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Preface

During the past decades, optimization algorithms, especially nature-inspired algorithms,
have attracted a great deal of attention for solving different type of problems arising in vari‐
ous areas such as engineering, computer science, operations research, and machine learning.
The use of nature-inspired optimization algorithms has become very popular because of the
fact that many real-world problems are significantly complex. Despite there is no guarantee
of finding the optimal solution in these methods, they are strongly preferred because of their
simplicity and less computational cost. On the other hand, although a large number of algo‐
rithms have been developed in this period, we need to review and summarize these optimi‐
zation algorithms and their applications in order to introduce new developments to this
area.

This book is written especially for researchers and practitioners who wish to improve their
knowledge in possible applications for different optimization algorithms. It consists of 13
chapters divided into two parts — (I) Engineering applications and (II) Applications in vari‐
ous areas — and covers state-of-the-art methods and their applications in wide range.

In conclusion, I would like to thank to all authors for taking the time and efforts to prepare
their chapters and also to acknowledge Ms. Romina Rovan, InTech Publishing Process Man‐
ager, for her kind and professional assistance during the entire publishing process of this
book.

Ozgur Baskan
Pamukkale University,
Faculty of Engineering,

Department of Civil Engineering,
Denizli, Turkey
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Chapter 1

Genetic Algorithm Optimization of an Energy Storage
System Design and Fuzzy Logic Supervision for Battery
Electric Vehicles

Stefan Breban

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/62587

Abstract

This  chapter  presents  a  methodology  to  optimize  the  capacity  and  power  of  the
ultracapacitor (UC) energy storage device and also the fuzzy logic supervision strategy
for a battery electric vehicle (BEV) equipped with electrochemical battery (EB). The aim
of the optimization was to prolong the EB life and consequently to permit financial
economies for the end-user of the BEV. Eight variables were used in the optimization
process: two variables that control the energy storage capacity and power of the UC
device and six  variables  that  change the membership functions of  the fuzzy logic
supervisor.  The results  of  the optimization,  using a  genetic  algorithm from MAT‐
LAB®, are showing an increase of the financial economy of 16%.

Keywords: Genetic algorithm optimization, battery electric vehicle, fuzzy logic, ultra‐
capacitor, electrochemical battery

1. Introduction

The humanity has to act on two major directions in order to reduce the pollution and the
greenhouse effect of carbon dioxide released into atmosphere: on the one hand to increase the
exploitation of renewable energy in the detriment of fossil fuel and on the other hand to
increase  the  energy  conversion  efficiency  in  all  the  sectors  of  activity.  Electrification  of
transportation sector will help reduce the pollution, mainly in the cities as there are mostly
affected by this problem and will help reduce the greenhouse effect if the energy that powers
the electric vehicles comes from renewable sources. The main advantages of electric vehicles

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



compared  to  those  equipped with  combustion  engine  are  as  follows:  greater  efficiency,
increased reliability, better dynamics, and sometimes smaller costs [1].

Pure electric vehicles can be classified into non-autonomous vehicles and autonomous
vehicles. The non-autonomous vehicles, represented by tramways, trolleybuses, metros,
electric locomotives, and trains, depend on an external electric energy supply system: catenary
lines or feeding rail. These types of vehicles are very clean and efficient solution to move people
and goods on an established trail or route. In the future, these types of vehicles will be further
improved and their use extended. The autonomous electric vehicles are needed where the
routes are variated, for example, for personal small vehicles. These vehicles are usually
depending on an electrochemical battery (EB) to be feed. The EBs are nowadays the most
expensive part of the battery electric vehicles (BEVs), and thus, actions to optimize their
operation and increase their lifespan should be taken. In [2], the authors are stating that for
some LiFePO4 batteries, “the cycle depth of discharge and relative fraction of low-rate
galvanostatic cycling vs. acceleration/regenerative braking current pulses are not important
even over thousands of driving days”; in conclusion, the only important factor in battery
ageing is the energy processed. In this study, the authors are estimating an approximate
capacity lost per normalized Wh of about −6 × 10−3% for plug-in hybrid vehicle use and
−2.7 × 10−3% for vehicle to grid use, due to more rapid cycling found in driving conditions. In
order to reduce the energy processed by the EB, a very well-known solution is to complement
it with an ultracapacitor (UC) energy storage device that has opposite characteristics compared
to EB, high-power and low energy density. Many papers are treating this combined energy
storage system. The UC has usually the role to reduce the stress on the EB, by power peak
shaving and braking energy recovering. In reference [3], a comparison between “current/
voltage/power profiles of the batteries with and without UCs indicated the peak currents and
thus the stress on the batteries were reduced by about a factor of three using UCs. This
reduction is expected to lead to a large increase in battery cycle life”. The authors of reference
[4] are proposing a strategy to design and supervise the battery and UC on a fuel-cell hybrid
electric vehicle. The proposed strategy uses low-pass filters and some logical operations. In
reference [5], a fuzzy logic strategy is presented, aiming at the reduction of power peaks on
the EB with the help of a UC. In [6], a fuzzy logic control method is utilized to design an energy
management strategy that enhances the fuel economy and increases the mileage of a vehicle
by means of a hybrid energy storage power system consisting of fuel cell, EB, and UC. The
authors of reference [7] are proposing a new battery/UC configuration that allows a reduced-
size power converter. The braking energy is completely stored in the UC, having an important
capacity of almost 1200 kJ.

Compared to state of the art, this chapter presents a methodology to optimize altogether the
capacity and power of the UC energy storage device and also the fuzzy logic supervision
strategy for a BEV equipped with EB. In Section 2, the power system architecture will be
presented, in Section 3, the fuzzy logic supervision strategy, in Section 4, the BEV simulation,
and in Section 5, the optimization using genetic algorithm.

Optimization Algorithms- Methods and Applications4
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2. Power system architecture

Figure 1 presents the simplified diagram of the on-board power system [8] considered. The
main power source consists of an EB that can be connected to the loads directly or by means
of a power converter. The UC usually is connected through a buck–boost (DC/DC) converter
to the DC link, due to low-voltage operation. The electric motors are supplied through power
inverters (DC/AC converter).

Figure 1. Schematic of the BEV power system.

The EB used should be a rechargeable type. Li-based battery technology is nowadays the most
used type of battery in electric vehicles due to its high energy-to-weight ratio, no memory
effect, and low self-discharge, compared to other solutions like Ni/Cd or Ni/MH. Another
important candidate that does not use toxic elements (like Lithium) is the EB with molten salts.
This technology is maybe not as mature as Lithium technology but has similar energy density.
The most important drawback of molten salt batteries is that they work at high temperature,
around 300°C; thus, the thermal insulation of the battery should be very good in order to
increase its efficiency.

UCs work in much the same way as conventional capacitors, in that there is no ionic or
electronic transfer resulting in a chemical reaction, that is energy is stored in the electrochem‐
ical capacitor by simple charge separation. The main advantage of the UCs is the high-power
capability that makes them highly suitable to be used in conjunction with the EBs. The energy
stored (E) in UCs varies linearly with the equivalent capacity (C) and with the square of the
voltage (U):

21 * *
2

E C U= (1)

Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric
Vehicles
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3. Fuzzy logic supervision strategy

The fuzzy logic supervision strategy is considered appropriate to create an overall energy flow
management between electrical machines or equipment and energy storage devices. The main
idea behind this supervision strategy is to vary the UCs level of charge considering the BEV
operation point. Thus, it has been considered that when the BEV is at stop, the UC should have
a high state of charge (SoC), to be able to provide power when BEV starts moving. During the
increase of speed, the UCs should reduce their energy storage and when arriving at high speeds
should be discharged to be able to recover the most or all of the energy generated when braking.
More details are given in Breban and Radulescu [8].

Figure 2. Fuzzy logic supervision strategy methodology.

The fuzzy logic supervision strategy is divided into two levels. Each level of supervision has
two inputs and one output. The input variables of the first supervision level are the BEV speed
and acceleration. The output is a power coefficient of the UC (Figure 2). The second level of
supervision has also two inputs, that is the output of the level one and the SoC of the UC, and
one output, the UC power. All variables are expressed in p.u. values. These are representing
the ratio of each considered parameter to its nominal value. The Gain multiplier makes the
passing from p.u. to real power system values. This multiplier can also be used to increase or
decrease the dynamics of the supervision strategy.

Figure 3. First level fuzzy logic supervision response surface.

For each level of supervision, a 3D response surface can be plotted (Figures 3 and 4). The
outputs have a variation between −0.55 and 0.85 p.u for the first level and between −0.8 and

Optimization Algorithms- Methods and Applications6
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0.8 p.u. for the second level. This is due to the centroid defuzzyfication method. Thus, the UC
power coefficient input of second-level supervision was developed with a variation between
−0.5 and 0.8 p.u. to increase the supervisor dynamic response at the limits of variation. More
details are presented in Breban and Radulescu [8].

Figure 4. Second level fuzzy logic supervision response surface.

4. BEV simulation

In order to obtain the power absorbed or produced by the BEV, three different simulations for
two driving cycles were considered: the New European Driving Cycle (NEDC) that consists
of four ECE-15 cycles followed by one EUDC cycle (Figure 5), and the Urban Dynamometer
Driving Schedule (UDDS) as presented in Figure 6. The first two simulations are considering
the EUDC and UDDS cycles with slopes (Figures 7 and 8) and in the third simulation, the
UDDS cycle without slopes. The simulated BEV has a total mass of 1400 kg, the equivalent
frontal area is 2.2 m2, and the aerodynamic drag coefficient is 0.25. The air density was
considered 1.2 kg/m3 and the air mass speed, zero. The BEV is equipped with a 16 kWh EB.

Figure 5. BEV speed (NEDC cycle).

Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric
Vehicles
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Figure 6. BEV speed (UDDS cycle).

Figure 7. Road gradients (NEDC cycle).

Figure 8. Road gradients (UDDS cycle).
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5. Optimization using genetic algorithm

The optimization was made using Global Optimization toolbox and Optimization tool
interface from Matlab®. Eight variables were used in the optimization process: The UC
capacity (kJ), the Gain that passes the UC power to real values (kW) and six variables that
change the membership functions of the fuzzy logic supervisor, that is the membership
functions of the two inputs and one output for each level of supervision. The limits of variation
for the eight variables are presented in Table 1. In the third line of Table 1, the empiric choice
of variables is presented, which is used in the first phase of development of the fuzzy logic
supervision strategy, with the results presented in Breban and Radulescu [8].

Variables Gain
(kW)

UC
capacity
(kJ)

First
input;
first
level

Second
input;
first
level

Output;
first
level

First
input;
second
level

Second
input;
second
level

Output;
second
level

Limits of variation 1÷100 1÷1000 0÷0.25 0÷0.375 0÷0.1 0÷0.25 0÷0.25 0÷0.2

Empiric choice 25 250 0 0 0 0 0 0

Table 1. Variables and limits of variation during optimization and empiric choice of variables.

The number of individuals used in the optimization algorithm is 800. This number was
empirically chosen considering the fact that eight optimization variables were used and in
order to allow a good initial spreading of individuals in the eight dimensions domain of search.
In other words, 100 individuals were consider for each optimization variable. The number of
generations was set to 25 as it was observed that the optimization function was converging.
Two individuals are guaranteed to survive to each next generation, 80% of the individuals are
generated by crossover and the remaining by mutation. The crossover function creates a
random binary vector in order to select the genes from two parents and from a child. The
mutation randomly generates new individuals considering that the limits of variation
(presented in Table 1) are satisfied. At every five generations, 20% of the individuals of nth

subpopulation are migrating toward the (n + 1)th subpopulation. This percent is calculated
considering the smaller of the two subpopulations that moves.

The optimization function Eq. (3) to be minimized is the difference between the cost of the UC
and the financial economy due to the increase in the lifespan of the EB. This financial economy
Eq. (2) is calculated considering the product between the EB cost and the reduction of the
energy processed by the EB, with the optimum UC capacity and control variables, compared
to the case when no UCs are used, expressed in percentage.

EBlife increase cost reductionEconomy EB= ´ E (2)

Genetic Algorithm Optimization of an Energy Storage System Design and Fuzzy Logic Supervision for Battery Electric
Vehicles
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cost EBlife increaseSC Economy= -f (3)

The EB considered cost is 500 dollars/kWh, and the UC cost is 2.85 dollars/Wh. The empiric
choice of the variables gives for f = 1942 dollars of economies and the optimized variables
f = 2256.4 dollars (Figure 9), thus an increase of around 16% is achieved.

Figure 9. Best and mean fitness for the optimization function.

The optimum values for the eight variables used in the optimization algorithm are given in
Table 2. As can be seen, the first two variables and the outputs of each level of supervision
variables are changing considerable from the empiric choices, and the other four variables have
only slight modifications or none. Also, the Gain value increases from 25 to reach almost the
maximum permissible value, that is an increase of UC power from 20 to 80 kW. UC capacity
increases from 250 kJ to more than 600 kJ. It should be noted that the mass of the BEV was
considered constant whatever the value of the UC was used.

Variables Gain
(kW)

UC
capacity
(kJ)

First
input;
first
level

Second
input;
first
level

Output;
first
level

First
input;
second
level

Second
input;
second
level

Output;
second
level

Optimum 99.544 614.247 0.001 0.001 0.095 0 0 0.168

Table 2. Optimum values for the optimization variables.

As an example of membership function modifications with the change of an optimization
variable, in Figures 10 and 11, the membership functions are presented for the output of the
first level of supervision in the case of empiric choice of variable, respectively, optimum
variable.

Optimization Algorithms- Methods and Applications10
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Figure 10. Membership functions for empiric choice of variable.

Figure 11. Membership functions for optimum variable.

From the point of view of BEV operation, the EB power and the UC power for each of the three
road simulation conditions are presented as follows. Figures 12 and 13 present the EB and UC
powers for NEDC having the characteristics presented in Figures 5 and 7. Figures 14 and 15
present the EB and UC powers for UDDS cycle having the characteristics presented in Figures 6
and 8 from 500 to 1200 s in order to better view the power variations during BEV operation on
a road with slopes. Figures 16 and 17 present the EB and UC powers for UDDS cycle having
the characteristics presented in Figure 6 (no slopes) for the first 500 s.

As expected, the EB power, when optimum variables are used, decreases in certain periods of
BEV operation, compared to the cases where the empiric variables were used, thus the energy
processed by the EB reduces, as the SC power increases. Finally, this would lead to a lifespan
extension for the EB and financial economies for the end-user.
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Figure 12. EB power for EUDC cycle.

Figure 13. UC power for EUDC cycle.

Figure 14. EB power for UDDS cycle with road gradients.
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Figure 14. EB power for UDDS cycle with road gradients.
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Figure 15. UC power for UDDS cycle with road gradients.

Figure 16. EB power for UDDS cycle without road gradients.

Figure 17. UC power for UDDS cycle without road gradients.
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6. Conclusion

A methodology to optimize the capacity and power of the UC energy storage device and also
the fuzzy logic supervision strategy for a BEV equipped with EB was presented. The results
are showing that important financial economies could be made if an UC energy storage device
is used with the aim to reduce the energy processed by the EB. The optimization algorithm
maximizes these economies, in this study, an increase of around 16% is achieved, proving that
optimization is an essential part of any product and system development.
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Abstract

The quantitative and qualitative measurement,  prediction and evaluation of urban
sprawl  have come to  play a  central  role  in  land-system science.  One of  the  most
important and most implemented artificial  intelligence (AI) techniques in terms of
urban systems simulation is cellular automata (CA) like SLEUTH. SLEUTH models the
physical  urban  expansion  by  accomplishing  four  simple  growth  rules  with  every
modeling step. Simultaneously, SLEUTH also reflects main drawbacks of CA since they
contain a higher degree of stochastic variation leading to a simulation uncertainty. This
chapter will explain how the simulation power of CA can be optimized by combining
them with the machine learning algorithm support vector machines (SVMs). Concep‐
tually in SVMs, input vectors are projected in a higher-dimensional feature space in
which an optimal separating hyperplane can be constructed for separating the input
data into two or more classes. In the comparative analysis, the integrated modeling
approach is carried out for a unique postindustrial European agglomeration: The Ruhr
Area. It will be demonstrated how the AI learning approach is implemented, calibrat‐
ed, validated and applied for the prediction of the regional urban land-cover pattern
between 1975 and 2005.  Finally,  the probability effects  will  be visualized with the
concept of urban DNA.

Keywords: support vector machines, Cellular automata, SLEUTH, urban growth,
probability maps
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1. Introduction

The American landscape designer Earle Draper initiated a term describing the unaesthetic and
uneconomic settlement structure of American cities in his 1937 lecture on town planning. In
reflecting the  obliteration of  rural  and urban spaces,  this  term grew more  and more in
popularity: “perhaps diffusion is too kind of word. in bursting its bounds, the city actually
sprawled and made the countryside ugly, uneconomic [in terms] of services and doubtful
social value [1]”. Ever since the term ‘sprawl’ emerged in a geographical context, nearly 80
years have passed and the specific patterns and processes of growing cities have developed
from an American to a European problem in general and a German problem in particular [2–
5]. Being one of the most challenging land-use and land-cover changes implicating several
consequences for the anthropogenic and geobiophysical spheres, urban sprawl has become
an inherent part of the international sustainability discourse in the context of global change [6–
10]. The same holds true for geographical research with its long history of diverse theories and
models of land-use change in general and urban sprawl in specific [11–16]. One of the most
important streams of urban models understands urban areas as complex systems. Those
geosimulation techniques make use of artificial intelligence (AI) to model the micro process‐
es being responsible for the macro pattern of urban systems [11, 12, 17]. Following the famous
quote by Aristotle “the whole is more than the sum of its parts”, they model urban systems in
a bottom-up manner. Cellular automata (CA) are very popular geosimulation tools. SLEUTH
is a well-known urban CA [18]. It is a purely growth-oriented model and as a bottom-up
approach it is not dependent on intensive prestudies about the general causes of urban growth
or the location-specific determining factors. Based on the principles of neighborhood effects
and spatial autocorrelation, the simulation rules are relatively simple. However, SLEUTH is
able to capture complex emergences of urban patterns so that it has been applied in several
urban growth studies all over the world [19]. Although the performance of CA for spatially
explicit urban land-use simulation is very high, it gives no direct insight into the relation‐
ship between nonspatial human and ecological driving forces, spatial determining factors and
the emergence of urban growth. The semistatistical method called support vector machines
(SVMs) [20] is able to avoid this disadvantage: developed for solving nonlinear classification
problems, SVMs are also suitable for analyzing the spatial driving factors of urban land-use
change. They are a machine learning concept based on statistical learning theory. The basic
idea is to project input vectors on a higher dimensional feature space, in which an optimal
separating hyperplane can be constructed for separating the data into two or more classes. By
using a specific feature selection, neglectable features can be separated and important features
can be identified.

The objective of this contribution is to demonstrate how the simulation skills of CA on the one
hand and SVM on the other hand can be integrated in order to achieve an optimized modeling
approach. The anchor point for joining AI and machine learning physique is the exclusion
layer of SLEUTH. Instead of the standard input map of the CA defining restriction areas where
no urbanization is allowed to take place, a probability map derived from SVM will be utilized.
In a nutshell, the coupling of SLEUTH and SVM is undertaken in order to answer the following
research questions:

Optimization Algorithms- Methods and Applications18
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1. Which driving factors influence the physical urban growth in the Ruhr and how do they
take effect according to a SVM feature selection?

2. Do SVM guide SLEUTH and do they optimize its modeling ability?

3. How well do SVM perform in comparison to standard SLEUTH implementations?

Figure 1. Land-use map (2006) with cities and districts of the Ruhr (North Rhine-Westphalia, Germany) [2].

The main study area which SLEUTH-SVM is set up for lies in the western part of Germany
and in the central part of NRW: the Ruhr (Figure 1). With a polycentric and administratively
fragmented structure but a homogenous and extensive urban area, the Ruhr is a worldwide
unique urban entity. In general, 11 cities and 4 districts form the biggest agglomeration (1150
people per km2) in Germany, and with its 443,969 ha it is the fifth largest urban region in
Europe. Concerning the geosimulation of urban systems, the Ruhr proves to be suitable due
to two principal aspects: Firstly, it exhibits the highest absolute rates of urban sprawl in
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Germany. Between 1975 and 2005, the agglomeration grew around 37,022 ha with a total urban
area of 94,990 to 132,012 [21]. Compared to other sprawling cities in Germany, the Ruhr’s urban
expansion can be described as a ‘metropolitan suburban sprawl’ type with high values of new
land consumption and with low fragmentations and dispersion patterns in the core area
coexisting with lower densities and patched open spaces in the suburban area [5]. Secondly,
the Ruhr acts as a ‘hero’ in the scientific discourse of demographic decline and structural
transformations in old industrialized cities. Like other members of the ‘rusty fellowship’, the
Ruhr has to struggle with archetypical problems of the former monofunctional manufacturing
cities depending on mining and heavy engineering: a demographic decline, an aging popula‐
tion, high unemployment rates, an incipient brain drain and a lack of incentives to attract
prosperous companies of the service sector, especially the ‘new economy’ [22, 23]. Before the
CA is optimized, a brief overview of the implications of urban sprawl, the complexity of urban
systems and important urban models in geography, as well as an introduction into the
geosimulation with CA is given.

2. Geosimulation of urban sprawl

2.1. The complexity of urban systems

Urban sprawl is often treated as a specific of urbanization and urban growth. The classification
of those processes is not homogenous and their definitions oscillate between the pure expan‐
sion of impervious surfaces and the distribution of urban activities and life styles in addition
[2, 4, 24]. The study focuses on the land consumption aspects of urban sprawl. That is the
conversion from nonurban to urban land cover and land uses for the main part indicating a
certain amount of newly built-up, impervious areas [25]. The natural impacts of urban sprawl
are manifold and concern several natural spheres. Cities consist by more than 50% of imper‐
vious land cover [26]. The sealing of even fruitful and agricultural valuable soils leads to a loss
of fertility, transformation, filtering and buffering services [27]. The infiltration is disturbed
and the surface runoff can be increased by five times with a sealing fracture of more than 90%
[28]. The ecological footprint of a street can be estimated by 2 km and that of a European
agglomeration by 1000 times of its area [9]. For a long time, the natural increase of people and
migration flows into the cities’ core areas as well as the economic expansion of the industrial
age constituted the most important factors responsible for the growth of German cities. During
the last 50 years, however, the trends of land consumption and population growth have moved
apart: While the German population has grown around one fifth, the amount of settlement
and traffic areas has nearly doubled [4]. In the literature, the following aspects are mentioned
regularly: economic wealth; separation of individuals; the persuasion of the wish for owning
a house on greenfield sites; new supply types; demographic change; aging of population;
parish-pump politics and dominance of the automobile [2, 29–34]. Those causes build the main
underlying driving forces of urban sprawl in Germany. But how do they interact? Which direct
impacts do they evoke and what are their spatial outcomes? Why do they induce the emergence
of sprawling urban areas even in regions affected by demographic and economic shrinkage?

Optimization Algorithms- Methods and Applications20



Germany. Between 1975 and 2005, the agglomeration grew around 37,022 ha with a total urban
area of 94,990 to 132,012 [21]. Compared to other sprawling cities in Germany, the Ruhr’s urban
expansion can be described as a ‘metropolitan suburban sprawl’ type with high values of new
land consumption and with low fragmentations and dispersion patterns in the core area
coexisting with lower densities and patched open spaces in the suburban area [5]. Secondly,
the Ruhr acts as a ‘hero’ in the scientific discourse of demographic decline and structural
transformations in old industrialized cities. Like other members of the ‘rusty fellowship’, the
Ruhr has to struggle with archetypical problems of the former monofunctional manufacturing
cities depending on mining and heavy engineering: a demographic decline, an aging popula‐
tion, high unemployment rates, an incipient brain drain and a lack of incentives to attract
prosperous companies of the service sector, especially the ‘new economy’ [22, 23]. Before the
CA is optimized, a brief overview of the implications of urban sprawl, the complexity of urban
systems and important urban models in geography, as well as an introduction into the
geosimulation with CA is given.

2. Geosimulation of urban sprawl

2.1. The complexity of urban systems

Urban sprawl is often treated as a specific of urbanization and urban growth. The classification
of those processes is not homogenous and their definitions oscillate between the pure expan‐
sion of impervious surfaces and the distribution of urban activities and life styles in addition
[2, 4, 24]. The study focuses on the land consumption aspects of urban sprawl. That is the
conversion from nonurban to urban land cover and land uses for the main part indicating a
certain amount of newly built-up, impervious areas [25]. The natural impacts of urban sprawl
are manifold and concern several natural spheres. Cities consist by more than 50% of imper‐
vious land cover [26]. The sealing of even fruitful and agricultural valuable soils leads to a loss
of fertility, transformation, filtering and buffering services [27]. The infiltration is disturbed
and the surface runoff can be increased by five times with a sealing fracture of more than 90%
[28]. The ecological footprint of a street can be estimated by 2 km and that of a European
agglomeration by 1000 times of its area [9]. For a long time, the natural increase of people and
migration flows into the cities’ core areas as well as the economic expansion of the industrial
age constituted the most important factors responsible for the growth of German cities. During
the last 50 years, however, the trends of land consumption and population growth have moved
apart: While the German population has grown around one fifth, the amount of settlement
and traffic areas has nearly doubled [4]. In the literature, the following aspects are mentioned
regularly: economic wealth; separation of individuals; the persuasion of the wish for owning
a house on greenfield sites; new supply types; demographic change; aging of population;
parish-pump politics and dominance of the automobile [2, 29–34]. Those causes build the main
underlying driving forces of urban sprawl in Germany. But how do they interact? Which direct
impacts do they evoke and what are their spatial outcomes? Why do they induce the emergence
of sprawling urban areas even in regions affected by demographic and economic shrinkage?

Optimization Algorithms- Methods and Applications20

In order to measure, model and understand urban sprawl, one has to think of it as a kind of
urban land-use change embedded in the global land system [35]. The changes of land use and
land cover and their driving factors construct nonlinear, complex systems including irrational
behavior of their human actors. Therefore, urban areas must be treated as open and dynamic
systems in which macro level patterns are a result of behavioral driven processes of micro level
[36, 37]. Urban systems exhibit characteristics of hysteresis so that future developments and
changes of urban systems are not only influenced by the current environment but also by the
past one [32, 38, 39]. The initial configuration of its states affects the future decision making of
its actors. Exemplary, road expansions do not only improve the infrastructural development
but also change the spatial pattern affecting the circulatory system of a region’s economy and
feeding back to road improvements [40]. Thus, the observation scales of time (1) and space (2)
are fundamental elements for the analysis of urban systems: (1) Technological innovations or
new policies are exogenous drivers and affect sprawling urban growth in a short term. Due to
coevolutionary interaction between states and actors, they become endogenous and are
affected by urban dynamics in a long term [32]. (2) While on an aggregate level, residential
areas may be clustered resulting in a positive spatial autocorrelation, and on an individual
level, a certain range of distance may be kept resulting in negative spatial autocorrelation [41,
42].

2.2. Geosimulation – Using the AI of cells

The new wave of urban simulation often goes under the name of geosimulation. They shifted
the modelling paradigm from macrostatics to microdynamics, from aggregation to disaggre‐
gation, from homogeneity to heterogeneity and from equilibrium to disequilibrium in urban
modeling. Mandl defines geosimulation as a simulation where the modeled system processes,
compartments and applications are spatially characterized and exhibit spatial relations [43].
Benenson and Torrens further comprehend geosimulation as “catch title that can be used to
represent a very recent wave of research in geography … [which] is concerned with the design
and construction of object-based high resolution spatial models … to explore ideas and
hypotheses about how spatial systems operate [12]”. The implementation of AI methods for
urban simulation purposes was heavily influenced by technical progresses in terms of
computation, land-use data acquisition, geographic information systems (GISs), complexity
studies, as well as the development and use of AI approaches in natural and social sciences
outside of geography [17, 44]. Indeed, “geographers arrived somewhat late to the party” of
addressing individual behavior alteration as design strategy of simulation applications [45].
The displacement of equations by code offered the possibility to explain the pattern and
processes of complex open system dynamics on multiple organizational levels theoretically
and experimentally [46]. Hence, the research object of urban sprawl could leave the suggestions
of order, stability, linearity and rationality rooted in general system theory.

One of the most important and most implemented geosimulation techniques in terms of urban
systems simulation is CA. The invention of CA is attributed to the mathematicians von
Neumann (1951) and Ulam (1952), and “one can say that the ‘cellular’ comes from Ulam and
the ‘automata’ comes from von Neumann” [47–49]. The final breakthrough of CA came with
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John Conway’s ‘The Game of Life’ in 1970. Urban CA is often defined by (1) a raster lattice
representing the spatial context, (2) a set of states associating a cell with a certain land-use type,
(3) neighborhoods influencing the spatial configuration and (4) transition rules regulating the
conversion of a cell state with every (5) time step [12]. The gridded two-dimensional character
of a CA environment makes it well suited for the simulation of urban land-use and land-cover
conversion. Here, the most popular CA modeling urban growth was developed by the authors
mentioned in references [48–55]. The progress of CA implementations profited heavily by
innovations in remote sensing techniques. The world’s radiances are recorded from a bird’s
eye view and stored regularly pixel-by-pixel. Hence, the world’s surface is represented in a
two-dimensional raster lattice facilitating a paradigm of modeling from the pixel. Natural or
administrative borders are completely neglected so that land-use and land-cover patterns
become the only things that matter. While maps always depend on a more or less subjective
semiotics and imply reduced content, remotely sensed images provide the unmediated
biophysical context of coupled human–environment systems [56]: By classifying a data set of
radiances with the help of specific spectral characteristics, a continuous spatial texture is turned
into a discrete spatial pattern. Accordingly, a classified time series of LANDSAT data of 1975,
1984, 2001 and 2005 is applied for his study. The data sets were classified using a hybrid
approach of supervised classification algorithms and knowledge-based decision trees. The
resultant classification simply identifies ‘urban’ and ‘nonurban’ areas, where an “urban” area
is defined as having a surface imperviousness of a minimum of 25%. A validation analysis of
the classification documented an accuracy of >85%. In order to balance the spatial resolution
and the spatial extent of the Ruhr, a grid resolution of 100 m was used. This classification
procedure is described in detail in references [21, 61]. For the calibration of SLEUTH, the 1984
data comprise the base year and the 2001 data constitute the reference year. For the validation
of SLEUTH, the 1975 data serve as the base year and the 2005 data constitute the reference
year. Finally, the urban growth detected in the classified LANDSAT data between 1984 and
2001 is used to train the SVM model.

3. Modelling urban growth with an optimized cellular automaton

3.1. SLEUTH – An urban cellular automaton

Clarke’s urban growth model (UGM), mostly identified as SLEUTH, understands urbaniza‐
tion as a diffusion process where complex urban patterns spread as a whole. It has been
applied in several urban growth studies all over the world [19] and offers many set screws
for an enhancement of its performance. SLEUTH is an acronym of its initial input factors,
which are slope, land-use, exclusion, transport and hillshade. The base data consist of the
urban land-use configuration and the mandatory slope and transportation layer. The exclu‐
sion layer is optional, but recommended because it prevents the location of urban cells in,
for example, conservation areas or water bodies. Additionally, the exclusion layer can be
combined with a probability map to enhance the simulation performance. Five growth coef‐
ficients (dispersion, breed, spread, slope and road gravity) define the four growth rules of
SLEUTH: spontaneous growth, representing the random emergence of new urban areas;
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new spreading center growth; edge growth depicting extensive urban sprawl and road-in‐
fluenced growth (Figure 2). The last one is SLEUTH-specific and relocates a temporary cell
along the road to its final position. Space and time are treated discretely in the CA. Thus,
one growth cycle represents 1 year of urban growth and consists of the four aforementioned
successive growth simulations. Each selected new urban cell is tested against the local slope
and exclusion information as well as a random value during each growth cycle. One model
step consists of all growth cycles (years) between the starting and the end date of the cali‐
bration phase.

Figure 2. Growth types of a growth cycle in SLEUTH.

The calibration process of SLEUTH is based on the brute-force method. Every parameter
combination of the particular growth coefficients between values of 0 and 100 is tested until
the optimal balance is assessed. Every modeling process for each parameter combination is
run several times by using Monte-Carlo (MC) iterations. Goetzke modified SLEUTH and
implemented it into XULU (eXtendable Unified Land-use Modeling Platform), a modeling
environment developed at the University of Bonn [57, 58]. The standard calibration evaluation
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method of SLEUTH has been replaced by the multiple resolution validation (MRV) [59]. The
MRV procedure compares an observed simulated map with a validation map at different
spatial resolutions. High -resolution maps are weighted more than maps at lower resolution.
The basic idea behind MRV is to attenuate the impact of localization errors by extending the
conventional cell-by-cell comparison and considering the similarity of the entire neighborhood
of a cell. Thus, the ‘fuzziness’ of categorical maps is addressed [58], and spatial patterns can
be simulated quite precisely by accurately classifying only a relatively few map cells. Addi‐
tionally, urban land-use calibration with MRV requires only two maps: a map of the initial
calibration year and one of the final year.

3.2. Support Vector Machines

In their contemporary form, SVM was firstly formulated by Cortes and Vapnik [20]. Along
with artificial neural networks and genetic programming they represent a new generation of
machine learning algorithms. With their robust operation architecture and their valid classi‐
fication results, SVM is a very popular classification technique for remote sensing data [60].
Fundamentally, SVM is a linear binary classifier that labels a sample of empirical data by
constructing the optimal separating hyperplane (Figure 3, left). Traditional machine learning
methods try to minimize the empirical training error, causing a tendency to overfit [61, 62].
They are strongly tailored to the training data, so extending them to additional data becomes
difficult. According to the principles of structural risk minimization, SVM tries to minimize
the upper bound of the expected generalization error through maximizing the margin between
the separating hyperplane and the data. The margin concept is the key element in the SVM
approach for it is an indicator of its generalization capability [63, 64].

Figure 3. An optimal hyperplane constructed by the support vectors separates the training data (left). To solve a non‐
linear classification problem, the input data is projected onto a higher-dimensional Hilbert space (right) [65].

The principal advantage of SVM is the option to transform the model in order to solve a
nonlinear classification problem without any a priori knowledge. Using the so-called ‘kernel
trick’ (Eqs 7–9), the input vectors are reprojected to a higher dimensional space in which they
can be classified linearly (Figure 3, right).

Considering the scenario of a set of training vectors T belonging to two classes:

(1)
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where

yi = the class label (here urban growth and no urban growth)

xi = a given data point in the n-dimensional feature space.

In this scenario, the dimension of the input space is determined by the range of urban growth
driving forces. A hyperplane needs to be found which separates the positive from the negative
feature vectors. The ‘separating hyperplane’ H can be parameterized linearly by w and b

: , 0+ =H w x b (2)

where w, element of ℝd, is a normal to H and b, element of ℝ, the bias. The classification problem
can be formalized as the decision function

( )( ) ( ),= +xsgn f sgn w x b (3)

For the linearly separable case, two hyperplanes H+ and H− are constructed by the closest
positive and negative, respectively, examples – the so-called support vectors:

: , 1 and &  : , 1+ -+ = + = -H w x b H w x b (4)

Note that H+ and H− are parallel because they have the same normal and no training points
fall between them. Through the perpendicular distances from the origin of H+ and H− it can
be shown that the distance between the optimal separating hyperplanes H+ and H, respec‐
tively, H− and H, is 1/||w||’ where ||w|| is the Euclidean norm of w. So the margin between
H+ and H− is 2/||w||. The optimal separating hyperplane can be found where the margin
between H+ and H− is the largest. Hence ||w|| has to be minimized. The formulation of the
constrained optimization problem is
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The constant C is called penalty parameter and ξi is a slack variable representing the error in
the classification. The first part of the objective function tries to maximize the margin between
the two classes and the second part minimizes the classification error. The optimization
problem is solved by formulating it in a dual form derived by constructing a Lagrange function
according to the Karush-Kuhn-Tucker optimality condition [63]. The resulting classification
rule is
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where αi values are the corresponding Lagrange multipliers to xi and b is the constant. The
support vectors are all xi where αi≠0. If the classification problem is not separable linearly, then
the decision function cannot be solved simply with the separation approach described above.
The data set must be transferred or projected respectively into a higher dimension: the Hilbert
space. This process extends the methods of vector algebra from two-or three-dimensional
spaces to spaces depicting any finite or infinite number of dimensions (Figure 3). By using the
function ϕ with d1 < d2, the number of possible linear separations is increased:

(7)

SVMs are well suited for this operation since the training data xi emerge only in scalar products
in terms of the optimization problem. The scalar product xi, x is calculated in the higher
dimensional space ϕ (xi), ϕ (x). The transfer is performed with the use of a kernel function k
according to Mercer’s theorem [65].

( ) ( ) ( )ix x xi xk   f f=, , (8)

The Gaussian radial basis kernel function is a reasonable first choice ([64, 71]):

( )

2

,
i

i

x x
x xk e g- -= (9)

The parameter y defines the width of the Gaussian kernel function. After the kernel trick the
decision function becomes
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Instead of predicting the label directly, the class probability is calculated (Eq 11) which delivers
the basis for the probability maps of urban growth. Platt approximates the probabilities for
binary SVMs using a sigmoid function
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where A and B are parameters estimated by minimizing the negative log-likelihood function
[67].

3.3. Optimizing SLEUTH

In this study, SVM is applied to raster layer stack consisting of different geophysical, socioe‐
conomic as well as demographic driving factors of urban growth in order to optimize the CA
SLEUTH. The selection is based on recent empirical studies dealing with urban sprawl in
Central Europe [2, 5, 24]. Most studies of SVM in the context of urban growth modeling employ
ordinary distance variables to represent proximity [66, 68]. In some cases, varying accessibility
has a significant effect on the forces driving land use decisions. Hence, the effects of accessi‐
bility to markets or important infrastructure facilities are measured by weighting distances
with a road variable that was derived using a categorized road network data set. Demographic
and socioeconomic data that are exclusively available at the district level have been disaggre‐
gated to dasymetric maps [69]. For the other socioeconomic variables that are not related to
population, statistical data were projected to the center points of each district and inverse
distance weighting was used for interpolation. To minimize spatial autocorrelation effects, a
stratified sampling method was applied [70]. This procedure generated a training data set
containing 4000 image pixels for each urban growth and no urban growth class, with a 1 km
minimum separation distance between equal pixels. For the construction of the SVM model
one can use the software tool imageSVM® implemented in the EnMAP Toolbox®. Originally,
imageSVM was created for solving classification problems in the context of multi- and
hyperspectral satellite imagery [71]. The output of a SVM classification with imageSVM is not
only a classified binary image but also a probability image based on the principles of (Eq 11).
The crucial step for constructing a SVM model is determining optimal parameter settings,
including appropriate values for the penalty parameter C (Eq 5) and the kernel parameter y
defining the width of the RBF kernel (Eq 9). An effective method for balancing the accuracy
results of ‘known’ training data with ‘unknown’ testing data is the n-fold cross validation
procedure [70]. According to the ‘curse of dimensionality’ and the Hughes’ phenomenon,
which describes the degradation of the classifier performance when increasing the number of
features, it is additionally advisable to select the optimal feature combination [71, 72]. A
common element of SVM feature selection is a forward feature selection, which initially trains
each feature of the input feature set. The best performing feature is selected and the remaining
features are used for training in combination with the initially selected one. The procedure is
repeated until all features have been selected.

The driving forces (Table 1) form the feature space (Eq 2) and build the base for training the
1984–2001 SVM urban growth model. The rank of a variable within the SVM feature selection
(Table 1) is a reliable indicator for assessing the influence of the urban growth driving forces
that were selected as model input parameters [70]. Following several subsequent feature
selections, nine variables were eliminated. It can be stated that the characteristic attributes of
the distance-related variables [73] and of the number of jobs are more suitable for constructing
the SVM model than other socioeconomic or demographic variables. The distance to the next
railway station in particular seems to be a very good indicator for a possible urbanization. This
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might be a link to the industrial past traversing the urban area by a freight transport network.
Beside elevation – and slope, which already is a part of SLEUTH – no other geophysical variable
is usable for the selection of areas suitable for urban growth with SVM. The parameters “Jobs”
related to the labor market and “NetDwellArea” variable which is a descriptor of living
conditions are other important urban growth drivers.

Name Description Rank*

Distance-related variables

Dist Airport Cost-weighted distance (CWD) to next international airport 5

Dist City CWD to next city >25.000 inhabitants 3

DistHighway CWD to next highway exit 2

Dist Railway CWD to next railway station 1

Dist River Euclidian distance to next river 6

Highway Buffer 500 m buffer to highways n.i. X

Geophysical variables

Elevation Elevation above sea level (m) 11

Soil depth° Vertical extent of soil layer (cm) n.i.

Soil type° Soil type defined by grain size (nominal) n.i.

Soil quality° Agricultural appropriateness (from [temporary] ‘not usable’ to ‘very good
agricultural location’)

n.i.

Waterlogging° Waterlogging type (from ‘low’ to ‘very high’) n.i.

Water table Depth of complete water saturation below ground (cm) n.i.

Socioeconomic variables

Income Inverse distance-weighted (IDW) average income per month in district 1991 n.i.

Jobs IDW number of jobs 1991 4

Land Price IDW land value 1990 7

NetDwellArea IDW per capita net dwelling area 1990 8

Unemployment IDW unemployed per population 1991 9

Demographic variables

Cars Number of cars in district; density function (10 km kernel) DF n.i.

Migration25–50 Difference between in- and out-migration per settlement of the group aged 25 to 50 n.i.

PopDens Population density 1984; DF 10

*Rank according to the forward feature selection.
xNot included.
°Dummy coded.

Table 1. Variables selected for SVM model.
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Figure 4. SVM probability map of urban growth from 1984 to 2001.

The output of the imageSVM® classification is not only a classified land-cover image but also
an image containing the probabilities of each pixel for ‘urban growth’ and ‘nonurban growth’
[66]. The receiving operator characteristic (ROC) is an approved index for the accuracy
assessment of binary categorical probability estimations [74]. The ROC divides the probability
outcomes into percentile groups from high to low probability and compares the individual
probability groups with the cumulative real values. The ROC only considers the positive values
estimated by the model; in our case all urban growth cells. To define the ROC, true positive
and false positive rates are plotted for every percentile group. The result is a curve where the
area under the curve (AUC) is the measure that represents the ROC statistic. If a model acts
randomly, then the curve will be a line through the origin with a slope of 1 and an AUC of 0.5.
If a model acts perfectly, then the AUC is 1. Figure 4 shows the ROC of the SVM model as well
as the created probability map and the observed urban growth between 1984 and 2001. The
curve of the SVM model clearly reaches a stable level already at low percentile groups. The
resulting AUC values confirm the visual impression. The SVM model achieves a value of 0.94
– an outstanding performance for the AUC.

3.4. Calibration and validation of SLEUTH-SVM

Together with the SVM-based allocation probability map of urban growth, SLEUTH-SVM is
calibrated using the produced urban land-cover maps 1984 and 2001 as the start and the testing
year. For the validation of the model, the predicted urban growth is compared with the
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observed urban growth of 2005, starting the simulation in 1975. It is clearly distinguished
between the data sets used for calibration, and the data set used for validation of the model.
The SVM probability map based on various driving forces of urban growth is combined with
the exclusion layer of SLEUTH. In total, the three different versions of SLEUTH are compiled:

• SLEUTH: without exclusion layer.

• SLEUTH-AR: exclusion layer (areas where urban growth is restricted such as water bodies,
natural reserves, etc.).

• SLEUTH-SVM: exclusion layer and probabilities for urban growth based on the SVM
analysis.

Figure 5. Agreement results of SLEUTH-SVM: comparison map of observed and predicted urban areas 2005.

The validation of complex system models such as CA not only includes careful error estimation
but also addresses the uncertainty of the model results [75]. Unwin defines uncertainty in the
context of spatial simulations as a measure of doubt and distrust in results which can be seen
as a certain kind of vagueness due to stochastic variability [76]. Aerts et al. [77] demonstrated
that a detailed examination of the outcomes after 100 MC iterations is a valid procedure for
assessing the uncertainty of CA like SLEUTH. The resulting map shows how often a certain
cell has been depicted by the model to be urbanized. In order to transform it into a binary land-
use map, a probability of 33% as cut-off value is used which was elaborated via a standard
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histogram frequency method [78, 79]. With this value the best balance between location and
quantification performance could be achieved.

Figure 5 contains the comparison map of the predicted and the observed urban growth for
2005. It is important to emphasize that SLEUTH is a purely growth-oriented model. The CA
exclusively models the transformation from nonurban to urban cell states. There is no ability
to model in a spatially explicit manner the reverse process of urban contraction due to
demolition or removal of sealed surfaces. In the near future, however, regional planning will
have to deal with this process of extensive urban demolition (or urban perforation). For the
1975–2005 study period, spatial urban growth occurred concurrently with a contracting
population [34]. There are only few areas where the simulation acts ‘false-positively’, meaning
the model predicted urban growth where no growth has occurred [76]. These are nearly always
located in open-spaced inner city areas or clustered along recreational parks of the river
Emscher between Bottrop and Essen. In contrast, there are more areas where the model
simulates ‘false-negatively’, which is predicting persistence where urban areas have spread in
reality. Admittedly, it is virtually impossible to allocate greenfield development with indus‐
trial estates or the emergence of new traffic areas with a spatial certainty of 100 m without any
local planning knowledge. Indeed, the urban areas in the district of Ennepe-Ruhr should have
been actually captured. It seems that the slope layer of SLEUTH suppressed urbanization in
this hilly region during the simulation run. However, in total, 108,220 ha of built-up land were
predicted in the Ruhr for 2005. This is a growth of nearly 14% since 1975. In comparison, the
observed urban growth rate is 39%. The underestimation of the quantity of change is specific
for spatially explicit land-use change models [59, 80, 81]. For this reason, the model is validated
regarding its overall simulation performance (overall agreement) in comparison with ran‐
domness (Cohen’s Kappa), the quantity estimations of urban growth (κhisto), the allocation
ability of urban growth (κloc), as well as the fuzziness of urban growth (Ft) (Table 2).

SLEUTH SLEUTH-AR SLEUTH-SVM

New urban cells (ha) 110,668 108,220 110,445

Overall Agreement 0.911 0.912 0.914

Kappa 0.777 0.779 0.782

Ft
* 0.923 0.924 0.926

κloc 0.884 0.887 0.911

κhisto 0.879 0.878 0.859

*Ft is the mean factor of agreement over all resolutions of the MRV.

Table 2. Validation results 1975–2005 of SLEUTH.

The achieved results are on a very good level. They show that the optimized CA SLEUTH-
SVM outperforms the SLEUTH model without any exclusion information as well as the
SLEUTH model exclusively containing the restriction areas. The lower quantification per‐
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formance is due to the simulation algorithm of SLEUTH: if SLEUTH is run without a proba‐
bility map or an exclusion layer, then nearly every cell has the same probability of urbanization.
Utilizing probability maps increase the possibility that a particular cell is defined as not suitable
for urbanization and the resulting growth rate decreases. In several urban land-use change
studies, a low signal of urban growth in comparison to a very high signal of persistent
nonurban cells was discussed [59, 81]. κloc is a suitable measurement to assess the allocation
accuracy of a land-use model. Additionally, the model’s ability of allocating newly urbanized
cells should be tested. The null model comparison is a rational choice. A null model is a map
containing the initial land-use pattern; it can therefore also be thought of as a pure persistence-
map. Thus, null models regularly achieve better results at high resolutions than the actual land-
use model; no change predicted means there are no allocation errors of urbanized areas. At a
certain spatial resolution, the quantity error of a null model increases so that the predicted map
achieves better results. The resolution level where the agreement factor of the land-use model
outperforms the null model for the first time is called ‘null resolution’.

Figure 6. MRV curves of the applied models.

The MRV results show a consistently excellent level of overall accuracy. This can be attributed
to the ability of all three models to almost perfectly predict the location and the quantity of
nonurban growth cell states. SLEUTH-SVM is the only model exceeding the level of the null
model already at the resolution level 1 of 100 m (Figure 6). The agreement curve of the null
model forms a straight line, reflecting the low signal of urban growth in comparison to the
very high signal of persistent nonurban growth cells. Again, the optimized version of SLEUTH
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shows a higher agreement between the predicted and the observed urban growth on the level
of high resolutions up to 400 m than SLEUTH and SLEUTH-AR. As soon the resolution gets
coarser, the impact of allocation errors decreases and the performance of SLEUTH-SVM
stagnates.

The question of how the SVM-probability map influences the spatial extension of the Ruhr’s
urban growth will be analyzed with the concept of urban DNA [82]. Analogous to the biological
DNA, it postulates fundamental elements that are common to each urban area and determine
their future growth pattern [83]. Gazulis and Clarke apply the concept to an abstract space
representation mimicking the variable input of SLEUTH [84]. Hence, this grid image reflects
a kind of digital petri dish consisting of an urban area, a slope layer, transport information as
well as exclusion areas (Figure 7). The urban input is just a single urban cell in the middle of
the image whereas all other cells are defined as nonurban. The slope has a minimum value of
0% and increases concentric-radially to a maximum value which is equal to the maximum
slope value to be found in the Ruhr (70%). The transport network is represented by a single
road crossing the center of the image from north to south. In this study, the exclusion layer is
exchanged by the SVM probability map of urban growth of the Ruhr. For estimating the spatial
impact of the SVM optimization procedure, the particular probability map is allocated with a
linear transition from high to low probabilities equivalent to their particular value range. In
the south of the urban center, the probabilities decrease from 1 to the particular medium value.
This medium level continues northwards from the urban center and decreases to zero. Thus,
the maps are divided lengthwise from west to east.

Figure 7. Urban simulation in a digital petri dish consisting of the fundamental elements of the Ruhr’s urban area.

The models SLEUTH and SLEUTH-SVM are run with the calibrated growth coefficients and
100 MC iterations. Hence, one can observe the allocation behavior of the CA under the SVM-
defined conditions of the Ruhr’s urban areas. The border of high and medium probabilities of
urban growth is distinct in the SVM-optimized version of SLEUTH. The CA is clearly guided
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whereas the regular version allocates the cells more randomly in the surroundings of already
built-up areas. In the northern part of the synthetic region, the urban pattern is slim while in
the southern part it broadens. All in all, the DNA of the Ruhr’s urban areas reveals a tendency
to edge growth and a high influence of the road network. The SVM-based probability optimizes
the allocation performance of the urban CA SLEUTH.

4. Conclusion and outlook

The aim of this study was to optimize the CA SLEUTH by using SVM and to assess its
performance in comparison to its standard configuration. A SVM-based probability map
including the impact of driving forces on the allocation of new urban areas was combined with
the exclusion layer of SLEUTH. Hence, the model could be guided and its stochastic variability
regarding the emergence of urban cells depressed. The application of SVM additionally
delivered insights into the most important factors driving the local urbanization suitability.
Thus, the CA provided a theoretical foundation. The importance of distance-related variables
over socioeconomic or demographic variables in the SVM model was clear. Geophysical
variables were not useful to select areas suitable for urban growth with SVM. The models have
been applied to the polycentric agglomeration of the Ruhr. The region’s specific settlement
structure is characterized by large urban areas solely divided through administrative borders.
The scattered rural districts complete the image of a challenging study region in terms of
organizational hierarchies, migration flows and heterogenic growth conditions. The accuracy
of SLEUTH-SVM has been assessed regarding the overall agreement, the fuzziness, the ability
to allocate new urban cells, the performance in comparison with the randomness as well as
the quantity and the allocation ability of urban growth. The calibration and the validation of
the model have been separated carefully. The validation indices for SLEUTH-SVM showed
good values around 0.91 (kappa) and 0.93 (MRV). As a reliable result, it can be stated that the
allocation performance of SLEUTH is optimized clearly when coupling it with a SVM-based
probability map. Its spatial impacts are visualized with the concept of urban DNA and a digital
petri dish. Hence, the generic growth elements of the Ruhr’s urban area were uncovered.

As a next step, coupling different modeling techniques for prediction and process analyses of
urban land-use and land-cover change should be pushed beyond the physical restriction of
pixels. To incorporate the irrational human component impacting on all spatial and temporal
levels between the household and the global scale, pixels must be coupled with people. This
can, for instance, be done by extending the enhanced version of SLEUTH with a multiagent
system. That way, one can study emergence phenomena resulting from complex behavioral
interaction processes on the micro scale. Hence, the simulation of urban change could be
extended from analyzing growth processes to the estimation of urban decline. Coupling actors
with factors would be a chance to overcome formal, differential equations. Therefore, the
present ride on the surface of an ocean of driving forces, pressures, states, impacts and
responses would be optimized into diving right into it.
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Abstract

Three  different  Particle  Swarm  Optimization  (PSO)  algorithms—standard  PSO,
stochastic PSO (SPSO) and differential evolution PSO (DEPSO)—are applied to solve
the inverse geometry design problems of radiative enclosures. The design purpose is to
satisfy a uniform distribution of radiative heat flux on the designed surface. The design
surface is discretized into a series of control points, the PSO algorithms are used to
optimize the locations of these points and the Akima cubic interpolation is utilized to
approximate  the  changing  boundary  shape.  The  retrieval  results  show  that  PSO
algorithms can be successfully applied to solve inverse geometry design problems and
SPSO achieves the best  performance on computational  time.  The influences of  the
number of control points and the radiative properties of the media on the retrieval
geometry design results are also investigated.

Keywords: Particle Swarm Optimization algorithm, inverse geometry design, radia‐
tive heat transfer, SPSO, DEPSO

1. Introduction

Radiative heating devices are encountered in various industrial fields, such as industrial
boilers, spacecraft,  infrared reflecting ovens, metallurgical equipment, and so on and the
design  of  radiative  enclosure  has  a  direct  impact  on  security  issues  [1].  Inverse  design
technique is a new method in recent years, whose solving process is to establish an objective
function according to the design requirements at first, and then optimize the objective function
by some optimization methods, and achieve the pre-specified purpose finally. Inverse design
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technique has the advantages of simple process, short design circle, good optimization results,
etc., and it has got more and more attentions and applications.

Inverse design problems can be divided into two categories according to the design prereq‐
uisites [2]. One is inverse boundary design problems, in which the geometry shape of the
radiative enclosures is fixed and the boundary conditions are need to be deigned [3–6]. The
other is inverse geometry design problems, where the boundary conditions are predetermined
and the geometry shape of the design surface needs to be designed [7, 8]. For the reason that
the geometry shapes of the boundaries of radiative enclosures are different at each iteration
and the grids in the computational domain must be re-meshed in every iterative calculation,
the inverse geometry design of radiative enclosures is the most complex inverse radiative
problem [2, 9].

During the last few decades, some inverse design techniques have been successfully used for
solving inverse geometry design problems. Howell et al. [10, 11] proposed inverse design ideas
and applied inverse Monte Carlo techniques, Tikhonov method, truncated singular value
decomposition (TSVD), Modified TSVD (MTSVD), artificial neural networks (ANN) and
conjugate gradient method (CGM) to solve the inverse design problem of a three-dimensional
industrial furnace, which greatly improved the practical design of thermal and environmental
systems. Franca and Howell [12] studied a transient inverse design problem that finding the
optimal location of a heater on the top surface of a three-dimensional enclosure to produce a
prescribed time-dependent temperature distribution on the bottom surface of the enclosure,
the TSVD method is used to regularize the ill-conditioned system of linear equations the pre-
specified temperature curve is obtained with an error of less than 1.0%. Tan et al. [13] applied
meshless method to solve the coupled conductive and radiative heat transfer problem in
heating devices, in which a series of nodes are used for discretizing the computational domain
to overcome the tedious re-mesh works, and CGM is adopted to optimize the height of the
adiabatic diffuse reflection surfaces and the geometry shape of the heating surface to satisfy
the required total heat flux on the pre-appointed region of the low temperature heated surface.
Sarvari and Mansouri [14] used CGM to minimize the objective function which is expressed
as the sum of square residuals between estimated and desired heat fluxes on the design surface
to satisfy the specified temperature and heat flux distributions. The radiative heat transfer
problem in the two-dimensional irregular enclosure filled with gray participating media with
uniform absorption coefficient is solved by discrete transfer method, the effect of optical depth
and angular refinement on the inverse design results are also investigated.

However, it can be found that most of the above researches about inverse geometry design
problems are solved based on the gradient-based methods. All these methods have the
common disadvantages that the computational process of getting the gradient is complicated
and the retrieval results are strongly depended on the initial guessed values. On the contrast,
intelligent algorithms can abolish the complex calculations about gradient and randomly
generate the potential solutions in the search space to overcome the drawback of depending
on the initial value. In recent years, some intelligent algorithms have been successfully applied
for solving inverse radiative problems, including PSO, genetic algorithm (GA), ant colony
optimization (ACO), difference evolution (DE), fruit fly optimization algorithm (FOA), to
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name a few [15–22]. Compared with conventional techniques, intelligent algorithms can obtain
much more potential solutions at each iteration and all searches are executed in parallel, which
greatly improved the computational efficiency, especially for solving some high dimensional
problems. Intelligent algorithms also have been successfully used to solve inverse design
problems. For example, Moparthi et al. [23] solved the coupled radiative and conductive heat
transfer problem in one-dimensional planar system based on finite volume method (FVM) and
lattice Boltzmann method (LBM) and applied GA to optimize the heater temperature to
produce the desired heat flux and temperature distributions on the design surface. The
retrieval results show that the temperature or heat flux of the heater surface has a significant
effect on the design surface condition, the medium properties and the distance between the
two surfaces. Amiri et al. [24] adopted modified discrete ordinate method to solve the radiative
transfer equation (RTE), the micro genetic algorithm (MGA) is employed to optimize the
objective function which is defined as the sum of the square of the difference between estimated
and desired heat fluxes on the design surfaces. The design purpose is finding the best number
and locations of the discretized heaters to meet the desired temperature and heat flux distri‐
butions on the design surface. Sarvari et al. [25] discretized the design surface into a series of
control points and used B-spline to approximate the geometry shape of the boundary, the MGA
is employed to optimize the locations of the control points to produce a desired heat flux
distribution on the temperature-specified surface. The effects of corresponding parameters on
the inverse design results are also investigated and the angular meshes are recommended as
Nθ × Nφ =10 ×10. In addition, the results indicate that optimizing the weights corresponding
to the control points can improve the quality of designed shape. However, the MGA has the
obvious drawback that the convergence velocity is relatively low.

The PSO algorithm is a kind of biologically inspired algorithm whose search process is similar
to foraging of birds and it was proposed in 1995 by Eberhart and Kennedy [26]. The physical
model of PSO is very simple and the computational program is easy to be implemented, it also
has strong robustness and achieves good performance on computational efficiency and
accuracy. In addition, PSO algorithm can well balance the global and local search of particles,
which enhance the global convergence of the algorithm. Farahmand et al. [27] investigated the
inverse geometry design of two-dimensional radiative enclosures with diffuse gray surfaces
based on the PSO and the retrieval results show that PSO algorithm obtains better performance
in satisfying the design goal based in terms of computational accuracy and CPU time compared
with MGA. However, the standard PSO algorithm also suffers from easily trapping into local
optima in solving high dimensional problems. In order to strengthen the applicability of PSO,
some improvements have been proposed and widely applied, including Stochastic PSO
(SPSO), Differential Evolution PSO (DEPSO), Multi Phase PSO (MPPSO), and so on. However,
to the authors’ best knowledge, there are few reports concerning about the applications of
improved PSO algorithms for solving inverse geometry design problems of radiative enclo‐
sures.

In this chapter, the application of PSO algorithms in solving inverse geometry design problems
of two-dimensional radiative enclosures filled with participating media is investigated. The
design goal is to satisfy a uniform distribution of radiative heat flux on the designed surface.
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The discrete ordinate method (DOM) with a body-fitted coordinate system is used to solve the
RTE. The standard PSO, SPSO and DEPSO algorithms are applied to optimize the locations of
the control points, and Akima cubic interpolation is adopted to obtain the boundary geometry
shape through these points. A typical inverse geometry design test is studied to demonstrate
the good performance of PSO algorithms and the effects of corresponding parameters are also
discussed.

The remainder of this chapter is organized as follows: the theoretical principles of PSO
algorithms are introduced in Section 2. The feasibility of PSO algorithms by four famous
benchmark functions is verified in Section 3. The inverse geometry design of two-dimensional
radiative enclosures and the influences of the number of control points and the radiative
properties of media on the inverse design results are investigated in Section 4. The main
conclusions of the researches in this chapter are summarized in Section 5.

2. Theoretical overview of PSO algorithms

Bird individuals will communicate with each other to share their information about food when
they are foraging, which can help birds find food faster. The advantages of cooperation of bird
swarm are much greater than the disadvantages of competition among bird individuals. Based
on the features of bird foraging behavior, Kennedy and Eberhart proposed PSO algorithm in
1995 [26]. The solving process of PSO algorithm is similar to the foraging behavior of birds,
and the corresponding relationships are shown in Table 1.

Bird foraging behavior PSO algorithm

Foraging domain of bird individual Searching space of each particle

Bird individual Particle

Flight speed of bird Moving speed of particle

Location of bird Location of particle, which represents a solution

of optimization problems

Location of food The best solution of optimization problems

Table 1. Corresponding relationships between bird foraging and PSO algorithm.

There are two dominant parameters in the PSO algorithm, namely, the speed and the location
of particles. The moving speed decides the direction and distance of the particles, and every
location of particles can be considered as the potential a solution of optimization problems.
PSO adopts a combination of local and global searches and shares the evolutionary information
among particle individuals to find the optimal solution.
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2.1. Basic PSO algorithm

At the beginning of the optimization of PSO, every location and velocity of particles are
randomly generated. During each iteration, there will be two extreme values. One is best
location that an individual particle found so far, which is called local best location. Another is
the best location that the whole particle swarm found so far, which is called global best location.
The velocity and location of each particle are stochastically accelerated according to these two
extremes and the evolutionary formula can be expressed as follows [26]

( ) ( ) ( ) ( ) ( ) ( )gi i i i it t c r t t c r t té ù+ = + × × é - ù + × × -ë û ë ûV V P X P X1 1 2 21 (1)

where Vi(t) and Vi(t + 1) represent the velocity of ith particle at iterations t and t+1, respectively,
and Vi ∈ [−Vmax, Vmax]. c1 and c2 are two positive constants called acceleration coefficient. r1

and r2 are two uniform random values in the range of [0, 1]. Pi(t) and Pg(t) indicate the local
best location and global best location, respectively. Xi(t) denotes the location of ith particle,
which is depending on the search experience of ith particle and surrounding particles. The
evolutionary formula of ith particle’s location is defined as [26]

( ) ( ) ( )i i it t t+ = + +X X V1 1 (2)

Figure 1. The evolution of particle’s location.

According to Eq. (1), we can find that the velocity of ith particle consists of three parts: the first
part on the right side is the current velocity of ith particle, which can counterpoise the local
search and the global search; the second part on the right side denotes the influence of the
search memory of ith particle, which makes individual particle has the ability of global search;
the third part on the right side indicates the influence of the cooperation among particles. The
updating process of the ith particle’ location is shown in Figure 1.
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Figure 2. The flowchart of the basic PSO algorithm.

The main procedure of PSO algorithm for solving optimization problems can be carried out
according to the following steps:

Step 1: Initialization: Randomly initialize the location and the velocities of particle of every
particle in the searching space, input the number of particle swarm, the maximum iteration
numbers tmax and the stop criterion ε, etc. Set the current iteration as t=1.

Step 2: Fitness evaluation: Evaluate each particle’s fitness according to its location and
determine the local best location Pi(t) and global best location Pg(t).
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Step 3: Updating: Update the velocity and the location of each particle according to Eqs. (1)
and (2), respectively. Calculate the new objective function value of each particle and update
the local and global best locations Pi(t) and Pg(t).

Step 4: Comparison: Compare the objective function value of each newly obtained particle
with the corresponding values at the last iteration. If the new objective function value is better
than the one in the last generation, then the new location and velocity of this particle is updated.
Otherwise, the new location is abandoned.

Step 5: Repeating: Check whether one of the following two stop criterion is reached: (1) the
objective function value is less than the value of ε, and (2) the iteration number reaches the
maximum iteration number. If so, go to the next step; otherwise, go to Step 3.

Step 6: Update of iteration number: Update the number of iteration from t to t+1.

Step 7: Termination of iteration: Output the global best optima and its corresponding results
of optimization problems and then stop the calculation.

The flowchart of the basic PSO algorithm is shown in Figure 2.

However, there are some obvious shortcomings in the basic PSO algorithm, such as slow
convergence, easy to fall into local optimum, and even the velocities tend to be infinity in some
occasions. Thus, many modifications have been proposed to overcome these drawbacks.

2.2. Standard PSO algorithm

There are two important capabilities in PSO algorithm, namely exploration and exploitation
of particles. Exploration is the phenomenon that particles leave the original orbit and search
for new space. Exploitation is the phenomenon that particles look for better locations along
the original track. In order to better take advantage of these two search way, Shi and Eberhart
put forward the standard PSO algorithm on the basis of basic PSO in 1998 [28], in which an
inertia weight coefficient w is introduced to control the impact of the current velocity on the
next velocity. The velocity formula of ith particle can be expressed as [28]

( ) ( ) ( ) ( ) ( ) ( )gi i i i it w t c r t t c r t té ù+ = × + × × é - ù + × × -ë û ë ûV V P X P X1 1 2 21 (3)

where w is the inertia weight coefficient, which can directly affect the balance between the
global and local exploration abilities. At the initial stage of the search process, a big inertia
weight coefficient is recommended to improve the global exploration ability in the relatively
large space; whereas the inertia weight should be reduced with the iteration number increases
to strengthen the local exploitation ability. It is worth pointing that a linearly decreasing inertia
weight coefficient can successfully prevent particles from oscillating near the global best
location [29]. Therefore, the inertia weight coefficient can be defined as
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Comparing Eq. (1) with Eq. (3) we can find that basic PSO algorithm is a special circumstance
of standard PSO algorithm that inertia weight is set as w=1. The searching efficiency is
significantly improved by introducing inertia weight w. However, the proportional relation of
particle velocities at every generation is not all the same, and the standard PSO algorithm can’t
be successfully applied for solving some complicated optimization problems. For breaking
through the limitation of PSO, many modified techniques have been developed out and widely
applied in engineering fields.

2.3. Stochastic PSO algorithm

In order to overcome the drawback that PSO algorithm converges too early and make sure to
reach the goal of global convergence, Zeng and Cui proposed SPSO algorithm in 2004 [30, 31],
in which a stopped changing particle is utilized to improve the global searching ability of
particle swarms.

In SPSO algorithm, the inertia weight coefficient is set as w=0. Hence, the velocity of ith particle
at t+1 iteration is determined by three parameters of t iteration, namely Xi(t), Pi(t) and Pg(t).
The new velocity of ith particle can be expressed as [30]

( ) ( ) ( ) ( ) ( )gi i i it c r t t c r t té ù+ = × × é - ù + × × -ë û ë ûV P X P X1 1 2 21 (5)

According to Eq. (5), it can be found that the local searching ability of SPSO is increased
compared with standard PSO. However, the global searching ability is reduced significantly.
In order to further strengthen the global searches of SPSO, the algorithm randomly generates
a particle in the searching space whose location is Xj(t + 1), and other particles’ locations are
updated based on the Eq. (5). The whole amending process can be expressed by the following
equations
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After above updates, the following criterions are executed:

(1) If Pg = Pj, which demonstrates that the random location Xj is the global best location. In this
situation the jth particle will not be updated on the basis of Eq. (5) and the algorithm will
randomly generate a location Xj in the searching space at the next iteration. At the same time,
the velocities and locations of other particles are updated according to Eqs. (5) and (2) after Pg

and Pj are updated, respectively.
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(1) If Pg = Pj, which demonstrates that the random location Xj is the global best location. In this
situation the jth particle will not be updated on the basis of Eq. (5) and the algorithm will
randomly generate a location Xj in the searching space at the next iteration. At the same time,
the velocities and locations of other particles are updated according to Eqs. (5) and (2) after Pg

and Pj are updated, respectively.
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(2) If Pg ≠ Pj and Pg has not been updated, which indicates that there is no better global best
location found, compared with the last iteration, then all the particles’ the velocities and
locations are updated based on the Eqs. (5) and (2), respectively.

(3) If Pg ≠ Pj and Pg has been updated, which demonstrates that there is a location of kth particle
(k ≠ j) meets the requirement Xk (t + 1)=Pk =Pg , namely the local best location of kth particle is
the global best location and it is better than the global best location at the last iteration. In this
situation, the kth particle stops evolving and it is used for storing global optima. Other particles’
velocities and locations of other particles are updated according to Eqs. (5) and (2) after Pg and
Pj are updated, respectively.

Through the above analysis we can find that there is at least one particle’s location reaches the
global best location at a particular iteration, which indicates that at least one particle is
randomly generated at each iteration. Therefore, SPSO algorithm has been proved with strong
global search ability.

2.4. Differential evolution PSO algorithm

Differential Evolution (DE) algorithm adopts simple differential operation among potential
solutions to produce new candidate solution, which is a parallel, direct and stochastic search‐
ing technique. It was first proposed for solving Chebyshev polynomials and global optimiza‐
tion problems over continuous spaces by Storn and Price in 1995 [32]. Taking a cue from DE,
the mutation operation is introduced into PSO algorithm to overcome the drawback of
trapping in local optima, which is called DEPSO.

In DEPSO algorithm, the differential evolution operator is introduced to increase the diversity
of particle swarms which is defined as

( ) ( )r rt tb c é ù= -ë ûX X
1 2 (7)

where χ is the differential mutation operator which controls the magnification of differential
variation Xr1

(t)−Xr2
(t) and it is usually set as a constant in the interval [0, 2]. r1 and r2 are two

integers which are randomly chosen in the interval [1, M] and they are not equal to the index
i. Hence, the location evolution of ith particle can be expressed as

( ) ( ) ( ) ( )mini i it t t C Fb+ = + + -X X V1 (8)

where C represents a preset constant value which satisfies C ≤ Fmin, Fmin indicates the minimum
objective function value at the current iteration. The differential evolution term can force the
particle to change if only C ≠ Fmin, which can effectively prevent PSO algorithm from falling
into local optima.

However, the location obtained by mutation operation maybe a worse result which will cause
a bad influence on the search of other particles. In order to make sure the rapidity and stability
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of DEPSO algorithm, the following judgment should be executed before the location is
updated:

(1) If the fitness value of the new location is better than the fitness value of the earlier location,
which demonstrates the mutation is successful. Then the location of ith particle is updated
according to Eq. (8).

(2) If the new fitness value is worse than before, which indicates this mutation is failed. Then
the location of ith particle is updated according to Eq. (2) and the mutation operation of ith
will continue at the next iteration until the mutation is successful.

In addition, there is a significant difference between DEPSO and basic PSO that the velocities
of particles are not limited in the searching process, which can increase the convergence rate.

3. Simulation test of PSO algorithms

In order to test the performance of the above PSO algorithms, four benchmark optimization
functions are used for verification whose details are shown in Table 2. The parameters in PSO
algorithms are set as follows: the number of particle swarm population is set as M =50, the
maximum velocity is set as Vmax =3.0, the inertia weight coefficient is chose according to Eq.
(4). The acceleration constants are set as c1 =1.2 and c2 =0.8 in SPSO and DEPSO algorithms,
whereas c1 =2.0 and c2 =2.0 in standard PSO algorithm, respectively. The objective functions are
set as the same as the test functions and the iteration stops upon the fitness value reaches the
maximum iteration number tmax=1000 or the objective function value is less than 10-30. The test
results of the four functions with dimension n=2 are shown in Figure 3. Table 3 lists the average
objective function values and the corresponding mean squared errors for these four benchmark
functions with 1000 independent runs. As shown, both the SPSO and DEPSO algorithms
achieve better performance than the standard PSO algorithm in terms of computational
accuracy.
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Table 2. Details of four benchmark functions.
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Figure 3. The images of (a) Sphere function, (b) Rastrigin function, (c) Rosenbrock function and (d) Schaffer function
with dimension n=2.

Function Dimension PSO SPSO DEPSO

Sphere 10 5.94×10-28±3.46×10-27 8.33×10-31±1.67×10-31 8.25×10-31±1.91×10-31

20 2.82×10-13±7.76×10-13 4.80×10-17±3.63×10-16 2.98×10-25±1.54×10-24

30 5.27×10-8±8.6910-8 1.23×10-6±3.97×10-6 7.30×10-15±2.34×10-14

Rastrigin 10 4.82×10-28±1.82×10-27 8.35×10-31±1.62×10-31 6.87×10-31±2.16×10-31

20 2.68×10-13±5.52×10-13 7.22×10-17±9.23×10-16 2.03×10-25±1.46×10-24

30 5.39×10-8±7.56×10-8 1.48×10-6±4.34×10-6 7.08×10-15±6.66×10-14

Rosenbrock 3 3.36×10-8±8.39×10-8 3.53×10-17±1.06×10-16 2.95×10-16±9.21×10-16

5 5.62×10-2±6.02×10-2 4.12×10-2±1.99×10-2 1.37×10-2±2.85×10-2

10 3.18×100±1.56×100 4.62×100±3.45×100 5.78×100±2.61×100

Schaffer 2 5.11×10-2±5.61×10-2 9.87×10-4±2.92×10-3 4.66×10-4±2.60×10-3

Table 3. The retrieval results of three test functions with 1000 independent runs.
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4. Inverse geometry design of two-dimensional radiative enclosures

4.1. Description of the inverse geometry design problem

Considering a radiative equilibrium problem in two-dimensional irregular enclosures filled
with participating media whose schematic diagram is shown in Figure 4. The curve EF
represents the design surface and the design purpose is to produce a uniform distribution of
radiative heat flux on the design surface. The bottom surface AD is the heating surface which
can considered as the radiative heat source and its temperature is fixed as TS. The two side
surfaces AB and CD are cold with temperatures of 0K.

Figure 4. Physical model of inverse geometry design.

In order to optimize the geometry shape of the design surface to meet the specified require‐
ment, the objective function (being equal to the fitness function in PSO algorithms) is defined
as the square residuals between the estimated and average dimensionless radiative heat flux
values which can be expressed as

( )obj w avi

N

i

F Q Q
=

= -å
2

1
(9)

where N is the number of the computational node on the design surface, and Qwi and Qav are
the dimensionless radiative heat flux of the ith node and average value on the design surface,
respectively. The iteration stop criterion of PSO is defined as

objF e< (10)

where ε is a small positive value. The smaller the value of ε is, the better the homogenization
degree will be.
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To evaluate the optimization results, the relative error is defined as

w av
rel

av

%i
Q Q

Q
e

-
= ´100 (11)

4.2. Akima cubic interpolation

The design surface is discretized into a series of control points, and Akima cubic interpolation
is used to approximate the geometry shape of the surface in optimization process. Akima
interpolation is formulated by a cubic polynomial between two control points. First, the
prerequisite is introduced as [33]

( )
( )
( )
( )

k k

k k

k k

k k

Y x y
Y x y
Y x g
Y x g

+ +

+ +

ì =
ï =ï
í =ï
ïî

¢
¢ =

1 1

1 1

(12)

where gk is the slope of the curve at the position xk, which can be defined as [33]
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and the function lk can be expressed as [33]

lk =
yk +1 − yk

xk +1 − xk
(14)

At the endpoints, the value of the function lk can be defined as [33]

-

- - + -

ì = - = -ï
í = - = -ïî

0 1 2 1 0 0

1 2 1 1

2 , 2
2 , 2

d d d d d dN N N N N N
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l l l l l l at the right endpoint (15)

If the above equations are satisfied, then the cubic polynomial in the subinterval [xk , xk +1] can
be determined as [33]
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1 2 3 4( ) ( ) ( ) ( )k k kY x C C x x C x x C x x (16)

where C1, C2, C3, and C4 are polynomial coefficients, which can be calculated as [33]
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(x, y) (x1, y1) (x2, y2) (x3, y3) (x4, y4) (x5, y5) (x6, y6)

Case 1 (0.0, 1.0) (0.2, 1.2) (0.4, 1.5) (0.6, 1.5) (0.8, 1.2) (1.0, 1.0)

Case 2 (0.0, 1.0) (0.2, 1.5) (0.4, 1.3) (0.6, 1.3) (0.8, 1.5) (1.0, 1.0)

Case 3 (0.0, 1.0) (0.28, 1.2) (0.41, 1.4) (0.67, 1.1) (0.88, 1.3) (1.0, 1.0)

Table 4. Coordinates of control points of three test cases.

Figure 5. Curve fitting results by means of Akima cubic interpolation.

In order to test the performance of the Akima cubic interpolation, three interpolation cases are
applied, in which six specified points are used as control points whose coordinates are shown
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In order to test the performance of the Akima cubic interpolation, three interpolation cases are
applied, in which six specified points are used as control points whose coordinates are shown
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in Table 4. The curves in Figure 5 indicate the Akima cubic interpolation can successfully
applied for geometry shape fitting.

4.3. Discrete ordinate method with a body-fitted coordinate

The boundary shape changes with the optimization of the design surface and the computa‐
tional domain must be re-meshed, which greatly increase the solving difficulty of the inverse
geometry design problems. In addition, the forward radiative heat transfer problem cannot be
precisely solved by the normal numerical method. For the purpose of fitting the irregular
boundary shape, the DOM with a body-fitted coordinate system is adopted to solve the RTE.
For the participating media, the forward can be written as [34]

( )
p

k
b k

p
¶

= - + + F W
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e a b 4

ˆ( , ) ˆ ˆ ˆ ˆ( , ) ( ) ( ) ,
4 i i i

I s I s I s I d
s
s s s s s (18)

which is an integro-differential type, where I is the function of position s and direction ŝ. βe,
κa, and κs are the extinction, absorption, and scattering coefficients of media, respectively. The
Φ(ŝi, ŝ) is the scattering phase function between incoming direction ŝi and scattering direction
ŝ, which can be defined as Φ =1.0 + a cos (ŝi ⋅ŝ). The coefficient “a” are different for different
scattering characteristics of media and values are a=0, a=1 and a=-1 for the isotropic scattering,
the forward scattering and the backward scattering of media. The forward radiative heat
transfer problem in the irregular enclosures is solved by using the computationally feasible
DOM with a body-fitted coordinate system in this research. The 2D RTE discretized by the
DOM can be expressed as [34, 35]
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where αm and βm are the direction cosines of the discrete direction m. s refers to the spatial
position, w is the quadrature weight. The radiative boundary condition can be directly imposed
as follows [34]
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where εw is the emissivity of boundaries, Ib,w is radiative intensity of blackbody boundaries,
nw represents the unit normal vector on the boundary, and s denotes the direction of radiative
transfer.

The Jacobian matrix is used for coordinate transformation to solve the radiative heat transfer
in irregular enclosures
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The spatially discretized RTE with a body-fitted coordinate system can be expressed as
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where P represents the central node of the control volume. The subscripts e, w, n, and s
represent the eastern, western, northern and southern boundaries around P, respectively.

The step scheme is applied to solve the above equations, and Eq. (22) can be expressed as
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where the subscripts E, W, N, and S represent the central node of eastern, western, northern,
and southern control volumes around control volume P, and
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Eq. (24) can be expressed in matrix form
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Eq. (24) can be expressed in matrix form
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A = BY (25)

where A represents the five-diagonal non-symmetric coefficient matrix, Ψ represents the
vector that consists of the variables Im at grid nodes, and B represents the vector that consists
of the variables bm on the right side of Eq. (23). The conjugate gradients stabilized (CGSTAB)
method is adopted to solve the final discretized RTE because of its stability and fast conver‐
gence rate [35].

Figure 6. The schematic diagram of grids in computational domains.

Figure 7. The dimensionless radiative heat flux distribution on the bottom boundary for different absorption coeffi‐
cients.

Consider a non-radiative equilibrium problem in the two-dimensional irregular enclosure
filled with participating media. The four boundaries are cold surfaces whose temperature is
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0K and all the boundaries are assumed as blockbody. The temperature of media is set as Tg,
which can be considered as the heat source. The computational grids are meshed as 10 × 10
and the schematic in the computational domain is shown in Figure 6. The radiative heat
transfer problem for different absorption coefficients in the radiative enclosure is solved by
the body-fitted DOM and the retrieval results are compared with the results obtained by FVM
in Ref. [36] which is shown in Figure 7. The curves show that the retrieval results achieve good
agreements with FVM, which verified the accuracy and reliability of the computational
program for solving radiative problems in irregular enclosures.

4.4. Inverse design results and discussions

The inverse geometry design model in Section 4.1 is considered and the standard PSO
algorithm is abbreviated as PSO if there is no special instruction. The initial shape of the
enclosure is rectangular, whose size is set as L x × L y =1.0×1.0 m. The absorption and scattering
coefficients of media are set as κa =2.0 m-1 and κs =0.5 m-1, respectively. The parameters in the
PSO algorithms are set as the same as the ones in test cases of Section 3. The stopping criteria
are set as follows: (1) the objective function value is less than 10-7, (2) the iteration times reach
a maximum of 1000 and (3) the fitness value remains unchanged in consequent 100 iterations.
The initial and final geometry shape of the design surfaces and their dimensionless radiative
heat flux distributions are shown in Figure 8(a) and 8(b), respectively. The curves demonstrate
that a uniform distribution of radiative heat flux on the design surface is obtained by means
of PSO algorithms. Figure 8(c) shows the relative error distributions of the dimensionless
radiative heat flux on the design surface. The average relative errors are 0.0310%, 0.0234% and
0.0279%, and the maximum relative errors are 0.0728%, 0.0540% and 0.0807% for PSO, SPSO
and DEPSO algorithms, respectively. Overall, the retrieved results clearly reveal that the
specified requirement of producing a uniform radiative heat flux distribution on the design
surface can be obtained by PSO algorithm.
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(b)

Figure 8. (a) Initial and final geometry shape of the design surface, (b) dimensionless radiative heat flux distribution on
the design surface, and (c) relative error distributions of dimensionless radiative heat flux on the design surface, of a
two-dimensional radiative enclosure.

Algorithms CPU
time (s)

Fitness values Average relative
error (%)

Maximum relative
error (%)

PSO 40037 7.28×10-8 0.0313 0.0737

SPSO 31572 4.05×10-8 0.0244 0.0518

DEPSO 36944 5.62×10-8 0.0275 0.0669

Table 5. Comparison of inverse design results by PSO, SPSO and DEPSO algorithms.
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In view of the random characteristic of intelligent algorithms, all the tests are repeated 50 trials
to compare the performance of PSO algorithms. Table 5 shows the comparison of the results
obtained by PSO, SPSO and DEPSO algorithms. It can be found that all the PSO algorithms
have reached the special design requirement and both SPSO and DEPSO achieve better
performance than the initial PSO in terms of computational accuracy and efficiency.

Figure 9. (a) Geometry shape of the design surface and (b) dimensionless radiative heat flux distribution on the design
surface by means of SPSO algorithm for different numbers of control points.

In order to enhance the computational efficiency of inverse geometry design problems, the
effects of corresponding parameters are investigated in this study. For the fact that the design
surface is discretized into a series of control points in the inverse design process, the number
of control point has a direct impact on the inverse geometry design results. The radiative
physical parameters of media are kept as the same as the above typical example and the
numbers of control point are set as Nd=1, 3, 5, and 7, respectively. The SPSO algorithm is
adopted as the inverse design method and the initial and optimized geometry shape and
dimensionless radiative heat flux on the design surface are shown in Figure 9, respectively.
The curves show that the special design requirement is satisfied under the conditions that Nd=3,
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5 and 7, whereas the homogenization degree is relatively poor in the case that Nd=1. Table 6
lists the iteration numbers, fitness values and relatives errors for different numbers of control
point. It can be found that both the iteration number and the relative error are smallest when
Nd=3, which is because too many control points will decrease the sensitivity of radiative heat
flux to the shape changing of design surface and one control point cannot provide enough
necessary information for the geometry shape of the boundary [2, 9].

Control point
numbers

Iteration
numbers

Fitness values Average relative
error (%)

Maximum relative
error (%)

1 164 3.89×10-8 0.2711 0.5597

3 19 5.36×10-8 0.0280 0.0796

5 26 6.72×10-8 0.0309 0.0875

7 37 7.63×10-8 0.0321 0.1024

Table 6. Comparison of inverse design results for different number of control points.

Figure 10. Geometry shape of the design surface for different extinction coefficients of media.

Figure 11. Geometry shape of the design surface for different scattering albedo of media.
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The physical properties of the media have an important influence on the energy transfer and
then affect the optimization results of radiative enclosures. The effects of the extinction
coefficient and the scattering albedo on the inverse design results are studied here. The
scattering albedo of media is fixed as ω =0.5, the extinction coefficients are set as β =1.0, 3.0 and
5.0, respectively. The initial guessed and final optimized geometry shapes of the design surface
are shown in Figure 10. It can be seen that three PSO algorithms achieve similar boundaries
and the geometry shapes are significantly different for different extinction coefficients. The
extinction coefficient of media is fixed as β =3.0, the scattering albedos are set as ω =0.1, 0.5 and
0.9, respectively. The optimized geometry shapes of the design surface by means of SPSO are
shown in Figure 11. It can be seen that the designed boundaries are very close to each other
for different scattering albedos. Tables 7 and 8 list the detailed inverse design results for
different extinction coefficients and scattering albedos, respectively. As shown, both the
optimized geometry the retrieval results for different extinction coefficients are significantly
different, and both the height of the final designed surface and the dimensionless radiative
heat flux decrease with the extinction coefficient increases. However, the retrieval results for
different scattering albedo are close. Therefore, the scattering albedo of the media has little
influence on the inverse geometry design results when the extinction coefficient is determined.

Algorithm Extinction

coefficient

Fitness

values

Dimensionless

radiative heat flux

Average relative

error (%)

Maximum

relative error (%)

PSO βe =1.0 8.22×10-8 0.2333 0.0329 0.0895

βe =3.0 7.19×10-8 0.1137 0.0496 0.0736

βe =5.0 3.94×10-8 0.0735 0.0460 0.1297

SPSO βe =1.0 7.61×10-8 0.2334 0.0295 0.0816

βe =3.0 5.63×10-8 0.1136 0.0398 0.0723

βe =5.0 2.42×10-8 0.0734 0.0301 0.0909

DEPSO βe =1.0 5.07×10-8 0.2334 0.0230 0.0849

βe =3.0 4.16×10-8 0.1136 0.0351 0.0706

βe =5.0 2.85×10-8 0.0734 0.0307 0.0889

Table 7. Inverse geometry design results for different extinction coefficients.
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Algorithm Scattering
albedo

Fitness
values

Dimensionless
radiative heat flux

Average relative
error (%)

Maximum
relative error (%)

PSO ω =0.1 7.93×10-8 0.1137 0.0459 0.0867

ω =0.5 7.19×10-8 0.1137 0.0496 0.0736

ω =0.9 7.23×10-8 0.1136 0.0355 0.636

SPSO ω =0.1 3.02×10-8 0.1136 0.0297 0.0804

ω =0.5 5.63×10-8 0.1136 0.0398 0.0723

ω =0.9 4.49×10-8 0.1136 0.0322 0.0665

DEPSO ω =0.1 5.07×10-8 0.1136 0.0352 0.0349

ω =0.5 4.16×10-8 0.1136 0.0351 0.0706

ω =0.9 3.49×10-8 0.1136 0.0358 0.0710

Table 8. Inverse geometry design results for different scattering albedo of media.

The scattering of media will affect the original transfer direction of radiative heat or energy,
so the scattering characteristic of media also has influence on the inverse geometry design of
radiative enclosures. The extinction coefficient and scattering albedo of the media are set as
β =3.0 and ω =0.5, respectively. The initial and final geometry shapes of the design surface by
using SPSO algorithm for three kinds of scattering characteristics of media are shown in
Figure 12. It can be found that the optimal geometry shapes of the design surface are close.
Table 9 plots the inverse geometry design results for different scattering characteristics. As
shown, the values of dimensionless radiative heat flux on the design surface and relative errors
are significantly different. Therefore, the scattering characteristics of media mainly affect the
radiative heat flux on the boundaries and have no obvious effect on the final geometry shape
of inverse radiative design problems.

Figure 12. Geometry shape of the design surface scattering characteristics of media.
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Algorithm Scattering

characteristic

Fitness

values

Dimensionless

radiative heat flux

Average relative

error (%)

Maximum

relative error (%)

PSO a = 1 8.66×10-8 0.1297 0.0354 0.0828

a = 0 9.04×10-8 0.1136 0.0403 0.0776

a = − 1 7.21×10-8 0.1006 0.0385 0.0941

SPSO a = 1 7.57×10-8 0.1297 0.0328 0.0982

a = 0 8.16×10-8 0.1136 0.0463 0.0825

a = − 1 1.60×10-8 0.1007 0.0195 0.0629

DEPSO a = 1 5.53×10-8 0.1297 0.0378 0.0797

a = 0 6.94×10-8 0.1136 0.0426 0.0735

a = − 1 5.71×10-8 0.1007 0.0413 0.0882

Table 9. Inverse geometry design results for different scattering characteristics of media.

5. Conclusions

In this chapter, the basic theoretical principles of PSO algorithm is introduced in detail and
three kinds of PSO algorithms—standard PSO, SPSO and DEPSO—are applied for solving the
inverse geometry design problem of a two-dimensional radiative enclosure filled with
participating media. The design purpose is to produce a uniform distribution of radiative heat
flux on the designed surface. The design surface is discretized into a series of control points
and the Akima cubic interpolation is used to approximate the geometry shape of the boundary.
The radiative heat transfer problem in the irregular enclosures is solved by the DOM with a
body-fitted coordinate system. The pre-required radiative heat flux distribution is satisfied by
optimizing the positions of control points based on the PSO algorithms. The retrieval results
show that PSO algorithms can be successfully applied to solve inverse geometry design
problems and SPSO achieves the best performance on computational time. Meanwhile, the
scattering albedo and scattering characteristics of media have little effect on the geometry
shape of the design surface. To improve the computational efficiency, the number of control
points is recommended as Nd=3.
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Abstract

The focus of this chapter is on the shape optimization of the Busemann-type biplane
airfoil for drag reduction under both non-lifting and lifting conditions using genetic
algorithms. The concept of biplane airfoil was first introduced by Adolf Busemann in
1935.  Under  design conditions  at  a  specific  supersonic  flow speed,  the  Busemann
biplane airfoil eliminates all wave drag due to its symmetrical biplane configuration;
however, it produces zero lift. Previous research has shown that the original Buse‐
mann biplane airfoil shows a poor performance under off-design conditions. In order
to address this problem of zero lift and to improve the off-design-condition perform‐
ance, shape optimization of an asymmetric biplane airfoil is performed. The commer‐
cially  available  computational  fluid  dynamics  (CFD)  solver  ANSYS  FLUENT  is
employed for computing the inviscid supersonic flow past the biplane airfoil. A single-
objective genetic algorithm (SOGA) is employed for shape optimization under the non-
lifting condition to minimize the drag, and a multi-objective genetic algorithm (MOGA)
is used for shape optimization under the lifting condition to maximize both the lift and
the  lift-to-drag  ratio.  The  results  obtained  from  both  SOGA  and  MOGA  show  a
significant improvement in the design and off-design-condition performance of the
optimized Busemann biplane airfoil compared to the original airfoil.

Keywords: genetic algorithm, shape optimization, biplane airfoil, computational fluid
dynamics, supersonic flow
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1. Introduction

For decades, the speed of commercial aircrafts has been bounded by the sound barrier. Even
the most successful supersonic transport (SST) plane, the Concorde, could only be deployed
in very few routes due to government regulation, low efficiency, and excessive noise genera‐
tion. Since the retirement of Concorde in 2003, the desire for developing a replacement for
Concorde space still remains. In order to accomplish that, one of the biggest design challeng‐
es is to eliminate, or at least greatly reduce, the strong bow shock wave generated during
supersonic flight, which can cause high wave drag and substantial noise. At supersonic speed,
a bow shock is generated ahead of the airplane. This shock wave generates a substantially high
wave drag which needs to be overcome by the engine by providing a much higher thrust
compared to that for a conventional subsonic/transonic airplane, which results in higher fuel
consumption and low propulsive efficiency. In order to address the high-wave-drag prob‐
lem at supersonic speed, a biplane concept was proposed by Adolf Busemann in 1935 [1] which
can potentially avoid the formation of bow shock and thus does not create sonic boom.

During the period from 1935 to 1960, substantial research was conducted on the Busemann
biplane concept. Moeckel [2] and Licher [3] performed the theoretical analysis of the optimized
lifting supersonic biplanes. Tan [4] took a further step and derived analytical expressions for
the drag and lift of a three-dimensional supersonic biplane with a finite span of rectangular
plan form. Some experimental results were obtained by Ferri [5] using a wind tunnel, and
comparisons were made between the experimental and analytical results. During the past 10
years, considerable interest has been shown in supersonic biplane airfoils. Igra and Arad [6]
tested and analyzed the effects of different parameters on the drag coefficient of the Busemann
airfoil under various flow conditions. Kusunose et al. [7] proposed a concept for the next-
generation supersonic transport using the Busemann biplane design. A series of studies using
both computational fluid dynamics (CFD) and wind-tunnel experimental methods have been
completed by Kusunose’s research group [7–16].

Recently, Hu et al. [17] employed a multi-point adjoint-based aerodynamic design and
optimization method to improve the baseline Busemann biplane airfoil’s off-design perform‐
ance and alleviate the flow-hysteresis problem. They also addressed the problem of minimiz‐
ing its drag by shape optimization. This chapter addresses the aerodynamic shape
optimization of two-dimensional symmetric Busemann biplane airfoil under both design and
off-design conditions for reducing its wave drag, and the alleviation of the flow-hysteresis and
choked-flow effects using a single-objective genetic algorithm. The symmetric Busemann
biplane airfoil generates zero lift; this problem is addressed by introducing asymmetry in the
shape of two profiles of the biplane. The asymmetric configuration is shape optimized for
maximum lift and minimum drag by employing a multi-objective genetic algorithm. The flow
field is computed using the commercial CFD software ANSYS FLUENT. Body-fitted H-grids
around the airfoils are generated using the ICEM software. Random airfoil shapes with
constraints in a given generation of the genetic algorithm are obtained using the Bezier curves
(third-order polynomials).
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2. Flow field simulation of the standard diamond-shaped airfoil and the
baseline Busemann biplane airfoil under design and off-design conditions

The flow fields of both the standard diamond-shaped airfoil and the Busemann biplane airfoil
are computed at zero angle of attack (the zero-lift condition). For meaningful comparison, the
total thickness of the two airfoils is set to be equal. For this specific case under consideration,
the thickness-to-chord ratio of the diamond-shaped airfoil is t/c = 0.1, while the thickness-to-
cho rd ratio of the Busemann airfoil is t/c = 0.05 for both its upper and lower components. The
distance between the upper and lower components of the Busemann airfoil is set to be one half
of the chord length to obtain the theoretical minimum drag under the design condition at Mach
number M = 1.7. The angle of attack is set to be 0 as we first consider the non-lifting design and
off-design conditions by varying the Mach number below 1.7 and greater than 1.7.

2.1. Mesh generation

The commercial meshing software ANSYS ICEM CFD is used to generate the mesh for
computing the flow field. The far-field boundary is set at 21 chord length by a 20.5-chord-
length rectangle from the center of the airfoil. Figure 1 shows the H-mesh configuration
generated for the simulations. There are 64 nodes around the two components both horizon‐
tally and vertically. In between the two components, the grid has a dimension of 32 nodes
(vertically) × 64 nodes (horizontally). An ICEM replay script file is created to automatically
generate the mesh for the flow past different airfoil shapes once it is called.

Figure 1. (a) H-mesh generated in the computational domain and (b) zoomed-in view of the mesh near the biplane
airfoil.
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2.2. Steady-state flow field simulation at M < 1.7

As has been mentioned above, the baseline Busemann biplane airfoil has a much lower drag
under its design condition at Mach number M = 1.7. However, it shows a poor aerodynamic
performance under off-design conditions, which may cause much higher drag compared to
the standard diamond-shaped airfoil. The configurations of both the standard diamond-
shaped airfoil and the baseline Busemann biplane airfoil are shown in Figure 2.

Figure 2. Configurations of standard diamond-shaped airfoil (left) and baseline Busemann biplane airfoil (right).

Figure 3 shows the drag coefficient cd of both the standard diamond-shaped airfoil and the
baseline Busemann biplane airfoil under the zero-lift condition over a range of Mach numbers
(0.3 ≤ M ≤ 3.3). The simulations are performed using ANSYS FLUENT; the flow field is
initialized with an impulsive uniform flow.

Figure 3. Comparison of Cd for two different airfoils under non-lifting condition.
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As shown in Figure 3, the baseline Busemann biplane airfoil has a higher drag compared
to the standard diamond-shaped airfoil when the Mach number is low (0.3 ≤ M ≤ 1.6). In
the range of 1.7 ≤ M ≤ 2.7, however, the drag generated by the baseline Busemann biplane
airfoil is smaller than that generated by the standard diamond-shaped airfoil, especially at
M = 1.7 which is the design condition for the Busemann airfoil. Figure 3 demonstrates the
advantage of the Busemann biplane airfoil as it produces much lower drag near its design
condition (M = 1.7) due to the wave-reduction and wave-cancellation effects. The simula‐
tions shown above demonstrate that the baseline Busemann biplane airfoil shows a very
good performance under its design conditions (M = 1.7), while it has a much higher drag
under off-design conditions due to the choked-flow phenomenon at lower Mach numbers
(M < 1.7). Figure 4(a) through 4(d) shows the flow field around the baseline Busemann bi‐
plane airfoil under two different off-design conditions, both of which result in high drag
but due to different reasons. At M = 0.8, as shown in Figure 4(a), the flow between the two
airfoil components reaches Mach 1 at the mid-chord of the airfoil, and then increases fur‐
ther downstream to supersonic flow. After reaching the trailing edge of the airfoil, howev‐
er, the flow speed drops to subsonic and hence forms a vertical shock wave. The
supersonic flow in the rear part of the airfoil (after the mid-point) creates a low-pressure
region, as shown in Figure 4(b), which leads to a higher wave drag (cd = 0.148) at this off-
design condition of M = 0.8. At M = 1.6, however, as shown in Figure 4(c), the flow field is
very different from that at M = 0.8 under subsonic conditions. A bow shock is formed in
front of the leading edge of the airfoil. The flow speed drops to subsonic and a high-pres‐
sure region, as shown in Figure 4(d), is created which again generates a high drag (cd =
0.0926).

Figure 4. Velocity and pressure contours around the baseline Busemann airfoil: (a) velocity contours at M = 0.8, (b)
pressure contours at M = 0.8, (c) velocity contours at M = 1.6, (d) pressure contours at M = 1.6.
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2.3. Flow field simulation during acceleration and deceleration

Despite the high drag being generated under off-design conditions, there is an even worse
problem caused by the flow-hysteresis phenomenon during acceleration and choked-flow
phenomenon during deceleration that need to be addressed under off-design conditions. To
demonstrate these phenomena, flow field simulations are conducted under both acceleration
and deceleration using the previous simulation results shown in Figure 4 as the initial
condition. Figure 5 shows two separated cd curves during acceleration and deceleration of the
biplane airfoil. As shown in Figure 5, the change in acceleration and deceleration cd curves
occurs in the range M = 1.6 to M = 2.1, where the blue dashed line represents the cd of the
Busemann biplane airfoil during acceleration and the red solid line represents the cd of the
Busemann biplane airfoil during deceleration. This separation between the two cd curves is
caused by the flow-hysteresis phenomenon during acceleration and the choked-flow phe‐
nomenon during deceleration. Therefore, in order to minimize the difference in the drag
coefficients of the Busemann biplane airfoil during acceleration and deceleration as well as to
significantly decrease the drag, shape optimization of the baseline Busemann airfoil is
conducted using single-objective genetic algorithm (SOGA) to eliminate the flow-hysteresis
phenomenon during acceleration and the choked-flow phenomenon during deceleration; it is
discussed in the next section.

Figure 5. cd plots for diamond-shaped airfoil and baseline Busemann airfoil during acceleration and deceleration under
non-lifting conditions.
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2.4. Flow field of the baseline Busemann biplane airfoil during acceleration

In this section, the flow-hysteresis phenomenon during acceleration is examined for the
baseline Busemann biplane airfoil under the non-lifting condition. The pressure coefficient
contours for flow past the baseline Busemann biplane airfoil during acceleration are shown in
Figure 6. To simulate the non-lifting condition, the angle of attack is set to 0. The resulting non-
lifting flow field around the baseline Busemann airfoil is shown in Figure 6 at various
supersonic Mach numbers ranging from M = 1.7 to M = 2.13. As shown in Figure 6, the bow
shock exists in front of the Busemann airfoil and does not disappear until the Mach number
reaches 2.13. It can also be noticed that there is a subsonic region behind the bow shock between
the upper and lower components of the airfoil where the pressure coefficients are high. The
presence of this bow shock in front of the airfoil results in a substantial increase in the drag
compared to that at the design condition. However, when the Mach number increases from
2.12 to 2.13, the bow shock is swallowed into the upper and lower components of the Busemann
airfoil and is replaced by two oblique shock waves, and the subsonic region between the two
airfoil components finally disappears as shown in Figure 6(d). The drag coefficient of the airfoil
also decreases dramatically, and the flow past the airfoil develops into a state similar to that
under the design condition. Figure 6 illustrates the poor performance of the baseline Busemann
airfoil under off-design conditions. During acceleration, the design condition cannot be
achieved at Mach 1.7. And the drag coefficient at Mach 1.7 is much higher (cd = 0.0923)
compared to that of the standard diamond-shaped airfoil (cd = 0.0292). Furthermore, due to the
flow-hysteresis phenomenon, the drag coefficients cd during acceleration and deceleration are
different as shown in Figure 6.

Figure 6. cp-contours around the baseline Busemann biplane airfoil with zero lift during acceleration. (a) M∞ = 1.7, cd =
0.0923; (b) M∞ = 2.0, cd = 0.0883; (c) M∞ = 2.12, cd = 0.0860; (d) M∞ = 2.13, cd = 0.010264.
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2.5. Flow field of the baseline Busemann biplane airfoil during deceleration

In this section, the choked-flow phenomenon of the baseline Busemann biplane airfoil during
deceleration is examined. The contours of pressure coefficients for flow past the baseline
Busemann airfoil during deceleration are shown in Figure 7. To simulate the non-lifting
condition, the angle of attack is set to 0 as before. The resulting non-lifting flow field around
the baseline Busemann airfoil is shown in Figure 7 at various supersonic Mach numbers
ranging from M = 1.8 to M = 1.62. As shown in Figure 7, a different flow field appears within
the small range near the design Mach number (M = 1.7); a relatively high drag coefficient still
occurs as the Mach number further decreases during deceleration. A strong bow shock is
formed in front of the airfoil when the Mach number drops from 1.63 to 1.62, while the drag
coefficient increases dramatically from 0.005594 to 0.0926, which is substantially higher than
that of the standard diamond-shaped airfoil (cd = 0.03158). The flow between the two compo‐
nents of the airfoil is choked at the location of the maximum thickness of the Busemann airfoil,
and a subsonic region is formed. This is also a clear indication of the poor performance of the
baseline Busemann biplane airfoil under off-design conditions as the drag coefficient of the
baseline Busemann airfoil is much higher than that of the standard diamond-shaped airfoil for
M ≤ 1.62.

Figure 7. cp-contours around the baseline Busemann biplane airfoil with zero lift during deceleration: (a) M∞ = 1.8, cd =
0.003638; (b) M∞ = 1.7, cd = 0.002183; (c) M∞ = 1.65, cd = 0.004144; (d) M∞ = 1.64, cd = 0.004778; (e) M∞ = 1.63, cd = 0.005594;
(f) M∞ = 1.62, cd = 0.09261.
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In conclusion, the baseline Busemann biplane airfoil produces a substantially higher drag in
the low Mach number range (below the design Mach number of M = 1.7). Additionally, it is
necessary to accelerate the baseline Busemann biplane airfoil to a much higher Mach number
(M = 2.13) to reach the shock-wave-swallowing state, while dramatically producing higher
drag and largely decreasing its efficiency, and then decelerate to a lower velocity to achieve
the design condition at Mach number M = 1.7. As a result, the baseline Busemann biplane airfoil
design needs to be modified and optimized to avoid or at least reduce the high drag coefficient
caused by the flow-hysteresis phenomenon during acceleration and the choked-flow phe‐
nomenon during deceleration.

3. Optimization of Busemann-type biplane airfoil

In this chapter, the shape optimization procedure for the baseline Busemann biplane airfoil
using the genetic algorithms (GAs) and the results of the optimized Busemann-type airfoil
under both non-lifting and lifting conditions are presented. The optimization process is
established by coupling a single-objective genetic algorithm (SOGA)- or a multi-objective
genetic algorithm (MOGA)-based optimization method with the mesh generation software
ANSYS-ICEM and the CFD solver ANSYS FLUENT as shown in Figure 8.

Figure 8. Schematic of information flow in the optimization process.

Every individual (airfoil) in each generation of SOGA/MOGA is represented by a set of control
points, which randomly generate the airfoil shape by using the Bezier curves. The mesh
generation software ICEM is used to generate a two-dimensional structured mesh around the
airfoil as an input to the CFD solver FLUENT, which is then used to calculate the supersonic
inviscid flow fields for specific flow conditions. Based on the fitness values of all airfoil shapes
in a given generation, SOGA/MOGA is applied to create the next generation of airfoils, and
this whole process is repeated until the optimal fitness value is obtained. The airfoil shape that
corresponds to the optimal fitness value is the final shape of the optimized airfoil [18].

3.1. Overview of genetic algorithm

Genetic algorithms (GAs) are a class of stochastic optimization algorithms inspired by the
biological evolution [19]. They efficiently exploit historical information to speculate on new
offspring with improved performance [20]. For the Busemann biplane airfoil in particular,
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genetic algorithms are used to generate new shapes that produce much lower drag by
minimizing the flow-hysteresis phenomenon during acceleration and the choked-flow
phenomenon during deceleration. Generally, The GA employs the following steps to complete
the optimization process:

1. Initialization: randomly generates a group of individuals.

2. Evaluation: evaluates the fitness of each individual generated.

3. Natural selection: individuals who have the lowest fitness are removed.

4. Reproduction: pairs of individuals are picked to produce the offspring, which is often
done by roulette wheel sampling. A crossover function is then used to produce the
offspring.

5. Mutation: randomly modifies some small percentage of the population.

6. Check for convergence: if the current generation has converged, the individual having the
best fitness will be returned. Otherwise, the process will be repeated starting from Step 2
until the predefined tolerance criteria for acceptable change in fitness between generations
are met.

3.1.1. Application of single-objective genetic algorithm (SOGA)

For the non-lifting condition, when the lift coefficient cl = 0, a single-objective genetic algorithm
(SOGA) is employed for the shape optimization of the Busemann biplane airfoil. The single
objective to be achieved is to minimize the drag coefficient cd. Multiple design points (Mach
numbers) are used during the optimization process due to the flow-hysteresis and choked-
flow phenomena caused by the baseline Busemann biplane airfoil during acceleration and
deceleration, respectively. For the multi-point optimization, the fitness function employed is
a weighted average of the drag coefficients cd, which can be written in the following form:
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where I is the weighted average drag coefficient, and “i” denotes a design point (related to
Mach number). For the optimization process under the non-lifting condition, an evenly
weighted average of drag coefficients cd at different Mach numbers is employed. Therefore,
Eq. (1) reduces to
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As the wave drag of the Busemann biplane airfoil is much lower when the flow is unchoked,
it is highly desirable that the strong bow shock wave in front of the airfoil is swallowed into
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5. Mutation: randomly modifies some small percentage of the population.
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where I is the weighted average drag coefficient, and “i” denotes a design point (related to
Mach number). For the optimization process under the non-lifting condition, an evenly
weighted average of drag coefficients cd at different Mach numbers is employed. Therefore,
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the area between the upper and lower components of the airfoil before the flow speed
approaches the design Mach number (M = 1.7). Although a higher weight can be assigned to
the most important design Mach number (M = 1.7) to produce a lower drag at that design point,
previous research conducted by Hu et al. [17] has shown that a slightly higher drag coefficient
cd is obtained at lower Mach numbers during acceleration and deceleration, as given in Tables
1 and 2, respectively, if such an uneven weighting method is used.

Mach number 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Baseline 1050 996 957 928 906 889 873

Optimized (even) 527 473 419 376 332 112 106

Optimized (uneven) 539 486 428 382 336 107 101

Table 1. Comparison of cd at under zero-lift conditions during acceleration (1 count = 0.0001) [17].

Mach number 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 873 889 906 928 957 996 1050

Optimized (even) 106 112 127 152 419 473 527

Optimized (uneven) 101 107 122 146 428 486 539

Table 2. Comparison of cd at under zero-lift conditions during deceleration (1 count = 0.0001) [17].

GA parameters Description

Generation size 8 individuals per generation

Number of generations Maximum of 50 generations if convergence not obtained

Number of design variables 14 in total, 7 for acceleration and 7 for deceleration

Selection type Roulette Wheel Selection

Crossover rate 0.7

Mutation rate 0.1

Error of mutation constant 0.8, which determines how much mutation affects the curves as generations proceed

Table 3. GA parameters for shape optimization of Busemann biplane airfoil under non-lifting conditions.

Here, we have a total of seven design points in the Mach numbers ranging from M = 1.1 to M
= 1.7, for both acceleration and deceleration. The reason for picking these seven design points
is that this range of Mach numbers, M = 1.1 to M = 1.7, provides the critical region before the
Mach number increases to the design condition M = 1.7; it is the region in which we want to
maintain the drag coefficient as low as possible. Both acceleration and deceleration scenarios
are considered in order to reduce the flow-hysteresis phenomenon and the choked-flow
phenomenon, respectively.
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A code in the MATLAB package is developed and utilized in the optimization process of the
airfoil as well as for ICEM meshing and FLUENT flow field calculations. All SOGA parameters
are defined based on the GA methodology, as shown in Table 3.

3.1.2. Airfoil parameterization

The shape of the airfoil is generated by using the Bezier curves (third-order polynomials).
Bezier curves are frequently used in computer graphics to obtain curves that appear to be
reasonably smooth at all scales. One of the main reasons that Bezier curves are used in
computer graphics is that they can be efficiently constructed; each Bezier curve is simply
defined by a set of control points [21].

For the non-lifting case, with cl = 0, since the upper and lower components of the airfoil are
symmetric with respect to the horizontal axis, only the upper component of the airfoil needs
to be defined; the lower component is the mirror image with respect to the horizontal axis. For
the upper component of the airfoil, there are two lines that need to be drawn to define its shape.
Since the thickness distribution for the entire airfoil remains the same as that of the baseline
Busemann biplane airfoil, the y-coordinates of the lower line are defined by Eqs. (3) and (4).
Thus, the upper line (which is a straight horizontal line for the baseline Busemann airfoil) is
the only line that needs to be generated by the Bezier curves in order to define the shape of the
whole biplane airfoil.

0.05 0.1 0. )5 0(low up up upy y x x= - - ´ - £ £ (3)

0.05 0.1 0( )0 .5low up up upy y x x= - + ´ £ £ (4)

In Eqs. (3) and (4), the subscripts “low” and “up” correspond to the lower and upper lines of
the airfoil; the origin is at the center of the upper line. Two Bezier curves are used to generate
the shape-defining upper line. Each Bezier curve is defined by a set of four control points. Each
control point is constrained by a specified range of x- and y-coordinates. Figure 9 shows a
randomly generated Busemann-type biplane airfoil shape using Bezier curves.

Figure 9. Randomly generated Busemann-type biplane airfoil shape using Bezier curves.
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3.1.3. Optimization results

After implementing SOGA for 20 generations with eight individuals in each generation, an
optimal shape result for symmetric Busemann-type biplane airfoil under the non-lifting
condition with a minimum drag is obtained. Figure 10 shows the geometry of the original
Busemann biplane airfoil (red) and the optimized Busemann biplane airfoil (blue) under the
non-lifting condition.

Figure 10. Geometry of both the original and optimized Busemann biplane airfoil under non-lifting conditions.

Mach number 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Baseline 1097 1040 999 967 943 926 923

Optimized (GA) 622 506 428 389 132 114 104

Table 4. Comparison of cd for the original and optimized Busemann biplane airfoil under non-lifting conditions during
acceleration (1 count = 0.0001).

Mach number 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 32 926 940 967 999 1040 1098

Optimized (GA) 104 114 132 163 428 506 621

Table 5. Comparison of cd for the original and optimized Busemann biplane airfoil under non-lifting conditions during
deceleration (1 count = 0.0001).

The drag coefficients for the seven design points are compared in Tables 4 and 5 for both
the original and optimized Busemann biplane airfoil under the non-lifting condition during
acceleration and deceleration, respectively. As shown in Tables 4 and 5, the baseline Buse‐
mann biplane airfoil is choked at all Mach numbers within the optimization range, while the
optimized Busemann biplane airfoil un-chokes at M = 1.5 during acceleration and chokes at
M = 1.3 during deceleration. Even under choked conditions during both acceleration and
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deceleration, the optimized Busemann biplane airfoil has significantly lower drag compared
to the baseline Busemann biplane airfoil. The only point where the optimized Busemann
biplane airfoil has a higher drag compared to the original airfoil is at M = 1.7 during deceler‐
ation.

Figures 11 and 12, respectively, show the change in the pressure coefficient cp around the
original Busemann biplane airfoil as the Mach number increases and decreases within the
design-point range. The corresponding cp contours for the optimized Busemann biplane airfoil
are shown in Figures 13 and 14 to illustrate the wave-cancellation effect.

Figure 11. cp contours around the original Busemann biplane airfoil during acceleration: (a) cp contours at M = 1.1; (b) cp

contours at M = 1.3; (c) cp contours at M = 1.5; (d) cp contours at M = 1.7.

Figure 12. cp contours around the original Busemann biplane airfoil during deceleration: (a) cp contours at M = 1.7; (b) cp

contours at M = 1.5; (c) cp contours at M = 1.3; (d) cp contours at M = 1.1.
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Figure 13. cp contours around the optimized Busemann biplane airfoil during acceleration: (a) cp contours at M = 1.1; (b)
cp contours at M = 1.3; (c) cp contours at M = 1.5; (d) cp contours at M = 1.7.

Figure 14. cp contours around the optimized Busemann biplane airfoil during deceleration: (a) cp contours at M = 1.7;
(b) cp contours at M = 1.5; (c) cp contours at M = 1.3; (d) cp contours at M = 1.1.

Figure 15 shows the comparison of the drag coefficients for the standard diamond-shaped
airfoil, the baseline Busemann biplane airfoil, and the optimized Busemann biplane airfoil
under the non-lifting condition. As shown in this figure, the separation between the accelera‐
tion and deceleration curves for cd still exists for the optimized Busemann biplane airfoil, which
means that the flow-hysteresis and the choked-flow effects are not totally eliminated. How‐
ever, as clearly shown in Figure 15, the flow-hysteresis area has been significantly reduced,
and the drag increase during deceleration due to the choked-flow phenomenon is much
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smaller than that for the original Busemann biplane airfoil. The drag of the optimized Buse‐
mann biplane airfoil in the subsonic region is also smaller than that of the original Busemann
biplane airfoil, although it is slightly higher than that of the standard diamond-shaped airfoil
with 0.6 < M < 0.85. Under both subsonic and supersonic conditions, the optimized Busemann
biplane airfoil has been able to significantly reduce the wave drag compared to the original
Busemann biplane airfoil. At the design condition Mach number of 1.7, however, the drag
coefficient of the optimized Busemann biplane airfoil (cd = 0.01038) is much higher than that
of the original Busemann biplane airfoil cd = 0.002182. This is due to the fact that for the shape
optimization, our focus has been on reducing the flow-hysteresis and choked-flow effects, and
we chose to assign equal weights to all Mach numbers used as the multiple design points. To
address this problem, we could have put more weight on the design condition (M = 1.7) during
the optimization process.

Figure 15. cd plot for different airfoils under nonlifting condition.

Next, we examine the details of the flow field during acceleration and deceleration for the
optimized Busemann biplane airfoil and compare them with the original baseline Busemann
biplane airfoil and the optimization results obtained by Hu et al. [17] using an adjoint-based
optimization technique. Figures 16 and 17 show the pressure coefficient contours of the
optimized Busemann biplane airfoil under acceleration and deceleration, respectively. Figures
18 and 19 show the pressure coefficient contours of the optimized Busemann biplane airfoil
using the adjoint-based technique [17] under acceleration and deceleration, respectively.
During acceleration, the flow-hysteresis effect still exists, and a bow shock wave is formed in
front of the airfoil. The swallowing of the bow shock wave happens when the Mach number
increases from 1.49 to 1.50 in our GA optimization as shown in Figure 16(f); it happens when
the Mach number increases from 1.52 to 1.53 in the adjoint-based optimization as shown in
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Figure 18(e), and it happens when the Mach number increases from 2.12 to 2.13 for the original
Busemann biplane airfoil as shown in Figure 6(d). The drag coefficient decreases from 0.03556
to 0.01316 in the present GA-based optimization and from 0.03336 to 0.01221 in the adjoint-
based optimization [17].

Figure 16. cp contours of the GA-optimized Busemann biplane airfoil with zero lift during acceleration: (a) M = 1.2, cd =
0.05064; (b) M = 1.3, cd = 0.04275; (c) M = 1.4, cd = 0.03889; (d) M = 1.48, cd = 0.03601; (e) M = 1.49, cd = 0.03556; (f) M = 1.50,
cd = 0.01316.

Figure 17. cp contours of the GA-optimized Busemann biplane airfoil with zero lift during deceleration: (a) M = 1.6, cd =
0.01138; (b) M = 1.5, cd = 0.01316; (c) M = 1.4, cd = 0.01629; (d) M = 1.37, cd = 0.02420; (e) M = 1.36, cd = 0.04045; (f) M = 1.3,
cd = 0.04277.
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Figure 18. cp contours of the adjoint-based-optimized Busemann biplane airfoil with zero lift during acceleration [17]:
(a) M∞ = 1.3, cd = 0.04190; (b) M∞ = 1.4, cd = 0.03761; (c) M∞ = 1.5, cd = 0.03318; (d) M∞ = 1.52, cd = 0.03336; (e) M∞ = 1.53, cd =
0.0221; (f) M∞ = 1.6, cd = 0.01125.
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Figure 18. cp contours of the adjoint-based-optimized Busemann biplane airfoil with zero lift during acceleration [17]:
(a) M∞ = 1.3, cd = 0.04190; (b) M∞ = 1.4, cd = 0.03761; (c) M∞ = 1.5, cd = 0.03318; (d) M∞ = 1.52, cd = 0.03336; (e) M∞ = 1.53, cd =
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Figure 19. cp contours of the adjoint-based-optimized Busemann biplane airfoil with zero lift during deceleration [17]:
(a) M∞ = 1.6, cd = 0.01125; (b) M∞ = 1.5, cd = 0.01273; (c) M∞ = 1.4, cd = 0.01526; (d) M∞ = 1.38, = 0.01582; (e) M∞ = 1.37, cd =
0.03886; (f) M∞ = 1.3, cd = 0.04191.

In conclusion, as shown in Figure 20, the drag coefficient of the GA-optimized Busemann
biplane airfoil is significantly reduced when compared to the original Busemann biplane
airfoil, and it matches with the adjoint-based optimization result obtained by Hu et al. [17].
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Figure 20. cd plot for different airfoils under non-lifting conditions.

3.2. Shape optimization of Busemann biplane airfoil under lifting conditions

3.2.1. Application of multi-objective genetic algorithm (MOGA)

Under the lifting condition with the lift coefficient cl ≠ 0, a multi-objective genetic algorithm
(MOGA) is employed for shape optimization of the original Busemann biplane airfoil. The two
objectives to be achieved are to minimize the drag coefficient cd while maximizing the lift
coefficient cl. Similar to that for the non-lifting condition described in Section 3.2, a total of
seven design points ranging from M = 1.1 to M = 1.7 are used during the optimization process.
For the fitness functions for the lifting case, we use the sum of evenly weighted average of both
cd and cl. The GA parameters used for the lifting case are listed in Table 6.

GA parameters Description

Generation size 8 individuals per generation

Number of generations Maximum of 50 generations if convergence not obtained

Number of design variables 28 in total, 14 (7 for cd & 7 for cl) for acceleration and 14 (7 for cd & 7 for cl) for deceleration

Selection type Roulette Wheel Selection

Crossover rate 0.7

Mutation rate 0.1

Error of mutation constant 0.8, which determines how much mutation affects the curves as generations go on

Table 6. GA parameters for shape optimization of Busemann biplane airfoil under lifting conditions.
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3.2.2. Airfoil parameterization

Similar to that for the non-lifting case, the random shapes of the airfoil are generated by using
the Bezier curves with control points. For the lifting case with cl ≠ 0, as the upper and lower
components of the biplane airfoil are not symmetric, both the upper and lower components
need to be defined separately. The thickness distribution for both the upper and lower
components is still maintained the same as for the non-lifting case. Now, a total of four Bezier
curves are needed to define the shape of the airfoil. Figure 21 shows a randomly generated
Busemann-type biplane airfoil shape using the Bezier curves for lifting conditions.

Figure 21. Randomly generated Busemann-type biplane airfoil shape using the Bezier curves for lifting conditions.

3.2.3. Optimization results

After implementing MOGA for 20 generations with eight individuals in each generation, an
optimal shape for asymmetric Busemann-type airfoil under lifting conditions with maximum
cl and minimum cd is obtained. Figure 22 shows the geometry of the original Busemann biplane
airfoil (red) and the optimized Busemann biplane airfoil (blue) under lifting conditions.

Figure 22. Geometry of both the original and optimized Busemann biplane airfoil under lifting condition.

The drag coefficients for the seven design points are compared in Tables 7 and 8 for both
the original and optimized Busemann biplane airfoil under lifting condition. As shown in
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Tables 7 and 8, the baseline Busemann biplane airfoil is choked at all Mach numbers within
the optimization range, while the optimized Busemann biplane airfoil is unchoked at M =
1.6 during acceleration and is choked at M = 1.3 during deceleration. Even under choked
conditions during both acceleration and deceleration, the optimized Busemann biplane air‐
foil has significantly lower drag compared to the baseline Busemann biplane airfoil. Similar
to the non-lifting condition, the only point where the optimized Busemann biplane airfoil
has a higher drag compared to the original airfoil is at M = 1.7 during deceleration.

Mach number 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Baseline 1097 1040 999 967 943 926 923

Optimized 683 633 529 461 418 148 136

Table 7. Comparison of cd for the original and optimized Busemann biplane airfoil under lifting conditions during
acceleration (1 count = 0.0001).

Mach number 1.7 1.6 1.5 1.4 1.3 1.2 1.1

Baseline 32 926 940 967 999 1040 1098

Optimized 136 148 173 224 529 633 682

Table 8. Comparison of cd for the original and optimized Busemann biplane airfoil under lifting conditions during
deceleration (1 count = 0.0001).

Figures 23 and 24 show a change in the pressure coefficient cp around the optimized Busemann
biplane airfoil under lifting condition as the Mach number increases and decreases within the
design-point range. As can be seen from these figures, the bow shock wave in front of the airfoil
disappears at M = 1.6 during acceleration and is not generated until the flow speed drops down
to M = 1.3 during deceleration.

Figure 23. cp contours for the optimized Busemann biplane airfoil under lifting conditions during acceleration: (a) cp

contours at M = 1.1; (b) cp contours at M = 1.3; (c) cp contours at M = 1.5; (d) cp contours at M = 1.7.
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Figure 24. cp contours for the optimized Busemann biplane airfoil under lifting condition during deceleration: (a) cp

contours at M = 1.7; (b) cp contours at M = 1.5; (c) cd contours at M = 1.3; (d) cd contours at M = 1.1.

Figure 25. cd plot for different airfoils under lifting conditions.

Figure 25 shows the comparison of the drag coefficients for the standard diamond-shaped
airfoil, the baseline Busemann biplane airfoil and the optimized Busemann biplane airfoil
under lifting condition. As shown in the figure, the separation between the acceleration and
deceleration cd lines still exists for the optimized Busemann biplane airfoil, which means that
the flow-hysteresis and the choked-flow effects are not totally eliminated. However, as clearly
shown in Figure 25, the flow-hysteresis area has been significantly reduced, and the drag
increase during deceleration due to the choked-flow phenomenon is much smaller than that
for the original Busemann biplane airfoil. The drag of the optimized Busemann biplane airfoil
in the subsonic region is smaller than that of the original Busemann biplane airfoil, although
it is slightly higher than that of the standard diamond-shaped airfoil with 0.3 < M < 0.85. Under
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both subsonic and supersonic conditions, the optimized Busemann biplane airfoil has signif‐
icantly reduced the wave drag compared to the original Busemann biplane airfoil. Similar to
the non-lifting condition, the drag coefficient of the optimized Busemann biplane airfoil at M
= 1.7 (cd = 0.01362) is higher than that of the original Busemann biplane airfoil (cd = 0.002182).

Next, we examine the details of the flow field during acceleration and deceleration for the
optimized Busemann biplane airfoil under lifting conditions and compare them with the flow
field of the original Busemann biplane airfoil. Figures 26 and 27 show the pressure coefficient
contours of the optimized Busemann biplane airfoil using GA during acceleration and
deceleration, respectively. During acceleration, the flow-hysteresis effect still exists, and a bow
shock wave is formed in front of the airfoil. The swallowing of the bow shock wave happens
when the Mach number increases from 1.49 to 1.50 as shown in Figure 16(f) and from 2.12 to
2.13 for the original Busemann biplane airfoil as shown in Figure 6(d). The corresponding drag
coefficient decreases from 0.04116 to 0.01665 for the optimized Busemann biplane airfoil.

During deceleration, the choked-flow effect still exists; however, it is shifted to a lower Mach
number of 1.38 compared to 1.6 for the original Busemann biplane airfoil.

In conclusion, the drag coefficient of the optimized Busemann biplane airfoil under lifting
conditions is significantly reduced compared to the original Busemann biplane airfoil as shown

Figure 26. cp contours of the GA-optimized Busemann biplane airfoil with lift during acceleration: (a) M = 1.3, cd =
0.05286; (b) M = 1.4, cd = 0.04609; (c) M = 1.5, cd = 0.04179; (d) M = 1.51, cd = 0.04116; (e) M = 1.52, cd = 0.01665; (f) M = 1.6,
cd = 0.01477.
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in Figures 25–27. Table 9 gives the lift coefficient of the optimized Busemann airfoil under
lifting conditions at different design points.

Mach number 1.1 1.2 1.3 1.4 1.5 1.6 1.7

cl (acceleration) 0.3319 0.3553 0.3061 0.2842 0.2858 0.2525 0.2713

cl (deceleration) 0.3306 0.3551 0.3064 0.3032 0.2678 0.2525 0.2712

Table 9. cl for the optimized Busemann biplane airfoil under lifting conditions at different design points.

4. Conclusions

In this chapter, numerical simulations of the flow past the standard diamond-shaped airfoil
and the baseline Busemann-type biplane airfoil have been conducted. An impulsive uniform
flow, a flow during acceleration, and a flow during deceleration are simulated. The original
Busemann biplane airfoil shows a poor performance under off-design conditions due to the
flow-hysteresis phenomenon during acceleration and the choked-flow phenomenon during
deceleration. For shape optimization, a single-objective genetic algorithm (SOGA) and a multi-

Figure 27. cp contours of the GA-optimized Busemann biplane airfoil with lift during deceleration: (a) M = 1.6, cd =
0.01477; (b) M = 1.5, cd = 0.01733; (c) M = 1.4, cd = 0.02243; (d) M = 1.39, cd = 0.02219; (e) M = 1.38, cd = 0.04716; (f) M = 1.3, =
0.05289.
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objective genetic algorithm (MOGA) are employed to optimize the shape of the Busemann-
type biplane airfoil under non-lifting and lifting conditions, respectively, to improve its
performance under off-design conditions. The commercially available CFD solver FLUENT is
employed to calculate the flow field on an unstructured mesh generated using the ICEM grid
generation software. A second-order accurate steady-density-based solver in FLUENT is
employed to compute the supersonic flow field. The optimization results for the non-lifting
case show a significant improvement in reducing the drag coefficient under off-design
conditions for the optimized Busemann-type biplane airfoil shape compared to the original
shape. The flow-hysteresis phenomenon during acceleration and the choked-flow phenom‐
enon during deceleration are both alleviated significantly for the optimized shape. For the
lifting case, the optimized Busemann biplane airfoil is able to significantly reduce the drag
coefficient under off-design conditions while generating lift at the same time.
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Abstract

In this study, we evaluate the performance of differential evolution (DE) and particle
swarm optimization (PSO) algorithms in free-space optical (FSO) and mobile radio
communications systems. In particular, we obtain the optimal transmission distances
for multiple-relay nodes in FSO communication systems and optimal relay locations
in mobile radio communications systems for the cooperative-diversity networks, using
both  algorithms.  We  investigate  the  performance  comparison  of  DE  and  PSO
algorithms for the parallel decode-and-forward (DF) relaying. Then, we analyze the
cost functions. Furthermore, we present the execution time and the stability of the DE
and PSO algorithms.

Keywords: free-space optical communications, cooperative-diversity networks, opti‐
mal distance, differential evolution algorithm, particle swarm optimization algorithm

1. Introduction

The aim of the optimization was to provide the best-suited solution to a problem under the
given constraints. The optimization algorithms have recently been much attention and gained
significant importance in plenty of engineering problems [1–8]. In this study, we evaluate the
performance analysis of differential evolution (DE) and particle swarm optimization (PSO)
algorithms both in free-space optical (FSO) and in mobile radio communications systems.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



FSO communications have been proposed as a solution for the various applications including
fiber backup, and backhaul for wireless communications networks [9]. Despite the fact that
the usage of FSO communications is widespread in major applications for wireless commu‐
nications, the performance limitations for long-range links due to the atmospheric turbulence-
induced fading have had profound impacts in FSO communications systems. The method used
for relay-assisted FSO transmission links is one of the fading mitigation technique has attracted
significant attentions recently in FSO communications networks [9–11]. In [9], the authors
consider relay-assisted FSO communications and investigate the outage performance under
serial and parallel scheme with amplify-and-forward (AF), and decode-and-forward (DF)
relaying models. The authors in [10] consider a cooperative FSO communications via optical
AF relay and investigate the bit error probability performance. Bit error rate (BER) analysis of
cooperative systems in FSO networks is presented in [11]. The outage performance analysis of
FSO communications is presented in both [12] and [13]. Kashani et al. [14] consider the diversity
gain analysis and determine the optimal relay locations for both the serial and the parallel
relaying schemes. Although cooperative transmissions have greatly been considered in the
above manuscripts, to the best of the authors’ knowledge, there has not been any notable
research for the relay-assisted FSO communications systems using the optimization algo‐
rithms. To fill the research gap, in this paper, we analyze the performance of both DE and PSO
algorithms in terms of the transmission distances when applied for the parallel DF relaying in
FSO systems. Moreover, we investigate the performance comparison of these two algorithms
in respect to the execution time, cost, and stability analysis.

In our study, as a second part of this paper, we focus on dual-hop cooperative-diversity
network to study the impact of the relay location between the source and the destination.
Cooperative-diversity relay networks provide a significant performance increment in the radio
frequency power transmission and the spatial diversity. They are also shown to be a promising
solution to mitigate the signal fading arising from the multipath propagation in wireless
communications [15, 16]. In the cooperative-diversity networks, relay terminals are employed
between the transmitter and receiver nodes, over multiple communications routes, in which
two main protocols are used as follows: (i) amplify-and-forward and (ii) DF [15–21].

Most of the previous publications have studied the cooperative-diversity performance over
different fading channels [15–26]. In [15], the authors analyzed the cooperative-diversity
network using AF cooperation protocol, operating over independent, but not necessarily
identically distributed Nakagami-m fading channels. The paper in [17] addressed the multi-
branch adaptive DF scheme for cooperative-diversity networks. The best relay selection
scheme for cooperative-diversity network is studied in [18]. Furthermore, [19] investigated the
advantage of the diversity over direct transmission and conventional non-cooperative relaying
scheme. In all these papers, analytical framework for performance analysis of BER and the
outage probability is provided [15, 17–19]. As far as we know, both DE and PSO algorithms
have not been applied for obtaining the optimal location of the relaying terminal over
Nakagami-m fading channel.
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To fill the research gaps in mobile radio communications using cooperative-diversity relay
network, in this paper, we provide an optimization algorithms results, indicating the optimal
location of the relaying terminal in the parallel-relaying scheme.

In summary, for the first part of this paper, the key contributions are twofold:

• First, the locations of each individual relay nodes and the transmission distances are
optimized for the parallel DF relaying scheme in FSO systems.

• Second, and more importantly, none of the previous studies provide a comparison among
optimization algorithms when applied for FSO systems. In this paper, we investigate the
performance comparison of DE and PSO algorithms for the parallel DF relaying in respect
to the execution time, cost, and stability analysis.

For the second part of this paper, there is a major contribution:

• To fill the research gaps in cooperative-diversity relay network, we provide a rigorous data
for the optimal location of the relaying terminal over Nakagami-m fading channel achieving
the best error performance using both DE and PSO algorithms in the parallel relaying
schemes.

The rest of this paper is organized as follows: The system model and performance analysis are
discussed in Section 2 exploiting the DE and PSO algorithms. Section 3 provides the numerical
results and simulations. Finally, the concluding remarks are given in Section 4.

2. System model and performance analysis using the optimization
algorithms

2.1. FSO communications systems

This section presents the system model for FSO communications networks with parallel DF
cooperative relaying protocol shown in Figure 1a. We consider that the FSO links between the
source-to-relay (S → Rj, j = 1, 2, …, M) and relay-to-destination (Rj → D) are subjected to
atmospheric turbulence-induced log-normal fading [1]. Here, the j index refers to the number
of the relay nodes, where the maximum number of relay nodes (Rj) is defined with M
(j = 1, 2, …, M) as shown in Figure 1a. Besides, the normalized path loss can be expressed as

L (d )= ℓ(d )
ℓ(dS ,D) = ( dS ,D

d )2
e σ(dS ,D−d ) where ℓ(d) and ℓ(dS,D) are defined as the path losses for the

distance of d and for the distance between source and destination (dS,D), respectively [13, 14].
Here, σ is the atmospheric attenuation coefficient. In the same figure below, dS ,Rj

 is the distance
between the source and the j − th decoding relay, and dRj ,D

 is the direct link distance between
the j − th relay and the destination where the relay nodes are placed on the straight line
connecting the source and the destination.
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Figure 1. System models for cooperative wireless communications.
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where Q(x)= 1

2π ∫
x

∞

exp(− u 2

2 ) du is the Q function, M is the relay number. Here, P is the power

margin and defined by P = (PT/Pth), where PT is the total transmitted power, and Pth is the
threshold value for the transmit power in case of no outage is available. PT is expressed as

PT = PS +∑
j=1

M
Pj, where PS is the source power, and Pj is the power of the j − th relay [9]. In Eq.

(1), the variance of the fading log-amplitude, χ is defined by σχ2(d) = min {0.124 k(7/6) Cn
2 d(11/6),

0.5}, where k = (2π/λ) is the wave number, and Cn
2 =10−14m 2/3 is the refractive index structure

constant [14]. Here, ln(.) is the natural logarithm operator and λ is the wavelength [10]. The
mean value of the fading log-amplitude is modeled as μχ = −σχ

2 [11].

In the outage probability of the parallel DF relaying scheme, there are 2M possibilities for
decoding the signal between S and Rj. In Eq. (1) the i index refers to the number of possible
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where Q(x)= 1

2π ∫
x

∞

exp(− u 2

2 ) du is the Q function, M is the relay number. Here, P is the power

margin and defined by P = (PT/Pth), where PT is the total transmitted power, and Pth is the
threshold value for the transmit power in case of no outage is available. PT is expressed as

PT = PS +∑
j=1

M
Pj, where PS is the source power, and Pj is the power of the j − th relay [9]. In Eq.

(1), the variance of the fading log-amplitude, χ is defined by σχ2(d) = min {0.124 k(7/6) Cn
2 d(11/6),

0.5}, where k = (2π/λ) is the wave number, and Cn
2 =10−14m 2/3 is the refractive index structure

constant [14]. Here, ln(.) is the natural logarithm operator and λ is the wavelength [10]. The
mean value of the fading log-amplitude is modeled as μχ = −σχ

2 [11].

In the outage probability of the parallel DF relaying scheme, there are 2M possibilities for
decoding the signal between S and Rj. In Eq. (1) the i index refers to the number of possible
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combinations where the i − th possible set is defined by W(i), and the possible set of distances
between the relays and destination is given by d̄ W (i). μξ is the mean value, and σξ is the variance
of the log-amplitude factor, also given in [9, 14].

For the optimization problem, a function is employed to minimize the outage probability for
the parallel DF relaying, which can be written as min {Pout}=min { f (dS , R1

, dS , R2
, …, dS , RM

)}
where 0<dS , Rj

<dS ,D for j = 1, 2,...., M. Optimal transmission distance is maximized by optimiz‐
ing the locations of the relays, at an outage probability of 10− 6 as modeled as follows [27]:

{ } { }{ }( )6
,max min min 10S D outd f P -= - (2)

The flowcharts for the optimization of the transmission distance using DE and PSO algorithms
are shown in Figures 2 and 3, successively.

Figure 2. The flowcharts for the optimization of the transmission distance by using DE algorithm.
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Figure 3. The flowcharts for the optimization of the transmission distance by using PSO algorithm.

2.2. Mobile radio communications systems using cooperative-diversity relay networks

A system, consisting of a source terminal (S), a cooperative relay terminal (Rj, j = 1, 2, …, M),
and a destination terminal (D), is considered, as shown in Figure 1b. The source and the
destination operate in half-duplex mode and both equipped with a single pair of transmit and
receive antennas. Source communicates with the destination over both the direct link and
relaying terminal links [17, 20]. The cooperation method is based on DF relaying in which the
source information is decoded first and then retransmitted to the destination. We consider that
the received signals from the source and the relays are combined together using the method
of equal gain combining (EGC) [15, 17, 28]. We assume that the diversity paths between the
source-to-relay terminals (S → Rj) and the relay terminals-to-destination (Rj → D) are
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independent non-identically distributed Nakagami-m fading. The direct link between the
source and destination (S → D) has also Nakagami-m distribution. Besides, the additive white
Gaussian noise (AWGN) terms of S → D link, S → Rj and Rj → D links have zero mean and
equal variance of N0 [15, 17].

The source signal is transmitted with the energy of Es, directly to the destination D, and the
relays. The relays decode and transmit the multiple copies of the original source signal to the
destination. Finally, at the destination, the direct and indirect links from the source and the
relays are combined together. It should be noted that, at the destination, the total output signal-
to-noise ratio (SNR) can be expressed as [15, 17]

, ,

1 , , 1
j j

j j

M
S R R D

Total SD
i S R R D

g g
g g

g g=

= +
+ +å (3)

where γSD =
Es

N 0
h SD

2 , γS ,Rj
=

Es

N 0
h S ,Rj

2 , and γRj ,D
=

Es

N 0
h Rj ,D

2  are the instantaneous SNRs, in the S → D
link, between S and the j − th relay, and between the relay, Rj and the destination, successively
[13, 14]. Note that, hS,D, h S ,Rj

, and h Rj ,D
 represent the channel fading coefficients for S → D,

S → Rj, and Rj → D links, respectively [13]. Finally, a closed form for the error performance of
the DF scheme for the cooperative-diversity relay network is given in [14] as follows:

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
, ,

1

2 1
1

1 1

1 1
1 1

2 1 !1
2 1 ! !

3 1 1 1
2 1 2 1S D S D

M

M
i

i iM M

i ii i
k k

M
P e

M i M i

M M M v M vg g
b bV V

pb b pb b

+

+
=

- -

- -
= =

+
£

+ - +

é ùæ ö æ ö- -
´ + - +ê úç ÷ ç ÷ç ÷ ç ÷- -ê úè ø è øë û

å

Õ Õ
(4)

where β = (a/b), ς = (b − a)2/2, υ = (b + a)2/2. In here, a and b are constant values depend on the
modulation type. For instance, for differential binary phase shift keying (DBPSK) modulation
a = 10− 3 and b = 2 [17]. MγS ,D

(ς)= (1 + ς(γ̄S ,D / mS ,D))−mS ,D is the moment-generating function (MGF)
of γS,D, where mS,D is the fading parameter between the source and destination. In Eq. (4),
Mi(ς)= Ai + (1− Ai)MγRi D

(ς) is the MGF of the j − th indirect relay link variable ς where MγRi D
(ς)

is the MGF of γRj ,D
, and expressed as MγRi D

(ς)= (1 + ς(γ̄Ri D / mRi ,D))−mRi ,D [15]. Here, mRj ,D
 is the

fading parameter between the j − th relay and the destination and Ai can be given for DBPSK
modulation as Ai = 1

2 (mS ,Ri / (mS ,Ri
+ γ̄S ,Ri

))mS Ri [17]. The average SNRs between S and D, S and the
j − th relay, and j − th relay and the destination are denoted by γ̄S ,D =(Es / N0),
γ̄S ,Ri

=(dS ,D / dS ,Ri
)∈(Es / N0), and γ̄Ri ,D

=(dS ,D / dRi ,D)∈(Es / N0), respectively, where ∈ is the path
loss exponent. The same approach in [15, 29, 30] is applied with the following model, while

evaluating the effect of the path loss on the error performance: h̄ S ,Rj

2 = E (h S ,Rj

2 )= ( dS ,D

dS ,Rj
)∈

,
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h̄ Rj ,D
2 = E (h Rj ,D

2 )= ( dS ,D

dRj ,D
)∈

, and h̄ S ,D
2 = ( dS ,D

dS ,D
)∈

. Here, E(.) is the statistical average operator, dx,y is the

distance, and h̄ x ,y
2  is the average channel fading coefficient between the terminals x and y.

3. Numerical results and simulations

In this section, numerical and simulation results are presented for both FSO and mobile radio
communication systems.

3.1. FSO communications systems

In this section, numerical results are presented. For the optimization algorithms, the parame‐
ters λ = 1550 nm, Cn

2 =10−14m 2/3, σ = 0.1, P = 9 dB are used, and totally 4 relays are evaluated.
The cost function analysis is illustrated in Figure 4, for the DE and PSO algorithms in terms of
the iteration number. It can be observed from the simulation results that the cost function for
the PSO algorithm is minimized for the small number of iterations as compare to the DE
algorithm. This result indicates that PSO outperforms DE in terms of the cost function. Here,
the iteration number is set to 40, and the execution number is taken as 50.

Figure 5 shows the optimal dS,D for the aforementioned algorithms. While 4 relays are used,
dS,D = 6.0547 km is calculated. For the each execution, PSO algorithm gives almost the same
result. Therefore, it is obvious that PSO is more stable than the DE algorithm under the same
setup.

Figure 4. Cost function for 40 iterations.
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Figure 5. Optimal dS,D vs. execution number for the DE and PSO algorithms.

It can be noticed from Figure 6 that the execution time for the PSO algorithm closely matches
with the execution time of the DE algorithm for different number of relays.

Figure 7 shows the optimization results for the locations of each individual relay nodes.
Accurate relay placements are obtained for P = 9 dB and 4 relays (Rj, j = 1, 2, 3, 4). The optimi‐
zation results indicate that if the places of each individual relay nodes are similar, regardless
of the relay number and the P value, better performance is achieved. Figure 7 clearly shows
that the optimal places of the relay nodes for both algorithms are calculated as dS ,Rj

≈0.4305

using the normalized approach, after the number of iterations, which confirms the accuracy
of the employed optimization algorithms. In addition, these results show that both algorithms
seem to be the better optimization algorithms in providing the reliable and the rapid results.

Figure 6. Execution time vs. relay number for the DE and PSO algorithms.
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Figure 7. Relay location vs. iteration number for Rj, j = 1,.., 4.

Finally, the impact of the varying P on the optimal transmission distance for the DE and PSO
algorithms is depicted in Figure 8. It can be seen from the below figure that the optimal

Figure 8. Optimal dS,D with varying P.
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transmission distance increases with P and the results for both algorithms closely match with
each other for all P values.

The detailed optimization results with the DE and PSO algorithms for DF parallel relaying
scheme are given in Table 1. Here, the results for the optimal transmission distances and
optimal relay locations are listed for various P values, where dS,D is the distance between the
source and the destination (S → D) and dS ,Rj

 is the distance between the source and the j − th
relay (S → Rj, j = 1, 2, …, M). Based on the numerical optimization results provided in
Table 1, while the number of relays is increased, the relays are obliged to get close up to the
source, and the distance between the source and the destination is shortened in low P region,
as expected [31].

P
(dB)

2 Relays 3 Relays

DE PSO DE PSO

Optimal
dS,D (km)

Optimal

dS ,Rj
 (km)

Optimal
dS,D (km)

Optimal

dS ,Rj
 (km)

Optimal
dS,D (km)

Optimal

dS ,Rj
 (km)

Optimal
dS,D (km)

Optimal

dS ,Rj
 (km)

0 0.6323 0.2608 0.6323 0.2608 0.4017 0.1464 0.4016 0.1463

3 2.0304 0.8562 2.0304 0.8562 2.0453 0.7813 2.0453 0.7813

6 3.5568 1.5653 3.5568 1.5653 3.8708 1.6044 3.8708 1.6044

9 5.1021 2.3490 5.1021 2.3490 5.6697 2.5207 5.6697 2.5207

12 6.6391 3.1868 6.6392 3.1868 7.4014 3.4801 7.4014 3.4801

15 8.1326 4.0077 8.1326 4.0077 9.0656 4.4476 9.0656 4.4476

P
(dB)

4 Relays 5 Relays

0 0.2276 0.0756 0.2276 0.0756 0.2276 0.0756 0.2276 0.0756

3 2.0541 0.7280 2.0541 0.7280 2.0541 0.7280 2.0541 0.7280

6 4.0930 1.6114 4.0930 1.6114 4.0930 1.6114 4.0930 1.6114

9 6.0547 2.6065 6.0547 2.6065 6.0547 2.6065 6.0547 2.6065

12 7.9173 3.6665 7.9173 3.6665 7.9173 3.6665 7.9173 3.6665

15 9.6952 4.7477 9.6952 4.7477 9.6952 4.7477 9.6952 4.7477

Table 1. Optimization results for the parallel DF relaying with different number of nodes.

3.2. Mobile radio communications systems

The error performance of the DF scheme for the cooperative-diversity relay network is
illustrated in Table 2 with varying path loss exponent for different values of Es/N0 when
mS ,D =mS ,Rj

=mRj ,D
=1, h̄ S ,D

2 =1, and the number of relay is M = 1. The optimal relay placement
(dS,R) values to minimize the total error rate where the best minimum of P(e) is achieved for the
proposed system are calculated with the help of DE and PSO algorithms.
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Es

N 0

 = 3  = 4  = 5

Best BER Optimal dS,R Best BER Optimal dS,R Best BER Optimal dS,R

0 1.2993 × 10−1 0.7518 8.8041 × 10−2 0.6179 5.1268 × 10−2 0.5721

1 1.0951 × 10−1 0.7211 7.0389 × 10−2 0.6083 3.9879 × 10−2 0.5690

2 8.9635 × 10−2 0.6962 5.5120 × 10−2 0.6011 3.0535 × 10−2 0.5667

3 7.1352 × 10−2 0.6768 4.2307 × 10−2 0.5956 2.3011 × 10−2 0.5648

4 5.5332 × 10−2 0.6621 3.1845 × 10−2 0.5914 1.7065 × 10−2 0.5632

5 4.1869 × 10−2 0.6509 2.3521 × 10−2 0.5881 1.2453 × 10−2 0.5620

6 3.0965 × 10−2 0.6424 1.7057 × 10−2 0.5855 8.9429 × 10−3 0.5610

7 2.2419 × 10−2 0.6358 1.2155 × 10−2 0.5834 6.3230 × 10−3 0.5602

8 1.5917 × 10−2 0.6307 8.5199 × 10−3 0.5818 4.4044 × 10−3 0.5595

9 1.1103 × 10−2 0.6267 5.8820 × 10−3 0.5805 3.0255 × 10−3 0.5590

10 7.6227 × 10−3 0.6236 4.0051 × 10−3 0.5795 2.0518 × 10−3 0.5585

11 5.1610 × 10−3 0.6212 2.6938 × 10−3 0.5786 1.3756 × 10−3 0.5582

12 3.4523 × 10−3 0.6193 1.7924 × 10−3 0.5780 9.1298 × 10−4 0.5579

13 2.2854 × 10−3 0.6177 1.1816 × 10−3 0.5774 6.0063 × 10−4 0.5576

14 1.4998 × 10−3 0.6165 7.7281 × 10−4 0.5770 3.9220 × 10−4 0.5575

15 9.7704 × 10−4 0.6156 5.0210 × 10−4 0.5767 2.5448 × 10−4 0.5573

16 6.3264 × 10−4 0.6148 3.2442 × 10−4 0.5764 1.6426 × 10−4 0.5572

17 4.0759 × 10−4 0.6142 2.0866 × 10−4 0.5762 1.0556 × 10−4 0.5571

18 2.6153 × 10−4 0.6138 1.3370 × 10−4 0.5760 6.7596 × 10−5 0.5570

19 1.6725 × 10−4 0.6134 8.5414 × 10−5 0.5759 4.3161 × 10−5 0.5569

20 1.0668 × 10−4 0.6131 5.4431 × 10−5 0.5757 2.7493 × 10−5 0.5569

21 6.7892 × 10−5 0.6128 3.4618 × 10−5 0.5757 1.7480 × 10−5 0.5568

22 4.3133 × 10−5 0.6126 2.1982 × 10−5 0.5756 1.1097 × 10−5 0.5568

23 2.7365 × 10−5 0.6125 1.3940 × 10−5 0.5755 7.0356 × 10−6 0.5568

24 1.7342 × 10−5 0.6124 8.8312 × 10−6 0.5755 4.4564 × 10−6 0.5568

25 1.0981 × 10−5 0.6123 5.5901 × 10−6 0.5755 2.8205 × 10−6 0.5567

Table 2. Optimization results using the normalized approach for the parallel DF relaying with different path loss
exponent for mS ,D =mS ,Rj

=mRj ,D
=1, h̄ S ,D

2 =1.

Figure 9 shows the best BER performance for the considered system versus Es/N0 when

mS ,D =mS ,Rj
=mRj ,D

=1, h̄ S ,D
2 =1, and M = 1. The results clearly show that BER significantly

decreases with the increase Es/N0. In the same figure, the path loss exponent (∈) is varied from
3 to 5.
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Figure 9. BER performance of the DF scheme for the cooperative-diversity relay network with ∈ = 3, 4, 5 and
mS ,D =mS ,Rj

=mRj ,D
=1.

Figure 10 demonstrates the effect of ∈ on the distance between source and the relay terminal
(dS,R) with varying Es/N0. This figure is plotted for mS ,D =mS ,Rj

=mRj ,D
=1, and h̄ S ,D

2 =1.

Figure 10. Optimal dS,R against different Es/N0 values with ∈ = 3, 4, 5 and mS ,D =mS ,Rj
=mRj ,D

=1.

Table 3 shows that, the optimal dS,R can be calculated where the best minimum of P(e) is
achieved with varying Es/N0 for different values of ∈ when mS ,D =mS ,Rj

=mRj ,D
=2, h̄ S ,D

2 =1, and
the number of relay is M = 1.
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Es

N 0

 = 3  = 4  = 5

Best BER Optimal dS,R Best BER Optimal dS,R Best BER Optimal dS,R

0 9.7528 × 10−2 0.6525 4.6132 × 10−2 0.5676 1.6573 × 10−2 0.5409

1 7.4048 × 10−2 0.6277 3.1667 × 10−2 0.5610 1.0673 × 10−2 0.5388

2 5.3487 × 10−2 0.6091 2.0935 × 10−2 0.5559 6.6843 × 10−3 0.5370

3 3.6808 × 10−2 0.5955 1.3343 × 10−2 0.5521 4.0720 × 10−3 0.5356

4 2.4167 × 10−2 0.5855 8.2058 × 10−3 0.5491 2.4121 × 10−3 0.5345

5 1.5160 × 10−2 0.5779 4.8710 × 10−3 0.5468 1.3884 × 10−3 0.5335

6 9.0972 × 10−3 0.5722 2.7915 × 10−3 0.5449 7.7597 × 10−4 0.5327

7 5.2296 × 10−3 0.5678 1.5448 × 10−3 0.5433 4.2078 × 10−4 0.5320

8 2.8842 × 10−3 0.5644 8.2583 × 10−4 0.5421 2.2129 × 10−4 0.5314

9 1.5289 × 10−3 0.5617 4.2681 × 10−4 0.5410 1.1287 × 10−4 0.5309

10 7.8074 × 10−4 0.5595 2.1352 × 10−4 0.5402 5.5873 × 10−5 0.5305

11 3.8507 × 10−4 0.5578 1.0358 × 10−4 0.5395 2.6877 × 10−5 0.5301

12 1.8397 × 10−4 0.5564 4.8835 × 10−5 0.5389 1.2586 × 10−5 0.5298

13 8.5421 × 10−5 0.5553 2.2434 × 10−5 0.5385 5.7510 × 10−6 0.5295

14 3.8672 × 10−5 0.5545 1.0070 × 10−5 0.5381 2.5705 × 10−6 0.5293

15 1.7127 × 10−5 0.5538 4.4297 × 10−6 0.5378 1.1268 × 10−6 0.5291

16 7.4433 × 10−6 0.5532 1.9148 × 10−6 0.5375 4.8576 × 10−7 0.5290

17 3.1836 × 10−6 0.5528 8.1544 × 10−7 0.5373 2.0643 × 10−7 0.5289

18 1.3436 × 10−6 0.5524 3.4296 × 10−7 0.5371 8.6671 × 10−8 0.5288

19 5.6080 × 10−7 0.5521 1.4276 × 10−7 0.5370 3.6027 × 10−8 0.5287

20 2.3194 × 10−7 0.5519 5.8914 × 10−8 0.5369 1.4852 × 10−8 0.5286

21 9.5217 × 10−8 0.5517 2.4143 × 10−8 0.5368 6.0812 × 10−9 0.5286

22 3.8852 × 10−8 0.5516 9.8379 × 10−9 0.5368 2.4762 × 10−9 0.5286

23 1.5775 × 10−8 0.5514 3.9902 × 10−9 0.5367 1.0038 × 10−9 0.5285

24 6.3802 × 10−9 0.5513 1.6124 × 10−9 0.5367 4.0545 × 10−10 0.5285

25 2.5722 × 10−9 0.5513 6.4960 × 10−10 0.5366 1.6329 × 10−10 0.5285

Table 3. Optimization results using the normalized approach for the parallel DF relaying with different path loss
exponent for mS ,D =mS ,Rj

=mRj ,D
=2, h̄ S ,D

2 =1.
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The best BER performance for the considered system is depicted in Figure 11 when
mS ,D =mS ,Rj

=mRj ,D
=2, h̄ S ,D

2 =1, and M = 1. It is seen that, for a fixed Es/N0, the performance of

the considered system increases while ∈ increases.

Figure 11. BER performance of the DF scheme for the cooperative-diversity relay network with ∈ = 3, 4, 5 and
mS ,D =mS ,Rj

=mRj ,D
=2.

The variation of the optimal dS,R with varying Es/N0 for different values of ∈ is depicted in
Figure 12. We assume mS ,D =mS ,Rj

=mRj ,D
=2, and h̄ S ,D

2 =1.

Figure 12. Optimal dS,R against different Es/N0 values with ∈ = 3, 4, 5 and mS ,D =mS ,Rj
=mRj ,D

=2.
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Finally, the ROC (receiver operating characteristics) curves for ∈ = 4 are depicted in Fig‐
ure 13. The fading parameters are set to be mS ,D =mS ,Rj

=mRj ,D
=1, mS ,D =mS ,Rj

=mRj ,D
=2, and

mS ,D =mS ,Rj
=mRj ,D

=3 successively. It can be observed from the figure that the best BER decreases
with the fading parameters for a fixed value of Es/N0.

Figure 13. Error probability of DF scheme for the cooperative-diversity relay network using different fading parameter
values with (mS ,D =mS ,Rj

=mRj ,D)=1, 2, 3.

4. Conclusions

In this paper, we present a comprehensive performance comparison of the DE and PSO
algorithms both in FSO and in mobile radio communications systems. For the first part, we
investigate the optimal transmission distances for different number of relay nodes and power
margin values in the parallel DF relaying scheme. Moreover, we analyze the cost function and
the execution time for the DE and PSO algorithms. As a second part of this paper, we consider
the cooperative-diversity relay network for the mobile radio communications systems
operating over Nakagami-m fading channel. We provide a rigorous data for the optimal
locations of the relaying terminal in the parallel DF relaying scheme using DE and PSO
algorithms. Then, we analyze the bit error probability with varying Es/N0 using different values
of path loss exponent, ∈ and fading parameters of mS,D, mS ,Rj

, and mRj ,D
.

We demonstrate that the cost functions are suitably minimized proving the accuracy of the
employed optimization algorithms. We find out that both algorithms have similar execution
time, besides PSO is more stable than the DE algorithm. Furthermore, the PSO algorithm
outperforms DE algorithm with regard to the cost function. It should be emphasized that both
optimization algorithms are reliable and can be used for the applications both in the FSO and
mobile radio communications systems.
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Abstract

This chapter  proposes a genetic  algorithm (GA)-based approach as an all-purpose
problem-solving method for  optimization problems with uncertainty.  This  chapter
explains the GA-based method and presents details on the computation procedures
involved for solving the three types of inexact optimization problems, which include
the ILP, inexact quadratic programming (IQP) and inexact nonlinear programming
(INLP) optimization problems.

In the three-stage GA-based method for solution of ILP problems, also called GAILP,
the upper and lower bounds of the inexact numbers of coefficients can be calculated
directly without any uncertainty in the coefficients by substituting the initial subopti‐
mal decision variables into the objective function. The GAILP has been extended to solve
the IQP problems and the more complicated INLP problems. The implementation of
these approaches was performed using the Genetic Algorithm Solver of MATLAB.

The proposed GA-based approaches were applied for management of a set of case
scenarios related to municipal solid waste management. A comparison of the results
generated by the proposed GA-based optimization approach with those produced by
the traditional interactive binary analysis method reveals that the proposed approach
has fewer limitations and involves less complex procedures in solving the inexact
optimization problems.

Keywords: genetic algorithms, inexact optimization problem, linear programming,
quadratic programming, nonlinear programming
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1. Introduction

Linear and nonlinear programming are considered powerful optimization tools suitable for
modeling and solving complex optimization problems in engineering. To handle uncertainty
in real world data, inexact parameters and constraints are combined with various kinds of
optimization techniques. Often a detailed solution of an inexact programming optimization
problem involves a large number of direct comparisons to interactively identify the uncertain
relationships among the objective function and decision variables, whether the problems are
medium-sized or larger-scaled. When these methods are applied to complicated and nonlinear
problems, the number of direct comparisons can become exponential.

The genetic algorithm (GA) method is a suitable optimization approach especially for solving
problems that involve nonsmooth and multimodal search spaces. The GA-based optimization
technique is suitable for solving linear and nonlinear programming optimization problems
with inexact information; and the fields of application include operations research, industrial
engineering and management science.

This chapter is organized as follows. Section 2 presents the background and literature review
of this research. Section 3 discusses the proposed GA-based methods for solving inexact linear
programming (ILP), inexact quadratic programming (IQP) and inexact nonlinear program‐
ming (INLP) problems. Section 4 presents the case study of using GAINLP in the solution of
an INLP problem of solid waste disposal planning. Section 5 is the conclusion.

2. Background and literature review

Economic optimization in the operation programming of solid waste management was first
proposed in the 1960s [1]. Different models of waste management planning have been
developed in the following decades. The primary considerations involved include cost control,
environmental sustainability and waste reutilization. The techniques employed include linear
programming [2–5], mixed integer linear programming [6], multiobjective programming [7–
9], nonlinear programming [10, 11], as well as their hybrids, which involve probability, fuzzy
set and inexact analysis [12–16]. Due to complexity of the nonlinear programming problems
for solid waste management, research works in the area are scant; some exceptions include [17,
18].

The approach of operational programming with inexact analysis often treats the uncertain
parameters as intervals with known lower and upper bounds and unclear distributions. In
real-life problems, while the available information is often inadequate and the distribution
functions are often unknown, it is generally possible to represent the obtained data with inexact
numbers that can be readily used in the inexact programming models. For decision makers, it
is usually more feasible to represent uncertain information as inexact data than to specify
distributions of fuzzy sets or probability functions. Hence, various kinds of inexact program‐
ming such as ILP, IQP, inexact integer programming (IIP), inexact dynamic programming
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numbers that can be readily used in the inexact programming models. For decision makers, it
is usually more feasible to represent uncertain information as inexact data than to specify
distributions of fuzzy sets or probability functions. Hence, various kinds of inexact program‐
ming such as ILP, IQP, inexact integer programming (IIP), inexact dynamic programming
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(IDP) and inexact multiobjective programming (IMOP) have been developed and are well
discussed [10, 11, 19]. It can be observed from these studies that applications of inexact models
to practical solid waste planning systems are effective. These research reports demonstrated
substantial effort has been developed to traditional binary analysis for ILP and IQP. However,
traditional binary analysis methods for ILP and IQP involve unavoidable simplifications and
assumptions, which often increase the chance for error in the problem-solving process and
adversely affected the quality of the results. Moreover, a more complex model often increases
the chance of error in the solution. It has been observed that more complex models often
produce less optimal results, and studies that focus on INLP problems are scarce. For example,
in [20], the methodology mainly focused on combining endpoint values of the inexact param‐
eters to form a set of deterministic problems, which will only work for particular monotone
functions within a small-scale model. Therefore, a more flexible problem-solving method for
the general inexact optimization problems is desired.

Engineering problems that have traditionally been formulated as IQP or INLP problems often
involve large and uneven search spaces, for which a global optimal solution is often not
required. GA is a suitable optimization tool especially for solving complex and nonlinear
problems, which involve nonsmooth and multimodal search spaces. Therefore, we suggest a
GA-based method as a more effective problem-solving approach than the traditional inexact
programming methods.

For implementation of GA, the Genetic Algorithm Solver of Global Optimization Toolbox
(GASGOT), developed by MATLAB (Trademark of MathWord), has been adopted. GASGOT
implements simulated evolution in the MATLAB environment using both binary and floating
point representations and the ordered base representation. This enables flexible implementa‐
tion of the genetic operators, selection functions, termination functions and evaluation
functions. GASGOT was developed by the Department of Industrial Engineering of North
Carolina State University as a toolbox of MATLAB. Hence, it runs in a MATLAB workspace
and can be easily invoked by other programs.

In this study, the GA linear program solving engine of GASGOT has been adopted for ILP
problems and GA nonlinear program solving engine of GASGOT has been adopted for IQP
and INLP problems.

3. Methodology

3.1. GA-based method for solving ILP problems (GAILP)

A typical ILP problem can be expressed as follows:

1
[ ]n

j jj
Max f c x± ± ±

=
=å (1)
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0, 1,2, ,jx j n± ³ = ¼

where aij
±, bi

±, cj
± are inexact parameters and xj

± is an inexact variable. It is assumed that an
optimal solution exists. For an inexact number g ±∈ g −, g + , g + and g − are the upper and lower
bounds, respectively.

GA has been adopted for solving ILP problem. In this GA approach, the upper and lower
bounds of the inexact numbers of coefficients aij

±, bi
±, cj

± can be determined by substituting the
initial suboptimal decision variables into the objective function. f + and f − can be calculated
directly without any uncertainty in the coefficients. This approach is called the GA-based
method for solving ILP problems, or the GAILP method.

GAILP has been designed to include three stages, which are discussed as follows:

The objective of the first stage is to get an initial suboptimal xj
s for the following problem,

which is transformed from the ILP problem defined in Eq. (1):

1

[ ]
n

r s
j j

j

Max f c x±

=

=å (2)

1

. . , 1,2, ,
n

r s r
ij j i

j

s t a x b i m
=

£ = ¼å

0, 1,2, ,jx j n³ = ¼

Where aij
r , bi

r , cj
r  are random numbers that satisfy the continuous uniform distribution in the

intervals of aij
−, aij

+ , bi
−, bi

+  and cj
−, cj

+ ,respectively. Then, the problem is solved by the GA
linear program solving engine of GASGOT, which uses the objective function in Eq. (2) as the
positive term of the fitness function and the constraints of Eq. (1) as the negative punishment
terms. Thus, a suboptimal solution f s can be identified and the corresponding decision
variables of xj

s are also obtained.

In the second stage, the inexact coefficients of aij
±, bi

±, cj
± will be determined. Let the determined

coefficients corresponding to f + be aij
±+

, bi
±+

, cj
±+ and those corresponding to f − be aij

±−, bi
±−, cj

±−.
These two sets of coefficients can be obtained using the following method.

Substituting xj
s into the formula of Eq. (1) will convert it into Eq. (3).
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Max f c x± ±
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ij j i

j

s t a x b i m± ±
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£ = ¼å

To identify the coefficients aij
±, bi

±, cj
± corresponding to f ±, a set of objective functions needs to

be constructed and solved. Since xj
s are suboptimal variables, which tend to make the objective

function closer to f +, consider aij
±, bi

±, cj
± as variables, then the objective function of Eq. (4) can

be constructed so as to find cj
±+.

1

[ ]
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j j

j

Max f c x± ±
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=å (4)

1

. . , 1,2, ,
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s
ij j i

j

s t a x b i m± ±
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£ = ¼å

The coefficients cj
±+ are considered to be corresponding to f +.

Meanwhile, the objective function presented in Eq. (5) can be constructed so as to find cj
±−.

1

[ ]
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j j

j

Min f c x± ±

=

=å (5)

1

. . , 1,2, ,
n

s
ij j i

j

s t a x b i m± ±

=

£ = ¼å

There are two kinds of decision schemes for inexact programming problems, which are the
conservative scheme and the optimistic scheme [21]. The former assumes less risk than the
latter, so that for a maximization objective function, planning for the lower bound of an
objective value represents the conservative scheme and planning for the upper bound of an
objective value represents the optimistic scheme. In terms of constraints, the conservative
scheme involves more rigorous or stringent constraints and the optimistic scheme adopts more
tolerant ones.

Thus, the problem of searching for aij
±+

, bi
±+ of the optimistic scheme and corresponding to the

upper bound of the objective value of f + can be represented as follows:

1

( )
n

s
ij j i

j

Max abs a x b± ±

=

-å (6)
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The problem,
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will give aij
±−, bi

±− of the conservative scheme, corresponding to the lower bound of the objective

value of f −.

Hence, the values of aij
±+

, bi
±+

, cj
±+ and aij

±−, bi
±−, cj

±− can be calculated.

In the third stage, the problem represented in Eq. (1) is converted into the following two
subproblems:

For f +,
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j j
j

Max f c x
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=å (8)
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For f −,
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This step eliminates the inexact parameters in Eq. (1) and generates instead Eq. (8) and Eq. (9)
as typical linear programming (LP) problems, which can be solved easily.

Generally speaking, the interactive binary algorithm (IBA) proposed in [19, 22] can be used
for solving inexact linear problems reliably and relatively quickly. However, this binary
algorithm has some limitations. One of them, for example, is the limitation that the upper and
lower bounds of an inexact coefficient cannot have different signs. In contrast, the GAILP does
not have this kind of limitation because the GA method does not depend on any assumed
distribution of the inexact parameter. Hence, the GAILP method effectively extends the scope
of problems solvable using the methods of ILP. It is more adaptable for real world applications
of optimization problems with uncertainty.

A sample ILP problem in [22] is as follows,

1 1 2 2Max f c x c x± ± ±= + (10)

11 1 12 2 1. .s t a x a x b± ±+ £

21 1 22 2 2a x a x b± ±+ £

where c1 = [26 , 30], c2 = [− 6, − 5.5], a11 = [8, 10], a12 = [− 14, − 12], b1 = [3.8, 4.2], a21 = [2.4, 2.8], a22

= [3.4, 4], b2 = 6.5

By using the traditional IBA method [22], two submodels are obtained,

1 230 5.5Max f x x+ + -= -

1 2. .8 14 4.2s t x x+ -- £

1 22.4 4 6.5x x+ -+ £

1 20, 0x x+ -³ ³

and

1 226 6.0Max f x x- - += -

1 2. .10 12 3.8s t x x- +- £
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1 22.8 3.4 6.5x x- ++ £

1 20, 0x x- +³ ³

The results were f + =45.78, x1 =1.64, x2 =0.64; f −=30.77, x1 =1.37, x2 =0.79.

By using the GAILP, the results can be calculated with the following objective functions:

1 230 5.5Max f x x+ + += -

1 2. .8 14 4.2s t x x+ +- £

1 22.4 3.4 6.5x x+ ++ £

1 20, 0x x+ +³ ³

and

1 226 6.0Max f x x- - -= -

1 2. .10 12 3.8s t x x- -- £

1 22.8 4 6.5x x- -+ £

1 20, 0x x- -³ ³

The results were f + =48.15, x1 =1.73, x2 =0.69; f −=29.15, x1 =1.29, x2 =0.72.

The GAILP method generates a solution, which is different from that obtained using the IBA
proposed in [22]. A comparison will be discussed as follows:

For the f + optimistic scheme, the GAILP method can generate a result that is guaranteed to
be as close as possible to the upper bound of the constraints. Hence, the maximized value of
the objective function is greater than that produced by the IBA. For the f − conservative scheme,
the GAILP method has a higher probability of satisfying the requirements of the constraints
as close as possible to the lowest limit. Hence, the maximized objective value is smaller.
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Figure 1. Optimistic scheme, f +.

Figure 2. Zoom-in of the optimistic scheme, f +.
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In Figures 1 to 4, the bold lines denote the boundaries of the constraints, which limit the
possible values for x1, x2 to the left lower area. The constraint a11x1

± + a12x2
±≤b1 is shown in these

figures as the grey bold solid lines, which is the same for both the IBA and GAILP methods.
The dark bold dotted lines represent the constraint of a21x1

± + a22x2
±≤b2 given by the IBA and the

dark bold solid lines represent the same constraint given by the proposed GAILP method.

The boundaries, together with the x 1, x 2 axes, enclose the entire area defined by the constraints.
The objective functions f + =30x1

+−5.5x2
+ or f −=26x1

−−6x2
− are groups of parallel lines, as shown

in Figures 1 to 4 by the thin solid and dotted lines. With different values of x1 and x2, these
objective function lines would produce different intercepts on the two axes. These constraints
restrict the objective function lines to cross with the constraints area, so that, at some vertex,
the objective function would reach its extreme (i.e., maximized or minimized) values.

In Figures 1 to 4, the thin dotted lines are given by the IBA and the thin solid lines represent
the objective functions given by the proposed GAILP method. The legends for Figure 1 to 4
are listed in Table 1.

Figure 3. Conservative scheme, f −.
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Figure 4. Zoom-in of the conservative scheme, f −.

The constraint a21x1
± +  a22x2

±≤b2 given by IBA

The constraint a21x1
± +  a22x2

±≤b2 given by GAILP

The constraint a11x1
± + a12x2

±≤b1

Objective function line given by IBA

Objective function line given by GAILP

Table 1. Legends for Figures 1 to 4.

3.2. GA-based method for solving IQP problems (GAIQP)

The GAILP method can be extended to solve the IQP problems or other more complicated
INLP problems.

A typical IQP problem is formulated as follows:

2
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[ ( ) ]
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j j j j
j

Max f c x d x± ± ± ± ±
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= +å (11)
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where aij
±, bi

±, cj
±, dj

± are inexact parameters and xj
± is an inexact variable.

In stage one, to obtain an initial suboptimal xj
s from a problem transformed from the IQP

problem:
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where aij
r , bi

r , cj
r , dj

r  are random numbers that satisfy the continuous uniform distribution in

the intervals aij
−, aij

+ , bi
−, bi

+ , cj
−, cj

+  and dj
−, dj

+ . Then, a suboptimal solution f s can be

identified, and the corresponding decision variables xj
s are also obtained.

In the second stage, substituting xj
s into the formula in Eq. (11). To determine the coefficients

aij
±, bi

±, cj
±, dj

± corresponding to f ±
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To determine aj
±+

, bi
±+ of the optimistic scheme and corresponding to the upper limit of the

objective value of f +
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In the third stage, the problem expressed in Eq. (11) has been converted into the following two
subproblems:
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The inexact information has been incorporated in these two subproblems. These two subpro‐
blems, as typical nonlinear programming problems, can be solved by the GA nonlinear
program solving engine of GASGOT.

3.3. GA-based method for solving inexact nonlinear problems (GAINLP)

Quadratic programming problems are specific cases of nonlinear programming problems. Due
to the lack of generally applicable algorithms for handling the nonlinear structure and the
inexact information embedded in the structure, most nonlinear programming problems are
difficult to solve. The IBA method proposed in [11, 22] is not intended for dealing with generic
nonlinear problems. In contrast, the GA-based method can be used as a general problem solver
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GAINLP has been designed to include the three stages of problem solving.

In stage one, to obtain the initial suboptimal xj
s, the random numbers of aij

r , bi
r , cj

r , dj
r  were

selected to transform this INLP problem into a NLP problem, such that aij
r , bi

r , cj
r , dj

r  satisfy the
continuous uniform distribution in the intervals of aij

−, aij
+ , bi

−, bi
+ , cj

−, cj
+  and dj

−, dj
+ .
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0.3
1 1 2 1 1 2 2 1 2( ) ( )s r s r s r s r s sMax f c x c x d x d x x= - - + (20)

0.5
11 1 12 2 1. . ( ) ,r s r s rs t a x a x b+ £

1 2 2 2 ,s r s rx a x b+ £

0, 1,2.s
jx j³ =

Then, the heuristic search algorithm of the GA nonlinear program solving engine of GASGOT

can be used to identify a suboptimal solution f s, and the corresponding decision variable xj
s.

The objective function in Eq. (20) was used as the positive term of the fitness function and the
constraints of Eq. (19) adopted as the negative punishment terms. The results are

x1
s =0.346, x2

s =0.171, f s = −2.296.

In stage two, by substituting x1
s, x2

s into Eq. (19), the inexact coefficients of aij
±, bi

±, cj
±, dj

± will be

determined. Thex1
s, x2

s obtained in stage one are used to construct two optimization problems

in order to determine the coefficients of aij
±+

, bi
±+

, cj
±+

, dj
±+ and aij

±−, bi
±−, cj

±−, dj
±−, respectively. The

coefficients from the first group are considered to be corresponding to the optimistic scheme

f +, while those from the second group correspond to the conservative scheme f −. Considering

cj
±, dj

± are variables, the following two objective functions can be constructed:

0.3
1 1 2 1 1 2 2 1 2( ) ( )s s s s sMax f c x c x d x d x x

+ + + ++ ± ± ± ±= - - + (21)

and

0.3
1 1 2 1 1 2 2 1 2( ) ( )s s s s sMin f c x c x d x d x x

- - - -- ± ± ± ±= - - + (22)

1 1. . , [16,18]s t c c
+ -± ± Î

2 2, [12,14]c c
+ -± ± Î

1 1, [4,5]d d
+ -± ± Î
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2 2, [14,15]d d
+ -± ± Î

To determine aij
±+

, bi
±+ of the optimistic scheme corresponding to the upper limit of the objective

value f +, the objective function can be constructed as follows:

0.5
11 1 12 2 1( ( ) )s sMax abs a x a x b± ± ±+ - (23)

0.5
11 1 12 2 1.t. ( )s ss a x a x b± ± ±+ £

and

1 2 2 2( )s sMax abs x a x b± ±+ -

1 2 2 2. . s ss t x a x b± ±+ £

The objective functions to get aij
±−, bi

±− of the conservative scheme are

0.5
11 1 12 2 1( ( ) )s sMin abs a x a x b± ± ±+ - (24)

0.5
11 1 12 2 1. . ( )s ss t a x a x b± ± ±+ £

and

1 2 2 2( )s sMin abs x a x b± ±+ -

1 2 2 2. . s ss t x a x b± ±+ £

By solving Eqs. (21)–(24), the values of all the inexact coefficients are obtained, i.e.,

a11
±+

=4.5, a12
±+

=1.8, b1
±−=2.1, a2

±+
=1.8, b2

±+
=1.1; a11

±−=5.5, a12
±−=2.2, b1

±−=1.8, a2
±−=2.2, b2

±−=0.9;

c1
±+

=18, c2
±+

=12, d1
±+

=4, d2
±+

=15; c1
±−=16, c2

±−=14, d1
±−=5, d2

±−=14

In stage three, the objective function presented in Eq. (20) is converted into the following two
subproblems:
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0.3
1 1 2 1 218 12( ) 4 15( )Max f x x x x x+ ± ± ± ± ±= - - +

0.5
1 2. .4.5( ) 1.8 2.1,s t x x± ±+ £

1 21.8 1.1,x x± ±+ £

1 20, 0.x x± ±³ ³

and

0.3
1 1 2 1 216 14( ) 5 14( )Max f x x x x x- ± ± ± ± ±= - - +

0.5
1 2. .5.5( ) 2.2 1.8,s t x x± ±+ £

1 22.2 0.9,x x± ±+ £

1 20, 0.x x± ±³ ³

The inexact parameters in Eq. (20) have been eliminated, and two typical nonlinear optimiza‐
tion problems have been generated instead. The solution of the example (Eq. (19)) is
f ± = −5.5575, −1.72 , x1

± = 0.24727, 0.38496 , and x2
± = 0.1989, 0.2053 .

As demonstrated above, it can be seen that the GAINLP method can generate the optimal result
without any simplification or assumption, and it can be adapted for applications of optimiza‐
tion problems with uncertainty. The next section demonstrates application of this method to
a real world regional waste management problem.

4. Case study

Solid waste management is the process of removing waste materials from the surrounding
environment, which involves the collection, separation, storage, processing, treatment,
transport, recovery and disposal of solid waste. Landfill and incineration are two of the most
commonly used solid waste disposal methods. The objective of a solid waste management
process is to dispose discarded materials in a timely manner so as to prevent the spread of
disease, minimize the likelihood of contamination and reduce their effects on human health
and the environment.
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The economy of scale (ES) is a microeconomics term, and it refers to the advantages that
enterprises obtain due to their size or scale of operation, with the cost per unit of output
generally decreasing as the scale increases and fixed costs are distributed over more units of
output. In a solid waste management system, ES exists within the transportation process [23]
and it can be expressed as a sizing model with a power law [11].

1( / ) m
t re t reC C X X += (25)

where Xt(t/d) is a waste flow decision variable; Xre (t/d) is a reference waste flow; Ct  ($/t) is
the transportation unit cost due to the ES of waste flowXt  (t/d); Cre ($/t) is a coefficient reflecting
the significance of the ES to the unit cost of waste transported for reference waste flow Xre(t/d),
Cre <0; and m is an ES exponent which reflects the unit cost decline with respect to the waste
flow, −1<m <0.

Figure 5. Case study of municipalities and waste management facilities.

The study region includes three municipalities, a waste-to-energy (WTE) facility and a landfill,
as shown in Figure 5. Three time periods are considered; each has an interval of five years.
Over the 15-year planning horizon, an existing landfill and WTE facilities are available to serve
the municipal solid waste (MSW) disposal needs in the region. The landfill has an existing
capacity of 2.05, 2.30 ×106t, and the WTE facility has a capacity of 500, 600 t / d .The WTE
facility generates residues of approximately 30%(on a mass basis) of the incoming waste
streams, and its revenue from energy sale is 15, 25 $ / t combusted.
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Table 2 shows the waste generation rates of the three municipalities and the operating costs
of the two facilities in the three periods.

Time period k=1 k=2 k=3

Waste generation W G jk
±  (t/d)

Municipality 1 (j=1) [260, 340] [310, 390] [360, 440]

Municipality 2 (j=2) [160, 240] [185, 265] [210, 290]

Municipality 3 (j=3) [260, 340] [260, 340] [310, 390]

Operation cost OPik
± ($/t)

Landfill (i=1) [30, 45] [40, 60] [50, 80]

WTE facility (i=2) [55, 75] [60, 85] [65, 95]

Table 2. Data for the waste generation and treatment/disposal.

Taking into consideration the effects of the ES, the INLP model can be formulated as follows:
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where i is the type of waste management facility (i =1, 2, where i =1 for landfill, 2 for WTE); j
is the city, j =1, 2, 3; k  is the time period, ; L k is the length of period k, L 1 = L 2 = L 3 =365∗5 (day);

OPik
± is the operating cost of facility during period k ($/t); REk

± is the revenue from WTE during

period k ($/t), RE1
± = RE2

± = RE3
± = 15, 25 ; T E ± is the capacity of WTE (t/d); T L ± is the capacity

of the landfill (t); W G jk
±  is the waste disposal demand in city during period k (t/d); xijk

±  is the
waste flow from city j to facility i during period k (t/d).

In this objective function (Eq. (26)), the first term on the right side reflects the transportation
costs in each management period (k=1 to 3) from each city to each waste treatment unit, and
the related operation costs. The second term reflects the cost incurred in transporting the
products from the WTE facility to the landfill, and the operation cost at the landfill. The third
term is the revenue generated from the WTE facility.

The MSW generation rates generally vary between different municipalities and for different
periods, and the costs for the waste transportation and treatment also vary temporally and
spatially. Furthermore, interactions exist between the waste flows and their transportation
costs due to the effects of the ES (Eq. (25)). Table 3 and Table 4 show the parameters related
to the ES, which include the fixed unit transportation cost Are, the reference waste flow Xre and
the coefficient Cre  corresponding to Xre.

Fixed unit transportation cost ($/t) Reference waste flow (t/d)

k=1 k=2 k=3 k=1 k=2 k=3

City-to-landfill

Are11k

± [14.58, 19.40] [16.04, 21.34] [17.64, 23.48] Xre11k

± [220, 250] [240, 280] [260, 320]

Are12k

± [12.65, 16.87] [13.92, 18.56] [15.31, 20.41] Xre12k

± [160, 200] [180, 220] [220, 260]

Are13k

± [15.30, 20.49] [16.83, 22.53] [18.52, 24.79] Xre13k

± [160, 200] [180, 240] [200, 240]

City-to-WTE

Are21k

± [11.57, 15.42] [12.73, 16.97] [14.00, 18.66] Xre21k

± [200, 240] [240, 280] [280, 320]

Are22k

± [12.17, 16.15] [13.39, 17.76] [14.73, 19.54] Xre22k

± [120, 170] [150, 190] [180, 220]

Are23k

± [10.60, 14.10] [11.67, 15.51] [12.83, 17.06] Xre23k

± [220, 270] [220, 270] [240, 270]

WTE-to-landfill

AreWTE −L Fk

± [5.71, 7.62] [6.28, 8.38] [6.91, 9.33] XreWTE −L Fk

± [170, 200] [200, 260] [240, 270]

Table 3. Fixed unit transportation costs and reference waste flows.
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k=1 k=2 k=3 k=1 k=2 k=3

Cre11k

− −2.7 −3.4 −3.8 Cre21k

− −1.9 −2.6 −3.3

Cre11k

+ −4.1 −5.0 −6.3 Cre21k

+ −3.1 −4.0 −5.0

Cre12k

− −1.7 −2.1 −2.8 Cre22k

− −1.2 −1.7 −2.2

Cre12k

+ −2.8 −3.4 −4.5 Cre22k

+ −2.3 −2.8 −3.6

Cre13k

− −2.1 −2.5 −3.1 Cre23k

− −2.0 −2.2 −2.6

Cre13k

+ −3.4 −4.5 −5.0 Cre23k

+ −3.2 −3.5 −3.9

CreWTE −L Fk

− −0.8 −1.1 −1.4 CreWTE −L Fk

+ −1.3 −1.8 −2.1

Note: The + and – superscript sign of Cre represents the value of Cre relevant to the upper and lower bound of Xre
only.

Table 4. Cre ($/t) The economy of scale coefficient corresponding to reference waste flow Xre.

Hence, it can be observed that the traditional IBA cannot solve this problem without additional
assumptions or simplifications. The following discussion will explain how traditional methods
solve this problem by simplifying the nonlinear effects of the ES.

(i) Let m =  −1, the effects of the ES are totally ignored. This converts the INLP problem to an
ILP problem, and the GAILP method can solve the problem.

(ii) Assuming−0.2<m < −0.1, it is indicated that the nonlinear relationships in Eq. (26) can be
approximated with grey quadratic functions within a predetermined degree of error. Thus,
the INLP problem is converted into an IQP problem.

The left two columns of Table 5 list the solutions for m =  −1 and −0.2<m < −0.1.

Both of the above simplifications introduce inaccuracy and limitations. When the value of m
deviates away from the predetermined value, this inaccuracy will increase dramatically.

Applying the GAINLP model on the inexact nonlinear programming problem, the optimiza‐
tion problem can be solved directly without additional assumptions for the effects of the ES.
Three different scenarios, (m = −0.1, m = −0.3, and m = −0.5) have been tested, and the solutions
given by the GAINLP model are shown in the right three columns of Table 5.

The above three scenarios assume that the ES exponent is universal in the whole region during
the entire period. However, this is not always necessarily true for practical engineering
problems. More common situations may involve different scale exponents for various
combinations of municipalities and facilities in different periods. Thus, Table 6 illustrates the
solutions for the 4th scenario, which involves different scale exponents.
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Decision variable(t/d) ILP solution IQP solution Other solutions

m=−1 −0.2<m<−0.1 m=−0.1 m=−0.3 m=−0.5

x111
± [210, 290] [250, 290] [203, 292] [100, 221] [35, 88]

x112
± 0 [310, 350] [1, 36] [1, 44] [1, 36]

x113
± [0, 30] [360, 440] [1, 44] [126, 190] [240, 300]

x121
± 0 [0, 30] [1, 43] [60, 141] [144, 240]

x122
± [0, 65] [185, 225] [1, 73] [20, 103] [75, 148]

x123
± [210, 290] [50, 80] [200, 290] [200, 259] [197, 260]

x131
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f ±= ($106) [220.2, 507.4] [239.5, 514.1] [209.8, 522.3] [200.5, 519.6] [197.6, 516.8]

Table 5. Solutions obtained by ILP model (m=−1), IQP model (−0.2 <m<−0.1) and m=−0.1, 0.3 and 0.5.

In the 4th scenario, the weight of the transportation cost in the system operation cost varies
according to different Ct  values. The effect becomes significant when waste flow becomes

lower and the hauling distances are substantial. This effect is a nonlinear function of the waste
flow xijk , in which the reference waste flow xre and the ES exponent m are the parameters. This

problem is a complicated nonlinear programming problem, and the GAINLP has been shown
to be adequate for solving this kind of problems. On the other hand, the traditional IBA
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methods will not be able to handle situations like the 4th scenario without additional assump‐
tions and simplification.

Decision variable Solution (t/d) m Decision variable Solution (t/d) m

x111
± [100, 192] −0.15 x211

± [125, 189] −0.1

x112
± [0, 40] −0.2 x212

± [300, 390] −0.15

x113
± [112, 178] −0.35 x213

± [205, 312] −0.15

x121
± [65, 139] −0.2 x221

± [42, 142] −0.45

x122
± [40, 78] −0.3 x222

± [129, 192] −0.3

x123
± [199, 279] −0.3 x223

± [0, 40] −0.1

x131
± [90, 189] −0.25 x231

± [100, 198] −0.3

x132
± [135, 280] −0.25 x232

± [44, 113] −0.45

x133
± [127, 218] −0.3 x233

± [99, 219] −0.4

f ±= 194.7,  500.1  ($106)

Note: for transportation from WTE facility to landfill, m=−0.5.

Table 6. Solutions when m is different for each municipality and each period.

Figure 6. System cost comparisons.

The results also show that when the value of the ES exponent m becomes smaller, from −0.1,
−0.3 to −0.5, for both f positive scheme and f negative scheme, the value of the minimized
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objective function also becomes smaller. At the same time, the range of the intervals of the
minimized objective function also decreases. This reflects how the ES exponent affects the
overall cost for the entire period. A comparison of the results for the four scenarios is given in
Figure 6.

5. Conclusions

In this chapter, the GA-based methods have been proposed and applied for identifying an all-
purpose optimization solution for the ILP, IQP and INLP problems. These methods are called
GAILP, GAIQP and GAINLP. Compared to these GA-based methods, the traditional problem-
solving method has limitations due to the complexity involved in selecting the upper or lower
bounds of variables and parameters when the subobjective functions are being constructed.
The complexity arises due to the extensive computation and necessary associated assumptions
and simplification. The solution procedures of the proposed GA-based optimization methods
do not involve any such assumption or simplification, and the quality of the result is guaran‐
teed. The GAINLP was applied to a solid waste management optimization problem, and the
result analysis illustrates the practicality and flexibility of the proposed GAINLP method for
solving more complex INLP problems.

GAILP, GAIQP and GAINLP have been implemented in MATLAB, and can be easily extended
to include other nonlinear operation programming software packages so as to enhance the
flexibility and efficiency of the problem-solving process. The GA-based heuristic optimization
approach is flexible and it can be extended to find solutions for various types of operation
programming scenarios that involve nonlinear optimization and inexact information. It can
also be used as an all-purpose algorithm for economic optimizations.
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Abstract

Modeling  complex  phenomena  in  chemoinformatics  and  material-informatics  can
often  be  formulated  as  single-objective  or  multi-objective  optimization  problems
(SOOPs  or  MOOPs).  For  example,  the  design  of  new  drugs  or  new  materials  is
inherently a MOOP since drugs/materials require the simultaneous optimization of
multiple parameters.

In this chapter, we present several algorithms based on global stochastic optimiza‐
tion.  These  algorithms  are  applicable  to  multiple  tasks  in  chemoinformatics  and
material-informatics including the following: (1) representativeness analysis, namely
the selection of a representative subset from within a parent data set. (2) Derivation of
quantitative structure–activity relationship models. Such models are used in multiple
areas to predict  activities  from structures and to provide insight into factors (e.g.,
descriptors) governing activities. (3) Outlier removal to clean a parent data set from
objects (e.g., compounds) that may demonstrate abnormal behavior.

The performances of the new algorithms were evaluated using different data sets and
multiple measures and were found to outperform previously reported methods.

Due to the modular nature of the algorithms, they could be combined into machine-
learning workflows. In the final section, we provide an example of one such work‐
flow and apply it to the development of predictive models in pharmaceutical and
material sciences.

Keywords: chemoinformatics, material-informatics, simulated annealing, QSAR,  
outlier removal, machine learning, representativeness, kNN

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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1. Introduction

Modeling complex phenomena in chemoinformatics and material-informatics can often be
formulated as multi-variables/single-objective or multi-variables/multi-objectives optimiza‐
tion problems. Common examples of the former include sampling of complex energy land‐
scapes using conformational search methods [1], docking or molecular simulation techniques
[2, 3], derivation of statistical models, namely quantitative structure–activity relationship
(QSAR) models [4, 5], and diversity or representativeness analysis [6, 7]. The design of new
compounds with pharmaceutical relevance on the other hand is inherently a multi-objective
optimization problem (MOOP) since drugs require the simultaneous optimization of many
parameters and consequently constitute a compromise between often conflicting require‐
ments. In a similar manner, the design of new materials could also be regarded as a MOOP.
For example, the design of new photovoltaic cells requires the simultaneous optimization of
the current and the voltage.

This chapter focuses on optimization algorithms from three different areas: (1) Representa‐
tiveness analysis, that is, the selection of a representative subset from within a parent data set.
Representativeness analysis has multiple applications in chemoinformatics and material-
informatics, for example, for rationally selecting subsets of compounds for experimental
analysis and for rationally partitioning a parent data set into a modeling set and a test set. (2)
Derivation of predictive, nonlinear machine-learning models correlating activities with
descriptors while inherently incorporating feature selection to identify the most relevant
descriptors. Such the so-called QSAR models find many usages in chemistry, biology,
environmental sciences, and material sciences to predict the activities of new compounds/
materials and to provide insight into the factors governing these activities [8]. (3) Outlier
removal, to clean a parent data set from objects (e.g., compounds) that may demonstrate
abnormal behavior. Outlier removal is a mandatory step prior to the derivation of any
statistical model. In all cases, the corresponding problems (i.e., how to select a representative
subset from within a parent data set, how to remove outliers from within a parent data set,
and how to build predictive QSAR models) were formulated as either single-objective
optimization problems (SOOPs) or MOOPs. These problems were then solved using Monte
Carlo (MC)/Simulated Annealing (SA) or Genetic Algorithm (GA) as the optimization engines.

Finally, while developed independently and with multiple potential applications in mind, all
algorithms could be used as components of machine-learning workflows for data mining and
the derivation of QSAR models (see Section 5).

This chapter is organized as follows: We begin with a short introduction to SOOPs and MOOPs
(Section 2), followed by a description of two of the most common optimization engines,
MC/SA (Section 3.1) and GA (Section 3.2). Section 4 provides a description of the different
optimization-based algorithms, and Section 5 lists a few representative examples. Finally,
Section 6 concludes the chapter.
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2. Single-objective and multi-objectives optimization

As noted above, multiple problems in chemoinformatics and material-informatics could be
formulated as optimization problems. Such a formulation requires the definition of a target
(or objective) function(s) (f) and a set of variables (X1, X2, X3,…,Xn), which are related to the
scientific problem of interest, and which together define a complex, multi-dimensional surface
with an a priori unknown distribution of optima. The task then is to locate the global optimum
or preferably, since phenomena in these fields are rarely governed by a single solution, a set
of optima.

Figure 1. Potential solutions of a two objectives problem represented by the Pareto front. Dominated solutions are
shown as empty circle, and the number of solutions which dominate them is written in parentheses.

Optimization problems could be broadly divided into two categories, namely SOOP and
MOOP depending on the number of target functions which should be simultaneously
optimized. SOOPs search for the best optimum on a surface defined by a single target function
and its variables. While this might be a difficult task in particular for complex, multi-dimen‐
sional surfaces, a solution exists and a thorough enough search of the space, at least in theory,
is bound to locate it. This, however, is not the case for MOOPs, which extend optimization
theory by permitting several design objectives to be optimized simultaneously. The principle
of MOOP was first formalized by Pareto [9]. In MOOP, a single solution that outperforms all
other solutions in all objectives does not necessarily exist. Instead, several equally good
(termed non-dominated) solutions exist representing various compromises among the
objectives. A solution is said to be non-dominated if it is better than all other solutions in at
least one objective. The set of non-dominated solutions represents the Pareto front. This is
illustrated in Figure 1, where each circle represents a solution to the problem. The curved line
represents the Pareto front. Each solution is designated a Pareto rank that is based on the
number of solutions which dominate it. The solid circles are non-dominated solutions, which
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have Pareto rank of zero and fall on the Pareto front. Dominated solutions are shown as empty
circle, and the number of solutions which dominate them is written in parentheses.

Due to the complex nature of many of the chemoinformatics and material-informatics-related
target functions (e.g., nonlinearity, non-continuity, non-derivability), non-derivatives-based,
stochastic optimization algorithms should be used as the optimization engine. Several global
stochastic algorithms including GAs [10], genetic programming [11], particle swarm optimi‐
zation [12], MC [13]/SA [14], and the iterative stochastic elimination method [15] are reported
in the literature. The algorithms presented in this chapter utilize MC/SA- and GA-based
optimizers to solve SOOPs and MOOPs.

3. Optimization engines

3.1. Monte Carlo/simulated annealing

MC methods and in particular the Metropolis variant [13] use random moves in order to
optimize a multi-dimensional space defined by a dependent target function and a set of
independent variables.

Metropolis MC starts from an initial random position. At each iteration, a new position
(positioni+1) is randomly generated by a random displacement from the current position
(positioni). The “energy” (i.e., the value of the target function) of the resulting new position is
computed, and ΔE, the energetic difference between the current and the new position, is
determined (Equation 1).

( ) ( )1i iE E position E position+D = - (1)

The probability that this new position is accepted is based on the Metropolis test as defined in
Equations 2 and 3.

( )E 0if thenaccept stepD < (2)

Equation 3else

[ ]
ΔE

 0,1      kTif random e then accept step
-æ ö

£ç ÷
è ø

(3)

Thus, if the new position has a lower value of the target function (commonly referred to as
lower energy), the transition is accepted. Otherwise, a uniformly distributed random number
between 0 and 1 is drawn and the new position will only be accepted if the Boltzmann
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probability is higher or equal to the random number as defined in Equation 3, where kT is the
effective temperature.

MC simulations are often coupled to a SA [14] procedure and usually called SA optimization.
SA gradually decreases the temperature according to a predefined cooling schedule (Fig‐
ure 2). This procedure controls the probability of acceptance or rejection of high energy moves.
The SA procedure increases the probability of locating the global minimum.

Figure 2. Examples of cooling schedules for SA: (a) smooth linear cooling; (b) smooth exponential cooling (c) stepwise
exponential cooling; (d) saw-tooth linear cooling composed of repeating cooling cycles in order to avoid trapping in
local minima.

3.2. Genetic algorithms

GAs [10] are global optimizers designed from evolutionary principles. Such algorithms evolve
a set of chromosomes, each corresponding to a unique solution to the optimization problem,
using a set of genetic operators such as selection of the fittest, mutation, and crossover. The
selection of individuals to be subjected to the genetic operators is governed by their fitness
values (calculated by a fitness function related to the specific scientific problem) so that
chromosomes which represent a better solution to the optimization problem are given more
chances to ”reproduce” than those chromosomes which are poorer solutions. This process
iterates multiple times (generations) until no improvement in the fitness function is observed
or until the number of predefined generation has been exhausted. By considering, at each
generation, multiple rather than single chromosomes, GAs provide multiple solutions to the
optimization problem.

4. Optimization-based algorithms

4.1. Representativeness and diversity analysis

Advances in combinatorial chemistry and high-throughput screening techniques have greatly
expanded the number of drug-like compounds that could be synthesized and tested. However,
even then, only a small fraction of the accessible chemistry space could be synthesized and
screened [16]. This in turn has led to the development of rational approaches for the design of
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screening libraries and in particular libraries composed of diverse compounds (i.e., com‐
pounds largely differing from one another). Hassan et al. [6] formulated the selection of a
diverse subset from within a parent data set as an optimization problem using several diversity
functions. In particular, the MaxMin function calculates the square of the minimal distance,
dij

2, over all (i,j) pairs comprising the selected subset according to Equation 4.

( )( )2min  iji j
MaxMin Max d

¹
= (4)

where dij is the distance between compounds i and j, and the summation runs over all the
descriptors (features). The MaxMin function is optimized (maximized) by means of a SA
algorithm to produce the subset with the largest value (i.e., the most diverse subset).

Treating the selection of a diverse subset as an optimization problem has the advantage that
this objective could be combined with other objectives into a MOOP. For example, it is possible
to select a subset that the best balances its internal diversity, pharmacological profile, and price.

However, diverse subsets are often biased toward the inclusion of outliers and as a result do
not well represent the parent data set. In drug discovery, focusing on outliers may translate
into selecting and testing “extreme” compounds, for example, compounds with too many
functional groups or compounds with too high molecular weights. Such compounds are likely
to be difficult to optimize into drug candidates [17]. Unless such “extreme” compounds could
be easily detected and removed (e.g., if their “extremeness” results from a single property),
they are likely to remain in the data set.

Thus, instead of selecting diverse subsets, it might be advisable to select representative subsets,
which better mirror the distribution of the parent data set. If properly selected, such subsets
will include compounds which are different from one another yet are not “bizarre.” However,
despite their potential usefulness, representative subsets have gained much less attention than
diverse subsets.

Representative subsets could be selected using clustering algorithms such as hierarchical
clustering and k-means clustering. Both partition an input data set into a predefined number
of clusters. Hierarchical clustering produces a dendogram of clusters in which the root node
contains all the compounds and the leaf nodes contain each, a single compound. Divisive
hierarchical clustering starts at the root node and iteratively divides clusters until the leaf nodes
are reached. Agglomerate hierarchical clustering starts with the leaf nodes and iteratively
combines closest neighbors clusters until the root node is reached. Extracting from the
dendogram a specific number of clusters and selecting a compound from each cluster leads to
a representative/diverse subset. k-means clustering [18] operates by first selecting at random
a user defined number of seeds (k), then by assigning each compound to its closest seed. This
leads to the formation of k initial clusters. Centroids of all clusters are then calculated, and
compounds are re-assigned to their closest centroid. This process is repeated until the clusters
are stable, that is, no compounds are re-assigned. Again selecting a compound from each
cluster provides a representative/diverse subset.
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Figure 3. Schematic representation of the representativeness optimization algorithm.

In 2014, Yosipof and Senderowitz [19] introduced an optimization algorithm for the direct
selection of a representative subset from within a data set. The algorithm optimizes by means
of a MC/SA procedure a representativeness function, based on pairwise distances between
subset and data set compounds. The algorithm consists of the following steps (Figure 3):

1. Characterize each compound in the data set by a set of descriptors.

2. Normalize descriptors by converting them into Z-scores according to Equation 5 where
μ is the mean, and σ is the standard deviation:

  ix µZ
s
-

= (5)

The resulting scores are then converted to [0,1] range by calculating the cumulative
probability assuming a normal distribution (μ = 0; σ2 = 1).

3. Select a random subset s of size k from within the l compounds comprising the data set.

4. Calculate the Euclidean distance between compound i from the data set and all k
compounds comprising subset s.

5. Take the minimum Euclidean distance from step (4) as the score for compound i:
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6. Repeat steps (4) and (5) for all (l−k) compounds remaining in the data set.

7. Calculate the average score over all (l−k) compounds. This score characterizes subset s:
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Minimize scores through a MC/SA procedure [14]. At each step replace, at random, a single
compound from s with a candidate compound from the unselected portion of the data set,
calculate a new score, scores', and accept it according to the MC/SA algorithm.

Similar to diversity analysis, a major advantage in treating the selection of a representative
subset as an optimization problem is the ability to combine it with additional objectives into
a MOOP [20, 21]. This was demonstrated by the Pareto-based optimization of the representa‐
tiveness and MaxMin functions. The Pareto algorithm evaluates MaxMin (Equation 4) and the
representativeness function for a selected subset (termed a solution to the MOOP) and assigns
to it a Pareto rank based on the number of solutions dominating it. In this case, solution i
dominates solution j if MaxMin(i) < MaxMin(j) and Score(i) < Score(j) (where Score is calculated
according to step 7 given above). Under this dominance criterion, the value of MaxMin is
minimized rather than maximized in contrast with the original implementation of this function
for diversity selection. MaxMin minimization biases the selected subset toward the more
populated regions of the database allowing the two functions (MaxMin and representative‐
ness) to work in concert. The Pareto rank is then minimized using Metropolis Monte Carlo,
and the solutions with rank = 0 (i.e., non-dominant solutions) are kept to construct the Pareto
front. Finally, a solution on the Pareto front is randomly selected. Alternatively, all the
solutions could be presented to the user for manual inspection, evaluation, and selection.

Representative subsets could be used under two general scenarios: (1) Results obtained for a
representative subset are used to infer on the properties of the parent data set. For example,
the biological evaluation of a representative subset could provide information on the activities
of the entire parent data set. Thus, testing only a representative subset will provide a similar
amount of information as would have been gained by testing the entire data set. (2) A repre‐
sentative subset is selected from within a parent data set, set aside, and used to validate models
generated by machine-learning algorithms. In the area of chemoinformatics, such models are
known as quantitative structure–activity relationship (QSAR) models (see Section 4.2) [22].

To evaluate the representativeness algorithms under the first scenario, Yosipof and Sendero‐
witz [19] selected a subset of 200 compounds from the Comprehensive Medicinal Chemistry
(CMC) database using five representative/diversity algorithms, namely representativeness
optimization, Pareto-based optimization, hierarchical clustering, k-means clustering, and
MaxMin optimization. The CMC database contains 4,855 pharmaceutical compounds classi‐
fied into 105 different biological indications. The degree with which each subset is able to
represent the parent database (i.e., include a similar distribution of indications) was estimated
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using the χ2 goodness-of-fit test. In this test, the null hypothesis (H0) states that the distribution
of biological indications within the subset and database are similar. In contrast, the H1

hypothesis states that these distributions are significantly different. The objective is therefore
to stay on the null hypothesis. The χ2 statistics is defined as follows:
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where Oi and Ei represent, respectively, the observed and expected frequencies for a biological
indication i in the 200 compounds subset. Ei is derived from the frequency of indication i in
the parent database. The results of this test demonstrated that the distribution of indications
within the subsets selected by the representativeness optimization and the Pareto-based
optimization are statistically indistinguishable (p-value >0.05) from that in the parent database.
In contrast, subset selected by k-means clustering, hierarchical clustering, and MaxMin display
distributions which are markedly different from the database (p-value <0.05).

To evaluate the representativeness algorithms under the second scenario (a representative
subset is selected, set aside, and used to validate models built on the rest of the data set), it was
incorporated into a workflow developed for the derivation of predictive QSAR models using
machine-learning algorithms. Following the work of Tropsha [23] and others [22], it is today
recognized that the predictive power of such models could only be evaluated from their
performances on external test sets. In particular, test sets that uniformly span the chemistry
space of the parent data set provide reliable performance estimates for QSAR models operating
in this space. It therefore follows that such performance estimates correlate with how well a
set of compounds represents the parent data set from which it was selected. Yosipof and
Senderowitz [19] used the new representativeness algorithm to rationally select test sets of
varying sizes from two data sets of pharmaceutical relevance (logBBB and Plasmodium
falciparum inhibition) and estimated the performances of models derived with five classifica‐
tion techniques (decision trees, random forests, ANN, SVM, kNN) on these test sets. Similar
test sets were also selected from the Pareto front generated by the simultaneous optimization
of representativeness and MaxMin as well as by the k-means clustering, hierarchical clustering,
and MaxMin for comparison. Model performances were estimated using the corrected
classification rate (CCR; Equation 7)
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where TN and TP represent the number of true negative and true positive predictions, respec‐
tively, and NN and NP represent the total number of the two activity classes.

The results (Table 1) indicate that the best performances were obtained with the Pareto method
followed by the representativeness function and k-means clustering. The other two methods,
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namely hierarchical clustering and the MaxMin function led to poorer performances. Thus,
representativeness-based methods indeed produce subsets which are more representative of
the parent data sets.

Method CCR

Hierarchical clustering 0.78

k-meansclustering 0.80

MaxMin 0.74

Representativeness 0.80

Pareto-based 0.83

Table 1. Average performances of QSAR models on test sets selected with the hierarchical clustering, k-means
clustering, MaxMin, representativeness, and Pareto-based methods. Averaging performed over the two data sets, the
five model building algorithms, and the different sizes of the selected test sets.

4.2. Derivation of predictive QSAR models

QSAR (or QSPR, quantitative structure–property relationship) is a general name for a host of
methods that attempt to correlate a specific activity for a set of compounds with their structure-
derived descriptors (i.e., features) by means of a mathematical model.

QSAR models take the form Ai = f (D1, D2,…, Dn) where Ai is the dependent variable repre‐
senting the activity (or any other property of interest) for a set of objects (e.g., compounds or
materials), and D1, D2,…,Dn are calculated (or experimentally measured) independent varia‐
bles (i.e., descriptors). f is an empirical mathematical transformation that should be applied to
the descriptors in order to calculate the property values for the objects.

QSAR models are typically built according to a basic workflow which involves the following
steps: (1) data collection; (2) preprocessing (data set preparation and curation, descriptors
calculation, descriptors filtering); (3) model generation; (4) model validation.

Data collection involves the assembly of a data set of compounds/materials with known
activities. Once collected, the data should be carefully curated, errors should be corrected (or
if not possible, problematic compounds should be removed), and a set of descriptors should
be obtained (calculated or measured). Finally, constant or nearly constant descriptors should
be removed and usually, correlated descriptors are removed as well.

QSAR models are built using multiple machine-learning approaches. The modeling process
begins with a modeling set and proceeds by performing regression-based or classification-
based analysis to construct a model of the activity as a function of the descriptors. Machine-
learning techniques are mostly used in this area, because they can deal with very complex
relationships between descriptors and activities [8].

There are two types of regression-based methods, namely linear and nonlinear. An example
of a linear method is provided by multiple linear regression which is extensively applied in
Hansch analysis [24]. Examples of nonlinear methods are the k-nearest neighbors (kNN) [5],
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and the random forest (RF) [25] methods. Finally, the resulting model should be validated on
an external test set. An external set can be obtained by splitting the input and curated data set
prior to the model development process or by obtaining additional data [26, 27].

Inherent to the most QSAR methods is feature (i.e., descriptor) selection. The purpose of this
process is to select from within a large number of calculated/experimental descriptors those
that best correlate with the activity. This stage is required since typically, the number of
calculate-able descriptors by far exceeds that of compounds with measured activity data.
Having too many descriptors calculated for too few compounds may lead to over fitting and
chance correlation [23, 28]. In some cases, features selected for QSAR modeling are more
important than the predictive model itself. These selected descriptors contain useful informa‐
tion that can reveal significant information and can help in understanding and rationalization
the data and the results. The selection of descriptors subset could be treated as an optimization
problem whereby a function related to model performances is optimized in the space of the
descriptors.

One algorithm that couples feature selection procedure with a machine-learning algorithm at
the model derivation stage is the kNN algorithm. This algorithm assumes that the activity of
a compound could be predicted from the average activities of the k compounds most similar
to it (kNN). This idea follows directly from the similar property principle [29] which states that
similar compounds have similar properties. The similar property principle is well-validated
in pharmaceutical sciences and was recently extended to photovoltaic cells [30]. Since chemical
similarity between two compounds depends on the molecular descriptors used to characterize
them, the algorithm searches the space of available descriptors subsets for that subset in terms
of which the similar properties principle is best satisfied. This is done by optimizing the leave-
one-out (LOO) cross-validated value (Q2

LOO, Equation 8) in the space of the descriptors (the
space of the descriptors is a multidimensional space where each dimension corresponds to one
descriptor. In this space compounds are represented by points and the distance between any
two points represents the degree of similarity between the corresponding compounds). Q2

LOO

is given by
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where Yexp is the experimental value YLOO is the predicted value and Ȳ exp is the mean of the
experimental results.

The kNN algorithm was first implemented by Zheng and Tropsha [5] using SA as the optimi‐
zation engine. In this original implementation, only the descriptors space was searched with
the SA procedure, while the number of nearest neighbors (k) was evaluated exhaustively
(between 1 and 5). In 2015, Yosipof and Senderowitz [31] implemented the kNN algorithm
optimizing QLOO

2  in the space of the descriptors and the number of nearest neighbors. A
schematic representation of the kNN optimization algorithm is provided in Figure 4.
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Figure 4. Schematic representation of the kNN optimization algorithm.

The kNN algorithm has been extensively used to build predictive QSAR models in many fields
including computer-aided drug design and environmental sciences [8]. Recently, the method
has been applied in the field of material-informatics and used to predict the photovoltaic
properties of solar cell libraries (see Section 5) [30].

4.3. Outlier removal

Data sets in general and data sets consisting of molecular compounds in particular often
contain objects (e.g., compounds) that are different in some respect from the rest of the data
set. Such compounds are called outliers. The presence of outliers in a data set can affect
machine-learning-related activities including model derivation, interpretation, and subse‐
quent decision-making. In particular, outliers can compromise the ability of machine-learning
algorithms to develop predictive models since many algorithms typically used for this purpose
will attempt to fit the outliers at the expanse of the bulk. Thus, while outliers may point to an
interesting behavior that needs to be investigated separately [32], they should be removed
from the data set prior to the model construction.

Several methods for outliers removal have been reported in the literature [33]. Statistical
estimators could be used to identify outliers if their values follow a well-defined distribution
[34, 35]. These methods are called parametric methods. For example, for a Gaussian distribu‐
tion, outliers could be defined as compounds with descriptors values deviating from the mean
by a certain number of standard deviations. For non-well-defined distributions, nonparametric
methods should be used. For example, distance-based methods identify outliers by measuring
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Euclidean distances between objects in a predefined descriptors space. In the basic distance-
based method, outliers are defined as compounds having at least p percent (define by the user)
of their distances to the other compounds larger than a user defined threshold distance [36].
An improvement to this method was proposed by Ramaswamy et al. [37] and termed the K-
based method. According to this method, compounds are ranked according to their Euclidean
distances to their kth-nearest neighbors and the n compounds with the highest rank (largest
distances) are considered as outliers. Another method is based on compounds clustering and
on subsequent removal of compounds (i.e., outliers) populating small clusters (e.g., singletons)
[38]. Another nonparametric method utilizes a variant of the support vector machine (SVM)
algorithm, namely one-class SVM, which isolates the outlier’s class from the rest of the
compounds [39].

The above-described techniques remove outliers in a single step from one predefined descrip‐
tors space and are therefore termed one-pass methods. These methods have several disad‐
vantages. First, outliers are descriptor space-dependent with different spaces giving rise to
different outliers. Second, if several outliers are present in a data set, they may mask each other
so that some will not be recognized [40]. Finally, the removal of one outlier based on a specific
descriptor space may affect the distribution of the remaining compounds either in the same
space or in different spaces, leading to the potential appearance of new outliers. These
challenges could be met by removing outliers in an iterative manner.

Recently, Yosipof and Senderowitz [31] presented a new method for the iterative identification
and subsequent removal of outliers identified in potentially different descriptors spaces based
on the k nearest neighbors optimization algorithm (kNN-OR algorithm). According to this
approach, an outlier is defined as a compound whose distance to its kNNs is too large for its
activity to be reliably predicted (see Figure 5). At each iteration, the algorithm builds a kNN
model, evaluates it according to the LOO cross-validation metric (QLOO

2  ; see Equation 8) and
removes from the data set the compound whose elimination results in the largest increase in
QLOO

2 . This procedure is repeated until QLOO
2  exceeds a pre-defined threshold.

Figure 5. Compounds (red spheres) embedded in a two-dimensional descriptors space. Compound a (blue sphere) is in
close vicinity to at least some of the other compounds leading to short distances to its (three) nearest neighbors and to
a likely reliable kNN-based activity prediction. Compound b (green sphere) has large distances to its (three) nearest
neighbors and is therefore an outlier. The kNN-based activity prediction for this compound is likely to be erroneous.
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In the example presented in Figure 5, the removal of compound b from the data set is expected
to improve the model and to increase the value of kNN-QLOO

2  More generally,for a set of
compounds whose activities are predicted via kNN, outlier(s) removal will lead to an increase
in QLOO

2 . Thus, the following procedure for outlier removal was developed (Figure 6):

1. For a set of compounds, run kNN to obtain the model with the highest QLOO
2 .

2. For each compound, calculate the improvement in QLOO
2  upon its removal from the data

set.

3. Remove the compound whose elimination from the data set results in the largest increase
in QLOO

2 . When a compound is removed from the data set, it is also removed from the list
of nearest neighbors of all other compounds. In such cases, the removed compound will
be replaced by the next-in-line nearest neighbor for the purpose of activity prediction.

4. If no compound could be removed from the data set based on the first model (i.e., for all
compounds, their removal from the data set does not lead to an improved QLOO

2 ), repeat
steps 2–3 for the second best model (which is built in a different descriptor space).

5. Repeat steps 1–4 above until QLOO
2  is sufficiently high (stopping criterion).

Figure 6. Schematic representation of the kNN optimization-based outlier removal algorithm.

The above-described kNN-OR algorithm is "greedy" in nature, removing at each iteration the
compound that leads to the largest improvement in QLOO

2  without considering the possibility
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that a sub-optimal improvement at a given iteration may pay off later. Nahum et al. [41]
introduced a “look ahead” mechanism into outlier removal by treating it as a multi-objective
optimization problem using genetic algorithm (GA-kNN). The new method simultaneously
minimizes the number of compounds to be removed and maximizes kNN-derived QLOO

2 . The
multi-objective optimization is performed using the strength Pareto evolutionary algorithm 2
(SPEA2) [42], which approximates the Pareto front for MOOPs. SPEA2 uses an external set
(archive) for storing primarily non-dominated solutions. At each generation, it combines
archive solutions with the current population to form the next archive that is then used to
produce offspring for the next generation. Each individual i in the archive At and the popula‐
tion Pt is assigned a raw fitness value R(i), determined by the number of its dominators in both
archive and population. R(i)=0 corresponds to a non-dominated individual, whereas a high
R(i) value means that individual i is dominated by many individuals. These raw values are
then used to rank the individuals for the purpose of selecting candidates for reproduction.
However, the raw fitness value by itself may be insufficient for ranking when the most
individuals do not dominate each other. Therefore, additional information, based on the kth

nearest neighbor density of the individuals, is incorporated to remove rank redundancy. The
workflow of the SPEA2 algorithm is described below:

Algorithm—SPEA2

Input: N—Archive size
M—Offspring population size
T—Maximum number of generations

Output: A∗—Non-dominated set of solutions to the optimization problem

1. Initialization: Generate an initial population P0 and create the empty archive (external set) A0=∅. Set t=0.

2. Fitness assignment: Calculate fitness values of individuals in Pt and At.

3. Environmental selection: Copy all non-dominated individuals in Pt and At to At+1. If size of At+1 exceeds N then
reduce At+1 by means of the truncation operator, otherwise if size of At+1 is less than N then fill At+1 with dominated
individuals in Pt and At.

4. Termination: If t ≥ T or another stopping criterion is satisfied then set A∗ to the set of decision vectors represented
by the non-dominated individuals in At+1. Stop.

5. Mating selection: Perform selection with replacement on At+1 in order to fill the mating pool.

6. Variation: Apply recombination and mutation operators to the mating pool and set Pt+1 to the resulting population.
Increment generation counter (t=t+1) and go to Step 2.

Each solution to the multi-objective optimization problem specifies the set of descriptors, and
the number of neighbors used by the kNN algorithm as well as the identity of compounds
considered as outliers. This information was coded by a three component binary array (i.e.,
chromosome). The first part of the array encoded the number of neighbors using a binary
representation. The second part described the descriptors identity (“1” and “0” representing,
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respectively, selected and unselected descriptors for the current solution). The third part listed
the compounds considered as outliers using the same representation as for the descriptors.

The resulting chromosomes were subjected to a multi-site crossover operator to produce new
chromosomes. These contained a new combination of the number of neighbors, descriptors,
and outliers. The new chromosomes were further mutated to increase the diversity of the
solutions population and to prevent trapping in local minima. Mutations were performed on
the entire chromosome and consequently affected the descriptors, the number of nearest
neighbors, and the identity of outliers.

For each new generation, raw fitness values were calculated for each individual based on the
information encoded in its chromosome. This calculation was based on QLOO

2  (which in turn
depends on the descriptors selected, the number of neighbors selected, and the identity of
outliers removed via the kNN algorithm) and on the number of outliers removed. The process
was repeated until the termination criteria were met.

The performances of the two algorithms (kNN-OR and GA-kNN) were tested by removing
outliers from three data sets of pharmaceutical relevance (logBBB, Factor 7 inhibitors, and
dihydrofolate reductase inhibitors [DHFR]) and using the remaining compounds for two
purposes: (1) to compare the internal diversities of the filtered data sets with those of the parent
sets; (2) to build and validate QSAR models with two machine-learning methods, kNN, and
random forest. The results clearly demonstrated that data sets rationally filtered with the two
new outlier removal algorithms were more internally diverse and support QSAR models
which provided better prediction statistics than data sets filtered by removing the same
number of compounds using five other outlier removal methods (distance based, distance K-
based, one-class SVM, statistics and random removal).

As an example, the results for the DHFR data set are presented below. This data set contained
673 compounds with known activity data (dependent variable). Each compound was charac‐
terized by 19 descriptors as the independent variables and by its biological activity in the form
of an IC50 value as the dependent variable (Y). The compounds were subjected to the kNN-
OR and the GA-kNN algorithms using a stopping criterion of QLOO

2 >0.85. For kNN-OR,this
criterion was met after the removal of 87 compounds,leaving a total of 586 compounds for the
subsequent diversity analysis and QSAR modeling. For the GA-kNN algorithm,this criterion
was met after the removal of only 75 compounds. For comparison, 87 compounds were
removed using the GA-kNN algorithm and the other six methods considered in that work.For
the GA-kNN model,the removal of 87 compounds led to a model with QLOO

2 >0.87.

The internal diversity of the data set prior to and following compounds removal was evaluated
by calculating pairwise Euclidean distances between all compounds in the original descriptors
space. The results are presented in Figure 7 and demonstrate that the removal of either 75
compounds (11.1% of the data set) by the GA-kNN algorithm or 87 compounds (12.9% of the
data set) by the GA-kNN and kNN-OR algorithms did not change the distribution of distances,
suggesting that the coverage of chemistry space was largely unaffected by the removal of
outliers. This in turn implies that the applicability domain for models derived from the filtered
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data set will not be reduced. In contrast, all other methods (except for random removal)
demonstrated truncation at long distances implying reduced internal diversity.

Figure 7. A comparison between pairwise Euclidean distances distributions before (red lines) and after (blue lines) the
removal of outliers from the DHFR data set. (A) GA–kNN optimization-based outlier removal (75 compounds re‐
moved); (B) GA–kNN optimization-based outlier removal (87 compounds removed); (C) kNN–OR optimization-based
outlier removal (87 compounds removed); (D) distance-based outlier removal (87 compounds removed); (E) distance
K-based outlier removal (87 compounds removed); (F) one-class SVM-based outlier removal (87 compounds removed);
(G) statistics-based outlier removal (87 compounds removed); (H) random “outlier” removal (87 compounds re‐
moved).

Compounds surviving the filtration process were divided into a modeling set (469 compounds)
and a test set (117 compounds) and subjected to QSAR modeling using kNN and RF. The
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resulting models were evaluated by standard parameters. Modeling sets subjected to kNN
were evaluated using LOO cross-validation (Equation 8), while modeling sets subjected to RF
(also known as out-of-bag set) were evaluated by the determination coefficient (ROOB

2 ; Equation
9,).Test sets (external validation sets) were evaluated by the external explained variance Qext

2 ;
equation Equation 10).
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where Yexp is the experimental value YOOB and Ypre are the predicted value and Ȳ exp is the mean
of the experimental results over modeling set (training set) compounds.

The results are presented in Table 2 and demonstrate that the rational removal of outliers using
the kNN-OR and the GA-kNN algorithms led to filtered data sets which produced both kNN-
based and RF-based QSAR models with the best prediction statistics.

kNN RF

QLOO
2 Qext

2 ROOB
2 Qext

2

GA–kNN 0.78 0.83 0.73 0.75

kNN–OR 0.79 0.83 0.71 0.77

Distance-based 0.54 0.63 0.55 0.68

Distance K-based 0.64 0.74 0.66 0.73

One-class SVM 0.62 0.65 0.62 0.72

Statistics 0.55 0.54 0.55 0.61

Random consensus 0.59 0.53 0.61 0.62

Table 2. Results obtained for the DHFR data set using kNN and RF. The results given under “random consensus" were
averaged over all 10 random models.

5. Applications

While developed independently, all algorithms, together with additional tools, were incorpo‐
rate into a machine-learning workflow for data mining and were used for the derivation of
multiple QSAR models. The resulting workflow is depicted in Figure 8.
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Figure 8. A schematic representation of the machine-learning workflow.

Below, we provide two examples taken from the fields of pharmaceutical and material
sciences.

5.1. Blood–brain barrier permeation (logBBB) model

Blood–brain barrier permeability is an important parameter in drug design. Drugs targeting
the central nervous system (CNS) are required to permeate through the blood–brain barrier.
Conversely, drugs that do not affect the CNS should not penetrate the barrier due to potential
side effects. Blood–brain barrier permeability is typically expressed as logBBB with positive
and negative values indicating, respectively, permeating and non-permeating compounds.
Since the experimental determination of logBBB values is resources consuming, multiple
QSAR models have been developed to predict this property [19, 31, 41].

A data set of 152 compounds with known logBBB values was compiled from the literature,
manually curated and characterized by 15 descriptors [19, 31]. This data set was subjected to
the kNN-OR algorithm (Section 4.3) using a stopping criterion of QLOO

2 >0.85. The application
of this criterion led to the removal of 19 compounds, leaving 133 compounds for QSAR
modeling. The stepwise QLOO

2  values upon compounds removal is presented in Figure 9.

Figure 9. QLOO
2  values as a function of compound removal for the logBBB data set. Outlier removal began with a set

of 152 compounds, and the stopping criterion was met after the removal of 19 compounds.

Compounds surviving the filtration procedures were divided into a modeling set (106
compounds) and a validation test set (27 compounds) using the representativeness function
described in Section 4.1. QSAR models were built on the modeling sets using either kNN
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(Section 4.2) or the random forest (RF) algorithms, and the resulting models were tested on the
validation sets. Model performances were evaluated with Equations 8–10 and were found to
be QLOO

2 =0.81 and Qext
2 =0.88 for kNN and RLOO

2 =0.60 and Qext
2 =0.65 for RF [31]. These values

are similar to those obtained by other logBBB QSAR models.

Similar results were obtained when this data set was filtered using the GA–kNN algorithm
[41]. In this case, the stopping criterion (QLOO

2 >0.85) was met after the removal of 13 com‐
pounds. As before compounds surviving the filtration procedure were divided into a modeling
set (111) and a test set (28) and subjected to QSAR modeling leading to QLOO

2 =0.80 and

Qext
2 =0.86 for kNN and R2

OOB = 0.67 and Qext
2  =0.65 for RF [41].

5.2. Photovoltaic activities of solar cells

The raise in demands for clean energy is likely to increase the importance of solar cells as future
energy resources. In particular, cells entirely made of metal oxides have the potential to provide
clean and affordable energy if their power conversion efficiencies are improved. Designing
solar cells with improved photovoltaic properties could be greatly assisted by the application
of optimization algorithms as described in this chapter.

Yosipof et al. [30] used the workflow described in Figure 8 to build predictive kNN-based
models for a library of 169 solar cells made of a combination of titanium and copper oxides
(TiO2|Cu2O). In this case, the dependent variables which had to be predicted were the open-
circuit voltage (VOC), the short-circuit current (JSC), and the internal quantum efficiency (IQE),
and the dependent variables consisted of the thicknesses of the copper oxide and the titanium
oxide layers, the ratio between the layers thicknesses, the experimentally measured bandgap
and the maximum theoretical calculated photocurrent. In this case, subjecting the cells to the
kNN-OR algorithm did not lead to the removal of any outliers and consequently, the entire
library could be used for QSAR modeling. The library was divided into a modeling (training)
set and a validation test set using the algorithm described in Section 4.1, and the predictive
QSAR models were derived with the kNN algorithm described in Section 4.2. The results are
presented in Table 3.

End point QLOO
2 Qext

2 Descriptors selected

JSC 0.92 0.92 The thickness of the titanium oxide layer and the thickness of the copper oxide layer

VOC 0.78 0.89 The thickness of the titanium oxide layer and the thickness of the copper oxide layer

IQE 0.91 0.87 The thickness of the titanium oxide layer and the thickness of the copper oxide layer

Table 3. Results obtained with the kNN algorithm for the TiO2|Cu2O library.

Overall, the resulting models demonstrated good prediction statistics suggesting that they are
likely to be useful for the design of new and improved solar cells. In addition, the feature
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selection procedure inherent to the kNN algorithm highlighted the importance of the metal
oxide layer thickness in controlling the photovoltaic properties (last column in Table 3).

6. Conclusions

In this chapter, we introduced several tools based on global stochastic optimization for
chemoinformatics and material-informatics applications in three areas. To select representa‐
tive subsets from within parent data sets, we described a new representativeness function and
its optimization either alone or simultaneously with the MaxMin function. The two resulting
algorithms were found to outperform previously reported subset selection methods.

For the derivation of predictive, nonlinear machine-learning models we reviewed the kNN
algorithm, which searches the space of available descriptors combinations to identify those
that best satisfy the similar properties principle. Descriptors spaces compatible with this
principle give rise to models with good prediction statistics.

Finally, we introduced two new algorithms for the identification and subsequent removal of
outliers based on the kNN method. The kNN–OR algorithm iteratively removes from the
parent data set compounds (outliers) which the best improve model performances. The GA–
kNN algorithm simultaneously optimizes model performances together with the number of
outliers. This algorithm is usually able to remove a smaller number of outliers while still
maintaining good model performances. Retaining in the data set submitted to QSAR modeling
as many compounds as possible is likely to increase the applicability domain of the resulting
model. The new algorithms were found to outperform other outlier removal methods when
tested on three data sets.

Finally, the new algorithms, together with additional tools, were combined into a machine-
learning workflow and used for the derivation of predictive QSAR models.

The algorithms presented in this chapter are likely to be useful for multiple applications in the
fields of chemoinformatics and material-informatics.
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Abstract

Scheduling, or planning in a general perspective, is the backbone of project manage‐
ment;  thus,  the successful  implementation of  project  scheduling is  a  key factor  to
projects’ success. Due to its complexity and challenging nature, scheduling has become
one of the most famous research topics within the operational research context, and it
has  been  widely  researched  in  practical  applications  within  various  industries,
especially manufacturing, construction, and computer engineering. Accordingly, the
literature is rich with many implementations of different optimization algorithms and
their extensions within the project scheduling problem (PSP) analysis field. This study
is intended to exhibit the general modelling of the PSP, and to survey the implementa‐
tions of various optimization algorithms adopted for solving the different types of the
PSP.

Keywords: project scheduling, project schedules optimization, resource‐constrained
scheduling, scheduling models, optimization algorithms

1. Introduction

The project scheduling problem (PSP) is one of the most challenging problems in the opera‐
tions research (OR) field; thus, it has attracted large number of researchers within its model‐
ling, solution methodologies, and optimization algorithms. The OR literature is intensely rich
with researches focusing on different PSP problem types, from which the most famous and
heavily  researched problem type is  the resource‐constrained project  scheduling problem
(RCPSP).

PSP, especially RCPSP, has been considered as NP‐Hard in the strong sense [1], and accord‐
ingly most researches within the last two decades concentrated on heuristics and meta‐
heuristics for solving different PSP types.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



This study will start in Section 2 with reviewing the PSP modelling for various problem types.
Then, PSPs solution approaches and architectures presented in literature will be demonstrated
in Section 3. And finally, the last section of this study will survey the schedule optimization
algorithms, and how each optimization technique was adopted and implemented within the
project scheduling field; with a large focus on meta‐heuristic optimization techniques, which
are the base for most practical approaches for solving real‐life/practical PSPs.

2. PSP modelling

According to the detailed surveys of the problem's developments and extensions [2–9], there
is almost a common agreement on the concepts of how the problem should be mathematically
modelled; however, the main differences were in the various problems classifications and the
different mathematical notations used.

2.1. The general PSP model

In literature, the PSP was initially introduced within the manufacturing industry for job‐shop
scheduling, with a main concern of optimal allocation over time of the shop floor's scarce
resources. Consequently, the PSP modelling has developed through the development of the
basic modelling of the RCPSP.

Several problem notations and models were presented for the RCPSP, as surveyed by Brucker
[5], from which the basic and most widely adopted notation can be summarized as follows: A
project is represented by a set of activities V = {1,…,n}, where 1 and n are two dummy activities
resembling the project network's start and end nodes. The characteristics defining each activity,
that is, V: processing duration di, resource requirements rik (for each resource k) along the
activity's processing time, and a set of predecessors Pi logically tied to activity i with finish‐to‐
start (FS) logic relations. The availability of each resource k is constrained throughout the
project by the available resource units ak. And finally, the problem's objective is to minimize
the time span T of the project's schedule S without violating the resources constraints; where
S is represented by a set of activities’ start times S1 to Sn; and T = Sn.

2.2. PSP model extensions

The basic RCPSP model has several short falls with respect to over‐simplifying the character‐
istics of real‐life scheduling problems. Consequently, several studies in the PSP context were
focused on improving the problem's modelling by developing extensions which add missing
practical aspects to the basic PSP model. The most important extensions can be categorized
based on the short falls in the basic model which they addressed as follows:

• The basic PSP (and RCPSP) model considers only FS logic relations, and assumes all
schedule relations without lag. Demeulemeester and Herroelen [10], Klein and Scholl [11],
Chassiakos and Sakellaropoulos [12], and Vanhoucke [13] have researched this short fall
and presented few model extensions to capture lag periods and other relation types available
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in real applications. They accommodated these issues within the model by transforming all
relations into start‐to‐start (SS) relations (Sij), and combined all sets of activities’ predecessors
into a single set of time lags lij corresponding to the schedule's logic; where the values of lag
can be set to zero to represent SS relation, di to represent FS relation, dj to represent FF
relation, or any other necessary time lag. These model extensions are known in the sched‐
uling literature as ‘Generalized Precedence Relations’ or ‘Minimum/Maximum Time Lags’.

• Activities in reality are not necessarily processed in a single continuous run as assumed in
the original PSP model. The need for presenting activities’ splitting, or ‘Pre‐emption’, was
introduced by allowing each schedule activity i to be split, or pre‐empted, into j sections
corresponding to the activity's duration di. For further details on pre‐emption extensions,
the reader is referred to [14–16]. Another alternative pre‐emption modelling was presented
and developed by Franck et al. [17], Lamothe et al. [18], and Kreter et al. [19], to resemble
the non‐linear availability of non‐renewable resources through break‐calendars.

• The ‘Multi‐Mode Scheduling’ is another practical extension in the project scheduling context,
where activities can be executed in one of several alternative ways/methods. This has been
modelled by Elmaghraby [20], Kolisch and Drexl [21], Hartmann [22], and Alcaraz et al. [23]
through allowing each activity to have a set of execution modes Mi, where each activity
mode is having a different duration and/or resource requirements.

• ‘Cumulative Resources’ or ‘Inventory Constraints’ is another form of resources irregularity. It
was introduced by Neumann and Zimmermann [24] as a resource which is produced by
some activities, cumulated in a storage area, and then used by other activities (e.g. precast
elements in construction projects).

By combining most of these extensions to the basic model, the problem formulation can be
summarized as follows:
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where V is the activities set; T is the schedule's time span; Sij is the start time for section j of
activity i; dim is the processing time of activity i under the execution mode m; L is the set of
schedule's logic (or precedence), including time lags represented in the form of activity pairs,
and lij is the time lag between activities i and j; St is a set which encapsulates the progress of
all activities within time interval [t-1, t]; K is the renewable resources set; rijkm is the resource
requirement from resource k in the execution mode m for section j of activity i; and finally, ak

represents the total available units for resource k.

2.3. PSP objectives extensions

The objective of the basic PSP model is minimizing time, while several practical applications
involve other cost‐ or resource‐related objectives. All above mentioned model extensions were
also related to minimizing the project's make‐span; however, other practical objectives were
also introduced in literature as special cases of the PSP. Extensions to PSP objectives can be
classified under two main categories: cost related and quality related.

Cost‐related objectives and/or constraints were introduced to overcome the over‐simplifica‐
tion of the basic PSP models with respect to financial side effects of schedule changes. Various
models were generated to present cost aspects of PSP, the most famous of which is the trade‐
off problem, while quality‐related objectives were introduced to enhance the robustness of
optimized schedules.

These model extensions (i.e. with different objective functions) were presented in as different
PSP problem types, the most popular of which are:

• The trade‐off problems: The ‘Time/Resource Trade‐off Problem (TRTP)’ [25–27] and the ‘Time‐Cost
Trade‐off Problem (TCTP)’ [28, 29] are the most famous objective‐related extensions of the PSP
model. In these problem types, shorter schedule time is exchanged with the increase in
resources (or vice versa); and project cost can be either modelled as a constraint or as a non‐
renewable resource. In scheduling literature, trade‐off problems are generally being used in
one of two forms:

Case 1: Minimize make‐span, and constraint total costs with a predefined budget:

Objective Function: Minimize Fn

 :         i
i V

New Constraint c C
Î

£å (6)

where, ci = Cost of activity i, and C̄= Project maximum allowed cost (or project budget)

Case 2: Minimize total costs, and constraint total project make‐span with a predefined target
date or deadline date:

 : Minimize i
i V

Objective Function c
Î
å (7)
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where: ci = Cost of executing activity i, and d̄  = Deadline for the project's completion

• Liquidity constraints: In practical applications, project's liquidity is usually constrained with
a predefined value of cash allotted to the project; and accordingly, this value should not be
exceeded by the negative side of the project's cash flow. To enable amending the scheduling
model with cash flow constraints, several financial aspects will have to be taken into
consideration such as selling price, advance payment, retention, and payment lag (the time
lag between invoices applications and the actual receipt of payments); then a new constraint
is to be added as follows:

maxCash flow constraint: CF | NCF |  1,2,..t t T³ - " = (9)

Where: CFt = Cash flow at period t, and NCFmax = Predefined maximum liquidity

• For self‐financed projects, the scheduling literature contains few special case problems such
as RCPSP with discounted cash‐flow (RCPSP‐DC) and maximum net present value (Max‐
NPV) where the time cost of financing money is being considered in the project's overall
cost (refer to [30–32]). Representing this mathematically involves introducing a per period
discounting rate (α), and adding it exponentially to represent its effect on successor periods;
thus, the discounted cash flow for each activity i will be as shown in equation 10. And finally,
the objective function will have to be modified to include the net present value for the per
period cash flow values:
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• Quality indices: Schedules quality measures were introduced in literature for the purpose of
improving schedules robustness [33]. These indices were mainly researched within robust
proactive scheduling approaches which focus on building predictive schedules for satisfy‐
ing performance requirements predictably in a dynamic environment [34–36].

2.4. Multi‐objective PSP (MOPSP) modelling

The above review of PSP problem types shows clearly that practical scheduling application
involves multi‐objective nature; which attracted few early scheduling researches (such as
[37, 38]) to try to define how multi‐objective concepts can be introduced to the scheduling
field. Nevertheless, to date, there are only few researches in the scheduling context which
adopted multi‐objective approaches [39].

Optimization Algorithms in Project Scheduling
http://dx.doi.org/10.5772/63108

175



In general, the approaches presented for MOPSP modelling (as defined and/or surveyed by
Hwang [37], Slowinski [38] and Ballestín and Branco [39]) can be summarized under the
following main categories:

1. Non‐interactive approach: Where the optimality decision is left to the optimization
algorithm after feeding it with either a predefined ‘Weighted Objectives Function’, or an
‘Objectives Priority List’ through which objectives are being ordered and optimized based
on predefined priorities.

2. Semi‐interactive approach: The optimization algorithm defines the solutions ‘Pareto
Front’, or a group of optimal/near‐optimal solutions for single/multiple objectives; then
the decision for selecting an optimum solution is left to the decision maker.

3. Interactive approach: In this approach, the algorithm interacts with the decision maker
throughout the optimization steps. In each step, good quality solutions are proposed to
the decision maker to select the most effective solutions, which will then be used by the
algorithm in the next iteration to generate further improved solutions.

For further details and applications of the MOPSP, the reader is referred to the research of
Tung et al. [40], Hsu et al. [41], Kacem et al. [42, 43], Loukil et al. [44], Xia & Wu [45], and Fahmy
et al. [9].

3. PSP solution approach and architecture

3.1. Solution approaches

The approach to be used for solving the PSP is dependent on the problem's conditions and the
application's environment. In literature, the solution approaches can be classified under two
main categories: static scheduling and dynamic scheduling.

Static scheduling (or predictive scheduling) is the process of identifying how and when each
activity in schedule should be executed. It involves the generation of a good quality optimized
initial (or baseline) schedule. This can be in a deterministic approach (like the vast majority of
researches within the scheduling context [4]), where the durations of all schedule activities (or
activity modes) are initially available; or can be in a stochastic project scheduling approach,
which aimed to close gaps within the initial available information to enable scheduling under
uncertainties. The stochastic activity durations method is a probabilistic modelling approach
for scheduling project activities with uncertain durations [46]. The duration of activities is
defined in the problem model by random vectors of durations, which are distributed according
to a deterministic probability distribution [5].

In practical scheduling, real‐time events extremely disrupt schedules integrity, and causes
optimized schedules to become neither optimized nor realistic. The dynamic scheduling concept
was introduced to enable, dynamically, the mitigation of the impacts of real‐time events on
project schedules. A dynamic scheduling solution involves the selection of a scheduling
approach, a rescheduling strategy, and a rescheduling policy; or in simple terms, the process

Optimization Algorithms- Methods and Applications176



In general, the approaches presented for MOPSP modelling (as defined and/or surveyed by
Hwang [37], Slowinski [38] and Ballestín and Branco [39]) can be summarized under the
following main categories:

1. Non‐interactive approach: Where the optimality decision is left to the optimization
algorithm after feeding it with either a predefined ‘Weighted Objectives Function’, or an
‘Objectives Priority List’ through which objectives are being ordered and optimized based
on predefined priorities.

2. Semi‐interactive approach: The optimization algorithm defines the solutions ‘Pareto
Front’, or a group of optimal/near‐optimal solutions for single/multiple objectives; then
the decision for selecting an optimum solution is left to the decision maker.

3. Interactive approach: In this approach, the algorithm interacts with the decision maker
throughout the optimization steps. In each step, good quality solutions are proposed to
the decision maker to select the most effective solutions, which will then be used by the
algorithm in the next iteration to generate further improved solutions.

For further details and applications of the MOPSP, the reader is referred to the research of
Tung et al. [40], Hsu et al. [41], Kacem et al. [42, 43], Loukil et al. [44], Xia & Wu [45], and Fahmy
et al. [9].

3. PSP solution approach and architecture

3.1. Solution approaches

The approach to be used for solving the PSP is dependent on the problem's conditions and the
application's environment. In literature, the solution approaches can be classified under two
main categories: static scheduling and dynamic scheduling.

Static scheduling (or predictive scheduling) is the process of identifying how and when each
activity in schedule should be executed. It involves the generation of a good quality optimized
initial (or baseline) schedule. This can be in a deterministic approach (like the vast majority of
researches within the scheduling context [4]), where the durations of all schedule activities (or
activity modes) are initially available; or can be in a stochastic project scheduling approach,
which aimed to close gaps within the initial available information to enable scheduling under
uncertainties. The stochastic activity durations method is a probabilistic modelling approach
for scheduling project activities with uncertain durations [46]. The duration of activities is
defined in the problem model by random vectors of durations, which are distributed according
to a deterministic probability distribution [5].

In practical scheduling, real‐time events extremely disrupt schedules integrity, and causes
optimized schedules to become neither optimized nor realistic. The dynamic scheduling concept
was introduced to enable, dynamically, the mitigation of the impacts of real‐time events on
project schedules. A dynamic scheduling solution involves the selection of a scheduling
approach, a rescheduling strategy, and a rescheduling policy; or in simple terms, the process
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of how to generate the original baseline and the strategy of how to respond to real‐time events.
For further details on dynamic scheduling, the reader is referred to the surveys of Herroelen
and Leus [46], Aytug et al. [47] and Ouelhadj and Petrovic [48].

3.2. Solution architectures

The dynamic scheduling solution architecture involves several cycles of static scheduling to be
executed based on certain timing and/or criteria (based on a predefined rescheduling policy),
and to involve partial or full schedule optimization (based on a predefined rescheduling
strategy). The solution architecture can also involve one optimization level (single‐agent
architecture) or several optimization levels (multi‐level autonomous or mediator architecture).

Although approaches and architectures of scheduling solutions seem to contain various
analysis concepts, the basic outlines of the underlying analysis engine (or the optimization
algorithm) remain the same. Whether the optimization process is performed once or at
different stages, or the process is executed on single or multiple levels, the core algorithm will
be focusing within each optimization cycle on a static schedule snapshot (full or partial). And
accordingly, the final section of this study will review optimization algorithms from a generic
perspective, regardless of the approach or architecture of the scheduling solution to be
integrated with.

4. PSP optimization algorithms

4.1. Heuristic algorithms

Scheduling is one of the most researched topics within the field of operations research; thus,
it will be very difficult to present a survey which covers all heuristic approaches presented for
schedules optimization. But in general terms, scheduling heuristic algorithms, or the majority
of them, are having a common procedural approach which can be generalized as follows: (1)
Initialize an ordered activity list, (2) generate schedule, and (3) improve the schedule quality.
And accordingly, these heuristics consist of three main components:

1. A predefined criteria for initial ordering of activities [or a priority rule],

2. A process for creating the schedule from the ordered activity list [or a schedule generation
scheme (SGS)], and optionally

3. The application of one or more processes to improve the generated schedule's quality.

4.1.1. Priority rules

The basic function of priority rules (PRs) is to define an initial arrangement for the activities list
in a logical way which will produce a solution with good quality. Kelley [49] introduced the
concepts and the first set of PRs; then, several other researches followed Kelly's merits by
introducing additional PRs and comparing their results (as surveyed by Kolisch [50]). PRs
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provide simple and speedy way to obtain solutions, and that is why they are widely used by
commercial scheduling software [51]. Table 1 lists the most commonly adopted PRs within
scheduling literature, and their criteria for activities ordering.

Basis Priority rule Ordering criteria

Time Earliest Start Time (EST) Ascending based on activities earliest start

Earliest Finish Time (EFT) Ascending based on activities earliest finish

Latest Start Time (LST) Ascending based on activities latest start

Latest Finish Time (LFT) Ascending based on activities latest finish

Duration Shortest Processing Time (SPT) Ascending based on activities shortest
processing mode duration

Longest Processing Time (LPT) Ascending based on activities largest
processing mode duration

Greatest Rank Positional Weight (GRPW) Descending based on the total duration of
the activity and all its direct successors

Float Minimum Slack (MSLK) Ascending based on
activities slack

Resources Greatest Resource Work Content (GRWC) Descending based on the total resource
requests of the activity

Greatest Cumulative Resource
Work Content (GCRWC )

Descending based on the total resource requests of
the activity and all its direct successors

Logic
relations

Most Immediate Successors (MIS) Descending based on the number of
their direct successors

Most Total Successors (MTS) Descending based on the number of their direct
and indirect successors

Least Non‐Related Jobs (LNRJ) Activities are sorted in ascending order based on
the number of activities which are not directly or
indirectly inter‐related

Table 1. Priority rules and related ordering criteria.

4.1.2. Schedule generation scheme (SGS)

Ordered activity lists are then passed to a SGS to produce the output schedules. As per the
survey presented by Kolisch [52], the first versions of the serial (SSGS) and the parallel (PSGS)
were presented Kelley [49]; then later Bedworth and Bailey [53] introduced another approach
for the PSGS which they titled as the ”Brooks Algorithm”.

PSGS has been verified that it can only generate non‐delay schedules, and the set of non‐delay
schedules is just a subset of all schedules, hence the SSGS is suggested for RCPSP [54].

Optimization Algorithms- Methods and Applications178



provide simple and speedy way to obtain solutions, and that is why they are widely used by
commercial scheduling software [51]. Table 1 lists the most commonly adopted PRs within
scheduling literature, and their criteria for activities ordering.

Basis Priority rule Ordering criteria

Time Earliest Start Time (EST) Ascending based on activities earliest start

Earliest Finish Time (EFT) Ascending based on activities earliest finish

Latest Start Time (LST) Ascending based on activities latest start

Latest Finish Time (LFT) Ascending based on activities latest finish

Duration Shortest Processing Time (SPT) Ascending based on activities shortest
processing mode duration

Longest Processing Time (LPT) Ascending based on activities largest
processing mode duration

Greatest Rank Positional Weight (GRPW) Descending based on the total duration of
the activity and all its direct successors

Float Minimum Slack (MSLK) Ascending based on
activities slack

Resources Greatest Resource Work Content (GRWC) Descending based on the total resource
requests of the activity

Greatest Cumulative Resource
Work Content (GCRWC )

Descending based on the total resource requests of
the activity and all its direct successors

Logic
relations

Most Immediate Successors (MIS) Descending based on the number of
their direct successors

Most Total Successors (MTS) Descending based on the number of their direct
and indirect successors

Least Non‐Related Jobs (LNRJ) Activities are sorted in ascending order based on
the number of activities which are not directly or
indirectly inter‐related

Table 1. Priority rules and related ordering criteria.

4.1.2. Schedule generation scheme (SGS)

Ordered activity lists are then passed to a SGS to produce the output schedules. As per the
survey presented by Kolisch [52], the first versions of the serial (SSGS) and the parallel (PSGS)
were presented Kelley [49]; then later Bedworth and Bailey [53] introduced another approach
for the PSGS which they titled as the ”Brooks Algorithm”.

PSGS has been verified that it can only generate non‐delay schedules, and the set of non‐delay
schedules is just a subset of all schedules, hence the SSGS is suggested for RCPSP [54].

Optimization Algorithms- Methods and Applications178

4.1.3. Forward‐backward scheduling (FBS)

The FBS is one of the most famous schedule improvement techniques. It was proposed by Li
and Willis [55], and was found to significantly improve the results. Its procedures involve
applying SGS in a forward direction and performing another cycle in reverse order and
backward scheduling (reversed precedence network).

4.1.4. Justification schemes

Valls et al. [56] introduced another process for improving schedules quality using a technique
they called justification scheme. This process involves manipulating the activities positions in
the project's time frame without violating the resource constraints, through two cycles, one
forward (to the right) and another backward (to the left); which eventually guarantees an
overall project duration either shorter or at least the same. Later, Fahmy et al. [57] presented
the stacking  justification, a variation to the original technique; within which the activities
selection criteria in each justification cycle was modified in a way to minimize the gaps within
resource usage profiles.

4.2. Meta‐heuristic algorithms

The most common use of Meta‐heuristics in PSP solving involves the generation of activities
order list which can produce better solutions based on experience gained in previous gener‐
ation cycles.

Heuristics can solve scheduling problems in short time, but because these procedures cannot
adapt dynamically to the problems constraints, so the resulting solutions cannot be guaranteed
to be neither optimum nor of good quality.

Due to the overwhelming complexity of scheduling problems within real‐life applications,
meta‐heuristics techniques have been implemented in the development of most practical
applications presented in literature during the last two decades.

Various meta‐heuristic techniques were adopted in the PSP field, the following sections of this
study will exhibit a non‐exhaustive review for how each of the commonly adopted meta‐
heuristic optimization techniques was conceptually implemented within scheduling applica‐
tions, whilst the details/variations of each of the optimization techniques were considered
beyond the scope of this study, and accordingly will only be reviewed to the level needed to
support the scheduling algorithms survey perspective.

4.3. Genetic algorithms

Genetic algorithms (GA) technique is one of the most popular meta‐heuristics in the field of
scheduling. Holland [58] developed this method as a simplification of evolutionary processes
occurring in nature. GA is basically an iterative evolutionary method through which the overall
quality of solutions (or genomes) population is improved from one generation to the next
through three nature resembled mechanisms: selection, crossover, and mutation [59].
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In scheduling, the solutions population is selected either randomly or based on a predefined
priority rule. The quality of schedules is calculated using an objective function based on the
optimization goals, either for a single objective (minimizing time, cost, resource levelling …,
etc.), or combined objectives. Then iteratively, the solutions with higher quality are selected for
mating; and then, using a crossover process, a new group of individuals are generated, and
added to the best solutions reached previously to form the new generation. Finally, a muta‐
tion mechanism is applied in each generation to ensure further exploration of solutions‐space.

There are several approaches adopted in scheduling literature for the presentation of schedules
for GA implementation. The most common approach involves setting the genomes as a
presentation of the activities priority/sequence list (S); where the sequence of activities within
the genome will be used by the SGS to generate the solution's schedule.

For this presentation, the optimization process starts with population generation (randomly
or using PRs). The crossover mechanism will then involve mating high fitness solutions, where
each pair of parent solutions will generate a pair of child solutions using a predefined number
of crossing‐points (cp) (such as the two‐point approach adopted by Shadrokh and Kianfar [60]
as shown in Figure 1). And finally, a mutation mechanism is applied using a predefined
probability Pmut; where a random activity i is exchanged in the sequence list (S) with another
random activity j (i ≠ j), and the same can be performed for the mutation of activity modes list
if a multi‐mode schedules was used [27].

Figure 1. Crossover mechanism for activities priority lists.

Several other priority‐based presentations were introduced in literature, most of which were
surveyed by Cheng et al. [61, 62]. Few other conceptually different presentations were also
available in literature, such as the presentation of Wall [63], where he presented the schedule's
chromosome as a binary string corresponding to each activity's lag from its normal scheduled
position (i.e. a solution scheduled normally based on its precedence will have all its chromo‐
some digits set to ‘0').

According to the detailed performance survey of Kolisch and Hartmann [64], the GA (and its
variants/combinations with other techniques) is ranked as the best performing algorithm (as
well as most of the top 10 performances) for most problem sizes of the single‐mode RCPSP

Optimization Algorithms- Methods and Applications180



In scheduling, the solutions population is selected either randomly or based on a predefined
priority rule. The quality of schedules is calculated using an objective function based on the
optimization goals, either for a single objective (minimizing time, cost, resource levelling …,
etc.), or combined objectives. Then iteratively, the solutions with higher quality are selected for
mating; and then, using a crossover process, a new group of individuals are generated, and
added to the best solutions reached previously to form the new generation. Finally, a muta‐
tion mechanism is applied in each generation to ensure further exploration of solutions‐space.

There are several approaches adopted in scheduling literature for the presentation of schedules
for GA implementation. The most common approach involves setting the genomes as a
presentation of the activities priority/sequence list (S); where the sequence of activities within
the genome will be used by the SGS to generate the solution's schedule.

For this presentation, the optimization process starts with population generation (randomly
or using PRs). The crossover mechanism will then involve mating high fitness solutions, where
each pair of parent solutions will generate a pair of child solutions using a predefined number
of crossing‐points (cp) (such as the two‐point approach adopted by Shadrokh and Kianfar [60]
as shown in Figure 1). And finally, a mutation mechanism is applied using a predefined
probability Pmut; where a random activity i is exchanged in the sequence list (S) with another
random activity j (i ≠ j), and the same can be performed for the mutation of activity modes list
if a multi‐mode schedules was used [27].

Figure 1. Crossover mechanism for activities priority lists.

Several other priority‐based presentations were introduced in literature, most of which were
surveyed by Cheng et al. [61, 62]. Few other conceptually different presentations were also
available in literature, such as the presentation of Wall [63], where he presented the schedule's
chromosome as a binary string corresponding to each activity's lag from its normal scheduled
position (i.e. a solution scheduled normally based on its precedence will have all its chromo‐
some digits set to ‘0').

According to the detailed performance survey of Kolisch and Hartmann [64], the GA (and its
variants/combinations with other techniques) is ranked as the best performing algorithm (as
well as most of the top 10 performances) for most problem sizes of the single‐mode RCPSP

Optimization Algorithms- Methods and Applications180

(SRCPSP). For further review of GA implementations within RCPSP, refer to the publications
of Hartmann [65, 66], Alcaraz and Maroto [67], Alcaraz et al. [68] and Valls et al. [56, 69].

4.4. Particle swarm optimization (PSO)

Particle swarm optimization, in comparison with other commonly used optimization techni‐
ques, is one of the most recent optimization meta‐heuristics. PSO was introduced by Kennedy
and Eberhart [70] as a mathematical presentation for the swarming behaviour of flocking birds.
PSO is an evolutionary algorithm, where a population of candidate solutions, resembled by
particles, and the optimization process occurs by iteratively adjusting the particles’ position
and velocity within the search space through assessing solutions’ quality through predefined
measuring criteria.

With a simple mathematical presentation, PSO operates with the following two formulae,
where each solution is presented as particle i with n number of components, Vij

t  is the velocity

of component j of particle i in iterations t (and similarly for Vij
t−1 in iteration t‐1); Xij

t  is the
positions of component j of particle i in iterations t; the positions vectors of the best solutions
found up to iteration t‐1 locally for particle i and globally in the swarm are stored in L ij

t−1 and

Gj
t−1, respectively; r1 and r2 are two random numbers (from 0 to 1); c1 and c2 are two learning

coefficients (c1 defines the influence of the local best solution on the new velocities, while c2

applies a similar approach for the global best solution).

( ) ( )1 1 1 1 1
1 1 2 2 t t t t t t

ij ij ij ij j ijV wV rc L X r c G X- - - - -= + - + - (13)

1t t t
ij ij ijX X V-= + (14)

Variations of PSO is beyond the scope of this study, but in general most PSO variations focused
on improving PSO main drawbacks such as early convergence, parameter dependency, and
loss of diversity. The most popular PSO variations are:

• Shi and Eberhart [71] introduced an inertia weight (w) to enable the control of iterations
velocity influence on succeeding iterations.

( ) ( )1 1 1 1 1
1 1 2 2

t t t t t t
ij ij ij ij j ijV w V c r L X c r G X- - - - -= ´ + ´ ´ - + ´ ´ - (15)

• Bratton and Kennedy [72] presented the ‘Standard PSO’ in which they introduced the
constriction factor (γ) as a multiplier to the equation of velocity.

( ) ( )( )1 1 1 1 1
1 1 2 2

t t t t t t
ij ij ij ij j ijV V c r L X c r G Xg - - - - -= ´ + ´ ´ - + ´ ´ - (16)
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In the scheduling field, PSO is conceptually implemented by resembling each schedule (or
solution) as a particle, with the activities’ priorities as the components of this particle [73, 74].
The quality of schedules (or solutions’ fitness) is calculated via a predefined objective function.
Initially, activities priorities can be initialized using a single priority rule, or a combined rule
[57]. Then, iteratively, positions and velocities vectors of particles/components are adjusted,
then the quality rating of each solution is assessed, the global best solution and the local best
solution for each particle are logged. The stopping position can be set to a maximum analysis
duration, a certain number of schedules to be generated, or a specific quality to be reached
(Figure 2).

Figure 2. General PSO flow chart for scheduling.

Albeit that the number of application of PSO in the scheduling context is not large as GA, the
results of its application, especially for SRCPSP, is highly ranked in general comparisons with
all techniques (c.f. [54, 57]).

4.5. Ant colony optimization (ACO)

ACO is a population based, multi‐agent, meta‐heuristic technique within the broader family
of swarm intelligence optimization methods; initially proposed by Dorigo [75]. ACO uses the
concepts of food seeking in ant colonies as a basis for an optimization algorithm for seeking
optimal solutions within solutions space.

In nature, ants use pheromone as the means of communication when searching for food. Upon
finding food, after random wandering in the colony's neighbourhood, ants lay pheromone in
their way back to the colony; thus, other ants can use these traces to guide their movements
from colony to food sources. These pheromone traces decays/evaporates with time, which leads
to traces for shorter paths to be higher in strength than others, and accordingly guides ants to
shorter paths to food.
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Application of ACO in scheduling started with a proposed ant system for job‐shop scheduling
by Colorni et al. [76]; followed by several other applications in various scheduling problems,
such as flow‐shop scheduling [77–79], flexible job‐shop scheduling [80], resource‐constrained
scheduling [81, 82], and total tardiness problems [83, 84].

The most common presentation of ACO in the scheduling literature was outlined by Stützle
and Dorigo [85] as follows: set of network nodes (C ={c1, c2, c3,  …,  cN }), set of problem states
(sequence or relationships) of element C (x ={ci, cj, ck ,  …}), set of constraints (Ω), set of all
states (X ), set of all feasible states (X̄ ⊆ X ), objective function f(s) (where s is a candidate
solution, s ⊂S), set of all feasible solutions (S * ⊆ X̄ ), a pheromone trail (τij) representing the
desirability of relation (rij), and finally heuristic problem‐specific information can be defined
within (ηij).

Figure 3. Simplified ACO flow chart for scheduling.

Then, the problem topology and the simulation behaviour can be simplified as shown in the
flow chart in Figure 3. The algorithm starts with initializing the problem's topology (or the
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network's details), the pheromone trails (τ0) either randomly or using a priority rule, and the
artificial ants starting states.

Then, within each iteration cycle, each ant moves a two‐way path seeking a food source (or a
feasible solution). In the forward path, the ant's movements (or selected network relations) is
defined using heuristic information (η) and current pheromone information (τ). After solution
(s) is constructed, the solution's fitness is calculated using the objective function (f). The ant
then returns in a backward path applying local pheromone based on the quality achieved for
solution (s). Finally, the global pheromone is updated before the stopping condition is checked.

Although, as per the detailed performance surveys mentioned earlier, ACO did not demon‐
strate a competitive performance to other meta‐heuristics (GA, PSO, and TS), except for large
size problems; this can be positively inferred that ACO's performance increases with the
increase in problem's size due to its high exploration capabilities.

4.6. Other methods

Due to the complicated and challenging nature of scheduling problems, the scheduling field
has been usually one of the first testing fields for any meta‐heuristic optimization technique
being introduced within the operational research literature. It would be a very exhaustive task
to summarize all meta‐heuristics adopted for solving different scheduling problem types; so,
beside the techniques mentioned in the previous sections, the following paragraphs briefly
summarize other meta‐heuristics widely adopted in the scheduling research context.

Tabu search (TS) is one of the techniques with high performance results within the scheduling
literature. The TS is a local search technique, initially proposed by Glover [86]. It involves
exploring the search space through searching neighbourhoods of potential solution(s). The
following are some examples of TS applications in scheduling: resource‐constrained schedul‐
ing [87–89], flow‐shop scheduling [90, 91], and flexible job‐shop scheduling [92].

The simulated annealing (SA) was presented by Kirkpatrick et al. [93], as an optimization
method which mimics the behaviour of a system in thermodynamic equilibrium at certain
temperature. It is a probabilistic meta‐heuristic which focus on finding a quick approximated
global optimum of a search space. SA showed moderate performance with scheduling
applications, such as Rutenbar [94], Bouleimen and Lecocq [95], and Dai et al. [96].

Other meta‐heuristics adopted in scheduling include, Neural networks [97–99], Scatter
Search [100], Electromagnetism‐like method [101, 102], Sampling method [103, 104], and
Bees Algorithm [105, 106].

In addition, scheduling literature contains vast amount of meta‐heuristics with combina‐
tions of the various optimization techniques, such as Kochetov and Stolyar [107] for GA and
TS, Niu et al. [108] for PSO and GA, Chen and Shahandashti [109] for GA and SA, Moslehi
and Mahnam [110] for PSO and LS, and Deane [111] for GA and NN.
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5. Conclusion

The design and implementation of a robust scheduling system are essential for the successful
use of planning and scheduling practices within projects. A scheduling system involves
modelling the problem, selecting a solution approach to be used in a static and/or dynamic
analysis for optimizing schedules, and finally the selection of an optimization technique which
suits most the characteristics and conditions of the project type under analysis.

This study reviewed the concepts and researches presented for these three factors of building
a scheduling system, with a more detailed focus on meta‐heuristic optimization algorithms
adopted in the project‐scheduling context.
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Abstract

Deep learning (DL) is a type of machine learning that mimics the thinking patterns of
a human brain to learn the new abstract features automatically by deep and hierarchi‐
cal  layers.  DL  is  implemented  by  deep  neural  network  (DNN)  which  has  multi-
hidden layers. DNN is developed from traditional artificial neural network (ANN).
However, in the training process of DL, it has certain inefficiency due to very long
training time required. Meta-heuristic aims to find good or near-optimal solutions at a
reasonable computational cost. In this article, meta-heuristic algorithms are reviewed,
such as genetic algorithm (GA) and particle swarm optimization (PSO), for traditional
neural network’s training and parameter optimization. Thereafter the possibilities of
applying meta-heuristic algorithms on DL training and parameter optimization are
discussed.

Keywords: deep learning, meta-heuristic algorithm, neural network training, nature-
inspired computing algorithms, algorithm design

1. Introduction

Deep learning (DL) is a branch of machine learning. Based on a set of algorithms, DL attempts
to model high-level abstractions in data by using multiple processing layers with complex
structures. Developed by Professor Hinton [1] in 2006, DL now is becoming the most preva‐
lent research area in machine learning. DL is a collective concept of a series of algorithms and
models  including but  not  limited to convolutional  neural  networks (CNNs),  deep belief
networks (DBNs), restricted Boltzmann machines (RBMs), deep Boltzmann machines (DBM),
recursive auto encoders and deep representation respectively, regarding the problem to be
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solved. The most famous models for machine learning are RBM and DBN and CNN for image
classification.

DL is the so-called “Deep” towards those widely used “shallow learning” algorithms such as
support vector machine (SVM), boosting and maximum entropy method. Those shallow
learning extracts feature mostly by artificial sampling or empirical sampling, thus the model
or network will learn a non layer structure feature. On the contrary, DL learns raw data layer
by layer by transforming data from raw feature space to transformed feature space. Addition‐
ally, deep structure can learn and approach nonlinear function. All these advantages are
beneficial to classification and feature visualization [2, 25].

Figure 1. Error rate of Image Net competition.

To process big data and large scale dataset, DL has been widely used in many research areas
and industrial areas including pattern recognition, image classification and natural language
processing (NLP). For instance, in Image Net large-scale visual recognition challenge (ILSVRC)
[3], DL and convolutional neural network are first implemented in image classification and
made a great success. As shown in Figure 1, the error rate declines from 25 to 15% when DL
and CNN are implemented. From then on, “DL + big data + GPU” is integrated into traditional
image classification application, and companies such as Google and Baidu have successfully
updated their image searching production by DL’s implementation [4].

Though DL outperforms those shallow learning methods and it has been widely adopted by
the R&D industry, its application and implementation still have some shortcomings. A large
deep neural network (DNN) may have millions of parameters and is mostly trained by
contrastive divergence (CD) learning algorithm which is iterative and known to be time
consuming [5]. The most significant problem is that when facing very large scaled data the
DNN will take several days or even months to learn even though the greedy search strategy
is proposed. In this case, many companies and researchers are trying to improve hardware
capabilities and applying high-processing facilities such as GPU and parallel computing.
Others are focusing on using other training algorithms to substitute traditional CD to speed
up the training process.
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Meta-heuristic algorithms aim to find global or near-optimal solutions at a reasonable
computational cost. In terms of meta-heuristic, the words of “meta” and “heuristic” are Greek,
where “meta” is “higher level” or “beyond” and heuristics means “to find”, “to know”, “to
guide an investigation” or “to discover”. Heuristics are methods to find good (near-) optimal
solutions in a reasonable computational cost without guaranteeing feasibility or optimality. In
other words, meta-heuristics are a set of intelligent strategies to enhance the efficiency of
heuristic procedures [6].

Meta-heuristic algorithms usually rely on different agents such as chromosome (genetic
algorithm [GA]), particles (particle swarm optimization [PSO]), and firefly (firefly algorithm),
searching iteratively to find the global optimum or near-global optimum. Many strategies such
as evolutionary strategy, social behavior and information transition are implemented to
guarantee the whole population will move towards global optimum iteratively and protect
from falling in local optimum.

Traditional artificial neural network (ANN) used to have multilayer feed-forward neural
network structure and use back-propagation (BP) to modify the weight. The mainly used
strategy is gradient descent (GD). Meta-heuristic has been successfully implemented on
traditional neural network to speed up the training process by substituting the GD strategy
with iterative evolutionary strategy or swarm intelligence strategy [5, 7–10].

Gudise and Venayagamoorthy [5] compared feed forward with PSO and feed forward with
BP, and the results show that feed forward with PSO is better than BP in terms of nonlinear
function.

Leung et al. [10] presents the tuning of the structure and parameters of a neural network using
an improved GA. It will also be shown that the improved GA performs better than the standard
GA based on some benchmark test functions.

Juang [8] proposed a new evolutionary learning algorithm based on a hybrid of GA and PSO
called HGAPSO. In each epoch, the upper-half of the GA population are defined as elites and
the rest will be discarded. Enhanced by PSO and GA, the elites will form the next generation
of GA. The hybrid method outperforms PSO and GA in recurrent or fuzzy neural network.

Meissner et al. [9] used optimized particle swarm optimization (OPSO) to accelerate the
training process of neural network. The main idea of OPSO is to optimize the free parameters
of the PSO by having swarms within a swarm. Applying the OPSO method to neural network
training with the aim to build a quantitative model, OPSO approach yields parameter
combinations improving overall optimization performance.

Zhang et al. [7] proposed a hybrid algorithm of PSO plus BP for neural network training. By
utilizing the advantage of PSO’s global searching ability as well as BP’s deep search ability,
the hybrid algorithm has a very good performance in both convergent speed and convergent
accuracy.

Structures of DL model are similar to the traditional ANN, some modifications are imple‐
mented for better learning ability. For instance, the CNN is a traditional ANN modified with
pooling procession and the structure of RBM is an undirected graph or a bidirectional neural
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network. DL model shares similar model with neural network and may take different training
algorithm instead of GD strategy.

In this survey, the relevant work of applying meta-heuristic algorithms for ANN’s training is
reviewed. In addition, the structure and working process of RBM are analyzed and as the basic
structure of DL model, RBM’s training process is introduced. We survey the possibility of
implementing meta-heuristic algorithms on RBM’s parameter training process.

The rest of the sections is organized as follows: meta-heuristic algorithms including GA and
PSO are introduced in Section 2. ANN is introduced in Section 3. The implementation of meta-
heuristic on ANN is introduced in Section 4. DL and RBM are introduced in Section 5. Some
conclusion and discussion are drawn in Section 6.

2. Meta-heuristic algorithm

Meta-heuristic is a collective concept of a series of algorithms including evolutionary algo‐
rithm, the most famous one is GA [11], naturally inspired algorithm, the most prevalent one
is PSO [12], trajectory algorithm, such as Tabu search [13], and so on. The classification of meta-
heuristic is shown in Figure 2. In this paper, I mainly focus on surveying GA and PSO because
these two are the most prevalent as well as most widely implemented. GA and its working
process are introduced in Section 2.1 and PSO is introduced in Section 2.2, respectively.

Figure 2. Classification of meta-heuristic algorithm.

2.1. Genetic algorithm

Founded in 1975 by Professor Holland, GA sets up an evolution model that simulates Dar‐
winian genetic selection and the natural elimination process [11]. Chromosomes carry
information and the operation of crossover and mutation on chromosome guarantees the
whole algorithm could find the global optimum or near-global optimum iteratively. Crossover
operation keeps the whole population moving towards the global optimum through giving
better chromosome higher chance for propagation. Mutation operation keeps the whole
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population’s diversity and avoids population falling in local optimum easily. The main
working process could be summarized as follows:

Figure 3. Chromosome image in biology.

Step 1. Chromosomes which carry information are randomly generated.

Step 2. All chromosomes are evaluated with fitness functions to calculate fitness values of each
as fitnessi.

Step 3. Based on Russian roulette strategy, chromosomes are randomly chosen as parents for
next generation.

Step 4. Parents do crossover operations to get next generations.

Step 5. Do mutation operation on each chromosome.

Step 6. Back to Step 2 until meeting the stop criteria or exceeding pre-set iteration number.

A biological picture of chromosome is shown in Figure 3. The working flow of GA is shown
in Figure 4.

Figure 4. GA working flow.
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2.1.1. Russian roulette strategy

Russian roulette strategy is designed for choosing the parents of the next generation, as shown
in Figure 5. Each chromosome has a possibility pi of being chosen as parents.

Figure 5. Russian roulette strategy.

pi is calculated as below for each chromosome i:

1

i
i n

ii

fitnessp
fitness

=

=
å

This strategy keeps the idea that the chromosome with higher fitness value will have higher
possibility of being chosen thus make sure better chromosome’s information will not be missed
or has few possibilities of missing in the next generation. In the meantime, it also allows those
chromosomes without better fitness value to transmit their information to the next generation
[11].

2.1.2. Crossover and mutation

Figure 6 shows us a typical crossover operation and mutation operation. The most common
way of applying crossover operation is selecting a site, cutting up each chromosome and
reconstructing both to get next generation. If their fitness value is better than their parents,
submit as next generation otherwise keep their parents as next generation. Furthermore,
regarding different real problem to be solved, different crossover operation such as multisite
crossover would be used and these will be discussed later.
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Figure 6. Crossover and mutation.

Figure 6 also shows us the typical mutation operation in GA. The most common way of
applying mutation is to randomly select some site of chromosome and randomly change it
with any possible value regardless of the fitness value will be better or not. Of course the
mutation operation may make one chromosome “worse” while mutation operation can keep
the population’s diversity and avoid falling in local optimum.

2.1.3. Fitness function and genetic coding strategy

GA is first used to optimize complex continuous functions which are not able to calculate its
mathematical global optimal location. Thus the design of chromosome itself, fitness function
and crossover operation are very easy. However, when trying implementing GA on real
problems, many types of problems such as discrete problem, time series problem and multi
objective problem are faced. In this way, how to design the chromosome itself to represent the
real problem better and how to calculate its fitness value when given chromosome need
reconsidering. To solve the above troubles, genetic coding strategy is put forward which
encodes real problem to chromosome and calculates its fitness value. When whole optimizing
is finished, the best chromosome will be decoded to real problem’s expression and then
analyzed and discussed why it is global best.

2.2. Particle swarm optimization

PSO is developed by Professor James Kennedy and Russell Eberhart [12]. The main difference
of PSO is that it takes “social behaviors” and “memory” to guarantee whole population’s
moving towards global optimum iteratively instead of evolutionary strategy.

PSO optimizes a problem by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathematical formula over the
particle's position xi and velocity vi. Each particle has memory and its movement is influenced
by its local best known position pbesti but is also guided toward the best known positions in
the search-space, which are updated as better positions found by all particles called gbest.

The iterative formulas of PSO are

( ) ( )1 1 2* * * * *i i i i iv v w c rand pbest x c rand gbest x+ = + - + -
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                Velocity constraint ()

1 1i i ix x v+ += +

               Search range constraint ()

w is called the inertia weight that controls the exploration and exploitation of the search space
because it dynamically adjusts velocity and is usually set as 0.8. c1 and c2 are called learning
factors and usually set as 2.

Figure 7. Schematic of PSO.

In the iterative formula of PSO, vi * w refers to the particle keeps its own search direction. c1 *
rand * (pbesti − xi) refers to the particle’s movement is influenced by its own personal best record.
c2 * rand * (gbest − xi) refers to the particle’s movement is influenced by whole population’s best
record. To keep whole population will not premature or overfit, when implementing iteration
process, a limitation of vmax and vmin is predefined to constraint particles’ movement. Addition‐
ally, the search space is also predefined thus for each particle’s location xi, there are upper
bound xmax and lower bound xmin to make sure each particle will not be out of range. A schematic
diagram is shown in Figure 7 and the working flow of PSO is shown in Figure 8.
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Figure 8. Working flow of PSO.

PSO is prevalent because of its concise evolutionary strategy as well as its concise operations.
Unlike GA’s crossover and mutation operation and complex genetic coding strategy, PSO only
needs randomly generated location x and velocity v. However, naïve PSO is designed for math
function optimization which is a continuous problem. For application, researchers still need
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to design own coding strategy to make sure PSO’s iterative formulas are meaningful, especially
for discrete problems. One example is applying PSO on graph optimization to solve some NP-
hard problem such as travelling salesman problem (TSP) problem [14]. TSP asks the following
question: Given a list of cities and the distances between each pair of cities, what is the shortest
possible route that visits each city exactly once and returns to the origin city? It is an NP-hard
problem in combinatorial optimization, important in operations research and theoretical
computer science.

With the development of meta-heuristic, researchers are beginning to try implementing meta-
heuristic on TSP in case to get a “good enough” result in a reasonable computation time. To
solve and adapt TSP to PSO, researchers innovate a concept of “swap operator” and “swap
sequence” which gives the “+” operator a new meaning [14, 15].

3. Neural network

In machine learning and cognitive science, ANNs are a family of models inspired by biological
neural networks (the central nervous systems of animals, in particular the brain) and are used
to estimate or approximate functions that can depend on a large number of inputs and are
generally unknown. ANNs are generally presented as systems of interconnected "neurons"
which exchange messages between each other. The connections have numeric weights that can
be tuned based on experience, making neural nets adaptive to inputs and capable of learning
[16]. The ANN was developed in the 1950s, there are almost three generations of neural
networks: perceptron [17], feed-forward BP neural network [18] and spiking neural network
(SNN) [19].

3.1. Perceptron

Founded in the 1950s by Professor Rosenblatt, the basic perceptron is put forward as a
probabilistic model to simulate human brain’s working process when receiving information.
Figure 9 shows us a typical structure of perceptron that only has one layer, with multi-input
neurons as (t1, t2, ⋯ , tn) in which k is the total number of neurons. Their corresponding inputs
are (x1, x2, ⋯ , xn). Each neuron has its own weight (w1j, w2j, ⋯ , wnj) in which j refers to the output
layer. The net input netj =∑n

i=1 xi * wij is processed by the activation φ. If φ(netj) > threshold θj,
then the output neuron is activated and output oj = 1, otherwise output neuron is not activated
and output oj = 0. The training process of perceptron is that suppose the desired output is od

and actual output is oa, then

( )Δ *ij d a iw o o x= -

1 Δt t
ij ij ijw w w+ = +
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Figure 9 shows us a typical structure of perceptron that only has one layer, with multi-input
neurons as (t1, t2, ⋯ , tn) in which k is the total number of neurons. Their corresponding inputs
are (x1, x2, ⋯ , xn). Each neuron has its own weight (w1j, w2j, ⋯ , wnj) in which j refers to the output
layer. The net input netj =∑n

i=1 xi * wij is processed by the activation φ. If φ(netj) > threshold θj,
then the output neuron is activated and output oj = 1, otherwise output neuron is not activated
and output oj = 0. The training process of perceptron is that suppose the desired output is od

and actual output is oa, then

( )Δ *ij d a iw o o x= -

1 Δt t
ij ij ijw w w+ = +
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Figure 9. Structure of perceptron.

By using these training strategies, when|(od − oa)| < eps, in which eps is a predefined accuracy,
i.e., 10−5, the perceptron could be seen as mature. This training strategy is the ancestor of the
widely used BP algorithm.

Geometrically, trained perceptron could be seen as a linear function. It can correctly classi‐
fy the linear separable problem but not linear inseparable problem such as XOR problem
(Figure 10). XOR problem contains two classes A and B while the diagonal belongs to the
same class, i.e., data (0, 0) and data (1, 1) belong to class A while data (1, 0) and (0, 1)
belong to class B. This will cause no lines or linear functions can separate these two catego‐
ries correctly unless using curves or reflect the data to high-dimensional space [18].

Figure 10. XOR problem.
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3.2. Feed-forward neural network

Figure 11 shows us a typical multilayer unidirectional feed-forward neural network and
Figure 12 shows us a typical recurrent neural network, Hopfield network. The most prevalent
structure of three-layer neural network with input layer, hidden layer and output layer, every
two neurons are connected with weight w.

Figure 11. Feed-forward neural network.

Figure 12. Hopfield neural network.
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In a typical feed-forward neural network, the information is transmitted forward from input
layer to hidden layer and then from hidden layer to output layer. It works similar to perceptron
above, for each neuron j in hidden layer, calculate

1

*
n

j i ij
i

y x w
=

=å

Then for each neuron h in output layer, calculate

1

*
n

h i jh
i

o y w
=

=å

The output layer could have one or more neurons to represent the final result, different output
layer structure may lead to different training time and prediction accuracy.

BP algorithm is the most prevalent supervised learning algorithm for neural network. BP’s
main idea is using GD algorithm to find the gradient-descent-most way to modify the weight
in neural network. The modification starts from the output layer, then to hidden layer and
input layer. Because the GD is based on the difference or error between the desired output and
actual output, BP is also called error-BP method. Suppose desired output is od and actual output
is oa, the error function is defined as:

21E ( )
2 d ao o= -

Suppose the layers are input layer i, hidden layer j and output layer h, respectively, using
partial derivative,

Δ ,Δij jh
ij jh

E Ew w
w w

h h¶ ¶
= =

¶ ¶

in which η is called learning rate, usually set as 0.01 or 0.1 according to the set of weight of the
network. Weight w is usually set as a random number in [0, 1] in case the learning process is
too long. Then, update the weight between each neurons,

Δ , Δih ih ih hj hj hjw w w w w w= + = +

One epoch of training process is finished. GD will modify weight iteratively using the formula
above till the whole network is trained mature.
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Unlike perceptron, multilayer network can represent complex nonlinear function with hidden
layers, thus can process XOR problems well. To some extent, multilayer network can represent
any type of nonlinear function by using hidden layers. However, when implementing BP, if
the depth of network is over 5, the error transmitted back to input layer or first hidden layer
will be decayed significantly to almost 0 thus making the modification useless, so in real
application, the depth of network is smaller than 5 [16].

3.3. Spiking neural network

SNN is recognized as the third generation of neural network. Maass [19] proved the spiking
neuron and SNN has a powerful learning ability and information processing ability than
traditional neural network. Put forward by Gerstner [20] in 1997, the SNN gives us a concise
biological neuron model processed by temporal coding called spiking neuron model (SRM).

Figure 13(A) and (B) shows us the basic structure of SNN, the network structure and infor‐
mation transition of neural network, SNN is similar to using feed-forward multilayer neural
network. However, the transition process is a little different with feed-forward neural network.
Between neurons i and j, there are multiple delays (d1, d2, ⋯ , dk) and every link has its own
weight (wij

1, wij
2, ⋯ , wij

k ) corresponding to each delay. Compared to traditional NN, SNN has
more powerful learning ability and information processing ability.

Figure 13. (A) Feed-forward SNNand (B) connection of multiple delay.

For each spiking neuron j, its internal state xj(t) is

( ) ( )
j

k k
j ij i ij

i k
x t w t t de

ÎG

= - -åå

Neuron i is its predecessor and weight wij
k  and delay dij

k  are the synaptic connection between
neuron i and j. ti is the ith input from presynaptic neuron. If xj(t) ≥ v, v is pre-set threshold, the
neuron is spiked and could transmit spike to other neurons. ε(t)is called spiking response
function,
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τ is the membrane potential decay time constant that determines the rise and decay time of
the postsynaptic potential (PSP). Figure 14 shows us how one spiking neuron begins to receive
input pulse step by step and become spiked. Each neuron could begin to transmit information
to its posterity only when this neuron is spiked. SNN implements temporal coding strategy
which means the whole network is only based on one variable t which is initially set as 0. Then
t increment 0.01 epoch by epoch until the output layer is spiked. The final output is the output
layer spiking time t.

Figure 14. Process of neuron spike when receiving input spike.

Owing to the multiple delay connection, one SNN can achieve times of computation scale and
ability than ANN in the same multilayer structure. With temporal coding, the whole network
has only one variable t, thus the iterative process is simpler than ANN.

For supervised learning algorithm of SNN, Bohte et al. [21] first time give us a proved error-
propagation supervised learning algorithm called spikeprop algorithm which is also based on
GD. Adeli [22] revised the spikeprop algorithm and put forward another supervised learning
algorithm quickprop.

3.4. Neural network encoding strategy

When dealing with different types of data for classification or prediction, encoding strategy
similar to genetic coding needs being implemented to transform real problem to neural net‐
work format. In addition, because of the longtime of neural network training, some prepro‐
cessing method needs to be taken for extracting significant information or features thus
accelerate neural network learning.

For instance, dealing with image classification, feature extraction method need being taken as
preprocessing for neural network learning and the famous one is CNN. Furthermore, when
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using neural network for speech recognition, feature extraction is also a need for transforming
continuous speech data into discrete neural network input.

4. Applying meta-heuristic algorithm on neural network training

The main idea of applying meta-heuristic on neural network training is using meta-heuristic
algorithm instead of GD algorithm modifying weight training. That is from

1 1j  t t t tw w GD w w Meta+ += + Þ = +

By using meta-heuristic algorithm’s global optimum searching ability, researchers are aiming
to train neural network faster than traditional GD algorithm. In the following part, Section 1
reviewed four researchers’ work on implementing meta-heuristic on neural network training
including GA on NN, PSO on NN and hybrid GA and PSO on NN.

4.1. GA on neural network

Leung et al. [10] first tried implementing GA on neural network training. Their work was
published in IEEE Transactions on Neural Network, 2003.

An improved GA is put forward by Leung. Crossover operations, mutation operations and
fitness function of GA are all redefined by Professor Leung. Firstly, when chromosomes p1 and
p2 do crossover operation, four possible offsprings will be generated and one with the biggest
fitness value will be chosen as offspring. The four possible crossover offsprings os1 to os4 are
generated as regulations listed below:

1 1 1 1 1 2
1 2, ,

2c n
p pos os os os +é ù= =ë ûL

( )2 2 2 2
1 2 max 1 2, , 1 max( , )c nos os os os p w p p wé ù= = - +ë ûL

( )3 3 3 3
1 2 min 1 2, , 1 min( , )c nos os os os p w p p wé ù= = - +ë ûL

( )( )min max 1 24 4 4 4
1 2

1 ( )
, ,

2c n

p p w p p w
os os os os

+ - + +
é ù= =ë ûL

pmax = paramax
1 , paramax

1 , ⋯ , paramax
n , pmin = paramin

1 , paramin
1 , ⋯ , paramin

n  are calculated respec‐
tively. For instance, Max([1,−1,4], [−3,3,2]) = [1,3,4] and Min([1,−1,4],[−3,3,2]) = [−3,−1,2].
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Secondly, mutation operations are redefined. The regulations are given below

( ) ( ) ( )1 2 3 4max( ,fitness ,fitness ,fitness( ))c c c cos fitness os os os os=

1 1 2 2[ , , ]¢ = D D D+ L n nos os b nos b nos b nos

os is the chromosome with biggest fitness value in all four possible offsprings. bi random equals
to 0 or 1 and Δnosi is a random number making sure paramin

i ≤osi + biΔnosi ≤ paramax
i . os′ is the final

generation after crossover operation and mutation operation.

Thirdly, the fitness value is defined. By adding parameters in the neural network mathematical
expression, the actual output of GA-optimized neural network yk equals to:

( ) ( ) ( ) ( )2 1 1 1 2 2

1 1

( )
h in n

k jk jk ij ij i j j k k
j i

y s w logsig s w x s b s logsig bd d d d
= =

é ù
= - -ê ú

ë û
å å

in which k =1, 2, ⋯ , nout , sij denotes link from ith neuron in input layer to jth neuron in hidden
layer, sjk denotes link from jth neuron in hidden layer to kth neuron in output layer, wjk denotes
weight between each neuron, bk

1 and bk
2 denote bias in input layer and hidden layer respectively,

nin, nh and nout  denote the number of neurons of input layer, hidden layer and output layer,
respectively.

The error of the whole network is defined as mean of all chromosomes:

1

err
out

dn
k k

k d

y y
n=

-
=å

in which nd denotes the number of chromosomes used in the experiment, yk
d  denotes the

desired output of output neuron k. Given the error of the network, GA is implemented to
optimize the network, thus minimizing the error. The fitness function is defined as

1fitness
1 err

=
+

the smaller the error and the bigger the fitness value. GA is implemented to find the global
optimum of the fitness function, thus the parameter combinations of weight w are the trained
weight for the network.
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4.2. PSO on neural network

Gudise and Venayagamoorthy [5] implemented PSO on neural network training in 2003.

The fitness value of each particle (member) of the swarm is the value of the error function
evaluated at the current position of the particle and position vector of the article corresponds
to the weight matrix of the network.

Zhang et al. [7] developed a hybrid algorithm of BP and PSO that could balance training speed
and accuracy.

The PSO algorithm was showed to converge rapidly during the initial stages of a global search,
but around global optimum, the search process will become very slow. On the contrary, the
gradient descending method can achieve faster convergent speed around global optimum, and
at the same time, the convergent accuracy can be higher.

When the iteration process is approaching end and current best solution is near-global
optimum, if the change of the weight in PSO is big, the result will vibrate severely. Under this
condition, Zhang supposed with the increase of iteration time, the weight in PSO should
decline with the iteration time’s increasing to narrow the search range thus paying more
attention to local search for global best. He suggests the weight decline linearly first, then
decline nonlinearly as shown in Figure 15.

Figure 15. Change of weight in PSO with number of generations.

The concrete working process is summarized below:

For all particle pi, it has a global best location pglobalbest. If the pglobalbest keep unchanged for over 10
generations, that may infer the PSO pays too much time on global search thus BP is imple‐
mented for pglobalbest to deep search for a better solution.

Similar to GA’s implementation in neural network, the fitness function defined is also based
on whole network’s error and to minimize the error as the optimization of PSO.
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The learning rate η of neural network is also controlled in the algorithm, as

0η epochk e h- ×= ´

where η is the learning rate, k and η0 are constants, epoch is a variable that represents iterative
times, through adjusting k and η0, the reducing speed of learning rate is controlled.

By implementing the strategy that BP focusing on deep searching and PSO focusing on global
searching, the hybrid algorithm has a very good performance.

4.3. Hybrid GA and PSO on neural network

Juang [6] hybrids GA and PSO thus optimize recurrent network’s training. The work was
published in IEEE Transactions on Systems, Man, and Cybernetics, 2004.

The hybrid algorithm called HGAPSO is put forward because the learning performance of GA
may be unsatisfactory for complex problems. In addition, for the learning of recurrent network
weights, many possible solutions exist. Two individuals with high fitness values are likely to
have dissimilar set of weights, and the recombination may result in offspring with poor
performance.

Juang put forward a conception of “elite” of the first half to enhance the next generation’s
performance. In each generation, after the fitness values of all the individuals in the same
population are calculated, the top-half best-performing ones are marked. These individuals
are regarded as elites.

Figure 16. Working flow of HGAPSO.

In every epoch, the worse half of the chromosome is discarded. The better half is chosen for
reproduction through PSO’s enhancement. All elite chromosomes are regarded as particles in
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PSO. By performing PSO on the elites, we may avoid the premature convergence in elite GAs
and increase the search ability. Half of the population in the next generation is occupied by
the enhanced individuals, the others by crossover operation. The working flow of algorithm
is shown in Figure 16.

The crossover operation of HGAPSO is similar to normal GA, randomly selecting site on
chromosome and exchange the sited piece of chromosome to finish the crossover operation.
The crossover schematic diagram is shown in Figure 17. In HGAPSO, uniform mutation is
adopted, that is, the mutated gene is drawn randomly, uniformly from the corresponding
search interval.

Figure 17. Schematic diagram of crossover operation.

5. DL and RBM

When dealing with image classification or other problems, traditional method is using
preprocessing transforming data as input values for neural network learning while using DL
method for classification, raw data (pixel values) are used as input values. This will keep to
the maximum extent protecting all information regardless of useful or not from being de‐
stroyed by extraction methods. The most advantage lies that all the extraction methods are
based on expert knowledge and expert choice and thus are not extensible to other problems,
while DL algorithm can overcome these limitations by using all data with its powerful
processing ability. A CNN is shown in Figure 18.

The Boltzmann machine only has two layers (as Figure 19), the first layer is the input layer
and the second layer is the output layer, although the structure is very simple and only contains
two layers, its mathematical function in it is not simple. Herein we need to introduce the
following probability equation to know the RBM.
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Figure 18. Convolutional neural network.

Figure 19. Restricted Boltzmann machine.

From the equation we know there are three items in it, they are the energy of the visible layer
neural, the energy of the hidden layer neural, and the energy is consisted of the two layers.
From the energy function of the RBM, we can see there are three kinds of parameters lie in the
RBM, different from the neural network, each neuron has a parameter too, but for the neural
network only the connection of two layers has the parameters. Also, the neural network does
not carry any energy function. They use the exponential function to express the potential
function. There are also the probabilities existing in the RBM. They work exactly in the same
way as the two kind of the probabilities such as p(v|h) and p(h|v). It has a similarity with
probability graph model in details, examples are Bayesian network and Markov network. It
looks like a Bayesian network because of the conditional probability. On the other hand it does
not look like a Bayesian because of the two direction probabilities. These probabilities are lying
on the two variables that have only one direction.

Compared with the Markov network, the RBM seems to be having a little bit relation with it,
because the RBM has the energy function just as the Markov network. But it is not so much
alike because the RBM’s variable has parameter, and the Markov network does not have any
parameter. Furthermore, the Markov network does not have conditional probability because
it has no direction but just the interaction. From the graph’s perspective, variables in the
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Markov network use cliques or clusters to represent the relations of close and communicated
variables. It uses the production of the potentials of the clique to express the joint probability
instead of conditional probability just like the RBM. Its input data are the kind of the Boolean
data, within the range between 0 and 1.

The training way of the RBM is to maximize the probability of the visible layer p(v), and to
generate the distribution of the input data. RBM is a kind of special Markov random function
and a special kind of Boltzmann machine. Its graphical model is corresponding to the factor
product analysis.

Different from the probability graphical model, the RBM’s joint distribution directly uses the
energy function of both visible layer v and hidden layer h to define instead of potential of it
given as

( ), T T TE v h a v b h v Wh= - - -

( ) ( ),1, E v hP v h e
Z

-=

Later we will know that Z is the partition function defined as the sum of e−E(V,h) over all the
possible configurations. In other words, it is just a constant normalizing the sum over all the
possible hidden layer configurations.

( ) ( ),1 E v h

h

P v e
Z

-= å

The hidden unit activations are mutually independent given the activations. That is, for m
visible and n hidden units, the conditional probability of a configuration of the visible unit v,
given a configuration

( ) ( )
1

| |
m

i
i

P v h P v h
=

=Õ

Conversely, the conditional probability of h given v is P(h |v)=∏n
j=1 P(h j |v). Our goal is to

infer the weights that maximize the marginal of the visible, in details we can step through the
following equation to infer and learn the RBM.

arg max log ( )
w v V

E P v
Î
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As for the training algorithm, the main idea is also applied GD idea into RBM. Hinton put
forward CD [23] as a faster learning algorithm. Firstly, the derivative of the log probability of
a training vector with respect to a weight is computed as

( )
i j i jdata model

ij

logP v v h v h
w

¶
= -

¶

where the angle brackets are used to denote expectations under the distribution specified by
the subscript that follows. This leads to a very simple learning rule for performing stochastic
steepest ascent in the log probability of the training data:

( )ij i j i jdata model
w v h v heD = -

where ε is a learning rate.

Because there are no direct connections between hidden units in an RBM, it is very easy to get
an unbiased sample of vjhjdata. Given a randomly selected training image, v, the binary state, hj,
of each hidden unit, j, is set to 1 with probability

( )1 ( )j j i ij
i

p h v b v ws= = +å

where bj is the current state of hidden neuron j, σ(x) is the logistic sigmoid function
σ(x)=1 / (1 + exp(− x)). vjhj is then an unbiased sample. The CD is used to calculate the latter part
vjhjmodel. Details can be found in their respective publications.

Considering the complicated computation of implementing CD, the training process of RBM
is not easy. Under this condition, implementing meta-heuristic on RBM training to substitute
CD is of high possibility.

6. Conclusion and discussion

Meta-heuristic has successfully implemented in neural network training. The algorithm used
includes GA, PSO, their hybrid and many other meta-heuristic algorithms. Moreover, feed-
forward BP neural network and SNN [24] are all trained with tests on famous classification
problems.

The basic structure of DL is similar to traditional neural network. CNN is a special neural
network with different weight computation regulations and RBM is a weighted biodimen‐
sional neural network or biodimensional graph. Their training processes are also mainly
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executed through iterative formula on error which is similar to traditional neural network’s
training.

Having seen the above two concluding remarks, it can be assumed that it is of high possibility
of applying meta-heuristic in DL to speed up training without declining performance.
However, relevant publications along this direction are still rare.

Lastly, there still exists a question that goes under today’s computation ability, especially the
GPU whose computation ability is several times stronger than CPU that has been widely used
in industrial area. One may ask, although elegant, is meta-heuristic still necessary? This
question is not easy to answer. However, one can be certain that when traversing all the
possible solutions is certainly highly time-consuming. Search for near-optimal results by meta-
heuristic is still useful that can provide us a reasonable searched result (instead of non optimal
or far from optimal) near a global optimum value at an acceptable computational cost.
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Abstract

Multilayers, which consist of periodic/aperiodic nanometer-scale stacks of two or more
alternating materials,  fill  a  gap between visible light  optics  and natural  crystal  by
realizing high near-normal incidence reflectivity in extreme ultraviolet and soft X-ray
regions and diffraction-limited focusing in  hard X-ray region.  Before fabricating a
multilayer, it is essential to design a structure that realizes the required optical features.
The optimization process uses merit functions that are defined by the design targets. In
this chapter, the designs of two typical aperiodic multilayer structure, X-ray supermir‐
ror and EUV beam splitter, are introduced. Precision characterization of multilayer
structures  is  the  key  process  in  multilayer  sciences  as  well  in  order  to  improve
fabricating process and determine optical properties in use. Searching a most suitable
structure model to approaching real one by comparing experimental and simulated
results  is  essentially an optimization problem. In this chapter,  by fitting the X-ray
grazing incidence reflectivity and diffuse scattering curves,  the realistic  multilayer
structures are determined accurately.

Keywords: multilayer, merit function, downhill simplex, particle swarm optimiza‐
tion, reflectivity

1. Introduction

As we all know, mirror and lens are capable of realizing high reflectivity and focusing in visible
light regime (wavelength λ=~400–760 nm). But the situation is very different in X-ray and extreme
ultraviolet (EUV) regimes. In soft X-ray (λ=~1–10 nm) and EUV (λ=~10–100 nm) regimes, the
absorption for all materials is strong enough so that conventional type of mirror is unable to
realize high reflectivity near normal incidence, meanwhile the natural crystal does not work as

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



well due to small lattice constant. In hard X-ray regime, because the refractive indices for most
materials are close to unify, it is impossible to use lens to focus X-rays.

Multilayers, consisting of periodic/aperiodic nanometer-scale stacks of two or more alternating
materials deposited on a substructure, fill the gap between mirror and crystal by realizing high
near-normal incidence reflectivity in EUV [1, 2] and soft X-ray [3, 4] regimes, and also challenge
diffraction-limited focusing in hard X-ray regime by multilayer Kirkpatrick-Baez [5] or
multilayer Laue lens [6] systems.

The history of multilayers is from the 1940s. Initial attempts to fabricate Ag/Cu periodic
structures failed due to their serious interdiffusions [7]. Twenty years later, stable Fe/Mg
periodic structures were first made [8]. In 1972, Spiller [3] found that a mirror consisting of
two alternate materials with different refractive indices can increase the near-normal incidence
reflectivity in the EUV and soft X-rays regimes. In the 1980s, Vinogradov [9] and Barbee [10]
developed relative theories of multilayers and, in 1992 Yamamoto [11] developed an intuitive
and effective design method. Since the 1980s, as a result, the ultra-precise manufacture and
technologies of thin films were rapidly improved to promote the development of multilayers.
Typical bilayer periodic pairs for different energy regions are Mo/Si [2], W/B4C [12], Cr/C [13],
Mo/Y [14], and Mg/SiC [15], etc. Aperiodic multilayers, developed more recently, can provide
tailored spectral requirements, such as broadband or broad-angle high reflectivities [16, 17],
high integral throughput [18], broadband polarizers [19, 20] and chirped mirrors [21, 22]. Such
multilayers have wider applicability than periodic multilayers and natural crystals.

Nowadays, multilayers have presented wide applications in many important fields. In
semiconductor industry, multilayers were used in mask illumination and replication [1] for
next-generation extreme ultraviolet lithography. In synchrotron field, multilayers were always
considered as key components for reflection [4], polarization [23], focusing [24] and mono‐
chromatization [25]. Biology imaging was often used at water window regime (λ=2.3–4.4 nm)
based on excellent contrast by using multilayer near-normal reflection [26] or required higher
energy resolution to avoid spot blurs [27]. In addition, multilayers were also recorded in
significant applications like space telescope [28], plasma diagnosis [29], neutron science [30],
etc.

In this chapter, design and characterization of EUV and X-ray multilayers are presented.
Optimization algorithms play important roles in these works. They help us to find optimal
structures to satisfy any required spectral performances and based on experimental curves to
retrieve real structure information.

2. Multilayer model

The optical behavior in a periodic multilayer can be described by a corrected Bragg equation
with constant periodic thickness D, fractional thicknesses of absorber (scattering) layers da and
spacer layers ds and complex refractive indices na=1−δa+iβa and ns=1−δs+iβs,
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where m is the reflection order, λ is the wavelength and θ is the gracing incidence angle. For
a multilayer with two materials of similar absorption, the highest reflectivity (in the first
reflection order) requires the thickness of each layer to be close to a quarter of the wavelength.

For a periodic/aperiodic multilayer with a substrate of finite thickness, the reflectance and
transmittance coefficients at each interface can be calculated using the Fresnel equations which,
for the jth interface, can be written as
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where nj is the refractive index of the jth layer, θj is the incidence angle in that layer and s and
p refer to the two polarizations. The s- and p-component amplitude reflections and transmis‐
sions also can be expressed using the recurrence formula [31]
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where δj is the phase factor of the jth layer and Ej is the roughness factor of the jth interface,
normally the Debye-Waller factor exp(qj

2σj
2/2) or the Nevot-Croce factor exp(qjqj+1σj

2/2) [32],
where q is the wave vector and σ is the root mean square (RMS) interfacial roughness. For
smooth interfaces, the Nevot-Croce factor was considered to be better than the Debye-Waller
factor. In applying equation 4, the thickness of the substrate is usually considered to be infinite,
and so the initial conditions are rn+2=0 and t0=1 as shown in Figure 1. The recurrence formula
can then be used to calculate r0 and tn+2. The reflectance R and transmittance T in an n-layer
multilayer system can be expressed as
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The scattering signal is around the specular direction. The scattering potential is divided into
a non-disturbed part and a disturbance. Interferences of reflected and transmitted waves have
four types of interaction based on the dynamic scattering process [33]. The whole diffuse
scattering signal is represented as
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where ΔΩ is the detector acceptance angle, As/Ab is the area ratio of the radiation on the sample
to beam spot, Gm

j is the four mutual products of Ti(or Ri) and Ts(or Rs) and S(qx) is the structure
factor.
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where ξ⊥ is the vertical correlation length and C(x) is the lateral correlation function which is
based on the self-affine characteristic of rough interface [34] and ξ// is the lateral correlation
length and h is the fractal exponent.

Figure 1. Reflectance and transmittance coefficients at each interface of a multilayer structure.
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3. Optimization algorithm

3.1. Introduction

Normally, before using a multilayer, it included three important steps: design, fabrication and
characterization. It is essential to design a structure that realizes the required optical features
before the multilayer fabrication. Fabrication technologies, such as sputtering and evaporation,
are typical random processes. Their technology parameters need to be attempted and opti‐
mized repeatedly. The attempts are based on accurate structural characterization. The most
effective structural characterization methods are hard X-ray grazing incidence specular
reflectance (XRR) and diffuse scattering (XDS). The experimental curve can be compared to
the simulated curve calculated from a guessed multilayer model until reach a satisfying
agreement. It is clear whether design or characterization, the core is optimization algorithm.
Suitable optimization algorithms enable us to search optimal multilayer structure in design
and determine the most realistic multilayer structure in measurement.

In general, optimization algorithms include local and global optimizations. The former refers
to situations in which an approximate range of optimal values is known prior to the optimi‐
zation. If a group of candidate structures can be defined at the outset, it is straightforward to
find optimal structures in a short time. Common local algorithms are mainly based on the least
gradient, including quasi-Newton method [35], steepest-descent method [36], Levenberg–
Marquardt algorithm [37, 38], downhill simplex algorithm [39], etc. In the design of aperiodic
multilayers, several techniques have been developed to search for initial candidate structures,
including Kozhevnikov’s method [17] and the search for suitable positions and numbers of
layers such as needle optimization [40, 41], in order to make these local algorithms converge
to better results.

The global algorithm has a larger search space and so always takes more time to search for the
optimal structure than a local algorithm does, but prevents local results that miss the global
optimum. Global algorithms play a more significant role than local algorithms because of their
wider search ranges and stronger search capabilities. Global algorithms, often based on natural
phenomena and processes, include random search (RS) [42], genetic algorithms [43] (GA),
simulated annealing (SA) [44], differential evolution [45], hybrid multistate (MS), topograph‐
ical optimization [46], particle swarm optimization (PSO) [47] and the ant colony optimization
(ACO) algorithm [48].

Many optimization algorithms have been used in multilayer design. According to different
requirements, different optimization targets are chosen as the functions to estimate the pros
and cons of the algorithm. This kind of function is defined as merit functions. The balance
between calculation time and search accuracy needs to be considered when choosing a suitable
optimization algorithm.

3.2. Downhill simplex algorithm

The downhill simplex algorithm (Nelder-Mead method) [49] is a typical local optimization.
The method only requires function evaluation and not derivatives. It is based on a movable
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simplex with N+1 vertices in N dimensions (N variables). In two dimensions, the simplex is a
triangle.

The optimization is started with the N+1 vertices defining an initial simplex. If one of these
vertices is defined as the starting point P0, the other N vertices can be expressed as Pi=P0+τei,
where ei is a unit vector and τ is a constant defining the characteristic length scale. The
coordinates of the vertices define the current multilayer structure, and the merit function of
each vertex can be calculated. Most optimization steps move the vertex of the simplex with
the best merit function through the opposite face of the simplex to a lower vertex. These basic
steps are called reflections. The center of the reflection is the weighted center of the simplex
based on the merit function of each vertex. If the merit function of the reflected vertex is better
than that of the best vertex in the previous step, this reflection direction can be regarded as the
correct one and the reflection can be doubled, which is called expansion. In contrast, if the
reflected vertex is worse than the previous worst vertex, the simplex should move along the
transverse reflection direction – this is called inward contraction. If the reflected vertex is just
better than the worst previous vertex, the reflection rate should be halved, which is called
contraction. Based on these steps, the simplex moves toward a valley in the solution. When
the merit functions of all the vertices are sufficiently close, the optimal multilayer structure
can be considered to have been found.

3.3. Particle swarm optimization

The PSO algorithm, one of the most important swarm intelligence methods, is a parallel
evolutionary computation technique developed by Kennedy and Eberhart in 1995 [47]. The
motivation of PSO was to understand the behavior of birds or fish searching for food. The
process is similar to GA, but only has a few operators, including selection, crossover and
mutation. Any particle moves with its own velocity, which is updated according to its own
experience and that of the other particles. Some studies [50] have shown that in PSO the inertia
weight (defined following equation 8) influences the trade-off velocities between global and
local exploration abilities, and in GA crossover and mutation have different effects at the
beginning and end of the process. The one-way information transfer means that PSO
convergences to best solution faster than GA, in which the whole swarm moves uniformly.
PSO also has stronger ergodicity than GA and is the only evolutionary algorithm that does not
incorporate survival of the fittest.

In an N-dimension objective space (N variables for optimization), there are M particles to search
for the optimal solutions. The location and velocity of the ith particle are defined by groups of
candidate solutions

1 2

1 2

( , , , )
( , , , ).

i i i iN

i i i iN

X X X X
V V V V

=ì
í =î

L
L

(7)

For the design of multilayers, the location variables are the layer thicknesses and the working
angle. For the characterization, the variables can be the layer thicknesses, densities, roughness,
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material interdiffusions, etc. The velocity expresses the search direction of any particle, which
updates the new location and velocity at the next iteration to be
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The new velocity includes inertia, cognitive and social learning terms. The inertia term forces
a particle to tend to follow its old velocity, including an inertia weight w which influences the
trade-off between global and local exploration abilities, changing from wmax = 0.9 at the
beginning to wmin at the maximum iteration. In the cognitive and social learning terms, c1 and
c2 are acceleration constants and r1 and r2 are random numbers uniformly distributed in the
interval (0,1). The functions pi(k) and g(k) are, respectively, the previous best location for the
ith particle and the previous best locations for all particles at the kth iteration. These two terms
guarantee that every particle can extract its own experience and share information from the
society, making faster converge at the beginning of a run. “The behavior of any particle can be
sketched in Figure 2.”

Figure 2. The searching process of one particle.

The basic process of the algorithm is as follows: Step 1 is the random initialization of locations
and velocities. The ranges of possible locations are selected using a priori knowledge. The
maximum velocities should be about 20% of the location range in any step. If the velocities are
too large, the particles in the next iteration can fly beyond the location boundary. If they are
too small, the convergence rate is very low. The merit function of each particle is then deter‐
mined and the optimum one is sought. Step 2 is the update of locations and velocities to the
next iteration according to equation 8. If any location is beyond the boundary, it is replaced by
the boundary value and the velocity direction is reversed, analogous to reflection from a wall.
The merit functions of the particles are then calculated and the best location of each particle
and the best global location are updated. Step 3 is the inspection of the defined convergence
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condition. If this is satisfied or the set maximum number of iterations have taken place, the
program terminates. Otherwise step 2 is repeated.

If the other parameters are fixed, a smaller wmin can increase the speed of convergence, but the
optimization is more likely to fall into a local optimum solution. Following an analysis of the
relationship between parameter selection and convergence [51], large wmin close to wmax and
relatively small acceleration constants of about 0.3–0.7 were chosen to make the whole
optimization converge effectively. For a larger number of variables (e.g., more than two
materials), more particles and more iterations have to be used.

4. Design of multilayers

4.1. Introduction

The usual design targets are reflectivity, transmitivity and phase performance. Simple periodic
multilayer structures are suitable for single wavelengths or working angles, but more com‐
plicated aperiodic structures are needed to tailor spectral or phase responses. In general, the
optimization process uses merit functions that are defined by the design targets. The selection
of suitable multilayer materials, based on optical constants and material stability, is the starting
point of the design process. The optimization of particular designs is complicated and can only
be enabled using various computer algorithms. An important technological constraint is that
the optimal structure should be as simple as possible, avoiding ultra-thin layers and drastically
variable layer thicknesses.

In this section, the designs of two typical aperiodic multilayers, respectively, X-ray supermirror
and EUV intensity beam splitter, based on my PhD studies [52], are presented to show the
important role of optimization algorithm on multilayer design.

4.2. X-ray supermirror

Supermirrors are aperiodic multilayers often used in X-ray [53] or neutron [54] imaging
systems. They are designed to provide particular characteristics such as increased reflectivity
or flat optical response over broader angular or energy ranges than possible with conventional
periodic multilayer mirrors. Based on these characteristics, they have been chosen for use in
X-ray telescope [55] and applications of synchrotron radiation [56].

In this study, a broad-angle supermirror will provide relatively high peak reflectivity over a
wide angular range and several times the integrated reflectivity.

The principle of supermirror design is also based on the Bragg diffraction equation. Compared
to a periodic multilayer mirror with fixed layer thicknesses and thickness ratios, a broad-angle
supermirror with variable periodic thickness and thickness ratio provides the interference
effect of the standing waves over a range of working angles. The target of the design is to obtain
high average reflectivity and small reflectivity fluctuations over a defined angular range. The
merit function for such designs is
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where j is the number of working angles at which the reflectivity is calculated and Rtarget is the
target for the average reflectivity.

There are two methods to define the initial multilayer structures in the optimization. The first
is to determine the periodic structure related to the center of the working angular range. The
second is based on Kozhevnikov’s study [17], which is an analytic method that gives an
approximate initial depth-graded structure to enable a faster approach to the optimum
solution. This method has been applied to various broad-angle [57] and broadband [58] designs
of multilayer mirrors. The expression for the reflectivity of a depth-graded multilayer mirror
is
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where q(z) (which describes the multilayer structure) is positive, continuous and differentiable,
L is the total multilayer thickness, and ε1 and ε2 are the dielectric permittivities of the two
materials. μ is the mean dielectric permittivity, κ = k(μ − cos2θ)1/2 where k is the wave vector.
κ2 is the imaginary part of κ. Alternatively, for a given target reflectivity, the multilayer
structure q(z) can be determined by solving the inverse problem.

A Cr/B4C supermirror was designed for chromium Kα radiation and incidence angles in a range
around 2°, the latter to fit within the structure of the X-ray microprobe source. Figure 3(a)
shows the design results for an angular width of 0.14°. Using downhill simplex algorithm, the
design was close to the initial depth-graded structure and easily fabricated. Mostly, the
thickness ratios of the layer pairs are between 0.32 and 0.34. Figure 3(b) shows the change from
the initial reflectivity to the optimal value. Figure 4(a) and (b) show the influences of using
different initial structures. Although the reflectivity curves are similar, the optimal structures
from the initial periodic structures have larger fluctuations that lead to more difficulties in
fabrication, since rapidly varying thicknesses make it hard to ensuring correct deposition rates.
Figure 5 and Table 1 show designs for different angular ranges. Supermirrors can increase the
angular width by several times and, although the maximum reflectivity decreases substan‐
tially, the overall reflectivity for all angles used in the optimization increases.
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Figure 3. (a) The initial and optimized layer thicknesses for a Cr/B4C aperiodic multilayer mirror with an angular
width of 0.14°. (b) Comparison of the reflectivity curves for the initial and optimum structures.
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Figure 4. (a) The thicknesses of Cr/B4C aperiodic multilayer mirrors for different initial structures. (b) Comparison of
the optimum reflectivity curves for the two initial structures.
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Figure 5. Different angular width requirements lead to different optimum results reflectivity profiles.

Sample FWHM [deg] Peak Reflectivity [%] Overall Reflectivity

Periodic 0.01 71.4 0.008

Supermirror 1 0.05 18.0 0.010

Supermirror 2 0.15 8.4 0.014

Table 1. Comparison of FWHM, peak reflectivity and integrated reflectivity for two aperiodic supermirrors and a
periodic multilayer.

4.3. EUV intensity beam splitter

A large amount of work has been done on multilayers for mask illumination and replication
[1, 59] in extreme ultraviolet lithography (EUVL), but so less thought has been given to
inspection of the masks and produced components. Defects in EUVL masks can occur in both
the absorber patterns and the multilayer-coated mask blanks, and inspection is essential as the
number of defects has to be minimized. However, conventional full-field or scanning imaging
is not appropriate as the masks and components are too absorbing to the radiation. An
alternative is to use interferometry [60] like Schwarzschild optics [61]. A multilayer beam
splitter divides an incident beam into two coherent parts by reflecting part and transmitting
part, respectively, reflected from a sample multilayer and a reference multilayer. Interference
fringes are produced when they are recombined.
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There is a trend to utilize broadband spectrum from the source based on tine or xenon plasmas
instead of single wavelength around 13nm to irradiate wafers, in order to decrease exposure
times [62]. Hence, broadband beam splitters optimized to the output of tin or xenon plasmas
are required.

The merit function must satisfy two requirements for an intensity beam splitter: (1) high
reflectance and transmittance throughputs and (2) excellent agreement between the reflected
and the transmitted beam intensities over the range of wavelengths. The merit function chosen
was
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where m is the number of wavelength calculation points. The squared numerator ensures good
agreement between the intensities and the denominator prevents the intensities from becom‐
ing too small.

The principle of material choice for beam splitters is a little different from that for high-
reflectivity multilayers. The differences in the optical constants are more important for high
reflectivity, while the absorption coefficients have more influence for beam splitters. Since
silicon nitride is used as the substrate, due to its high strength, stability and transmittance, the
transmitted beam is affected by the silicon absorption edge at 12.4 nm. Ruthenium and
molybdenum are suitable for the scattering layers and beryllium, yttrium and silicon can be
chosen for the spacer layers. Among their pairs, Mo/Si [63] and Mo/Be [64] have been widely
studied for use at 13.5 and 11.4 nm. In this design, Mo/Si was chosen as the material pair.
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(b)

Figure 6. Reflectivity and transmitivity for a 5-bilayer Mo/Si multilayer as functions of (a) wavelength and (b) inci‐
dence angle at three different wavelengths; the green points mark the optimum angles where reflectivity and transmi‐
tivity are equal; (c) layer thickness of design.

The thicknesses of each layer and the working angle are considered as the variables of
optimization. By designing with different numbers of bilayers, it was found that the intensities
of reflected and transmitted beams are in best agreement for five bilayers in the wavelength
range 10–16 nm, see Figure 6(a). The highest intensity, which is at a wavelength slightly larger
than silicon absorption edge, is about 17% and the optimal incidence angle is 63.62°. The
average thicknesses of the silicon and molybdenum layers are 7.38 nm and 4.31 nm, respec‐
tively. As shown in Figure 6(b), as the wavelength increases, the optimal incidence angle
decreases; 63.62° is the average value. Figure 6(c) presents the layer thicknesses of design.
Further robustness considerations [65] can be found in order to design better structures with
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more stable optical performance when layer thickness errors are present. If a constraint
condition is established before calculating the merit function, the process is stopped if the
constraint becomes unsatisfied or feedback is provided to the merit function, then the optimal
structure may be more robust than in normal optimization.

5. Characterization of multilayers

5.1. Introduction

Characterization of multilayers plays an important role in estimating multilayer quality and
improving fabrication technology. In order to determine ultra-small layer thicknesses in
multilayers, most direct and effective methods are hard X-ray grazing incidence reflection and
diffuse scattering. Due to excellent penetration of hard X-rays, reflected and/or scattered X-
rays produce interference fringes. If a structure is known, by using reflectivity (equation 4) or
scattering (equation 5) model, the reflectivity or rocking scattering curves can be simulated.
However, the inverse problems are always difficulties, especially for determining the struc‐
tural parameters from diffuse scattering curves.

Reflectivity curve includes the information of layer thickness, density and interfacial width.
Comparing experimental curve with theoretical curve by optimization algorithm, one can
obtain these parameters. As a fitting method, in order to obtain believable results, reliable
initial structure and parameter constraints are necessary. X-ray reflectivity is unable to
distinguish between interfacial roughness and interdiffusion, because both deteriorate the
reflectivity in a similar way. X-ray diffuse scattering is one of the most direct techniques for
determining interfacial roughnesses and can also afford the information of thin film growth
such as Hurst exponent and lateral/vertical correlation lengths.

In this section, curve fittings for reflectivity and diffuse scattering data are presented based on
my previous studies on multilayers. These studies determined the accurate structural param‐
eters of various material-pair multilayers and study the surface and interface performances.

5.2. Structure determination from reflectivity data

As a consumable optics, multilayer structures are not always stable. Aging effects related to
the inherent characteristic of the materials deserve to be researched. Three B4C-based multi‐
layers [66] were deposited by using magnetron sputtering including W/B4C, Mo/B4C and
La/B4C multilayers. They were measured by using hard X-ray grazing incidence reflectivity
while just prepared and after long-time storage in a dry atmosphere environment.

Because long-time storage may make multilayer surface oxidized and/or contaminated, in the
fitting process the surface B4C layer was regarded to have independent structural parameters
from B4C layers in interior periodic structure. Thus, there are 10 parameters need to be fitted,
viz. 10 variables in the optimization, including the layer thickness, density and interface width
for metal layer, B4C layer in periodic structure and surface B4C layer and the intensity coeffi‐
cient. The fitting was based on the PSO algorithm.
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As can be seen in Table 2, the periodic thickness increased 0.39% for La/B4C multilayer and
0.24% for Mo/B4C multilayer after 1 year, but decreased 0.05% for W/B4C multilayer after 2
years. The changes may result from interdiffusion mechanism and stress release. Surface
oxidation increased the stress and the changes of the layer thickness balanced the whole stress
of multilayer. The outmost layer thickness increases apparently over 10% for La/B4C and Mo/
B4C multilayers because lanthanum and molybdenum have stronger oxidation capability than
tungsten so that oxygen atoms penetrate through B4C layer gradually and react with metal
atoms. The surface B4C layer was also determined to absorb oxygen [67]. Figure 7 shows the
reflectivity and their fitting curves of La/B4C multilayer while just prepared and after 1-year
storage.

Sample Status Metal B4C Surface B4C

d
[nm]

σ
[nm]

ρ
[% bulk]

d
[nm]

σ
[nm]

ρ
[% bulk]

d
[nm]

σ
[nm]

ρ
[% bulk]

W/B4C
N = 20

Just prepared 1.94 0.32 90.42 2.23 0.31 82.91 2.66 0.20 114.7

2 year aged 1.93 0.32 93.70 2.23 0.31 82.62 2.61 0.21 117.8

Mo/B4C
N = 20

Just prepared 2.30 0.51 91.30 2.65 0.20 75.23 3.10 0.44 89.21

1 year aged 2.30 0.49 98.70 2.66 0.18 76.90 3.33 0.58 85.87

La/B4C
N = 15

Just prepared 5.00 0.47 83.81 2.93 0.33 107.02 4.53 0.20 109.76

1 year aged 5.01 0.38 82.83 2.95 0.33 105.62 5.08 0.21 90.67

Table 2. The change of the structure parameters after time aging for 3 metal/B4C multilayers.

Figure 7. The grazing incidence reflectivity and their fitting curves for La/B4C multilayer while just prepared and after
1-year storage.
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The other previous work of structural determination is to study the stability of Ru/C multilayer
monochromator with different periodic thicknesses after cryogenic cooling treatment [68]. The
results show that the structural parameters keep stable after cryogenic cooling and present
sufficient experimental evidences for using cryogenic-cooled multilayer monochromators in
the high-thermal-load undulator beamline.

5.3. Interface investigation from diffuse scattering data

The diffuse scattering signals are distributed around the reflection direction. Common scan
methods include rocking curve scans (ω scan), offset scans, detector 2θ scans and full reciprocal
space scans. Rocking curve scan is by fixing the detector and scanning the incidence angle.
This method is very sensitive to determine roughness information. The method of scattering
curve fitting is also based on the global optimization to approach the real multilayer structure.

Sample d

[nm]

ρ

[% bulk]

σr

[nm]

σd

[nm]

ξ//

[nm]

h ξ⊥

[nm]

W/B4C

N = 20

0.83 82.10 0.29 0.10 17.19 0.10 286.64

1.53 93.17 0.17 0.15 10.19 0.24

Mo/B4C

N = 30

4.42 96.67 0.30 0.32 439.34 0.01 125.25

6.06 90.07 0.14 0.17 65.86 0.07

La/B4C

N = 15

5.01 82.81 0.35 0.32 440.56 0.01 28.32

2.95 105.63 0.11 0.31 28.92 0.30

Table 3. The characterization results of different metal/B4C multilayers by using X-ray diffuse scattering technique.

Three metal/B4C multilayers [68] were chosen to measure X-ray diffuse scattering. In order to
improve the analysis precision, rocking scan curves near different Bragg maximums were
fitted simultaneously. According to the fitted interfacial roughness σr and the interfacial width
σ obtained by X-ray reflectivity measurement, the interdiffusion σd can be calculated by the
equation σ2

d = σ2 − σ2
r. As can be seen in Table 3, the RMS roughnesses for three multilayers

are almost same, but the Mo/B4C and La/B4C multilayers have larger interdiffusions.
Comparing the lateral correlation length ξ// and fractal exponent h, the Mo/B4C and La/B4C
multilayers have stronger lateral correlation and more apparent island growth feature than
the W/B4C multilayer. Due to the weak interdiffusion and small layer thickness, the vertical
correlation length in W/B4C multilayer is over 100 times the periodic thickness. In contrast, the
replication capability is very weak for La/B4C multilayers. The vertical correlation length is
only about four times the periodic thickness. Figure 8 presents the diffuse scattering curves of
Mo/B4C multilayers and their fitting curves.
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Figure 8. Rocking scan curves near three Bragg maximums and their fitted curves for Mo/B4C multilayer (N = 30).

6. Conclusion

The chapter describes the effective uses of optimization algorithms in design and characteri‐
zation of X-ray and EUV multilayers. Based on a suitable initial gradient structure, downhill
algorithm was used to design X-ray supermirrors. The results show that supermirror can
produce 15 times reflection angular range compared to periodic multilayer and increase 70%
integral reflective intensity. Particle swarm optimization was used to design EUV intensity
beam splitters. This kind of optics realizes equal intensities of reflected and transmitted beams
in a broad spectrum around 13 nm so that exposure time decreases in EUV lithography. In the
characterization of multilayers, particle swarm algorithm was successfully used to determine
the slight changes of structural parameters of B4C-based multilayers by fitting the hard X-ray
grazing incidence reflectivity and diffuse scattering experimental data. This work compares
the deposition technology and layer quality of different B4C-based multilayers and helps us
to know about the evolution of interfacial defects and oxidation during the aging process.
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Abstract

In pattern recognition, clustering is a powerful technique that can be used to find the
identical group of objects from a given dataset. It has proven its importance in various
domains  such  as  bioinformatics,  machine  learning,  pattern  recognition,  document
clustering, and so on. But, in clustering, it is difficult to determine the optimal cluster
centers in a given set of data. So, in this paper, a new method called magnetic charged
system search (MCSS) is applied to determine the optimal cluster centers. This method
is based on the behavior of charged particles. The proposed method employs the electric
force and magnetic force to initiate the local search while Newton second law of motion
is employed for global search. The performance of the proposed algorithm is tested on
several datasets which are taken from UCI repository and compared with the other
existing methods like K-Means, GA, PSO, ACO, and CSS. The experimental results
prove the applicability of the proposed method in clustering domain.

Keywords: clustering, charged particles, electric force, magnetic force, Newton Law

1. Introduction

Clustering is an unsupervised technique which can be applied to understand the organiza‐
tion of data. The basic principle of clustering is to partition a set of objects into a set of clusters
such that the objects within a cluster share more similar characteristics in comparison to the
other clusters. A pre-specified criterion has been used to measure the similarity between the
objects. In clustering, there is no need to train the data, it only deals with the internal structure
of data and used a similarity criterion to group the objects into different clusters. Due to this, it
is also known as unsupervised classification technique. It becomes a NP hard problem when
number of clusters is greater than three. Consider a set S = [A1, A2, A3… AN] such that Ai  S, consist
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of N number of data objects and another set P = [B1, B2 … BK] consist of K cluster centers. The
objective of clustering is to arrange each data object from the set S with one of the cluster center
j of set P such that the value of objective function is minimized. The objective function is defined
as sum of squared Euclidean distance between the data object Ai and cluster center Bj and it can
be described as follows:

i 1
2

i j
i N

D min A B , j 1,2,3, .K
=

=

= - = ¼¼å   

where Ai denotes the ith data objects,Bj denotes the jth cluster center, and D denotes the distance
between ith data objects from the jth cluster center. It is also noted that:

• Each cluster at least consists of one data object.

Bj ≠ Ø, for all j  {1, 2, 3 … K}, where Bj represents the jth cluster and K denotes the total number
of clusters.

• Each data object is allotted to only one cluster.

Bi ⋂ Bj, for all i ≠ j and i, j {1, 2, 3 …. K} such that ith and jth clusters do not consists same data
objects.

• Each data objects should be allocated to a cluster.

Uj=1
K Bj =S where S represents the set of data objects.

Hence, the aim of the partition based clustering algorithm is to determine the K number of
cluster centers in a given dataset. Here, the MCSS algorithm is applied for determining the
optimal cluster centers in a dataset.

Clustering has proven its importance in many applications successfully. Some of these are
pattern recognition [1, 2], image processing [3–6], process monitoring [7], machine learning [8,
9], quantitative structure activity relationship [10], document retrieval [11], bioinformatics [12],
image segmentation [13], construction management [14], marketing [15, 16] and healthcare
[17, 18]. Broadly, clustering algorithms can be divided into two categories - partition based
clustering algorithms and hierarchal clustering algorithms. In partition based clustering
algorithms, partition a dataset into k clusters on the basis of some fitness functions [19]. While
in hierarchical clustering algorithms, clustering of data occurs in the form of tree representation
and this representation is known as dendrogram. Hierarchical clustering algorithms do not
require any prerequisite knowledge about number of clusters in a dataset but its only drawback
is lacking of dynamism as the objects are tightly bound with respective clusters [20–23].
However, our research is focused on partition clustering, which decomposes the data into
several disjoint clusters that are optimal in terms of some predefined criteria. From the
literature, it is found that K-means algorithm is the oldest, most popular, and extensively used
partition based algorithm for data clustering. It is easy, fast, simple structure, and having linear
time complexity [24, 25]. In K-means algorithm, a dataset is decomposed into a predefined
number of clusters and the data into distinct clusters based on the euclidean distance [25].
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Nowadays, heuristic approaches gain wide popularity to solve the clustering problem and
become more successful. Numerous researchers have been applying heuristic approaches in
the field of clustering. Some of these are summarized as simulated annealing [26], tabu search
[27, 28], genetic algorithm [29–32], particle swarm optimization [33, 34], ant colony optimiza‐
tion [35], artificial bee colony algorithm [36, 37, 56], charged system search algorithm [38, 39],
cat swarm optimization [40–42, 57], teacher learning based optimization method [43, 44],
gravitational search algorithm [45, 46] and binary search based clustering algorithm [47].

2. Magnetic charge system search (MCSS) algorithm

The magnetic charged system search (MCSS) algorithm is a recent meta-heuristic algorithm
based on electromagnetic theory [48]. According to electromagnetic theory, moving charged
particles produce an electric field as well as a magnetic field. Movement of the charged particles
in a magnetic field enforces a magnetic force on the other charged particles and the resultant
force is proportional to the charge (mass) and speed of the charged particles. The magnitude
and direction of the resultant force depend on the two factors: first, velocity of the charged
particles, and secondly, magnitude and direction of the magnetic field. Thus, the MCSS
algorithm is further advancement in the charge system search (CSS) algorithm using the
concept of electromagnetic theory. The difference between the CSS and MCSS is that the CSS
algorithm considers only the electric force to determine the movement of CPs while the MCSS
utilizes both the forces (electric and magnetic) to determine the same. Along this, MCSS can
be either attractive or repulsive in nature. This nature of MCSS algorithm generates more
promising solutions in random space. On the other hand, CSS algorithm is attractive by nature.
Thus, the performance of the algorithm can be affected with small number of CPs. So, the
addition of the magnetic force to the already existing electric force, results in enhancement of
both the exploration and exploitation capabilities of CSS and this makes the algorithm more
realistic one. Hence, the inclusion of magnetic force in the charge system search (CSS) algo‐
rithm results in the formation of a new algorithm known as magnetic charge system search
(MCSS). The main steps of the MCSS algorithm are as follows.

Step 1: Initialization

Algorithm starts by identifying the initial positions of charged particles (CPs) in d-dimensional
space in random order and set the initial velocities of CPs is zero. To determine the initial
positions of CPs, equation 1 is used. A variable charge memory (CM) is used to store the best
results.

( )k j min j jmax jminC X r (X X ) / K ,where j 1,2 ..d and k 1,2 ..K= + * - = ¼ = ¼ (1)

where, Ck denotes the kth cluster center for a given dataset, rj is a random number in the range
of 0 and 1, Xjmin and Xj max denote the minimum and maximum value of the jth attribute of the
dataset, and K represents the total number of clusters in a dataset.
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Step 2: Compute the total force (Ftotal) acts on CPs.

The total force is the combination of the electric force and magnetic force, and this force
influences the movement of CPs in d-dimensional space. It can be computed as follows:

• Determine the electric force – when CPs move in d-dimensional space, an electric field is
produced surrounding it, and exerted an electric field on the other CPs. This electric force
is directly proportional to the magnitude of its charge and the distance between CPs. The
magnitude of an electric force generated by a charge particle is enforced on another charge
particle and it can be measured using equation 2.

( )i i
ik k 1 2 ik i k 1 2 ik3 2

i,i k ik
1 2 ik

k 1,2,3, ..K
q qE q w w p X C , w 1,w 0 r R
R r

w 0,w 1 r R¹

= ¼ì
æ ö ï= * + * * * - = = « <íç ÷
è ø ï = = « ³î

å (2)

In equation 2, qi and qk represents the fitness values of ith and kth CP, rik denotes the separation
distance between ith and kth CPs, w1 and w2 are the two variables whose values are either 0
or 1, R represents the radius of CPs which is set to unity and it is assumed that each CPs has
uniform volume charge density but changes in every iteration, and Pik denotes the moving
probability of each CPs.

• Determine the magnetic force – The movement of CPs also produce magnetic field along
with the electric field. As a result of this, a magnetic force is imposed on the other CPs and
equation 3 is utilized to compute the magnitude of magnetic force exerted by a CP on other
CPs. It can be either positive or negative depending on the value of average electric current
of the previous iteration.
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In equation 3, qk represents the fitness values of the kth CP, Ii is the average electric current,
rik denotes the separation distance between ith data instance and kth CPs, w1 and w2 are the two
variables whose values are either 0 or 1, R represents the radius of CPs which is set to unity,
and PMik denotes the probability of magnetic influence between ith data instance and kth CP.
In other words, it can be summarized that the magnetic force can be either attractive or
repulsive in nature. As a result of this, more promising solutions can be generated during the
search. Whereas, the electric force is always attractive in nature. Therefore, this nature of
electric force may influence the performance of the algorithm. Hence, to overcome the
repulsive nature, a probability function is added with the electric force and finally, the total
force acting on other CPs can be computed using equation 4.
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total r ik ikF p E M= * + (4)

Where, pr denotes a probability value to determine either the electric force (Eik) repelling or
attracting, Eik and Mik present the electric and magnetic forces exerted by the kth CP to ith data
instance.

Step 3: Determine the new positions and velocities of CPs.

Newton second law of motion is applied to determine the movement of CPs. The magnitude
of the total force with Newtonian laws is used to produce the next positions and velocities of
CPs. The new positions and velocities of CPs can be computed using equation 5 and 6.

2total
k new 1 a 2 v k old k old

k

FC rand Z t rand Z V t C
m

= * * *D + * * *D + (5)

Where, rand1 and rand2 are the two random variable in the range of 0 and 1, Za and Zv act as
control parameters to control the influence of total force (Ftotal), and Vk old denotes the velocity
of kth CPs,mk is the mass of kth CPs which is equal to the qk,Δt represents the time step which
is set to 1, and Ck old denotes the position of kth current CP.

k new k old
k new

C CV
t
-

=
D (6)

where Vk old denotes the new velocity of kth CP, Ck old and Ck new represents the old and new
position of kth CP, and Δt represents the time stamp.

Step 4: Update charge memory (CM)

CPs with better objective function values replace the worst CPs from the CM and store the
positions of new CPs in CM.

Step 5: Termination condition

If the maximum iterations is reached and condition is satisfied, then stop the algorithm and
obtain the optimal cluster centers. Otherwise repeat steps 2–4.

2.1. Pseudo code of MCSS algorithm for clustering

This section summarizes the pseudo code of the MCSS algorithm for clustering tasks.

Step 1: Load the dataset and initialize the parameters of MCCS algorithm.

Step 2: Initialize the initial positions and velocities of Charged Particles (CPs).

Step 3: Compute the value of objective function using equation 7 and arrange the data instances
to the clusters using minimum value of objective function.
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where, Xji denotes the jth attribute of the ith data instance, Cjk represents the jth attribute of the
kth CP, and dik denotes Euclidean distance between ith data instance from the kth CP.

Step 4: Compute the mass of initial positioned CPs.

Step 5: Store the positions of initial CPs (Ck) into a variable, called charge memory (CM).

Step 6: While the termination conditions are not met, compute the value of Electric Force (Eik)
for each CPs as follows:

Step 6.1: Calculate the value of moving probability (Pik) for each charged particle
Ck.

Step 6.2: Compute the fitness of each instance qi.

Step 6.3: Compute the separation distance (rik) of CPs.

Step 6.4: Compute the value of (Xi - Ck).

Step 6.5: Compute the value of Electric Force (Eik) for each CPs

Step 7: Determine the value of Magnetic Force (Mik) for each CPs.

Step 7.1: Compute the value of average electric current (Ii).

Step 7.2: Compute the probability of magnetic influence (PMik).

Step 7.3: Compute the value of Magnetic Force (Mik) for each CPs.

Step 8: Compute the total force (Ftotal) act on each CPs.

Step 9: Calculate the new positions and velocities of charged particles using equation 5 and 6.

Step 10: Recalculate the value of objective function using new positions of charge particles.

Step 11: Compare the newly generated charge particles to the charge particles reside in CM.

Step 12: Memorize the best solution achieved so far and Iteration= Iteration +1;

Step 13: Output the best solution obtained.

3. Experimental results

This section deals with the experimental setup of our study. It includes the performance
measures, parameters settings, datasets to be used, experiment results, and statistical analysis.
To prove the effectiveness of the MCSS algorithm, 10 datasets are applied in which two datasets
are artificial ones and the rest are taken from UCI repository. The proposed algorithm is
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implemented in MATLAB 2010a using a computer with window operating, corei3 processor,
3.4 GHz and 4 GB RAM. Experimental outcomes of MCSS algorithm are compared with other
clustering algorithms like K-means, GA [30], PSO [49], ACO [35], and CSS [38].

3.1. Performance measures

The performance of MCSS algorithm is examined over the sum of intra cluster distance and
F-measure parameters. The sum of intra cluster distance can be measured in terms of best case,
average case, and worst case solutions including standard deviation parameter which shows
the dispersion of the data. F-measure parameter is used to measure the accuracy of proposed
method. Performance measures are described as follows:

Intra cluster distances

Intra cluster distance can be used to measure the quality of clustering [35, 36]. It indicates the
distance between the data objects within a cluster and its cluster center. This parameter also
highlights the quality of clustering i.e. minimum is the intra cluster distance, better will be the
quality of the solution. The results are measured in terms of best, average, and worst solutions.

Standard Deviation (Std.)

Standard deviation gives the information about the scattering of data within a cluster [47, 49].
Lower value of standard deviation indicates that the data objects are scattered near its center,
while high value indicates that the data is dispersed away from its center point.

F-Measure

This parameter is measured in terms of recall and precision of an information retrieval system
[50, 51]. It is also described in terms of weighted harmonic mean of recall and precision. Recall
and precision of an information retrieval system is computed using equation 8 which can be
described as follows:

( )( ) ( )( )i, j i, j

i j

n n
Recall r i, j and Precision p i, j

n n
= = (8)

The value of F-measure (F (i, j)) can be computed using equation 9.

( ) 2 (Recall Precision)F i, j
(Recall Precision)
* *

=
+ (9)

Finally, the value of F-measure for a given clustering algorithm which consists of n number of
data instances is calculated using equation 10.
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3.2. Parameters settings

In order to evaluate the performance of the proposed algorithm, user defined parameters are
to be used prior to the process. In MCSS, there are four user defined parameters such as number
of CPs, rand, R and ∈. The details of the parameters as follows: the number of CPs is equal
number of clusters present in a dataset, rand is a random function that provides a value in the
range of 0 and 1, R denotes the radius of CPs and it is set as 1, ∈ is also a user defined parameter
which is used to prevent the singularity and it is set to 0.001. In addition to it, number of
iterations for algorithm must be specified. Therefore, maximum iteration number is set to 100
and results are summed over 10 runs of the algorithm using different initial cluster centers for
each dataset. Table 1 summarizes the parameters setting of MCSS algorithm. It is also
mentioned that the performance of the proposed algorithm is compared with the K-means,
GA, PSO, ACO, and CSS. The parameter settings of these algorithms are set accordingly as
reported (Figures 1 and 2; Table 2.

Parameters Value

No. of CPs No. of Clusters

rand random value between [0, 1]

R 1

∈ 0.001

Table 1. Parameters setting of MCSS algorithm.

Figure 1. (a): Distribution of data in ART1. (b): Distribution of data in ART2.
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reported (Figures 1 and 2; Table 2.

Parameters Value

No. of CPs No. of Clusters

rand random value between [0, 1]

R 1

∈ 0.001

Table 1. Parameters setting of MCSS algorithm.

Figure 1. (a): Distribution of data in ART1. (b): Distribution of data in ART2.
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Figure 2. (a): Clustering in ART1 dataset. (b): Clustering the ART2 dataset. (c): Clustering the ART1 dataset using
MCSS (Vertical view as X1 and Y1 coordinate in horizontal plane and Z1 coordinate in vertical plane).

Dataset Classes Attributes Total instances Instance in each classes

ART 1 3 2 300 (100, 100, 100)

ART 2 3 3 300 (100, 100, 100)

Iris 3 4 150 (50, 50, 50)

Glass 6 9 214 (70,17, 76, 13, 9, 29)

LD 2 6 345 (145, 200)

Thyroid 3 3 215 (150, 30, 35)

Cancer 2 9 683 (444, 239)

CMC 3 9 1473 (629,334, 510)

Vowel 6 3 871 (72, 89, 172, 151, 207, 180)

Wine 3 13 178 (59, 71, 48)

Table 2. Description of datasets.
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3.3. Experiment results

This subsection demonstrates the results of the proposed algorithm. The results of the
proposed algorithm are compared with other existing techniques like K-means, GA, PSO,
ACO, and CSS using a mixture of datasets [53–55]. Two artificial and eight real life datasets
are used to obtain the results [52]. In real life datasets, iris, thyroid, and vowel datasets are
categorized as low dimensional datasets, while cancer and LD datasets are moderate ones, and
the rest of datasets (wine, CMC, and glass) are high dimensional. For enrich visualization and
understanding, the results are discussed with one dataset at a time.

Dataset Parameters K-means GA PSO ACO CSS MCSS

ART 1 Best 157.12 154.46 154.06 154.37 153.91 153.18

Average 161.12 158.87 158.24 158.52 158.29 158.02

Worst 166.08 164.08 161.83 162.52 161.32 159.26

Std 0.34 0.281 0 0 0 0

F-Measure 99.14 99.78 100 100 100 100

Table 3. Comparison of the proposed MCSS algorithm with other clustering algorithms using ART1 dataset.

Table 3 illustrates the results of the proposed method as well as other clustering algorithms
(in terms of intra cluster distance: best, average and worst, standard deviation, and F-measure
parameters) for ART1 dataset. It is seen that the K-means exhibits the poor performance among
all the techniques being compared using all of the parameters. From the results, it also noticed
that performance of the PSO, ACO, CSS, and MCSS are almost similar except intra cluster
parameter. On the behalf of intra cluster parameter, it can be said that the MCSS algorithm
achieves minimum distance in comparison to all other algorithms.

Dataset Parameters K-means GA PSO ACO CSS MCSS

ART2 Best 743 741.71 740.29 739.81 738.96 737.85

Average 749.83 747.67 745.78 746.01 745.61 745.12

Worst 754.28 753.93 749.52 749.97 749. 66 748.67

Std 0.516 0.356 0.237 0.206 0.209 0.17

F-Measure 98.94 99.17 99.26 99.19 99.43 99.56

Table 4. Comparison of the proposed MCSS algorithm with other clustering algorithms using ART2 dataset.

Table 4 summarizes the results of all the techniques for artificial dataset ART2. From the
results, it is clearly shown that a significant difference occurred between the results of the
proposed algorithm and other algorithms. The proposed algorithm outperforms using all of
the parameters. Again, it is observed that the performance of the K-means algorithm is poor
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among all the methods. It is also stated that the results of the CSS and PSO algorithms are close
to the optimal solution, but with slightly high value of standard deviation parameter.

Table 5 displays the results of the proposed algorithm and other algorithms for iris dataset.
From this table, it came to notice that results obtained using GA is far from the optimal
solutions, while the proposed method again gives the superior results. It is also observed that
K-means algorithm gives the better results with iris dataset; especially it performs well over
GA and ACO algorithms. It is also noticed that results of the K-means algorithm is very close
to the PSO algorithm (in terms of F-measure parameter).

Results of all six methods for wine dataset are listed in Table 6. It demonstrates that MCSS
algorithm obtains good results (in terms of intra cluster distance and F-measure) in comparison
to others, but slightly large value of standard deviation parameter. On the other hand, it is also
stated that the performance of GA, PSO, and ACO are nearly same except some variation
between F-measure parameter. Again, the performance of the K-means algorithm is better than
the GA, PSO, and ACO in terms of F-measure parameter but with a large value of standard
deviation parameter. CSS algorithm also gives good performance with wine dataset except
MCSS, and obtains low value for standard deviation parameter which shows that in each
iteration, a near optimal solution is generated.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Iris Best 97.33 113.98 96.89 97.1 96.47 96.34

Average 106.05 125.19 97.23 97.17 96.63 96.57

Worst 120.45 139.77 97.89 97.8 96.78 96.63

Std 14.631 14.563 0.347 0.367 0.14 0.1

F-Measure 0.782 0.778 0.782 0.779 0.787 0.790

Table 5. Comparison of the proposed MCSS algorithm with other clustering algorithms using iris dataset.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Wine Best 16555.68 16530.53 16345.96 16530.53 16282.12 16158.56

Average 18061 16530.53 16417.47 16530.53 16289.42 16189.96

Worst 18563.12 16530.53 16562.31 16530.53 16317.67 16223.61

Std 793.213 0 85.497 0 10.31 36.72

F-Measure 0.521 0.515 0.518 0.519 0.529 0.537

Table 6. Comparison of the proposed MCSS algorithm with other clustering algorithms using wine dataset.

Table 7 describes the results of all the six algorithms using LD dataset. From the results, it is
clearly seen that the outcomes of the proposed algorithm is better in comparison to the other
algorithms. It is also noted that K-means algorithm does not perform well with LD dataset,
and results obtained using K-means are far-far away from the optimal ones. Again, it came
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into revelation that the performance of PSO algorithm is better except MCSS algorithm and its
results are close to the optimal solutions.

Dataset Parameters K-means GA PSO ACO CSS MCSS

LD Best 11397.83 532.48 209.15 224.76 207.09 206.14

Average 11673.12 543.69 224.47 235.16 228.27 221.69

Worst 12043.12 563.26 239.11 256.44 242.14 236.23

Std 667.56 41.78 29.38 17.46 18.54 12.07

F-Measure 0.467 0.482 0.493 0.487 0.491 0.495

Table 7. Comparison of the proposed MCSS algorithm with other clustering algorithms using LD dataset.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Cancer Best 2999.19 2999.32 2973.5 2970.49 2946.48 2932.43

Average 3251.21 3249.46 3050.04 3046.06 2961.16 2947.74

Worst 3521.59 3427.43 3318.88 3242.01 3006.14 2961.03

Std 251.14 229.734 110.801 90.5 12.23 10.33

F-Measure 0.829 0.819 0.819 0.821 0.847 0.859

Table 8. Comparison of the proposed MCSS algorithm with other clustering algorithms using cancer dataset.

Results of all the six algorithm for cancer dataset is listed in Table 8. As it indicates, the
performance of the GA and PSO algorithms are not so good with cancer dataset. But the
proposed algorithm works well and achieves respectable results as compared to others. K-
means algorithm also achieves good results over GA, ACO, and PSO algorithms.

Dataset Parameters K-means GA PSO ACO CSS MCSS

CMC Best 5842.2 5705.63 5700.98 5701.92 5672.46 5653.26

Average 5893.6 5756.59 5820.96 5819.13 5687.82 5678.83

Worst 5934.43 5812.64 5923.24 5912.43 5723.63 5697.12

Std 47.16 50.369 46.959 45.634 21.43 17.37

F-Measure 0.334 0.324 0.331 0.328 0.359 0.368

Table 9. Comparison of the proposed MCSS algorithm with other clustering algorithms using CMC dataset.

Table 9 demonstrates the results of all the six algorithms for CMC dataset. As can be seen
clearly, the proposed method achieves better results in comparison to the other algorithms
using all the parameters. It is also stated that the performance of the GA is found to be poor
among all the algorithms (in terms of standard deviation and F-measure parameters). Along
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this, it is found that the K-means algorithm obtains maximum intra cluster distance amongst
all.

Table 10 illustrates the results of the proposed algorithm and all other algorithms for thyroid
dataset. From the results, again it is observed that proposed algorithm obtains superior results
in comparison to other algorithms, but gets the marginally high value of standard deviation
parameter in comparison to GA, PSO, and ACO algorithms. Again, K-means results are far
away from the optimal ones and CSS algorithm also obtain high value of standard deviation
parameter except K-means. In the rest of the algorithms, performance of ACO algorithm is
better.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Thyroid Best 13956.83 10176.29 10108.56 10085.82 9997.25 9928.89

Average 14 133.14 10218.82 10149.7 10108.13 10078.23 10036.93

Worst 146424.21 10254.39 10172.86 10134.82 10116.52 10078.34

Std 246.06 32.64 27.13 21.34 49.02 43.61

F-Measure 0.731 0.763 0.778 0.783 0.789 0.793

Table 10. Comparison of the proposed MCSS algorithm with other clustering algorithms using thyroid dataset.

Results of all the six algorithm for glass dataset is summarized in Table 11. It indicates that
CSS algorithm gives the better results for glass dataset in comparison to the other algorithms
(in terms of intra cluster distance and standard deviation parameters). From the analysis of F-
measure parameter, it is found that the performance of the MCSS is better than CSS. It is worthy
to be noted that both the CSS and MCSS achieve good results on the cost of standard deviation
parameter. Along this, it is also noticed that the GA exhibits weak performance.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Glass Best 215.74 278.37 270.57 269.72 203.58 209.47

Average 235.5 282.32 275.71 273.46 223.44 231.61

Worst 255.38 286.77 283.52 280.08 241.27 263.44

Std 12.47 4.138 4.55 3.584 13.29 17.08

F-Measure 0.431 0.333 0.359 0.364 0.446 0.449

Table 11. Comparison of the proposed MCSS algorithm with other clustering algorithms using glass dataset.

Table 12 summarizes the results of the proposed algorithm and all other algorithms for
vowel dataset. From the results, it is noticed that MCSS algorithm obtains minimum intra
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cluster distance amongst all but on the cost of high value of standard deviation parameter.
In addition to it, it is also observed that both the MCSS and K-means algorithms exhibit sim‐
ilar performance in terms of F-measure parameters, but K-means obtains minimum value
for standard deviation parameter. It is also stated that the quality of clustering is measured
in terms of intra cluster distance. Therefore, MCSS algorithm provides good quality results
in terms of intra cluster distance. Whereas, ACO method gets maximum intra cluster dis‐
tance among all the methods. Over all, it is concluded that the proposed algorithm gives bet‐
ter performance with most of datasets in comparison to the other algorithms and quality of
solutions is obtained. A statistical analysis is also carried out to prove the same.

Dataset Parameters K-means GA PSO ACO CSS MCSS

Vowel Best 149422.26 149513.73 148976.01 149395.6 149335.61 146124.87

Average 159242.89 159153.49 151999.82 159458.14 152128.19 149832.13

Worst 161236.81 165991.65 158121.18 165939.82 154537.08 157726.43

Std 916 3105.544 2881.346 3485.381 2128.02 2516.58

F-Measure 0.652 0.647 0.648 0.649 0.649 0.652

Table 12. Comparison of the proposed MCSS algorithm with other clustering algorithms using vowel dataset.

4. Conclusion

In this chapter, a magnetic charged system search algorithm is applied to solve the cluster‐
ing problems. The idea of proposed algorithm came from the electromagnetic theory and it
is based on the behavior of moving charged particles. A moving charged particle exerts both
the forces (electric force and magnetic force) on other charged particles and in turn altered
the positions of charged particles. Therefore, in MCSS algorithm, initial population is pre‐
sented in the form of charged particles. It utilizes the concept of electric and magnetic forces
along with newton second law of motion to obtain the updated positions of charged parti‐
cles. In MCSS, both the electric force (Ek) and magnetic force (Mk) correspond to the local
search for the solution, while the global solution is exploited using newton second law of
motion. The aim of this research is to investigate the applicability of MCSS algorithm for
clustering problems. To achieve the same, performance of the MCSS algorithm is evaluated
on variety of datasets and compared with K-Means, GA, PSO, ACO, and CSS using intra
cluster distance, standard deviation, and F-measure parameters. Experiment results support
the applicability of proposed algorithm in clustering field as well as the proposed method
provides good results with most datasets in comparison to the other methods. Finally, it is
concluded that proposed method not only gives good results but also improves the quality
of solutions.
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Abstract

This  chapter  proposes  a  novel  topology  optimization  method  for  the  material
distribution of electrical machines using the genetic algorithm (GA) combined with
the  cluster  of  material  and  the  cleaning  procedure.  Moreover,  the  obtained  rotor
structure was assumed to consist of the simple shape of PMs in order to consider
ease of  manufacturing.  The rotor  structure of  a  permanent  magnet  (PM) synchro‐
nous  motor  is  designed  and  manufactured.  The  optimized  rotor  has  32%  more
average  torque  than  that  of  the  experimental  motor  with  the  same  stator.  The
effectiveness of the proposed method is verified.

Keywords: topology optimization, genetic algorithm, permanent magnet synchro‐
nous motor, finite element method, manufacturing

1. Introduction

There are several  design techniques to optimize electrical  machines and electromagnetic
devices. However, most of these techniques were restricted to the optimization of a couple of
parameters defining the shape. I think that the first step of optimal design should design the
topology of these structures by starting from an empty space. Topology optimization allows
obtaining an initial conceptual structure starting with minimal information regarding the
structure of the object. Topology optimization methods are very promising and, therefore,
were proposed about 20 years ago [1, 2]. Since then, several papers have been published in
this field. For example, reference [3] proposed a topology optimization using design sensitiv‐
ity. Reference [4] proposed an ON/OFF sensitivity method and hybridized it with the GA in
order  to  improve convergence characteristics.  Reference [5]  designed an electromagnetic
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system by a topology optimization method considering magnetization direction. Reference [6]
proposed a topology optimization method coupling with magneto-thermal systems. Refer‐
ence [7] designed a 3D electromagnetic machine with soft magnetic composite core. Refer‐
ence [8] proposed a topology optimization method using the GA and ON/OFF sensitivity in
conjunction with a blurring technique in order to avoid small structure spots. Reference [9]
took into account a mapping function to improve convexity in the topology optimization
procedure. Reference [10] applied a topology optimization method to a coupled magnetic
structural  problem.  Reference  [11]  designed  an  IPM  motor  using  the  ON/OFF  method.
Reference  [12]  optimized magnetic  actuators  by  a  level-set  method.  Reference  [13]  opti‐
mized an inductor by the evolutionary algorithm. Reference [14] proposed a 3D topological
optimization method based on the multistep utilization of GA. Reference [15] presented a
possible  solution to  the  structural  optimization problem using a  simple  heuristic  search
algorithm.

The author proposed a topology optimization method to optimize the distribution of materials
within an electrical machine using the GA [16]. In addition, he proposed a concept for the
cluster of materials and a cleaning procedure for the materials and designed the stator of a
brushless DC motor based on this method [17]. However, that study considered only two types
of materials, air, and iron, and therefore, it is similar to the ON/OFF method. He improved the
previous method in order to consider more than two materials namely, air and iron as well as
r-oriented, x-oriented, and y-oriented magnets [18]. Moreover, initially, the obtained rotor
structure was assumed to consist of the simple shape of PMs in order to consider ease of
manufacturing [19].

This chapter summarizes the novel topology optimization method for the material distribution
of electrical machines using the GA combined with the cluster of material and the cleaning
procedure. Moreover, the obtained rotor structure was assumed to consist of the simple shape
of PMs in order to consider ease of manufacturing. The proposed method is applied to the
design of the rotor structure of PM synchronous motor. It is an interior permanent magnet
synchronous motor (IPMSM) used for air-conditioning. The average torque characteristics of
IPMSMs are compared with the commercialized motor.

2. Proposed topology optimization method

In this section, the topology optimization method is briefly explained, which is implement‐
ed in this study. GA is an algorithm that imitates the evolution of living things and is suita‐
ble for problems with a large sample space. In the proposed method, the design region is
split into finite element meshes, and the materials of several elements—for example, a cell—
are associated with a gene in the chromosome. For example, if we consider three types of
materials—for example, air, iron, and magnet, which are set to 0, 1, and 2, respectively—the
chromosome is composed of some genes as shown in Figure 1. Two parents are selected
randomly, and some genes are selected to be exchanged by a uniform crossover with a
crossover ratio, and then, two new children are generated as shown in Figure 1. The chil‐
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dren inherit the good characteristics of parents by repeating the process. We proposed the
concept of the cluster with many types of materials. For example, irons 2 and 3 form the
same cluster because they are next to each other as shown in Figure 2a, and iron 4 forms
another cluster. If the area of cluster is narrow, that is, the number of cells in the same clus‐
ter is smaller than or equal to an integer Nmin, a cleaning procedure is introduced. When Nmin

is equal to 2, irons 2 and 3 remain, iron 1 is changed to the surrounding material air, and
iron 4 is changed to the magnet. As a result, this cleaning method has the ability of remov‐
ing floating pieces of the material.

Figure 1. Example of genes and uniform crossover in GA.

Figure 2. Cluster of materials and the cleaning method concept.

Figure 3 shows the cross section of a four-pole PM synchronous motor with distributed
windings. One-eighth of the rotor is designed for symmetry. This study iterates the GA with
the newly increased length of genes. For the first iteration, a coarse topology is designed using
a small number of design variables in a 5 × 9 array of cells as shown in Figure 4a. Three
magnetized directions of permanent magnet are dealt with as shown in Figure 5. Figure 6
shows the treatment of the cluster of material on the boundary. The y-oriented magnet has the
same magnetized direction; on the contrary, the x- and r-oriented magnets have the opposite
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direction at both sides of periodic boundary. Therefore, the numbers of cells in the cluster of
air, iron, and y-oriented magnet are doubled. On the other hand, the numbers of cells in the
cluster of air, iron, and r-oriented magnet are doubled at both sides of symmetric boundary,
because the r-oriented magnet has the same magnetized direction.

Figure 3. Motor cross section and design region.

Figure 4. Cell at each iteration.

Figure 5. Magnetized direction in permanent magnets.
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Figure 6. Cluster of material on the symmetric boundary and on the periodic boundary.

A fine topology then is designed using a large number of design variables for the second
iteration in a 20 × 18 array of cells as shown in Figure 4b. For the second iteration, a set of
initial individuals in the GA inherit the individual that has the best fitness at the conclusion
of the previous iteration. For example, the initial material in cell P0 is generated by a proba‐
bility of 1/5 from materials in cells P0, P1, P2, P3, and P4 shown in Figure 7. The whole flow‐
chart for the proposed method is shown in Figure 8. The parts highlighted by the thick line
are newly added to the conventional GA with the elite selection. The parameter Nmin of the
cleaning procedure at each iteration is listed in Table 1.

Figure 7. Cluster of material on the symmetric boundary and on the periodic boundary.
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Figure 8. Flowchart for the proposed topology optimization method.

Figures Material Nmin at first iteration Nmin at second iteration

Figure 10a Air, iron, r-oriented PM 1 4

Figure 10b Air, iron, x-, y-oriented PM 1 4

Figure 10c Air, iron, x-, y-oriented PM 1 for air and iron, 0 for PM 4

Figure 10d Air, iron, r-oriented PM 0 0

Table 1. Design parameters.
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Figure 8. Flowchart for the proposed topology optimization method.

Figures Material Nmin at first iteration Nmin at second iteration

Figure 10a Air, iron, r-oriented PM 1 4

Figure 10b Air, iron, x-, y-oriented PM 1 4

Figure 10c Air, iron, x-, y-oriented PM 1 for air and iron, 0 for PM 4

Figure 10d Air, iron, r-oriented PM 0 0

Table 1. Design parameters.

Optimization Algorithms- Methods and Applications270

3. Rotor structure obtained by the topology optimization method

We optimize the topology of the rotor structure by considering two types of PMs; r-oriented
magnet only and both x- and y-oriented magnets. The number of populations is set to 45. If a
number larger than 45 is selected, there is a possibility for a better result. However, this would
lead to a longer computational time. Figure 9 shows a convergence characteristic of the applied
topology optimization. We find that the fitness functions almost converge at every iteration,
namely at every 300th generation.

Figure 9. Convergence characteristic of the topology optimization.

Figure 10a shows the obtained rotor structure, in which three types of materials—air, iron,
and the r-oriented magnet—are taken into account. Nmin at the first iteration is equal to 1.
This means that if the number of cells in the cluster is <2, the material of the cluster is
changed to the material of surrounding cells. At the second iteration, Nmin is chosen to 4.
Design parameters are shown in Table 1. The optimization by considering the r-oriented
magnet only produces a kind of surface PM-type rotor. Figure 10b, c shows the obtained
rotor structure by considering x- and y-oriented magnets that produce a kind of interior
PM-type rotor. The parameters listed in Table 1 are used for the cleaning procedure. The
rotor shapes appear as V and W. The V shape was obtained when the cleaning procedure
was carried out for the PM material at the first iteration, and the W shape was obtained
when the cleaning procedure was not carried out for the PM material at the first iteration.
Figure 10d shows the obtained rotor structure when the cluster of material and the cleaning
method are not carried out. Tave and Vpm for Figure 10d are 5.38 Nm and 23.2 cm3, respective‐
ly, and for Figure 10a, they are 6.16 Nm and 31.6 cm3, respectively. Although the obtained

Topology Optimization Method Considering Cleaning Procedure and Ease of Manufacturing
http://dx.doi.org/10.5772/63153

271



magnet shape appears similar to that shown in Figure 10a, the rotor has numerous small
pieces of iron in the r-oriented magnet. As mentioned above, the cleaning procedure can
remove the small cluster of materials. Therefore, the structure obtained without considering
the cleaning procedure has numerous small pieces of iron in the magnet and numerous
pockets of air in the iron, which are shown in Figure 10d. This rotor has a complicated weak
structure and is difficult to manufacture.

The optimized rotor shapes shown in Figure 10b, c appear as V and W. Let us discuss what
causes this difference. Figure 11 shows the obtained shapes at the first iteration with and
without considering the cleaning procedure for the PM materials. When the cleaning proce‐
dure is not carried out for PM materials, small PM cells can easily remain in the GA procedure.
As a result, Figure 11a does not include the x-oriented magnet at the center, whereas Figure
11b includes the x-oriented magnet at the center. The x-oriented magnet shown in Figure
11b remains in the next iteration, and the final shape, which includes the x-oriented magnet,
is then obtained as shown in Figure 10c.

Figure 10. Rotor structure obtained by the proposed topology optimization with the parameter shown in Table 1.
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Figure 11. Rotor structures obtained at the first iteration by considering air, iron, x- and y-oriented PMs, (a) with and
(b) without the cleaning procedure for the PM.

4. Optimization considering ease of manufacturing

The obtained rotor structures are complex and impractical. In order to consider the ease of
manufacturing, magnets and air pockets are assumed to be simple shapes, and they are then
optimized using conventional techniques. For example, the rotor structures shown in Figure
12a can be assumed to be similar to the ones in Figure 10a, where the magnets are represented
by four parameters. The rotor structure shown in Figure 10b, c can be assumed to contain four
hexahedron PMs as shown in Figure 12b. In this shape, the rotor structure is represented by
six parameters if the thickness of the magnets is uniform and the volume of the magnets is
specified. We assume that the shape of each magnet is a hexahedron and the magnet is
magnetized in the vertical direction as shown in Figure 12b for the ease of magnetization.
Moreover, we assume that a core area is introduced on the surface of the rotor as shown in
Figure 12b to insure machine strength against centrifugal force. Therefore, parameter r3 is
fixed, and then, the number of design parameters becomes five.

An example to be optimized is the rotor of an experimental motor. This experimental motor
is well known as the D model in IEE Japan for an air-conditioner and has an IPM-type rotor.
A full-search method to optimize the rotor shape is used, because we want to verify that there
is a good rotor shape similar to those shown in Figure 10b, c. The angle of position A is set to
five values, and the radius and angle of position B and C, respectively, are also set to five values.
This gives 55 = 3125 patterns to be calculated in the full-search method. This study iterates the
full-search method twice, where the variation of each parameter is set to approximately half,
and the phase angle of stator current is set to 15°, 20°, 25°, and 30°. The finite element mesh is
generated automatically using the Delaunay method, and the torque is calculated using the
Maxwell’s tensor method in the full-search method.
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Figure 12. Rotor structures represented by simple magnet shape.

Figure 13. Obtained rotor structure of the air-conditioner.

Figure 13 shows the obtained rotor structure, where the “best” rotor structure provides the
largest average torque at the second iteration of the full-search method, and the “second” one
provides the second-largest average torque at the first iteration. It was found that the “best”
rotor structure is U-shaped and the “second” is W-shaped. Figure 14a shows the obtained rotor
structure and its flux distribution at no load. Figure 14b shows the flux distribution of the
experimental motor whose stator is the same as that shown in Figure 14a. The ratings of the
experimental motor are 3000 min−1, 1.5 kW, 192 V, and 5.6 A, and the stator outer diameter,
the rotor diameter, and the air-gap length are 112, 55, and 0.5 mm, respectively. Figure 14
shows that the flux lines of the optimized motor are increased by approximately 50%, because
the magnets are wider and thinner than the experimental motor. It is found from Figure 15
that the average torque is increased from 5.8 to 7.6 Nm—that is, by approximately 32%—
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mainly due to the increase of magnetic flux linkage. However, the torque ripple of the proposed
motor is increased because it is not considered by the fitness function. The calculated torque
of the “second” rotor structure is almost the same as that of the “best” rotor structure. This
means that the shape of the PM in the inside rotor is not a significant factor in the torque
provided. Therefore, we believe that two types of rotor structure have been obtained by the
proposed method as shown in Figure 10b, c.

(a). Designed motor                                     (b). Experimental motor.

Figure 14. Obtained rotor structure and flux distribution at no load.

Figure 15. Comparison of torque with the experimental motor.
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5. Comparison of measured results

We have manufactured the designed rotor shown in Figure 14a. Figure 16 shows the measured
electromotive force when the rotor is rotating at a speed of 1500 min−1. The effective value and
fundamental component of the electromotive force are 96.3 and 133.8 V, respectively, and those
for the experimental motor are 68.2 and 95.6 V, respectively. Therefore, the electromotive force
of the designed motor is 1.4 times larger than that of the experimental motor. Figure 17 shows
the inductance measured by an LCR meter at 100 Hz. The obtained d and q inductances are
12.69 and 28.37 mH, respectively, for the designed motor, and 12.51 and 29.37 mH, respectively,
for the experimental motor. The developed torque of IPMSM can be expressed by

2cos 0.5 ( ) sin 2= F + -q dT p I p L L Ib b (1)

where p, Φ, I, and β are pole pairs, flux linkage, stator current, and phase angle of stator current,
respectively. Although (L −q L d ) of the designed motor is somewhat small, the flux linkage is
1.4 times greater than that of the experimental motor.

Figure 16. Measured electromotive force.

Figure 17. Measured inductance.
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Figure 18 shows the torque–current characteristics when β is set to approximately 0. The
developed torque calculated by the measured electromotive force is T = 0.75I for the experi‐
mental motor and T = 1.05I for the designed motor. These values are approximately the same
as the slope shown in Figure 18. The differences are generated by the fact that β is not controlled
to be exactly 0. Therefore, it is verified that the measured torque of the designed motor is larger
than that of the experimental motor under the same stator current.

Figure 18. Measured torque characteristics.

6. Conclusions

In this study, we designed the rotor structure of PM synchronous motors. The proposed
optimization process combines the topology optimization method and a method that considers
the ease of manufacturing. We assumed four hexahedron PMs similar to the rotor shapes
obtained by the proposed method for reasons of manufacturing ease. The obtained rotor of
the compressor motor for the air-conditioner has 32% more average torque than that of the
experimental motor with the same stator. Therefore, the effectiveness of the proposed method
is verified.
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Abstract

Firefly algorithm is  one of  the well-known swarm-based algorithms which gained
popularity within a short time and has different applications. It is easy to understand
and implement. The existing studies show that it is prone to premature convergence
and suggest the relaxation of having constant parameters. To boost the performance of
the algorithm, different modifications are done by several researchers. In this chapter,
we will review these modifications done on the standard firefly algorithm based on
parameter modification, modified search strategy and change the solution space to
make the search easy using different probability distributions. The modifications are
done for continuous as well as non-continuous problems. Different studies including
hybridization of firefly algorithm with other algorithms, extended firefly algorithm for
multiobjective as well  as multilevel optimization problems, for dynamic problems,
constraint handling and convergence study will also be briefly reviewed. A simulation-
based comparison will also be provided to analyse the performance of the standard as
well as the modified versions of the algorithm.

Keywords: Optimization, Metaheuristic Algorithms, Parametric Modification, Muta‐
tion, Binary Problems, Simulation

1. Introduction

An optimization problem refers to the maximization or minimization of an objective func‐
tion by setting suitable values for the variables from a set of feasible values. These problems
appear not only in complex scientific studies but also in our day-to-day activities. For instance,

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



when a person wants to go from one place to another and has multiple possible routes, a
decision needs to be made on which route to take. The decision can be with the objective to
minimize travel time, fuel consumption and so on. However, these kinds of problems with
fewer number of alternatives can easily be solved by looking at the outcome of each of the
alternatives. However, in real problems, it is not always the case to have a finite and small
number  of  alternatives.  Hence,  different  solution  methods  are  proposed  based  on  the
behaviour of the problem.

Since the introduction of evolutionary algorithms, many studies have been conducted on
heuristic algorithms. Introducing new algorithms has been one of the leading research
areas [1]. Currently, there are more than 40 metaheuristic algorithms [2]. Most of these new
algorithms are introduced by mimicking a scenario from nature. For instance, genetic algo‐
rithm is inspired by the Darwin theory of survival of the fittest [3]; particle swarm optimi‐
zation is another metaheuristic algorithm mimicking how a swarm moves by following
each other [4]; firefly algorithm is inspired by how fireflies signal each other using the
flashing light to attract for mating or to identify predators [5] and prey predator algorithm
is another new algorithm inspired by the behaviour of a predator and its prey [6]. These
algorithms use different degree of exploration and exploitation based on their different
search mechanisms.

Firefly algorithm is among those metaheuristic algorithms which have different applica‐
tions. Its uncomplicated and easy steps with its effectiveness attract researchers from differ‐
ent disciplines it. Different studies have been performed to modify the standard firefly
algorithm to boost its performance and to make it suitable for a problem at hand. In this
chapter, a comprehensive study will be presented on firefly algorithm and its modified ver‐
sions. A brief discussion on extended firefly algorithm with other relevant studies will also
be provided. In the next section, a discussion on optimization problems with their solution
methods will be given followed by a review on studies on firefly algorithm, which includes
a discussion on the standard firefly algorithm with its modified versions and other relevant
studies on firefly algorithm, in Section 3. In Section 4, a comparative study based on simula‐
tion results will be presented followed by summary of the chapter in Section 5.

2. Optimization problems

Decision-making problems can be found beyond our daily activity. They are very common
in engineering, management and in many other disciplines. Different researchers used the
concept of optimization in different applications, including engineering applications, trans‐
portation planning, management applications, economics, computational intelligence, deci‐
sion science, agriculture, tourism, sport science and even political science [7–18].

When these problems are formulated mathematically, they are called mathematical optimi‐
zation problems. It will have a set of feasible actions, also called feasible regions, and a
measure of performance of these actions called the objective. A standard single objective
minimization problem can be given as in Eq. (1).
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min{ ( ) | }n

x
f x x SÎ ÍÂ (1)

where f :ℝn → ℝ  is called the objective function, S is the feasible region and the vector x is the
decision variable. A vector x̄ is said to be an optimal solution for the minimization problem
given in Eq. (1) if and only if x̄ ∈S  and f (x̄)≤ f (x), ∀ x ∈S . A local solution x′ is a member of
S and f (x ')≤ f (x), for all x in the neighbourhood of x′.

In a broad sense, optimization solution methods can be categorized as exact and approximate
solution methods. Exact solution methods are methods which use an exhaustive search for the
exact solution in the solution space. They use mathematical and statistical arguments to get an
exact solution. They mainly used calculus-based and iterative procedures. Perhaps Fermat is
the first to use a calculus-based argument to solve optimization problems [19]. Iterative
methods were first proposed and used by Newton and Gauss [20]. Since then, several exact
solution methods are proposed and used in different problems. Branch and bound, simplex
method and gradient descent method are good examples of exact solution methods. However,
due to complex problems modelled from complex real aspects, it becomes challenging for the
deterministic solution methods. This leads to the search of new 'out of the box' way of solving
these problems, which in turn gives rise to the birth of metaheuristic solution algorithms.

Metaheuristic algorithms are approximate solution methods for an optimization problem
which use a randomness property with an 'educated guess' in their search mechanism and try
to improve the quality of the solutions at hand through the iterations, from a randomly
generated set of feasible solutions, by exploring and exploiting the solution space. Even though
these algorithms do not guaranty optimality, they are tested to give a reasonable and accept‐
able solution. Furthermore, they have the advantage of not to be affected much by the
behaviour of the problem; this makes them useful in many applications. Having a variety of
algorithms will give the option to choose a suitable one to solve a problem according to its
behaviour.

3. Studies on firefly algorithm

3.1. Introduction

Nature has been an inspiration for the introduction of many metaheuristic algorithms. It has
managed to find solution to problems without being told but through experience. Natural
selection and survival of the fittest was the main motivation behind the early metaheuristic
algorithms. Different animals communicate with each other through different mode of
communications. Fireflies use their flashing property to communicate. There are around 2000
firefly species with their own distinct flash patterns. They usually produce a short flash with
a certain pattern. The light is produced by a biochemical process called the bioluminescence.
The flashing communication is used to attract their mate and also to warn predators. Based on
the pattern of the light, a suitable mate will communicate back by either mimicking the same
pattern or responding with a specific pattern. It also needs to be noted that the light intensity
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decreases through distance; hence, a flashing light emanating from a firefly gets a response
from fireflies around it within a visual range of the flash.

In addition to enjoying the beautiful view of a summer sky created by fireflies, they have
motivated and have been the centre for many scientific researches [5, 21, 22]. In the sense of
optimization, if we consider the fireflies as solution on the landscape of the solution space,
then the attraction and movement of fireflies can inspire an optimization algorithm in which
solutions follow better (brighter) solutions. Hence, firefly algorithm is motivated and inspired
by these properties.

3.1.1. The standard firefly algorithm

Firefly algorithm is a swarm-based metaheuristic algorithm which was introduced by Yang [5].
The algorithm mimics how fireflies interact using their flashing lights. The algorithm assumes
that all fireflies are unisex, which means any firefly can be attracted by any other firefly; the
attractiveness of a firefly is directly proportional to its brightness which depends on the
objective function. A firefly will be attracted to a brighter firefly. Furthermore, the brightness
decreases through distance based on inverse square law, as given in Eq. (2).

2

1I
r

p (2)

If the light is passing through a medium with a light absorption coefficient γ, then the light
intensity at a distance of r from the source can be given as in Eq. (3).

2

0
rI I e g-= (3)

where I0 is light intensity at the source. Similarly, the brightness, β, can be given as in Eq. (4).

2

0
re gb b -= (4)

A generalized brightness function for ω ≥ 1 is given in Eq. (5) [5]. In fact, any monotonically
decreasing function can be used.

0
re
wgb b -= (5)

In the algorithm, a randomly generated feasible solution, called fireflies, will be assigned with
a light intensity based on their performance in the objective function. This intensity will be
used to compute the brightness of the firefly, which is directly proportional to its light intensity.
For minimization problems, a solution with smallest functional value will be assigned with
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highest light intensity. Once the intensity or brightness of the solutions is assigned, each firefly
will follow fireflies with better light intensity. For the brightest firefly, it will perform a local
search by randomly moving in its neighbourhood. Hence, for two fireflies, if firefly j is brighter
than firefly i, then firefly i will move towards firefly j using the updating formula given in
Eq. (6).

2

0: ( ) ( () 0.5)ijr
i i j ix x e x xg

b

b a e-

=

= + - + -123 (6)

where β0 is the attractiveness of xj at r = 0, in [5] the author recommended that β0 = 1 for
implementation, γ is an algorithm parameter which determines the degree in which the
updating process depends on the distance between the two fireflies, α is an algorithm param‐
eter for the step length of the random movement and ε() is a random vector from uniform
distribution with values between 0 and 1. For the brightest firefly, xb, the second expression in
Eq. (6) will be omitted, as given in Eq. (7).

: ( () 0.5)b bx x a e= + - (7)

Table 1. The standard firefly algorithm.

These updates of the location of fireflies continue with iteration until a termination criterion
is met. The termination criterion can be maximum number of iterations, a tolerance from the
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optimum value if it is known or no improvement is achieved in consecutive iterations. The
algorithm is summarized in Table 1.

3.2. Modified versions of firefly algorithm with critical analysis

Firefly algorithm is efficient and an easy-to-implement algorithm. It is also suitable for parallel
implementation. However, researches show that it is slow in convergence and easily gets
trapped in local optimum for multimodal problems. In addition, the updates solely depend
on current performance and no memory on previous best solutions and performances are kept.
That may lead to losing better solutions. Furthermore, since the parameters are fixed, the search
behaviour remains to be the same for any condition in all iterations. Hence modifying the
standard firefly algorithm to boost its performance has been one of the research issues.
Furthermore, the standard firefly algorithm is designed for continuous optimization problems;
hence in order to use it for non-continuous problems it needs to be modified and adjusted.

3.2.1. Modification for problems with continuous variables

Basically, there are three classes of modification. Class 1 modification is the modification on
the parameters. It is the first category in which the parameters of the algorithm are modified
and the same updating mechanisms or formulas are used. Class 2 contains new updating
mechanisms. It includes modifications which change part or all of the updating formulas, add
mutation operator and the likes. The last category, Class 3, includes modifications on the search
space, perhaps with the same updating mechanism it may be easier to switch to another ‘easy-
to-search’ space, and changes in the probability distribution when generating random
numbers. The categories are not necessarily disjoint as some of the modifications may fall in
multiple classes.

3.2.1.1. Class 1 (parametric modification)

In the standard firefly algorithm, the parameters in Eq. (6) are user-defined constants. Like any
other metaheuristic algorithms, the performance of a firefly algorithm depends on these
parameter values. They control the degree of exploration and exploitation.

Some of the modifications of firefly algorithm are done by making these parameters variable
and adaptive. In recent researches on the modification of firefly algorithms, the parameters α,
γ and also r are modified. The modification of α affects the random moment of the firefly,
whereas modifying either γ or r affects the degree of attraction between fireflies. Adjusting the
brightness at the origin, β0, has also been done in some researches.

a. Modifying the random movement parameter:-

To deal with parameter identification of infinite impulse response (IIR) and nonlinear systems,
firefly algorithm is modified in [23]. The modification with the random movement is based on
initial and final step lengths α0 and α∞ using α : =α∞ + (α0−α∞)e −Itr. In addition, additional fourth
term in the updating process, given by αε(xi − xb) where xb is the brightest firefly of all the
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behaviour remains to be the same for any condition in all iterations. Hence modifying the
standard firefly algorithm to boost its performance has been one of the research issues.
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3.2.1. Modification for problems with continuous variables

Basically, there are three classes of modification. Class 1 modification is the modification on
the parameters. It is the first category in which the parameters of the algorithm are modified
and the same updating mechanisms or formulas are used. Class 2 contains new updating
mechanisms. It includes modifications which change part or all of the updating formulas, add
mutation operator and the likes. The last category, Class 3, includes modifications on the search
space, perhaps with the same updating mechanism it may be easier to switch to another ‘easy-
to-search’ space, and changes in the probability distribution when generating random
numbers. The categories are not necessarily disjoint as some of the modifications may fall in
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3.2.1.1. Class 1 (parametric modification)

In the standard firefly algorithm, the parameters in Eq. (6) are user-defined constants. Like any
other metaheuristic algorithms, the performance of a firefly algorithm depends on these
parameter values. They control the degree of exploration and exploitation.

Some of the modifications of firefly algorithm are done by making these parameters variable
and adaptive. In recent researches on the modification of firefly algorithms, the parameters α,
γ and also r are modified. The modification of α affects the random moment of the firefly,
whereas modifying either γ or r affects the degree of attraction between fireflies. Adjusting the
brightness at the origin, β0, has also been done in some researches.

a. Modifying the random movement parameter:-

To deal with parameter identification of infinite impulse response (IIR) and nonlinear systems,
firefly algorithm is modified in [23]. The modification with the random movement is based on
initial and final step lengths α0 and α∞ using α : =α∞ + (α0−α∞)e −Itr. In addition, additional fourth
term in the updating process, given by αε(xi − xb) where xb is the brightest firefly of all the
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fireflies, is added so that firefly algorithm will resemble and have search behaviour like particle
swarm optimization. In order to implement this modification, initial and final randomization
parameters, α0 and α∞, need to be supplied by the user. The randomized parameter is set to
decrease exponentially and within a couple of iteration it will vanish. For example, if α0 = 1
and α∞ = 0.2 starting from 0.089 in the first iteration it will decrease to 0.0001 in the seventh
iteration. Furthermore, the additional term in the updating formula takes the solution xi away
from xb, with a given step length αε. This is in contradiction to the following concept of the
current best solution of the algorithm. Assuming that the step length for the new term as well
as the randomness is the same, there is only one additional parameter, either α0 or α∞ in place
of a single parameter α.

Another firefly algorithm with adaptive α is presented in [24]. The modification is given by

α (Itr ) : =α (Itr−1)( 1
2It rMax

)
1

It rMax . In addition, two new solutions are generated based on three
solutions from the population chosen randomly, the one with the better brightness from the
two new solutions, and xi will replace xi and pass for the next iteration. It is also used to solve
optimal capacitor placement problem [25]. Similar modification of α with additional mutation
and crossover operators is also given in [26].

In [27], the randomized parameter is modified based on the number of iterations using
0.4

1 + e
0.005(Itr −It rMax ) . The simulation results in 16 benchmark problems show that the modification

increases the performance of the standard firefly algorithm significantly.

In extending firefly algorithm for multiobjective problems, an adaptive α is proposed and used
in [28]. Here α is made adaptive based on the number of iteration and is given by α : =α00.9Itr .
Hence, the step length decreases faster than linearly.

Self-adaptive step firefly algorithm is another modification done to the third term of the
updating process by Yu et al. [29]. The step length α is updated based on the historical
information and current situation using αi

(Itr+1) : =1− 1

f b
(Itr ) − ( f i

(Itr ))2 + ( f i
(Itr ))2 + 1

 where

h i
Itr = 1

( f ibest
(Itr −1) − f ibest

(Itr −2))2 + 1
 for f b

Itr = f (xb), f i
Itr = f (xi) after iteration Itr , f ibest

(Itr−1) and f ibest

(Itr−2) the best

performance of solution xi until Itr − 1 and Itr − 2 iterations. Sixteen two-dimensional bench‐
mark problems are used showing that the proposed approach produces better result with
smaller standard deviation. It is a promising idea to control the randomized parameter based
on the solution's previous and current performances. The update works in such a way that
whenever the solution approaches the brightest firefly its step length will decrease, since the
performance of the solutions needs to be saved and the memory complexity should be studied.

Another study of modification of the random movement parameter based on the historic
performance of the solution is presented in [30]. Based on its best position until current
iteration, xi,best, and the global best solution until current iteration, xgbest ,

αi
(Itr+1) =αi

(Itr ) − (αi
(Itr ) −αmin)e −

Itr |xgbest −xi ,best |
MaxGen .
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b. Modifying the attraction parameters

The attraction of one firefly by another depends on the light intensity at the source of the
brighter firefly as well as on the distance between them and the light absorption coefficient of
the medium.

For a small change in the distance between two fireflies results in a quick decrease of the
attraction term. To deal with this problem, Lin et al. [31] introduced a virtual distance which

will put r in between 0 and 1 and is defined by r ' =
r − rmin

rmax − rmin
, where rmin = 0 and

rmax = ∑
i=1

d
(xmax(i)− xmin(i))2 for xmax(i) and xmin(i) being the maximum and minimum values of the

ith dimension over all fireflies, respectively. Furthermore, β is set as β =β0γ(1− r '). In later
iterations, the swarm tends to converge around an optimal solution. It means that the distance
r decreases and so does rmax. However, in most cases, the decreasing rate of r is faster than rmax,
resulting in a slight increase in β. In order to overcome the possibility of the attraction term
dominating the attraction term, the authors proposed a new updating equation in later
iterations using xi : = xi + β(xj − xi)αε. Indeed the new updating formula omits the random
movement of the firefly. The firefly will only move towards a brighter firefly with a step length
of βαε.

Tilahun and Ong [32] suggested that, rather than making β0 = 1, it should be a function of the
light intensity given by β0 = e I0, j−I0,i for a firefly i to be attracted to j, where I0,j and I0,i are intensity
of fireflies j and i at r = 0. In addition, moving the brightest firefly randomly may decrease the
brightness; hence a direction which improved the brightness will be chosen from m random
directions. If such a direction is not among these m directions, it will stay in its current position.
The complexity of the algorithm may increase with respect to the new parameter m, and
therefore it should be taken into consideration.

Due to the non-repetition and ergodicity of chaos, it can carry out overall searches at higher
speeds. Hence, Gandomi et al. [33] proposed a modification on β and γ using chaos functions.
This approach has attracted many researchers, and it has been used in different problem
domains. The approach is successfully applied using Chebyshev chaos mapping for MRI brain
tissue segmentation in [34], for heart disease prediction using Gaussian mapping [35],
reliability-redundancy optimization [36] and for solving definite integral problems in [37]. In
[38], chaotic mapping is used for β or γ. In addition, α is made to decrease based on the intensity

of solutions using α =αmax− (αmax−αmin)
Imax − Imean

Imax − Imin
 where Imax, Imean, and Imin are the maximum, the

average and the minimum intensities of the solutions.

Another modification in this category is done in [39]. In this chapter, β is modified using
β =(βmax−βmin)e −γr 2

+ βmin, where βmin and βmax are user-supplied values. Similar modification is
also done in [40].
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c. Modifying both the random and attraction movement parameters

To overcome this challenge arising with an increase in the problem dimension and the size of
the feasible region, Yan et al. [41] proposed a modification for the standard firefly algorithm.
This modification is done on the generalized distance term given in Eq. (5), in which rω is

replaced by r K n(Range), where K is a constant parameter, n is the dimension of the problem and
Range is the maximum range of the dimensions. The parameter α also reduces with iteration
from a starting value α0 to a final value αend linearly. In addition, a firefly is attracted to another
firefly if it is brighter and if it is winking. The winking is based on a probability
pw =0.5 + 0.1count _ i, where count_i is the value of a firefly i winking state counter. The larger
the counter the greater will be the probability of shifting the state. The maximum counter is
five, and after that it will be reset to 0.

In order to solve economic dispatch problem, firefly algorithm is modified in [42]. To increase
the exploration property, the authors replaced the Cartesian distance by the minimum
variation distance. In addition, they used mutation operator on α but no explanation on how
the mutation works is given.

To deal with premature convergence, firefly algorithm has also been modified based on the

light intensity [43]. The light intensity difference is defined by ξ =
Δ I ij

(t )

max{I } − min{I }  for an iteration

t. Based on ξ, a modification is done on γ,  β and α as follows, γ =
γ0

rmax
2  where

rmax =max{d (xi, xj)|∀ i, j}, β0 = {ξ, ξ >η1

η1, ξ ≤η1
 where η1 is a new parameter and α =α0(0.02rmax) where

α0 = {ξ, ξ >η2

η2, ξ ≤η2
 for another new algorithm parameter η2. The modification shows that for two

fireflies, the brighter one will have a small attraction and randomness step length compared
to the brighter ones.

For the optimal sizing and siting of voltage-controlled distribution generator in distributed
network, firefly algorithm is modified and is used in [44]. The problem is to minimize the
power loss by selecting optimal location for distributed generations and the power produced.
In the modification β0 = 1, whereas γ and α are modified based on the problem property
(location and maximum power per location in each iteration). This modification is done based
on the problem characteristic. The effectiveness and quality of a solution for a metaheuristic
algorithm depend on the proper tuning of an algorithm parameter as well as on the behaviour
of the landscape of the objective function.

Another modification of the standard firefly algorithm to be listed in this category is done in

[45]. The randomized parameter α has been made adaptive using α =αmax −
Itr (αmax −αmin)

MaxGen . Fur‐
thermore, the distance function has been made to be influenced not by their location in the
landscape of the feasible region but the brightness or functional values of the fireflies using
f (xb)− f (xi). For two fireflies with similar performance in the objective function, they are
considered to be near each other.
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For path planning of autonomous underwater vehicle, the parameters γ and α of the standard
firefly algorithm are modified by γ =γb + Itr

MaxGen (γe −γb) for γe > γb and α =αb + Itr
MaxGen (αe −αb) for

αe < αb [46]. Furthermore, the updating formula is defined as xi : = xi + β(xi − xj) + αrε. As the
iteration increases, α decreases and γ increases linearly, implying both the randomness
movement and the attraction decrease as a function of the iteration. In the updating formula,
the random movement is multiplied by the distance.

A similar approach in which the parameters α,β and γ are encoded in the solution is proposed
in [47]. Unlike in [44], the update is done using ψ : =ψ + σψN (0, 1) where σψ : =σψe τ 'N (0,1)+τN (0,1)

for learning parameters τ,τ′ and ψ ={α, β, γ} . Another modification that can be listed in this
category is done in [48]. The parameter γ is modified using γmax − (γmax −γmin)( Itr

MaxGen )2 for

2≤γmax ≤4 and 0.5≤γmin ≤1. In addition, for a new parameter λ, α =αmax − (αmax −αmin)( Itr − 1
G0 − 1 )λ

where G0 is an iteration number in which α =αmin. This results in a decrease in α quicker than
linear function if λ is in the range (0, 1), linearly if λ = 1 and slower than linear function if λ >
1. Furthermore, in order to overcome the trapping of the solutions in local optimal solution,
Gauss distribution is applied to move the brightest solution, xb, i.e. xb : = xb + xbN (μ, σ). This will
be applied if the variance of the solutions before a predetermined M iteration is less than a
given precision parameter η. The authors also suggested that chaos, particularly cubic
mapping, can be used to improve the distribution of the initial solutions.

In [49], γ and α are computed using γ =0.03|G1 |  and α =0.03|G2 |  where G1 and G2 are
generated from Gaussian or normal distribution with mean 0 and variance 1. Supported by
two case studies for multivariable proportional–integral–derivative (PID) controller tuning, a
similar study was also done in [50]. They used Tinkerbell mapping to tune γ, using
γ = |G | x̄ itr

MaxGen  where x̄ has normalized values generated by the Tinkerbell map in the range
[0, 1]. In addition to that, α is modified to decrease linearly using
α =(α final −αinitial)

Itr
MaxGen + αinitial .

3.2.1.2. Class 2 modifications (new updating mechanisms)

The updating mechanism in the standard firefly algorithm is guided by Eqs. (6) and (7). In
Class 1 modification, the same updating equations are used but with adaptive preference. Class
2 modifications include modification on the updating equations including modification in the
updating process of the best (the brightest) and the worst (the dimmer) solutions changing
part of the updating equations and some modification with additional mutation operator.

a. Modifying the movement of the brightest or dimmer firefly

In a high dimensional problem, the exploration is weak which results in premature conver‐
gence. To deal with this, two modifications are proposed in [51] for the standard firefly
algorithm. That is, for the initial random N solutions, their opposites will be generated, and
the best N solutions will be chosen from the N solutions and their opposites where an opposite
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number for x is given by xmin + xmax − x. The brightest solution xb will be updated as follows:
    y = xb

     for i =1 : D (for all dimensions)

       for j =1 : N  (for all the solutions)

         y(i)= xj(i)

         if [ f (y) is better than f (xb)] xb = y end if

      end for

    end for

Similar to the previous modification, here also the best solution will improve or will not change
in each of the iterations.

Opposition-based learning is also used in [52], to update the dimmer solution xw, a solution

with worst performance, using xw ={xb, ε < p
xmin + xmax − xw, Otherwise, for an algorithm parameter p.

Indeed, it relocates the worst solution to a new position that may give the algorithm a good
explorative behaviour.

b. Mutation incorporation

Jumper firefly algorithm is a modified firefly algorithm in which a memory on the performance
of each of the solution is kept [53]. A criterion called hazard condition is defined, and solutions
will be tested based on their previous performance. If they are in hazardous condition, they
will be randomly replaced by a new solution. Hence, based on the hazard condition, a mutation
can be done by replacing the weak solution based on previous performance by a new solution.

Another modification in this category is done by Kazemzadeh-Parsi [54], where each iteration
k random ‘newborn’ solutions will be generated to replace the weak solutions. In addition to
this mutation, highly ranked k1 solutions from the previous iteration will replace the same
number of weak solutions. The other modification is that, rather than having consecutive
movement of a firefly towards brighter fireflies, a single combined direction, the average of

the directions ( 1
l ∑

i=1

l
xj) for brighter fireflies xj 's, will be computed and used. Similar approach

is used in [55]. In the first case, where newborn solutions replace weak solutions, the number
of solutions should not be large; otherwise it behaves as an exhaustive search. In the second
case, whenever some solutions are replaced by others from the previous solutions, the
solutions coming from the previous iteration will more or less perform similar search behav‐
iour as what has been done in the previous iteration.

Another modification of firefly algorithm by introducing new solutions as a mutation or
crossover is given in [26, 56]. In addition to adaptive parameter α, they introduced two
mutation operators and five crossover operators based on the mutated solutions. The first
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mutation operator works by combining randomly selected three solutions, xq1, xq2 and xq3,
different from xi, from the solution set xmute1 = xq1 + ε(xq2− xq3)  and the second based on the
mutated solution from the first mutation operators, the best and worst solutions (for an
iteration t xmute2 = xmute1 + εt(xb− xw) . Based on these two solutions, five solutions will be
generated, and the best one from the mutated as well as the new five solutions replace xi.
Similar modification of α and two mutation types are also proposed in [24]. In [57], the
parameter α is made to adapt using chaotic mapping and mutation operators.

c. New updating strategy

This is another category of Class 2 modification in which the updating formula, given by Eqs.
(6) and (7), is modified or changed. The first modification, to mention in this category, is the
modification proposed in [57]. For a firefly i attracted by another firefly j, the search is updated
to be in the vicinity of xj, as given by xi : = xj + β(xj − xi) + αε. Furthermore, after the update, only
improving solutions are accepted. Since the update is done based on the location of xj, the
exploration property of points in between the two solutions will not be done, and it will be
trapped in local optimum solution provided xj is a local solution, and the step lengths are small.
Through iterations, the solutions will be forced to be in a neighbourhood of the best solution.
The diversity of the solutions will also be low.

A similar modification in the vicinity of the brighter firefly is given in [58]. They proposed two
updating formulas, with and without division, as the authors name them. The updating
formula, without division, is given by xi : = xj + αε. Once the fireflies are sorted according to
their brightness, increasing with their index, the updating formula will be defined by
xi : = xj + α

j ε, which will decrease α as the brightness increases and which will give a good
intensification or exploitation property. In addition, the parameters α and γ are made adaptive.
This put this modification in both Class 1 and Class 2 in our classification. Similar discussion
holds for a similar work done in [57]. In addition, unlike in [59], there is an attraction term in
the direction from the brighter xj towards xi, that means moving the brighter firefly in a non-
promising direction replaces xi. Hence, in this sense, the modification in [58] is better as it
moves the solution not in a non-promising direction but randomly.

For a data clustering problem, the standard firefly algorithm is modified firefly algorithm [60,
61]. They proposed a new updating formula to increase the influence of the brightest firefly.

The new updating formula is given by xi : = xi + β(xj − xi) + β0e
−γri ,gbest

2

(xgbest − xi) + αε. This means
that a firefly is not only attracted to brighter fireflies but also by the best solution found so far,
xgbest  . Suppose there are l brighter fireflies, brighter than xi, at the end of the iteration the

attraction term will be ∑
j=1

l
β(xj − xi) + lβ0e

−γri ,gbest
2

(xgbest − xi). Hence, repeatedly moving a firefly to

the best solution increases the attraction step length, and based on the feasible region, it usually
may not be acceptable. Furthermore, the global solution found can be an optimal solution, and
it may result in the solutions to be forced to follow that local solution rather than exploring
other regions in each loop of iteration. In [61], four ten-dimensional benchmark problems and
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may not be acceptable. Furthermore, the global solution found can be an optimal solution, and
it may result in the solutions to be forced to follow that local solution rather than exploring
other regions in each loop of iteration. In [61], four ten-dimensional benchmark problems and
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four twenty-dimensional benchmark problems along with Iris data set are used for clustering.
Similar modification is done in [62]. In addition, to update α in a decreasing manner, the
updating formula for a solution xi based on the brighter firefly xb and the best solution from
memory gbest with a new algorithm parameter λ is modified as

xi : = xi + β0e
−γrij

2

(xj − xi) + β0e
−γri ,best

2

(xb− xi) + λε(xi − gbest) + αε.

Fuzzy firefly algorithm is another modification of the standard firefly algorithm [63]. Even
though they start with a wrong claim by saying "in the standard firefly algorithm, only one firefly
in each iteration can affect others and attract its neighbours", they try to increase the exploration
property of the algorithm by adding an additional term in which the top k fireflies attract

according to xi : = xi + β0e
−γeij

2

(xj − xi) +∑
h =1

k
A(h )β0e

−γeih
2

(xh − xi) αε, where A(h )=
f (xb)

l ( f (xh ) − f (xb))
 with l

being a new algorithm parameter. The effect of the best k fireflies is doubled, and if this
updating mechanism is done for each brighter firefly xj then its effect is more than double.
Furthermore, multiplying the random term with the second expressions affects their step
length and deletes the random movement. Hence, it forces the fireflies to follow best k
solutions. Exploring other regions is not possible with this update.

Another modification with a new updating formula is proposed in [64] and is given by

xi : = {xi + β(xj − xi) + αε(xmax− x )min , ifε >0.5
MaxGen-Itr

MaxGen (1−η)xi + ηxb
, otherwise where β0 is computed based on the

location of xi normalized by the locations of fireflies in the search space and γ is computed
with a direct relation with β0 and additional two parameters; η is a value based on the difference
between the location of the fireflies.

Diversity-guided firefly algorithm is one of the recent modified versions [65]. The modification
is done to make the solutions as diverse as possible with a given threshold. The updating
mechanism of the standard firefly is used until diversity of the solution falls beyond the given

threshold. The diversity is measured by 1
NL ∑

i=1

N
 where L is the longest diagonal of the

feasible region, and x̄ is the average position of all fireflies. If the diversity is less than a
predefined threshold value, then the updating formula will be xi : = xi + β(xj − xi) + αε(xi − x̄). The
modification proposed is effective in diversifying the solutions by replacing the random
movement by moving the solutions away from the average position of fireflies.

In [66, 67], a mutated firefly algorithm is proposed in such a way that the brighter firefly
donates some of its features based on a new algorithm parameter called probability of
mutation, pm. The features and their amount copied from the bright firefly are not mentioned.
However, based on the context, it seems some components of the vectors for xi will be replaced
by the corresponding components from the brighter firefly xj. In [66], this mutation operator
will replace the updating formula given in Eq. (6) whereas in [67], the mutation will be done
after the update is taken place.

In [68], a firefly located at xi first checks the direction towards other brighter fireflies and looks
for the one that improves its performance. If there exists such a solution in which xi moves
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towards the firefly, its brightness increases. Checking the direction towards each of the solution
may increase the complexity. Furthermore, in order to escape a local solution some solution
should be allowed to decrease its performance; hence in this modification it is highly affected
by local optimum solutions especially in misleading problems.

Another modification in this category is introduced to deal with economic dispatch optimi‐
zation of thermal units [69]. A memory is used to record the best solution found so far. Based
on cultured differential evolution, the updating formula is modified as

xi : = xi + aβ(gbest − xi) + bα(ε()−0.5) where a =
f (xi − f (gbest ))

f max − f min
 and b = xmax − xmin for xmax and xmin being

the maximum and minimum component of vector x, respectively.

Another modification in this category is presented in [70]. The updating formula becomes
xi : =wxi + β(xj − xi) + αε() for a weighting parameter w given by w =wmax − (wmax −wmin) Itr

MaxGen .

3.2.1.3. Class 3 modifications (change in search space or probability density functions)

This class of modifications is on the abstract level modification and includes two types of
modifications. The first one is changing the solution space to an easy search space, and the
second one is on the types of probability distribution that is used to generate a random vector
direction for the random movement.

a. Change in search space

In the modified version presented in [71], each component of a solution will be represented
by quaternion xi(k )= (y1

(i), y2
(i), y3

(i), y4
(i)) for all components k of xi, and the updating will be done

over the quaternion space. In order to compute the brightness, the Euclidian space is used by
changing the quaternion space to the search space by taking the norm function, xi(k )=

. Even though the search space increases fourfold, it is interesting to zoom in
into each component and perform the search for optimal solution. However, since a norm is
used to convert quaternion space to the search space, a mechanism to deal with negative values
should be studied. A more mathematical support should be provided along with complexity
study.

b. Change in probability distribution function

Perhaps the first work which tries to adapt the randomness movement in the updating process
is by Farahani et al. [72, 73]. Even though they started with a wrong claim by saying ‘In standard
Firefly algorithm, firefly movement step length is a fixed value. So all the fireflies move with a fixed
length in all iterations’ by ignoring the random variable ε that makes the step length between 0
and α. They updated the step length to decrease with iteration and introduced a new parameter
which updates each solution using xi : = xi + αε(1− p), where p is a random vector from Gaussian
distribution. This will increase the randomness property of the algorithm as it randomly moves
once using the usual updating equation. The same modification is also employed in [74].
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By enhancing the random movement of a firefly algorithm, Levy firefly algorithm is introduced
in [75]. This is the first modification made to firefly algorithm with the Levy distribution
guiding the random movement by generating a random direction as well as the step length.
The update formula is modified as xi : = xi + β(xj − xi) + α sign(ε)⊗ Levy; ⊗ indicates a component-
wise multiplication between the random vector from the Levy distribution and the sign vector.
Similarly, in [76], Levy distribution is used to guide the random term of the updating formula.

In addition, the parameter α is made to decrease with iteration, using α =
αmax

It r 2 . Furthermore,
what they call information exchange between top fireflies will be done. That is, two solutions
are randomly chosen from the top fireflies, and a new solution on the line joining the two
fireflies near the brightest one will be generated. Similar approach of using Levy distribution
with the step length is generated using a chaotic random number and has applications in image
enhancement [77]. The same updating using Levy distribution and same formula for α is used
in [78]. In addition to these updates, a communication between top fireflies is used in [79].
Levy distribution along with other probability distribution is suggested for the randomized
parameter and used in [80, 81].

3.2.2. Modifications for problems with non-continuous variables

Even though firefly algorithm is introduced for continuous problems, due to its effectiveness
it has been modified for non-continuous problems as well. In this section, we will look at three
classes of modification. The first one is when modifications are made to solve binary problems.
The second is for integer-valued problems which include problems whose variable can have
discrete values. The last one is mixed problems in which some of the variables are continuous
and the rest are non-continuous.

3.2.2.1. Modifications for binary problems

To deal with set covering problem, a binary firefly algorithm is proposed in [82]. There is no
modification in the updating process except converting the solution to either one or zero. Three
ways of conversion are proposed in [82]. The conversion works dimension wise. After a
solution xi is updated, for each component p of xi, three rules based on a transfer function T,
which will change the new value of xi in the interval [0, 1], are given with eight transfer

functions. The first rule of conversion is given by xi(p)= {1, ε <T (xi(p))
0, Otherwise

. The second is

xi(p)= {(xi
(t )(p))−1, ε <T (xi

t+1(p))

xi
(t )(p), Otherwise

, where (xi
(t )(p))−1 is the complement of xi

(t )(p) i.e. if xi
(t )(p)=1

then (xi
(t )(p))−1 =0, otherwise (xi

(t )(p))−1 =1, xi
(t )(p) and xi

(t+1)(p) are the pth components of xi from
the previous iteration and after the update. The last rule is given by

xi(p)= {(x * (p)), ε <T (xi
t+1(p))

0, Otherwise
 where x* is the best memory from memory.

Another modification for binary problems which works dimension wise, in each dimension,
is presented in [83]. The update formula of the standard firefly algorithm is used. After the
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update, the solution will lie in the interval [0, 1] using tanh(xi(p)) function for the pth component
of solution xi. Based on the user-defined threshold value, xi(p)=1; if the result is greater than
the threshold value, then it will be 0. Another similar work of using sigmoid function is given
in [84, 85]. In [86–88], tangent hyperbolic sigmoid function is used for discretizing the solution

and also in the updating process using xi ={xi + β0e
−γr 2

(xj − xi) + αε, if ε < |tanh(λr)|
xi, else

, where λ

is a parameter close to one.

Another discrete firefly algorithm, in order to deal with job, schedule problem is proposed in
[89]. Each firefly xi in the problem will have two classes of index as xi(p, q) where p represents
the jobs and q their priority in that particular firefly. In order to change real values to binary

after the update as sigmoid function, 1

1 + e
−xi ( p ,q)  is used. Based on the values of the sigmoid

function for each job p, the one with higher probability in q will be assigned with value 1 and
the rest priority for that particular job with 0.

In [90], for a dynamic knapsack problem, firefly algorithm has been modified. The conversion
of the solutions is done based on the property of the problem using priority-based encoding.
In addition to making the algorithm to suit for the problem, some modifications are done to
increase its effectiveness. One of the modifications is that a firefly i moves towards firefly j if

j is brighter and ε < ranki
−

mode(Itr −1,MaxGen)
MaxGen , where ranki is the rank of firefly i in the solution popula‐

tion. If the condition is not met, i.e. if ε ≥ ranki
−

mode(Itr −1,MaxGen)
MaxGen , no updating mechanism is mentioned

in the chapter. A similar modification is used in [91]. In addition to the discretization done in

[90], the authors in [91] proposed adaptive step length given by α : = 1−φe −mod( Itr
Itr +1 ,1)

α for a
scaling parameter ϕ. Furthermore, after the updates, two additional moves are introduced.
The first one is a random flight by 10% of the top fireflies with 0.45 probability. The move will
be accepted only if it is improving. The second is a local search of xb, after 10% of the iterations
xb will do a local search, and the update will be accepted if it is improving. The additional local
searches help to improve the quality of the solution. Furthermore, they also mentioned that
chaotic mapping can be used to generate random numbers.

Another modification in this category is presented in [92]. In addition to the discretization,

they have made α and γ adaptive using α =αmax −
Itr (αmax −αmin)

MaxGen  and γ =γmaxe
Itr

MaxGen ln
γmin
γmax . Further‐

more, the random movement is replaced by αL (xb)| xi − xb |  for a random number L(xb) from
Levy flight centred at xb. Three discretization methods, the sigmoid, elf function and rounding
function are used to change values in the range [0, 1] along with three updating processes. The
first one is done on the continuous space, and sigmoid function will be used to change the
results to binary; the second one is the update done on the discrete space, and the discretized
results can be used and the third one, instead of using the updating formula, uses a probabilistic
method based on sigmoid function.
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3.2.2.2. Modifications for integer optimization problems

In [93], firefly algorithm has been modified to deal with software modularization as a graph-
partitioning problem. Initially, random integer-encoded solutions are generated. The
hamming distance, the number of different entries between two solutions with the same index,
is used to measure the distance between two solutions. The update is done by switching a
number of entries of a firefly by the entries from a brighter firefly.

Another modification in this category is done in [94]. The modification is based on a concept
of random key, which is proposed in [95]. The method uses a mapping of a random number
space, [0,1]D, to the problem space.

In [96, 97], the standard firefly algorithm is modified for loading pattern enhancement. The
generation of random solutions uses random permutation, and the distance between fireflies,
d (xi, xj), is measured using hamming's distance. The updating process is separated and made
sequentially; first the β step, a move due to the attraction, and next the α step, a move due to
the random movement. In the β step, first same entries with same index for both fireflies, xi

and xj, are preserved and then an entry will be copied from xj if ε <β, where β = 1
1 + γd (xi , xj)2 ;

otherwise the xi entry will be used. The α step is done using xi : = Int(xi + αε), with a swapping
mechanism to preserve feasibility. A similar modification of sequentially applying β step and

α step is also used in [98], with additional modification on β and α using β = e
−

(max{Pi }− pij )2

max{Pi }  for
Pij =ε + 1

| ranki − rankj |  and α = D − D
MaxGen . It is a good idea to adapt and increase the step length

with the dimension of the problem. For instance, when D = 12, the step length α will start from
11 and decrease to zero in last iterations. However, if the feasible region is in [0, 4], the search
in more than 60% of the time α will be at least 4. Hence, the moves in the first 60 plus % are
not acceptable because it will force the solution out of the feasible region. Hence, the modifi‐
cation needs to consider the size of the feasible region. Another similar modification with the
modifications done in [97] is given in [99] with additional modification to keep the best solution
and use it in the updating process. That is based on ρ =0.5 + 0.5Itr

MaxGen , and if ε >ρ the brighter
firefly xj will be replaced by the global best from memory.

For travel salesman problem, firefly algorithm has been modified in [100]. Initial solutions are
generated using permutation of D, and each solution is represented as a string of chromosomes
of these numbers. The distance between two solutions is computed using r = 10A

D , where A is
the number of different arcs. The movement is done randomly selecting the length of move‐
ment between 2 and r and then using inversion mutation towards better solution; if there is
no better solution, a random move will be done. Each firefly will produce m solutions and the
best N solutions will be chosen to pass to the next generation.

Another modification in this category is proposed in [101]. The decision variables, xi 's,
represent assembly sequence. In the update, the random movement is omitted, and the
attraction move is done in the discrete space. The attraction direction is computed for each
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dimension k using s ji(k )= {xj(k ), if xj(k )≠ xi

0, else
, and the update will be done by xi : = xi + S ji where

S ji ={s ji, if α |ε −0.5| <β0e
−γr 2

0, else
. In addition, the visual range, dv, which will control a firefly

to be influenced by fireflies in tis visual range, is introduced. The visual range is computed by

dv ={ 3Itr (d vmax − d vmin)
2(MaxGen − 1) + dvmin, if Itr < 2

3 MaxGen
dvmax, otherwise

 for parameters dvmax and dvmin. This means that a

firefly will not be attracted to any brighter firefly but to a brighter firefly in a visible range.

Firefly algorithm has been discretized for supply selection problem in [102]. The sum of the

absolute differences between the entries is used to measure the distance r =∑
k=1

D
| xj(k)− xi(k)| . In

addition, the movement is modified based on the property of the problem using rounding up
for step length. In most cases, a modification specific to a problem is effective for that particular
problem or a class of problems. However, it is hard to generalize the problems in other
domains. It would be interesting to generalize the approach to be tested in other problem
domains as well.

3.2.2.3. Modifications for mixed optimization problems

Perhaps the first modification to the standard firefly algorithm in this category is presented in
[103]. The updating of solutions is conducted using the updating mechanism of the standard
firefly algorithm. To deal with the discrete variables, constraint handling mechanism is used
based on penalty function. In addition, the authors proposed two ways to generate a diverse
set of random initial solutions. An adaptive random step length is also proposed using similar
updating way in [104]. The same approach is improved in [105] by adding a scaling parameter
for the random movement based on the difference between the maximum and minimum
values for each variable. Portfolio optimization can be expressed as a mean-variance problem
which belongs to the group of quadratic mixed-integer programming problems. In [106, 107],
firefly algorithm has been extended with the use of rounding function and constraint handling
approach. Deb’s method [108] is also used for constraint handling. In addition, α is modified

using α : =α 1− {1− ( 10−4

9 ) 1
MaxGen } .

3.3. Discussion

Like any metaheuristic algorithm, firefly algorithm is prone to parameter values. It is noticed
that changing the parameters based on the search state is effective. Hence, modification on
parameters is a direct forward idea to improve the performance of firefly algorithm. As the
search proceeds, in order to have a conversion with good precision, the randomness movement
must decrease. Hence, the randomness step length, α, is modified to be adaptive in which its
value decreases with iteration [23–28, 41, 45, 46, 48]. Figure 1 shows the graph of the modifi‐
cations.
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Figure 1. With initial and final values of 2.5 and 0.4; α1 [23], α2 [24–26], α3 [27], α4 [28], α5 [41], α6 [45, 46, 50], α7 [48] with
λ = 0.4 and α8 [48] with λ = 2.1.

The decreasing scenario for α starting from the first iteration may not always be a good idea.
Perhaps, it is better to keep a constant α for a number of iterations and start the decreasing
scenario based on the performance of the solutions, especially when the solution approaches
an optimum point. This can be one of the possible ideas for future work. Some modifications
are done making the parameter α adaptive based on the performance of the solution [29, 38,
43]. Some of the modifications also involve a random term, and it behaves neither in decreasing
nor in an increasing way [47, 49, 59]. In addition, other approaches such as encoding the
parameters in the solution [109] and modifying the parameters based on the problem [44] are
also proposed.

The attraction term has also been modified in different ways. Adaptive light absorption
constant of the medium changing with iteration is given in some studies. This modifications
use increasing function [46], decreasing function [43, 67] or neither increasing nor decreasing
function [33–38, 49, 50] of γ. The modification is neither increasing nor decreasing especially
when a chaotic distribution [33–38] or normal distribution [34, 49, 50] is used to compute the
update. Increasing γ implies the decrease of the attraction step length, and its decrease implies
an increase in the step length. The attraction step length β has also been modified. A chaotic
mapping is used to modify β in some of the studies [33–38]. It should be noted that using a
chaotic map or updating γ does update β. For instance, Figure 2 shows that when γ is updated
using a logistic map, the resulting β is also chaotic.

Hence, γ or β should not be updated at the same time. In addition to γ updating, β has also
been done based on minimum and final values [39, 40], depending on the location of the
solution [31] and the light intensity of solutions [32]. In addition, different approaches are used
to measure the distance between the fireflies [31, 41, 45]. Modifying the feasible region should
be considered as a very big step length that may take the solution far away from the brighter
solution and possibly out of the feasible region. The property of the random step should also

A Review and Comparative Study of Firefly Algorithm and its Modified Versions
http://dx.doi.org/10.5772/62472

299



be properly tuned in agreement with the attraction; otherwise, the random movement may
dominate the attractiveness step length.

Figure 2. The effect of chaotic map update of γ on β [34].

The movement of the best solution should be tuned properly. If it is allowed to decrease then
its best performance may get lost. Hence, the approaches used to preserve the best solution
are ended effectively [32, 52].

Mutation is another good approach to diversify the solutions which in turn increase the
exploration behaviour of the algorithm [24, 53–58]. However, generating many solutions may
hinder the search as it will take long to run. In addition, accepting weak solution should also
be incorporated in deceiving problems; a solution needs to decrease in order to escape local
solutions.

Modifying the update equation is another interesting modification featured in some studies
[56, 58–61, 63–67, 69]. These studies suggest that the update should be done in the vicinity of
the brighter firefly [58, 60]. This is not always a good idea as the region in between the two
solutions will not be explored. Some of the studies indicate an increase in the attraction towards
brighter fireflies [61, 64]. It simply means that increasing the step length of the attraction may
dominate the random movement or even take the solution out of the feasible region. A memory
is utilized to save the best solution found and additional attraction term towards that global
solution is added in [63, 69]. It is a good idea in which the best solution will not be lost through
iteration. To increase the diversity of the solution, an effective modification is proposed in
[110]. Using such kind of modification, the diversity of the solutions will be preserved, and
the exploration behaviour of the algorithm will be improved.
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Basically, two updating strategies are proposed for the non-continuous case. The first one is
using the same updating formula and changing the results to discrete values afterwards [82,
94, 104]. And the second is to modify the updating formula on the discrete space [97–101]. The
first problem is susceptible of trapping in local solution and misses the optimal solution. The
optimal solution for a continuous version of a discrete problem may not always be an optimal
solution for the discrete problem. Hence, the algorithm will tend to converge to the optimal
solution of the continuous version of the problem. Hence, the second approach has an
advantage in such cases.

4. Simulation results

The comparison of results is performed between the standard firefly algorithm and non-
parameter modified version, i.e. Class 2 and Class 3 modifications. The modified versions
selected for simulation are based on two criteria, the first one clear modification, that is the
modification should be clearly described, and the second one is with small number of new
parameters. In some of the modifications, a number of new algorithm parameters are intro‐
duced and tuning this parameter by itself needs another study so they are not included in the
simulation. The modified versions used for simulation include Firefly Algorithm 1 [32], FFA2,
[52], FFA3 [53], FFA4 [26, 57], FFA5 [24, 59], FFA6 [58] FFA7 [60], FFA8 [61, 62], FFA9 [69],
FFA10 [63] where xi-gbest is replaced by gbest-xi, FFA11 [110], FFA12 [72–74], FFA13 [75–79],
FFA14 from [70].

4.1. Benchmark problems and simulation setup

Five benchmark problems are selected from different categories as presented in Table 2. The
simulations are performed on Intel® Core™i3-3110M CPU @ 2.40 Ghz 64 bit operating system.
MATLAB 7.10.0 (R2010a) is used for these simulations. The algorithm parameters are set as
given in Table 2 for dimensions 2 and 5.

4.2. Simulation results and discussion

The simulation results, as presented in Table 3, show that some of the algorithms are very
expensive in terms of computational time but give a good result, and others have small running
time. For instance, in second problem, when the dimension is 2 on average, FFA3 outperforms
all with average CPU time of 8.8, whereas FFA1 and FFA2 give a good approximation with
smaller average CPU time. In general, it can be seen that FFA4 is very effective but not with
the computational time. FFA1 and FFA2 give good approximate results with smaller CPU time
compared to FFA4. However, when the dimension increases, FFA2 outperforms FFA1.
Perhaps it is due to the fixed random direction m for all the simulations.
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Problems Ref.  Properties of
the problem

Parameters and set-up

D = 2 D = 5

f1

e
−∑

i=1

D

xi 2

−2e
−∑

i=1

D

(
xi
15 )

6

∏
i=1

D

cos2xi

−20≤ xi ≤20

[111] Multimodal
Continuous
Differentiable
Non-separable

N = 50
α= 4
γ = 2

N = 200
α = 5
γ = 2

f2 ∑
i=1

D | xisinxi + 0.1xi |
−10≤ xi ≤10

[112] Multimodal
Continuous
Non-differentiable
Separable
Non-scalable

N = 25
α = 3
γ = 2

N = 100
α = 4
γ = 2

f3 ∑
j=1

D

∑
i=1

5

p(i)xj5−i  for

p = 0.03779−0.84056−14.427.134
−1≤ xi ≤12

[113] Multimodal
Discontinuous
Non-differentiable
Separable

N = 20
α = 1.5
γ = 2

N = 100
α = 3
γ = 2

f4

−200e
0.02 ∑

i=1

D

xi 2

−32≤ xi ≤32

[112] Unimodal
Continuous
Differentiable
Non-separable
Non-Scalable

N = 60
α = 6
γ = 2

N = 250
α = 7
γ = 2

f5 ∑
i=1

D

εi | xi|i

−5≤ xi ≤5

[112] Unimodal
Continuous
Non-differentiable
Separable
Scalable
Stochastic

N = 20
α = 1.5
γ = 2

N = 70
α = 2.5
γ = 2

Table 2. Selected benchmark problems and simulation set-up.

F1 F2 F3 F4 F5

D 2 5 2 5 2 5 2 5 2 5

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

FFA f(x*) − 0.0195 0.1002 0.00 0.00 0.6696 0.4483 0.0504 0.0135 −6.6745 1.2874 −6.5854 3.6570 −193.75 3.4097 −166.46 7.3072 0.0158 0.0148 0.0477 0.0373

CPU 1.4 0.3 1.4 0.0 0.3 0.1 0.1 0.0 0.2 0.1 2.7 0.1 1.8 0.4 8.4 2.5 0.2 0.0 0.3 0.1

FFA1 f(x*) − 0.7185 0.4220 0.00 0.00 0.0039 0.0085 0.0109 0.0052 −7.6507 0.00 −17.135 1.8541 −199.61 0.1757 −195.44 1.1286 0.0005 0.0006 0.0002 0.0003

CPU 1.5 0.3 1.5 0.1 0.4 0.1 0.1 0.0 0.3 0.1 2.8 0.2 1.8 0.4 8.8 2.4 0.3 0.0 0.3 0.0

FFA2 f(x*) −0.7974 0.4028 0.00 0.00 0.0003 0.0003 0.0000 0.0000 −7.6507 0.00 −19.126 0.0 −199.98 0.0136 −199.98 0.0076 0.0047 0.0092 0.0048 0.0102

CPU 2.6 0.4 3.5 0.3 1.1 0.1 0.1 0.0 0.4 0.1 4.5 0.4 2.2 0.5 11.3 2.9 0.4 0.1 0.9 0.2

FFA3 f(x*) −0.0128 0.0903 0.00 0.00 0.4402 0.3768 0.0397 0.0158 −7.2621 0.7406 −8.6751 2.9248 −195.20 2.6004 −177.04 6.5591 0.0085 0.0085 0.0135 0.0125
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CPU 1.5 0.3 1.5 0.1 0.4 0.1 0.1 0.0 0.3 0.1 2.8 0.2 1.8 0.4 8.8 2.4 0.3 0.0 0.3 0.0

FFA2 f(x*) −0.7974 0.4028 0.00 0.00 0.0003 0.0003 0.0000 0.0000 −7.6507 0.00 −19.126 0.0 −199.98 0.0136 −199.98 0.0076 0.0047 0.0092 0.0048 0.0102

CPU 2.6 0.4 3.5 0.3 1.1 0.1 0.1 0.0 0.4 0.1 4.5 0.4 2.2 0.5 11.3 2.9 0.4 0.1 0.9 0.2
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F1 F2 F3 F4 F5

D 2 5 2 5 2 5 2 5 2 5

μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ μ σ

CPU 1.3 0.2 1.4 0.1 0.3 0.1 0.1 0.0 0.2 0.1 2.6 0.3 1.6 0.3 8.1 2.2 0.2 0.0 0.2 0.1

FFA4 f(x*) −1.00 0 −1.00 0.00 0.0 0.0 0.00 0 −7.6507 0.00 −17.977 1.9499 −200 0.0 −200 0.0 0.0 0.0 0.00 0.00

CPU 44.2 6.7 60.4 3.8 8.8 0.6 1.6 0.2 4.2 0.3 126.5 47 52.56 10.3 574.8 96.4 4 0.4 5 0.8

FFA5 f(x*) −0.0372 0.1711 0.00 0.00 0.0078 0.0169 0.0113 0.0038 −7.6507 0.00 −17.610 1.2629 −199.58 0.2164 −194.51 1.3993 0.0013 0.0013 0.0009 0.0007

CPU 37.6 5.8 51.0 2.4 7.8 0.8 1.4 0.1 3.6 0.3 102.5 43.1 45.6 9.3 493.6 80.1 3.4 0.3 4.2 0.8

FFA6 f(x*) 0.0000 0.00 0.00 0.00 0.7534 0.5307 0.0277 0.0091 −7.6507 0.00 −13.323 0.8509 −198.43 0.7722 −193.95 1.4193 0.0051 0.0045 0.0014 0.0008

CPU 1.4 0.2 1.5 0.1 0.3 0.1 0.1 0.0 0.3 0.1 2.7 0.3 1.6 0.3 8.6 2.5 0.2 0.1 0.3 0.1

FFA7 f(x*) 0.0000 0.00 0.00 0.00 0.0664 0.0330 0.0007 0.0002 −7.6507 0.00 −12.286 1.2151 −199.98 0.0136 −196.05 1.8438 0.0001 0.0002 0.0000 0.0001

CPU 0.7 0.1 0.8 0.1 0.2 0.1 0.1 0.0 0.2 0.1 1.7 0.2 0.9 0.2 4.0 1.3 0.1 0.0 0.2 0.0

FFA8 f(x*) 0.0000 0.00 0.00 0.00 0.7113 0.5634 0.0499 0.0149 −7.2207 0.8647 −6.2323 3.2674 −193.81 3.7645 −167.58 6.8116 0.0084 0.0085 0.0425 0.0372

CPU 3.6 0.6 6.8 0.1 1.3 0.1 0.1 0.0 0.9 0.1 7.6 0.7 4.9 0.8 29.4 8.5 0.8 0.1 1 0.1

FFA9 f(x*) −0.0303 0.15 0.00 0.00 1.1369 0.6702 0.1115 0.0251 −5.4108 1.7004 −1.0048 13.039 −188.39 5.3655 −104.37 12.818 0.0486 0.0399 0.0951 0.0915

CPU 0.3 0.1 0.2 0.0 0.2 0.1 0.0 0.0 0.2 0.1 0.5 0.1 0.4 0.1 0.7 0.1 0.1 0.0 0.1 0.0

FFA10 f(x*) 0.0000 0.00 0.00 0.00 1.0466 0.6202 0.0403 0.0203 −6.7824 1.0078 −13.245 1.6688 −175.52 12.883 −172.68 10.459 0.0064 0.0055 0.0014 0.0012

CPU 3.5 0.6 11.1 0.1 1.2 0.1 0.1 0.0 0.9 0.1 9.3 0.9 4.7 0.9 64.2 18.1 1.0 0.1 1.4 0.2

FFA11 f(x*) 0.0000 0.00 0.00 0.00 0.6357 0.4193 0.0514 0.0129 −6.7098 1.0934 −6.1737 3.3915 −194.49 3.3451 −165.94 7.3183 0.0208 0.0186 0.0471 0.0324

CPU 1.3 0.3 1.4 0.1 0.3 0.1 0.1 0.0 0.3 0.1 2.7 0.3 1.7 0.3 8.3 2.3 0.2 0.1 0.3 0.1

FFA12 f(x*) 0.0000 0.00 0.00 0.00 0.6611 0.5103 0.0493 0.0141 −6.5986 1.3430 −6.8659 4.0703 −193.96 3.4841 −169.34 8.7051 0.0161 0.0160 0.0595 0.0452

CPU 1.5 0.2 1.5 0.1 0.4 0.1 0.1 0.0 0.3 0.1 2.9 0.3 1.8 0.4 8.4 2.4 0.3 0.0 0.3 0.1

FFA13 f(x*) 0.0000 0.00 0.00 0.00 2.1137 1.4840 0.0977 0.0315 −3.3360 3.2207 −1.1917 12.914 −189.53 4.8277 −148.59 12.7616 0.1356 0.1374 1.4724 2.4610

CPU 5.4 0.9 16.1 0.2 2.4 0.2 0.3 0.1 1.7 0.1 28 2.5 7.7 1.4 122 30.2 1.7 0.2 1.8 0.2

FFA14 f(x*) −0.6313 0.29 0.2399 0.4 0.0960 0.0829 0.0107 0.0037 −2.3289 7.0785 −0.4888 11.437 −198.32 0.8034 −193.92 1.4485 0.0046 0.0047 0.0010 0.0006

CPU 1.5 0.3 1.5 0.1 0.4 0.1 0.1 0.0 0.3 0.1 2.7 0.3 1.8 0.4 8.5 2.5 0.2 0.0 0.3 0.1

Table 3. Simulation results.

5. Conclusion

In this chapter, a detailed review of modified versions of firefly algorithm is presented. The
modifications are used to boost its performance for both continuous and non-continuous
problems. Three classes of modifications are discussed for continuous problems. The first one
being parameter level modification which will improve the performance of the algorithm. The
second class is on the updating mechanism level, in which new updating equation or mecha‐
nisms are introduced. The last class is in the abstract level in which change of solution space
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and probability distribution of the randomness term are discussed. The strength and weakness
of the approaches are also presented. Simulation results show that mutation-incorporated
firefly algorithm gives better result with larger computational time, whereas versions of firefly
algorithm with opposition-based learning and elitist movement for the brighter firefly give
approximate solution with smaller computational time. Hence, if a proper way of implemen‐
tation is used, mutation operator and elitist move of brighter firefly algorithm along with
possible implementation of opposition-based approach may perform better.
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