for handling the case when the density of dataset varies dramatically. In this section, we show
that by choosing a special weight vector Γj for each Xj, Ld can be a normalized graph Laplacian
matrix.

Specifically, let us consider a data sample xj and let Kl be the index set of those neighborhoods;
set Nk (xj) contains xj as a neighbor of xj, i.e., if j ∈ Kl , then xl ∈ Nk (xj), where xl can be denoted
as x ji

 in the neighborhood set Nk (xj), and i = i(l , j) is the local index depending on l and j.
Obviously, if xl is in the low-density area, it has sparse neighbors and Kl is relatively small. As
a result, its connections to other samples will be weaker than that which has large Kl. Here, to
strengthen the connections of samples in the low-density area, we need to normalize the
weights corresponding to each Kl. Let τj

l  be the weight of x ji
 and l be the global index of x ji

.

We then define τ ji
=τj

l  as follows:

.
i

l

l
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A Generally Semisupervised Dimensionality Reduction Method with Local and Global Regression Regularizations for
Recognition

http://dx.doi.org/10.5772/63273

37



Hence, based on this definition, we have the following theorem:

Theorem 2. With the normalization for each w ji
 as in Eq. (14), Ldis both graph Laplaican matrix and

normalized graph Laplacian matrix.

Proof. The proof that Ld is a graph Laplacian matrix can be seen in the Appendix. In order to

prove Ld is a normalized graph Laplacian matrix, we need prove Ld can be reformulated in the

form of L d = I −Wd  and the sum of each row or column of the affinity matrix Wd is equal to 1.

Note L d =∑ j=1
l+u (Sj L jSj

T ) and L j = Hj −Hj Xj
T (XjHj Xj

T + ηI )−1XjHj, where

Hj =Δj − (Δjek
T ekΔj) / (ekΔjek

T ), we first define the affinity matrix Wd as follows:

( )1 ,l u d T
d j j jjW S W S+

==å (15)

where each Wj
d  satisfies

( ) ( ) 1( ) .d T T T T
j j k k j k j k j j j j j j jW e e e e H X X H X I X Hh -= D D D - + (16)

Then, Ld can be reformulated as

( ) ( )1 1 .l u l uT d T
d j j j j j jj jL S S S W S+ +

= == D -å å (17)

Here, for each SjΔjSj
T , we have Sj

T e T = ek
T ⇒SjΔjSj

T e T =SjΓj
T , where SjΓj

T ∈R (l+u)×1 is a column

vector by putting each τj
l to its global index l corresponding to x ji

. We thus have

( ){ } ( )1 1 .l u l uT T T T
j j j j jj jS S e S e+ +

= =D = G =å å (18)

The second equation holds as ∑i∈Kl
τi

l =1; hence, the sum of all SjΓj
T  in each element is equal

to 1. Then, following Eq. (18), it indicates ∑ j=1
l+u (SjΔjSj

T ) is an identity matrix, i.e.,

∑ j=1
l+u (SjΔjSj

T )= I . Then based on the above analysis, we can reformulate Ld in the form of

L d = I −Wd . In addition, since Ld is a graph Laplaican matrix (as proved in the Appendix), it

satisfies L de T =0, then we have
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which indicates that the sum of each column or row of Wd is equal to 1. We thus prove the
theorem. Theorem 2 indicates that by choosing a special weight vector τ ji

 for each x ji
, Ld can

be both graph Laplacian matrix and normalized graph Laplacian matrix.

Here, it should be noted that if xl is an outlier, its local weights can be significantly de‐
creased, whether taking xl as a neighbor of itself or of other data points. Otherwise, the nor‐
malization does not change the magnitude of its original local weights. For some data points
in the low-density area, normalizing the weights can increase the information convection
through those points. Finally, the basic steps of the proposed LGR are given in Table 2 and
the flowchart by utilizing the proposed LGR method for face recognition is given in Figure
3.

Input: Data matrix X ∈ R D×(l+u), the initial label matrix Y ∈ R c×(l+u), and other related parameters.

Output: The projection matrix V * ∈ R D×d  and estimated label matrix Z * ∈ R c×(l+u).

Algorithm:

1. Determine the weight for each local patch based on Table 1.

2. Normalize the weight as in Eq. (14).

3. Form local regression regularized term Ld as in Eq. (5) with special local weight vector.

4. Form global regression regularized term Lg as in Eq. (7).

5. Solve the regression problem as in Eq. (8):

( ) ( ) ( )( ) ( ) ( )min ,T T T
Z m d r gJ Z Tr Z Y U Z Y Tr ZL Z Tr ZL Za a= - - + +

and calculate estimated label matrix Z * =YU (U + αmL d + αr L g)−1 as in Eq. (9). Output

V * = (X L c X T + ηI )−1X L cZ
*T .

6. Calculate the projection matrix V* by replacing z* to Eq. (6) as V * = (X L c X T + ηI )−1X L cZ
*T . Output V*.

Table 2. The proposed LGR.
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Figure 3. Flowchart by utilizing the proposed LGR for face recognition.

2.5. Discussion and relative work

In this section, we discuss the relationship of Learning from Local and Global Information
(LLGDI) with other state-of-the-art methods including MR, Flexible Manifold Embedding
(FME), and Local Regression and Global Alignment (LRGA).

2.5.1. Relationship to manifold regularization (Lap-RLS/L) [1]

The goal of MR [1] is to develop a semisupervised learning strategy by extending the original
supervised methods, such as RLS and SVM to their semisupervised learning versions, i.e.,
Laplacian RLS and Laplacian SVM. For example, Lap-RLS/L is to fix a linear model
yj =V T xj + b T  by regressing X on Y and simultaneously to preserve the manifold smoothness
in the embeddings of both the labeled and the unlabeled set. The objective function of Lap-
RLS/L can be given as

( ) ( )2 2
1

, min .
l T T T T

j j t mFj F
J V b V x b y V Tr V XLX Va a

=
= + - + +å (20)

However, it can be observed that Lap-RLS/L cannot sufficiently train the classification function
due to the utilization of labeled samples, though it uses manifold term as complementary.
Hence, the proposed LGR is superior to Lap-RLS/L.

2.5.2. Relationship to FME [7, 10]

Nie et al. has proposed another unified framework, i.e., FME [7, 10], for semisupervised
dimensionality reduction, in which they verify that LLGC, GFHF, and Lap-RLS/L are only
special cases in the framework. The basic objective function of FME can be given as

( ) ( ) 22 2
1

, , min .
l T T T

i i m r FFi F
J V Z b z y Tr ZLZ V X b e Z Va a h

=

æ ö
= - + + + - +ç ÷

è øå (21)

It can be observed that Eq. (22) is almost the same as the objective function of LGR in Eq. (10),
when we consider L d→ L . However, LGR has utilized a weighted and normalized local
discriminative Laplacian matrix to preserve manifold and discriminative structure in a dataset.
This is a better way than only relying on neighborhood graph.
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2.5.3. Relationship to LRGA [13, 14]

Recently, Yang et al. has proposed semisupervised transductive learning method, namely,
LRGA [13, 14], for multimedia retrieval. They share the similar concept with the proposed
method. The basic objective function of LRGA can be given as

( )
2 22

, , 1 1 1
min .

j j i i

l l u k T T
Z V b i i m j j j j jF Fi j i F

J Z z y V x b z Va h
+

= = =

æ ö
= - + + - +ç ÷

è øå å å (22)

It can be noted that LRGA is a special case of LGR when αr =0. Therefore, LRGA is only a
transductive learning method and cannot handle the out-of-sample problem, while LGR is a
transductive and inductive learning method. Another superiority of LGR over LRGA is that
LGR has adopted a weighted normalized each local regression term. Thus, as shown in the
simulation results, LLGDI can handle outliers and multi-density dataset remarkably.

3. Simulation results

In this section, we will evaluate the proposed LGR based on three synthetic datasets and two
real-world datasets.

3.1. Synthetic datasets

In this section, we evaluate the performance of the proposed LGR and SLP for transductive
learning. The SLP is an extensive method to GFHF, LLGC, and Random Walk (RW) hence, it
is representative. Here, we utilize two-moon and two-cycle datasets in Figure 1(a and b) for

Figure 4. Toy examples for transductive learning: (a) and (d) the original data of two-moon and two-cycle datasets; (b)
and (e) the results of LGR; (c) and (f) the results of SLP.
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evaluation. Figure 4 shows the results of LGR and SLP for transductive learning. From Figure
4, we can see that LGR can achieve better simulation result than SLP, in a way that less data
are misclassified in LGR than SLP. This indicates the proposed LGR is robust to the outliers.

We also evaluate the inductive performance of the proposed LGR for handling the out-of-
sample problem. Figure 5 shows the gray images of decision surfaces and boundaries learned
by LGR, which are formed as follows: for each pixel, we form the its gray value as the difference
from each pixel to its nearest labeled data of different classes in the reduced subspace. Here,
we set the reduced dimensionality as 1. Then, we form the decision boundaries by the pixels
with the value 0. Following Figure 5, we can observe that the proposed LGR can learn clear
decision boundary that can well separate two classes, which verifies the effectiveness of LGR
for handling the out-of-sample problem.

To show the merit of normalization, we utilize two-plate dataset in Figure 1(c) for evaluation.
Our goal is to show LGR can handle multi-density dataset. Figure 6 shows the gray images of
decision surfaces and boundaries learned by LGR without normalization and LGR with
normalization. From Figure 6, we can observe that LGR without normalization cannot find
proper boundary. However, LGR with normalization can achieve better performance, as there
are less missing-classified data points separated by the decision boundary, which becomes
more distinctive and accurate. The improved results are believed to be due to the fact that
normalization can strengthen the local regressions in the low-density region and weaken those
in the high-density region. This is proved to be advantageous to be used for multi-density
dataset.

Figure 5. Toy examples for inductive learning: decision surfaces and boundaries learned by LGR. (a) and (c) Two-
moon dataset; (b) and (d) two-cycle dataset.
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Figure 6. Gray image of reduced space learned by LGR without normalization and LGR with normalization: two-plate
dataset. (a) Original dataset; (b) LGR without normalization; and (c) LGR with normalization.

3.2. Semisupervised face recognition based on real-world benchmark datasets

For handling the face recognition problem, we use three real-world face datasets to evaluate
the performance of methods, which include UMNIST: cannot find the full name [24], Extended
Yale-B [25], and Massachusetts Institute of Technology Center for Biological and Computa‐
tional Learning (MIT-CBCL) [26] datasets. The UMIST dataset is a multi-view face dataset,
consisting of 1012 images of 20 peoples, each covering a wide range of poses from profile to
frontal views. Therefore, the UMIST has widely been used for general purpose face recognition
under different face poses. The size of each image is 112×92 with 256 gray levels per pixel. In
our simulation, we down-sample the size of each image to 28×23 and no other preprocessing
is performed. The Extended Yale-B dataset contains 16,123 images of 38 human subjects under
9 poses and 64 illumination conditions. Because of the illumination variability, the same object
can appear dramatically different even when viewed in fixed pose. Hence, this is another
challenge for face recognition, and Extended Yale-B dataset are extensively used for testing
appearance-based face recognition methods. Similar to the UMIST dataset, the images are also
cropped and resized to 32×32 pixels. This dataset now has around 64 near frontal images under
different illuminations per individual. The MIT-CBCL dataset provides 3240 synthetic images
rendered from 3D head models of 10 peoples. The head models are generated by fitting a
morphable model to the high-resolution training images. Different from UMNIST dataset, the
MIT-CBCL dataset is based on the 3D morphable model, which is rendered under varying
pose and illumination conditions making the face recognition task more challengeable. The
size of each image is originally 200×200 with 256 gray levels per pixel. In our simulation, we
down-sample the size of each image to 32×32 and no other preprocessing is performed. The
detailed information of dataset and some sampled images of real-world datasets can be shown
in Table 3 and Figure 7. For each dataset, we randomly select 10, 50 and 30 samples from each
class as training samples for UMNIST, Extended Yale-B, and MIT-CBCL datasets. The test set
is then formed by the selected or all remaining samples. The data partitioning for each dataset
is also given in Table 3.

Next, we compare our method with other supervised and semisupervised dimension reduc‐
tion methods. These methods include Regularized Linear discriminant analysis (RLDA), SDA
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[2], Lap-RLS/L [1], least-square solution for solving SDA in Eq. (16) (in Table 1, we refer to it
as LS-SDA) [28], FME [7, 10], and the proposed LGR. Note that Principal Component Analysis
(PCA) is an unsupervised method while RLDA is supervised methods, and the remaining
methods LGR are all semisupervised methods. The simulation settings are as follows: for SDA,
Lap-RLS/L, two parameters, i.e., αt and αm, need to be determined for balancing the trade-off
between the manifold and Tikhonov terms. We use fivefold cross validation to determine the
best values and the candidate set is {10−9, 10−6, 10−3, 100, 103, 106, 109}. The above candidate set
is also used for determining the best value for the Tikhonov term parameter αt in RLDA and
the addition regularized parameter αr in FME and LGR. In order to eliminate the null space
before performing dimension reduction, the training sets in all datasets are preliminarily
processed with PCA operator. Since most of methods, such as RLDA, SDA, Lap-RLS/L and
FME, and the proposed LGR have a limited rank of c–1, we simply reduce the dimensionality
of all methods to c–1. All methods used labeled set in the output reduced subspace to train a
nearest neighborhood classifier in order to evaluate the classification accuracy of test set. We
also compare the performance of nearest neighborhood classifier with other state-of-the-art
methods as a baseline.

Dataset Database Type #Samples #Dim #Class #Training per Class #Test per Class

UMNIST Face 1012 1024 20 20 Remains

Extended Yale-B Face 16123 1024 38 50 Remains

MIT-CBCL Face 3240 1024 10 30 30

Table 3. Dataset information and data partition for each dataset.

Figure 7. Sample images of real-world datasets: (a) UMNIST dataset, (b) Extended Yale-B dataset, (c) MIT-CBCL data‐
set.

The average accuracies over 20 random splits with the above parameters for each dataset are
shown in Table 4. From the simulation results, we can obtain the following observation: (1)
given sufficient labeled samples, all the supervised and semisupervised dimension reduction
methods outperform nearest neighborhood classifier due to the utilization of label information
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and feature extraction; (2) the semisupervised dimension reduction methods are better than
the corresponding supervised methods. For example, SDA outperforms RLDA by about 5–6%
in COIL100 dataset with two labeled samples per class. For other datasets, it can outperform
by 2–3%. This indicates that by incorporating the unlabeled set into the training procedure,
the classification performance can be markedly improved, as the manifold structure embedded
in the dataset is preserved; (3) we also observe that both SDA and the least-square solution in
Table 1 can achieve the same classification results due to the reason as analyzed in Section 3;
(4) the proposed LGR can deliver better accuracies than those delivered by other semisuper‐
vised dimension reduction methods such as SDA and Lap-RLS/L by about 3–4% in most
datasets. The improvement can even achieve almost 8% in ETH80 dataset with two labeled
samples per class. The improvement is believed to be true that LGR aims to characterize both
local and global discriminative information embedded in dataset, which is better to handle
classification problem; (5) we observe that LGR outperform FME by about 2% in most cases.
The main reason is that LGR has utilized a weighted normalized local discriminative Laplacian
matrix to preserve both manifold and discriminative structures in dataset, which is better than
only relying on neighborhood graph.

Dataset Method 4 labeled samples per class 7 labeled samples per class 10 labeled samples per class

Unlabeled Test Unlabeled Test Unlabeled Test

Mean±std Mean±std Mean±std Mean±std Mean±std Mean±std

UMNIST Baseline 81.1±0.9 80.2±1.0 88.6±0.7 88.3±0.7 93.1±0.6 93.0±0.7

RLDA 85.2±0.6 85.0±0.7 90.7±0.5 90.4±0.6 95.3±0.4 94.4±0.5

SDA 86.4±0.7 86.3±0.7 92.1±0.6 91.7±0.7 96.2±0.4 95.4±0.5

LS-SDA 86.4±0.7 86.3±0.7 92.1±0.6 91.7±0.7 96.2±0.4 95.4±0.5

Lap-RLS/L 86.6±0.7 86.0±0.8 91.9±0.3 91.9±0.4 95.7±0.5 95.3±0.6

FME 88.2±0.6 87.7±0.6 93.1±0.3 92.9±0.4 96.7±0.5 96.1±0.5

LGR 89.2±0.4 88.9±0.5 94.2±0.2 93.8±0.4 97.9±0.6 97.2±0.4

Table 4. Average classification accuracy over 20 random splits on unlabeled set and test set of different datasets
(means±standard derivations).

4. Conclusion

In this chapter, we propose a semisupervised method, namely LGR, for face recognition. With
the above analysis, the following conclusions can be drawn: (1) the proposed LGR can achieve
better results in face recognition than those delivered by other state-of-the-art methods as more
discriminative information are captured based on local and global regressions, (2) the pro‐
posed LGR is robust to outliers and can handle the imbalanced data, and (3) the proposed LGR
can deal with out-of-sample extrapolation to estimate the labels of new-coming face data by
casting it to the global projection matrix.
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Appendix

In order to prove that Ld is graph Laplacian matrix, we need to prove Ld is positive semidefinite
matrix and the sum of each row or column of Ld is equal to zero. We first have the following
Lemmas:

Lemma 1. For each local patch Xj, Ljcan be reformulated as follows:

( ) 1
,T T T

j j j j j j jL G G X X G I Gh h
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Proof. First, it can be easily noted that GjGj
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The second equation holds as A(A T A + λI )−1 = (AA T + λI )−1A, for any matrix A. Thus, Lemma 1
is proved.

Lemma 2. Given a positive semidefinite matrix C, DCDTis a positive semidefinite matrix for any matrix
D.
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Appendix

In order to prove that Ld is graph Laplacian matrix, we need to prove Ld is positive semidefinite
matrix and the sum of each row or column of Ld is equal to zero. We first have the following
Lemmas:

Lemma 1. For each local patch Xj, Ljcan be reformulated as follows:
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Lemma 3. Given a set of positive semidefinite matrixes{C1, C2 …, Cn}then∑ j=1
n Cjis a positive semide‐

finite matrix.

We neglect the proofs of Lemmas 2 and 3 as they can be seen in reference [15]. Then with
Lemmas 1–3, we can easily prove Theorem 2 as follows:

Proof of Theorem 2. Note that following Lemma 1, we reformulate each Lj as
L j =ηGj(Gj
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T XjGj + ηI )−1Gj
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matrix, then, following Lemmas 2 and 3, we have each ηSjGj(Gj
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is also a positive semidefinite matrix. In addition, for each ηSjGj(Gj
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which indicates that the sum of each row or column of Ld is equal to zero. We thus prove Ld is
graph Laplacian matrix.
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Abstract

Face recognition has been widely applied in fast video surveillance and security systems
and smart home services in our daily lives. Over past years, subspace projection methods,
such as principal component analysis (PCA), linear discriminant analysis (LDA), are the
well-known algorithms for face recognition. Recently, linear regression classification
(LRC) is one of the most popular approaches through subspace projection optimiza‐
tions. However, there are still many problems unsolved in severe conditions with different
environments and various applications. In this chapter, the practical problems includ‐
ing partial occlusion, illumination variation, different expression, pose variation, and low
resolution are addressed and solved by several improved subspace projection methods
including robust  linear regression classification (RLRC),  ridge regression (RR),  im‐
proved principal component regression (IPCR), unitary regression classification (URC),
linear  discriminant  regression  classification  (LDRC),  generalized  linear  regression
classification (GLRC) and trimmed linear regression (TLR). Experimental results show
that these methods can perform well and possess high robustness against problems of
partial occlusion, illumination variation, different expression, pose variation and low
resolution.

Keywords: subspace projection, principal component analysis, linear discriminant
analysis, linear regression classification, robust linear regression classification, ridge
regression, improved principal component regression, unitary regression classifica‐
tion, linear discriminant regression classification, generalized linear regression classi‐
fication, trimmed linear regression
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1. Introduction

From the tragic 911 incident in 2011, more and more researches focus on the security issues with
computational intelligence. How to avoid the tragic event from happening again and how to
quickly identify the terrorists and suspects before or after the tragic event happens are very
important. Therefore, the effectiveness of security is being examined almost everywhere. The
discoveries of current security vulnerabilities along with the exploration of new methods should
be constantly investigated to improve the security systems. Security measures with computa‐
tional intelligence are used to improve the safety of our everyday lives.

The security issue is that we should recognize the wanted criminals and invaders from their
biometric characteristics such as face, fingerprint, iris, palm and so on. Among these biometrics
signals, the face image is easier and more direct to be captured by distanced cameras than
others. For instance, the face images of any suspect who walks through the hotel lobby will be
recorded by cameras. Hence, computer vision technologies with cameras can be applied to
realize intelligent video surveillance systems. Since many face images of criminals and
terrorists are available in the police department, they can be used to identify if the unknown
face images are them from the distributed cameras. Thus, an efficient face recognition system
could help to improve security. The face recognition systems would not only be helpful in
identifying the criminals and terrorists, but also be used to search missing persons or identify
the incident of weak person. Thus, face recognition systems with surveillance cameras have
been already installed in many locations such as department store, airports and supermarkets.
Besides, if the face recognition systems installed at home can timely detect the user’s facial
expression, the smart service for the user can be properly introduced accordingly.

The goal of face recognition is to distinguish a specific identity and its outlook from face images.
However, in realistic situations, such as video surveillance and access control, face recognition
task might encounter great challenges such as different facial expressions, illumination
variations, partial occlusions and even low resolution problems, which will degrade the face
recognition performance and result in severe security complications. For example, the image
captured by a CCTV camera at a distance would have a very low resolution which degrades
the recognition performance significantly. Besides, in the testing phase, the face image is a
factor which is out of control. In other words, the person may not be on a frontal pose and may
not be a pure image, that is the person may be wearing glasses, hat, or mask, or even with some
lighting influence and expressions. Over past years, subspace projection optimizations have
been widely proposed to solve this problem with linear [1] and non-linear [2] approaches. The
principal component analysis (PCA) [3, 4] and linear discriminant analysis (LDA) [5] are the
two typical examples of linear transform approaches which attempt to seek a low-dimensional
subspace for dimensionality reduction. The nonlinear projection approaches also have been
used in many literatures like the kernel PCA (KPCA) [6] and kernel LDA (KLDA) [7] which
can uncover the underlying structure when the samples lie on a nonlinear manifold structure
in the image space.

Recently, the linear regression classification (LRC) proposed in 2010 by Naseem et al. [8] has
been treated as an effective subspace projection method, which performs well on face recog‐
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nition. Moreover, the robust linear regression classification (RLRC) [9] estimating regression
parameters by using the robust Huber estimation was introduced to achieve robust face
recognition under illumination variation and random pixel corruption. Ridge regression (RR)
[10] estimated the regression parameters by using a regularized least square method to model
the linear dependency in the spatial domain. Huang et al. and Chou et al. presented several
improved approaches of LRC, including improved-PCA-LRC [11], LDA-LRC [12], unitary-
LRC [13], and generalized-LRC [14, 15] for dealing with different situations like facial expres‐
sions, lighting changes, and pose variations. Lai et al. [16] utilized the least trimmed square
(LTS) as a robust estimator to detect the contaminated pixels from query for boosting the
performance under the partial occlusion situation.

The rest of this chapter is organized as follows. With the overview of fundamentals and facial
representation, several famous face recognition algorithms are first presented in Section 2.
Section 3 is dedicated to present several advances of subspace projection optimizations for
robust face recognition technologies including RLRC, RR, improved principal component
regression (IPCR), unitary regression classification (URC), linear discriminant regression
classification (LDRC), generalized linear regression classification (GLRC) and trimmed linear
regression (TLR). The performances of the aforementioned projection methods will be shown
in Section 4. Finally, conclusions are drawn in Section 5.

2. Fundamentals of face recognition and representation

As shown in Figure 1, the typical face recognition system contains two major parts: face
detection and face recognition. In this section, the face detection methods are first briefly
introduced. Then, the well-known subspace project methods are reviewed. Finally, the
similarity measures of image feature vectors are overviewed. Generally, the unknown data
vector will be projected into a certain subspace, a similarity measure will be used to classify
it. To narrow down the computation and increase the recognition accuracy, the first step of the
recognition system, called face detection, is to detect and crop the face region from the image
or video.

Figure 1. The simplified flow chart of face recognition system.
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2.1. Face detection

The methods of face detection [17–20], can be separated into neural network, feature-based,
and color-based approaches. Neural network approach [21] trains the facial class and non-
facial class while a new image or video can be detected based on the prior training data. The
well-known method is AdaBoost learning algorithm [22, 23]. Feature-based approach is to
utilize the facial feature for detecting facial region. For example, the corresponding positions
of the eyes, nose, and mouth are useful features; moreover, the shape of face, which is almost
like an ellipse, can be included. Rule-based algorithm [24] and elliptical edge [25] are two
popular feature-based methods. Color-based approach as [26] adopts the variance of skin color
to detect if the region is face or not. For example, the face region in grayscale should not change
immense while the eyes, mouth and hair should be darker than the other part of face.

Once the face areas are detected by a selected face detection method, their face images in size
of a×b pixels could be projected into another subspace such as principal space, kernel space,
frequency space and so on, in order to find a proper set of features for boosting the recognition
performance. Assume there are C subjects. Each class is with N training color images. For the
ith class, i = 1, 2, …, C, the jth training color image in size of a×b pixels with K components is
formed a data matrix as νi,j,k ∈ Ra×b×K for j = 1, 2, …, N and k =1, 2, …, K. For example, K = 3 color
components, k =1, 2, and 3 denote the red, green, blue channels, respectively. For some
recognition algorithms, νi,j,k ∈ Ra×b×K is transformed to grayscale as gi,j=c1νi,j,1+c2νi,j,2 +c3νi,j,3, where
are c1, c2, and c3 are fixed in visualization. The gray image gi,j is reshaped into one column vector
as xi,j ∈ RM×1 where M = a×b. In the testing phase, an unknown color image, z ∈ RM×K, is given.
In order to predict unknown z by training data, it should be transformed to grayscale, be
normalized and be reshaped into a column vector as y ∈ RM×1.

2.2. Subspace projection methods

The famous subspace projection methods, such as PCA and LDA are reviewed in the following
sections.

2.2.1. Principal component analysis (PCA)

The PCA method is widely used for dimensionality reduction in the computer vision field,
especially for face recognition technology. In the PCA, the data is represented as a linear
combination of an orthonormal set of vectors that maximize the data scatter across all images.
The first principal component represents the most variability of the image as possible while
the second one represents the second most, and so on. The flow chart to find PCA transfor‐
mation bases is shown in Figure 2. The main objective of the PCA is to reduce the dimension
of the feature image xi,j to retain a few principal components. This means that most of the
useless information would be reduced, and the remaining data could be well represented in a
lower dimension space by the PCA.

As shown in Figure 2, the derivations of the PCA transformation bases are stated in the
following equations. First, the feature face image should remove the global mean to become:

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods54



2.1. Face detection

The methods of face detection [17–20], can be separated into neural network, feature-based,
and color-based approaches. Neural network approach [21] trains the facial class and non-
facial class while a new image or video can be detected based on the prior training data. The
well-known method is AdaBoost learning algorithm [22, 23]. Feature-based approach is to
utilize the facial feature for detecting facial region. For example, the corresponding positions
of the eyes, nose, and mouth are useful features; moreover, the shape of face, which is almost
like an ellipse, can be included. Rule-based algorithm [24] and elliptical edge [25] are two
popular feature-based methods. Color-based approach as [26] adopts the variance of skin color
to detect if the region is face or not. For example, the face region in grayscale should not change
immense while the eyes, mouth and hair should be darker than the other part of face.

Once the face areas are detected by a selected face detection method, their face images in size
of a×b pixels could be projected into another subspace such as principal space, kernel space,
frequency space and so on, in order to find a proper set of features for boosting the recognition
performance. Assume there are C subjects. Each class is with N training color images. For the
ith class, i = 1, 2, …, C, the jth training color image in size of a×b pixels with K components is
formed a data matrix as νi,j,k ∈ Ra×b×K for j = 1, 2, …, N and k =1, 2, …, K. For example, K = 3 color
components, k =1, 2, and 3 denote the red, green, blue channels, respectively. For some
recognition algorithms, νi,j,k ∈ Ra×b×K is transformed to grayscale as gi,j=c1νi,j,1+c2νi,j,2 +c3νi,j,3, where
are c1, c2, and c3 are fixed in visualization. The gray image gi,j is reshaped into one column vector
as xi,j ∈ RM×1 where M = a×b. In the testing phase, an unknown color image, z ∈ RM×K, is given.
In order to predict unknown z by training data, it should be transformed to grayscale, be
normalized and be reshaped into a column vector as y ∈ RM×1.

2.2. Subspace projection methods

The famous subspace projection methods, such as PCA and LDA are reviewed in the following
sections.

2.2.1. Principal component analysis (PCA)

The PCA method is widely used for dimensionality reduction in the computer vision field,
especially for face recognition technology. In the PCA, the data is represented as a linear
combination of an orthonormal set of vectors that maximize the data scatter across all images.
The first principal component represents the most variability of the image as possible while
the second one represents the second most, and so on. The flow chart to find PCA transfor‐
mation bases is shown in Figure 2. The main objective of the PCA is to reduce the dimension
of the feature image xi,j to retain a few principal components. This means that most of the
useless information would be reduced, and the remaining data could be well represented in a
lower dimension space by the PCA.

As shown in Figure 2, the derivations of the PCA transformation bases are stated in the
following equations. First, the feature face image should remove the global mean to become:

Face Recognition - Semisupervised Classification, Subspace Projection and Evaluation Methods54

(1)

where x̄ global = 1
C ⋅ N ∑

C
∑

N
xi , j is a global mean vector of all facial image vectors.

Figure 2. The flow chart for finding PCA transformation.

After the computation of the feature face images, we can obtain M×M covariance matrix of all
feature face images as:

(2)

Based on the covariance matrix, the eigenvectors and eigenvalues can be retrieved by singular
value decomposition (SVD) or eigen-decomposition as:

(3)

where r = {r1, r2,…, rM} is a set of total M descending-ordered eigenvalues and their corre‐
sponding eigenvectors u = {u1, u2,…, uM} According to the expected dimension, we can choose
P principal components. Thus, the PCA transformation with the P largest eigenvectors, the
PCA transformation PPCAwith P×M size can be formed by the corresponding P eigenvalues as:

(4)

Finally, we can achieve the PCA features, wPCA,i , j ∈ RP×1, by multiplying PCA transformation

and the feature image vector as:

(5)
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On the other hand, the testing image vector y can be projected onto PCA subspace by PPCA.
The PCA subspace y

^
PCA can be written as:

(6)

And the similarity measure based on this feature data vector is calculated to determine the
final result.

2.2.2. Linear discriminant analysis

Fisher proposed the LDA for recognition which is a kind of statistical analysis method like the
PCA. But the difference is that the LDA can discriminate the different subjects even though
the maximum variance subspaces among them are overlapped as shown in Figure 3. The goal
of the LDA is that these projections onto a line will be well separated by disparate classes and
be well concentrated by the same class.

Figure 3. Comparison of LDA and PCA in projection space.

Thus, the concept of LDA is to seek the optimal projection by maximizing the ratio of between-
class and within-class scatter. Fisher utilizes a criterion to optimize this problem as:

(7)

where SB =∑i=1
C ∑q=1,q≠i

C (x̄ local ,i − x̄ local ,q)(x̄ local ,i − x̄ local ,q)T  is the between-class matrix where

x̄ local ,i = 1
N ∑ j=1

N xi , j is a local mean vector of the ith class. And SW = 1
C∑i=1

C (X i − x̄ local ,i)(X i − x̄ local ,i)T

is the within-class matrix where Xi is concatenated by the ith data set of N training gray images.
Then, the optimal projection matrix, WLDA, can be solved by computing generalized SVD or
eigen-decomposition as:
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(8)

where Λ is the diagonal eigenvalue matrix. We apply the optimal projection matrix to convert
the face feature vector xi,j into a new discriminant vector, wFisher,i,j as:

(9)

In the same way, the testing image vector is projected onto LDA subspace by PLDA and can be
represented as:

(10)

And the final result can be determined by using similarity measure based on this feature vector.

2.3. Similarity measures

There exist three distance measures [27–29] such as the city block distance (Taxicab geometry,
L1), Euclidean distance (L2) and L∞ norm distance. These distance measures are defined from
two column vectors wi,j and ŷ which can be obtained from the subspace projection like PCA
subspace {wPCA,i , j, ŷ PCA}, LDA subspace {wLDA,i , j, ŷ LDA}, and the other projections with
dimensionality of M or P. The distance measures, L1, L2, and L∞ can be respectively written as:

(11)

(12)

and

(13)

where xi , j
(m) and y (m) are the mth component of xi,j and y column vectors, respectively.

However, these vectors satisfy the Cauchy-Schwarz inequality as:

(14)

To ignore the amplitudes of two feature data vectors, the similarity measure can be also defined
by a cosine criterion as:
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(15)

3. Advances of subspace projection optimization

In this section, the advances of subspace projection optimization are presented for robust face
recognition system. Then, the well-known subspace projection methods including LRC, RLRC,
RR, IPCR, URC, LDRC, GLRC and TLR are introduced.

3.1. Linear regression classification (LRC)

For applying the linear regression to estimate the class specific model, all N training gray
images from the same class are concatenated as:

(16)

where Xi is in the size of M×N and is called class-specific model. In other words, the ith class is
represented by a vector space Xi, which is called the regressor for each subject, in the training
phase.

In the testing phase, if an unknown column vector y belongs to the ith class, its linear combi‐
nation can be rewritten in terms of the training data from the ith class and can be formulated
as:

(17)

where βi ∈ RN×1 is the vector of regression parameters. The goal of the linear regression is to
find the regression parameters by minimizing the residual errors as:

(18)

The regression coefficients, βi, can be solved through the least-square estimation method and
can be represented as:

(19)

For each class i, the regressed vector ŷ LRC ,i can be predicted through the regression parameters
β
^

LRC ,i and predictors X i as
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(20)

By substituting Equation (19) into Equation (20), the predicted response vector ŷ i can be
rewritten as:

(21)

Theoretically, we can treat Equation (21) as a class-specific projection as:

(22)

where ŷ LRC ,i is the projection of y onto the subspace of the ith class by the projection matrix

H i = X i(X i
T X i)−1X i

T .

In the LRC approach, the minimum reconstruction error is adopted for determining the final
result. In other words, the distance between predicted response vector ŷ LRC ,i and unknown
column vector y will be smallest when the unknown column vector belongs to the training
vector space of class i. Therefore, the identity i* can be determined by minimizing the Euclidean
distance between the predicted response vector and unknown vector as:

(23)

3.2. Robust linear regression classification (RLRC)

The LRC has been claimed that classical statistical methods are robust, but they are only robust
in the fact of true cases. Once the data distribution is in fact of false cases, the regression
parameter under original least square estimation could be inaccurate. In other words, the
original least square estimation is inefficient and can be biased in the presence of outliers. There
exist several approaches for robust estimation like R-estimator [30, 31] and L-estimator [30,
32]. However, M-estimator is now shown superiority due to their generality, efficiency and
high breakdown point [30, 33]. Based on the M-estimator, the optimal function becomes:

(24)

where
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(25)

and ρ(•) is a symmetric function and γ being a tuning constant, also called the Huber threshold.

3.3. Ridge regression (RR)

The goal of the RR is to find and minimize the residual errors and their penalty as:

(26)

where λ is the regularization parameter. Comparing with linear regression, the RR adds a
penalty, λ βi 2

2, to the regression model to reduce the variance of the model. The regression
parameter vectors can be computed by:

(27)

3.4. Improved principal component regression (IPCR)

Multicollinearity denotes the interrelations among the independent variables. In the linear
regression, the regression estimation could be imprecise because the multicollinearity phe‐
nomenon would inflate the variance and covariance. To overcome the problem of multicolli‐
nearity, various approaches have been proposed. IPCR is one of the powerful approaches.

The IPCR is a two-step classification method. In the first step, the PCAZ is adopted to transform
the observed variables into the new decorrelated components. Then, the first n components
are dropped because these components are very sensitive to the lighting changes. Mathemat‐
ically, the PCA process is used in all training samples including covariance matrix evaluation
as Equation (2), and eigen-decomposition estimation as Equation (3). Then, we can obtain a
set of eigenvectors, u={u1, u2,…, uM}, and a set of eigenvalues, r={r1, r2,…, rM} with r1≥r2≥…≥rM.
As above mentioned, we drop first n components and the projection matrix can be express as:

(28)

The PCAZ features, wPCAZ ,i , j∈ RP×1, can be obtained by multiplying the projection matrix and
the average image vector as:

(29)

In order to apply LRC to estimate class specific model, feature vectors should be grouped
according to the class-membership. Hence, for the ith class, we have
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wPCAZ ,i = wPCAZ ,i ,1, wPCAZ ,i ,2, …, wPCAZ ,i ,N . In the testing phase, an unknown column vector,
y, is transformed to PCAZ subspace as y(PCAZ). In the second step, the new subspace of PCAZ
projection is used in LRC such that we can seek more reliable regression coefficients for each
subject for face recognition. The goal of regression becomes to minimize the residual errors as:

(30)

The regression parameter vectors can be rewritten as a matrix form as:

(31)

3.5. Unitary regression classification (URC)

The total within-class projection error from all classes cannot be taken in previous mentioned
methods for classification that would degrade the recognition accuracy. The URC is proposed
to minimize the total within-class projection error from all classes for LRC to improve the
robustness for pattern recognition.

Instead of original space, we hope to find a global unitary rotation PURC=[s1,…,sΨ] with Ψ≤M,
which can rotate the original data space to a new compact wURC data space as:

(32)

to achieve the total minimum projection error of all training data stated as:

(33)

where w̃ i = H̃ URC ,iwURC ,i , j is the within-class projection to make the objective function be well-
posed. In wURC data space, the ith class projection matrix can be obtained by following
H̃ URC ,i =WURC ,i(WURC ,i

T WURC ,i)−1WURC ,i
T  where WURC ,i = WURC ,i ,1, WURC ,i ,2, …, WURC ,i ,N . The

unitary rotation matrix, PURC, is used to achieve the total minimum within-class projection error
for LRC. From minimum reconstruction error, the objective function in T data space can be
represented as:

(34)

By substituting WURC ,i = PURC
T X i into H

^
URC ,i =WURC ,i(WURC ,i

T WURC ,i)−1WURC ,i
T , the objective

function becomes:
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(35)

where EURC =∑i=1
C ∑ j=1

N (xi , j − x̃ i)(xi , j − x̃ i)T , also called within-class projection error matrix. The
projection matrix, PURC= [s1,…,sΨ], can be solved by evaluating eigen-decomposition as:

(36)

where λΨ≧… ≧λl≧…≧λ1≧0.

3.6. Linear discriminant regression classification (LDRC)

Although the previous methods including LRC, RLRC, and IPCRC can perform well on face
recognition, we cannot guarantee that the projection subspace in LRC or IPCRC is most
discriminatory. When the projection subspaces among the different subjects overlap, the
recognition result would be incorrect. To obtain an effective discriminant subspace for LRC,
the LRC with discriminant analysis is presented by maximizing the ratio of the between-class
reconstruction error (BCRE) to the within-class reconstruction error (WCRE) by the LRC.

Mathematically, all images are collected from C classes as X = [X1,X2,…,XC] = [x1,1,…,xi,j,…,xC,N].
LDRC is to find an optimal projection by maximizing the BCRE over the WCRE for the LRC
such that the LRC on the optimal subspace has better discrimination for classification. The goal
of LDRC is to maximize the objective function as:

(37)

where PLDRC=[u1, u2,…, uφ] is the optimal projection matrix, and EBC and EWC denote the BCRE
and WCRE, respectively. The original space, xi,j, can be mapped into the subspace,
x̃ i , j = PLDRC

T xi , j. Hence, the objective function can be rewritten as:

(38)

where x̃ i , j ,q
inter = Hq

x̃ x̃ i , j denotes the inter-class projection of x̃ i , j by the LRC from the different qth

class and x
^

i , j
intra = Hi , j

x̃ x̃ i , j denotes the intra-class projection of x̃ i , j by the LRC in the same class.
The xi,j is used to instead of x̃ i , j as:

(39)
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With some algebraic deduction, the form becomes:

(40)

where

(41)

and

(42)

is inter-class and intra-class reconstruction error, respectively. In other words, the objective
function can be represented as:

(43)

For solving the optimization problem, Equation (43) can be reformulated as the following:

(44)

where ϑ is a constant. The projection matrix, PLDRC=[u1, u2,…, uφ], can be solved by evaluating
eigen-decomposition as:

(45)

where λ1≧… ≧λl≧…≧λφ.

3.7. Generalized linear regression classification (GLRC)

In real-world recognition applications, the input images generally have multiple components
which can overcome the unexpected effects such as pose variations, limited image information
and so on. For color face recognition, the GLRC with membership grade (MG) criteria is
proposed to defend the unexpected effects.

Mathematically, each channel component is separately normalized and transformed to one
column vector such that νi,j,k∈Rp×q×K → xi,j,k∈Rd×K, where d = p⋅q. In the ith class, the kth component
of N training images is collected as:

Advances of Robust Subspace Face Recognition
http://dx.doi.org/10.5772/62735

63



(46)

for i = 1, 2, …, C and k = 1, 2, …, K, where Xi,k is treated as the kth-channel collected training data
of the ith class in the training phase.

For the test image, the kth-channel testing image, zk, is normalized and reshaped into a column
vector as yk ∈ Rd×1. For the kth component, the linear combination of Xi,k from the ith class for the
test vector yk becomes:

(47)

where βGLRC,i∈RN×1 is an ideal projection vector of the ith-class regression parameter for all
channels. In order to estimate the projection vector, the objective function becomes:

(48)

After solving the optimization problem, the regression vector can be expressed as:

(49)

In order to achieve optimal performance, the different components should be treated as
unequally important. Thus, the absolute sum of prediction residual of the kth component after
the direct least square optimization is given as:

(50)

where ŷ i ,k = X i ,kβGLRC ,i, i =1, 2, …, C . Based on the statistical opinion, we define the importance

of the kth component to be inverse of the normalized absolute sum of prediction residual, which
is expressed by:

(51)

where ε is a tiny value which is used to avoid rk = 0. The larger the residual, rk is, the less
important the kth component will be. For the GRLC optimization, we propose the linear
combination of Xi,k of the kth component in the ith class for the test vector yk becomes:

(52)
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where β̃GLRC ,i∈RN×1 is the vector of the ith-class total regression parameters to achieve the GRLC
optimization as:

(53)

The optimal total regression parameter vector, β̃GLRC ,i can be given by:

(54)

The prediction, ŷ ′i ,k  is then expressed as y
^ ′

i ,k = X i ,k β̃GLRC ,i.

For identity recognition, the minimum prediction error of the GRLC should be further
designed to compute the similarity between the prediction vector ŷ ′i ,k  and the query vector
y. The similarity in terms of minimization of prediction errors of total K components can be
designed by the following MG criteria as:

(55)

where di ,k =αk ŷ′i ,k − yk , d̄ k = 1
N ∑i=1

N αk ŷ ′i ,k − yk  and t is the pre-selected fuzzy factor.

3.8. Trimmed linear regression (TLR)

For the occlusion situations, the previous methods including LRC, RLRC, IPCR, URC, LDRC,
and GLRC are not suitable because the existing methods treat all pixels as equally import.
Conversely, if the outliers can be detected and trimmed from the testing image and the
corresponding training samples, the mechanism still can work. Hampel identifier [34, 35] for
outlier detection is highly thought of by the researchers because it can make out the extreme
values easily. An advantage of Hampel identifier is that it adopts median absolution deviation
(MAD), which is a powerful measure in statistics, for removing the masking data. Mathemat‐
ically, the Hampel identifier can be expressed as:

(56)

where Δ is a data set, media(Δ) denotes the media value of Δ data set. The number of 0.6745
is a probable error of standard deviation. When the ratio is larger than 2.24, the data will be
abandoned. For example, there is a data set, [2, 3, 3, 4, 4, 250]. The sample mean is 44.33, sample
variance is 100.76, sample median is 3.5, MAD equals to 0.5, and the detection rule by mean
and median is:
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(57)

and

(58)

respectively. We can observe that the Hampel identifier excludes the outlier easier than the
other one.

For the face recognition, the error of estimation can be presented as:

(59)

where error is a zero mean distribution. In order to detect the occlusion part, each pixel should
suffice the Hampel identifier estimation as:

(60)

where ε ′ is the indices of all pixels, that is ε ′ ={1, 2, …, M }. The real median of noise is zero.
From the Equation (60), the pure pixels, ε ′, are found out. In other words, the pure pixels are
taken for regression estimation. The training data can be rewritten as
XTLR ,i = xTLR ,i ,1, xTLR ,i ,2, …, xTLR ,i ,N ∈ R τ×N  and testing sample becomes yTLR ∈ R τ×1 where τ is
the number of elements in ε ′ and τ<M. The objective function becomes:

(61)

The regression parameter vectors can be represented as:

(62)

4. Experimental results

In order to verify the recognition accuracy, the well-known databases including Yale B, AR,
FERET, and FEI are utilized. In the experiments, we evaluate the mentioned method against
low resolution problem coupled with facial expressions, illumination changes, pose variations,
and partial occlusions.
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4.1. Yale B database

The Yale B database contains 10 subjects [36, 37]. Each subject has 64 illumination images with
9 different poses. The Yale B can be divided into five subset based on angle of the light source
directions as shown in Figure 4. In the experiments, the first subset with normal pose is used
for training and the remaining subsets (Subset 2 to 5) with normal pose are utilized for testing.
All images are cropped and resized to 30×25 pixels. Table 1 reveals that IPCRC performs better
than the traditional subspace projection like PCA and LDA. Moreover, the IPCRC can also
outperform the LRC, RLRC and RR. The reason is that the original subspace cannot represent
the data distribution very well. Besides, PCA subspace is very sensitive to illuminant varia‐
tions. However, IPCRC not only can transform to PCA subspace, but also can defend the
illumination variations by removing the top n components. Thus, IPCRC possesses higher
robustness to illuminations than the other methods.

Methods Subset 2 Subset 3 Subset 4 Subset 5

PCA 89.81 47.04 21.90 15.26

LDA 95.14 75.14 34.76 10.00

LRC 100.00 100.00 91.86 52.11

RLRC 100.00 100.00 92.86 60.00

RR 100.00 100.00 92.57 53.68

IPCRC 100.00 100.00 95.00 64.21

LDRC 100.00 100.00 97.14 56.84

URC 100.00 100.00 90.71 53.68

Table 1. Accuracy (%) comparisons on Yale B.

Figure 4. The experimental design and some samples of cropped and aligned illustration from Yale B face database.

4.2. FERET database

Furthermore, we experiment on the FERET face database [38, 39] for the purpose of verifying
the performance among the different subspace projections. In the experiments, we select four
facial images including fa, fb, ql, and qr from 300 subjects as Figure 5. All images are converted,
cropped, and downsampled to 30×25 pixels with grayscale. As the Figure 5 shown, the fa and
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fb samples are small pose and rotation changes; conversely, the ql and qr samples are major
pose variations. In order to obtain a reliable result, cross-validation experimental procedure
is adopted. In other words, three images per person are used for training while the fourth
image is used for testing. Table 2 shows that the average recognition accuracy (ARA) in URC
performs outstandingly. We can observe that the RLRC and IPCRC are highly sensitive to pose
variations but in spite of these, methods perform well in noisy and illuminated face images,
respectively.

PCA LDA LRC RLRC RR IPCRC URC

fa 80.67 87.33 94.00 91.67 85.67 92.33 96.00

fb 81.00 84.33 92.33 90.00 83.67 91.00 95.33

ql 65.67 63.00 71.00 69.33 63.33 66.00 73.00

qr 68.33 72.00 75.00 74.33 70.00 68.67 84.33

ARA 73.92 76.67 83.08 81.33 75.67 79.50 87.17

Table 2. Accuracy (%) comparisons on FERET.

Figure 5. Samples (fa, fb, ql, qr) of one subject from FERET face database.

4.3. AR database

AR face database [40, 41] was conducted by Martinez and Benavente in 1998. This database
contains 4000 mug shots of 126 subjects (70 males and 56 females) with different variations
such as facial expressions, lighting changes and partial occlusions. For normal case, each
subject contains 26 images in two sessions. The first session (AR1 ~ AR13), containing 13
photos, includes facial expression, different lighting changes, and partial occlusions (sun‐
glasses and scarf) with lighting changes. The second session (AR14 ~ AR26) duplicates the
same way of first session two weeks later as shown in Figure 6. In the experiments, 100 subjects
are selected and all images are cropped and resized into 30×25 pixels with grayscale. We
classify the images into four different expressions including neutral (AR4, AR14), happy (AR2,
AR3), angry (AR1, AR17), and screaming (AR15, AR16) expressions. The single-one-expres‐
sion training strategy is adopted to present the performance. For example, if neutral expression
images are used for training, the happy, angry, and screaming expressions are used as query
images. Table 3 reveals that the LDRC achieves the best performance in all cases. Moreover,
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we can observe that the happy expression images for training obtain higher performance than
the others; conversely, the screaming expression images for testing can obtain lowest per‐
formance. On the other hand, the partial occlusion situations are used to discussion. In this
experiments, the expression variation images (AR1~AR4, AR14~AR17) are utilized as training
set, and testing sets are separated in two cases including sunglasses (AR8, AR21) and scarf
(AR11, AR24). All images are cropped and resized into 42×30 pixels with grayscale. In the
Table 4, we can observe two points. First, the TLRC can perform better than the other methods
under sunglasses occlusion or scarf occlusion. Second, the upper bound occlusion seems to
obtain higher performance than the lower bound occlusion. In other words, the mouth features
are more useful than the eye features.

Training Set Testing Set PCA LDA LRC RLRC RR IPCRC LDRC GLRC

N H,A,S 88.75 86.53 89.03 87.50 84.17 88.19 91.39 89.00

H N,A,S 90.97 89.17 92.08 91.67 82.33 92.08 93.61 54.33

A N,H,S 90.00 85.69 90.00 89.17 83.33 89.44 90.42 89.83

S N,H,A 88.19 84.58 87.78 86.53 77.88 87.58 90.42 55.50

Table 3. Accuracy (%) comparisons on AR.

Figure 6. Samples of one subject from AR face database.
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Training Set Testing Set PCA LDA SRC LRC RLRC RR IPCRC GLRC TLRC

AR1~
AR4; AR14~
AR17

Sunglasses (AR8, AR21) 42.5 20.5 87.0 65.5 47.5 59.0 44.5 90.5 100.0

Scarf
(AR11, AR24)

7.0 33.5 59.5 12.5 9.5 10.5 6.0 35.5 94.5

Table 4. Accuracy (%) comparisons under partial occlusion problem on AR.

4.4. FEI database

The FEI face database [42, 43] contains 200 subjects (100 males and 100 females). Each subject

has 14 images with different pose variations (image1~image10), facial expressions (im‐

age11~image12), and illumination variations (image13~image14) as shown in Figure 7. In the

experiments, all images are resized to 24×20 pixels with grayscale and the “leave-one-out

strategy” is adopted. From Table 5, it can be seen that the IPCRC is more robust to severe

lighting variation (image 14) and URC is good at facial profiles (image 1, image 10). All in all,

the ARA of URC performs the best.

PCA LDA LRC RLRC RR IPCRC LDRC URC GLRC

Test Image 1 91.0 91.5 92.0 89.0 89.0 86.0 95.0 95.0 97.0

2 99.5 99.0 100.0 100.0 100.0 99.0 99.5 100.0 100.0

3 97.0 99.0 99.5 99.5 99.5 99.5 99.0 100.0 100.0

4 98.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 97.5 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

6 96.5 99.5 99.0 99.0 99.0 99.0 99.5 100.0 99.5

7 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

8 99.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

9 97.0 99.5 99.5 99.5 99.5 99.5 100.0 100.0 100.0

10 79.5 83.0 83.5 78.0 78.0 72.0 86.0 91.5 91.5

11 98.0 100.0 99.5 99.5 99.5 99.5 100.0 99.5 100.0

12 97.0 99.5 99.0 99.0 99.0 97.5 99.0 98.5 99.5

13 47.0 87.5 97.0 97.5 97.5 99.0 98.5 99.5 94.5

14 23.5 39.5 79.5 91.0 91.0 92.5 83.0 88.5 77.5

ARA 92.04 96.73 97.62 97.00 97.00 96.23 97.11 98.77 97.11

Table 5. Accuracy (%) comparisons on FEI.
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Figure 7. Samples of one subject from FEI database.

4.5. Discussions

From the experimental results, we can observe that IPCRC has a good performance under
illumination situation. The reason is that the first n components in IPCRC are removed. The
first n components are very sensitive to the lighting changes. However, although IPCRC has
better performance under the lighting changes, it cannot handle the pose variations and
occlusion problems very well. For the pose variations, the URC performs better than the other
subspace methods because URC attempts to minimize the total intra-class reconstruction error
to find an optimal projection which can decrease the pose influence. LDRC embeds discrimi‐
nant analysis into the LRC for seeking an optimal projection matrix such that the LRC on that
subspace has high discriminatory ability for classification. In other words, LDRC can perform
better than LRC and IPCRC in most cases. In the occlusion situation, the TLRC can effectively
remove the masking data and project onto a more reliable subspace.

5. Conclusions

In this chapter, we presented several subspace projection methods for robust face recognition
to deal with different practical situations such as pose variations, lighting changes, facial
expressions, and partial occlusions.

For illumination variation task in face recognition, an improved principal component classi‐
fication can be used to solve the multicollinearity problem and can perform better recognition
accuracy than the original linear regression and RR. For the pose variations, a URC has been
presented to minimize the total within-class projection error from all classes for LRC to
improve the robustness for pattern recognition. Moreover, a LDRC has been proposed to
overcome facial expressions by maximizing the ratio of the BCRE to the WCRE by the LRC.
For the partial occlusions, a trimmed regression classification is used to remove unreliable
pixels by the Hampel identifier. Finally, experimental results have revealed the comparisons
with different subspace projection optimizations.
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Abstract

Face recognition has become an interesting research area in the recent era, and blends
knowledge from various disciplines such as neuroscience, psychology, statistics, data
mining, computer vision, pattern recognition, image processing, and machine learning.
A new opportunity is obtained using the application of statistical methods for evaluat‐
ing the performance of the system. Evaluation methods are the yardstick to examine the
efficiency and performance of any face recognition system. Methods for performance
evaluation seek to  distinguish,  compare,  and interpret  the various factors  such as
characteristics of subjects, location, illumination, and images. In this chapter, we show
how to adapt popular performance measures commonly used in face recognition research,
including—precision,  recall,  F-measure,  fallout,  accuracy,  efficiency,  sensitivity,
specificity, error rate, receiver operating characteristics (ROC). This work serves as an
introduction to performance measures, and as a practical guide for using them in research.

Keywords: face recognition, feature extraction, face detection, evaluation metrics, bio‐
metric

1. Introduction

The human face plays an interesting role in conveying people’s identity in social interaction,
biometric systems, law enforcement, security, and surveillance systems [1]. Variety of applica‐
tions including biometric face recognition technology showed significant attention using the
human face as a key to security [2]. As compared with other biometrics systems using finger‐
print, iris, and palm print, face recognition has trenchant advantages because of its noncon‐
tact process. Face images can be captured from a distance without concerning the person, and
the identification process does not require interacting with the person.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Face recognition is one of the major and rapidly thriving fields over the past two decades. This
research area straddles researchers from multiple disciplines including data mining, image
processing, pattern recognition, neuroscience, psychology, computer vision, and machine
learning, etc. The face recognition system can identify one or more individuals from the still
images or video by using a stored database of faces [3, 4]. This is a classification problem
focusing on automatic face recognition. The main aspect of the face recognition systems is
training the system with images from the known persons and classifying the newly coming
test images into one of the classes.

Performance evaluation method is the yardstick to analyse the efficiency of any face recogni‐
tion system. The assessment is essential for understanding the quality of the model or the
technique, for refining parameters in the iterative process of learning and for selecting the most
adequate model or strategy from a given set of models or techniques [5]. Several criteria are
used to evaluate models for different tasks. This chapter goes through general ideas and the
techniques used for evaluating the face recognition systems.

The chapter is structured as follows: Section 2 gives the intricate discussion on the face
recognition techniques and methods, Section 3 throws light on the various aspects of the
evaluation metrics, Section 4 discuss about the ways of assessing the system, Section 5 details
the experimental analysis with case studies, and finally Section 6 concludes the chapter with
future direction.

2. Face recognition techniques and methods

The human brain is highly adapted for face recognition, by remembering faces better than
other patterns, and prefers to look at them over other patterns. Now a days computes also
compensates in this research field. Facial recognition systems are applications of computers
that examine the digital images of individuals for the purpose of identifying them [6]. The
process of face recognition is influenced by many factors such as shape, size, pose, occlusion,
and illumination. A human face is an extremely complex object with features that can vary
over time. It is covered with nonuniformly textured material skin, which makes face object
difficult to model. Skin of the face is influenced by perspiration level. The skin colour changes
when the individual is embarrassed or becomes warm.

Facial recognition, have two different applications: basic and advanced. Basic facial recognition
identifies faces or nonfaces such as cookies and animals. If it is a face, then the system looks
for eyes, a nose, and a mouth. Advanced facial recognition deals with the question on a
particular face. This includes unique features: the width of nose, wideness of the eyes, the
depth and angle of the jaw, the height of cheekbones, and the distance between the eyes, and
creates a unique numerical code. Using these numerical codes, the system then matches that
image with another image and identifies how similar the images are to each other. The image
sources for facial recognition include pre-existing photos from various databases and video
camera signals.
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Generally, a face recognition system consists of the following steps: Face detection, feature
extraction, and face recognition as in Figure 1.

Figure 1. General structure of the face recognition system.

2.1. Face detection

The main function of this step is to determine the human faces and its location in a given image.
The expected outputs are patches within each face or features of the face in the input image.
It can also be regarded as object detection to find location and size of all objects in a given
image. Face detection could be used for region-of-interest detection, object detection, video
and image classification, etc., as in Ref [7–9] (Figure 2).

2.2. Feature extraction

In this phase, human-face patches are extracted from images to improve the accuracy of face
recognition. To recognize human faces, extracting the prominent characteristics on the face
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features such as eyes, nose, and mouth together with their geometry distribution is applied.
There are differences in face shape, size, and structure of these organs, so the faces are differing
in thousands of ways so as to recognize them. One familiar technique is to extract the shape
of the nose, eyes, chin, and mouth, and then distinguish the face by distance and size of those
organs. The next method is to use a flexible model to illustrate the shape of the organs on face
cleverly. A face patch is next transformed into a feature vector with rigid dimension (Figure 3).

Figure 3. Feature extraction and feature vector representation.

2.3. Face recognition

Recognition of face from feature extraction and feature vector representation is the final step.
A face data base is needed to achieve an automatic recognition. In the face database, for each
person, several images are taken and their characters are stored. When an input face image
comes in, the face detection and feature extraction are performed first. Then compare the
characteristic features to each face of class stored in the database. The common approach of
face recognition is identification and verification [10]. In face identification, the system probes

Figure 2. Feature detection.
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for the given face image to tell who he/she is, while in face verification, given a face image, the
system validates true or false about the identification (Figure 4).

Figure 4. Steps in face recognition system.

3. Multifarious aspect in evaluation metrics

Now a days various measures are utilized for evaluating the performance of the face recog‐
nition system. This section elaborates some of them. The standard approach to deal with face
recognition system evaluation revolves round the ground truth notion of positive and negative
detection. Table 1, shows the confusion matrix. The terms positive and negative reveal the
asymmetric condition on detection tasks where one class is the relevant pattern class and
another class is the nonrelevant class.

Ground truth\detection Detected (Positive) Rejected (Negative)

Relevant True positive (TP) False negative (FN)

Nonrelevant False positive (TP) True negative (FN)

Table 1. Confusion matrix.

In the case of binary recognition or two class recognition, the system has to differentiate
between face and nonface criteria. The true positive means the portion of face images to be
detected by the system, while the false positive means the portion of nonface images to de
detected as faces. The term true positive here has the same meaning as the detection rate and
recall. False positives implies wrongly matching the individuals with photos in the database,
and false negatives means not catching people even when their photo is in the database. There
are two main evaluation plots: the receiver operating characteristics (ROC ) curve and the
precision and recall (PR) curve. The ROC curve examines the relation between the true positive
rate and the false positive rate, while the PR curve extracts the relation between detection rate
(recall) and the detection precision.
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3.1. Precision

Precision is the fraction of the detected images that square measure relevant to the user’s wants.
It is additionally referred to as reliability or repeatability and is that the degree to that recurrent
measurements beneath unchanged conditions show an equivalent results. Equation (1)
represents them.

Noof true positivePrecison
Noof all detected patterns

= (1)

In binary classification, precision is additionally known as positive predictive value. It is
represented in Equation (2).

TPPrecision
TP FP

=
+

(2)

3.2. Recall

Recall is the proportion of positive cases that were properly identified. It is the fraction of
relevant images that are successfully detected. It is additionally referred to as true positive
rate. Recall is calculated using Equation (3).

Noof true positiveRecall=
Noof relevant patterns (3)

In binary classification, recall is commonly referred to as sensitivity. It is denoted in Equation
(4).

TPRecall=
TP+FN (4)

3.3. Fall out

Fall out is the proportion of nonrelevant images that are detected as positive, out of all
nonrelevant images (Equation 5).

| { } { } |
|{ } |

non relevant detectedFallout
non relevant

- Ç
=

- (5)

In case of binary category, fallout is closely associated with specificity and is capable (1 –
specificity). It is often checked out as the chance that nonrelevant images are detected as
positive (Equation 6).
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TNFallout
TN FP

=
+ (6)

3.4. F-measure

F-measure is additionally referred to as F-Score or F1-measure. It combines the exactness and
recall. It computes the average of the precision and recall. A conventional F-measure is the
harmonic mean of precision and recall. This score is used to give a summary of the PR curve.
It will be denoted as in Equation 7:

2- precision recallF mesure
precision recall
´ ´

=
+ (7)

In binary classification it is denoted as in Equation 8:

2 TP-
(2 TP FP FN)

F measure ´
=

´ + + (8)

The harmonic mean is an additional intuitive then the arithmetic mean, once computing the
quantitative relation. Therefore, the complete definition of F-measure is given by Equation 9.

2

2

2

1 1

(   1) PR   
P R

1-where    and      [0,1] and   [0, ]

1 2PR  or 1 is commonly written as F  or F                            
2 P R

F measure

b

b
b

ab a e b e
a

a b =

+
- =

+

= ¥

= = =
+

(9)

β is the parameter that controls a balance between P and R. When β = 1, F1 involves be similar
to the harmonic mean of P and R. This is often also referred to as F-measure or balanced F-
score since precision and recall are equally weighted. When β > 1 emphasize recall. When β <
1 emphasize precision.

3.5. Accuarcy

Accuracy is the proportion of classifications, over all the N examples that were correctly
detected. Accuracy is defined as “the fraction of quantity of correct classification over the entire
number of samples.” The amount of predictions in classification techniques relies upon the
counts of the test records properly or incorrectly predicted by the model [11]. These counts are
tabulated into a confusion matrix (also referred as contingency) Table 1. The confusion matrix
shows how the classifier is behaving for individual categories.
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No of correctly detected patternAccuracy
Total number of validation set

= (10)

TP +TNAccuracy
TP +TN +FP +FN

= (11)

3.6. Error rate

The fraction is the range quantity of misclassification over the overall number of validation
samples. However, the system response to wrong answers is the motive behind the introduc‐
tion of error rate. It is an acceptable performance measure for the comparison of classification
techniques given the balanced datasets. Precision, recall, and F-measure are acceptable
performance measures for unbalanced datasets (Equations 13 and 14).

No of misclassificationError rate =
No of samples in the validation set (12)

FP +FN=
TP +TN FP +FN

e
+ (13)

3.7. Effectiveness

The effectiveness measure is based on Fβ -measure. Fβ “Measures the effectiveness of detection
with respect to a user who attaches β times as much importance to recall as precision (Equation
14).”

2

2

( 1)PR(effectiveness) ( , ) 1

where determines the relative importance of precision ( ) and recall ( )

E is E P R
P R

P R

b
b

b

+
= -

+ (14)

3.8. Sensitivity

True positive rate (TPR) is named sensitivity, hit rate, and recall. An applied mathematical
measure of how well a binary classification test properly identifies a condition probability of
properly labelling members of the target class (Equation 15).

TPSenesitivity
TP FN

=
+ (15)
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3.9. Specificity

True negative rate (TNR) is named specificity. It is an applied mathematics measure of how
well a binary classification test properly identifies the negative cases (Eq. 16).

TNTNR =
TN +FP (16)

False positive rate (FPR) also called as alarm rate is denoted as in Eqs. 17 and 18:

FPFPR =
TN +FP (17)

TNSpecificity 1 Falsealarm
TN+ FP

= = - (18)

3.10. Receiver operating characteristics

Receiver operating characteristics (ROC) is a graph used for organizing and visualizing the
performance of a system. It is a distinct option for precision–recall curves [12]. ROC graphs
are normally utilized in medical decision-making, and in recent years are used more and more
in machine learning and data processing research. It is a graphical representation for display‐
ing the transition between TPR and FPR. TPR indicates correctly classified or total positive
values and plotted on the y-axis, whereas FPR indicates incorrectly classified or total negative
values plotted on the x-axis.

The points on the top left of ROC have high TP Rate and low FP Rate, thus represents smart
classifiers. ROC graphs are far more helpful for domains with skew category distribution and
unequal classification error costs. For this ability, ROC graphs are far more popular than
accuracy and error rate. ROC plot can also visualize characterization change between the False
match rate (FMR) and False nonmatch rate (FNMR).

Generally, the matching technique performs a decision based on a threshold that determines
how close the image is to a template. If the threshold is reduced, there will be fewer false
nonmatches, but more false accepts. Similarly, a higher threshold will reduce the FMR, but
increase the FNMR. This more linear graph illuminates the differences for higher performances
(rarer errors).

In Figure 5, the value A depicts Conservative performance which makes positive performance
only with a strong evidence, so few false positive errors. The value B indicates the Liberal
performance and value C indicates the perfect performance.
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Figure 5. Regions of ROC graphs.

Some of the additional measures to evaluate the performance of Face identification systems
are the following: Recognition Rate, Verification Rate, Half Total Error Rate in Ref. [13],
Genuine Acceptance Rate (GAR), False Acceptance Rate (FAR), and False Rejection Rate (FRR)

The Recognition Rate is the simplest measure. It relies on a list of gallery images (usually one
per identity) and a list of probe images of the same identities. The Recognition Rate is the total
number of correctly identified probe images divided by the total number of probe images.

Another evaluation measure is the Verification Rate as in Ref. [14]. It relies on a list of image
pairs, where pair with the same and pairs with different identities are compared. Given the
lists of similarities of types, the ROC graph can be computed, and finally the Verification Rate.
There are some more measures, such as the Half Total Error Rate and similar, which rely on
independent development and evaluation sets. Validation test is a kind of test used to identify
faces. The verification system uses some measures (i.e., Equal Error Rate), while some other
are usually adopted for recognition systems (i.e., Recognition Rate).

3.11. False match rate

It is also denoted as FMR or False Accept Rate (FAR ). FMR is the probability that the system
incorrectly matches the input pattern to a nonmatching template in the database. It gauges the
percent of invalid inputs that are incorrectly accepted. Similarly, if the person is an imposter
in reality, but the matching score is higher than the threshold, then he is treated as genuine.
This increases the FMR also depends upon the threshold value.

3.12. False nonmatch rate

It is also denoted as FNMR or false reject rate (FAR). It is the probability that the system fails
to detect a match between the input pattern and a matching template from the database. It
measures the percent of valid inputs that are incorrectly rejected.
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3.13. Equal error rate

It is denoted as crossover error rate (EER or CER) or the rate at which both acceptance and
rejection error are equal. The value of the EER can be obtained from the ROC curve. The EER
is a quick way to compare the accuracy of devices with different ROC curves. Normally, the
device with the lowest EER is the most accurate.

3.14. Failure to enroll rate

Also represented as FTE or FER is the rate at which endeavors to create a template from an
input is unsuccessful. This case is usually caused by low-quality inputs.

3.15. Failure to capture rate

FTC is the probability that the system fails to detect an input even when the input is presented
correctly.

4. Evaluation of face recognition system

Recognition of faces relies on how flexible the system is for pose variations. If the aim of the
system is to recognize only frontal faces, then just use few classifier and function. The number
of images of each face relies on the training on an image and testing on the rest. The recognition
from different angles depends on the type of images and training set accordingly, with at least
one image for each pose per person. The number of images in the training set and test on the
remainder depends on the application of the system.

There are three methods to measure accuracy in a face recognition task. The one that was most
suitable might depend to an extent on what the end purpose was.

1. How accurate is the algorithm at detecting a person from a data set containing many images
of a person and various images of different people.

2. How accurate is the algorithm at gaining knowledge with a set of faces from training and
testing datasets of same peoples’ images.

3. How accurate is the algorithm at identifying more than one person from a dataset containing
images of these people mixed with the other people.

For Case 1, train the algorithm with a set of images of an individual person’s face and test on
a set of images that contain different images of the goal person as well as equal number of
other people. This task would be a binary classification task and accuracy can be efficiently
measured with the help of precision and recall then. For more generalized results, this test
could be repeated using various people.

For Case 2, train on multiple images of several people and then test on different images of the
same people (If the dataset contains limited persons, then leave-one-out methodology might
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be useful). This type of multiclass classification problem can be evaluated with the help of
confusion matrixes which would be helpful in evaluating this sort of test.

For Case 3, train the algorithm on a categorized training set of images of several people and
then test on a set of images containing different images of the same people mixed with other
images of faces (To recognize people from a crowd, then large number of different peoples’
images can be mixed in the test dataset). This could be created as a binary classification (person
of interest/not), or as a multiclass problem (each person is a separate class with others). If the
test set contains unbalanced images, then various measures of accuracy with true negatives
can be used.

5. Experimental analysis

Face recognition has various result challenges as in reference [15]. In this section we have
employed the theoretical model for computing the various performance measures to evaluate
the efficiency of the face recognition system in different aspects.

5.1. Case 1

This case study used publicly available AT&T database in reference [16] for recognition
experiments. In the database, 10 different images of each of 40 persons (total 400 images) with
deviations in angles, expressions, and facial details are conceived. A preview image of the
Database of Faces is shown in Figure 6.

The comparison is performed using Support Vector Machine technique and the computational
efficiency is tabulated in the Table 2 and depicted in Figure 7.

Figure 8 shows the accuracy measure of the various datasets obtained using various technique.

Figure 6. Sample collection of images in the dataset.
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S.No DB Images Accuracy (Recognition Rate)

1 3 81.80%

2 4 83.70%

3 5 86.00%

4 6 92.00%

5 7 92.40%

Table 2. Accuracy of the recognition system.

Figure 7. Accuracy of the recognition system.

Figure 8. Accuracy of the recognition system using various datasets.
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5.2. Case 2

Brian C. Becker, gathered 800,000 face dataset from the Facebook social network as in reference
[17] that models real-world situations where specific faces must be recognized and unknown
identities must be rejected. Finally, the results are depicted using precision–recall curve as in
Figure 9. The graph shows that as the precision increases recall decreases.

Figure 9. Precision and recall curve on our 800,000 Facebook dataset.

Nonreal time algorithms are marked with an asterisk (*). LASRC approach performs very
similarly to nonreal time algorithms such SRC or SVMs but has the advantage of being real
time. In fact, LASRC trains 100× faster than SVMs and classify 250× faster than SRC. Compared
to other real-time methods, LASRC outperforms state-of-the- art least squares, sparse, and
max-margin classifiers.

Face recognition is a technology for automatic detection and recognition of human faces on
static images as stated in reference [18]. The main advantage of this technology is its ability to
aggregate multiple face recognition and detection functions. Here we listed some of the
commercial software for face recognition such as FaceSDK, VeriLook SDK, MPEG-7 descrip‐
tors + OpenCV. The following Table 3 and Figure 10 show the values of precision and recall
obtained using the listed software.

Name Recall Precision

OpenCV 55% 89%

FaceSDK 63% 83%

VeriLook SDK 73% 84%

Aggregation approach 62% 98%

Table 3. Compariosn results of precision and recall.
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5.3. Case 3

This case study used the LFW benchmark dataset, where the dataset is divided into 10 subsets
for cross validation, with each subset containing 300 pairs of genuine matches and 300 pairs
of impostor matches for verification. The mean values of FAR and Genuine Accept Rate (GAR )
with fixed thresholds over all the 10 subsets are plotted in an ROC curve for performance
evaluation as in reference [19] and Figure 11.

Figure 11. The ROC curves of the various face recognition algorithms.

Figure 10. Comparison results of precision and recall.
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The following ROC curves (Figure 12) are the average over ten-folds (FPR and TPR) of the
LFW data set. The (u), indicates ROC curve is for the unrestricted setting.

Figure 12. The ROC curves using TPR and FPR.

6. Conclusion and future work

This chapter presents a viewpoint about face recognition and the various ways to evaluate the
face recognition system. The faces are highly complex patterns that often differ in only subtle
ways, like changes in angle and lighting. Hence, the face recognition system should consider
various factors such as facial expression change, aging, pose change, illumination change,
scaling factor, frontal vs. profile presence and absence of spectacles, occlusion due to scarf,
mask in front, beard, and moustache. Generally, when the training set contains faces of one
person, then precision and recall could be used to evaluate accuracy. When the training set
contains multiple faces of several people and test set contains the different faces of same people,
then confusion matrixes would be helpful in evaluating the test face. When the training
contains faces of interest with other faces, and the test set is an unbalanced one, then various
measures of accuracy dominated by true negatives can be used to evaluate the face recognition.
A complete face recognition system contains several subproblems where each one is an
independent research problem. The line of future work includes the assessment of various
machine learning algorithms used in face recognition with feature mining. However, next era
face recognition are going to have tremendous application in smart environs, real time, and in
much less-controlled situations.
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