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Preface 

This two-volume book `Recent Advances in Robust Control' covers a selection of 
recent developments in the theory and application of robust control. The first volume
is focused on recent theoretical developments in the area of robust control and 
applications to robotic and electromechanical systems. The second volume is
dedicated to special topics in robust control and problem specific solutions. It
comprises 20 chapters divided in two parts.

The first part of this second volume focuses on novel approaches and the combination 
of established methods. 

Chapter 1 presents a novel approach to robust control adopting ideas from catastrophe 
theory. The proposed method amends the control system by nonlinear terms so that 
the amended system possesses equilibria states that guaranty robustness. 

Fuzzy system models allow representing complex and uncertain control systems. The 
design of controllers for such systems is addressed in Chapters 2 and 3. Chapter 2 
addresses the control of systems with variable time-delay by means of Takagi-Sugeno
(T-S) fuzzy models. In Chapter 3 the pole placement constraints are studied for T-S 
models with structured uncertainties in order to design robust controllers for T-S 
fuzzy uncertain models with specified performance. 

Artificial neural networks (ANN) are ideal candidates for model-free representation of
dynamical systems in general and control systems in particular. A method for system 
identification using recurrent ANN and the subsequent model reduction and
controller design is presented in Chapter 4.

In Chapter 5 a hierarchical ANN control scheme is proposed. It is shown how this may 
account for different control purposes. 

An alternative robust control method based on adaptive wavelet-based ANN is
introduced in Chapter 6. Its basic design principle and its properties are discussed. As 
an example this method is applied to the control of an electrical buck converter.
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XIV Preface

Sliding mode control is known to achieve good performance but on the expense of 
chattering in the control variable. It is shown in Chapter 7 that combining quantitative 
feedback theory and sliding mode control can alleviate this phenomenon. 

An integral sliding mode controller is presented in Chapter 8 to account for the 
sensitivity of the sliding mode controller to uncertainties. The robustness of the 
proposed method is proven for a class of uncertainties. 

Chapter 9 attacks the robust control problem from the perspective of quantum 
computing and self-organizing systems. It is outlined how the robust control problem 
can be represented in an information theoretic setting using entropy. A toolbox for the 
robust fuzzy control using self-organizing features and quantum arithmetic is 
presented. 

Integral variable structure control is discussed in Chapter 10. 

In Chapter 11 novel robust control techniques are proposed for linear and pseudo-
linear SISO systems. In this chapter several statements are proven for PD-type 
controllers in the presence of parametric uncertainties and external disturbances. 

The second part of this volume is reserved for problem specific solutions tailored for 
specific applications. 

In Chapter 12 the feedback linearization principle is applied to robust control of 
nonlinear systems. 

The control of vibrations of an electric machine is reported in Chapter 13. The design 
of a robust controller is presented, that is able to tackle frequency varying 
disturbances. 

In Chapter 14 the uncertainty problem in dynamical systems is approached by means 
of a variable gain robust control technique. 

The applicability of multi-model control schemes is discussed in Chapter 15. 

Chapter 16 addresses the control of large systems by application of partially 
decentralized design principles. This approach aims on partitioning the overall design 
problem into a number of constrained controller design problems. 

Generalized internal model control has been proposed to tackle the performance-
robustness dilemma. Chapter 17 proposes a method for the design of the Youla 
parameter, which is an important variable in this concept. 

In Chapter 18 the robust control of systems with variable time-delay is addressed with 
help of μ-theory. The μ-synthesis design concept is presented and applied to a geared 
motor. 

Preface XI 

The presence of hysteresis in a control system is always challenging, and its adequate 
representation is vital. In Chapter 19 a new hysteresis model is proposed and
incorporated into a robust backstepping control scheme.

The identification and H∞ controller design of a magnetic levitation system is
presented in Chapter 20. 

Andreas Mueller
University Duisburg-Essen, Chair of Mechanics and Robotics

Germany
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Robust Stabilization by 
Additional Equilibrium 

Viktor Ten 
Center for Energy Research 

Nazarbayev University  
Kazakhstan 

1. Introduction   
There is huge number of developed methods of design of robust control and some of them 
even become classical. Commonly all of them are dedicated to defining the ranges of 
parameters (if uncertainty of parameters takes place) within which the system will function 
with desirable properties, first of all, will be stable. Thus there are many researches which 
successfully attenuate the uncertain changes of parameters in small (regarding to 
magnitudes of their own nominal values) ranges. But no one existing method can guarantee 
the stability of designed control system at arbitrarily large ranges of uncertainly changing 
parameters of plant. The offered approach has the origins from the study of the results of 
catastrophe theory where nonlinear structurally stable functions are named as ‘catastrophe’.  
It is known that the catastrophe theory deals with several functions which are characterized 
by their stable structure. Today there are many classifications of these functions but 
originally they are discovered as seven basic nonlinearities named as ‘catastrophes’: 
 

3
1x k x  (fold); 

4 2
2 1x k x k x   (cusp); 

5 3 2
3 2 1x k x k x k x    (swallowtail); 

6 4 3 2
4 3 2 1x k x k x k x k x     (butterfly); 

3 3
2 1 1 2 1 2 2 3 1x x k x x k x k x     (hyperbolic umbilic);   

 3 2 2 2
2 2 1 1 1 2 2 2 3 13x x x k x x k x k x      (elliptic umbilic); 
2 4 2 2
2 1 1 1 2 2 1 3 2 4 1x x x k x k x k x k x      (parabolic umbilic). 

 

Studying the dynamical properties of these catastrophes has urged to develope a method of 
design of nonlinear controller, continuously differentiable function, bringing to the new 
dynamical system the following properties:  
1. new (one or several) equilibrium point appears so there are at least two equilibrium 

point in new designed system,  
2. these equilibrium points are stable but not simultaneous, i.e. if one exists (is stable) then 

another  does not exist (is unstable),  
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3. stability of the equilibrium points are determined by values or relations of values of 
parameters of the system,  

4. what value(s) or what relation(s) of values of parameters would not be, every time there 
will be one and only one stable equilibrium point to which the system will attend and 
thus be stable. 

Basing on these conditions the given approach is focused on generation of the euilibria 
where the system will tend in the case if perturbed parameter has value from unstable 
ranges for original system. In contrast to classical methods of control theory, instead of zero 
–poles addition, the approach offers to add the equilibria to increase stability and sometimes 
to increase performance of the control system.  
Another benefit of the method is that in some cases of nonlinearity of the plant we do not 
need to linearize but can use the nonlinear term to generate desired equilibria. An efficiency 
of the method can be prooved analytically for simple mathematical models, like in the 
section 2 below,  and by simulation when the dynamics of the plant is quite complecated.  
Nowadays there are many researches in the directions of cooperation of control systems and 
catastrophe theory that are very close to the offered approach or have similar ideas to 
stabilize the uncertain dynamical plant. Main distinctions of the offered approach are the 
follow: 
- the approach does not suppress the presence of the catastrophe function in the model 

but tries to use it for stabilization; 
- the approach is not restricted by using of the catastrophe themselves only but is open to 

use another similar functions with final goal to generate additional equilibria that will 
stabilize the dynamical plant. 

Further, in section 2 we consider second-order systems as the justification of presented 
method of additional equilibria. In section 3 we consider different applications taken from 
well-known examples to show the technique of design of control. As classic academic 
example we consider stabilization of mass-damper-spring system at unknown stiffness 
coefficient. As the SISO systems of high order we consider positioning of center of 
oscillations of ACC Benchmark. As alternative opportunity we consider stabilization of 
submarine’s angle of attack.  

2. SISO systems with control plant of second order  
Let us consider cases of two integrator blocks in series, canonical controllable form and 
Jordan form. In first case we use one of the catastrophe functions, and in other two cases we 
offer our own two nonlinear functions as the controller. 

2.1 Two integrator blocks in series 
Let us suppose that control plant is presented by two integrator blocks in series (Fig. 1) and 
described by equations (2.1) 
 

 
      u                     x2                  x1=y

ST2

1
ST1

1  

 
Fig. 1. 

 
Robust Stabilization by Additional Equilibrium 

 

5 

 

1
2

1

2

2

1

1

,

.

dx x
dt T
dx u
dt T

 

 


 (2.1) 

Let us use  one of the catastrophe function as controller:  

  3 2 2 2
2 2 1 1 1 2 2 2 3 13u x x x k x x k x k x       , (2.2) 

and in order to study stability of the system let us suppose that there is no input signal in 
the system (equal to zero). Hence, the system with proposed controller can be presented as: 

  

1
2

1

3 2 2 22
2 2 1 1 1 2 2 2 3 1

2

1

1 3

,

.

dx x
dt T
dx x x x k x x k x k x
dt T

 

       


  

 1y x . (2.3) 

The system (2.3) has following equilibrium points 

 1
1 0sx  , 1

2 0sx  ; (2.4) 

 2 3
1

1
s

kx
k

 , 2
2 0sx  . (2.5) 

Equilibrium (2.4) is origin, typical for all linear systems. Equilibrium (2.5) is additional, 
generated by nonlinear controller and provides stable motion of the system (2.3) to it.  
Stability conditions for equilibrium point (2.4) obtained via linearization are 

 

2

2

3

1 2

0

0

,

.

k
T
k

T T

 

 


 (2.6) 

Stability conditions of the equilibrium point (2.6) are 

 

2 2
3 2 1

2
1 2

3

1 2

3 0

0

,

.

k k k
k T

k
T T

 
 


 

 (2.7) 

By comparing the stability conditions given by (2.6) and (2.7) we find that the signs of the 
expressions in the second inequalities are opposite. Also we can see that the signs of 
expressions in the first inequalities can be opposite due to squares of the parameters k1 and 
k3 if we properly set their values. 
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oscillations of ACC Benchmark. As alternative opportunity we consider stabilization of 
submarine’s angle of attack.  

2. SISO systems with control plant of second order  
Let us consider cases of two integrator blocks in series, canonical controllable form and 
Jordan form. In first case we use one of the catastrophe functions, and in other two cases we 
offer our own two nonlinear functions as the controller. 

2.1 Two integrator blocks in series 
Let us suppose that control plant is presented by two integrator blocks in series (Fig. 1) and 
described by equations (2.1) 
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Let us use  one of the catastrophe function as controller:  

  3 2 2 2
2 2 1 1 1 2 2 2 3 13u x x x k x x k x k x       , (2.2) 

and in order to study stability of the system let us suppose that there is no input signal in 
the system (equal to zero). Hence, the system with proposed controller can be presented as: 

  

1
2

1

3 2 2 22
2 2 1 1 1 2 2 2 3 1

2

1

1 3

,

.

dx x
dt T
dx x x x k x x k x k x
dt T

 

       


  

 1y x . (2.3) 

The system (2.3) has following equilibrium points 

 1
1 0sx  , 1

2 0sx  ; (2.4) 

 2 3
1

1
s

kx
k

 , 2
2 0sx  . (2.5) 

Equilibrium (2.4) is origin, typical for all linear systems. Equilibrium (2.5) is additional, 
generated by nonlinear controller and provides stable motion of the system (2.3) to it.  
Stability conditions for equilibrium point (2.4) obtained via linearization are 

 

2

2

3

1 2

0

0

,

.

k
T
k

T T

 

 


 (2.6) 

Stability conditions of the equilibrium point (2.6) are 

 

2 2
3 2 1

2
1 2

3

1 2

3 0

0

,

.

k k k
k T

k
T T

 
 


 

 (2.7) 

By comparing the stability conditions given by (2.6) and (2.7) we find that the signs of the 
expressions in the second inequalities are opposite. Also we can see that the signs of 
expressions in the first inequalities can be opposite due to squares of the parameters k1 and 
k3 if we properly set their values. 
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Let us suppose that parameter T1 can be perturbed but remains positive. If we set k2 and k3 

both negative and 
2
3

2 2
1

3 kk
k

  then the value of parameter T2 is irrelevant. It can assume any 

values both positive and negative (except zero), and the system given by (2.3) remains 
stable. If T2 is positive then the system converges to the equilibrium point (2.4)  (becomes 
stable). Likewise, if T2 is negative then the system converges to the equilibrium point (2.5) 
which appears (becomes stable). At this moment the equilibrium point (2.4) becomes 
unstable (disappears). 
Let us suppose that T2 is positive, or can be perturbed staying positive. So if we can set the k2 

and k3 both negative and 
2
3

2 2
1

3 kk
k

   then it does not matter what value (negative or 

positive) the parameter T1 would be (except zero), in any case the system (2) will be stable. If 
T1 is positive then equilibrium point (2.4) appears (becomes stable) and equilibrium point 
(2.5) becomes unstable (disappears) and vice versa, if T1 is negative then equilibrium point 
(2.5) appears (become stable) and equilibrium point (2.4) becomes unstable (disappears). 
Results of MatLab simulation for the first and second cases are presented in Fig. 2 and 3 
respectively. In both cases we see how phase trajectories converge to equilibrium points 

 0 0,  and 3

1
0;k

k
 
 
 

 

In Fig.2 the phase portrait of the system (2.3) at constant k1=1, k2=-5, k3=-2, T1=100 and 
various (perturbed) T2 (from -4500 to 4500 with step 1000) with initial condition x=(-1;0) is 
shown. In Fig.3 the phase portrait of the system (2.3) at constant k1=2, k2=-3, k3=-1, T2=1000 
and various (perturbed) T1 (from -450 to 450 with step 100) with initial condition x=(-0.25;0) 
is shown.  
  

 
Fig. 2. Behavior of designed control system in the case of integrators in series at various T2. 
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dt

 

    


   

 1y x  (2.8) 

Let us choose the controller in following parabolic form: 

 2
1 1 2 1u k x k x    (2.9) 

Thus, new control system becomes nonlinear:  

1
2

22
2 1 1 2 1 1 2 1

,

.

dx x
dt
dx a x a x k x k x
dt

 

     


 

 1y x . (2.10) 

and has two following equilibrium points: 

 1
1 0sx  , 1

2 0sx  ; (2.11) 

 2 2 2
1

1
s

k ax
k


 , 2
2 0sx  ; (2.12) 
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Stability conditions for equilibrium points (2.11) and (2.12) respectively are 

1

2 2

0,
.

a
a k


 
 

   1

2 2

0,
.

a
a k


 
 

Here equlibrium (2.12) is additional and provides stability to the system (2.10) in the case 
when k2 is negative.  

2.3 Jordan form 
Let us suppose that dynamical system is presented in Jordan form and described by 
following equations:  

 

1
1 1

2
2 2

,

.

dx x
dt
dx x
dt





 

 


 (2.13) 

Here we can use the fact that states are not coincided to each other and add three 
equilibrium points. Hence, the control law is chosen in following form: 

 2
1 1 1a bu k x k x   , 2

2 2 2a cu k x k x    (2.14) 

Hence, the system (2.13) with set control (2.14) is: 

 

21
1 1 1 1

22
2 2 2 2

,

.

a b

a c

dx x k x k x
dt
dx x k x k x
dt





   

   


 (2.15) 

Totaly, due to designed control (2.14) we have four equilibria: 

 1
1 0sx  , 1

2 0sx  ; (2.16) 

 2
1 0sx  , 2 2

2
c

s
a

kx
k

 
 ; (2.17) 

 3 1
1

b
s

a

kx
k

 
 , 3

2 0sx  ; (2.18) 

 4 1
1

b
s

a

kx
k

 
 , 4 2

2
c

s
a

kx
k

 
 ; (2.19) 

Stability conditions for the equilibrium point (2.16) are: 
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,
.
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c

k
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Stability conditions for the equilibrium point (2.17) are: 

1

2

0
0
,
.

b

c

k
k



 

  
 

Stability conditions for the equilibrium point (2.18) are: 

1

2

0
0
,
.

b

c

k
k



 

  
 

Stability conditions for the equilibrium point (2.19) are: 

1

2

0
0
,
.

b

c

k
k



 

  
 

These four equilibria provide stable motion of the system (2.15) at any values of unknown 
parameters 1 and 2 positive or negative. By parameters ka, kb, kc we can set the coordinates 
of added equilibria, hence the trajectory of system’s motion will be globally bound within a 
rectangle, corners of which are the equilibria coordinates (2.16), (2.17), (2.18), (2.19) 
themselves.  

3. Applications  
3.1 Unknown stiffness in mass-damper-spring system 
Let us apply our approach in a widely used academic example such as mass-damper-spring 
system (Fig. 4).  
 

 
Fig. 4. 

The dynamics of such system is described by the following 2nd-order deferential equation, 
by Newton’s Second Law 

 mx cx kx u    , (3.1) 

where x is the displacement of the mass block from the equilibrium position and F = u is the 
force acting on the mass, with m the mass, c the damper constant and k the spring constant.  
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Stability conditions for the equilibrium point (2.16) are: 
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The dynamics of such system is described by the following 2nd-order deferential equation, 
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where x is the displacement of the mass block from the equilibrium position and F = u is the 
force acting on the mass, with m the mass, c the damper constant and k the spring constant.  
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We consider a case when k is unknown parameter. Positivity or negativity of this parameter 
defines compression or decompression of the spring. In realistic system it can be unknown if 
the spring was exposed by thermal or moisture actions for a long time. Let us represent the 
system (3.1) by following equations:  

 
 

1 2

2 1 2
1 1

,

.

x x

x kx cx u
m m





   




 (3.2) 

that correspond to structural diagram shown in Fig. 5. 
 

 
Fig. 5. 

Let us set the controller in the form: 

 2
1uu k x , (3.3) 

Hence, system (3.2) is transformed to: 

 
 

1 2

2
2 1 2 1

1 1
,

.u

x x

x kx cx k x
m m





   




 (3.4) 

Designed control system (3.4) has two equilibira: 

 1 0x  , 2 0x  ; (3.5) 

that is original, and 

 1
u

kx
k

 , 2 0x  . (3.6) 

that is additional. Origin is stable when following conditions are satisfaied: 

 0c
m
 , 0k

m
  (3.7) 

This means that if parameter k is positive then system tends to the stable origin and 
displacement of x is equal or very close to zero. Additional equilibrium is stable when  

 0c
m
 , 0k

m
  (3.8) 
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Thus, when k is negative the system is also stable but tends to the (3.6). That means that 
displacement x is equal to 

u

k
k

 and we can adjust this value by setting the control parameter ku. 

In Fig. 5 and Fig. 6 are presented results of MATLAB simulation of behavior of the system 
(3.4) at negative and positive values of parameter k. 

 
Fig. 6. 

 
Fig. 7. 

In Fig. 6 changing of the displacement of the system at initial conditions x=[-0.05, 0] is 
shown. Here the red line corresponds to case when k = -5, green line corresponds to k = -4, 
blue line corresponds to k = -3, cyan line corresponds to k = -2, magenta line corresponds to 
k = -1. Everywhere the system is stable and tends to additional equilibria (3.6) which has 
different values due to the ratio  

u

k
k

. 

In Fig. 7 the displacement of the system at initial conditions x=[-0.05, 0] tends tot he origin. 
Colors of the lines correspond tot he following values of k: red is when k = 1, green is when 
k = 2, blue is when k = 3, cyan is when k = 4, and  magenta is when k = 5. 
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3.2 SISO systems of high order. Center of oscillations of ACC Benchmark 
Let us consider ACC Benchmark system given in MATLAB Robust Toolbox Help. The 
mechanism itself is presented in Fig. 8.  
 

 
Fig. 8. 

Structural diagram is presented in Fig. 9, where  

1 2
1

1G
m s

 , 2 2
2

1G
m s

 . 

 

 
Fig. 9.  

Dynamical system can be described by following equations:  

 

1 2

2 1 3
2 2

3 4

4 1
1 1 1

1

,

,

,

.

x x
k kx x x

m m
x x

k kx x u
m m m



   

 


  










 (3.9) 

Without no control input the system produces periodic oscillations. Magnitude and center 
of the oscillations are defined by initial conditions.  For example, let us set the parameters of 
the system k = 1, m1 = 1, m2 = 1. If we assume initial conditions x = [-0.1, 0, 0, 0] then center 
of oscillations will be displaced in negative (left) direction as it is shown in Fig. 10a. If initial 
conditions are   x = [0.1, 0, 0, 0] then the center will be displaced in positive direction as it is 
shown in Fig. 10b. 
After settting the controller 
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 2
1 1 1u x k x  , (3.10) 

and obtaining new control system  

 

 

1 2

2 1 3
2 2

3 4

2
4 1 1 1

1 1 1

1

,

,

,

.u

x x
k kx x x

m m
x x

k kx x x k x
m m m



   

 


   










 (3.11) 

we can obtain less displacement of the center of oscillations. 
 

 
Fig. 10.a                                                            Fig. 10.b 

Fig. 10. 

In Fig. 11 and Fig.12 the results of MATLAB simulation are presented. At the same 
parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [-0.1, 0, 0, 0], the center is ‘almost‘ 
not displaced from the zero point (Fig. 11).  
 

 
Fig. 11. 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

12

3.2 SISO systems of high order. Center of oscillations of ACC Benchmark 
Let us consider ACC Benchmark system given in MATLAB Robust Toolbox Help. The 
mechanism itself is presented in Fig. 8.  
 

 
Fig. 8. 

Structural diagram is presented in Fig. 9, where  

1 2
1

1G
m s

 , 2 2
2

1G
m s

 . 

 

 
Fig. 9.  

Dynamical system can be described by following equations:  

 

1 2

2 1 3
2 2

3 4

4 1
1 1 1

1

,

,

,

.

x x
k kx x x

m m
x x

k kx x u
m m m



   

 


  










 (3.9) 

Without no control input the system produces periodic oscillations. Magnitude and center 
of the oscillations are defined by initial conditions.  For example, let us set the parameters of 
the system k = 1, m1 = 1, m2 = 1. If we assume initial conditions x = [-0.1, 0, 0, 0] then center 
of oscillations will be displaced in negative (left) direction as it is shown in Fig. 10a. If initial 
conditions are   x = [0.1, 0, 0, 0] then the center will be displaced in positive direction as it is 
shown in Fig. 10b. 
After settting the controller 

 
Robust Stabilization by Additional Equilibrium 

 

13 

 2
1 1 1u x k x  , (3.10) 

and obtaining new control system  

 

 

1 2

2 1 3
2 2

3 4

2
4 1 1 1

1 1 1

1

,

,

,

.u

x x
k kx x x

m m
x x

k kx x x k x
m m m



   

 


   










 (3.11) 

we can obtain less displacement of the center of oscillations. 
 

 
Fig. 10.a                                                            Fig. 10.b 

Fig. 10. 

In Fig. 11 and Fig.12 the results of MATLAB simulation are presented. At the same 
parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [-0.1, 0, 0, 0], the center is ‘almost‘ 
not displaced from the zero point (Fig. 11).  
 

 
Fig. 11. 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

14

At the same parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [0.1, 0, 0, 0], the center 
is also displaced very close from the zero point (Fig. 12).  
 
 

 
 

 
 

Fig. 12. 

3.3 Alternative opportunities. Submarine depth control  
Let us consider dynamics of angular motion of a controlled submarine. The important 
vectors of submarine’s motion are shown in the Fig.13.  
Let us assume that  is a small angle and the velocity v is constant and equal to 25 ft/s. The 
state variables of the submarine, considering only vertical control, are x1 = , 2

dx
dt


 ,  x3 = 

, where   is the angle of attack and output. Thus the state vector differential equation for 
this system, when the submarine has an Albacore type hull, is: 

  sx Ax B t  , (3.12) 

where  

12

21 22 23

32 33

0 0

0

a
A a a a

a a

 
   
 
 

, 2

3

0
B b

b

 
   
 
 

, 

parameters of the matrices are equal to: 

12 1a  , 21 0 0071.a   , 22 0 111.a   , 23 0 12.a  , 32 0 07.a  , 33 0 3.a   , 

2 0 095.b   , 3 0 072.b  , 

and s(t) is the deflection of the stern plane.  
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Fig. 13. Angles of submarine’s depth dynamics. 

Let us study the behavior of the system (3.12). In general form it is described as:  

 

 

1
2

2
21 1 22 2 23 3 2

3
32 2 33 3 3

,

,

.

S

S

dx x
dt
dx a x a x a x b t
dt

dx a x a x b t
dt





 

    



  

  (3.13) 

where input s(t)=1. By turn let us simulate by MATLAB the changing of the value of each 
parameter deviated from nominal value.   
In the Fig.14 the behavior of output of the system (3.13) at various value of 21a  (varies from -
0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is 
presented.  
In the Fig.15 the behavior of output of the system (3.13) at various value of 22a  (varies from -
0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is 
presented.  
In the Fig.16 the behavior of output of the system (3.13) at various value of 23a  (varies from -
0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.  
In the Fig.17 the behavior of output of the system (3.13) at various value of 32a  (varies from -
0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is 
presented.  
In the Fig.18 the behavior of output of the system (3.13) at various value of 33a  (varies from -
1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is 
presented.  
It is clear that the perturbation of only one parameter makes the system unstable.  
Let us set the feedback control law in the following form: 

  2 2
1 3 2 2 3 3 2u k x x k x k x     . (3.14) 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

14

At the same parameters k = 1, m1 = 1, m2 = 1 and initial conditions x = [0.1, 0, 0, 0], the center 
is also displaced very close from the zero point (Fig. 12).  
 
 

 
 

 
 

Fig. 12. 

3.3 Alternative opportunities. Submarine depth control  
Let us consider dynamics of angular motion of a controlled submarine. The important 
vectors of submarine’s motion are shown in the Fig.13.  
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dx
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 ,  x3 = 

, where   is the angle of attack and output. Thus the state vector differential equation for 
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parameters of the matrices are equal to: 

12 1a  , 21 0 0071.a   , 22 0 111.a   , 23 0 12.a  , 32 0 07.a  , 33 0 3.a   , 

2 0 095.b   , 3 0 072.b  , 

and s(t) is the deflection of the stern plane.  
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Fig. 13. Angles of submarine’s depth dynamics. 
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where input s(t)=1. By turn let us simulate by MATLAB the changing of the value of each 
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0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is 
presented.  
In the Fig.16 the behavior of output of the system (3.13) at various value of 23a  (varies from -
0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.  
In the Fig.17 the behavior of output of the system (3.13) at various value of 32a  (varies from -
0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is 
presented.  
In the Fig.18 the behavior of output of the system (3.13) at various value of 33a  (varies from -
1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is 
presented.  
It is clear that the perturbation of only one parameter makes the system unstable.  
Let us set the feedback control law in the following form: 

  2 2
1 3 2 2 3 3 2u k x x k x k x     . (3.14) 
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Fig. 14. Behavior of output dynamics of submarine’s depth at various a21. 

 

 
Fig. 15. Behavior of output dynamics of submarine’s depth at various a22. 

 

 
Fig. 16. Behavior of output dynamics of submarine’s depth at various a23.      
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Fig. 17. Behavior of output dynamics of submarine’s depth at various a32. 

 
Fig. 18. Behavior of output dynamics of submarine’s depth at various a33. 

Hence, designed control system is: 

  

   

1
2

2
21 1 22 2 23 3 2

2 23
32 2 33 3 3 1 2 3 2 3 3 2

,

,

.

S

S

dx x
dt
dx a x a x a x b t
dt

dx a x a x b t k x x k x k x
dt





 

    



      

 (3.15) 

The results of MATLAB simulation of the control system (3.15) with each changing 
(disturbed) parameter are presented in the figures 19, 20, 21, 22, and 23. 
In the Fig.19 the behavior designed control system (3.15) at various value of 21a  (varies from 
-0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is 
presented  
In the Fig.20 the behavior of output of the system (3.15) at various value of 22a  (varies from -
0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is 
presented.  
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In the Fig.21 the behavior of output of the system (3.15) at various value of 23a  (varies from -
0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.  
In the Fig.22 the behavior of output of the system (3.15) at various value of 32a  (varies from -
0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is 
presented.  
In the Fig.23 the behavior of output of the system (3.15) at various value of 33a  (varies from -
1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is 
presented. 
Results of simulation confirm that chosen controller (3.14) provides stability to the system. 
In some cases, especially in the last the systems does not tend to original equilibrium (zero) 
but to additional one.  
 
 

 
 

 

Fig. 19. Behavior of output of the submarine depth control system at various a21. 

 
 

 
 

Fig. 20. Behavior of output of the submarine depth control system at various a22. 
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Fig. 21. Behavior of output of the submarine depth control system at various a23. 
 

 

 
Fig. 22. Behavior of output of the submarine depth control system at various a32. 
 

 
Fig. 23. Behavior of output of the submarine depth control system at various a33. 
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4. Conclusion  
Adding the equilibria that attracts the motion of the system and makes it stable can give 
many advantages. The main of them is that the safe ranges of parameters are widened 
significantly because the designed system stay stable within unbounded ranges of 
perturbation of parameters even the sign of them changes. The behaviors of designed 
control systems obtained by MATLAB simulation such that control of linear and nonlinear 
dynamic plants confirm the efficiency of the offered method. For further research and 
investigation many perspective tasks can occur such that synthesis of control systems with 
special requirements, design of optimal control and many others.  

5. Acknowledgment  
I am heartily thankful to my supervisor, Beisenbi Mamirbek, whose encouragement, 
guidance and support from the initial to the final level enabled me to develop an 
understanding of the subject. I am very thankful for advises, help, and many offered 
opportunities to famous expert of nonlinear dynamics and chaos Steven H. Strogatz, famous 
expert of control systems Marc Campbell, and Andy Ruina Lab team.    
Lastly, I offer my regards and blessings to all of those who supported me in any respect 
during the completion of the project. 

6. References 
Beisenbi, M; Ten, V. (2002). An approach to the increase of a potential of robust stability of 

control systems, Theses of the reports of VII International seminar «Stability and 
fluctuations of nonlinear control systems» pp. 122-123, Moscow, Institute of problems 
of control of Russian Academy of Sciences, Moscow, Russia 

Ten, V. (2009). Approach to design of Nonlinear Robust Control in a Class of Structurally 
Stable Functions, Available from http://arxiv.org/abs/0901.2877 

V.I. Arnold, A.A. Davydov, V.A. Vassiliev and V.M. Zakalyukin (2006). Mathematical Models 
of Catastrophes. Control of Catastrohic Processes.  EOLSS Publishers, Oxford, UK 

Dorf, Richard C; Bishop, H. (2008). Modern Control Systems, 11/E. Prentice Hall, New Jersey, 
USA 

Khalil, Hassan K. (2002). Nonlinear systems. Prentice Hall, New Jersey, USA 
Gu, D.-W ; Petkov, P.Hr. ; Konstantinov, M.M. (2005). Robust control design with Matlab. 

Springer-Verlag, London, UK  
Poston, T.; Stewart, Ian. (1998).  Catastrophe: Theory and Its Applications. Dover, New York, 

USA  

0

Robust Control of Nonlinear Time-Delay Systems
via Takagi-Sugeno Fuzzy Models

Hamdi Gassara1,2, Ahmed El Hajjaji1 and Mohamed Chaabane3

1Modeling, Information, and Systems Laboratory, University of Picardie
Jules Verne, Amiens 80000,

2Department of Electrical Engineering, Unit of Control of Industrial Process,
National School of Engineering, University of Sfax, Sfax 3038

3Automatic control at National School of Engineers of Sfax (ENIS)
1France

2,3Tunisia

1. Introduction

Robust control theory is an interdisciplinary branch of engineering and applied mathematics
literature. Since its introduction in 1980’s, it has grown to become a major scientific domain.
For example, it gained a foothold in Economics in the late 1990 and has seen increasing
numbers of Economic applications in the past few years. This theory aims to design
a controller which guarantees closed-loop stability and performances of systems in the
presence of system uncertainty. In practice, the uncertainty can include modelling errors,
parametric variations and external disturbance. Many results have been presented for
robust control of linear systems. However, most real physical systems are nonlinear in
nature and usually subject to uncertainties. In this case, the linear dynamic systems are not
powerful to describe these practical systems. So, it is important to design robust control of
nonlinear models. In this context, different techniques have been proposed in the literature
(Input-Output linearization technique, backstepping technique, Variable Structure Control
(VSC) technique, ...).
These two last decades, fuzzy model control has been extensively studied; see
(Zhang & Heng, 2002)-(Chadli & ElHajjaji, 2006)-(Kim & Lee, 2000)-(Boukas & ElHajjaji, 2006)
and the references therein because T-S fuzzy model can provide an effective representation
of complex nonlinear systems. On the other hand, time-delay are often occurs in various
practical control systems, such as transportation systems, communication systems, chemical
processing systems, environmental systems and power systems. It is well known that the
existence of delays may deteriorate the performances of the system and can be a source of
instability. As a consequence, the T-S fuzzy model has been extended to deal with nonlinear
systems with time-delay. The existing results of stability and stabilization criteria for this
class of T-S fuzzy systems can be classified into two types: delay-independent, which are
applicable to delay of arbitrary size (Cao & Frank, 2000)-(Park et al., 2003)-(Chen & Liu,
2005b), and delay-dependent, which include information on the size of delays, (Li et al.,
2004) - (Chen & Liu, 2005a). It is generally recognized that delay-dependent results are
usually less conservative than delay-independent ones, especially when the size of delay

2



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

20

4. Conclusion  
Adding the equilibria that attracts the motion of the system and makes it stable can give 
many advantages. The main of them is that the safe ranges of parameters are widened 
significantly because the designed system stay stable within unbounded ranges of 
perturbation of parameters even the sign of them changes. The behaviors of designed 
control systems obtained by MATLAB simulation such that control of linear and nonlinear 
dynamic plants confirm the efficiency of the offered method. For further research and 
investigation many perspective tasks can occur such that synthesis of control systems with 
special requirements, design of optimal control and many others.  

5. Acknowledgment  
I am heartily thankful to my supervisor, Beisenbi Mamirbek, whose encouragement, 
guidance and support from the initial to the final level enabled me to develop an 
understanding of the subject. I am very thankful for advises, help, and many offered 
opportunities to famous expert of nonlinear dynamics and chaos Steven H. Strogatz, famous 
expert of control systems Marc Campbell, and Andy Ruina Lab team.    
Lastly, I offer my regards and blessings to all of those who supported me in any respect 
during the completion of the project. 

6. References 
Beisenbi, M; Ten, V. (2002). An approach to the increase of a potential of robust stability of 

control systems, Theses of the reports of VII International seminar «Stability and 
fluctuations of nonlinear control systems» pp. 122-123, Moscow, Institute of problems 
of control of Russian Academy of Sciences, Moscow, Russia 

Ten, V. (2009). Approach to design of Nonlinear Robust Control in a Class of Structurally 
Stable Functions, Available from http://arxiv.org/abs/0901.2877 

V.I. Arnold, A.A. Davydov, V.A. Vassiliev and V.M. Zakalyukin (2006). Mathematical Models 
of Catastrophes. Control of Catastrohic Processes.  EOLSS Publishers, Oxford, UK 

Dorf, Richard C; Bishop, H. (2008). Modern Control Systems, 11/E. Prentice Hall, New Jersey, 
USA 

Khalil, Hassan K. (2002). Nonlinear systems. Prentice Hall, New Jersey, USA 
Gu, D.-W ; Petkov, P.Hr. ; Konstantinov, M.M. (2005). Robust control design with Matlab. 

Springer-Verlag, London, UK  
Poston, T.; Stewart, Ian. (1998).  Catastrophe: Theory and Its Applications. Dover, New York, 

USA  

0

Robust Control of Nonlinear Time-Delay Systems
via Takagi-Sugeno Fuzzy Models

Hamdi Gassara1,2, Ahmed El Hajjaji1 and Mohamed Chaabane3

1Modeling, Information, and Systems Laboratory, University of Picardie
Jules Verne, Amiens 80000,

2Department of Electrical Engineering, Unit of Control of Industrial Process,
National School of Engineering, University of Sfax, Sfax 3038

3Automatic control at National School of Engineers of Sfax (ENIS)
1France

2,3Tunisia

1. Introduction

Robust control theory is an interdisciplinary branch of engineering and applied mathematics
literature. Since its introduction in 1980’s, it has grown to become a major scientific domain.
For example, it gained a foothold in Economics in the late 1990 and has seen increasing
numbers of Economic applications in the past few years. This theory aims to design
a controller which guarantees closed-loop stability and performances of systems in the
presence of system uncertainty. In practice, the uncertainty can include modelling errors,
parametric variations and external disturbance. Many results have been presented for
robust control of linear systems. However, most real physical systems are nonlinear in
nature and usually subject to uncertainties. In this case, the linear dynamic systems are not
powerful to describe these practical systems. So, it is important to design robust control of
nonlinear models. In this context, different techniques have been proposed in the literature
(Input-Output linearization technique, backstepping technique, Variable Structure Control
(VSC) technique, ...).
These two last decades, fuzzy model control has been extensively studied; see
(Zhang & Heng, 2002)-(Chadli & ElHajjaji, 2006)-(Kim & Lee, 2000)-(Boukas & ElHajjaji, 2006)
and the references therein because T-S fuzzy model can provide an effective representation
of complex nonlinear systems. On the other hand, time-delay are often occurs in various
practical control systems, such as transportation systems, communication systems, chemical
processing systems, environmental systems and power systems. It is well known that the
existence of delays may deteriorate the performances of the system and can be a source of
instability. As a consequence, the T-S fuzzy model has been extended to deal with nonlinear
systems with time-delay. The existing results of stability and stabilization criteria for this
class of T-S fuzzy systems can be classified into two types: delay-independent, which are
applicable to delay of arbitrary size (Cao & Frank, 2000)-(Park et al., 2003)-(Chen & Liu,
2005b), and delay-dependent, which include information on the size of delays, (Li et al.,
2004) - (Chen & Liu, 2005a). It is generally recognized that delay-dependent results are
usually less conservative than delay-independent ones, especially when the size of delay

2



2 Will-be-set-by-IN-TECH

is small. We notice that all the results of analysis and synthesis delay-dependent methods
cited previously are based on a single LKF that bring conservativeness in establishing
the stability and stabilization test. Moreover, the model transformation, the conservative
inequalities and the so-called Moon’s inequality (Moon et al., 2001) for bounding cross
terms used in these methods also bring conservativeness. Recently, in order to reduce
conservatism, the weighting matrix technique was proposed originally by He and al. in
(He et al., 2004)-(He et al., 2007). These works studied the stability of linear systems with
time-varying delay. More recently, Huai-Ning et al. (Wu & Li, 2007) treated the problem
of stabilization via PDC (Prallel Distributed Compensation) control by employing a fuzzy
LKF combining the introduction of free weighting matrices which improves existing ones in
(Li et al., 2004) - (Chen & Liu, 2005a) without imposing any bounding techniques on some
cross product terms. In general, the disadvantage of this new approach (Wu & Li, 2007) lies in
that the delay-dependent stabilization conditions presented involve three tuning parameters.
Chen et al. in (Chen et al., 2007) and in (Chen & Liu, 2005a) have proposed delay-dependent
stabilization conditions of uncertain T-S fuzzy systems. The inconvenience in these works is
that the time-delay must be constant. The designing of observer-based fuzzy control and the
introduction of performance with guaranteed cost for T-S with input delay have discussed in
(Chen, Lin, Liu & Tong, 2008) and (Chen, Liu, Tang & Lin, 2008), respectively.
In this chapter, we study the asymptotic stabilization of uncertain T-S fuzzy systems with
time-varying delay. We focus on the delay-dependent stabilization synthesis based on the
PDC scheme (Wang et al., 1996). Different from the methods currently found in the literature
(Wu & Li, 2007)-(Chen et al., 2007), our method does not need any transformation in the
LKF, and thus, avoids the restriction resulting from them. Our new approach improves
the results in (Li et al., 2004)-(Guan & Chen, 2004)-(Chen & Liu, 2005a)-(Wu & Li, 2007) for
three great main aspects. The first one concerns the reduction of conservatism. The second
one, the reduction of the number of LMI conditions, which reduce computational efforts.
The third one, the delay-dependent stabilization conditions presented involve a single fixed
parameter. This new approach also improves the work of B. Chen et al. in (Chen et al., 2007)
by establishing new delay-dependent stabilization conditions of uncertain T-S fuzzy systems
with time varying delay. The rest of this chapter is organized as follows. In section 2, we
give the description of uncertain T-S fuzzy model with time varying delay. We also present
the fuzzy control design law based on PDC structure. New delay dependent stabilization
conditions are established in section 3. In section 4, numerical examples are given to
demonstrate the effectiveness and the benefits of the proposed method. Some conclusions are
drawn in section 5.

Notation: �n denotes the n-dimensional Euclidiean space. The notation P > 0 means that P is
symmetric and positive definite. W + WT is denoted as W + (∗) for simplicity. In symmetric
bloc matrices, we use ∗ as an ellipsis for terms that are induced by symmetry.

2. Problem formulation

Consider a nonlinear system with state-delay which could be represented by a T-S fuzzy
time-delay model described by

Plant Rule i(i = 1, 2, · · · , r): If θ1 is μi1 and · · · and θp is μip THEN

ẋ(t) = (Ai + ΔAi)x(t) + (Aτi + ΔAτi)x(t − τ(t)) + (Bi + ΔBi)u(t)
x(t) = ψ(t), t ∈ [−τ, 0], (1)

22 Recent Advances in Robust Control – Novel Approaches and Design Methods Robust Control of Nonlinear Time-Delay Systems via Takagi-Sugeno Fuzzy Models 3

where θj(x(t)) and μij(i = 1, · · · , r, j = 1, · · · , p) are respectively the premise variables and
the fuzzy sets; ψ(t) is the initial conditions; x(t) ∈ �n is the state; u(t) ∈ �m is the control
input; r is the number of IF-THEN rules; the time delay, τ(t), is a time-varying continuous
function that satisfies

0 ≤ τ(t) ≤ τ, τ̇(t) ≤ β (2)

The parametric uncertainties ΔAi, ΔAτi, ΔBi are time-varying matrices that are defined as
follows

ΔAi = MAiFi(t)EAi, ; ΔAτi = MAτiFi(t)EAτi, ; ΔBi = MBiFi(t)EBi (3)

where MAi, MAτi, MBi, EAi, EAτi, EBi are known constant matrices and Fi(t) is an unknown
matrix function with the property

Fi(t)
T Fi(t) ≤ I (4)

Let Āi = Ai + ΔAi; Āτi = Aτi + ΔAτi; B̄i = Bi + ΔBi

By using the common used center-average defuzzifier, product inference and singleton
fuzzifier, the T-S fuzzy systems can be inferred as

ẋ(t) =
r

∑
i=1

hi(θ(x(t)))[Āix(t) + Āτix(t − τ(t)) + B̄iu(t)] (5)

where θ(x(t)) = [θ1(x(t)), · · · , θp(x(t))] and νi(θ(x(t))) : �p → [0, 1], i = 1, · · · , r, is the
membership function of the system with respect to the ith plan rule. Denote hi(θ(x(t))) =
νi(θ(x(t)))/ ∑r

i=1 νi(θ(x(t))). It is obvious that
hi(θ(x(t))) ≥ 0 and ∑r

i=1 hi(θ(x(t))) = 1
the design of state feedback stabilizing fuzzy controllers for fuzzy system (5) is based on the
Parallel Distributed Compensation.

Controller Rule i(i = 1, 2, · · · , r): If θ1 is μi1 and · · · and θp is μip THEN

u(t) = Kix(t) (6)

The overall state feedback control law is represented by

u(t) =
r

∑
i=1

hi(θ(x(t)))Kix(t) (7)

In the sequel, for brevity we use hi to denote hi(θ(x(t))). Combining (5) with (7), the
closed-loop fuzzy system can be expressed as follows

ẋ(t) =
r

∑
i=1

r

∑
j=1

hihj[Âijx(t) + Āτix(t − τ(t))] (8)

with Âij = Āi + B̄iKj

In order to obtain the main results in this chapter, the following lemmas are needed
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ΔAi = MAiFi(t)EAi, ; ΔAτi = MAτiFi(t)EAτi, ; ΔBi = MBiFi(t)EBi (3)

where MAi, MAτi, MBi, EAi, EAτi, EBi are known constant matrices and Fi(t) is an unknown
matrix function with the property

Fi(t)
T Fi(t) ≤ I (4)

Let Āi = Ai + ΔAi; Āτi = Aτi + ΔAτi; B̄i = Bi + ΔBi

By using the common used center-average defuzzifier, product inference and singleton
fuzzifier, the T-S fuzzy systems can be inferred as

ẋ(t) =
r

∑
i=1

hi(θ(x(t)))[Āix(t) + Āτix(t − τ(t)) + B̄iu(t)] (5)

where θ(x(t)) = [θ1(x(t)), · · · , θp(x(t))] and νi(θ(x(t))) : �p → [0, 1], i = 1, · · · , r, is the
membership function of the system with respect to the ith plan rule. Denote hi(θ(x(t))) =
νi(θ(x(t)))/ ∑r

i=1 νi(θ(x(t))). It is obvious that
hi(θ(x(t))) ≥ 0 and ∑r

i=1 hi(θ(x(t))) = 1
the design of state feedback stabilizing fuzzy controllers for fuzzy system (5) is based on the
Parallel Distributed Compensation.

Controller Rule i(i = 1, 2, · · · , r): If θ1 is μi1 and · · · and θp is μip THEN

u(t) = Kix(t) (6)

The overall state feedback control law is represented by

u(t) =
r

∑
i=1

hi(θ(x(t)))Kix(t) (7)

In the sequel, for brevity we use hi to denote hi(θ(x(t))). Combining (5) with (7), the
closed-loop fuzzy system can be expressed as follows

ẋ(t) =
r

∑
i=1

r

∑
j=1

hihj[Âijx(t) + Āτix(t − τ(t))] (8)

with Âij = Āi + B̄iKj

In order to obtain the main results in this chapter, the following lemmas are needed
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Lemma 1. (Xie & DeSouza, 1992)-(Oudghiri et al., 2007) (Guerra et al., 2006) Considering Π < 0 a
matrix X and a scalar λ, the following holds

XTΠX ≤ −2λX − λ2Π−1 (9)

Lemma 2. (Wang et al., 1992) Given matrices M, E, F(t) with compatible dimensions and F(t)
satisfying F(t)TF(t) ≤ I.
Then, the following inequalities hold for any � > 0

MF(t)E + ETF(t)T MT ≤ �MMT + �−1ETE (10)

3. Main results

3.1 Time-delay dependent stability conditions
First, we derive the stability condition for unforced system (5), that is

ẋ(t) =
r

∑
i=1

hi [Āix(t) + Āτix(t − τ(t))] (11)

Theorem 1. System (11) is asymptotically stable, if there exist some matrices P > 0, S > 0, Z > 0, Y
and T satisfying the following LMIs for i = 1, 2, .., r

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕi + �AiET
AiEAi PAτi − Y + TT AT

i Z −Y PMAi PMAτi
∗ −(1 − β)S − T − TT + �AτiET

τiEτi AT
τiZ −T 0

∗ ∗ − 1
τ Z 0 ZMAi ZMAτi

∗ ∗ ∗ − 1
τ Z 0

∗ ∗ ∗ ∗ −�AiI 0
∗ ∗ ∗ ∗ ∗ −�Aτi I

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0 (12)

where ϕi = PAi + AT
i P + S + Y + YT.

Proof 1. Choose the LKF as

V(x(t)) = x(t)TPx(t) +
� t

t−τ(t) x(α)TSx(α)dα +
� 0
−τ

� t
t+σ ẋ(α)TZẋ(α)dαdσ (13)

the time derivative of this LKF (13) along the trajectory of system (11) is computed as

V̇(x(t)) = 2x(t)T Pẋ(t) + x(t)TSx(t)− (1 − τ̇(t))x(t − τ(t))TSx(t − τ(t))
+τẋ(t)TZẋ(t)− � t

t−τ ẋ(s)T Zẋ(s)ds
(14)

Taking into account the Newton-Leibniz formula

x(t − τ(t)) = x(t)−
� t

t−τ(t)
ẋ(s)ds (15)

We obtain equation (16)
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V̇(x(t)) =
r

∑
i=1

hi[2x(t)TPĀix(t) + 2x(t)T PĀτix(t − τ(t))]

+x(t)TSx(t)− (1 − β)x(t − τ(t))TSx(t − τ(t))

+τẋ(t)TZẋ(t)−
� t

t−τ
ẋ(s)TZẋ(s)ds

+2[x(t)TY + x(t − τ(t))TT]× [x(t)− x(t − τ(t))−
� t

t−τ(t)
ẋ(s)ds] (16)

As pointed out in (Chen & Liu, 2005a)

ẋ(t)TZẋ(t) ≤
r

∑
i=1

hiη(t)
T
�

ĀT
i ZĀi ĀT

i ZĀτi
ĀT

τiZĀi ĀT
τiZĀτi

�
η(t) (17)

where η(t)T = [x(t)T, x(t − τ(t))T ].
Allowing WT = [YT, TT ], we obtain equation (18)

V̇(x(t)) ≤
r

∑
i=1

hiη(t)
T [Φ̃i + τWZ−1WT ]η(t)

−
� t

t−τ(t)
[ηT(t)W + ẋ(s)T Z]Z−1[ηT(t)W + ẋ(s)TZ]Tds (18)

where

Φ̃i =

�
PĀi + ĀT

i P + S + τĀT
i ZĀi + Y + YT PĀτi + τĀT

i ZĀτi − Y + TT

∗ −(1 − β)S + τĀT
τiZĀτi − T − TT

�
(19)

By applying Schur complement Φ̃i + τWZ−1WT < 0 is equivalent to

Φ̄i =

⎡
⎢⎢⎣

ϕ̄i PĀτi − Y + TT ĀT
i Z −Y

∗ −(1 − β)S − T − TT ĀT
τiZ −T

∗ ∗ − 1
τ Z 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎦ < 0

The uncertain part is represented as follows

ΔΦ̄i =

⎡
⎢⎢⎣

PΔAi + ΔAT
i P PΔAτi ΔAT

i Z 0
∗ 0 ΔAT

τiZ 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

PMAi
0

ZMAi
0

⎤
⎥⎥⎦ F(t)

�
EAi 0 0 0

�
+ (∗) +

⎡
⎢⎢⎣

PMAτi
0

ZMAτi
0

⎤
⎥⎥⎦ F(t)

�
0 EAτi 0 0

�
+ (∗) (20)
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i ZĀτi
ĀT
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where

Φ̃i =

�
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By applying lemma 2, we obtain

ΔΦ̄i ≤ �−1
Ai

⎡
⎢⎢⎣

PMAi
0

ZMAi
0

⎤
⎥⎥⎦
�

MT
AiP 0 MT

AiZ 0
�
+ �Ai

⎡
⎢⎢⎣

ET
Ai
0
0
0

⎤
⎥⎥⎦
�

EAi 0 0 0
�

+�−1
Aτi

⎡
⎢⎢⎣

PMAτi
0

ZMAτi
0

⎤
⎥⎥⎦
�

MT
AτiP 0 MT

AτiZ 0
�
+ �Aτi

⎡
⎢⎢⎣

0
ET

Aτi
0
0

⎤
⎥⎥⎦
�

0 EAτi 0 0
�

(21)

where �Ai and �Aτi are some positive scalars.
By using Schur complement, we obtain theorem 1.

3.2 Time-delay dependent stabilization conditions
Theorem 2. System (8) is asymptotically stable if there exist some matrices P > 0, S > 0, Z > 0, Y,
T satisfying the following LMIs for i, j = 1, 2, .., r and i ≤ j

Φ̄ij + Φ̄ji ≤ 0 (22)

where Φ̄ji is given by

Φ̄ij =

⎡
⎢⎢⎢⎣

P �Aij + �AT
ijP + S + Y + YT PĀτi − Y + TT �AT

ijZ −Y
∗ −(1 − β)S − T − TT ĀT

τiZ −T
∗ ∗ − 1

τ Z 0
∗ ∗ ∗ − 1

τ Z

⎤
⎥⎥⎥⎦ (23)

Proof 2. As pointed out in (Chen & Liu, 2005a), the following inequality is verified.

ẋ(t)TZẋ(t) ≤
r

∑
i=1

r

∑
j=1

hihjη(t)
T

⎡
⎣

( �Aij+ �Aji)
T

2 Z ( �Aij+ �Aji)
2

( �Aij+ �Aji)
T

2 Z (Āτi+Āτ j)
2

(Āτi+Āτ j)
T

2 Z ( �Aij+ �Aji)
2

(Āτi+Āτ j)
T

2 Z (Āτi+Āτ j)
2

⎤
⎦ η(t) (24)

Following a similar development to that for theorem 1, we obtain

V̇(x(t)) ≤
r

∑
i=1

r

∑
j=1

hihjη(t)
T [Φ̃ij + τWZ−1WT]η(t)

−
� t

t−τ(t)
[η(t)TW + ẋ(s)T Z]Z−1[η(t)TW + ẋ(s)TZ]Tds (25)

where Φ̃ij is given by

Φ̃ij =

⎡
⎢⎢⎢⎢⎣

P �Aij + �AT
ijP + S

+τ
( �Aij+ �Aji)

T

2 Z
( �Aij+ �Aji)

2 + Y + YT
PĀτi + τ

( �Aij+ �Aji)
T

2 Z (Āτi+Āτ j)
2

−Y + TT

∗ −(1 − β)S + τ
(Āτi+Āτ j)

T

2 Z (Āτi+Āτ j)
2

−T − TT

⎤
⎥⎥⎥⎥⎦

(26)
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By applying Schur complement
r

∑
i=1

r

∑
j=1

hihjΦ̃ij + τWZ−1WT < 0 is equivalent to

r

∑
i=1

r

∑
j=1

hihj �Φij =
1
2

r

∑
i=1

r

∑
j=1

hihj(�Φij + �Φji)

=
1
2

r

∑
i=1

r

∑
j=1

hihj(Φ̄ij + Φ̄ji) < 0 (27)

where �Φij is given by

�Φij =

⎡
⎢⎢⎢⎢⎣

P �Aij + �AT
ijP + S + Y + YT PĀτi − Y + TT ( �Aij+ �Aji)

T

2 Z −Y

∗ −(1 − β)S − T − TT (Āτi+Āτ j)
T

2 Z −T
∗ ∗ − 1

τ Z 0
∗ ∗ ∗ − 1

τ Z

⎤
⎥⎥⎥⎥⎦

(28)

Therefore, we get V̇(x(t)) ≤ 0.

Our objective is to transform the conditions in theorem 2 in LMI terms which can be easily
solved using existing solvers such as LMI TOOLBOX in the Matlab software.

Theorem 3. For a given positive number λ. System (8) is asymptotically stable if there exist some
matrices P > 0, S > 0, Z > 0, Y, T and Ni as well as positives scalars �Aij, �Aτij, �Bij, �Ci, �Cτi, �Di
satisfying the following LMIs for i, j = 1, 2, .., r and i ≤ j

Ξij + Ξji ≤ 0 (29)

where Ξij is given by

Ξij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
ξij + �AijMAiMT

Ai
+�BiMBiMT

Bi

�
PAT

τi − Y + TT AiP + Bi Nj −Y

∗
�−(1 − β)S − T − TT

+�AτiiMAτiiMT
Aτi

�
AτiP

∗ ∗ 1
τ (−2λP + λ2Z) 0

∗ ∗ ∗ − 1
τ Z

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

PET
Ai NT

j ET
Bi PET

Aτi
−T 0 0

PET
Ai NT

j ET
Bi PET

Aτi
0 0 0

−�Aij I 0 0
∗ −�Bij I 0
∗ ∗ −�Aτij I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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2
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�
AτiP

∗ ∗ 1
τ (−2λP + λ2Z) 0

∗ ∗ ∗ − 1
τ Z

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

PET
Ai NT

j ET
Bi PET

Aτi
−T 0 0

PET
Ai NT

j ET
Bi PET

Aτi
0 0 0

−�Aij I 0 0
∗ −�Bij I 0
∗ ∗ −�Aτij I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)
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in which ξij = PAT
i + NT

j BT
i + AiP + Bi Nj + S + Y + YT. If this is the case, the Ki local feedback

gains are given by

Ki = NiP
−1, i = 1, 2, .., r (31)

Proof 3. Starting with pre-and post multiplying (22) by diag[I, I, Z−1P, I] and its transpose,we get

Ξ1
ij + Ξ1

ji ≤ 0, 1 ≤ i ≤ j ≤ r (32)

where

Ξ1
ij =

⎡
⎢⎢⎢⎣

P �Aij + �AT
ijP + S + Y + YT PĀτi − Y + TT �AT

ijP −Y
∗ −(1 − β)S − T − TT ĀT

τiP −T
∗ ∗ − 1

τ PZ−1P 0
∗ ∗ ∗ − 1

τ Z

⎤
⎥⎥⎥⎦ (33)

As pointed out by Wu et al. (Wu et al., 2004), if we just consider the stabilization condition, we can
replace �Aij, Aτi with �AT

ij and AT
τi, respectively, in (33).

Assuming Nj = KjP, we get

Ξ2
ij + Ξ2

ji ≤ 0, 1 ≤ i ≤ j ≤ r (34)

Ξ2
ij =

⎡
⎢⎢⎢⎢⎣

ξ̄ij PĀT
τi − Y + TT ĀiP + B̄iNj −Y

∗
�−(1 − β)S
−T − TT

�
ĀτiP −T

∗ ∗ − 1
τ PZ−1P 0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎥⎦

(35)

It follows from lemma 1 that

− PZ−1P ≤ −2λP + λ2Z (36)

We obtain

Ξ3
ij + Ξ3

ji ≤ 0, 1 ≤ i ≤ j ≤ r (37)

where

Ξ3
ij =

⎡
⎢⎢⎢⎢⎢⎢⎣

ξ̄ij PĀT
τi − Y + TT ĀiP + B̄iNj −Y

∗
�−(1 − β)S
−T − TT

�
ĀτiP −T

∗ ∗
� 1

τ (−2λP
+λ2Z)

�
0

∗ ∗ ∗ − 1
τ Z

⎤
⎥⎥⎥⎥⎥⎥⎦

(38)
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The uncertain part is given by

ΔΞ̄ij =

⎡
⎢⎢⎣

PΔAT
i + NT

j ΔBT
i + ΔAiP + ΔBiNj PΔAT

τi ΔAiP + ΔBiNj 0
∗ 0 ΔAτiP 0
∗ ∗ 0 0
∗ ∗ ∗ 0

⎤
⎥⎥⎦

=

�
MAi
03×1

�
F(t)

�
EAiP 0 EAiP 0

�
+ (∗)

+

�
MBi
03×1

�
F(t)

�
EBiNj 0 EBiNj 0

�
+ (∗)

+

⎡
⎣

0
MAτi
02×1

⎤
⎦ F(t)

�
EAτiP 0 EAτiP 0

�
+ (∗) (39)

By using lemma 2, we obtain

ΔΞ̄ij ≤ �Aij

�
MAi
03×1

� �
MT

Ai 01×3
�
+ �−1

Aij

⎡
⎢⎢⎣

PET
Ai

0
PET

Ai
0

⎤
⎥⎥⎦
�

EiP 0 EiP 0
�

+�Bij

�
MBi
03×1

� �
MT

Bi 01×3
�
+ �−1

Bij

⎡
⎢⎢⎢⎣

NT
j ET

Bi
0

NT
j ET

Bi
0

⎤
⎥⎥⎥⎦
�

EBiNj 0 EBiNj 0
�

+�Aτij

⎡
⎣

0
MAτi
02×1

⎤
⎦ �

0 MT
Aτi 01×2

�
+ �−1

Aτij

⎡
⎢⎢⎣

PET
Aτi

0
PET

Aτi
0

⎤
⎥⎥⎦
�

EAτiP 0 EAτiP 0
�

(40)

where �Aij, �Aτij and �Bij are some positive scalars.
By applying Schur complement and lemma 2, we obtain theorem 3.

Remark 1. It is noticed that (Wu & Li, 2007) and theorem (3) contain, respectively, r3 + r3(r − 1)
and 1

2 r(r + 1) LMIs. This reduces the computational complexity. Moreover, it is easy to see that the
requirements of β < 1 are removed in our result due to the introduction of variable T.

Remark 2. It is noted that Wu et al. in (Wu & Li, 2007) have presented a new approach to
delay-dependent stabilization for continuous-time fuzzy systems with time varying delay. The
disadvantages of this new approach is that the LMIs presented involve three tuning parameters.
However, only one tuning parameter is involved in our approach.

Remark 3. Our method provides a less conservative result than other results which have been
recently proposed (Wu & Li, 2007), (Chen & Liu, 2005a), (Guan & Chen, 2004). In next paragraph, a
numerical example is given to demonstrate numerically this point.
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delay-dependent stabilization for continuous-time fuzzy systems with time varying delay. The
disadvantages of this new approach is that the LMIs presented involve three tuning parameters.
However, only one tuning parameter is involved in our approach.

Remark 3. Our method provides a less conservative result than other results which have been
recently proposed (Wu & Li, 2007), (Chen & Liu, 2005a), (Guan & Chen, 2004). In next paragraph, a
numerical example is given to demonstrate numerically this point.
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4. Illustrative examples

In this section, three examples are used to illustrate the effectiveness and the merits of the
proposed results.
The first example is given to compare our result with the existing one in the case of constant
delay and time-varying delay.

4.1 Example 1
Consider the following T-S fuzzy model

ẋ(t) = ∑2
i=1 hi(x1(t))[(Ai + ΔAi)x(t) + (Aτi + ΔAτi)x(t − τ(t)) + Biu(t)] (41)

where

A1 =

[
0 0.6
0 1

]
, A2 =

[
1 0
1 0

]
, Aτ1 =

[
0.5 0.9
0 2

]
, Aτ2 =

[
0.9 0
1 1.6

]

B1 = B2 =

[
1
1

]

ΔAi = MF(t)Ei, ΔAτi = MF(t)Eτi

M =

[−0.03 0
0 0.03

]

E1 = E2 =

[−0.15 0.2
0 0.04

]

Eτ1 = Eτ2 =

[−0.05 −0.35
0.08 −0.45

]

The membership functions are defined by

h1(x1(t)) =
1

1 + exp(−2x1(t))

h2(x1(t)) = 1 − h1(x1(t)) (42)

For the case of delay being constant and unknown and no uncertainties (ΔAi = 0, ΔAτi = 0),
the existing delay-dependent approaches are used to design the fuzzy controllers.
Based on theorem 3, for λ = 5, the largest delay is computed to be τ = 0.4909 such that system
(41) is asymptotically stable. Based on the results obtained in (Wu & Li, 2007), we get this table

Methods Maximum allowed τ

Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1524
Theorem of Guan and Chen (Guan & Chen, 2004) 0.2302

Theorem of Wu and Li (Wu & Li, 2007) 0.2664
Theorem 3 0.4909

Table 1. Comparison Among Various Delay-Dependent Stabilization Methods

It appears from this table that our result improves the existing ones. Letting τ = 0.4909, the
state-feedback gain matrices are
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K1 =
[

5.5780 −16.4347
]

, K2 =
[

4.0442 −15.4370
]

Fig 1 shows the control results for system (41) with constant time-delay via fuzzy controller (7)
with the previous gain matrices under the initial condition x(t) =

[
2 0

]T, t ∈ [−0.4909 0
]
.
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0 2 4 6 8 10
−10

0

10

20

time (sec.)

u(
t)

Fig. 1. Control results for system (41) without uncertainties and with constant time delay
τ = 0.4909.

It is clear that the designed fuzzy controller can stabilize this system.

For the case of ΔAi �= 0, ΔAτi �= 0 and constant delay, the approaches in (Guan & Chen, 2004)
(Wu & Li, 2007) (Lin et al., 2006) cannot be used to design feedback controllers as the system
contains uncertainties. The method in (Chen & Liu, 2005b) and theorem 3 with λ = 5 can be
used to design the fuzzy controllers. The corresponding results are listed below.

Methods Maximum allowed τ

Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1498
Theorem 3 0.4770

Table 2. Comparison Among Various Delay-Dependent Stabilization Methods With
uncertainties

It appears from Table 2 that our result improves the existing ones in the case of uncertain T-S
fuzzy model with constant time-delay.
For the case of uncertain T-S fuzzy model with time-varying delay, the approaches proposed
in (Guan & Chen, 2004) (Chen & Liu, 2005a) (Wu & Li, 2007) (Chen et al., 2007) and (Lin et al.,
2006) cannot be used to design feedback controllers as the system contains uncertainties and
time-varying delay. By using theorem 3 with the choice of λ = 5, τ(t) = 0.25+ 0.15 sin(t)(τ =
0.4, β = 0.15), we can obtain the following state-feedback gain matrices:

K1 =
[

4.7478 −13.5217
]

, K2 =
[

3.1438 −13.2255
]
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The simulation was tested under the initial conditions x(t) =
�

2 0
�T, t ∈ �−0.4 0

�
and

uncertainty F(t) =
�

sin(t) 0
0 cos(t)

�
.
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Fig. 2. Control results for system (41) with uncertainties and with time varying-delay
τ(t) = 0.25 + 0.15sin(t)

From the simulation results in figure 2, it can be clearly seen that our method offers a
new approach to stabilize nonlinear systems represented by uncertain T-S fuzzy model with
time-varying delay.
The second example illustrates the validity of the design method in the case of slow time
varying delay (β < 1)

4.2 Example 2: Application to control a truck-trailer
In this example, we consider a continuous-time truck-trailer system, as shown in Fig. 3.
We will use the delayed model given by (Chen & Liu, 2005a). It is assumed that τ(t) = 1.10 +
0.75 sin(t). Obviously, we have τ = 1.85, β = 0.75. The time-varying delay model with
uncertainties is given by

ẋ(t) =
2

∑
i=1

hi(x1(t))[(Ai + ΔAi)x(t) + (Aτi + ΔAτi)x(t − τ(t)) + (Bi + ΔBi)u(t)] (43)

where

A1 =

⎡
⎢⎢⎣
−a vt

Lt0
0 0

a vt
Lt0

0 0

a v2t2

2Lt0

vt
t0

0

⎤
⎥⎥⎦ , Aτ1 =

⎡
⎢⎢⎣
−(1 − a) vt

Lt0
0 0

(1 − a) vt
Lt0

0 0

(1 − a) v2t2

2Lt0
0 0

⎤
⎥⎥⎦

A2 =

⎡
⎢⎢⎣
−a vt

Lt0
0 0

a vt
Lt0

0 0

a dv2t2

2Lt0

dvt
t0

0

⎤
⎥⎥⎦ , Aτ2 =

⎡
⎢⎢⎣
−(1 − a) vt

Lt0
0 0

(1 − a) vt
Lt0

0 0

(1 − a) dv2t2

2Lt0
0 0

⎤
⎥⎥⎦

32 Recent Advances in Robust Control – Novel Approaches and Design Methods Robust Control of Nonlinear Time-Delay Systems via Takagi-Sugeno Fuzzy Models 13

x0
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x3(−)
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x0

u

u

x1

lL

Fig. 3. Truck-trailer system

B1 = B2 =
�

vt
lt0

0 0
�T

ΔA1 = ΔA2 = ΔAτ1 = ΔAτ2 = MF(t)E

with
M =

�
0.255 0.255 0.255

�T , E =
�

0.1 0 0
�

ΔB1 = ΔB2 = MbF(t)Eb

with
Mb =

�
0.1790 0 0

�T , Eb1 = 0.05, Eb2 = 0.15

where
l = 2.8, L = 5.5, v = −1, t = 2, t0 = 0.5, a = 0.7, d =

10t0

π
The membership functions are defined as

h1(θ(t)) = (1 − 1
1 + exp(−3(θ(t)− 0.5π))

)× (
1

1 + exp(−3(θ(t) + 0.5π))
)

h2(θ(t)) = 1 − h1

where

θ(t) = x2(t) + a(vt/2L)x1(t) + (1 − a)(vt/2L)x1(t − τ(t))

By using theorem 3, with the choice of λ = 5, we can obtain the following feasible solution:

P =

⎡
⎣

0.2249 0.0566 −0.0259
0.0566 0.0382 0.0775
−0.0259 0.0775 2.7440

⎤
⎦ , S =

⎡
⎣

0.2408 −0.0262 −0.1137
−0.0262 0.0236 0.0847
−0.1137 0.0847 0.3496

⎤
⎦
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where

A1 =

⎡
⎢⎢⎣
−a vt

Lt0
0 0

a vt
Lt0

0 0

a v2t2

2Lt0

vt
t0

0

⎤
⎥⎥⎦ , Aτ1 =

⎡
⎢⎢⎣
−(1 − a) vt

Lt0
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(1 − a) vt
Lt0

0 0

(1 − a) v2t2

2Lt0
0 0

⎤
⎥⎥⎦
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⎡
⎢⎢⎣
−a vt

Lt0
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a vt
Lt0
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2Lt0
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0

⎤
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⎢⎢⎣
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Lt0
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⎤
⎥⎥⎦
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Mb =

�
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10t0

π
The membership functions are defined as

h1(θ(t)) = (1 − 1
1 + exp(−3(θ(t)− 0.5π))

)× (
1

1 + exp(−3(θ(t) + 0.5π))
)

h2(θ(t)) = 1 − h1

where

θ(t) = x2(t) + a(vt/2L)x1(t) + (1 − a)(vt/2L)x1(t − τ(t))

By using theorem 3, with the choice of λ = 5, we can obtain the following feasible solution:
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⎡
⎣
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⎤
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⎡
⎣
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⎤
⎦
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Fig. 4. Control results for the truck-trailer system (41)

The third example is presented to illustrate the effectiveness of the proposed main result for
fast time-varying delay system.

4.3 Example 3: Application to an inverted pendulum
Consider the well-studied example of balancing an inverted pendulum on a cart (Cao et al.,
2000).

ẋ1 = x2 (44)

ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2 − a cos(x1)u
4l/3 − aml cos2(x1)

(45)
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where x1 is the pendulum angle (represented by θ in Fig. 5), and x2 is the angular velocity (
θ̇) . g = 9.8m/s2 is the gravity constant , m is the mass of the pendulum, M is the mass of the
cart, 2l is the length of the pendulum and u is the force applied to the cart. a = 1/(m + M).
The nonlinear system can be described by a fuzzy model with two IF-THEN rules:

Plant Rule 1: IF x1 is about 0, Then

ẋ(t) = A1x(t) + B1u(t) (46)

Plant rule 2: IF x1 is about ± π
2 , Then

ẋ(t) = A2x(t) + B2u(t) (47)

where

A1 =

[
0 1

17.2941 0

]
, A2 =

[
0 1

12.6305 0

]

B1 =

[
0

−0.1765

]
, B2 =

[
0

−0.0779

]

The membership functions are

h1 = (1 − 1
1 + exp(−7(x1 − π/4))

)× (1 +
1

1 + exp(−7(x1 + π/4))
)

h2 = 1 − h1

In order to illustrate the use of theorem (3), we assume that the delay terms are perturbed
along values of the scalar s ∈ [0, 1], and the fuzzy time-delay model considered here is as
follows:

ẋ(t) =
r

∑
i=1

hi[((1 − s)Ai + ΔAi)x(t) + (sAτi + ΔAτi)x(t − τ(t)) + Biu(t)] (48)

where

A1 =

[
0 1

17.2941 0

]
, A2 =

[
0 1

12.6305 0

]

B1 =

[
0

−0.1765

]
, B2 =

[
0

−0.0779

]

ΔA1 = ΔA2 = ΔAτ1 = ΔAτ2 = MF(t)E
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ẋ2 =
g sin(x1)− amlx2

2 sin(2x1)/2 − a cos(x1)u
4l/3 − aml cos2(x1)

(45)

34 Recent Advances in Robust Control – Novel Approaches and Design Methods Robust Control of Nonlinear Time-Delay Systems via Takagi-Sugeno Fuzzy Models 15

(M)
u(t)

θ

(m)

Fig. 5. Inverted pendulum

where x1 is the pendulum angle (represented by θ in Fig. 5), and x2 is the angular velocity (
θ̇) . g = 9.8m/s2 is the gravity constant , m is the mass of the pendulum, M is the mass of the
cart, 2l is the length of the pendulum and u is the force applied to the cart. a = 1/(m + M).
The nonlinear system can be described by a fuzzy model with two IF-THEN rules:

Plant Rule 1: IF x1 is about 0, Then
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∑
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with

M =

[
0.1 0
0 0.1

]T

, E =

[
0. 0
0 0.1

]

Let s = 0.1 and uncertainty F(t) =

[
sin(t) 0

0 cos(t)

]
. We consider a fast time-varying delay

τ(t) = 0.2 + 1.2 |sin(t)| (β = 1.2 > 1).
Using LMI-TOOLBOX, there is a set of feasible solutions to LMIs (29).

K1 =
[

159.7095 30.0354
]

, K2 =
[

347.2744 78.5552
]

Fig. 4 shows the control results for the system (48) with time-varying delay τ(t) = 0.2 +

1.2 |sin(t)| under the initial condition x(t) =
[

2 0
]T , t ∈ [−1.40 0

]
.
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Fig. 6. Control results for the system (48) with time-varying delayτ(t) = 0.2 + 1.2 |sin(t)|.

5. Conclusion

In this chapter, we have investigated the delay-dependent design of state feedback stabilizing
fuzzy controllers for uncertain T-S fuzzy systems with time varying delay. Our method is
an important contribution as it establishes a new way that can reduce the conservatism and
the computational efforts in the same time. The delay-dependent stabilization conditions
obtained in this chapter are presented in terms of LMIs involving a single tuning parameter.
Finally, three examples are used to illustrate numerically that our results are less conservative
than the existing ones.
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Observer-Based Robust Control of Uncertain 
Fuzzy Models with Pole Placement Constraints   

Pagès Olivier and El Hajjaji Ahmed 
University of Picardie Jules Verne, MIS, Amiens 

France 

1. Introduction  
Practical systems are often modelled by nonlinear dynamics. Controlling nonlinear systems 
are still open problems due to their complexity nature. This problem becomes more complex 
when the system parameters are uncertain. To control such systems, we may use the 
linearization technique around a given operating point and then employ the known 
methods of linear control theory.  This approach is successful when the operating point of 
the system is restricted to a certain region. Unfortunately, in practice this approach will not 
work for some physical systems with a time-varying operating point. The fuzzy model 
proposed by Takagi-Sugeno (T-S) is an alternative that can be used in this case. It has been 
proved that T-S fuzzy models can effectively approximate any continuous nonlinear 
systems by a set of local linear dynamics with their linguistic description. This fuzzy 
dynamic model is a convex combination of several linear models. It is described by fuzzy 
rules of the type If-Then that represent local input output models for a nonlinear system. The 
overall system model is obtained by “blending” these linear models through nonlinear 
fuzzy membership functions. For more details on this topic, we refer the reader to (Tanaka 
& al 1998 and Wand & al, 1995) and the references therein. 
The stability analysis and the synthesis of controllers and observers for nonlinear systems 
described by T-S fuzzy models have been the subject of many research works in  recent 
years. The fuzzy controller is often designed under the well-known procedure: Parallel 
Distributed Compensation (PDC). In presence of parametric uncertainties in T-S fuzzy 
models, it is necessary to consider the robust stability in order to guarantee both the stability 
and the robustness with respect to the latter. These may include modelling error, parameter 
perturbations, external disturbances, and fuzzy approximation errors. So far, there have 
been some attempts in the area of uncertain nonlinear systems based on the T-S fuzzy 
models in the literature. The most of these existing works assume that all the system states 
are measured. However, in many control systems and real applications, these are not always 
available. Several authors have recently proposed observer based robust controller design 
methods considering the fact that in real control problems the full state information is not 
always available. In the case without uncertainties, we apply the separation property to 
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1. Introduction  
Practical systems are often modelled by nonlinear dynamics. Controlling nonlinear systems 
are still open problems due to their complexity nature. This problem becomes more complex 
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systems by a set of local linear dynamics with their linguistic description. This fuzzy 
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been some attempts in the area of uncertain nonlinear systems based on the T-S fuzzy 
models in the literature. The most of these existing works assume that all the system states 
are measured. However, in many control systems and real applications, these are not always 
available. Several authors have recently proposed observer based robust controller design 
methods considering the fact that in real control problems the full state information is not 
always available. In the case without uncertainties, we apply the separation property to 
design the observer-based controller: the observer synthesis is designed so that its dynamics 
are fast and we independently design the controller by imposing slower dynamics. Recently, 
much effort has been devoted to observer-based control for T-S fuzzy models. (Tanaka & al, 
1998) have studied the fuzzy observer design for T-S fuzzy control systems. Nonetheless, in 
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the presence of uncertainties, the separation property is not applicable any more. In (El 
Messousi & al, 2006), the authors have proposed sufficient global stability conditions for the 
stabilization of uncertain fuzzy T-S models with unavailable states using a robust fuzzy 
observer-based controller but with no consideration to the control performances and in 
particular to the transient behaviour.  
From a practical viewpoint, it is necessary to find a controller which will specify the desired 
performances of the controlled system. For example, a fast decay, a good damping can be 
imposed by placing the closed-loop poles in a suitable region of the complex plane. Chilali 
and Gahinet (Chilali & Gahinet, 1996) have proposed the concept of an LMI (Linear Matrix 
Inequality) region as a convenient LMI-based representation of general stability regions for 
uncertain linear systems. Regions of interest include α-stability regions, disks and conic 
sectors. In (Chilali & al 1999), a robust pole placement has been studied in the case of linear 
systems with static uncertainties on the state matrix. A vertical strip and α-stability robust 
pole placement has been studied in (Wang & al, 1995, Wang & al, 1998 and Wang & al, 2001) 
respectively for uncertain linear systems in which the concerned uncertainties are polytopic 
and the proposed conditions are not LMI. In (Hong & Man 2003), the control law synthesis 
with a pole placement in a circular LMI region is presented for certain T-S fuzzy models. 
Different LMI regions are considered in (Farinwata & al, 2000 and Kang & al, 198), for 
closed-loop pole placements in the case of T-S fuzzy models without uncertainties. 
In this work, we extend the results of (El Messoussi & al, 2005), in which we have developed 
sufficient robust pole placement conditions for continuous T-S fuzzy models with 
measurable state variables and structured parametric uncertainties.  
The main goal of this paper is to study the pole placement constraints for T-S fuzzy models 
with structured uncertainties by designing an observer-based fuzzy controller in order to 
guarantee the closed-loop stability. However, like (Lo & Li, 2004 and Tong & Li, 2002), we do 
not know the position of the system state poles as well as the position of the estimation error 
poles. The main contribution of this paper is as follows: the idea is to place the poles associated 
with the state dynamics in one LMI region and to place the poles associated with the 
estimation error dynamics in another LMI region (if possible, farther on the left). However, the 
separation property is not applicable unfortunately. Moreover, the estimation error dynamics 
depend on the state because of uncertainties. If the state dynamics are slow, we will have a 
slow convergence of the estimation error to the equilibrium point zero in spite of its own fast 
dynamics. So, in this paper, we propose an algorithm to design the fuzzy controller and the 
fuzzy observer separately by imposing the two pole placements. Moreover, by using the H∞ 
approach, we ensure that the estimation error converges faster to the equilibrium point zero. 
This chapter is organized as follows: in Section 2, we give the class of uncertain fuzzy 
models, the observer-based fuzzy controller structure and the control objectives. After 
reviewing existing LMI constraints for a pole placement in Section 3, we propose the new 
conditions for the uncertain augmented T-S fuzzy system containing both the fuzzy 
controller as well as the observer dynamics. Finally, in Section 4, an illustrative application 
example shows the effectiveness of the proposed robust pole placement approach.  Some 
conclusions are given in Section 5. 

2. Problem formulation and preliminaries 
Considering a T-S fuzzy model with parametric uncertainties composed of r plant rules that 
can be represented by the following fuzzy rule: 
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Plant rule i :   

If 1( )z t is M1i and …and ( )z tν  is iMν  Then 
( ) ( ) ( ) ( ) ( ),
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⎨ = =⎩
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bi bi
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Δ Δ ≤ =
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( )t
ai tΔ is the transposed matrix of ( )ai tΔ and I is the matrix identity of appropriate 

dimension. We suppose that pairs ( ),i iA B  are controllable and ( ),i iA C are observable. ijM  

indicates the  jth fuzzy set  associated to the ith  variable ( )iz t , r is the number of fuzzy model 

rules, ( ) nx t ∈ℜ is the state vector, ( ) mu t ∈ℜ  is the input vector, ( ) ly t R∈  is the output vector, 
n n

iA ×∈ℜ , n m
iB ×∈ℜ  and l n

iC ×∈ℜ . 1( ),..., ( )vz t z t  are premise variables. 
From (1), the T-S fuzzy system output is  : 
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1

( ( ))( ( ))
( ( ))

i
i r

i
i

w z th z t
w z t

=

=
∑

 and 
1

( ( )) ( ( ))
ij

v
i M j

j
w z t z tμ

=
= ∏  

Where ( ( ))
ijM jz tμ is the fuzzy meaning of symbol Mij. 

In this paper we assume that all of the state variables are not measurable. Fuzzy state 
observer for T-S fuzzy model with parametric uncertainties (1) is formulated as follows: 
Observer rule i:  

 If 1( )z t is M1i and …and ( )z tν  is iMν Then  
ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( )),
ˆ ˆ( ) ( ) 1,...,

i i i

i

x t A x t B u t G y t y t
y t C x t i r
⎧ = + − −⎪
⎨

= =⎪⎩
   (5) 

The fuzzy observer design is to determine the local gains n l
iG ×∈ℜ  in the consequent part. 

Note that the premise variables do not depend on the state variables estimated by a fuzzy 
observer. 
The output of (5) is represented as follows: 
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⎪ =⎪⎩

∑

∑
              (6) 

To stabilize this class of systems, we use the PDC observer-based approach (Tanaka & al, 
1998). The PDC observer-based controller is defined by the following rule base system: 
Controller rule i :   

 If 1( )z t is M1i and …and ( )z tν  is iMν Then ˆ( ) ( ) 1,...,iu t K x t i r= =          (7) 

The overall fuzzy controller is represented by: 

 1

1

1

ˆ( ( )) ( )
ˆ( ) ( ( )) ( )

( ( ))

r

i i r
i

i ir
i

i
i

w z t K x t
u t h z t K x t

w z t

=

=

=

= =
∑

∑
∑

                        (8) 

Let us denote the estimation error as: 

 ˆ( ) ( ) ( )e t x t x t= −                                                (9) 

The augmented system containing both the fuzzy controller and observer is represented as 
follows: 

 
( ) ( )

( ( ))
( ) ( )

x t x t
A z t

e t e t
⎡ ⎤ ⎡ ⎤

= ×⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

                                                  (10) 

where 
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1 1
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r r
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i i i i j i i j
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i i j i i j i j

A z t h z t h z t A

A A B B K B B K
A

A B K A G C B K

= =
=

+ Δ + + Δ − + Δ⎡ ⎤
⎢ ⎥=

Δ + Δ + − Δ⎢ ⎥⎣ ⎦

∑∑
   (11) 

The main goal is first, to find the sets of matrices iK  and iG  in order to guarantee the global 
asymptotic stability of the equilibrium point zero of (10) and secondly, to design the fuzzy 
controller and the fuzzy observer of the augmented system (10) separately by assigning both 
“observer and controller poles” in a desired region in order to guarantee that the error 
between the state and its estimation converges faster to zero. The faster the estimation error 
will converge to zero, the better the transient behaviour of the controlled system will be. 

3. Main results 
Given (1), we give sufficient conditions in order to satisfy the global asymptotic stability of 
the closed-loop for the augmented system (10). 
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Lemma 1:  The equilibrium point zero of the augmented system described by (10) is globally 
asymptotically stable if there exist common positive definite matrices 1P  and 2P , matrices 

iW , jV  and positive scalars 0ijε  such as 
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                                                  (13) 
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Proof: using theorem 7 in (Tanaka & al, 1998), property (3), the separation lemma (Shi & al, 
1992)) and the Schur’s complement (Boyd & al, 1994), the above conditions (12) and (13) 
hold with some changes of variables. Let us briefly explain the different steps… 
From (11), in order to ensure the global, asymptotic stability, the sufficient conditions must 
be verified: 

 0 : ( , ) 0
tt

ij ijDX X M A X A X XA∃ = > = + <  (14) 

Let: 11

22

0
0

X
X

X
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⎣ ⎦

where 0 is a zero matrix of appropriate dimension. From (14), we have: 

 1 2( , )D D DM A X M M= +  (15) 

With 11

2

0
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D
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where  
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bi j ij

t
ij ai ij

t
bi ij

j ij

D K E P H P H K

E K I

H P I

H P I

K I

ε

ε

ε

ε

−

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥∑ = −
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

1 1

* 1
2 2

t t t t t
ij i i i j j i ij ai ai ij bi bi

t t t t t
ij i i i j j i ij j bi bi j

D A P P A BV V B H H H H

D P A A P W C C W K E E K

ε ε

ε −
= + + + + +

= + + + +
 

Proof: using theorem 7 in (Tanaka & al, 1998), property (3), the separation lemma (Shi & al, 
1992)) and the Schur’s complement (Boyd & al, 1994), the above conditions (12) and (13) 
hold with some changes of variables. Let us briefly explain the different steps… 
From (11), in order to ensure the global, asymptotic stability, the sufficient conditions must 
be verified: 

 0 : ( , ) 0
tt

ij ijDX X M A X A X XA∃ = > = + <  (14) 

Let: 11

22

0
0

X
X

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

where 0 is a zero matrix of appropriate dimension. From (14), we have: 

 1 2( , )D D DM A X M M= +  (15) 

With 11

2

0
0D

D
M

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

where  

 1 11 11 11 11
t t t

i i i j j iD A X X A B K X X K B= + + +  (16) 

and  

 2 22 22 22 22
t t t

i i i j j iD A X X A G C X X C G= + + +  (17) 
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From (15),  

1 11 11 22 222

11 11 22 22 2

t t t
i j i i j i j

D t t t t
i i j j i j i

X A X K B B K X B K X
M

A X B K X X K B X K B

⎡ ⎤Δ Δ + Δ − − Δ
⎢ ⎥=
⎢ ⎥Δ + Δ − − Δ Δ⎣ ⎦

  

where 1 11 11 11 11
t t t

i i i j j iA X X A B K X X K BΔ = Δ + Δ + Δ + Δ  and 2 22 22
t t

i j j iB K X X K BΔ = −Δ − Δ  

From (15), we have:  

2
1 2 3DM = Σ + Σ + Σ with

22 22
1

22 22

0

0
i j i j

t t t t
j i j i

B K X B K X

X K B X K B

− − Δ⎡ ⎤
⎢ ⎥Σ =
− − Δ⎢ ⎥⎣ ⎦

,

11 11
2

11 11

0
0

t t t
i j i

i i j

X A X K B
A X B K X

⎡ ⎤Δ + Δ
⎢ ⎥Σ =
Δ + Δ⎢ ⎥⎣ ⎦

and 1
3

2

0
0
Δ⎡ ⎤

Σ = ⎢ ⎥Δ⎣ ⎦
 

Let 1
11 1 11 2,  X P X P−= = . From the previous equation and (2), we have: 

 
1 1 1 1

2 2 2

1
2

0 0 0 0 0 00 0 0 00
0 00 0 00 0

0 00
00 0

i
t t tt t t
j j j bii bi bi

bi bi

bi j

B
P K K P P K EB H

H
E K P

− − −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤Δ
+ × ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (18)  

And, 

 

11 1
2

1

0 0 0 0 00 0 0
0 0 0 00 0 0 0 0 0

0 0
0 00 0

t t t
bi jai ai ai ai

ai ai bi bi
t t t t
j bi bi bi

E K PE P P E H
H H

P K E H

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ Δ
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ

+ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (19) 

And finally: 

 

1 1 1
3

1

1 1
2 2

0 0
00 0 0 0 0

0 0 0 00 0 0 0
0 00 0

t tt t t
ai ai aiai j biai ai bi bi

t tbi j bi bi

t t t t
bi j j bibi bi bi bi

E P HP E P K EH H
E K P H

E K P P K EH H− −

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ΔΔ Δ
Σ = × + × ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

Δ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

+ × + ×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
− Δ −Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (20) 

From (18), (19) and (20) and by using the separation lemma (Shi & al, 1992)), we finally obtain: 

 12

2

0
0D

T
M

T
⎡ ⎤

≤ ⎢ ⎥
⎣ ⎦

 (21) 

Where:  

1 1 1 1
1 1 1 1 1

1 1
1 1 1 1

t t t t t t
ij i i ij bi bi bi bi ij ai ai ij j bi bi j

t t t t t t t
ij ai ai ai ai ij bi bi bi bi ij ai ai ij j bi bi j

T B B H H P E E P P K E E K P

H H H H P E E P P K E E K P

ε ε ε ε

ε ε ε ε

− − − −

− −

= + Δ Δ + +

+ Δ Δ + Δ Δ + +
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and  

1 1 1 1
2 2 2 2 2

1 1 1
2 2

t t t t t
ij j j ij j bi bi j ij ai ai ai ai

t t t t t t
ij bi bi bi bi ij bi bi bi bi ij j bi bi j

T P K K P P K E E K P H H

H H H H P K E E K P

ε ε ε

ε ε ε

− − − −

− − −

= + + Δ Δ

+ Δ Δ + Δ Δ +
 

From (15), (16), (17) and (21), we have: 

 1 1 1

2 2 2

0 0
( , )

0 0D
D T R

M A X
D T R

+⎡ ⎤ ⎡ ⎤
≤ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (22) 

In order to verify (14), we must have: 

 1

2

0
0

0
R

R
⎡ ⎤

<⎢ ⎥
⎣ ⎦

 (23) 

Which implies:  

 1

2

0
0

R
R

<⎧
⎨ <⎩

 (24) 

First, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 
introduction of the new variable: 1i jV K P= : 

 

1

1

1

0

0.5 0 0 0
0 0.5 0 0 0
0 0 0

0 0 0

t t t
ij ai j bi i bi

ai ij

bi j ij
t
i ij

t
bi ij

R

D P E V E B H
E P I
E V I

B I

H I

ε

ε

ε

ε

<

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⇔ <⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (25) 

Where I is always the identity matrix of appropriate dimension and 

1 1
t t t t t

ij i i i j j i ij ai ai ij bi biD A P P A BV V B H H H Hε ε= + + + + +  

Then, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 
introduction of the new variable: 2i iW P G= : 

 

2
*

2 2
1

1
2

1
2

1

0

0 0 0

00 0 0

0 0 0.5 0

0 0 0

t t t
ij j bi ai bi j

bi j ij
t
ai ij

t
bi ij

j ij

R

D K E P H P H K

E K I

H P I

H P I

K I

ε

ε

ε

ε

−

−

−

−

<

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⇔ <−
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (26) 
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From (15),  

1 11 11 22 222

11 11 22 22 2

t t t
i j i i j i j

D t t t t
i i j j i j i

X A X K B B K X B K X
M

A X B K X X K B X K B

⎡ ⎤Δ Δ + Δ − − Δ
⎢ ⎥=
⎢ ⎥Δ + Δ − − Δ Δ⎣ ⎦

  

where 1 11 11 11 11
t t t

i i i j j iA X X A B K X X K BΔ = Δ + Δ + Δ + Δ  and 2 22 22
t t

i j j iB K X X K BΔ = −Δ − Δ  

From (15), we have:  

2
1 2 3DM = Σ + Σ + Σ with

22 22
1

22 22

0

0
i j i j

t t t t
j i j i

B K X B K X

X K B X K B

− − Δ⎡ ⎤
⎢ ⎥Σ =
− − Δ⎢ ⎥⎣ ⎦

,

11 11
2

11 11

0
0

t t t
i j i

i i j

X A X K B
A X B K X

⎡ ⎤Δ + Δ
⎢ ⎥Σ =
Δ + Δ⎢ ⎥⎣ ⎦

and 1
3

2

0
0
Δ⎡ ⎤

Σ = ⎢ ⎥Δ⎣ ⎦
 

Let 1
11 1 11 2,  X P X P−= = . From the previous equation and (2), we have: 

 
1 1 1 1

2 2 2

1
2

0 0 0 0 0 00 0 0 00
0 00 0 00 0

0 00
00 0

i
t t tt t t
j j j bii bi bi

bi bi

bi j

B
P K K P P K EB H

H
E K P

− − −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− − − Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤Δ
+ × ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (18)  

And, 

 

11 1
2

1

0 0 0 0 00 0 0
0 0 0 00 0 0 0 0 0

0 0
0 00 0

t t t
bi jai ai ai ai

ai ai bi bi
t t t t
j bi bi bi

E K PE P P E H
H H

P K E H

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ Δ
Σ = × + × + ×⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥Δ Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤Δ

+ ×⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (19) 

And finally: 

 

1 1 1
3

1

1 1
2 2

0 0
00 0 0 0 0

0 0 0 00 0 0 0
0 00 0

t tt t t
ai ai aiai j biai ai bi bi

t tbi j bi bi

t t t t
bi j j bibi bi bi bi

E P HP E P K EH H
E K P H

E K P P K EH H− −

⎡ ⎤⎡ ⎤⎡ ⎤ ⎡ ⎤ ΔΔ Δ
Σ = × + × ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥

Δ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

+ × + ×⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
− Δ −Δ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (20) 

From (18), (19) and (20) and by using the separation lemma (Shi & al, 1992)), we finally obtain: 

 12

2

0
0D

T
M

T
⎡ ⎤

≤ ⎢ ⎥
⎣ ⎦

 (21) 

Where:  

1 1 1 1
1 1 1 1 1

1 1
1 1 1 1

t t t t t t
ij i i ij bi bi bi bi ij ai ai ij j bi bi j

t t t t t t t
ij ai ai ai ai ij bi bi bi bi ij ai ai ij j bi bi j

T B B H H P E E P P K E E K P

H H H H P E E P P K E E K P

ε ε ε ε

ε ε ε ε

− − − −

− −

= + Δ Δ + +

+ Δ Δ + Δ Δ + +
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and  

1 1 1 1
2 2 2 2 2

1 1 1
2 2

t t t t t
ij j j ij j bi bi j ij ai ai ai ai

t t t t t t
ij bi bi bi bi ij bi bi bi bi ij j bi bi j

T P K K P P K E E K P H H

H H H H P K E E K P

ε ε ε

ε ε ε

− − − −

− − −

= + + Δ Δ

+ Δ Δ + Δ Δ +
 

From (15), (16), (17) and (21), we have: 

 1 1 1

2 2 2

0 0
( , )

0 0D
D T R

M A X
D T R

+⎡ ⎤ ⎡ ⎤
≤ =⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (22) 

In order to verify (14), we must have: 

 1

2

0
0

0
R

R
⎡ ⎤

<⎢ ⎥
⎣ ⎦

 (23) 

Which implies:  

 1

2

0
0

R
R

<⎧
⎨ <⎩

 (24) 

First, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 
introduction of the new variable: 1i jV K P= : 

 

1

1

1

0

0.5 0 0 0
0 0.5 0 0 0
0 0 0

0 0 0

t t t
ij ai j bi i bi

ai ij

bi j ij
t
i ij

t
bi ij

R

D P E V E B H
E P I
E V I

B I

H I

ε

ε

ε

ε

<

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⇔ <⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

 (25) 

Where I is always the identity matrix of appropriate dimension and 

1 1
t t t t t

ij i i i j j i ij ai ai ij bi biD A P P A BV V B H H H Hε ε= + + + + +  

Then, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the 
introduction of the new variable: 2i iW P G= : 

 

2
*

2 2
1

1
2

1
2

1

0

0 0 0

00 0 0

0 0 0.5 0

0 0 0

t t t
ij j bi ai bi j

bi j ij
t
ai ij

t
bi ij

j ij

R

D K E P H P H K

E K I

H P I

H P I

K I

ε

ε

ε

ε

−

−

−

−

<

⎡ ⎤
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥⇔ <−
⎢ ⎥
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (26) 
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Where * 1
2 2

t t t t t
ij i i i j j i ij j bi bi jD P A A P W C C W K E E Kε −= + + + +  

Thus, conditions (12) and (13) yield for all i, j from (25) and (26) and by using theorem 7 in 
(Tanaka & al, 1998) which is necessary for LMI relaxations. 
Remark 1: In lemma 1, the positive scalars ijε  are optimised unlike (Han & al, 2000), (Lee & 
al, 2001), (Tong & Li, 2002), (Chadli & El Hajjaji, 2006). We do not actually need to impose 
them to solve the set of LMIs. The conditions are thus less restrictive. 
Remark 2: Note that it is a two-step procedure which allows us to design the controller and 
the observer separately. First, we solve (12) for decision variables 1( , , )j ijP K ε  and secondly, 
we solve (13) for decision variables 2( , )iP G by using the results from the first step. 
Furthermore, the controller and observer gains are given by: 1

2i iG P W−=  and 1
1j jK V P−= , 

respectively, for , 1,2,..., .i j r=  
Remark 3:  From lemma 1 and (10), the location of the poles associated with the state 
dynamics and with the estimation error dynamics is unknown. However, since the design 
algorithm is a two-step procedure, we can impose two pole placements separately, the first 
one for the state and the second one for the estimation error. In the following, we focus in 
the robust pole placement.  
We hereafter give sufficient conditions to ensure the desired pole placements by using the 
LMI conditions of (Chilali & Gahinet (1996) and (Chilali & al, 1999) to the case of uncertain 
T-S fuzzy systems with unavailable state variables. Let us recall the definition of an LMI 
region and pole placement LMI constraints. 
Definition 1 (Boyd & al, 1994): A subset D of the complex plane is called an LMI region if 
there exists a symmetric matrix [ ] m m

klα α ×= ∈ℜ  and a matrix [ ] m m
klβ β ×= ∈ℜ  such as: 

 { }: ( ) 0t
DD z C f z z zα β β= ∈ = + + <                           (27) 

Definition 2 (Chilali and Gahinet, 1996):  Let D be a subregion of the left-half plane. A 
dynamical system described by: x Ax= is called D-stable if all its poles lie in D. By 
extension, A is then called D-stable. 
From the two previous definitions, the following theorem is given. 
Theorem 1 (Chilali and Gahinet , 1996): Matrix A is D-stable if and only if there exists a 
symmetric matrix 0X >  such as 

 ( , ) 0t t
DM A X X AX XAα β β= ⊗ + ⊗ + ⊗ <                       (28) 

where ⊗ denotes the Kronecker product. 
From (10) and (11), let us define: ( ) ( )ij i i i i jT A A B B K= + Δ + + Δ  and ij i i j i jS A G C B K= + − Δ .  

We hereafter give sufficient conditions to guarantee that 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑ and 

1 1
( ( )) ( ( ))

r r

i j ij
i j

h z t h z t S
= =
∑∑  are TD -stable and SD -stable respectively in order to impose the 

dynamics of the state and the dynamics of the estimation error.   

Lemma 2: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑  is TD -stable if and only if there exist a symmetric 

matrix 1 0P >  and positive scalars 0ijμ  such as 
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0,  1,..., ,

0,  .
ii

ij ji

i r
i j r

Ω ≤ =
Ω +Ω ≤ < ≤

                                                   (29) 

With 

 

( ) ( )
( )

( )
( ) ( )

1

1

1 1 1

1

0

0

t t t t
ij ai j bi

ij ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

t t t t t
ij i i i j j i

j j

E P E V E

E P I

E V I

E I H H I H H

P A P P A BV V B
V K P

β β

β μ

β μ

ξ μ μ

ξ α β β β β

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟Ω = ⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (30) 

 
Proof: Using theorem 1, matrix ijT  is DT-stable if and only if there exists a symmetric matrix 

0X >  such that: 

 ( , ) 0
T

t t
D ij ij ijM T X X T X XTα β β= ⊗ + ⊗ + ⊗ <  (31) 

 
( , )

T

t t t t t
D ij i i i j j i ai ai ai

t t t t t t t t t
ai ai ai bi bi bi j j bi bi bi

M T X X A X XA B K X XK B H E X

XE H H E K X XK E H

α β β β β β

β β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ Δ

+ ⊗ Δ + ⊗ Δ + ⊗ Δ
 (32) 

Let 1X P=  and 1j jV K P= : 

1 1( , ) ( )( ) ( )( ) ( )( )

( )( )
T

t t t t
D ij ij ai ai ai ai ai ai bi bi bi j

t t t t t
j bi bi bi

M T X I H E P P E I H I H E V

V E I H

ξ β β β

β

= + ⊗ Δ ⊗ + ⊗ ⊗Δ + ⊗ Δ ⊗

+ ⊗ ⊗Δ
 (33) 

where  

 1 1 1
t t t t t

ij i i i j j iP A P P A BV V Bξ α β β β β= ⊗ + ⊗ + ⊗ + ⊗ + ⊗  (34) 

Using the separation lemma (Shi & al, 1992) and (3), we obtain: 

 
1

1 1

1

( , ) ( ) ( )( )

( ) ( )( )
T

t t t
D ij ij ij ai ai ij ai ai

t t t t
ij bi bi ij j bi bi j

M T X I H H P E E P

I H H V E E V

ξ μ μ β β

μ μ β β

−

−

≤ + ⊗ + ⊗ ⊗

+ ⊗ + ⊗ ⊗
  (35) 

Thus, matrix ijT  is DT-stable if: 

 
1

1 1

1

( ) ( ) ( )( )

( )( ) 0

t t t t
ij ij ai ai ij bi bi ij ai ai

t t t
ij j bi bi j

I H H I H H P E E P

V E E V

ξ μ μ μ β β

μ β β

−

−

+ ⊗ + ⊗ + ⊗ ⊗

+ ⊗ ⊗ ≺
 (36) 

Where, of course, ,ij i jμ ∈ℜ ∀  
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Where * 1
2 2

t t t t t
ij i i i j j i ij j bi bi jD P A A P W C C W K E E Kε −= + + + +  

Thus, conditions (12) and (13) yield for all i, j from (25) and (26) and by using theorem 7 in 
(Tanaka & al, 1998) which is necessary for LMI relaxations. 
Remark 1: In lemma 1, the positive scalars ijε  are optimised unlike (Han & al, 2000), (Lee & 
al, 2001), (Tong & Li, 2002), (Chadli & El Hajjaji, 2006). We do not actually need to impose 
them to solve the set of LMIs. The conditions are thus less restrictive. 
Remark 2: Note that it is a two-step procedure which allows us to design the controller and 
the observer separately. First, we solve (12) for decision variables 1( , , )j ijP K ε  and secondly, 
we solve (13) for decision variables 2( , )iP G by using the results from the first step. 
Furthermore, the controller and observer gains are given by: 1

2i iG P W−=  and 1
1j jK V P−= , 

respectively, for , 1,2,..., .i j r=  
Remark 3:  From lemma 1 and (10), the location of the poles associated with the state 
dynamics and with the estimation error dynamics is unknown. However, since the design 
algorithm is a two-step procedure, we can impose two pole placements separately, the first 
one for the state and the second one for the estimation error. In the following, we focus in 
the robust pole placement.  
We hereafter give sufficient conditions to ensure the desired pole placements by using the 
LMI conditions of (Chilali & Gahinet (1996) and (Chilali & al, 1999) to the case of uncertain 
T-S fuzzy systems with unavailable state variables. Let us recall the definition of an LMI 
region and pole placement LMI constraints. 
Definition 1 (Boyd & al, 1994): A subset D of the complex plane is called an LMI region if 
there exists a symmetric matrix [ ] m m

klα α ×= ∈ℜ  and a matrix [ ] m m
klβ β ×= ∈ℜ  such as: 

 { }: ( ) 0t
DD z C f z z zα β β= ∈ = + + <                           (27) 

Definition 2 (Chilali and Gahinet, 1996):  Let D be a subregion of the left-half plane. A 
dynamical system described by: x Ax= is called D-stable if all its poles lie in D. By 
extension, A is then called D-stable. 
From the two previous definitions, the following theorem is given. 
Theorem 1 (Chilali and Gahinet , 1996): Matrix A is D-stable if and only if there exists a 
symmetric matrix 0X >  such as 

 ( , ) 0t t
DM A X X AX XAα β β= ⊗ + ⊗ + ⊗ <                       (28) 

where ⊗ denotes the Kronecker product. 
From (10) and (11), let us define: ( ) ( )ij i i i i jT A A B B K= + Δ + + Δ  and ij i i j i jS A G C B K= + − Δ .  

We hereafter give sufficient conditions to guarantee that 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑ and 

1 1
( ( )) ( ( ))

r r

i j ij
i j

h z t h z t S
= =
∑∑  are TD -stable and SD -stable respectively in order to impose the 

dynamics of the state and the dynamics of the estimation error.   

Lemma 2: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t T
= =
∑∑  is TD -stable if and only if there exist a symmetric 

matrix 1 0P >  and positive scalars 0ijμ  such as 
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0,  1,..., ,

0,  .
ii

ij ji

i r
i j r

Ω ≤ =
Ω +Ω ≤ < ≤

                                                   (29) 

With 

 

( ) ( )
( )

( )
( ) ( )

1

1

1 1 1

1

0

0

t t t t
ij ai j bi

ij ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

t t t t t
ij i i i j j i

j j

E P E V E

E P I

E V I

E I H H I H H

P A P P A BV V B
V K P

β β

β μ

β μ

ξ μ μ

ξ α β β β β

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟Ω = ⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (30) 

 
Proof: Using theorem 1, matrix ijT  is DT-stable if and only if there exists a symmetric matrix 

0X >  such that: 

 ( , ) 0
T

t t
D ij ij ijM T X X T X XTα β β= ⊗ + ⊗ + ⊗ <  (31) 

 
( , )

T

t t t t t
D ij i i i j j i ai ai ai

t t t t t t t t t
ai ai ai bi bi bi j j bi bi bi

M T X X A X XA B K X XK B H E X

XE H H E K X XK E H

α β β β β β

β β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ Δ

+ ⊗ Δ + ⊗ Δ + ⊗ Δ
 (32) 

Let 1X P=  and 1j jV K P= : 

1 1( , ) ( )( ) ( )( ) ( )( )

( )( )
T

t t t t
D ij ij ai ai ai ai ai ai bi bi bi j

t t t t t
j bi bi bi

M T X I H E P P E I H I H E V

V E I H

ξ β β β

β

= + ⊗ Δ ⊗ + ⊗ ⊗Δ + ⊗ Δ ⊗

+ ⊗ ⊗Δ
 (33) 

where  

 1 1 1
t t t t t

ij i i i j j iP A P P A BV V Bξ α β β β β= ⊗ + ⊗ + ⊗ + ⊗ + ⊗  (34) 

Using the separation lemma (Shi & al, 1992) and (3), we obtain: 

 
1

1 1

1

( , ) ( ) ( )( )

( ) ( )( )
T

t t t
D ij ij ij ai ai ij ai ai

t t t t
ij bi bi ij j bi bi j

M T X I H H P E E P

I H H V E E V

ξ μ μ β β

μ μ β β

−

−

≤ + ⊗ + ⊗ ⊗

+ ⊗ + ⊗ ⊗
  (35) 

Thus, matrix ijT  is DT-stable if: 

 
1

1 1

1

( ) ( ) ( )( )

( )( ) 0

t t t t
ij ij ai ai ij bi bi ij ai ai

t t t
ij j bi bi j

I H H I H H P E E P

V E E V

ξ μ μ μ β β

μ β β

−

−

+ ⊗ + ⊗ + ⊗ ⊗

+ ⊗ ⊗ ≺
 (36) 

Where, of course, ,ij i jμ ∈ℜ ∀  
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By using the Schur’s complement (Boyd & al, 1994), 

 

( ) ( )
( )

( )
( ) ( )

1

1 0 0,

0

.

t t t t
ij ai j bi

ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

E P E V E

E P I

E V I

E I H H I H H

β β

β μ

β μ

ξ μ μ

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

≺
 (37) 

Thus, conditions (29) easily yield for all i, j. 

Lemma 3: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t S
= =
∑∑  is DS-stable if and only if there exist a symmetric 

matrix 2 0P > , matrices iW , jK  and positive scalars 0ijλ �  such as 

 
0,  1,...,

0,  
ii

ij ji

i r
i j r

Φ ≤ =
Φ +Φ ≤ < ≤

 (38) 

with 

 

2

2

2 2 2

2

( )( )t t t
ij ij j bi bi j bi

ij t
bi ij

t t t t t
ij i i i j j i

i i

R K E E K I P H

I H P I

R P P A A P W C C W
W P G

λ β β

λ

α β β β β

⎛ ⎞+ ⊗ ⊗ ⊗
⎜ ⎟Φ =
⎜ ⎟⊗ −⎝ ⎠

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (39) 

Proof: Same lines as previously can be used to prove this lemma. 
Let: 

  
( , )

( ) ( )( ) 0
S

t t t t t
D ij i i i j j i

t t t t t
j bi bi bi bi bi bi j

M S X X A X XA G C X XC G

XK E I H I H E K X

α β β β β

β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

− ⊗ ⊗Δ − ⊗Δ ⊗ <
 (40) 

Using the separation lemma (Shi & al, 1992), by pre- and post- multiplying by 1I X−⊗ , we 
obtain: 

 
1 1 1 1 1

1 1

( ) ( ) ( ) ( )

( )( ) 1 / ( )( ) 0

t t t t t
i i i j j i

t t t t
ij j bi bi j ij bi bi

X X A A X X G C C G X

K E E K I X H I H X

α β β β β

λ β β λ

− − − − −

− −

⊗ + ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ ⊗ + ⊗ ⊗ <
 (41) 

Where, of course,  ,ij i jλ ∈ℜ ∀  

Thus, by using the Schur’s complement (Boyd & al, 1994) as well as by defining 1
2P X−= : 

2 2 2 2 2 2

2

( )( )
0

t t t t t t t t
i i i j j i ij j bi bi j bi

ij t
bi ij

P P A A P P G C C G P K E E K I P H

I H P I

α β β β β λ β β

λ

⎛ ⎞⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ ⊗ ⊗
⎜ ⎟Φ = <
⎜ ⎟⊗ −⎝ ⎠

(42) 

By using 1
i iW X G−= , conditions (38) easily yield for all i, j. The lemma proof is given. 
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Remark 4: Any kind of LMI region (disk, vertical strip, conic sector) may be easily used for 
DS and TD . 
From lemma 2 and lemma 3, we have imposed the dynamics of the state as well as the 
dynamics of the estimation error. But from (10), the estimation error dynamics depend on 
the state.  If the state dynamics are slow, we will have a slow convergence of the estimation 
error to the equilibrium point zero in spite of its own fast dynamics. So in this paper, we add 
an algorithm using the H∞  approach to ensure that the estimation error converges faster to 
the equilibrium point zero. 
We know from (10) that: 

 
( )

( )
1 1

1 1

( ) ( ( )) ( ( )) ( )

( ( )) ( ( )) ( )

r r

i j i i j i j
i j

r r

i j ij i i j
i j

e t h z t h z t A G C B K e t

h z t h z t S A B K x t

= =

= =

= + − Δ

+ Δ + Δ

∑∑

∑∑
 (43) 

 

This equation is equivalent to the following system: 

 
1 1

( ( )) ( ( ))
0

r r i i j i j i i j
i j

i j

A G C B K A B Ke e
h z t h z t

e xI= =

⎛ ⎞+ − Δ Δ + Δ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
∑∑  (44) 

 

The objective is to minimize the 2L  gain from ( )x t  to ( )e t  in order to guarantee that the 
error between the state and its estimation converges faster to zero. Thus, we define the 
following H∞  performance criterion under zero initial conditions: 

 2

0

{ ( ) ( ) ( ) ( )} 0t te t e t x t x t dtγ
∞

− <∫  (45) 

where *γ +∈ℜ  has to be minimized. Note that the signal ( )x t is square integrable because of 
lemma 1.  
We give the following lemma to satisfy the H∞  performance. 
Lemma 4: If there exist symmetric positive definite matrix 2P , matrices iW  and positive 
scalars 0,  0ijγ β  such as 

 
0,  1,...,

0,  
ii

ij ji

i r
i j r

Γ ≤ =
Γ + Γ ≤ < ≤

                    (46) 

With 

2 2

2

2

0 0

0 0

0 0

t t
ij bi ai ij j bi bi j

t
bi ij

ij t
ai ij

t t
ij j bi bi j ij

Z P H P H K E E K

H P I

H P I

K E E K U

β

β

β

β

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥Γ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦
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By using the Schur’s complement (Boyd & al, 1994), 

 

( ) ( )
( )

( )
( ) ( )

1

1 0 0,

0

.

t t t t
ij ai j bi

ai ij

bi j ij

t t
ij ij ij ai ai ij bi bi

E P E V E

E P I

E V I

E I H H I H H

β β

β μ

β μ

ξ μ μ

⎛ ⎞⊗ ⊗⎜ ⎟
⎜ ⎟⊗ −
⎜ ⎟
⎜ ⎟⊗ −⎝ ⎠

= + ⊗ + ⊗

≺
 (37) 

Thus, conditions (29) easily yield for all i, j. 

Lemma 3: Matrix 
1 1

( ( )) ( ( ))
r r

i j ij
i j

h z t h z t S
= =
∑∑  is DS-stable if and only if there exist a symmetric 

matrix 2 0P > , matrices iW , jK  and positive scalars 0ijλ �  such as 

 
0,  1,...,

0,  
ii

ij ji

i r
i j r

Φ ≤ =
Φ +Φ ≤ < ≤

 (38) 

with 

 

2

2

2 2 2

2

( )( )t t t
ij ij j bi bi j bi

ij t
bi ij

t t t t t
ij i i i j j i

i i

R K E E K I P H

I H P I

R P P A A P W C C W
W P G

λ β β

λ

α β β β β

⎛ ⎞+ ⊗ ⊗ ⊗
⎜ ⎟Φ =
⎜ ⎟⊗ −⎝ ⎠

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

=

 (39) 

Proof: Same lines as previously can be used to prove this lemma. 
Let: 

  
( , )

( ) ( )( ) 0
S

t t t t t
D ij i i i j j i

t t t t t
j bi bi bi bi bi bi j

M S X X A X XA G C X XC G

XK E I H I H E K X

α β β β β

β β

= ⊗ + ⊗ + ⊗ + ⊗ + ⊗

− ⊗ ⊗Δ − ⊗Δ ⊗ <
 (40) 

Using the separation lemma (Shi & al, 1992), by pre- and post- multiplying by 1I X−⊗ , we 
obtain: 

 
1 1 1 1 1

1 1

( ) ( ) ( ) ( )

( )( ) 1 / ( )( ) 0

t t t t t
i i i j j i

t t t t
ij j bi bi j ij bi bi

X X A A X X G C C G X

K E E K I X H I H X

α β β β β

λ β β λ

− − − − −

− −

⊗ + ⊗ + ⊗ + ⊗ + ⊗

+ ⊗ ⊗ + ⊗ ⊗ <
 (41) 

Where, of course,  ,ij i jλ ∈ℜ ∀  

Thus, by using the Schur’s complement (Boyd & al, 1994) as well as by defining 1
2P X−= : 

2 2 2 2 2 2

2

( )( )
0

t t t t t t t t
i i i j j i ij j bi bi j bi

ij t
bi ij

P P A A P P G C C G P K E E K I P H

I H P I

α β β β β λ β β

λ

⎛ ⎞⊗ + ⊗ + ⊗ + ⊗ + ⊗ + ⊗ ⊗ ⊗
⎜ ⎟Φ = <
⎜ ⎟⊗ −⎝ ⎠

(42) 

By using 1
i iW X G−= , conditions (38) easily yield for all i, j. The lemma proof is given. 
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Remark 4: Any kind of LMI region (disk, vertical strip, conic sector) may be easily used for 
DS and TD . 
From lemma 2 and lemma 3, we have imposed the dynamics of the state as well as the 
dynamics of the estimation error. But from (10), the estimation error dynamics depend on 
the state.  If the state dynamics are slow, we will have a slow convergence of the estimation 
error to the equilibrium point zero in spite of its own fast dynamics. So in this paper, we add 
an algorithm using the H∞  approach to ensure that the estimation error converges faster to 
the equilibrium point zero. 
We know from (10) that: 

 
( )

( )
1 1

1 1

( ) ( ( )) ( ( )) ( )

( ( )) ( ( )) ( )

r r

i j i i j i j
i j

r r

i j ij i i j
i j

e t h z t h z t A G C B K e t

h z t h z t S A B K x t

= =

= =

= + − Δ

+ Δ + Δ

∑∑

∑∑
 (43) 

 

This equation is equivalent to the following system: 

 
1 1

( ( )) ( ( ))
0

r r i i j i j i i j
i j

i j

A G C B K A B Ke e
h z t h z t

e xI= =

⎛ ⎞+ − Δ Δ + Δ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠
∑∑  (44) 

 

The objective is to minimize the 2L  gain from ( )x t  to ( )e t  in order to guarantee that the 
error between the state and its estimation converges faster to zero. Thus, we define the 
following H∞  performance criterion under zero initial conditions: 

 2

0

{ ( ) ( ) ( ) ( )} 0t te t e t x t x t dtγ
∞

− <∫  (45) 

where *γ +∈ℜ  has to be minimized. Note that the signal ( )x t is square integrable because of 
lemma 1.  
We give the following lemma to satisfy the H∞  performance. 
Lemma 4: If there exist symmetric positive definite matrix 2P , matrices iW  and positive 
scalars 0,  0ijγ β  such as 

 
0,  1,...,

0,  
ii

ij ji

i r
i j r

Γ ≤ =
Γ + Γ ≤ < ≤

                    (46) 

With 

2 2

2

2

0 0

0 0

0 0

t t
ij bi ai ij j bi bi j

t
bi ij

ij t
ai ij

t t
ij j bi bi j ij

Z P H P H K E E K

H P I

H P I

K E E K U

β

β

β

β

⎡ ⎤−
⎢ ⎥
⎢ ⎥−
⎢ ⎥Γ =
⎢ ⎥−
⎢ ⎥
⎢ ⎥−⎣ ⎦
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2 2
t t t t t

ij i i i j j i ij j bi bi jZ P A A P W C C W I K E E Kβ= + + + + +  

2 t t t
ij ij j bi bi j ij ai aiU I K E E K E Eγ β β= − + +  

Then, the dynamic system: 

 
1 1

( ( )) ( ( )) 
0

r r i i j i j i i j
i j

i j

A G C B K A B Ke e
h z t h z t

e xI= =

+ − Δ Δ + Δ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
∑∑

�
 (47) 

satisfies the H∞  performance with a L2 gain equal or less than γ  (44) . 
Proof: Applying the bounded real lemma (Boyd & al, 1994), the system described by the 
following dynamics: 

 ( ) ( )( ) ( ) ( )i i j i j i i je t A G C B K e t A B K x t= + − Δ + Δ + Δ�  (48) 

satisfies the H∞  performance corresponding to the 2L  gain γ  performance if and only if 
there exists 2 2 0TP P= > : 

 2 2

2 1
2 2

( ) ( )

( )( ) ( ) 0

t
i i j i j i i j i j

t
i i j i i j

A G C B K P P A G C B K

P A B K I A B K P Iγ −

+ − Δ + + − Δ

+ Δ + Δ Δ + Δ + ≺
  (49) 

 

Using the Schur’s complement, (Boyd & al, 1994) yields 

 
2 2

2
2 2

0

ij

ij i i j
t t t
i j i

J P A P B K

A P K B P Iγ

Θ

Δ + Δ⎡ ⎤
⎢ ⎥
Δ + Δ −⎢ ⎥⎣ ⎦

≺

�����������������

 (50) 

where 

 2 2 2 2 2 2
t t t t t

ij i i i j j i i j j iJ P A A P P G C C G P P B K K B P I= + + + − Δ − Δ +  (51) 

We get: 

2 2 2 22 2 2 2

2
2 2

0

00

ij

t tt t t
i j j i i i ji i i j j i

ij t t t
i j i

P B K K B P P A P B KP A A P P G C C G P I

A P K B PIγ
Δ

⎡ ⎤⎡ ⎤ − Δ − Δ Δ + Δ+ + + +
⎢ ⎥⎢ ⎥Θ = +
⎢ ⎥⎢ ⎥ Δ + Δ−⎣ ⎦ ⎣ ⎦�������������������

  (52) 

By using the separation lemma  (Shi & al, 1992) yields 

 1 2 2 2 2 0
0 0

t t t t t t t tj bi bi j j bi bi j bi bi bi bi ai ai ai ai
ij ij ijt t t t t

j bi bi j j bi bi j ai ai

K E E K K E E K P H H P P H H P
K E E K K E E K E E

β β−
⎡ ⎤− ⎡ ⎤Δ Δ + Δ Δ⎢ ⎥Δ ≤ + ⎢ ⎥
⎢ ⎥− + ⎢ ⎥⎣ ⎦⎣ ⎦

 (53) 

 

With substitution into ijΘ  and defining a variable change: 2i iW P G= , yields 
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2

t t
ij ij j bi bi j

ij t t t t t
ij j bi bi j ij j bi bi j ij ai ai

Q K E E K

K E E K I K E E K E E

β

β γ β β

⎡ ⎤−
⎢ ⎥Θ ≤
⎢ ⎥− − + +⎣ ⎦

 (54) 

where 

 
-1 t t -1 t t

ij ij ij 2 bi bi bi bi 2 ij 2 ai ai ai ai 2

t t t t t
ij 2 i i 2 i j j i ij j bi bi j

Q = R +β P H Δ Δ H P + ε P H Δ Δ H P ,

R = P A + A P + W C + C W + I +β K E E K .
 (55) 

Thus, from the following condition 

 
2

0
t t

ij ij j bi bi j
t t t t t

ij j bi bi j ij j bi bi j ij ai ai

Q K E E K

K E E K I K E E K E E

β

β γ β β

⎡ ⎤−
⎢ ⎥
⎢ ⎥− − + +⎣ ⎦

≺  (56) 

and using the Schur’s complement (Boyd & al, 1994), theorem 7 in ( Tanaka & al, 1998) and 
(3), condition (46) yields for all i,j. 
Remark 5: In order to improve the estimation error convergence, we obtain the following 
convex optimization problem: minimization γ  under the LMI constraints (46). 
From lemma 1, 2, 3 and 4 yields the following theorem: 
Theorem 2: The closed-loop uncertain fuzzy system (10) is robustly stabilizable via the 
observer-based controller (8) with control performances defined by a pole placement 
constraint in LMI region TD  for the state dynamics, a pole placement constraint in LMI 
region SD  for the estimation error dynamics and a 2L  gain γ  performance (45) as small as 
possible if first, LMI systems (12) and (29) are solvable for the decision variables 

1( , , , )j ij ijP K ε μ  and secondly, LMI systems (13), (38) , (46) are solvable for the decision 

variables 2( , , , )i ij ijP G λ β . Furthermore, the controller and observer gains are 1
1j jK V P−=  and 

1
2i iG P W−= , respectively, for , 1,2,..., .i j r=  

Remark 6: Because of uncertainties, we could not use the separation property but we have 
overcome this problem by designing the fuzzy controller and observer in two steps with 
two pole placements and by using the H∞ approach to ensure that the estimation error 
converges faster to zero although its dynamics depend on the state.  
Remark 7: Theorem 2 also proposes a two-step procedure: the first step concerns the fuzzy 
controller design by imposing a pole placement constraint for the poles linked to the state 
dynamics and the second step concerns the fuzzy observer design by imposing the second 
pole placement constraint for the poles linked to the error estimation dynamics and by 
minimizing the H∞ performance criterion (18). The designs of the observer and the 
controller are separate but not independent. 

4. Numerical example 
In this section, to illustrate the validity of the suggested theoretical development, we  
apply the previous control algorithm to the following academic nonlinear system (Lauber, 
2003): 
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satisfies the H∞  performance with a L2 gain equal or less than γ  (44) . 
Proof: Applying the bounded real lemma (Boyd & al, 1994), the system described by the 
following dynamics: 
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By using the separation lemma  (Shi & al, 1992) yields 
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With substitution into ijΘ  and defining a variable change: 2i iW P G= , yields 
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and using the Schur’s complement (Boyd & al, 1994), theorem 7 in ( Tanaka & al, 1998) and 
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constraint in LMI region TD  for the state dynamics, a pole placement constraint in LMI 
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1( , , , )j ij ijP K ε μ  and secondly, LMI systems (13), (38) , (46) are solvable for the decision 

variables 2( , , , )i ij ijP G λ β . Furthermore, the controller and observer gains are 1
1j jK V P−=  and 

1
2i iG P W−= , respectively, for , 1,2,..., .i j r=  

Remark 6: Because of uncertainties, we could not use the separation property but we have 
overcome this problem by designing the fuzzy controller and observer in two steps with 
two pole placements and by using the H∞ approach to ensure that the estimation error 
converges faster to zero although its dynamics depend on the state.  
Remark 7: Theorem 2 also proposes a two-step procedure: the first step concerns the fuzzy 
controller design by imposing a pole placement constraint for the poles linked to the state 
dynamics and the second step concerns the fuzzy observer design by imposing the second 
pole placement constraint for the poles linked to the error estimation dynamics and by 
minimizing the H∞ performance criterion (18). The designs of the observer and the 
controller are separate but not independent. 

4. Numerical example 
In this section, to illustrate the validity of the suggested theoretical development, we  
apply the previous control algorithm to the following academic nonlinear system (Lauber, 
2003): 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

52

 

( )

2
1 2 22 2

1 1

2 2 1 22
1

2
2

1

1 1( ) cos ( ( )) - ( ) 1 ( )
1 ( ) 1 ( )

1( ) 1 sin( ( )) - 1.5 ( )- 3 ( )
1 ( )

cos ( ( )) - 2 ( )

( ) ( )

x t x t x t u t
x t x t

x t b x t x t x t
x t

a x t u t

y t x t

⎧ ⎛ ⎞ ⎛ ⎞
= + +⎪ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎪ ⎝ ⎠ ⎝ ⎠

⎪ ⎛ ⎞⎪ = +⎜ ⎟⎨ ⎜ ⎟+⎝ ⎠⎪
⎪ +⎪
⎪ =⎩

   (57) 

y∈ℜ  is the system output, u∈ℜ is the system input, [ ]1 2
tx x x= is the state vector which 

is supposed to be unmeasurable. What we want to find is the control law u which globally 
stabilizes the closed-loop and forces the system output to converge to zero but by imposing 
a transient behaviour.  
Since the state vector is supposed to be unmeasurable, an observer will be designed. 
The idea here is thus to design a fuzzy observer-based robust controller from the nonlinear 
system (57). The first step is to obtain a fuzzy model with uncertainties from (57) while the 
second step is to design the fuzzy control law from theorem 2 by imposing pole placement 
constraints and by minimizing the H∞ criterion (46). Let us recall that, thanks to the pole 
placements, the estimation error converges faster to the equilibrium point zero and we 
impose the transient behaviour of the system output. 
First step: 
The goal is here to obtain a fuzzy model from (57). 

By decomposing the nonlinear term 2
1

1
1 ( )x t+

 and integring nonlinearities of 2( )x t  into 

incertainties, then (20) is represented by the following fuzzy model: 
Fuzzy model rule 1: 

 1 1 1 1
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y Cx
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Fuzzy model rule 2:  
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where 
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Second step: 
The control design purpose of this example is to place both the poles linked to the state 
dynamics and to the estimation error dynamics in the vertical strip given by: 
( ) ( )1 2 1 6α α = − − . The choice of the same vertical strip is voluntary because we wish to 
compare results of simulations obtained with and without the H∞ approach, in order to 
show by simulation the effectiveness of our approach.  
The initial values of states are chosen: [ ](0) 0.2 0.1x = − −  and [ ]ˆ(0) 0 0x = .  
By solving LMIs of theorem 2, we obtain the following controller and observer gain matrices 
respectively: 

 [ ] [ ] [ ] [ ]t tK = -1.95   -0.17 ,K = -1.36   -0.08 ,G = -7.75  -80.80 ,G = -7.79   -82.271 2 1 2  (60) 

The obtained H∞ criterion after minimization is: 

 0.3974γ =  (61) 

Tables 1 and 2 give some examples of both nominal and uncertain system closed-loop pole 
values respectively. All these poles are located in the desired regions. Note that the 
uncertainties must be taken into account since we wish to ensure a global pole placement. 
That means that the poles of (10) belong to the specific LMI region, whatever uncertainties 
(2), (3). From tables 1 and 2, we can see that the estimation error pole values obtained using 
the H∞ approach are more distant (farther on the left) than the ones without the 
H∞ approach.  
 

 With the H∞ approach Without the H∞ approach 
Pole 1 Pole 2 Pole 1 Pole 2 

1 1 1A B K+  -1.8348 -3.1403 -1.8348 -3.1403 

2 2 2A B K+  -2.8264 -3.2172 -2.8264 -3.2172 

1 1 1A G C+  -5.47 +5.99i -5.47- 5.99i -3.47 + 3.75i -3.47- 3.75i 

2 2 2A G C+  -5.59 +6.08i -5.59 - 6.08i -3.87 + 3.96i -3.87 - 3.96i 

Table 1. Pole values (nominal case).  
 

 With the H∞ approach Without the H∞ approach 
 Pole 1 Pole 2 Pole 1 Pole 2 

1 1 1 1 1 1 1( )a a b bA H E B H E K+ + +  -2.56 + .43i -2.56 - 0.43i -2.56+ 0.43i -2.56 - 0.43i 

2 2 2 2 2 2 2( )a a b bA H E B H E K+ + +  -3.03 +0.70i -3.032- 0.70i -3.03 + 0.70i -3.03 - 0.70i 

1 1 1 1 1 1 1( )a a b bA H E B H E K− + +  -2.58 +0.10i -2.58- 0.10i -2.58 + 0.10i -2.58 - 0.10i 

2 2 2 2 2 2 2( )a a b bA H E B H E K− + +  -3.09 +0.54i -3.09-0.54i -3.09 + 0.54i -3.09 - 0.54i 

1 1 1 1 1 1b bA G C H E K+ −  -5.38+5.87i -5.38 - 5.87i -3.38 + 3.61i -3.38 - 3.61i 

2 2 2 2 2 2b bA G C H E K+ −  -5.55 +6.01i -5.55 - 6.01i -3.83 + 3.86i -3.83 - 3.86i 

Table 2. Pole values (extreme uncertain models). 
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y∈ℜ  is the system output, u∈ℜ is the system input, [ ]1 2
tx x x= is the state vector which 

is supposed to be unmeasurable. What we want to find is the control law u which globally 
stabilizes the closed-loop and forces the system output to converge to zero but by imposing 
a transient behaviour.  
Since the state vector is supposed to be unmeasurable, an observer will be designed. 
The idea here is thus to design a fuzzy observer-based robust controller from the nonlinear 
system (57). The first step is to obtain a fuzzy model with uncertainties from (57) while the 
second step is to design the fuzzy control law from theorem 2 by imposing pole placement 
constraints and by minimizing the H∞ criterion (46). Let us recall that, thanks to the pole 
placements, the estimation error converges faster to the equilibrium point zero and we 
impose the transient behaviour of the system output. 
First step: 
The goal is here to obtain a fuzzy model from (57). 

By decomposing the nonlinear term 2
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 and integring nonlinearities of 2( )x t  into 

incertainties, then (20) is represented by the following fuzzy model: 
Fuzzy model rule 1: 

 1 1 1 1
1 1

( ) ( )( )  x A A x B B u
y Cx

If x t is M then = +Δ + +Δ
=

⎧
⎨
⎩

 (58) 

Fuzzy model rule 2:  

 2 2 2 2
1 2

( ) ( )( ) x A A x B B u
y Cx

If x t is M then = +Δ + +Δ
=

⎧
⎨
⎩

    (59) 

where 

1 1

0 0.5 1
,11.5 3 2

2 2
A Bm ab

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =+⎜ ⎟ ⎜ ⎟− − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 2
0 0.5
1.5 3 (1 )

A
m b

⎛ ⎞
= ⎜ ⎟− − + +⎝ ⎠

,  2

2

2
2

B a
⎛ ⎞
⎜ ⎟= ⎜ ⎟−⎜ ⎟
⎝ ⎠

, 

1 2
0.1 0 0

, , 0.5
0 0.1 1ai bi b bH H E E a

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

1 2

0 0.5 0 0.5
,1 0 (1 )0

2
a aE Em m bb

⎛ ⎞ ⎛ ⎞⎜ ⎟= =− ⎜ ⎟⎜ ⎟ −⎜ ⎟ ⎝ ⎠⎝ ⎠

, ( )1 0C = , 

m=-0.2172, b=-0.5, a=2 and i=1,2 

 
Observer-Based Robust Control of Uncertain Fuzzy Models with Pole Placement Constraints 

 

53 

Second step: 
The control design purpose of this example is to place both the poles linked to the state 
dynamics and to the estimation error dynamics in the vertical strip given by: 
( ) ( )1 2 1 6α α = − − . The choice of the same vertical strip is voluntary because we wish to 
compare results of simulations obtained with and without the H∞ approach, in order to 
show by simulation the effectiveness of our approach.  
The initial values of states are chosen: [ ](0) 0.2 0.1x = − −  and [ ]ˆ(0) 0 0x = .  
By solving LMIs of theorem 2, we obtain the following controller and observer gain matrices 
respectively: 

 [ ] [ ] [ ] [ ]t tK = -1.95   -0.17 ,K = -1.36   -0.08 ,G = -7.75  -80.80 ,G = -7.79   -82.271 2 1 2  (60) 

The obtained H∞ criterion after minimization is: 

 0.3974γ =  (61) 

Tables 1 and 2 give some examples of both nominal and uncertain system closed-loop pole 
values respectively. All these poles are located in the desired regions. Note that the 
uncertainties must be taken into account since we wish to ensure a global pole placement. 
That means that the poles of (10) belong to the specific LMI region, whatever uncertainties 
(2), (3). From tables 1 and 2, we can see that the estimation error pole values obtained using 
the H∞ approach are more distant (farther on the left) than the ones without the 
H∞ approach.  
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Figures 1 and 2 respectively show the behaviour of error 1( )e t  and 2( )e t  with and without 
the H∞ approach and also the behaviour obtained using only lemma 1. We clearly see that 
the estimation error converges faster in the first case (with H∞ approach and pole 
placements) than in the second one (with pole placements only) as well as in the third case 
(without H∞ approach and pole placements). At last but not least, Figure 3 and 4 show 
respectively the behaviour of the state variables with and without the H∞ approach whereas 
Figure 5 shows the evolution of the control signal. From Figures 3 and 4, we still have the 
same conclusion about the convergence of the estimation errors.   
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Fig. 1. Behaviour of error 1( )e t . 
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Fig. 2. Behaviour of error 2( )e t . 
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Fig. 3. Behaviour of the state vector and its estimation with the H∞ approach. 
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Figures 1 and 2 respectively show the behaviour of error 1( )e t  and 2( )e t  with and without 
the H∞ approach and also the behaviour obtained using only lemma 1. We clearly see that 
the estimation error converges faster in the first case (with H∞ approach and pole 
placements) than in the second one (with pole placements only) as well as in the third case 
(without H∞ approach and pole placements). At last but not least, Figure 3 and 4 show 
respectively the behaviour of the state variables with and without the H∞ approach whereas 
Figure 5 shows the evolution of the control signal. From Figures 3 and 4, we still have the 
same conclusion about the convergence of the estimation errors.   
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5. Conclusion 
In this chapter, we have developed robust pole placement constraints for continuous T-S 
fuzzy systems with unavailable state variables and with parametric structured uncertainties. 
The proposed approach has extended existing methods based on uncertain T-S fuzzy 
models. The proposed LMI constraints can globally asymptotically stabilize the closed-loop 
T-S fuzzy system subject to parametric uncertainties with the desired control performances. 
Because of uncertainties, the separation property is not applicable. To overcome this 
problem, we have proposed, for the design of the observer and the controller, a two-step 
procedure with two pole placements constraints and the minimization of a H∞  performance 
criterion in order to guarantee that the estimation error converges faster to zero. Simulation 
results have verified and confirmed the effectiveness of our approach in controlling 
nonlinear systems with parametric uncertainties.  
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1. Introduction 
In control engineering, robust control is an area that explicitly deals with uncertainty in its 
approach to the design of the system controller [7,10,24]. The methods of robust control are 
designed to operate properly as long as disturbances or uncertain parameters are within a 
compact set, where robust methods aim to accomplish robust performance and/or stability 
in the presence of bounded modeling errors. A robust control policy is static in contrast to 
the adaptive (dynamic) control policy where, rather than adapting to measurements of 
variations, the system controller is designed to function assuming that certain variables will 
be unknown but, for example, bounded. An early example of a robust control method is the 
high-gain feedback control where the effect of any parameter variations will be negligible 
with using sufficiently high gain. 
The overall goal of a control system is to cause the output variable of a dynamic process to 
follow a desired reference variable accurately. This complex objective can be achieved based 
on a number of steps. A major one is to develop a mathematical description, called 
dynamical model, of the process to be controlled [7,10,24]. This dynamical model is usually 
accomplished using a set of differential equations that describe the dynamic behavior of the 
system, which can be further represented in state-space using system matrices or in 
transform-space using transfer functions [7,10,24].   
In system modeling, sometimes it is required to identify some of the system parameters. 
This objective maybe achieved by the use of artificial neural networks (ANN), which are 
considered as the new generation of information processing networks [5,15,17,28,29]. 
Artificial neural systems can be defined as physical cellular systems which have the 
capability of acquiring, storing and utilizing experiential knowledge [15,29], where an ANN 
consists of an interconnected group of basic processing elements called neurons that 
perform summing operations and nonlinear function computations. Neurons are usually 
organized in layers and forward connections, and computations are performed in a parallel 
mode at all nodes and connections. Each connection is expressed by a numerical value 
called the weight, where the conducted learning process of a neuron corresponds to the 
changing of its corresponding weights.  
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When dealing with system modeling and control analysis, there exist equations and 
inequalities that require optimized solutions. An important expression which is used in 
robust control is called linear matrix inequality (LMI) which is used to express specific 
convex optimization problems for which there exist powerful numerical solvers [1,2,6].    
The important LMI optimization technique was started by the Lyapunov theory showing 
that the differential equation ( ) ( )x t Ax t=  is stable if and only if there exists a positive 
definite matrix [P] such that 0TA P PA+ <  [6]. The requirement of { 0P > , 0TA P PA+ < } is 
known as the Lyapunov inequality on [P] which is a special case of an LMI. By picking any 

0TQ Q= >  and then solving the linear equation TA P PA Q+ = − for the matrix [P], it is 
guaranteed to be positive-definite if the given system is stable. The linear matrix inequalities 
that arise in system and control theory can be generally formulated as convex optimization 
problems that are amenable to computer solutions and can be solved using algorithms such 
as the ellipsoid algorithm [6].  
In practical control design problems, the first step is to obtain a proper mathematical model 
in order to examine the behavior of the system for the purpose of designing an appropriate 
controller [1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,19,20,21,22,24,25,26,27]. Sometimes, this 
mathematical description involves a certain small parameter (i.e., perturbation). Neglecting 
this small parameter results in simplifying the order of the designed controller by reducing 
the order of the corresponding system [1,3,4,5,8,9,11,12,13,14,17,19,20,21,22,25,26]. A reduced 
model can be obtained by neglecting the fast dynamics (i.e., non-dominant eigenvalues) of 
the system and focusing on the slow dynamics (i.e., dominant eigenvalues). This 
simplification and reduction of system modeling leads to controller cost minimization 
[7,10,13]. An example is the modern integrated circuits (ICs), where increasing package 
density forces developers to include side effects. Knowing that these ICs are often modeled 
by complex RLC-based circuits and systems, this would be very demanding 
computationally due to the detailed modeling of the original system [16]. In control system, 
due to the fact that feedback controllers don't usually consider all of the dynamics of the 
functioning system, model reduction is an important issue [4,5,17]. 
The main results in this research include the introduction of a new layered method of 
intelligent control, that can be used to robustly control the required system dynamics, where 
the new control hierarchy uses recurrent supervised neural network to identify certain 
parameters of the transformed system matrix [ A ], and the corresponding LMI is used to 
determine the permutation matrix [P] so that a complete system transformation {[ B ], [ C ], 
[ D ]} is performed. The transformed model is then reduced using the method of singular 
perturbation and various feedback control schemes are applied to enhance the 
corresponding system performance, where it is shown that the new hierarchical control 
method simplifies the model of the dynamical systems and therefore uses simpler 
controllers that produce the needed system response for specific performance 
enhancements. Figure 1 illustrates the layout of the utilized new control method. Layer 1 
shows the continuous modeling of the dynamical system. Layer 2 shows the discrete system 
model. Layer 3 illustrates the neural network identification step. Layer 4 presents the 
undiscretization of the transformed system model. Layer 5 includes the steps for model 
order reduction with and without using LMI. Finally, Layer 6 presents various feedback 
control methods that are used in this research.  
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Fig. 1. The newly utilized hierarchical control method. 

While similar hierarchical method of ANN-based identification and LMI-based 
transformation has been previously utilized within several applications such as for the 
reduced-order electronic Buck switching-mode power converter [1] and for the reduced-
order quantum computation systems [2] with relatively simple state feedback controller 
implementations, the presented method in this work further shows the successful wide 
applicability of the introduced intelligent control technique for dynamical systems using 
various spectrum of control methods such as (a) PID-based control, (b) state feedback 
control using (1) pole placement-based control and (2) linear quadratic regulator (LQR) 
optimal control, and (c) output feedback control.   
Section 2 presents background on recurrent supervised neural networks, linear matrix 
inequality, system model transformation using neural identification, and model order 
reduction. Section 3 presents a detailed illustration of the recurrent neural network 
identification with the LMI optimization techniques for system model order reduction. A 
practical implementation of the neural network identification and the associated 
comparative results with and without the use of LMI optimization to the dynamical system 
model order reduction is presented in Section 4. Section 5 presents the application of the 
feedback control on the reduced model using PID control, state feedback control using pole 
assignment, state feedback control using LQR optimal control, and output feedback control. 
Conclusions and future work are presented in Section 6.    
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identification with the LMI optimization techniques for system model order reduction. A 
practical implementation of the neural network identification and the associated 
comparative results with and without the use of LMI optimization to the dynamical system 
model order reduction is presented in Section 4. Section 5 presents the application of the 
feedback control on the reduced model using PID control, state feedback control using pole 
assignment, state feedback control using LQR optimal control, and output feedback control. 
Conclusions and future work are presented in Section 6.    
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2. Background  
The following sub-sections provide an important background on the artificial supervised 
recurrent neural networks, system transformation without using LMI, state transformation 
using LMI, and model order reduction, which can be used for the robust control of dynamic 
systems, and will be used in the later Sections 3-5.  

2.1 Artificial recurrent supervised neural networks 
The ANN is an emulation of the biological neural system [15,29]. The basic model of the 
neuron is established emulating the functionality of a biological neuron which is the basic 
signaling unit of the nervous system. The internal process of a neuron maybe 
mathematically modeled as shown in Figure 2 [15,29]. 
 

 

 
Fig. 2. A mathematical model of the artificial neuron. 

As seen in Figure 2, the internal activity of the neuron is produced as: 
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In supervised learning, it is assumed that at each instant of time when the input is applied, the 
desired response of the system is available [15,29]. The difference between the actual and the 
desired response represents an error measure which is used to correct the network parameters 
externally. Since the adjustable weights are initially assumed, the error measure may be used 
to adapt the network's weight matrix [W]. A set of input and output patterns, called a training 
set, is required for this learning mode, where the usually used training algorithm identifies 
directions of the negative error gradient and reduces the error accordingly [15,29]. 
The supervised recurrent neural network used for the identification in this research is based 
on an approximation of the method of steepest descent [15,28,29]. The network tries to 
match the output of certain neurons to the desired values of the system output at a specific 
instant of time. Consider a network consisting of a total of N neurons with M external input 
connections, as shown in Figure 3, for a 2nd order system with two neurons and one external 
input. The variable g(k) denotes the (M x 1) external input vector which is applied to the 
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network at discrete time k, the variable y(k + 1) denotes the corresponding (N x 1) vector of 
individual neuron outputs produced one step later at time (k + 1), and the input vector g(k) 
and one-step delayed output vector y(k) are concatenated to form the ((M + N) x 1) vector 
u(k) whose ith element is denoted by ui(k). For Λ denotes the set of indices i for which gi(k) is 
an  external  input, and β denotes the  set of indices i for which  ui(k)  is the output  of a 
neuron (which is yi(k)), the following equation is provided: 

if ( )
( )

if ( )
i

i
i

g  i Λ k ,
k  = u y  i   k , β

∈⎧⎪
⎨ ∈⎪⎩

 

 

 
Fig. 3. The utilized 2nd order recurrent neural network architecture, where the identified 

matrices are given by { 11 12 11
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} and that [ ] [ ]W ⎡ ⎤= ⎣ ⎦d dA B .  

The (N x (M + N)) recurrent weight matrix of the network is represented by the variable [W]. 
The net internal activity of neuron j at time k is given by: 
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where Λ ∪ ß is the union of sets Λ and ß . At the next time step (k + 1), the output of the 
neuron j is computed by passing vj(k) through the nonlinearity (.)ϕ , thus obtaining: 
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The derivation of the recurrent algorithm can be started by using dj(k) to denote the desired 
(target) response of neuron j  at time k, and ς(k)  to denote the set of neurons that are chosen 
to provide externally reachable outputs. A time-varying (N x 1) error vector e(k) is defined 
whose jth element is given by the following relationship: 
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( ) - ( ),  if   ( )
( ) = 

0,               otherwise
j j

j
d k y k j k

e k
ς∈⎧⎪

⎨
⎪⎩

 

The objective is to minimize the cost function Etotal which is obtained by: 

total = ( )
k

E E k∑ , where 
 

21( ) =  ( )
2 j

j
E k e k

ς∈
∑  

To accomplish this objective, the method of steepest descent which requires knowledge of 
the gradient matrix is used: 
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where ( )E k∇W  is the gradient of E(k) with respect to the weight matrix [W]. In order to train 
the recurrent network in real time, the instantaneous estimate of the gradient is used 
( )( )E k∇W .  For the case of a particular weight mw (k), the incremental change mwΔ (k) 

made at k is defined as ( )( ) = - 
( )m
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E kw k
w k

η ∂
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∂
 where η is the learning-rate parameter. 

Therefore:   
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To determine the partial derivative ( )/ ( )j my k w k∂ ∂ , the network dynamics are derived. This 

derivation is obtained by using the chain rule which provides the following equation: 
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Differentiating the net internal activity of neuron j with respect to mw (k) yields: 
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where ( )( )/ ( )ji mw k w k∂ ∂  equals "1" only when j = m and i = , and "0" otherwise. Thus: 
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where mjδ  is a Kronecker delta equals to "1" when j = m and "0" otherwise, and: 
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Having those equations provides that: 

 ( + 1) ( )= ( ( ))  ( ) ( )
( ) ( )

 j i
mj ji

m mi

y k y kv k w k u k
w k w kβ

ϕ δ
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∑  

The initial state of the network at time (k = 0) is assumed to be zero as follows:  

(0)
= 0

(0)
i

m

y
w
∂
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, for {j∈ ß , m∈ ß , ∈ Λ β∪ }. 

The dynamical system is described by the following triply-indexed set of variables ( j
mπ ):  
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For every time step k and all appropriate j, m and , system dynamics are controlled by: 
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The values of ( ) j
m kπ and the error signal ej(k) are used to compute the corresponding 

weight changes: 
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Using the weight changes, the updated weight mw (k + 1) is calculated as follows: 

 ( + 1) = ( ) + ( )m m mw k w k w kΔ  (3) 

Repeating this computation procedure provides the minimization of the cost function and 
thus the objective is achieved. With the many advantages that the neural network has, it is 
used for the important step of parameter identification in model transformation for the 
purpose of model order reduction as will be shown in the following section. 

2.2 Model transformation and linear matrix inequality  
In this section, the detailed illustration of system transformation using LMI optimization 
will be presented. Consider the dynamical system:  
 

 ( ) ( ) ( )x t Ax t Bu t= +  (4) 

 ( ) ( ) ( )y t Cx t Du t= +  (5) 

The state space system representation of Equations (4) - (5) may be described by the block 
diagram shown in Figure 4. 
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Fig. 4. Block diagram for the state-space system representation. 

In order to determine the transformed [A] matrix, which is [ A ], the discrete zero input 
response is obtained. This is achieved by providing the system with some initial state values 
and setting the system input to zero (u(k) = 0). Hence, the discrete system of Equations 
(4) - (5), with the initial condition 0 (0)x x= , becomes:  

 ( 1) ( )dx k A x k+ =  (6) 

 ( ) ( )y k x k=  (7) 

We need x(k) as an ANN target to train the network to obtain the needed parameters in 
[ dA ] such that the system output will be the same for [Ad] and [ dA ]. Hence, simulating this 
system provides the state response corresponding to their initial values with only the [Ad] 
matrix is being used. Once the input-output data is obtained, transforming the [Ad] matrix is 
achieved using the ANN training, as will be explained in Section 3. The identified 
transformed [ dA ] matrix is then converted back to the continuous form which in general 
(with all real eigenvalues) takes the following form: 
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where λi represents the system eigenvalues. This is an upper triangular matrix that 
preserves the eigenvalues by (1) placing the original eigenvalues on the diagonal and (2) 
finding the elements ijA  in the upper triangular. This upper triangular matrix form is used 
to produce the same eigenvalues for the purpose of eliminating the fast dynamics and 
sustaining the slow dynamics eigenvalues through model order reduction as will be shown 
in later sections.   
Having the [A] and [ A ] matrices, the permutation [P] matrix is determined using the LMI 
optimization technique, as will be illustrated in later sections. The complete system 
transformation can be achieved as follows where, assuming that 1x P x−= , the system of 
Equations (4) - (5) can be re-written as: 

( ) ( ) ( )P x t AP x t Bu t= + , ( ) ( ) ( )y t CP x t Du t= + , where ( ) ( )y t y t= . 

B ∫  C 

D 
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y(t) u(t) )(tx  )(tx  
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Pre-multiplying the first equation above by [P-1], one obtains: 

1 1 1( ) ( ) ( )P P x t P AP x t P Bu t− − −= + , ( ) ( ) ( )y t CP x t Du t= +         

which yields the following transformed model: 

 ( ) ( ) ( )x t Ax t Bu t= +  (9) 

 ( ) ( ) ( )y t Cx t Du t= +  (10)  

where the transformed system matrices are given by: 

 1A P AP−=  (11) 

 1B P B−=  (12) 

 C CP=  (13) 

 D D=  (14) 

Transforming the system matrix [A] into the form shown in Equation (8) can be achieved 
based on the following definition [18]. 
Definition. A matrix nA M∈ is called reducible if either: 
a. n = 1 and A = 0; or 
b. n ≥ 2, there is a permutation matrix nP M∈ , and there is some integer r with 

1 1r n≤ ≤ −  such that:  

 1 X Y
P AP

Z
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦0

 (15) 

where ,r rX M∈ , ,n r n rZ M − −∈ , ,r n rY M −∈ , and 0 ,n r rM −∈  is a zero matrix. 

The attractive features of the permutation matrix [P] such as being (1) orthogonal and (2) 
invertible have made this transformation easy to carry out. However, the permutation 
matrix structure narrows the applicability of this method to a limited category of 
applications. A form of a similarity transformation can be used to correct this problem for 
{ : n n n nf R R× ×→ } where f  is a linear operator defined by 1( )f A P AP−=  [18]. Hence, based 
on [A] and [ A ], the corresponding LMI is used to obtain the transformation matrix [P], and 
thus the optimization problem will be casted as follows: 

 1min o
P

P P Subject to P AP A ε−− − <  (16) 

which can be written in an LMI equivalent form as: 
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Fig. 4. Block diagram for the state-space system representation. 
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where λi represents the system eigenvalues. This is an upper triangular matrix that 
preserves the eigenvalues by (1) placing the original eigenvalues on the diagonal and (2) 
finding the elements ijA  in the upper triangular. This upper triangular matrix form is used 
to produce the same eigenvalues for the purpose of eliminating the fast dynamics and 
sustaining the slow dynamics eigenvalues through model order reduction as will be shown 
in later sections.   
Having the [A] and [ A ] matrices, the permutation [P] matrix is determined using the LMI 
optimization technique, as will be illustrated in later sections. The complete system 
transformation can be achieved as follows where, assuming that 1x P x−= , the system of 
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Pre-multiplying the first equation above by [P-1], one obtains: 

1 1 1( ) ( ) ( )P P x t P AP x t P Bu t− − −= + , ( ) ( ) ( )y t CP x t Du t= +         

which yields the following transformed model: 
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 ( ) ( ) ( )y t Cx t Du t= +  (10)  

where the transformed system matrices are given by: 
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 1B P B−=  (12) 
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Definition. A matrix nA M∈ is called reducible if either: 
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b. n ≥ 2, there is a permutation matrix nP M∈ , and there is some integer r with 

1 1r n≤ ≤ −  such that:  

 1 X Y
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where ,r rX M∈ , ,n r n rZ M − −∈ , ,r n rY M −∈ , and 0 ,n r rM −∈  is a zero matrix. 
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matrix structure narrows the applicability of this method to a limited category of 
applications. A form of a similarity transformation can be used to correct this problem for 
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thus the optimization problem will be casted as follows: 

 1min o
P

P P Subject to P AP A ε−− − <  (16) 

which can be written in an LMI equivalent form as: 

 
2 1
1

1

min ( ) 0
( )

                                         0
( )

o
T

S o

T

S P P
trace S Subject to

P P I

I P AP A

P AP A I

ε −

−

−⎡ ⎤
>⎢ ⎥

−⎢ ⎥⎣ ⎦
⎡ ⎤−

>⎢ ⎥
−⎢ ⎥⎣ ⎦

 (17) 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

68

where S is a symmetric slack matrix [6]. 

2.3 System transformation using neural identification 
A different transformation can be performed based on the use of the recurrent ANN while 
preserving the eigenvalues to be a subset of the original system. To achieve this goal, the 
upper triangular block structure produced by the permutation matrix, as shown in Equation 
(15), is used. However, based on the implementation of the ANN, finding the permutation 
matrix [P] does not have to be performed, but instead [X] and [Z] in Equation (15) will 
contain the system eigenvalues and [Y] in Equation (15) will be estimated directly using the 
corresponding ANN techniques. Hence, the transformation is obtained and the reduction is 
then achieved. Therefore, another way to obtain a transformed model that preserves the 
eigenvalues of the reduced model as a subset of the original system is by using ANN 
training without the LMI optimization technique. This may be achieved based on the 
assumption that the states are reachable and measurable. Hence, the recurrent ANN can 
identify the [ dÂ ] and [ dB̂ ] matrices for a given input signal as illustrated in Figure 3. The 
ANN identification would lead to the following [ dÂ ] and [ dB̂ ] transformations which (in 
the case of all real eigenvalues) construct the weight matrix [W] as follows: 
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⎢ ⎥⎢ ⎥⎡ ⎤= → = = ⎢ ⎥⎢ ⎥⎣ ⎦
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where the eigenvalues are selected as a subset of the original system eigenvalues.   

2.4 Model order reduction  
Linear time-invariant (LTI) models of many physical systems have fast and slow dynamics, 
which may be referred to as singularly perturbed systems [19]. Neglecting the fast dynamics 
of a singularly perturbed system provides a reduced (i.e., slow) model. This gives the 
advantage of designing simpler lower-dimensionality reduced-order controllers that are 
based on the reduced-model information.  
To show the formulation of a reduced order system model, consider the singularly 
perturbed system [9]: 

 11 12 1 0  ( ) ( ) ( ) ( ) ,     0x t A x t A t B u t x( ) xξ= + + =  (18) 

 21 22 2 0( ) ( ) ( ) ( ) ,    (0t A x t A t B u t )εξ ξ ξ ξ= + + =  (19) 

 1 2y( )  ( ) ( )t C x t C tξ= +  (20) 

where 1  mx∈ℜ and 2mξ ∈ℜ  are the slow and fast state variables, respectively, 1  nu∈ℜ and 
2ny∈ℜ are the input and output vectors, respectively, { [ ]iiA , [ iB ], [ iC ]} are constant 

matrices of appropriate dimensions with {1, 2}i∈ , and ε  is a small positive constant. The 
singularly perturbed system in Equations (18)-(20) is simplified by setting 0ε =  [3,14,27]. In 
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doing so, we are neglecting the fast dynamics of the system and assuming that the state 
variablesξ  have reached the quasi-steady state. Hence, setting 0ε =  in Equation (19), with 
the assumption that [ 22A ] is nonsingular, produces:  

 1 1
22 21 22 1( ) ( ) ( )rt A A x t A B u tξ − −= − −  (21) 

where the index r denotes the remained or reduced model. Substituting Equation (21) in 
Equations (18)-(20) yields the following reduced order model:  

 ( )  ( ) ( )     r r r rx t A x t B u t= +  (22) 

 ( ) ( ) ( )r r ry t C x t D u t= +  (23) 

where { 1
11 12 22 21rA A A A A−= − , 1

1 12 22 2rB B A A B−= − , 1
1 2 22 21rC C C A A−= − , 1

2 22 2rD C A B−= − }.  

3. Neural network identification with lmi optimization for the system model 
order reduction  
In this work, it is our objective to search for a similarity transformation that can be used to 
decouple a pre-selected eigenvalue set from the system matrix [A]. To achieve this objective, 
training the neural network to identify the transformed discrete system matrix [ dA ] is 
performed [1,2,15,29]. For the system of Equations (18)-(20), the discrete model of the 
dynamical system is obtained as: 

 ( 1) ( ) ( )d dx k A x k B u k+ = +  (24) 

 ( ) ( ) ( )d dy k C x k D u k= +  (25) 

The identified discrete model can be written in a detailed form (as was shown in Figure 3) as 
follows: 

 1 11 12 1 11

2 21 22 2 21

( 1) ( )
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( 1) ( )
x k A A x k B

u k
x k A A x k B

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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 1

2

( )
( )

( )
x k

y k
x k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (27) 

where k is the time index, and the detailed matrix elements of Equations (26)-(27) were 
shown in Figure 3 in the previous section.  
The recurrent ANN presented in Section 2.1 can be summarized by defining Λ as the set of 
indices i for which ( )ig k is an external input, defining ß as the set of indices i for which 

( )iy k is an internal input or a neuron output, and defining ( )iu k as the combination of the 
internal and external inputs for which i ß∈ ∪ Λ. Using this setting, training the ANN 
depends on the internal activity of each neuron which is given by:  

 ( ) ( ) ( )j ji i
i Λ

v k w k u k
β∈ ∪

= ∑  (28) 
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where S is a symmetric slack matrix [6]. 

2.3 System transformation using neural identification 
A different transformation can be performed based on the use of the recurrent ANN while 
preserving the eigenvalues to be a subset of the original system. To achieve this goal, the 
upper triangular block structure produced by the permutation matrix, as shown in Equation 
(15), is used. However, based on the implementation of the ANN, finding the permutation 
matrix [P] does not have to be performed, but instead [X] and [Z] in Equation (15) will 
contain the system eigenvalues and [Y] in Equation (15) will be estimated directly using the 
corresponding ANN techniques. Hence, the transformation is obtained and the reduction is 
then achieved. Therefore, another way to obtain a transformed model that preserves the 
eigenvalues of the reduced model as a subset of the original system is by using ANN 
training without the LMI optimization technique. This may be achieved based on the 
assumption that the states are reachable and measurable. Hence, the recurrent ANN can 
identify the [ dÂ ] and [ dB̂ ] matrices for a given input signal as illustrated in Figure 3. The 
ANN identification would lead to the following [ dÂ ] and [ dB̂ ] transformations which (in 
the case of all real eigenvalues) construct the weight matrix [W] as follows: 
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Linear time-invariant (LTI) models of many physical systems have fast and slow dynamics, 
which may be referred to as singularly perturbed systems [19]. Neglecting the fast dynamics 
of a singularly perturbed system provides a reduced (i.e., slow) model. This gives the 
advantage of designing simpler lower-dimensionality reduced-order controllers that are 
based on the reduced-model information.  
To show the formulation of a reduced order system model, consider the singularly 
perturbed system [9]: 
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where 1  mx∈ℜ and 2mξ ∈ℜ  are the slow and fast state variables, respectively, 1  nu∈ℜ and 
2ny∈ℜ are the input and output vectors, respectively, { [ ]iiA , [ iB ], [ iC ]} are constant 

matrices of appropriate dimensions with {1, 2}i∈ , and ε  is a small positive constant. The 
singularly perturbed system in Equations (18)-(20) is simplified by setting 0ε =  [3,14,27]. In 
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doing so, we are neglecting the fast dynamics of the system and assuming that the state 
variablesξ  have reached the quasi-steady state. Hence, setting 0ε =  in Equation (19), with 
the assumption that [ 22A ] is nonsingular, produces:  

 1 1
22 21 22 1( ) ( ) ( )rt A A x t A B u tξ − −= − −  (21) 

where the index r denotes the remained or reduced model. Substituting Equation (21) in 
Equations (18)-(20) yields the following reduced order model:  

 ( )  ( ) ( )     r r r rx t A x t B u t= +  (22) 
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where { 1
11 12 22 21rA A A A A−= − , 1

1 12 22 2rB B A A B−= − , 1
1 2 22 21rC C C A A−= − , 1

2 22 2rD C A B−= − }.  

3. Neural network identification with lmi optimization for the system model 
order reduction  
In this work, it is our objective to search for a similarity transformation that can be used to 
decouple a pre-selected eigenvalue set from the system matrix [A]. To achieve this objective, 
training the neural network to identify the transformed discrete system matrix [ dA ] is 
performed [1,2,15,29]. For the system of Equations (18)-(20), the discrete model of the 
dynamical system is obtained as: 

 ( 1) ( ) ( )d dx k A x k B u k+ = +  (24) 

 ( ) ( ) ( )d dy k C x k D u k= +  (25) 

The identified discrete model can be written in a detailed form (as was shown in Figure 3) as 
follows: 
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where k is the time index, and the detailed matrix elements of Equations (26)-(27) were 
shown in Figure 3 in the previous section.  
The recurrent ANN presented in Section 2.1 can be summarized by defining Λ as the set of 
indices i for which ( )ig k is an external input, defining ß as the set of indices i for which 

( )iy k is an internal input or a neuron output, and defining ( )iu k as the combination of the 
internal and external inputs for which i ß∈ ∪ Λ. Using this setting, training the ANN 
depends on the internal activity of each neuron which is given by:  

 ( ) ( ) ( )j ji i
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β∈ ∪

= ∑  (28) 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

70

where wji is the weight representing an element in the system matrix or input matrix for 
j ß∈  and i ß∈ ∪ Λ such that [ ] [ ]W ⎡ ⎤= ⎣ ⎦d dA B . At the next time step (k +1), the output 

(internal input) of the neuron j is computed by passing the activity through the nonlinearity 
φ(.) as follows: 

 ( 1) ( ( ))j jx k v kϕ+ =  (29)   

With these equations, based on an approximation of the method of steepest descent, the 
ANN identifies the system matrix [Ad] as illustrated in Equation (6) for the zero input 
response. That is, an error can be obtained by matching a true state output with a neuron 
output as follows: 

( ) ( ) ( )j j je k x k x k= −   

Now, the objective is to minimize the cost function given by: 

total ( )
k

E E k=∑  and 21
2( ) ( )j

j
E k e k

ς∈
= ∑  

where ς denotes the set of indices j for the output of the neuron structure. This cost 
function is minimized by estimating the instantaneous gradient of E(k) with respect to the 
weight matrix [W] and then updating [W] in the negative direction of this  gradient  [15,29]. 
In steps, this may be proceeded as follows: 
- Initialize the weights [W] by a set of uniformly distributed random numbers. Starting at 

the instant (k = 0), use Equations (28) - (29) to compute the output values of the N 
neurons (where N ß= ).  

- For every time step k and all ,j ß∈  m ß∈  and ß∈ ∪Λ, compute the dynamics of the 
system which are governed by the triply-indexed set of variables:  

( 1) ( ( )) ( ) ( ) ( )j i
j ji m mjm

i ß
k v k w k k u kπ ϕ π δ

∈

⎡ ⎤
+ = +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

with initial conditions (0) 0j
mπ =  and mjδ  is given by ( )( ) ( )ji mw k w k∂ ∂ , which is  equal 

to "1" only when {j = m, i = } and otherwise it is "0". Notice that, for the special case of 
a sigmoidal nonlinearity in the form of a logistic function, the derivative ( )ϕ ⋅  is given 
by ( ( )) ( 1)[1 ( 1)]j j jv k y k y kϕ = + − + .    

- Compute the weight changes corresponding to the error signal and system dynamics:  

 ( ) ( ) ( )j
m j m

j
w k e k k

ς
η π

∈
Δ = ∑  (30) 

- Update the weights in accordance with: 

 ( 1) ( ) ( )m m mw k w k w k+ = + Δ  (31) 

- Repeat the computation until the desired identification is achieved. 
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As illustrated in Equations (6) - (7), for the purpose of estimating only the transformed 
system matrix [ dA ], the training is based on the zero input response. Once the training is 
completed, the obtained weight matrix [W] will be the discrete identified transformed 
system matrix [ dA ]. Transforming the identified system back to the continuous form yields 
the desired continuous transformed system matrix [ A ]. Using the LMI optimization 
technique, which was illustrated in Section 2.2, the permutation matrix [P] is then determined. 
Hence, a complete system transformation, as shown in Equations (9) - (10), will be achieved. 
For the model order reduction, the system in Equations (9) - (10) can be written as: 

 ( ) ( )
( )

0 ( )( )
r r c r r

o o oo

x t A A x t B
u t

A x t Bx t
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⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
 (32) 
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y t x t D
C C u t

y t x t D
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= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (33) 

The following system transformation enables us to decouple the original system into 
retained (r) and omitted (o) eigenvalues. The retained eigenvalues are the dominant 
eigenvalues that produce the slow dynamics and the omitted eigenvalues are the non-
dominant eigenvalues that produce the fast dynamics. Equation (32) maybe written as: 

( ) ( ) ( ) ( )r r r c o rx t A x t A x t B u t= + +  and ( ) ( ) ( )o o o ox t A x t B u t= +      

The coupling term ( )c oA x t  maybe compensated for by solving for ( )ox t  in the second 
equation above by setting ( )ox t  to zero using the singular perturbation method (by 
setting 0ε = ). By performing this, the following equation is obtained: 

 1( ) ( )o o ox t A B u t−= −  (34) 

Using ( )ox t , we get the reduced order model given by:  

 1( ) ( ) [ ] ( )r r r c o o rx t A x t A A B B u t−= + − +  (35) 

 1( ) ( ) [ ] ( )r r o o oy t C x t C A B D u t−= + − +  (36) 

Hence, the overall reduced order model may be represented by: 

 ( )  ( ) ( )     r or r orx t A x t B u t= +  (37) 

 ( ) ( ) ( )or r ory t C x t D u t= +  (38) 

where the details of the {[ orA ], [ orB ], [ orC ], [ orD ]} overall reduced matrices were shown in 
Equations (35) - (36), respectively. 

4. Examples for the dynamic system order reduction using neural 
identification  
The following subsections present the implementation of the new proposed method of 
system modeling using supervised ANN, with and without using LMI, and using model 
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where wji is the weight representing an element in the system matrix or input matrix for 
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φ(.) as follows: 
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With these equations, based on an approximation of the method of steepest descent, the 
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function is minimized by estimating the instantaneous gradient of E(k) with respect to the 
weight matrix [W] and then updating [W] in the negative direction of this  gradient  [15,29]. 
In steps, this may be proceeded as follows: 
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the instant (k = 0), use Equations (28) - (29) to compute the output values of the N 
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As illustrated in Equations (6) - (7), for the purpose of estimating only the transformed 
system matrix [ dA ], the training is based on the zero input response. Once the training is 
completed, the obtained weight matrix [W] will be the discrete identified transformed 
system matrix [ dA ]. Transforming the identified system back to the continuous form yields 
the desired continuous transformed system matrix [ A ]. Using the LMI optimization 
technique, which was illustrated in Section 2.2, the permutation matrix [P] is then determined. 
Hence, a complete system transformation, as shown in Equations (9) - (10), will be achieved. 
For the model order reduction, the system in Equations (9) - (10) can be written as: 
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 1( ) ( ) [ ] ( )r r o o oy t C x t C A B D u t−= + − +  (36) 

Hence, the overall reduced order model may be represented by: 

 ( )  ( ) ( )     r or r orx t A x t B u t= +  (37) 

 ( ) ( ) ( )or r ory t C x t D u t= +  (38) 

where the details of the {[ orA ], [ orB ], [ orC ], [ orD ]} overall reduced matrices were shown in 
Equations (35) - (36), respectively. 

4. Examples for the dynamic system order reduction using neural 
identification  
The following subsections present the implementation of the new proposed method of 
system modeling using supervised ANN, with and without using LMI, and using model 
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order reduction, that can be directly utilized for the robust control of dynamic systems. The 
presented simulations were tested on a PC platform with hardware specifications of Intel 
Pentium 4 CPU 2.40 GHz, and 504 MB of RAM, and software specifications of MS Windows 
XP 2002 OS and Matlab 6.5 simulator. 

4.1 Model reduction using neural-based state transformation and lmi-based 
complete system transformation 
The following example illustrates the idea of dynamic system model order reduction using 
LMI with comparison to the model order reduction without using LMI. Let us consider the 
system of a high-performance tape transport which is illustrated in Figure 5. As seen in 
Figure 5, the system is designed with a small capstan to pull the tape past the read/write 
heads with the take-up reels turned by DC motors [10].  
 

 
(a) 

 
(b) 

Fig. 5. The used tape drive system: (a) a front view of a typical tape drive mechanism, and 
(b) a schematic control model.   

Robust Control Using LMI Transformation and Neural-Based Identification for 
Regulating Singularly-Perturbed Reduced Order Eigenvalue-Preserved Dynamic Systems 

 

73 

As can be shown, in static equilibrium, the tape tension equals the vacuum force ( oT F= ) 
and the torque from the motor equals the torque on the capstan ( 1t o oK i r T= ) where To is the 
tape tension at the read/write head at equilibrium, F is the constant force (i.e., tape tension 
for vacuum column), K is the motor torque constant, io is the equilibrium motor current, and 
r1 is the radius of the capstan take-up wheel. 
The system variables are defined as deviations from this equilibrium, and the system 
equations of motion are given as follows: 

1
1 1 1 1 t

dJ r T K i
dt
ω β ω= + − + , 1 1 1x r ω=  

1e
diL Ri K e
dt

ω+ = ,  2 2 2x r ω=  

2
2 2 2 2 0dJ r T

dt
ω β ω+ + =  

1 3 1 1 3 1( ) ( )T K x x D x x= − + −  
2 2 3 2 2 3( ) ( )T K x x D x x= − + −  

1 1 1x r θ= ,  2 2 2x r θ= ,  1 2
3 2

x xx −
=  

where 1,2D  is the damping in the tape-stretch motion, e is the applied input voltage (V), i is 
the current into capstan motor, J1 is the combined inertia of the wheel and take-up motor, J2 
is the inertia of the idler, K1,2 is the spring constant in the tape-stretch motion, Ke is the 
electric constant of the motor, Kt is the torque constant of the motor, L is the armature 
inductance, R is the armature resistance, r1 is the radius of the take-up wheel, r2 is the radius 
of the tape on the idler,  T is the tape tension at the read/write head, x3 is the position of the 
tape at the head, 3x  is the velocity of the tape at the head, β1 is the viscous friction at take-
up wheel, β2 is the viscous friction at the wheel, θ1 is the angular displacement of the 
capstan, θ2 is the tachometer shaft angle, ω1 is the speed of the drive wheel 1θ , and ω2 is the 
output speed measured by the tachometer output 2θ .  
The state space form is derived from the system equations, where there is one input, which 
is the applied voltage, three outputs which are (1) tape position at the head, (2) tape tension, 
and (3) tape position at the wheel, and five states which are (1) tape position at the air 
bearing, (2) drive wheel speed, (3) tape position at the wheel, (4) tachometer output speed, 
and (5) capstan motor speed. The following sub-sections will present the simulation results 
for the investigation of different system cases using transformations with and without 
utilizing the LMI optimization technique.    

4.1.1 System transformation using neural identification without utilizing linear matrix 
inequality 
This sub-section presents simulation results for system transformation using ANN-based 
identification and without using LMI.  
Case #1. Let us consider the following case of the tape transport: 

0 2 0 0 0 0
-1.1 -1.35 1.1 3.1 0.75 0

0 0 0 5 0 0( ) ( ) ( )
1.35 1.4 -2.4 -11.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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tape at the head, 3x  is the velocity of the tape at the head, β1 is the viscous friction at take-
up wheel, β2 is the viscous friction at the wheel, θ1 is the angular displacement of the 
capstan, θ2 is the tachometer shaft angle, ω1 is the speed of the drive wheel 1θ , and ω2 is the 
output speed measured by the tachometer output 2θ .  
The state space form is derived from the system equations, where there is one input, which 
is the applied voltage, three outputs which are (1) tape position at the head, (2) tape tension, 
and (3) tape position at the wheel, and five states which are (1) tape position at the air 
bearing, (2) drive wheel speed, (3) tape position at the wheel, (4) tachometer output speed, 
and (5) capstan motor speed. The following sub-sections will present the simulation results 
for the investigation of different system cases using transformations with and without 
utilizing the LMI optimization technique.    

4.1.1 System transformation using neural identification without utilizing linear matrix 
inequality 
This sub-section presents simulation results for system transformation using ANN-based 
identification and without using LMI.  
Case #1. Let us consider the following case of the tape transport: 

0 2 0 0 0 0
-1.1 -1.35 1.1 3.1 0.75 0

0 0 0 5 0 0( ) ( ) ( )
1.35 1.4 -2.4 -11.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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0 0 1 0 0
( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0
y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The five eigenvalues are {-10.5772, -9.999, -0.9814, -0.5962 ± j0.8702}, where two eigenvalues 
are complex and three are real, and thus since (1) not all the eigenvalues are complex and (2) 
the existing real eigenvalues produce the fast dynamics that we need to eliminate, model 
order reduction can be applied. As can be seen, two real eigenvalues produce fast dynamics 
{-10.5772, -9.999} and one real eigenvalue produce slow dynamics {-0.9814}. In order to 
obtain the reduced model, the reduction based on the identification of the input matrix [ B̂ ] 
and the transformed system matrix [ Â ] was performed. This identification is achieved 
utilizing the recurrent ANN.  
By discretizing the above system with a sampling time Ts = 0.1 sec., using a step input with 
learning time Tl = 300 sec., and then training the ANN for the input/output data with a 
learning rate η = 0.005 and with initial weights w = [[ dÂ ] [ dB̂ ]] given as: 

-0.0059 -0.0360 0.0003 -0.0204 -0.0307 0.0499
-0.0283 0.0243 0.0445 -0.0302 -0.0257 -0.0482
0.0359 0.0222 0.0309 0.0294 -0.0405 0.0088
-0.0058 0.0212 -0.0225 -0.0273 0.0079 0.0152
0.0295 -0.0235 -0.0474 -0.0373 -0.0158 -0.016

w =

8

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

produces the transformed model for the system and input matrices, ˆ[ ]A  and ˆ[ ]B , as follows: 
 

-0.5967 0.8701 -0.1041 -0.2710 -0.4114 0.1414
-0.8701 -0.5967 0.8034 -0.4520 -0.3375 0.0974

0 0 -0.9809 0.4962 -0.4680 0.1307( ) ( ) ( )
0 0 0 -9.9985  0.0146 -0.0011
0 0 0 0 -10.5764 1.0107

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

0 0 1 0 0
( ) 0.5 0 0.5 0 0 ( )

0.2 0.2 0.2 0.2 0
y t x t

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

As observed, all of the system eigenvalues have been preserved in this transformed model 
with a little difference due to discretization. Using the singular perturbation technique, the 
following reduced 3rd order model is obtained as follows: 

-0.5967 0.8701 -0.1041 0.1021
( ) -0.8701 -0.5967 0.8034 ( ) 0.0652 ( )

0 0 -0.9809 0.0860
x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

0 0 1 0
( ) 0.5 0 0.5 ( ) 0 ( )

0.2 0.2 0.2 0
y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
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It is also observed in the above model that the reduced order model has preserved all of its 
eigenvalues {-0.9809, -0.5967 ± j0.8701} which are a subset of the original system, while the 
reduced order model obtained using the singular perturbation without system 
transformation has provided different eigenvalues {-0.8283, -0.5980 ± j0.9304}. 
Evaluations of the reduced order models (transformed and non-transformed) were obtained 
by simulating both systems for a step input. Simulation results are shown in Figure 6. 
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Fig. 6. Reduced 3rd order models (.… transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced model ( ____ original) 5th order system output 
response. 

Based on Figure 6, it is seen that the non-transformed reduced model provides a response 
which is better than the transformed reduced model. The cause of this is that the 
transformation at this point is performed only for the [A] and [B] system matrices leaving 
the [C] matrix unchanged. Therefore, the system transformation is further considered for 
complete system transformation using LMI (for {[A], [B], [D]}) as will be seen in subsection 
4.1.2, where LMI-based transformation will produce better reduction-based response results 
than both the non-transformed and transformed without LMI.     

Case #2. Consider now the following case: 

0 2 0 0 0 0
-1.1 -1.35 0.1 0.1 0.75 0

0 0 0 2 0 0( ) ( ) ( )
0.35 0.4 -0.4 -2.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 
0 0 1 0 0

( ) 0.5 0 0.5 0 0 ( )
0.2 0.2 0.2 0.2 0

y t x t
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The five eigenvalues are {-9.9973, -2.0002, -0.3696, -0.6912 ± j1.3082}, where two eigenvalues 
are complex, three are real, and only one eigenvalue is considered to produce fast dynamics 
{-9.9973}. Using the discretized model with Ts = 0.071 sec. for a step input with learning time 
Tl = 70 sec., and through training the ANN for the input/output data with η = 3.5 x 10-5 and 
initial weight matrix given by: 
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⎢ ⎥⎣ ⎦
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⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Robust Control Using LMI Transformation and Neural-Based Identification for 
Regulating Singularly-Perturbed Reduced Order Eigenvalue-Preserved Dynamic Systems 

 

75 

It is also observed in the above model that the reduced order model has preserved all of its 
eigenvalues {-0.9809, -0.5967 ± j0.8701} which are a subset of the original system, while the 
reduced order model obtained using the singular perturbation without system 
transformation has provided different eigenvalues {-0.8283, -0.5980 ± j0.9304}. 
Evaluations of the reduced order models (transformed and non-transformed) were obtained 
by simulating both systems for a step input. Simulation results are shown in Figure 6. 
 

0 5 10 15 20
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time[s]

S
ys

te
m

 O
ut

pu
t
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to a step input along with the non-reduced model ( ____ original) 5th order system output 
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Based on Figure 6, it is seen that the non-transformed reduced model provides a response 
which is better than the transformed reduced model. The cause of this is that the 
transformation at this point is performed only for the [A] and [B] system matrices leaving 
the [C] matrix unchanged. Therefore, the system transformation is further considered for 
complete system transformation using LMI (for {[A], [B], [D]}) as will be seen in subsection 
4.1.2, where LMI-based transformation will produce better reduction-based response results 
than both the non-transformed and transformed without LMI.     

Case #2. Consider now the following case: 

0 2 0 0 0 0
-1.1 -1.35 0.1 0.1 0.75 0

0 0 0 2 0 0( ) ( ) ( )
0.35 0.4 -0.4 -2.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The five eigenvalues are {-9.9973, -2.0002, -0.3696, -0.6912 ± j1.3082}, where two eigenvalues 
are complex, three are real, and only one eigenvalue is considered to produce fast dynamics 
{-9.9973}. Using the discretized model with Ts = 0.071 sec. for a step input with learning time 
Tl = 70 sec., and through training the ANN for the input/output data with η = 3.5 x 10-5 and 
initial weight matrix given by: 
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-0.0195 0.0194 -0.0130 0.0071 -0.0048 0.0029
-0.0189 0.0055 0.0196 -0.0025 -0.0053 0.0120
-0.0091 0.0168 0.0031 0.0031 0.0134 -0.0038
-0.0061 0.0068 0.0193 0.0145 0.0038 -0.0139
-0.0150 0.0204 -0.0073 0.0180 -0.0085 -0.0161

w

⎡
⎢
⎢

=

⎣

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

 

and by applying the singular perturbation reduction technique, a reduced 4th order model is 
obtained as follows: 

-0.6912 1.3081 -0.4606 0.0114 0.0837
-1.3081 -0.6912 0.6916 -0.0781 0.0520

( ) ( ) ( )
0 0 -0.3696 0.0113 0.0240
0 0 0 -2.0002 -0.0014

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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y t x t
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

where all the eigenvalues {-2.0002, -0.3696, -0.6912 ± j1.3081} are preserved as a subset of the 
original system. This reduced 4th order model is simulated for a step input and then 
compared to both of the reduced model without transformation and the original system 
response. Simulation results are shown in Figure 7 where again the non-transformed 
reduced order model provides a response that is better than the transformed reduced 
model. The reason for this follows closely the explanation provided for the previous case. 
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Fig. 7. Reduced 4th order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 
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Case #3. Let us consider the following system: 

0 2 0 0 0 0
-0.1 -1.35 0.1 04.1 0.75 0

0 0 0 5 0 0( ) ( ) ( )
0.35 0.4 -1.4 -5.4 0 0

0 -0.03 0 0 -10 1

x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

The eigenvalues are {-9.9973, -3.9702, -1.8992, -0.6778, -0.2055} which are all real. Utilizing 
the discretized model with Ts = 0.1 sec. for a step input with learning time Tl = 500 sec., and 
training the ANN for the input/output data with η = 1.25 x 10-5, and initial weight matrix 
given by: 

    0.0014   -0.0662     0.0298   -0.0072   -0.0523   -0.0184
    0.0768     0.0653   -0.0770   -0.0858   -0.0968   -0.0609
    0.0231     0.0223   -0.0053     0.0162   -0.0231      0.0024
  -0.0907   

w =
  0.0695     0.0366     0.0132     0.0515      0.0427

    0.0904   -0.0772   -0.0733   -0.0490     0.0150      0.0735

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

and then by applying the singular perturbation technique, the following reduced 3rd order 
model is obtained: 

-0.2051 -1.5131 0.6966 0.0341
( ) 0 -0.6782 -0.0329 ( ) 0.0078 ( )

0 0 -1.8986 0.4649
x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

0 0 1 0
( ) 0.5 0 0.5 ( ) 0 ( )

0.2 0.2 0.2 0.0017
y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 

Again, it is seen here the preservation of the eigenvalues of the reduced-order model being 
as a subset of the original system. However, as shown before, the reduced model without 
system transformation provided different eigenvalues {-1.5165,-0.6223,-0.2060} from the 
transformed reduced order model. Simulating both systems for a step input provided the 
results shown in Figure 8.  
In Figure 8, it is also seen that the response of the non-transformed reduced model is better 
than the transformed reduced model, which is again caused by leaving the output [C] 
matrix without transformation.  

4.1.2 LMI-based state transformation using neural identification 
As observed in the previous subsection, the system transformation without using the LMI 
optimization method, where its objective was to preserve the system eigenvalues in the 
reduced model, didn't provide an acceptable response as compared with either the reduced 
non-transformed or the original responses.  
As was mentioned, this was due to the fact of not transforming the complete system (i.e., by 
neglecting the [C] matrix). In order to achieve better response, we will now perform a 
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⎢ ⎥
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⎢ ⎥
⎢ ⎥⎦

 

and by applying the singular perturbation reduction technique, a reduced 4th order model is 
obtained as follows: 

-0.6912 1.3081 -0.4606 0.0114 0.0837
-1.3081 -0.6912 0.6916 -0.0781 0.0520

( ) ( ) ( )
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x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
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⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
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( ) 0.5 0 0.5 0 ( )
0.2 0.2 0.2 0.2

y t x t
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

where all the eigenvalues {-2.0002, -0.3696, -0.6912 ± j1.3081} are preserved as a subset of the 
original system. This reduced 4th order model is simulated for a step input and then 
compared to both of the reduced model without transformation and the original system 
response. Simulation results are shown in Figure 7 where again the non-transformed 
reduced order model provides a response that is better than the transformed reduced 
model. The reason for this follows closely the explanation provided for the previous case. 
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Fig. 7. Reduced 4th order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 
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Case #3. Let us consider the following system: 
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⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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The eigenvalues are {-9.9973, -3.9702, -1.8992, -0.6778, -0.2055} which are all real. Utilizing 
the discretized model with Ts = 0.1 sec. for a step input with learning time Tl = 500 sec., and 
training the ANN for the input/output data with η = 1.25 x 10-5, and initial weight matrix 
given by: 

    0.0014   -0.0662     0.0298   -0.0072   -0.0523   -0.0184
    0.0768     0.0653   -0.0770   -0.0858   -0.0968   -0.0609
    0.0231     0.0223   -0.0053     0.0162   -0.0231      0.0024
  -0.0907   

w =
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and then by applying the singular perturbation technique, the following reduced 3rd order 
model is obtained: 

-0.2051 -1.5131 0.6966 0.0341
( ) 0 -0.6782 -0.0329 ( ) 0.0078 ( )

0 0 -1.8986 0.4649
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Again, it is seen here the preservation of the eigenvalues of the reduced-order model being 
as a subset of the original system. However, as shown before, the reduced model without 
system transformation provided different eigenvalues {-1.5165,-0.6223,-0.2060} from the 
transformed reduced order model. Simulating both systems for a step input provided the 
results shown in Figure 8.  
In Figure 8, it is also seen that the response of the non-transformed reduced model is better 
than the transformed reduced model, which is again caused by leaving the output [C] 
matrix without transformation.  

4.1.2 LMI-based state transformation using neural identification 
As observed in the previous subsection, the system transformation without using the LMI 
optimization method, where its objective was to preserve the system eigenvalues in the 
reduced model, didn't provide an acceptable response as compared with either the reduced 
non-transformed or the original responses.  
As was mentioned, this was due to the fact of not transforming the complete system (i.e., by 
neglecting the [C] matrix). In order to achieve better response, we will now perform a 
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complete system transformation utilizing the LMI optimization technique to obtain the 
permutation matrix [P] based on the transformed system matrix [ A ] as resulted from the 
ANN-based identification, where the following presents simulations for the previously 
considered tape drive system cases.  
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Fig. 8. Reduced 3rd order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 

Case #1. For the example of case #1 in subsection 4.1.1, the ANN identification is used now 
to identify only the  transformed [ dA ] matrix. Discretizing the system with Ts = 0.1 sec., 
using a step input with learning time Tl = 15 sec., and training the ANN for the 
input/output data with η = 0.001 and initial weights for the [ dA ] matrix as follows: 

0.0286 0.0384 0.0444 0.0206 0.0191
0.0375  0.0440  0.0325 0.0398 0.0144
0.0016 0.0186 0.0307 0.0056 0.0304
0.0411 0.0226 0.0478 0.0287 0.0453
0.0327 0.0042 0.0239  0.0106  0.0002

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

produces the transformed system matrix:  

-0.5967 0.8701 -1.4633 -0.9860 0.0964
-0.8701 -0.5967 0.2276 0.6165 0.2114

0 0 -0.9809 0.1395 0.4934
0 0 0 -9.9985  1.0449
0 0 0 0 -10.5764

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Based on this transformed matrix, using the LMI technique, the permutation matrix [P] was 
computed and then used for the complete system transformation. Therefore, the 
transformed {[ B ], [ C ], [ D ]} matrices were then obtained. Performing model order 
reduction provided the following reduced 3rd order model: 
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-0.5967 0.8701 -1.4633 35.1670
( ) -0.8701 -0.5967 0.2276 ( ) -47.3374 ( )

0 0 -0.9809 -4.1652
x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

-0.0019 0 -0.0139 -0.0025
( ) -0.0024 -0.0009 -0.0088 ( )  -0.0025 ( )

-0.0001  0.0004 -0.0021 0.0006
y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

where the objective of eigenvalue preservation is clearly achieved. Investigating the 
performance of this new LMI-based reduced order model shows that the new completely 
transformed system is better than all the previous reduced models (transformed and non-
transformed). This is clearly shown in Figure 9 where the 3rd order reduced model, based on 
the LMI optimization transformation, provided a response that is almost the same as the 5th 
order original system response.  
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Fig. 9. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed, ---- 
transformed with LMI) output responses to a step input along with the non reduced ( ____ 
original) system output response. The LMI-transformed curve fits almost exactly on the 
original response.  

Case #2. For the example of case #2 in subsection 4.1.1, for Ts = 0.1 sec., 200 input/output 
data learning points, and η = 0.0051 with initial weights for the [ dA ] matrix as follows: 

  

 0.0332    0.0682    0.0476    0.0129   0.0439
 0.0317    0.0610    0.0575    0.0028   0.0691
 0.0745    0.0516    0.0040    0.0234   0.0247
 0.0459    0.0231    0.0086    0.0611   0.0154
 0.0706   

w =

0.0418    0.0633    0.0176    0.0273

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

78

complete system transformation utilizing the LMI optimization technique to obtain the 
permutation matrix [P] based on the transformed system matrix [ A ] as resulted from the 
ANN-based identification, where the following presents simulations for the previously 
considered tape drive system cases.  
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Fig. 8. Reduced 3rd order models (…. transformed, -.-.-.- non-transformed) output responses 
to a step input along with the non-reduced ( ____ original) 5th order system output response. 

Case #1. For the example of case #1 in subsection 4.1.1, the ANN identification is used now 
to identify only the  transformed [ dA ] matrix. Discretizing the system with Ts = 0.1 sec., 
using a step input with learning time Tl = 15 sec., and training the ANN for the 
input/output data with η = 0.001 and initial weights for the [ dA ] matrix as follows: 

0.0286 0.0384 0.0444 0.0206 0.0191
0.0375  0.0440  0.0325 0.0398 0.0144
0.0016 0.0186 0.0307 0.0056 0.0304
0.0411 0.0226 0.0478 0.0287 0.0453
0.0327 0.0042 0.0239  0.0106  0.0002

w

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

produces the transformed system matrix:  

-0.5967 0.8701 -1.4633 -0.9860 0.0964
-0.8701 -0.5967 0.2276 0.6165 0.2114

0 0 -0.9809 0.1395 0.4934
0 0 0 -9.9985  1.0449
0 0 0 0 -10.5764

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Based on this transformed matrix, using the LMI technique, the permutation matrix [P] was 
computed and then used for the complete system transformation. Therefore, the 
transformed {[ B ], [ C ], [ D ]} matrices were then obtained. Performing model order 
reduction provided the following reduced 3rd order model: 
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-0.5967 0.8701 -1.4633 35.1670
( ) -0.8701 -0.5967 0.2276 ( ) -47.3374 ( )

0 0 -0.9809 -4.1652
x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
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-0.0019 0 -0.0139 -0.0025
( ) -0.0024 -0.0009 -0.0088 ( )  -0.0025 ( )

-0.0001  0.0004 -0.0021 0.0006
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⎡ ⎤ ⎡ ⎤
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where the objective of eigenvalue preservation is clearly achieved. Investigating the 
performance of this new LMI-based reduced order model shows that the new completely 
transformed system is better than all the previous reduced models (transformed and non-
transformed). This is clearly shown in Figure 9 where the 3rd order reduced model, based on 
the LMI optimization transformation, provided a response that is almost the same as the 5th 
order original system response.  
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Fig. 9. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed, ---- 
transformed with LMI) output responses to a step input along with the non reduced ( ____ 
original) system output response. The LMI-transformed curve fits almost exactly on the 
original response.  

Case #2. For the example of case #2 in subsection 4.1.1, for Ts = 0.1 sec., 200 input/output 
data learning points, and η = 0.0051 with initial weights for the [ dA ] matrix as follows: 

  

 0.0332    0.0682    0.0476    0.0129   0.0439
 0.0317    0.0610    0.0575    0.0028   0.0691
 0.0745    0.0516    0.0040    0.0234   0.0247
 0.0459    0.0231    0.0086    0.0611   0.0154
 0.0706   

w =

0.0418    0.0633    0.0176    0.0273

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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the transformed [ A ] was obtained and used to calculate the permutation matrix [P]. The 
complete system transformation was then performed and the reduction technique produced 
the following 3rd order reduced model: 

-0.6910 1.3088 -3.8578 -0.7621
( ) -1.3088 -0.6910 -1.5719 ( ) -0.1118 ( )

0 0 -0.3697  0.4466
x t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 0.0061 0.0261 0.0111 0.0015
( ) -0.0459 0.0187 -0.0946 ( )  0.0015 ( )

0.0117  0.0155 -0.0080 0.0014
y t x t u t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

with eigenvalues preserved as desired. Simulating this reduced order model to a step input, 
as done previously, provided the response shown in Figure 10. 
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Fig. 10. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                        
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Here, the LMI-reduction-based technique has provided a response that is better than both of 
the reduced non-transformed and non-LMI-reduced transformed responses and is almost 
identical to the original system response. 
 

Case #3. Investigating the example of case #3 in subsection 4.1.1, for Ts = 0.1 sec., 200 
input/output data points, and η = 1 x 10-4 with initial weights for [ ]dA  given as:  
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  0.0048    0.0039    0.0009    0.0089   0.0168
  0.0072    0.0024    0.0048    0.0017   0.0040
  0.0176    0.0176    0.0136    0.0175   0.0034
  0.0055    0.0039    0.0078    0.0076   0.0051
  0.01

w =

02    0.0024    0.0091    0.0049    0.0121

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

the LMI-based transformation and then order reduction were performed. Simulation results 
of the reduced order models and the original system are shown in Figure 11. 
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Fig. 11. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                         
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Again, the response of the reduced order model using the complete LMI-based 
transformation is the best as compared to the other reduction techniques.    
 

5. The application of closed-loop feedback control on the reduced models 
Utilizing the LMI-based reduced system models that were presented in the previous section, 
various control techniques – that can be utilized for the robust control of dynamic systems - 
are considered in this section to achieve the desired system performance. These control 
methods include (a) PID control, (b) state feedback control using (1) pole placement for the 
desired eigenvalue locations and (2) linear quadratic regulator (LQR) optimal control, and 
(c) output feedback control.   

5.1 Proportional–Integral–Derivative (PID) control 
A PID controller is a generic control loop feedback mechanism which is widely used in 
industrial control systems [7,10,24]. It attempts to correct the error between a measured 
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the transformed [ A ] was obtained and used to calculate the permutation matrix [P]. The 
complete system transformation was then performed and the reduction technique produced 
the following 3rd order reduced model: 

-0.6910 1.3088 -3.8578 -0.7621
( ) -1.3088 -0.6910 -1.5719 ( ) -0.1118 ( )

0 0 -0.3697  0.4466
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with eigenvalues preserved as desired. Simulating this reduced order model to a step input, 
as done previously, provided the response shown in Figure 10. 
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Fig. 10. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                        
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Here, the LMI-reduction-based technique has provided a response that is better than both of 
the reduced non-transformed and non-LMI-reduced transformed responses and is almost 
identical to the original system response. 
 

Case #3. Investigating the example of case #3 in subsection 4.1.1, for Ts = 0.1 sec., 200 
input/output data points, and η = 1 x 10-4 with initial weights for [ ]dA  given as:  
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the LMI-based transformation and then order reduction were performed. Simulation results 
of the reduced order models and the original system are shown in Figure 11. 
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Fig. 11. Reduced 3rd order models (…. transformed without LMI, -.-.-.- non-transformed,                         
---- transformed with LMI) output responses to a step input along with the non reduced ( 
____ original) system output response. The LMI-transformed curve fits almost exactly on the 
original response. 

Again, the response of the reduced order model using the complete LMI-based 
transformation is the best as compared to the other reduction techniques.    
 

5. The application of closed-loop feedback control on the reduced models 
Utilizing the LMI-based reduced system models that were presented in the previous section, 
various control techniques – that can be utilized for the robust control of dynamic systems - 
are considered in this section to achieve the desired system performance. These control 
methods include (a) PID control, (b) state feedback control using (1) pole placement for the 
desired eigenvalue locations and (2) linear quadratic regulator (LQR) optimal control, and 
(c) output feedback control.   

5.1 Proportional–Integral–Derivative (PID) control 
A PID controller is a generic control loop feedback mechanism which is widely used in 
industrial control systems [7,10,24]. It attempts to correct the error between a measured 
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process variable (output) and a desired set-point (input) by calculating and then providing a 
corrective signal that can adjust the process accordingly as shown in Figure 12. 
 
 

 
 
 

Fig. 12. Closed-loop feedback single-input single-output (SISO) control using a PID 
controller. 

In the control design process, the three parameters of the PID controller {Kp, Ki, Kd} have to 
be calculated for some specific process requirements such as system overshoot and settling 
time. It is normal that once they are calculated and implemented, the response of the system 
is not actually as desired. Therefore, further tuning of these parameters is needed to provide 
the desired control action. 
Focusing on one output of the tape-drive machine, the PID controller using the reduced 
order model for the desired output was investigated. Hence, the identified reduced 3rd order 
model is now considered for the output of the tape position at the head which is given as: 
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Searching for suitable values of the PID controller parameters, such that the system provides 
a faster response settling time and less overshoot, it is found that {Kp = 100, Ki = 80, Kd = 90} 
with a controlled system which is given by: 
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Simulating the new PID-controlled system for a step input provided the results shown in 
Figure 13, where the settling time is almost 1.5 sec. while without the controller was greater 
than 6 sec. Also as observed, the overshoot has much decreased after using the PID 
controller. 
On the other hand, the other system outputs can be PID-controlled using the cascading of 
current process PID and new tuning-based PIDs for each output. For the PID-controlled 
output of the tachometer shaft angle, the controlling scheme would be as shown in Figure 
14. As seen in Figure 14, the output of interest (i.e., the 2nd output) is controlled as desired 
using the PID controller. However, this will affect the other outputs' performance and 
therefore a further PID-based tuning operation must be applied. 
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Fig. 13. Reduced 3rd order model PID controlled and uncontrolled step responses.  
 

 
  (a)      (b) 

Fig. 14. Closed-loop feedback single-input multiple-output (SIMO) system with a PID 
controller: (a) a generic SIMO diagram, and (b) a detailed SIMO diagram. 

As shown in Figure 14, the tuning process is accomplished using G1T and G3T. For example, 
for the 1st output: 

 1 1 1 2 1 1PID( )TY G G R Y   Y G R= − = =  (39) 

 ∴ 1
2

 
PID( )T

RG    
R - Y

=  (40) 

where Y2 is the Laplace transform of the 2nd output. Similarly, G3T can be obtained. 

5.2 State feedback control  
In this section, we will investigate the state feedback control techniques of pole placement 
and the LQR optimal control for the enhancement of the system performance. 

5.2.1 Pole placement for the state feedback control  
For the reduced order model in the system of Equations (37) - (38), a simple pole placement-
based state feedback controller can be designed. For example, assuming that a controller is 
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5.2 State feedback control  
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needed to provide the system with an enhanced system performance by relocating the 
eigenvalues, the objective can be achieved using the control input given by: 

 ( ) ( ) ( )ru t Kx t r t= − +  (41) 

where K is the state feedback gain designed based on the desired system eigenvalues. A 
state feedback control for pole placement can be illustrated by the block diagram shown in 
Figure 15.  
 

 
Fig. 15. Block diagram of a state feedback control with {[ orA ], [ orB ], [ orC ], [ orD ]} overall 
reduced order system matrices. 

Replacing the control input u(t) in Equations (37) - (38) by the above new control input in 
Equation (41) yields the following reduced system equations: 
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where this is illustrated in Figure 16.  
 

 
Fig. 16. Block diagram of the overall state feedback control for pole placement. 
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The overall closed-loop system model may then be written as:  

 ( ) ( ) ( )cl r clx t A x t B r t= +  (44) 

 ( ) ( ) ( )cl r cly t C x t D r t= +  (45) 

such that the closed loop system matrix [Acl] will provide the new desired system 
eigenvalues.  
For example, for the system of case #3, the state feedback was used to re-assign the 
eigenvalues with {-1.89, -1.5, -1}. The state feedback control was then found to be of K = [-
1.2098  0.3507  0.0184], which placed the eigenvalues as desired and enhanced the system 
performance as shown in Figure 17.  
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Fig. 17. Reduced 3rd order state feedback control (for pole placement) output step response                      
-.-.-.- compared with the original ____ full order system output step response. 

5.2.2 Linear-Quadratic Regulator (LQR) optimal control for the state feedback control  
Another method for designing a state feedback control for system performance 
enhancement may be achieved based on minimizing the cost function given by [10]: 

 ( )
0

T TJ x Qx u Ru dt
∞

= +∫  (46) 

which is defined for the system ( ) ( ) ( )x t Ax t Bu t= + , where Q and R are weight matrices for 
the states and input commands. This is known as the LQR problem, which has received 
much of a special attention due to the fact that it can be solved analytically and that the 
resulting optimal controller is expressed in an easy-to-implement state feedback control 
[7,10]. The feedback control law that minimizes the values of the cost is given by: 

 ( ) ( )u t Kx t= −  (47) 
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where K is the solution of 1 TK R B q−=  and [q] is found by solving the algebraic Riccati 
equation which is described by: 

 1 0T TA q qA qBR B q Q−+ − + =  (48) 

where [Q] is the state weighting matrix and [R] is the input weighting matrix. A direct 
solution for the optimal control gain maybe obtained using the MATLAB statement 

lqr( , , , )K A B Q R= , where in our example R = 1, and the [Q] matrix was found using the 

output [C] matrix such as TQ C C= . 
The LQR optimization technique is applied to the reduced 3rd order model in case #3 of 
subsection 4.1.2 for the system behavior enhancement. The state feedback optimal control 
gain was found K = [-0.0967 -0.0192 0.0027], which when simulating the complete system for 
a step input, provided the normalized output response (with a normalization factor γ = 
1.934) as shown in Figure 18.  
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Fig. 18. Reduced 3rd order LQR state feedback control output step response -.-.-.- compared 
with the original ____ full order system output step response. 

As seen in Figure 18, the optimal state feedback control has enhanced the system 
performance, which is basically based on selecting new proper locations for the system 
eigenvalues.  

5.3 Output feedback control  
The output feedback control is another way of controlling the system for certain desired 
system performance as shown in Figure 19 where the feedback is directly taken from the 
output.  
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Fig. 19. Block diagram of an output feedback control. 
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This leads to the overall block diagram as seen in Figure 20. 
 
 
 
 

  
 
 
 

Fig. 20. An overall block diagram of an output feedback control. 

Considering the reduced 3rd order model in case #3 of subsection 4.1.2 for system behavior 
enhancement using the output feedback control, the feedback control gain is found to be K = 
[0.5799  -2.6276  -11]. The normalized controlled system step response is shown in Figure 21, 
where one can observe that the system behavior is enhanced as desired.  
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Fig. 18. Reduced 3rd order LQR state feedback control output step response -.-.-.- compared 
with the original ____ full order system output step response. 
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Fig. 21. Reduced 3rd order output feedback controlled step response -.-.-.- compared with the 
original ____ full order system uncontrolled output step response. 

6. Conclusions and future work 
In control engineering, robust control is an area that explicitly deals with uncertainty in its 
approach to the design of the system controller. The methods of robust control are designed 
to operate properly as long as disturbances or uncertain parameters are within a compact 
set, where robust methods aim to accomplish robust performance and/or stability in the 
presence of bounded modeling errors. A robust control policy is static - in contrast to the 
adaptive (dynamic) control policy - where, rather than adapting to measurements of 
variations, the system controller is designed to function assuming that certain variables will 
be unknown but, for example, bounded. 
This research introduces a new method of hierarchical intelligent robust control for dynamic 
systems. In order to implement this control method, the order of the dynamic system was 
reduced. This reduction was performed by the implementation of a recurrent supervised 
neural network to identify certain elements [Ac] of the transformed system matrix [ A ], 
while the other elements [Ar] and [Ao] are set based on the system eigenvalues such that [Ar] 
contains the dominant eigenvalues (i.e., slow dynamics) and [Ao] contains the non-dominant 
eigenvalues (i.e., fast dynamics). To obtain the transformed matrix [ A ], the zero input 
response was used in order to obtain output data related to the state dynamics, based only 
on the system matrix [A]. After the transformed system matrix was obtained, the 
optimization algorithm of linear matrix inequality was utilized to determine the 
permutation matrix [P], which is required to complete the system transformation matrices 
{[ B ], [ C ], [ D ]}. The reduction process was then applied using the singular perturbation 
method, which operates on neglecting the faster-dynamics eigenvalues and leaving the 
dominant slow-dynamics eigenvalues to control the system. The comparison simulation 
results show clearly that modeling and control of the dynamic system using LMI is superior 
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to that without using LMI. Simple feedback control methods using PID control, state 
feedback control utilizing (a) pole assignment and (b) LQR optimal control, and output 
feedback control were then implemented to the reduced model to obtain the desired 
enhanced response of the full order system.  
Future work will involve the application of new control techniques, utilizing the control 
hierarchy introduced in this research, such as using fuzzy logic and genetic algorithms. 
Future work will also involve the fundamental investigation of achieving model order 
reduction for dynamic systems with all eigenvalues being complex.    
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Fig. 21. Reduced 3rd order output feedback controlled step response -.-.-.- compared with the 
original ____ full order system uncontrolled output step response. 

6. Conclusions and future work 
In control engineering, robust control is an area that explicitly deals with uncertainty in its 
approach to the design of the system controller. The methods of robust control are designed 
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set, where robust methods aim to accomplish robust performance and/or stability in the 
presence of bounded modeling errors. A robust control policy is static - in contrast to the 
adaptive (dynamic) control policy - where, rather than adapting to measurements of 
variations, the system controller is designed to function assuming that certain variables will 
be unknown but, for example, bounded. 
This research introduces a new method of hierarchical intelligent robust control for dynamic 
systems. In order to implement this control method, the order of the dynamic system was 
reduced. This reduction was performed by the implementation of a recurrent supervised 
neural network to identify certain elements [Ac] of the transformed system matrix [ A ], 
while the other elements [Ar] and [Ao] are set based on the system eigenvalues such that [Ar] 
contains the dominant eigenvalues (i.e., slow dynamics) and [Ao] contains the non-dominant 
eigenvalues (i.e., fast dynamics). To obtain the transformed matrix [ A ], the zero input 
response was used in order to obtain output data related to the state dynamics, based only 
on the system matrix [A]. After the transformed system matrix was obtained, the 
optimization algorithm of linear matrix inequality was utilized to determine the 
permutation matrix [P], which is required to complete the system transformation matrices 
{[ B ], [ C ], [ D ]}. The reduction process was then applied using the singular perturbation 
method, which operates on neglecting the faster-dynamics eigenvalues and leaving the 
dominant slow-dynamics eigenvalues to control the system. The comparison simulation 
results show clearly that modeling and control of the dynamic system using LMI is superior 
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to that without using LMI. Simple feedback control methods using PID control, state 
feedback control utilizing (a) pole assignment and (b) LQR optimal control, and output 
feedback control were then implemented to the reduced model to obtain the desired 
enhanced response of the full order system.  
Future work will involve the application of new control techniques, utilizing the control 
hierarchy introduced in this research, such as using fuzzy logic and genetic algorithms. 
Future work will also involve the fundamental investigation of achieving model order 
reduction for dynamic systems with all eigenvalues being complex.    
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1. Introduction  
There have been significant progresses reported in nonlinear adaptive control in the last two 
decades or so, partially because of the introduction of neural networks (Polycarpou, 1996; 
Chen & Liu, 1994; Lewis, Yesidirek & Liu, 1995; Sanner & Slotine, 1992; Levin & Narendra, 
1993; Chen & Yang, 2005). The adaptive control schemes reported intend to design adaptive 
neural controllers so that the designed controllers can help achieve the stability of the 
resulting systems in case of uncertainties and/or unmodeled system dynamics. It is a typical 
assumption that no restriction is imposed on the magnitude of the control signal. 
Accompanied with the adaptive control design is usually a reference model which is 
assumed to exist, and a parameter estimator. The parameters can be estimated within a pre-
designated bound with appropriate parameter projection. It is noteworthy that these design 
approaches are not applicable for many practical systems where there is a restriction on the 
control magnitude, or a reference model is not available. 
On the other hand, the economics performance index is another important objective for 
controller design for many practical control systems. Typical performance indexes include, 
for instance, minimum time and minimum fuel. The optimal control theory developed a few 
decades ago is applicable to those systems when the system model in question along with a 
performance index is available and no uncertainties are involved. It is obvious that these 
optimal control design approaches are not applicable for many practical systems where 
these systems contain uncertain elements. 
Motivated by the fact that many practical systems are concerned with both system stability 
and system economics, and encouraged by the promising images presented by theoretical 
advances in neural networks (Haykin, 2001; Hopfield & Tank, 1985) and numerous application 
results (Nagata, Sekiguchi & Asakawa, 1990; Methaprayoon, Lee, Rasmiddatta, Liao & Ross, 
2007; Pandit, Srivastava & Sharma, 2003; Zhou, Chellappa, Vaid & Jenkins, 1998; Chen & York, 
2008; Irwin, Warwick & Hunt, 1995; Kawato, Uno & Suzuki, 1988; Liang 1999; Chen & Mohler, 
1997; Chen & Mohler, 2003; Chen, Mohler & Chen, 1999), this chapter aims at developing an 
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intelligent control design framework to guide the controller design for uncertain, nonlinear 
systems to address the combining challenge arising from the following: 
• The designed controller is expected to stabilize the system in the presence of 

uncertainties in the parameters of the nonlinear systems in question. 
• The designed controller is expected to stabilize the system in the presence of 

unmodeled system dynamics uncertainties. 
• The designed controller is confined on the magnitude of the control signals. 
• The designed controller is expected to achieve the desired control target with minimum 

total control effort or minimum time. 
The salient features of the proposed control design framework include: (a) achieving nearly 
optimal control regardless of parameter uncertainties; (b) no need for a parameter estimator 
which is popular in many adaptive control designs; (c) respecting the pre-designated range 
for the admissible control. 
Several important technical aspects of the proposed intelligent control design framework 
will be studied: 
• Hierarchical neural networks (Kawato, Uno & Suzuki, 1988; Zakrzewski, Mohler & 

Kolodziej, 1994; Chen, 1998; Chen & Mohler, 2000; Chen, Mohler & Chen, 2000; Chen, 
Yang & Moher, 2008; Chen, Yang & Mohler, 2006) are utilized; and the role of each tier 
of the hierarchy will be discussed and how each tier of the hierarchical neural networks 
is constructed will be highlighted.  

• The theoretical aspects of using hierarchical neural networks to approximately achieve 
optimal, adaptive control of nonlinear, time-varying systems will be studied. 

• How the tessellation of the parameter space affects the resulting hierarchical neural 
networks will be discussed. 

In summary, this chapter attempts to provide a deep understanding of what hierarchical 
neural networks do to optimize a desired control performance index when controlling 
uncertain nonlinear systems with time-varying properties; make an insightful investigation 
of how hierarchical neural networks may be designed to achieve the desired level of control 
performance; and create an intelligent control design framework that provides guidance for 
analyzing and studying the behaviors of the systems in question, and designing hierarchical 
neural networks that work in a coordinated manner to optimally, adaptively control the 
systems.  
This chapter is organized as follows: Section 2 describes several classes of uncertain 
nonlinear systems of interest and mathematical formulations of these problems are 
presented. Some conventional assumptions are made to facilitate the analysis of the 
problems and the development of the design procedures generic for a large class of 
nonlinear uncertain systems. The time optimal control problem and the fuel optimal control 
problem are analyzed and an iterative numerical solution process is presented in Section 3. 
These are important elements in building a solution approach to address the control 
problems studied in this paper which are in turn decomposed into a series of control 
problems that do not exhibit parameter uncertainties. This decomposition is vital in the 
proposal of the hierarchical neural network based control design. The details of the 
hierarchical neural control design methodology are given in Section 4. The synthesis of 
hierarchical neural controllers is to achieve (a) near optimal control (which can be time-
optimal or fuel-optimal) of the studied systems with constrained control; (b) adaptive 
control of the studied control systems with unknown parameters; (c) robust control of the 
studied control systems with the time-varying parameters. In Section 5, theoretical results 
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are developed to justify the fuel-optimal control oriented neural control design procedures 
for the time-varying nonlinear systems. Finally, some concluding remarks are made. 

2. Problem formulation 
As is known, the adaptive control design of nonlinear dynamic systems is still carried out on a 
per case-by-case basis, even though there have numerous progresses in the adaptive of linear 
dynamic systems. Even with linear systems, the conventional adaptive control schemes have 
common drawbacks that include (a) the control usually does not consider the physical control 
limitations, and (b) a performance index is difficult to incorporate. This has made the adaptive 
control design for nonlinear system even more challenging. With this common understanding, 
this Chapter is intended to address the adaptive control design for a class of nonlinear systems 
using the neural network based techniques. The systems of interest are linear in both control 
and parameters, and feature time-varying, parametric uncertainties, confined control inputs, 
and multiple control inputs. These systems are represented by a finite dimensional differential 
system linear in control and linear in parameters.  
The adaptive control design framework features the following: 
• The adaptive, robust control is achieved by hierarchical neural networks. 
• The physical control limitations, one of the difficulties that conventional adaptive 

control can not handle, are reflected in the admissible control set. 
• The performance measures to be incorporated in the adaptive control design, deemed 

as a technical challenge for the conventional adaptive control schemes, that will be 
considered in this Chapter include: 
• Minimum time – resulting in the so-called time-optimal control 
• Minimum fuel – resulting in the so-called fuel-optimal control 
• Quadratic performance index – resulting in the quadratic performance optimal 

control. 
Although the control performance indices are different for the above mentioned approaches, 
the system characterization and some key assumptions are common. 
The system is mathematically represented by 

 ( ) ( ) ( )x a x C x p B x u= + +  (1) 
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Although the control performance indices are different for the above mentioned approaches, 
the system characterization and some key assumptions are common. 
The system is mathematically represented by 
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The control objective is to follow a theoretically sound control design methodology to 
design the controller such that the system is adaptively controlled with respect to 
parametric uncertainties and yet minimizing a desired control performance. 
To facilitate the theoretical derivations, several conventional assumptions are made in the 
following and applied throughout the Chapter. 
AS1: It is assumed that (.)a , (.)C  and (.)B  have continuous partial derivatives with respect 

to the state variables on the region of interest. In other words, ( )ia x , ( )isC x , ( )ikB x , ( )i

j

a x
x

∂
∂

, 

( )is

j

C x
x

∂
∂

, and ( )ik

j

B x
x

∂
∂

 for , 1,2, ,i j n= ; 1,2, ,k m= ; 1,2, ,s l=  exist and are continuous 

and bounded on the region of interest. 
It should be noted that the above conditions imply that (.)a , (.)C  and (.)B  satisfy the 
Lipschitz condition which in turn implies that there always exists a unique and continuous 
solution to the differential equation given an initial condition 0 0( )x t ξ=  and a bounded 
control ( )u t . 
AS2: In practical applications, control effort is usually confined due to the limitation of 
design or conditions corresponding to physical constraints. Without loss of generality, 
assume that the admissible control set U  is characterized by: 

 { }:| | 1, 1,2, ,iU u u i m= ≤ =  (2) 

where iu  is u 's i th component. 
AS3: It is assumed that the system is controllable. 
AS4: Some control performance criteria J  may relate to the initial time 0t  and the final time 

ft . The cost functional reflects the requirement of a particular type of optimal control. 

AS5: The target set fθ  is defined as { }: ( ( )) 0f fx x tθ ψ= =  where iψ ’s ( 1,2, ,i q= )  are the 

components of  the continuously differentiable function vector (.)ψ . 
Remark 1: As a step of our approach to address the control design for the system (1), the 
above same control problem is studied with the only difference that the parameters in Eq. 
(1) are given. An optimal solution is sought to the following control problem: 
The optimal control problem ( 0P ) consists of the system equation (1) with fixed and known 
parameter vector p , the initial time 0t , the variable final time ft , the initial state 0 0( )x x t= , 

together with the assumptions AS1, AS2, AS3, AS4, AS5 satisfied such that the system state 
conducts to a pre-specified terminal set fθ  at the final time ft  while the control 

performance index is minimized. 
AS6: There do not exist singular solutions to the optimal control problem ( 0P ) as described 
in Remark 1 (referenced as the control problem ( 0P ) later on distinct from the original 
control problem ( P )). 

AS7: x
p
∂
∂

 is bounded on pp∈Ω  and xx∈Ω . 
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Remark 2: For any continuous function ( )f x  defined on the compact domain n
x RΩ ⊂ , 

there exists a neural network characterized by ( )fNN x  such that for any positive number 
*
fε , *| ( ) ( )|f ff x NN x ε− < . 

AS8: Let the sufficiently trained neural network be denoted by ( , )sNN x Θ , and the neural 
network with the ideal weights and biases by *( , )NN x Θ  where sΘ  and *Θ  designate the 
parameter vectors comprising weights and biases of the corresponding neural networks. 
The approximation of ( , )f sNN x Θ  to *( , )fNN x Θ  is measured by 

* *( ; ; ) | ( , ) ( , )|f s f s fNN x NN x NN xδ Θ Θ = Θ − Θ . Assume that *( ; ; )f sNN xδ Θ Θ  is bounded by a 

pre-designated number 0,sε >  i.e., *( ; ; ) s
f sNN xδ εΘ Θ < . 

AS9: The total number of switch times for all control components for the studied fuel-
optimal control problem is greater than the number of state variables. 
Remark 3: AS9 is true for practical systems to the best knowledge of the authors. The 
assumption is made for the convenience of the rigor of the theoretical results developed in 
this Chapter. 

2.1 Time-optimal control 
For the time-optimal control problem, the system characterization, the control objective, 
constraints remain the same as for the generic control problem with the exception that the 
control performance index reflected in the Assumption AS4 is replaced with the following: 

AS4: The control performance criteria is 
0

1
ft

t

J ds= ∫  where 0t  and ft  are the initial time and the 

final time, respectively. The cost functional reflects the requirement of time-optimal control. 

2.2 Fuel-optimal control  
For the fuel-optimal control problem, the system characterization, the control objective, 
constraints remain the same as for the time-optimal control problem with the Assumption 
AS4 replaced with the following: 

AS4: The control performance criteria is 
0

0 1 | |
ft

m
k kk

t

J e e u ds
=

⎡ ⎤= +⎢ ⎥⎣ ⎦∑∫  where 0t  and ft  are the 

initial time and the final time, respectively, and ke  ( 0,1,2, ,k m= ) are non-negative 
constants. The cost functional reflects the requirement of fuel-optimal control as related to 
the integration of the absolute control effort of each control variable over time. 

2.3 Optimal control with quadratic performance index 
For the quadratic performance index based optimal control problem, the system 
characterization, the control objective, constraints remain the same with the Assumption 
AS4 replaced with the following: 
AS4: The control performance criteria is 

0

1 1( ( ) ( )) ( )( ( ) ( )) ( ) ( )
2 2

ft

f f f f f e e
t

J x t r t S t x t r t x Qx u u R u u dsτ τ τ⎡ ⎤= − − + + − −⎣ ⎦∫  where 0t  and ft  are 
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the initial time and the final time, respectively;  and ( ) 0fS t ≥ , 0Q ≥ , and 0R ≥  with 

appropriate dimensions; and the desired final state ( )fr t  is the specified as the equilibrium 

ex , and eu  is the equilibrium control.  

3. Numerical solution schemes to the optimal control problems 
To solve for the optimal control, mathematical derivations are presented below for each of 
the above optimal control problems to show that the resulting equations represent the 
Hamiltonian system which is usually a coupled two-point boundary-value problem 
(TPBVP), and the analytic solution is not available, to our best knowledge. It is worth noting 
that in the solution process, the parameter is assumed to be fixed.  

3.1 Numerical solution scheme to the time optimal control problem 
By assumption AS4, the optimal control performance index can be expressed as 

0
0( ) 1ft

t
J t dt= ∫                             

where 0t  is the initial time, and ft  is the final time. 

Define the Hamiltonian function as 

( , , ) 1 ( ( ) ( ) ( ) )H x u t a x C x p B x uτλ= + + +  

where [ ]1 2 n
τλ λ λ λ=  is the costate vector. 

The final-state constraint is ( ( )) 0fx tψ =  as mentioned before. 

The state equation can be expressed as 

0( ) ( ) ( ) ,Hx a x C x p B x u t t
λ

∂
= = + + ≥
∂

                

The costate equation can be written as 

( ( ) ( ) ( ) ) ,a x C x p B x uH t T
x x

τ
λ λ

∂ + +∂
− = = ≤

∂ ∂
 

The Pontryagin minimum principle is applied in order to derive the optimal control (Lee & 
Markus, 1967). That is, 

* * * * *( , , , ) ( , , , )H x u t H x u tλ λ≤                         

for all admissible u . 
where *u , *x  and *λ  correspond to the optimal solution. 
Consequently,  

* * *
1 1( ) ( )m m

k k k kk kB x u B x uτ τλ λ
= =

≤∑ ∑                    
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where ( )kB x  is the k th column of the ( )B x . 

Since the control components ku 's are all independent, the minimization of 1 ( )m
k kk B x uτλ

=∑  

is equivalent to the minimization of ( )k kB x uτλ . 

The optimal control can be expressed as * *sgn( ( ))k ku s t= − , where sgn(.)  is the sign function 

defined as sgn( ) 1t =  if 0t >  or sgn( ) 1t = − if 0t < ; and ( ) ( )k ks t B xτλ=  is the k th 

component of the switch vector ( ) ( )S t B x τ λ= . 
It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value 
problem, and its analytic solution is not available in general. 
With assumption AS6 satisfied, it is observed from the derivation of the optimal time control 
that the control problem ( 0P ) has bang-bang control solutions. 
Consider the following cost functional: 

0

2

1
1 ( ( ))f

qt
i i ft

i
J dt x tρψ

=
= +∑∫     

where iρ 's are positive constants, and iψ 's are the components of the defining equation of 

the target set { }: ( ( )) 0f fx x tθ ψ= =  to the system state is transferred from a given initial state 

by means of proper control, and q  is the number of components in ψ . 
It is observed that the system described by Eq. (1) is a nonlinear system but linear in control. 
With assumption AS6, the requirements for applying the Switching-Time-Varying-Method 
(STVM) are met. The optimal switching-time vector can be obtained by using a gradient-
based method. The convergence of the STVM is guaranteed if there are no singular 
solutions. 
Note that the cost functional can be rewritten as follows: 

0

' '
0 0[( ( ) ( ), )]ft

t
J a x b x u dt= + < >∫   

where '
0 1( ) 1 2 , ( ) ( ) ,q i

i iia x a x C x p
x
ψ

ρψ
=

∂
= + < + >

∂∑  '
0 1( ) 2 [ ] ( )q i

i iib x B x
x

τψ
ρψ

=

∂
=

∂∑ , and ( )a x , 

( )C x , p  and ( )B x  are as given in the control problem ( 0P ). 
Define a new state variable 0( )x t  as follows: 

' '
0 0 00
( ) [( ( ) ( ), )]

t

t
x t a x b x u dt= + < >∫                                                                                

Define the augmented state vector 0x x x
ττ⎡ ⎤= ⎣ ⎦ , '

0( ) ( ) ( ( ) ( ) )a x a x a x C x p
ττ⎡ ⎤= +⎣ ⎦ , and 

'
0( ) ( ) ( ( ))B x b x B x

ττ⎡ ⎤= ⎣ ⎦ . 

The system equation can be rewritten in terms of the augmented state vector as 

( ) ( )x a x B x u= +  where 0 0( ) 0 ( )x t x t
ττ⎡ ⎤= ⎣ ⎦ . 
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Consequently,  
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k k k kk kB x u B x uτ τλ λ
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where ( )kB x  is the k th column of the ( )B x . 

Since the control components ku 's are all independent, the minimization of 1 ( )m
k kk B x uτλ
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is equivalent to the minimization of ( )k kB x uτλ . 

The optimal control can be expressed as * *sgn( ( ))k ku s t= − , where sgn(.)  is the sign function 
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component of the switch vector ( ) ( )S t B x τ λ= . 
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problem, and its analytic solution is not available in general. 
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that the control problem ( 0P ) has bang-bang control solutions. 
Consider the following cost functional: 
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J dt x tρψ
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the target set { }: ( ( )) 0f fx x tθ ψ= =  to the system state is transferred from a given initial state 

by means of proper control, and q  is the number of components in ψ . 
It is observed that the system described by Eq. (1) is a nonlinear system but linear in control. 
With assumption AS6, the requirements for applying the Switching-Time-Varying-Method 
(STVM) are met. The optimal switching-time vector can be obtained by using a gradient-
based method. The convergence of the STVM is guaranteed if there are no singular 
solutions. 
Note that the cost functional can be rewritten as follows: 
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where '
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=
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( )C x , p  and ( )B x  are as given in the control problem ( 0P ). 
Define a new state variable 0( )x t  as follows: 
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Define the augmented state vector 0x x x
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A Hamiltonian system can be constructed for the above state equation with the costate 
equation given by 

( ( ) ( ) )a x B x u
x

τλ λ∂
= − +

∂
 where ( ) | ( )f f

Jt x t
x

λ ∂
=
∂

. 

It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal 
switching times must be finite provided that no singular solutions exist. Let the zeros of 

( )ks t−  be ,k jτ +  ( 1,2, ,2 kj N+= , 1,2, ,k m= ; and 
1 2, ,k j k jτ τ+ +<  for 1 21 2 kj j N+≤ < ≤ ). 

*
,2 1 ,2

1
( ) [sgn( ) sgn( )].

kN

k k j k j
j

u t t tτ τ
+

+ +
−

=
= − − −∑                                                                         

Let the switch vector for the k th component of the control vector be k kN Nτ τ
+

= where 

,1 ,2
k

k

N
k k N

τ
τ τ τ

+

+
+ +⎡ ⎤=

⎣ ⎦
. Let 2k kN N+= . Then kNτ  is the switching vector of kN  

dimensions. 
Let the vector of switch functions for the control variable ku  be defined as 

1 2
k k k

k

N N N
N

τ
φ φ φ +

⎡ ⎤= ⎢ ⎥⎣ ⎦
 where 1

,( 1) ( )kN j
k k jj sφ τ− += −  ( 1,2, ,2 kj N+= ). 

The gradient that can be used to update the switching vector kNτ  can be given by 

k
Nk

NJ

τ
φ∇ = −                                                               

The optimal switching vector can be obtained iteratively by using a gradient-based method. 

, 1 , ,k k kN i N i Nk iKτ τ φ+ = +                                         

where ,k iK  is a properly chosen k kN N× -dimensional diagonal matrix with non-negative 

entries for the i th iteration of the iterative optimization process;  and ,kN iτ  represents the 

i th iteration of the switching vector kNτ . 
Remark 4: The choice of the step sizes as characterized in the matrix ,k iK  must consider two 
facts: if the step size is chosen too small, the solution may converge very slowly; if the step 
size is chosen too large, the solution may not converge. Instead of using the gradient  
descent method, which is relatively slow compared to other alternative such as methods 
based on Newton's method and inversion of the Hessian using conjugate gradient 
techniques. 
When the optimal switching vectors are determined upon convergence, the optimal control 
trajectories and the optimal state trajectories are computed. This process will be repeated for 
all selected nominal cases until all needed off-line optimal control and state trajectories are 
obtained. These trajectories will be used in training the time-optimal control oriented neural 
networks. 
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3.2 Numerical solution scheme to the fuel optimal control problem 
By assumption AS4, the optimal control performance index can be expressed as 

0
0 0

1
( ) | |f

mt
k kt

k
J t e e u dt

=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑∫                            

where 0t  is the initial time, and ft  is the final time. 

Define the Hamiltonian function as 

0
1
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k k
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H x u t e e u a x C x p B x uτλ
=

= + + + +∑  

where [ ]1 2 n
τλ λ λ λ=  is the costate vector. 

The final-state constraint is ( ( )) 0fx tψ =  as mentioned before. 

The state equation can be expressed as 
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The costate equation can be written as 
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The Pontryagin minimum principle is applied in order to derive the optimal control (Lee & 
Markus, 1967). That is, 
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where ( )kB x  is the k th column of the ( )B x . 
Since the control components ku 's are all independent, the minimization of 
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A Hamiltonian system can be constructed for the above state equation with the costate 
equation given by 
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It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal 
switching times must be finite provided that no singular solutions exist. Let the zeros of 
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The gradient that can be used to update the switching vector kNτ  can be given by 
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The optimal switching vector can be obtained iteratively by using a gradient-based method. 
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where ,k iK  is a properly chosen k kN N× -dimensional diagonal matrix with non-negative 

entries for the i th iteration of the iterative optimization process;  and ,kN iτ  represents the 

i th iteration of the switching vector kNτ . 
Remark 4: The choice of the step sizes as characterized in the matrix ,k iK  must consider two 
facts: if the step size is chosen too small, the solution may converge very slowly; if the step 
size is chosen too large, the solution may not converge. Instead of using the gradient  
descent method, which is relatively slow compared to other alternative such as methods 
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When the optimal switching vectors are determined upon convergence, the optimal control 
trajectories and the optimal state trajectories are computed. This process will be repeated for 
all selected nominal cases until all needed off-line optimal control and state trajectories are 
obtained. These trajectories will be used in training the time-optimal control oriented neural 
networks. 
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3.2 Numerical solution scheme to the fuel optimal control problem 
By assumption AS4, the optimal control performance index can be expressed as 
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where 1,2, ,k m= . 
Note that the above optimal control can be written in a different form as follows: 

* * *
k k ku u u+ −= +                                                       

where * *1 sgn( ( ) 1) 1
2k ku s t+ ⎡ ⎤= − − +⎣ ⎦ , and * *1 sgn( ( ) 1) 1

2k ku s t− ⎡ ⎤= − + −⎣ ⎦ . 

It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value 
problem, and its analytic solution is not available in general. 
With assumption AS6 satisfied, it is observed from the derivation of the optimal fuel control 
that the control problem ( 0P ) only has bang-off-bang control solutions. 
Consider the following cost functional: 
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where iρ 's are positive constants, and iψ 's are the components of the defining equation of 

the target set { }: ( ( )) 0f fx x tθ ψ= =  to the system state is transferred from a given initial state 

by means of proper control, and q  is the number of components in ψ . 
It is observed that the system described by Eq. (1) is a nonlinear system but linear in control. 
With assumption AS6, the requirements for the STVM's application are met. The optimal 
switching-time vector can be obtained by using a gradient-based method. The convergence 
of the STVM is guaranteed if there are no singular solutions. 
Note that the cost functional can be rewritten as follows: 
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Define the augmented state vector 0x x x
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0( ) ( ) ( ( ))B x b x B x

ττ⎡ ⎤= ⎣ ⎦ . 

The system equation can be rewritten in terms of the augmented state vector as 

( ) ( )x a x B x u= +  where 0 0( ) 0 ( )x t x t
ττ⎡ ⎤= ⎣ ⎦ . 
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The adjoint state equation can be written as 
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It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal 
switching times must be finite provided that no singular solutions exist. Let the zeros of 
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ku − . Altogether ,k jτ + 's and ,k jτ − 's 

represent the switching times which uniquely determine *
ku  as follows: 
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The gradient that can be used to update the switching vector kNτ  can be given by 
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The optimal switching vector can be obtained iteratively by using a gradient-based method. 

, 1 , ,k k kN i N i Nk iKτ τ φ+ = +                                         

where ,k iK  is a properly chosen k kN N× -dimensional diagonal matrix with non-negative 

entries for the i th iteration of the iterative optimization process;  and ,kN iτ  represents the 

i th iteration of the switching vector kNτ . 
When the optimal switching vectors are determined upon convergence, the optimal control 
trajectories and the optimal state trajectories are computed. This process will be repeated for 
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all selected nominal cases until all needed off-line optimal control and state trajectories are 
obtained. These trajectories will be used in training the fuel-optimal control oriented neural 
networks. 

3.3 Numerical solution scheme to the quadratic optimal control problem 
The Hamiltonian function can be defined as  

1( , , ) ( ( ) ( )) ( )
2 e eH x u t x Qx u u R u u a Cp Buτ τ τλ= + − − + + +                         

The state equation is given by  

Hx a Cp Bu
λ

∂
= = + +
∂

   

The costate equation can be given by  

( )a Cp BuH Qx
x x

τ
λ λ

∂ + +∂
− = = +

∂ ∂
 

The stationarity equation gives 

( )0 ( )e
a Cp BuH R u u

u u

τ
λ

∂ + +∂
= = + −
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u can be solved out as 

1
eu R B uτλ−= − +  

The Hamiltonian system becomes 
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Furthermore, the boundary condition can be given by 

( ) ( )( ( ) ( ))f f f ft S t x t r tλ = −  

Notice that for the Hamiltonian system which is composed of the state and costate 
equations, the initial condition is given for the state equation, and the constraints on the 
costate variables at the final time for the costate equation.  
It is observed that the Hamiltonian system is a set of nonlinear ordinary differential 
equations in ( )x t and ( )tλ which develop forward and back in time, respectively. Generally, 
it is not possible to obtain the analytic closed-form solution to such a two-point boundary-
value problem (TPBVP). Numerical methods have to be employed to solve for the 
Hamiltonian system. One simple method, called shooting method may be used. There are 
other methods like the “shooting to a fixed point” method, and relaxation methods, etc. 
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The idea for the shooting method is as follows: 
1. First make a guess for the initial values for the costate. 
2. Integrate the Hamiltonian system forward. 
3. Evaluate the mismatch on the final constraints. 
4. Find the sensitivity Jacobian for the final state and costate with respect to the initial 

costate value. 
5. Using the Newton-Raphson method to determine the change on the initial costate 

value. 
6. Repeat the loop of steps 2 through 5 until the mismatch is close enough to zero.  

4. Unified hierarchical neural control design framework 

Keeping in mind that the discussions and analyses made in Section 3 are focused on the 
system with a fixed parameter vector, which is the control problem ( 0P ). To address the 
original control problem ( P ), the parameter vector space is tessellated into a number of sub-
regions. Each sub-region is identified with a set of vertexes. For each of the vertexes, a 
different control problem ( 0P ) is formed. The family of control problems ( 0P ) are combined 
together to represent an approximately accurate characterization of the dynamic system 
behaviours exhibited by the nonlinear systems in the control problem ( P ). This is an 
important step toward the hierarchical neural control design framework that is proposed to 
address the optimal control of uncertain nonlinear systems.   

4.1 Three-layer approach 
While the control problem ( P ) is approximately equivalent to the family of control 
problems ( 0P ), the solutions to the respective control problems ( 0P ) must be properly 
coordinated in order to provide a consistent solution to the original control problem ( P ). 
The requirement of consistent coordination of individual solutions may be mapped to the 
hierarchical neural network control design framework proposed in this Chapter that 
features the following:  
• For a fixed parameter vector, the control solution characterized by a set of optimal state 

and control trajectories shall be approximated by a neural network, which may be 
called a nominal neural network for this nominal case. For each nominal case, a 
nominal neural network is needed. All the nominal neural network controllers 
constitute the nominal layer of neural network controllers. 

• For each sub-region, regional coordinating neural network controllers are needed to 
coordinate the responses from individual nominal neural network controllers for the 
sub-region. All the regional coordinating neural network controllers constitute the 
regional layer of neural network controllers. 

• For an unknown parameter vector, global coordinating neural network controllers are 
needed to coordinate the responses from regional coordinating neural network 
controllers. All the global coordinating neural network controllers constitute the global 
layer of neural networks controllers. 

The proposed hierarchical neural network control design framework is a systematic 
extension and a comprehensive enhancement of the previous endeavours (Chen, 1998; Chen 
& Mohler & Chen, 2000).  
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The idea for the shooting method is as follows: 
1. First make a guess for the initial values for the costate. 
2. Integrate the Hamiltonian system forward. 
3. Evaluate the mismatch on the final constraints. 
4. Find the sensitivity Jacobian for the final state and costate with respect to the initial 

costate value. 
5. Using the Newton-Raphson method to determine the change on the initial costate 

value. 
6. Repeat the loop of steps 2 through 5 until the mismatch is close enough to zero.  

4. Unified hierarchical neural control design framework 

Keeping in mind that the discussions and analyses made in Section 3 are focused on the 
system with a fixed parameter vector, which is the control problem ( 0P ). To address the 
original control problem ( P ), the parameter vector space is tessellated into a number of sub-
regions. Each sub-region is identified with a set of vertexes. For each of the vertexes, a 
different control problem ( 0P ) is formed. The family of control problems ( 0P ) are combined 
together to represent an approximately accurate characterization of the dynamic system 
behaviours exhibited by the nonlinear systems in the control problem ( P ). This is an 
important step toward the hierarchical neural control design framework that is proposed to 
address the optimal control of uncertain nonlinear systems.   

4.1 Three-layer approach 
While the control problem ( P ) is approximately equivalent to the family of control 
problems ( 0P ), the solutions to the respective control problems ( 0P ) must be properly 
coordinated in order to provide a consistent solution to the original control problem ( P ). 
The requirement of consistent coordination of individual solutions may be mapped to the 
hierarchical neural network control design framework proposed in this Chapter that 
features the following:  
• For a fixed parameter vector, the control solution characterized by a set of optimal state 

and control trajectories shall be approximated by a neural network, which may be 
called a nominal neural network for this nominal case. For each nominal case, a 
nominal neural network is needed. All the nominal neural network controllers 
constitute the nominal layer of neural network controllers. 

• For each sub-region, regional coordinating neural network controllers are needed to 
coordinate the responses from individual nominal neural network controllers for the 
sub-region. All the regional coordinating neural network controllers constitute the 
regional layer of neural network controllers. 

• For an unknown parameter vector, global coordinating neural network controllers are 
needed to coordinate the responses from regional coordinating neural network 
controllers. All the global coordinating neural network controllers constitute the global 
layer of neural networks controllers. 

The proposed hierarchical neural network control design framework is a systematic 
extension and a comprehensive enhancement of the previous endeavours (Chen, 1998; Chen 
& Mohler & Chen, 2000).  
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4.2 Nominal layer 
Even though the hierarchical neural network control design methodology is unified and 
generic, the design of the three layers of neural networks, especially the nominal layer of 
neural networks may consider the uniqueness of the problems under study. For the time 
optimal control problems, the role of the nominal layer of neural networks is to identify the 
switching manifolds that relate to the bang-bang control. For the fuel optimal problems, the 
role of the nominal layer of neural networks is to identify the switching manifolds that relate 
to the bang-off-bang control. For the quadratic optimal control problems, the role of the 
nominal layer of neural networks is to approximate the optimal control based on the state 
variables.  
 
 
 

 
 

Fig. 1. Nominal neural network for time optimal control 

 
Consequently a nominal neural network for the time optimal control takes the form of a 
conventional neural network with continuous activation functions cascaded by a two-level 
stair case function which itself may viewed as a discrete neural network itself, as shown in 
Fig. 1. For the fuel optimal control, a nominal neural network takes the form of a 
conventional neural network with continuous activation functions cascaded by a three-level 
stair case function, as shown in Fig. 2.  
 
 

 

 
 

 

Fig. 2. Nominal neural network for fuel optimal control 

For the quadratic optimal control, no switching manifolds are involved. A conventional 
neural network with continuous activation functions is sufficient for a nominal case, as 
shown in Fig. 3. 
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Fig. 3. Nominal neural network for quadratic optimal control 

4.3 Overall architecture 
The overall architecture of the multi-layered hierarchical neural network control framework, 
as shown in Fig. 4, include three layers: the nominal layer, the regional layer, and the global 
layer. These three layers play different roles and yet work together to attempt to achieve 
desired control performance.  
At the nominal layer, the nominal neural networks are responsible to compute the near 
optimal control signals for a given parameter vector. The post-processing function block is 
necessary for both time optimal control problem and fuel optimal control problems while 
indeed it may not be needed for the quadratic optimal control problems. For time optimal 
control problems, the post-processing function is a sign function as shown in Fig. 2. For the 
fuel optimal control problems, the post-processing is a slightly more complicated stair-case 
function as shown in Fig. 3.  
At the regional layer, the regional neural networks are responsible to compute the desired 
weighting factors that are in turn used to modulate the control signals computed by the 
nominal neural networks to produce near optimal control signals for an unknown 
parameter vector situated at the know sub-region of the parameter vector space. The post-
processing function block is necessary for all the three types of control problems studied in 
this Chapter. It is basically a normalization process of the weighting factors produced by the 
regional neural networks for a sub-region that is enabled by the global neural networks.  
At the global layer, the global neural networks are responsible to compute the possibilities 
of the unknown parameter vector being located within sub-regions. The post-processing 
function block is necessary for all the three types of control problems studied in this 
Chapter. It is a winner-take-all logic applied to all the output data of the global neural 
networks. Consequently, only one sub-regional will be enabled, and all the other sub-
regions will be disabled. The output data of the post-processing function block is used to 
turn on only one of the sub-regions for the regional layer. 
To make use of the multi-layered hierarchical neural network control design framework, it 
is clear that the several key factors such as the number of the neural networks for each layer, 
the size of each neural network, and desired training patterns, are important. This all has to 
do with the determination of the nominal cases. A nominal case designates a group of 
system conditions that reflect one of the typical system behaviors. In the context of control of 
a dynamic system with uncertain parameters, which is the focus of this Chapter, a nominal 
case may be designated as corresponding to the vertexes of the sub-regions when the 
parameter vector space is tessellated into a number of non-overlapping sub-regions down to 
a level of desired granularity. 
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Fig. 4. Multi-layered hierarch neural network architecture  
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Once the nominal cases are identified, the numbers of neural networks for the nominal layer, 
the regional layer and the global layer can be determined accordingly. Each nominal neural 
network corresponds to a nominal case identified. Each regional neural network corresponds 
to a nominal neural network. Each global neural network corresponds to a sub-region.  
With the numbers of neural networks for all the three layers in the hierarchy determined, 
the size of each neural network is dependent upon the data collected for each nominal case. 
As shown in the last Section, the optimal state trajectories and the optimal control 
trajectories for each of the control problems ( 0P ) can be obtained through use of the STVM 
approach for time optimal control and for fuel optimal control or the shooting method for 
the quadratic optimal control. For each of the nominal cases, the optimal state trajectories 
and optimal control trajectories may be properly utilized to form the needed training 
patterns. 

4.4 Design procedure 
Below is the design procedure for multi-layered hierarchical neural networks: 
• Identify the nominal cases. The parameter vector space may be tessellated into a 

number of non-overlapping sub-regions. The granualarity of the tessellation process is 
determined by how sensitive the system dynamic behaviors are to the changes of the 
parameters. Each vertext of the sub-regions identifies a nominal case. For each nominal 
case, the optimal control problem may be solved numerically and the nuermical 
solution may be obtained. 

• Determine the size of the nominal layer, the regional layer and the global layer of the 
hierarchy.  

• Determine the size of the neural networks for each layer in the hierarchy. 
• Train the nominal neural networks. The numerically obtained optimal state and control 

trajectories are acquired for each nominal case. The training data pattern for the 
nominal neural networks is composed of the state vector as input and the control signal 
as the output. In other words, the nominal layer is to establish and approximate a state 
feedback control. Finish training when the training performance is satisfactory. Repeat 
this nominal layer training process for all the nominal neural networks. 

• Training the regional neural networks. The input data to the nominal neural networks 
is also part of the input data to the regional neural networks. In addition, for a specific 
regional neural network, the ideal output data of the corresponding nominal neural 
network is also part of its input data. The ideal output data of the regional neural 
network can be determined as follows: 
• If the data presented to a given regional neural network reflects a nominal case that 

corresponds to the vertex that this regional neural network is to be trained for, then 
assign 1 or else 0. 

• Training the global neural networks. The input data to the nominal neural networks is 
also part of the input data to the global neural networks. In addition, for a specific 
global neural network, the ideal output data of the corresponding nominal neural 
network is also part of its input data. The ideal output data of the global neural network 
can be determined as follows: 
• If the data presented to a given global neural network reflects a nominal case that 

corresponds to the sub-region that this global neural network is to be trained for, 
then assign 1 or else 0. 
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trajectories are acquired for each nominal case. The training data pattern for the 
nominal neural networks is composed of the state vector as input and the control signal 
as the output. In other words, the nominal layer is to establish and approximate a state 
feedback control. Finish training when the training performance is satisfactory. Repeat 
this nominal layer training process for all the nominal neural networks. 

• Training the regional neural networks. The input data to the nominal neural networks 
is also part of the input data to the regional neural networks. In addition, for a specific 
regional neural network, the ideal output data of the corresponding nominal neural 
network is also part of its input data. The ideal output data of the regional neural 
network can be determined as follows: 
• If the data presented to a given regional neural network reflects a nominal case that 

corresponds to the vertex that this regional neural network is to be trained for, then 
assign 1 or else 0. 
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also part of the input data to the global neural networks. In addition, for a specific 
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• If the data presented to a given global neural network reflects a nominal case that 
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then assign 1 or else 0. 
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5. Theoretical justification 
This Section provides theoretical support for the adoption of the hierarchical neural 
networks.  
As shown in (Chen, Yang & Moher, 2006), the desired prediction or control can be achieved 
by a properly designed hierarchical neural network. 
Proposition 1 (Chen, Yang & Mohler, 2006): Suppose that an ideal system controller can be 
characterized by function vectors u

if and l
if  ( 1 l ui n n≤ ≤ = ) which are continuous 

mappings from a compact support xnRΩ ⊂  to ynR , such that a continuous function vector  

f also defined on Ω  can be expressed as , ,1( ) ( ) ( )ln u l
j i j i jif x f x f x

=
= ×∑  on the point-wise basis 

( x∈Ω ; and , ( )u
i jf x  and , ( )l

i jf x  are the jth component of u
if  and l

if ). Then there exists a 

hierarchical neural network, used to approximate the ideal system controller or system 
identifier, that includes lower level neural networks l

inn 's and upper level neural networks 
u
inn  ( 1 l ui n n≤ ≤ = ) such that for any 0jε > , , ,1sup | |ln l u

x j i j i j jif nn nn ε∈Ω =
− × <∑  where 

, ( )u
i jnn x  and , ( )l

i jnn x  are the jth component of u
inn  and l

inn . 

The following proposition is to show that the parameter uncertainties can also be handled 
by the hierarchical neural networks.  
Proposition 2: For the system (1) and the assumptions AS1-AS9, with the application of the 
hierarchical neural controller, the deviation of the resuting state trajectory for the unknow 
parameter vector from that of the optimal state trajectory is bounded. 
Proof: Let the estiamte of the parameter vector be denoted by p̂ . The counterpart of system 
(1) for the estimated paramter vector p̂ can be given by 

ˆ( ) ( ) ( )x a x C x p B x u= + +  

Integrating of the above equation and system (1) from 0t to t  leads to the following two 
equations: 

0
1 1 0 1 1 1ˆ( ) ( ) [ ( ( )) ( ( )) ( ( )) ( )]

t

t
x t x t a x s C x s p B x s u s ds= + + +∫  

0
2 2 0 2 2 2( ) ( ) [ ( ( )) ( ( )) ( ( )) ( )]

t

t
x t x t a x s C x s p B x s u s ds= + + +∫  

By noting that 1 0 2 0 0( ) ( )x t x t x= = , subtraction of the above two equations yields 

0

0

1 2 1 2 1 2

1 1 2

( ) ( ) { ( ( )) ( ( )) [ ( ( )) ( ( ))] ( )]}

ˆ{ ( ( ))( ) [ ( ( )) ( ( ))] }

t

t
t

t

x t x t a x s a x s B x s B x s u s ds

C x s p p C x s C x s p ds

− = − + − +

− + −

∫

∫
 

Note that, by Taylor’s theorem, 1 2 1 2( ( )) ( ( )) ( ( ) ( ))Ta x s a x s a x s x s− = − , 

1 2 1 2( ( )) ( ( )) ( ( ) ( ))TB x s B x s B x s x s− = − , and 1 2 1 2( ( )) ( ( )) ( ( ) ( ))TC x s C x s C x s x s− = − . 
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Define 1 2( ) ( ) ( )x t x t x tΔ = − , and ˆp p pΔ = − . Then we have  

0

0
1

( ) { ( ) ( ) ( )] ( ) }

( ( ))

t
T T Tt

t

t

x t a x s B x s u s C x s p ds

C x s pds

Δ = Δ + Δ + Δ +

Δ

∫

∫
 

If the both sides of the above equation takes an appropriate norm and the triangle inequality 
is applied, the following is obtained: 

0

0
1

|| ( )|||| { ( ) ( ) ( )] ( ) } ||

|| ( ( )) ||

t
T T Tt

t

t

x t a x s B x s u s C x s p ds

C x s p ds

Δ ≤ Δ + Δ + Δ +

Δ

∫

∫
 

Note that 1|| ( ( ) ||C x s pΔ  can be made uniformly bounded by ε  as long as the estimate of 
p is made sufficiently close to p (which can be controlled by the granularity of tessellation), 
and p is bounded; | ( )| 1u t ≤ ; || || sup ( )T x Ta a x∈Ω= < ∞ , || || sup ( )T x TB B x∈Ω= < ∞ and 
|| || sup ( )T x TC C x∈Ω= < ∞ . 
It follows that 

0
0|| ( )|| ( ) (|| || || || || |||| ||) ( )

t
T T T t

x t t t a B C p x s dsεΔ ≤ − + + + Δ∫  

Define a constant 0 (|| || || || || |||| ||)T T TK a B C p= + + . Applying the Gronwall-Bellman 
Inequality to the above inequality yields 

0
0 0 0 0

2
0

0 0 0 0

|| ( )|| ( ) ( )exp{ }

( )( ) exp( ( ))
2

t t

t s
x t t t K s t K d ds

t tt t K K t t K

ε ε σ

ε ε ε

Δ ≤ − + −

−
≤ − + − ≤

∫ ∫
 

where 0
0 0 0 0

( )( )(1 exp( ( )))
2

t tK t t K K t t−
= − + − , and K < ∞ . 

This completes the proof. 

6. Simulation 
Consider the single-machine infinity-bus (SMIB) model with a thyristor-controlled series-
capacitor (TCSC) installed on the transmission line (Chen, 1998) as shown in Fig. 5, which 
may be mathematically described as follows:  

0
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(1 )

b

t
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d e
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ω ω
δ

ω δω

−⎡ ⎤
⎡ ⎤ ⎢ ⎥= ∞⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎢ ⎥+ −⎣ ⎦  
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6. Simulation 
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where δ is rotor angle (rad), ω  rotor speed (p.u.), 2 60bω π= ×  synchronous speed as base 
(rad/sec), 0.3665mP =  is mechanical power input (p.u.), 0P  is unknown fixed load (p.u.), 

2.0D = damping factor, 3.5M = system inertia referenced to the base power, 1.0tV =  
terminal bus voltage (p.u.), 0.99V∞ =  infinite bus voltage (p.u.), 2.0dX =  transient 
reactance of the generator (p.u.), 0.35eX =  transmission reactance (p.u.), 

min max[ , ] [0.2,0.75]s s s∈ =  series compensation degree of the TCSC, and ( ,1)eδ  is system 
equilibrium with the series compensation degree fixed at 0.4es = . 
The goal is to stabilize the system in the near optimal time control fashion with an 
unknown load 0P  ranging 0 and 10% of mP . Two nominal cases are identified. The 
nominal neural networks have 15 and 30 neurons in the first and second hidden layer 
with log-sigmoid and tan-sigmoid activation functions for these two hidden layers, 
respectively. The input data to regional neural networks is the rotor angle, its two 
previous values, the control and its previous value, and the outputs are the weighting 
factors. The regional neural networks have 15 and 30 neurons in the first and second 
hidden layer with log-sigmoid and tan-sigmoid activation functions for these two hidden 
layers, respectively. The global neural networks are really not necessary in this simple 
case of parameter uncertainty. 
Once the nominal and regional neural networks are trained, they are used to control the 
system after a severe short-circuit fault and with an unknown load (5% of mP ). The resulting 
trajectory is shown in Fig. 6. It is observed that the hierarchical neural controller stabilizes 
the system in a near optimal control manner. 
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Fig. 6. Control performance of hierarchical neural controller. Solid - neural control; dashed -
optimal control. 

7. Conclusion 
Even with remarkable progress witnessed in the adaptive control techniques for the 
nonlinear system control over the past decade, the general challenge with adaptive control 
of nonlinear systems has never become less formidable, not to mention the adaptive control 
of nonlinear systems while optimizing a pre-designated control performance index and 
respecting restrictions on control signals. Neural networks have been introduced to tackle 
the adaptive control of nonlinear systems, where there are system uncertainties in 
parameters, unmodeled nonlinear system dynamics, and in many cases the parameters may 
be time varying. It is the main focus of this Chapter to establish a framework in which 
general nonlinear systems will be targeted and near optimal, adaptive control of uncertain, 
time-varying, nonlinear systems is studied. The study begins with a generic presentation of 
the solution scheme for fixed-parameter nonlinear systems. The optimal control solution is 
presented for the purpose of minimum time control and minimum fuel control, respectively. 
The parameter space is tessellated into a set of convex sub-regions. The set of parameter 
vectors corresponding to the vertexes of those convex sub-regions are obtained. 
Accordingly, a set of optimal control problems are solved. The resulting control trajectories 
and state or output trajectories are employed to train a set of properly designed neural 
networks to establish a relationship that would otherwise be unavailable for the sake of near 
optimal controller design.  In addition, techniques are developed and applied to deal with 
the time varying property of uncertain parameters of the nonlinear systems. All these pieces 
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come together in an organized and cooperative manner under the unified intelligent control 
design framework to meet the Chapter’s ultimate goal of constructing intelligent controllers 
for uncertain, nonlinear systems.  
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1. Introduction 
Robustness is of crucial importance in control system design because the real engineering 
systems are vulnerable to external disturbance and measurement noise and there are always 
differences between mathematical models used for design and the actual system. Typically, it 
is required to design a controller that will stabilize a plant, if it is not stable originally, and to 
satisfy certain performance levels in the presence of disturbance signals, noise interference, 
unmodelled plant dynamics and plant-parameter variations. These design objectives are best 
realized via the feedback control mechanism (Fig. 1), although it introduces in the issues of 
high cost (the use of sensors), system complexity (implementation and safety) and more 
concerns on stability (thus internal stability and stabilizing controllers) (Gu, Petkov, & 
Konstantinov, 2005). In abstract, a control system is robust if it remains stable and achieves 
certain performance criteria in the presence of possible uncertainties. The robust design is to 
find a controller, for a given system, such that the closed-loop system is robust. 
In this chapter, the basic concepts and representations of a robust adaptive wavelet neural 
network control for the case study of buck converters will be discussed. 
The remainder of the chapter is organized as follows: In section 2 the advantages of neural 
network controllers over conventional ones will be discussed, considering the efficiency of 
introduction of wavelet theory in identifying unknown dependencies. Section 3 presents an 
overview of the buck converter models. In section 4, a detailed overview of WNN methods is 
presented. Robust control is introduced in section 5 to increase the robustness against noise by 
implementing the error minimization. Section 6 explains the stability analysis which is based 
on adaptive bound estimation. The implementation procedure and results of AWNN 
controller are explained in section 7. The results show the effectiveness of the proposed 
method in comparison to other previous works. The final section concludes the chapter. 

2. Overview of wavelet neural networks 
The conventional Proportional Integral Derivative (PID) controllers have been widely used 
in industry due to their simple control structure, ease of design, and inexpensive cost (Ang, 
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Chong, & Li, 2005). However, successful applications of the PID controller require the 
satisfactory tuning of parameters according to the dynamics of the process. In fact, most PID 
controllers are tuned on-site. The lengthy calculations for an initial guess of PID parameters 
can often be demanding if we know a few about the plant, especially when the system is 
unknown. 
 

 
Fig. 1. Feedback control system design. 

There has been considerable interest in the past several years in exploring the applications of 
Neural Network (NN) to deal with nonlinearities and uncertainties of the real-time control 
system (Sarangapani, 2006). It has been proven that artificial NN can approximate a wide 
range of nonlinear functions to any desired degree of accuracy under certain conditions 
(Sarangapani, 2006). It is generally understood that the selection of the NN training 
algorithm plays an important role for most NN applications. In the conventional gradient-
descent-type weight adaptation, the sensitivity of the controlled system is required in the 
online training process. However, it is difficult to acquire sensitivity information for 
unknown or highly nonlinear dynamics. In addition, the local minimum of the performance 
index remains to be challenged (Sarangapani, 2006). In practical control applications, it is 
desirable to have a systematic method of ensuring the stability, robustness, and performance 
properties of the overall system. Several NN control approaches have been proposed based 
on Lyapunov stability theorem (Lim et al., 2009; Ziqian, Shih, & Qunjing, 2009). One main 
advantage of these control schemes is that the adaptive laws were derived based on the 
Lyapunov synthesis method and therefore it guarantees the stability of the under control 
system. However, some constraint conditions should be assumed in the control process, e.g., 
that the approximation error, optimal parameter vectors or higher order terms in a Taylor 
series expansion of the nonlinear control law, are bounded. Besides, the prior knowledge of 
the controlled system may be required, e.g., the external disturbance is bounded or all states 
of the controlled system are measurable. These requirements are not easy to satisfy in 
practical control applications. 
NNs in general can identify patterns according to their relationship, responding to related 
patterns with a similar output. They are trained to classify certain patterns into groups, and 
then are used to identify the new ones, which were never presented before. NNs can 
correctly identify incomplete or similar patterns; it utilizes only absolute values of input 
variables but these can differ enormously, while their relations may be the same. Likewise 
we can reason identification of unknown dependencies of the input data, which NN should 
learn. This could be regarded as a pattern abstraction, similar to the brain functionality, 
where the identification is not based on the values of variables but only relations of these. 
In the hope to capture the complexity of a process Wavelet theory has been combined with 
the NN to create Wavelet Neural Networks (WNN). The training algorithms for WNN 
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typically converge in a smaller number of iterations than the conventional NNs (Ho, Ping-
Au, & Jinhua, 2001). Unlike the sigmoid functions used in conventional NNs, the second 
layer of WNN is a wavelet form, in which the translation and dilation parameters are 
included. Thus, WNN has been proved to be better than the other NNs in that the structure 
can provide more potential to enrich the mapping relationship between inputs and outputs 
(Ho, Ping-Au, & Jinhua, 2001). Much research has been done on applications of WNNs, 
which combines the capability of artificial NNs for learning from processes and the 
capability of wavelet decomposition (Chen & Hsiao, 1999) for identification and control of 
dynamic systems (Zhang, 1997). Zhang, 1997 described a WNN for function learning and 
estimation, and the structure of this network is similar to that of the radial basis function 
network except that the radial functions are replaced by orthonormal scaling functions. Also 
in this study, the family of basis functions for the RBF network is replaced by an orthogonal 
basis (i.e., the scaling functions in the theory of wavelets) to form a WNN. WNNs offer a 
good compromise between robust implementations resulting from the redundancy 
characteristic of non-orthogonal wavelets and neural systems, and efficient functional 
representations that build on the time–frequency localization property of wavelets. 

3. Problem formulation 
Due to the rapid development of power semiconductor devices in personal computers, 
computer peripherals, and adapters, the switching power supplies are popular in modern 
industrial applications. To obtain high quality power systems, the popular control technique 
of the switching power supplies is the Pulse Width Modulation (PWM) approach 
(Pressman, Billings, & Morey, 2009). By varying the duty ratio of the PWM modulator, the 
switching power supply can convert one level of electrical voltage into the desired level. 
From the control viewpoint, the controller design of the switching power supply is an 
intriguing issue, which must cope with wide input voltage and load resistance variations to 
ensure the stability in any operating condition while providing fast transient response. Over 
the past decade, there have been many different approaches proposed for PWM switching 
control design based on PI control (Alvarez-Ramirez et al., 2001), optimal control (Hsieh, 
Yen, & Juang, 2005), sliding-mode control (Vidal-Idiarte et al., 2004), fuzzy control (Vidal-
Idiarte et al., 2004), and adaptive control (Mayosky & Cancelo, 1999) techniques. However, 
most of these approaches require adequately time-consuming trial-and-error tuning 
procedure to achieve satisfactory performance for specific models; some of them cannot 
achieve satisfactory performance under the changes of operating point; and some of them 
have not given the stability analysis. The motivation of this chapter is to design an Adaptive 
Wavelet Neural Network (AWNN) control system for the Buck type switching power 
supply. The proposed AWNN control system is comprised of a NN controller and a 
compensated controller. The neural controller using a WNN is designed to mimic an ideal 
controller and a robust controller is designed to compensate for the approximation error 
between the ideal controller and the neural controller. The online adaptive laws are derived 
based on the Lyapunov stability theorem so that the stability of the system can be 
guaranteed. Finally, the proposed AWNN control scheme is applied to control a Buck type 
switching power supply. The simulated results demonstrate that the proposed AWNN 
control scheme can achieve favorable control performance; even the switching power 
supply is subjected to the input voltage and load resistance variations. 
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typically converge in a smaller number of iterations than the conventional NNs (Ho, Ping-
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capability of wavelet decomposition (Chen & Hsiao, 1999) for identification and control of 
dynamic systems (Zhang, 1997). Zhang, 1997 described a WNN for function learning and 
estimation, and the structure of this network is similar to that of the radial basis function 
network except that the radial functions are replaced by orthonormal scaling functions. Also 
in this study, the family of basis functions for the RBF network is replaced by an orthogonal 
basis (i.e., the scaling functions in the theory of wavelets) to form a WNN. WNNs offer a 
good compromise between robust implementations resulting from the redundancy 
characteristic of non-orthogonal wavelets and neural systems, and efficient functional 
representations that build on the time–frequency localization property of wavelets. 

3. Problem formulation 
Due to the rapid development of power semiconductor devices in personal computers, 
computer peripherals, and adapters, the switching power supplies are popular in modern 
industrial applications. To obtain high quality power systems, the popular control technique 
of the switching power supplies is the Pulse Width Modulation (PWM) approach 
(Pressman, Billings, & Morey, 2009). By varying the duty ratio of the PWM modulator, the 
switching power supply can convert one level of electrical voltage into the desired level. 
From the control viewpoint, the controller design of the switching power supply is an 
intriguing issue, which must cope with wide input voltage and load resistance variations to 
ensure the stability in any operating condition while providing fast transient response. Over 
the past decade, there have been many different approaches proposed for PWM switching 
control design based on PI control (Alvarez-Ramirez et al., 2001), optimal control (Hsieh, 
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Idiarte et al., 2004), and adaptive control (Mayosky & Cancelo, 1999) techniques. However, 
most of these approaches require adequately time-consuming trial-and-error tuning 
procedure to achieve satisfactory performance for specific models; some of them cannot 
achieve satisfactory performance under the changes of operating point; and some of them 
have not given the stability analysis. The motivation of this chapter is to design an Adaptive 
Wavelet Neural Network (AWNN) control system for the Buck type switching power 
supply. The proposed AWNN control system is comprised of a NN controller and a 
compensated controller. The neural controller using a WNN is designed to mimic an ideal 
controller and a robust controller is designed to compensate for the approximation error 
between the ideal controller and the neural controller. The online adaptive laws are derived 
based on the Lyapunov stability theorem so that the stability of the system can be 
guaranteed. Finally, the proposed AWNN control scheme is applied to control a Buck type 
switching power supply. The simulated results demonstrate that the proposed AWNN 
control scheme can achieve favorable control performance; even the switching power 
supply is subjected to the input voltage and load resistance variations. 
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Among the various switching control methods, PWM which is based on fast switching and 
duty ratio control is the most widely considered one. The switching frequency is constant 
and the duty cycle, ( )U N  varies with the load resistance fluctuations at the N th sampling 
time. The output of the designed controller ( )U N  is the duty cycle.  
 

 
Fig. 2. Buck type switching power supply 

This duty cycle signal is then sent to a PWM output stage that generates the appropriate 
switching pattern for the switching power supplies. A forward switching power supply 
(Buck converter) is discussed in this study as shown in Fig. 2, where iV  and oV  are the 
input and output voltages of the converter, respectively, L  is the inductor, C  is the output 
capacitor, R  is the resistor and Q1 and Q2 are the transistors which control the converter 
circuit operating in different modes. Figure 1 shows a synchronous Buck converter. It is 
called a synchronous buck converter because transistor Q2 is switched on and off 
synchronously with the operation of the primary switch Q1. The idea of a synchronous buck 
converter is to use a MOSFET as a rectifier that has very low forward voltage drop as 
compared to a standard rectifier. By lowering the diode’s voltage drop, the overall efficiency 
for the buck converter can be improved. The synchronous rectifier (MOSFET Q2) requires a 
second PWM signal that is the complement of the primary PWM signal. Q2 is on when Q1 is 
off and vice a versa. This PWM format is called Complementary PWM. When Q1 is ON and 
Q2 is OFF, iV  generates: 

 ( )x i lostV V V= −  (1) 

where lostV  denotes the voltage drop occurring by transistors and represents the unmodeled 
dynamics in practical applications. The transistor Q2 ensures that only positive voltages are 
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applied to the output circuit while transistor Q1 provides a circulating path for inductor 
current. The output voltage can be expressed as: 
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It yields to a nonlinear dynamics which must be transformed into a linear one: 
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Where, ( )xV t LC , is the control gain which is a positive constant and ( )U t  is the output of 
the controller. The control problem of Buck type switching power supplies is to control the 
duty cycle ( )U t  so that the output voltage oV  can provide a fixed voltage under the 
occurrence of the uncertainties such as the wide input voltages and load variations. The 
output error voltage vector is defined as: 
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where dV  is the output desired voltage. The control law of the duty cycle is determined by 
the error voltage signal in order to provide fast transient response and small overshoot in 
the output voltage. If the system parameters are well known, the following ideal controller 
would transform the original nonlinear dynamics into a linear one: 
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If [ ]2 1, Tk k=K  is chosen to correspond to the coefficients of a Hurwitz polynomial, which 
ensures satisfactory behavior of the close-loop linear system. It is a polynomial whose roots 
lie strictly in the open left half of the complex plane, and then the linear system would be as 
follows:  
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Since the system parameters may be unknown or perturbed, the ideal controller in (5) 
cannot be precisely implemented. However, the parameter variations of the system are 
difficult to be monitored, and the exact value of the external load disturbance is also difficult 
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to be measured in advance for practical applications. Therefore, an intuitive candidate of 
( )*U t  would be an AWNN controller (Fig. 1): 

 ( ) ( ) ( )AWNN WNN AU t U t U t= +  (7) 

Where ( )WNNU t  is a WNN controller which is rich enough to approximate the system 

parameters, and ( )AU t , is a robust controller. The WNN control is the main tracking 
controller that is used to mimic the computed control law, and the robust controller is 
designed to compensate the difference between the computed control law and the WNN 
controller. 
Now the problem is divided into two tasks: 
• How to update the parameters of WNN incrementally so that it approximates the 

system. 
• How to apply ( )AU t  to guarantee global stability while WNN is approximating the 

system during the whole process. 
The first task is not too difficult as long as WNN is equipped with enough parameters to 
approximate the system. For the second task, we need to apply the concept of a branch of 
nonlinear control theory called sliding control (Slotine & Li, 1991). This method has been 
developed to handle performance and robustness objectives. It can be applied to systems 
where the plant model and the control gain are not exactly known, but bounded. 
The robust controller is derived from Lyapunov theorem to cope all system uncertainties in 
order to guarantee a stable control. Substituting (7) into (3), we get: 
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The error equation governing the system can be obtained by combining (6) and (8), i.e. 
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4. Wavelet neural network controller 
Feed forward NNs are composed of layers of neurons in which the input layer of neurons is 
connected to the output layer of neurons through one or more layers of intermediate 
neurons. The notion of a WNN was proposed as an alternative to feed forward NNs for 
approximating arbitrary nonlinear functions based on the wavelet transform theory, and a 
back propagation algorithm was adapted for WNN training. From the point of view of 
function representation, the traditional radial basis function (RBF) networks can represent 
any function that is in the space spanned by the family of basis functions. However, the 
basis functions in the family are generally not orthogonal and are redundant. It means that 
the RBF network representation for a given function is not unique and is probably not the 
most efficient. Representing a continuous function by a weighted sum of basis functions can 
be made unique if the basis functions are orthonormal.  
It was proved that NNs can be designed to represent such expansions with desired degree 
of accuracy. NNs are used in function approximation, pattern classication and in data 
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mining but they could not characterize local features like jumps in values well. The local 
features may exist in time or frequency. Wavelets have many desired properties combined 
together like compact support, orthogonality, localization in time and frequency and fast 
algorithms. The improvement in their characterization will result in data compression and 
subsequent modication of classication tools. 
In this study a two-layer WNN (Fig. 3), which is comprised of a product layer and an output 
layer, was adopted to implement the proposed WNN controller. The standard approach in 
sliding control is to define an integrated error function which is similar to a PID function. 
The control signal ( )U t  is calculated in such way that the closed-loop system reaches a 
predened sliding surface ( )S t  and remains on this surface. The control signal ( )U t  
required for the system to remain on this sliding surface is called the equivalent control 

( )*U t . This sliding surface is defined as follows: 

 ( ) ( ) ,     0dS t e t
dt

⎛ ⎞= + >⎜ ⎟
⎝ ⎠

 (10) 

where  is a strictly positive constant. The equivalent control is given by the requirement 
( ) 0S t = , it defines a time varying hyperplane in 2ℜ  on which the tracking error vector ( )e t  

decays exponentially to zero, so that perfect tracking can be obtained asymptotically. 
Moreover, if we can maintain the following condition: 
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dt
< −η  (11) 

where η is a strictly positive constant. Then ( )S t  will approach the hyperplane ( ) 0S t = in 
a finite time less than or equal to ( )S t η . In other words, by maintain the condition in 
equation (11), ( )S t  will approaches the sliding surface ( ) 0S t =  in a finite time, and then 
error, ( )e t  will converge to the origin exponentially with a time constant 1 . If 2 0k =  and 

1k= , then it yields from (6) and (10) that: 
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The inputs of the WNN are S  and dS dt  which in discrete domain it equals to 11S( z )−− , 
where 1z−  is a time delay. Note that the change of integrated error function 11S( z )−− , is 
utilized as an input to the WNN to avoid the noise induced by the differential of integrated 
error function dS dt . The output of the WNN is WNNU (t) . A family of wavelets will be 
constructed by translations and dilations performed on a single fixed function called the 
mother wavelet. It is very effective way to use wavelet functions with time-frequency 
localization properties. Therefore if the dilation parameter is changed, the support region 
width of the wavelet function changes, but the number of cycles doesn’t change; thus the 
first derivative of a Gaussian function 2exp 2Φ(x) x ( x )= − −  was adopted as a mother 
wavelet in this study. It may be regarded as a differentiable version of the Haar mother 
wavelet, just as the sigmoid is a differentiable version of a step function, and it has the 
universal approximation property. 
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error, ( )e t  will converge to the origin exponentially with a time constant 1 . If 2 0k =  and 

1k= , then it yields from (6) and (10) that: 
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The inputs of the WNN are S  and dS dt  which in discrete domain it equals to 11S( z )−− , 
where 1z−  is a time delay. Note that the change of integrated error function 11S( z )−− , is 
utilized as an input to the WNN to avoid the noise induced by the differential of integrated 
error function dS dt . The output of the WNN is WNNU (t) . A family of wavelets will be 
constructed by translations and dilations performed on a single fixed function called the 
mother wavelet. It is very effective way to use wavelet functions with time-frequency 
localization properties. Therefore if the dilation parameter is changed, the support region 
width of the wavelet function changes, but the number of cycles doesn’t change; thus the 
first derivative of a Gaussian function 2exp 2Φ(x) x ( x )= − −  was adopted as a mother 
wavelet in this study. It may be regarded as a differentiable version of the Haar mother 
wavelet, just as the sigmoid is a differentiable version of a step function, and it has the 
universal approximation property. 
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Fig. 3. Two-layer product WNN structure. 

4.1 Input layer 
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where 1,2i =  indicates as the number of layers. 

4.2 Wavelet layer 
A family of wavelets is constructed by translations and dilations performed on the mother 
wavelet. In the mother wavelet layer each node performs a wavelet jΦ  that is derived from 
its mother wavelet. For the j th node: 
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There are many kinds of wavelets that can be used in WNN. In this study, the first 
derivative of a Gaussian function is selected as a mother wavelet, as illustrated why. 

4.3 Output layer 
The single node in the output layer is labeled as ∑ , which computes the overall output as 
the summation of all input signals. 

 3 3 3 3 3 3 3
0 0 0 0 0,      

M

k k
k

n

net α .y y f (net ) net= = =∑  (15) 

The output of the last layer is WNNU , respectively. Then the output of a WNN can be 
represented as: 

 ( )WNN
TU S,M,D,Θ Θ Γ=  (16) 

where 3 3 3
1 2 n M

TΓ [y ,y ,...,y ]= , 1 2 Mn
TΘ [α ,α ,...,α ]= , 1 2 Mn

TM [m ,m ,...,m ]=  and 

1 2 Mn
TD [d ,d ,...,d ]= . 

5. Robust controller 

First we begin with translating a robust control problem into an optimal control problem. 
Since we know how to solve a large class of optimal control problems, this optimal control 
approach allows us to solve some robust control problems that cannot be easily solved 
otherwise. By the universal approximation theorem, there exists an optimal neural controller 

ncU (t)  such that (Lin, 2007): 

 nc
*ε U (t) U (t)= −  (17) 

To develop the robust controller, first, the minimum approximation error is defined as 
follows: 

 WNN
* * * * *ε U (S,M ,D ,Θ ) U (t)
*T * *Θ Γ U (t)

= −

= −
 (18) 

Where * * *M ,D ,Θ  are optimal network parameter vectors, achieve the minimum 
approximation error. After some straightforward manipulation, the error equation 
governing the closed-loop system can be obtained. 

 ( ) ( ) ( ) ( )( )*1
x WNN AS(t) V t U t U t U t

LC
= − −  (19) 

Define WNNU  as: 
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 WNN WNN WNN WNN
* *U U (t) U (t) U (t) U (t) ε
*T TΘ Γ Θ Γ ε

= − = − −

= − −

�
 (20) 

For simplicity of discussion, define * *Θ Θ Θ  ;  Γ Γ Γ= − = −� �  to obtain a rewritten form of 
(20): 

 WNN
*T TU Θ Γ Θ Γ ε= + −�� �  (21) 

In this study, a method is proposed to guarantee closed-loop stability and perfect tracking 
performance, and to tune translations and dilations of the wavelets online. The linearization 
technique was employed to transform the nonlinear wavelet functions into partially linear 
form to obtain the expansion of Γ�  in a Taylor series: 
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 (22) 

 Γ AM BD H= + +� � �  (23) 

Where * *M M M ; D D D= − = −� � ; H  is a vector of higher order terms, and: 

 1 2

T
yny y MA

M M M

⎡ ⎤∂⎢ ⎥∂ ∂
⎢ ⎥=
⎢ ⎥∂ ∂ ∂
⎢ ⎥
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T
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Substituting (23) into (21), it is revealed that: 

 

WNN
T TU (Θ Θ) Γ Θ Γ ε

T T TΘ (AM BD H) Θ Γ Θ Γ ε
T T TΘ Γ Θ AM Θ BD ψ

= + + −

= + + + + −

= + + +

� �� �

� �� � �

� � �
 (26) 
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Where the lumped uncertainty T Tψ Θ Γ Θ Γ ε= + −  is assumed to be bounded by ψ ρ< , in 
which   .  is the absolute value and ρ  is a given positive constant. 

 ( ) ( )ˆρ t ρ t ρ= −  (27) 

6. Stability analysis 
System performance to be achieved by control can be characterized either as stability or 
optimality which are the most important issues in any control system. Briefly, a system is 
said to be stable if it would come to its equilibrium state after any external input, initial 
conditions, and/or disturbances which have impressed the system. An unstable system is of 
no practical value. The issue of stability is of even greater relevance when questions of safety 
and accuracy are at stake as Buck type switching power supplies. The stability test for WNN 
control systems, or lack of it, has been a subject of criticism by many control engineers in 
some control engineering literature. One of the most fundamental methods is based on 
Lyapunov’s method. It shows that the time derivative of the Lyapunov function at the 
equilibrium point is negative semi definite. One approach is to define a Lyapunov function 
and then derive the WNN controller architecture from stability conditions (Lin, Hung, & 
Hsu, 2007). 
Define a Lyapunov function as: 

 ( ) ( ) ( ) ( )

2

2

1 2 3

1
2

1 1 1 1

2 2 2 2

A

x x x x

V (S(t),ρ(t),Θ,M,D) S (t)

V t V t V t V t
T T TLC LC LC LCρ (t) Θ Θ M M D D

λ η η η

=

+ + + +

 (28) 

where λ , 1η , 2η  and 3η  are positive learning-rate constants. Differentiating (28) and using 
(19), it is concluded that: 
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⎡ ⎤= − −⎢ ⎥⎣ ⎦
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⎣ ⎦

 (29) 

For achieving 0AV ≤ , the adaptive laws and the compensated controller are chosen as: 

 1Θ η S(t)Γ= , 2M η S(t)AΘ=  and 3D η S(t)BΘ=  (30) 

 ˆ sgnAU (t) ρ(t) (S(t))=  (31) 

 ρ̂(t) λ S(t)=  (32) 

If the adaptation laws of the WNN controller are chosen as (30) and the robust controller is 
designed as (31), then (29) can be rewritten as follows: 
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Where the lumped uncertainty T Tψ Θ Γ Θ Γ ε= + −  is assumed to be bounded by ψ ρ< , in 
which   .  is the absolute value and ρ  is a given positive constant. 

 ( ) ( )ˆρ t ρ t ρ= −  (27) 
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System performance to be achieved by control can be characterized either as stability or 
optimality which are the most important issues in any control system. Briefly, a system is 
said to be stable if it would come to its equilibrium state after any external input, initial 
conditions, and/or disturbances which have impressed the system. An unstable system is of 
no practical value. The issue of stability is of even greater relevance when questions of safety 
and accuracy are at stake as Buck type switching power supplies. The stability test for WNN 
control systems, or lack of it, has been a subject of criticism by many control engineers in 
some control engineering literature. One of the most fundamental methods is based on 
Lyapunov’s method. It shows that the time derivative of the Lyapunov function at the 
equilibrium point is negative semi definite. One approach is to define a Lyapunov function 
and then derive the WNN controller architecture from stability conditions (Lin, Hung, & 
Hsu, 2007). 
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V V t S(t)ψ ρ V t S(t) V t S(t) ψ ρ V t S(t)
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      V t S(t) ψ ρ
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 (33) 

Since 0AV ≤ , AV  is negative semi definite: 

 ( ) ( )( ) ( ) ( )( ), , , 0 , 0 , ,A AV S t t ,D V S ,D≤ρ θ Μ ρ θ Μ  (34) 

Which implies that S(t) ,Θ , M  and D  are bounded. By using Barbalat’s lemma (Slotine & 
Li, 1991), it can be shown that 0t         S(t)→∞ ⇒ → . As a result, the stability of the system 
can be guaranteed. Moreover, the tracking error of the control system, e , will converge to 
zero according to 0S(t)→ . 
It can be verified that the proposed system not only guarantees the stable control 
performance of the system but also no prior knowledge of the controlled plant is required in 
the design process. Since the WNN has introduced the wavelet decomposition property into 
a general NN and the adaptation laws for the WNN controller are derived in the sense of 
Lyapunov stability, the proposed control system has two main advantages over prior ones: 
faster network convergence speed and stable control performance. 
The adaptive bound estimation algorithm in (34) is always a positive value, and tracking 
error introduced by any uncertainty, such as sensor error or accumulation of numerical 
error, will cause the estimated bound ρ̂(t)  increase unless the integrated error function S(t)  
converges quickly to zero. These results that the actuator will eventually be saturated and 
the system may be unstable. To avoid this phenomenon in practical applications, an 
estimation index I  is introduced in the bound estimation algorithm as ρ̂(t) Iλ S(t)= . If the 
magnitude of integrated error function is small than a predefined value 0S , the WNN 
controller dominates the control characteristic; therefore, the control gain of the robust 
controller is fixed as the preceding adjusted value (i.e. I 0= ). However, when the magnitude 
of integrated error function is large than the predefined value 0S , the deviation of the states 
from the reference trajectory will require a continuous updating of, which is generated by 
the estimation algorithm (i.e. 1I = ), for the robust controller to steer the system trajectory 
quickly back into the reference trajectory (Bouzari, Moradi, & Bouzari, 2008). 

7. Numerical simulation results 
In the first part of this section, AWNN results are presented to demonstrate the efficiency of 
the proposed approach. The performance of the proposed AWNN controlled system is 
compared in contrast with two controlling schemes, i.e. PID compensator and NN 
Predictive Controller (NNPC). The most obvious lack of these conventional controllers is 
that they cannot adapt themselves with the system new state variations than what they were 
designed based on at first. In this study, some parameters may be chosen as fixed constants, 
since they are not sensitive to experimental results. The principal of determining the best 
parameter values is based on the perceptual quality of the final results. We are most 
interested in four major characteristics of the closed-loop step response. They are: Rise Time: 
the time it takes for the plant output to rise beyond 90% of the desired level for the rst time; 
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Overshoot: how much the peak level is higher than the steady state, normalized against the 
steady state; Settling Time: the time it takes for the system to converge to its steady state. 
Steady-state Error: the difference between the steady-state output and the desired output. 
Specifically speaking, controlling results are more preferable with the following 
characteristics:  
Rise Time, Overshoot, Settling Time and Steady-state Error: as least as possible 

7.1 AWNN controller 
Here in this part, the controlling results are completely determined by the following 
parameters which are listed in Table 1. The converter runs at a switching frequency of 20 
KHz and the controller runs at a sampling frequency of 1 KHz. Experimental cases are 
addressed as follows: Some load resistance variations with step changes are tested: 1) from 
20Ω  to 4Ω  at slope of 300ms , 2) from 4Ω  to 20Ω  at slope of 500ms , and 3) from 20Ω  to 
4Ω  at slope of 700ms . The input voltage runs between 19V and 21V  randomly. 
 

        
2.2mF 0.5mH 2 0.001 0.001 0.001 8 0.1 7 

Table 1. Simulation Parameters. 

At the first stage, the reference is chosen as a Step function with amplitude of 3 V. 
 
 

 
Fig. 4. Output Voltage, Command(reference) Voltage. 
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Fig. 5. Output Current. 
 

 
Fig. 6. Error Signal. 
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At the second stage, the command is a burst signal which changes from zero to 2 V with the 
period of 3 seconds and vice versa, repetitively. Results which are shown in Fig. 7 to Fig. 9 
express that the output voltage follows the command in an acceptable manner from the 
beginning. It can be seen that after each step controller learns the system better and 
therefore adapts well more. If the input command has no discontinuity, the controller can 
track the command without much settling time. Big jumps in the input command have a 
great negative impact on the controller. It means that to get a fast tracking of the input 
commands, the different states of the command must be continues or have discontinuities 
very close to each other. 
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Fig. 8. Output Current. 

 
Fig. 9. Error Signal. 
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At the third stage, to show the well behavior of the controller, the output voltage follows the 
Chirp signal command perfectly, as it is shown in Fig. 10 to Fig. 12. 
 

 
Fig. 10. Output Voltage, Command(reference) Voltage. 
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Fig. 12. Error Signal. 

7.2 NNPC 
To compare the results with other adaptive controlling techniques, Model Predictive 
Controller (MPC) with NN as its model descriptor (or NNPC), was implemented. The name 
NNPC stems from the idea of employing an explicit NN model of the plant to be controlled 
which is used to predict the future output behavior. This technique has been widely 
adopted in industry as an effective means to deal with multivariable constrained control 
problems. This prediction capability allows solving optimal control problems on-line, where 
tracking error, namely the dierence between the predicted output and the desired reference, 
is minimized over a future horizon, possibly subject to constraints on the manipulated 
inputs and outputs. Therefore, the first stage of NNPC is to train a NN to represent the 
forward dynamics of the plant. The prediction error between the plant output and the NN 
output is used as the NN training signal (Fig. 14). The NN plant model can be trained offline 
by using the data collected from the operation of the plant.  
 

 
Fig. 13. NN Plant Model Identification. 
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The MPC method is based on the receding horizon technique. The NN model predicts the 
plant response over a specified time horizon. The predictions are used by a numerical 
optimization program to determine the control signal that minimizes the following 
performance criterion over the specified horizon: (Fig. 15) 

 ( ) ( )( ) ( ) ( )( )2 2

1

2

1
1 2

NN

r m
j N j

u
J y t j y t j u t j u t j

= =

′ ′= + − + + ρ + − − + −∑ ∑  (35) 

 
 
 

 
 

Fig. 14. NNPC Block Diagram. 

where 1N , 2N , and uN  define the horizons over which the tracking error and the control 
increments are evaluated. The u′  variable is the tentative control signal, ry  is the desired 
response, and my  is the network model response. The ρ  value determines the contribution 
that the sum of the squares of the control increments has on the performance index. The 
following block diagram illustrates the MPC process. The controller consists of the NN plant 
model and the optimization block. The optimization block determines the values of u′  that 
minimize J , and then the optimal u  is input to the plant. 
 
 

2N  uN  ρ  Hidden 
Layers 

Delayed 
Inputs 

Delayed 
Outputs Training Algorithm Iterations 

5 2 0.05 30 10 20 Levenberg-Marquardt 
Optimization 5 

 

Table 3. NNPC Simulation Parameters. 
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Fig. 15. Output Voltage, Command(reference) Voltage of NNPC. 

 

 
Fig. 16. Output Voltage, Command(reference) Voltage of NNPC 
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7.3 PID controller 
Based on the power stages which were defined in the previous experiments, a nominal 
second-order PID compensator (controller) can be designed for the output voltage feedback 
loop, using small-signal analysis, to yield guaranteed stable performance. A generic second-
order PID compensator is considered with the following transfer function: 

 ( ) 1 2

1
R RG z K

z z P
= + +

− −
 (36) 

It is assumed that sufficient information about the nominal power stage (i.e., at system 
startup) is known such that a conservative compensator design can be performed. The 
following parameters were used for system initialization of the compensator: 16.5924K = , 

1 0.0214R = , 2 15.2527R = −  and 0P = . Figure 17 shows the Bode plot of the considered PID 
compensator. The output voltages with two different reference signals are shown in Fig. 18 
and Fig. 19. As you can see it cannot get better after some times, because it is not adaptive to 
system variations, but on the other hand its convergence is quite good from the beginning.  
 

 
Fig. 17. Bode plot of the PID controller. 
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Fig. 15. Output Voltage, Command(reference) Voltage of NNPC. 

 

 
Fig. 16. Output Voltage, Command(reference) Voltage of NNPC 

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (sec)

V
ou

t, 
V

re
f (

vo
lt)

 

 
NNPC

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.5

3

3.5

4

4.5

 

 

Settling Time

Overshoot

Rise Time

Steady-state Error

0 1 2 3 4 5 6 7 8
-0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

V
ou

t, 
V

re
f (

vo
lt)

 

 
NNPC Ref

0 0.2 0.4 0.6

1.8

2

2.2

2.4

2.6

 

 

6 6.2 6.4 6.6
1.6

1.8

2

2.2

2.4

2.6

 

 

 
Robust Adaptive Wavelet Neural Network Control of Buck Converters 135 

7.3 PID controller 
Based on the power stages which were defined in the previous experiments, a nominal 
second-order PID compensator (controller) can be designed for the output voltage feedback 
loop, using small-signal analysis, to yield guaranteed stable performance. A generic second-
order PID compensator is considered with the following transfer function: 

 ( ) 1 2

1
R RG z K

z z P
= + +

− −
 (36) 

It is assumed that sufficient information about the nominal power stage (i.e., at system 
startup) is known such that a conservative compensator design can be performed. The 
following parameters were used for system initialization of the compensator: 16.5924K = , 

1 0.0214R = , 2 15.2527R = −  and 0P = . Figure 17 shows the Bode plot of the considered PID 
compensator. The output voltages with two different reference signals are shown in Fig. 18 
and Fig. 19. As you can see it cannot get better after some times, because it is not adaptive to 
system variations, but on the other hand its convergence is quite good from the beginning.  
 

 
Fig. 17. Bode plot of the PID controller. 

103 104 105 106
-100

-50

0

50

m
ag

ni
tu

de
 [d

b]

10
3

10
4

10
5

10
6

-250

-200

-150

-100

-50

0

frequency [Hz]

ph
as

e 
[d

eg
]



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 136 

 
Fig. 18. Output Voltage, Command(reference) Voltage of PID. 

 
Fig. 19. Output Voltage, Command(reference) Voltage of PID. 
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8. Conclusion 
This study presented a new robust on-line training algorithm for AWNN via a case study of 
buck converters. A review of AWNN is described and its advantages of simple design and 
fast convergence over conventional controlling techniques e.g. PID were described. Even 
though that PID may lead to a better controller, it takes a very long and complicated 
procedure to find the best parameters for a known system. However on cases with some or 
no prior information, it is practically hard to create a controller. On the other hand these PID 
controllers are not robust if the system changes. AWNN can handle controlling of systems 
without any prior information by learning it through time. For the case study of buck 
converters, the modeling and the consequent principal theorems were extracted. 
Afterwards, the Lyapunov stability analysis of the under controlled system were defined in 
a way to be robust against noise and system changes. Finally, the numerical simulations, in 
different variable conditions, were implemented and the results were extracted. In 
comparison with prior controllers which are designed for stabilizing output voltage of buck 
converters (e.g. PID and NNPC), this method is very easy to implement and also cheap to 
build while convergence is very fast. 
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Fig. 18. Output Voltage, Command(reference) Voltage of PID. 
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1. Introduction 
A robust control method that combines Sliding Mode Control (SMC) and Quantitative 
Feedback Theory (QFT) is introduced in this chapter. The utility of SMC schemes in robust 
tracking of nonlinear mechanical systems, although established through a body of published 
results in the area of robotics, has important issues related to implementation and chattering 
behavior that remain unresolved. Implementation of QFT during the sliding phase of a SMC 
controller not only eliminates chatter but also achieves vibration isolation. In addition, QFT 
does not diminish the robustness characteristics of the SMC because it is known to tolerate 
large parametric and phase information uncertainties. As an example, a driver’s seat of a 
heavy truck will be used to show the basic theoretical approach in implementing the 
combined SMC and QFT controllers through modeling and numerical simulation. The SMC 
is used to track the trajectory of the desired motion of the driver’s seat. When the system 
enters into sliding regime, chattering occurs due to switching delays as well as systems 
vibrations. The chattering is eliminated with the introduction of QFT inside the boundary 
layer to ensure smooth tracking. Furthermore, this chapter will illustrate that using SMC 
alone requires higher actuator forces for tracking than using both control schemes together. 
Also, it will be illustrated that the presence of uncertainties and unmodeled high frequency 
dynamics can largely be ignored with the use of QFT. 

2. Quantitative Feedback Theory Preliminaries  
QFT is different from other robust control methodologies, such as LQR/LTR, mu-synthesis, 
or H2/ H ∞ control, in that large parametric uncertainty and phase uncertainty information 
is directly considered in the design process. This results in smaller bandwidths and lower 
cost of feedback.  

2.1 System design 
Engineering design theory claims that every engineering design process should satisfy the 
following conditions: 
1. Maintenance of the independence of the design functional requirements. 
2. Minimization of the design information content. 
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For control system design problems, Condition 1 translates into approximate decoupling in 
multivariable systems, while Condition 2 translates into minimization of the controller high 
frequency generalized gain-bandwidth product (Nwokah et al., 1997). 
The information content of the design process is embedded in G, the forward loop controller 
to be designed, and often has to do with complexity, dimensionality, and cost. Using the 
system design approach, one can pose the following general design optimization problem. 
Let G be the set of all G for which a design problem has a solution. The optimization 
problem then is:  

Minimize
G∈G {Information }contentofG  

subject to: 
i. satisfaction of the functional requirements 
ii. independence of the functional requirements 
iii. quality adequacy of the designed function. 
In the context of single input, single output (SISO) linear control systems, G is given by: 

 cI =
0

log ( ) ,G G i d
ω

ω ω∫  (1) 

where Gω  is the gain crossover frequency or effective bandwidth. If P is a plant family given 
by 

 [ ] 2( , ) 1 , , , ( ) ,P s H Wλ λ ω∞= +Δ ∈Λ Δ∈ Δ <P  (2) 

then the major functional requirement can be reduced to: 

( ) 1 2, , ( ) ( ) ( , ) ( ) ( , ) 1 ,G i W S i W T iη ω λ ω ω λ ω ω λ ω= + ≤  

0 , ,ω λ∀ ≥ ∀ ∈Λ  where 1( )W ω  and 2( )W ω  are appropriate weighting functions, and S 
and T are respectively the sensitivity and complementary sensitivity functions. Write 

( ) ( )max, ( ) , , ( )G i G iη ω ω η λ ω ωλ= ∈Λ . 

Then the system design approach applied to a SISO feedback problem reduces to the 
following problem: 

 *
cI =   

0
min log ( )G G i dG

ω
ω ω∈ ∫G , (3) 

subject to:  
i. ( ), ( ) 1 , 0G iη ω ω ω≤ ∀ ≥ , 

ii. quality adequacy of 
1

PGT
PG

=
+

. 

Theorem: Suppose *G ∈ G . Then:  
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*
cI =

*

0 0
min log log *G GG d G dG

ω ω
ω ω=∈ ∫ ∫G  if and only if ( ), * ( ) 1, 0G iη ω ω ω= ∀ ≥ . 

The above theorem says that the constraint satisfaction with equality is equivalent to 
optimality. Since the constraint must be satisfied with inequality 0ω∀ ≥ ; it follows that a 
rational *G  must have infinite order. Thus the optimal *G is unrealizable and because of 
order, would lead to spectral singularities for large parameter variations; and hence would 
be quality-inadequate. 
Corollary: Every quality-adequate design is suboptimal. 
Both 1 2,W W  satisfy the compatibility condition min{ } [ ]1 2, 1 , 0,W W ω< ∀ ∈ ∞ . Now 

define 

 ( ) ( )max, ( ) , , ( )G i G iη ω ω η ω λ ωλ= ∈Λ ⇔ ( ) [ ], ( ) 1 , 0,G iη ω ω ω≤ ∀ ∈ ∞ .  (4) 

Here 1 1( ) 0W Lω ≥ ∈  or in some cases can be unbounded as ω→0, while 2 2( )W Lω ∈ , and 
satisfies the conditions: 

i. 2 2( ) , 0 ,im W Wωω = ∞ ≥→∞  

 ii. 2
2

log ( )
.

1
W

d
ω

ω
ω

+∞

−∞

< ∞
+∫  (5) 

Our design problem now reduces to: 

0
min log ( )G G i dG

ω
ω ω∈ ∫G , 

subject to:  

( ) [ ], ( ) 1 , 0, .G iη ω ω ω≤ ∀ ∈ ∞  

The above problem does not have an analytic solution. For a numerical solution we define 
the nominal loop transmission function 

0 0( ) ( )L i P G iω ω= , 

where 0P ∈P  is a nominal plant. Consider the sub-level set  Γ : M  →  C given by 

 ( ) ( ){ }0, ( ) : , ( ) 1 ,G i P G G iω ω η ω ωΓ = ≤ ⊂C   (6) 

and the map 

( ) ( )1 2, , , , : , ( ) ,f W W q M w G iω φ ω→Γ  

which carries M into ( ), ( )G iω ωΓ . 
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Also consider the level curve of ( ( )( ), ( )G iω ωΓ ) ∂Γ : M  →  C \ {∞} given by, 

( ) ( ){ } { }0, ( ) : , ( ) 1G i P G G i∂ ω ω η ω ωΓ = = ⊂ ∞C \ . 

The map  

( ): , ( ) ,f G i∂ ω ω→ Γ ⊂M C  

generates bounds on C for which f is satisfied. The function f is crucial for design purposes 
and will be defined shortly.  
Write 

( , ) ( , ) ( , ) ,m aP s P s P sλ λ λ=  

where ( , )mP sλ  is minimum phase and ( , )aP sλ  is all-pass. Let 0( )mP s  be the minimum 
phase nominal plant model and 0( )aP s  be the all-pass nominal plant model. Let 

0 0 0( ) ( ) ( ) .m aP s P s P s= ⋅  

Define:  

0 0 0( ) ( ) ( )m aL s L s P s= ⋅   0 0( ) ( ) . ( )m aP s G s P s=  

( ) 0 0
0 2 0 1

0

( ) ( ), , ( ) 1 ( ) ( ) ( ) ( )
( , ) ( ) ( , )m m

a

P i P iG i L i W L i W
P i P i P i

ω ω
η ω λ ω ω ω ω ω

λ ω ω λ ω
≤ ⇔ + − ≥  (7) 

[ ], 0,λ ω∀ ∈Λ ∀ ∈ ∞  

By defining:  

( , ) 0

0

( )( , ) ,
( , ) ( )

i

a

P ip e
P i P i

θ λ ω ω
λ ω

λ ω ω
=   and ( )

0( ) ( ) ,i
mL i q e φ ωω ω=  

the above inequality, (dropping the argument ω), reduces to:   

 
( ) ( )

( )
2 2

1 2 2 1 2

2 2
1

( , , , , ) 1 2 ( ) cos( ( ) )

1 ( ) 0 , , .

f W W q W q p W W q

W p

ω φ λ θ λ φ

λ λ ω

= − + − −

+ − ≥ ∀ ∈Λ ∀
 (8) 

 At each ω, one solves the above parabolic inequality as a quadratic equation for a grid of 
various λ ∈Λ . By examining the solutions over [ ]2 ,0 ,φ π∈ −  one determines a boundary  

( ){ }0( , ) : , ( ) 1 ,Cp P G G i∂ ω φ η ω ω= = ⊂C  

so that 

( ), ( ) ( , ) .G i Cp∂ ω ω ∂ ω φΓ =  
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Let the interior of this boundary be ( , )
o
C p ω φ ⊂ C .  Then for 2 1W ≤ , it can be shown that 

(Bondarev et al., 1985; Tabarrok & Tong, 1993; Esmailzadeh et al., 1990): 

 ( ) ( ){ }0, ( ) ( , ) : , ( ) 1 ,
o

G i C p P G G iω ω ω φ η ω ωΓ = = ≤C \  (9) 

while for 2 1W >  

( ), ( ) ( , ) ( , ) ( , )
o

G i Cp C p Cpω ω ∂ ω φ ω φ ω φΓ = =∪ .  

In this way both the level curves ( ), ( )G i∂ ω ωΓ  as well as the sub level sets ( ), ( )G iω ωΓ  can 

be computed [ ]0, .ω∀ ∈ ∞  Let N represent the Nichols’ plane: 

( ){ }: 2 0 , rφ π φ= − ≤ ≤ −∞ < < ∞N ,r  

If ,is qe φ=  then the map :mL s →N  sends s to N by the formula: 

 20 log( ) 20 log .i
mL s r i qe q iφφ φ= + = = +  (10) 

Consequently,   ( ): , ( ) ( , ,20log )mL G i Bp q∂ ω ω ∂ ω φΓ →  

converts the level curves to boundaries on the Nichols’ plane called design bounds. These 
design bounds are identical to the traditional QFT design bounds except that unlike the QFT 
bounds, ( ), ( )G i∂ ω ωΓ  can be used to generate [ ]0,Bp∂ ω∀ ∈ ∞  whereas in traditional QFT, 
this is possible only up to a certain hω ω= < ∞ . This clearly shows that every admissible 
finite order rational approximation is necessarily sub-optimal. This is the essence of all QFT 
based design methods. 
According to the optimization theorem, if a solution to the problem exists, then there is an 
optimal minimum phase loop transmission function: **

0 0( ) ( ) ( )m mL i P i G iω ω ω= ⋅ which 
satisfies 

 ( ) [ ]*, ( ) 1 , 0,G iη ω ω ω= ∀ ∈ ∞  (11) 

such **
0| | ( )mL q ω= , gives 20 log *( )q ω  which lies on ,Bp∂  [ ]0, .ω∀ ∈ ∞  If *( )q ω  is found, 

then (Robinson, 1962) if 1 1( )W Lω ∈  and 1
2 2( )W Lω− ∈ ; it follows that 

 
*

*
0 22

1 ( )1( ) exp log .
1m

i s qL s d H
s i

α α
α

π α α
∞

−∞

⎡ ⎤−
= ∈⎢ ⎥

− +⎢ ⎥⎣ ⎦
∫  (12) 

Clearly *
0( )mL s  is non-rational and every admissible finite order rational approximation of it 

is necessarily sub-optimal; and is the essence of all QFT based design methods. 
However, this sub-optimality enables the designer to address structural stability issues by 
proper choice of the poles and zeros of any admissible approximation G(s). Without control 
of the locations of the poles and zeros of G(s), singularities could result in the closed loop 
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of the locations of the poles and zeros of G(s), singularities could result in the closed loop 
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characteristic polynomial. Sub-optimality also enables us to back off from the non-realizable 
unique optimal solution to a class of admissible solutions which because of the compactness 
and connectedness of Λ  (which is a differentiable manifold), induce genericity of the 
resultant solutions. After this, one usually optimizes the resulting controller so as to obtain 
quality adequacy (Thompson, 1998). 

2.2 Design algorithm: Systematic loop-shaping 
The design theory developed in section 2.1, now leads directly to the following systematic 
design algorithm: 
1. Choose a sufficient number of discrete frequency points:  

1 2, .Nω ω ω < ∞…  

2. Generate the level curves ( , ( ))i G i∂ ω ωΓ  and translate them to the corresponding 
bounds ( , ).p i∂ β ω φ  

3. With fixed controller order ,Gn  use the QFT design methodology to fit a loop 
transmission function 

0
( ),mL iω  to lie just on the correct side of each boundary 

( , )p i∂ β ω φ  at its frequency ,iω  for 2 0π φ− ≤ ≤  (start with 1 2).Gn or=  

4. If step 3 is feasible, continue, otherwise go to 7. 
5. Determine the information content (of G(s)) ,cI  and apply some nonlinear local 

optimization algorithm to minimize cI  until further reduction is not feasible without 
violating the bounds ( , ).p i∂ β ω φ  This is an iterative process. 

6. Determine .rC  If 1,rC ≤  go to 8, otherwise continue. 
7. Increase Gn by 1 (i.e., set 1)G Gn n= +  and return to 3. 
8. End. 
At the end of the algorithm, we obtain a feasible minimal order, minimal information 
content, and quality-adequate controller. 

Design Example 
Consider:  

[ ] [ ](1 )( , ) 1 (1 ) , , , .
(1 )

Tk bsP s k b d
s ds

λ λ
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+ Δ = +Δ = ∈ Λ
+

 

k ∈ [1, 3]  ,  b ∈ [0.05, 0.1]  ,  d ∈ [0.3, 1] 
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+ + +

 

1( )W s RH∞∉ but 1 2
2 ( ) .W s RH∈  Since we are dealing with loop-shaping, that 1 ,W RH∞∉  

does not matter (Nordgren et al., 1995). 
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Using the scheme just described, the first feasible controller G(s) was found as: 

83.94 ( 0.66) ( 1.74) ( 4.20)( )
( 0.79) ( 2.3) ( 8.57) ( 40)

s s sG s
s s s s

+ + +
=

+ + + +
. 

This controller produced: 206,cI =  and 39.8.rC =  Although 0( , )X sλ  is now structurally 
stable, rC  is still large and could generate large spectral sensitivity due to its large modal 
matrix condition number ( ).Vκ  
Because reduction of the information content improves quality adequacy, Thompson 
(Thompson, 1998) employed the nonlinear programming optimization routine to locally 
optimize the parameters of G(s) so as to further reduce its information content, and obtained 
the optimized controller: 

34.31 ( 0.5764) ( 2.088) ( 5.04)( ) .
( 0.632) ( 1.84) ( 6.856) ( 40)

s s sG s
s s s s

+ + +
=

+ + + +
 

This optimized controller now produced: 0,cI =  and 0.925.rC =   
Note that the change in pole locations in both cases is highly insignificant. However, 
because of the large coefficients associated with the un-optimized polynomial it is not yet 
quality-adequate, and has 39.8.rC =  The optimized polynomial on the other hand has the 
pleasantly small 0.925,rC =  thus resulting in a quality adequate design. For solving the 

( )α λ  singularity problem, structural stability of 0( , )X sλ  is enough. However, to solve the 
other spectral sensitivity problems, 1rC ≤  is required. We have so far failed to obtain a 

quality-adequate design from any of the modern optimal methods 1 2( , , , ).H H μ∞  
Quality adequacy is demanded of most engineering designs. For linear control system 
designs, this translates to quality- adequate closed loop characteristic polynomials under 
small plant and/or controller perturbations (both parametric and non parametric). Under 
these conditions, all optimization based designs produce quality inadequate closed loop 
polynomials. By backing off from these unique non-generic optimal solutions, one can 
produce a family of quality-adequate solutions, which are in tune with modern engineering 
design methodologies. These are the solutions which practical engineers desire and can 
confidently implement. The major attraction of the optimization-based design methods is 
that they are both mathematically elegant and tractable, but no engineering designer ever 
claims that real world design problems are mathematically beautiful. We suggest that, like 
in all other design areas, quality adequacy should be added as an extra condition on all 
feedback design problems. Note that if we follow axiomatic design theory, every MIMO 
problem should be broken up into a series of SISO sub-problems. This is why we have not 
considered the MIMO problem herein. 

3. Sliding mode control preliminaries 
In sliding mode control, a time varying surface of S(t) is defined with the use of a desired 
vector, Xd, and the name is given as the sliding surface. If the state vector X can remain on 
the surface S(t) for all time,  t>0, tracking can be achieved. In other words, problem of 
tracking the state vector, X ≡ Xd (n- dimensional desired vector) is solved. Scalar quantity, s, 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

144 

characteristic polynomial. Sub-optimality also enables us to back off from the non-realizable 
unique optimal solution to a class of admissible solutions which because of the compactness 
and connectedness of Λ  (which is a differentiable manifold), induce genericity of the 
resultant solutions. After this, one usually optimizes the resulting controller so as to obtain 
quality adequacy (Thompson, 1998). 

2.2 Design algorithm: Systematic loop-shaping 
The design theory developed in section 2.1, now leads directly to the following systematic 
design algorithm: 
1. Choose a sufficient number of discrete frequency points:  

1 2, .Nω ω ω < ∞…  

2. Generate the level curves ( , ( ))i G i∂ ω ωΓ  and translate them to the corresponding 
bounds ( , ).p i∂ β ω φ  

3. With fixed controller order ,Gn  use the QFT design methodology to fit a loop 
transmission function 

0
( ),mL iω  to lie just on the correct side of each boundary 

( , )p i∂ β ω φ  at its frequency ,iω  for 2 0π φ− ≤ ≤  (start with 1 2).Gn or=  

4. If step 3 is feasible, continue, otherwise go to 7. 
5. Determine the information content (of G(s)) ,cI  and apply some nonlinear local 

optimization algorithm to minimize cI  until further reduction is not feasible without 
violating the bounds ( , ).p i∂ β ω φ  This is an iterative process. 

6. Determine .rC  If 1,rC ≤  go to 8, otherwise continue. 
7. Increase Gn by 1 (i.e., set 1)G Gn n= +  and return to 3. 
8. End. 
At the end of the algorithm, we obtain a feasible minimal order, minimal information 
content, and quality-adequate controller. 

Design Example 
Consider:  

[ ] [ ](1 )( , ) 1 (1 ) , , , .
(1 )

Tk bsP s k b d
s ds

λ λ
−

+ Δ = +Δ = ∈ Λ
+

 

k ∈ [1, 3]  ,  b ∈ [0.05, 0.1]  ,  d ∈ [0.3, 1] 

0
3(1 0.05 )( )

(1 0.35)
sP s

s
−

=
+

  2 .WΔ <  

1
1.8( )

2.80
sW s

s
+

= and
3 2

2 3 2
2(0.0074 0.333 1.551 1) (.00001 1)( )

3(0.0049 0.246 1.157 1)
s s s sW s

s s s
+ + + +

=
+ + +

 

1( )W s RH∞∉ but 1 2
2 ( ) .W s RH∈  Since we are dealing with loop-shaping, that 1 ,W RH∞∉  

does not matter (Nordgren et al., 1995). 

 
Quantitative Feedback Theory and Sliding Mode Control 

 

145 

Using the scheme just described, the first feasible controller G(s) was found as: 

83.94 ( 0.66) ( 1.74) ( 4.20)( )
( 0.79) ( 2.3) ( 8.57) ( 40)

s s sG s
s s s s

+ + +
=

+ + + +
. 

This controller produced: 206,cI =  and 39.8.rC =  Although 0( , )X sλ  is now structurally 
stable, rC  is still large and could generate large spectral sensitivity due to its large modal 
matrix condition number ( ).Vκ  
Because reduction of the information content improves quality adequacy, Thompson 
(Thompson, 1998) employed the nonlinear programming optimization routine to locally 
optimize the parameters of G(s) so as to further reduce its information content, and obtained 
the optimized controller: 

34.31 ( 0.5764) ( 2.088) ( 5.04)( ) .
( 0.632) ( 1.84) ( 6.856) ( 40)

s s sG s
s s s s

+ + +
=

+ + + +
 

This optimized controller now produced: 0,cI =  and 0.925.rC =   
Note that the change in pole locations in both cases is highly insignificant. However, 
because of the large coefficients associated with the un-optimized polynomial it is not yet 
quality-adequate, and has 39.8.rC =  The optimized polynomial on the other hand has the 
pleasantly small 0.925,rC =  thus resulting in a quality adequate design. For solving the 

( )α λ  singularity problem, structural stability of 0( , )X sλ  is enough. However, to solve the 
other spectral sensitivity problems, 1rC ≤  is required. We have so far failed to obtain a 

quality-adequate design from any of the modern optimal methods 1 2( , , , ).H H μ∞  
Quality adequacy is demanded of most engineering designs. For linear control system 
designs, this translates to quality- adequate closed loop characteristic polynomials under 
small plant and/or controller perturbations (both parametric and non parametric). Under 
these conditions, all optimization based designs produce quality inadequate closed loop 
polynomials. By backing off from these unique non-generic optimal solutions, one can 
produce a family of quality-adequate solutions, which are in tune with modern engineering 
design methodologies. These are the solutions which practical engineers desire and can 
confidently implement. The major attraction of the optimization-based design methods is 
that they are both mathematically elegant and tractable, but no engineering designer ever 
claims that real world design problems are mathematically beautiful. We suggest that, like 
in all other design areas, quality adequacy should be added as an extra condition on all 
feedback design problems. Note that if we follow axiomatic design theory, every MIMO 
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the surface S(t) for all time,  t>0, tracking can be achieved. In other words, problem of 
tracking the state vector, X ≡ Xd (n- dimensional desired vector) is solved. Scalar quantity, s, 
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is the distance to the sliding surface and this becomes zero at the time of tracking. This 
replaces the vector Xd effectively by a first order stabilization problem in s. The scalar s 
represents a realistic measure of tracking performance since bounds on s and the tracking 
error vector are directly connected. In designing the controller, a feedback control law U can 
be chosen appropriately to satisfy sliding conditions. The control law across the sliding 
surface can be made discontinuous in order to facilitate for the presence of modeling 
imprecision and of disturbances. Then the discontinuous control law U is smoothed 
accordingly using QFT to achieve an optimal trade-off between control bandwidth and 
tracking precision. 
Consider the second order single-input dynamic system (Jean-Jacques & Weiping, 1991) 

 ( ) ( )x f X b X U= + , (13) 

where 
X – State vector, [ x x ]T 
x – Output of interest 
f -  Nonlinear time varying or state dependent function 
U – Control input torque 
b – Control gain 
The control gain, b, can be time varying or state-dependent but is not completely known. In 
other words, it is sufficient to know the bounding values of b,  

 min max0 b b b< ≤ ≤ . (14) 

The estimated value of the control gain, bes, can be found as (Jean-Jacques & Weiping, 1991) 

1/2
es min max( )b b b=  

Bounds of the gain b can be written in the form: 

 1 esb
b

β β− ≤ ≤  (15) 

Where 

1/2
max

min
= b

b
β

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

The nonlinear function f can be estimated (fes) and the estimation error on f is to be bounded 
by some function of the original states of f.  

 esf f F− ≤  (16) 

In order to have the system track on to a desired trajectory x(t) ≡ xd(t), a time-varying 
surface, S(t) in the state-space R2 by the scalar equation s(x;t) = s = 0 is defined as  

 
_ .ds x x x

dt
λ λ⎛ ⎞= + = +⎜ ⎟

⎝ ⎠
 (17) 
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where [dX X X x= − =
T

x⎤⎦  

and λ = positive constant (first order filter bandwidth) 
When the state vector reaches the sliding surface, S(t), the distance to the sliding surface, s, 
becomes zero. This represents the dynamics while in sliding mode, such that  

 0s =  (18) 

When the Eq. (9) is satisfied, the equivalent control input, Ues, can be obtained as follows: 

esb b→  

esb esU U→  

,esf f→  
This leads to 

 esU = - esf  + dx - xλ , (19) 

and U is given by 

U = (1
es

es
U

b
⎛ ⎞
⎜ ⎟
⎝ ⎠

- )( )sgn( )k x s  

where 
k(x)  is the  control discontinuity. 
The control discontinuity, k(x) is needed to satisfy sliding conditions with the introduction 
of an estimated equivalent control. However, this control discontinuity is highly dependent 
on the parametric uncertainty of the system. In order to satisfy sliding conditions and for the 
system trajectories to remain on the sliding surface, the following must be satisfied: 

 21
2

d s
dt

 = ss ≤  - sη  (20) 

where η is a strictly positive constant. 
The control discontinuity can be found from the above inequality: 

1 1 1

1 1 1

1 1 1

( ) (1 )( ) ( )sgn( )

( ) (1 )( ) ( )

( ) ( 1)( )

es es es d es

es es es d es

es es es d es

s f bb f bb x x bb k x s s

s f bb f bb x x s bb k x s

sk x b b f f b b x x b b
s

λ η

λ η

λ η

− − −

− − −

− − −

⎡ ⎤− + − − + − ≤ −⎣ ⎦
⎡ ⎤− + − − + + ≤⎣ ⎦

⎡ ⎤≥ − + − − + +⎣ ⎦

 

For the best tracking performance, k(x) must satisfy the inequality 

1 1 1( ) ( 1)( )es es es d esk x b b f f b b x x b bλ η− − −≥ − + − − + +  
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As seen from the above inequality, the value for k(x) can be simplified further by 
rearranging f as below: 

f  = esf  + ( f - )esf  and  esf f F− ≤  

1 1( ) ( ) ( 1)( )es es es es dk x b b f f b b f x xλ− −≥ − + − − + 1
esb b η−+  

( ) esk x b≥ 1 1 1( ) 1)(es es es d esb f f b b f x x b bλ η− − −− + − − + +  

( ) ( ) ( 1) ( es dk x F f x xβ η β λ≥ + + − − +  

 ( ) ( ) ( 1) esk x F Uβ η β≥ + + −  (21) 

By choosing k(x) to be large enough, sliding conditions can be guaranteed. This control 
discontinuity across the surface s = 0 increases with the increase in uncertainty of the system 
parameters. It is important to mention that the functions for fes and F may be thought of as 
any measured variables external to the system and they may depend explicitly on time. 

3.1 Rearrangement of the sliding surface 
The sliding condition 0s = does not necessarily provide smooth tracking performance across 
the sliding surface. In order to guarantee smooth tracking performance and to design an 
improved controller, in spite of the control discontinuity, sliding condition can be redefined, 
i.e. s sα= −  (Taha et al., 2003), so that tracking of x→ xd would achieve an exponential 
convergence. Here the parameter α is a positive constant. The value for α is determined by 
considering the tracking smoothness of the unstable system. This condition modifies Ues as 
follows: 

es es dU f x x sλ α= − + − −  

and k(x) must satisfy the condition 

1 1( ) ( 1)( )es es es dk x b b f f b b x xλ− −≥ − + − − + 1
esb b sη α−+ −  

Further k(x) can be simplified as 

 ( ) ( ) ( 1) ( 2)esk x F Uβ η β β≥ + + − + −
sα  (22) 

Even though the tracking condition is improved, chattering of the system on the sliding 
surface remains as an inherent problem in SMC. This can be removed by using QFT to 
follow. 

3.2 QFT controller design 
In the previous sections of sliding mode preliminaries, designed control laws, which satisfy 
sliding conditions, lead to perfect tracking even with some model uncertainties. However, 
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after reaching the boundary layer, chattering of the controller is observed because of the 
discontinuity across the sliding surface. In practice, this situation can extremely complicate 
designing hardware for the controller as well as affect desirable performance because of the 
time lag of the hardware functionality. Also, chattering excites undesirable high frequency 
dynamics of the system. By using a QFT controller, the switching control laws can be 
modified to eliminate chattering in the system since QFT controller works as a robust low 
pass filter. In QFT, attraction by the boundary layer can be maintained for all t >0 by varying 
the boundary layer thickness,φ , as follows: 

 21 ( )
2

ds s s
dt

φ φ η≥ → ≤ −  (23) 

It is evident from Eq. (23) that the boundary layer attraction condition is highly guaranteed 
in the case of boundary layer contraction ( 0φ < ) than for boundary layer expansion ( 0φ > ) 
(Jean-Jacques, 1991). Equation (23) can be used to modify the control discontinuity gain, k(x), 
to smoothen the performance by putting ( )sat( / )k x s φ  instead of ( )sgn( ).k x s  The 
relationship between ( ) and ( )k x k x  for the boundary layer attraction condition can be 
presented for both the cases as follows: 

 φ > 0 ( ) ( )k x k x φ→ = − 2/β    (24) 

 

 φ < 0 ( ) ( )k x k x φ→ = − 2β  (25) 

Then the control law, U, and s  become 

( )
1

1 1

1 ( )sat( / )

( ( )sat( / ) ) ( , )

Where ( , ) ( ) (1 )( )

es
es

es d

d es es es d

U U k x s
b

s bb k x s s g x x

g x x f bb f bb x x

φ

φ α

λ

−

− −

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

= − + + Δ

Δ = − + − − +

 

Since ( )k x  and gΔ are continuous in x, the system trajectories inside the boundary layer can 
be expressed in terms of the variable s and the desired trajectory xd by the following relation: 
Inside the boundary layer, i.e.,  

sat( / ) /s s sφ φ φ≤ → = and dx x→ . 

Hence 

 2( ( )( / )d ds k x sβ φ= − + ) ( )ds g xα + Δ . (26)   

1/2
max

min

( )Where
( )

es d
d

es d

b x
b x

β
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

The dynamics inside the boundary layer can be written by combining Eq. (24) and Eq. (25) 
as follows: 
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 21 ( )
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It is evident from Eq. (23) that the boundary layer attraction condition is highly guaranteed 
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Since ( )k x  and gΔ are continuous in x, the system trajectories inside the boundary layer can 
be expressed in terms of the variable s and the desired trajectory xd by the following relation: 
Inside the boundary layer, i.e.,  
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The dynamics inside the boundary layer can be written by combining Eq. (24) and Eq. (25) 
as follows: 
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 20 ( ) ( ) /d d dk x k xφ φ β> → = −  (27) 

 20 ( ) ( ) /d d dk x k xφ φ β< → = −  (28) 

By taking the Laplace transform of Eq. (26), It can be shown that the variable s is given by 
the output of a first-order filter, whose dynamics entirely depends on the desired state xd 

(Fig.1).  
 

 
φ selection                          s selection 

Fig. 1. Structure of closed-loop error dynamics 

Where P is the Laplace variable. ( )dg xΔ are the inputs to the first order filter, but they are 
highly uncertain.  
This shows that chattering in the boundary layer due to perturbations or uncertainty of 

( )dg xΔ can be removed satisfactorily by first order filtering as shown in Fig.1 as long as 
high-frequency unmodeled dynamics are not excited. The boundary layer thickness,φ , can 
be selected as the bandwidth of the first order filter having input perturbations which leads 
to tuning φ  with λ : 

 
2( ) ( / )d dk x λ β α φ= −  (29) 

Combining Eq. (27) and Eq. (29) yields 

 2( ) ( / )d dk x φ λ β α> − and 2 2( ) ( )d d dk xφ λ αβ φ β+ − =  (30) 
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Equations (24) and (30) yield 
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and combining Eq. (22) with Eq. (28) gives 

 
2 20 ( ) ( ) ( / ) [ ( ) ( / )]d d dk x k x k xφ β β φ λ β α< → = − − −  (33) 

In addition, initial value of the boundary layer thickness, (0)φ , is given by substituting  xd  at 
t=0 in Eq. (29). 
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The results discussed above can be used for applications to track and stabilize highly 
nonlinear systems. Sliding mode control along with QFT provides better system controllers 
and leads to selection of hardware easier than using SMC alone. The application of this 
theory to a driver seat of a heavy vehicle and its simulation are given in the following 
sections. 

4. Numerical example 
In this section, the sliding mode control theory is applied to track the motion behavior of a 
driver’s seat of a heavy vehicle along a trajectory that can reduce driver fatigue and 
drowsiness. The trajectory can be varied accordingly with respect to the driver 
requirements. This control methodology can overcome most of the road disturbances and 
provide predetermined seat motion pattern to avoid driver fatigue. However, due to 
parametric uncertainties and modeling inaccuracies chattering can be observed which 
causes a major problem in applying SMC alone. In general, the chattering enhances the 
driver fatigue and also leads to premature failure of controllers. SMC with QFT developed 
in this chapter not only eliminates the chattering satisfactorily but also reduces the control 
effort necessary to maintain the desired motion of the seat.  
Relationship between driver fatigue and seat vibration has been discussed in many 
publications based on anecdotal evidence (Wilson & Horner, 1979; Randall, 1992). It is 
widely believed and proved in field tests that lower vertical acceleration levels will increase 
comfort level of the driver (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop, 
1998). Heavy vehicle truck drivers who usually experience vibration levels around 3 Hz, 
while driving, may undergo fatigue and drowsiness (Mabbott et al., 2001). Fatigue and 
drowsiness, while driving, may result in loss of concentration leading to road accidents. 
Human body metabolism and chemistry can be affected by intermittent and random 
vibration exposure resulting in fatigue (Kamenskii, 2001). Typically, vibration exposure 
levels of heavy vehicle drivers are in the range 0.4 m/s2 - 2.0 m/s2 with a mean value of 0.7 
m/s2 in the vertical axis (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop, 1998; 
Mabbott et al., 2001).  
A suspension system determines the ride comfort of the vehicle and therefore its 
characteristics may be properly evaluated to design a proper driver seat under various 
operating conditions. It also improves vehicle control, safety and stability without changing 
the ride quality, road holding, load carrying, and passenger comfort while providing 
directional control during handling maneuvers. A properly designed driver seat can reduce 
driver fatigue, while maintaining same vibration levels, against different external 
disturbances to provide improved performance in riding.  
Over the past decades, the application of sliding mode control has been focused in many 
disciplines such as underwater vehicles, automotive applications and robot manipulators 
(Taha et al., 2003; Roberge, 1960; Dorf, 1967; Ogata, 1970; Higdon, 1963; Truxal, 1965; 
Lundberg, 2003; Phillips, 1994; Siebert, 1986). The combination of sliding controllers with 
state observers was also developed and discussed for both the linear and nonlinear cases 
(Hedrick & Gopalswamy, 1989; Bondarev et al., 1985). Nonlinear systems are difficult to 
model as linear systems since there are certain parametric uncertainties and modeling 
inaccuracies that can eventually resonate the system (Jean-Jacques, 1991). The sliding mode 
control can be used for nonlinear stabilization problems in designing controllers. Sliding 
mode control can provide high performance systems that are robust to parameter 
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The results discussed above can be used for applications to track and stabilize highly 
nonlinear systems. Sliding mode control along with QFT provides better system controllers 
and leads to selection of hardware easier than using SMC alone. The application of this 
theory to a driver seat of a heavy vehicle and its simulation are given in the following 
sections. 
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In this section, the sliding mode control theory is applied to track the motion behavior of a 
driver’s seat of a heavy vehicle along a trajectory that can reduce driver fatigue and 
drowsiness. The trajectory can be varied accordingly with respect to the driver 
requirements. This control methodology can overcome most of the road disturbances and 
provide predetermined seat motion pattern to avoid driver fatigue. However, due to 
parametric uncertainties and modeling inaccuracies chattering can be observed which 
causes a major problem in applying SMC alone. In general, the chattering enhances the 
driver fatigue and also leads to premature failure of controllers. SMC with QFT developed 
in this chapter not only eliminates the chattering satisfactorily but also reduces the control 
effort necessary to maintain the desired motion of the seat.  
Relationship between driver fatigue and seat vibration has been discussed in many 
publications based on anecdotal evidence (Wilson & Horner, 1979; Randall, 1992). It is 
widely believed and proved in field tests that lower vertical acceleration levels will increase 
comfort level of the driver (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop, 
1998). Heavy vehicle truck drivers who usually experience vibration levels around 3 Hz, 
while driving, may undergo fatigue and drowsiness (Mabbott et al., 2001). Fatigue and 
drowsiness, while driving, may result in loss of concentration leading to road accidents. 
Human body metabolism and chemistry can be affected by intermittent and random 
vibration exposure resulting in fatigue (Kamenskii, 2001). Typically, vibration exposure 
levels of heavy vehicle drivers are in the range 0.4 m/s2 - 2.0 m/s2 with a mean value of 0.7 
m/s2 in the vertical axis (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop, 1998; 
Mabbott et al., 2001).  
A suspension system determines the ride comfort of the vehicle and therefore its 
characteristics may be properly evaluated to design a proper driver seat under various 
operating conditions. It also improves vehicle control, safety and stability without changing 
the ride quality, road holding, load carrying, and passenger comfort while providing 
directional control during handling maneuvers. A properly designed driver seat can reduce 
driver fatigue, while maintaining same vibration levels, against different external 
disturbances to provide improved performance in riding.  
Over the past decades, the application of sliding mode control has been focused in many 
disciplines such as underwater vehicles, automotive applications and robot manipulators 
(Taha et al., 2003; Roberge, 1960; Dorf, 1967; Ogata, 1970; Higdon, 1963; Truxal, 1965; 
Lundberg, 2003; Phillips, 1994; Siebert, 1986). The combination of sliding controllers with 
state observers was also developed and discussed for both the linear and nonlinear cases 
(Hedrick & Gopalswamy, 1989; Bondarev et al., 1985). Nonlinear systems are difficult to 
model as linear systems since there are certain parametric uncertainties and modeling 
inaccuracies that can eventually resonate the system (Jean-Jacques, 1991). The sliding mode 
control can be used for nonlinear stabilization problems in designing controllers. Sliding 
mode control can provide high performance systems that are robust to parameter 
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uncertainties and disturbances. Design of such systems includes two steps: (i) choosing a set 
of switching surfaces that represent some sort of a desired motion, and (ii) designing a 
discontinuous control law that ensures convergence to the switching surfaces (Dorf, 1967; 
Ogata, 1970). The discontinuous control law guarantees the attraction features of the 
switching surfaces in the phase space. Sliding mode occurs when the system trajectories are 
confined to the switching surfaces and cannot leave them for the remainder of the motion. 
Although this control approach is relatively well understood and extensively studied, 
important issues related to implementation and chattering behavior remain unresolved. 
Implementing QFT during the sliding phase of a SMC controller not only eliminates chatter 
but also achieves vibration isolation. In addition, QFT does not diminish the robustness 
characteristics of the SMC because it is known to tolerate large parametric and phase 
information uncertainties. 
Figure 2 shows a schematic of a driver seat of a heavy truck. The model consists of an 
actuator, spring, damper and a motor sitting on the sprung mass. The actuator provides 
actuation force by means of a hydraulic actuator to keep the seat motion within a comfort 
level for any road disturbance, while the motor maintains desired inclination angle of the 
driver seat with respect to the roll angle of the sprung mass. The driver seat mechanism is 
connected to the sprung mass by using a pivoted joint; it provides the flexibility to change 
the roll angle. The system is equipped with sensors to measure the sprung mass vertical 
acceleration and roll angle. Hydraulic pressure drop and spool valve displacement are also 
used as feedback signals.  
 

 
 
Fig. 2. The hydraulic power feed of the driver seat on the sprung mass 

Nomenclature 
A - Cross sectional area of the hydraulic actuator piston 
Faf - Actuator force 
Fh - Combined nonlinear spring and damper force of the driver seat 
kh - Stiffness of the spring between the seat and the sprung mass 
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mh - Mass of the driver and the seat 
ms - Sprung mass 
xh - Vertical position coordinate of the driver seat 
xs - Vertical position coordinate of the sprung mass 
θs     - Angular displacement of the driver seat (same as sprung mass) 

4.1 Equations of motion  
Based on the mathematical model developed above, the equation of motion in the vertical 
direction for the driver and the seat can be written as follows: 

 (1 / ) (1 / )h h h h afx m F m F= − + , (34) 

where 

3 2
1 2 1 2 sgn( )h h h h h h h h h hF k d k d C d C d d= + + +  

kh1   - linear stiffness  
kh2   - cubic stiffness  
Ch1 - linear viscous damping  
Ch2 - fluidic (amplitude dependent) damping  
sgn - signum function 

af LF AP=
 

1( ) sinh h s i sd x x a θ= − −  
Complete derivation of Eq. (34) is shown below for a five-degree-of-freedom roll and 
bounce motion configuration of the heavy truck driver-seat system subject to a sudden 
impact. In four-way valve-piston hydraulic actuator system, the rate of change of pressure 
drop across the hydraulic actuator piston, PL, is given by (Fialho, 2002) 

 1 ( )
4

L
lp L h s

e

V P Q C P A x x
β

= − − −  (35)  

Vt - Total actuator volume 
be - Effective bulk modulus of the fluid 
Q - Load flow 
Ctp - Total piston leakage coefficient 
A - Piston area 
The load flow of the actuator is given by (Fialho, 2002): 

 [ ]1sgn sgn( ) (1 / ) sgn( )s v d s v LQ P x P C x P x Pνω ρ= − −  (36) 

Ps – Hydraulic supply pressure 
ω - Spool valve area gradient 
Xν − Displacement of the spool valve 
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Complete derivation of Eq. (34) is shown below for a five-degree-of-freedom roll and 
bounce motion configuration of the heavy truck driver-seat system subject to a sudden 
impact. In four-way valve-piston hydraulic actuator system, the rate of change of pressure 
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ρ - Hydraulic fluid density 
Cd – Discharge coefficient 
Voltage or current can be fed to the servo-valve to control the spool valve displacement of 
the actuator for generating the force. Moreover, a stiction model for hydraulic spool can be 
included to reduce the chattering further, but it is not discussed here. 
 

 
Fig. 3. Five-degree-of-freedom roll and bounce motion configuration of the heavy duty truck 
driver-seat system. 

Nonlinear force equations 
Nonlinear tire forces, suspension forces, and driver seat forces can be obtained by 
substituting appropriate coefficients to the following nonlinear equation that covers wide 
range of operating conditions for representing dynamical behavior of the system. 

3 2
1 2 1 2 sgn( )F k d k d C d C d d= + + +  

where 
F - Force 
k1   - linear stiffness coefficient 
k2   - cubic stiffness coefficient 
C1  - linear viscous damping coefficient 
C2  - amplitude dependent damping coefficient 
d -  deflection 
For the suspension: 

3 2
1 2 1 2 sgn( )si si si si si si si si si siF k d k d C d C d d= + + +  
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3 2
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For the seat: 

3 2
1 2 1 2 sgn( )h h h h h h h h h hF k d k d C d C d d= + + +  

Deflection of the suspension springs and dampers 
Based on the mathematical model developed, deflection of the suspension system on the 
axle is found for both sides as follows: 

1

s2

Deflection of side1, ( ) (sin sin )
Deflection of side 2, ( ) (sin sin )

s s u i s u

s u i s u

d x x S
d x x S

θ θ
θ θ

= − + −
= − − −

 

Deflection of the seat springs and dampers 
By considering the free body diagram in Fig. 3, deflection of the seat is obtained as follows 
(Rajapakse & Happawana, 2004):   

1( ) sinh h s i sd x x a θ= − −  

Tire deflections 
The tires are modeled by using springs and dampers. Deflections of the tires to a road 
disturbance are given by the following equations. 

1

2

3

4

Deflection of tire1, ( )sin
Deflection of tire 2, sin
Deflection of tire 3, sin
Deflection of tire 4, ( )sin

t u i i u

t u i u

t u i u

t u i i u

d x T A
d x T
d x T
d x T A

θ
θ
θ

θ

= + +
= +
= −
= − +

 

Equations of motion for the combined sprung mass, unsprung mass and driver seat  
Based on the mathematical model developed above, the equations of motion for each of the 
sprung mass, unsprung mass, and the seat are written by utilizing the free-body diagram of 
the system in Fig. 3 as follows: 
Vertical and roll motion for the ith axle (unsprung mass) 

 1 2 1 2 3 4( ) ( )u u s s t t t tm x F F F F F F= + − + + +  (37) 

 1 2 3 2 4 1( )cos ( )cos ( )( )cosu u i s s u i t t u i i t t uJ S F F T F F T A F Fθ θ θ θ= − + − + + −  (38) 

Vertical and roll motion for the sprung mass 

 1 2( )s s s s hm x F F F= − + +  (39) 

 2 1 1( )cos coss s i s s s i h sJ S F F a Fθ θ θ= − +  (40) 

Vertical motion for the seat 

 h h hm x F= −  (41) 

Equations (37)-(41) have to be solved simultaneously, since there are many parameters and 
nonlinearities. Nonlinear effects can better be understood by varying the parameters and 
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Equations of motion for the combined sprung mass, unsprung mass and driver seat  
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Equations (37)-(41) have to be solved simultaneously, since there are many parameters and 
nonlinearities. Nonlinear effects can better be understood by varying the parameters and 
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examining relevant dynamical behavior, since changes in parameters change the dynamics 
of the system. Furthermore, Eqs. (37)-(41) can be represented in the phase plane while 
varying the parameters of the truck, since each and every trajectory in the phase portrait 
characterizes the state of the truck. Equations above can be converted to the state space form 
and the solutions can be obtained using MATLAB. Phase portraits are used to observe the 
nonlinear effects with the change of the parameters. Change of initial conditions clearly 
changes the phase portraits and the important effects on the dynamical behavior of the truck 
can be understood. 

4.2 Applications and simulations (MATLAB) 
Equation (34) can be represented as, 

 hx f bU= +  (42) 

where 

(1 / )h hf m F= −  

1 / hb m=  

afU F=  

The expression f is a time varying function of sx and the state vector hx . The time varying 
function, sx , can be estimated from the information of the sensor attached to the sprung 
mass and its limits of variation must be known. The expression, f, and the control gain, b are 
not required to be known exactly, but their bounds should be known in applying SMC and 
QFT. In order to perform the simulation, sx is assumed to vary between -0.3m to 0.3m and it 
can be approximated by the time varying function, sin( )A tω , where ω is the disturbance 
angular frequency of the road by which the unsprung mass is oscillated. The bounds of the 
parameters are given as follows: 

min maxh h hm m m≤ ≤  

min maxs s sx x x≤ ≤  

min maxb b b≤ ≤  

Estimated values of mh and xs: 

1/2
min max( )hes h hm m m=  

1/2
min max( )ses s sx x x=  

Above bounds and the estimated values were obtained for some heavy trucks by utilizing 
field test information (Tabarrok & Tong, 1993, 1992; Esmailzadeh et al., 1990; Aksionov, 
2001; Gillespie, 1992; Wong, 1978; Rajapakse & Happawana, 2004; Fialho, 2002). They are as 
follows: 
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min 50hm kg= , max 100hm kg= , min 0.3sx m= − , max 0.3sx m= , 2 (0.1 10) /rad sω π= − , A=0.3 

The estimated nonlinear function, f, and bounded estimation error, F, are given by:  

( / )( )es h hes h sesf k m x x= − −  

max esF f f= −  

0.014esb =  

β=1.414 

1/2
min max( )ses s sx x x=  

The sprung mass is oscillated by road disturbances and its changing pattern is given by the 
vertical angular frequency, 2 (0.1 9.9sin(2 ) )tω π π= + . This function for ω is used in the 
simulation in order to vary the sprung mass frequency from 0.1 to 10 Hz. Thusω can be 
measured by using the sensors in real time and be fed to the controller to estimate the 
control force necessary to maintain the desired frequency limits of the driver seat. Expected 
trajectory for hx is given by the function, sinhd dx B tω= , where dω  is the desired angular 
frequency of the driver to have comfortable driving conditions to avoid driver fatigue in the 
long run. B and dω are assumed to be .05 m and 2 * 0.5π rad/s during the simulation which 
yields 0.5 Hz continuous vibration for the driver seat over the time. The mass of the driver 
and seat is considered as 70 kg throughout the simulation. This value changes from driver to 
driver and can be obtained by an attached load cell attached to the driver seat to calculate 
the control force. It is important to mention that this control scheme provides sufficient 
room to change the vehicle parameters of the system according to the driver requirements to 
achieve ride comfort. 

4.3 Using sliding mode only 
In this section tracking is achieved by using SMC alone and the simulation results are 
obtained as follows.  
Consider (1)hx x= and (2)hx x= . Eq. (25) is represented in the state space form as follows: 

(1) (2)x x=  

(2) ( / )( (1) )h h esx k m x x bU= − − +  

Combining Eq. (17), Eq. (19) and Eq. (42), the estimated control law becomes, 

( (2) )es es hd hdU f x x xλ= − + − −  

Figures 4 to 7 show system trajectories, tracking error and control torque for the initial 
condition: [ , ]=[0.1m , 1m/s.]h hx x  using the control law.  Figure 4 provides the tracked 
vertical displacement of the driver seat vs. time and perfect tracking behavior can be 
observed. Figure 5 exhibits the tracking error and it is enlarged in Fig. 6 to show it’s 
chattering behavior after the tracking is achieved. Chattering is undesirable for the 
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controller that makes impossible in selecting hardware and leads to premature failure of 
hardware. 
The values for andλ η in Eq. (17) and Eq. (20) are chosen as 20 and 0.1 (Jean-Jacques, 1991) to 
obtain the plots and to achieve satisfactory tracking performance. The sampling rate of 1 
kHz is selected in the simulation. 0s =  condition and the signum function are used. The 
plot of control force vs. time is given in Fig. 7. It is very important to mention that, the 
tracking is guaranteed only with excessive control forces. Mass of the driver and driver seat, 
limits of its operation, control bandwidth, initial conditions, sprung mass vibrations, 
chattering and system uncertainties are various factors that cause to generate huge control 
forces. It should be mentioned that this selected example is governed only by the linear 
equations with sine disturbance function, which cause for the controller to generate periodic 
sinusoidal signals. In general, the road disturbance is sporadic and the smooth control 
action can never be expected. This will lead to chattering and QFT is needed to filter them 
out. Moreover, applying SMC with QFT can reduce excessive control forces and will ease 
the selection of hardware. 
In subsequent results, the spring constant of the tires were 1200kN/m & 98kN/m3 and the 
damping coefficients were 300kNs/m & 75kNs/m2. Some of the trucks’ numerical 
parameters (Taha et al., 2003; Ogata, 1970; Tabarrok & Tong, 1992, 1993; Esmailzadeh et al., 
1990; Aksionov, 2001; Gillespie, 1992; Wong, 1978) are used in obtaining plots and they are 
as follows: mh = 100kg, ms = 3300kg, mu = 1000kg, ks11 = ks21 = 200 kN/m & ks12 =ks22 = 18 
kN/m3, kh1 = 1 kN/m & kh2 = 0.03 kN/m3 ,Cs11 = Cs21 = 50 kNs/m & Cs12 = Cs22 = 5 kNs/m2 , 
Ch1 = 0.4 kNs/m & Ch2 = 0.04 kNs/m  , Js = 3000 kgm2 , Ju = 900 kgm2, Ai  = 0.3 m,  Si  = 0.9 m, 
and a1i = 0.8 m. 
 
 
 
 

 
 
 
 

Fig. 4. Vertical displacement of driver seat vs. time using SMC only 
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Fig. 5. Tracking error vs. time using SMC only 

 
Fig. 6. Zoomed in tracking error vs. time using SMC only 

 
Fig. 7. Control force vs. time using SMC only 
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Fig. 5. Tracking error vs. time using SMC only 

 
Fig. 6. Zoomed in tracking error vs. time using SMC only 

 
Fig. 7. Control force vs. time using SMC only 
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4.4 Use of QFT on the sliding surface 
Figure 8 shows the required control force using SMC only. In order to lower the excessive 
control force and to further smoothen the control behavior with a view of reducing 
chattering, QFT is introduced inside the boundary layer. The following graphs are plotted 
for the initial boundary layer thickness of 0.1 meters.  
 
 
 

 
 

Fig. 8. Vertical displacement of driver seat vs. time using SMC & QFT 

 
 
 
 

 
 

Fig. 9. Tracking error vs. time using SMC & QFT 
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Fig. 10. Zoomed in tracking error vs. time using SMC & QFT 

 
Fig. 11. Control force vs. time using SMC & QFT 

 
Fig. 12. Zoomed in control force vs. time using SMC & QFT 
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Fig. 10. Zoomed in tracking error vs. time using SMC & QFT 

 
Fig. 11. Control force vs. time using SMC & QFT 
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Fig. 13. s-trajectory with time-varying boundary layer vs. time using SMC & QFT 

Figure 8 again shows that the system is tracked to the trajectory of interest and it follows the 
desired trajectory of the seat motion over the time. Figure 9 provides zoomed in tracking 
error of Fig. 8 which is very small and perfect tracking condition is achieved. The control 
force needed to track the system is given in Fig. 11. Figure 12 provides control forces for 
both cases, i.e., SMC with QFT and SMC alone. SMC with QFT yields lower control force 
and this can be precisely generated by using a hydraulic actuator. Increase of the parameter 
λ  will decrease the tracking error with an increase of initial control effort.  
Varying thickness of the boundary layer allows the better use of the available bandwidth, 
which causes to reduce the control effort for tracking the system. Parameter uncertainties 
can effectively be addressed and the control force can be smoothened with the use of the 
SMC and QFT. A successful application of QFT methodology requires selecting suitable 
function for F, since the change in boundary layer thickness is dependent on the bounds of 
F. Increase of the bounds of F will increase the boundary layer thickness that leads to 
overestimate the change in boundary layer thickness and the control effort. Evolution of 
dynamic model uncertainty with time is given by the change of boundary layer thickness. 
Right selection of the parameters and their bounds always result in lower tracking errors 
and control forces, which will ease choosing hardware for most applications.   

5. Conclusion 
This chapter provided information in designing a road adaptive driver’s seat of a heavy 
truck via a combination of SMC and QFT. Based on the assumptions, the simulation results 
show that the adaptive driver seat controller has high potential to provide superior driver 
comfort over a wide range of road disturbances. However, parameter uncertainties, the 
presence of unmodeled dynamics such as structural resonant modes, neglected time-delays, 
and finite sampling rate can largely change the dynamics of such systems. SMC provides 
effective methodology to design and test the controllers in the performance trade-offs. Thus 
tracking is guaranteed within the operating limits of the system. Combined use of SMC and 
QFT facilitates the controller to behave smoothly and with minimum chattering that is an 
inherent obstacle of using SMC alone. Chattering reduction by the use of QFT supports 
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selection of hardware and also reduces excessive control action. In this chapter simulation 
study is done for a linear system with sinusoidal disturbance inputs. It is seen that very high 
control effort is needed due to fast switching behavior in the case of using SMC alone. 
Because QFT smoothens the switching nature, the control effort can be reduced. Most of the 
controllers fail when excessive chattering is present and SMC with QFT can be used 
effectively to smoothen the control action. In this example, since the control gain is fixed, it 
is independent of the states. This eases control manipulation. The developed theory can be 
used effectively in most control problems to reduce chattering and to lower the control 
effort. It should be mentioned here that the acceleration feedback is not always needed for 
position control since it depends mainly on the control methodology and the system 
employed. In order to implement the control law, the road disturbance frequency,ω , should 
be measured at a rate higher or equal to 1000Hz (comply with the simulation requirements) 
to update the system; higher frequencies are better. The bandwidth of the actuator depends 
upon several factors; i.e. how quickly the actuator can generate the force needed, road 
profile, response time, and signal delay, etc.  
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1. Introduction

In this chapter we will study the robust performance control based-on integral sliding-mode
for system with nonlinearities and perturbations that consist of external disturbances and
model uncertainties of great possibility time-varying manner. Sliding-mode control is one
of robust control methodologies that deal with both linear and nonlinear systems, known for
over four decades (El-Ghezawi et al., 1983; Utkin & Shi, 1996) and being used extensively from
switching power electronics (Tan et al., 2005) to automobile industry (Hebden et al., 2003),
even satellite control (Goeree & Fasse, 2000; Liu et al., 2005). The basic idea of sliding-mode
control is to drive the sliding surface s from s �= 0 to s = 0 and stay there for all future
time, if proper sliding-mode control is established. Depending on the design of sliding
surface, however, s = 0 does not necessarily guarantee system state being the problem of
control to equilibrium. For example, sliding-mode control drives a sliding surface, where
s = Mx − Mx0, to s = 0. This then implies that the system state reaches the initial state,
that is, x = x0 for some constant matrix M and initial state, which is not equal to zero.
Considering linear sliding surface s = Mx, one of the superior advantages that sliding-mode
has is that s = 0 implies the equilibrium of system state, i.e., x = 0. Another sliding
surface design, the integral sliding surface, in particular, for this chapter, has one important
advantage that is the improvement of the problem of reaching phase, which is the initial
period of time that the system has not yet reached the sliding surface and thus is sensitive to
any uncertainties or disturbances that jeopardize the system. Integral sliding surface design
solves the problem in that the system trajectories start in the sliding surface from the first
time instant (Fridman et al., 2005; Poznyak et al., 2004). The function of integral sliding-mode
control is now to maintain the system’s motion on the integral sliding surface despite model
uncertainties and external disturbances, although the system state equilibrium has not yet
been reached.
In general, an inherent and invariant property, more importantly an advantage, that all
sliding-mode control has is the ability to completely nullify the so-called matched-type
uncertainties and nonlinearities, defined in the range space of input matrix (El-Ghezawi et al.,
1983). But, in the presence of unmatched-type nonlinearities and uncertainties, the
conventional sliding-mode control (Utkin et al., 1999) can not be formulated and thus is
unable to control the system. Therefore, the existence of unmatched-type uncertainties has
the great possibility to endanger the sliding dynamics, which identify the system motion on the
sliding surface after matched-type uncertainties are nullified. Hence, another control action
simultaneously stabilizes the sliding dynamics must be developed.

8



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

164 

Lundberg, K. H. and Roberge, J. K. (2003). Classical dual-inverted-pendulum control, 
Proceedings of the IEEE CDC-2003, Maui, Hawaii, pp. 4399-4404. 

Mabbott, N., Foster, G. and  Mcphee, B. (2001). Heavy Vehicle Seat Vibration and Driver 
Fatigue, Australian Transport Safety Bureau, Report No. CR 203,  pp. 35. 

Nordgren, R. E., Franchek, M. A. and Nwokah, O. D. I. (1995). A Design Procedure for the 
Exact H∞ SISO – Robust Performance Problem, Int. J. Robust and Nonlinear Control, 
Vol.5, 107-118. 

Nwokah, O. D. I., Ukpai, U. I., Gasteneau, Z., and Happawana, G. S.(1997). Catastrophes in 
Modern Optimal Controllers, Proceedings, American Control Conference, 
Albuquerque, NM, June. 

Ogata, K. (1970). Modern Control Engineering, Prentice-Hall, Englewood Cliffs,  New Jersey,  
pp. 277 – 279. 

Phillips, L. C. (1994). Control of a dual inverted pendulum system using linear-quadratic 
and H-infinity methods, Master’s thesis, Massachusetts Institute of Technology. 

Randall, J. M. (1992). Human subjective response to lorry vibration: implications for farm 
animal transport, J. Agriculture. Engineering, Res, Vol. 52, pp. 295-307. 

Rajapakse, N. and Happawana, G. S. (2004). A nonlinear six degree-of-freedom axle and 
body combination roll model for heavy trucks' directional stability, In Proceedings of 
IMECE2004-61851, ASME International Mechanical Engineering Congress and RD&D 
Expo., November 13-19, Anaheim, California, USA. 

Roberge, J. K. (1960). The mechanical seal, Bachelor’s thesis, Massachusetts Institute of 
Technology. 

Siebert, W. McC. (1986) Circuits, Signals, and Systems, MIT Press, Cambridge,  
Massachusetts. 

Tabarrok, B. and Tong, X. (1993). Directional Stability Analysis of Logging Trucks by a Yaw 
Roll Model, Technical Reports, University of Victoria, Mechanical Engineering 
Department, pp. 57- 62. 

Tabarrok, B. and Tong, L. (1992). The Directional Stability Analysis of Log Hauling Truck – 
Double Doglogger,   Technical Reports, University of Victoria, Mechanical Engineering 
Department, DSC, Vol. 44, pp. 383-396. 

Taha, E. Z., Happawana, G. S., and Hurmuzlu, Y. (2003). Quantitative feedback theory 
(QFT) for chattering reduction and improved tracking in sliding mode control 
(SMC),  ASME J. of Dynamic Systems, Measurement, and Control, Vol. 125, pp 665- 
669. 

Thompson, D. F. (1998). Gain-Bandwidth Optimal Design for the New Formulation 
Quantitative Feedback Theory, ASME J. Dyn. Syst., Meas., Control Vol.120, pp. 401–
404. 

Truxal, J. G. (1965). State Models, Transfer Functions, and Simulation, Monograph  8, 
Discrete Systems Concept Project. 

Wilson, L. J. and Horner, T. W. (1979). Data Analysis of Tractor-Trailer Drivers to Assess 
Drivers’ Perception of Heavy Duty Truck Ride Quality, Report DOT-HS-805-139, 
National Technical Information Service, Springfield, VA, USA. 

Wong, J.Y. (1978). Theory of Ground Vehicles, John Wiley and Sons. 
 

0

Integral Sliding-Based Robust Control

Chieh-Chuan Feng
I-Shou University, Taiwan

Republic of China

1. Introduction

In this chapter we will study the robust performance control based-on integral sliding-mode
for system with nonlinearities and perturbations that consist of external disturbances and
model uncertainties of great possibility time-varying manner. Sliding-mode control is one
of robust control methodologies that deal with both linear and nonlinear systems, known for
over four decades (El-Ghezawi et al., 1983; Utkin & Shi, 1996) and being used extensively from
switching power electronics (Tan et al., 2005) to automobile industry (Hebden et al., 2003),
even satellite control (Goeree & Fasse, 2000; Liu et al., 2005). The basic idea of sliding-mode
control is to drive the sliding surface s from s �= 0 to s = 0 and stay there for all future
time, if proper sliding-mode control is established. Depending on the design of sliding
surface, however, s = 0 does not necessarily guarantee system state being the problem of
control to equilibrium. For example, sliding-mode control drives a sliding surface, where
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advantage that is the improvement of the problem of reaching phase, which is the initial
period of time that the system has not yet reached the sliding surface and thus is sensitive to
any uncertainties or disturbances that jeopardize the system. Integral sliding surface design
solves the problem in that the system trajectories start in the sliding surface from the first
time instant (Fridman et al., 2005; Poznyak et al., 2004). The function of integral sliding-mode
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In general, an inherent and invariant property, more importantly an advantage, that all
sliding-mode control has is the ability to completely nullify the so-called matched-type
uncertainties and nonlinearities, defined in the range space of input matrix (El-Ghezawi et al.,
1983). But, in the presence of unmatched-type nonlinearities and uncertainties, the
conventional sliding-mode control (Utkin et al., 1999) can not be formulated and thus is
unable to control the system. Therefore, the existence of unmatched-type uncertainties has
the great possibility to endanger the sliding dynamics, which identify the system motion on the
sliding surface after matched-type uncertainties are nullified. Hence, another control action
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2 Will-be-set-by-IN-TECH

Next, a new issue concerning the performance of integral sliding-mode control is addressed,
that is, we develop a performance measure in terms of L2-gain of zero dynamics. The
concept of zero dynamics introduced by (Lu & Spurgeon, 1997) treats the sliding surface
s as the controlled output of the system. The role of integral sliding-mode control is to
reach and maintain s = 0 while keeping the performance measure within bound. In short,
the implementation of integral sliding-mode control solves the influence of matched-type
nonlinearities and uncertainties while, in the meantime, maintaining the system on the
integral sliding surface and bounding a performance measure without reaching phase.
Simultaneously, not subsequently, another control action, i.e. robust linear control, must be
taken to compensate the unmatched-type nonlinearities, model uncertainties, and external
disturbances and drive the system state to equilibrium.
Robust linear control (Zhou et al., 1995) applied to the system with uncertainties has been
extensively studied for over three decades (Boyd et al., 1994) and reference therein. Since
part of the uncertainties have now been eliminated by the sliding-mode control, the
rest unmatched-type uncertainties and external disturbances will be best suitable for the
framework of robust linear control, in which the stability and performance are the issues to
be pursued. In this chapter the control in terms of L2-gain (van der Schaft, 1992) and H2
(Paganini, 1999) are the performance measure been discussed. It should be noted that the
integral sliding-mode control signal and robust linear control signal are combined to form a
composite control signal that maintain the system on the sliding surface while simultaneously
driving the system to its final equilibrium, i.e. the system state being zero.
This chapter is organized as follows: in section 2, a system with nonlinearities, model
uncertainties, and external disturbances represented by state-space is proposed. The
assumptions in terms of norm-bound and control problem of stability and performance issues
are introduced. In section 3, we construct the integral sliding-mode control such that the
stability of zero dynamics is reached while with the same sliding-mode control signal the
performance measure is confined within a bound. After a without reaching phase integral
sliding-mode control has been designed, in the section 4, we derive robust control scheme
of L2-gain and H2 measure. Therefore, a composite control that is comprised of integral
sliding-mode control and robust linear control to drive the system to its final equilibrium is
now completed. Next, the effectiveness of the whole design can now be verified by numerical
examples in the section 5. Lastly, the chapter will be concluded in the section 6.

2. Problem formulation

In this section the uncertain systems with nonlinearities, model uncertainties, and
disturbances and control problem to be solved are introduced.

2.1 Controlled system
Consider continuous-time uncertain systems of the form

ẋ(t) = A(t)x(t) + B(t)(u(x, t) + h(x)) +
N

∑
i=1

gi(x, t) + Bdw(t) (1)

where x(t) ∈ Rn is the state vector, u(x, t) ∈ Rm is the control action, and for some prescribed
compact set S ∈ Rp, w(t) ∈ S is the vector of (time-varying) variables that represent
exogenous inputs which includes disturbances (to be rejected) and possible references (to be
tracked). A(t) ∈ Rn×n and B(t) ∈ Rn×m are time-varying uncertain matrices. Bd ∈ Rn×p
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is a constant matrix that shows how w(t) influences the system in a particular direction. The
matched-type nonlinearities h(x) ∈ Rm is continuous in x. gi(x, t) ∈ Rn, an unmatched-type
nonlinearity, possibly time-varying, is piecewise continuous in t and continuous in x. We
assume the following:

1. A(t) = A+ ΔA(t) = A+ E0F0(t)H0, where A is a constant matrix and ΔA(t) = E0F0(t)H0
is the unmatched uncertainty in state matrix satisfying

�F0(t)� ≤ 1, (2)

where F0(t) is an unknown but bounded matrix function. E0 and H0 are known constant
real matrices.

2. B(t) = B(I + ΔB(t)) and ΔB(t) = F1(t)H1. ΔB(t) represents the input matrix uncertainty.
F1(t) is an unknown but bounded matrix function with

�F1(t)� ≤ 1, (3)

H1 is a known constant real matrix, where

�H1� = β1 < 1, (4)

and the constant matrix B ∈ Rn×m is of full column rank, i.e.

rank(B) = m. (5)

3. The exogenous signals, w(t), are bounded by an upper bound w̄,

�w(t)� ≤ w̄. (6)

4. The gi(x, t) representing the unmatched nonlinearity satisfies the condition,

�gi(x, t)� ≤ θi�x�, ∀ t ≥ 0, i = 1, · · · , N, (7)

where θi > 0.

5. The matched nonlinearity h(x) satisfies the inequality

�h(x)� ≤ η(x), (8)

where η(x) is a non-negative known vector-valued function.

Remark 1. For the simplicity of computation in the sequel a projection matrix M is such that MB = I
for rank(B) = m by the singular value decomposition:

B =
(
U1 U2

) (Σ
0

)
V,

where (U1 U2) and V are unitary matrices. Σ = diag(σ1, · · · , σm). Let

M = VT (
Σ−1 0

) (UT
1

UT
2

)
. (9)

It is seen easily that
MB = I. (10)
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2.2 Control problem
The control action to (1) is to provide a feedback controller which processes the full
information received from the plant in order to generate a composite control signal

u(x, t) = us(t) + ur(x, t), (11)

where us(t) stands for the sliding-mode control and ur(x, t) is the linear control that
robustly stabilize the system with performance measure for all admissible nonlinearities,
model uncertainties, and external disturbances. Taking the structure of sliding-mode control
that completely nullifies matched-type nonlinearities is one of the reasons for choosing the
control as part of the composite control (11). For any control problem to have satisfactory
action, two objectives must achieve: stability and performance. In this chapter sliding-mode
controller, us(t), is designed so as to have asymptotic stability in the Lyapunov sense and the
performance measure in L2 sense satisfying

∫ T

0
�s�2dt ≤ ρ2

∫ T

0
�w�2dt, (12)

where the variable s defines the sliding surface. The mission of us(t) drives the system to
reach s = 0 and maintain there for all future time, subject to zero initial condition for some
prescribed ρ > 0. It is noted that the asymptotic stability in the Lyapunov sense is saying
that, by defining the sliding surface s, sliding-mode control is to keep the sliding surface
at the condition, where s = 0. When the system leaves the sliding surface due to external
disturbance reasons so that s �= 0, the sliding-mode control will drive the system back to
the surface again in an asymptotic manner. In particular, our design of integral sliding-mode
control will let the system on the sliding surface without reaching phase. It should be noted
that although the system been driven to the sliding surface, the unmatched-type nonlinearities
and uncertainties are still affecting the behavior of the system. During this stage another part
of control, the robust linear controller, ur(x, t), is applied to compensate the unmatched-type
nonlinearities and uncertainties that robust stability and performance measure in L2-gain
sense satisfying ∫ T

0
�z�2dt ≤ γ2

∫ T

0
�w�2dt, (13)

where the controlled variable, z, is defined to be the linear combination of the system state,
x, and the control signal, ur, such that the state of sliding dynamics will be driven to the
equilibrium state, that is, x = 0, subject to zero initial condition for some γ > 0. In addition
to the performance defined in (13), the H2 performance measure can also be applied to the
sliding dynamics such that the performance criterion is finite when evaluated the energy
response to an impulse input of random direction at w. The H2 performance measure is
defined to be

J(x0) = sup
x(0)=x0

�z�2
2. (14)

In this chapter we will study both performance of controlled variable, z. For the composite
control defined in (11), one must aware that the working purposes of the control signals of
us(t) and ur(x, t) are different. When applying the composite control simultaneously, it should
be aware that the control signal not only maintain the sliding surface but drive the system
toward its equilibrium. These are accomplished by having the asymptotic stability in the
sense of Lyapunov.
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3. Sliding-mode control design

The integral sliding-mode control completely eliminating the matched-type nonlinearities and
uncertainties of (1) while keeping s = 0 and satisfying L2-gain bound is designed in the
following manner.

3.1 Integral sliding-mode control
Let the switching control law be

us(t) = −α(t)
s(x, t)

�s(x, t)� . (15)

The integral sliding surface inspired by (Cao & Xu, 2004) is defined to be

s(x, t) = Mx(t) + s0(x, t), (16)

where s0(x, t) is defined to be

s0(x, t) = −M
(

x0 +
∫ t

0
(Ax(τ) + Bur(τ)dτ

)
; x0 = x(0). (17)

The switching control gain α(t) being a positive scalar satisfies

α(t) ≥ 1
1 − β1

(λ + β0 + (1 + β1)η(x) + β1�ur�) (18)

where

β0 = κ�ME0��H0�+ κ�M�
N

∑
i=1

θi + �MBd�w̄. (19)

λ is chosen to be some positive constant satisfying performance measure. It is not difficult to
see from (16) and (17) that

s(x0, 0) = 0, (20)

which, in other words, from the very beginning of system operation, the controlled system is
on the sliding surface. Without reaching phase is then achieved. Next to ensure the sliding
motion on the sliding surface, a Lyapunov candidate for the system is chosen to be

Vs =
1
2

sTs. (21)

It is noted that in the sequel if the arguments of a function is intuitively understandable we will
omit them. To guarantee the sliding motion of the sliding surface, the following differentiation
of time must hold, i.e.

V̇s = sTṡ ≤ 0. (22)

It follows from (16) and (17) that

ṡ = Mẋ + M(Ax + Bur) (23)

Substituting (1) into (23) and in view of (10), we have

ṡ = MΔA(t)x + (I + ΔB(t))(u + h(x)) + M
N

∑
i=1

gi(x, t) + MBdw − ur. (24)
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toward its equilibrium. These are accomplished by having the asymptotic stability in the
sense of Lyapunov.
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3. Sliding-mode control design

The integral sliding-mode control completely eliminating the matched-type nonlinearities and
uncertainties of (1) while keeping s = 0 and satisfying L2-gain bound is designed in the
following manner.

3.1 Integral sliding-mode control
Let the switching control law be

us(t) = −α(t)
s(x, t)

�s(x, t)� . (15)

The integral sliding surface inspired by (Cao & Xu, 2004) is defined to be

s(x, t) = Mx(t) + s0(x, t), (16)

where s0(x, t) is defined to be

s0(x, t) = −M
(

x0 +
∫ t

0
(Ax(τ) + Bur(τ)dτ

)
; x0 = x(0). (17)

The switching control gain α(t) being a positive scalar satisfies

α(t) ≥ 1
1 − β1

(λ + β0 + (1 + β1)η(x) + β1�ur�) (18)

where

β0 = κ�ME0��H0�+ κ�M�
N

∑
i=1

θi + �MBd�w̄. (19)

λ is chosen to be some positive constant satisfying performance measure. It is not difficult to
see from (16) and (17) that

s(x0, 0) = 0, (20)

which, in other words, from the very beginning of system operation, the controlled system is
on the sliding surface. Without reaching phase is then achieved. Next to ensure the sliding
motion on the sliding surface, a Lyapunov candidate for the system is chosen to be

Vs =
1
2

sTs. (21)

It is noted that in the sequel if the arguments of a function is intuitively understandable we will
omit them. To guarantee the sliding motion of the sliding surface, the following differentiation
of time must hold, i.e.

V̇s = sTṡ ≤ 0. (22)

It follows from (16) and (17) that

ṡ = Mẋ + M(Ax + Bur) (23)

Substituting (1) into (23) and in view of (10), we have

ṡ = MΔA(t)x + (I + ΔB(t))(u + h(x)) + M
N

∑
i=1

gi(x, t) + MBdw − ur. (24)
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Thus the following inequality holds,

V̇s = sT

(
MΔA(t)x + (I + ΔB(t))(u + h(x)) + M

N

∑
i=1

gi(x, t) + MBdw − ur

)

≤ �s�(β0 + (1 + β1)η(x) + β1�ur�+ (β1 − 1)α(t)).

(25)

By selecting α(t) as (18), we obtain

V̇s ≤ −�s�λ ≤ 0, (26)

which not only guarantees the sliding motion of (1) on the sliding surface, i.e. maintaining
s = 0, but also drives the system back to sliding surface if deviation caused by disturbances
happens. To illustrate the inequality of (25), the following norm-bounded conditions must be
quantified,

sT(MΔA(t)x) ≤ �s��MΔA(t)x� = �s��ME0F0(t)H0x�
≤ �s��ME0F0(t)H0��x� ≤ �s��ME0��H0�κ,

(27)

by the assumption (2) and by asymptotic stability in the sense of Lyapunov such that there
exists a ball, B, where B � {x(t) : maxt≥0 �x(t)� ≤ κ, for �x0� < δ}. In view of (3), (4), (68),
and the second term of parenthesis of (25), the following inequality holds,

sT(I + ΔB(t))h(x) ≤ �s��(I + ΔB)h� = �s��(I + F1(t)H1)h�
≤ �s�(1 + �H1�)η(x) = �s�(1 + β1)η(x).

(28)

By the similar manner, we obtain

sTΔB(t)u ≤ �s��ΔBu� = �s��F1(t)H1(us + ur)�
≤ �s��H1�(�us�+ �ur�) = �s�β1(α(t) + �ur�),

(29)

where �us� = � − α(t) s
�s� � = α(t). As for the disturbance w, we have

sT MBdw ≤ �s��MBdw� ≤ �s��MBd�w̄, (30)

by using the assumption of (6). Lastly,

sT M
N

∑
i

gi(x, t) ≤ �s��M��
N

∑
i=1

gi(x, t)� ≤ �s��M�
N

∑
i=1

�gi(x, t)�

≤ �s��M�
(

N

∑
i=1

θi�x�
)

≤ �s��M�
(

κ
N

∑
i=1

θi

)
,

(31)

for the unmatched nonlinearity gi(x, t) satisfies (7). Applying (27)-(31) to (22), we obtain the
inequality (25). To guarantee the sliding motion on the sliding surface right from the very
beginning of the system operation, i.e. t = 0, and to maintain s = 0 for t ≥ 0, are proved by
having the inequality (26)

V̇s =
dVs

dt
≤ −λ�s� = −λ

√
Vs ≤ 0.
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This implies that
dVs√

Vs
≤ −

∫ t

0
λdt

Integrating both sides of the inequality, we have

∫ Vs(t)

Vs(0)

dVs√
Vs

= 2
√

Vs(t)− 2
√

Vs(0) ≤ −λt.

Knowing that (20) and thus Vs(0) = 0, this implies

0 ≤ 2
√

Vs(t) = 2
√

sT(x, t)s(x, t) ≤ 0. (32)

This identifies that s = 0, which implies that ṡ = 0 for t ≥ 0, from which and (24), we find

u = −(I + ΔB(t))−1

(
MΔA(t)x + (I + ΔB(t))h(x) +

N

∑
i=1

gi(x, t) + MBdw − ur

)
, (33)

where (4) guarantees the invertibility of (33) to exist. Substituting (33) into (1) and in view of
(6), we obtain the sliding dynamics

ẋ = Ax + G

(
ΔA(t)x +

N

∑
i=1

gi(x, t)

)
+ GBdw + Bur, (34)

where G = I − BM. It is seen that the matched uncertainties, ΔB(t)u and (I + ΔB(t))h(x) are
completely removed.

3.2 Performance measure of sliding-mode control
The concept of zero dynamics introduced by (Lu & Spurgeon, 1997) in sliding-mode control
treats the sliding surface s as the controlled output in the presence of disturbances,
nonlinearities and uncertainties. With regard to (1) the performance measure similar to
(van der Schaft, 1992) is formally defined:
Let ρ ≥ 0. The system (1) and zero dynamics defined in (16) is said to have L2-gain less than
or equal to ρ if ∫ T

0
�s�2dt ≤ ρ2

∫ T

0
�w�2dt, (35)

for all T ≥ 0 and all w ∈ L2(0, T). The inequality of (35) can be accomplished by appropriately
choosing the sliding variable λ that satisfies

λ ≥ 2ζ + 2ρw̄, (36)

where the parameter ζ is defined in (40). To prove this the following inequality holds,

− (ρw − s)T(ρw − s) ≤ 0. (37)

With the inequality (37) we obtain

�s�2 − ρ2�w�2 ≤ 2�s�2 − 2ρsTw. (38)
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This implies that
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u = −(I + ΔB(t))−1

(
MΔA(t)x + (I + ΔB(t))h(x) +

N

∑
i=1

gi(x, t) + MBdw − ur

)
, (33)
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N
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where G = I − BM. It is seen that the matched uncertainties, ΔB(t)u and (I + ΔB(t))h(x) are
completely removed.

3.2 Performance measure of sliding-mode control
The concept of zero dynamics introduced by (Lu & Spurgeon, 1997) in sliding-mode control
treats the sliding surface s as the controlled output in the presence of disturbances,
nonlinearities and uncertainties. With regard to (1) the performance measure similar to
(van der Schaft, 1992) is formally defined:
Let ρ ≥ 0. The system (1) and zero dynamics defined in (16) is said to have L2-gain less than
or equal to ρ if ∫ T

0
�s�2dt ≤ ρ2

∫ T

0
�w�2dt, (35)

for all T ≥ 0 and all w ∈ L2(0, T). The inequality of (35) can be accomplished by appropriately
choosing the sliding variable λ that satisfies

λ ≥ 2ζ + 2ρw̄, (36)

where the parameter ζ is defined in (40). To prove this the following inequality holds,

− (ρw − s)T(ρw − s) ≤ 0. (37)

With the inequality (37) we obtain

�s�2 − ρ2�w�2 ≤ 2�s�2 − 2ρsTw. (38)
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It is noted that
∫ T

0
(�s�2 − ρ2�w�2)dt ≤

∫ T

0
2(�s�2 − ρsTw)dt

≤
∫ T

0

(
2(�s�2 − ρsTw) + V̇

)
dt − (V(T)− V(0))

≤
∫ T

0

(
2(�s�2 − ρsTw)− λ�s�

)
dt

≤
∫ T

0
�s�(2�s�+ 2ρw̄ − λ)dt

(39)

The above inequalities use the fact (20), (26), and (32). Thus to guarantee the inequality we
require that the λ be chosen as (36). In what follows, we need to quantify �s� such that finite
λ is obtained. To show this, it is not difficult to see, in the next section, that ur = Kx is so
as to A + BK Hurwitz, i.e. all eigenvalues of A + BK are in the left half-plane. Therefore, for
x(0) = x0

�s� =

∥∥∥∥Mx − M
(

x0 +
∫ ∞

0
(Ax + Bur)dτ

)∥∥∥∥

≤ �M��x − x0�+ �M�
∥∥∥∥
∫ ∞

0
(A + BK)xdτ

∥∥∥∥

≤ �M�(�x�+ �x0�) + �M��A + BK�
∥∥∥∥
∫ ∞

0
xdτ

∥∥∥∥

≤ �M�(κ + �x0�) + �M��A + BK�
∥∥∥∥
∫ T

0
xdτ +

∫ ∞

T
xdτ

∥∥∥∥

≤ �M�(κ + �x0�) + �M��A + BK�
∥∥∥∥
∫ T

0
xdτ

∥∥∥∥
≤ �M� (κ + �x0�) + �A + BK�κT) � ζ,

(40)

where the elimination of
∫ ∞

T xdτ is due to the reason of asymptotic stability in the sense of
Lyapunov, that is, when t ≥ T the state reaches the equilibrium, i.e. x(t) → 0.

4. Robust linear control design

The foregoing section illustrates the sliding-mode control that assures asymptotic stability of
sliding surface, where s = 0 is guaranteed at the beginning of system operation. In this section
we will reformulate the sliding dynamics (34) by using linear fractional representation such
that the nonlinearities and perturbations are lumped together and are treated as uncertainties
from linear control perspective.

4.1 Linear Fractional Representation (LFR)
Applying LFR technique to the sliding dynamics (34), we have LFR representation of the
following form

ẋ = Ax + Bur + Bp p + Bww

z = Czx + Dzur

and

pi = gi(x, t), i = 0, 1, · · · , N

(41)
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where z ∈ Rnz is an additional artificial controlled variable to satisfy robust performance
measure with respect to disturbance signal, w. In order to merge the uncertainty ΔA(t)x with
nonlinearities ∑N

i=1 gi(x, t), the variable p0 is defined to be

p0 = g0(x, t) = F0(t)H0x = F(t)q0,

where q0 = H0x. Thus, by considering (2), p0 has a norm-bounded constraint

�p0� = �F0(t)q0� ≤ θ0�q0�, (42)

where θ0 = 1. Let pi = gi(x, t), i = 1, · · · , N and qi = x, then in view of (7)

�pi� = �gi(x, t)� ≤ θi�x� = θi�qi�, ∀ i = 1, · · · , N. (43)

Let the vector p ∈ R(N+1)n and q ∈ R(N+1)nlumping all pis be defined to be

pT =
�

pT
0 pT

1 · · · pT
N

�
, qT =

�
qT

0 qT
1 · · · qT

N

�
,

through which all the uncertainties and the unmatched nonlinearities are fed into the sliding
dynamics. The matrices, Bp, Bw, and Cq are constant matrices as follows,

Bp = G
�
E0 I · · · I

�
� �� �
(N+1) matrix

, Bw = GBd and Cq =

⎛
⎜⎜⎜⎝

H0
I
...
I

⎞
⎟⎟⎟⎠ .

Since full-state feedback is applied, thus

ur = Kx. (44)

The overall closed-loop system is as follows,

ẋ = Ax + Bp p + Bww

q = Cqx

z = Cx

and

pi = gi(qi, t), i = 0, 1, · · · , N,

(45)

where A = A + BK and C = Cz + DzK. This completes LFR process of the sliding dynamics.
In what follows the robust linear control with performance measure that asymptotically drive
the overall system to the equilibrium point is illustrated.

4.2 Robust performance measure
4.2.1 Robust L2-gain measure
In this section the performance measure in L2-gain sense is suggested for the robust control
design of sliding dynamics where the system state will be driven to the equilibrium. We will
be concerned with the stability and performance notion for the system (45) as follows:
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Let the constant γ > 0 be given. The closed-loop system (45) is said to have a robust L2-gain
measure γ if for any admissible norm-bounded uncertainties the following conditions hold.
(1) The closed-loop system is uniformly asymptotically stable.
(2) Subject to the assumption of zero initial condition, the controlled output z satisfies

� ∞

0
�z�2dt ≤ γ2

� ∞

0
�w�2dt. (46)

Here, we use the notion of quadratic Lyapunov function with an L2-gain measure introduced
by (Boyd et al., 1994) and (van der Schaft, 1992) for robust linear control and nonlinear control,
respectively. With this aim, the characterizations of robust performance based on quadratic
stability will be given in terms of matrix inequalities, where if LMIs can be found then the
computations by finite dimensional convex programming are efficient. Now let quadratic
Lyapunov function be

V = xTXxT , (47)

with X � 0. To prove (46), we have the following process
� ∞

0
�z�2dt ≤ γ2

� ∞

0
�w�2dt

⇔
� ∞

0

�
zTz − γ2wTw

�
dt ≤ 0

⇔
� ∞

0

�
zTz − γ2wTw +

d
dt

V
�

dt − V(x(∞)) ≤ 0.

(48)

Thus, to ensure (48), zTz − γ2wTw + V̇ ≤ 0 must hold. Therefore, we need first to secure

d
dt

V(x) + zTz − γ2wTw ≤ 0, (49)

subject to the condition
�pi� ≤ θi�qi�, i = 0, 1, · · · , N, (50)

for all vector variables satisfying (45). It suffices to secure (49) and (50) by S-procedure
(Boyd et al., 1994), where the quadratic constraints are incorporated into the cost function via
Lagrange multipliers σi, i.e. if there exists σi > 0, i = 0, 1, · · · , N such that

zTz − γ2wTw + V̇ −
N

∑
i=0

σi(�pi�2 − θ2
i �qi�2) ≤ 0. (51)

To show that the closed-loop system (45) has a robust L2-gain measure γ, we integrate (51)
from 0 to ∞, with the initial condition x(0) = 0, and get

� ∞

0

�
zTz − γ2wTw + V̇ +

N

∑
i=0

σi

�
θ2

i �qi�2 − �pi�2
��

dt − V(x(∞)) ≤ 0. (52)

If (51) hold, this implies (49) and (46). Therefore, we have robust L2-gain measure γ for the
system (45). Now to secure (51), we define

Θ =

⎛
⎜⎜⎜⎝

θ0 I 0 · · · 0
0 θ1 I · · · 0

0 0
. . . 0

0 0 0 θN I

⎞
⎟⎟⎟⎠ , Σ =

⎛
⎜⎜⎜⎝

σ0 I 0 · · · 0
0 σ1 I · · · 0

0 0
. . . 0

0 0 0 σN I

⎞
⎟⎟⎟⎠ , (53)
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where the identity matrix I ∈ Rnqi×nqi . It is noted that we require that θi > 0 and σi > 0 for all
i. Hence the inequality (51) can be translated to the following matrix inequalities

Π(X, Σ, γ) ≺ 0, (54)

where

Π(X, Σ, γ) =

⎛
⎝

Ξ XBp XBw
� −Σ 0
� 0 −γ2 I

⎞
⎠ , (55)

with Ξ = ATX + XA+ CTC+CT
q ΘTΣΘCq. Then the closed-loop system is said to have robust

L2-gain measure γ from input w to output z if there exists X > 0 and Σ > 0 such that (54) is
satisfied. Without loss of generality, we will adopt only strict inequality. To prove uniformly
asymptotic stability of (45), we expand the inequality (54) by Schur complement,

ATX + XA+ CTC + CT
q ΘTΣΘCq + X(BpΣ−1BT

p + γ−2BwBT
w)X ≺ 0. (56)

Define the matrix variables

H =

� C
Σ1/2ΘCq

�
, G =

�
BpΣ−1/2 γBw

�
. (57)

Thus, the inequality (56) can be rewritten as

ATX + XA+HTH+ XGGTX ≺ 0. (58)

Manipulating (58) by adding and subtracting jωX to obtain

− (−jω I −AT)X − X(jω I −A) +HTH+ XGGTX ≺ 0. (59)

Pre-multiplying GT(−jω I−AT)−1 and post-multiplying (jω I −A)−1G to inequality (59), we
have

−GTX(jω I −A)−1G − GT(−jω I −AT)−1XG
+ GT(−jω I −AT)−1XGGTX(jω I −A)−1G
+ GT(−jω I −AT)−1HTH(jω I −A)−1G ≺ 0.

(60)

Defining a system

ẋ = Ax + Gw

z = Hx
(61)

with transfer function T(s) = H(sI −A)−1G and thus T(jω) = H(jω I −A)−1G and a matrix
variable M̄(jω) = GTX(jω I −A)−1G . The matrix inequality (60) can be rewritten as

T∗(jω)T(jω)− M̄(jω)− M̄∗(jω) + M̄∗(jω)M̄(jω) ≺ 0,

or

T∗(jω)T(jω) ≺ M̄(jω) + M̄∗(jω)− M̄∗(jω)M̄(jω)

= −(I − M̄∗(jω))(I − M̄(jω)) + I

� I, ∀ ω ∈ R.

(62)
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Let the constant γ > 0 be given. The closed-loop system (45) is said to have a robust L2-gain
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Here, we use the notion of quadratic Lyapunov function with an L2-gain measure introduced
by (Boyd et al., 1994) and (van der Schaft, 1992) for robust linear control and nonlinear control,
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� ∞

0
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�
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⇔
� ∞

0

�
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d
dt

V
�
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⎞
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ATX + XA+HTH+ XGGTX ≺ 0. (58)

Manipulating (58) by adding and subtracting jωX to obtain

− (−jω I −AT)X − X(jω I −A) +HTH+ XGGTX ≺ 0. (59)

Pre-multiplying GT(−jω I−AT)−1 and post-multiplying (jω I −A)−1G to inequality (59), we
have

−GTX(jω I −A)−1G − GT(−jω I −AT)−1XG
+ GT(−jω I −AT)−1XGGTX(jω I −A)−1G
+ GT(−jω I −AT)−1HTH(jω I −A)−1G ≺ 0.

(60)

Defining a system

ẋ = Ax + Gw

z = Hx
(61)

with transfer function T(s) = H(sI −A)−1G and thus T(jω) = H(jω I −A)−1G and a matrix
variable M̄(jω) = GTX(jω I −A)−1G . The matrix inequality (60) can be rewritten as

T∗(jω)T(jω)− M̄(jω)− M̄∗(jω) + M̄∗(jω)M̄(jω) ≺ 0,

or
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� I, ∀ ω ∈ R.
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Hence, the maximum singular value of (62)

σmax(T(jω) < 1, ∀ ω ∈ R.

By small gain theorem, we prove that the matrix A is Hurwitz, or equivalently, the eigenvalues
of A are all in the left-half plane, and therefore the closed-loop system (45) is uniformly
asymptotically stable.
Next to the end of the robust L2-gain measure γ is to synthesize the control law, K. Since (54)
and (56) are equivalent, we multiply both sides of inequality of (56) by Y = X−1. We have

YAT +AY + YCTCY + YCT
q ΘTΣΘCqY + BpΣ−1BT

p + γ−2BwBT
w ≺ 0.

Rearranging the inequality with Schur complement and defining a matrix variable W = KY,
we have ⎛

⎜⎜⎝

ΩL YCT
z + WTDT

z YCT
q ΘT Bw

� −I 0 0
� 0 −V 0
� 0 0 −γ2 I

⎞
⎟⎟⎠ < 0, (63)

where ΩL = YAT + AY+WTBT + BW + BpVBT
p and V = Σ−1. The matrix inequality is linear

in matrix variables Y, W, V and a scalar γ, which can be solved efficiently.

Remark 2. The matrix inequalities (63) are linear and can be transformed to optimization problem,
for instance, if L2-gain measure γ is to be minimized:

minimize γ2

subject to (63), Y � 0, V � 0 and W.
(64)

Remark 3. Once from (64) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 4. It is seen from (61) that with Riccati inequality (56) a linear time-invariant system is
obtained to fulfill �T�∞ < 1, where A is Hurwitz.

Remark 5. In this remark, we will synthesize the overall control law consisting of us(t) and ur(t)
that perform control tasks. The overall control law as shown in (22) and in view of (15) and (44),

u(t) = us(t) + ur(x, t) = −α(t)
s(x, t)

�s(x, t)� + Kx(t) (65)

where α(t) > 0 satisfies (18), integral sliding surface, s(x, t), is defined in (16) and gain K is found
using optimization technique shown in (64).

4.2.2 Robust H2 measure
In this section we will study the H2 measure for the system performance of (45). The
robust stability of which in the presence of norm-bounded uncertainty has been extensively
studied Boyd et al. (1994) and reference therein. For self-contained purpose, we will
demonstrate robust stability by using quadratic Lyapunov function (47) subject to (45) with
the norm-bounded constraints satisfying (7) and (42). To guarantee the asymptotic stability
with respect to (47) (or called storage function from dissipation perspective), we consider the a
quadratic supply function � ∞

0
(wTw − zTz)dt, (66)
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and incorporate the quadratic norm-bounded constraints via Lagrange multipliers σi through
S-procedure, it is then said that the system is dissipative if, and only if

V̇ +
N

∑
i=0

σi(θ
2
i �qi�2 − �pi�2) ≤ wTw − zTz. (67)

It is worth noting that the use of dissipation theory for (47), (69), and (67) is for the
quantification of H2 performance measure in the sequel. It is also shown easily by plugging
(45) into (67) that if there exist X � 0, Σ � 0, then (67) implies

⎛
⎝

ΩH XBp XBw
(XBp)T −Σ 0
(XBw)T 0 −I

⎞
⎠ ≺ 0, (68)

where ΩH = AT X + XA + CTC + CT
q ΘTΣΘCq and Θ and Σ are defined exactly the same

as (53). Then the system is robustly asymptotically stabilized with the norm-bounded
uncertainty if (68) is satisfied. This is shown by the fact, Schur complement, that (68) is
equivalent to

ΩH ≺ 0 (69)

ΩH +
�
XBp XBw

� �Σ 0
0 I

��
BT

p X
BT

wX

�
≺ 0 (70)

If (69) and (70) are both true, then ATX + XA ≺ 0. This implies that A is Hurwitz. In addition
to robust stability, the robust performance of the closed-loop uncertain system (45) on the
sliding surface that fulfils the H2 performance requirement is suggested for the overall robust
design in this section. We will show that the H2 performance measure will also guarantee
using the inequality (68).
Given that the A is stable, the closed-loop map Tzw(gi(qi, t)) from w to z is bounded for all
nonlinearities and uncertainties gi(qi, t); we wish to impose an H2 performance specification
on this map. Consider first the nominal map Tzw0 = Tzw(0), this norm is given by

�Tzw0�2
2 =

1
2π

� ∞

−∞
trace(Tzw0(jω)∗Tzw0(jω))dω (71)

This criterion is classically interpreted as a measure of transient response to an impulse
applied to w(t) and it gives the bound of output energy of z. The approach of H2 performance
criterion as the evaluation of the energy response to an impulse input of random direction at
w(t) is

�Tzw(Δ)�2
2,imp � Ew0 (�z�2

2), (72)

where z(t) = Tzw(gi(qi, t))w0δ(t), and w0 satisfies random vector of covariance E(w0w�
0) = I.

The above definition of H2 performance can also be equivalently interpreted by letting the
initial condition x(0) = Bww0 and w(t) = 0 in the system, which subsequently responds
autonomously. Although this definition is applied to the case where gi(x, t) is LTI and
standard notion of (71), we can also apply it to a more general perturbation structure,
nonlinear or time-varying uncertainties. Now to evaluate the energy bound of (72), consider
first the index J(x0) defined to be

J(x0) = sup
x(0)=x0

�z�2 (73)
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Hence, the maximum singular value of (62)

σmax(T(jω) < 1, ∀ ω ∈ R.

By small gain theorem, we prove that the matrix A is Hurwitz, or equivalently, the eigenvalues
of A are all in the left-half plane, and therefore the closed-loop system (45) is uniformly
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Next to the end of the robust L2-gain measure γ is to synthesize the control law, K. Since (54)
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in matrix variables Y, W, V and a scalar γ, which can be solved efficiently.

Remark 2. The matrix inequalities (63) are linear and can be transformed to optimization problem,
for instance, if L2-gain measure γ is to be minimized:

minimize γ2

subject to (63), Y � 0, V � 0 and W.
(64)

Remark 3. Once from (64) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 4. It is seen from (61) that with Riccati inequality (56) a linear time-invariant system is
obtained to fulfill �T�∞ < 1, where A is Hurwitz.
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where α(t) > 0 satisfies (18), integral sliding surface, s(x, t), is defined in (16) and gain K is found
using optimization technique shown in (64).

4.2.2 Robust H2 measure
In this section we will study the H2 measure for the system performance of (45). The
robust stability of which in the presence of norm-bounded uncertainty has been extensively
studied Boyd et al. (1994) and reference therein. For self-contained purpose, we will
demonstrate robust stability by using quadratic Lyapunov function (47) subject to (45) with
the norm-bounded constraints satisfying (7) and (42). To guarantee the asymptotic stability
with respect to (47) (or called storage function from dissipation perspective), we consider the a
quadratic supply function � ∞

0
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and incorporate the quadratic norm-bounded constraints via Lagrange multipliers σi through
S-procedure, it is then said that the system is dissipative if, and only if

V̇ +
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∑
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σi(θ
2
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It is worth noting that the use of dissipation theory for (47), (69), and (67) is for the
quantification of H2 performance measure in the sequel. It is also shown easily by plugging
(45) into (67) that if there exist X � 0, Σ � 0, then (67) implies
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to robust stability, the robust performance of the closed-loop uncertain system (45) on the
sliding surface that fulfils the H2 performance requirement is suggested for the overall robust
design in this section. We will show that the H2 performance measure will also guarantee
using the inequality (68).
Given that the A is stable, the closed-loop map Tzw(gi(qi, t)) from w to z is bounded for all
nonlinearities and uncertainties gi(qi, t); we wish to impose an H2 performance specification
on this map. Consider first the nominal map Tzw0 = Tzw(0), this norm is given by
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2 =
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2π
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This criterion is classically interpreted as a measure of transient response to an impulse
applied to w(t) and it gives the bound of output energy of z. The approach of H2 performance
criterion as the evaluation of the energy response to an impulse input of random direction at
w(t) is
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where z(t) = Tzw(gi(qi, t))w0δ(t), and w0 satisfies random vector of covariance E(w0w�
0) = I.

The above definition of H2 performance can also be equivalently interpreted by letting the
initial condition x(0) = Bww0 and w(t) = 0 in the system, which subsequently responds
autonomously. Although this definition is applied to the case where gi(x, t) is LTI and
standard notion of (71), we can also apply it to a more general perturbation structure,
nonlinear or time-varying uncertainties. Now to evaluate the energy bound of (72), consider
first the index J(x0) defined to be
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The next step is to bound J(x0) by an application of so-called S-procedure where quadratic
constraints are incorporated into the cost function (73) via Lagrange Multipliers σi. This leads
to

J(x0) ≤ inf
σi>0

sup
x0

�
�z�2 +

i=1

∑
i=0

σi(θ
2
i �qi�2 − �pi�2

�
(74)

To compute the right hand side of (74), we find that for fixed σi we have an optimization
problem,

sup
x(0)=x0,(45)

� ∞

0

�
zTz + qTΘTΣΘq − pTΣp

�
dt. (75)

To compute the optimal bound of (75) for some Σ � 0 satisfying (68), the problem (75) can be
rewritten as

J(x0) ≤
� ∞

0

�
zTz + qTΘTΣΘq − pTΣp +

d
dt

V(x)
�

dt + V(x0), (76)

for x(∞) = 0. When (68) is satisfied, then it is equivalent to

�
xT pT wT

�
⎛
⎝

Ω XBp XBw
(XBp)T −Σ 0
(XBw)T 0 −I

⎞
⎠

⎛
⎝

x
p
w

⎞
⎠ < 0, (77)

or,

�
xT pT wT

�
⎛
⎝

Ω XBp XBw
(XBp)T −Σ 0
(XBw)T 0 0

⎞
⎠

⎛
⎝

x
p
w

⎞
⎠ < wTw. (78)

With (78), we find that the problem of performance J(x0) of (76) is

J(x0) ≤
� ∞

0
wTwdt + V(x0). (79)

It is noted that the matrix inequality (68) is jointly affine in Σ and X. Thus, we have the index

J(x0) ≤ inf
X�0,Σ�0,(77)

xT
0 Xx0, (80)

for the alternative definition of robust H2 performance measure of (71), where w(t) = 0
and x0 = Bww0. Now the final step to evaluate the infimum of (80) is to average over each
impulsive direction, we have

sup
gi(qi,t)

Ew0�z�2
2 ≤ Ew0 J(x0) ≤ inf

X
Ew0(x

T
0 Xx0) = inf

X
Tr(BT

wXBw).

Thus the robust performance design specification is that

Tr(BT
wXBw) ≤ ϑ2 (81)

for some ϑ > 0 subject to (77). In summary, the overall robust H2 performance control
problem is the following convex optimization problem:

minimize ϑ2

subject to (81), (68), X � 0, Σ � 0.
(82)
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Next to the end of the robust H2 measure is to synthesize the control law, K. Since (68) and
(70) are equivalent, we multiply both sides of inequality of (70) by Y = X−1. We have

YAT +AY + YCTCY + YCT
q ΘTΣΘCqY + BpΣ−1BT

p + BwBT
w ≺ 0.

Rearranging the inequality with Schur complement and defining a matrix variable W = KY,
we have ⎛

⎜⎜⎝
Ω YCT

z + WTDT
z YCT

q ΘT Bw

� −I 0 0
� 0 −V 0
� 0 0 −I

⎞
⎟⎟⎠ < 0, (83)

where Ω = YAT + AY + WTBT + BW + BpVBT
p and V = Σ−1. The matrix inequality is linear

in matrix variables Y, W, and V, which can be solved efficiently.

Remark 6. The trace of (81) is to put in a convenient form by introducing the auxiliary matrix U as

U � BT
wXBw

or, equivalently, �
U BT

w
Bw X−1

�
=

�
U BT

w
Bw Y

�
� 0. (84)

Remark 7. The matrix inequalities (83) are linear and can be transformed to optimization problem,
for instance, if robust H2 measure is to be minimized:

minimize ϑ2

subject to (83), (84), Tr(U) ≤ ϑ2, Y � 0, V � 0 and W.
(85)

Remark 8. Once from (85) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 9. To perform the robust H2 measure control, the overall composite control of form (65) should
be established, where the continuous control gain K is found by using optimization technique shown in
(85).

5. Numerical example

A numerical example to verify the integral sliding-mode-based control with L2-gain measure
and H2 performance establishes the solid effectiveness of the whole chapter. Consider the
system of states, x1 and x2, with nonlinear functions and matrices:

A(t) =
�

0 1
−1 2

�
+

�
1.4
−2.3

�
0.8 sin(ω0t)

�−0.1 0.3
�

, B(t) =
�

0
1

�
(1 + 0.7 sin(ω1t)) (86)

Bd =

�
0.04
0.5

�
, g1(x, t) = x1, g2(x, t) = x2, and g1(x, t) + g2(x, t) ≤ 1.01(�x1�+ �x2�) (87)

h(x) = 2.1(x2
1 + x2

2) ≤ η(x) = 2.11(x2
1 + x2

2), and w(t) = ε(t − 1) + ε(t − 3), (88)
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2
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�
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To compute the right hand side of (74), we find that for fixed σi we have an optimization
problem,

sup
x(0)=x0,(45)

� ∞

0

�
zTz + qTΘTΣΘq − pTΣp

�
dt. (75)

To compute the optimal bound of (75) for some Σ � 0 satisfying (68), the problem (75) can be
rewritten as

J(x0) ≤
� ∞

0

�
zTz + qTΘTΣΘq − pTΣp +

d
dt

V(x)
�

dt + V(x0), (76)

for x(∞) = 0. When (68) is satisfied, then it is equivalent to

�
xT pT wT

�
⎛
⎝

Ω XBp XBw
(XBp)T −Σ 0
(XBw)T 0 −I

⎞
⎠

⎛
⎝

x
p
w

⎞
⎠ < 0, (77)

or,

�
xT pT wT

�
⎛
⎝

Ω XBp XBw
(XBp)T −Σ 0
(XBw)T 0 0

⎞
⎠

⎛
⎝

x
p
w

⎞
⎠ < wTw. (78)

With (78), we find that the problem of performance J(x0) of (76) is

J(x0) ≤
� ∞

0
wTwdt + V(x0). (79)

It is noted that the matrix inequality (68) is jointly affine in Σ and X. Thus, we have the index

J(x0) ≤ inf
X�0,Σ�0,(77)

xT
0 Xx0, (80)

for the alternative definition of robust H2 performance measure of (71), where w(t) = 0
and x0 = Bww0. Now the final step to evaluate the infimum of (80) is to average over each
impulsive direction, we have

sup
gi(qi,t)

Ew0�z�2
2 ≤ Ew0 J(x0) ≤ inf

X
Ew0(x

T
0 Xx0) = inf

X
Tr(BT

wXBw).

Thus the robust performance design specification is that

Tr(BT
wXBw) ≤ ϑ2 (81)

for some ϑ > 0 subject to (77). In summary, the overall robust H2 performance control
problem is the following convex optimization problem:

minimize ϑ2

subject to (81), (68), X � 0, Σ � 0.
(82)
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Next to the end of the robust H2 measure is to synthesize the control law, K. Since (68) and
(70) are equivalent, we multiply both sides of inequality of (70) by Y = X−1. We have

YAT +AY + YCTCY + YCT
q ΘTΣΘCqY + BpΣ−1BT

p + BwBT
w ≺ 0.

Rearranging the inequality with Schur complement and defining a matrix variable W = KY,
we have ⎛

⎜⎜⎝
Ω YCT

z + WTDT
z YCT

q ΘT Bw

� −I 0 0
� 0 −V 0
� 0 0 −I

⎞
⎟⎟⎠ < 0, (83)

where Ω = YAT + AY + WTBT + BW + BpVBT
p and V = Σ−1. The matrix inequality is linear

in matrix variables Y, W, and V, which can be solved efficiently.

Remark 6. The trace of (81) is to put in a convenient form by introducing the auxiliary matrix U as

U � BT
wXBw

or, equivalently, �
U BT

w
Bw X−1

�
=

�
U BT

w
Bw Y

�
� 0. (84)

Remark 7. The matrix inequalities (83) are linear and can be transformed to optimization problem,
for instance, if robust H2 measure is to be minimized:

minimize ϑ2

subject to (83), (84), Tr(U) ≤ ϑ2, Y � 0, V � 0 and W.
(85)

Remark 8. Once from (85) we obtain the matrices W and Y, the control law K = WY−1 can be
calculated easily.

Remark 9. To perform the robust H2 measure control, the overall composite control of form (65) should
be established, where the continuous control gain K is found by using optimization technique shown in
(85).

5. Numerical example

A numerical example to verify the integral sliding-mode-based control with L2-gain measure
and H2 performance establishes the solid effectiveness of the whole chapter. Consider the
system of states, x1 and x2, with nonlinear functions and matrices:

A(t) =
�

0 1
−1 2

�
+

�
1.4
−2.3

�
0.8 sin(ω0t)

�−0.1 0.3
�

, B(t) =
�

0
1

�
(1 + 0.7 sin(ω1t)) (86)

Bd =

�
0.04
0.5

�
, g1(x, t) = x1, g2(x, t) = x2, and g1(x, t) + g2(x, t) ≤ 1.01(�x1�+ �x2�) (87)

h(x) = 2.1(x2
1 + x2

2) ≤ η(x) = 2.11(x2
1 + x2

2), and w(t) = ε(t − 1) + ε(t − 3), (88)
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where the necessary parameter matrices and functions can be easily obtained by comparison
(86), (87), and (88) with assumption 1 through 5, thus we have

A =

�
0 1
−1 2

�
, E0 =

�
1.4
−2.3

�
, H0 =

�−0.1 0.03
�

, B =

�
0
1

�
, H1 = 0.7, θ1 = θ2 = 1.01.

It should be noted that ε(t − t1) denotes the pulse centered at time t1 with pulse width 1 sec
and strength 1. So, it is easy to conclude that w̄ = 1. We now develop the integral sliding-mode
such that the system will be driven to the designated sliding surface s(x, t) shown in (16).
Consider the initial states, x1(0) = −0.3 and x2(0) = 1.21, thus, the ball, B, is confined within
κ = 1.2466. The matrix M such that MB = I is M = (0 1), hence, �M� = 1, �ME0� = 2.3,
and �MBd� = 0.5. To compute switching control gain α(t) of sliding-mode control in (18), we
need (19), which β0 = 5.8853. We then have

α(t) =
1

0.3
(5.8853 + λ + 3.587(x2

1 + x2
2) + 0.7�ur�), (89)

where λ is chosen to be any positive number and ur = Kx is the linear control law to achieve
performance measure. It is noted that in (89) the factor 1

0.3 will now be replace by a control
factor, α1, which the approaching speed of sliding surface can be adjusted. Therefore, the (89)
is now

α(t) = α1(5.8853 + λ + 3.587(x2
1 + x2

2) + 0.7�ur�). (90)

It is seen later that the values of α1 is related to how fast the system approaches the sliding
surface, s = 0 for a fixed number of λ = 0.
To find the linear control gain, K, for performance L2-gain measure, we follow the
computation algorithm outlined in (64) and the parametric matrices of (41) are as follows,

G = I − BM =

�
1 0
0 0

�
, Bw = GBd =

�
0.04

0

�
, Bp = G(E0 I I) =

�
1.4 1 0 1 0
0 0 0 0 0

�

Cq =

⎛
⎜⎜⎜⎜⎝

−0.1 0.03
1 0
0 1
1 0
0 1

⎞
⎟⎟⎟⎟⎠

, Cz =

�
1 0
0 1

�
, Dz =

�
1
1

�
.

The simulated results of closed-loop system for integral sliding-mode with L2-gain measure
are shown in Fig.1, Fig.2, and Fig.3 under the adjust factor α1 = 0.022 in (90). The linear
control gain K = [−18.1714 − 10.7033], which makes the eigenvalues of (A + BK) being
−4.3517 ± 0.4841j. It is seen in Fig.1(b) that the sliding surface starting from s = 0 at t = 0,
which matches the sliding surface design. Once the system started, the values of s deviate
rapidly from the sliding surface due to the integral part within it. Nevertheless, the feedback
control signals soon drive the trajectories of s approaching s = 0 and at time about t = 2.63 the
values of s hit the sliding surface, s = 0. After that, to maintain the sliding surface the sliding
control us starts chattering in view of Fig.2(b). When looking at the Fig.2(a) and (b), we see
that the sliding-mode control, us, dominates the feedback control action that the system is
pulling to the sliding surface. We also note that although the system is pulling to the sliding
surface, the states x2 has not yet reached its equilibrium, which can be seen from Fig.1(a). Not
until the sliding surface reaches, do the states asymptotically drive to their equilibrium. Fig.3
is the phase plot of states of x1 and x2 and depicts the same phenomenon. To show different
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approaching speed due to control factor α1 = 0.5, we see chattering phenomenon in the Fig.4,
Fig.5, and Fig.6. This is because of inherent property of sliding-mode control. We will draw
the same conclusions as for the case α1 = 0.022 with one extra comment that is we see the
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The simulated results of closed-loop system for integral sliding-mode with L2-gain measure
are shown in Fig.1, Fig.2, and Fig.3 under the adjust factor α1 = 0.022 in (90). The linear
control gain K = [−18.1714 − 10.7033], which makes the eigenvalues of (A + BK) being
−4.3517 ± 0.4841j. It is seen in Fig.1(b) that the sliding surface starting from s = 0 at t = 0,
which matches the sliding surface design. Once the system started, the values of s deviate
rapidly from the sliding surface due to the integral part within it. Nevertheless, the feedback
control signals soon drive the trajectories of s approaching s = 0 and at time about t = 2.63 the
values of s hit the sliding surface, s = 0. After that, to maintain the sliding surface the sliding
control us starts chattering in view of Fig.2(b). When looking at the Fig.2(a) and (b), we see
that the sliding-mode control, us, dominates the feedback control action that the system is
pulling to the sliding surface. We also note that although the system is pulling to the sliding
surface, the states x2 has not yet reached its equilibrium, which can be seen from Fig.1(a). Not
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180 Recent Advances in Robust Control – Novel Approaches and Design Methods Integral Sliding-Based Robust Control 17

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

1

1.5

x 1 a
nd

 x
2

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−50

0

50

100

150

time

s

(b)

x
1

x
2

Fig. 1. Integral sliding-mode-based robust control with L2-gain measure (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.022.

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

u r

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1

0

1

u s

time

(b)

Fig. 2. The control signals of (a) linear robust control, ur, (b) integral sliding-mode control, us
of integral sliding-mode-based robust control with L2-gain measure. α1 = 0.022.

approaching speed due to control factor α1 = 0.5, we see chattering phenomenon in the Fig.4,
Fig.5, and Fig.6. This is because of inherent property of sliding-mode control. We will draw
the same conclusions as for the case α1 = 0.022 with one extra comment that is we see the
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Fig. 3. The phase plot of state x1 and x2 of integral sliding-mode-based robust control with
L2-gain measure. α1 = 0.022.

trajectory of state x1 is always smoother that of x2. The reason for this is because the state x1
is the integration of the state x2, which makes the smoother trajectory possible.
Next, we will show the integral sliding-mode-based control with H2 performance. The
integral sliding-mode control, us is exactly the same as previous paragraph. The linear control
part satisfying (85) will now be used to find the linear control gain K. The gain K computed is
K = [−4.4586− 5.7791], which makes eigenvalues of (A+ BK) being −1.8895± 1.3741j. From
Fig.7, Fig.8, and Fig.9, we may draw the same conclusions as Fig.1 to Fig.6 do. We should be
aware that the H2 provides closed-loop poles closer to the imaginary axis than L2-gain case,
which slower the overall motion to the states equilibrium.
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Fig. 4. Integral sliding-mode-based robust control with L2-gain measure (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.5.

182 Recent Advances in Robust Control – Novel Approaches and Design Methods Integral Sliding-Based Robust Control 19

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

−5

0

5

u r

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
−40

−20

0

20

u s

time

(b)

Fig. 5. The control signals of (a) linear robust control, ur, (b) integral sliding-mode control, us
of integral sliding-mode-based robust control with L2-gain measure. α1 = 0.5.
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Fig. 7. Integral sliding-mode-based robust control with H2 performance (a) the closed-loop
states - x1 and x2, (b) the chattering phenomenon of sliding surface s(x, t). α1 = 0.06.
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H2 performance. α1 = 0.06.

6. Conclusion

In this chapter we have successfully developed the robust control for a class of uncertain
systems based-on integral sliding-mode control in the presence of nonlinearities, external
disturbances, and model uncertainties. Based-on the integral sliding-mode control where
reaching phase of conventional sliding-mode control is eliminated, the matched-type
nonlinearities and uncertainties have been nullified and the system is driven to the sliding
surface where sliding dynamics with unmatched-type nonlinearities and uncertainties will
further be compensated for resulting equilibrium. Integral sliding-mode control drives
the system maintaining the sliding surface with L2-gain bound while treating the sliding
surface as zero dynamics. Once reaching the sliding surface where s = 0, the robust
performance control for controlled variable z in terms of L2-gain and H2 measure with respect
to disturbance, w, acts to further compensate the system and leads the system to equilibrium.
The overall design effectiveness is implemented on a second-order system which proves the
successful design of the methods. Of course, there are issues which can still be pursued such
as we are aware that the control algorithms, say integral sliding-mode and L2-gain measure,
apply separate stability criterion that is integral sliding-mode has its own stability perspective
from Lyapunov function of integral sliding-surface while L2-gain measure also has its own
too, the question is: is it possible produce two different control vectors that jeopardize the
overall stability? This is the next issue to be developed.
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1. Introduction  
This Chapter describes a generalized design strategy of intelligent robust control systems 
based on quantum/soft computing technologies that enhance robustness of hybrid 
intelligent fuzzy controllers by supplying a self-organizing capability. Main ideas of self-
organization processes are discussed that are the background for robust knowledge base 
(KB) design. Principles and physical model examples of self-organization are described. 
Main quantum operators and general structure of quantum control algorithm of self-
organization are introduced. It is demonstrated that fuzzy controllers (FC) prepared to 
maintain control object (CO) in the prescribed conditions are often fail to control when such 
a conditions are dramatically changed. We propose the solution of such kind of problems by 
introducing a quantum generalization of strategies in fuzzy inference in on-line from a set of 
pre-defined FCs by new Quantum Fuzzy Inference (QFI) based systems. The latter is a new 
quantum algorithm (QA) in quantum computing without entanglement. A new structure of 
intelligent control system (ICS) with a quantum KB self-organization based on QFI is 
suggested. Robustness of control is the background for support the reliability of advanced 
control accuracy in uncertainty environments. We stress our attention on the robustness 
features of ICS’s with the effective simulation of Benchmarks. 

1.1 Method of solution 
Proposed QFI system consists of a few KB of FC (KB-FCs), each of which has prepared for 
appropriate conditions of CO and excitations by Soft Computing Optimizer (SCO). QFI system 
is a new quantum control algorithm of self-organization block, which performs post 
processing of the results of fuzzy inference of each independent FC and produces in on-line 
the generalized control signal output. In this case the output of QFI is an optimal robust 
control signal, which includes best features of the each independent FC outputs. Therefore the 
operation area of such a control system can be expanded greatly as well as its robustness.  

1.2 Main goal 
In this Chapter we give a brief introduction on soft computing tools for designing 
independent FC and then we will provide QFI methodology of quantum KB self-
organization in unforeseen situations. The simulation example of robust intelligent control 
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based on QFI is introduced. The role of self-organized KB design based on QFI in the 
solution of System of Systems Engineering problems is also discussed. 

2. Problem’s formulation  
Main problem in modern FC design is how to design and introduce robust KBs into control 
system for increasing self-learning, self-adaptation and self-organizing capabilities that enhance 
robustness of developed FC. The learning and adaptation aspects of FC’s have always the 
interesting topic in advanced control theory and system of systems engineering. Many 
learning schemes were based on the back-propagation (BP)-algorithm and its modifications. 
Adaptation processes are based on iterative stochastic algorithms. These ideas are 
successfully working if we perform our control task without a presence of ill-defined 
stochastic noises in environment or without a presence of unknown noises in sensors 
systems and control loop, and so on. For more complicated control situations learning and 
adaptation methods based on BP-algorithms or iterative stochastic algorithms do not 
guarantee the required robustness and accuracy of control.  
The solution of this problem based on SCO of KB was developed (Litvintseva et al., 2006).  
For achieving of self-organization level in intelligent control system it is necessary to use QFI 
(Litvintseva et al., 2007). 
The described self-organizing FC design method is based on special form of QFI that uses a 
few of partial KBs designed by SCO. In particularity, QFI uses the laws of quantum 
computing and explores three main unitary operations: (i) superposition; (ii) entanglement 
(quantum correlations); and (iii) interference. According to quantum gate computation, the 
logical union of a few KBs in one generalized space is realized with superposition operator; 
with entanglement operator (that can be equivalently described by different models of 
quantum oracle) a search of “successful” marked solution is formalized; and with interference 
operator we can extract “good” solutions together with classical measurement operations. Let 
us discuss briefly the main principles of self-organization that are used in the knowledge 
base self-organization of robust ICS. 

3. Principles and physical model examples of self-organization  
The theory of self-organization, learning and adaptation has grown out of a variety of 
disciplines, including quantum mechanics, thermodynamics, cybernetics, control theory and 
computer modeling. The present section reviews its most important definitions, principles, 
model descriptions and engineering concepts of self-organization processes that can be used 
in design of robust ICS’s.  

3.1 Definitions and main properties of self-organization processes 
Self-organization is defined in general form as following: The spontaneous emergence of large-
scale spatial, temporal, or spatiotemporal order in a system of locally interacting, relatively simple 
components. Self-organization is a bottom-up process where complex organization emerges 
at multiple levels from the interaction of lower-level entities. The final product is the result 
of nonlinear interactions rather than planning and design, and is not known a priori. 
Contrast this with the standard, top-down engineering design paradigm where planning 
precedes implementation, and the desired final system is known by design. Self-
organization can be defined as the spontaneous creation of a globally coherent pattern out of 
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local interactions. Because of its distributed character, this organization tends to be robust, 
resisting perturbations. The dynamics of a self-organizing system is typically nonlinear, 
because of circular or feedback relations between the components. Positive feedback leads to 
an explosive growth, which ends when all components have been absorbed into the new 
configuration, leaving the system in a stable, negative feedback state. Nonlinear systems 
have in general several stable states, and this number tends to increase (bifurcate) as an 
increasing input of energy pushes the system farther from its thermodynamic equilibrium. 
To adapt to a changing environment, the system needs a variety of stable states that is large 
enough to react to all perturbations but not so large as to make its evolution uncontrollably 
chaotic. The most adequate states are selected according to their fitness, either directly by 
the environment, or by subsystems that have adapted to the environment at an earlier stage.  
Formally, the basic mechanism underlying self-organization is the (often noise-driven) 
variation which explores different regions in the system’s state space until it enters an 
attractor. This precludes further variation outside the attractor, and thus restricts the 
freedom of the system’s components to behave independently. This is equivalent to the 
increase of coherence, or decrease of statistical entropy, that defines self-organization. The most 
obvious change that has taken place in systems is the emergence of global organization. 
Initially the elements of the system (spins or molecules) were only interacting locally. This 
locality of interactions follows from the basic continuity of all physical processes: for any 
influence to pass from one region to another it must first pass through all intermediate 
regions.  
In the self-organized state, on the other hand, all segments of the system are strongly 
correlated. This is most clear in the example of the magnet: in the magnetized state, all spins, 
however far apart, point in the same direction. Correlation is a useful measure to study the 
transition from the disordered to the ordered state. Locality implies that neighboring 
configurations are strongly correlated, but that this correlation diminishes as the distance 
between configurations increases. The correlation length can be defined as the maximum 
distance over which there is a significant correlation. When we consider a highly organized 
system, we usually imagine some external or internal agent (controller) that is responsible 
for guiding, directing or controlling that organization. The controller is a physically distinct 
subsystem that exerts its influence over the rest of the system. In this case, we may say that 
control is centralized. In self-organizing systems, on the other hand, “control” of the 
organization is typically distributed over the whole of the system. All parts contribute evenly 
to the resulting arrangement.  
A general characteristic of self-organizing systems is as following: they are robust or resilient. 
This means that they are relatively insensitive to perturbations or errors, and have a strong 
capacity to restore themselves, unlike most human designed systems. One reason for this 
fault-tolerance is the redundant, distributed organization: the non-damaged regions can 
usually make up for the damaged ones. Another reason for this intrinsic robustness is that 
self-organization thrives on randomness, fluctuations or “noise”. A certain amount of random 
perturbations will facilitate rather than hinder self-organization. A third reason for resilience 
is the stabilizing effect of feedback loops. Many self-organizational processes begin with the 
amplification (through positive feedback) of initial random fluctuations. This breaks the 
symmetry of the initial state, but often in unpredictable but operationally equivalent ways. 
That is, the job gets done, but hostile forces will have difficulty predicting precisely how it 
gets done.  



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

188 

based on QFI is introduced. The role of self-organized KB design based on QFI in the 
solution of System of Systems Engineering problems is also discussed. 

2. Problem’s formulation  
Main problem in modern FC design is how to design and introduce robust KBs into control 
system for increasing self-learning, self-adaptation and self-organizing capabilities that enhance 
robustness of developed FC. The learning and adaptation aspects of FC’s have always the 
interesting topic in advanced control theory and system of systems engineering. Many 
learning schemes were based on the back-propagation (BP)-algorithm and its modifications. 
Adaptation processes are based on iterative stochastic algorithms. These ideas are 
successfully working if we perform our control task without a presence of ill-defined 
stochastic noises in environment or without a presence of unknown noises in sensors 
systems and control loop, and so on. For more complicated control situations learning and 
adaptation methods based on BP-algorithms or iterative stochastic algorithms do not 
guarantee the required robustness and accuracy of control.  
The solution of this problem based on SCO of KB was developed (Litvintseva et al., 2006).  
For achieving of self-organization level in intelligent control system it is necessary to use QFI 
(Litvintseva et al., 2007). 
The described self-organizing FC design method is based on special form of QFI that uses a 
few of partial KBs designed by SCO. In particularity, QFI uses the laws of quantum 
computing and explores three main unitary operations: (i) superposition; (ii) entanglement 
(quantum correlations); and (iii) interference. According to quantum gate computation, the 
logical union of a few KBs in one generalized space is realized with superposition operator; 
with entanglement operator (that can be equivalently described by different models of 
quantum oracle) a search of “successful” marked solution is formalized; and with interference 
operator we can extract “good” solutions together with classical measurement operations. Let 
us discuss briefly the main principles of self-organization that are used in the knowledge 
base self-organization of robust ICS. 

3. Principles and physical model examples of self-organization  
The theory of self-organization, learning and adaptation has grown out of a variety of 
disciplines, including quantum mechanics, thermodynamics, cybernetics, control theory and 
computer modeling. The present section reviews its most important definitions, principles, 
model descriptions and engineering concepts of self-organization processes that can be used 
in design of robust ICS’s.  

3.1 Definitions and main properties of self-organization processes 
Self-organization is defined in general form as following: The spontaneous emergence of large-
scale spatial, temporal, or spatiotemporal order in a system of locally interacting, relatively simple 
components. Self-organization is a bottom-up process where complex organization emerges 
at multiple levels from the interaction of lower-level entities. The final product is the result 
of nonlinear interactions rather than planning and design, and is not known a priori. 
Contrast this with the standard, top-down engineering design paradigm where planning 
precedes implementation, and the desired final system is known by design. Self-
organization can be defined as the spontaneous creation of a globally coherent pattern out of 

 
Self-Organized Intelligent Robust Control Based on Quantum Fuzzy Inference 

 

189 

local interactions. Because of its distributed character, this organization tends to be robust, 
resisting perturbations. The dynamics of a self-organizing system is typically nonlinear, 
because of circular or feedback relations between the components. Positive feedback leads to 
an explosive growth, which ends when all components have been absorbed into the new 
configuration, leaving the system in a stable, negative feedback state. Nonlinear systems 
have in general several stable states, and this number tends to increase (bifurcate) as an 
increasing input of energy pushes the system farther from its thermodynamic equilibrium. 
To adapt to a changing environment, the system needs a variety of stable states that is large 
enough to react to all perturbations but not so large as to make its evolution uncontrollably 
chaotic. The most adequate states are selected according to their fitness, either directly by 
the environment, or by subsystems that have adapted to the environment at an earlier stage.  
Formally, the basic mechanism underlying self-organization is the (often noise-driven) 
variation which explores different regions in the system’s state space until it enters an 
attractor. This precludes further variation outside the attractor, and thus restricts the 
freedom of the system’s components to behave independently. This is equivalent to the 
increase of coherence, or decrease of statistical entropy, that defines self-organization. The most 
obvious change that has taken place in systems is the emergence of global organization. 
Initially the elements of the system (spins or molecules) were only interacting locally. This 
locality of interactions follows from the basic continuity of all physical processes: for any 
influence to pass from one region to another it must first pass through all intermediate 
regions.  
In the self-organized state, on the other hand, all segments of the system are strongly 
correlated. This is most clear in the example of the magnet: in the magnetized state, all spins, 
however far apart, point in the same direction. Correlation is a useful measure to study the 
transition from the disordered to the ordered state. Locality implies that neighboring 
configurations are strongly correlated, but that this correlation diminishes as the distance 
between configurations increases. The correlation length can be defined as the maximum 
distance over which there is a significant correlation. When we consider a highly organized 
system, we usually imagine some external or internal agent (controller) that is responsible 
for guiding, directing or controlling that organization. The controller is a physically distinct 
subsystem that exerts its influence over the rest of the system. In this case, we may say that 
control is centralized. In self-organizing systems, on the other hand, “control” of the 
organization is typically distributed over the whole of the system. All parts contribute evenly 
to the resulting arrangement.  
A general characteristic of self-organizing systems is as following: they are robust or resilient. 
This means that they are relatively insensitive to perturbations or errors, and have a strong 
capacity to restore themselves, unlike most human designed systems. One reason for this 
fault-tolerance is the redundant, distributed organization: the non-damaged regions can 
usually make up for the damaged ones. Another reason for this intrinsic robustness is that 
self-organization thrives on randomness, fluctuations or “noise”. A certain amount of random 
perturbations will facilitate rather than hinder self-organization. A third reason for resilience 
is the stabilizing effect of feedback loops. Many self-organizational processes begin with the 
amplification (through positive feedback) of initial random fluctuations. This breaks the 
symmetry of the initial state, but often in unpredictable but operationally equivalent ways. 
That is, the job gets done, but hostile forces will have difficulty predicting precisely how it 
gets done.  



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

190 

3.2 Principles of self-organization 
A system can cope with an unpredictable environment autonomously using different but 
closely related approaches: 
• Adaptation (learning, evolution). The system changes its behavior to cope with the 

change. 
• Anticipation (cognition). The system predicts a change to cope with, and adjusts its 

behavior accordingly. This is a special case of adaptation, where the system does not 
require experiencing a situation before responding to it. 

• Robustness. A system is robust if it continues to function in the face of perturbations. 
This can be achieved with modularity, degeneracy, distributed robustness, or 
redundancy. Successful self-organizing systems will use combinations of these 
approaches to maintain their integrity in a changing and unexpected environment.  
- Adaptation will enable the system to modify itself to “fit” better within the 

environment.  
- Robustness will allow the system to withstand changes without losing its function 

or purpose, and thus allowing it to adapt.  
- Anticipation will prepare the system for changes before these occur, adapting the 

system without it being perturbed.  
Let us consider the peculiarities of common parts in self-organization models: (i)  Models of 
self-organizations on macro-level are used the information from micro-level that support 
thermodynamic relations (second law of thermodynamics: increasing and decreasing of 
entropy on micro- and macro-levels, correspondingly) of dynamic evolution; (ii) Self-
organization processes are used transport of the information on/to macro- and from micro-
levels in different hidden forms; (iii) Final states of self-organized structure have minimum 
of entropy production; (iv) In natural self-organization processes are don’t planning types of 
correlation before the evolution (Nature given the type of corresponding correlation 
through genetic coding of templates in self-assembly); (v) Coordination control for design of 
self-organization structure is used; (vi) Random searching process for self-organization 
structure design is applied; (vii) Natural models are biologically inspired evolution dynamic 
models and are used current classical information for decision-making (but don’t have 
toolkit for extraction and exchanging of hidden quantum information from dynamic 
behavior of control object). 

3.3 Quantum control algorithm of self-organization processes  
In man-made self-organization types of correlations and control of self-organization are 
developed before the design of the searching structure. Thus the future design algorithm of 
self-organization must include these common peculiarities of bio-inspired and man-made 
processes: quantum hidden correlations and information transport.  
Figure 1 shows the structure of a new quantum control algorithm of self-organization that 
includes the above mentioned properties. 
Remark. The developed quantum control algorithm includes three possibilities: (i) from the 
simplest living organism composition in response to external stimuli of bacterial and 
neuronal self-organization; and (ii) according to correlation information stored in the DNA; 
(iii) from quantum hidden correlations and information transport used in quantum dots.  
Quantum control algorithm of self-organization design in intelligent control systems based 
on QFI-model is described in (Litvintseva et al., 2009). Below we will describe the Level 1 
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(see, Fig. 1) based on QFI model as the background of robust KB design information 
technology. QFI model is described in details (Litvintseva et al., 2007) and used here as 
toolkit.  
 

 
Fig. 1. General structure of quantum control algorithm of self-organization 

Analysis of self-organization models gives us the following results. Models of self-
organization are included natural quantum effects and based on the following information-
thermodynamic concepts: (i) macro- and micro-level interactions with information exchange 
(in ABM micro-level is the communication space where the inter-agent messages are 
exchange and is explained by increased entropy on a micro-level); (ii) communication and 
information transport on micro-level (“quantum mirage” in quantum corrals); (iii) different 
types of quantum spin correlation that design different structure in self-organization 
(quantum dot); (iv) coordination control (swam-bot and snake-bot). 
Natural evolution processes are based on the following steps: (i) templating; (iii) self-
assembling; and (iii) self-organization.  
According quantum computing theory in general form every QA includes the following 
unitary quantum operators: (i) superposition; (ii) entanglement (quantum oracle); (iii) 
interference. Measurement is the fourth classical operator. [It is irreversible operator and is 
used for measurement of computation results].  
Quantum control algorithm of self-organization that developed below is based on QFI 
models. QFI includes these concepts of self-organization and has realized by corresponding 
quantum operators. 
Structure of QFI that realize the self-organization process is developed. QFI is one of 
possible realization of quantum control algorithm of self-organization that includes all of 
these features: (i) superposition; (ii) selection of quantum correlation types; (iii) information 
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Analysis of self-organization models gives us the following results. Models of self-
organization are included natural quantum effects and based on the following information-
thermodynamic concepts: (i) macro- and micro-level interactions with information exchange 
(in ABM micro-level is the communication space where the inter-agent messages are 
exchange and is explained by increased entropy on a micro-level); (ii) communication and 
information transport on micro-level (“quantum mirage” in quantum corrals); (iii) different 
types of quantum spin correlation that design different structure in self-organization 
(quantum dot); (iv) coordination control (swam-bot and snake-bot). 
Natural evolution processes are based on the following steps: (i) templating; (iii) self-
assembling; and (iii) self-organization.  
According quantum computing theory in general form every QA includes the following 
unitary quantum operators: (i) superposition; (ii) entanglement (quantum oracle); (iii) 
interference. Measurement is the fourth classical operator. [It is irreversible operator and is 
used for measurement of computation results].  
Quantum control algorithm of self-organization that developed below is based on QFI 
models. QFI includes these concepts of self-organization and has realized by corresponding 
quantum operators. 
Structure of QFI that realize the self-organization process is developed. QFI is one of 
possible realization of quantum control algorithm of self-organization that includes all of 
these features: (i) superposition; (ii) selection of quantum correlation types; (iii) information 
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transport and quantum oracle; and (iv) interference. With superposition is realized templating 
operation, and based on macro- and micro-level interactions with information exchange of 
active agents. Selection of quantum correlation type organize self-assembling using power 
source of communication and information transport on micro-level. In this case the type of 
correlation defines the level of robustness in designed KB of FC. Quantum oracle calculates 
intelligent quantum state that includes the most important (value) information transport for 
coordination control. Interference is used for extraction the results of coordination control and 
design in on-line robust KB.  
The developed QA of self-organization is applied to design of robust KB of FC in 
unpredicted control situations.  
Main operations of developed QA and concrete examples of QFI applications are described. 
The goal of quantum control algorithm of self-organization in Fig. 1 is the support of 
optimal thermodynamic trade-off between stability, controllability and robustness of control 
object behavior using robust self-organized KB of ICS. 
Q. Why with thermodynamics approach we can organize trade-off between stability, controllability 
and robustness? 
Let us consider the answer on this question.  

3.4 Thermodynamics trade-off between stability, controllability, and robustness 
Consider a dynamic control object given by the equation 

 ( ) ( )( ) ( ), , , , ,    , ,d

dq q S t t u t u f q q t
dt

= ϕ ξ = , (1) 

where q is the vector of generalized coordinates describing the dynamics of the control 
object; S is the generalized entropy of dynamic system (1); u is the control force (the output 
of the actuator of the automatic control system); ( )dq t  is reference signal, ( )tξ  is random 
disturbance and t is the time. The necessary and sufficient conditions of asymptotic stability 
of dynamic system (1) with ( ) 0tξ ≡ are determined by the physical constraints on the form 
of the Lyapunov function, which possesses two important properties represented by the 
following conditions:   
i. This is a strictly positive function of generalized coordinates, i.e., 0V > ;  
ii. The complete derivative in time of the Lyapunov function is a non-positive function,  

 0dV
dt

≤ .  

In general case the Lagrangian dynamic system (1) is not lossless with corresponding 
outputs.  
By conditions (i) and (ii), as the generalized Lyapunov function, we take the function 
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where cob cS S S= − is the production of entropy in the open system “control object + controller”; 
( ), ,cobS q q t= Ψ is the production of entropy in the control object; and  ( ),cS e t= ϒ is the 

production of entropy in the controller (actuator of the automatic control system). It is 
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possible to introduce the entropy characteristics in Eqs. (1) and (2) because of the scalar 
property of entropy as a function of time, ( )S t .  
Remark. It is worth noting that the presence of entropy production in (2) as a parameter (for 
example, entropy production term in dissipative process in Eq. (1)) reflects the dynamics of 
the behavior of the control object and results in a new class of substantially nonlinear 
dynamic automatic control systems. The choice of the minimum entropy production both in 
the control object and in the fuzzy PID controller as a fitness function in the genetic 
algorithm allows one to obtain feasible robust control laws for the gains in the fuzzy PID 
controller. The entropy production of a dynamic system is characterized uniquely by the 
parameters of the nonlinear dynamic automatic control system, which results in 
determination of an optimal selective trajectory from the set of possible trajectories in 
optimization problems. 

Thus, the first condition is fulfilled automatically. Assume that the second condition 0dV
dt

≤  

holds. In this case, the complete derivative of the Lyapunov function (2) has the form  

( ) ( )( ), , ,i i i i cob c cob c
i i

dV q q SS q q S t u S S S S
dt

= + = ϕ + − −∑ ∑  

Taking into account (1) and the notation introduced above, we have 

 ( )( ) ( )( )
RobustnessStability Controllability

, , , 0i i
i

dV q q t u
dt

= ϕ Ψ − ϒ + Ψ − ϒ Ψ − ϒ ≤∑   (3) 

Relation (3) relates the stability, controllability, and robustness properties.  
Remark. It was introduced the new physical measure of control quality (3) to complex non-
linear controlled objects described as non-linear dissipative models. This physical measure 
of control quality is based on the physical law of minimum entropy production rate in ICS 
and in dynamic behavior of complex control object. The problem of the minimum entropy 
production rate is equivalent with the associated problem of the maximum released 
mechanical work as the optimal solutions of corresponding Hamilton-Jacobi-Bellman 
equations. It has shown that the variational fixed-end problem of the maximum work W  is 
equivalent to the variational fixed-end problem of the minimum entropy production. In this 
case both optimal solutions are equivalent for the dynamic control of complex systems and 
the principle of minimum of entropy production guarantee the maximal released 
mechanical work with intelligent operations. This new physical measure of control quality 
we using as fitness function of GA in optimal control system design. Such state corresponds 
to the minimum of system entropy.  
The introduction of physical criteria (the minimum entropy production rate) can guarantee 
the stability and robustness of control. This method differs from aforesaid design method in 
that a new intelligent global feedback in control system is introduced. The interrelation 
between the stability of control object (the Lyapunov function) and controllability (the 
entropy production rate) is used. The basic peculiarity of the given method is the necessity 
of model investigation for CO and the calculation of entropy production rate through the 
parameters of the developed model. The integration of joint systems of equations (the 
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transport and quantum oracle; and (iv) interference. With superposition is realized templating 
operation, and based on macro- and micro-level interactions with information exchange of 
active agents. Selection of quantum correlation type organize self-assembling using power 
source of communication and information transport on micro-level. In this case the type of 
correlation defines the level of robustness in designed KB of FC. Quantum oracle calculates 
intelligent quantum state that includes the most important (value) information transport for 
coordination control. Interference is used for extraction the results of coordination control and 
design in on-line robust KB.  
The developed QA of self-organization is applied to design of robust KB of FC in 
unpredicted control situations.  
Main operations of developed QA and concrete examples of QFI applications are described. 
The goal of quantum control algorithm of self-organization in Fig. 1 is the support of 
optimal thermodynamic trade-off between stability, controllability and robustness of control 
object behavior using robust self-organized KB of ICS. 
Q. Why with thermodynamics approach we can organize trade-off between stability, controllability 
and robustness? 
Let us consider the answer on this question.  

3.4 Thermodynamics trade-off between stability, controllability, and robustness 
Consider a dynamic control object given by the equation 
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where q is the vector of generalized coordinates describing the dynamics of the control 
object; S is the generalized entropy of dynamic system (1); u is the control force (the output 
of the actuator of the automatic control system); ( )dq t  is reference signal, ( )tξ  is random 
disturbance and t is the time. The necessary and sufficient conditions of asymptotic stability 
of dynamic system (1) with ( ) 0tξ ≡ are determined by the physical constraints on the form 
of the Lyapunov function, which possesses two important properties represented by the 
following conditions:   
i. This is a strictly positive function of generalized coordinates, i.e., 0V > ;  
ii. The complete derivative in time of the Lyapunov function is a non-positive function,  
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In general case the Lagrangian dynamic system (1) is not lossless with corresponding 
outputs.  
By conditions (i) and (ii), as the generalized Lyapunov function, we take the function 
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possible to introduce the entropy characteristics in Eqs. (1) and (2) because of the scalar 
property of entropy as a function of time, ( )S t .  
Remark. It is worth noting that the presence of entropy production in (2) as a parameter (for 
example, entropy production term in dissipative process in Eq. (1)) reflects the dynamics of 
the behavior of the control object and results in a new class of substantially nonlinear 
dynamic automatic control systems. The choice of the minimum entropy production both in 
the control object and in the fuzzy PID controller as a fitness function in the genetic 
algorithm allows one to obtain feasible robust control laws for the gains in the fuzzy PID 
controller. The entropy production of a dynamic system is characterized uniquely by the 
parameters of the nonlinear dynamic automatic control system, which results in 
determination of an optimal selective trajectory from the set of possible trajectories in 
optimization problems. 

Thus, the first condition is fulfilled automatically. Assume that the second condition 0dV
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holds. In this case, the complete derivative of the Lyapunov function (2) has the form  
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Relation (3) relates the stability, controllability, and robustness properties.  
Remark. It was introduced the new physical measure of control quality (3) to complex non-
linear controlled objects described as non-linear dissipative models. This physical measure 
of control quality is based on the physical law of minimum entropy production rate in ICS 
and in dynamic behavior of complex control object. The problem of the minimum entropy 
production rate is equivalent with the associated problem of the maximum released 
mechanical work as the optimal solutions of corresponding Hamilton-Jacobi-Bellman 
equations. It has shown that the variational fixed-end problem of the maximum work W  is 
equivalent to the variational fixed-end problem of the minimum entropy production. In this 
case both optimal solutions are equivalent for the dynamic control of complex systems and 
the principle of minimum of entropy production guarantee the maximal released 
mechanical work with intelligent operations. This new physical measure of control quality 
we using as fitness function of GA in optimal control system design. Such state corresponds 
to the minimum of system entropy.  
The introduction of physical criteria (the minimum entropy production rate) can guarantee 
the stability and robustness of control. This method differs from aforesaid design method in 
that a new intelligent global feedback in control system is introduced. The interrelation 
between the stability of control object (the Lyapunov function) and controllability (the 
entropy production rate) is used. The basic peculiarity of the given method is the necessity 
of model investigation for CO and the calculation of entropy production rate through the 
parameters of the developed model. The integration of joint systems of equations (the 
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equations of mechanical model motion and the equations of entropy production rate) enable 
to use the result as the fitness function in GA.  
Remark. The concept of an energy-based hybrid controller can be viewed from (3) also as a 
feedback control technique that exploits the coupling between a physical dynamical system 
and an energy-based controller to efficiently remove energy from the physical system. 
According to (3) we have  

( )( ) ( )( ), , , 0i i
i

q q t uϕ Ψ − ϒ + Ψ − ϒ Ψ − ϒ ≤∑ , or 

 ( )( ) ( )( ), , ,i i
i

q q t uϕ Ψ − ϒ ≤ Ψ − ϒ ϒ −Ψ∑ .  (4) 

Therefore, we have different possibilities for support inequalities in (4) as following:  

(i) ( ) ( )0, , , 0i i
i

q q SS< Ψ > ϒ ϒ > Ψ >∑ ; 

(ii) ( ) ( )0, , , 0i i
i

q q SS< Ψ < ϒ ϒ < Ψ >∑ ; 

                        (iii) ( ) ( )0, ; , 0,i i i i
i i

q q SS q q SS< Ψ < ϒ ϒ > Ψ < <∑ ∑  , etc 

and its combinations, that means thermodynamically stabilizing compensator can be 
constructed. These inequalities specifically, if a dissipative or lossless plant is at high energy 
level, and a lossless feedback controller at a low energy level is attached to it, then energy 
will generally tends to flow from the plant into the controller, decreasing the plant energy 
and increasing the controller energy. Emulated energy, and not physical energy, is 
accumulated by the controller. Conversely, if the attached controller is at a high energy level 
and a plant is at a low energy level, then energy can flow from the controller to the plant, 
since a controller can generate real, physical energy to effect the required energy flow. 
Hence, if and when the controller states coincide with a high emulated energy level, then it 
is possible reset these states to remove the emulated energy so that the emulated energy is 
not returned to the CO.  
In this case, the overall closed-loop system consisting of the plant and the controller 
possesses discontinuous flows since it combines logical switching with continuous 
dynamics, leading to impulsive differential equations. Every time the emulated energy of 
the controller reaches its maximum, the states of the controller reset in such a way that the 
controller's emulated energy becomes zero.  
Alternatively, the controller states can be made reset every time the emulated energy is 
equal to the actual energy of the plant, enforcing the second law of thermodynamics that 
ensures that the energy flows from the more energetic system (the plant) to the less 
energetic system (the controller). The proof of asymptotic stability of the closed-loop system 
in this case requires the non-trivial extension of the hybrid invariance principle, which in 
turn is a very recent extension of the classical Barbashin-Krasovskii invariant set theorem. The 
subtlety here is that the resetting set is not a closed set and as such a new transversality 
condition involving higher-order Lie derivatives is needed.  
Main goal of robust intelligent control is support of optimal trade-off between stability, 
controllability and robustness with thermodynamic relation as (3) or (4) as 
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thermodynamically stabilizing compensator. The resetting set is thus defined to be the set of 
all points in the closed-loop state space that correspond to decreasing controller emulated 
energy. By resetting the controller states, the plant energy can never increase after the first 
resetting event. Furthermore, if the closed-loop system total energy is conserved between 
resetting events, then a decrease in plant energy is accompanied by a corresponding 
increase in emulated energy. Hence, this approach allows the plant energy to flow to the 
controller, where it increases the emulated energy but does not allow the emulated energy 
to flow back to the plant after the first resetting event.  
This energy dissipating hybrid controller effectively enforces a one-way energy transfer 
between the control object and the controller after the first resetting event. For practical 
implementation, knowledge of controller and object outputs is sufficient to determine 
whether or not the closed-loop state vector is in the resetting set. Since the energy-based 
hybrid controller architecture involves the exchange of energy with conservation laws 
describing transfer, accumulation, and dissipation of energy between the controller and 
the plant, we can construct a modified hybrid controller that guarantees that the closed-
loop system is consistent with basic thermodynamic principles after the first resetting 
event.  
The entropy of the closed-loop system strictly increases between resetting events after the 
first resetting event, which is consistent with thermodynamic principles. This is not 
surprising since in this case the closed-loop system is adiabatically isolated (i.e., the system 
does not exchange energy (heat) with the environment) and the total energy of the closed-
loop system is conserved between resetting events. Alternatively, the entropy of the closed-
loop system strictly decreases across resetting events since the total energy strictly decreases 
at each resetting instant, and hence, energy is not conserved across resetting events. 
Entropy production rate is a continuously differentiable function that defines the resetting 
set as its zero level set. Thus the resetting set is motivated by thermodynamic principles and 
guarantees that the energy of the closed-loop system is always flowing from regions of 
higher to lower energies after the first resetting event, which is in accordance with the 
second law of thermodynamics. This guarantees the existence of entropy function for the 
closed-loop system that satisfies the Clausius-type inequality between resetting events. 
Hence, it is reset the compensator states in order to ensure that the second law of 
thermodynamics is not violated. Furthermore, in this case, the hybrid controller with 
resetting set is a thermodynamically stabilizing compensator. Analogous 
thermodynamically stabilizing compensators can be constructed for lossless dynamical 
systems.  
Equation (3) joint in analytic form different measures of control quality such as stability, 
controllability, and robustness supporting the required level of reliability and accuracy. As 
particular case Eq. (3) includes the entropic principle of robustness. Consequently, the 
interrelation between the Lyapunov stability and robustness described by Eq. (3) is the main 
physical law for designing automatic control systems. This law provides the background for 
an applied technique of designing KBs of robust intelligent control systems (with different 
levels of intelligence) with the use of soft computing.  
In concluding this section, we formulate the following conclusions: 
1. The introduced physical law of intelligent control (3) provides a background of design   

of robust KB’s of ICS’s (with different levels of intelligence) based on soft computing. 
2. The technique of soft computing gives the opportunity to develop a universal 

approximator in the form of a fuzzy automatic control system, which elicits information 
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equations of mechanical model motion and the equations of entropy production rate) enable 
to use the result as the fitness function in GA.  
Remark. The concept of an energy-based hybrid controller can be viewed from (3) also as a 
feedback control technique that exploits the coupling between a physical dynamical system 
and an energy-based controller to efficiently remove energy from the physical system. 
According to (3) we have  
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and its combinations, that means thermodynamically stabilizing compensator can be 
constructed. These inequalities specifically, if a dissipative or lossless plant is at high energy 
level, and a lossless feedback controller at a low energy level is attached to it, then energy 
will generally tends to flow from the plant into the controller, decreasing the plant energy 
and increasing the controller energy. Emulated energy, and not physical energy, is 
accumulated by the controller. Conversely, if the attached controller is at a high energy level 
and a plant is at a low energy level, then energy can flow from the controller to the plant, 
since a controller can generate real, physical energy to effect the required energy flow. 
Hence, if and when the controller states coincide with a high emulated energy level, then it 
is possible reset these states to remove the emulated energy so that the emulated energy is 
not returned to the CO.  
In this case, the overall closed-loop system consisting of the plant and the controller 
possesses discontinuous flows since it combines logical switching with continuous 
dynamics, leading to impulsive differential equations. Every time the emulated energy of 
the controller reaches its maximum, the states of the controller reset in such a way that the 
controller's emulated energy becomes zero.  
Alternatively, the controller states can be made reset every time the emulated energy is 
equal to the actual energy of the plant, enforcing the second law of thermodynamics that 
ensures that the energy flows from the more energetic system (the plant) to the less 
energetic system (the controller). The proof of asymptotic stability of the closed-loop system 
in this case requires the non-trivial extension of the hybrid invariance principle, which in 
turn is a very recent extension of the classical Barbashin-Krasovskii invariant set theorem. The 
subtlety here is that the resetting set is not a closed set and as such a new transversality 
condition involving higher-order Lie derivatives is needed.  
Main goal of robust intelligent control is support of optimal trade-off between stability, 
controllability and robustness with thermodynamic relation as (3) or (4) as 
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thermodynamically stabilizing compensator. The resetting set is thus defined to be the set of 
all points in the closed-loop state space that correspond to decreasing controller emulated 
energy. By resetting the controller states, the plant energy can never increase after the first 
resetting event. Furthermore, if the closed-loop system total energy is conserved between 
resetting events, then a decrease in plant energy is accompanied by a corresponding 
increase in emulated energy. Hence, this approach allows the plant energy to flow to the 
controller, where it increases the emulated energy but does not allow the emulated energy 
to flow back to the plant after the first resetting event.  
This energy dissipating hybrid controller effectively enforces a one-way energy transfer 
between the control object and the controller after the first resetting event. For practical 
implementation, knowledge of controller and object outputs is sufficient to determine 
whether or not the closed-loop state vector is in the resetting set. Since the energy-based 
hybrid controller architecture involves the exchange of energy with conservation laws 
describing transfer, accumulation, and dissipation of energy between the controller and 
the plant, we can construct a modified hybrid controller that guarantees that the closed-
loop system is consistent with basic thermodynamic principles after the first resetting 
event.  
The entropy of the closed-loop system strictly increases between resetting events after the 
first resetting event, which is consistent with thermodynamic principles. This is not 
surprising since in this case the closed-loop system is adiabatically isolated (i.e., the system 
does not exchange energy (heat) with the environment) and the total energy of the closed-
loop system is conserved between resetting events. Alternatively, the entropy of the closed-
loop system strictly decreases across resetting events since the total energy strictly decreases 
at each resetting instant, and hence, energy is not conserved across resetting events. 
Entropy production rate is a continuously differentiable function that defines the resetting 
set as its zero level set. Thus the resetting set is motivated by thermodynamic principles and 
guarantees that the energy of the closed-loop system is always flowing from regions of 
higher to lower energies after the first resetting event, which is in accordance with the 
second law of thermodynamics. This guarantees the existence of entropy function for the 
closed-loop system that satisfies the Clausius-type inequality between resetting events. 
Hence, it is reset the compensator states in order to ensure that the second law of 
thermodynamics is not violated. Furthermore, in this case, the hybrid controller with 
resetting set is a thermodynamically stabilizing compensator. Analogous 
thermodynamically stabilizing compensators can be constructed for lossless dynamical 
systems.  
Equation (3) joint in analytic form different measures of control quality such as stability, 
controllability, and robustness supporting the required level of reliability and accuracy. As 
particular case Eq. (3) includes the entropic principle of robustness. Consequently, the 
interrelation between the Lyapunov stability and robustness described by Eq. (3) is the main 
physical law for designing automatic control systems. This law provides the background for 
an applied technique of designing KBs of robust intelligent control systems (with different 
levels of intelligence) with the use of soft computing.  
In concluding this section, we formulate the following conclusions: 
1. The introduced physical law of intelligent control (3) provides a background of design   

of robust KB’s of ICS’s (with different levels of intelligence) based on soft computing. 
2. The technique of soft computing gives the opportunity to develop a universal 

approximator in the form of a fuzzy automatic control system, which elicits information 
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from the data of simulation of the dynamic behavior of the control object and the 
actuator of the automatic control system. 

3. The application of soft computing guarantees the purposeful design of the 
corresponding robustness level by an optimal design of the total number of production 
rules and types of membership functions in the KB. 

The main components and their interrelations in the information design technology are 
based on new types of (soft and quantum) computing. The key point of this information 
design technology is the use of the method of eliciting objective knowledge about the 
control process irrespective of the subjective experience of experts and the design of 
objective KB’s of a FC, which is principal component of a robust ICS.  
The output result of application of this information design technology is a robust KB of the 
FC that allows the ICS to operate under various types of information uncertainty. Self-
organized ICS based on soft computing technology can supports thermodynamic trade-off 
in interrelations between stability, controllability and robustness (Litvintseva et al., 2006).  
Remark. Unfortunately, soft computing approach also has bounded possibilities for global 
optimization while multi-objective GA can work on fixed space of searching solutions. It 
means that robustness of control can be guaranteed on similar unpredicted control 
situations. Also search space of GA choice expert. It means that exist the possibility that 
searching solution is not included in search space. (It is very difficult find black cat in dark 
room if you know that cat is absent in this room.) The support of optimal thermodynamic 
trade-off between stability, controllability and robustness in self-organization processes (see, 
Fig. 1) with (3) or (4) can be realized using a new quantum control algorithm of self-
organization in KB of robust FC based on quantum computing operations (that absent in 
soft computing toolkit).  
Let us consider the main self-organization idea and the corresponding structure of quantum 
control algorithm as QFI that can realize the self-organization process. 

4. QFI-structure and knowledge base self-organization based on quantum 
computing  
General physical approach to the different bio-inspired and man-made model’s description 
of self-organization principles from quantum computing viewpoint and quantum control 
algorithm of self-organization design are described. Particular case of this approach (based 
on early developed quantum swarm model) was introduced (see, in details (Litvintseva et 
al., 2009)). Types of quantum operators as superposition, entanglement and interference in 
different model’s evolution of self-organization processes are applied from quantum 
computing viewpoint. The physical interpretation of self-organization control process on 
quantum level is discussed based on the information-thermodynamic models of the 
exchange and extraction of quantum (hidden) value information from/between classical 
particle’s trajectories in particle swarm. New types of quantum correlations (as behavior 
control coordinator with quantum computation by communication) and information 
transport (value information) between particle swarm trajectories (communication through 
a quantum link) are introduced.  
We will show below that the structure of developed QFI model includes necessary self-
organization properties and realizes a self-organization process as a new QA. In particular 
case in intelligent control system (ICS) structure, QFI system is a QA block, which performs 
post-processing in on-line of the results of fuzzy inference of each independent FC and 
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produces the generalized control signal output. In this case the on-line output of QFI is an 
optimal robust control signal, which combines best features of the each independent FC 
outputs (self-organization principle).  
Thus QFI is one of the possible realizations of a general quantum control algorithm of the 
self-organization processes. 

4.1 Quantum Fuzzy Inference process based on quantum computing 
From computer science viewpoint the QA structure of QFI model (as a particular case of the 
general quantum control algorithm of self-organization) must includes following necessary 
QA features: superposition preparation; selection of quantum correlation types; quantum oracle 
(black box model) application and transportation of extracted information (dynamic 
evolution of “intelligent control state” with minimum entropy); a quantum correlation over a 
classical correlation as power source of computing; applications of an interference operator 
for the answer extraction; quantum parallel massive computation; amplitude amplification of 
searching solution; effective quantum solution of classical algorithmically unsolved problems. 
In this section we will show that we can use ideas of mathematical formalism of quantum 
mechanics for discovery new control algorithms that can be calculated on classical 
computers.  
Let us consider main ideas of our QFI algorithm. 
First of all, we must be able to construct normalized states 0  (for example, it can be called 
as “True”) and 1  (that can be called as “False”) for inputs to our QFI algorithm. In Hilbert 
space the superposition of classical states ( )0 10 1α + α  called a quantum bit (qubit) means 
that “True” and “False” are joined in one quantum state with different probability 
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single state, the Hadamard transform H  is used. H denotes the fundamental unitary matrix:  

1 11
1 12

H
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 . 

If the Hadamard operator H is applied to classical state 0  we receive the following result:  

( )1 1 1 1 1 01 1 1 10 0 1
1 1 1 0 102 2 2 2

H
⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⊗ ≡ = = + = +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
. 

Remark. The state 0  in a vector form is represented as a vector 
1
0
⎛ ⎞
⎜ ⎟
⎝ ⎠

 and state 1  is 

represented as a vector
0
1
⎛ ⎞
⎜ ⎟
⎝ ⎠

. So, a superposition of two classical states giving a quantum 

state represented as follows:  

( ) ( )( )1 0 0 1 0 1
2

P P quantum bitψ = + − = . 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

196 

from the data of simulation of the dynamic behavior of the control object and the 
actuator of the automatic control system. 
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If the Hadamard operator H is independently applied to different classical states then a 
tensor product of superposition states is the result: 

( )1

1
2

n n
in

H True True False⊗
=ψ = = ⊗ + . 

The fundamental result of quantum computation says that all of the computation can be 
embedded in a circuit, which nodes are the universal gates. These gates offer an expansion 
of unitary operator U  that evolves the system in order to perform some computation.  
Thus, naturally two problems are discussed: (1) Given a set of functional points ( ){ },S x y=  
find the operatorU such that y U x= ⋅ ; (2) Given a problem, fined the quantum circuit that 
solves it. Algorithms for solving these problems may be implemented in a hardware 
quantum gate or in software as computer programs running on a classical computer. It is 
shown that in quantum computing the construction of a universal quantum simulator based 
on classical effective simulation is possible. Hence, a quantum gate approach can be used in 
a global optimization of KB structures of ICS’s that are based on quantum computing, on a 
quantum genetic search and quantum learning algorithms.   
A general structure of QFI block is shown on Figure 2.  
In particularity, Figure 2 shows the structure of QFI algorithm for coding, searching and 
extracting the value information from the outputs of a few of independent fuzzy controllers 
with different knowledge bases (FC-KBs). 
Inputs to QFI are control signals 

{ ( ), ( ), ( )}i i i i
P D IK k t k t k t= , 

where index  i  means a number of KB (or FC) and t is a current temporal point.  
Remark. In advanced control theory, control signal { ( ), ( ), ( )}i i i i

P D IK k t k t k t=  is called as a PID 
gain coefficient schedule. We will call it as a control laws vector.   
These inputs are the outputs from fuzzy controllers (FC1, FC2, …,FCn) designed by SC 
Optimizer (SCO) tools for the given control task in different control situations (for example, 
in the presence of different stochastic noises).  Output of QFI block is a new, redesigned 
(self-organized), control signal. The robust laws designed by the model of QFI are 
determined in a learning mode based on the output responses of individual KB’s (with a 
fixed set of production rules) of corresponding FC’s (see below Fig. 2) to the current 
unpredicted control situation in the form signals for controlling coefficient gains schedule of 
the PID controller and implement the adaptation process in online.  
This effect is achieved only by the use of the laws of quantum information theory in the 
developed structure of QFI (see above the description of four facts from quantum 
information theory). 
From the point of view of quantum information theory, the structure of the quantum 
algorithm in QFI (Level 3, Fig. 1) plays the role of a quantum filter simultaneously. The KB’s 
consist of logical production rules, which, based on a given control error, form the laws of 
the coefficient gains schedule in the employed fuzzy PID controllers. 
The QA in this case allows one to extract the necessary valuable information from the 
responses of two (or more) KB’s to an unpredicted control situation by eliminating 
additional redundant information in the laws of the coefficient gains schedule of the 
controllers employed.  
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Fig. 2. Quantum Fuzzy Inference (QFI) block 

4.2 Requirements to QFI-model design and its features in quantum algorithm control 
of self-organization 
4.2.1 Main proposals and features of QFI model 
Main proposals and features of the developed swarm QFI-model in the solution of intelligent 
control problems are as following: 
A. Main proposals 
1. The digital value’s set of control signals produced by responses of FC outputs are 

considered as swarm particles along of classical control trajectories with individual 
marked intelligent agents; 

2. Communication between particle swarm trajectories through a quantum link is 
introduced;  

3. Intelligent agents are used different types of quantum correlations (as behavior control 
coordinator with quantum computation by communication) and information transport 
(value information); 

4. The (hidden) quantum value information extracted from classical states of control signal 
classical trajectories (with minimum entropy in “intelligent states” of designed robust 
control signals). 

B. Features 
1. Developed QFI model is based on thermodynamic and information-theoretic measures of 

intelligent agent interactions in communication space between macro- and micro-levels 
(the entanglement-assisted correlations in an active system represented by a collection 
of intelligent agents);  

2. From computer science viewpoint, QA of QFI model plays the role of the information-
algorithmic and SW-platform support for design of self-organization process;  
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3. Physically, QFI supports optimally a new developed thermodynamic trade-off of control 
performance (between stability, controllability and robustness) in self-organization KB 
process. 

From quantum information theory viewpoint, QFI reduces the redundant information in 
classical control signals using four facts (Litvintseva et al., 2007) from quantum information 
for data compression in quantum information processing: 1) efficient quantum data 
compression; 2) coupling (separation) of information in the quantum state in the form of 
classical and quantum components; 3) amount of total, classical, and quantum correlation; 
and 4) hidden (observable) classical correlation in the quantum state. 
We are developed the gate structure of QFI model with self-organization KB properties that 
includes all of these QA features (see, below Fig. 3) based on abovementioned proposals and 
general structure on Fig. 2. 
Let us discuss the following question. 
Q. What is a difference between our approach and Natural (or man-made) models of self-
organization? 
A. Main differences and features are as followings: 
• In our approach a self-organization process is described as a logical algorithmic process 

of value information extraction from hidden layers (possibilities) in classical control laws 
using quantum decision-making logic of QFI-models based on main facts of quantum 
information, quantum computing and QA’s theories (Level 3, Fig. 1); 

• Structure of QFI includes all of natural elements of self-organization (templating, self-
assembly, and self-organization structure) with corresponding quantum operators 
(superposition of initial states, selection of quantum correlation types and classes, 
quantum oracles, interference, and measurements) (Level 2, Fig. 1); 

• QFI is a new quantum search algorithm (belonging to so called QPB-class) that can 
solve classical algorithmically unsolved problems (Level 1, Fig. 1); 

• In QFI the self-organization principle is realized using the on-line responses in a 
dynamic behavior of classical FC’s on new control errors in unpredicted control 
situations for the  design of robust intelligent control (see Fig. 2); 

• Model of QFI supports the thermodynamic interrelations between stability, controllability 
and robustness for design of self-organization processes (Goal description level on Fig. 
1). 

Specific features of QFI applications in design of robust KB. Let us stress the fundamentally 
important specific feature of operation of the QA (in the QFI model) in the design process of 
robust laws for the coefficient gain schedules of fuzzy PID controllers based on the 
individual KB that designed on SCO with soft computing (Level 1, Fig. 1).  

4.2.2 Quantum information resources in QFI algorithm 
In this section we introduce briefly the particularities of quantum computing and quantum 
information theory that are used in the quantum block – QFI (see, Fig. 1) supporting a self-
organizing capability of FC in robust ICS. According to described above algorithm the input 
to the QFI gate is considered according Fig. 2 as a superposed quantum state 1 2( ) ( )K t K t⊗ , 
where 1,2 ( )K t  are the outputs from fuzzy controllers FC1 and FC2 designed by SCO (see, 
below Fig. 3) for the given control task in different control situations (for example, in the 
presence of different stochastic noises).  
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4.2.3 Quantum hidden information extraction in QFI  
Using the four facts from quantum information theory QFI extracts the hidden quantum 
value information from classical KB1 and KB2 (see, Figure 3).  
In this case between KB1 and KB2 (from quantum information theory of viewpoint) we 
organize a communication channel using quantum correlations that is impossible in classical 
communication theory. The algorithm of superposition calculation is presented below and 
described in details in (Litvintseva et al., 2007). 
We discuss for simplicity the situation in which an arbitrary amount of correlation is 
unlocked with a one-way message.  
Let us consider the communication process between two KBs as communication between 
two players A and B (see, Figs 2 and 3) and let 2nd = . According to the law of quantum 
mechanics, initially we must prepare a quantum state description by density matrix ρ  from 
two classical states (KB1 and KB2). The initial state ρ  is shared between subsystems held by 
A (KB1) and B (KB2), with respective dimensions d , 

 ( ) ( )
1 1

†

0 0

1
2

d

t tA Bk t
k k t t U k k U

d
−

= =
ρ = ⊗ ⊗∑∑ . (5) 

Here 0 1 and U I U=  changes the computational basis to a conjugate basis 
1 1 ,i U k d i k= ∀ .  

In this case, B chooses k  randomly from d states in two possible random bases, while A  

has complete knowledge on his state. The state (5) can arise from following scenario. A picks 
a random ′ρ -bit string k and sends B k  or nH k⊗ depending on whether the random bit 

0 or 1t = . Player A  can send t  to player B  to unlock the correlation later. Experimentally, 
Hadamard transform, H  and measurement on single qubits are sufficient to prepare the 
state (2), and later extract the unlocked correlation in ′ρ . The initial correlation is small, 

i.e. ( ) ( ) 1 log
2

l
ClI dρ = . The final amount of information after the complete measurement AM  

in one-way communication is ad hoc, ( ) ( ) ( ) log 1l
Cl ClI I d′ρ = ρ = + , i.e., the amount of accessible 

information increase.  
This phenomenon is impossible classically. However, states exhibiting this behaviour need not 
be entangled and corresponding communication can be organized using Hadamard 
transform. Therefore, using the Hadamard transformation and a new type of quantum 
correlation as the communication between a few KB’s it is possible to increase initial 
information by unconventional quantum correlation (as the quantum cognitive process of a 
value hidden information extraction in on-line, see, e.g. Fig. 3,b).In present section we 
consider a simplified case of QFI when with the Hadamard transform is organized an 
unlocked correlation in superposition of two KB’s; instead of the difficult defined 
entanglement operation an equivalent quantum oracle is modelled that can estimates an 
“intelligent state” with the maximum of amplitude probability in corresponding 
superposition of classical states (minimum entropy principle relative to extracted quantum 
knowledge (Litvintseva et al., 2009)). Interference operator extracts this maximum of 
amplitude probability with a classical measurement.  
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4.2.3 Quantum hidden information extraction in QFI  
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(a) 

 
 (b) 

Fig. 3. (a, b). Example of information extraction in QFI 
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Figure 4 shows the algorithm for coding, searching and extracting the value information 
from KB’s of fuzzy PID controllers designed by SCO and QCO (quantum computing 
optimizer).  
 

 
Fig. 4. The structure of QFI gate 

Optimal drawing process of value information from a few KBs that are designed by soft 
computing is based on following four facts from quantum information theory (Litvintseva et 
al., 2007): (i) the effective quantum data compression; (ii) the splitting of classical and 
quantum parts of information in quantum state; (iii) the total correlations in quantum state 
are “mixture” of classical and quantum correlations; and (iv) the exiting of hidden (locking) 
classical correlation in quantum state.  
This quantum control algorithm uses these four Facts from quantum information theory in 
following way: (i) compression of classical information by coding in computational basis 
{ }0 , 1  and forming the quantum correlation between different computational bases (Fact 
1); (ii) separating and splitting total information and correlations on “classical” and 
“quantum“ parts using Hadamard transform (Facts 2 and 3); (iii) extract unlocking 
information and residual redundant information by measuring the classical correlation in 
quantum state (Fact 4) using criteria of maximal corresponding amplitude probability. These 
facts are the informational resources of QFI background. Using these facts it is possible to 
extract an additional amount of quantum value information from smart KBs produced by 
SCO for design a wise control using compression and rejection procedures of the redundant 
information in a classical control signal.  
Below we discuss the application of this quantum control algorithm in QFI structure.  
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Figure 4 shows the algorithm for coding, searching and extracting the value information 
from KB’s of fuzzy PID controllers designed by SCO and QCO (quantum computing 
optimizer).  
 

 
Fig. 4. The structure of QFI gate 
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5. Structures of robust ICS and information design technology of quantum 
KB self-organization 
The kernel of the abovementioned FC design toolkit is a so-called SCO implementing 
advanced soft computing ideas. SCO is considered as a new flexible tool for design of 
optimal structure and robust KBs of FC based on a chain of genetic algorithms (GAs) with 
information-thermodynamic criteria for KB optimization and advanced error BP-algorithm 
for KB refinement. Input to SCO can be some measured or simulated data (called as 
‘teaching signal” (TS)) about the modelling system. For TS design (or for GA fitness 
evaluation) we use stochastic simulation system based on the control object model. More 
detail description of SCO is given in (Litvintseva et al., 2006). 
Figure 5 illustrates as an example the structure and main ideas of self-organized control 
system consisting of two FC’s coupling in one QFI chain that supplies a self-organizing 
capability. CO may be represented in physical form or in the form of mathematical model. 
We will use a mathematical model of CO described in Matlab-Simulink 7.1 (some results are 
obtained by using Matlab-Simulink 6.5). The kernel of the abovementioned FC design tools 
is a so-called SC Optimizer (SCO) implementing advanced soft computing ideas.  
 

 
Fig. 5. Structure of robust ICS based on QFI 

Figure 6 shows the structural diagram of the information technology and design stages of 
the objective KB for robust ICS’s based on new types of computational intelligence. 
Remark. Unconventional computational intelligence: Soft and quantum computing technologies. Soft 
computing and quantum computing are new types of unconventional computational 
intelligence (details see in http://www.qcoptimizer.com/). Technology of soft computing is 
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based on GA, fuzzy neural network, and fuzzy logic inference. Quantum computational 
intelligence is used quantum search algorithm, quantum neural network, and QFI. These 
algorithms are includes three main operators. In GA selection, crossover, and mutation 
operators are used. In quantum search algorithm superposition, entanglement, and 
interference are used.  
 

 
Fig. 6. Structure of robust KB information technology design for integrated fuzzy ICS 
(IFICS) (R.S. – reference signal) Information design technology includes two steps: 1) step 1 
based on SCO with soft computing; and 2) step 2 based on SCO with quantum computing.  

Main problem in this technology is the design of robust KB of FC that can include the self-
organization of knowledge in unpredicted control situations. The background of this design 
processes is KB optimizer based on quantum/soft computing. Concrete industrial 
Benchmarks (as ‘cart - pole’ system, robotic unicycle, robotic motorcycle, mobile robot for 
service use, semi-active car suspension system etc.) are tested successfully with the 
developed design technology. In particular case, the role of Kansei engineering in System of 
System Engineering is demonstrated. An application of developed toolkit in design of “Hu-
Machine technology” based on Kansei Engineering is demonstrated for emotion generating 
enterprise (purpose of enterprise).  
We illustrate the efficiency of application of QFI by a particular example. Positive applied 
results of classical computational technologies (as soft computing) together with quantum 
computing technology created a new alternative approach – applications of quantum 
computational intelligence technology to optimization of control processes in classical CO 
(physical analogy of inverse method investigation “quantum control system – classical CO”). 
We will discuss also the main goal and properties of quantum control design algorithm of 
self-organization robust KB in ICS. Benchmarks of robust intelligent control in unpredicted 
situation are introduced. 
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Therefore the operation area of such a control system can be expanded greatly as well as its 
robustness. Robustness of control signal is the background for support the reliability of 
control accuracy in uncertainty environments. The effectiveness of the developed QFI model 
is illustrated for important case - the application to design of robust control system in 
unpredicted control situations.  
The main technical purpose of QFI is to supply a self-organization capability for many 
(sometimes unpredicted) control situations based on a few KBs. QFI produces a robust 
optimal control signal for the current control situation using a reducing procedure and 
compression of redundant information in KB’s of individual FCs. Process of rejection and 
compression of redundant information in KB’s uses the laws of quantum information 
theory. Decreasing of redundant information in KB-FC increases the robustness of control 
without loss of important control quality as reliability of control accuracy. As a result, a few 
KB-FC with QFI can be adapted to unexpected change of external environments and to 
uncertainty in initial information.  
Let us discuss in detail the design process of robust KB in unpredicted situations. 

6. KB self-organization quantum algorithm of FC’s based on QFI 

We use real value of a current input control signal to design normalized state 0 . To define 
probability amplitude 0α  we will use simulation results of controlled object behavior in 
teaching conditions. In this case by using control signal values, we can construct histograms 
of control signals and then taking integral we can receive probability distribution function 
and calculate 0 0Pα = .  Then we can find 1 01 Pα = − . After that it is possible to define 
state 1  as shown on Fig. 7 below.  
 

 
Fig. 7. Example of control signal and corresponding probability distribution function 
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For QA design of QFI it is needed to apply the additional operations to partial KBs outputs 
that drawing and aggregate the value information from different KBs. Soft computing tool 
does not contain corresponding necessary operations. The necessary unitary reversible 
operations are called superposition, entanglement (quantum correlation) and interference that 
physically are operators of quantum computing.  
Consider main steps of developed QFI process that is considered as a QA.   
Step 1. Coding  

• Preparation of all normalized states 0   and 1  for current values of control 
signal { ( ), ( ), ( )}i i i

P D Ik t k t k t   (index i  means a number of KB) with respect to the chosen 
knowledge bases and corresponding probability distributions, including: 

• (a) calculation of probability amplitudes 0 1,α α   of states 0   and 1   from 
histograms;   

• (b) by using 1α   calculation of normalized value of state 1 . 
Step 2. Choose quantum correlation type for preparation of entangled state. In the Table 1 

investigated types of quantum correlations are shown. Take, for example, the 
following quantum correlation type: 

1 1 2 2{ ( ), ( ), ( ), ( )} ( ),new
P D P D Pk t k t k t k t k t→  

where 1 and 2 are indexes of KB. 
Then a quantum state 1 1 2 2

1 2 3 4 ( ) ( ) ( ) ( )P D P Da a a a k t k t k t k t=  is considered as correlated 
(entangled) state 
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Table 1. Types of quantum correlations 

Step 3. Superposition and entanglement. According to the chosen quantum correlation type 
construct superposition of entangled states as shown on general Fig. 8,a,b, where H 
is the Hadamard transform operator. 

Step 4. Interference and measurement 
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Fig. 8. The algorithm of superposition calculation 
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• Choose a quantum state 1 2 3 4a a a a  with maximum amplitude of probability 2

kα  
Step 5.  Decoding 

• Calculate normalized output as a norm of the chosen quantum state vector as 
follows  

2
1 1

1

1 1( ) ... ... ( )
2 2

n
new
P n n in n

i

k t a a a a a
=

= = ∑  

Step 6. Denormalization 
• Calculate final (denormalized) output result as follows: 

( ) , ( ) , ( ) .output output outputnew new new
P P p D D D I I Ik k t gain k k t gain k k t gain= ⋅ = ⋅ = ⋅  

Step 6a. Find robust QFI scaling gains { , , }P D Igain gain gain  based on GA and a chosen fitness 
function. 

In proposed QFI we investigated the proposed types of quantum QFI correlations shown in 
Table 1 where the correlations are given with 2KB, but in general case a few of KBs may be; 

it  is a current temporal point and tΔ  is a correlation parameter. Let us discuss the 
particularities of quantum computing that are used in the quantum block QFI (Fig. 4) 
supporting a self-organizing capability of a fuzzy controller.  Optimal drawing process of 
value information from a few of KBs as abovementioned is based on the following four facts 
from quantum information theory:  
• the effective quantum data compression (Fact1);  
• the splitting of classical and quantum parts of information in quantum state (Fact 2);  
• the total correlations in quantum state are “mixture” of classical and quantum 

correlations (Fact 3); and  
• existing of hidden (locking) classical correlation in quantum state using criteria of 

maximal corresponding probability amplitude (Fact 4).  
These facts are the informational resources of QFI background. Using these facts it is possible 
to extract the value information from KB1 and KB2. In this case between KB1 and KB2 (from 
quantum information theory point of view) we organize a communication channel using 
quantum correlations that is impossible in classical communication. In QFI algorithm with the 
Hadamard transform an unlocked correlation in superposition of states is organized. The 
entanglement operation is modelled as a quantum oracle that can estimate a maximum of 
amplitude probability in corresponding superposition of entangled states. Interference 
operator extracts this maximum of amplitudes probability with a classical measurement. 
Thus from two FC-KBs (produced by SCO for design a smart control) we can produce a wise 
control by using compression and rejection procedures of the redundant information in a 
classical control signal. This completes the particularities of quantum computing and 
quantum information theory that are used in the quantum block supporting a self-
organizing capability of FC.  

7. Robust FC design toolkit: SC and QC Optimizers for quantum controller’s 
design 
To realize QFI process we developed new tools called “QC Optimizer” that are the next 
generation of SCO tools. 
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7.1 QC Optimizer Toolkit 
QC Optimizer Toolkit is based on Quantum & Soft Computing and includes the following:  
• Soft computing and stochastic fuzzy simulation with information-thermodynamic 

criteria for robust KBs design in the case of a few teaching control situations;  
• QFI-Model and its application to a self-organization process based on two or more KBs 

for robust control in the case of unpredicted control situations. 
Internal structure of QC Optimizer is shown on Figs 9 and 10.  
 

 
Fig. 9. First internal layer of QC Optimizer 

 
Fig. 10. Second internal layer of QC Optimizer 
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Remark. On Fig. 9, the first internal layer of QC Optimizer is shown (inputs/output). On Fig. 
10, the quantum block realizing QFI process based on three KB is described. On the Fig. 10, 
“delay time = 20 (sec)” corresponds to the parameter “ tΔ ” given in temporal quantum 
correlations description (see, Table 1); the knob named “correlation parameters” call other 
block (see, Fig. 10) where a chosen  type of quantum correlations (Table 1) is described.  
On Fig. 11 description of temporal quantum correlations is shown. Here “kp1_r” means 
state 0  for ( )Pk t  of FC1 (or KB1); “kp1_r_t” means state 0  for ( )Pk t t+ Δ  of FC1 (or KB1); 
“kp1_v” means state 1  for ( )Pk t  of FC1 (or KB1); “kp1_v_t” means state 1  for ( )Pk t t+ Δ  
of FC1 (or KB1); and so on for other FC2 (KB2) and FC3(KB3). 
 

 

Fig. 11. Internal structure of “correlation parameters” block 

7.2 Design of intelligent robust control systems for complex dynamic systems 
capable to work in unpredicted control situations 
Describe now key points of Quantum & Soft Computing Application in Control Engineering 
according to Fig. 6 as follows: 
• PID Gain coefficient schedule (control laws)  is described  in the form of a Knowledge 

Base (KB) of a Fuzzy Inference System (realized in a Fuzzy Controller (FC)); 
• Genetic Algorithm (GA) with complicated Fitness Function is used for KB-FC 

forming; 
• KB-FC tuning is based on Fuzzy Neural Networks using error BP-algorithm;  
• Optimization of KB-FC is based on SC optimizer tools (Step 1 technology); 
• Quantum control algorithm of self-organization is developed based on the QFI-

model; 
• QFI-model realized for the KB self-organization to a new unpredicted control situation 

is based on QC optimizer tools (Step 2 technology). 
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Describe now key points of Quantum & Soft Computing Application in Control Engineering 
according to Fig. 6 as follows: 
• PID Gain coefficient schedule (control laws)  is described  in the form of a Knowledge 

Base (KB) of a Fuzzy Inference System (realized in a Fuzzy Controller (FC)); 
• Genetic Algorithm (GA) with complicated Fitness Function is used for KB-FC 

forming; 
• KB-FC tuning is based on Fuzzy Neural Networks using error BP-algorithm;  
• Optimization of KB-FC is based on SC optimizer tools (Step 1 technology); 
• Quantum control algorithm of self-organization is developed based on the QFI-

model; 
• QFI-model realized for the KB self-organization to a new unpredicted control situation 

is based on QC optimizer tools (Step 2 technology). 
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In this Chapter we are introduced briefly the particularities of quantum computing and 
quantum information theory that are used in the quantum block – QFI (see, Fig. 12) 
supporting a self-organizing capability of FC in robust ICS. 
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Fig. 12. QFI-process by using QC Optimizer (QFI kernel) 

Using unconventional computational intelligence toolkit we propose a solution of such kind 
of generalization problems by introducing a self-organization design process of robust KB-FC 
that supported by the Quantum Fuzzy Inference (QFI) based on Quantum Soft Computing 
ideas.  
The main technical purpose of QFI is to supply a self-organization capability for many 
(sometimes unpredicted) control situations based on a few KBs. QFI produces robust 
optimal control signal for the current control situation using a reducing procedure and 
compression of redundant information in KB’s of individual FCs. Process of rejection and 
compression of redundant information in KB’s uses the laws of quantum information 
theory. Decreasing of redundant information in KB-FC increases the robustness of control 
without loss of important control quality as reliability of control accuracy. As a result, a few 
KB-FC with QFI can be adapted to unexpected change of external environments and to 
uncertainty in initial information.  
At the second stage of design with application of the QFI model, we do not need yet to form 
new production rules. It is sufficient only to receive in on-line the response of production 
rules in the employed FC to the current unpredicted control situation in the form of the 
output control signals of the coefficient gains schedule in the fuzzy PID controller. In this 
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case, to provide the operation of the QFI model, the knowledge of particular production 
rules fired in the KB is not required, which gives a big advantage, which is expressed the 
form of an opportunity of designing control processes with the required robustness level in 
on-line.  
Note that the achievement of the required robustness level in an unpredicted control 
situation essentially depends in a number of cases on the quality and quantity of the 
employed individual KB’s. 
Thus, the QA in the QFI model is a physical prototype of production rules, implements a 
virtual robust KB for a fuzzy PID controller in a program way (for the current unpredicted 
control situation), and is a problem-independent toolkit. The presented facts give an 
opportunity to use experimental data of the teaching signal without designing a 
mathematical model of the CO. This approach offers the challenge of QFI using in problems 
of CO with weakly formalized (ill-defined) structure and a large dimension of the phase 
space of controlled parameters. 
In present Chapter we are described these features. The dominant role of self-organization 
in robust KB design of intelligent FC for unpredicted control situations is discussed.  

8. Benchmark simulation  
Robustness of new types of self-organizing intelligent control systems is demonstrated. 

8.1 Control object’s model simulation  
Consider the following model of control object as nonlinear oscillator:  

 2 2 2 2
1 12 1 ( ) ( );  2 1 ,xdSx ax k x x kx t u t ax k x x x

dt
+ β + + − + = ξ + = β + + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (6) 

where ( )tξ is  a stochastic excitation with an appropriate probability density function; ( )u t is 
a control force; and xS  is an entropy production of control object x . The system, described 
by Eq.(6) have essentially nonlinear dissipative components and appears different types of 
behaviour: if 0.5β =  (other parameters, for example, 10.3; 0.2; 5k kα = = = ), then dynamic 
system motion is asymptotically stable; if 1β = −  (other parameters is the same as above), 
then the motion is locally unstable.  
Consider an excited motion of the given dynamic system under hybrid fuzzy PID-control. 
Let the system be disturbed by a Rayleigh (non Gaussian) noise. The stochastic simulation of 
random excitations with appropriate probability density functions is based on nonlinear 
forming filters methodology is developed. In modelling we are considered with developed 
toolkit (see, Fig. 12) different unforeseen control situations and compared control 
performances of FC1, FC2, and self-organized control system based on QFI with two FC’s. 
The stochastic simulation of random excitations with appropriate probability density 
functions is based on nonlinear forming filters methodology developed in (Litvintseva et al., 
2006).  
FC1 design: The following model parameters: 10.5; 0.3; 0.2; 5k kβ = α = = =  and initial 
conditions [2.5] [0.1] are considered. Reference signal is: 0refx = . K-gains ranging area is [0, 
10]. By using SC Optimizer and teaching signal (TS) obtained by the stochastic simulation 
system with GA or from experimental data, we design KB of FC 1, which optimally 
approximate the given TS (from the chosen fitness function point of view).  
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functions is based on nonlinear forming filters methodology developed in (Litvintseva et al., 
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FC1 design: The following model parameters: 10.5; 0.3; 0.2; 5k kβ = α = = =  and initial 
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10]. By using SC Optimizer and teaching signal (TS) obtained by the stochastic simulation 
system with GA or from experimental data, we design KB of FC 1, which optimally 
approximate the given TS (from the chosen fitness function point of view).  
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FC2 design:  The following new model parameters: 11; 0.3; 0.2; 5k kβ = − α = = =  are used. 
Initial conditions are the same: [2.5] [0.1]. New reference signal is as following: 1refx = − ; K-
gains ranging area is [0, 10].  
In modelling we are considered with developed toolkit different unforeseen control 
situations and compared control performances of FC1, FC2, and self-organized control 
system based on QFI with two FC’s.  
In Table 2 four different control situations are described.  
 

Environment 1: 
Rayleigh noise; 
Ref signal  = 0; 
Model parameters:  

1

0.5; 0.3;
0.2; 5k k

β = α =
= =

Environment 2: 
 Rayleigh noise; 
Ref signal  = -1; 
Model parameters : 

1

1; 0.3;
0.2; 5k k

β = − α =
= =

Environment 3: 
Gaussian noise; 
Ref signal  = -0.5; 
Model parameters:  

1

1; 0.3;
0.2; 5k k

β = − α =
= =

Environment 4: 
Gaussian noise; 
Ref signal  = +0.5; 
Model parameters: 

1

1; 0.3;
0.2; 5k k

β = − α =
= =

Table 2. Learning and unpredicted control situation types 

CO may be represented in physical form or in the form of mathematical model. We will 
use a mathematical model of CO described in Matlab-Simulink 7.1 (some results are 
obtained by using Matlab-Simulink 6.5). The kernel of the abovementioned FC design 
tools is a so-called SC Optimizer (SCO) implementing advanced soft computing ideas. 
SCO is considered as a new flexible tool for design of optimal structure and robust KBs of 
FC based on a chain of genetic algorithms (GAs) with information-thermodynamic criteria 
for KB optimization and advanced error BP-algorithm for KB refinement. Input to SCO 
can be some measured or simulated data (called as ‘teaching signal” (TS)) about the 
modelling system. For TS design we use stochastic simulation system based on the CO 
model and GA. More detail description of SCO is given below. The output signal of QFI is 
provided by new laws of the coefficient gains schedule of the PID controllers (see, in 
details Fig. 2 in what follows).  

8.2 Result analysis of simulation 
For Environments 2 and 4 (see, Table 1), Figs 13 -15 show the response comparison of FC1, 
FC2 and QFI-self-organized control system. Environment 2 for FC1 is an unpredicted control 
situation. Figure 9 shows responses of FC’s on unpredicted control situation: a dramatically 
new parameter 0.1β = − (R1 situation) in the model of the CO as (3) and with the similar as 
above Rayleigh external noise. Environment 4 and R1 situation are presented also 
unpredicted control situations for both designed FC1 & FC2.  
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Fig. 15. Control laws in different types of environments 

Figure 16 shows responses of FCs on unpredicted control situation: a dramatically new 
parameter 0.1β = − (R1 unpredicted situation) in the model of the CO (6) and with the 
similar as above Rayleigh external noise. 
 

 
Fig. 16. Control error in unpredicted control situation 

Figure 17 shows the example of operation of the quantum fuzzy controller for formation of 
the robust control signal using the proportional gain in contingency control situation S3.  
In this case, the output signals of knowledge bases 1 and 2 in the form of the response on the 
new control error in situation S3 are received in the block of the quantum FC. The output of 
the block of quantum FC is the new signal for real time control of the factor Pk . Thus, the 
blocks of KB’s 1, 2, and quantum FC in Fig. 17 form the block of self-organization of the 
knowledge base with new synergetic effect in the contingency control situation. 
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Fig. 17. Example of operation of the block of self-organization of the knowledge base based 
on quantum fuzzy inference 

Figure 18 presents the values of generalized entropies of the system “CO + FC” calculated in 
accordance with (6).  
The necessary relations between the qualitative and quantitative definitions of the 
Lyapunov stability, controllability, and robustness of control processes of a given controlled 
object are correctly established. Before the achievement of the control goal (the reference 
control signal equal (–1) in this case) the process of self-learning the FC and extraction of 
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valuable information from the results of reactions of the two FC’s to an unpredicted control 
situation in on-line with the help of quantum correlation is implemented. Since quantum 
correlation contains information about the current values of the corresponding gains, the 
self-organizing FC uses for achievement of the control goal the advantage of performance of 
the FC2 and the aperiodic character of the dynamic behavior of the FC1.  
 

Local unstable
state

 
(a) 

 
(b) 

Fig. 18. The dynamic behavior of the generalized entropies of the system (CO + FC): (a) 
temporal generalized entropy; (b) the accumulated value of the generalized entropy 

As a consequence, improved control quality is ensured (Karatkevich et al., 2011). 
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Figure 19 demonstrate the final results of control law of coefficient gains simulation for 
intelligent PID-controller.  
Simulation results show that with QFI it is possible from two non-robust KB’s outputs to 
design the optimal robust control signal with simple wise control laws of PID coefficient gain 
schedule in unpredicted control situations. The latter is despite the fact that in Environments 2 
& 4 (see, below Table) FC1 and in R1 situation both FC1 & FC2 lose robustness.  
Physically, it is the employment demonstration of the minimum entropy principle relative 
to extracted quantum knowledge. As to the viewpoint of quantum game theory we have 
Parrondo’ paradox: from two classical KBs - that are not winners in different unforeseen 
environments - with QFI toolkit we can design one winner as a wise control signal using 
quantum strategy of decision making (without entanglement) (Ulyanov & Mishin, 2011). 
 

 
Fig. 19. Simulation results of coefficient gains for intelligent PID-controller 

This synergetic quantum effect of knowledge self-organization in robust control was 
described also on other examples of unstable control systems (details of technology 
description, see in Web site: http://www.qcoptimizer.com/).  
Other examples are described in (Oppenheim, 2008 and Smith & Yard, 2008) later. 

9. Conclusions  
1. QFI block enhances robustness of FCs using a self-organizing capability and hidden 

quantum knowledge. 
2. SCO allows us to model different versions of KBs of FC that guarantee robustness for 

fixed control environments. 
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3. Designed FC based on QFI achieves the prescribed control objectives in many 
unpredicted control situations. 

4. Using SCO and QFI we can design wise control of essentially non-linear stable and, 
especially of unstable dynamic systems in the presence of information uncertainty 
about external excitations and in presence of dramatically changing control goal, model 
parameters, and emergency.  

5. QFI based FC requires minimum of initial information about external environments and 
internal structures of a control object adopted a computing speed-up and the power of 
quantum control algorithm in KB-self-organization. 
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1. Introduction 
Stability analysis and controller design for uncertain nonlinear systems is open problem 
now(Vidyasagar, 1986). So far numerous design methodologies exist for the controller 
design of nonlinear systems(Kokotovic & Arcak, 2001). These include any of a huge number 
of linear design techniques(Anderson & More, 1990; Horowitz, 1991) used in conjuction 
with gain scheduling(Rugh & Shamma, 200); nonlinear design methodologies such as 
Lyapunov function approach(Vidyasagar, 1986; Kokotovic & Arcak, 2001; Cai et al., 2008; 
Gutman, 1979; Slotine & Li, 1991; Khalil, 1996), feedback linearization method(Hunt et al., 
1987; Isidori, 1989; Slotine & Li, 1991), dynamics inversion(Slotine & Li, 1991),  
backstepping(Lijun & Chengkand, 2008), adaptive technique which encompass both linear 
adaptive(Narendra, 1994) and nonlinear adaptive control(Zheng & Wu, 2009), sliding mode 
control(SMC)(Utkin, 1978; Decarlo etal., 1988; Young et al., 1996; Drazenovic, 1969; Toledo & 
Linares, 1995; Bartolini & Ferrara, 1995; Lu & Spurgeon, 1997), and etc(Hu & Martin, 1999; 
Sun, 2009; Chen, 2003). 
The sliding mode control can provide the effective means to the problem of controlling 
uncertain nonlinear systems under parameter variations and external disturbances(Utkin, 
1978; Decarlo et. al., 1988; Young et al., 1996). One of its essential advantages is the 
robustness of the controlled system to variations of parameters and external disturbances in 
the sliding mode on the predetermined sliding surface, s=0(Drazenovic, 1969). In the VSS, 
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3. Designed FC based on QFI achieves the prescribed control objectives in many 
unpredicted control situations. 

4. Using SCO and QFI we can design wise control of essentially non-linear stable and, 
especially of unstable dynamic systems in the presence of information uncertainty 
about external excitations and in presence of dramatically changing control goal, model 
parameters, and emergency.  

5. QFI based FC requires minimum of initial information about external environments and 
internal structures of a control object adopted a computing speed-up and the power of 
quantum control algorithm in KB-self-organization. 
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robustness of the controlled system to variations of parameters and external disturbances in 
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initial state to the origin( (0)  & t 0( )| 0x xs x = = = ) and the control input must satisfy the existence 
condition of the sliding mode on the pre-selected sliding surface for all time from the initial 
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In (Toledo & Linares, 1995), the sliding mode approach is applied to nonlinear output 
regulator schemes. The underlying concept is that of designing sliding submanifold which 
contains the zero tracking error sub-manifold. The convergence to a sliding manifold can be 
attained relying on a control strategy based on a simplex of control vectors for multi input 
uncertain nonlinear systems(Bartolini & Ferrara, 1995). A nonlinear optimal integral variable 
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structure controller with an arbitrary sliding surface without the reaching phase was 
proposed for uncertain linear plants(Lee, 1995). (Lu and Spurgeon, 1997) considered the 
robustness of dynamic sliding mode control of nonlinear system, which is in differential 
input-output form with additive uncertainties in the model. The discrete-time 
implementation of a second-order sliding mode control scheme is analyzed for uncertain 
nonlinear system in (Bartolini et al., 2001). (Adamy & Flemming, 2004) surveyed so called 
soft variable structure controls, compared them to others. The tracker control problem that 
is the regulation control problem from an arbitrary initial state to an arbitrary final state 
without the reaching phase is handled and solved for uncertain SISO linear plants in (Lee, 
2004). For 2nd order uncertain nonlinear system with mismatched uncertainties, a switching 
control law between a first order sliding mode control and a second order sliding mode 
control is proposed to obtain the globally or locally asymptotic stability(Wang et al., 2007). 
The optimal SMC for nonlinear system with time-delay is suggested(Tang et al., 2008). The 
nonlinear time varying sliding sector is designed for continuous control of a single input 
nonlinear time varying input affine system which can be represented in the form of state 
dependent linear time variant systems with matched uncertainties(Pan et al., 2009). For 
uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance, 
the systematic design of the SMC is reported(Lee, 2010a). The two clear proofs of the 
existence condition of the sliding mode with respect to the two transformations i.e., the two 
diagonalization methods are given for multi-input uncertain linear plants(Lee 2010b), while 
(Utkin, 1978) and (Decarlo et al., 1988) proved unclearly for uncertain nonlinear plants. 
Until now, the integral action is not introduced to the variable structure system for uncertain 
nonlinear system with mismatched uncertainties and matched disturbance to improve the 
output performance by means of removing the reaching phase problems. And a nonlinear 
output feedback controller design for uncertain nonlinear systems with mismatched 
uncertainties and matched disturbance is not presented.  
In this chapter, a systematic general design of new integral nonlinear full-state(output) 
feedback variable structure controllers based on state dependent nonlinear form is 
presented for the control of uncertain affine nonlinear systems with mismatched 
uncertainties and matched disturbances. After an affine uncertain nonlinear system is 
represented in the form of state dependent nonlinear system, a systematic design of a new 
nonlinear full-state(output) feedback variable structure controller is presented. To be linear 
in the closed loop resultant dynamics, full-state(output) feedback (transformed) integral 
linear sliding surfaces are applied in order to remove the reaching phase, those are stemmed 
from the studys by (Lee & Youn, 1994; Lee, 2010b) which is the first time work of removing 
the reaching phase with the idea of introducing the initial condition for the integral state. 
The corresponding discontinuous (transformed) control inputs are proposed to satisfy the 
closed loop exponential stability and the existence condition of the sliding mode on the full-
state(output) feedback integral sliding surfaces, which will be investigated in Theorem 1 and 
Theorem 2. For practical application to the real plant by means of removing the chattering 
problems, the implementation of the continuous approximation is essentially needed 
instead of the discontinuous input as the inherent property of the VSS. Using the saturation 
function, the different form from that of (Chern & Wu, 1992) for the continuous 
approximation is suggested. The two main problems of the VSS are removed and solved. 
Through the design examples and simulation studies, the usefulness of the proposed 
practical integral nonlinear VSS controller is verified.  
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2.  Practical integral nonlinear variable structure systems 
2.1 Descriptions of plants 
Consider an affine uncertain nonlinear system 

 '( , ) ( , ) ( , ),        (0)x f x t g x t u d x t x= + +  (1) 

 ,        (0) (0)y C x y C x= ⋅ = ⋅  (2) 

where nx R∈  is the state, (0)x  is its initial condition for the state, ,  qy R q n∈ ≤  is the output, 
(0)y  is an initial condition of the output, 1u R∈  is the control to be determined, mismatched 

uncertainty '( , ) kf x t C∈ and matched uncertainty ( , ) ,   1kg x t C k∈ ≥ , 
( , ) 0  for   all  ng x t x R≠ ∈ and for all 0t ≥  are of suitable dimensions, and ( , )d x t  implies 

bounded matched external disturbances.  
Assumption (Pan et al., 2009) 
A1: '( , ) kf x t C∈ is continuously differentiable and '(0, ) 0f t = for all 0t ≥ . 
Then, uncertain nonlinear system (1) can be represented in more affine nonlinear system of 
state dependent coefficient form(Pan et al., 2009; Hu & Martin, 1999; Sun, 2009) 

 0 0

0 0

( , ) ( , ) ( , ),        (0)
  [ ( , ) ( , )] [ ( , ) ( , )] ( , )

   ( , ) ( , ) ( , )

x f x t x g x t u d x t x
f x t f x t x g x t g x t u d x t

f x t x g x t u d x t

= + +

= + Δ + + Δ +
= + +

 (3) 

 ,        y C x= ⋅  (4) 

 ( , ) ( , ) ( , ) ( , )d x t f x t x g x t u d x t= Δ + Δ +  (5) 
 

where 0( , )f x t  and 0( , )g x t  is each nominal value such that 0'( , ) [ ( , ) ( , )]f x t f x t f x t x= + Δ and 
0( , ) [ ( , ) ( , )]g x t g x t g x t= + Δ , respectively, ( , )f x tΔ and ( , )g x tΔ  are mismatched or matched 

uncertainties, and ( , )d x t  is the mismatched lumped uncertainty.  
Assumption: 
A2: The pair 0 0( ( , ), ( , ))f x t g x t  is controllable and 0( ( , ), )f x t C is observable for all nx R∈  and 
all 0t ≥ (Sun, 2009). 
A3: The lumped uncertainty ( , )d x t is bounded.  
A4: x  is bounded if u  and ( , )d x t is bounded.  

2.2 Full sate feedback practical integral variable structure controller 
2.2.1 Full-state feedback integral sliding surface 
For use later, the integral term of the full-state is augmented as  

 
0

0 00 0
( ) ( ) ( ) (0)

t t
x x d x d x d xτ τ τ τ τ τ

−∞
= + = +∫ ∫ ∫  (6) 

To control uncertain nonlinear system (1) or (3) with a linear closed loop dynamics and 
without reaching phase, the full-state feedback integral sliding surface used in this design is 
as follows:  
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 [ ]1 1 0 1 0
0

( 0)f

x
S L x L x L L

x
⎡ ⎤

= + = ⋅ =⎢ ⎥
⎣ ⎦

 (7) 

where  

 0 0 1(0) (0)x L L x−= −  (7a) 

and 1
0 0 0 0( )T TL L WL L W− −= , which is stemmed from the work by (Lee & Youn, 1994). At 0t = , 

the full-state feedback integral sliding surface is zero, Hence, the one of the two 
requirements is satisfied. Without the initial condition of the integral state, the reaching 
phase is not removed except the exact initial state on the sliding surface. With the initial 
condition (7a) for the integral state, the work on removing the reaching phase was reported 
by (Lee & Youn, 1994) for the first time, which is applied to the VSS for uncertain linear 
plants. In (7), 1L  is a non zero element as the design parameter such that the following 
assumption is satisfied.  
Assumption  
A5: 1 ( , )L g x t  and 1 0( , )L g x t  have the full rank, i.e. those are invertible  
A6: [ ] 1

1 1 0( , ) ( , )L g x t L g x t I−
Δ = Δ  and | | 1I ξΔ ≤ < . 

In (7), the design parameters 1L  and 0L  satisfy the following relationship  

 [ ]1 0 0 0( , ) ( , ) ( ) 0L f x t g x t K x L− + =  (8a) 

 [ ]0 1 0 0 1( , ) ( , ) ( ) ( , )cL L f x t g x t K x L f x t= − − = −  (8b) 

 [ ]0 0( , ) ( , ) ( , ) ( )cf x t f x t g x t K x= −  (8c) 

The equivalent control input is obtained using 0fS =  as(Decarlo et al., 1998)  

 [ ] [ ] [ ] [ ]1 1 1

1 1 0 0 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , )equ L g x t L f x t L x L g x t f x t x L g x t d x t− − −
= − + − Δ −  (9) 

This control input can not be implemented because of the uncertainties, but used to 
obtaining the ideal sliding dynamics. The ideal sliding mode dynamics of the sliding surface 
(7) can be derived by the equivalent control approach(Lee, 2010a) as 

 [ ] { }1

0 0 1 1 0 0( , ) ( , ) ( , ) ( , ) ,           (0) (0)s s s s s s sx f x t g x t L g x t L f x t L x x x−⎡ ⎤= − + =⎣ ⎦  (10) 

 [ ]0 0( , ) ( , ) ( ) ( , ) ,           (0) (0)s s s s s c s s sx f x t g x t K x x f x t x x x= − = =  (11) 

 [ ] { }1

1 1 0 0( ) ( , ) ( , )s s sK x L g x t L f x t L−
= +  (12) 

The solution of (10) or (11) identically defines the integral sliding surface. Hence to design 
the sliding surface as stable, this ideal sliding dynamics is designed to be stable, the reverse 
argument also holds. To choose the stable gain based on the Lyapunov stability theory, the 
ideal sliding dynamics (10) or (11) is represented by the nominal plant of (3) as  

 0 0

0 0

( , ) ( , ) ,            ( )
   ( , ) ,                              ( , ) ( , ) ( , ) ( )c c

x f x t x g x t u u K x x
f x t x f x t f x t g x t K x

= + = −
= = −

 (13) 
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To select the stable gain, take a Lyapunov function candidate as  

 ( ) ,           0TV x x Px P= >  (14) 
The derivative of (14) becomes  

 0 0 0 0( ) ( , ) ( , ) ( , ) ( , )T T T T TV x x f x t P Pf x t x u g x t Px x Pg x t u= + + +⎡ ⎤⎣ ⎦  (15) 

By the Lyapunov control theory(Slotine & Li, 1991), take the control input as  

 0 ( , )Tu g x t Px= −  (16) 

and ( , ) 0Q x t >  and ( , ) 0cQ x t >  for all nx R∈  and all 0t ≥  is  

 0 0( , ) ( , ) ( , )Tf x t P Pf x t Q x t+ = −  (17) 

 ( , ) ( , ) ( , )T
c c cf x t P Pf x t Q x t+ = −  (18) 

then 

 

{ }

0 0

0 0

2
min

( ) ( , ) 2 ( , ) ( , )
        [ ( , ) 2 ( , ) ( , ) ]

         [ ( , ) ( , )]
         ( , )
         ( , ) || ||

T T T

T T

T T
c c

T
c

c

V x x Q x t x x Pg x t g x t Px
x Q x t Pg x t g x t P x
x f x t P Pf x t x
x Q x t x

Q x t xλ

= − −

= − +

= − +

= −

≤ −

 (19) 

where { }min ( , )cQ x tλ means the minimum eigenvalue of ( , )cQ x t . Therefore the stable static 
nonlinear feedback gain is chosen as  

 [ ] { }1

0 1 0 1 0 0( ) ( , )    or   ( , ) ( , )TK x g x t P L g x t L f x t L−
= = +  (20) 

2.2.2 Full-state feedback transformed discontinuous control input 
The corresponding control input with the transformed gains is proposed as follows:  

 1 2( ) ( )f f fu K x x Kx K S K sign S= − − Δ − −  (21) 

where ( )K x  is a static nonlinear feedback gain, KΔ is a discontinuous switching gain, 1K  is 
a static feedback gain of the sliding surface itself, and 2K  is a discontinuous switching gain, 
respectively as  

 [ ] 1

1 0( , ) [ ]         1,...,iK L g x t k i n−
Δ = Δ =  (22) 

 

{ }
{ }

{ }
{ }

1 1

1 1

max ( . ) ( , ) ( )
      ( ) 0

min
     

min ( . ) ( , ) ( )
        ( ) 0

min

i
f i

i

i
f i

L f x t L g x t K x
sign S x

I I
k

L f x t L g x t K x
sign S x

I I

⎧ Δ − Δ
≥ >⎪

+ Δ⎪Δ = ⎨
Δ − Δ⎪≤ <⎪ + Δ⎩

 (23) 
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argument also holds. To choose the stable gain based on the Lyapunov stability theory, the 
ideal sliding dynamics (10) or (11) is represented by the nominal plant of (3) as  

 0 0

0 0

( , ) ( , ) ,            ( )
   ( , ) ,                              ( , ) ( , ) ( , ) ( )c c

x f x t x g x t u u K x x
f x t x f x t f x t g x t K x

= + = −
= = −

 (13) 
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To select the stable gain, take a Lyapunov function candidate as  

 ( ) ,           0TV x x Px P= >  (14) 
The derivative of (14) becomes  

 0 0 0 0( ) ( , ) ( , ) ( , ) ( , )T T T T TV x x f x t P Pf x t x u g x t Px x Pg x t u= + + +⎡ ⎤⎣ ⎦  (15) 

By the Lyapunov control theory(Slotine & Li, 1991), take the control input as  
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and ( , ) 0Q x t >  and ( , ) 0cQ x t >  for all nx R∈  and all 0t ≥  is  
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 ( , ) ( , ) ( , )T
c c cf x t P Pf x t Q x t+ = −  (18) 
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{ }

0 0

0 0

2
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( ) ( , ) 2 ( , ) ( , )
        [ ( , ) 2 ( , ) ( , ) ]

         [ ( , ) ( , )]
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         ( , ) || ||

T T T

T T

T T
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T
c

c

V x x Q x t x x Pg x t g x t Px
x Q x t Pg x t g x t P x
x f x t P Pf x t x
x Q x t x

Q x t xλ
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= − +

= − +

= −

≤ −

 (19) 

where { }min ( , )cQ x tλ means the minimum eigenvalue of ( , )cQ x t . Therefore the stable static 
nonlinear feedback gain is chosen as  

 [ ] { }1

0 1 0 1 0 0( ) ( , )    or   ( , ) ( , )TK x g x t P L g x t L f x t L−
= = +  (20) 

2.2.2 Full-state feedback transformed discontinuous control input 
The corresponding control input with the transformed gains is proposed as follows:  

 1 2( ) ( )f f fu K x x Kx K S K sign S= − − Δ − −  (21) 

where ( )K x  is a static nonlinear feedback gain, KΔ is a discontinuous switching gain, 1K  is 
a static feedback gain of the sliding surface itself, and 2K  is a discontinuous switching gain, 
respectively as  

 [ ] 1

1 0( , ) [ ]         1,...,iK L g x t k i n−
Δ = Δ =  (22) 

 

{ }
{ }

{ }
{ }

1 1

1 1

max ( . ) ( , ) ( )
      ( ) 0

min
     

min ( . ) ( , ) ( )
        ( ) 0

min

i
f i

i

i
f i

L f x t L g x t K x
sign S x

I I
k

L f x t L g x t K x
sign S x

I I

⎧ Δ − Δ
≥ >⎪

+ Δ⎪Δ = ⎨
Δ − Δ⎪≤ <⎪ + Δ⎩

 (23) 
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 [ ] 1

1 1 1 1( , ) ',             ' 0K L g x t K K−
= >  (24) 

 [ ] { }1 1
2 1 2 2

max | ( , )|
( , ) ',             '

min{ }
L d x t

K L g x t K K
I I

−
= =

+ Δ
 (25) 

which is transformed for easy proof of the existence condition of the sliding mode on the 
chosen sliding surface as the works of (Utkin, 1978; Decarlo et al., 1988; Lee, 2010b). The real 
sliding dynamics by the proposed control with the linear integral sliding surface is obtained 
as follows:  
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1 0 0

1 0 1 2 0

1 0 1 0 0 1 1

[ ]

    [ ( , ) ( , ) ( , ) ( , )]

    ( , ) ( , ) ( , ) ( ) ( ) ( , )
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f

f

f f

S L x L x

L f x t x f x t x g x t u d x t L x

L f x t x f x t x g x t K x x Kx K S K sign S d x t L x

L f x t x L g x t K x x L x L f x t x L g x t K x x

= +

= + Δ + + +

⎡ ⎤= + Δ + − − Δ − − + +⎣ ⎦
= − + + Δ − Δ

1 1 1 1 1 2

1 1 1 0 1 0 1

1 1 0 2

 ( , ) ( , ) ( , ) ( , ) ( )
    ( , ) ( , ) ( ) [ ] ( , ) [ ] ( , )

         ( , ) [ ] ( , ) ( )

f f

f

f

L g x t Kx L g x t K S L d x t L g x t K sign S
L f x t x L g x t K x x I I L g x t Kx I I L g x t K S

L d x t I I L g x t K sign S

− Δ − + −

= Δ − Δ − + Δ Δ − + Δ

+ − + Δ

 (26) 

The closed loop stability by the proposed control input with sliding surface together with 
the existence condition of the sliding mode will be investigated in next Theorem 1.  
Theorem 1: If the sliding surface (7) is designed in the stable, i.e. stable design of ( )K x , the proposed 
input (21) with Assumption A1-A6 satisfies the existence condition of the sliding mode on the 
integral sliding surface and exponential stability.  
Proof(Lee, 2010b); Take a Lyapunov function candidate as  

 1( )
2

T
f fV x S S=  (27) 

Differentiating (27) with respect to time leads to and substituting (26) into (28)  

 

1 1 1 0

1 0 1 1 1 0 2

2
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( )
         ( , ) ( , ) ( ) [ ] ( , )

         [ ] ( , ) ( , ) [ ] ( , ) ( )
         '|| || ,           min{|| ||}

    

T
f f

T T T
f f f

T T T
f f f f f

f

V x S S
S L f x t x S L g x t K x x S I I L g x t Kx

S I I L g x t K S S L d x t S I I L g x t K sign S
K S I Iε ε

=

= Δ − Δ − + Δ Δ

− + Δ + − + Δ

≤ − = + Δ

1

1

    '
        2 ' ( )

T
f fK S S

K V x
ε
ε

= −

= −

 (28) 

The second requirement to remove the reaching phase is satisfied. Therefore, the reaching 
phase is completely removed. There are no reaching phase problems. As a result, the real 
output dynamics can be exactly predetermined by the ideal sliding output with the matched 
uncertainty. From (28), the following equations are obtained as  

 1( ) 2 ' ( ) 0V x K V xε+ ≤  (29) 
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 12( ( )) ( (0)) K tV x t V x e ε−≤  (30) 

And the second order derivative of ( )V x becomes  

 2
1 0( ) || || ( )T T

f f f f f fV x S S S S S S L Cx L x= + = + + < ∞  (31) 

and by Assumption A5 ( )V x  is bounded, which completes the proof of Theorem 1. 

2.2.3 Continuous approximation of full sate feedback discontinuous control input 
The discontinuous control input (21) with (7) chatters from the beginning without reaching 
phase. The chattering of the discontinuous control input (21) may be harmful to the real 
dynamic plant. Hence using the saturation function for a suitable fδ , one make the input be 
continuous for practical application as  

 
1 2( ) { ( )}

| |
f

fc f f
f f

S
u K x x K S Kx K sign S

S δ
= − − − Δ +

+
 (32) 

which is different from that of (Chern & Wu, 1992) continuous approximation. For a first 
order system, this approximation is the same as that of (Chern & Wu, 1992) continuous 
approximation, but for a higher order system more than the first one, continuous 
approximation can be effectively made. The discontinuity of the control input can be 
dramatically improved without severe output performance deterioration.  

2.3 Practical output feedback integral variable structure controller 
For the implementation of the output feedback when full-state is not available, some 
additional assumptions are made  
A7: The nominal input matrix 0( , )g x t  is constant, i.e, 0( , )g x t B=  
A8: The unmatched ( , )f x tΔ , matched ( , )g x tΔ , and matched ( , )d x t  are unknown and 
bounded and satisfied by the following conditions: 

 ( , ) '( , ) ''( , )Tf x t f x t C C f x t CΔ = Δ = Δ  (33a) 

 ( , ) '( , ) ,     0 | | 1Tg x t BB g x t B I I pΔ = Δ = Δ ≤ Δ ≤ <  (33b) 

 ( , ) '( , ) ''( , )Td x t BB d x t Bd x t= =  (33c) 

2.3.1 Transformed output feedback integral sliding surface 
Now, the integral of the output is augmented as follows:  

 0 0 0( ) ( ),             (0)y t A y t y= ⋅  (34a) 

 0 0 0
0

( ) ( )  (0)
t

y t A y d yτ τ= ⋅ +∫  (34b) 

where 0( ) ,   ry t R r q∈ ≤  is the integral of the output and 0(0)y  is the initial condition of the 
integral state determined later, and 0A is appropriately dimensioned without loss of 
generality, 0A I= . 
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The second requirement to remove the reaching phase is satisfied. Therefore, the reaching 
phase is completely removed. There are no reaching phase problems. As a result, the real 
output dynamics can be exactly predetermined by the ideal sliding output with the matched 
uncertainty. From (28), the following equations are obtained as  
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For the implementation of the output feedback when full-state is not available, some 
additional assumptions are made  
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 0 0 0
0

( ) ( )  (0)
t

y t A y d yτ τ= ⋅ +∫  (34b) 

where 0( ) ,   ry t R r q∈ ≤  is the integral of the output and 0(0)y  is the initial condition of the 
integral state determined later, and 0A is appropriately dimensioned without loss of 
generality, 0A I= . 
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Assumption  
A9: 1( )H CB  has the inverse for some non zero row vector 1H .  
Now, a transformed output feedback integral sliding surface is suggested be  

 1
0 1 1 0 0( ) ( )( 0)S H CB H y H y−= ⋅ ⋅ + ⋅ =  (35) 

 0 0 1(0) (0)y H H y−= − ⋅  (36) 

where 1
0 0 0 0( )T TH H WH H W− −= , which is transformed for easy proof of the existence condition 

of the sliding mode on the sliding surface as the works of (Decarlo et al., 1988) and (Lee, 
2010b). In (35), non zero row vector 0H  and 1H  are the design parameters satisfying the 
following relationship  

 1 0 0 1 0 0[ ( , ) ( ) ] ( , ) 0cH C f x t BG y C H C H Cf x t H C− + = + =  (37) 

where 0 0( , ) ( , ) ( )cf x t f x t BG y C= −  is a closed loop system matrix and ( )G y is an output 
feedback gain. At 0t = , this output feedback integral sliding surface is zero so that there 
will be no reaching phase(Lee & Youn, 1994). In (35), 0H  and 1H  are  the non zero row 
vectors as the design parameters such that the following assumption is satisfied.  
Assumption 
A10: 1 ( , )H Cg x t  has the full rank and is invertible  
The equivalent control input is obtained using as  

 1 1
1 1 0 0 1 1[ ( , )] [ ( , ) ( )] [ ( , )] [ ( , ) ( , )]equ H Cg x t H Cf x t x H y t H Cg x t H C f x t d x t− −= − + − Δ +  (38) 

This control input can not be implemented because of the uncertainties and disturbances. 
The ideal sliding mode dynamics of the output feedback integral sliding surface (35) can be 
derived by the equivalent control approach as (Decarlo et al., 1998)  

 1 1
0 1 1 0 1 0[ ( , ) ( ) ( , ) ( ) ] ,       (0) (0)s s s s sx f x t B H CB H Cf x t B H CB H C x x x− −= − − =  (39) 

 s sy C x= ⋅  (40) 

and from 0 0S = , the another ideal sliding mode dynamics is obtained as(Lee, 2010a) 

 1 0 ,       (0)s s sy H H y y−= −  (41) 

where 1
1 1 1 1( )T TH H WH H W− −= . The solution of (39) or (41) identically defines the output 

feedback integral sliding surface. Hence to design the output feedback integral sliding 
surface as stable, this ideal sliding dynamics (39) is designed to be stable. To choose the 
stable gain based on the Lyapunov stability theory, the ideal sliding dynamics (39) is 
represented by the nominal plant of (3) as  

 0 0

0

( , ) ( , ) ,           ( )
   ( , )                                c

x f x t x g x t u u G y y
f x t x

= + = −
=

 (42) 

To select the stable gain, take a Lyapunov function candidate as  
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 ( ) ,           0TV x x Px P= >  (43) 
The derivative of (43) becomes  

 0 0 0 0( ) [ ( , ) ( , )] ( , ) ( , )T T T T TV x x f x t P Pf x t x u g x t Px x Pg x t u= + + +  (44) 

By means of the Lyapunov control theory(Khalil, 1996), take the control input as 

 0 ( , )T Tu g x t Py B Py= − = −  (45) 

and ( , ) 0Q x t >  and ( , ) 0cQ x t >  for all nx R∈  and all 0t ≥  is  

 0 0( , ) ( , ) ( , )Tf x t P Pf x t Q x t+ = −  (46) 

 0 0( , ) ( , ) ( , )T
c c cf x t P Pf x t Q x t+ = −  (47) 

then 

 

{ }

0 0

min

( ) ( , )
         [ ( , ) ]
         [ ( , ) ( , )]
         ( , )
         ( , )

T T T T T T

T T T T

T T
c c

T
c

c

V x x Q x t x x C PBB Px x PBB PCx
x Q x t C PBB P PBB PC x
x f x t P Pf x t x
x Q x t x

Q x t xλ

= − − −

= − + +

= − +

= −

≤ −

 (48) 

Therefore the stable gain is chosen as  

 1
1 1 0( )    or   ( ) ( , )TG y B P H CB H Cf x t−= =  (49) 

2.3.2 Output feedback discontinuous control input 
A corresponding output feedback discontinuous control input is proposed as follows:  

 0 1 0 2 0( ) ( )u G y y Gy G S G sign S= − − Δ − −  (50) 

where ( )G y  is a nonlinear output feedback gain satisfying the relationship (37) and (49), 
GΔ  is a switching gain of the state, 1G  is a feedback gain of the output feedback integral 

sliding surface, and 2G  is a switching gain, respectively as  

 [ ]         1,...,iG g i qΔ = Δ =  (51) 

 

{ }
{ }

{ }
{ }

1 1
1 1 1 1 0

0

1 1
1 1 1 1 0

0

max ( ) ''( . ) ( ) ( , )
      ( ) 0

min
      

min ( ) ''( . ) ( ) ( , )
        ( ) 0

min

i
i

i

i
i

H CB H C f x t I H CB H f x t
sign S y

I I
g

H CB H C f x t I H CB H f x t
sign S y

I I

− −

− −

⎧ Δ + Δ
≥ >⎪

+ Δ⎪Δ = ⎨
Δ + Δ⎪≤ <⎪ + Δ⎩

 (52) 

 1 0G >  (53) 
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The real sliding dynamics by the proposed control (50) with the output feedback integral 
sliding surface (35) is obtained as follows:  
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 (56) 

The closed loop stability by the proposed control input with the output feedback integral 
sliding surface together with the existence condition of the sliding mode will be investigated 
in next Theorem 1.  
Theorem 2: If the output feedback integral sliding surface (35) is designed to be stable, i.e. stable 
design of ( )G y , the proposed control input (50) with Assumption A1-A10 satisfies the existence 
condition of the sliding mode on the output feedback integral sliding surface and closed loop 
exponential stability.  
Proof; Take a Lyapunov function candidate as  

 0 0

1( )
2

TV y S S=  (57) 

Differentiating (57) with respect to time leads to and substituting (56) into (58)  
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ε ε
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1        2 ( )G V yε= −

 (58)  

From (58), the second requirement to get rid of the reaching phase is satisfied. Therefore, the 
reaching phase is clearly removed. There are no reaching phase problems. As a result, the 
real output dynamics can be exactly predetermined by the ideal sliding output with the 
matched uncertainty. Moreover from (58), the following equations are obtained as  

 1( ) 2 ( ) 0V y G V yε+ ≤  (59) 
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 12( ( )) ( (0)) G tV y t V y e ε−≤  (60) 

And the second order derivative of ( )V x becomes  

 2 1
0 0 0 0 0 0 1 1 0( ) || || ( ) ( )T TV y S S S S S S H CB H Cx H Cx−= + = + + < ∞  (61) 

and by Assumption A5 ( )V x  is bounded, which completes the proof of Theorem 2.  

2.3.3 Continuous approximation of output feedback discontinuous control input 
Also, the control input (50) with (35) chatters from the beginning without reaching phase. 
The chattering of the discontinuous control input may be harmful to the real dynamic plant 
so it must be removed. Hence using the saturation function for a suitable 0δ , one make the 
part of the discontinuous input be continuous effectively for practical application as  

 0
0 1 0 2 0

0 0

( ) { ( )}
| |c

Su G y y G S Gy G sign S
S δ

= − − − Δ +
+

 (62) 

The discontinuity of control input of can be dramatically improved without severe output 
performance deterioration.  

3.  Design examples and simulation studies 
3.1 Example 1: Full-state feedback practical integral variable structure controller 
Consider a second order affine uncertain nonlinear system with mismatched uncertainties 
and matched disturbance  

2
1 1 1 1 2 10.1 sin ( ) 0.02sin(2.0 )x x x x x x u= − + + +  

 2
2 2 2 2sin ( ) (2.0 0.5sin(2.0 )) ( , )x x x x t u d x t= + + + +  (63) 

 2 2
1 2 1 2( , ) 0.7 sin( ) 0.8sin( ) 0.2( ) 2.0sin(5.0 ) 3.0d x t x x x x t= − + + + +  (64) 

Since (63) satisfy the Assumption A1, (63) is represented in state dependent coefficient form 
as  
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1 1 11
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2 22
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2.0 0.5sin(2.0 )0 1 sin ( ) ( , )
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x x tx d x t
⎡ ⎤− +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= ⋅ + + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥++⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
 (65) 

where the nominal parameter 0( , )f x t  and 0( , )g x t  and mismatched uncertainties ( , )f x tΔ  
and ( , )g x tΔ are  
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0 0 2
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= = Δ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
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⎡ ⎤

Δ = ⎢ ⎥
⎣ ⎦

 (66) 
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To design the full-state feedback integral sliding surface, ( , )cf x t  is selected as  

 0 0

1 1
( , ) ( , ) ( , ) ( )

70 21cf x t f x t g x t K x
−⎡ ⎤

= − = ⎢ ⎥− −⎣ ⎦
 (67) 

in order to assign the two poles at 16.4772−  and 5.5228− . Hence, the feedback gain 
( )K x becomes  

 [ ]( ) 35 11K x =  (68) 

The P in (14) is chosen as  

 
100 17.5

0
17.5 5.5

P
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

 (69) 

so as to be  

 
2650 670

( , ) ( , ) 0
670 196

T
c cf x t P Pf x t

− −⎡ ⎤
+ = <⎢ ⎥− −⎣ ⎦

 (70) 

Hence, the continuous static feedback gain is chosen as  

 [ ]0( ) ( , ) 35 11TK x g x t P= =  (71) 

Therefore, the coefficient of the sliding surface is determined as  

 [ ] [ ]1 11 12 10 1L L L= =  (72) 

Then, to satisfy the relationship (8a) and from (8b), 0L  is selected as  

 [ ] [ ] [ ]0 1 0 0 1 11 12 11 12( , ) ( , ) ( ) ( , ) 70 21 80 11cL L f x t g x t K x L f x t L L L L= − − = − = + − + =  (73) 

The selected gains in the control input (21), (23)-(25) are as follows:  

 1
1

1

4.0   if   0
4.0   if   0

f

f

S x
k

S x
+ >⎧⎪Δ = ⎨− <⎪⎩

 (74a) 

 2
2

2

5.0   if   0
5.0   if   0

f

f

S x
k

S x
+ >⎧⎪Δ = ⎨− <⎪⎩

 (74b) 

 1 400.0K =  (74c) 

 2 2
2 1 22.8 0.2( )K x x= + +  (74d) 

The simulation is carried out under 1[msec] sampling time and with [ ](0) 10 5 Tx =  initial 
state. Fig. 1 shows four case 1x  and 2x  time trajectories (i)ideal sliding output, (ii) no 
uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched 
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uncertainty and matched disturbance. The three case output responses except the case (iv) 
are almost identical to each other. The four phase trajectories (i)ideal sliding trajectory, (ii)no 
uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched 
uncertainty and matched disturbance are depicted in Fig. 2. As can be seen, the sliding 
surface is exactly defined from a given initial condition to the origin, so there is no reaching 
phase, only the sliding exists from the initial condition. The one of the two main problems of 
the VSS is removed and solved. The unmatched uncertainties influence on the ideal sliding 
dynamics as in the case (iv). The sliding surface ( )fS t  (i) unmatched uncertainty and 
matched disturbance is shown in Fig. 3. The control input (i) unmatched uncertainty and 
matched disturbance is depicted in Fig. 4. For practical application, the discontinuous input 
is made be continuous by the saturation function with a new form as in (32) for a 
positive 0.8fδ = . The output responses of the continuous input by (32) are shown in Fig. 5 
for the four cases (i)ideal sliding output, (ii)no uncertainty and no disturbance (iii)matched 
uncertainty/disturbance, and (iv)unmatched uncertainty and matched disturbance. There is 
no chattering in output states. The four case trajectories (i)ideal sliding time trajectory, (ii)no 
uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched 
uncertainty and matched disturbance are depicted in Fig. 6. As can be seen, the trajectories 
are continuous. The four case sliding surfaces are shown in fig. 7, those are continuous. The 
three case continuously implemented control inputs instead of the discontinuous input in 
Fig. 4 are shown in Fig. 8 without the severe performance degrade, which means that the 
continuous VSS algorithm is practically applicable. The another of the two main problems of 
the VSS is improved effectively and removed. 
From the simulation studies, the usefulness of the proposed SMC is proven.  
 

 
Fig. 1. Four case 1x  and 2x  time trajectories (i)ideal sliding output, (ii) no uncertainty and 
no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance 
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Fig. 2. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance 

 
 

 
 

Fig. 3. Sliding surface ( )fS t  (i) unmatched uncertainty and matched disturbance 
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Fig. 4. Discontinuous control input (i) unmatched uncertainty and matched disturbance 

 
 
 

 
 

Fig. 5. Four case 1x  and 2x  time trajectories (i)ideal sliding output, (ii) no uncertainty and 
no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance by the continuously approximated input for a positive 0.8fδ =  
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Fig. 3. Sliding surface ( )fS t  (i) unmatched uncertainty and matched disturbance 
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Fig. 4. Discontinuous control input (i) unmatched uncertainty and matched disturbance 

 
 
 

 
 

Fig. 5. Four case 1x  and 2x  time trajectories (i)ideal sliding output, (ii) no uncertainty and 
no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance by the continuously approximated input for a positive 0.8fδ =  
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Fig. 6. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 

 
 

 
 

Fig. 7. Four sliding surfaces (i)ideal sliding surface, (ii)no uncertainty and no disturbance 
(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 
disturbance by the continuously approximated input 
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Fig. 8. Three case continuous control inputs fcu  (i)no uncertainty and no disturbance 
(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 

3.2 Example 2: Output feedback practical integral variable structure controller 
Consider a third order uncertain affine nonlinear system with unmatched system matrix 
uncertainties and matched input matrix uncertainties and disturbance  

 

2
1 1 1

2 2
2 2

3 2 3 3 1

3 3sin ( ) 1 0 0 0
0 1 1 0 0

1 0.5sin ( ) 0 2 0.4sin ( ) 2 0.3sin(2 ) ( , )

x x x
x x u
x x x x t d x t

⎡ ⎤− −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − + + ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (75) 

 
1

2

3

1 0 0
0 0 1

x
y x

x

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 (76) 

 2 2
1 1 2 1 3( , ) 0.7 sin( ) 0.8sin( ) 0.2( ) 1.5sin(2 ) 1.5d x t x x x x t= − + + + +  (77) 

where the nominal matrices 0( , )f x t , 0( , )g x t B=  and C , the unmatched system matrix 
uncertainties and matched input matrix uncertainties and matched disturbance are  

2
1

0
2 2

2 3

3 1 0 0 3sin ( ) 0 0
1 0 0

( , ) 0 1 1 ,   0 ,    C ,   0 0 0
0 0 1

1 0 2 2 0.5sin ( ) 0 0.4sin ( )

x
f x t B f

x x

− −⎡ ⎤⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − = = Δ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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Fig. 6. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 

 
 

 
 

Fig. 7. Four sliding surfaces (i)ideal sliding surface, (ii)no uncertainty and no disturbance 
(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 
disturbance by the continuously approximated input 
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Fig. 8. Three case continuous control inputs fcu  (i)no uncertainty and no disturbance 
(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 

3.2 Example 2: Output feedback practical integral variable structure controller 
Consider a third order uncertain affine nonlinear system with unmatched system matrix 
uncertainties and matched input matrix uncertainties and disturbance  
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 2 2
1 1 2 1 3( , ) 0.7 sin( ) 0.8sin( ) 0.2( ) 1.5sin(2 ) 1.5d x t x x x x t= − + + + +  (77) 

where the nominal matrices 0( , )f x t , 0( , )g x t B=  and C , the unmatched system matrix 
uncertainties and matched input matrix uncertainties and matched disturbance are  

2
1

0
2 2

2 3

3 1 0 0 3sin ( ) 0 0
1 0 0

( , ) 0 1 1 ,   0 ,    C ,   0 0 0
0 0 1

1 0 2 2 0.5sin ( ) 0 0.4sin ( )

x
f x t B f

x x

− −⎡ ⎤⎡ ⎤ ⎡ ⎤
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⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

. (78) 

The eigenvalues of the open loop system matrix 0( , )f x t  are -2.6920, -2.3569, and 2.0489, 
hence 0( , )f x t  is unstable. The unmatched system matrix uncertainties and matched input 
matrix uncertainties and matched disturbance satisfy the assumption A3 and A8 as  
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x x
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 (79) 

disturbance by the continuously approximated input for a positive 0.8fδ =  
To design the output feedback integral sliding surface, ( , )cf x t  is designed as  

 0 0

3 1 0
( , ) ( , ) ( ) 0 1 1

19 0 30
cf x t f x t BG y C

−⎡ ⎤
⎢ ⎥= − = −⎢ ⎥
⎢ ⎥− −⎣ ⎦

 (80) 

 

in order to assign the three stable pole to ( , )cf x t  at 30.0251−  and 2.4875 0.6636i− ± . The 
constant feedback gain is designed as  

 [ ]{ }1( ) 2 [1 0 2] 19 0 30G y C −= − −  (81) 

 [ ]( ) 10 16G y∴ =  (82) 

Then, one find [ ]1 11 12H h h=  and [ ]0 01 02H h h=  which satisfy the relationship (37) as  

 11 01 12 02 120,        19 ,         30h h h h h= = =  (83) 
 

One select 12 1h = , 01 19h = , and 02 30h = . Hence 1 122 2H CB h= =  is a non zero satisfying 
A4. The resultant output feedback integral sliding surface becomes  

 [ ] [ ]1 01
0

2 02

1 0 1 19 30
2

y y
S

y y
⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= +⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (84) 

where 

 01 10
( )

t
y y dτ τ= ∫  (85) 

 02 2 20
( ) (0) / 30

t
y y d yτ τ= −∫  (86) 

 
The output feedback control gains in (50), (51)-(55) are selected as follows:  
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 0 1
1

0 1

1.6   if   0
1.6   if   0

S y
g

S y
+ >⎧

Δ = ⎨− <⎩
 (87a) 

 0 2
2

0 2

1.7   if   0
1.7   if   0

S y
g

S y
+ >⎧

Δ = ⎨− <⎩
 (87b) 

 1 500.0G =  (87c) 

 2 2
2 1 23.2 0.2( )G y y= + +  (87d) 

The simulation is carried out under 1[msec] sampling time and with [ ](0) 10 0.0 5 Tx =  

initial state. Fig. 9 shows the four case two output responses of 1y  and 2y  (i)ideal sliding 
output, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty and 
matched disturbance, and (iv) with ummatched uncertainty and matched disturbance. The 
each two output is insensitive to the matched uncertainty and matched disturbance, hence is 
almost equal, so that the output can be predicted. The four case phase trajectories (i)ideal 
sliding trajectory, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty 
and matched disturbance, and (iv) with ummatched uncertainty and matched disturbance 
are shown in Fig. 10. There is no reaching phase and each phase trajectory except the case 
(iv) with ummatched uncertainty and matched disturbance is almost identical also. The 
sliding surface is exactly defined from a given initial condition to the origin. The output 
feedback integral sliding surfaces (i) with ummatched uncertainty and matched disturbance 
is depicted in Fig. 11. Fig. 12 shows the control inputs (i)with unmatched uncertainty and 
matched disturbance. For practical implementation, the discontinuous input can be made 
continuous by the saturation function with a new form as in (32) for a positive 0 0.02δ = . The 
output responses by the continuous input of (62) are shown in Fig. 13 for the four cases 
(i)ideal sliding output, (ii)no uncertainty and no disturbance (iii)matched 
uncertainty/disturbance, and (iv)unmatched uncertainty and matched disturbance. There is 
no chattering in output responses. The four case trajectories (i)ideal sliding time trajectory, 
(ii)no uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) 
unmatched uncertainty and matched disturbance are depicted in Fig. 14. As can be seen, the 
trajectories are continuous. The four case sliding surfaces are shown in fig. 15, those are 
continuous also. The three case continuously implemented control inputs instead of the 
discontinuous input in Fig. 12 are shown in Fig. 16 without the severe performance loss, 
which means that the chattering of the control input is removed and the continuous VSS 
algorithm is practically applicable to the real dynamic plants. From the above simulation 
studies, the proposed algorithm has superior performance in view of the no reaching phase, 
complete robustness, predetermined output dynamics, the prediction of the output, and 
practical application. The effectiveness of the proposed output feedback integral nonlinear 
SMC is proven. 
Through design examples and simulation studies, the usefulness of the proposed practical 
integral nonlinear variable structure controllers is verified. The continuous approximation 
VSS controllers without the reaching phase in this chapter can be practically applicable to 
the real dynamic plants.  
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in order to assign the three stable pole to ( , )cf x t  at 30.0251−  and 2.4875 0.6636i− ± . The 
constant feedback gain is designed as  

 [ ]{ }1( ) 2 [1 0 2] 19 0 30G y C −= − −  (81) 

 [ ]( ) 10 16G y∴ =  (82) 

Then, one find [ ]1 11 12H h h=  and [ ]0 01 02H h h=  which satisfy the relationship (37) as  

 11 01 12 02 120,        19 ,         30h h h h h= = =  (83) 
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The simulation is carried out under 1[msec] sampling time and with [ ](0) 10 0.0 5 Tx =  

initial state. Fig. 9 shows the four case two output responses of 1y  and 2y  (i)ideal sliding 
output, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty and 
matched disturbance, and (iv) with ummatched uncertainty and matched disturbance. The 
each two output is insensitive to the matched uncertainty and matched disturbance, hence is 
almost equal, so that the output can be predicted. The four case phase trajectories (i)ideal 
sliding trajectory, (ii) with no uncertainty and no disturbance, (iii)with matched uncertainty 
and matched disturbance, and (iv) with ummatched uncertainty and matched disturbance 
are shown in Fig. 10. There is no reaching phase and each phase trajectory except the case 
(iv) with ummatched uncertainty and matched disturbance is almost identical also. The 
sliding surface is exactly defined from a given initial condition to the origin. The output 
feedback integral sliding surfaces (i) with ummatched uncertainty and matched disturbance 
is depicted in Fig. 11. Fig. 12 shows the control inputs (i)with unmatched uncertainty and 
matched disturbance. For practical implementation, the discontinuous input can be made 
continuous by the saturation function with a new form as in (32) for a positive 0 0.02δ = . The 
output responses by the continuous input of (62) are shown in Fig. 13 for the four cases 
(i)ideal sliding output, (ii)no uncertainty and no disturbance (iii)matched 
uncertainty/disturbance, and (iv)unmatched uncertainty and matched disturbance. There is 
no chattering in output responses. The four case trajectories (i)ideal sliding time trajectory, 
(ii)no uncertainty and no disturbance (iii)matched uncertainty/disturbance, and (iv) 
unmatched uncertainty and matched disturbance are depicted in Fig. 14. As can be seen, the 
trajectories are continuous. The four case sliding surfaces are shown in fig. 15, those are 
continuous also. The three case continuously implemented control inputs instead of the 
discontinuous input in Fig. 12 are shown in Fig. 16 without the severe performance loss, 
which means that the chattering of the control input is removed and the continuous VSS 
algorithm is practically applicable to the real dynamic plants. From the above simulation 
studies, the proposed algorithm has superior performance in view of the no reaching phase, 
complete robustness, predetermined output dynamics, the prediction of the output, and 
practical application. The effectiveness of the proposed output feedback integral nonlinear 
SMC is proven. 
Through design examples and simulation studies, the usefulness of the proposed practical 
integral nonlinear variable structure controllers is verified. The continuous approximation 
VSS controllers without the reaching phase in this chapter can be practically applicable to 
the real dynamic plants.  
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Fig. 9. Four case two output responses of 1y  and 2y  (i)ideal sliding output, (ii) with no 
uncertainty and no disturbance, (iii)with matched uncertainty and matched disturbance, 
and (iv) with ummatched uncertainty and matched disturbance 

 

 
 

Fig. 10. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance 
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Fig. 11. Sliding surface 0( )S t  (i) unmatched uncertainty and matched disturbance 

 
 

 
 
Fig. 12. Discontinuous control input (i) unmatched uncertainty and matched disturbance 
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Fig. 9. Four case two output responses of 1y  and 2y  (i)ideal sliding output, (ii) with no 
uncertainty and no disturbance, (iii)with matched uncertainty and matched disturbance, 
and (iv) with ummatched uncertainty and matched disturbance 

 

 
 

Fig. 10. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance 
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Fig. 11. Sliding surface 0( )S t  (i) unmatched uncertainty and matched disturbance 

 
 

 
 
Fig. 12. Discontinuous control input (i) unmatched uncertainty and matched disturbance 
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Fig. 13. Four case 1y  and 2y  time trajectories (i)ideal sliding output, (ii) no uncertainty and 
no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance by the continuously approximated input for a positive 0 0.02δ =  
 

 
Fig. 14. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 
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Fig. 15. Four sliding surfaces (i)ideal sliding surface , (ii)no uncertainty and no disturbance 
(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 
disturbance by the continuously approximated input 

 

 
Fig. 16. Three case continuous control inputs 0cu  (i)no uncertainty and no disturbance 
(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 
disturbance by the continuously approximated input for a positive 0 0.02δ =  



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

242 

 
 
 

 
 

Fig. 13. Four case 1y  and 2y  time trajectories (i)ideal sliding output, (ii) no uncertainty and 
no disturbance (iii)matched uncertainty/disturbance, and (iv)unmatched uncertainty and 
matched disturbance by the continuously approximated input for a positive 0 0.02δ =  
 

 
Fig. 14. Four phase trajectories (i)ideal sliding trajectory, (ii)no uncertainty and no 
disturbance (iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and 
matched disturbance by the continuously approximated input 
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Fig. 15. Four sliding surfaces (i)ideal sliding surface , (ii)no uncertainty and no disturbance 
(iii)matched uncertainty/disturbance, and (iv) unmatched uncertainty and matched 
disturbance by the continuously approximated input 

 

 
Fig. 16. Three case continuous control inputs 0cu  (i)no uncertainty and no disturbance 
(ii)matched uncertainty/disturbance, and (iii) unmatched uncertainty and matched 
disturbance by the continuously approximated input for a positive 0 0.02δ =  
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4. Conclusion 
In this chapter, a new practical robust full-state(output) feedback nonlinear integral variable 
structure controllers with the full-state(output) feedback integral sliding surfaces are 
presented based on state dependent nonlinear form for the control of uncertain more affine 
nonlinear systems with mismatched uncertainties and matched disturbance. After an affine 
uncertain nonlinear system is represented in the form of state dependent nonlinear system, a 
systematic design of the new robust integral nonlinear variable structure controllers with 
the full-state(output) feedback (transformed) integral sliding surfaces are suggested for 
removing the reaching phase. The corresponding (transformed) control inputs are proposed. 
The closed loop stabilities by the proposed control inputs with full-state(output) feedback 
integral sliding surface together with the existence condition of the sliding mode on the 
selected sliding surface are investigated in Theorem 1 and Theorem 2 for all mismatched 
uncertainties and matched disturbance. For practical application of the continuous 
discontinuous VSS, the continuous approximation being different from that of (Chern & 
Wu, 1992) is suggested without severe performance degrade. The two practical algorithms, 
i.e., practical full-state feedback integral nonlinear variable structure controller with the full-
state feedback transformed input and the full-state feedback sliding surface and practical 
output feedback integral nonlinear variable structure controller with the output feedback 
input and the output feedback transformed sliding surface are proposed. The outputs by the 
proposed inputs with the suggested sliding surfaces are insensitive to only the matched 
uncertainty and disturbance. The unmatched uncertainties can influence on the ideal sliding 
dynamics, but the exponential stability is satisfied. The two main problems of the VSS, i.e., 
the reaching phase at the beginning and the chattering of the input are removed and solved. 
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4. Conclusion 
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1. Introduction 
There exist many mechanical, electrical, electro-mechanical, thermic, chemical, biological 
and medical linear and nonlinear systems, subject to parametric uncertainties and non 
standard disturbances, which need to be efficiently controlled. Indeed, e.g. consider the 
numerous manufacturing systems (in particular the robotic and transport systems,…) and 
the more pressing requirements and control specifications in an ever more dynamic society. 
Despite numerous scientific papers available in literature (Porter and Power, 1970)-(Sastry, 
1999), some of which also very recent (Paarmann, 2001)-(Siciliano and Khatib, 2009), the 
following practical limitations remain: 
1. the considered classes of systems are often with little relevant interest to engineers; 
2. the considered signals (references, disturbances,…) are almost always standard 

(polynomial and/or sinusoidal ones); 
3. the controllers are not very robust and they do not allow satisfying more than a single 

specification; 
4. the control signals are often excessive and/or unfeasible because of the chattering. 
Taking into account that a very important problem is to force a process or a plant to track 
generic references, provided that sufficiently regular, e.g. the generally continuous 
piecewise linear signals, easily produced by using digital technologies, new theoretical 
results are needful for the scientific and engineering community in order to design control 
systems with non standard references and/or disturbances and/or with ever harder 
specifications. 
In the first part of this chapter, new results are stated and presented; they allow to design a 
controller of a SISO process, without zeros, with measurable state and with parametric 
uncertainties, such that the controlled system is of type one and has, for all the possible 
uncertain parameters, assigned minimum constant gain and maximum time constant or 
such that the controlled system tracks with a prefixed maximum error a generic reference 
with limited derivative, also when there is a generic disturbance with limited derivative, has 
an assigned maximum time constant and guarantees a good quality of the transient. 
The proposed design techniques use a feedback control scheme with an integral action (Seraj 
and Tarokh, 1977), (Freeman and Kokotovic, 1995) and they are based on the choice of a 
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suitable set of reference poles, on a proportionality parameter of these poles and on the 
theory of externally positive systems (Bru and Romero-Vivò, 2009). 
The utility and efficiency of the proposed methods are illustrated with an attractive and 
significant example of position control. 
In the second part of the chapter it is considered the uncertain pseudo-quadratic systems of 

the type 1 2
1

( , , ) ( , , ) ( , , , )
m

i i
i

y F y y p u F y y p y y f t y y p
=

⎡ ⎤= + +⎢ ⎥⎣ ⎦
∑ , where t R∈  is the time, my R∈  is 

the output, ru R∈  is the control input, p Rμ∈℘⊂  is the vector of uncertain parameters, 
with ℘  compact set, 1

m rF R ×∈  is limited and of rank m , 2
mxm

iF R∈  is limited and mf R∈  is 
limited and models  possible disturbances and/or particular nonlinearities of the system. 
For this class of systems, including articulated mechanical systems, several theorems are 
stated which easily allow to determine robust control laws of the PD type, with a possible 
partial compensation, in order to force y  and y  to go to rectangular neighbourhoods (of 
the origin) with prefixed areas and with prefixed time constants characterizing the 
convergence of the error. Clearly these results allow also designing control laws to take and 
hold a generic articulated system in a generic posture less than prefixed errors also in the 
presence of parametric uncertainties and limited disturbances. 
Moreover the stated theorems can be used to determine simple and robust control laws  in 
order to force the considered class of systems to track a generic preassigned limited in 
“acceleration” trajectory, with preassigned majorant values of the maximum “position 
and/or velocity” errors and preassigned increases of the time constants characterizing the 
convergence of the error. 

Part I 

2. Problem formulation and preliminary results 
Consider the SISO n-order system, linear, time-invariant and with uncertain parameters, 
described by  

 ,x Ax Bu y Cx d= + = + , (1) 

where: nx R∈  is the state, u R∈  is the control signal, d R∈  is the disturbance or, more in 
general, the effect dy  of the disturbance d  on the output, y R∈  is the 
output, ,A A A− +≤ ≤ B B B− +≤ ≤  and C C C− +≤ ≤ .  
Suppose that this process is without zeros, is completely controllable and that the state is 
measurable. 
Moreover, suppose that the disturbance d  and the reference r  are continuous signals with 
limited first derivative (see Fig. 1). 
A main goal is to design a linear and time invariant controller such that: 
1. , , , , ,A A A B B B C C C− + − + − +∀ ∈ ∀ ∈ ∀ ∈⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  the control system is of type one, with 

constant gain ˆ
v vK K≥  and maximum time constant max maxˆτ τ≤ , where ˆ

vK  and maxτ̂  are 
design specifications, or 

2. condition 1. is satisfied and, in addition, in the hypothesis that the initial state of the 
control system is null and that (0) (0) 0r d− = , the tracking error ( )e t  satisfies relation 
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Fig. 1. Possible reference or disturbance signals with limited derivative. 

where the maximum variation velocity 
r̂ d

δ
−

 of ( ) ( )r t d t−  is a design specification. 
Remark 1. Clearly if the initial state of the control system is not null and/or (0) (0) 0r d− ≠  
(and/or, more in general, ( ) ( )r t d t−  has discontinuities), the error ( )e t  in (2) must be 
considered unless of a “free evolution“, whose practical duration can be made minus that a 
preassigned settling time ˆ

at . 
Remark 2.  If disturbance d  does not directly act on the output y , said dy  its effect on the 
output, in (2) d  must be substituted with dy .  
This is one of the main and most realistic problem not suitable solved in the literature of 
control (Porter et al., 1970)-(Sastry, 1999). 
There exist several controllers able to satisfy  the 1. and/or  2 specifications. In the following, 
for brevity, is considered the well-known state feedback  control law with an integral (I) 
control action (Seraj and Tarokh, 1977), (Freeman and Kokotovic, 1995). 
By posing 

 1
1 1 11

1

( ) ( ) , , ..., ,
... n n nn n

n

bG s C sI A B a a a a a a b b b
s a s a

− − + − + − +

−
= − = ≤ ≤ ≤ ≤ ≤ ≤

+ + +
, (3) 

in the Laplace domain  the considered control scheme is the one of Fig. 2. 
 

1+nk
s 1

1 ...n n
n

b
s a s a−+ + +

1 2
1 2 ...n n

nk s k s k− −+ + +

r

 
Fig. 2. State feedback control scheme with an I control action. 

Remark 3. It is useful to note that often the state-space model of the process (1) is already in 
the corresponding companion form of the input-output model of the system (3) (think to the 
case in which this model is obtained experimentally by using e.g. Matlab command 
invfreqs); on the contrary, it is easy to transform the interval uncertainties of , ,A B C  into 
the ones (even if more conservative) of ,ia b . 
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Moreover note that almost always the controller is supplied with an actuator having gain 
ag . In this case it can be posed ab bg←  and also consider the possible uncertainty of ag . 

Finally, it is clear that, for the controllability of the process, the parameter b must be always 
not null. In the following, without loss of generality, it is supposed that 0. b− >  
Remark 4. In the following it will be proved that, by using the control scheme of Fig. 2, if (2) 
is satisfied then the overshoot of the controlled system is always null.  
From the control scheme of Fig. 2 it can be easily derived that 

 
1

1 1
1

1 1 1

( ) ... ( )( ) ( ( ) ( )) ( )( ( ) ( ))
( ) ... ( )

n n
n n

n n
n n n

s a bk s a bkE s s R s D s S s R s D s
s a bk s a bk s bk

−

+
+

+ + + + +
= − = −

+ + + + + +
. (4) 

If it is posed that 
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1 1 1 1 1( ) ( ) ... ( ) ...n n n n

n n n n nd s s a bk s a bk s bk s d s d s d+ +
+ += + + + + + + = + + + + , (5) 

from (4) and by noting that the open loop transfer function is 
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, (6) 

the sensitivity function ( )S s  of  the error and the constant gain vK  turn out to be: 
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Moreover the sensitivity function ( )W s  of  the output is 
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Definition 1. A symmetric set of 1n +  negative real part complex numbers 
{ }1 2 1,  ,  ...,  nP p p p +=  normalized such that 

1

1
( ) 1

n

i
i

p
+

=
∏ − =  is said to be set of reference poles. 

Let be 

 1
1 1( ) ...n n

n nd s s d s d s d+
+= + + + +  (9) 

the polynomial whose roots are a preassigned set of reference poles P .  By choosing the 
poles P  of the control system equal to Pρ , with  ρ  positive , it is 

 1 1
1 1( ) ...n n n n

n nd s s d s d s dρ ρ ρ+ +
+= + + + + . (10) 

Moreover, said ( )ps t  the impulsive response of the system having transfer function  
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from (4) and from the first of (7) it is 
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from which, if all the poles of ( )pS s  have negative real part, it is 
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Remark 5. Note that, while the constant gain vK  allows to compute the steady-state 
tracking error to a ramp reference signal, vH , denoted absolute constant gain, allows to obtain 

t∀  an excess estimate of the tracking error to a generic reference with derivative. On this 
basis, it is very interesting from a theoretical and practical point of view, to establish the 
conditions for which v vH K= . 
In order to establish the condition necessary for the equality of the absolute constant gain  

vH  with the constant gain vK  and to provide some methods to choose the poles P  and ρ , 
the following preliminary results are necessary. They concern the main parameters of the 
sensitivity function ( )W s  of  the output and the externally positive systems, i.e.  the systems 
with non negative impulse response. 
Theorem 1. Let be s , st , at , sω  the overshoot, the rise time, the settling time and the upper 
cutoff angular frequency  of 
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then the corresponding values of , , , , ,s a s v vs t t K Hω  when 1ρ ≠  turn out to be: 
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Proof. By using the change of scale property of the Laplace transform, (8) and (10) it is 
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Moreover note that almost always the controller is supplied with an actuator having gain 
ag . In this case it can be posed ab bg←  and also consider the possible uncertainty of ag . 

Finally, it is clear that, for the controllability of the process, the parameter b must be always 
not null. In the following, without loss of generality, it is supposed that 0. b− >  
Remark 4. In the following it will be proved that, by using the control scheme of Fig. 2, if (2) 
is satisfied then the overshoot of the controlled system is always null.  
From the control scheme of Fig. 2 it can be easily derived that 
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If it is posed that 
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from (4) and by noting that the open loop transfer function is 
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the sensitivity function ( )S s  of  the error and the constant gain vK  turn out to be: 
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Moreover the sensitivity function ( )W s  of  the output is 
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Definition 1. A symmetric set of 1n +  negative real part complex numbers 
{ }1 2 1,  ,  ...,  nP p p p +=  normalized such that 
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∏ − =  is said to be set of reference poles. 

Let be 
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the polynomial whose roots are a preassigned set of reference poles P .  By choosing the 
poles P  of the control system equal to Pρ , with  ρ  positive , it is 
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Moreover, said ( )ps t  the impulsive response of the system having transfer function  
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from (4) and from the first of (7) it is 
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 ( )1

0

( ) ( ) ( ) ( ) ,  ( ) ( )
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p p pe t s r t d t d where s t S sτ τ τ τ −≤ − − − =∫ L , (12) 

from which, if all the poles of ( )pS s  have negative real part, it is 
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Remark 5. Note that, while the constant gain vK  allows to compute the steady-state 
tracking error to a ramp reference signal, vH , denoted absolute constant gain, allows to obtain 

t∀  an excess estimate of the tracking error to a generic reference with derivative. On this 
basis, it is very interesting from a theoretical and practical point of view, to establish the 
conditions for which v vH K= . 
In order to establish the condition necessary for the equality of the absolute constant gain  

vH  with the constant gain vK  and to provide some methods to choose the poles P  and ρ , 
the following preliminary results are necessary. They concern the main parameters of the 
sensitivity function ( )W s  of  the output and the externally positive systems, i.e.  the systems 
with non negative impulse response. 
Theorem 1. Let be s , st , at , sω  the overshoot, the rise time, the settling time and the upper 
cutoff angular frequency  of 
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then the corresponding values of , , , , ,s a s v vs t t K Hω  when 1ρ ≠  turn out to be: 
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Proof. By using the change of scale property of the Laplace transform, (8) and (10) it is 
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By using again the change of scale property of the Laplace transform, by taking into 
account (10) and (11) it is 
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from which 
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From the second of (7) and from (10), (14), (18), (20) the proof easily follows.  
Theorem 2. Let be , , 1,2,..., ,i i ia a a i n− +∈ =⎡ ⎤⎣ ⎦  and ,b b b− +∈ ⎡ ⎤⎣ ⎦  the nominal values of the 

parameters of the process and ˆ ˆP Pρ=   the desired nominal poles. Then the parameters of 
the controller, designed by using the nominal parameters of the process and the nominal 
poles, turn out to be:  
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Moreover the polynomial of the effective poles and the constant gain are: 
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where: 
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Proof. The proof is obtained by making standard manipulations starting from (5), from the 
second of (7) and from (10). For brevity it has been omitted. 
Theorem 3. The coefficients d  of the polynomial 

 1 1
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where ( )d s  is the polynomial (5) or (22), are given by using the affine transformation 

 

1

12 2

2

1 2

1

1

1

.

1
ˆ ˆ1 0 . 0

1

ˆ ˆ 11 . 0
ˆ

2
. . . .

. .
1

ˆ ˆ ˆ 1. 1
ˆ1 2

1 1
ˆ ˆ ˆ ˆ.

1 1

n n

nn

n n

n

n

n

a n

a

d
n n

a n
n n

b n
n n

n n

χ α

α χ
α

α α χ
α

α α α χ

− −

−

+

+

+

= +
−

+
− −

−

−

⎛ ⎞
⎡ ⎤ ⎜ ⎟

⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥⎜ ⎟ ⎡ ⎤ ⎛ ⎞⎢ ⎥⎝ ⎠ ⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎢ ⎥⎢ ⎥ ⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎦

1

,

1
ˆ

1

n

n
n

n
α +

+

+

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞
⎢ ⎥⎜ ⎟
⎣⎝ ⎠ ⎦

 (28) 

where 
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 (29) 

Proof. The proof is obtained by making standard manipulations and for brevity it has been 
omitted. 
Now, as pre-announced, some preliminary results about the externally positive systems are 
stated. 
Theorem 4. Connecting in series two or more SISO systems, linear, time-invariant and 
externally positive it is obtained another externally positive system. 
Proof. If 1( )W s  and 2( )W s  are the transfer functions of two SISO externally positive systems 
then ( )1

1 1( ) ( ) 0w t W s−= ≥L  and ( )1
2 2( ) ( ) 0w t W s−= ≥L . From this and considering that 

 ( )1
1 2 1 2

0

( ) ( ) ( ) ( ) ( )
t

w t W s W s w t w dτ τ τ−= = −∫L  (30) 

the proof follows. 
Theorem 5. A third-order SISO  linear and time-invariant system with transfer function 
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=
− − +⎡ ⎤⎣ ⎦

, (31) 

i.e. without zeros, with a real pole p  and a couple of complex poles jα ω± , is externally 
positive  iff pα ≤ , i.e. iff the real pole is not on the left of the couple of complex  poles. 
Proof.  By using the translation property of the Laplace transform it is  
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By using again the change of scale property of the Laplace transform, by taking into 
account (10) and (11) it is 
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from which 
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From the second of (7) and from (10), (14), (18), (20) the proof easily follows.  
Theorem 2. Let be , , 1,2,..., ,i i ia a a i n− +∈ =⎡ ⎤⎣ ⎦  and ,b b b− +∈ ⎡ ⎤⎣ ⎦  the nominal values of the 

parameters of the process and ˆ ˆP Pρ=   the desired nominal poles. Then the parameters of 
the controller, designed by using the nominal parameters of the process and the nominal 
poles, turn out to be:  
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Moreover the polynomial of the effective poles and the constant gain are: 

 ˆ ˆ( ) ( ) ( ) ( )d s d s hn s sδ= + +  (22) 
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where: 

 1 1 1
1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ ˆ( ) ... ...n n n n n n
n n n nd s s d s d s d s d s d s dρ ρ ρ+ + +

+ += + + + + = + + + +  (24) 

 1
1 1 1 1

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) ... ...n n n n
n n n nn s d s d s d d s d s dρ ρ ρ +

+ += + + + = + + +  (25) 

 
1

1
1

1 1 1

, ( ) ...

, , ..., .

n n
n

n

n n n

b a b a bh s a s a s
a ab b b

b b b a a a a a a

δ
⎛ ⎞⎛ ⎞Δ Δ Δ Δ Δ

= = − + + −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ = − Δ = − Δ = −

 (26) 

Proof. The proof is obtained by making standard manipulations starting from (5), from the 
second of (7) and from (10). For brevity it has been omitted. 
Theorem 3. The coefficients d  of the polynomial 
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where ( )d s  is the polynomial (5) or (22), are given by using the affine transformation 
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Proof. The proof is obtained by making standard manipulations and for brevity it has been 
omitted. 
Now, as pre-announced, some preliminary results about the externally positive systems are 
stated. 
Theorem 4. Connecting in series two or more SISO systems, linear, time-invariant and 
externally positive it is obtained another externally positive system. 
Proof. If 1( )W s  and 2( )W s  are the transfer functions of two SISO externally positive systems 
then ( )1

1 1( ) ( ) 0w t W s−= ≥L  and ( )1
2 2( ) ( ) 0w t W s−= ≥L . From this and considering that 
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0

( ) ( ) ( ) ( ) ( )
t

w t W s W s w t w dτ τ τ−= = −∫L  (30) 

the proof follows. 
Theorem 5. A third-order SISO  linear and time-invariant system with transfer function 
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i.e. without zeros, with a real pole p  and a couple of complex poles jα ω± , is externally 
positive  iff pα ≤ , i.e. iff the real pole is not on the left of the couple of complex  poles. 
Proof.  By using the translation property of the Laplace transform it is  
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Note that the signal ( )( ) sinp tv t e tα ω−=  is composed by a succession of positive and negative 
alternately waves. Therefore the integral ( )iv t of this signal is non negative iff the succession 
of the absolute values of the areas of the considered semi-waves is non decreasing. Clearly 
this fact occurs iff the factor ( )p te α−  is non increasing, i.e. iff 0pα − ≤ , from which the proof 
derives. 
From Theorems 4 and 5 easily follows that: 
- a SISO system with a transfer function without zeros and all the poles real is externally 

positive; 
- a SISO system with a transfer function without zeros and at least a real pole not on the 

left of every couple of complex poles is externally positive. 
By using the above proposed results the following main results can be stated. 

3. First main result 
The following main result, useful to design a robust controller satisfying the required 
specifications 1, holds. 
Theorem 6.  Give the process (3) with limited uncertainties, a set of reference poles P  and 
some design values ˆ

vK  and maxτ̂ . If it is chosen b b−=   and   n na a+=  then  ˆ ˆ
Kρ ρ∀ ≥ , where 
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= , (33) 

the constant gain vK  of the control system of Fig. 2, with a controller designed by using (21), 
is not minus than ˆ

vK , , , 1, 2 ,..., ,i i ia a a i n− +∀ ∈ =⎡ ⎤⎣ ⎦ and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ . Moreover, by 
choosing the poles P  all in 1−  or of Bessel or of Butterworth, for ˆ ˆ

τρ ρ , where 

 
max

1ˆ
ˆ maxReal( )Pτρ τ

= − , (34) 

the polynomial ˆ( )d s α−  given by (27) is hurwitzian , ,i i ia a a− +∀ ∈ ⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and 
,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ . 

Proof. The proof of the first part of the theorem easily follows from (23) and from the fact 
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τρ ρ  it is ˆ ˆ( ) ( ) ( ) ( ), 0.d s d s d s hn s h≅ = + ≥  Since for 0 ( 0)b hΔ = ⇔ =  the roots of ( )d s  are 
equal to the ones of ˆ( )d s  and the zeros of ˆ( )n s  are always on the right of  the roots of ˆ( )d s  
and on the left of the imaginary axis  (see Figs. 3, 4; from Fig. 4 it is possible to note that if 
the poles P  are all in 1−  then the zeros of ˆ( )n s  have  real part equal to ˆ / 2ρ− ), it is that the 
root locus of ( )d s  has a negative real asymptote and n  branches which go to the roots of 
ˆ( )n s . From this consideration the second part of the proof follows. 

From Theorems 3 and 6 several algorithms to design a controller such that 
, , 1, 2 ,..., ,i i ia a a i n− +∀ ∈ =⎡ ⎤⎣ ⎦  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ the controlled system of Fig. 2 is of type one, 
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with constant gain ˆ
v vK K≥  and maximum time constant max maxˆτ τ≤ , where ˆ

vK  and  maxτ̂  are 
design specifications  (robustness of the constant gain and of the maximum time constant with 
respect to  the parametric uncertainties of  the process). 
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A very simple algorithm is the following. 
Algorithm 1 
Step 1. By using (33) and (34), { }ˆ ˆ ˆmax ,K τρ ρ ρ=  is obtained and by using (21) the gains 

ˆ , 1, ..., 1ik i n= +  are computed. 
Step 2. ρ̂  is iteratively increased, if necessary, until by using (28) and Kharitonov’s 

theorem, the polynomial ˆ( )d s α−  given by (27) becomes hurwitzian 
, ,i i ia a a− +∀ ∈ ⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ . If the only uncertain parameter is b  

(e.g. because of the uncertainty of the gain ag  of the “power“ actuator), instead of 
using Kharitonov’s theorem it can be directly plot the root locus of ( )d s with respect 
to b . 

Remark 6. Note that, if the uncertainties of the process are small enough and ρ̂ is chosen big 
enough, it is ˆ( ) ( )d s d s≅ . Therefore, by using Theorem 1, turns out to be: ,s s≅  

,
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s
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tt
ρ

≅ ,
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a

a

tt
ρ

≅  ˆ ˆ,  .s s v vK Kω ρω ρ= ≅  Moreover, if the poles P  are equal to 1−  or are of 

Bessel or of Butterworth, the values of ,s  ,st ,at  ,  s vKω  (intensively studied in the 
optimization theory) are well-known and/or easily computing (Butterworth, 1930), 
(Paarmann, 2001). 

4. Second main result 
The following fundamental result, that is the key to design a robust controller satisfying the 
required specifications 2., is stated. 
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Theorem 7. Consider the process (3) with limited uncertainties and assigned design values 
of ˆ

vK  and 
r̂ d

δ
−

. If there exist a set of reference poles P  and a ρ̂  such that, with 
ˆ ,  j 1, 2 ,..., 1jk n= + , provided by (21), , ,i i ia a a− +∀ ∈ ⎡ ⎤⎣ ⎦  1, 2 ,..., ,i n=  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦  the 

transfer function 

 1 1
1 1

1 1 1 1 1

ˆ
( ) ˆ ˆ ˆ... ( ) ... ( )

n n
n n n n

n n n n n

d bkW s
s d s d s d s a bk s a bk s bk

+ +
+ +

+ +

= =
+ + + + + + + + + +

 (35) 

 

is strictly hurwitzian and externally positive and 1
ˆ

v n n vK d d K+= ≥ , then, in the hypothesis that 
the initial state of the control system of Fig. 2 with ˆ

i ik k=  is null and that (0) (0) 0r d− = , the 
corresponding tracking error ( )e t , always , ,i i ia a a− +∀ ∈ ⎡ ⎤⎣ ⎦ 1, 2 ,..., ,i n=  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ , 
satisfies relation 

 
[ ]0 ,

1 ˆ ˆ( ) , 0, ( ),  ( ) :  max ( ) ( )ˆ r d r d r dt
v

e t t r t d t r d
K σ

δ δ σ σ δ
− − −∈

≤ ∀ ≥ ∀ = − ≤ . (36) 

Moreover the overshoot s is always null. 
Proof. Note that the function ( )pS s  given by (11) is  

 ( )1( ) 1 ( )pS s W s
s

= − . (37) 

Hence 

 1( ) 1 ( )ps t w t−= − . (38) 

Since, for hypothesis, ( )w t  is non negative then 1
0

( ) ( )
t

w t w dτ τ− = ∫  is non decreasing with a 
final value 

0
( ) 1

s
W s

=
= . Therefore ( )ps t  is surely non negative. From this, by taking into 

account (7), (13) and (14), it follows that 

 1

10

0 0

1 1 1 1 ˆ
( )( ) ( )

n
v v v

n n np sp p

dH K K
d d dS ss d s dτ τ τ τ

+
∞ ∞

+=

= = = = = = ≥

∫ ∫
 (39) 

and hence the proof. 
Remark 7. The choice of P  and the determination of a ρ̂  such that (36) is valid, if the 
uncertainties of the process are null, are very simple. Indeed, by using Theorems 4 and 5,  
it is sufficient to choose P  with all the poles real or with at least a real pole not on the  
left of each couple of complex poles (e.g. { }1,  1P = − − , { }1,  1 ,  1P i i= − − + − − , 

{ }1,  1,  1 ,  1 ,  ...)P i i= − − − + − −  and then to compute ρ̂ by using relation 1
ˆˆ

v n nK d dρ += . 
If the process has parametric uncertainties, it is intuitive that the choice of P can be made 
with at least a real pole dominant with respect to each couple of complex poles and then to 
go on by using the Theorems of Sturm and/or Kharitonov or with new results or directly 
with the command roots and with the Monte Carlo method. 
Regarding this the following main theorem holds. 
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Theorem 8. Give the process (3) with limited uncertainties and with assigned nominal 
values of its parameters. Suppose that there exists a set of reference poles { }1 2 1, ,..., nP p p p +=  
such that the system 

 
1

1 1
1 1

1

1( ) , ( ) ( ) ... ,  ( ) ( ) ,
( ) ( )

n
n n n

h i n n
i

W s d s s p s d s d s d n s d s s
d s hn s

+
+ +

+
=

= = − = + + + + = −
+ ∏  (40) 

is externally positive 0h∀ ≥ . Then for ρ̂  big enough the control system of Fig. 2, with 
ˆ ,  j 1, 2 ,..., 1j jk k n= = + , given by (21), , ,i i ia a a− +∀ ∈ ⎡ ⎤⎣ ⎦  1, 2 ,..., ,i n=  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦   is 

externally positive. 
Proof. Note that, taking into account (22), (24), (25) and (26), for ρ̂  big enough it is 

ˆ ˆ( ) ( ) ( ) ( )d s d s d s hn s≅ = + . From this the proof easily follows. 
In the following, for brevity, the second, third, fourth-order control systems will be 
considered.  
Theorem 9. Some sets of reference poles P  which satisfy Theorem 8 are: 

{ }1,P α α= − − with 1α > (e.g. 1.5,  2, ...α = ); { } 2 231, ,P i iα α α ωω ω= − − + − − +    with 
1α >  and ω  such that the roots of ( )n s  are real  (e.g. 1.5a = −  and 2.598ω ≥ , 2a = −  and 
2.544, ...ω ≥ ); { } 341, , ,P α α α α= − − − − , 1α >  (e.g. 1.5,  2, ...α = ). 

Proof. The proof easily follows from the root loci of ( ) ( ) ( )d s d s hn s= +  (see Figs. 5, 6). 
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Fig. 5. Root locus of ( ),  1 3cd s n n + == . 
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Fig. 6. Root locus of ( ),  1 4cd s n n + == . 

To verify the externally positivity of a third-order system the following theorems are 
useful. 
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To verify the externally positivity of a third-order system the following theorems are 
useful. 
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Theorem 10. Let be 

 3 3
3 2

1 2 3

( )
( )

d dW s
s d s d s d d s

= =
+ + +

 (41) 

an asimptotically stable system. If 

 ( )1 1 1 2 327 3 2 9 27 0d d d d d dδ = − = − + <  (42) 

then the poles of ( )W s  are all real or the real pole is on the right of the remaining couple of 
complex poles, i.e. the system is externally positive.   
Proof. Let be 1 2 3, ,p p p  the poles of ( )W s  note that the ”barycentre” 1 3cx d= −  is in the 
interval [ ]minReal( ), maxReal( )i ip p . Hence if relation (42) is satisfied, as  3(0) 0d d= > , the 
interval [ ],  0cx  contains a real pole (see Figs. 7, 8). From this the proof easily follows. 
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Fig. 7. δ  in the case of real pole on the right of the couple of complex poles. 
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Fig. 8. δ  in the case of all real poles. 

Theorem 11.  Give the control system  

 3
1 1 1 2 2 23 2

1 1 2 2 3

ˆ
( ) , , , , , , ,ˆ ˆ ˆ( ) ( )

bkW s a a a a a a b b b
s a bk s a bk s bk

− + − + − += ∈ ∈ ∈⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦+ + + + +
 (43) 

if 1 2 3
ˆ ˆ ˆ, ,k k k  satisfy the relations: 

{ }
3

3
1 2 1 1 1 1 2 1 3 1 1 1

ˆ 0, ,
ˆ ˆ ˆ ˆ( , , ) 2( ) 9( )( ) 27 0, ,   and  , ,

bk b b b

a a b a bk a bk a bk bk b b b a a aδ

− +

− − − + − +

> ∀ ∈ ⎡ ⎤⎣ ⎦

= + − + + + < ∀ ∈ =⎡ ⎤⎣ ⎦
 (44) 

then the control system is externally positive 1 1 1, ,a a a− +∀ ∈ ⎡ ⎤⎣ ⎦ 2 2 2,a a a− +∀ ∈ ⎡ ⎤⎣ ⎦  and , .b b b− +∀ ∈ ⎡ ⎤⎣ ⎦  
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Proof. Note that if 1 2 1 1 1( , , ) 0,  ,a a b a a aδ − − +< ∀ ∈ ⎡ ⎤⎣ ⎦  and , ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦  then 1 2( , , ) 0,a a bδ <  
1 1 1 2 2 2, , ,a a a a a a− + − +∀ ∈ ∀ ∈⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  and ,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ . Moreover if 1 2( , , ) 0a a bδ − − <  and 

1 2( , , ) 0,  , ,a a b b b bδ + − − +< ∀ ∈ ⎡ ⎤⎣ ⎦  then by using Theorem 10 the polynomials 
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1 1 2 2 3
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− − −
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= + + + + +
 (45) 

,b b b− +∀ ∈ ⎡ ⎤⎣ ⎦ , have a dominant real root. By taking into account the root loci with respect 
h of the polynomial 

 3 2 2
1 1 2 2 3

ˆ ˆ ˆ( ) ( ) ( )d s s a bk s a bk s bk hs− −= + + + + + + , (46) 

in the two cases of polynomial ( )d s−  with all the roots real negative and of  polynomial 
( )d s−  with a real negative root on the right of the remaining complex roots (see Figs. 9, 10), 

the proof easily follows. 
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Fig. 9. Root locus of the polynomial (46) in the hypothesis that all the roots of ( )d s−  are real. 
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Fig. 10. Root locus of the polynomial (46) under the hypothesis that ( )d s− has a real negative 
root on the right of the remaining complex roots. 

Finally, from Theorems 7, 9, 11 and by using the Routh criterion the next theorem easily 
follows. 
Theorem 12. Give the process (3) with limited uncertainties for  1 3cn n= + =  and assigned 
some design values of ˆ

vK  and 
r̂ d

δ
−

. Let be choose { }1 2 2, ,P p p p= =  
{ } 2 231, ,i iα α α ωω ω− − + − − + , with 1α >  and ω  such that the roots of  
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Theorem 10. Let be 

 3 3
3 2

1 2 3
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d dW s
s d s d s d d s
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+ + +
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Fig. 7. δ  in the case of real pole on the right of the couple of complex poles. 
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Fig. 8. δ  in the case of all real poles. 
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Fig. 9. Root locus of the polynomial (46) in the hypothesis that all the roots of ( )d s−  are real. 
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Fig. 10. Root locus of the polynomial (46) under the hypothesis that ( )d s− has a real negative 
root on the right of the remaining complex roots. 

Finally, from Theorems 7, 9, 11 and by using the Routh criterion the next theorem easily 
follows. 
Theorem 12. Give the process (3) with limited uncertainties for  1 3cn n= + =  and assigned 
some design values of ˆ

vK  and 
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. Let be choose { }1 2 2, ,P p p p= =  
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 3 2
1 2 3 1 2 3( ) ( ) , ( ) ( )( )( )n s s d s d s d s d d s s p s p s p= − = + + = − − −  (47) 

are real  (e.g. 1.5a = −  and 2.598ω ≥ , 2a = −  and 2.544, ...ω ≥ ). Then said ρ̂ a number not 
minus than 

 
1

ˆˆ n
K v

n

dK
d

ρ
+

= , (48) 

such that: 

 
{ }

3
1 2 1 1 1 1 2 2 3

1 1 1

ˆ ˆ ˆ ˆ( , , ) 2( ) 9( )(( )) 27 0
,   and  ,

a a b a bk a bk a bk bk
b b b a a a

δ − −

− + − +

= + − + + + <

∀ ∈ =⎡ ⎤⎣ ⎦
 (49) 

 2
1 1 1 2 1 2 3 1 2

ˆ ˆ ˆ ˆ ˆ ˆ0, ( ) 0,  ,a b k k k b b k k k a a b b b− − − − − ++ > + + − + > ∀ ∈⎡ ⎤⎣ ⎦ , (50) 

where 

 
2 3

1 1 2 2 3
1 2 3

ˆ ˆ ˆ, ,d a d a dk k k
b b b

ρ ρ ρ− +

− − −

− −
= = = , (51) 

under the hypothesis that the initial state of the control system of Fig. 2, with 1 3cn n= + =  
and ˆ

i ik k= , is null and that (0) (0) 0r d− = , the error ( )e t  of the control system of Fig. 2, 
considering all the possible values of the process, satisfies relation 

 
[ ]0 ,

1 ˆ ˆ( ) , 0, ( ),  ( ) :  max ( ) ( )ˆ r d r d r dt
v

e t t r t d t r d
K σ

δ δ σ σ δ
− − −∈

≤ ∀ ≥ ∀ = − ≤ . (52) 

Note that, by applying the Routh conditions (50) to the polynomial ˆ( )d s α− , max
ˆ ˆ1α τ= , 

instead of to ( )d s , it is possible to satisfy also the specification about maxτ ; so the 
specifications 2. are all satisfied. 
Remark 8.  Give the process (3) with limited uncertainties and assigne the design values of 
ˆ

vK , maxτ̂  and of 
r̂ d

δ
−

; if 1 2, 3,4cn n= + = , by choosing P  in accordance with Theorem 9, a 
controller such that, for all the possible values of the parameters of the process, max maxˆτ τ≤  
and the error ( )e t  satisfies relation (2), can be obtained by increasing, if necessary, 
iteratively ρ̂  starting from the value of 1

ˆˆ
K v n nK d dρ += with the help of the command  roots 

and with the Monte Carlo method. 
According to this, note that for 4cn ≤  the control system of Fig. 2 (for an assigned set of 
parameters) is externally positive and max maxˆτ τ≤  if, denoting with jp  the root of ( )d s having 
the maximum real part, imag( ) 0jp = and maxˆreal( ) 1jp τ≤ − . 
Note that the proposed design method, by taking into account Theorem 8, can be easily extended in 
the case of 4cn ≥ . 
Example 1. Consider a planar robot (e.g. a plotter) whose end-effector must plot dashed 
linear and continuous lines with constant velocities during each line. 
Under the hypothesis that each activation system is an electric DC motor (with inertial load, 
possible resistance in series and negligble inductance of armature) powered by using a 
power amplifier, the model of the process turns out to be 
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2

1 22
1 2

( ) , ,  0,  a
a

b RK K KG s a a b g
s a s a RI RI

+
= = = =

+ +
. (53) 

If 

 2.5 5%,  0.5 5%,  0.01 5%,  0.05 5%,  100 10%a aR K K I g= ± = ± = ± = ± = ± , (54) 

it is 

 1 21.8 2.7, 0, 310 512a a b≤ ≤ = ≤ ≤ . (55) 

By choosing { } 2 231, ,P i iα α α ωω ω= − − + − − + , 1.5a = −  and 2.598ω = , 
1 2.25, 310,n na b= =  for ˆ 2vK =  it is: ˆ 5.547,Kρ = 1

ˆ 0.0271 , k =  2
ˆ =0.275,k 3

ˆ    0.550k = , 
1 2max ( , , ) 1.108e3 0,

b
a a bδ − − = − < 1 2max ( , , ) 1.181e3 0

b
a a bδ + − = − < , max 383msτ ≤ . 

Hence the controlled process is externally positive [ ]1 1.8,  2.7a∀ ∈  and [ ]310,  512b∀ ∈ . 
Therefore the overshoot is always null; moreover, said ,  x yr r  the components of the 
reference trajectory of the controlled robot, the corresponding tracking errors satisfy 
relations 2 x xe r≤ and 2y ye r≤ .  
For ˆ 10vK =  it is obtained that: ˆ 27.734,Kρ =  1 2 3

ˆ ˆ ˆ0.165,    =6.877,     68.771 k k k= = , 

1 2 1 2max ( , , ) 1.436e5 0, max ( , , )   1.454e5 0
b b

a a b a a bδ δ− − + −= − < =− < , max 75.3msτ ≤ . 

Hence 10 x xe r≤ and 10y ye r≤ . 
Suppose that a tracking goal is to engrave on a big board of size 22.5 0.70m×  the word 
INTECH  (see Fig. 12 ). In Fig. 11 the time histories of xr , xr  and, under the hypothesis that 
ˆ 2vK = , the corresponding error xe , in accordance with the proposed results are reported.  

Clearly the “tracking precision“ is unchanged xr∀  with the same maximum value of xr . 
Figs. 13 and 14 show the engraved words for ˆ 2vK =  and ˆ 10vK = , respectively. 
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Fig. 11. Time histories of ,x xr r  and xe for ˆ 2vK = . 
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and the error ( )e t  satisfies relation (2), can be obtained by increasing, if necessary, 
iteratively ρ̂  starting from the value of 1
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Fig. 12. The desired “word“. 
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Fig. 13. The engraved word with ˆ 2vK = . 
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Fig. 14. The engraved word with ˆ 10vK = . 

Part II 

5. Problem formulation and preliminary results 
Now consider the following class of nonlinear dynamic system

 

 
1 2 2 2

1

( , , ) ( , , ) ( , , , ), ( , , ) ( , , ) ,
m

i i
i

y F y y p u F y y p y f t y y p F y y p F y y p y
=

= + + =∑  (56) 

where t R∈  is the time, my R∈  is the output, ru R∈  is the control input, p Rμ∈℘⊂  is the 
uncertain parametric vector of the system, with ℘  a compact set, 1

m rF R ×∈  is a limited 
matrix with rank m , 2

mxm
iF R∈  are limited matrices and mf R∈  is a limited vector which 

models possible disturbances and/or particular nonlinearities of the system. 
In the following it is supposed that there exists at least a matrix  ( , ) r mK y y R ×

∈  such that the 
matrix 1H F K=  is positive definite (p.d.) p∀ ∈℘ . 
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Remark 9. It is important to note that the class of systems (56) includes the one, very 
important from a practical point of view, of the articulated mechanical systems (mechanical 
structures, flexible too, robots,…). Indeed it is well-known that mechanical systems can be 
described as follows 

 ,Bq c g Tu= + +  (57) 
where: 
- mq R∈  is the vector of the Lagrangian coordinates, 
- ( , )B q p  is the inertia matrix (p.d.), in which ,p Rμ∈℘⊂  with ℘  a compact set, is the 

vector of the uncertain parameters of the mechanical system, 
- ( , , ) ,c C q q p q=  with C  linear with respect to q , is the vector of the generalized 

centrifugal forces, the Coriolis and friction ones, 
- ( , , )g g t q p=  is the vector of the generalized gravitational and elastic forces and of the 

external disturbances, 
- u  is the vector of the generalized control forces produced by the actuators, 
- T  is the transmission matrix of the generalized control forces. 
If system (56) is controlled by using the following state feedback control law with a partial 
compensation  

 ( ) ,p d cu K K y K y u= − + −  (58) 

where pK , m m
dK R ×∈  are constant matrices, r mK R ×∈  is a matrix depending in general on 

, ,t y y   and cu  is the partial compensation signal,  the closed-loop system is  

 

1 1 2 1
21 1

1 1

0 0 0 0
,

0

where  , ,

0 , 0 .

m m

m i i m i
p d ii i

c

y

I
x x x x w A x A x x BwHK HK F I

H F K w f F u

y I x Cx y I x C x

− + − +
= =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= + + = + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠

= = −

= = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑ ∑

 (59) 

In order to develop a practical robust stabilization method for system (59) the following 
definition and results are necessary. 
Definition 2. Give system (59) and a symmetric p.d. matrix nxnP R∈ . A positive first-order 

system ( , ),f dρ ρ= ( ), ( )p pv vη ρ η ρ= = , where T
Px x Pxρ = =  and maxd w= , such that  

,  py v y v≤ ≤  is said to be majorant system of system (59). 

Theorem 13. Consider the quadratic system 

 2 2
1 2 2 1 0 1 2 0, 0,  , 0, (0) 0, 0.d dρ α ρ α ρ β α ρ α ρ α α α β ρ ρ= + + = + + < ≥ = ≥ ≥  (60) 

If 2
1 2 4 0dα α β− >  it is: 

 1 2 0 1
1 0 2

0 2 2 2 1

( ) 1( ) ,  where ( ) ,  , lim ( ) ,  ,
1 ( ) ( )

t

t

tt t e t
t

τρ ρ ϕ ρ ρρ ϕ τ ρ ρ ρ ρ
ϕ ρ ρ α ρ ρ

−

→∞

− −
= = = ≤ ∀ <

− − −
 (61) 
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Fig. 12. The desired “word“. 
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Fig. 13. The engraved word with ˆ 2vK = . 
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Fig. 14. The engraved word with ˆ 10vK = . 

Part II 

5. Problem formulation and preliminary results 
Now consider the following class of nonlinear dynamic system

 

 
1 2 2 2

1

( , , ) ( , , ) ( , , , ), ( , , ) ( , , ) ,
m

i i
i

y F y y p u F y y p y f t y y p F y y p F y y p y
=

= + + =∑  (56) 

where t R∈  is the time, my R∈  is the output, ru R∈  is the control input, p Rμ∈℘⊂  is the 
uncertain parametric vector of the system, with ℘  a compact set, 1

m rF R ×∈  is a limited 
matrix with rank m , 2

mxm
iF R∈  are limited matrices and mf R∈  is a limited vector which 

models possible disturbances and/or particular nonlinearities of the system. 
In the following it is supposed that there exists at least a matrix  ( , ) r mK y y R ×

∈  such that the 
matrix 1H F K=  is positive definite (p.d.) p∀ ∈℘ . 
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Remark 9. It is important to note that the class of systems (56) includes the one, very 
important from a practical point of view, of the articulated mechanical systems (mechanical 
structures, flexible too, robots,…). Indeed it is well-known that mechanical systems can be 
described as follows 

 ,Bq c g Tu= + +  (57) 
where: 
- mq R∈  is the vector of the Lagrangian coordinates, 
- ( , )B q p  is the inertia matrix (p.d.), in which ,p Rμ∈℘⊂  with ℘  a compact set, is the 

vector of the uncertain parameters of the mechanical system, 
- ( , , ) ,c C q q p q=  with C  linear with respect to q , is the vector of the generalized 

centrifugal forces, the Coriolis and friction ones, 
- ( , , )g g t q p=  is the vector of the generalized gravitational and elastic forces and of the 

external disturbances, 
- u  is the vector of the generalized control forces produced by the actuators, 
- T  is the transmission matrix of the generalized control forces. 
If system (56) is controlled by using the following state feedback control law with a partial 
compensation  

 ( ) ,p d cu K K y K y u= − + −  (58) 

where pK , m m
dK R ×∈  are constant matrices, r mK R ×∈  is a matrix depending in general on 

, ,t y y   and cu  is the partial compensation signal,  the closed-loop system is  

 

1 1 2 1
21 1

1 1

0 0 0 0
,

0

where  , ,

0 , 0 .

m m

m i i m i
p d ii i

c

y

I
x x x x w A x A x x BwHK HK F I

H F K w f F u

y I x Cx y I x C x

− + − +
= =

⎛ ⎞⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡ ⎤
= + + = + +⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎜ ⎟⎜ ⎟− −⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎝ ⎠

= = −

= = = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

∑ ∑

 (59) 

In order to develop a practical robust stabilization method for system (59) the following 
definition and results are necessary. 
Definition 2. Give system (59) and a symmetric p.d. matrix nxnP R∈ . A positive first-order 

system ( , ),f dρ ρ= ( ), ( )p pv vη ρ η ρ= = , where T
Px x Pxρ = =  and maxd w= , such that  

,  py v y v≤ ≤  is said to be majorant system of system (59). 

Theorem 13. Consider the quadratic system 

 2 2
1 2 2 1 0 1 2 0, 0,  , 0, (0) 0, 0.d dρ α ρ α ρ β α ρ α ρ α α α β ρ ρ= + + = + + < ≥ = ≥ ≥  (60) 

If 2
1 2 4 0dα α β− >  it is: 

 1 2 0 1
1 0 2

0 2 2 2 1

( ) 1( ) ,  where ( ) ,  , lim ( ) ,  ,
1 ( ) ( )

t

t

tt t e t
t

τρ ρ ϕ ρ ρρ ϕ τ ρ ρ ρ ρ
ϕ ρ ρ α ρ ρ

−

→∞

− −
= = = ≤ ∀ <

− − −
 (61) 
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where 1 2,ρ ρ , 1 2ρ ρ< , are the roots of the algebraic equation 2
2 1 0 0α ρ α ρ α+ + =  (see Fig. 

15). Moreover for 0d =  the practical convergence time 5% 5% 0( ) 5%t tρ ρ=  is given by (see 
Fig. 16): 

 0 20
5% 1 20 1 2

0 20

20, 1 , ln , ,
1l lt ρ ρ

γτ τ α γ ρ α α
ρ ρ
−

= = − = = −
−

 (62) 

in which lτ  is the time constant of the linearized of system (60) and 20ρ  is the upper bound 
of the convergence interval of  ( )tρ  for 0d = , i.e. of system (60) in free evolution. 

 
 

 
 

Fig. 15. Graphical representation of system(60). 

Proof. The proof of (61) easily follows by solving, with the use of the method of separation 
of variables, the equation ( )( )2 1 2d dtρ α ρ ρ ρ ρ= − −  and from Fig. 15. Instead (62) easily 
derives by noting that the solution of (60) for 0d =  is 

 20

/0 0 20

0

( ) 1 .
1 1 t l

t

e τ

ρ ρ
ρ ρ ρ

ρ

=
⎛ ⎞

+ −⎜ ⎟
⎝ ⎠

 (63) 
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Fig. 16. Time history of ρ  and γ  as a function of 0ρ  
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Theorem 14. Give a matrix n nP R ×∈  p.d. and a matrix m nC R ×∈  with rank m . If  
P

x ρ≤  
then the  smallest α  such that ,

P
v xα αρ≤ ≤  where v Cx= , turns out to be 

1
max( ).TCP Cα λ −=  

Proof. The proof is standard. 
Theorem 15. Let be 

 
{ }

1 2
1 2

1 2

... 1 1 2 2
, ,..., 0,1

( ) ( ) ... ( )ii i m m
i i i

i i i
A A g g g Rμ

μ
μ

μ μπ π π ×

∈

= ∈∑  (64) 

a symmetric matrix, where  

 { }1 2[ ... ] :T Rμ
μπ π π π π π π π− += ∈∏ = ∈ ≤ ≤  (65) 

and each function , 1,..., ,ig i μ=  is continuous with respect to its argument, and n nP R ×∈  a 
symmetric p.d. matrix. Then the minimum (maximum) of 1

min ( )QP
π
λ −

∈∏
 ( 1

max( )QPλ − ), where 

( )TQ A P PA= − + : is assumed in one of the 2μ  vertices of Γ , in which 

 { }1 1: min[ ... ] max[ ... ] .R g g g gμ
μ μγ γΓ = ∈ ≤ ≤  (66) 

Proof. The proof can be found in (Celentano, 2010).  

6. Main results 
Now the following main result, which provides a majorant system of the considered control 
system, is stated. 
Theorem 16. Give a symmetric p.d. matrix n nP R ×∈ . Then a majorant system of the system 
(59) is 

 2
1 2 ,  , ,p pd v c v cρ α ρ α ρ β ρ ρ= + + = =  (67) 

in which:  

 
,

1
min 1

1 1 1 1,

( )min ,  ( ),
2P

T
x C p

Q P Q A P PA
ρ

λα
−

∈ ∈℘
= − = − +  (68) 

 
,1

1
min 2 1

1
2 2 2 2,

( )
min ,  ( ),

2P

m

i m i
Ti

i i ix C p

Q P x
Q A P PA

λ
α

−
+ −

=

∈ ∈℘
= − = − +

∑
 (69) 

 ( ) ( ) ( )
,

1 1
max max max , ,

,   , , max ,
P

T T T
p y y t R x C p

B PB c CP C c C P C d w
ρ

β λ λ λ− −

∈ ∈ ∈℘
= = = =  (70) 

where { }2
, : .T

PC x x Pxρ ρ= =
 
 

Proof. By choosing as "Lyapunov function" the quadratic form 2 2T
P

V x Px x ρ= = = ,  for x  
belonging to a generic hyper-ellipse ,PC ρ , it is 
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where 1 2,ρ ρ , 1 2ρ ρ< , are the roots of the algebraic equation 2
2 1 0 0α ρ α ρ α+ + =  (see Fig. 

15). Moreover for 0d =  the practical convergence time 5% 5% 0( ) 5%t tρ ρ=  is given by (see 
Fig. 16): 
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in which lτ  is the time constant of the linearized of system (60) and 20ρ  is the upper bound 
of the convergence interval of  ( )tρ  for 0d = , i.e. of system (60) in free evolution. 
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Proof. The proof of (61) easily follows by solving, with the use of the method of separation 
of variables, the equation ( )( )2 1 2d dtρ α ρ ρ ρ ρ= − −  and from Fig. 15. Instead (62) easily 
derives by noting that the solution of (60) for 0d =  is 
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Theorem 14. Give a matrix n nP R ×∈  p.d. and a matrix m nC R ×∈  with rank m . If  
P

x ρ≤  
then the  smallest α  such that ,

P
v xα αρ≤ ≤  where v Cx= , turns out to be 

1
max( ).TCP Cα λ −=  

Proof. The proof is standard. 
Theorem 15. Let be 

 
{ }

1 2
1 2

1 2

... 1 1 2 2
, ,..., 0,1

( ) ( ) ... ( )ii i m m
i i i

i i i
A A g g g Rμ

μ
μ

μ μπ π π ×

∈

= ∈∑  (64) 

a symmetric matrix, where  

 { }1 2[ ... ] :T Rμ
μπ π π π π π π π− += ∈∏ = ∈ ≤ ≤  (65) 

and each function , 1,..., ,ig i μ=  is continuous with respect to its argument, and n nP R ×∈  a 
symmetric p.d. matrix. Then the minimum (maximum) of 1

min ( )QP
π
λ −

∈∏
 ( 1

max( )QPλ − ), where 

( )TQ A P PA= − + : is assumed in one of the 2μ  vertices of Γ , in which 

 { }1 1: min[ ... ] max[ ... ] .R g g g gμ
μ μγ γΓ = ∈ ≤ ≤  (66) 

Proof. The proof can be found in (Celentano, 2010).  

6. Main results 
Now the following main result, which provides a majorant system of the considered control 
system, is stated. 
Theorem 16. Give a symmetric p.d. matrix n nP R ×∈ . Then a majorant system of the system 
(59) is 

 2
1 2 ,  , ,p pd v c v cρ α ρ α ρ β ρ ρ= + + = =  (67) 

in which:  

 
,

1
min 1

1 1 1 1,

( )min ,  ( ),
2P

T
x C p

Q P Q A P PA
ρ

λα
−

∈ ∈℘
= − = − +  (68) 

 
,1

1
min 2 1

1
2 2 2 2,

( )
min ,  ( ),

2P

m

i m i
Ti

i i ix C p

Q P x
Q A P PA

λ
α

−
+ −

=

∈ ∈℘
= − = − +

∑
 (69) 

 ( ) ( ) ( )
,

1 1
max max max , ,

,   , , max ,
P

T T T
p y y t R x C p

B PB c CP C c C P C d w
ρ

β λ λ λ− −

∈ ∈ ∈℘
= = = =  (70) 

where { }2
, : .T

PC x x Pxρ ρ= =
 
 

Proof. By choosing as "Lyapunov function" the quadratic form 2 2T
P

V x Px x ρ= = = ,  for x  
belonging to a generic hyper-ellipse ,PC ρ , it is 
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, , ,

1
2

11
, , , ,

min  min  max .
2 2P P P

n
T

i iT T
i

T T Tx C p x C p t x C p

x Q x P x
x Q x x PBw

x Px x Px x Pxρ ρ ρ

ρ

−

=

∈ ∈℘ ∈ ∈℘ ∈ ∈℘
≤ − − +

∑
 (71) 

The proof easily follows from (71)   
It is valid the following  important “non-interaction” theorem. 
Theorem 17. If in Theorem 16 it is 

 2

2
, 2 , , 0,2p d

aI I
K Ia K Ia P a

I I
a

⎡ ⎤
⎢ ⎥= = = >⎢ ⎥
⎢ ⎥⎣ ⎦

 (72) 

then: 

 
,

min min1
min 1

1 , ,
min

[ ( ) 1], if ( ) 2
( ) 2min
2 , if ( ) 2,

2
P

T T

x C p T

a H H H H
Q P

a H Hρ

λ λ
λα

λ

−

∈ ∈℘

⎧− + − + <⎪⎪= − = ⎨
⎪ − + ≥
⎪⎩

 (73) 

 
,1

2 2
min 1

1 2 2 2
2 ,

2

2 2
min ,

2P

m
i i

m iT
i i i i

x C p

A A
x

A A A
λ

α
+ −

=

∈ ∈℘

⎛ ⎞⎡ ⎤−
⎜ ⎟⎢ ⎥
⎜ ⎟− −⎢ ⎥⎣ ⎦⎝ ⎠= −

∑
 (74) 

 
4 4

42 2, , 2 .pc c a
a a

β = = =  (75) 

Proof. First note that, by making the change of variable 1z T x−= , with T  such that 
[ ]1 1 2 2 ... ,T

m mz y y y y y y=
 

the matrix ˆ TP T PT=  is block-diagonal with blocks on the 
principal diagonal equal to  

 
2 1

ˆ .21
ii

a
P

a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (76) 

Since ˆ
iiP  is p.d. 0a∀ > , it follows that P̂  is p.d. and, therefore, also P  is p.d. . 

Now note that  

 
2 2 0

;2 0
2

aI I II I
a II I I aIa

⎡ ⎤ ⎡ ⎤
− ⎡ ⎤⎢ ⎥ ⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 (77) 

hence  

 1

2
.

2

I I
P a

I aI

−

⎡ ⎤
−⎢ ⎥= ⎢ ⎥

⎢ ⎥−⎣ ⎦

 (78) 
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Then it is 

 

1 1 1
1 1 1 1

2

2

2

2

2 2

( )

2 200
2 22 2

20 2
2 02

0 2 ( 2 )
2 2

T T

T

T

T

T

T

T

QP A P PA P A PA P

aI I Ia H I I
a

a H aHI aH I I I aIa
aI Ia H I aI

a HI aH I I
a

a H aI a H I
I aH I

− − −= − + = − − =

⎡ ⎤ ⎡ ⎤
−⎡ ⎤ ⎡ ⎤ −⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎡ ⎤−⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤ −

= +⎢ ⎥
−⎢ ⎥⎣ ⎦

22 ( 2 )
.

( ) 0 2 ( )

T

T

aI a H H I

a H I a H H I

⎡ ⎤ ⎡ ⎤+ −
=⎢ ⎥ ⎢ ⎥

− + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (79) 

Therefore 

 1( ) ( 2 ) ( 2 ( )),TQP aI a H H Iλ λ λ− = ∪ + −  (80) 
from which (73) easily follows. 
In order to prove (74) note that, if T  is a symmetric nonsingular matrix, it is  

 ( ) ( ) ( )1 1 1 1 1 1 1
2 2 2 2 2 2

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) , , .T
i i i i i iQ P TQ P T A P PA P A TA T P T PTλ λ λ− − − − − − −= = − + = =  (81) 

By choosing a matrix 0
0
aI

T
I

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 it is: 

2
2 2

2 21 1
2 2

2 2 2

20 0 0 0 0 20 0 0 1ˆ ˆ, ,20 0 0 20 0 0

2 2ˆ ˆˆ ˆ ˆ ˆ, ( )
2 2 2

i
i i

i iT
i i T

i i i

I I aI I IaI I I
A Pa a aI F F a I II II I Ia

I I A A
P a A P PA P

I I A A A
− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤ ⎡ ⎤− −

= − + =⎢ ⎥ ⎢ ⎥
− − −⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

.
⎥

(82) 

From (69), (81) and (82) the relation (74) easily follows. 
Relations (75) easily follow from the third of (59), from (70), from the third of (72) and by 
considering (78). 
Remark 10. It is easy to note that the values of c  and pc  provided by (75) are the same if, 
instead of y  and y , their components iy  e iy  are considered. 
Now the main result can be stated. It allows determining the control law which guarantees 

prefixed majorant values of the time constant 
2 2 1

1
( )

τ
α ρ ρ

=
−

 related to ( )tϕ  and of the time 

constant 
1

1
lτ α
= −  of the linearized majorant system and prefixed majorant values of the 

“steady-state” ones of iy  e iy . 
Theorem 18. If system (56) is controlled by using the control law 

 ( )2 2 ,cu K a y ay u= − + −  (83) 
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, , ,
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, , , ,
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−
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≤ − − +

∑
 (71) 

The proof easily follows from (71)   
It is valid the following  important “non-interaction” theorem. 
Theorem 17. If in Theorem 16 it is 
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then: 
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2 2
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A A
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+ −

=
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⎛ ⎞⎡ ⎤−
⎜ ⎟⎢ ⎥
⎜ ⎟− −⎢ ⎥⎣ ⎦⎝ ⎠= −

∑
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β = = =  (75) 

Proof. First note that, by making the change of variable 1z T x−= , with T  such that 
[ ]1 1 2 2 ... ,T

m mz y y y y y y=
 

the matrix ˆ TP T PT=  is block-diagonal with blocks on the 
principal diagonal equal to  
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a

⎡ ⎤
⎢ ⎥= ⎢ ⎥
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 (76) 

Since ˆ
iiP  is p.d. 0a∀ > , it follows that P̂  is p.d. and, therefore, also P  is p.d. . 

Now note that  

 
2 2 0
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a II I I aIa
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hence  

 1

2
.

2

I I
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−
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Then it is 
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Therefore 
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from which (73) easily follows. 
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From (69), (81) and (82) the relation (74) easily follows. 
Relations (75) easily follow from the third of (59), from (70), from the third of (72) and by 
considering (78). 
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Theorem 18. If system (56) is controlled by using the control law 
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with ,  ,  cK a u  such that 
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with time constant 2
l a
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Proof. The proof of (87) follows from Theorems 13, 16 and 17. The proof of (88) derives from 
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Remark 11. As regards the determination of K  in order to satisfy the first of (84), the 
computation of cu  to decrease d  and regarding the computation of 2α  and d , for 
limitation of pages, it has to be noted at least that for the mechanical systems, being 1

1 ,F B−=  
taking into account that the inertia matrix B  is symmetric and  p.d.   and  mp y q R∀ ∈℘ ∀ = ∈ , 
under the hypothesis that T I=  it can be chosen ,K kI=  with max( ).k Bλ≥  Moreover it can 
be posed ˆ( , , )cu g t y p= , with p̂  nominal value of the parameters. Finally the calculation of 

max( )Bλ , 2α  and d  can be facilitated by suitably using Theorem 15. 
Remark 12. The stated theorems can be used for determining simple and robust control laws 
of the PD type, with a possible compensation action, in order to force system (56) to track a 
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generic preassigned limited in “acceleration” trajectory, with preassigned increases of the 
maximum “position and/or velocity” errors and preassigned increases of the time constants 
characterizing the convergence of the error. 

7. Conclusion 
In this chapter it is has been considered one of the main and most realistic control problem 
not suitable solved in literature (to design robust control laws to force an uncertain 
parametric system subject to disturbances to track generic references but regular enough 
with a maximum prefixed error starting from a prefixed instant time). 
This problem is satisfactorily solved for SISO processes, without zeros, with measurable 
state and with parametric uncertainties by using theorems and algorithms deriving from 
some proprierties of the most common filters, from Kharitonov’s theorem and from the 
theory of the externally positive systems. 
The considered problem has been solved also for a class of uncertain pseudo-quadratic 
systems, including articulated mechanical ones, but for limitation of pages only the two 
fundamental results have been reported. They allow to calculate, by using efficient 
algorithms, the parameters characterizing the performances of the control system as a 
function of the design parameters of the control law. 
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Romania 

1. Introduction  
Most industrial processes are nonlinear systems, the control method applied consisting of a 
linear controller designed for the linear approximation of the nonlinear system around an 
operating point. However, even though the design of a linear controller is rather 
straightforward, the result may prove to be unsatisfactorily when applied to the nonlinear 
system. The natural consequence is to use a nonlinear controller.  
Several authors proposed the method of feedback linearization (Chou & Wu, 1995), to 
design a nonlinear controller. The main idea with feedback linearization is based on the fact 
that the system is no entirely nonlinear, which allows to transform a nonlinear system into 
an equivalent linear system by effectively canceling out the nonlinear terms in the closed-
loop (Seo et al., 2007). It provides a way of addressing the nonlinearities in the system while 
allowing one to use the power of linear control design techniques to address nonlinear 
closed loop performance specifications. 
Nevertheless, the classical feedback linearization technique has certain disadvantages 
regarding robustness. A robust linear controller designed for the linearized system may not 
guarantee robustness when applied to the initial nonlinear system, mainly because the 
linearized system obtained by feedback linearization is in the Brunovsky form, a non robust 
form whose dynamics is completely different from that of the original system and which is 
highly vulnerable to uncertainties (Franco, et al., 2006). To eliminate the drawbacks of 
classical feedback linearization, a robust feedback linearization method has been developed 
for uncertain nonlinear systems (Franco, et al., 2006; Guillard & Bourles, 2000; Franco et al., 
2005) and its efficiency proved theoretically by W-stability (Guillard & Bourles, 2000). The 
method proposed ensures that a robust linear controller, designed for the linearized system 
obtained using robust feedback linearization, will maintain the robustness properties when 
applied to the initial nonlinear system. 
In this paper, a comparison between the classical approach and the robust feedback 
linearization method is addressed. The mathematical steps required to feedback linearize a 
nonlinear system are given in both approaches. It is shown how the classical approach can 
be altered in order to obtain a linearized system that coincides with the tangent linearized 
system around the chosen operating point, rather than the classical chain of integrators. 
Further, a robust linear controller is designed for the feedback linearized system using loop-
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shaping techniques and then applied to the original nonlinear system. To test the robustness 
of the method, a chemical plant example is given, concerning the control of a continuous 
stirred tank reactor.  
The paper is organized as follows. In Section 2, the mathematical concepts of feedback 
linearization are presented – both in the classical and robust approach. The authors propose 
a technique for disturbance rejection in the case of robust feedback linearization, based on a 
feed-forward controller. Section 3 presents the H robust stabilization problem. To 
exemplify the robustness of the method described, the nonlinear robust control of a 
continuous stirred tank reactor (CSTR) is given in Section 4. Simulations results for reference 
tracking, as well as disturbance rejection are given, considering uncertainties in the process 
parameters. Some concluding remarks are formulated in the final section of the paper. 

2. Feedback linearization: Classical versus robust approach 
Feedback linearization implies the exact cancelling of nonlinearities in a nonlinear system, 
being a widely used technique in various domains such as robot control (Robenack, 2005), 
power system control (Dabo et al., 2009), and also in chemical process control (Barkhordari 
Yazdi & Jahed-Motlagh, 2009; Pop & Dulf, 2010; Pop et al, 2010), etc. The majority of 
nonlinear control techniques using feedback linearization also use a strategy to enhance 
robustness. This section describes the mathematical steps required to obtain the final closed 
loop control structure, to be later used with robust linear control.  

2.1 Classical feedback linearization 
2.1.1 Feedback linearization for SISO systems 
In the classical approach of feedback linearization as introduced by Isidori (Isidori, 1995), 
the Lie derivative and relative degree of the nonlinear system plays an important role. For a 
single input single output system, given by: 

    
( )

x f x g x u
y h x
 



  (1) 

with nx  is the state, u is the control input, y is the output, f and g are smooth vector fields 
on n and h is a smooth nonlinear function. Differentiating y with respect to time, we 
obtain: 

    

   f g

h hy f x g x u
x x

y L h x L h x u

 
 
 

 




 (2) 

with   n
f xhL : and   n

g xhL : , defined as the Lie derivatives of h with respect 
to f and g, respectively. Let U be an open set containing the equilibrium point x0 , that is a 
point where f(x) becomes null – f(x0) = 0. Thus, if in equation (2), the Lie derivative of h with 
respect to g -  xhLg - is bounded away from zero for all x U  (Sastry, 1999), then the state 
feedback law: 

  1 ( )
( ) f

g
u L h x v

L h x
    (3) 
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yields a linear first order system from the supplementary input v to the initial output of the 
system, y. Thus, there exists a state feedback law, similar to (3), that makes the nonlinear 
system in (2) linear. The relative degree of system (2) is defined as the number of times the 
output has to be differentiated before the input appears in its expression. This is equivalent 
to the denominator in (3) being bounded away from zero, for all x U . In general, the 
relative degree of a nonlinear system at  0x U   is defined as an integer γ satisfying: 

 
1

0

0 0 2

0
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i
g f

g f

L L h x x U i
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 (4) 

Thus, if the nonlinear system in (1) has relative degree equal to γ, then the differentiation of 
y in (2) is continued until: 

    1( )
gf fy L h x L L h x u      (5) 

with the control input equal to: 

  1
1 ( )

( ) f
g f

u L h x v
L L h x


     (6) 

The final (new) input – output relation becomes: 

 ( )y v   (7) 

which is linear and can be written as a chain of integrators (Brunovsky form). The control 
law in (6) yields (n-γ) states of the nonlinear system in (1) unobservable through state 
feedback. 
The problem of measurable disturbances has been tackled also in the framework of feedback 
linearization. In general, for a nonlinear system affected by a measurable disturbance d: 
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with p(x) a smooth vector field.  
Similar to the relative degree of the nonlinear system, a disturbance relative degree is 
defined as a value k for which the following relation holds:  
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Thus, a comparison between the input relative degree and the disturbance relative degree 
gives a measure of the effect that each external signal has on the output (Daoutidis and 
Kravaris, 1989). If k , the disturbance will have a more direct effect upon the output, as 
compared to the input signal, and therefore a simple control law as given in (6) cannot 
ensure the disturbance rejection (Henson and Seborg, 1997). In this case complex 
feedforward structures are required and effective control must involve anticipatory action 
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shaping techniques and then applied to the original nonlinear system. To test the robustness 
of the method, a chemical plant example is given, concerning the control of a continuous 
stirred tank reactor.  
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yields a linear first order system from the supplementary input v to the initial output of the 
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for the disturbance. The control law in (6) is modified to include a dynamic feed-
forward/state feedback component which differentiates a state- and disturbance-dependent 
signal up to γ–k times, in addition to the pure static state feedback component. In the 
particular case that k= γ, both the disturbance and the manipulated input affect the output in 
the same way. Therefore, a feed-forward/state feedback element which is static in the 
disturbance is necessary in the control law in addition to the pure state feedback element 
(Daoutidis and Kravaris, 1989): 
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2.1.2 Feedback linearization for MIMO systems 
The feedback linearization method can be extended to multiple input multiple output 
nonlinear square systems (Sastry, 1999). For a MIMO nonlinear system having n states and 
m inputs/outputs the following representation is used: 
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where nx  is the state, mu  is the control input vector and my  is the output vector. 
Similar to the SISO case, a vector relative degree is defined for the MIMO system in (11). The 
problem of finding the vector relative degree implies differentiation of each output signal 
until one of the input signals appear explicitly in the differentiation. For each output signal, 
we define γj as the smallest integer such that at least one of the inputs appears in  j
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and at least one term 1 0( )( ) )j

ig j ifL L h u    for some x (Sastry, 1999). In what follows we 

assume that the sum of the relative degrees of each output is equal to the number of states of 
the nonlinear system. Such an assumption implies that the feedback linearization method is 
exact. Thus, neither of the state variables of the original nonlinear system is rendered 
unobservable through feedback linearization. 
The matrix M(x), defined as the decoupling matrix of the system, is given as: 
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The nonlinear system in (11) has a defined vector relative degree mrrr ,......, 21 at the point 

0x if   0xhLL i
k
fgi

, 20  irk  for i=1,…,m and the matrix M( 0x ) is nonsingular. If the 

vector relative degree mrrr ,......, 21  is well defined, then (12) can be written as: 

Robust Feedback Linearization Control 
for Reference Tracking and Disturbance Rejection in Nonlinear Systems 

 

277 

 

11

22

11 1

222 ( )

m m

rr f

rr
f

r r mm mf

L hy u
uL hy M x

uy L h

                              

 
 (14) 

Since M( 0x ) is nonsingular, then M(x) mm is nonsingular for each Ux . As a 
consequence, the control signal vector can be written as:  
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yielding the linearized system as:  
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The states x undergo a change of coordinates given by: 
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The nonlinear MIMO system in (11) is linearized to give: 
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In a classical approach, the feedback linearization is achieved through a feedback control 
law and a state transformation, leading to a linearized system in the form of a chain of 
integrators (Isidori, 1995). Thus the design of the linear controller is difficult, since the 
linearized system obtained bears no physical meaning similar to the initial nonlinear system 
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In a classical approach, the feedback linearization is achieved through a feedback control 
law and a state transformation, leading to a linearized system in the form of a chain of 
integrators (Isidori, 1995). Thus the design of the linear controller is difficult, since the 
linearized system obtained bears no physical meaning similar to the initial nonlinear system 
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(Pop et al., 2009). In fact, two nonlinear systems having the same degree will lead to the 
same feedback linearized system. 

2.2 Robust feedback linearization 
To overcome the disadvantages of classical feedback linearization, the robust feedback 
linearization is performed in a neighborhood of an operating point, 0x . The linearized 
system would be equal to the tangent linearized system around the chosen operating point. 
Such system would bear similar physical interpretation as compared to the initial nonlinear 
system, thus making it more efficient and simple to design a controller (Pop et al., 2009; Pop 
et al., 2010; Franco, et al., 2006).  
The multivariable nonlinear system with disturbance vector d, is given in the following 
equation:  

 
   
 

( )x f x g x u p x d
y h x
  




 (19) 

where nx  is the state, mu  is the control input vector and my  is the output vector. 
In robust feedback linearization, the purpose is to find a state feedback control law that 
transforms the nonlinear system (19) in a tangent linearized one around an equilibrium 
point, 0x : 

 z Az Bw   (20) 

In what follows, we assume the feedback linearization conditions (Isidori, 1995) are satisfied 
and that the output of the nonlinear system given in (19) can be chosen as: )x()x(y  , 
where )]x().....x([)x( m 1 is a vector formed by functions )x(i , such that the sum of 
the relative degrees of each function )x(i to the input vector is equal to the number of 
states of (19).  
With the (A,B) pair in (20) controllable, we define the matrices L( nm ), T( nn  ) and 
R( mm ) such that (Levine, 1996):  
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with T and R nonsingular. 
By taking: 

 1 1
cv LT x R w    (22) 

And using the state transformation:  

 1
cz T x  (23) 

the system in (18) is rewritten as: 
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Equation (23) yields: 

 1
c cz T x x Tz    (25) 

Replacing (25) into (24) and using (21), gives: 

 

   

 
 

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

c c c c c c

c c c

Tz A B LT Tz B R v z T A B LT Tz Τ B R v

T A Tz T B LT Tz T B R v

z T T A BRL T Tz T TBRLT Tz T TBRR v
A BRL z BRLz Bv Az Bv

     

    

     

       

  

    

     

 


 (26) 

resulting the liniarized system in (20), with )( 0xfA x and )( 0xgB  . 
The control signal vector is given by:  

 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )c c c c c cu α x β x w α x β x LT x β x R v α x β x v         (27) 

The L, T and R matrices are taken as: )()( 00 xαxML cx , )( 0xxT cx , 
)0

1 xMR ( (Franco et al., 2006; Guillard și Bourles, 2000).  
Disturbance rejection in nonlinear systems, based on classical feedback linearization theory, 
has been tackled firstly by (Daoutidis and Kravaris, 1989). Disturbance rejection in the 
framework of robust feedback linearization has not been discussed so far.  
In what follows, we assume that the relative degrees of the disturbances to the outputs are 
equal to those of the inputs. Thus, for measurable disturbances, a simple static feedforward 
structure can be used (Daoutidis and Kravaris, 1989; Daoutidis et al., 1990). The final closed 
loop control scheme used in robust feedback linearization and feed-forward compensation 
is given in Figure 1, (Pop et al., 2010). 
 

 
Fig. 1. Feedback linearization closed loop control scheme 
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or the nonlinear system given in (19), the state feedback/ feed-forward control law is given by: 

 ( ) ( ) ( )u α x β x v γ x d    (28) 

with ( )α x and ( )β x as described in (27), and 1( ) ( ) ( )γ x M x p x . 

3. Robust H∞ controller design 
To ensure stability and performance against modelling errors, the authors choose the 
method of McFarlane-Glover to design a robust linear controller for the feedback linearized 
system. The method of loop-shaping is chosen due to its ability to address robust 
performance and robust stability in two different stages of controller design (McFarlane and 
Glover, 1990). 
The method of loopshaping consists of three steps: 
Step 1. Open loop shaping  

Using a pre-weighting matrix IW and/or a post-weighting matrix oW , the minimum and 
maxiumum singular values are modified to shape the response. This step results in an 
augmented matrix of the process transfer function: Ios WPWP  .  
 

 
Fig. 2. Augmented matrix of the process transfer function 

Step 2. Robust stability  

The stability margin is computed as  
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sss NMP ~~ 1 is the normalized left coprime factorization of the process transfer function 
matrix. If 1max  , the pre and post weighting matrices have to be modified by relaxing 
the constraints imposed on the open loop shaping. If the value of max is acceptable, for a 
value max  the resulting controller - aK  - is computed in order to sati1sfy the following 
relation:  
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Fig. 3. Robust closed loop control scheme 
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Step 3. Final robust controller  

The final resulting controller is given by the sub-optimal controller aK  weighted with the  
matrices IW and/or oW : oaI WK WK  . 
Using the McFarlane-Glover method, the loop shaping is done without considering the 
problem of robust stability, which is explcitily taken into account at the second design step, 
by imposing a stability margin for the closed loop system. This stability margin max is an 
indicator of the efficiency of the loopshaping technique.  
 

 
 

Fig. 4. Optimal controller obtained with the pre and post weighting matrices 

The stability of the closed loop nonlinear system using robust stability and loopshaping is 
proven theoretically using W-stability (Guillard & Bourles, 2000; Franco et al., 2006). 

4. Case study: Reference tracking and disturbance rejection in an isothermal CSTR 
The authors propose as an example, the control of an isothermal CSTR. A complete 
description of the steps required to obtain the final feedback linearization control scheme - 
in both approaches – is given. The robustness of the final nonlinear H∞ controller is 
demonstrated through simulations concerning reference tracking and disturbance rejection, 
for the robust feedback linearization case.  

4.1 The isothermal continuous stirred tank reactor 
The application studied is an isothermal continuous stirred tank reactor process with first 
order reaction: 

 A B P   (30) 

Different strategies have been proposed for this type of multivariable process (De Oliveira, 
1994; Martinsen et al., 2004; Chen et al., 2010). The choice of the CSTR resides in its strong 
nonlinear character, which makes the application of a nonlinear control strategy based 
directly on the nonlinear model of the process preferable to classical linearization methods 
(De Oliveira, 1994).  
The schematic representation of the process is given in Figure 5.  
The tank reactor is assumed to be a well mixed one. The control system designed for such a 
process is intended to keep the liquid level in the tank – x1- constant, as well as the B 
product concentration – x2, extracted at the bottom of the tank. It is also assumed that the 
output flow rate Fo is determined by the liquid level in the reactor. The final concentration x2 
is obtained by mixing two input streams: a concentrated one u1, of concentration CB1 and a 
diluted one u2, of concentration CB2. The process is therefore modelled as a multivariable 
system, having two manipulated variables, u =  [u1 u2]T and two control outputs: x = [x1 x2]T.  
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Fig. 2. Augmented matrix of the process transfer function 

Step 2. Robust stability  

The stability margin is computed as  
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Step 3. Final robust controller  

The final resulting controller is given by the sub-optimal controller aK  weighted with the  
matrices IW and/or oW : oaI WK WK  . 
Using the McFarlane-Glover method, the loop shaping is done without considering the 
problem of robust stability, which is explcitily taken into account at the second design step, 
by imposing a stability margin for the closed loop system. This stability margin max is an 
indicator of the efficiency of the loopshaping technique.  
 

 
 

Fig. 4. Optimal controller obtained with the pre and post weighting matrices 

The stability of the closed loop nonlinear system using robust stability and loopshaping is 
proven theoretically using W-stability (Guillard & Bourles, 2000; Franco et al., 2006). 

4. Case study: Reference tracking and disturbance rejection in an isothermal CSTR 
The authors propose as an example, the control of an isothermal CSTR. A complete 
description of the steps required to obtain the final feedback linearization control scheme - 
in both approaches – is given. The robustness of the final nonlinear H∞ controller is 
demonstrated through simulations concerning reference tracking and disturbance rejection, 
for the robust feedback linearization case.  

4.1 The isothermal continuous stirred tank reactor 
The application studied is an isothermal continuous stirred tank reactor process with first 
order reaction: 

 A B P   (30) 

Different strategies have been proposed for this type of multivariable process (De Oliveira, 
1994; Martinsen et al., 2004; Chen et al., 2010). The choice of the CSTR resides in its strong 
nonlinear character, which makes the application of a nonlinear control strategy based 
directly on the nonlinear model of the process preferable to classical linearization methods 
(De Oliveira, 1994).  
The schematic representation of the process is given in Figure 5.  
The tank reactor is assumed to be a well mixed one. The control system designed for such a 
process is intended to keep the liquid level in the tank – x1- constant, as well as the B 
product concentration – x2, extracted at the bottom of the tank. It is also assumed that the 
output flow rate Fo is determined by the liquid level in the reactor. The final concentration x2 
is obtained by mixing two input streams: a concentrated one u1, of concentration CB1 and a 
diluted one u2, of concentration CB2. The process is therefore modelled as a multivariable 
system, having two manipulated variables, u =  [u1 u2]T and two control outputs: x = [x1 x2]T.  
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The process model is then given as: 
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with the parameters’ nominal values given in table 1. The steady state operating conditions 
are taken as x1ss=100 and x2ss=7.07, corresponding to the input flow rates: u1s =1 and u2s =1. 
The concentrations of B in the input streams, CB1 and CB2, are regarded as input 
disturbances. 
 

 
Fig. 5. Continuous stirred tank reactor (De Oliveira, 1994) 

 
Parameter Meaning Nominal Value 

CB1 
Concentration of B in the 

inlet flow u1
24.9 

CB2 
Concentration of B in the 

inlet flow u2
0.1 

k1 Valve constant 0.2 
k2 Kinetic constant 1 

Table 1. CSTR parameters and nominal values 

From a feedback linearization point of view the process model given in (31) is rewritten as: 
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The relative degrees of each output are obtained based on differentiation: 
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thus yielding r1=1 and r2=1, respectively, with r1 + r2 = 2, the number of state variables of the 
nonlinear system (32). Since this is the case, the linearization will be exact, without any state 
variables rendered unobservable through feedback linearization.  
The decoupling matrix M(x) in (13), will be equal to: 
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and is non-singular in the equilibrium point x0 = [100; 7.07]T.  
The state transformation is given by: 
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T T

cx y y x x   (36) 

while the control signal vector is: 
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In the next step, the L, T and R matrices needed for the robust feedback linearization 
method are computed: 
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The control law can be easily obtained based on (27) as:  
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while the linearized system is given as: 
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The linear H controller is designed using the McFarlane-Glover method (McFarlane, et al., 
1989; Skogestad, et al., 2007) with loop-shaping that ensures the robust stabilization problem 
of uncertain linear plants, given by a normalized left co-prime factorization. The loop-
shaping ( ) ( ) ( )sP s W s P s , with P(s) the matrix transfer function of the linear system given in 
(41), is done with the weighting matrix, W: 

 
14 10W diag
s s

   
 

 (43) 

The choice of the weighting matrix corresponds to the performance criteria that need to be 
met. Despite robust stability, achieved by using a robust H controller, all process outputs 
need to be maintained at their set-point values. To keep the outputs at the prescribed set-
points, the steady state errors have to be reduced.  The choice of the integrators in the 
weighting matrix W above ensure the minimization of the output signals steady state errors. 
To keep the controller as simple as possible, only a pre-weighting matrix is used (Skogestad, 
et al., 2007). The resulting robust controller provides for a robustness of 38%, corresponding 
to a value of 2.62 . 
The simulation results considering both nominal values as well as modelling uncertainties 
are given in Figure 6. The results obtained using the designed nonlinear controller show that 
the closed loop control scheme is robust, the uncertainty range considered being of ±20% for 
k1 and ±30% for k2.  
A different case scenario is considered in Figure 7, in which the input disturbances CB1 and 
CB2 have a +20% deviation from the nominal values. The simulation results show that the 
nonlinear robust controller, apart from its robustness properties, is also able to reject input 
disturbances.  
To test the output disturbance rejection situation, the authors consider an empiric model of a 
measurable disturbance that has a direct effect on the output vector. To consider a general 
situation from a feedback linearization perspective, the nonlinear model in (33) is altered to 
model the disturbance, d(t), as: 
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Fig. 6. Closed loop simulations using robust nonlinear controller a) x1 b) x2 c) u1 d) u2 
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with p(x) taken to be dependent on the output vector: 
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The relative degrees of the disturbance to the outputs of interest are: 1 1   and 2 1  . Since 
the relative degrees of the disturbances to the outputs are equal to those of the inputs, a 
simple static feed-forward structure can be used for output disturbance rejection purposes, 
with the control law given in (28), with )(xα and )(xβ determined according to (27) and 

)(xγ being equal to: 

0 1 2 3 4 5 6
6.5

6.6

6.7

6.8

6.9

7

7.1

7.2

7.3

Time

x 2

 

 

uncertain case
nominal case



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

284 

 1
0(

0.28 4.03
)

0.72 -4.03
R M x  
   

 
 (40) 

The control law can be easily obtained based on (27) as:  

 
1

1

( ) ( ) ( )

( ) ( )
c c c

c

α x α x β x LT x

β x β x R





 


 (41) 

while the linearized system is given as: 

  
 

1 21
10

1 22 20
3

20

0 1 12
7 07 7 071

0 100 1001

/

. .B B

k x
z z wC Ck x

x

    
               

  (42) 

The linear H controller is designed using the McFarlane-Glover method (McFarlane, et al., 
1989; Skogestad, et al., 2007) with loop-shaping that ensures the robust stabilization problem 
of uncertain linear plants, given by a normalized left co-prime factorization. The loop-
shaping ( ) ( ) ( )sP s W s P s , with P(s) the matrix transfer function of the linear system given in 
(41), is done with the weighting matrix, W: 

 
14 10W diag
s s

   
 

 (43) 

The choice of the weighting matrix corresponds to the performance criteria that need to be 
met. Despite robust stability, achieved by using a robust H controller, all process outputs 
need to be maintained at their set-point values. To keep the outputs at the prescribed set-
points, the steady state errors have to be reduced.  The choice of the integrators in the 
weighting matrix W above ensure the minimization of the output signals steady state errors. 
To keep the controller as simple as possible, only a pre-weighting matrix is used (Skogestad, 
et al., 2007). The resulting robust controller provides for a robustness of 38%, corresponding 
to a value of 2.62 . 
The simulation results considering both nominal values as well as modelling uncertainties 
are given in Figure 6. The results obtained using the designed nonlinear controller show that 
the closed loop control scheme is robust, the uncertainty range considered being of ±20% for 
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A different case scenario is considered in Figure 7, in which the input disturbances CB1 and 
CB2 have a +20% deviation from the nominal values. The simulation results show that the 
nonlinear robust controller, apart from its robustness properties, is also able to reject input 
disturbances.  
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Fig. 6. Closed loop simulations using robust nonlinear controller a) x1 b) x2 c) u1 d) u2 
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Fig. 7. Input disturbance rejection using robust nonlinear controller a) x1 b) x2 c) u1 d) u2 

The simulation results considering a unit disturbance d are given in Figure 8, considering a 
time delay in the sensor measurements of 1 minute. The results show that the state 
feedback/feed-forward scheme proposed in the robust feedback linearization framework is 
able to reject measurable output disturbances. A comparative simulation is given 
considering the case of no feed-forward scheme. The results show that the use of the feed-
forward scheme in the feedback linearization loop reduces the oscillations in the output, 
with the expense of an increased control effort. 
In the unlikely situation of no time delay measurements of the disturbance d, the results 
obtained using feed-forward compensator are highly notable, as compared to the situation 
without the compensator. The simulation results are given in Figure 9. Both, Figure 8 and 
Figure 9 show the efficiency of such feed-forward control scheme in output disturbance 
rejection problems.  
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Fig. 8. Output disturbance rejection using robust nonlinear controller and feed-forward 
compensator considering time delay measurements of the disturbance d a) x1 b) x2 c) u1 d) u2 

5. Conclusions 
As it has been previously demonstrated theoretically through mathematical computations 
(Guillard, et al., 2000), the results in this paper prove that by combining the robust method 
of feedback linearization with a robust linear controller, the robustness properties are kept 
when simulating the closed loop nonlinear uncertain system. Additionally, the design of the 
loop-shaping controller is significantly simplified as compared to the classical linearization 
technique, since the final linearized model bears significant information regarding the initial 
nonlinear model. Finally, the authors show that robust nonlinear controller - designed by 
combining this new method for feedback linearization (Guillard & Bourles, 2000) with a 
linear H controller - offers a simple and efficient solution, both in terms of reference 
tracking and input disturbance rejection. Moreover, the implementation of the feed-forward 
control scheme in the state-feedback control structure leads to improved output disturbance 
rejection.  
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Fig. 9. Output disturbance rejection using robust nonlinear controller and feed-forward 
compensator considering instant measurements of the disturbance d a) x1 b) x2 c) u1 d) u2 
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Kai Zenger and Juha Orivuori
Aalto University School of Electrical Engineering

Finland

1. Introduction

Systems described by differential equations with time-periodic coefficients have a long
history in mathematical physics. Applications cover a wide area of systems ranging from
helicopter blades, rotor-bearing systems, mechanics of structures, stability of structures
influenced by periodic loads, applications in robotics and micro-electromechanical systems
etc. (Rao, 2000; Sinha, 2005). Processes characterized by linear time-invariant or time-varying
dynamics corrupted by sinusoidal output disturbance belong to this class of systems. Robust
and adaptive analysis and synthesis techniques can be used to design suitable controllers,
which fulfill the desired disturbance attenuation and other performance characteristics of the
closed-loop system.
Despite of the fact that LTP (Linear Time Periodic) system theory has been under research
for years (Deskmuhk & Sinha, 2004; Montagnier et al., 2004) the analysis on LTPs with
experimental data has been seriously considered only recently (Allen, 2007). The importance
of new innovative ideas and products is of utmost importance in modern industrial society. In
order to design more accurate and more economical products the importance of model-based
control, involving increasingly accurate identification schemes and more effective control
methods, have become fully recognized in industrial applications.
An example of the processes related to the topic is vibration control in electrical machines,
in which several research groups are currently working. Active vibration control has many
applications in various industrial areas, and the need to generate effective but relatively
cheap solutions is enormous. The example of electrical machines considered concerns the
dampening of rotor vibrations in the so-called critical speed declared by the first flexural rotor
bending resonance. In addition, the electromagnetic fields in the air-gap between rotor and
stator may couple with the mechanic vibration modes, leading to rotordynamic instability.
The vibration caused by this resonance is so considerable that large motors often have to be
driven below the critical speed. Smaller motors can be driven also in super-critical speeds,
but they have to be accelerated fast over the critical speed. Active vibration control would
make it possible to use the motor in its whole operation range freely, according to specified
needs given by the load process. Introducing characteristics of this kind for the electric drives
of the future would be a major technological break-through, a good example of an innovative
technological development.
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2 Will-be-set-by-IN-TECH

In practice, the basic electromechanical models of electrical machines can be approximated
by linear time-invariant models with a sinusoidal disturbance signal entering at the so-called
critical frequency. That frequency can also vary which makes the system model time-variable.
The outline of the article is as follows. Two test processes are introduced in Section 2. A
systematic and generic model structure valid for these types of systems is presented in Section
3. Three types of controllers for active vibration control are presented in Section 4 and
their performance is verified by simulations and practical tests. Specifically the extension
to the nonlinear control algorithm presented in Section 4.4 is important, because it extends
the optimal controller to a nonlinear one with good robustness properties with respect to
variations in rotation frequency. Conclusions are given in Section 5.

2. Problem statement

The control algorithms described in the paper were tested by two test processes to be
discussed next.

2.1 An electric machine

(a) Fig1a (b) Fig1b

Fig. 1. Test machine: A 30 kW three-phase squirrel cage induction motor with an extended
rotor shaft (a) and stator windings (b)

In electrical motors both radial and axial vibration modes are of major concern, because they
limit the speed at which the motor can be run and also shorten the lifetime of certain parts
of the motor. The fundamental vibration forces are typically excited at discrete frequencies
(critical frequencies), which depend on the electrodynamics of the rotor and stator (Inman,
2006). In some machines the critical frequency can be passed by accelerating the rotor speed
fast beyond it, but specifically in larger machines that is not possible. Hence these machines
must be run at subcritical frequencies. It would be a good idea to construct an actuator, which
would create a separate magnetic field in the airgap between the stator and rotor. That would
cause a counterforce, which would attenuate the vibration mode of the rotor. Running the
rotor at critical speeds and beyond will need a stable and robust vibration control system,
because at different speeds different vibration modes also wake.
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In Fig.1 a 30 kW induction machine is presented, provided with such a new actuator, which
is a coil mounted in the stator slots of the machine (b). The electromechanical actuator is an
extra winding, which, due to the controlled current, produces the required counter force to
damp the rotor vibrations. The actuator is designed such that the interaction with the normal
operation of the machine is minimal. More on the design and modelling of the actuator can
be found in (Laiho et al., 2008).
Some of the machine parameters are listed in Table 1. The vibration of the rotor is continuously
measured in two dimensions and the control algorithm is used to calculate the control current
fed into the coil. The schema of the control arrangement is shown in Fig.2. The idea is to

 

Fig. 2. Rotor vibration control by a built-in new actuator

generate a control force to the rotor through a new actuator consisting of extra windings
mounted in the stator slots. An adaptive model-based algorithm controls the currents to
the actuator thus generating a magnetic field that induces a force negating the disturbance
force exited by the mass imbalance of the rotor. The configuration in the figure includes an
excitation force (disturbance) consisting of rotation harmonics and harmonics stemming from
the induction machine dynamics. The control force and the disturbance exert a force to the
rotor, which results in a rotor center displacement. If the dynamic compensation signal is
chosen cleverly, the rotor vibrations can be effectively reduced.
In practical testing the setup shown in Fig.3 has been used. The displacement of the rotor in
two dimensions (xy) is measured at one point with displacement transducers, which give a
voltage signal proportional to the distance from sensor to the shaft. A digital tachometer at the
end of the rotor measures the rotational frequency. The control algorithms were programmed
in Matlab/Simulink model and the dSpace interface system and the Real-Time Workshop
were used to control the current fed to the actuator winding.

2.2 An industrial rolling process
The second tests were made by a rolling process consisting of a reel, hydraulic actuator and
force sensor. The natural frequency of the process was 39 Hz, and the hydraulic actuator acts
both as the source of control forces and as a support for the reel. The actuator is connected to
the support structures through a force sensor, thus providing information on the forces acting
on the reel. The test setup is shown in Fig.4 and the control schema is presented in Fig.5.
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4 Will-be-set-by-IN-TECH

Parameter Value Unit

supply frequency 50 Hz
rated voltage 400 V
connection delta -

rated current 50 A
rated power 30 kW

number of phases 3 -
number of poles 2 -

rated slip 1 %
rotor mass 55.8 kg

rotor shaft length 1560 mm
critical speed 37.5 Hz

width of the air-gap 1 mm

Table 1. Main parameters of the test motor
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Fig. 3. Schema of the test setup (motor)

3. Modeling and identification

Starting from the first principles of electromagnetics (Chiasson, 2005; Fuller et al., 1995) and
structure mechanics, the vibration model can for a two-pole cage induction machine be
written in the form (Laiho et al., 2008)

q̇ = Aq + Bv + G fex
urc = Cq

(1)

where q denotes the states (real and complex) of the system, v is the control signal of the
actuator, fex is the sinusoidal disturbance causing the vibration at the critical frequency, and
urc is the radial rotor movement in two dimensions. The matrices A, B, G and C are constant.
The constant parameter values can be identified by the well-known methods
(Holopainen et al., 2004; Laiho et al., 2008; Repo & Arkkio, 2006). The results obtained

294 Recent Advances in Robust Control – Novel Approaches and Design Methods Robust Attenuation of Frequency
Varying Disturbances 5

 
Force sensor

Reel

Hydraulic actuator

Reel

disturbanceF controlF

measuredF

Fig. 4. The test setup (industrial rolling process)

 

C
o

n
tr

o
l 
v
o

lt
a

g
e

DAC ADCControl 
algorithm

dSpace

1 kHz

Measurements

1m1c

cF

Process

1

1

c

d

m = sensed force
c = hydraulic pressure
F  = control force
F  = disturbance force

Hydraulic 
valve

dF

M
e

a
s
u

re
d

 s
ig

n
a

ls

Fig. 5. The controller schema

by using finite-element (FE) model as the "real" process have been good and accurate
(Laiho et al., 2007), when both prediction error method (PEM) and subspace identification
(SUB) have been used. Since the running speed of the motor was considered to be below
60 Hz, the sampling rate was chosen to be 1 kHz. A 12th order state-space model was used
as the model structure (four inputs and two outputs corresponding to the control voltages,
rotor displacements and produced control forces in two dimensions). The model order was
chosen based on the frequency response calculated from the measurement data, from which
the approximate number of poles and zeros were estimated.
In identification a pseudo random (PSR) control signal was used in control inputs. That
excites rotor dynamics on a wide frequency range, which in limited only by the sampling
rate. However, because the second control input corresponds to the rotor position and has a
big influence on the produced force a pure white noise signal cannot be used here. Therefore
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rotor displacements and produced control forces in two dimensions). The model order was
chosen based on the frequency response calculated from the measurement data, from which
the approximate number of poles and zeros were estimated.
In identification a pseudo random (PSR) control signal was used in control inputs. That
excites rotor dynamics on a wide frequency range, which in limited only by the sampling
rate. However, because the second control input corresponds to the rotor position and has a
big influence on the produced force a pure white noise signal cannot be used here. Therefore
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the model output of the rotor position added with a small PSR signal to prevent correlation
was used as the second control input. After identification the model was validated by using
independent validation data. The fit was larger than 80 per cent, which was considered to be
adequate for control purposes. The results have later been confirmed by tests carried out by
using the real test machine data, and the results were found to be equally good.
The model structure is then as shown in Fig.6, where the actuator model and electromechanic
model of the rotor have been separated, and the sinusoidal disturbance term is used to model
the force that causes the radial vibration of the rotor. In Fig.6a the models of the actuator
and rotor have been separated and the disturbance is modelled to enter at the input of the
rotor model. The internal feedback shown is caused by the unbalanced magnetic pull (UMP),
which means that the rotor when moved from the center position in the airgap causes an
extra distortion in the magnetic field. That causes an extra force, which can be taken into
consideration in the actuator model. However, in practical tests it is impossible to separate the
models of the actuator and rotor dynamics, and therefore the model in Fig.6b has been used
in identification. Because the models are approximated by linear dynamics, the sinusoidal
disturbance signal can be moved to the process output, and the actuator and rotor models can
be combined.
In Fig. 6a the 4-state dynamical (Jeffcott) model for the radial rotor dynamics is

ẋr(t) = Arx(t) + Brur(t)
yr(t) = Crx(t)

(2)

where yr is the 2-dimensional rotor displacement from the center axis in xy-coordinates, and
ur is the sum of the actuator and disturbance forces. The actuator model is

ẋa(t) = Aaxa(t) +
�

Ba1 Ba2
� � yr(t)

u(t)

�

ya(t) = Caxa(t)
(3)

where ya are the forces generated by the actuator, and u are the control voltages fed into the
windings. The self-excited sinusoidal disturbance signal is generated by (given here in two
dimensions)

ẋd(t) = Adxd(t) =

⎡
⎢⎢⎣

0 1 0 0
−ω2

d 0 0 0
0 0 0 1
0 0 −ω2

d 0

⎤
⎥⎥⎦ xd(t)

d(t) = Cdxd(t) =
�

1 0 0 0
0 0 1 0

�
xd(t)

(4)

where ωd is the angular frequency of the disturbance and d(t) denotes the disturbance forces
in xy-directions. The initial values of the state are chosen such that the disturbance consists of
two sinusoidal signals with 90 degree phase shift (sine and cosine waves). The initial values
are then

xd(0) =
�

xsin(0)
xcos(0)

�
=

⎡
⎢⎢⎣

0
Aωd

A
0

⎤
⎥⎥⎦
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where A is the amplitude of the disturbance. The models of the actuator, rotor and disturbance
can be combined into one state-space representation

ẋp(t) = Apxp(t) + Bpu(t) =

⎡
⎣

Ar BrCa BrCd
Ba1Cr Aa 0

0 0 Ad

⎤
⎦ xp(t) +

⎡
⎣

0
Ba2
0

⎤
⎦ u(t)

yr(t) = Cpxp(t) =
�

Cr 0 0
�

xp(t)

(5)

with

xp =

⎡
⎣

xr
xa
xd

⎤
⎦

As mentioned, the actuator and rotor model can be combined and the disturbance can
be moved to enter at the output of the process (according to Fig. 6b). The state-space
representation of the actuator-rotor model is then

ẋar(t) = Aarxar(t) + Baru(t)
yar(t) = Carxar(t)

(6)

where u is a vector of applied control voltages and yar is vector of rotor displacements. The
whole system can be modeled as

ẋp(t) = Apxp(t) + Bpup(t) =
�

Aar 0
0 Ad

�
xp(t) +

�
Bar
0

�
u(t)

yr(t) = Cpxp(t) =
�

Car Cd
�

xp(t)
(7)

with

xp(t) =
�

xar(t)
xd(t)

�

The process was identified with a sampling frequency of 1 kHz, which was considered
adequate since the running speed of the motor was about 60 Hz and therefore well below
100 Hz. Pseudorandom signals were used as control forces in both channels separately, and
the prediction error method (PEM) was used (Ljung, 1999) to identify a 12th order state-space
representation of the system.
The identified process model is compared to real process data, and the results are shown in
Figs.7 and 8, respectively. The fit in x and y directions were calculated as 72.5 % and 80.08 %,
which is considered to be appropriate. From the frequency domain result it is seen that for
lower frequency the model agrees well with response obtained form measured data, but in
higher frequencies there is a clear difference. That is because the physical model used behind
the identification is only valid up to a certain frequency, and above that there exist unmodelled
dynamics.

4. Control design

In the following sections different control methods are presented for vibration control of single
or multiple disturbances with a constant or varying disturbance frequencies. Two of the
methods are based on the linear quadratic gaussian (LQ) control, and one belongs to the class
of higher harmonic control algorithms (HHC), which is also known as convergent control. If the
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the model output of the rotor position added with a small PSR signal to prevent correlation
was used as the second control input. After identification the model was validated by using
independent validation data. The fit was larger than 80 per cent, which was considered to be
adequate for control purposes. The results have later been confirmed by tests carried out by
using the real test machine data, and the results were found to be equally good.
The model structure is then as shown in Fig.6, where the actuator model and electromechanic
model of the rotor have been separated, and the sinusoidal disturbance term is used to model
the force that causes the radial vibration of the rotor. In Fig.6a the models of the actuator
and rotor have been separated and the disturbance is modelled to enter at the input of the
rotor model. The internal feedback shown is caused by the unbalanced magnetic pull (UMP),
which means that the rotor when moved from the center position in the airgap causes an
extra distortion in the magnetic field. That causes an extra force, which can be taken into
consideration in the actuator model. However, in practical tests it is impossible to separate the
models of the actuator and rotor dynamics, and therefore the model in Fig.6b has been used
in identification. Because the models are approximated by linear dynamics, the sinusoidal
disturbance signal can be moved to the process output, and the actuator and rotor models can
be combined.
In Fig. 6a the 4-state dynamical (Jeffcott) model for the radial rotor dynamics is

ẋr(t) = Arx(t) + Brur(t)
yr(t) = Crx(t)

(2)

where yr is the 2-dimensional rotor displacement from the center axis in xy-coordinates, and
ur is the sum of the actuator and disturbance forces. The actuator model is
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where ya are the forces generated by the actuator, and u are the control voltages fed into the
windings. The self-excited sinusoidal disturbance signal is generated by (given here in two
dimensions)
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where ωd is the angular frequency of the disturbance and d(t) denotes the disturbance forces
in xy-directions. The initial values of the state are chosen such that the disturbance consists of
two sinusoidal signals with 90 degree phase shift (sine and cosine waves). The initial values
are then
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where A is the amplitude of the disturbance. The models of the actuator, rotor and disturbance
can be combined into one state-space representation
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As mentioned, the actuator and rotor model can be combined and the disturbance can
be moved to enter at the output of the process (according to Fig. 6b). The state-space
representation of the actuator-rotor model is then

ẋar(t) = Aarxar(t) + Baru(t)
yar(t) = Carxar(t)

(6)

where u is a vector of applied control voltages and yar is vector of rotor displacements. The
whole system can be modeled as
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The process was identified with a sampling frequency of 1 kHz, which was considered
adequate since the running speed of the motor was about 60 Hz and therefore well below
100 Hz. Pseudorandom signals were used as control forces in both channels separately, and
the prediction error method (PEM) was used (Ljung, 1999) to identify a 12th order state-space
representation of the system.
The identified process model is compared to real process data, and the results are shown in
Figs.7 and 8, respectively. The fit in x and y directions were calculated as 72.5 % and 80.08 %,
which is considered to be appropriate. From the frequency domain result it is seen that for
lower frequency the model agrees well with response obtained form measured data, but in
higher frequencies there is a clear difference. That is because the physical model used behind
the identification is only valid up to a certain frequency, and above that there exist unmodelled
dynamics.

4. Control design

In the following sections different control methods are presented for vibration control of single
or multiple disturbances with a constant or varying disturbance frequencies. Two of the
methods are based on the linear quadratic gaussian (LQ) control, and one belongs to the class
of higher harmonic control algorithms (HHC), which is also known as convergent control. If the
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sinusoidal disturbance frequency signal varies in frequency, the algorithms must be modified
by combining them and using direct frequency measurement or frequency tracking.

4.1 Direct optimal feedback design
In this method the suppressing of tonal disturbance is posed as a dynamic optimization
problem, which can be solved by the well-known LQ theory. The idea is again that the model
generating the disturbance is embedded in the process model, and that information is then
automatically used when minimizing the design criterion. That leads to a control algorithm
which inputs a signal of the same amplitude but opposite phase to the system thus canceling
the disturbance. The problem can be defined in several scenarios, e.g. the disturbance can be
modelled to enter at the process input or output, the signal to be minimized can vary etc.
Starting from the generic model

ẋ(t) = Ax(t) + Bu(t) =
�

Ap 0
0 Ad

�
x(t) +

�
Bp
0

�
u(t)

y(t) =
�

Cp Cd
�

x(t)
(8)

the control criterion is set

J =
∞�

0

�
zT(τ)Qz(τ) + uT(τ)Ru(τ)

�
dτ (9)

where z is a freely chosen performance variable and Q ≥ 0, R > 0 are the weighing matrices
for the performance variable and control effort. By inserting z(t) = Czx(t) the criterion
changes into the standard LQ form

J =
∞�

0

�
xT(τ)CT

z QCzx(τ) + uT(τ)Ru(τ)
�

dτ (10)

The disturbance dynamics can be modelled as

ẋd(t) = Adxd(t) =

⎡
⎢⎢⎢⎣

Ad1 · · · 0 0
...

. . .
...

...
0 · · · Adn 0
0 · · · 0 −�

⎤
⎥⎥⎥⎦ xdn(t)

d(t) = Cdxd(t) =
�

Cd1 · · · Cdn 0
�

xdn(t)

(11)

where

Adn =

�
0 1

−ω2
dn −ε

�
, i = 1, 2, ..., n

and the initial values
x(0) =

�
xT

d1(0) · · · xT
dn(0) b

�T

According to the formalism a sum of n sinusoidal disturbance components (angular
frequencies ωdn) enter the system. The very small number � is added in order the augmented
system to be stabilizable, which is needed for the solution to exist. The damping of the
resulting sinusoidal is so low that it does not affect the practical use of the optimal controller.
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sinusoidal disturbance frequency signal varies in frequency, the algorithms must be modified
by combining them and using direct frequency measurement or frequency tracking.

4.1 Direct optimal feedback design
In this method the suppressing of tonal disturbance is posed as a dynamic optimization
problem, which can be solved by the well-known LQ theory. The idea is again that the model
generating the disturbance is embedded in the process model, and that information is then
automatically used when minimizing the design criterion. That leads to a control algorithm
which inputs a signal of the same amplitude but opposite phase to the system thus canceling
the disturbance. The problem can be defined in several scenarios, e.g. the disturbance can be
modelled to enter at the process input or output, the signal to be minimized can vary etc.
Starting from the generic model
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the control criterion is set

J =
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zT(τ)Qz(τ) + uT(τ)Ru(τ)
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dτ (9)

where z is a freely chosen performance variable and Q ≥ 0, R > 0 are the weighing matrices
for the performance variable and control effort. By inserting z(t) = Czx(t) the criterion
changes into the standard LQ form

J =
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0
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xT(τ)CT

z QCzx(τ) + uT(τ)Ru(τ)
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dτ (10)

The disturbance dynamics can be modelled as

ẋd(t) = Adxd(t) =

⎡
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Ad1 · · · 0 0
...

. . .
...

...
0 · · · Adn 0
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d(t) = Cdxd(t) =
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Cd1 · · · Cdn 0
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(11)

where

Adn =
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0 1

−ω2
dn −ε
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, i = 1, 2, ..., n

and the initial values
x(0) =

�
xT

d1(0) · · · xT
dn(0) b

�T

According to the formalism a sum of n sinusoidal disturbance components (angular
frequencies ωdn) enter the system. The very small number � is added in order the augmented
system to be stabilizable, which is needed for the solution to exist. The damping of the
resulting sinusoidal is so low that it does not affect the practical use of the optimal controller.
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The constant b can be used for a constant bias term in the disturbance. Compare the
disturbance modelling also to that presented in equations (4) and (5).
To minimize of sinusoidal disturbances the following performance variable can be chosen

z(t) =
�

Cp
...
�

Cd1 · · · Cdn 0
�
�

x(t) =
�

Cp
... Cd

�
x(t) = Czx(t) (12)

which leads to the cost function (10)
The solution of the LQ problem can now be obtained by standard techniques
(Anderson & Moore, 1989) as

u(t) = −Lx(t) = −R−1BTSx(t) (13)

where S is the solution of the algebraic Riccati equation

ATS + SA − SBR−1BTS + Q = 0 (14)

It is also possible to choose simply z(t) = x(t) in (9). To force the states approach zero it is in
this case necessary to introduce augmented states

xaug(t) =
t�

0

(yar(τ) + d(τ)) dτ =
�

Car Cd
� t�

0

��
xar(τ)

T xd(τ)
T �T

�
dτ (15)

The system to which the LQ design is used is then

ẋ(t) =
�

ẋp(t)
ẋaug(t)

�
=

⎡
⎢⎢⎢⎢⎣

Ap
... 0

· · · ... · · ·
�

Car Cd
� ... 0

⎤
⎥⎥⎥⎥⎦

� �� �
Aaug

x(t) +

⎡
⎣

Bp
· · ·
0

⎤
⎦

� �� �
Baug

u(t)

yr(t) =
�

Cp 0
�

� �� �
Caug

x(t)

(16)

In this design the weights in Q corresponding to the augmented states should be set to
considerably high values, e.g. values like 105 have been used.
Usually a state observer must be used to implement the control law. For example, in the
configuration shown in Fig.6a (see also equation (5)) that has the form

˙̂x(t) = Apx̂(t) + Bpu(t) + K (yr(t)− ŷr(t))
yobs = x̂(t)

(17)

The gain in the estimator can be chosen based on the duality between the LQ optimal
controller and the estimator. The state error dynamics x̃(t) = x(t)− x̂(t) follows the dynamics

˙̃x(t) =
�

Ap − KCp
�

x̃(t) (18)
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which is similar to
ẋN(t) = ANxN(t) + BNuN(t) (19)

with AN = AT
p , BN = CT

p , KN = KT and uN(t) = −KNxN(t). The weighting matrix KN can
be determined by minimizing

Jobs =

∞∫

0

(
xN(t)TQobsxN(t) + uN(t)

TRobsuN(t)
)

dt (20)

where the matrices Qobs and Robs contain the weights for the relative state estimation error
and its convergence rate.
The optimal control law (13) can now be combined with the observer model (17). Including
the augmented states (15) the control law can be stated as

ẋLQ(t) =
[ ˙̂x(t)

˙̂xaug(t)

]
=

([
Ap − KCp 0

Cp 0

]
−

[
Bp
0

]
L
)

︸ ︷︷ ︸
ALQ

xLQ(t) +
[

K
0

]

︸ ︷︷ ︸
BLQ

yr(t)

uLQ(t) = −L︸︷︷︸
CLQ

xLQ(t)
(21)

where yr is the rotor displacement, uLQ is the optimal control signal, and ALQ, BLQ and CLQ
are the parameters of the controller.

4.2 Convergent controller
The convergent control (CC) algorithm (also known as instantaneous harmonic control
(IHC) is a feedforward control method to compensate a disturbance at a certain frequency
(Daley et al., 2008). It is somewhat similar to the well-known least means squares compensator
(LMS), (Fuller et al., 1995; Knospe et al., 1994) which has traditionally been used in many
frequency compensating methods in signal processing. A basic schema is presented in Fig.9.
The term r is a periodic signal of the same frequency as d, but possibly with a different
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Fig. 9. Feedforward compensation of a disturbance signal

amplitude and phase. The idea is to change the filter parameters hi such that the signal u
compensates the disturbance d. The standard LMS algorithm that minimizes the squared
error can be derived to be as

hi(k + 1) = hi(k)− αr(k − i)e(k) (22)
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ẋp(t)
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configuration shown in Fig.6a (see also equation (5)) that has the form

˙̂x(t) = Apx̂(t) + Bpu(t) + K (yr(t)− ŷr(t))
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(17)

The gain in the estimator can be chosen based on the duality between the LQ optimal
controller and the estimator. The state error dynamics x̃(t) = x(t)− x̂(t) follows the dynamics
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where yr is the rotor displacement, uLQ is the optimal control signal, and ALQ, BLQ and CLQ
are the parameters of the controller.

4.2 Convergent controller
The convergent control (CC) algorithm (also known as instantaneous harmonic control
(IHC) is a feedforward control method to compensate a disturbance at a certain frequency
(Daley et al., 2008). It is somewhat similar to the well-known least means squares compensator
(LMS), (Fuller et al., 1995; Knospe et al., 1994) which has traditionally been used in many
frequency compensating methods in signal processing. A basic schema is presented in Fig.9.
The term r is a periodic signal of the same frequency as d, but possibly with a different
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Fig. 9. Feedforward compensation of a disturbance signal

amplitude and phase. The idea is to change the filter parameters hi such that the signal u
compensates the disturbance d. The standard LMS algorithm that minimizes the squared
error can be derived to be as

hi(k + 1) = hi(k)− αr(k − i)e(k) (22)
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where α is a tuning parameter (Fuller et al., 1995; Tammi, 2007). In the CC algorithm the
process dynamics is presented by means of the Fourier coefficients as

EF(k) = GFUF(k) + DF(k) (23)

where GF is the complex frequency response of the system and the symbols EF, UF and DF
are the Fourier coefficients of the error, control and disturbance signals. For example

Eωn
F =

1
N

N−1

∑
k=0

e(k)e−2iπkn/N ≈ e(k)e−iωnt

where N is the number of samples in one signal period, and n is the number of the spectral
line of the corresponding frequency. If the sampling time is Ts, then t = kTs.
The criterion to be minimized is J = E∗

FEF which gives

UF = − (G∗
FGF)

−1 G∗
FDF = −AFDF (24)

where ∗ denotes the complex transpose. The pseudoinverse is used if necessary when
calculating the inverse matrix. In terms of Fourier coefficients the Convergent Control
Algorithm can be written as

UF(k + 1) = βUF(k)− αAFEF(k) (25)

where α and β are tuning parameters. It can be shown (Daley et al., 2008; Tammi, 2007) that
the control algorithm can be presented in the form of a linear time-invariant pulse transfer
function

Gcc(z) =
U(z)
Y(z)

= β

Re
(

GF

(
eiωk

)−1
)

z2 − αRe
(

GF

(
eiωk

)−1
e−iωkTs

)
z

z2 − 2α cos (ωkTs) z + α2 (26)

where Y(z) is the sampled plant output and U(z) is the sampled control signal.
The convergent controller can operate like an LMS controller in series with the plant, by using
a reference signal r proportional to the disturbance signal to be compensated. The ’plant’
can here mean also the process controlled by a wide-frequency band controller like the LQ
controller for instance.

Process

Feedback control

Convergent control
( )ry t( )extu t( )r t

( )LQu t

( )u t
+

Adaptation
signal

Fig. 10. Convergent controller in series with a controlled plant
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Alternatively, the CC controller can be connected in parallel with the LQ-controller, then
having the plant output as the input signal. Several CC controllers (tuned for different
frequencies) can also be connected in parallel in this configuration, see Fig.11.

Process

LQ-controller

( )CCu k

( )LQu k

( )ry k( )u k

+ +

CC-controller

Fig. 11. Convergent controller connected in parallel with the LQ controller

4.3 Simulations and test runs
The controller performance was tested in two phases. Firstly, extensive simulations by using a
finite element (FE) model of the electrical machine and actuator were carried out. Secondly, the
control algorithms were implemented in the test machine discussed in Section 2.1 by using a
dSpace system as the program-machine interface. The disturbance frequency was 49.5 Hz, and
the controller was discretized with the sampling frequency 1 kHz. Time domain simulations
are shown in Figs. 12 and 13. The damping is observed to be about 97 per cent, which is a
good result.

 

Fig. 12. Simulation result in time domain (rotor vibration in x-direction)

The critical frequency of the 30 kW test motor was 37.7 Hz. However, due to vibrations the
rotor could not be driven at this speed in open loop, and both the identification and initial
control tests were performed at 32 Hz rotation frequency. In the control tests the LQ controller
was used alone first, after which the CC controller was connected, in order to verify the
performance of these two control configurations. Both controllers were discretized at 5 kHz
sampling rate.
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finite element (FE) model of the electrical machine and actuator were carried out. Secondly, the
control algorithms were implemented in the test machine discussed in Section 2.1 by using a
dSpace system as the program-machine interface. The disturbance frequency was 49.5 Hz, and
the controller was discretized with the sampling frequency 1 kHz. Time domain simulations
are shown in Figs. 12 and 13. The damping is observed to be about 97 per cent, which is a
good result.
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The critical frequency of the 30 kW test motor was 37.7 Hz. However, due to vibrations the
rotor could not be driven at this speed in open loop, and both the identification and initial
control tests were performed at 32 Hz rotation frequency. In the control tests the LQ controller
was used alone first, after which the CC controller was connected, in order to verify the
performance of these two control configurations. Both controllers were discretized at 5 kHz
sampling rate.
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Fig. 13. Simulated rotor vibration in xy-plot

The test results are shown in Figs. 14-17. In Fig.14 the control signal and rotor vibration
amplitude are shown, when the machine was driven at 32.5 Hz. The LQ controller was
used first alone, and then the CC controller was connected. It is seen that the CC controller
improves the performance somewhat, and generally the vibration damping is good and well
comparable to the results obtained by simulations. The same can be noticed from the xy-plot
shown in Fig.15.

Fig. 14. Test machine runs at 32 Hz speed: Control voltage and rotor displacement in
x-direction

Next, the operation speed was increased to the critical frequency 37.5 Hz. Controller(s) tuned
for this frequency could be driven without any problems at this speed. Similar results as
above are shown in Figs.16 and 17. It is remarkable that now connecting the CC controller on
improved the results more than before. So far there is no clear explanation to this behaviour.

4.4 Nonlinear controller
If the frequency of the disturbance signal is varying, the performance of a controller with
constant coefficients deteriorates considerably. An immediate solution to the problem
involves the use of continuous gain scheduling, in which the controller coefficients are
modified according to the current disturbance frequency. To this end the disturbance
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Fig. 15. Test machine runs at 32 Hz speed: xy-plot

 

Fig. 16. Test machine runs at 37.5 Hz critical speed: Control voltage and rotor displacement
in x-direction

 

Fig. 17. Test machine runs at 37.5 Hz critical speed: xy-plot
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frequency (usually the rotating frequency) has to be measured of tracked (Orivuori & Zenger,
2010; Orivuori et al., 2010). The state estimator can be written in the form

˙̂x(t, ωhz) = (A (ωhz)− K (ωhz)C) x̂(t, ωhz) + Bu(t) + K(ωhz)y(t) (27)

where it has been assumed that the model topology is as in Fig.6b and the disturbance model
is included in the system matrix A. The matrix K changes as a function of frequency as

K(ωhz) =
�

f1(ωhz) f2(ωhz) · · · fn(ωhz)
�T (28)

where fi are suitable functions of frequency. Solving the linear optimal control problem in a
frequency grid gives the values of K, which can be presented like in Fig.18 The functions fi

Fig. 18. Projections of the hypersurface to the elements of K

can be chosen to be polynomials, so that the feedback gain has the form

K(ωhz) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m

...
...

. . .
...

an1 an2 · · · anm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

uω(ωhz) (29)
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where aij are the polynomial coefficients and

uω(ωhz) =
[

ωm−1
hz · · · ω2

hz ωhz 1
]T

(30)

The optimal control gain L(ωhz) can be computed similarly.
The controller was tested with the industrial rolling process presented in Section 2.2. A
sinusoidal sweep disturbance signal was used, which corresponds to a varying rotational
speed of the reel with constant width. The rotation frequency ranged over the frequency
range 5 Hz..50 Hz. Before the practical tests the theoretical performance of the controller was
analyzed. The result is shown in Fig.19, which shows a neat damping of the vibration near
the critical frequency 39 Hz. Simulation and practical test results are shown in Figs.20 and

 

Fig. 19. Theoretical damping achieved with the nonlinear controller

21, respectively. The controller turns out to be effective over the whole frequency range the
damping ratio being 99 per cent in simulation and about 90 per cent in practical tests. The
result of the good performance of the nonlinear controller is further verified by the output
spectrum of the process obtained with and without control. The result is shown in Fig.22.

 

Fig. 20. Simulated performance of the nonlinear controller
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Fig. 21. Real performance of the nonlinear controller

 

Fig. 22. Frequency spectra of the process output with and without control

5. Conclusion

Vibration control in rotating machinery is an important topic of research both from theoretical
and practical viewpoints. Generic methods which are suitable for a large class of such
processes are needed in order to make the analysis and controller design transparent and
straightforward. LQ control theory offers a good and easy to learn model-based control
technique, which is effective and easily implemented for industrial processes. The control
algorithm can be extended to the nonlinear case covering systems with varying disturbance
frequencies. The performance of such an algorithm has been studied in the paper, and the
performance has been verified by analysis, simulation and practical tests of two different
processes. The vibration control results have been excellent. In future research it is
investigated, how the developed methods can be modified to be used is semi-active vibration
control. That is important, because active control has its risks, and all industrial users are not
willing to use active control methods.
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Engineering (Archiv fűr Elektrotechnik), Vol. 90, No. 6, 2008, pp. 407–423.

Ljung, L. (1999). System Identification: Theory for the User, 2nd Ed., Prentice Hall, Upper Saddle
River, NJ.

Montagnier, P.; Spiteri, R. J.; Angeles, J. (2004). The Control of Linear Time-Periodic Systems
Using Floquet-Lyapunov Theory, International Journal of Control, Vol. 77, No. 20,
March 2004, pp. 472–490.

Orivuori, J. & Zenger, K. (2010). Active Control of Vibrations in a Rolling Process by Nonlinear
Optimal Controller, In: Proceedings of the 10th International Conference on Motion and
Vibration Control (Movic 2010), August 2010, Tokyo, Japan.

309Robust Attenuation of Frequency Varying Disturbances



20 Will-be-set-by-IN-TECH

Orivuori, J.; Zazas, I.; Daley, S. (2010). Active Control of a Frequency Varying Tonal
Disturbance by Nonlinear Optimal Controller with Frequency Tracking, In:
Proceedings of the IFAC Workshop of Periodic Control Systems (Psyco 2010), August 2010,
Antalya, Turkey.

Rao, J. D. (2000). Vibratory Condition Monitoring of Machines, Narosa Publishing House, New
Delhi, India.

Repo, A-K. & Arkkio, A. (2006). Numerical Impulse Response Test to Estimate Circuit-Model
Parameters for Induction Machines, IEE Proceedings, Electric Power Applications, Vol.
153, No. 6, 2006, pp. 883–890.

Sinha, S. C. (2005). Analysis and Control of Nonlinear Dynamical Systems with Periodic
Coefficients, In: Proceedings of the Workshop on Nonlinear Phenomena, Modeling and their
applications, SP-Brazil, Eds. JM Balthazar, RMLRF Brasil, EEN Macau, B. R. Pontes
and L C S Goes, 2-4 May, 2005.

Tammi, K. (2007). Active Control of Rotor Vibrations - Identification, Feedback, Feedforward and
Repetitive Control Methods, Doctoral thesis, VTT Publications 634, Espoo: Otamedia.

Sievers, L. A.; Blackwood, G. H.; Mercadal, M.; von Flotow, A. H. (1991). MIMO Narrowband
Disturbance Rejection Using Frequency Shaping of Cost Functionals, In: Proceedings
of American Control Conference, Boston, MA, USA.

310 Recent Advances in Robust Control – Novel Approaches and Design Methods

0

Synthesis of Variable Gain Robust Controllers
for a Class of Uncertain Dynamical Systems

Hidetoshi Oya1 and Kojiro Hagino2

1The University of Tokushima
2The University of Electro-Communications

Japan

1. Introduction

Robustness of control systems to uncertainties has always been the central issue in feedback
control and therefore for dynamical systems with unknown parameters, a large number
of robust controller design methods have been presented (e.g. (3; 37)). Also, many
robust state feedback controllers achieving some robust performances such as quadratic
cost function(28; 31), H∞-disturbance attenuation(6) and so on have been suggested. It
is well-known that most of these problems are reduced to standard convex optimization
problems involving linear matrix inequalities (LMIs) which can be solved numerically very
efficiently. Furthermore, in the case that the full state of systems cannot be measured, the
control strategies via observer-based robust controllers (e.g. (12; 19; 27)) or robust output
feedback one (e.g. (9; 11)) have also been well studied. However, most of the resulting
controllers derived in the existing results have fixed structure, and these methods result in
worst-case design. Therefore these controllers become cautious when the perturbation region
of the uncertainties has been estimated larger than the proper region, because the robust
controller designed by the existing results only has a fixed gain.
From these viewpoints, it is important to derive robust controllers with adjustable parameters
which are tuned by using available information. Thus some researchers have proposed robust
controllers with adjustable parameters(18; 33). In the work of Ushida et al.(33), a quadratically
stabilizing state feedback controller based on the parametrization of H∞ controllers is derived.
Maki and Hagino(18) have introduced a robust controller with adaptation mechanism for
linear systems with time-varying parameter uncertainties and the controller gain in their
work is tuned on-line based on the information about parameter uncertainties. On the other
hand, we have proposed a robust controller with adaptive compensation input for a class of
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design methods reduce the cautiousness in a robust controller with a fixed gain, because
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In this chapter, for a class of uncertain linear systems, variable gain robust controllers which
achieve not only asymptotical stability but also improving transient behavior of the resulting
closed-loop system have been shown(23; 24; 26). The variable gain robust controllers, which
consist of fixed gain controllers and variable gain one, are tuned on-line based on the
information about parameter uncertainties. In this chapter, firstly, a design method of variable
gain state feedback controllers for linear systems with matched uncertainties has been shown
and next the variable gain state feedback controller is extended to output feedback controllers.
Finally, on the basis of the concept of piecewise Lyapunov functions (PLFs), an LMI-based
variable gain robust controller synthesis for linear systems with matched uncertainties and
unmatched one has been presented.
The contents of this chapter are as follows, where the item numbers in the list accord with the
section numbers.

2. Variable Gain Robust State Feedback Controllers

3. Variable Gain Robust Output Feedback Controllers

4. Variable Gain Robust Controllers based on Piecewise Lyapunov Functions

5. Conclusions and Future Works

Basic symbols are listed bellow.

Z+ : the set of positive integers
R : the set of real numbers
Rn : the set of n-dimensional vectors
Rn×m : the set of n × m-dimensional matrices
In : n-dimensional identity matrix

Other than the above, we use the following notation and terms. For a matrix A, the transpose
of matrix A and the inverse of one are denoted by AT and A−1 respectively and rank {A}
represents the rank of the matrix A. Also, In represents n-dimensional identity matrix. For
real symmetric matrices A and B, A > B (resp. A ≥ B) means that A − B is positive
(resp. nonnegative) definite matrix. For a vector α ∈ Rn, ||α|| denotes standard Euclidian
norm and for a matrix A, ||A|| represents its induced norm. Besides, a vector α ∈ Rn,

∥∥α
∥∥

1

denotes 1-norm, i.e.
∥∥α

∥∥
1 is defined as

∥∥α
∥∥

1
�
=

n

∑
j=1

|αj|. The intersection of two sets Γ and Υ are

denoted by Γ ∩ Υ and the symbols “
�
=” and “�” mean equality by definition and symmetric

blocks in matrix inequalities, respectively. Besides, for a symmetric matrix P , λmax {P} (resp.
λmin {P}) represents the maximal eigenvalue (resp. minimal eigenvalue).
Furthermore, the following usefule lemmas are used in this paper.

Lemma 1. For arbitrary vectors λ and ξ and the matrices G and H which have appropriate dimensions,
the following relation holds.

2λTGΔ(t)Hξ ≤ 2
∥∥GTλ

∥∥ ∥∥Δ(t)Hξ
∥∥

≤ 2
∥∥GTλ

∥∥ ∥∥Hξ
∥∥

where Δ(t) ∈ Rp×q is a time-varying unknown matrix satisfying
∥∥Δ(t)

∥∥ ≤ 1.

Proof. The above relation can be easily obtained by Schwartz’s inequality (see (8)).
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Lemma 2. (Schur complement) For a given constant real symmetric matrix Ξ, the following
arguments are equivalent.

(i). Ξ =

(
Ξ11 Ξ12
ΞT

12 Ξ22

)
> 0

(ii). Ξ11 > 0 and Ξ22 − ΞT
12Ξ−1

11 Ξ12 > 0

(iii). Ξ22 > 0 and Ξ11 − Ξ12Ξ−1
22 ΞT

12 > 0

Proof. See Boyd et al.(4)

Lemma 3. ( Barbalat’s lemma ) Let φ : R → R be a uniformly continuous function on [ 0, ∞) .
Suppose that limt→∞

∫ t
0 φ(τ)dτ exists and is finite. Then

φ(t) → 0 as t → ∞

Proof. See Khalil(13).

Lemma 4. (S-procedure) Let F (x) and G(x) be two arbitrary quadratic forms over Rn. Then F (x) <
0 for ∀x ∈ Rn satisfying G(x) ≤ 0 if and only if there exist a nonnegative scalar τ such that

F (x)− τG(x) ≤ 0 for ∀x ∈ Rn

Proof. See Boyd et al.(4).

2. Variable gain robust state feedback controllers

In this section, we propose a variable gain robust state feedback controller for a class of
uncertain linear systems. The uncertainties under consideration are supposed to satisfy
the matching condition(3) and the variable gain robust state feedback controller under
consideration consists of a state feedback with a fixed gain matrix and a compensation input
with variable one. In this section, we show a design method of the variable gain robust state
feedback controller.

2.1 Problem formulation
Consider the uncertain linear system described by the following state equation.

d
dt

x(t) = (A + BΔ(t)E) x(t) + Bu(t) (2.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state (assumed to be available
for feedback) and the control input, respectively. In (2.1) the matrices A and B denote the
nominal values of the system, and the pair (A, B) is stabilizable and the matrix Δ(t) ∈ Rm×q

denotes unknown time-varying parameters which satisfy
∥∥Δ(t)

∥∥ ≤ 1. Namely, the uncertain
parameter satisfies the matching condition (See e.g. (3) and references therein).
The nominal system, ignoring the unknown parameter Δ(t) in (2.1), is given by

d
dt

x(t) = Ax(t) + Bu(t) (2.2)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state and the control input for the
nominal system respectively.
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First of all, in order to generate the desirable transient behavior in time response for the
uncertain system (2.1) systematically, we adopt the standard linear quadratic control problem
(LQ control theory) for the nominal system (2.2). Note that some other design method so
as to generate the desired response for the controlled system can also be used (e.g. pole
assignment). It is well-known that the optimal control input for the nominal system (2.2)
can be obtained as u(t) = −Kx(t) and the closed-loop system

d
dt

x(t) = (A + BK) x(t)

= AKx(t) (2.3)

is asymptotically stable*.
Now in order to obtain on-line information on the parameter uncertainty, we introduce an

error signal e(t)
�
= x(t) − x(t), and for the uncertain system (2.1), we consider the following

control input.

u(t)
�
= Kx(t) + ψ(x, e,L, t) (2.4)

where ψ(x, e,L, t) ∈ Rm is a compensation input(21) to correct the effect of uncertainties, and
it is supposed to have the following structure.

ψ (x, e,L, t)
�
=F e(t) + L(x, e, t)e(t) (2.5)

In (2.4), F ∈ RRm×n
and L(t) ∈ Rm×n are a fixed gain matrix and an adjustable time-varying

matrix, respectively. Thus from (2.1), (2.3) – (2.5), the error system can be written as

d
dt

e(t) = (A + BΔ(t)E) x(t) + B (Kx(t) +F e(t) + L(x, e, t)x(t))− AKx(t)

= AF e(t) + BΔ(t)Ex(t) + L(x, e, t)e(t) (2.6)

In (2.6), AF is the matrix expressed as

AF = AK + BF (2.7)

Note that from the definition of the error signal, the uncertain system (2.1) is ensured to be
stable, because the nominal system is asymptotically stable.
From the above, our control objective in this section is to derive the fixed gain matrix
F ∈ Rm×n and the variable gain matrix L(x, e, t) ∈ Rm×n which stabilize the uncertain error
system (2.6).

* Using the unique solution of the algebraic Riccati equation ATX + X A − X BR−1BTX +Q = 0, the
gain matrix K ∈ Rm×n is determined as K = −R−1BTX where Q and R are nonnegative and positive
definite matrices, respectively. Besides, Q is selected such that the pair (A, C) is detectable, where C is

any matrix satisfying Q = CCT, and then the matrix AK
�
= A + BK is stable.
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2.2 Synthesis of variable gain robust state feedback controllers
In this subsection, we consider designing the variable matrix L(x, e, t) ∈ Rm×n and the
fixed gain matrix F ∈ Rm×n such that the error system (2.6) with unknown parameters is
asymptotically stable. The following theorem gives a design method of the proposed adaptive
robust controller.

Theorem 1. Consider the uncertain error system (2.6) with variable gain matrix L(x, e, t) ∈ Rm×n

and the fixed gain matrix F ∈ Rm×n.
By using the LQ control theory, the fixed gain matrix F ∈ Rm×n is designed as F = −R−1

e BTP
where P ∈ Rn×n is unique solution of the following algebraic Riccati equation.

AT
KP + PAK −PBR−1

e BTP +Qe = 0 (2.8)

where Qe ∈ Rn×n and Re ∈ Rm×m are positive definite matrices which are selected by designers.
Besides, the variable gain matrix L(x, e, t) ∈ Rm×n is determined as

L(x, e, t) = −
∥∥Ex(t)

∥∥2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥+ σ(t)
BTP (2.9)

In (2.9), σ(t) ∈ R+ is any positive uniform continuous and bounded function which satisfies
∫ t

t0

σ(τ)dτ ≤ σ∗ < ∞ (2.10)

where σ∗ is any positive constant and t0 denotes an initial time. Then the uncertain error system (2.6)
is bounded and

lim
t→∞

e(t; t0, e(t0)) = 0 (2.11)

Namely, asymptotical stability of the uncertain error system (2.6) is ensured.

Proof. Using symmetric positive definite matrix P ∈ Rn×n which satisfies (2.8), we introduce
the following quadratic function

V(e, t)
�
= eT(t)Pe(t) (2.12)

Let’s e(t) be the solution of (2.6) for t ≥ t0. Then the time derivative of the function V(e, t)
along the trajectory of (2.6) can be written as

d
dt
V(e, t) =eT(t)

(
AT
FP + PAF

)
e(t)

+ 2eT(t)PBΔ(t)Ex(t) + 2eT(t)PBL(x, e, t)e(t) (2.13)

Now, one can see from (2.13) and Lemma 1 that the following inequality for the function
V(e, t) holds.

d
dt
V(e, t) =eT(t)

(
AT
FP +PAF

)
e(t) + 2

∥∥BTPe(t)
∥∥ ∥∥Δ(t)Ex(t)

∥∥

+ 2eT(t)PBL(x, e, t)e(t)

≤eT(t)
(

AT
FP +PAF

)
e(t) + 2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥

+ 2eT(t)PBL(x, e, t)e(t) (2.14)
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Additionally, using the relation (2.8), substituting (2.9) into (2.14) and some trivial
manipulations give the inequality

d
dt
V(e, t) ≤eT(t)

(
AT
FP + PAF

)
e(t) + 2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥

+ 2eT(t)PB

(
−

∥∥Ex(t)
∥∥2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥+ σ(t)
BTP

)
e(t)

≤eT(t)
(

AT
FP + PAF

)
e(t) + 2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥
∥∥BTPe(t)

∥∥ ∥∥Ex(t)
∥∥+ σ(t)

σ(t)

=− eT(t)
{
Qe + PBR−1

e BTP
}

e(t) + 2

∥∥BTPe(t)
∥∥ ∥∥Ex(t)

∥∥
∥∥BTPe(t)

∥∥ ∥∥Ex(t)
∥∥+ σ(t)

σ(t) (2.15)

Notice the fact that for ∀α, β > 0

0 ≤ αβ

α + β
≤ α (2.16)

Then we can further obtain that for any t > t0

d
dt
V(e, t) ≤ − e(t)Ωe(t) + σ(t) (2.17)

where Ω ∈ Rn×n is the symmetric positive definite matrix given by

Ω = Qe + PBR−1
e BTP (2.18)

Besides, letting ζ
�
= λmin (Ω), we have

d
dt
V(e, t) ≤ − ζ

∥∥e(t)
∥∥2

+ σ(t) (2.19)

On the other hand, from the definition of the quadratic function V(e, t), there always exist two
positive constants ξ− and ξ+ such that for any t ≥ t0,

ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) ≤ ξ+
(∥∥e(t)

∥∥) (2.20)

where ξ−
(∥∥e(t)

∥∥) and ξ+
(∥∥e(t)

∥∥) are given by

ξ−
(∥∥e(t)

∥∥) �
= ξ−

∥∥e(t)
∥∥2

ξ+
(∥∥e(t)

∥∥) �
= ξ+

∥∥e(t)
∥∥2

(2.21)

From the above, we want to show that the solution e(t) is uniformly bounded, and that the
error signal e(t) converges asymptotically to zero.
By continuity of the error system (2.6), it is obvious that any solution e(t; t0, e(t0)) of the error
system is continuous. Namely, e(t) is also continuous, because the state x(t) for the nominal
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system is continuous. In addition, it follows from (2.19) and (2.20), that for any t ≥ t0, we
have

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) = V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ (2.22)

V (e, t) ≤ ξ+
(∥∥e(t0)

∥∥)−
∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ +
∫ t

t0

σ(τ)dτ (2.23)

In (2.23), ξ∗
(∥∥e(t)

∥∥) is defined as

ξ∗
(∥∥e(t)

∥∥) �
= ζ

∥∥e(t)
∥∥2 (2.24)

Therefore, from (2.22) and (2.23) we can obtain the following two results. Firstly, taking the
limit as t approaches infinity on both sides of inequality (2.23), we have the following relation.

0 ≤ ξ+
(∥∥e(t0)

∥∥)− lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (2.25)

Thus one can see from (2.10) and (2.25) that

lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ ≤ ξ+
(∥∥e(t0)

∥∥)+ σ∗ (2.26)

On the other hand, from (2.22) and (2.23), we obtain

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ ξ+
(∥∥e(t0)

∥∥)+
∫ t

t0

σ(τ)dτ (2.27)

Note that for any t ≥ t0,

sup
t∈[t0,∞)

∫ t

t0

σ(τ)dτ ≤ σ∗ (2.28)

It follows from (2.27) and (2.28) that

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ ξ+
(∥∥e(t0)

∥∥)+ σ∗ (2.29)

The relation (2.29) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore that e(t) is uniformly
continuous and one can see from the definition that the function ξ∗

(∥∥e(t)
∥∥) also uniformly

continuous. Applying the Lemma 2 ( Barbalat’s lemma ) to (2.26) yields

lim
t→∞

ξ∗
(∥∥e(t)

∥∥) = 0 (2.30)

Besides, since ξ∗
(∥∥e(t)

∥∥) is a positive definite scalar function, it is obvious that the following
equation holds.

lim
t→∞

∥∥e(t)
∥∥ = 0 (2.31)

Namely, asymptotical stability of the uncertain error system (2.6) is ensured. Therefore the
uncertain system (2.1) is also asymptotically stable, because the nominal system (2.2) is stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 1 is completed.
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Namely, asymptotical stability of the uncertain error system (2.6) is ensured. Therefore the
uncertain system (2.1) is also asymptotically stable, because the nominal system (2.2) is stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 1 is completed.
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Remark 1. Though, the variable gain controllers in the existing results(19; 21) can also be
good transient performance, these controllers may cause serious chattering, because the adjustment
parameters in the existing results(19; 21) are adjusted on the boundary surface of the allowable
parameter space (see. (26) for details). On the other hand, since the variable gain matrix (2.9) of
the proposed robust controller is continuous, chattering phenomenon can be avoided.

2.3 Illustrative examples
In order to demonstrate the efficiency of the proposed control scheme, we have run a simple
example.
Consider the following linear system with unknown parameter, i.e. the unknown parameter
Δ(t) ∈ R1.

d
dt

x(t) =
(

1 1
0 −2

)
x(t) +

(
0
1

)
Δ(t)

(
5 4

)
+

(
0
1

)
u(t) (2.32)

Now we select the weighting matrices Q and R such as Q = 1.0I2 and R = 4.0 for the
standard linear quadratic control problem for the nominal system, respectively. Then solving
the algebraic Riccati equation, we obtain the following optimal gain matrix

K =
( −6.20233 −2.08101

)
(2.33)

In addition, setting the design parameters Qe and Re such as Qe = 9.0I2 and Re = 1.0,
respectively, we have

F =
(−2.37665 × 102 −9.83494 × 101) (2.34)

Besides for the variable gain matrix L(x, e, t) ∈ Rm×n, we select the following parameter.

σ(t) = 50 exp (−0.75t) (2.35)

In this example, we consider the following two cases for the unknown parameter Δ(t).

• Case 1) :

Δ(t) = sin(πt)

• Case 2) :

Δ(t) = −1.0 : 0 ≤ t ≤ 1.0
Δ(t) = 1.0 : 1.0 < t ≤ 2.0
Δ(t) = −1.0 : t > 2.0

Besides, for numerical simulations, the initial values of the uncertain system (2.32) and the
nominal system are selected as x(0) = x(0) =

(
1.0 −1.0

)T.

J 1(e, t) J 2(e, t)

Case 1) 1.05685 × 10−4 1.41469 × 10−3

Case 2) 2.11708 × 10−4 2.79415 × 10−3

Table 1. The values of the performance indecies
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The results of the simulation of this example are depicted in Figures 1–3 and Table 1. In these
Figures, “Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and
x2(t) and the control input u(t) generated by the proposed controller, and “Desired” shows
the desired time-response and the desired control input generated by the nominal system.
Additionally J k(e, t) (k = 1, 2) in Table 1 represent the following performance indecies.

J 1(e, t)
�
=

∫ ∞

0
eT(t)e(t)dt

J 2(e, t)
�
= sup

t

∥∥e(t)
∥∥

1

(2.36)

From Figures 1–3, we find that the proposed variable gain robust state feedback controller
stabilizes the uncertain system (2.32) in spite of uncertainties. Besides one can also see from
Figures 1 and 2 and Table 1 that the proposed variable gain robust state feedback controller
achieves the good transient performance and can avoid serious chattering.
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The results of the simulation of this example are depicted in Figures 1–3 and Table 1. In these
Figures, “Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and
x2(t) and the control input u(t) generated by the proposed controller, and “Desired” shows
the desired time-response and the desired control input generated by the nominal system.
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From Figures 1–3, we find that the proposed variable gain robust state feedback controller
stabilizes the uncertain system (2.32) in spite of uncertainties. Besides one can also see from
Figures 1 and 2 and Table 1 that the proposed variable gain robust state feedback controller
achieves the good transient performance and can avoid serious chattering.
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2.4 Summary
In this section, a design method of a variable gain robust state feedback controller for a class of
uncertain linear systems has been presented and, by numerical simulations, the effectiveness
of the proposed controller has been presented.
Since the proposed state feedback controller can easily be obtained by solving the standard
algebraic Riccati equation, the proposed design approach is very simple. The proposed
variable gain robust state feedback controller can be extended to robust servo systems and
robust tracking control systems.

3. Variable gain robust output feedback controllers

In section 2, it is assumed that all the state are measurable and the procedure specifies the
current control input as a function of the current value of the state vector. However it is
physically and economically impractical to measure all of the state in many practical control
systems. Therefore, it is necessary that the control input from the measurable signal is
constructed to achieve satisfactory control performance. In this section, for a class of uncertain
linear systems, we extend the result derived in section 2 to a variable gain robust output
feedback controller.

3.1 Problem formulation
Consider the uncertain linear system described by the following state equation.

d
dt

x(t) = (A + BΔ(t)E) x(t) + Bu(t)

y(t) = Cx(t) (3.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rl are the vectors of the state, the control input and
the measured output, respectively. In (3.1), the matrices A, B and C are the nominal values of
system parameters and the matrix Δ(t) ∈ Rp×q denotes unknown time-varying parameters
which satisfy

∥∥Δ(t)
∥∥ ≤ 1. In this paper, we introduce the following assumption for the system

parameters(25).

BT = T C (3.2)
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where T ∈ Rm×l is a known constant matrix.
The nominal system, ignoring unknown parameters in (3.1), is given by

d
dt

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (3.3)

In this paper, the nominal system (3.3) is supposed to be stabilizable via static output feedback
control. Namely, there exists an output feedback control u(t) = Ky(t)

�
i.e. a fixed gain matrix

K ∈ Rm×l �. In other words, since the nominal system is stabilizable via static output feedback

control, the matrix AK
�
= A+ BKC is asymptotically stable. Note that the feedback gain matrix

K ∈ Rm×l is designed by using the existing results (e.g. (2; 16)).

Now on the basis of the work of (25), we introduce the error vectors e(t)
�
= x(t) − x(t) and

ey(t)
�
= y(t)− y(t). Beside, using the fixed gain matrix K ∈ Rm×l , we consider the following

control input for the uncertain linear system (3.1).

u(t)
�
= Ky(t) + ψ(ey,L, t) (3.4)

where ψ(ey,L, t) ∈ Rm is a compensation input (e.g. (25)) and has the following form.

ψ(ey,L, t)
�
=L(ey, t)ey(t) (3.5)

In (3.5), L(ey, t) ∈ Rm×l is a variable gain matrix. Then one can see from (3.1) and (3.3) – (3.5)
that the following uncertain error system can be derived.

d
dt

e(t) = AKe(t) + BΔ(t)Ex(t) + BL(ey, t)ey(t)

ey(t) = Ce(t) (3.6)

From the above, our control objective is to design the variable gain robust output feedback
controller which stabilizes the uncertain error system (3.6). That is to derive the variable gain
matrix L(ey, t) ∈ Rm×l which stabilizes the uncertain error system (3.6).

3.2 Synthesis of variable gain robust output feedback controllers
In this subsection, an LMI-based design method of the variable gain robust output feedback
controller for the uncertain linear system (3.1) is presented. The following theorem gives an
LMI-based design method of a variable gain robust output feedback controller.

Theorem 2. Consider the uncertain error system (3.6) with the variable gain matrix L(ey, t) ∈ Rm×l .
Suppose there exist the positive definite matrices S ∈ Rn×n, Θ ∈ Rl×l and Ψ ∈ Rl×l and the positive
constants γ1 and γ2 satisfying the following LMIs.

SAK + AT
KS + γ1ETE ≤ −Q

−CTΘC + SCTT TT C + CT TT CS ≤ 0⎛
⎜⎝

−CTΨC SCTT SCTT
� −γ1 Im 0

� � −γ2 Im

⎞
⎟⎠ ≤ 0

(3.7)
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where T ∈ Rm×l is a known constant matrix.
The nominal system, ignoring unknown parameters in (3.1), is given by

d
dt

x(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (3.3)

In this paper, the nominal system (3.3) is supposed to be stabilizable via static output feedback
control. Namely, there exists an output feedback control u(t) = Ky(t)

�
i.e. a fixed gain matrix

K ∈ Rm×l �. In other words, since the nominal system is stabilizable via static output feedback

control, the matrix AK
�
= A+ BKC is asymptotically stable. Note that the feedback gain matrix

K ∈ Rm×l is designed by using the existing results (e.g. (2; 16)).

Now on the basis of the work of (25), we introduce the error vectors e(t)
�
= x(t) − x(t) and

ey(t)
�
= y(t)− y(t). Beside, using the fixed gain matrix K ∈ Rm×l , we consider the following

control input for the uncertain linear system (3.1).

u(t)
�
= Ky(t) + ψ(ey,L, t) (3.4)

where ψ(ey,L, t) ∈ Rm is a compensation input (e.g. (25)) and has the following form.

ψ(ey,L, t)
�
=L(ey, t)ey(t) (3.5)

In (3.5), L(ey, t) ∈ Rm×l is a variable gain matrix. Then one can see from (3.1) and (3.3) – (3.5)
that the following uncertain error system can be derived.

d
dt

e(t) = AKe(t) + BΔ(t)Ex(t) + BL(ey, t)ey(t)

ey(t) = Ce(t) (3.6)

From the above, our control objective is to design the variable gain robust output feedback
controller which stabilizes the uncertain error system (3.6). That is to derive the variable gain
matrix L(ey, t) ∈ Rm×l which stabilizes the uncertain error system (3.6).

3.2 Synthesis of variable gain robust output feedback controllers
In this subsection, an LMI-based design method of the variable gain robust output feedback
controller for the uncertain linear system (3.1) is presented. The following theorem gives an
LMI-based design method of a variable gain robust output feedback controller.

Theorem 2. Consider the uncertain error system (3.6) with the variable gain matrix L(ey, t) ∈ Rm×l .
Suppose there exist the positive definite matrices S ∈ Rn×n, Θ ∈ Rl×l and Ψ ∈ Rl×l and the positive
constants γ1 and γ2 satisfying the following LMIs.

SAK + AT
KS + γ1ETE ≤ −Q

−CTΘC + SCTT TT C + CT TT CS ≤ 0⎛
⎜⎝

−CTΨC SCTT SCTT
� −γ1 Im 0

� � −γ2 Im

⎞
⎟⎠ ≤ 0

(3.7)
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Using the positive definite matrices Θ ∈ Rl×l and Ψ ∈ Rl×l, we consider the following variable gain
matrix.

L(ey, t) = −
(∥∥Ψ1/2Ce(t)

∥∥2
+ γ2

∥∥Ex(t)
∥∥2

)2

∥∥Θ1/2Ce(t)
∥∥2

(∥∥Ψ1/2Ce(t)
∥∥2

+ γ2
∥∥Ex(t)

∥∥2
+ σ(t)

)T (3.8)

In (3.7), Q ∈ Rn×n is a symmetric positive definite matrix selected by designers and σ(t) ∈ R1 in
(3.8) is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗ < ∞ (3.9)

where t0 and σ∗ are an initial time and any positive constant, respectively.
Then asymptotical stability of the uncertain error system (3.6) is guaranteed.

Proof. Firstly, we introduce the quadratic function V(e, t)
�
= eT(t)Se(t). The time derivative of

the quadratic function V(e, t) can be written as

d
dt
V(e, t) = eT(t)

(
SAK + AT

KS
)

e(t) + 2eT(t)SBΔ(t)Ex(t) + 2eT(t)SBL(ey, t)ey(t) (3.10)

Now, using Lemma 1 and the assumption (3.2) we can obtain

d
dt
V(e, t) ≤ eT(t)

(
SAK + AT

KS
)

e(t) + 2eT(t)SBΔ(t)E (e(t) + x(t)) + 2eT(t)SBL(ey, t)ey(t)

≤ eT(t)
(
SAK + AT

KS + γ1ETE
)

e(t) + 2eT(t)SCTT TL(ey, t)ey(t)

+
1

γ1
eT(t)SCTT TT CSe(t) +

1
γ2

eT(t)SCTT TT CSe(t) + γ2xT(t)ETEx(t) (3.11)

Here we have used the well-known following relation.

2aTb ≤ μaTa +
1
μ

bTb (3.12)

where a and b are any vectors with appropriate dimensions and μ is any positive constant.
Besides, we have the following inequality for the time derivative of the quadratic function
V(e, t).

d
dt
V(e, t) ≤ eT(t)

(
SAK + AT

KS + γ1ETE
)

e(t) + eT(t)CTΨCe(t) + γ2xT(t)ETEx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.13)

because by using Lemma 2 (Schur complement) the third LMI of (3.7) can be written as

− CTΨC +
1

γ1
SCTT TT CS +

1
γ2

SCTT TT CS ≤ 0 (3.14)
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Furthermore using the variable gain matrix (3.8), the LMIs (3.7) and the well-known inequality
for any positive constants α and β

0 ≤ αβ

α + β
≤ α ∀α, β > 0 (3.15)

and some trivial manipulations give the following relation.

d
dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t) (3.16)

In addition, by letting ζ
�
=min {λmin {Q}}, we obtain the following inequality.

d
dt
V(e, t) ≤ −ζ

∥∥e(t)
∥∥2

+ σ(t) (3.17)

On the other hand, one can see from the definition of the quadratic function V(e, t) that there
always exist two positive constants δmin and δmax such that for any t ≥ t0,

ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) ≤ ξ+
(∥∥e(t)

∥∥) (3.18)

where ξ−
(∥∥e(t)

∥∥) and ξ+
(∥∥e(t)

∥∥) are given by

ξ−
(∥∥e(t)

∥∥) �
= δmin

∥∥e(t)
∥∥2

ξ+
(∥∥e(t)

∥∥) �
= δmax

∥∥e(t)
∥∥2

(3.19)

It is obvious that any solution e(t; t0, e(t0)) of the uncertain error system (3.6) is continuous.
In addition, it follows from (3.17) and (3.18), that for any t ≥ t0, we have

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) = V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ ≤ ξ+

(∥∥e(t0)
∥∥)−

∫ t

t0

ζ
(∥∥e(τ)

∥∥) dτ +
∫ t

t0

σ(τ)dτ
(3.20)

In (3.20), ξ∗
(∥∥e(t)

∥∥) is defined as

ξ∗
(∥∥e(t)

∥∥) �
= ζ

∥∥e(t)
∥∥2 (3.21)

Therefore, from (3.20) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (3.20), we have

0 ≤ ξ+
(∥∥e(t0)

∥∥)− lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (3.22)

Thus one can see from (3.9) and (3.22) that

lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ ≤ ξ+
(∥∥e(t0)

∥∥)+ σ∗ (3.23)

On the other hand, from (3.20), we obtain

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ ξ+
(∥∥e(t0)

∥∥)+
∫ t

t0

σ(τ)dτ (3.24)
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Using the positive definite matrices Θ ∈ Rl×l and Ψ ∈ Rl×l, we consider the following variable gain
matrix.

L(ey, t) = −
(∥∥Ψ1/2Ce(t)

∥∥2
+ γ2

∥∥Ex(t)
∥∥2

)2

∥∥Θ1/2Ce(t)
∥∥2

(∥∥Ψ1/2Ce(t)
∥∥2

+ γ2
∥∥Ex(t)

∥∥2
+ σ(t)

)T (3.8)

In (3.7), Q ∈ Rn×n is a symmetric positive definite matrix selected by designers and σ(t) ∈ R1 in
(3.8) is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗ < ∞ (3.9)

where t0 and σ∗ are an initial time and any positive constant, respectively.
Then asymptotical stability of the uncertain error system (3.6) is guaranteed.

Proof. Firstly, we introduce the quadratic function V(e, t)
�
= eT(t)Se(t). The time derivative of

the quadratic function V(e, t) can be written as

d
dt
V(e, t) = eT(t)

(
SAK + AT

KS
)

e(t) + 2eT(t)SBΔ(t)Ex(t) + 2eT(t)SBL(ey, t)ey(t) (3.10)

Now, using Lemma 1 and the assumption (3.2) we can obtain

d
dt
V(e, t) ≤ eT(t)

(
SAK + AT

KS
)

e(t) + 2eT(t)SBΔ(t)E (e(t) + x(t)) + 2eT(t)SBL(ey, t)ey(t)

≤ eT(t)
(
SAK + AT

KS + γ1ETE
)

e(t) + 2eT(t)SCTT TL(ey, t)ey(t)

+
1

γ1
eT(t)SCTT TT CSe(t) +

1
γ2

eT(t)SCTT TT CSe(t) + γ2xT(t)ETEx(t) (3.11)

Here we have used the well-known following relation.

2aTb ≤ μaTa +
1
μ

bTb (3.12)

where a and b are any vectors with appropriate dimensions and μ is any positive constant.
Besides, we have the following inequality for the time derivative of the quadratic function
V(e, t).

d
dt
V(e, t) ≤ eT(t)

(
SAK + AT

KS + γ1ETE
)

e(t) + eT(t)CTΨCe(t) + γ2xT(t)ETEx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.13)

because by using Lemma 2 (Schur complement) the third LMI of (3.7) can be written as

− CTΨC +
1

γ1
SCTT TT CS +

1
γ2

SCTT TT CS ≤ 0 (3.14)
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Furthermore using the variable gain matrix (3.8), the LMIs (3.7) and the well-known inequality
for any positive constants α and β

0 ≤ αβ

α + β
≤ α ∀α, β > 0 (3.15)

and some trivial manipulations give the following relation.

d
dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t) (3.16)

In addition, by letting ζ
�
=min {λmin {Q}}, we obtain the following inequality.

d
dt
V(e, t) ≤ −ζ

∥∥e(t)
∥∥2

+ σ(t) (3.17)

On the other hand, one can see from the definition of the quadratic function V(e, t) that there
always exist two positive constants δmin and δmax such that for any t ≥ t0,

ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) ≤ ξ+
(∥∥e(t)

∥∥) (3.18)

where ξ−
(∥∥e(t)

∥∥) and ξ+
(∥∥e(t)

∥∥) are given by

ξ−
(∥∥e(t)

∥∥) �
= δmin

∥∥e(t)
∥∥2

ξ+
(∥∥e(t)

∥∥) �
= δmax

∥∥e(t)
∥∥2

(3.19)

It is obvious that any solution e(t; t0, e(t0)) of the uncertain error system (3.6) is continuous.
In addition, it follows from (3.17) and (3.18), that for any t ≥ t0, we have

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ V (e, t) = V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ ≤ ξ+

(∥∥e(t0)
∥∥)−

∫ t

t0

ζ
(∥∥e(τ)

∥∥) dτ +
∫ t

t0

σ(τ)dτ
(3.20)

In (3.20), ξ∗
(∥∥e(t)

∥∥) is defined as

ξ∗
(∥∥e(t)

∥∥) �
= ζ

∥∥e(t)
∥∥2 (3.21)

Therefore, from (3.20) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (3.20), we have

0 ≤ ξ+
(∥∥e(t0)

∥∥)− lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ + lim
t→∞

∫ t

t0

σ(τ)dτ (3.22)

Thus one can see from (3.9) and (3.22) that

lim
t→∞

∫ t

t0

ξ∗
(∥∥e(τ)

∥∥) dτ ≤ ξ+
(∥∥e(t0)

∥∥)+ σ∗ (3.23)

On the other hand, from (3.20), we obtain

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ ξ+
(∥∥e(t0)

∥∥)+
∫ t

t0

σ(τ)dτ (3.24)
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It follows from (3.9) and (3.24) that

0 ≤ ξ−
(∥∥e(t)

∥∥) ≤ ξ+
(∥∥e(t0)

∥∥)+ σ∗ (3.25)

The relation (3.25) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore, one can see from the
definition that ξ∗

(∥∥e(t)
∥∥) is also uniformly continuous. Thus applying Lemma 3 (Barbalat’s

lemma) to (3.23) yields

lim
t→∞

ξ∗
(∥∥e(t)

∥∥) = lim
t→∞

ζ
∥∥e(t)

∥∥2
= 0 (3.26)

Namely, asymptotical stability of the uncertain error system (3.6) is ensured. Thus the
uncertain linear system (3.1) is also stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 2 is completed.

Theorem 2 provides a sufficient condition for the existence of a variable gain robust output
feedback controller for the uncertain linear system (3.1). Next, we consider a special case. In
this case, we consider the uncertain linear system described by

d
dt

x(t) = (A + BΔ(t)C) x(t) + Bu(t)

y(t) = Cx(t)
(3.27)

Thus one can see from (3.3) – (3.5) and (3.27) that we have the following uncertain error
system.

d
dt

e(t) = AKe(t) + BΔ(t)Cx(t) + BL(ey, t)ey(t)

ey(t) = Ce(t)
(3.28)

Next theorem gives an LMI-based design method of a variable gain robust output feedback
controller for this case.

Theorem 3. Consider the uncertain error system (3.28) with the variable gain matrix L(ey, t) ∈
Rm×l .
Suppose there exist the symmetric positive definite matrices X > 0,Y > 0 and matrices S ∈
Rn×n, Θ ∈ Rl×l and Ψ ∈ Rl×l and the positive constant γ satisfying the LMIs.

SAK + AT
KS ≤ −Q (Q = QT > 0

)

−CTΘC + SCTT TT C + CTT TT CS ≤ 0(
−CTΨC SCTT

� −γIm

)
≤ 0

(3.29)

Using positive definite matrices Ψ ∈ Rl×l and Θ ∈ Rl×l and the positive scalars γ satisfying the
LMIs (3.29), we consider the variable gain matrix

L(ey, t) = −
(∥∥Ψ1/2ey(t)

∥∥2
+ γ

∥∥y(t)
∥∥2

)2

∥∥Θ1/2Ce(t)
∥∥2

(∥∥Ψ1/2ey(t)
∥∥2

+ γ
∥∥y(t)

∥∥2
+ σ(t)

)T (3.30)

where σ(t) ∈ R1 is any positive uniform continuous and bounded function satisfying (3.9).
Then asymptotical stability of the uncertain error system (3.28) is guaranteed.
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Proof. By using the symmetric positive definite matrix S ∈ Rn×n, we consider the quadratic

function V(e, t)
�
= eT(t)Se(t). Then using the assumption (3.2) we have

d
dt
V(e, t) =eT(t)

�
SAK + AT

KS
�

e(t) + 2eT(t)SCTT TΔ(t)Cx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.31)

Additionally, applying the inequality (3.12) to the second term on the right hand side of (3.31)
we obtain

d
dt
V(e, t) ≤eT(t)

�
SAK + AT

KS
�

e(t) +
1
γ

eT(t)SCTT TT CSe(t) + γyT(t)y(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.32)

Now by using the LMIs (3.29), the variable gain matrix (3.30) and the inequality (3.15), we
have

d
dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t)

≤ −ζ
��e(t)

��2
+ σ(t) (3.33)

where ζ is a positive scalar given by ζ = λmax {Q}.
Therefore, one can see from the definition of the quadratic function V(e, t) and Proof 1 that
the rest of proof of Theorem 2 is straightforward.

3.3 Illustrative examples
Consider the uncertain linear system described by

d
dt

x(t) =

⎛
⎝

−2.0 0.0 −6.0
0.0 1.0 1.0
3.0 0.0 −7.0

⎞
⎠ x(t) +

⎛
⎝

2.0
1.0
0.0

⎞
⎠ Δ(t)

�
1.0 0.0 1.0
0.0 3.0 1.0

�
x(t) +

⎛
⎝

2.0
1.0
0.0

⎞
⎠ u(t)

y(t) =
�

1.0 0.0 0.0
0.0 1.0 0.0

�
x(t)

(3.34)

Namely, the matrix T ∈ R1×2in the assumption (3.2) can be expressed as T =
�

2.0 1.0
�
.

Firstly, we design an output feedback gain matrix K ∈ R1×2 for the nominal system. By
selecting the design parameter α such as α = 4.5 and applying the LMI-based design
algorithm (see. (2) and Appendix in (25)), we obtain the following output feedback gain
matrix K ∈ R1×2.

K =
�

3.17745 × 10−1 −1.20809 × 101 � (3.35)

Finally, we use Theorem 1 to design the proposed variable gain robust output feedback
controller, i.e. we solve the LMIs (3.7). By selecting the symmetric positive definite matrix
Q ∈ R3×3 such as Q = 0.1 × I3, we have

S =

⎛
⎝

7.18316 1.10208 3.02244 × 10−1

� 5.54796 −6.10321 × 10−2

� � 4.74128

⎞
⎠

γ1 = 2.01669 × 103, γ2 = 6.34316 × 102,

Θ =

�
3.14338 × 101 1.54786 × 101

� 8.20347

�
, Ψ =

�
6.73050 6.45459

� 6.57618

�
(3.36)
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It follows from (3.9) and (3.24) that
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Namely, asymptotical stability of the uncertain error system (3.6) is ensured. Thus the
uncertain linear system (3.1) is also stable.
It follows that the result of the theorem is true. Thus the proof of Theorem 2 is completed.

Theorem 2 provides a sufficient condition for the existence of a variable gain robust output
feedback controller for the uncertain linear system (3.1). Next, we consider a special case. In
this case, we consider the uncertain linear system described by

d
dt

x(t) = (A + BΔ(t)C) x(t) + Bu(t)

y(t) = Cx(t)
(3.27)

Thus one can see from (3.3) – (3.5) and (3.27) that we have the following uncertain error
system.

d
dt

e(t) = AKe(t) + BΔ(t)Cx(t) + BL(ey, t)ey(t)

ey(t) = Ce(t)
(3.28)

Next theorem gives an LMI-based design method of a variable gain robust output feedback
controller for this case.

Theorem 3. Consider the uncertain error system (3.28) with the variable gain matrix L(ey, t) ∈
Rm×l .
Suppose there exist the symmetric positive definite matrices X > 0,Y > 0 and matrices S ∈
Rn×n, Θ ∈ Rl×l and Ψ ∈ Rl×l and the positive constant γ satisfying the LMIs.

SAK + AT
KS ≤ −Q (Q = QT > 0

)

−CTΘC + SCTT TT C + CTT TT CS ≤ 0(
−CTΨC SCTT

� −γIm

)
≤ 0

(3.29)

Using positive definite matrices Ψ ∈ Rl×l and Θ ∈ Rl×l and the positive scalars γ satisfying the
LMIs (3.29), we consider the variable gain matrix

L(ey, t) = −
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∥∥2
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∥∥y(t)

∥∥2
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where σ(t) ∈ R1 is any positive uniform continuous and bounded function satisfying (3.9).
Then asymptotical stability of the uncertain error system (3.28) is guaranteed.
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Proof. By using the symmetric positive definite matrix S ∈ Rn×n, we consider the quadratic

function V(e, t)
�
= eT(t)Se(t). Then using the assumption (3.2) we have

d
dt
V(e, t) =eT(t)
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SAK + AT

KS
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e(t) + 2eT(t)SCTT TΔ(t)Cx(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.31)

Additionally, applying the inequality (3.12) to the second term on the right hand side of (3.31)
we obtain

d
dt
V(e, t) ≤eT(t)
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�

e(t) +
1
γ

eT(t)SCTT TT CSe(t) + γyT(t)y(t)

+ 2eT(t)SCTT TL(ey, t)ey(t) (3.32)

Now by using the LMIs (3.29), the variable gain matrix (3.30) and the inequality (3.15), we
have

d
dt
V(e, t) ≤ −eT(t)Qe(t) + σ(t)

≤ −ζ
��e(t)

��2
+ σ(t) (3.33)

where ζ is a positive scalar given by ζ = λmax {Q}.
Therefore, one can see from the definition of the quadratic function V(e, t) and Proof 1 that
the rest of proof of Theorem 2 is straightforward.

3.3 Illustrative examples
Consider the uncertain linear system described by

d
dt

x(t) =

⎛
⎝

−2.0 0.0 −6.0
0.0 1.0 1.0
3.0 0.0 −7.0

⎞
⎠ x(t) +

⎛
⎝

2.0
1.0
0.0

⎞
⎠ Δ(t)

�
1.0 0.0 1.0
0.0 3.0 1.0

�
x(t) +

⎛
⎝

2.0
1.0
0.0

⎞
⎠ u(t)

y(t) =
�

1.0 0.0 0.0
0.0 1.0 0.0

�
x(t)

(3.34)

Namely, the matrix T ∈ R1×2in the assumption (3.2) can be expressed as T =
�

2.0 1.0
�
.

Firstly, we design an output feedback gain matrix K ∈ R1×2 for the nominal system. By
selecting the design parameter α such as α = 4.5 and applying the LMI-based design
algorithm (see. (2) and Appendix in (25)), we obtain the following output feedback gain
matrix K ∈ R1×2.

K =
�

3.17745 × 10−1 −1.20809 × 101 � (3.35)

Finally, we use Theorem 1 to design the proposed variable gain robust output feedback
controller, i.e. we solve the LMIs (3.7). By selecting the symmetric positive definite matrix
Q ∈ R3×3 such as Q = 0.1 × I3, we have

S =

⎛
⎝

7.18316 1.10208 3.02244 × 10−1

� 5.54796 −6.10321 × 10−2

� � 4.74128

⎞
⎠

γ1 = 2.01669 × 103, γ2 = 6.34316 × 102,

Θ =

�
3.14338 × 101 1.54786 × 101

� 8.20347

�
, Ψ =

�
6.73050 6.45459

� 6.57618

�
(3.36)
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In this example, we consider the following two cases for the unknown parameter Δ(t) ∈ R1×2.

• Case 1) : Δ(t) =
(

7.30192 −5.00436
)× 10−1

• Case 2) : Δ(t) =
(

sin(5πt) cos(5πt)
)

Furthermore, initial values for the uncertain system (3.24) and the nominal system are selected
as x(0) =

(
1.5 2.0 −4.5

)T and x(0) =
(
2.0 2.0 −5.0

)T, respectively. Besides, we choose σ(t) ∈
R+ in (3.8) as σ(t) = 5.0 × 1012 × exp

(−1.0 × 10−4t
)
.

The results of the simulation of this example are depicted in Figures 4–7. In these figures,
“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t)
and the control input u(t) generated by the proposed variable gain robust output feedback
controller, and “Desired” shows the desired time-response and the desired control input
generated by the nominal system. From Figures 4–6, we find that the proposed variable gain
robust output feedback controller stabilize the uncertain linear system (3.34) in spite of plant
uncertainties and achieves good transient performance.
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3.4 Summary
In this section, we have proposed a variable gain robust output feedback controller for a
class of uncertain linear systems. Besides, by numerical simulations, the effectiveness of the
proposed controller has been presented.
The proposed controller design method is easy to design a robust output feedback controller.
Additionally, the proposed control scheme is adaptable when some assumptions are satisfied,
and in cases where only the output signal of the controlled system is available, the proposed
method can be used widely. In addition, the proposed controller is more effective for
systems with larger uncertainties. Namely, for the upper bound on the perturbation region
of the unknown parameter Δ(t) is larger than 1, the proposed variable gain output feedback
controller can easily be extended.

4. Variable gain robust controllers based on piecewise Lyapunov functions

The quadratic stability approach is popularly used for robust stability analysis of uncertain
linear systems. This approach, however, may lead to conservative results. Alternatively,
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and the control input u(t) generated by the proposed variable gain robust output feedback
controller, and “Desired” shows the desired time-response and the desired control input
generated by the nominal system. From Figures 4–6, we find that the proposed variable gain
robust output feedback controller stabilize the uncertain linear system (3.34) in spite of plant
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3.4 Summary
In this section, we have proposed a variable gain robust output feedback controller for a
class of uncertain linear systems. Besides, by numerical simulations, the effectiveness of the
proposed controller has been presented.
The proposed controller design method is easy to design a robust output feedback controller.
Additionally, the proposed control scheme is adaptable when some assumptions are satisfied,
and in cases where only the output signal of the controlled system is available, the proposed
method can be used widely. In addition, the proposed controller is more effective for
systems with larger uncertainties. Namely, for the upper bound on the perturbation region
of the unknown parameter Δ(t) is larger than 1, the proposed variable gain output feedback
controller can easily be extended.

4. Variable gain robust controllers based on piecewise Lyapunov functions

The quadratic stability approach is popularly used for robust stability analysis of uncertain
linear systems. This approach, however, may lead to conservative results. Alternatively,
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non-quadratic Lyapunov functions have been used to improve the estimate of robust stability
and to design robust stabilizing controllers(7; 30; 34). We have also proposed variable gain
controllers and adaptive gain controllers based on Piecewise Lyapunov functions (PLFs)
for a class of uncertain linear systems(23; 24). However, the resulting variable gain robust
controllers may occur the chattering phenomenon. In this section, we propose a variable
gain robust state feedback controller avoiding chattering phenomenon for a class of uncertain
linear systems via PLFs and show that sufficient conditions for the existence of the proposed
variable gain robust state feedback controller.

4.1 Problem formulation
Consider a class of linear systems with non-linear perturbations represented by the following
state equation (see Remark 2).

d
dt

x(t) = (A +DΔ(t)E) x(t) + Bu(t) (4.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state (assumed to be available for
feedback) and the control input, respectively. In (4.1), the matrices A and B denote the nominal
values of the system, and the matrix B has full column rank. The matrices D and E which have
appropriate dimensions represent the structure of uncertainties. The matrix Δ(t) ∈ Rp×q

represents unknown time-varying parameters and satisfies the relation
∥∥Δ(t)

∥∥ ≤ 1. Note
that the uncertain term DΔ(t)E consists of matched part and unmatched one. Additionally,
introducing the integer N ∈ Z+ defined as

N �
= arg min

Z∈Z+
{Z | (Zm − n) ≥ 0} (4.2)

we assume that there exist symmetric positive definite matrices Sk ∈ Rn×n (k = 1, · · · ,N )
which satisfies the following relation(23; 24).

N⋂

k=1

ΩSk
= {0} (4.3)

where ΩSk
represents a subspace defined as

ΩSk

�
=

{
x ∈ Rn | BTSkx = 0

}
(4.4)

The nominal system, ignoring the unknown parameter in (4.1), is given by

d
dt

x(t) = Ax(t) + Bu(t) (4.5)

where x(t) ∈ Rn and u(t) ∈ Rm are the vectors of the state and the control input, respectively.
First of all, we adopt the standard linear quadratic LQ control theory for the nominal system
(4.5) in order to generate the desirable transient response for the plant systematically, i.e. the
control input is given by u(t) = Kx(t). Note that some other design method so as to generate
the desired response for the controlled system can also be used (e.g. pole assignment). Thus
the feedback gain matrix K ∈ Rm×n is derived as K = −R−1BTP where P ∈ Rn×n is unique
solution of the algebraic Riccati equation

ATP + PA −PBR−1BTP +Q = 0 (4.6)
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In (4.6), the matrices Q ∈ Rn×n and R ∈ Rm×m are design parameters and Q is selected such
that the pair (A, C) is detectable, where C is any matrix satisfying Q = CCT , and then the

matrix AK
�
= A + BK is stable.

Now on the basis of the works of Oya et al.(21; 22), in order to obtain on-line information on

the parameter uncertainty, we introduce the error vector e(t)
�
= x(t)− x(t). Beside, using the

optimal gain matrix K ∈ Rm×n for the nominal system (4.5), we consider the following control
input.

u(t)
�
= Kx(t) + ψ (x, e,L, t) (4.7)

where ψ (x, e,L, t) ∈ Rm is a compensation input so as to reduce the effect of uncertainties
and nonlinear perturbations, and it is supposed to have the following structure.

ψ (x, e,L, t)
�
=F e(t) + L(x, e, t)e(t) (4.8)

where F ∈ Rm×n is a fixed gain matrix and L(x, e, t) ∈ Rm×n is an adjustable time-varying
matrix. From (4.1), (4.5), (4.7) and (4.8), we have

d
dt

e(t) = (A +DΔ(t)E) x(t) + B {Kx(t) + ψ (x, e,L, t)}
= AF e(t) +DΔ(t)Ex(t) + BL(x, e, t)e(t) (4.9)

In (4.9), AF ∈ Rn×n is a matrix given by AF
�
= AK + BF . Note that if asymptotical stability of

the uncertain error system (4.9) is ensured, then the uncertain system (4.1) is robustly stable,

because e(t)
�
= x(t)− x(t). Here, the fixed gain matrix F ∈ Rm×n is determined by using LQ

control theory for the nominal error system. Namely F = −RFBTXF and XF ∈ Rn×n is
unique solution of the algebraic Riccati equation

AT
KXF +XF AK −XF BR−1

F BTXF +QF = 0 (4.10)

where QF ∈ Rn×n and RF ∈ Rm×m are design parameters and symmetric positive definite
matrices. A decision method of the time-varying matrix L(x, e, t) ∈ Rm×n will be stated in the
next subsection.
From the above discussion, our control objective in this section is to design the robust
stabilizing controller for the uncertain error system (4.9). That is to design the variable gain
matrix L(x, e, t) ∈ Rm×n that the error system with uncertainties (4.9) is asymptotically stable.

4.2 Synthesis of variable gain robust state feedback controllers via PLFs
The following theorem gives sufficient conditions for the existence of the proposed controller.

Theorem 4. Consider the uncertain error system (4.9) and the control input (4.7) and (4.8).

Suppose that the matrices Sk
�
=P1 +P2 + · · ·+PN +PkBBTPk(k = 1, · · · ,N ) satisfy the relation

(4.3), where Pk ∈ Rn×n are symmetric positive definite matrices† satisfying the matrix inequalities
(
P1 + P2 + · · ·+ PN + PkBBTPk

)
AF + AT

F
(
P1 + P2 + · · ·+ PN + PkBBTPk

)

+
N−1

∑
j=1

γ
(k)

j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.11)

† i.e. Sk ∈ Rn×n are symmetric positive definite matrices.
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input.
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dt
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In (4.9), AF ∈ Rn×n is a matrix given by AF
�
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the uncertain error system (4.9) is ensured, then the uncertain system (4.1) is robustly stable,

because e(t)
�
= x(t)− x(t). Here, the fixed gain matrix F ∈ Rm×n is determined by using LQ
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AT
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matrices. A decision method of the time-varying matrix L(x, e, t) ∈ Rm×n will be stated in the
next subsection.
From the above discussion, our control objective in this section is to design the robust
stabilizing controller for the uncertain error system (4.9). That is to design the variable gain
matrix L(x, e, t) ∈ Rm×n that the error system with uncertainties (4.9) is asymptotically stable.

4.2 Synthesis of variable gain robust state feedback controllers via PLFs
The following theorem gives sufficient conditions for the existence of the proposed controller.

Theorem 4. Consider the uncertain error system (4.9) and the control input (4.7) and (4.8).

Suppose that the matrices Sk
�
=P1 +P2 + · · ·+PN +PkBBTPk(k = 1, · · · ,N ) satisfy the relation

(4.3), where Pk ∈ Rn×n are symmetric positive definite matrices† satisfying the matrix inequalities
(
P1 + P2 + · · ·+ PN + PkBBTPk

)
AF + AT

F
(
P1 + P2 + · · ·+ PN + PkBBTPk

)

+
N−1

∑
j=1

γ
(k)

j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.11)

† i.e. Sk ∈ Rn×n are symmetric positive definite matrices.
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In (4.11), γ
(k)
j (k = 1, · · · ,N , j = 1, · · · ,N − 1) are positive scalars and Qk ∈ Rn×n are symmetric

positive definite matrices.
By using the matrices Sk ∈ Rn×n, L(x, e, t) ∈ Rm×n is determined as

L(x, e, t) = −
(∥∥DTSke(t)

∥∥ ∥∥Ex(t)
∥∥)2

(
σ(t) +

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥) ∥∥BTSke(t)
∥∥2 BTSk

for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.12)

In (4.12), σ(t) ∈ R1 is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗ < ∞ (4.13)

where σ∗ is any positive constant and t0 denotes an initial time. Then the uncertain error system (4.9)
are bounded and

lim
t→∞

e(t; t0, e(t0)) = 0 (4.14)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured.

Proof. Using symmetric positive definite matrices Pk ∈ Rn×n (k = 1, · · · ,N ) which satisfy
(4.11), we introduce the following piecewise quadratic function.

V(e, t) = eT(t)Ske(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
and k = 1, · · · ,N

= max
k

{
eT(t)Ske(t)

}
(4.15)

Note that the piecewise quadratic function V(e, t) is continuous and its level set is closed.
The time derivative of the piecewise quadratic function V(e, t) can be written as

d
dt
V(e, t) = eT(t)

(
Sk AF + AT

FSk

)
e(t) + 2eT(t)SkDΔ(t)Ex(t) + 2eT(t)SkBL(x, e, t)e(t)

for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.16)

Now, using Lemma 1, we can obtain

d
dt
V(e, t) ≤ eT(t)

(
Sk AF + AT

FSk

)
e(t) + 2

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥

+ 2eT(t)SkBL(x, e, t)e(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.17)

Also, using the time-varying gain matrix (4.12) and the relation (4.17) and some trivial
manipulations give the following relation for the time derivative of the piecewise quadratic
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function V(e, t).

d
dt
V(e, t) ≤ eT(t)

(
Sk AF + AT

FS
)

e(t) + 2
∥∥DTSke(t)

∥∥ ∥∥Ex(t)
∥∥

+ 2eT(t)SkB

{
−

(∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥)2

(
σ(t) +

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥) ∥∥BTSke(t)
∥∥2 BTSk

}
e(t)

for k = arg max
k

{
eT(t)PkBBTPke(t)

}

≤ eT(t)
(
Sk AF + AT

FS
)

e(t) + σ(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}

(4.18)

Now we consider the following inequality.

eT(t)
(
Sk AF + AT

FSk

)
e(t) < 0 for k = arg max

k

{
eT(t)PkBBTPke(t)

}
(4.19)

By using Lemma 4 (S-procedure), the inequality (4.19) is satisfied if and only if there exist

Sk > 0 and γ
(k)
j ≥ 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N ) satisfying

S1 AF + AT
FS1 +

N−1

∑
j=1

γ
(1)
j P1BBTP1 − γ

(1)
1 P2BBTP2 − · · · − γ

(1)
N−1PN BBTPN < 0

...

SN AF + AT
FSN +

N−1

∑
j=1

γ
(N )
j PN BBTPN − γ

(N )
1 P2BBTP2 − · · · − γ

(N )
N−1PN−1BBTPN−1 < 0

(4.20)

Noting that since the condition (4.11) is a sufficient condition for the matrix inequalities (4.20),
if the inequalities (4.11) are satisfied, then the condition (4.20) is also satisfied. Therefore, we
have the following relation.

eT(t)
(
Sk AF + AT

FSk

)
e(t) < −eT(t)Qke(t) (4.21)

Besides, by letting ζk
�
=min

k
{λmin {Qk}}, we obtain

d
dt
V(e, t) ≤ −ζk

∥∥e(t)
∥∥2

+ σ(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.22)

On the other hand, from the definition of the piecewise quadratic function, there always exist
two positive constants δmin and δmax such that for any t ≥ t0,

η− (∥∥e(t)
∥∥) ≤ V (e, t) ≤ η+ (∥∥e(t)

∥∥) (4.23)

where η− (∥∥e(t)
∥∥) and η+

(∥∥e(t)
∥∥) are given by

η− (∥∥e(t)
∥∥) �

= δmin
∥∥e(t)

∥∥2

η+
(∥∥e(t)

∥∥) �
= δmax

∥∥e(t)
∥∥2

(4.24)
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In (4.11), γ
(k)
j (k = 1, · · · ,N , j = 1, · · · ,N − 1) are positive scalars and Qk ∈ Rn×n are symmetric

positive definite matrices.
By using the matrices Sk ∈ Rn×n, L(x, e, t) ∈ Rm×n is determined as

L(x, e, t) = −
(∥∥DTSke(t)

∥∥ ∥∥Ex(t)
∥∥)2

(
σ(t) +

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥) ∥∥BTSke(t)
∥∥2 BTSk

for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.12)

In (4.12), σ(t) ∈ R1 is any positive uniform continuous and bounded function which satisfies

∫ t

t0

σ(τ)dτ ≤ σ∗ < ∞ (4.13)

where σ∗ is any positive constant and t0 denotes an initial time. Then the uncertain error system (4.9)
are bounded and

lim
t→∞

e(t; t0, e(t0)) = 0 (4.14)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured.

Proof. Using symmetric positive definite matrices Pk ∈ Rn×n (k = 1, · · · ,N ) which satisfy
(4.11), we introduce the following piecewise quadratic function.

V(e, t) = eT(t)Ske(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
and k = 1, · · · ,N

= max
k

{
eT(t)Ske(t)

}
(4.15)

Note that the piecewise quadratic function V(e, t) is continuous and its level set is closed.
The time derivative of the piecewise quadratic function V(e, t) can be written as

d
dt
V(e, t) = eT(t)

(
Sk AF + AT

FSk

)
e(t) + 2eT(t)SkDΔ(t)Ex(t) + 2eT(t)SkBL(x, e, t)e(t)

for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.16)

Now, using Lemma 1, we can obtain

d
dt
V(e, t) ≤ eT(t)

(
Sk AF + AT

FSk

)
e(t) + 2

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥

+ 2eT(t)SkBL(x, e, t)e(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.17)

Also, using the time-varying gain matrix (4.12) and the relation (4.17) and some trivial
manipulations give the following relation for the time derivative of the piecewise quadratic
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function V(e, t).

d
dt
V(e, t) ≤ eT(t)

(
Sk AF + AT

FS
)

e(t) + 2
∥∥DTSke(t)

∥∥ ∥∥Ex(t)
∥∥

+ 2eT(t)SkB

{
−

(∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥)2

(
σ(t) +

∥∥DTSke(t)
∥∥ ∥∥Ex(t)

∥∥) ∥∥BTSke(t)
∥∥2 BTSk

}
e(t)

for k = arg max
k

{
eT(t)PkBBTPke(t)

}

≤ eT(t)
(
Sk AF + AT

FS
)

e(t) + σ(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}

(4.18)

Now we consider the following inequality.

eT(t)
(
Sk AF + AT

FSk

)
e(t) < 0 for k = arg max

k

{
eT(t)PkBBTPke(t)

}
(4.19)

By using Lemma 4 (S-procedure), the inequality (4.19) is satisfied if and only if there exist

Sk > 0 and γ
(k)
j ≥ 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N ) satisfying

S1 AF + AT
FS1 +

N−1

∑
j=1

γ
(1)
j P1BBTP1 − γ

(1)
1 P2BBTP2 − · · · − γ

(1)
N−1PN BBTPN < 0

...

SN AF + AT
FSN +

N−1

∑
j=1

γ
(N )
j PN BBTPN − γ

(N )
1 P2BBTP2 − · · · − γ

(N )
N−1PN−1BBTPN−1 < 0

(4.20)

Noting that since the condition (4.11) is a sufficient condition for the matrix inequalities (4.20),
if the inequalities (4.11) are satisfied, then the condition (4.20) is also satisfied. Therefore, we
have the following relation.

eT(t)
(
Sk AF + AT

FSk

)
e(t) < −eT(t)Qke(t) (4.21)

Besides, by letting ζk
�
=min

k
{λmin {Qk}}, we obtain

d
dt
V(e, t) ≤ −ζk

∥∥e(t)
∥∥2

+ σ(t) for k = arg max
k

{
eT(t)PkBBTPke(t)

}
(4.22)

On the other hand, from the definition of the piecewise quadratic function, there always exist
two positive constants δmin and δmax such that for any t ≥ t0,

η− (∥∥e(t)
∥∥) ≤ V (e, t) ≤ η+ (∥∥e(t)

∥∥) (4.23)

where η− (∥∥e(t)
∥∥) and η+

(∥∥e(t)
∥∥) are given by

η− (∥∥e(t)
∥∥) �

= δmin
∥∥e(t)

∥∥2

η+
(∥∥e(t)

∥∥) �
= δmax

∥∥e(t)
∥∥2

(4.24)
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It is obvious that any solution e(t; t0, e(t0)) of the error system is continuous. In addition, it
follows from (4.22) and (4.23), that for any t ≥ t0, the following relation holds.

0 ≤ η− (∥∥e(t)
∥∥) ≤ V (e, t) = V (e, t0) +

∫ t

t0

d
dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ ≤ η+ (∥∥e(t0)

∥∥)−
∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ +

∫ t

t0

σ(τ)dτ
(4.25)

In (4.25), η∗ (∥∥e(t)
∥∥) is defined as

η∗ (∥∥e(t)
∥∥) �

= ζk
∥∥e(t)

∥∥2 (4.26)

Therefore, from (4.25) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (4.25), we have

0 ≤ η+ (∥∥e(t0)
∥∥)− lim

t→∞

∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ + lim

t→∞

∫ t

t0

σ(τ)dτ (4.27)

Thus one can see from (4.13) and (4.27) that

lim
t→∞

∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ ≤ η+ (∥∥e(t0)

∥∥)+ σ∗ (4.28)

On the other hand, from (4.25), we obtain

0 ≤ η− (∥∥e(t)
∥∥) ≤ η+ (∥∥e(t0)

∥∥)+
∫ t

t0

σ(τ)dτ (4.29)

It follows from (4.13) and (4.29) that

0 ≤ η− (∥∥e(t)
∥∥) ≤ η+ (∥∥e(t0)

∥∥)+ σ∗ (4.30)

The relation (4.30) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore, one can see from the
definition that η∗ (∥∥e(t)

∥∥) is also uniformly continuous. Applying the Lemma 3 ( Barbalat’s
lemma ) to (4.28) yields

lim
t→∞

η∗ (∥∥e(t)
∥∥) = lim

t→∞
ζk

∥∥e(t)
∥∥ = 0 (4.31)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured. Thus the
uncertain linear system (4.1) is also stable.
Thus the proof of Theorem 4 is completed.

Remark 2. In this section, we consider the uncertain dynamical system (4.1) which has uncertainties
in the state matrix only. The proposed robust controller can also be applied to the case that the
uncertainties are included in both the system matrix and the input one. By introducing additional
actuator dynamics and constituting an augmented system, uncertainties in the input matrix are
embedded in the system matrix of the augmented system(36). Therefore the same design procedure
can be applied.
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Remark 3. In order to get the proposed controller, symmetric positive definite matrices Sk ∈
Rn×n (k = 1, · · · ,N ) satisfying the assumption (4.3) are required. The condition (4.3) is reduced
to the following rank condition.

rank
�� S1B S2B · · · SN B

�T
�
= n (4.32)

However there is not a globally effective method to obtain matrices satisfying the conditions (4.32). In
future work, we will examine the assumption (4.3) and the condition (4.32).

Remark 4. In this section, we introduce the compensation input (4.8). From (4.8) and (4.12), one can
see that if e(t) = 0, then the relation ψ (x, e,L, t) ≡ 0 is satisfied. Beside, we find that the variable
gain matrix L(x, e, t) ∈ Rm×n can be calculated except for e(t) = 0 (see (24)).

Now, we consider the condition (4.11) in Theorem 4. The condition (4.11) requires symmetric

positive definite matrices Pk ∈ Rn×n and positive scalars γ
(k)
j ∈ R1 for stability. In this

section, on the basis of the works of Oya et al.(23; 24), we consider the following inequalities
instead of (4.11).

(P1 + P2 + · · ·+ PN ) AF + AT
F (P1 + P2 + · · ·+ PN )

+
N−1

∑
j=1

γ
(k)
j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.33)

In addition, introducing complementary variables ξ
(k)
j

�
=

�
γ
(k)
j

�−1
(j = 1, · · · ,N − 1, k =

1, · · · ,N ) and using Lemma 3 (Schur complement), we find that the condition (4.33)
equivalent to the following LMIs.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ (P1, · · · ,PN ) +Qk PkB PkB · · · PkB

BTPk −ξ
(k)
1 Im 0 · · · 0

BTPk 0 −ξ
(k)
2 Im · · · 0

...
...

...
. . .

...

BTPk 0 0 0 −ξ
(k)
N−1Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

Pk > 0 and ξ
(k)
j > 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N )

(4.34)

where Ψ (P1, · · · ,PN ) in (1, 1)-block of the LMIs (4.34) is given by

Ψ (P1, · · · ,PN ) = (P1 + P2 + · · ·+PN ) AF + AT
F (P1 + P2 + · · ·+ PN ) (4.35)

Note that if there exist symmetric positive definite matrices Pk ∈ Rn×n and positive scalars

γ
(k)
j ∈ R1 which satisfy the matrix inequalities (4.34), then the matrix inequality condition

(4.11) is also satisfied (23; 24).
From the above discussion, one can see that in order to get the proposed robust controller,

the positive scalars γ
(k)
j ∈ R1 and the symmetric positive definite matrices Pk ∈ Rn×n which

satisfy the LMIs (4.34) and the assumption (4.3) are needed. Therefore firstly, we solve the
LMIs (4.34) and next, we check the rank condition (4.32).

333Synthesis of Variable Gain Robust Controllers for a Class of Uncertain Dynamical Systems



22 Will-be-set-by-IN-TECH

It is obvious that any solution e(t; t0, e(t0)) of the error system is continuous. In addition, it
follows from (4.22) and (4.23), that for any t ≥ t0, the following relation holds.

0 ≤ η− (∥∥e(t)
∥∥) ≤ V (e, t) = V (e, t0) +

∫ t

t0

d
dt
V(e, τ)dτ

V (e, t0) +
∫ t

t0

d
dt
V(e, τ)dτ ≤ η+ (∥∥e(t0)

∥∥)−
∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ +

∫ t

t0

σ(τ)dτ
(4.25)

In (4.25), η∗ (∥∥e(t)
∥∥) is defined as

η∗ (∥∥e(t)
∥∥) �

= ζk
∥∥e(t)

∥∥2 (4.26)

Therefore, from (4.25) we can obtain the following two results. Firstly, taking the limit as t
approaches infinity on both sides of the inequality (4.25), we have

0 ≤ η+ (∥∥e(t0)
∥∥)− lim

t→∞

∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ + lim

t→∞

∫ t

t0

σ(τ)dτ (4.27)

Thus one can see from (4.13) and (4.27) that

lim
t→∞

∫ t

t0

η∗ (∥∥e(τ)
∥∥) dτ ≤ η+ (∥∥e(t0)

∥∥)+ σ∗ (4.28)

On the other hand, from (4.25), we obtain

0 ≤ η− (∥∥e(t)
∥∥) ≤ η+ (∥∥e(t0)

∥∥)+
∫ t

t0

σ(τ)dτ (4.29)

It follows from (4.13) and (4.29) that

0 ≤ η− (∥∥e(t)
∥∥) ≤ η+ (∥∥e(t0)

∥∥)+ σ∗ (4.30)

The relation (4.30) implies that e(t) is uniformly bounded. Since e(t) has been shown to be
continuous, it follows that e(t) is uniformly continuous. Therefore, one can see from the
definition that η∗ (∥∥e(t)

∥∥) is also uniformly continuous. Applying the Lemma 3 ( Barbalat’s
lemma ) to (4.28) yields

lim
t→∞

η∗ (∥∥e(t)
∥∥) = lim

t→∞
ζk

∥∥e(t)
∥∥ = 0 (4.31)

Namely, asymptotical stability of the uncertain error system (4.9) is ensured. Thus the
uncertain linear system (4.1) is also stable.
Thus the proof of Theorem 4 is completed.

Remark 2. In this section, we consider the uncertain dynamical system (4.1) which has uncertainties
in the state matrix only. The proposed robust controller can also be applied to the case that the
uncertainties are included in both the system matrix and the input one. By introducing additional
actuator dynamics and constituting an augmented system, uncertainties in the input matrix are
embedded in the system matrix of the augmented system(36). Therefore the same design procedure
can be applied.
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Remark 3. In order to get the proposed controller, symmetric positive definite matrices Sk ∈
Rn×n (k = 1, · · · ,N ) satisfying the assumption (4.3) are required. The condition (4.3) is reduced
to the following rank condition.

rank
�� S1B S2B · · · SN B

�T
�
= n (4.32)

However there is not a globally effective method to obtain matrices satisfying the conditions (4.32). In
future work, we will examine the assumption (4.3) and the condition (4.32).

Remark 4. In this section, we introduce the compensation input (4.8). From (4.8) and (4.12), one can
see that if e(t) = 0, then the relation ψ (x, e,L, t) ≡ 0 is satisfied. Beside, we find that the variable
gain matrix L(x, e, t) ∈ Rm×n can be calculated except for e(t) = 0 (see (24)).

Now, we consider the condition (4.11) in Theorem 4. The condition (4.11) requires symmetric

positive definite matrices Pk ∈ Rn×n and positive scalars γ
(k)
j ∈ R1 for stability. In this

section, on the basis of the works of Oya et al.(23; 24), we consider the following inequalities
instead of (4.11).

(P1 + P2 + · · ·+ PN ) AF + AT
F (P1 + P2 + · · ·+ PN )

+
N−1

∑
j=1

γ
(k)
j PkBBTPk +Qk < 0 (k = 1, · · · ,N ) (4.33)

In addition, introducing complementary variables ξ
(k)
j

�
=

�
γ
(k)
j

�−1
(j = 1, · · · ,N − 1, k =

1, · · · ,N ) and using Lemma 3 (Schur complement), we find that the condition (4.33)
equivalent to the following LMIs.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ψ (P1, · · · ,PN ) +Qk PkB PkB · · · PkB

BTPk −ξ
(k)
1 Im 0 · · · 0

BTPk 0 −ξ
(k)
2 Im · · · 0

...
...

...
. . .

...

BTPk 0 0 0 −ξ
(k)
N−1Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

Pk > 0 and ξ
(k)
j > 0 (j = 1, · · · ,N − 1, k = 1, · · · ,N )

(4.34)

where Ψ (P1, · · · ,PN ) in (1, 1)-block of the LMIs (4.34) is given by

Ψ (P1, · · · ,PN ) = (P1 + P2 + · · ·+PN ) AF + AT
F (P1 + P2 + · · ·+ PN ) (4.35)

Note that if there exist symmetric positive definite matrices Pk ∈ Rn×n and positive scalars

γ
(k)
j ∈ R1 which satisfy the matrix inequalities (4.34), then the matrix inequality condition

(4.11) is also satisfied (23; 24).
From the above discussion, one can see that in order to get the proposed robust controller,

the positive scalars γ
(k)
j ∈ R1 and the symmetric positive definite matrices Pk ∈ Rn×n which

satisfy the LMIs (4.34) and the assumption (4.3) are needed. Therefore firstly, we solve the
LMIs (4.34) and next, we check the rank condition (4.32).
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4.3 Illustrative examples
Consider the following uncertain linear system, i.e. Z = 2.

d
dt

x(t) =

� −4 1

0 2

�
x(t) +

�
5 −1

0 1

�
Δ(t)

�
1 1

0 1

�
x(t) +

�
0

1

�
u(t) (4.36)

By applying Theorem 4, we consider deriving the proposed robust controller. Now we select
the weighting matrices Q ∈ R2×2 and R ∈ R1×1 such as Q = 1.0I2 and R = 4.0 for the
quadratic cost function for the standard linear quadratic control problem for the nominal
system, respectively. Then solving the algebraic Riccati equation (4.6), we obtain the optimal
gain matrix

K =
� −5.15278 × 10−3 −4.06405

�
(4.37)

In addition, setting the design parameters QF and RF such as QF = 10.0 × 106 I2 and RF =
1.0, respectively, we have the following fixed gain matrix.

F =
�−1.23056 −9.99806

�× 103 (4.38)

Besides, selecting the matrices Qk (k = 1, 2) in (4.34) as

Q1 =

⎛
⎜⎝

20.0 1.0

1.0 1.0

⎞
⎟⎠ , Q2 =

⎛
⎜⎝

1.0 0.0

0.0 20.0

⎞
⎟⎠ (4.39)

and solving the LMI condition (4.34), we get

P1 =

�
7.59401 × 101 6.82676 × 10−4

6.82676 × 10−4 2.00057 × 10−3

�

P2 =

�
7.59401 × 101 5.96286 × 10−4

5.96286 × 10−4 5.76862 × 10−2

�

γ1 = 7.13182 × 10−3, γ2 = 7.13182 × 10−3

(4.40)

From (4.36) and (4.40), ΩSk
(k = 1, 2) can be written as

ΩS1 =
�

x ∈ R2 | 1.28240x1 + 7.80246x2 = 0}
ΩS2 =

�
x ∈ R2 | 1.28032x1 + 7.77319x2 = 0}

(4.41)

and thus the assumption (4.3) is satisfied.
On the other hand for the uncertain linear system (4.36), the quadratic stabilizing controller
based on a fixed quadratic Lyapunov function cannot be obtained, because the solution of the
LMI of (A.1) does not exist.
In this example, we consider the following two cases for the unknown parameter Δ(t).

• Case 1) : Δ(t) =
� −4.07360 8.06857

4.41379 3.81654

�
× 10−1
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• Case 2) : Δ(t) =
(

cos(3.0πt) 0
0 − sin(3.0πt)

)

Besides, for numerical simulations, the initial values for the uncertain linear system (4.36)
and the nominal system are selected as x(0) = x(0) =

(
2.0 −1.0

)T (i.e. e(0) =
(

0.0 0.0
)T),

respectively, and we choose σ(t) ∈ R+ in (4.12) as σ(t) = 5.0 × 1012 × exp
(−1.0 × 10−3t

)
.

The results of the simulation of this example are depicted in Figures 8–10. In these Figures,
“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t) and
the control input u(t) for the proposed variable gain robust controller. “Desired” shows the
desired time-response and the desired control input generated by the nominal system.
From Figures 8–10, we find that the proposed robust controller stabilizes the uncertain system
(4.36) in spite of uncertainties. one can see from Figure 10 the proposed controller can avoid
serious chattering. Therefore the effectiveness of the proposed controller is shown.
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4.3 Illustrative examples
Consider the following uncertain linear system, i.e. Z = 2.

d
dt

x(t) =

� −4 1

0 2

�
x(t) +

�
5 −1

0 1

�
Δ(t)

�
1 1

0 1

�
x(t) +

�
0

1

�
u(t) (4.36)

By applying Theorem 4, we consider deriving the proposed robust controller. Now we select
the weighting matrices Q ∈ R2×2 and R ∈ R1×1 such as Q = 1.0I2 and R = 4.0 for the
quadratic cost function for the standard linear quadratic control problem for the nominal
system, respectively. Then solving the algebraic Riccati equation (4.6), we obtain the optimal
gain matrix

K =
� −5.15278 × 10−3 −4.06405

�
(4.37)

In addition, setting the design parameters QF and RF such as QF = 10.0 × 106 I2 and RF =
1.0, respectively, we have the following fixed gain matrix.

F =
�−1.23056 −9.99806

�× 103 (4.38)

Besides, selecting the matrices Qk (k = 1, 2) in (4.34) as

Q1 =

⎛
⎜⎝

20.0 1.0

1.0 1.0

⎞
⎟⎠ , Q2 =

⎛
⎜⎝

1.0 0.0

0.0 20.0

⎞
⎟⎠ (4.39)

and solving the LMI condition (4.34), we get

P1 =

�
7.59401 × 101 6.82676 × 10−4

6.82676 × 10−4 2.00057 × 10−3

�

P2 =

�
7.59401 × 101 5.96286 × 10−4

5.96286 × 10−4 5.76862 × 10−2

�

γ1 = 7.13182 × 10−3, γ2 = 7.13182 × 10−3

(4.40)

From (4.36) and (4.40), ΩSk
(k = 1, 2) can be written as

ΩS1 =
�

x ∈ R2 | 1.28240x1 + 7.80246x2 = 0}
ΩS2 =

�
x ∈ R2 | 1.28032x1 + 7.77319x2 = 0}

(4.41)

and thus the assumption (4.3) is satisfied.
On the other hand for the uncertain linear system (4.36), the quadratic stabilizing controller
based on a fixed quadratic Lyapunov function cannot be obtained, because the solution of the
LMI of (A.1) does not exist.
In this example, we consider the following two cases for the unknown parameter Δ(t).

• Case 1) : Δ(t) =
� −4.07360 8.06857

4.41379 3.81654

�
× 10−1
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• Case 2) : Δ(t) =
(

cos(3.0πt) 0
0 − sin(3.0πt)

)

Besides, for numerical simulations, the initial values for the uncertain linear system (4.36)
and the nominal system are selected as x(0) = x(0) =

(
2.0 −1.0

)T (i.e. e(0) =
(

0.0 0.0
)T),

respectively, and we choose σ(t) ∈ R+ in (4.12) as σ(t) = 5.0 × 1012 × exp
(−1.0 × 10−3t

)
.

The results of the simulation of this example are depicted in Figures 8–10. In these Figures,
“Case 1)” and “Case 2)” represent the time-histories of the state variables x1(t) and x2(t) and
the control input u(t) for the proposed variable gain robust controller. “Desired” shows the
desired time-response and the desired control input generated by the nominal system.
From Figures 8–10, we find that the proposed robust controller stabilizes the uncertain system
(4.36) in spite of uncertainties. one can see from Figure 10 the proposed controller can avoid
serious chattering. Therefore the effectiveness of the proposed controller is shown.

-0.5

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3

S
ta

te

Time

Case 1)
Case 2)
Desired

Fig. 8. Time histories of the state x1(t)

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  0.5  1  1.5  2  2.5  3

S
ta

te

Time

Case 1)
Case 2)
Desired

Fig. 9. Time histories of the state x2(t)

335Synthesis of Variable Gain Robust Controllers for a Class of Uncertain Dynamical Systems



26 Will-be-set-by-IN-TECH

-1

 0

 1

 2

 3

 4

 5

 0  0.5  1  1.5  2  2.5  3

C
o

n
tr

o
l i

n
p

u
t

Time

Case 1)
Case 2)
Desired

Fig. 10. Time histories of the control input u(t)

4.4 Summary
In this section, we have proposed a design method of a variable gain robust controller for a
class of uncertain nonlinear systems. The uncertainties under consideration are composed of
matched part and unmatched one, and by using the concept of piecewise Lyapunov functions,
we have shown that the proposed robust controller can be obtained by solving LMIs (4.34) and
cheking the rank condition (4.32). By numerical simulations, the effectiveness of the proposed
controller has been presented.

5. Conclusions and future works

In this chapter, we have presented that the variable gain robust controller for a class of
uncertain linear systems and through the numerical illustrations, the effectiveness of the
proposed vaiable gain robust controllers has been shown. The advantage of the proposed
controller synthesis is as follows; the proposed variable gain robust controller in which the
real effect of the uncertainties can be reflected as on-line information is more flexible and
adaptive than the conventional robust controller with a fixed gain which is derived by the
worst-case design for the parameter variations. Additionally the proposed control systems are
constructed by renewing the parameter which represents the perturbation region of unknown
parameters, and there is no need to solve any other equation for the stability.
In Section 2 for linear systems with matched uncertainties, a design problem of variable gain
robust state feedback controllers in order to achieve satisfactory transient behavior as closely
as possible to desirable one generated by the nominal system is considered. Section 3 extends
the result for the variable gain robust state feedback controller given in Section 2 to variable
gain robust output feedback controllers. In this Section, some assumptions for the structure
of the system parameters are introduced and by using these assumptions, an LMI-based the
variable gain robust output feedback controller synthesis has been presented. In Section 4,
the design method of variable gain robust state feedback controller via piecewise Lyapunov
functions has been suggested. One can see that the crucial difference between the existing
results and the proposed variable gain controller based on PLFs is that for uncertain linear
systems which cannot be statilizable via the conventional quadratic stabilizing controllers, the
proposed design procedure can stabilize it. Besides, it is obvious that the proposed variable
robust control scheme is more effective for linear systems with larger uncertainties.

336 Recent Advances in Robust Control – Novel Approaches and Design Methods Synthesis of Variable Gain Robust Controllers
for a Class of Uncertain Dynamical Systems 27

The future research subjects are an extension of the variable gain robust state feedback
controller via PLFs to output feedback control systems. Besides, the problem for the extension
to such a broad class of systems as uncertain large-scale systems, uncertain time-delay systems
and so on should be tackled. Furthermore in future work, we will examine the condition (3.2)
in section 3 and assumptions (4.3) and (4.32) in section 4.
On the other hand, the design of feedback controllers is often complicated by presence of
physical constraints : saturating actuators, temperatures, pressures within safety margins
and so on. If the constraints are violated, serious consequences may ensue, for example,
physical components may be damaged, or saturation may cause a loss of closed-loop stability.
In particular, input saturation is a common feature of control systems and the stabilization
problems of linear systems with control input saturation have been studied (e.g. (17; 32)).
Furthermore, some researchers have investigated analysis of constrained linear systems and
reference managing for linear systems subject to input and state constraints (e.g. (10; 15)).
Therefore, the future research subjects are to address the constrained robust control problems
reducing the effect of unknown parameters.

6. Appendix

6.1 Quadratic stabilization
The following lemma provides a LMI-based design method of a robust controller via
Lyapunov stability criterion.

Lemma A.1. Consider the uncertain linear system (4.1) and the control law u(t) = Hx(t).
There exists the state feedback gain matrix H ∈ Rm×n such that the control law u(t) = Hx(t) is a
quadratic stabilizing control, if there exist X > 0,Y and δ > 0 satisfying the LMI

(
AX +X AT + BY + YT BT + δDDT XET

EX −δIq

)
< 0 (A.1)

If the solution X ,Y and δ of the LMI (A.1) exists, then the gain matrix H ∈ Rm×n is obtained as
H = YX−1.

Proof. Introducing the quadratic function V(x, t)
�
= exT(t)Px(t) as a Lyapunov function

candidate, we have

d
dt
V(x, t) = xT(t)

{
P (A + BH) + (A + BH)T P

}
x(t) + 2xT(t)PDΔ(t)Ex(t)

≤ xT(t)
{
P (A + BH) + (A + BH)T P

}
x(t) + δxT(t)PDDTPx(t) +

1
δ

xT(t)ETEx(t)

(A.2)

Here we have used the well-known relation (3.12). Thus the uncrtain linear system (4.1) is
robustly stable provided that the following relation is satisfied.

P (A + BH) + (A + BH)T P + δPDDTP +
1
δ
ETE < 0 (A.3)

We introduce the matrix X �
=P−1 and consider the change of variable Y �

= HX . Then, by pre-
and post-multiplying (A.3) by X = P−1 , we have

AX +X AT + BY + YT BT + δDDT +
1
δ
XETEX < 0 (A.4)
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4.4 Summary
In this section, we have proposed a design method of a variable gain robust controller for a
class of uncertain nonlinear systems. The uncertainties under consideration are composed of
matched part and unmatched one, and by using the concept of piecewise Lyapunov functions,
we have shown that the proposed robust controller can be obtained by solving LMIs (4.34) and
cheking the rank condition (4.32). By numerical simulations, the effectiveness of the proposed
controller has been presented.

5. Conclusions and future works

In this chapter, we have presented that the variable gain robust controller for a class of
uncertain linear systems and through the numerical illustrations, the effectiveness of the
proposed vaiable gain robust controllers has been shown. The advantage of the proposed
controller synthesis is as follows; the proposed variable gain robust controller in which the
real effect of the uncertainties can be reflected as on-line information is more flexible and
adaptive than the conventional robust controller with a fixed gain which is derived by the
worst-case design for the parameter variations. Additionally the proposed control systems are
constructed by renewing the parameter which represents the perturbation region of unknown
parameters, and there is no need to solve any other equation for the stability.
In Section 2 for linear systems with matched uncertainties, a design problem of variable gain
robust state feedback controllers in order to achieve satisfactory transient behavior as closely
as possible to desirable one generated by the nominal system is considered. Section 3 extends
the result for the variable gain robust state feedback controller given in Section 2 to variable
gain robust output feedback controllers. In this Section, some assumptions for the structure
of the system parameters are introduced and by using these assumptions, an LMI-based the
variable gain robust output feedback controller synthesis has been presented. In Section 4,
the design method of variable gain robust state feedback controller via piecewise Lyapunov
functions has been suggested. One can see that the crucial difference between the existing
results and the proposed variable gain controller based on PLFs is that for uncertain linear
systems which cannot be statilizable via the conventional quadratic stabilizing controllers, the
proposed design procedure can stabilize it. Besides, it is obvious that the proposed variable
robust control scheme is more effective for linear systems with larger uncertainties.
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The future research subjects are an extension of the variable gain robust state feedback
controller via PLFs to output feedback control systems. Besides, the problem for the extension
to such a broad class of systems as uncertain large-scale systems, uncertain time-delay systems
and so on should be tackled. Furthermore in future work, we will examine the condition (3.2)
in section 3 and assumptions (4.3) and (4.32) in section 4.
On the other hand, the design of feedback controllers is often complicated by presence of
physical constraints : saturating actuators, temperatures, pressures within safety margins
and so on. If the constraints are violated, serious consequences may ensue, for example,
physical components may be damaged, or saturation may cause a loss of closed-loop stability.
In particular, input saturation is a common feature of control systems and the stabilization
problems of linear systems with control input saturation have been studied (e.g. (17; 32)).
Furthermore, some researchers have investigated analysis of constrained linear systems and
reference managing for linear systems subject to input and state constraints (e.g. (10; 15)).
Therefore, the future research subjects are to address the constrained robust control problems
reducing the effect of unknown parameters.

6. Appendix

6.1 Quadratic stabilization
The following lemma provides a LMI-based design method of a robust controller via
Lyapunov stability criterion.

Lemma A.1. Consider the uncertain linear system (4.1) and the control law u(t) = Hx(t).
There exists the state feedback gain matrix H ∈ Rm×n such that the control law u(t) = Hx(t) is a
quadratic stabilizing control, if there exist X > 0,Y and δ > 0 satisfying the LMI

(
AX +X AT + BY + YT BT + δDDT XET

EX −δIq

)
< 0 (A.1)

If the solution X ,Y and δ of the LMI (A.1) exists, then the gain matrix H ∈ Rm×n is obtained as
H = YX−1.

Proof. Introducing the quadratic function V(x, t)
�
= exT(t)Px(t) as a Lyapunov function

candidate, we have

d
dt
V(x, t) = xT(t)

{
P (A + BH) + (A + BH)T P

}
x(t) + 2xT(t)PDΔ(t)Ex(t)

≤ xT(t)
{
P (A + BH) + (A + BH)T P

}
x(t) + δxT(t)PDDTPx(t) +

1
δ

xT(t)ETEx(t)

(A.2)

Here we have used the well-known relation (3.12). Thus the uncrtain linear system (4.1) is
robustly stable provided that the following relation is satisfied.

P (A + BH) + (A + BH)T P + δPDDTP +
1
δ
ETE < 0 (A.3)

We introduce the matrix X �
=P−1 and consider the change of variable Y �

= HX . Then, by pre-
and post-multiplying (A.3) by X = P−1 , we have

AX +X AT + BY + YT BT + δDDT +
1
δ
XETEX < 0 (A.4)
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One can see from Lemma 2 (Schur complement) that the inequaity (A.4) is equivalent to the
LMI (A.1).
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1. Introduction 
A common industrial practice is to find some specific control structures for the nonlinear 
processes that reduce, as much as possible, the design techniques to classic control 
approaches. There are a lot of situations when the designing of robust controller leads to 
complex hardware and software requirements. In international literature there are some 
interesting solutions (Kuhnen & Janocha, 2001; Dai et al., 2003; Wang & Su, 2006) for solving 
implementation reduction. 
In following sections there will be presented, in the first part, some elements of classic 
robust design of RST control algorithm and on the second, two alternative solutions based 
on multiple model and nonlinear compensators structures. 

2. Some elements about classic RST robust control design 
The robustness of the systems is reported mainly to model parameters change or the 
structural model estimation uncertainties (Landau et al., 1997). A simple frequency analysis 
shows that the critical Nyquist point (i.e. the point (-1, 0) in the complex plane) plays an 
important role in assessing the robustness of the system. In this plan, we can trace hodograf 
(Nyquist place) open-loop system, i.e. the frequency response. The distance from the 
hodograf critical point system (edge module), i.e. radius centered at the critical point and 
tangent to hodograf is a measure of the intrinsic robustness of the system. The distance is 
greater, the system is more robust. 
 

 
Fig. 1. RST control algorithm structure 
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For this study we use a RST algorithm. For robustification there are used pole placement 
procedures (Landau et al., 1997). Fig. 1 presents a RST algorithm. 
The R, S, T polynomials are: 
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The RST control algorithm is: 
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where: u(k) - algorithm output, y(k) - process output, y*(k) - trajectory or filtered set point.  
When necessary, an imposed trajectory can be generated using a trajectory model generator: 
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Algorithm pole placement design procedure is based on the identified process’ model. 
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The identification (Landau & Karimi, 1997; Lainiotis & Magill, 1969; Foulloy et al., 2004) is 
made in a specific process operating point and can use recursive least square algorithm 
exemplified in next relations developed in (Landau et al., 1997): 
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with the following initial conditions: 
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The estimated ˆ( )k  represents the parameters of the polynomial plant model and ( )T k  
represents the measures vector. 
This approach allows the users to verify, and if necessary, to calibrate the algorithm’s 
robustness (Landau et al., 1997). Next expression and Fig. 2 present “disturbance-output” 
sensibility function. 

 
( ) ( )

( ) ( ) ,
( ) ( ) ( ) ( )

def
j j

vy vy

j j

j j j j

S e H e

A e S e R
A e S e B e R e

 

 

    

 

  


 (10) 

In the same time, the negative maximum value of the sensibility function represents the 
module margin. 
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Based on this value, in an “input-output” representation (Landau et al., 1997), process 
nonlinearity can be bounded inside the “conic” sector, presented in Fig. 3, where a1 and a2 
are calculated using the next expression: 
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Fig. 2. Sensibility function graphic representation 
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Fig. 3. Robust control design procedure 

3. Nonlinear compensator control solution 
Various papers and researches target the inverse model control approach; a few of these can 
be mentioned: (Tao & Kokotovic, 1996; Yuan et al., 2007) etc. 
In these researches there have been proposed several types of structures based on the 
inverse model. According to those results, this section comes up with two very simple and 
efficient structures presented in Figures 4 and 5. Here, the inverse model is reduced to the 
geometric inversed process (nonlinear) characteristic – reflection from the first leap of static 
characteristic of the process, as presented in Figure 6(b). 
The first solution (parallel structure) considers the addition of two commands: the first “a 
feedforward command” generated by the inverse model command generator and the 
second, generated by a classic, simple algorithm (PID, RST ). 
The first command, based on the static process characteristic, depends on the set point value 
and is designed to generate a corresponding value that drives the process’ output close to 
the imposed set point. The second (classic) algorithm generates a command that corrects the 
difference caused by external disturbances and, according to the set point, by eventual bias 
errors caused by mismatches between calculated inverse process characteristic and the real 
process. 
 

 
Fig. 4. Proposed scheme for “parallel” structure 

 

 
Fig. 5. Proposed scheme for “serial” structure 
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The second solution (serial structure) has the inverse model command generator between 
the classic algorithm and the process. The inverse model command generator acts as a 
nonlinear compensator and depends on the command value. The (classic) algorithm 
generates a command that, filtered by the nonlinearity compensator, controls the real 
process. 
The presented solutions propose treating the inverse model mismatches that “disturb” the 
classic command as some algorithm’s model mismatches. This approach imposes designing 
the classic algorithm with a sufficient robustness reserve.  
In Figure 4 and 5, the blocks and variables are as follows:  
 Process – physical system to be controlled;  
 Command calculus – unit that computes the process control law;  
 Classic Alg. – control algorithm (PID, RST);  
 y – outp5t of the process;  
 u – output of the Command calculus block;  
 u alg. – output of the classic algorithm;  
 u i.m. – output of the inverse model block;  
 r – system’s set point or reference trajectory;  
 p – disturbances. 
Related to classical control loops, both solutions need addressing some supplementary 
specific aspects: determination of static characteristic of the process, construction of inverse 
model, robust control law design. In next sections we will focus on the most important 
aspects met on designing of the presented structure. 

3.1 Control design procedure 
For the first structure the specific aspects of the control design procedure are:  
a. determination of the process’ (static) characteristic,  
b. construction of command generator,  
c. robust control law design of classic algorithm.  
The second structure imposes following these steps:  
a. determination of process’ characteristic,  
b. construction of nonlinearity compensator,  
c. designing the classic algorithm based on “composed process” which contains the 

nonlinearity compensator serialized with real process.  
These steps are more or less similar for the two structures. For the (a) and (c) steps it is 
obvious; for (b) the command generator and nonlinearity compensator have different 
functions but the same design and functioning procedure. Essential aspects for these steps 
will be presented. 

3.2 Determination of process characteristic 
This operation is based on several experiments of discrete step increasing and decreasing of 
the command u(k) and measuring the corresponding stabilized process output y(k) (figure 6 
(a)). The command u(k) covers all (0 to 100%) possibilities. Because the noise is present, the 
static characteristics are not identical. The final static characteristic is obtained by meaning 
of all correspondent positions of these experiments. The graphic between two “mean” 
points is obtained using extrapolation procedure. 
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(a)                                                                             (b) 

Fig. 6. (a) - left - Determination of process characteristic. Continuous line represents the final 
characteristic. (b) - right - Construction of nonlinearity compensator 

According to system identification theory, the dispersion of process trajectory can be found 
using next expression (Ljung & Soderstroom, 1983).  
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This can express a measure of superposing of noise onto process, process’ nonlinearity etc. 
and it is very important for the control algorithm robust design. 

3.3 Construction of nonlinearity compensator (generator) 
This step deals with the process’s static characteristic „transposition” operation. Figure 6 (b) 
presents this construction. According to this, u(k) is dependent to r(k). This characteristic is 
stored in a table; thus we can conclude that, for the nonlinearity compensator based 
controller, selecting a new set point r(k) will impose finding in this table the corresponding 
command u(k) that determines a process output y(k) close to the reference value. 

3.4 Control law design 
The control algorithm’s duty is to eliminate the disturbances and differences between the 
nonlinearity compensator computed command and the real process behavior. A large 
variety of control algorithms can be used: PID, RST, fuzzy etc., but the goal is to have a very 
simple one. For this study we use a RST algorithm. This is designed using the pole 
placement procedure (Landau et al., 1997). Figure 7 presents a RST base algorithm structure. 
Finally, if it is imposed that all nonlinear characteristics  be (graphically) bounded by the 
two gains, or gain limit to be great or equal to the process static maximal distance 
characteristic ΔG≥mg, a controller that has sufficient robustness was designed. 

3.5 Analysis and conclusions for proposed structure 
The main advantage consists in using a classic procedure for designing the control 
algorithm and determining the nonlinearity compensator command block, comparative to 
robust control design procedures. Well known procedures for identification and law control 
design are used. All procedures for the inverse characteristic model identification can be 
included in a real time software application. 
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Fig. 7. Parallel RST feedback-feedforward control structure 

The system is very stabile due to the global command that contains a “constant” component 
generated by an inverse static model command block, according to the set point value. This 
component is not influenced by the noise. 
A fuzzy logic bloc that can “contain” human experience about some nonlinear processes can 
replace the inverse model command generator. 
Being not very complex in terms of real time software and hardware implementation, the 
law control doesn’t need important resources. 
This structure is very difficult to use for the system that doesn’t have a bijective static 
characteristic and for systems with different functioning regimes. 
Another limitation is that this structure can only be used for stabile processes. In the 
situations where the process is “running”, the global command is likely to not have enough 
flexibility to control it. 
The increased number of experiments for the determination of a correct static characteristic 
can be another disadvantage. 

4. Multiple model control solution 
The essential function of a real-time control system is to preserve the closed-loop 
performances in case of non-linearity, structural disturbances or process uncertainties. A 
valuable way to solve these problems is the multiple-models or multicontroller structure. 
The first papers that mentioned the “multiple-models” structure/system have been reported 
in the 90s. Balakrishnan and Narendra are among the first authors addressing problems of 
stability, robustness, switching and designing this type of structures in their papers 
Narendra & Balakrishnan, 1997). 
Research refinement in this field has brought extensions to the multiple-model control 
concept. Parametric adaptation procedures – Closed-Loop Output Error (Landau & Karimi, 
1997), use of Kalman filter representation (Lainiotis & Magill, 1969), the use of neural 
networks (Balakrishnan, 1996) or the fuzzy systems are some of the important 
developments. 
Related to classical control loops, multiple-model based systems need addressing some 
supplementary specific aspects: 
 Dimension of multiple-model configuration; 
 Selection of the best algorithm; 
 Control law switching. 
From the multiple-models control systems viewpoint, two application oriented problems 
can be highlighted: 
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Narendra & Balakrishnan, 1997). 
Research refinement in this field has brought extensions to the multiple-model control 
concept. Parametric adaptation procedures – Closed-Loop Output Error (Landau & Karimi, 
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Fig. 8. General scheme for multiple model structure 

 Class of systems with nonlinear characteristic, which cannot be controlled by a single 
algorithm; 

 Class of systems with different operating regimes, where different functioning regimes 
don’t allow the use of a unique algorithm or imposes using a very complex one with 
special problems on implementation. 

As function of the process particularity, several multiple-models structures are proposed 
(Balakrishnan, 1996). One of the most general architectures is presented in Figure 8. 
In Fig 8, the blocks and variables are as follows: 
 Process – physical system to be controlled; 
 Command calculus – unit that computes the process law control ; 
 Status or position identification system – component that provide information about the 

model–control algorithm “best” matching for the current state of the system; 
 Mod. 1, Mod. 2, …, Mod. N - previously identified models of different regimes or 

operating points; 
 Alg. 1, Alg. 2, …, Alg. N – control algorithms designed for the N models; 
 SWITCH – mix or switch between the control laws; 
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 SELECTOR – based on adequate criteria evaluations, provides information about the 
most appropriate model for the system’s current state; 

 y and y1, y2, …, yN – output of the process and outputs of the N models; 
 u – output generate by Command calculus block 
 u and u1, u2, uN – output of the Command calculus block and outputs of the N control 

algorithms, respectively; 
 r –set point system or reference trajectory; 
 p – disturbances of physical process.  
As noted above, depending on the process specifics and the approach used to solve the 
“control algorithms switching” and/or “the best model choice” problems, the scheme can be 
adapted on the situation by adding/eliminating some specific blocks. This section focuses 
on the “switching” problem. 

4.1 Control algorithms switching 
The logic operation of multiple model system structure implies that after finding the best 
algorithm for the current operating point of the, the next step consists in switching the 
control algorithm. Two essential conditions must be verified with respect to this operation: 
 To be designed so that no bumps in the applications of the control law are encountered; 
 To be (very) fast. 
Shocks determined by the switching operation cause non-efficient and/or dangerous 
behaviors. Moreover, a switch determines a slow moving area of action of the control 
algorithm, which involves at least performance degradation. 
These are the main problems to be solved in designing block switching algorithms. From 
structurally point of view, this block may contain all implementation algorithms or at least 
the algorithm coefficients. 

4.1.1 Classic solutions 
Present solutions (Landau et al., 1997; Dumitrache, 2005) solve more or less this problem 
and they are based on maintaining in active state all the control algorithms, also called 
“warm state”. This supposes that every algorithm receives information about the process 
output y(k) and set the point value (eventually filtered) r(k), but only the control law ui(k) is 
applied on the real process, the one chosen by the switching block. This solution does not 
impose supplementary logic function for the system architecture and, for this reason, the 
switching time between algorithms is short. The drawback of this approach is that when 
designing the multi-model structure several supplementary steps are necessary.  
These supplementary conditions demand the match of the control algorithm outputs in the 
neighborhood switching zones. The superposition of models identification zones 
accomplishes this aspect. That can be seen in Fig. 9. As a result of this superposition, the 
multi-model structure will have an increased number of models. 
Other approaches (Dussud et al., 2000; Pages et al., 2002) propose the mix of two or more 
algorithms outputs. The “weighting” of each control law depends on the distance from the 
current process operating point and the action zone of each algorithm. Based on this, the 
switching from an algorithm to another one is done using weighting functions with a 
continuous evolution in [0–1] intervals. This technique can be easily implemented using 
fuzzy approach, An example is presented in Fig. 10. This solution involves solving control 
gain problems, determined by mixing algorithm outputs.  
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Fig. 9. Superposition of identification zones for two neighbor-models and their 
corresponding control actions 

 
 

 
 

Fig. 10. Algorithms weighting functions for a specified operating position 

4.1.2 Proposed solution 
In this subsection, there is presented a solution that provides very good results for fast 
processes with nonlinear characteristics. The main idea is that, during the current 
functioning of multiple-models control systems with N model-algorithm pairs, it is 
supposed that just one single algorithm is to be maintained active, the good one, and all the 
other N-1 algorithms rest inactive. The active and inactive states represent automatic, 
respectively manual, regimes of a law control. The output value of the active algorithm 
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Fig. 11. Proposed multiple model switching solution 

 
corresponds to the manual control for all the other N-1 inactive algorithms., as presented in 
Fig. 11. In the switching situation, when a “better” Aj algorithm is found, the actual Ai active 
algorithm is commuted in an inactive state, and Aj in active state, respectively. For a 
bumpless commutation, the manual–automatic transfer problems must be solved, and the 
performance solution to this is proposed in the next section. 
The system can be implemented in two variants – first - with all inactive algorithms holding 
on manual regime, or – second - just a single operating algorithm (the active one) and 
activation of the “new” one after the computation of the currently corresponding manual 
regime and switching on automatic regime. Both variants have advantages and 
disadvantages. Choosing one of them requires knowledge about the hardware performances 
of the structure. After a general view, the first variant seems to be more reasonable. 
In all cases, it is considered that the active algorithm output values represent manual 
commands for the “new” selected one. 

4.2 Manual – automatic bumpless transfer 
The „key“ of proposed multiple model switching solution performances is based on 
manual-to-automatc bumpless transfer, so in this section some important elements about are 
presented. 
The practice implementation highlights important problems like manual-to-automatic 
(MA)/automatic-to-manual (AM) regime commutations, respectively turning out/in 
from the control saturation states; (i.e. manual operation is the situation where the 
command is calculated and applied by human operator). Of course, these problems exist in 
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analogical systems and have specific counteracting procedures, which are not applicable on 
numerical systems. 
In real functioning, MA transfer is preceded by “driving” the process in the nominal 
action zone. To avoid command switching “bumps”, one must respect the following two 
conditions:  
 Process output must be perfectly matched with the set point value; 
 According to the algorithm complexity (function of the degrees of controller 

polynomials), the complete algorithm memory actualization must be waited for. 
Neglecting these conditions leads to “bumps” in the transfer because the control algorithm 
output value is computed using the actual, but also the past, values of the command, 
process and set point, respectively. 
At the same time, there are situations when the perfect “matching” between process output 
and set point value is very difficult to obtained and/or needs  a very long time. Hence, the 
application of this procedure becomes impossible in the presence of important disturbances. 
In the following, these facts will be illustrated using an RST control algorithm (Foulloy et al., 
2004), Fig. 1. 
In this context, for a inactive algorithm – possible candidate for next active one, since the 
algorithm output is the manual command set by operator (or active algorithm) and the 
process output depends on command, the set point remains the only “free” variable in the 
control algorithm computation. Therefore, the proposed solution consists in the 
modification of the set point value, according to the existent control algorithm, manual 
command and process output (Lupu et al., 2006). 
Memory updating control algorithm is done similarly as in the automatic regime. For 
practical implementatio a supplementary memory location for the set point value is 
necessary. From Eq(3),  results the expression for the set point value: 
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When the set point (trajectory) generator Eq(4) exists, keeping all the data in correct 
chronology must be with respect to the following relation: 

 
1( ) *( ) ( )1( )

A qmr k y k
B qm


   (15) 

System operation scheme is presented in Fig. 12. 
Concluding, this solution proposes the computation of that set point value that determines, 
according to the algorithm history and process output, a control equal to the manual 
command applied by the operator (or active algorithm). At the instant time of the MA 
switching, there are no gaps in the control algorithm memory that could determine bumps. 
An eventually mismatching between the set point and process output is considered as a 
simple change of the set point value. Moreover, this solution can be successfully used in 
cases of command limitation. 
The only inconvenient of this solution is represented by the necessary big computation 
power when approaching high order systems, which is not, however, a problem nowadays. 
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Fig. 12. Computation of the set point value for imposed manual command 

5. Experimental results 
We have evaluated the achieved performances of the multi-model control structure and 
nonlinear compensator control using a hardware and software experimental platform, 
developed on National Instruments LabWindows/CVI. In figure 13, one can see a 
positioning control system. The main goal is the vertical control of the ball position, placed 
inside the pipe; here, the actuator is air supply unit connected to cDAQ family data 
acqusition module. 
The obtained results are comparead to very complex (degree = 8) RST robust algorithm. 
Total operations number for robust structure is 24 multiplies and 24 adding or subtraction. 
The nonlinear relation between the position Y (%) and actuator command U (%) is presented 
in Figure 14. One considers three operating points P1, P2, and P3 on the plant’s nonlinear 
diagram (Figure 14). Three different models are identified like: M1 (0-21%), M2 (21-52%) and 
M3 (52-100%). These will be the zones for corresponding algorithms. 
According to the models-algorithms matching zones (Lupu et al., 2008), we have identified 
the models M1, M2 and M3, as being appropriated to the following intervals (0-25%), (15-
55%) (48-100%), respectively. For a sampling period Te=0.2 sec, the least-squares 
identification method from Adaptech/WinPIM platform (Landau et al., 1997) identifies the 
next models: 
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analogical systems and have specific counteracting procedures, which are not applicable on 
numerical systems. 
In real functioning, MA transfer is preceded by “driving” the process in the nominal 
action zone. To avoid command switching “bumps”, one must respect the following two 
conditions:  
 Process output must be perfectly matched with the set point value; 
 According to the algorithm complexity (function of the degrees of controller 

polynomials), the complete algorithm memory actualization must be waited for. 
Neglecting these conditions leads to “bumps” in the transfer because the control algorithm 
output value is computed using the actual, but also the past, values of the command, 
process and set point, respectively. 
At the same time, there are situations when the perfect “matching” between process output 
and set point value is very difficult to obtained and/or needs  a very long time. Hence, the 
application of this procedure becomes impossible in the presence of important disturbances. 
In the following, these facts will be illustrated using an RST control algorithm (Foulloy et al., 
2004), Fig. 1. 
In this context, for a inactive algorithm – possible candidate for next active one, since the 
algorithm output is the manual command set by operator (or active algorithm) and the 
process output depends on command, the set point remains the only “free” variable in the 
control algorithm computation. Therefore, the proposed solution consists in the 
modification of the set point value, according to the existent control algorithm, manual 
command and process output (Lupu et al., 2006). 
Memory updating control algorithm is done similarly as in the automatic regime. For 
practical implementatio a supplementary memory location for the set point value is 
necessary. From Eq(3),  results the expression for the set point value: 

 * *

0 0 10

1 ( ) ( ) ( )]( ) [ S R Tn n n

i i i
i i i

y s u k i r y k i t y k i
t

k
  

        (14) 

When the set point (trajectory) generator Eq(4) exists, keeping all the data in correct 
chronology must be with respect to the following relation: 

 
1( ) *( ) ( )1( )

A qmr k y k
B qm


   (15) 

System operation scheme is presented in Fig. 12. 
Concluding, this solution proposes the computation of that set point value that determines, 
according to the algorithm history and process output, a control equal to the manual 
command applied by the operator (or active algorithm). At the instant time of the MA 
switching, there are no gaps in the control algorithm memory that could determine bumps. 
An eventually mismatching between the set point and process output is considered as a 
simple change of the set point value. Moreover, this solution can be successfully used in 
cases of command limitation. 
The only inconvenient of this solution is represented by the necessary big computation 
power when approaching high order systems, which is not, however, a problem nowadays. 

Simplified Deployment of Robust Real-Time Systems Using 
Multiple Model and Process Characteristic Architecture-Based Process Solutions 

 

353 

 

 
 

Fig. 12. Computation of the set point value for imposed manual command 

5. Experimental results 
We have evaluated the achieved performances of the multi-model control structure and 
nonlinear compensator control using a hardware and software experimental platform, 
developed on National Instruments LabWindows/CVI. In figure 13, one can see a 
positioning control system. The main goal is the vertical control of the ball position, placed 
inside the pipe; here, the actuator is air supply unit connected to cDAQ family data 
acqusition module. 
The obtained results are comparead to very complex (degree = 8) RST robust algorithm. 
Total operations number for robust structure is 24 multiplies and 24 adding or subtraction. 
The nonlinear relation between the position Y (%) and actuator command U (%) is presented 
in Figure 14. One considers three operating points P1, P2, and P3 on the plant’s nonlinear 
diagram (Figure 14). Three different models are identified like: M1 (0-21%), M2 (21-52%) and 
M3 (52-100%). These will be the zones for corresponding algorithms. 
According to the models-algorithms matching zones (Lupu et al., 2008), we have identified 
the models M1, M2 and M3, as being appropriated to the following intervals (0-25%), (15-
55%) (48-100%), respectively. For a sampling period Te=0.2 sec, the least-squares 
identification method from Adaptech/WinPIM platform (Landau et al., 1997) identifies the 
next models: 

1

1 1 2
0.35620 0.05973

1 0.454010 0.09607
qM

q q



 



 

 

1

2 1 2
1.23779 0.33982

1 0.98066 0.17887
qM

q q



 



 

 

1

3 1 2
2.309530 0.089590

1 0.827430 0.006590
qM

q q



 



 

 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

354 

 
Fig. 13. Process experimental platform 
 

 
Fig. 14. Nonlinear diagram of the process 
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In this case, we have computed three corresponding RST algorithms using a pole placement 
procedure from Adaptech/WinREG platform (Landau et al., 1997). The same nominal 
performances are imposed to all systems, through a second order system, defined by the 
dynamics 0 = 3.0,  = 2.5 (tracking performances) and 0 = 7.5,  = 0.8 (disturbance rejection 
performances) respectively, keeping the same sampling period as for identification. 
All of these algorithms control the process in only their corresponding zones. 
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Fig. 15. Multi-model controller real-time software application 
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To verify the proposed switching algorithm, a multi-model controller real-time software 
application was designed and implemented, that can be connected to the process. The user 
interface is presented on Figure 15.  
On the top of Figure 15, there are respectively the set point, the output and control values, 
manual-automatic general switch, general manual command and graphical system 
evolution display.  On the bottom of Figure 15, one can see three graphical evolution 
displays corresponding to the three controllers (Ri, Si, Ti, i=1...3). The colors are as follows: 
yellow – set point value, red – command value, blue – process output value and green – 
filtered set point value. 
Using this application, few tests were done to verify the switching between two algorithms. 
The switching procedure is determinate by the change of the set point value. These tests are: 
a. from 20% (where algorithm 1 is active) to 40% (where algorithm 2 is active). The 

effective switching operation is done when the filtered set point (and process output) 
becomes greater than 21%. Figure 16(a) presents the evolutions. 

b. from 38% (where algorithm 2 is active) to 58% (where algorithm 3 is active). The 
effective switching operation is done when the filtered set point (and process output) 
becomes greater than 52%. Figure 16(b) presents the evolutions. 

In both tests, one can see that there are no shocks or that there are very small oscillations in 
the control evolution by applying this approach. Increasing the number of models-
algorithms to 4 or 5 could eliminate the small oscillations. 
To verify the nonlinear compensator control structure, a second real-time software 
application was designed and implemented, that can be connected with the process. The  
 
 

 
Fig. 16. a) (left) switching test;    b) (right) switching test 
 
 

 
Fig. 17. Nonlinear compensator controller real-time software application 
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user interface is presented on Figure 17. This application implement the scheme proposed in 
Fig 7 and allows the user in a special window, to construct the nonlinear compensator. 
Using this application, that contains a simple second order RST algorithm, few tests were 
effectuated to verify the structure. These tests are: 
a. Determination of inverse model characteristic. Figure 18(a) presents this evolutions and 

contains the corresponding r(k)-u(k) data  pairs obtained by dividing the total domain 
(0-100%) in 10 subinterval (0-10, 10-20 etc). 

b. Testing structure stability on different functioning point. Figure 18(b) presents these 
evolutions. 

On (a) test one can see the nonlinear process model characteristics identification procedures. 
The second one, present that there are no shocks and the system is stable on different 
functioning points. 
For proposed control structure, presented in Figure 7 was identified a wery simple model: 
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In this case, we have computed the corresponding RST algorithms using a pole placement 
procedure from Adaptech/WinREG platform. The nominal performances are imposed, 
through a second order system, defined by the dynamics 0 = 2,  = 0.95 (tracking 
performances) and 0 = 1.1,  = 0.8 (disturbance rejection performances) respectively, 
keeping the same sampling period as for identification. 
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To calculate corresponding command for a single controller presented before, there are used 
7 multiplies and 7 adding or subtraction operations. 
For the second control structure, in addition to command calculus operation here is the 
calculus of direct command. This depends on software implementation. For PLC, particular 
 

 

 
 

 

Fig. 18. a) Process static determination test;  b) functioning test; 
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To verify the proposed switching algorithm, a multi-model controller real-time software 
application was designed and implemented, that can be connected to the process. The user 
interface is presented on Figure 15.  
On the top of Figure 15, there are respectively the set point, the output and control values, 
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To verify the nonlinear compensator control structure, a second real-time software 
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Fig. 16. a) (left) switching test;    b) (right) switching test 
 
 

 
Fig. 17. Nonlinear compensator controller real-time software application 

Simplified Deployment of Robust Real-Time Systems Using 
Multiple Model and Process Characteristic Architecture-Based Process Solutions 

 

357 

user interface is presented on Figure 17. This application implement the scheme proposed in 
Fig 7 and allows the user in a special window, to construct the nonlinear compensator. 
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On (a) test one can see the nonlinear process model characteristics identification procedures. 
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and real time process computer, in general, where (C) code programming can be used, in a 
solution or other similar implementation:  
 

// segment determination  
segment = (int)(floor(rdk/10)); 
// segment gain and difference determination 
panta = (tab_cp[segment+1] - tab_cp[segment]) * 0.1; 
// linear value calculus 
val_com_tr = uk + 1.00 * (panta * (rdk - segment*10.0) + tab_cp[segment]); 

 

there are necessary 10 multiplies and 4 adding or subtraction operations (the time and 
memory addressing effort operation is considered equal to a multiply operation). Total 
operations number for nonlinear compensator structure is 17 multiplies and 14 adding or 
subtraction. 
Because the multi-models control structure must assure no bump commutations, all of 3 
control algorithms work in parallel (Lupu et al., 2008).  So, for multiple model structure, to 
calculate corresponding command for a C1 controller  9 multiplies and 9 adding or 
subtraction operations are used, for C2 9 multiplies and 9 adding or subtraction operations 
and for C3 9 multiplies and 9 adding or subtraction operations, total number 27 multiplies 
and 27 adding or subtractions. 
As mentioned before, total operations number for classic robust structure is 24 multiplies 
and 24 adding or subtraction. 
It is visible that nonlinear compensator structure has a less number of multiplies and adding 
or subtraction comparative to classic multi-model solutions and robust control approach.  
In the same time multi-model and robust control solutions have comparative numbers of 
implemented operations. The choice of solution depends on process features and used 
hardware. 
This means that the system with nonlinear compensator is faster or needs a more simplified 
hardware and software arquitecture. 

6. Conclusions 
The first proposed method (multiple models) is a more elaborated one and needs a lot of 
precise operations like data acquisition, models identification, and control algorithms 
design. For these reasons it allows us to control a large class of nonlinear processes that can 
contain nonlinear characteristics, different functioning regimes etc.  
The second proposed method (inverse model) does not impose complex operations, it is 
very easy to use, but it is limited from the nonlinearity class point of view. This structure is 
very difficult to use for the system that doesn’t have a bijective static characteristic or have 
different functioning regimes. 
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Partially Decentralized Design Principle in
Large-Scale System Control

Anna Filasová and Dušan Krokavec
Technical University of Košice

Slovakia

1. Introduction

A number of problems that arise in state control can be reduced to a handful of standard
convex and quasi-convex problems that involve matrix inequalities. It is known that the
optimal solution can be computed by using interior point methods (Nesterov & Nemirovsky
(1994)) which converge in polynomial time with respect to the problem size, and efficient
interior point algorithms have recently been developed for and further development of
algorithms for these standard problems is an area of active research. For this approach, the
stability conditions may be expressed in terms of linear matrix inequalities (LMI), which have
a notable practical interest due to the existence of powerful numerical solvers. Some progres
review in this field can be found e.g. in Boyd et al. (1994), Hermann et al. (2007), Skelton et al.
(1998), and the references therein.
Over the past decade, H∞ norm theory seems to be one of the most sophisticated frameworks
for robust control system design. Based on concept of quadratic stability which attempts to
find a quadratic Lyapunov function (LF), H∞ norm computation problem is transferred into
a standard LMI optimization task, which includes bounded real lemma (BRL) formulation
(Wu et al. (2010)). A number of more or less conservative analysis methods are presented to
assess quadratic stability for linear systems using a fixed Lyapunov function. The first version
of the BRL presents simple conditions under which a transfer function is contractive on the
imaginary axis of the complex variable plain. Using it, it was possible to determine the H∞
norm of a transfer function, and the BRL became a significant element to shown and prove
that the existence of feedback controllers (that results in a closed loop transfer matrix having
the H∞ norm less than a given upper bound) is equivalent to the existence of solutions of
certain LMIs. Linear matrix inequality approach based on convex optimization algorithms
is extensively applied to solve the above mentioned problem (Jia (2003), Kozáková & Veselý
(2009)), Pipeleers et al. (2009).
For time-varying parameters the quadratic stability approach is preferable utilized (see.
e.g. Feron et al. (1996)). In this approach a quadratic Lyapunov function is used which is
independent of the uncertainty and which guarantees stability for all allowable uncertainty
values. Setting Lyapunov function be independent of uncertainties, this approach guarantees
uniform asymptotic stability when the parameter is time varying, and, moreover, using a
parameter-dependent Lyapunov matrix quadratic stability may be established by LMI tests
over the discrete, enumerable and bounded set of the polytope vertices, which define the
uncertainty domain. To include these requirements the equivalent LMI representations of
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2 Robust

BRL for continuous-time, as well as discrete-time uncertain systems were introduced (e.g. see
Wu and Duan (2006), and Xie (2008)). Motivated by the underlying ideas a simple technique
for the BRL representation can be extended to state feedback controller design, performing
system H∞ properties of quadratic performance. When used in robust analysis of systems
with polytopic uncertainties, they can reduce conservatism inherent in the quadratic methods
and the parameter-dependent Lyapunov function approach. Of course, the conservativeness
has not been totally eliminated by this approach.
In recent years, modern control methods have found their way into design of interconnected
systems leading to a wide variety of new concepts and results. In particular, paradigms
of LMIs and H∞ norm have appeared to be very attractive due to their good promise of
handling systems with relative high dimensions, and design of partly decentralized schemes
substantially minimized the information exchange between subsystems of a large scale
system. With respect to the existing structure of interconnections in a large-scale system
it is generally impossible to stabilize all subsystems and the whole system simultaneously
by using decentralized controllers, since the stability of interconnected systems is not
only dependent on the stability degree of subsystems, but is closely dependent on the
interconnections (Jamshidi (1997), Lunze (1992), Mahmoud & Singh (1981)). Including into
design step the effects of interconnections, a special view point of decentralized control
problem (Filasová & Krokavec (1999), Filasová & Krokavec (2000), Leros (1989)) can be such
adapted for large-scale systems with polytopic uncertainties. This approach can be viewed
as pairwise-autonomous partially decentralized control of large-scale systems, and gives the
possibility establish LMI-based design method as a special problem of pairwise autonomous
subsystems control solved by using parameter dependent Lyapunov function method in the
frames of equivalent BRL representations.
The chapter is devoted to studying partially decentralized control problems from above given
viewpoint and to presenting the effectiveness of parameter-dependent Lyapunov function
method for large-scale systems with polytopic uncertainties. Sufficient stability conditions for
uncertain continuous-time systems are stated as a set of linear matrix inequalities to enable
the determination of parameter independent Lyapunov matrices and to encompass quadratic
stability case. Used structures in the presented forms enable potentially to design systems
with the reconfigurable controller structures.
The chapter is organized as follows. In section 2 basis preliminaries concerning the H∞
norm problems are presented along with results on BRL, improved BRLs representations and
modifications, as well as with quadratic stability. To generalize properties of non-expansive
systems formulated as H∞ problems in BRL forms, the main motivation of section 3 was to
present the most frequently used BRL structures for system quadratic performance analyzes.
Starting work with such introduced formalism, in section 4 the principle of memory-less
state control design with quadratic performances which performs H∞ properties of the
closed-loop system is formulated as a feasibility problem and expressed over a set of LMIs. In
section 5, the BRL based design method is outlined to posse the sufficient conditions for the
pairwise decentralized control of one class of large-scale systems, where Lyapunov matrices
are separated from the matrix parameters of subsystem pairs. Exploring such free Lyapunov
matrices, the parameter-dependent Lyapunov method is adapted for pairwise decentralized
controller design method of uncertain large-scale systems in section 6, namely quadratic
stability conditions and the state feedback stabilizability problem based on these conditions.
Finally, some concluding remarks are given in the end. However, especially in sections 4-6,
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numerical examples are given to illustrate the feasibility and properties of different equivalent
BRL representations.

2. Basic preliminaries

2.1 System model
The class of the systems considering in this section can be formed as follows

q̇(t) = Aq(t) + Bu(t) (1)

y(t) = Cq(t) + Du(t) (2)

where q(t) ∈ IRn, u(t) ∈ IRr, and y(t) ∈ IRm are vectors of the state, input and measurable
output variables, respectively, nominal system matrices A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and
D ∈ IRm×r are real matrices.

2.2 Schur complement
Proposition 1. . Let Q > 0, R > 0, S are real matrices of appropriate dimensions, then the next
inequalities are equivalent

�
Q S

ST −R

�
< 0 ⇔

�
Q + SR−1ST 0

0 −R

�
< 0 ⇔ Q + SR−1ST < 0, R > 0 (3)

Proof. Let the linear matrix inequality takes the starting form in (3), det R �= 0 then using
Gauss elimination principle it yields

�
I SR−1

0 I

� �
Q S
ST −R

� �
I 0

R−1ST I

�
=

�
Q + SR−1ST 0

0 −R

�
(4)

Since

det
�

I SR−1

0 I

�
= 1 (5)

and it is evident that (4) implies (3). This concludes the proof.

Note that in the next sections the matrix notations Q, R, S, can be used in another context, too.

2.3 Bounded real lemma
Proposition 2. System (1), (2) is stable with quadratic performance �C(sI−A)−1B +D�2

∞ ≤ γ if
there exist a symmetric positive definite matrix P > 0, P ∈ IRn×n and a positive scalar γ > 0, γ ∈ IR
such that

i.

⎡
⎣

ATP+PA PB CT

∗ −γIr DT

∗ ∗ −Im

⎤
⎦ < 0

ii.

⎡
⎣

PAT+AP PCT B
∗ −γIm D
∗ ∗ −Ir

⎤
⎦ < 0
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interconnections (Jamshidi (1997), Lunze (1992), Mahmoud & Singh (1981)). Including into
design step the effects of interconnections, a special view point of decentralized control
problem (Filasová & Krokavec (1999), Filasová & Krokavec (2000), Leros (1989)) can be such
adapted for large-scale systems with polytopic uncertainties. This approach can be viewed
as pairwise-autonomous partially decentralized control of large-scale systems, and gives the
possibility establish LMI-based design method as a special problem of pairwise autonomous
subsystems control solved by using parameter dependent Lyapunov function method in the
frames of equivalent BRL representations.
The chapter is devoted to studying partially decentralized control problems from above given
viewpoint and to presenting the effectiveness of parameter-dependent Lyapunov function
method for large-scale systems with polytopic uncertainties. Sufficient stability conditions for
uncertain continuous-time systems are stated as a set of linear matrix inequalities to enable
the determination of parameter independent Lyapunov matrices and to encompass quadratic
stability case. Used structures in the presented forms enable potentially to design systems
with the reconfigurable controller structures.
The chapter is organized as follows. In section 2 basis preliminaries concerning the H∞
norm problems are presented along with results on BRL, improved BRLs representations and
modifications, as well as with quadratic stability. To generalize properties of non-expansive
systems formulated as H∞ problems in BRL forms, the main motivation of section 3 was to
present the most frequently used BRL structures for system quadratic performance analyzes.
Starting work with such introduced formalism, in section 4 the principle of memory-less
state control design with quadratic performances which performs H∞ properties of the
closed-loop system is formulated as a feasibility problem and expressed over a set of LMIs. In
section 5, the BRL based design method is outlined to posse the sufficient conditions for the
pairwise decentralized control of one class of large-scale systems, where Lyapunov matrices
are separated from the matrix parameters of subsystem pairs. Exploring such free Lyapunov
matrices, the parameter-dependent Lyapunov method is adapted for pairwise decentralized
controller design method of uncertain large-scale systems in section 6, namely quadratic
stability conditions and the state feedback stabilizability problem based on these conditions.
Finally, some concluding remarks are given in the end. However, especially in sections 4-6,
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numerical examples are given to illustrate the feasibility and properties of different equivalent
BRL representations.

2. Basic preliminaries

2.1 System model
The class of the systems considering in this section can be formed as follows

q̇(t) = Aq(t) + Bu(t) (1)

y(t) = Cq(t) + Du(t) (2)

where q(t) ∈ IRn, u(t) ∈ IRr, and y(t) ∈ IRm are vectors of the state, input and measurable
output variables, respectively, nominal system matrices A ∈ IRn×n, B ∈ IRn×r, C ∈ IRm×n and
D ∈ IRm×r are real matrices.

2.2 Schur complement
Proposition 1. . Let Q > 0, R > 0, S are real matrices of appropriate dimensions, then the next
inequalities are equivalent

�
Q S

ST −R

�
< 0 ⇔

�
Q + SR−1ST 0

0 −R

�
< 0 ⇔ Q + SR−1ST < 0, R > 0 (3)

Proof. Let the linear matrix inequality takes the starting form in (3), det R �= 0 then using
Gauss elimination principle it yields

�
I SR−1

0 I

� �
Q S
ST −R

� �
I 0

R−1ST I

�
=

�
Q + SR−1ST 0

0 −R

�
(4)

Since

det
�

I SR−1

0 I

�
= 1 (5)

and it is evident that (4) implies (3). This concludes the proof.

Note that in the next sections the matrix notations Q, R, S, can be used in another context, too.

2.3 Bounded real lemma
Proposition 2. System (1), (2) is stable with quadratic performance �C(sI−A)−1B +D�2

∞ ≤ γ if
there exist a symmetric positive definite matrix P > 0, P ∈ IRn×n and a positive scalar γ > 0, γ ∈ IR
such that

i.

⎡
⎣

ATP+PA PB CT

∗ −γIr DT

∗ ∗ −Im

⎤
⎦ < 0

ii.

⎡
⎣

PAT+AP PCT B
∗ −γIm D
∗ ∗ −Ir

⎤
⎦ < 0
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iii.

⎡
⎣

P−1AT+AP−1 B P−1CT

∗ −γIr DT

∗ ∗ −Im

⎤
⎦ < 0

iv.

⎡
⎣

ATP−1+P−1A CT P−1B
∗ −γIm D
∗ ∗ −Ir

⎤
⎦ < 0

(6)

where Ir ∈ IRr×r, Im ∈ IRm×m are identity matrices, respectively.

Hereafter, ∗ denotes the symmetric item in a symmetric matrix.

Proof. i. Defining Lyapunov function as follows (Gahinet et al. (1996))

v(q(t)) = qT(t)Pq(t) +
t�

0

(yT(r)y(r)− γuT(r)u(r))dr > 0 (7)

where P = PT > 0, P ∈ IRn×n, γ > 0 ∈ IR, and evaluating the derivative of v(q(t)) with
respect to t along a system trajectory then it yields

v̇(q(t)) = q̇T(t)Pq(t) + qT(t)Pq̇(t) + yT(t)y(t)− γuT(t)u(t) < 0 (8)

Thus, substituting (1), (2) into (8) gives

v̇(q(t)) = (Aq(t) + Bu(t))TPq(t) + qT(t)P(Aq(t)+Bu(t))−γuT(t)u(t)+

+(Cq(t)+Du(t))T(Cq(t)+Du(t)) < 0
(9)

and with the next notation
qT

c (t) =
�

qT(t) uT(t)
�

(10)

it is obtained
v̇(q(t)) = qT

c(t)Pcqc(t) < 0 (11)

where

Pc =

�
ATP + PA PB

∗ −γIr

�
+

�
CTC CTD
∗ DTD

�
< 0 (12)

Since �
CTC CTD
∗ DTD

�
=

�
CT

DT

� �
C D

� ≥ 0 (13)

Schur complement property implies
⎡
⎣

0 0 CT

∗ 0 DT

∗ ∗ −Im

⎤
⎦ ≥ 0 (14)

and using (14) the LMI condition (12) can be written compactly as i. of (2).
ii. Since H∞ norm is closed with respect to complex conjugation and matrix transposition
(Petersen et al. (2000)), then

�C(sI−A)−1B +D�2
∞ ≤ γ ⇔ �BT(sI−AT)−1CT +DT�2

∞ ≤ γ (15)
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and substituting the dual matrix parameters into i. of (2) implies ii. of (2).
iii. Defining the congruence transform matrix

L1 = diag
�

P−1 Ir Im
�

(16)

and pre-multiplying left-hand side and right-hand side of i. of (2) by (16) subsequently gives
ii. of (16).

iii. Analogously, substituting the matrix parameters of the dual system description form into
iii. of (2) implies iv. of (2).

Note, to design the gain matrix of memory-free control law using LMI principle only the
condition ii. and iii. of (2) are suitable.
Preposition 2 is quite attractive giving a representative result of its type to conclude the
asymptotic stability of a system which H∞ norm is less than a real value γ > 0, and can be
employed in the next for comparative purposes. However, its proof is technical, which more
or less, can brings about inconvenience in understanding and applying the results. Thus, in
this chapter, some modifications are proposed to directly reach applicable solutions.

2.4 Improved BRL representation
As soon as the representations (2) of the BRL is given, the proof of improvement BRL
representation is rather easy as given in the following.

Theorem 1. System (1), (2) is stable with quadratic performance �C(sI−A)−1B +D�2
∞ ≤ γ if there

exist a symmetric positive definite matrix P > 0, P ∈ IRn×n, matrices S1, S2 ∈ IRn×n, and a scalar
γ > 0, γ ∈ IR such that

i.

⎡
⎢⎢⎣

−S1A−ATST
1 −S1B P+S1−ATST

2 CT

∗ −γIr −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0

ii.

⎡
⎢⎢⎣

−S1AT−AST
1 −S1CT P+S1−AST

2 B
∗ −γIm −CST

2 D
∗ ∗ S2+ST

2 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0

(17)

Proof. i. Since (1) implies
q̇(t)− Aq(t)− Bu(t) = 0 (18)

then with arbitrary square matrices S1, S2 ∈ IRn×n it yields

(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t)) = 0 (19)

Thus, adding (19), as well as its transposition to (8) and substituting (2) it yields

v̇(q(t)) =

= q̇T(t)Pq(t)+qT(t)Pq̇(t)−γuT(t)u(t) + (Cq(t)+Du(t))T(Cq(t)+Du(t))+

+(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t))+

+(q̇T(t)−qT(t)AT−uT(t)BT)(ST
1 q(t)+ST

2 q̇(t))< 0

(20)
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and using (14) the LMI condition (12) can be written compactly as i. of (2).
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and substituting the dual matrix parameters into i. of (2) implies ii. of (2).
iii. Defining the congruence transform matrix

L1 = diag
�

P−1 Ir Im
�

(16)

and pre-multiplying left-hand side and right-hand side of i. of (2) by (16) subsequently gives
ii. of (16).

iii. Analogously, substituting the matrix parameters of the dual system description form into
iii. of (2) implies iv. of (2).

Note, to design the gain matrix of memory-free control law using LMI principle only the
condition ii. and iii. of (2) are suitable.
Preposition 2 is quite attractive giving a representative result of its type to conclude the
asymptotic stability of a system which H∞ norm is less than a real value γ > 0, and can be
employed in the next for comparative purposes. However, its proof is technical, which more
or less, can brings about inconvenience in understanding and applying the results. Thus, in
this chapter, some modifications are proposed to directly reach applicable solutions.

2.4 Improved BRL representation
As soon as the representations (2) of the BRL is given, the proof of improvement BRL
representation is rather easy as given in the following.

Theorem 1. System (1), (2) is stable with quadratic performance �C(sI−A)−1B +D�2
∞ ≤ γ if there

exist a symmetric positive definite matrix P > 0, P ∈ IRn×n, matrices S1, S2 ∈ IRn×n, and a scalar
γ > 0, γ ∈ IR such that

i.

⎡
⎢⎢⎣

−S1A−ATST
1 −S1B P+S1−ATST

2 CT

∗ −γIr −BTST
2 DT

∗ ∗ S2+ST
2 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0

ii.

⎡
⎢⎢⎣

−S1AT−AST
1 −S1CT P+S1−AST

2 B
∗ −γIm −CST

2 D
∗ ∗ S2+ST

2 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0

(17)

Proof. i. Since (1) implies
q̇(t)− Aq(t)− Bu(t) = 0 (18)

then with arbitrary square matrices S1, S2 ∈ IRn×n it yields

(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t)) = 0 (19)

Thus, adding (19), as well as its transposition to (8) and substituting (2) it yields

v̇(q(t)) =

= q̇T(t)Pq(t)+qT(t)Pq̇(t)−γuT(t)u(t) + (Cq(t)+Du(t))T(Cq(t)+Du(t))+

+(qT(t)S1+q̇T(t)S2)(q̇(t)−Aq(t)−Bu(t))+

+(q̇T(t)−qT(t)AT−uT(t)BT)(ST
1 q(t)+ST

2 q̇(t))< 0

(20)
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and using the notation
qT

c (t) =
�

qT(t) uT(t) q̇T(t)
�

(21)

it can be obtained
v̇(q(t)) = qT

c(t)P
◦
c qc(t) < 0 (22)

where

P◦
c =

⎡
⎢⎣

CTC CTD 0

∗ DTD 0
∗ ∗ 0

⎤
⎥⎦+

⎡
⎢⎣
−S1 A−ATST

1 −S1B P+S1−ATST
2

∗ −γIm −BTST
2

∗ ∗ S2+ST
2

⎤
⎥⎦ < 0 (23)

Thus, analogously to (13), (14) it then follows the inequality (23) can be written compactly as
i. of (17).

ii. Using duality principle, substituting the dual matrix parameters into i. of (17) implies ii. of
(17).

2.5 Basic modifications
Obviously, the aforementioned proof for Theorem 1 is rather simple, and connection between
Theorem 1 and the existing results of Preposition 2 can be established. To convert it into basic
modifications the following theorem yields alternative ways to describe the H∞-norm.

Theorem 2. System (1), (2) is stable with quadratic performance �C(sI−A)−1B +D�2
∞ ≤ γ if there

exist a symmetric positive definite matrix P > 0, P ∈ IRn×n, a matrix S2 ∈ IRn×n, and a scalar γ > 0,
γ ∈ IR such that

i.

⎡
⎢⎢⎢⎢⎢⎣

P−1AT+AP−1 B P−1AT P−1CT

∗ −γIr BT DT

∗ ∗ −S−1
2 −S−T

2 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
< 0

ii.

⎡
⎢⎢⎢⎢⎣

PAT+AP PCT A B

∗ −γIm C D
∗ ∗ −S−1

2 −S−T
2 0

∗ ∗ ∗ −Ir

⎤
⎥⎥⎥⎥⎦
< 0

(24)

Proof. i. Since S1, S2 are arbitrary square matrices selection of S1 can now be made in the form
S1 =−P, and it can be supposed that det(S2) �= 0. Thus, defining the congruence transform
matrix

L2 = diag
�
P−1 Ir −S−1

2 Im
�

(25)

and pre-multiplying right-hand side of i. of (17) by L2, and left-hand side of i. of (17) by LT
2

leads to i. of (24).

ii. Analogously, selecting S1 = −P, and considering det(S2) �= 0 the next congruence
transform matrix can be introduced

L3 = diag
�
In Im −S−1

2 In
�

(26)

and pre-multiplying right-hand side of ii. of (17) by L3, and left-hand side of ii. of (17) by LT
3

leads to ii. of (24).
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2.6 Associate modifications
Since alternate conditions of a similar type are also available, similar to the proof of Theorem
2 the following conclusions can be given.

Corollary 1. Similarly, setting S2 =−δP, where δ > 0, δ ∈ IR the inequality ii. given in (24) reduces
to ⎡

⎢⎢⎣
PAT+AP PCT A B

∗ −γIm C D
∗ ∗ −2δ−1P−1 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0 (27)

⎡
⎢⎢⎣

PAT+AP PCT AP B
∗ −γIm CP D
∗ ∗ −2δ−1P 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0 (28)

respectively, and using Schur complement property then (28) can now be rewritten as

Λ1 + 0.5 δΛ2 < 0 (29)

where

Λ1 =

⎡
⎣

AP+PAT PCT B
∗ −γIm D
∗ ∗ −Ir

⎤
⎦ < 0 (30)

Λ2 =

⎡
⎣

AP
CP
0

⎤
⎦P−1�PAT PCT 0

�
=

⎡
⎣

APAT APCT 0
CPAT CPCT 0

0 0 0

⎤
⎦ (31)

Choosing δ as a sufficiently small scalar, where

0 < δ < 2λ1/λ2 (32)

λ1 = λmax(−Λ1), λ2 = λmin(Λ2) (33)

(28) be negative definite for a feasible P of ii. of (2).

Remark 1. Associated with the second statement of the Theorem 2, setting S2 = −δIn, then ii. of
(24) implies ⎡

⎢⎢⎣
AP+PAT PCT A B

∗ −γIm C D
∗ ∗ −2δ−1In 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0 (34)

and (34) can be written as (29), with (30) and with

Λ2=

⎡
⎣

AAT ACT 0
CAT CCT 0

0 0 0

⎤
⎦ (35)

Thus, satisfying (32), (33) then (34) be negative definite for a feasible P of iii. of (2).

Note, the form (34) is suitable to optimize a solution with respect to both LMI variables γ, δ
in an LMI structure. Conversely, the form (28) behaves LMI structure only if δ is a prescribed
constant design parameter, and only γ can by optimized as an LMI variable if possible, or to
formulate design task as BMI problem.
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2.6 Associate modifications
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Corollary 2. By the same way, setting S2 =−δP, where δ > 0, δ ∈ IR the inequality i. given in (24)
be reduced to ⎡

⎢⎢⎣

P−1AT+AP−1 B P−1AT P−1CT

∗ −γIr BT DT

∗ ∗ −2δ−1P−1 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0 (36)

Then (36) can be written as (29), with

Λ1 =

⎡
⎣

P−1AT+AP−1 B P−1CT

∗ −γIr DT

∗ ∗ −Im

⎤
⎦ (37)

Λ2=

⎡
⎣

P−1ATPAP−1 P−1ATPB 0
BTPAP−1 BTPB 0

0 0 0

⎤
⎦ (38)

Thus, satisfying (32), (33) then (36) be negative definite for a feasible P of iii. of (2).

Remark 2. By a similar procedure, setting S2 =−δIn, where δ > 0, δ ∈ IR then i. of (24) implies the
following ⎡

⎢⎢⎣
P−1AT+AP−1 B P−1AT P−1CT

∗ −γIr BT DT

∗ ∗ −2δ−1In 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0 (39)

It is evident that (39) yields with the same Λ1 as given in (37) and

Λ2 =

⎡
⎣

P−1ATAP−1 P−1ATB 0
BTAP−1 BTB 0

0 0 0

⎤
⎦ (40)

Thus, this leads to the equivalent results as presented above, but with possible different interpretation.

3. Control law parameter design

3.1 Problem description
Through this section the task is concerned with the computation of a state feedback u(t),
which control the linear dynamic system given by (1), (2), i.e.

q̇(t) = Aq(t) + Bu(t) (41)

y(t) = Cq(t) + Du(t) (42)

Problem of the interest is to design stable closed-loop system with quadratic performance
γ > 0 using the linear memoryless state feedback controller of the form

u(t) = −Kq(t) (43)

where matrix K ∈ IRr×n is a gain matrix.
Then the unforced system, formed by the state controller (43), can be written as

q̇(t) = (A − BK)q(t) (44)
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y(t) = (C − DK)q(t) (45)

The state-feedback control problem is to find, for an optimized (or prescribed) scalar γ > 0,
the state-feedback gain K such that the control law guarantees an upper bound of

√
γ to H∞

norm of the closed-loop transfer function. Thus, Theorem 2 can be reformulated to solve this
state-feedback control problem for linear continuous time systems.

Theorem 3. Closed-loop system (44), (45) is stable with performance �Cc(sI−Ac)−1B�2
∞ ≤ γ,

Ac = A−BK, Cc = C−DK if there exist regular square matrices T, U, V ∈ IRn×n, a matrix
W ∈ IRr×n, and a scalar γ > 0, γ ∈ IR such that

T = TT > 0, γ > 0 (46)
⎡
⎢⎢⎢⎢⎢⎣

V AT−WTBT+AV T−BW −B T−UT+V AT−WTBT −VCT+WTDT

∗ −γIr −BT DT

∗ ∗ −U−UT 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
< 0 (47)

The control law gain matrix is now given as

K = WV−T (48)

Proof. Considering that det S1 �= 0, det S2 �= 0 the congruence transform L4 can be defined as
follows

L4 = diag
�

S−1
1 Ir S−1

2 Im
�

(49)

and multiplying left-hand side of i. of (17) by L4, and right-hand side of (17) by LT
4 gives

⎡
⎢⎢⎢⎢⎣

−AS−T
1 −S−1

1 AT −B S−1
1 PS−T

2 +S−T
2 −S−1

1 AT S−1
1 CT

∗ −γIr −BT DT

∗ ∗ S−1
2 +S−T

2 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎦
< 0 (50)

Inserting A ← Ac, C ← Cc into (50) and denoting

S−1
1 PS−T

2 = T, S−1
1 = −V , S−1

2 = −U (51)

(50) takes the form
⎡
⎢⎢⎢⎢⎢⎣

(A−BK)V T+V(A−BK)T −B T−UT+V(A−BK)T −V(C − DK)T

∗ −γIr −BT DT

∗ ∗ −U−UT 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
< 0 (52)

and with
W = KV T (53)

(50) implies (47).
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Through this section the task is concerned with the computation of a state feedback u(t),
which control the linear dynamic system given by (1), (2), i.e.

q̇(t) = Aq(t) + Bu(t) (41)

y(t) = Cq(t) + Du(t) (42)

Problem of the interest is to design stable closed-loop system with quadratic performance
γ > 0 using the linear memoryless state feedback controller of the form

u(t) = −Kq(t) (43)

where matrix K ∈ IRr×n is a gain matrix.
Then the unforced system, formed by the state controller (43), can be written as

q̇(t) = (A − BK)q(t) (44)
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norm of the closed-loop transfer function. Thus, Theorem 2 can be reformulated to solve this
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∞ ≤ γ,
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⎤
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Inserting A ← Ac, C ← Cc into (50) and denoting
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(50) takes the form
⎡
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Fig. 1. System output and state response

3.2 Basic modification
Corollary 3. Following the same lines of that for Theorem 2 it is immediate by inserting A ← Ac,
C ← Cc into i. of (24) and denoting

P−1 = X , S2 = Z (54)
that ⎡

⎢⎢⎣
AX+XAT−BKX−XKTBT B −X AT + XKTBT XCT − XKTDT

∗ −γIr −BT DT

∗ ∗ −Z−ZT 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0 (55)

Thus, using Schur complement equivalency, and with

Y = KX (56)

(58) implies
X = XT > 0, γ > 0 (57)

⎡
⎢⎢⎣

AX+X AT−BY−YTBT B X AT − Y TBT XCT − YT DT

∗ −γIr BT DT

∗ ∗ −Z−ZT 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦ < 0 (58)

Illustrative example
The approach given above is illustrated by an example where the parameters of the (41), (42)
are

A =

⎡
⎣

0 1 0
0 0 1

−5 −9 −5

⎤
⎦ , B =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , CT =

⎡
⎣

1 1
2 −1

−2 0

⎤
⎦ , D = 0

Solving (57), (58) with respect to the next LMI variables X, Y, Z, and δ using SeDuMi
(Self-Dual-Minimization) package for Matlab (Peaucelle et al. (1994)) given task was feasible
with

X =

⎡
⎣

0.6276 −0.3796 −0.0923
−0.3796 0.7372 0.3257
−0.0923 0.3257 0.9507

⎤
⎦ , Z =

⎡
⎣

5.0040 0.1209 0.4891
0.1209 4.9512 0.4888
0.4891 0.4888 5.2859

⎤
⎦
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Y =

�
0.4917 3.2177 0.7775
0.6100 −1.5418 −0.3739

�
, γ = 8.4359

and results the control system parameters

K =

�
5.1969 7.6083 −1.2838

−0.5004 −2.5381 0.4276

�
, ρ(Ac) = {−5.5999, −8.3141 ± 1.6528 i}

The example is shown of the closed-loop system response in the forced mode, where in the
Fig. 1 the output response, as well as state variable response are presented, respectively. The
desired steady-state output variable values were set as [y1 y2] = [1−0.5].

3.3 Associate modifications

Remark 3. Inserting A ← Ac, C ← Cc into (39) and setting X = P−1, Y = KX , δ−1 = ξ, as well
as inserting the same into (34) and setting X = P, Y = KX , δ−1 = ξ gives

X = XT > 0, γ > 0, ξ > 0 (59)

i.

⎡
⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT B XAT−Y TBT XCT−YTDT

∗ −γIr BT DT

∗ ∗ −2ξ In 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎦
< 0

ii.

⎡
⎢⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT XCT−YTDT AX−BY B

∗ −γIm CX−DY D

∗ ∗ −2ξ In 0

∗ ∗ ∗ −Ir

⎤
⎥⎥⎥⎥⎥⎦
< 0

(60)

where feasible X , Y , γ, ξ implies the gain matrix (48).

Illustrative example
Considering the same parameters of (41), (42) and desired output values as is given above
then solving (59), (59) with respect to LMI variables X, Y , and γ given task was feasible with

i. γ = 8.3659 ii. γ = 35.7411

ξ = 5.7959 ξ = 30.0832

X =

⎡
⎢⎢⎣

0.6402 −0.3918 −0.1075

−0.3918 0.7796 0.3443

−0.1075 0.3443 0.9853

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

8.7747 −4.7218 −1.2776

−4.7218 5.8293 0.4784

−1.2776 0.4784 8.4785

⎤
⎥⎥⎦

Y =

�
0.5451 3.3471 0.6650

0.6113 −1.6481 −0.3733

�
Y =

�
2.7793 14.7257 5.1591

3.3003 −6.8347 −1.8016

�

K =

�
5.2296 7.5340 −1.3870

−0.5590 −2.6022 0.4694

�
K =

�
3.1145 4.9836 0.7966

−0.4874 −1.5510 −0.1984

�

ρ(Ac) = {−6.3921, −7.7931 ± 1.8646 i} ρ(Ac) = {−2.3005, −3.8535, −8.7190}
The closed-loop system response concerning ii. of (60) is in the Fig. 2.
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3.2 Basic modification
Corollary 3. Following the same lines of that for Theorem 2 it is immediate by inserting A ← Ac,
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that ⎡
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AX+XAT−BKX−XKTBT B −X AT + XKTBT XCT − XKTDT
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⎤
⎦ , B =

⎡
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1 3
2 1
1 5

⎤
⎦ , CT =

⎡
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1 1
2 −1

−2 0

⎤
⎦ , D = 0

Solving (57), (58) with respect to the next LMI variables X, Y, Z, and δ using SeDuMi
(Self-Dual-Minimization) package for Matlab (Peaucelle et al. (1994)) given task was feasible
with

X =

⎡
⎣

0.6276 −0.3796 −0.0923
−0.3796 0.7372 0.3257
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where feasible X , Y , γ, ξ implies the gain matrix (48).

Illustrative example
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Fig. 2. System output and state response
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Fig. 3. System output and state response

Remark 4. The closed-loop system (44), (45) is stable with quadratic performance γ > 0 and the
inequalities (15) are true if and only if there exists a symmetric positive definite matrix X > 0, X ∈
IRn×n, a matrix Y ∈ IRr×n, and a scalar γ > 0, γ ∈ IR such that

X = XT > 0, γ > 0, ξ > 0 (61)

i.

⎡
⎢⎢⎣

AX+XAT−BY−YTBT B XCT−YTDT

∗ −γIr 0

∗ ∗ −Im

⎤
⎥⎥⎦ < 0

ii.

⎡
⎢⎢⎢⎣

AX+XAT−BY−YTBT XCT−YTDT B

∗ −γIm D

∗ ∗ −Ir

⎤
⎥⎥⎥⎦ < 0

(62)
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Illustrative example
Using the same example consideration as are given above then solving (61), (62) with respect
to LMI variables X, Y, and γ given task was feasible with

i. γ = 6.8386 ii. γ = 17.6519

X =

⎡
⎢⎢⎣

1.1852 0.1796 0.6494

0.1796 1.4325 1.1584

0.6494 1.1584 2.1418

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

6.0755 −0.9364 1.0524

−0.9364 5.1495 2.4320

1.0524 2.4320 7.2710

⎤
⎥⎥⎦

Y =

�
2.0355 3.7878 −3.2286

0.6142 −2.1847 −3.0636

�
Y =

�
6.3651 9.9547 −8.7603

2.2941 −5.3741 −6.2975

�

K =

�
4.4043 7.8029 −7.0627

1.5030 −0.3349 −1.7049

�
K =

�
2.0688 3.5863 −2.7038

0.4033 −0.6338 −0.7125

�

ρ(Ac) = {−4.3952, −4.6009 ± 14.8095 i} ρ(Ac) = {−2.2682, −3.1415 ± 9.634 i}
The simulation results are shown in Fig. 3, and are concerning with i. of (62).
It is evident that different design conditions implying from the equivalent, but different,
bounded lemma structures results in different numerical solutions.

3.4 Dependent modifications
Similar extended LMI characterizations can be derived by formulating LMI in terms of
product ξP, where ξ is a prescribed scalar to overcome BMI formulation (Veselý & Rosinová
(2009)).

Theorem 4. Closed-loop system (1), (2) is stable with quadratic performance �Cc(sI−Ac)−1B�2
∞ ≤

γ, Ac = A−BK, Cc = C−DK if for given ξ > 0 there exist a symmetric positive definite matrix
X > 0, X ∈ IRn×n, a regular square matrix Z ∈ IRn×n, a matrix Y ∈ IRr×n, and a scalar γ > 0,
γ ∈ IR such that

X = XT > 0, γ > 0 (63)

i.

⎡
⎢⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT B X AT−YTBT XCT−YTDT

∗ −γIr BT DT

∗ ∗ −2ξX 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
< 0

ii.

⎡
⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT XCT−YTDT AX−BY B

∗ −γIm CX−DY D
∗ ∗ −2ξX 0

∗ ∗ ∗ −Ir

⎤
⎥⎥⎥⎥⎦
< 0

(64)

where K is given in (48).

Proof. i. Inserting A ← Ac, C ← Cc into (36) and setting X = P−1, Y = KX , and ξ = δ−1 then
(36) implies ii. of (64).
ii. Inserting A ← Ac, C ← Cc into (28) and setting X = P, Y = KX , and ξ = δ−1 then (28)
implies i. of (64).
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Remark 4. The closed-loop system (44), (45) is stable with quadratic performance γ > 0 and the
inequalities (15) are true if and only if there exists a symmetric positive definite matrix X > 0, X ∈
IRn×n, a matrix Y ∈ IRr×n, and a scalar γ > 0, γ ∈ IR such that

X = XT > 0, γ > 0, ξ > 0 (61)

i.

⎡
⎢⎢⎣

AX+XAT−BY−YTBT B XCT−YTDT

∗ −γIr 0

∗ ∗ −Im

⎤
⎥⎥⎦ < 0

ii.

⎡
⎢⎢⎢⎣

AX+XAT−BY−YTBT XCT−YTDT B

∗ −γIm D

∗ ∗ −Ir

⎤
⎥⎥⎥⎦ < 0

(62)
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Illustrative example
Using the same example consideration as are given above then solving (61), (62) with respect
to LMI variables X, Y, and γ given task was feasible with

i. γ = 6.8386 ii. γ = 17.6519

X =

⎡
⎢⎢⎣

1.1852 0.1796 0.6494

0.1796 1.4325 1.1584

0.6494 1.1584 2.1418

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

6.0755 −0.9364 1.0524

−0.9364 5.1495 2.4320

1.0524 2.4320 7.2710

⎤
⎥⎥⎦

Y =

�
2.0355 3.7878 −3.2286

0.6142 −2.1847 −3.0636

�
Y =

�
6.3651 9.9547 −8.7603

2.2941 −5.3741 −6.2975

�

K =

�
4.4043 7.8029 −7.0627

1.5030 −0.3349 −1.7049

�
K =

�
2.0688 3.5863 −2.7038

0.4033 −0.6338 −0.7125

�

ρ(Ac) = {−4.3952, −4.6009 ± 14.8095 i} ρ(Ac) = {−2.2682, −3.1415 ± 9.634 i}
The simulation results are shown in Fig. 3, and are concerning with i. of (62).
It is evident that different design conditions implying from the equivalent, but different,
bounded lemma structures results in different numerical solutions.

3.4 Dependent modifications
Similar extended LMI characterizations can be derived by formulating LMI in terms of
product ξP, where ξ is a prescribed scalar to overcome BMI formulation (Veselý & Rosinová
(2009)).

Theorem 4. Closed-loop system (1), (2) is stable with quadratic performance �Cc(sI−Ac)−1B�2
∞ ≤

γ, Ac = A−BK, Cc = C−DK if for given ξ > 0 there exist a symmetric positive definite matrix
X > 0, X ∈ IRn×n, a regular square matrix Z ∈ IRn×n, a matrix Y ∈ IRr×n, and a scalar γ > 0,
γ ∈ IR such that

X = XT > 0, γ > 0 (63)

i.

⎡
⎢⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT B X AT−YTBT XCT−YTDT

∗ −γIr BT DT

∗ ∗ −2ξX 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
< 0

ii.

⎡
⎢⎢⎢⎢⎣

AX+XAT−BY−YTBT XCT−YTDT AX−BY B

∗ −γIm CX−DY D
∗ ∗ −2ξX 0

∗ ∗ ∗ −Ir

⎤
⎥⎥⎥⎥⎦
< 0

(64)

where K is given in (48).

Proof. i. Inserting A ← Ac, C ← Cc into (36) and setting X = P−1, Y = KX , and ξ = δ−1 then
(36) implies ii. of (64).
ii. Inserting A ← Ac, C ← Cc into (28) and setting X = P, Y = KX , and ξ = δ−1 then (28)
implies i. of (64).
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Fig. 4. System output and state response

Note, other nontrivial solutions can be obtained using different setting of Sl , l = 1, 2.

Illustrative example
Considering the same system parameters of (1), (2), and the same desired output values as are
given above then solving (63), (64) with respect to LMI variables X , Y , and γ with prescribed
ξ = 10/xi = 30, respectively, given task was feasible with

i. γ = 8.3731 ii. γ = 17.6519

ξ = 10 ξ = 30

X =

⎡
⎢⎢⎣

0.5203 −0.2338 0.0038

−0.2338 0.7293 0.2359

0.0038 0.2359 0.7728

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

0.8926 −0.2332 0.0489

−0.2332 1.2228 0.3403

0.0489 0.3403 1.3969

⎤
⎥⎥⎦

Y =

�
0.8689 3.2428 0.6068

0.3503 −1.6271 −0.1495

�
Y =

�
3.0546 8.8611 0.2482

2.0238 −2.8097 3.0331

�

K =

�
4.4898 6.2565 −1.1462

−0.4912 −2.5815 0.5968

�
K =

�
5.8920 8.9877 −2.2185

1.3774 −2.8170 2.8094

�

ρ(Ac) ={−8.3448, −5.7203 ± 3.6354 i} ρ(Ac) ={−4.6346, −12.3015, −25.0751}

The same simulation study as above was carried out, and the simulation results concerning ii.
of (64) for the states and output variables of the system are shown in Fig. 4.

It also should be noted, the cost value γ will not be a monotonously decreasing function with
the decreasing of ξ, if δ = ξ−1 is chosen.

4. Uncertain continuous-time systems

The importance of Theorem 3 is that it separates T from A, B, C, and D, i.e. there are no terms
containing the product of T and any of them. This enables to derive other forms of bonded real
lemma for a system with polytopic uncertainties by using a parameter-dependent Lyapunov
function.
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4.1 Problem description
Assuming that the matrices A, B, C, and D of (1), (2) are not precisely known but belong to a
polytopic uncertainty domain O,

O :=

�
(A, B, C, D) (a) : (A, B, C, D) (a) =

s

∑
i=1

ai (Ai, Bi, Ci, Di) , a ∈ Q
�

(65)

Q =

�
(a1, a2, · · · , as) :

s

∑
i=1

ai = 1; ai > 0, i = 1, 2, . . . , s

�
(66)

where Q is the unit simplex, Ai, Bi, Ci, and Di are constant matrices with appropriate
dimensions, and ai, i = 1, 2, . . . , s are time-invariant uncertainties.
Since a is constrained to the unit simplex as (66) the matrices (A, B, C, D) (a) are affine
functions of the uncertain parameter vector a ∈ IRs described by the convex combination
of the vertex matrices (Ai, Bi, Ci, Di) , i = 1, 2, . . . , s.

The state-feedback control problem is to find, for a γ > 0, the state-feedback gain matrix K
such that the control law of

u(t) = −Kq(t) (67)

guarantees an upper bound of
√

γ to H∞ norm.
By virtue of the property of convex combinations, (48) can be readily used to derive the robust
performance criterion.

Theorem 5. Given system (65), (66) the closed-loop H∞ norm is less than a real value
√

γ > 0, if
there exist positive matrices T i ∈ IRn×n, i = 1, 2, . . . , s, real square matrices U , V ∈ IRn×n, and a real
matrix W ∈ IRr×n such that

γ > 0 (68)
⎡
⎢⎢⎢⎢⎢⎣

V AT
i −WT BT

i +AiV T−BiW −Bi T i−UT+V AT
i −WTBT

i −VCT
i +WT DT

i

∗ −γIr −BT
i DT

i

∗ ∗ −U−UT 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
<0 (69)

If the existence is affirmative, the state-feedback gain K is given by

K = WV−T (70)

Proof. It is obvious that (47), (48) implies directly (69), (70).

Remark 5. Thereby, robust control performance of uncertain continuous-time systems is guaranteed
by a parameter-dependent Lyapunov matrix, which is constructed as

T(a) =
s

∑
i=1

aiT i (71)
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Note, other nontrivial solutions can be obtained using different setting of Sl , l = 1, 2.

Illustrative example
Considering the same system parameters of (1), (2), and the same desired output values as are
given above then solving (63), (64) with respect to LMI variables X , Y , and γ with prescribed
ξ = 10/xi = 30, respectively, given task was feasible with

i. γ = 8.3731 ii. γ = 17.6519

ξ = 10 ξ = 30

X =

⎡
⎢⎢⎣

0.5203 −0.2338 0.0038

−0.2338 0.7293 0.2359

0.0038 0.2359 0.7728

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣

0.8926 −0.2332 0.0489

−0.2332 1.2228 0.3403

0.0489 0.3403 1.3969

⎤
⎥⎥⎦

Y =

�
0.8689 3.2428 0.6068

0.3503 −1.6271 −0.1495

�
Y =

�
3.0546 8.8611 0.2482

2.0238 −2.8097 3.0331

�

K =

�
4.4898 6.2565 −1.1462

−0.4912 −2.5815 0.5968

�
K =

�
5.8920 8.9877 −2.2185

1.3774 −2.8170 2.8094

�

ρ(Ac) ={−8.3448, −5.7203 ± 3.6354 i} ρ(Ac) ={−4.6346, −12.3015, −25.0751}

The same simulation study as above was carried out, and the simulation results concerning ii.
of (64) for the states and output variables of the system are shown in Fig. 4.

It also should be noted, the cost value γ will not be a monotonously decreasing function with
the decreasing of ξ, if δ = ξ−1 is chosen.

4. Uncertain continuous-time systems

The importance of Theorem 3 is that it separates T from A, B, C, and D, i.e. there are no terms
containing the product of T and any of them. This enables to derive other forms of bonded real
lemma for a system with polytopic uncertainties by using a parameter-dependent Lyapunov
function.
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4.1 Problem description
Assuming that the matrices A, B, C, and D of (1), (2) are not precisely known but belong to a
polytopic uncertainty domain O,

O :=

�
(A, B, C, D) (a) : (A, B, C, D) (a) =

s

∑
i=1

ai (Ai, Bi, Ci, Di) , a ∈ Q
�

(65)

Q =

�
(a1, a2, · · · , as) :

s

∑
i=1

ai = 1; ai > 0, i = 1, 2, . . . , s

�
(66)

where Q is the unit simplex, Ai, Bi, Ci, and Di are constant matrices with appropriate
dimensions, and ai, i = 1, 2, . . . , s are time-invariant uncertainties.
Since a is constrained to the unit simplex as (66) the matrices (A, B, C, D) (a) are affine
functions of the uncertain parameter vector a ∈ IRs described by the convex combination
of the vertex matrices (Ai, Bi, Ci, Di) , i = 1, 2, . . . , s.

The state-feedback control problem is to find, for a γ > 0, the state-feedback gain matrix K
such that the control law of

u(t) = −Kq(t) (67)

guarantees an upper bound of
√

γ to H∞ norm.
By virtue of the property of convex combinations, (48) can be readily used to derive the robust
performance criterion.

Theorem 5. Given system (65), (66) the closed-loop H∞ norm is less than a real value
√

γ > 0, if
there exist positive matrices T i ∈ IRn×n, i = 1, 2, . . . , s, real square matrices U , V ∈ IRn×n, and a real
matrix W ∈ IRr×n such that

γ > 0 (68)
⎡
⎢⎢⎢⎢⎢⎣

V AT
i −WT BT

i +AiV T−BiW −Bi T i−UT+V AT
i −WTBT

i −VCT
i +WT DT

i

∗ −γIr −BT
i DT

i

∗ ∗ −U−UT 0

∗ ∗ ∗ −Im

⎤
⎥⎥⎥⎥⎥⎦
<0 (69)

If the existence is affirmative, the state-feedback gain K is given by

K = WV−T (70)

Proof. It is obvious that (47), (48) implies directly (69), (70).

Remark 5. Thereby, robust control performance of uncertain continuous-time systems is guaranteed
by a parameter-dependent Lyapunov matrix, which is constructed as

T(a) =
s

∑
i=1

aiT i (71)
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4.2 Dependent modifications
Theorem 6. Given system (65), (66) the closed-loop H∞ norm is less than a real value

√
γ > 0, if

there exist positive symmetric matrices T i ∈ IRn×n, i = 1, 2, . . . , n, a real square matrices V ∈ IRn×n,
a real matrix W ∈ IRr×n, and a positive scalar δ > 0, δ ∈ IR such that

T i > 0, i = 1, 2, . . . , n, γ > 0 (72)

i.

⎡
⎢⎢⎣

V AT
i +AiV T−WTBT

i −BiW −Bi T i−δV T+V AT
i −WTBT

i −VCT
i +WTDT

i
∗ −γIr −BT

i DT
i

∗ ∗ −δ(V+V T) 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦<0

ii.

⎡
⎢⎢⎣

V AT
i +AiV T−WTBT

i −BiW VCT
i −WTDT

i T i−V T+δAiV−δBiW Bi
∗ −γIm δCiV−δDiW Di
∗ ∗ −δ(V+V T) 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0

(73)

If the existence is affirmative, the state-feedback gain K is given by

K = WV−T (74)

Proof. i. Setting U = δV then (69) implies i. of (73).
ii. Setting S1 = −V , and S2 = −δV then ii. of (17) implies ii. of (73).

Illustrative example
The approach given above is illustrated by the numerical example yielding the matrix
parameters of the system D(t) = D = 0

A(t) =

⎡
⎣

0 1 0
0 0 1

−5 −6r(t) −5r(t)

⎤
⎦ , B(t) = B =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , CT(t) = CT =

⎡
⎣

1 1
2 −1

−2 0

⎤
⎦

where the time varying uncertain parameter r(t) lies within the interval �0.5, 1.5�.
In order to represent uncertainty on r(t) it is assumed that the matrix parameters belongs to
the polytopic uncertainty domain O,

O :=

�
(A, B, C, D) (a) : (A, B, C, D) (a) =

2

∑
i=1

ai (Ai, Bi, Ci, Di) , a ∈ Q
�

Q = {(a1, a2) : a2 = 1 − a1; 0 < a1 < 1}

A1 =

⎡
⎣

0 1 0
0 0 1

−5 −3 −2.5

⎤
⎦ A2 =

⎡
⎣

0 1 0
0 0 1

−5 −9 −7.5

⎤
⎦

B1 = B2 = B, CT
1 = CT

2 = CT, D1 = D2 = 0

A = a1 A1 + (1−a1)A2, Ac = A−BK Ac0 = A0−BK

Thus, solving (72) and i. of (73) with respect to the LMI variables T1, T2, V , W , and δ given
task was feasible for a1 = 0.2, δ = 20. Subsequently, with

γ = 10.5304
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T1 =

⎡
⎣

7.0235 2.4579 2.6301
2.4579 7.4564 −0.4037
2.6301 −0.4037 5.3152

⎤
⎦ , T2 =

⎡
⎣

6.6651 2.6832 2.0759
2.6832 7.4909 −0.2568
2.0759 −0.2568 6.2386

⎤
⎦

V =

⎡
⎣

0.2250 −0.0758 −0.0350
0.0940 0.1801 −0.0241
0.1473 0.0375 0.1992

⎤
⎦ , W =

�
0.7191 3.0209 0.2881
0.1964 −0.7401 0.7382

�

the control law parameters were computed as

K =

�
6.5392 12.5891 −5.7581
0.2809 −3.6944 4.1922

�
, �K� = 16.3004

and including into the state control law the were obtained the closed-loop system matrix
eigenvalues set

ρ(Ac0) = {−2.0598, −22.2541, −24.7547}
Solving (72) and ii. of (73) with respect to the LMI variables T1, T2, V , W , and δ given task
was feasible for a1 = 0.2, δ = 20, too, and subsequently, with

γ = 10.5304

T1 =

⎡
⎣

239.1234 108.9248 250.1206
108.9248 307.9712 13.8497
250.1206 13.8497 397.1333

⎤
⎦ , T2 =

⎡
⎣

222.8598 121.9115 251.6458
121.9115 341.0193 63.4202
251.6458 63.4202 445.9279

⎤
⎦

V =

⎡
⎣

6.5513 −2.0718 −0.2451
2.1635 2.2173 0.1103
0.2448 0.2964 0.4568

⎤
⎦ , W =

�
4.6300 6.6167 −2.6780
1.7874 −0.7898 4.3214

�

the closed-loop parameters were computed as

K =

�
1.1296 2.2771 −7.9446
0.2888 −1.1375 10.0427

�
, �K� = 13.1076

ρ(Ac) = {−50.4633, −1.1090 ± 2.1623 i}
It is evident, that the eigenvalues spectrum ρ(Ac0) of the closed control loop is stable in
both cases. However, taking the same values of γ, the solutions differ especially in the
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4.2 Dependent modifications
Theorem 6. Given system (65), (66) the closed-loop H∞ norm is less than a real value

√
γ > 0, if

there exist positive symmetric matrices T i ∈ IRn×n, i = 1, 2, . . . , n, a real square matrices V ∈ IRn×n,
a real matrix W ∈ IRr×n, and a positive scalar δ > 0, δ ∈ IR such that

T i > 0, i = 1, 2, . . . , n, γ > 0 (72)

i.

⎡
⎢⎢⎣

V AT
i +AiV T−WTBT

i −BiW −Bi T i−δV T+V AT
i −WTBT

i −VCT
i +WTDT

i
∗ −γIr −BT

i DT
i

∗ ∗ −δ(V+V T) 0
∗ ∗ ∗ −Im

⎤
⎥⎥⎦<0

ii.

⎡
⎢⎢⎣

V AT
i +AiV T−WTBT

i −BiW VCT
i −WTDT

i T i−V T+δAiV−δBiW Bi
∗ −γIm δCiV−δDiW Di
∗ ∗ −δ(V+V T) 0
∗ ∗ ∗ −Ir

⎤
⎥⎥⎦ < 0

(73)

If the existence is affirmative, the state-feedback gain K is given by

K = WV−T (74)

Proof. i. Setting U = δV then (69) implies i. of (73).
ii. Setting S1 = −V , and S2 = −δV then ii. of (17) implies ii. of (73).

Illustrative example
The approach given above is illustrated by the numerical example yielding the matrix
parameters of the system D(t) = D = 0

A(t) =

⎡
⎣

0 1 0
0 0 1

−5 −6r(t) −5r(t)

⎤
⎦ , B(t) = B =

⎡
⎣

1 3
2 1
1 5

⎤
⎦ , CT(t) = CT =

⎡
⎣

1 1
2 −1

−2 0

⎤
⎦

where the time varying uncertain parameter r(t) lies within the interval �0.5, 1.5�.
In order to represent uncertainty on r(t) it is assumed that the matrix parameters belongs to
the polytopic uncertainty domain O,

O :=

�
(A, B, C, D) (a) : (A, B, C, D) (a) =

2

∑
i=1

ai (Ai, Bi, Ci, Di) , a ∈ Q
�

Q = {(a1, a2) : a2 = 1 − a1; 0 < a1 < 1}

A1 =

⎡
⎣

0 1 0
0 0 1

−5 −3 −2.5

⎤
⎦ A2 =

⎡
⎣

0 1 0
0 0 1

−5 −9 −7.5

⎤
⎦

B1 = B2 = B, CT
1 = CT

2 = CT, D1 = D2 = 0

A = a1 A1 + (1−a1)A2, Ac = A−BK Ac0 = A0−BK

Thus, solving (72) and i. of (73) with respect to the LMI variables T1, T2, V , W , and δ given
task was feasible for a1 = 0.2, δ = 20. Subsequently, with

γ = 10.5304
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T1 =

⎡
⎣

7.0235 2.4579 2.6301
2.4579 7.4564 −0.4037
2.6301 −0.4037 5.3152

⎤
⎦ , T2 =

⎡
⎣

6.6651 2.6832 2.0759
2.6832 7.4909 −0.2568
2.0759 −0.2568 6.2386

⎤
⎦

V =

⎡
⎣

0.2250 −0.0758 −0.0350
0.0940 0.1801 −0.0241
0.1473 0.0375 0.1992

⎤
⎦ , W =

�
0.7191 3.0209 0.2881
0.1964 −0.7401 0.7382

�

the control law parameters were computed as

K =

�
6.5392 12.5891 −5.7581
0.2809 −3.6944 4.1922

�
, �K� = 16.3004

and including into the state control law the were obtained the closed-loop system matrix
eigenvalues set

ρ(Ac0) = {−2.0598, −22.2541, −24.7547}
Solving (72) and ii. of (73) with respect to the LMI variables T1, T2, V , W , and δ given task
was feasible for a1 = 0.2, δ = 20, too, and subsequently, with

γ = 10.5304

T1 =

⎡
⎣

239.1234 108.9248 250.1206
108.9248 307.9712 13.8497
250.1206 13.8497 397.1333

⎤
⎦ , T2 =

⎡
⎣

222.8598 121.9115 251.6458
121.9115 341.0193 63.4202
251.6458 63.4202 445.9279

⎤
⎦

V =

⎡
⎣

6.5513 −2.0718 −0.2451
2.1635 2.2173 0.1103
0.2448 0.2964 0.4568

⎤
⎦ , W =

�
4.6300 6.6167 −2.6780
1.7874 −0.7898 4.3214

�

the closed-loop parameters were computed as

K =

�
1.1296 2.2771 −7.9446
0.2888 −1.1375 10.0427

�
, �K� = 13.1076

ρ(Ac) = {−50.4633, −1.1090 ± 2.1623 i}
It is evident, that the eigenvalues spectrum ρ(Ac0) of the closed control loop is stable in
both cases. However, taking the same values of γ, the solutions differ especially in the
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closed-loop dominant eigenvalues, as well as in the control law gain matrix norm, giving
together closed-loop system matrix eigenstructure. To prefer any of them is not as so easy as
it seems at the first sight, and the less gain norm may not be the best choice.

Fig. 5 illustrates the simulation results with respect to a solution of i. of (73) and (72).
The initial state of system state variable was setting as [q1 q2 q3]

T = [0.5 1 0]T, the desired
steady-state output variable values were set as [y1 y2]

T = [1−0.5]T, and the system matrix
parameter change from p = 1 to p = 0.54 was realized 5 seconds after the state control
start-up.
The same simulation study was carried out using the control parameter obtained by solving
ii. of (73), (72), and the simulation results are shown in Fig. 6. It can be seen that the presented
control scheme partly eliminates the effects of parameter uncertainties, and guaranteed the
quadratic stability of the closed-loop system.

5. Pairwise-autonomous principle in control design

5.1 Problem description
Considering the system model of the form (1), (2), i.e.

q̇(t) = Aq(t) + Bu(t) (75)

y(t) = Cq(t) + Du(t) (76)

but reordering in such way that

A =
[

Ai,l
]

, C =
[

Ci,l
]

, B = diag
[

Bi
]

, D = 0 (77)

where i, l = 1, 2, . . . , p, and all parameters and variables are with the same dimensions as it is
given in Subsection 2.1. Thus, respecting the above give matrix structures it yields

q̇h(t) = Ahhqh(t) +
p

∑
l=1, l �=h

(Ahlql(t) + Bhuh(t)) (78)

yh(t) = Chhqh(t) +
p

∑
l=1, l �=h

Chlql(t) (79)
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where qh(t) ∈ IRnh , uh(t) ∈ IRrh , yh(t) ∈ IRmh , Ahl ∈ IRnh×nl , Bh ∈ IRrh×nh , and Chl ∈ IRmh×nh ,
respectively, and n = ∑

p
l=1 nl , r = ∑

p
l=1 rl , m = ∑

p
l=1 ml .

Problem of the interest is to design closed-loop system using a linear memoryless state
feedback controller of the form

u(t) = −Kq(t) (80)

in such way that the large-scale system be stable, and

K =

⎡
⎢⎢⎢⎣

K11 K12 . . . K1p
K21 K22 . . . K2p

...
Kp1 Kp2 . . . Kpp

⎤
⎥⎥⎥⎦ , Khh =

p

∑
l=1, l �=h

Kl
h (81)

uh(t) = −Khhqh(t)−
p

∑
l=1, l �=h

Khlql(t), h = 1, 2, . . . , p (82)

Lemma 1. Unforced (autonomous) system (75)-(77) is stable if there exists a set of symmetric matrices

P◦
hk =

�
Pk

h Phk
Pkh Ph

k

�
(83)

such that

p−1

∑
h=1

p

∑
k=h+1

�
q̇T

hk(t)
�

Pk
h Phk

Pkh Ph
k

�
qhk(t) + qT

hk(t)
�

Pk
h Phk

Pkh Ph
k

�
q̇hk(t)

�
< 0 (84)

where

q̇hk(t) =
�

Ahh Ahk
Akh Akk

�
qhk(t) +

p

∑
l=1, l �=h,k

�
Ahl
Akl

�
ql(t) (85)

qT
hk(t) =

�
qT

h (t) qT
k (t)

�
(86)

Proof. Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t) > 0 (87)

where P = PT > 0, P ∈ IRn×n, then the time rate of change of v(q(t)) along a solution of the
system (75), (77) is

v̇(q(t)) = q̇T(t)Pq(t) + qT(t)Pq̇(t) < 0 (88)

Considering the same form of P with respect to K, i.e.

P =

⎡
⎢⎢⎢⎣

P11 P12 . . . P1M
P21 P22 . . . P2M

...
PM1 PM2 . . . PMM

⎤
⎥⎥⎥⎦ , Phh =

p

∑
l=1, l �=h

Pl
h (89)
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closed-loop dominant eigenvalues, as well as in the control law gain matrix norm, giving
together closed-loop system matrix eigenstructure. To prefer any of them is not as so easy as
it seems at the first sight, and the less gain norm may not be the best choice.

Fig. 5 illustrates the simulation results with respect to a solution of i. of (73) and (72).
The initial state of system state variable was setting as [q1 q2 q3]

T = [0.5 1 0]T, the desired
steady-state output variable values were set as [y1 y2]

T = [1−0.5]T, and the system matrix
parameter change from p = 1 to p = 0.54 was realized 5 seconds after the state control
start-up.
The same simulation study was carried out using the control parameter obtained by solving
ii. of (73), (72), and the simulation results are shown in Fig. 6. It can be seen that the presented
control scheme partly eliminates the effects of parameter uncertainties, and guaranteed the
quadratic stability of the closed-loop system.

5. Pairwise-autonomous principle in control design

5.1 Problem description
Considering the system model of the form (1), (2), i.e.

q̇(t) = Aq(t) + Bu(t) (75)

y(t) = Cq(t) + Du(t) (76)

but reordering in such way that

A =
[

Ai,l
]

, C =
[

Ci,l
]

, B = diag
[

Bi
]

, D = 0 (77)

where i, l = 1, 2, . . . , p, and all parameters and variables are with the same dimensions as it is
given in Subsection 2.1. Thus, respecting the above give matrix structures it yields

q̇h(t) = Ahhqh(t) +
p

∑
l=1, l �=h

(Ahlql(t) + Bhuh(t)) (78)

yh(t) = Chhqh(t) +
p

∑
l=1, l �=h

Chlql(t) (79)
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where qh(t) ∈ IRnh , uh(t) ∈ IRrh , yh(t) ∈ IRmh , Ahl ∈ IRnh×nl , Bh ∈ IRrh×nh , and Chl ∈ IRmh×nh ,
respectively, and n = ∑
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l=1 nl , r = ∑

p
l=1 rl , m = ∑
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Problem of the interest is to design closed-loop system using a linear memoryless state
feedback controller of the form

u(t) = −Kq(t) (80)

in such way that the large-scale system be stable, and

K =

⎡
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...
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Kl
h (81)
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Lemma 1. Unforced (autonomous) system (75)-(77) is stable if there exists a set of symmetric matrices
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hk =

�
Pk

h Phk
Pkh Ph
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�
(83)

such that

p−1

∑
h=1

p

∑
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�
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h Phk
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where
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qhk(t) +
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∑
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�
Ahl
Akl

�
ql(t) (85)

qT
hk(t) =

�
qT

h (t) qT
k (t)

�
(86)

Proof. Defining Lyapunov function as follows

v(q(t)) = qT(t)Pq(t) > 0 (87)

where P = PT > 0, P ∈ IRn×n, then the time rate of change of v(q(t)) along a solution of the
system (75), (77) is

v̇(q(t)) = q̇T(t)Pq(t) + qT(t)Pq̇(t) < 0 (88)

Considering the same form of P with respect to K, i.e.

P =

⎡
⎢⎢⎢⎣

P11 P12 . . . P1M
P21 P22 . . . P2M

...
PM1 PM2 . . . PMM

⎤
⎥⎥⎥⎦ , Phh =

p

∑
l=1, l �=h

Pl
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then the next separation is possible

P =

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

P2
1 P12 0 . . . 0

P21 P1
2 0 . . . 0

...
0 0 0 . . . 0

⎤
⎥⎥⎥⎦+ · · ·+

⎡
⎢⎢⎢⎢⎣

Pp
1 0 . . . 0 P1p

0 0 . . . 0 0
...

Pp1 0 . . . 0 P1
p

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

+

+ · · ·+

⎡
⎢⎢⎢⎢⎣

0 . . . 0 0 0
...

0 . . . 0 Pp
p−1 Pp−1,p

0 . . . 0 Pp,p−1 Pp−1
p

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

.

(90)

Writing (78) as

q̇hk(t) =
�

Ahh Ahk
Akh Akk

�
qhk(t) +

p

∑
l=1, l �=h,k

�
Ahl
Akl

�
ql(t) +

�
Bh 0
0 Bk

� �
uh(t)
uk(t)

�
(91)

and considering that for unforced system there are ul(t) = 0, l=1, . . . p then (91) implies (85).
Subsequently, with (90), (91) the inequality (88) implies (84).

5.2 Pairwise system description
Supposing that there exists the partitioned structure of K as is defined in (81), (82) then it
yields

uh(t) = −
p
∑

l=1, l �=h

�
Kl

h Khl
� � qh(t)

ql(t)

�
=

= − �
Kk

h Khk
��qh(t)

qk(t)

�
−

p
∑

l=1, l �=h,k

�
Kl

h Khl
��qh(t)

ql(t)

�
= uk

h(t) +
p
∑

l=1, l �=h,k
ul

h(t)
(92)

where for l = 1, 2, . . . , p, i �= h, k

ul
h(t) = − �

Kl
h Khl

� �qh(t)
ql(t)

�
(93)

Defining with h = 1, 2 . . . , p − 1, k = h + 1, h + 2 . . . , p
�

uk
h(t)

uh
k (t)

�
= −

�
Kk

h Khk
Kkh Kh

k

� �
qh(t)
qk(t)

�
= −K◦

hk

�
qh(t)
qk(t)

�
(94)

K◦
hk =

�
Kk

h Khk
Kkh Kh

k

�
(95)

and combining (92) for h and k it is obtained

�
uh(t)
uk(t)

�
= −

�
Kk

h Kkh
Khk Kh

k

� �
qh(t)
qk(t)

�
−

⎡
⎢⎢⎢⎣

p
∑

l=1, l �=h,k

�
Kl

h Khl
� � qh(t)

ql(t)

�

p
∑

l=1, l �=h,k

�
Kl

k Kkl
� � qk(t)

ql(t)

�

⎤
⎥⎥⎥⎦ (96)
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[
uh(t)
uk(t)

]
=

[
uk

h(t)
uh

k (t)

]
+

p

∑
l=1, l �=h,k

[
ul

h(t)
ul

k(t)

]
(97)

respectively. Then substituting (97) in (91) gives

q̇hk(t) =

=

[[
Ahh Ahk
Akh Akk

]
−
[
Bh 0
0 Bk

][
Kk

h Khk
Kkh Kh

k

]]
qhk(t)+

p
∑

l=1, l �=h,k

[
Bhul

h(t) + Ahlql(t)

Bkul
k(t) + Aklql(t)

]
(98)

Using the next notations

A◦
hkc =

[
Ahh Ahk
Akh Akk

]
−

[
Bh 0
0 Bk

] [
Kk

h Khk
Kkh Kh

k

]
= A◦

hk − B◦
hkK◦

hk (99)

ω◦
hk(t)=

p
∑

l=1, l �=h,k

[
Bhul

h(t) + Ahlql(t)

Bkul
k(t) + Aklql(t)

]
=

p
∑

l=1, l �=h,k

(
B◦

hk

[
ul

h(t)
ul

k(t)

]
+

[
Ahl

Akl

]
ql(t)

)
=

= B◦
hkωhk(t) +

p
∑

l=1, l �=h,k
Al◦

hkql(t)

(100)

where

ωhk(t) =
p

∑
l=1, l �=h,k

[
ul

h(t)
ul

k(t)

]
, Al◦

hk =

[
Ahl

Akl

]
(101)

A◦
hk =

[
Ahh Ahk
Akh Akk

]
, B◦

hk =

[
Bh 0
0 Bk

]
, K◦

hk =

[
Kk

h Khk
Kkh Kh

k

]
(102)

(98) can be written as

q̇hk(t) = A◦
hkcqhk(t) +

p

∑
l=1, l �=h,k

Al◦
hkql(t) + B◦

hkωhk(t) (103)

where ωhk(t) can be considered as a generalized auxiliary disturbance acting on the pair h, k
of the subsystems.
On the other hand, if

Chh =
p

∑
l=1, l �=h

Cl
h, C◦

hk =

[
Ck

h Chk
Ckh Ch

k

]
, Cl◦

hk =

[
Chl

Ckl

]
(104)

then

y(t) =
p−1

∑
h=1

p

∑
k=h+1

(
C◦

hkqhk(t) +
p

∑
l=1, l �=h

Cl
hql(t)

)
(105)

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) (106)

Now, taking (103), (106) considered pair of controlled subsystems is fully described as

q̇hk(t) = A◦
hkcqhk(t) +

p

∑
l=1, l �=h,k

Al◦
hkql(t) + B◦

hkωhk(t) (107)

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) (108)
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−

⎡
⎢⎢⎢⎣

p
∑

l=1, l �=h,k
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h Khl
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�
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l=1, l �=h,k

�
Kl

k Kkl
� � qk(t)

ql(t)

�

⎤
⎥⎥⎥⎦ (96)
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[
uh(t)
uk(t)

]
=

[
uk

h(t)
uh

k (t)

]
+

p

∑
l=1, l �=h,k

[
ul

h(t)
ul

k(t)

]
(97)

respectively. Then substituting (97) in (91) gives

q̇hk(t) =

=

[[
Ahh Ahk
Akh Akk

]
−
[
Bh 0
0 Bk

][
Kk

h Khk
Kkh Kh

k

]]
qhk(t)+

p
∑

l=1, l �=h,k

[
Bhul

h(t) + Ahlql(t)

Bkul
k(t) + Aklql(t)

]
(98)

Using the next notations

A◦
hkc =

[
Ahh Ahk
Akh Akk

]
−

[
Bh 0
0 Bk

] [
Kk

h Khk
Kkh Kh

k

]
= A◦

hk − B◦
hkK◦

hk (99)

ω◦
hk(t)=

p
∑

l=1, l �=h,k

[
Bhul

h(t) + Ahlql(t)

Bkul
k(t) + Aklql(t)

]
=

p
∑

l=1, l �=h,k

(
B◦

hk

[
ul

h(t)
ul

k(t)

]
+

[
Ahl

Akl

]
ql(t)

)
=

= B◦
hkωhk(t) +

p
∑

l=1, l �=h,k
Al◦

hkql(t)

(100)

where

ωhk(t) =
p

∑
l=1, l �=h,k

[
ul

h(t)
ul

k(t)

]
, Al◦

hk =

[
Ahl

Akl

]
(101)

A◦
hk =

[
Ahh Ahk
Akh Akk

]
, B◦

hk =

[
Bh 0
0 Bk

]
, K◦

hk =

[
Kk

h Khk
Kkh Kh

k

]
(102)

(98) can be written as

q̇hk(t) = A◦
hkcqhk(t) +

p

∑
l=1, l �=h,k

Al◦
hkql(t) + B◦

hkωhk(t) (103)

where ωhk(t) can be considered as a generalized auxiliary disturbance acting on the pair h, k
of the subsystems.
On the other hand, if

Chh =
p

∑
l=1, l �=h

Cl
h, C◦

hk =

[
Ck

h Chk
Ckh Ch

k

]
, Cl◦

hk =

[
Chl

Ckl

]
(104)

then

y(t) =
p−1

∑
h=1

p

∑
k=h+1

(
C◦

hkqhk(t) +
p

∑
l=1, l �=h

Cl
hql(t)

)
(105)

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) (106)

Now, taking (103), (106) considered pair of controlled subsystems is fully described as

q̇hk(t) = A◦
hkcqhk(t) +

p

∑
l=1, l �=h,k

Al◦
hkql(t) + B◦

hkωhk(t) (107)

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) (108)
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5.3 Controller parameter design
Theorem 7. Subsystem pair (91) in system (75), (77), controlled by control law (97) is stable with
quadratic performances �C◦

hk(sI−A◦
hkc)

−1B◦
hk�2

∞ ≤ γhk, �Cl◦
hk(sI−A◦

hkc)
−1Bl◦

hk�2
∞ ≤ εhkl if for

h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, there exist a symmetric positive
definite matrix X◦

hk ∈ IR(nh+nk)×(nh+nk), matrices Z◦
hk ∈ IR(nh+nk)×(nh+nk), Y◦

hk ∈ IR(rh+rk)×(nh+nk),
and positive scalars γhk, εhkl ∈ IR such that

X◦
hk = X◦T

hk > 0, εhkl > 0, γhk > 0, h, l = 1, . . . , p, l �= h, k, h < k ≤ p (109)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
hk A1◦

hk · · · Ap◦
hk B◦

hk X◦
hk A◦T

hk −Y◦T
hk B◦T

hk X◦
hkC◦T

hk

∗ −εhk1In1· · · 0 0 A1◦T
hk C1◦T

hk
...

...
. . .

...
...

...
...

∗ ∗ · · ·−εhkp Inp 0 Ap◦T
hk Cp◦T

hk

∗ ∗ · · · ∗ −γhkI(rh+rk) B◦T
hk 0

∗ ∗ · · · ∗ ∗ −Z◦
hk−Z◦T

hk 0

∗ ∗ · · · ∗ ∗ ∗ −I(mh+mk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (110)

where A◦
hk, B◦

hk, Al◦
hk, C◦

hk, Cl◦
hk are defined in (99), (101), (104), respectively,

Φ◦
hk = X◦

hk A◦T
hk + A◦

hkX◦
hk − B◦

hkY◦
hk − Y◦T

hk B◦T
hk (111)

and where Ah◦
hk , Ak◦

hk, as well as Ch◦
hk , Ck◦

hk are not included into the structure of (110). Then K◦
hk is

given as
K◦

hk = Y◦
hkX◦−1

hk (112)

Note, using the above given principle based on the the pairwise decentralized design of
control, the global system be stable. The proof can be find in Filasová & Krokavec (2011).

Proof. Considering ω◦
hk(t) given in (100) as an generalized input into the subsystem pair (107),

(108) then using (83) - (86), and (107) it can be written

p−1

∑
h=1

p

∑
k=h+1

(q̇T
hk(t)P

◦
hkqhk(t) + qT

hk(t)P
◦
hkq̇hk(t)) < 0 (113)

p−1

∑
h=1

p

∑
k=h+1

⎛
⎜⎜⎜⎝

�
A◦

hkcqhk(t) +
p
∑

l=1, l �=h,k
Al◦

hkql(t) + B◦
hkωhk(t)

�TP◦
hkqhk(t)+

+qT
hk(t)P

◦
hk
�

A◦
hkcqhk(t) +

p
∑

l=1, l �=h,k
Al◦

hkql(t) + B◦
hkωhk(t)

�

⎞
⎟⎟⎟⎠ < 0 (114)

respectively. Introducing the next notations

Bl◦
hk =

� �
Al◦

hk

�p

l=1, l �=h,k
B◦

hk

�
, ωl◦T

hk =
� �

qT
l

�p
l=1, l �=h,k ωT

hk(t)
�

(115)

(114) can be written as

p−1

∑
h=1

p

∑
k=h+1

�
(A◦

hkcqhk(t)+Bl◦
hkωl◦

hk)
TP◦

hkqhk(t) + qT
hk(t)P

◦
hk(A◦

hkcqhk(t)+Bl◦
hkωl◦

hk)
�
< 0 (116)
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Analogously, (106) can be rewritten as

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) = C◦

hkqhk(t) + Dl◦
hkωl◦

hk (117)

where
Dl◦

hk =
�
{Chk}p

l=1, l �=h,k 0
�

(118)

Therefore, defining

Γ◦
hk = diag

�
{εhkl Inl}p

l=1, l �=h,k γhk I(rh+rk)

�
(119)

and inserting appropriate into (57), (58) then (109), (110) be obtained.

Illustrative example
To demonstrate properties of this approach a simple system with four-inputs and four-outputs
is used in the example. The parameters of (75)-(77) are

A =

⎡
⎢⎢⎣

3 1 2 −1
−1 2 0 1

1 −1 1 3
1 −2 −2 2

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

3 1 2 1
0 6 1 0
2 −1 3 0
0 0 1 3

⎤
⎥⎥⎦ , B = diag

�
1 1 1 1

�
,

To solve this problem the next separations were done

Bhk =

�
1 0
0 1

�
, h = 1, 2, 3, k = 2, 3, 4, h < k

A◦
12=

�
3 1

−1 2

�
, A3◦

12 =

�
2
0

�
, A4◦

12 =

�−1
1

�
, C◦

12 =

�
1 1
0 2

�
, C3◦

12 =

�
2
1

�
, C4◦

12 =

�
1
0

�

A◦
13=

�
3 2
1 1

�
, A2◦

13 =

�
1

−1

�
, A4◦

13 =

�−1
3

�
, C◦

13 =

�
1 2
2 1

�
, C2◦

13 =

�
1

−1

�
, C4◦

13 =

�
1
0

�

A◦
14=

�
3 −1
1 2

�
, A2◦

14 =

�
1

−2

�
, A3◦

14 =

�
2

−2

�
, C◦

14=

�
1 1
0 1

�
, C2◦

14 =

�
1
0

�
, C3◦

14 =

�
2
1

�

A◦
23=

�
2 0

−1 1

�
, A1◦

23 =

�−1
1

�
, A4◦

23 =

�
1
3

�
, C◦

23 =

�
2 1

−1 1

�
, C1◦

23 =

�
0
2

�
, C4◦

23 =

�
0
0

�

A◦
24=

�
2 1

−2 2

�
, A1◦

24 =

�−1
1

�
, A3◦

24 =

�
0

−2

�
, C◦

24=

�
2 0
0 1

�
, C1◦

24 =

�
0
0

�
, C3◦

24 =

�
1
1

�

A◦
34=

�
1 3

−2 2

�
, A1◦

34 =

�
1
1

�
, A2◦

34 =

�−1
−2

�
, C◦

34 =

�
1 0
1 1

�
, C1◦

34 =

�
2
0

�
, C2◦

34 =

�−1
0

�

Solving e.g. with respect to X◦
23, Y◦

23, Z◦
23, ε231, ε234 δ23 it means to rewrite (109)-(111) as

X◦
23 = X◦T

23 > 0, ε231 > 0, ε234 > 0, γ23 > 0
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
23 A1◦

23 A4◦
23 B◦

23 X◦
23 A◦T

23 −Y◦T
23 B◦T

23 X◦
23C◦T

23

∗ −ε231 0 0 A1◦T
23 C1◦T

23

∗ ∗ −ε234 0 A4◦T
23 C4◦T

23

∗ ∗ ∗ −γ23I2 B◦T
23 0

∗ ∗ ∗ ∗ −Z◦
23−Z◦T

23 0

∗ ∗ ∗ ∗ ∗ −I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0
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5.3 Controller parameter design
Theorem 7. Subsystem pair (91) in system (75), (77), controlled by control law (97) is stable with
quadratic performances �C◦

hk(sI−A◦
hkc)

−1B◦
hk�2

∞ ≤ γhk, �Cl◦
hk(sI−A◦

hkc)
−1Bl◦

hk�2
∞ ≤ εhkl if for

h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, there exist a symmetric positive
definite matrix X◦

hk ∈ IR(nh+nk)×(nh+nk), matrices Z◦
hk ∈ IR(nh+nk)×(nh+nk), Y◦

hk ∈ IR(rh+rk)×(nh+nk),
and positive scalars γhk, εhkl ∈ IR such that

X◦
hk = X◦T

hk > 0, εhkl > 0, γhk > 0, h, l = 1, . . . , p, l �= h, k, h < k ≤ p (109)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
hk A1◦

hk · · · Ap◦
hk B◦

hk X◦
hk A◦T

hk −Y◦T
hk B◦T

hk X◦
hkC◦T

hk

∗ −εhk1In1· · · 0 0 A1◦T
hk C1◦T

hk
...

...
. . .

...
...

...
...

∗ ∗ · · ·−εhkp Inp 0 Ap◦T
hk Cp◦T

hk

∗ ∗ · · · ∗ −γhkI(rh+rk) B◦T
hk 0

∗ ∗ · · · ∗ ∗ −Z◦
hk−Z◦T

hk 0

∗ ∗ · · · ∗ ∗ ∗ −I(mh+mk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (110)

where A◦
hk, B◦

hk, Al◦
hk, C◦

hk, Cl◦
hk are defined in (99), (101), (104), respectively,

Φ◦
hk = X◦

hk A◦T
hk + A◦

hkX◦
hk − B◦

hkY◦
hk − Y◦T

hk B◦T
hk (111)

and where Ah◦
hk , Ak◦

hk, as well as Ch◦
hk , Ck◦

hk are not included into the structure of (110). Then K◦
hk is

given as
K◦

hk = Y◦
hkX◦−1

hk (112)

Note, using the above given principle based on the the pairwise decentralized design of
control, the global system be stable. The proof can be find in Filasová & Krokavec (2011).

Proof. Considering ω◦
hk(t) given in (100) as an generalized input into the subsystem pair (107),

(108) then using (83) - (86), and (107) it can be written

p−1

∑
h=1

p

∑
k=h+1

(q̇T
hk(t)P

◦
hkqhk(t) + qT

hk(t)P
◦
hkq̇hk(t)) < 0 (113)

p−1

∑
h=1

p

∑
k=h+1

⎛
⎜⎜⎜⎝

�
A◦

hkcqhk(t) +
p
∑

l=1, l �=h,k
Al◦

hkql(t) + B◦
hkωhk(t)

�TP◦
hkqhk(t)+

+qT
hk(t)P

◦
hk
�

A◦
hkcqhk(t) +

p
∑

l=1, l �=h,k
Al◦

hkql(t) + B◦
hkωhk(t)

�

⎞
⎟⎟⎟⎠ < 0 (114)

respectively. Introducing the next notations

Bl◦
hk =

� �
Al◦

hk

�p

l=1, l �=h,k
B◦

hk

�
, ωl◦T

hk =
� �

qT
l

�p
l=1, l �=h,k ωT

hk(t)
�

(115)

(114) can be written as

p−1

∑
h=1

p

∑
k=h+1

�
(A◦

hkcqhk(t)+Bl◦
hkωl◦

hk)
TP◦

hkqhk(t) + qT
hk(t)P

◦
hk(A◦

hkcqhk(t)+Bl◦
hkωl◦

hk)
�
< 0 (116)
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Analogously, (106) can be rewritten as

yhk(t) = C◦
hkqhk(t) +

p

∑
l=1, l �=h

Cl◦
hkql(t) + 0 ωhk(t) = C◦

hkqhk(t) + Dl◦
hkωl◦

hk (117)

where
Dl◦

hk =
�
{Chk}p

l=1, l �=h,k 0
�

(118)

Therefore, defining

Γ◦
hk = diag

�
{εhkl Inl}p

l=1, l �=h,k γhk I(rh+rk)

�
(119)

and inserting appropriate into (57), (58) then (109), (110) be obtained.

Illustrative example
To demonstrate properties of this approach a simple system with four-inputs and four-outputs
is used in the example. The parameters of (75)-(77) are

A =

⎡
⎢⎢⎣

3 1 2 −1
−1 2 0 1

1 −1 1 3
1 −2 −2 2

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

3 1 2 1
0 6 1 0
2 −1 3 0
0 0 1 3

⎤
⎥⎥⎦ , B = diag

�
1 1 1 1

�
,

To solve this problem the next separations were done

Bhk =

�
1 0
0 1

�
, h = 1, 2, 3, k = 2, 3, 4, h < k

A◦
12=

�
3 1

−1 2

�
, A3◦

12 =

�
2
0

�
, A4◦

12 =

�−1
1

�
, C◦

12 =

�
1 1
0 2

�
, C3◦

12 =

�
2
1

�
, C4◦

12 =

�
1
0

�

A◦
13=

�
3 2
1 1

�
, A2◦

13 =

�
1

−1

�
, A4◦

13 =

�−1
3

�
, C◦

13 =

�
1 2
2 1

�
, C2◦

13 =

�
1

−1

�
, C4◦

13 =

�
1
0

�

A◦
14=

�
3 −1
1 2

�
, A2◦

14 =

�
1

−2

�
, A3◦

14 =

�
2

−2

�
, C◦

14=

�
1 1
0 1

�
, C2◦

14 =

�
1
0

�
, C3◦

14 =

�
2
1

�

A◦
23=

�
2 0

−1 1

�
, A1◦

23 =

�−1
1

�
, A4◦

23 =

�
1
3

�
, C◦

23 =

�
2 1

−1 1

�
, C1◦

23 =

�
0
2

�
, C4◦

23 =

�
0
0

�

A◦
24=

�
2 1

−2 2

�
, A1◦

24 =

�−1
1

�
, A3◦

24 =

�
0

−2

�
, C◦

24=

�
2 0
0 1

�
, C1◦

24 =

�
0
0

�
, C3◦

24 =

�
1
1

�

A◦
34=

�
1 3

−2 2

�
, A1◦

34 =

�
1
1

�
, A2◦

34 =

�−1
−2

�
, C◦

34 =

�
1 0
1 1

�
, C1◦

34 =

�
2
0

�
, C2◦

34 =

�−1
0

�

Solving e.g. with respect to X◦
23, Y◦

23, Z◦
23, ε231, ε234 δ23 it means to rewrite (109)-(111) as

X◦
23 = X◦T

23 > 0, ε231 > 0, ε234 > 0, γ23 > 0
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
23 A1◦

23 A4◦
23 B◦

23 X◦
23 A◦T

23 −Y◦T
23 B◦T

23 X◦
23C◦T

23

∗ −ε231 0 0 A1◦T
23 C1◦T

23

∗ ∗ −ε234 0 A4◦T
23 C4◦T

23

∗ ∗ ∗ −γ23I2 B◦T
23 0

∗ ∗ ∗ ∗ −Z◦
23−Z◦T

23 0

∗ ∗ ∗ ∗ ∗ −I2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0
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Φ◦
23 = X◦

23 A◦T
23 + A◦

23X◦
23 − B◦

23Y◦
23 − Y◦T

23 B◦T
23

Using SeDuMi package for Matlab given task was feasible with

ε231 = 9.3761, ε234 = 6.7928, γ23 = 6.2252

X◦
23 =

�
0.5383 −0.0046

−0.0046 0.8150

�
, Y◦

23 =

�
4.8075 −0.0364

−0.4196 5.1783

�
, Z◦

23 =

�
4.2756 0.1221
0.1221 4.5297

�

K◦
23 =

�
1.1255 −0.0384

−0.1309 1.1467

�

By the same way computing the rest gain matrices the gain matrix set is

K◦
12 =

�
7.3113 3.8869
1.4002 10.0216

�
, K◦

13 =

�
7.9272 4.0712
4.2434 8.8245

�
, K◦

14 =

�
7.4529 1.5651
1.6990 5.6584

�

K◦
24 =

�
7.2561 0.7243

−2.7951 4.4839

�
, K◦

34 =

�
6.3680 4.1515
0.8099 5.2661

�

Note, the control laws are realized in the partly-autonomous structure (94), (95), where every
subsystem pair is stable, and the large-scale system be stable, too. To compare, an equivalent
gain matrix (81) to centralized control can be constructed

K =

⎡
⎢⎢⎣

22.6914 3.8869 4.0712 1.5651
1.4002 18.4032 −0.0384 0.7243
4.2434 −0.1309 16.3393 4.1515
1.6990 −2.7951 0.8099 15.4084

⎤
⎥⎥⎦

Thus, the resulting closed-loop eigenvalue spectrum is

ρ(A−BK) =
�−13.0595 ± 0.4024 i −16.2717 −22.4515

�

Matrix K structure implies evidently that the control gain is diagonally dominant.

6. Pairwise decentralized design of control for uncertain systems

Consider for the simplicity that only the system matrix blocks are uncertain, and one or none
uncertain function is associated with a system matrix block. Then the structure of the pairwise
system description implies

Ahkr(t) ∈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A◦
hk ∪ {Ak◦

lh }h−1
l=1 ∪ {Ak◦

hl }
p
l=h+1 ; upper triagonal blocks (h< k)

�
A◦

lh

�h−1
l=1 ∪ �

A◦
hl

�p
l=h ; diagonal blocks (h= k)

A◦
kh ∪ {Ah◦

lk }k−1
l=1 ∪ {Ah◦

kl }
p
l=k+1 ; lower triagonal blocks (h> k)

(120)

Analogously it can be obtained equivalent expressions with respect to Bhkr(t), Chkr(t),
respectively. Thus, it is evident already in this simple case that a single uncertainty affects
p−1 from q = (p

2) linear matrix inequalities which have to be included into design.
Generally, the next theorem can be formulated.
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Theorem 8. Uncertain subsystem pair (91) in system (75), (77), controlled by control law (97) is stable
with quadratic performances �C◦

hk(sI−A◦
hkc)

−1B◦
hk�2

∞ ≤ γhk, �Cl◦
hk(sI−A◦

hkc)
−1Bl◦

hk�2
∞ ≤ εhkl if

for δ > 0, δ ∈ IR, h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, there exist
symmetric positive definite matrices T◦

hki ∈∈ IR(nh+nk)×(nh+nk), matrices V ◦
hk ∈ IR(nh+nk)×(nh+nk),

W◦
hk ∈ IR(rh+rk)×(nh+nk), and positive scalars γhk, εhkl ∈ IR such that for i = 1, 2 . . . , s

T◦
hki = T◦T

hki > 0, εhkl > 0, γhk > 0, h, l = 1, . . . , p, l �= h, k, h < k ≤ p, i = 1, 2, . . . , s (121)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
hki A1◦

hki · · · Ap◦
hki B◦

hki T◦
hki−δV◦T

hk +V◦
hk A◦T

hki−W◦T
hk B◦T

hki V ◦
hkC◦T

hki

∗ −εhk1In1· · · 0 0 A1◦T
hki C1◦T

hki
...

...
. . .

...
...

...
...

∗ ∗ · · ·−εhkp Inp 0 Ap◦T
hki Cp◦T

hki

∗ ∗ · · · ∗ −γhkI(rh+rk) B◦T
hki 0

∗ ∗ · · · ∗ ∗ −δ(V◦
hk+V◦T

hk ) 0

∗ ∗ · · · ∗ ∗ ∗ −I(mh+mk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (122)

where A◦
hk, B◦

hk, Al◦
hk, C◦

hk, Cl◦
hk are equivalently defined as in (99), (101), (104), respectively,

Φ◦
hki = V ◦

hk A◦T
hki + A◦

hkiV
◦T
hk − B◦

hkiW
◦
hk − W◦T

hk B◦T
hki (123)

and where Ah◦
hki, Ak◦

hki, as well as Ch◦
hki, Ck◦

hki are not included into the structure of (122). Then K◦
hk is

given as
K◦

hk = W◦
hkV◦T−1

hk (124)

Proof. Considering (109)-(112) and inserting these appropriate into (72), i of(73), and (74) then
(121)-(124) be obtained.

Illustrative example
Considering the same system parameters as were those given in the example presented in
Subsection 5.3 but with A34r(t), and r(t) lies within the interval �0.8, 1.2� then the next matrix
parameter have to be included into solution

A4◦
131 =

�−1
2.4

�
, A4◦

132=

�−1
3.6

�
, A4◦

231 =

�
1

2.4

�
, A4◦

23 =

�
1

3.6

�

A◦
341 =

�
1 2.4

−2 2

�
, A◦

342=

�
1 3.6

−2 2

�
,

i.e. a solution be associated with T◦
13i, T◦

23i, and T◦
34i, i = 1, 2, and in other cases only one

matrix inequality be computed (T◦
12, T◦

14, T◦
24).

The task is feasible, the Lyapunov matrices are computed as follows

T◦
131 =

�
5.7244 −0.3591
0.1748 5.6673

�
, T◦

132=

�
5.0484 0.0232
0.0232 5.0349

�
, T◦

12=

�
6.3809 0.5280

−0.6811 6.3946

�

T◦
231=

�
6.1360 0.0841
0.0090 6.2377

�
, T◦

232 =

�
5.5035 0.0258
0.0258 5.5252

�
, T◦

14 =

�
7.2453 0.9196

−1.0352 7.5124

�
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Φ◦
23 = X◦

23 A◦T
23 + A◦

23X◦
23 − B◦

23Y◦
23 − Y◦T

23 B◦T
23

Using SeDuMi package for Matlab given task was feasible with

ε231 = 9.3761, ε234 = 6.7928, γ23 = 6.2252

X◦
23 =

�
0.5383 −0.0046

−0.0046 0.8150

�
, Y◦

23 =

�
4.8075 −0.0364

−0.4196 5.1783

�
, Z◦

23 =

�
4.2756 0.1221
0.1221 4.5297

�

K◦
23 =

�
1.1255 −0.0384

−0.1309 1.1467

�

By the same way computing the rest gain matrices the gain matrix set is

K◦
12 =

�
7.3113 3.8869
1.4002 10.0216

�
, K◦

13 =

�
7.9272 4.0712
4.2434 8.8245

�
, K◦

14 =

�
7.4529 1.5651
1.6990 5.6584

�

K◦
24 =

�
7.2561 0.7243

−2.7951 4.4839

�
, K◦

34 =

�
6.3680 4.1515
0.8099 5.2661

�

Note, the control laws are realized in the partly-autonomous structure (94), (95), where every
subsystem pair is stable, and the large-scale system be stable, too. To compare, an equivalent
gain matrix (81) to centralized control can be constructed

K =

⎡
⎢⎢⎣

22.6914 3.8869 4.0712 1.5651
1.4002 18.4032 −0.0384 0.7243
4.2434 −0.1309 16.3393 4.1515
1.6990 −2.7951 0.8099 15.4084

⎤
⎥⎥⎦

Thus, the resulting closed-loop eigenvalue spectrum is

ρ(A−BK) =
�−13.0595 ± 0.4024 i −16.2717 −22.4515

�

Matrix K structure implies evidently that the control gain is diagonally dominant.

6. Pairwise decentralized design of control for uncertain systems

Consider for the simplicity that only the system matrix blocks are uncertain, and one or none
uncertain function is associated with a system matrix block. Then the structure of the pairwise
system description implies

Ahkr(t) ∈

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

A◦
hk ∪ {Ak◦

lh }h−1
l=1 ∪ {Ak◦

hl }
p
l=h+1 ; upper triagonal blocks (h< k)

�
A◦

lh

�h−1
l=1 ∪ �

A◦
hl

�p
l=h ; diagonal blocks (h= k)

A◦
kh ∪ {Ah◦

lk }k−1
l=1 ∪ {Ah◦

kl }
p
l=k+1 ; lower triagonal blocks (h> k)

(120)

Analogously it can be obtained equivalent expressions with respect to Bhkr(t), Chkr(t),
respectively. Thus, it is evident already in this simple case that a single uncertainty affects
p−1 from q = (p

2) linear matrix inequalities which have to be included into design.
Generally, the next theorem can be formulated.

384 Recent Advances in Robust Control – Novel Approaches and Design Methods Partially Decentralized Design Principle in Large-Scale System Control 25

Theorem 8. Uncertain subsystem pair (91) in system (75), (77), controlled by control law (97) is stable
with quadratic performances �C◦

hk(sI−A◦
hkc)

−1B◦
hk�2

∞ ≤ γhk, �Cl◦
hk(sI−A◦

hkc)
−1Bl◦

hk�2
∞ ≤ εhkl if

for δ > 0, δ ∈ IR, h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, there exist
symmetric positive definite matrices T◦

hki ∈∈ IR(nh+nk)×(nh+nk), matrices V ◦
hk ∈ IR(nh+nk)×(nh+nk),

W◦
hk ∈ IR(rh+rk)×(nh+nk), and positive scalars γhk, εhkl ∈ IR such that for i = 1, 2 . . . , s

T◦
hki = T◦T

hki > 0, εhkl > 0, γhk > 0, h, l = 1, . . . , p, l �= h, k, h < k ≤ p, i = 1, 2, . . . , s (121)
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ◦
hki A1◦

hki · · · Ap◦
hki B◦

hki T◦
hki−δV◦T

hk +V◦
hk A◦T

hki−W◦T
hk B◦T

hki V ◦
hkC◦T

hki

∗ −εhk1In1· · · 0 0 A1◦T
hki C1◦T

hki
...

...
. . .

...
...

...
...

∗ ∗ · · ·−εhkp Inp 0 Ap◦T
hki Cp◦T

hki

∗ ∗ · · · ∗ −γhkI(rh+rk) B◦T
hki 0

∗ ∗ · · · ∗ ∗ −δ(V◦
hk+V◦T

hk ) 0

∗ ∗ · · · ∗ ∗ ∗ −I(mh+mk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<0 (122)

where A◦
hk, B◦

hk, Al◦
hk, C◦

hk, Cl◦
hk are equivalently defined as in (99), (101), (104), respectively,

Φ◦
hki = V ◦

hk A◦T
hki + A◦

hkiV
◦T
hk − B◦

hkiW
◦
hk − W◦T

hk B◦T
hki (123)

and where Ah◦
hki, Ak◦

hki, as well as Ch◦
hki, Ck◦

hki are not included into the structure of (122). Then K◦
hk is

given as
K◦

hk = W◦
hkV◦T−1

hk (124)

Proof. Considering (109)-(112) and inserting these appropriate into (72), i of(73), and (74) then
(121)-(124) be obtained.

Illustrative example
Considering the same system parameters as were those given in the example presented in
Subsection 5.3 but with A34r(t), and r(t) lies within the interval �0.8, 1.2� then the next matrix
parameter have to be included into solution

A4◦
131 =

�−1
2.4

�
, A4◦

132=

�−1
3.6

�
, A4◦

231 =

�
1

2.4

�
, A4◦

23 =

�
1

3.6

�

A◦
341 =

�
1 2.4

−2 2

�
, A◦

342=

�
1 3.6

−2 2

�
,

i.e. a solution be associated with T◦
13i, T◦

23i, and T◦
34i, i = 1, 2, and in other cases only one

matrix inequality be computed (T◦
12, T◦

14, T◦
24).

The task is feasible, the Lyapunov matrices are computed as follows

T◦
131 =

�
5.7244 −0.3591
0.1748 5.6673

�
, T◦

132=

�
5.0484 0.0232
0.0232 5.0349

�
, T◦

12=

�
6.3809 0.5280

−0.6811 6.3946

�

T◦
231=

�
6.1360 0.0841
0.0090 6.2377

�
, T◦

232 =

�
5.5035 0.0258
0.0258 5.5252

�
, T◦

14 =

�
7.2453 0.9196

−1.0352 7.5124

�
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T◦
341 =

�
2.4585 3.9935

−3.7569 1.5487

�
, T◦

342=

�
5.7297

5.7249

�
, T◦

24=

�
2.5560 2.1220

−1.9076 2.9055

�

the control law matrices takes form

K◦
12 =

�
13.2095 0.7495
2.2753 14.1033

�
, K◦

13 =

�
14.2051 4.4679
1.9440 13.4616

�
, K◦

14 =

�
12.6360 −1.6407
2.9881 10.6109

�

K◦
23 =

�
14.3977 −0.4237
−1.0494 12.3509

�
, K◦

24=

�−2.9867 5.9950
−6.8459 −2.6627

�
, K◦

34 =

�
5.3699 2.7480

−0.6542 6.1362

�

and with the common δ = 10 the subsystem interaction transfer functions H∞-norm
upper-bound squares are

ε123 = 10.9960, ε124 = 7.6712, γ12 = 7.1988, ε132 = 7.7242, ε134 = 8.7654, γ13 = 6.4988

ε142 = 8.9286, ε143 = 12.1338, γ14 = 8.1536, ε231 = 10.3916, ε234 = 8.2081, γ23 = 7.0939

ε241 = 5.3798, ε243 = 6.6286, γ24 = 5.4780, ε341 = 16.1618, ε342 = 15.0874, γ34 = 9.0965

In the same sense as given above, the control laws are realized in the partly-autonomous
structure (94), (95), too, and as every subsystem pair as the large-scale system be stable.
Only for comparison reason, the composed gain matrix (defined as in (81)), and the resulting
closed-loop system matrix eigenvalue spectrum, realized using the nominal system matrix
parameter An and the robust and the nominal equivalent gain matrices K, An, respectively,
were constructed using the set of gain matrices Khk, k = 1, 2, 3, h = 2, 3, 4, h �= k. As it can
see

K =

⎡
⎢⎢⎣

40.0507 0.7495 4.4679 −1.6407
2.2753 25.5144 −0.4237 5.9950
1.9440 −1.0494 31.1824 2.7480
2.9881 −6.8459 −0.6542 14.0844

⎤
⎥⎥⎦ , ρ(An−BK) =

⎡
⎢⎢⎣
−15.0336
−20.6661
−29.8475
−37.2846

⎤
⎥⎥⎦

Kn =

⎡
⎢⎢⎣

39.6876 0.7495 4.2372 −1.6407
2.2753 24.8764 −0.4500 5.9950
2.3218 −1.0008 30.3905 3.2206
2.9881 −6.8459 −0.6666 14.0725

⎤
⎥⎥⎦ , ρ(An−BKn) =

⎡
⎢⎢⎣
−15.3818
−19.6260
−29.0274
−36.9918

⎤
⎥⎥⎦

and the resulted structures of both gain matrices imply that by considering parameter
uncertainties in design step the control gain matrix K is diagonally more dominant then Kn
reflecting only the system nominal parameters.

It is evident that Lyapunov matrices T◦
hki are separated from A◦

hki, Al◦
hki, B◦

hki, C◦
hki, and Cl◦

hki
h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, i.e. there are no terms containing
the product of T◦

hki and any of them. By introducing a new variable V◦
hk, the products of type

P◦
hki A

◦
hki and A◦T

hkiP
◦
hki are relaxed to new products A◦

hkiV
◦T
hk and V◦

hk A◦T
hki where V◦

hk needs not
be symmetric and positive definite. This enables a robust BRL can be obtained for a system
with polytopic uncertainties by using a parameter-dependent Lyapunov function, and to deal
with linear systems with parametric uncertainties.
Although no common Lyapunov matrices are required the method generally leads to a larger
number of linear matrix inequalities, and so more computational effort be needed to provide
robust stability. However, used conditions are less restrictive than those obtained via a
quadratic stability analysis (i.e. using a parameter-independent Lyapunov function), and
are more close to necessity conditions. It is a very useful extension to control performance
synthesis problems.
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7. Concluding remarks

The main difficulty of solving the decentralized control problem comes from the fact that
the feedback gain is subject to structural constraints. At the beginning study of large scale
system theory, some people thought that a large scale system is decentrally stabilizable under
controllability condition by strengthening the stability degree of subsystems, but because of
the existence of decentralized fixed modes, some large scale systems can not be decentrally
stabilized at all. In this chapter the idea to stabilize all subsystems and the whole system
simultaneously by using decentralized controllers is replaced by another one, to stabilize
all subsystems pairs and the whole system simultaneously by using partly decentralized
control. In this sense the final scope of this chapter are quadratic performances of one
class of uncertain continuous-time large-scale systems with polytopic convex uncertainty
domain. It is shown how to expand the Lyapunov condition for pairwise control by using
additive matrix variables in LMIs based on equivalent BRL formulations. As mentioned
above, such matrix inequalities are linear with respect to the subsystem variables, and
does not involve any product of the Lyapunov matrices and the subsystem ones. This
enables to derive a sufficient condition for quadratic performances, and provides one way
for determination of parameter-dependent Lyapunov functions by solving LMI problems.
Numerical examples demonstrate the principle effectiveness, although some computational
complexity is increased.
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T◦
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�
, T◦
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�
5.7297

5.7249

�
, T◦
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�
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�

the control law matrices takes form

K◦
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�
13.2095 0.7495
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�
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�
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1.9440 13.4616

�
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�
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�
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�
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�
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−6.8459 −2.6627

�
, K◦

34 =

�
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�

and with the common δ = 10 the subsystem interaction transfer functions H∞-norm
upper-bound squares are

ε123 = 10.9960, ε124 = 7.6712, γ12 = 7.1988, ε132 = 7.7242, ε134 = 8.7654, γ13 = 6.4988
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Only for comparison reason, the composed gain matrix (defined as in (81)), and the resulting
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were constructed using the set of gain matrices Khk, k = 1, 2, 3, h = 2, 3, 4, h �= k. As it can
see
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⎤
⎥⎥⎦

and the resulted structures of both gain matrices imply that by considering parameter
uncertainties in design step the control gain matrix K is diagonally more dominant then Kn
reflecting only the system nominal parameters.

It is evident that Lyapunov matrices T◦
hki are separated from A◦

hki, Al◦
hki, B◦

hki, C◦
hki, and Cl◦

hki
h = 1, 2 . . . , p−1, k = h+1, h+2 . . . , p, l = 1, 2 . . . , p, l �= h, k, i.e. there are no terms containing
the product of T◦

hki and any of them. By introducing a new variable V◦
hk, the products of type
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hki are relaxed to new products A◦
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◦T
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hk A◦T
hki where V◦

hk needs not
be symmetric and positive definite. This enables a robust BRL can be obtained for a system
with polytopic uncertainties by using a parameter-dependent Lyapunov function, and to deal
with linear systems with parametric uncertainties.
Although no common Lyapunov matrices are required the method generally leads to a larger
number of linear matrix inequalities, and so more computational effort be needed to provide
robust stability. However, used conditions are less restrictive than those obtained via a
quadratic stability analysis (i.e. using a parameter-independent Lyapunov function), and
are more close to necessity conditions. It is a very useful extension to control performance
synthesis problems.
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7. Concluding remarks

The main difficulty of solving the decentralized control problem comes from the fact that
the feedback gain is subject to structural constraints. At the beginning study of large scale
system theory, some people thought that a large scale system is decentrally stabilizable under
controllability condition by strengthening the stability degree of subsystems, but because of
the existence of decentralized fixed modes, some large scale systems can not be decentrally
stabilized at all. In this chapter the idea to stabilize all subsystems and the whole system
simultaneously by using decentralized controllers is replaced by another one, to stabilize
all subsystems pairs and the whole system simultaneously by using partly decentralized
control. In this sense the final scope of this chapter are quadratic performances of one
class of uncertain continuous-time large-scale systems with polytopic convex uncertainty
domain. It is shown how to expand the Lyapunov condition for pairwise control by using
additive matrix variables in LMIs based on equivalent BRL formulations. As mentioned
above, such matrix inequalities are linear with respect to the subsystem variables, and
does not involve any product of the Lyapunov matrices and the subsystem ones. This
enables to derive a sufficient condition for quadratic performances, and provides one way
for determination of parameter-dependent Lyapunov functions by solving LMI problems.
Numerical examples demonstrate the principle effectiveness, although some computational
complexity is increased.
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1. Introduction

In the design of the control system, the plant perturbations and the plant uncertainties could
cause the performance degradation and/or destabilization of the control system. The H∞
control synthesis and the μ synthesis are well known as the suitable controller syntheses for
the plant with the large plant perturbations and/or the plant uncertainties (Zhou & Doyle,
1998), and many successful applications are also reported in various fields. However, these
controller syntheses provide the controller robustly stabilizing the closed-loop system for the
worst-case and overestimated disturbances and uncertainties at the expense of the nominal
control performance. It means that there exists a trade-off between the nominal control
performance and the robustness in the design of the control system.
Meanwhile from the view point of the control architecture, the Generalized Internal Model
Control (GIMC) structure is proposed by Zhou using Youla parameterization (Vidyasagar,
1985) to resolve the above-mentioned trade-off (Campos-Delgado & Zhou, 2003; Zhou & Ren,
2001). The GIMC structure is interpreted as an extension of the Internal Model Control (IMC)
(Morari & Zafiriou, 1997), which is only applicable to stable plants, to unstable plants by
introducing coprime factorization. The GIMC structure consists of a conditional feedback
structure and an outer-loop controller. The conditional feedback structure can detect model
uncertainties and any disturbances, and they are compensated through the Youla parameter.
It means that the robustness of the control system in the GIMC structure is specified by the
Youla parameter. On the other hand, in case where there exist no plant uncertainties and
no disturbances, the conditional feedback structure would detect nothing, and the feedback
control system would be governed only by the outer-loop controller. Since the nominal control
performance is independent of the Youla parameter, the outer-loop controller can be designed
according to various controller design techniques, and the trade-off between the nominal
control performance and the robustness is resolved.
For the design of the Youla parameter, we proposed the design method using the dual
Youla parameter which represents the plant perturbation and/or the plant uncertainties
(Matsumoto et al., 1993; Yubai et al., 2007). The design procedure is as follows: The dual
Youla parameter is identified by the Hansen scheme (Hansen et al., 1989) using appropriate
identification techniques, and the Youla parameter is designed based on the robust controller
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synthesis. However, since it is difficult to give a physical interpretation to the dual Youla
parameter in general, we must select the weighting function for identification and the order
of the identified model by trial and error. For implementation aspect, a low-order controller is
much preferable, which means that a low-order model of the dual Youla parameter should
be identified. However, it is difficult to identify the low-order model of the dual Youla
parameter which contains enough information on the actual dual Youla parameter to design
the appropriate Youla parameter. Moreover, there may be the cases where an accurate and
reasonably low-order model of the dual Youla parameter can not be obtained easily.
To avoid these difficulties in system identification of the dual Youla parameter, this article
addresses the design method of the Youla parameter by model-free controller synthesis.
Model-free controller syntheses have the advantages that the controller is directly synthesized
or tuned only from the input/output data collected from the plant, and no plant mathematical
model is required for the controller design, which avoids the troublesome model identification
of the dual Youla parameter. Moreover, since the order and the controller structure are
specified by the designer, we can easily design a low-order Youla parameter by model-free
controller syntheses.
A number of model-free controller syntheses have been proposed, e.g., the Iterative
Feedback Tuning (IFT) (Hjalmarsson, 1998), the Virtual Reference Feedback Tuning (VRFT)
(Campi et al., 2002), and the Correlation-based Tuning (CbT) (Miskovic et al., 2007) and so
on. These model-free controller syntheses address the model matching problem as a typical
control objective. Since the IFT and the CbT basically deal with nonlinear optimization
problems, they require the iterative experiments to update the gradient of the cost function
and the Hessian for the Gauss-Newton method at each iterative parameter update. On the
other hand, the VRFT brings controllers using only a single set of input/output data collected
from the plant if the controllers are linearly parameterized with respect to the parameter
vector to be tuned. This article adopts the VRFT to design the Youla parameter to exploit
the above-mentioned feature. However, the model-free controller syntheses have a common
disadvantage that the stability of the closed-loop system can not be evaluated in advance
of controller implementation because we have no mathematical plant model to evaluate the
stability and/or the control performance. From the view point of safety, destabilization of the
control system is not acceptable. Recently, the data-driven test on the closed-loop stability
before controller implementation (Karimi et al., 2007; Yubai et al., 2011) and the data-driven
controller synthesis at least guaranteeing the closed-loop stability (Heusden et al., 2010) are
developed for the standard unity feedback control structure.
This article derives the robust stability condition for the design of the Youla parameter, and
its sufficient condition is described as the H∞ norm of the product of the Youla and the dual
Youla parameters. Moreover, the H∞ norm is estimated using the input/output data collected
from the plant in the closed-loop manner. This sufficient condition of the robust stability is
imposed as the stability constraint to the design problem of the Youla parameter based on the
VRFT previously proposed by the authors (Sakuishi et al., 2008). Finally, the Youla parameter
guaranteeing the closed-loop stability is obtained by solving the convex optimization.
The discussion is limited to SISO systems in this article.
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Fig. 1. GIMC structure.

2. Robust control by the GIMC structure

This section gives a brief review of the GIMC (Generalized Internal Model Control) structure
and it is a control architecture solving the trade-off between the control performance and the
robustness.

2.1 GIMC structure
A linear time-invariant plant P0 is assumed to have a coprime factorization (Vidyasagar, 1985)
on RH∞ as

P0 = ND−1, N, D ∈ RH∞, (1)

where RH∞ denotes the set of all real rational proper stable transfer functions. A nominal
controller C0 stabilizing P0 is also assumed to have a coprime factorization on RH∞ as

C0 = XY−1, X, Y ∈ RH∞, (2)

where X and Y satisfy the Bezout identity XN + YD = 1. Then a class of all stabilizing
controllers C is parameterized as (3), which is called as Youla parameterization, by introducing
the Youla parameter Q ∈ RH∞ (Vidyasagar, 1985):

C = (Y − QN)−1(X + QD), (3)

where Q is a free parameter and is determined arbitrarily as long as

det(Y(∞)− Q(∞)N(∞)) �= 0.

Then, the GIMC structure is constructed as Fig. 1 by using (1) and (3), where r, u, y
and β represent reference inputs, control inputs, observation outputs and residual signals,
respectively. The only difference between the GIMC structure and a standard unity feedback
control structure shown in Fig. 2 is that the input of D is y in the GIMC structure instead of e.
Since the GIMC structure has a conditional feedback structure, the Youla parameter Q is only
activated in the case where disturbances are injected and/or there exist plant uncertainties.
If there is no disturbance and no plant uncertainty (β = 0), Q in the GIMC structure does
not generate any compensation signals and the control system is governed by only a nominal
controller C0. It means that the nominal control performance is specified by only the nominal
controller C0. On the other hand, if there exist disturbances and/or plant uncertainties (β �= 0),
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Fig. 2. A unity feedback control structure.

the inner loop controller Q generates the compensation signal to suppress the effect of plant
uncertainties and disturbances in addition to the nominal controller C0.
In this way, the role of C0 and that of Q are clearly separated: C0 could be designed to
achieve the higher nominal control performance, while Q could be designed to attain the
higher robustness for plant uncertainties and disturbances. This is the reason why the GIMC
structure is one of promising control architectures which solve the trade-off between the
nominal control performance and the robustness in the design of the feedback control system.
In this article, we address the design problem of the Youla parameter Q using the
input/output data set to generate an appropriate compensation signal to reduce the effect
of plant uncertainties and/or disturbances on the assumption that the nominal controller C0
which meets the given nominal control performance requirements has been already available.

2.2 Dual Youla parameterization and robust stability condition
For appropriate compensation of plant uncertainties, information on plant uncertainties is
essential. In the design of the Youla parameter Q, the following parameterization plays an
important role. On the assumption that the nominal plant P0 factorized as (1) and its deviated
version, P, are stabilized by the nominal controller C0, then P is parameterized by introducing
a dual Youla parameter R ∈ RH∞ as follows:

P = (N + YR)(D − XR)−1. (4)

This parameterization is called as the dual Youla parameterization, which is a dual version
of the Youla parameterization mentioned in the previous subsection. It says that the actual
plant P, which is deviated from the nominal plant P0, can be represented by the dual
Youla parameter R. By substituting (4) to the block-diagram shown by Fig. 1, we obtain
the equivalent block-diagram shown by Fig. 3. From this block-diagram, the robust stability
condition when the controlled plant deviates from P0 to P is derived as

(1 + RQ)−1 ∈ RH∞. (5)

We must design Q so as to meet this stability condition.

3. Direct design of the Youla parameter from experimental data

As stated in the previous subsection, the role of Q is to suppress plant variations and
disturbances. This article addresses the design problem of Q to approach the closed-loop
performance from r to y, denoted by Gry, to the its nominal control performance as an
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Fig. 3. Equivalent block-diagram of GIMC.

example. This design problem is formulated in frequency domain as a model matching
problem;

Q = arg min
Q̃

JMR(Q̃), (6)

where

JMR(Q) =

∥∥∥∥WM

(
M − (N + RY)X

1 + RQ

)∥∥∥∥
2

2
. (7)

M is a reference model for Gry given by the designer and it corresponds to the nominal control
performance. WM is a frequency weighting function.
According to the model-based controller design techniques, the following typical controller
design procedure is taken place: Firstly, we identify the dual Youla parameter R using the
input/output data set. Secondly, the Youla parameter Q is designed based on the identified
model of R. However, since the dual Youla parameter R is described as

R = D(P − P0){Y(1 + PC0)}−1, (8)

it depends on the coprime factors, N, D, X and Y, which makes it difficult to give a physical
interpretation for R. As a result, the identification of R requires trial-and-error for the selection
of the structure and/or the order of R. As is clear from (8), R should be modeled as a high
order model, the designed Q tends to be a high order controller, which is a serious problem
for implementation.
In this article, we address the direct design problem of the fixed-order and fixed-structural
Q from the input/output data set minimizing the evaluation function (7) without any model
identification of R.

3.1 Review of the Virtual Reference Feedback Tuning (VRFT)
The Virtual Reference Feedback Tuning (VRFT) is one of model-free controller design methods
to achieve the model matching. The VRFT provides the controller parameters using only
the input/output data set so that the actual closed-loop property approaches to its reference
model given by the designer. In this subsection, the basic concept and its algorithm are
reviewed.
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Fig. 2. A unity feedback control structure.
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Fig. 4. Basic concept of the VRFT.

The basic concept of the VRFT is depicted in Fig. 4. For a stable plant, assume that the
input/output data set {u0(t), y0(t)} of length N has been already collected in open-loop
manner. Introduce the virtual reference r̃(t) such that

y0(t) = Mr̃(t),

where M is a reference model to be achieved. Now, assume that the output of the feedback
system consisting of P and C(θ) parameterized by the parameter vector θ coincides with y0(t)
when the virtual reference signal r̃(t) is given as a reference signal. Then, the output of C(θ),
denoted by ũ(t, θ) is represented as

ũ(t, θ) = C(θ)(r̃(t)− y0(t))

= C(θ)(M−1 − 1)y0(t).

If ũ(t, θ) = u0(t), then the model matching is achieved, i.e.,

M =
PC(θ)

1 + PC(θ)
.

Since the exact model matching is difficult in practice due to the restricted structural controller,
the measurement noise injected to the output etc., we consider the alternative optimization
problem:

θ̂ = arg min
θ

JN
VR(θ),

where

JN
VR(θ) =

1
N

N

∑
t=1

[L(u0(t)− ũ(t, θ))]2

=
1
N

N

∑
t=1

[Lu0(t)− C(θ)L(r̃(t)− y0(t))]
2

L is a prefilter given by the designer. By selection of L = WMM(1 − M), θ̂ would be a good
approximation of the exact solution of the model matching problem θ̄ even if ũ(t, θ) �= u0(t)
(Campi et al., 2002). Especially, in case where the controller C(θ) is linearly parameterized
with respect to θ using an appropriate transfer matrix σ, i.e., C(θ) = σTθ, the optimal solution
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θ̂ is calculated by the least-squares method as

θ̂ =
[ N

∑
t=1

ϕ(t)ϕT(t)
]−1 N

∑
t=1

ϕ(t)uL(t),

where ϕ(t) = Lσ(r̃(t)− y0(t)), uL(t) = Lu0(t).

3.2 Direct tuning of Q from experimental data by the VRFT
This subsection describes the application of the VRFT to the design of the Youla parameter
Q without any model identification of the dual Youla parameter R. The experimental data
set used in the controller design,

{
r0(t), u0(t), y0(t)

}
, is collected from the closed-loop system

composed of the perturbed plant P and the nominal controller C0. Define the Youla parameter
Q(z, θ) linearly parameterized with respect to θ as

Q(z, θ) = σ(z)Tθ, (9)

where σ(z) is a discrete-time transfer function vector defined as

σ(z) = [σ1(z), σ2(z), · · · , σn(z)]T, (10)

and θ is a parameter vector of length n defined as

θ = [θ1, θ2, · · · , θn]
T. (11)

Then the model matching problem formulated as (6) can be rewritten with respect to θ as

θ̄ = arg min
θ

JMR(θ), (12)

where

JMR(θ) =

∥∥∥∥WM

(
M − (N + RY)X

1 + RQ(θ)

)∥∥∥∥
2

2
. (13)

Under the condition that the dual Youla parameter R is unknown, we will obtain the
minimizer θ̄ of JMR(θ) using the closed-loop experimental data set

{
r0(t), u0(t), y0(t)

}
.

Firstly, we obtain the input and the output data of R denoted by α(t), and β(t), respectively. In
Fig. 1, we treat the actual plant P as the perturbed plant described by (4) and set Q = 0 since Q
is a parameter to be designed. Then, we calculate α(t) and β(t) using the input/output data,
{u0(t), y0(t)} collected from the plant when the appropriate reference signal r0(t) is applied
to the standard unity feedback control structure as shown in Fig. 5. The signals α(t) and β(t)
are calculated as follows:

α(t) = Xy0(t) + Yu0(t)

= Xr0(t), (14)

β(t) = Dy0(t)− Nu0(t). (15)

Although α(t) is an internal signal of the feedback control system, α(t) is an function of
the external signal r0(t) given by the designer as is clear from (14). This means that the
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.
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is a parameter to be designed. Then, we calculate α(t) and β(t) using the input/output data,
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loop-gain from β to α is equivalent to 0, and that the input-output characteristic from β to
α is an open-loop system, which is also understood by Fig. 3 with Q = 0. Moreover, since R
belongs to RH∞ according to the dual Youla parameterization, the input/output data set of
R is always available by an open-loop experiment. As a result, the basic requirement for the
VRFT is always satisfied in this parameterization.
Secondly, we regard y0(t) as the output of the reference model M, and obtain the virtual
reference r̃(t) such that

y0(t) = Mr̃(t). (16)

If there exists the parameter θ such that α(t) = Xr̃(t)− Q(θ)β(t), the exact model matching is
achieved (Gry = M). According to the concept of the VRFT, the approximated solution of the
model matching problem, θ̂, is obtained by solving the following optimization problem:

θ̂ = arg min
θ

JN
VR(θ), (17)

where

JN
VR(θ) =

1
N

N

∑
t=1

[LM(α(t)− Xr̃(t) + Q(θ)β(t))]2.

Since Q(θ) is linear with respect to the parameter vector θ as defined in (9), JN
VR(θ) is rewritten

as

JN
VR(θ) =

1
N

N

∑
t=1

[yL(t)−ϕ(t)Tθ]2, (18)

where

ϕ(t) = −LMσβ(t),

yL(t) = LM(α(t)− Xr̃(t)).

The minimizer of JN
VR(θ) is then calculated using the least-squares method as

θ̂ =

[
N

∑
t=1

ϕ(t)ϕT(t)

]−1 N

∑
t=1

ϕ(t)yL(t). (19)

The filter LM is specified by the designer. By selecting LM = WMMYΦα(ω)−1, θ̂ could be a
good approximation of θ̄ in case N → ∞, where Φα(ω) is a spectral density function of α(t).
Moreover, this design approach needs an inverse system of the reference model, M−1, when
r̃(t) is generated. However, by introducing LM, we can avoid overemphasis by derivation in
M−1 in the case where the noise corrupted data y0(t) is used.

3.3 Stability constraint on the design of Q by the VRFT
The design method of Q based on the VRFT stated in the previous subsection does not
explicitly address the stability issue of the resulting closed-loop system. Therefore, we can
not evaluate whether the resulting Youla parameter Q(θ) actually stabilizes the closed-loop
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Fig. 5. Data acquisition of α(t) and β(t).

system or not in advance of its implementation. To avoid the instability, the data-based
stability constraint should be introduced in the optimization problem (17).
As stated in the subsection 2.2, the robust stability condition when the plant perturbs from
P0 to P is described using R and Q as (5). However, (5) is non-convex with respect to the
parameter θ, and it is difficult to incorporate this stability condition into the least-squares
based VRFT as the constraint. Using the small-gain theorem, the sufficient condition of the
robust stability is derived as

δ = �RQ(θ)�∞ < 1. (20)

The alternative constraint (20) is imposed instead of (5), and the original constrained
optimization problem is reduced to the tractable one (Matsumoto et al., 1993). Since model
information on the plant can not be available in the model-free controller syntheses such as
the VRFT, we must evaluate (20) using only the input/output data set {u0(t), y0(t)} obtained
from the closed-loop system. As is clear from Fig. 3, since the input and the output data of R
are α(t) and β(t), respectively, the open-loop transfer function from α to ξ(θ) corresponds to
RQ(θ) by introducing the virtual signal ξ(t, θ) = Q(θ)β(t). Assuming that α(t) is a p times
repeating signal of a periodic signal with a period T, i.e., α(t) is of length N = pT, the H∞
norm of RQ(θ) denoted by δ(θ) can be estimated via the spectral analysis method as the ratio
between the power spectral density function of α(t), denoted by Φα(ωk), and the power cross
spectral density function between α(t) and ξ(t, θ), denoted by Φαξ(ωk) (Ljung, 1999).
From the Wiener-Khinchin Theorem, Φα(ωk) is represented as a discrete Fourier transform
(DFT) of an auto-correlation of α(t), denoted by Rα(τ):

Φα(ωk) =
1
T

T−1

∑
τ=0

Rα(τ)e−iτωk , (21)

where

Rα(τ) =
1
T

T−1

∑
τ=1

α(t − τ)α(t),

ωk = 2πk/(TTs) (T = 0, · · · , (T − 1)/2), and Ts is a sampling time. The frequency points
ωk must be defined as a sequence with a much narrow interval for a good estimate of δ(θ).
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good approximation of θ̄ in case N → ∞, where Φα(ω) is a spectral density function of α(t).
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r̃(t) is generated. However, by introducing LM, we can avoid overemphasis by derivation in
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The design method of Q based on the VRFT stated in the previous subsection does not
explicitly address the stability issue of the resulting closed-loop system. Therefore, we can
not evaluate whether the resulting Youla parameter Q(θ) actually stabilizes the closed-loop
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system or not in advance of its implementation. To avoid the instability, the data-based
stability constraint should be introduced in the optimization problem (17).
As stated in the subsection 2.2, the robust stability condition when the plant perturbs from
P0 to P is described using R and Q as (5). However, (5) is non-convex with respect to the
parameter θ, and it is difficult to incorporate this stability condition into the least-squares
based VRFT as the constraint. Using the small-gain theorem, the sufficient condition of the
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The alternative constraint (20) is imposed instead of (5), and the original constrained
optimization problem is reduced to the tractable one (Matsumoto et al., 1993). Since model
information on the plant can not be available in the model-free controller syntheses such as
the VRFT, we must evaluate (20) using only the input/output data set {u0(t), y0(t)} obtained
from the closed-loop system. As is clear from Fig. 3, since the input and the output data of R
are α(t) and β(t), respectively, the open-loop transfer function from α to ξ(θ) corresponds to
RQ(θ) by introducing the virtual signal ξ(t, θ) = Q(θ)β(t). Assuming that α(t) is a p times
repeating signal of a periodic signal with a period T, i.e., α(t) is of length N = pT, the H∞
norm of RQ(θ) denoted by δ(θ) can be estimated via the spectral analysis method as the ratio
between the power spectral density function of α(t), denoted by Φα(ωk), and the power cross
spectral density function between α(t) and ξ(t, θ), denoted by Φαξ(ωk) (Ljung, 1999).
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A shorter sampling time Ts is preferable to estimate δ(θ) in higher frequencies, and a longer
period T improves the frequency resolution.
Similarly, Φαξ(ωk, θ) is estimated as a DFT of the cross-correlation between α(t) and ξ(t, θ),
denoted by Rαξ(τ):

Φ̂αξ(ωk, θ) =
1
T

T−1

∑
τ=0

R̂αξ(τ, θ)e−iτωk , (22)

where

R̂αξ(τ, θ) =
1
N

N

∑
τ=1

α(t − τ)ξ(t, θ).

Using the p-periods cyclic signal α(t) in the estimate of R̂αξ(τ, θ), the effect of the
measurement noise involved in ξ(t, θ) is averaged and the estimate error in Φαξ(ωk, θ) is
then reduced. Especially, the measurement noise is normalized, the effect on the estimate of
Φαξ(ωk, θ) by the measurement noise is asymptotically reduced to 0.
Since Q(θ) is linearly defined with respect to θ, R̂αξ(τ, θ) and Φ̂αξ(ωk, θ) are also linear
with respect to θ. As a result, the stability constraint of (20) is evaluated using only the
input/output data as

δ̂(θ) = max
{ωk|Φα(ωk) �=0}

∣∣∣∣∣
Φ̂αξ(ωk, θ)

Φα(ωk)

∣∣∣∣∣ < 1. (23)

Since this constraint is convex with respect to θ at each frequency point ωk, we can integrate
this H∞ norm constraint into the optimization problem (17) and solve it as a convex
optimization problem.

3.4 Design algorithm
This subsection describes the design algorithm of Q(θ) imposing the stability constraint.

[step 1] Collect the input/output data set {u0(t), y0(t)} of length N in the closed-loop manner
in the unity feedback control structure shown in Fig. 5 when the appropriate reference
signal r0(t) is applied.

[step 2] Calculate α(t) and β(t) using the data set {r0(t), u0(t), y0(t)} as

α(t) = Xr0(t),

β(t) = Dy0(t)− Nu0(t).

[step 3] Generate the virtual reference r̃(t) such that

y0(t) = Mr̃(t).

[step 4] Solve the following convex optimization problem;

θ̂ = arg min
θ

JN
VR(θ),
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Fig. 6. Experimental set-up of a belt-driven two-mass system.

subject to
∣∣∣∣∣

1
T

T−1

∑
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ωk = 2πk/T, k = 0, . . . , (T − 1)/2.

4. Design example

To verify the effectiveness of the proposed design method, we address a velocity control
problem of a belt-driven two-mass system frequently encountered in many industrial
processes.

4.1 Controlled plant
The plant to be controlled is depicted as Fig. 6. The velocity of the drive disk is controlled by
the drive motor connected to the drive disk. The pulley is connected to the load disk through
the flexible belt, the restoring force of the flexible belt affects the velocity of the drive disk,
which causes the resonant vibration of the drive disk. The resonant frequency highly depends
on the position and the number of the weights mounted on the drive disk and the load disk.
We treat this two-mass resonant system as the controlled plant P. Since the position and the
number of the weights mainly changes the resonant frequency, a rigid model is treated as
the nominal plant P0 identified easily, which changes little in response to load change. The
nominal plant P0 is identified by the simple frequency response test as

P0 =
4964

s2 + 136.1s + 8.16
. (24)

Moreover, the delay time of 14 ms is emulated by the software as the plant perturbation in
P, but it is not reflected in P0. Due to the delay time, the closed-loop system tends to be
destabilized when the gain of the feedback controller is high. This means that if the reference
model with the high cut-off frequency is given, the closed-loop system readily destabilized.
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A shorter sampling time Ts is preferable to estimate δ(θ) in higher frequencies, and a longer
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1
T

T−1

∑
τ=0

R̂αξ(τ, θ)e−iτωk , (22)

where

R̂αξ(τ, θ) =
1
N

N

∑
τ=1

α(t − τ)ξ(t, θ).
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δ̂(θ) = max
{ωk|Φα(ωk) �=0}

∣∣∣∣∣
Φ̂αξ(ωk, θ)

Φα(ωk)

∣∣∣∣∣ < 1. (23)

Since this constraint is convex with respect to θ at each frequency point ωk, we can integrate
this H∞ norm constraint into the optimization problem (17) and solve it as a convex
optimization problem.

3.4 Design algorithm
This subsection describes the design algorithm of Q(θ) imposing the stability constraint.

[step 1] Collect the input/output data set {u0(t), y0(t)} of length N in the closed-loop manner
in the unity feedback control structure shown in Fig. 5 when the appropriate reference
signal r0(t) is applied.

[step 2] Calculate α(t) and β(t) using the data set {r0(t), u0(t), y0(t)} as

α(t) = Xr0(t),

β(t) = Dy0(t)− Nu0(t).

[step 3] Generate the virtual reference r̃(t) such that

y0(t) = Mr̃(t).

[step 4] Solve the following convex optimization problem;

θ̂ = arg min
θ

JN
VR(θ),
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4.2 Experimental condition
For the simplicity, the design problem is restricted to the model matching of Gry approaching
to its reference model M in the previous section. However, the proposed method readily
address the model matching of multiple characteristics. In the practical situations, we must
solve the trade-off between several closed-loop properties. In this experimental set-up, we
show the design result of the simultaneous optimization problem approaching the tracking
performance, Gry, and the noise attenuation performance, Gny to their reference models, M
and T, respectively. The evaluation function is defined as

JMR(θ) =

∥∥∥∥WM

(
M − (N + RY)X

1 + RQ(θ)

)∥∥∥∥
2

2
+

∥∥∥∥WT

(
T − (N + RY)(X + Q(θ)D)

1 + RQ(θ)

)∥∥∥∥
2

2
. (25)

To deal with the above multiobjective optimization problem, we redefine ϕ(t) and yL(t) in
(18) as

ϕ(t) = [−LMσβ(t), −LTσ(β(t)− Dñ(t))] ,

yL(t) = [LM(α(t)− Xr̃(t)), LT(α(t)− Xñ(t))]T ,

where ñ(t) is a virtual reference such that y0(t) = Tñ(t), LT is a filter selected as LT =
WTTΦα(ω)−1. The reference models for Gry and Gny are given by discretization of

M =
502

(s + 50)2 , and

T =
502

(s + 50)2

with the sampling time Ts = 1 [ms].
The nominal controller stabilizing P0 is evaluated from the relation

M =
P0C0

1 + P0C0

as

C0 =
M

(1 − M)P0

=
0.5036s2 + 68.52s + 4.110

s(s + 100)
.

The weighting functions WM and WT are given to improve the tracking performance in low
frequencies and the noise attenuation performance in high frequencies as

WM =
2002

(s + 200)2 , and

WT =
s2

(s + 200)2 .
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The Youla parameter Q(s, θ) is defined in the continuous-time so that the properness of Q(s, θ)
and the relation, Q ∈ RH∞, are satisfied as

Q(s, θ) =
θ1s + θ2s2 + θ3s3 + θ4s4 + θ5s5

(0.06s + 1)5

=
1

(0.06s + 1)4

�
s s2 s3 s4 s5�

⎡
⎢⎢⎢⎢⎣

θ1
θ2
θ3
θ4
θ5

⎤
⎥⎥⎥⎥⎦

= σ(s)Tθ.

The discrete-time Youla parameter Q(z, θ) is defined by discretization of Q(s, θ), i.e., σ(s),
with the sampling time Ts = 1 [ms]. In order to construct the type-I servo system even if the
plant perturbs, the constant term of the numerator of Q(s, θ) is set to 0 such that Q(s, θ)|s=0 =
0 in the continuous-time (Sakuishi et al., 2008).

4.3 Experimental result
The VRFT can be regarded as the open-loop identification problem of the controller parameter
by the least-squares method. We select the pseudo random binary signal (PRBS) as the input
for identification of the controller parameter as same as in the general open-loop identification
problem, since the identification input should have certain power spectrum in all frequencies.
The PRBS is generated through a 12-bit shift register (i.e., T = 212 − 1 = 4095 samples), the
reference signal r0 is constructed by repeating this PRBS 10 times (i.e., p = 10, N = 40950).
Firstly, we obtain the parameter θ̂w/o as (26) when the stability constraint is not imposed.

θ̂w/o =

⎡
⎢⎢⎢⎢⎣

−2.878 × 10−2

1.429 × 10−2

−1.594 × 10−3

1.184 × 10−5

1.339 × 10−6

⎤
⎥⎥⎥⎥⎦

(26)

Secondly, we obtain the parameter θ̂w/ as (27) when the stability constraint is imposed.

θ̂w/ =

⎡
⎢⎢⎢⎢⎣

1.263 × 10−1

1.261 × 10−2

7.425 × 10−4

4.441 × 10−6

4.286 × 10−7

⎤
⎥⎥⎥⎥⎦

(27)

The estimates of δ(θ) for Q(z, θ̂w/o) and Q(z, θ̂w/) are shown in Fig. 7. For Q(z, θ̂w/o), the
stability constraint is not satisfied around 60 rad/s, and δ̂(θ̂w/o) = 7.424. Since the sufficient
condition for the robust stability is not satisfied, we can predict in advance of implementation
that the closed-loop system might be destabilized if the Youla parameter Q(z, θ̂w/o) was
implemented. On the other hand, δ̂(θ̂w/) = 0.9999 for Q(z, θ̂w/), which satisfies the stability
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plant perturbs, the constant term of the numerator of Q(s, θ) is set to 0 such that Q(s, θ)|s=0 =
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problem, since the identification input should have certain power spectrum in all frequencies.
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reference signal r0 is constructed by repeating this PRBS 10 times (i.e., p = 10, N = 40950).
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Fig. 7. Estimate of δ(θ), δ̂(θ̂w/o) and δ̂(θ̂w/).

constraint. Therefore, we can predict in advance of implementation that the closed-loop
system could be stabilized if the Youla parameter Q(z, θ̂w/) was implemented.
Figure 8 shows the step responses of the GIMC structure with implementing Q(z, θ̂w/o)
and Q(z, θ̂w/). In the case of Q(z, θ̂w/o), its response vibrates persistently, the tracking
performance, Gry, degrades compared with the case that the control system is governed by
only the nominal controller C0, i.e., Q = 0. On the other hand, in the case of Q(z, θ̂w/), its
response does not coincides with the output of the reference model due to the long delay
time, but Fig. 8 shows that the control system is at least stabilized. Moreover, we can
confirm that the vibration is suppressed compared with the case of Q = 0 and the proposed
method provides the Youla parameter reflecting the objective function without destabilizing
the closed-loop system. Although JN

VR(θ̂w/o) < JN
VR(θ̂w/), the response for Q(z, θ̂w/) is much

closer to the output of the reference model than that for Q(z, θ̂w/o). This observation implies

Fig. 8. Step responses for a belt-driven two-mass system with and without stability
constraint.
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that only minimization of the 2-norm based cost function may not provide the appropriate
stabilizing controller in model-free controller syntheses.

5. Conclusion

In this article, the design method of the Youla parameter in the GIMC structure by the typical
model-free controller design method, VRFT, is proposed. By the model-free controller design
method, we can significantly reduce the effort for identification of R and the design of Q
compared with the model-based control design method. We can also specify the order and
the structure of Q, which enable us to design a low-order controller readily. Moreover, the
stability constraint derived from the small-gain theorem is integrated into the 2-norm based
standard optimization problem. As a result, we can guarantee the closed-loop stability by the
designed Q in advance of the controller implementation. The effectiveness of the proposed
controller design method is confirmed by the experiment on the two-mass system.
As a future work, we must tackle the robustness issue. The proposed method guarantees the
closed-loop stability only at the specific condition where the input/output data is collected.
If the load condition changes, the closed-loop stability is no longer guaranteed in the
proposed method. We must improve the proposed method to enhance the robustness for
the plant perturbation and/or the plant uncertainties. Morevover, though the controller
structure is now restricted to the linearly parameterized one in the proposed method, the
fully parameterized controller should be tuned for the higher control performance.
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1. Introduction

Time delay often exists in engineering systems such as chemical plants, steel making
processes, etc. and studies on time-delay system have long historical background. Therefore
the system with time-delay has attracted many researchers’ interest and various studies
have been conducted. It had been a classic problem; however evolution of the network
technology and spread of the Internet brought it back to the main stage. Rapid growth of
computer network technology and wide spread of the Internet have been brought remarkable
innovation to the world. They enabled not only the speed-of-light information exchange but
also offering various services via Internet. Even the daily lives of people have been changed
by network based services such as emails, web browsing, twitter and social networks.
In the field of motion control engineering, computer networks are utilized for connecting
sensors, machines and controllers. Network applications in the machine industry are
replacing bunch of traditional wiring, which is complex, heavy and requires high installation
costs (Farsi et al., 1999). Especially, the weight of the signal wires increases the gas
consumption of automobiles, which is nowadays not only an issue on the driving performance
but also on the environmental issue.
Much research and development is also being conducted in application level, such as
tele-surgery (Ghodoussi et al., 2002), tele-operated rescue robots (Yeh et al., 2008), and
bilateral control with force feedback via a network (Uchimura & Yakoh, 2004). These
applications commonly include sensors, actuators and controllers that are mutually connected
and exchange information via a network.
When transmitting data on a network, transmission delays are accumulated due to one or
more of the following factors: signal propagation delay, non-deterministic manner of network
media access, waiting time in queuing, and so on. The delays sometimes become substantial
and affect the performance of the system. Especially, delays in feedback not only weaken
system performance, but also cause system unstable in the worst case. Various studies have
investigated ways to deal the system with transmission delay. Time-delay systems belong
to the class of functional differential equations which are infinite dimensional. It means that
there exists infinite number of eigenvalues and conventional control methods developed for
the linear time-invariant system do not always reach the most optimized solution.
Therefore many methods for the time-delay systems were proposed. A classic but prominent
method is the Smith compensator (Smith, 1957). The Smith compensator essentially assumes
that a time delay is constant. If the delay varies, the system may become unstable (Palmor,
1980). Vatanski et.al. (Vatanski et al., 2009) proposed a modified Smith predictor method by
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measuring time varying delays on the network, which eliminates the sensor time delay (the
delay from a plant to a controller). The gain (P gain) of the controller is adjusted based on
the amount of time delay to maintain stability of the system. Passivity based control using
scattering transformation does not requires an upper bound of delay (Anderson & Spong,
1989); however, as noted in previous research (Yokokohji et al., 1999), the method tends to
be conservative and to consequently deteriorate overall performance.
One of the typical approaches is a method base on robust control theory. Leung proposed to
deal with time delay as a perturbation and a stabilizing controller was obtained in the frame
work of μ-synthesis (Leung et al., 1997). Chen showed a robust asymptotic stability condition
by a structured singular value (Chen & Latchman, 1994). The paper also discussed on systems
whose state variables include multiple delays.
Another typical approach is to derive a sufficient condition of stability using
Lyapunov-Krasovskii type function (Kharitonov et al, 2003). The conditions are mostly shown
in the form of LMI (Linear Matrix Inequality)(Mahmoud & AI-bluthairi, 1994)(Skelton et al.,
1998). Furthermore, a stabilizing controller for a time invariant uncertain plant is also
shown in the form of LMI (Huang & Nguang, 2007). However, Lyapunov-Krasovskii
based approaches commonly face against conservative issues. For example, if the
Lyapunov function is time independent (Verriest et al., 1993), the system tends to be very
conservative. Thus, many different Lyapunov-Krasovskii functions are proposed to reduce
the conservativeness of the controller (Yue et al., 2004)(Richard, 2003). Lyapunov-Krasovskii
based methods deal with systems in the time domain, whereas robust control theory is
usually described in the frequency domain.
Even though those two methods deal with the same object, their approaches seem to be
very different. Zhang (Zhang et al., 2001) showed an interconnection between those two
approaches by introducing the scaled small gain theory and a system named comparison
system. The paper also examined on conservativeness of several stability conditions
formulated in LMI and μ-synthesis based design, which concluded that μ-synthesis based
controller was less conservative than other LMI based controllers. Detail of this examination
is shown in the next section.
In fact, conservativeness really depends how much information of the plant is known. It
is obvious that delay-independent condition is more conservative than delay-dependent
condition. Generally, the more you know the plant, you possibly gain the chance to improve.
For example, time delay on a network is not completely uncertain, in other words it is
measurable. If the value of delay is known and explicitly used for control, performance would
be improved. Meanwhile, in the model based control, the modeling error between the plant
model and the real plant can affect the performance and stability of the system. However,
perfect modeling of the plant is very difficult, because the properties of the real plant may
vary due to the variation of loads or deterioration by aging. Thus modeling error is inevitable.
The modeling error is considered to be a loop gain variation (multiplicative uncertainty) . The
error seriously affects the stability of the feedback system. In order to consider the adverse
effect of the modeling error together with time delay, we exploited a μ-synthesis to avoid the
instability due to uncertainty.
This chapter proposes a model based controller design with μ-synthesis for a network based
system with time varying delay and the plant model uncertainty. For the time delay, the
explicit modeling is introduced, while uncertainty of the plant model is considered as a
perturbation based on the robust control theory.
The notations in this chapter are as follows: R is the set of real numbers, C is the set of complex
numbers, Rn×m is the set of all real n × m matrices, In is n × n identity matrix, WT is the
transpose of matrix W, P > 0 indicates that P is a symmetric and positive definite matrix,
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�·�∞ indicates H∞ norm defined by �G�∞ := supω∈R σ̄[G(jω)] where σ̄(M) is the maximum
singular value of complex matrix M. Let (A, B, C, D) be a minimal realization of G(s) with

G(s) =
[

A B
C D

]
. (1)

2. Related works and comparison on conservativeness

2.1 Stability analysis approaches, eigen values, small gain and LMI
Time-delay system attracts much interest of researchers and many studies have been
conducted. In the manner of classic frequency domain control theory, the system seems
to have infinite order, i.e. it has infinite poles, which makes it intractable problem. Since
time delay is a source of instability of the system, stability analysis has been one of the main
concerns. These studies roughly categorized into frequency domain based methods and time
domain based methods. Frequency domain based methods include Nyquist criterion, Pade
approximation and robust control theory such as H∞ control based approaches.
Meanwhile time domain based methods are mostly offered with conditions which are
associated with Lyapunov-Krasovskii functional. The condition is formulated in terms of LMI,
hence can be solved efficiently.
Consider a time-delay system in (2),

ẋ(t) = Ax(t) + Adx(t − δ(t)) (2)

where x(t) ∈ Rn which is a state variable, A ∈ Rn×n, Ad ∈ Rn×n are parameters of state
space model of a plant and δ(t) corresponds to the delay on transmission such as network
communication delay.
Much interest in the past literature has focused on searching less conservate conditions.
Conservativeness is often measured by the amount of δ(t), that is, the larger δ(t) is the
better. In fact, constraints on δ(t) plays an important role on conservativeness measure.
Conservativeness strongly depends on the following constraints:

1. Delay dependent or independent. Whether or not there exists the upper bound of delay δ̄,
where δ(t) < δ̄.

2. δ(t) is time variant or time invariant (variable delay or constant delay).

3. The value of upper bound of δ̇(t), ν, where δ̇(t) < ν.

As for the first constraint, stability condition is often referred as
delay-dependent/independent. If the stability condition is delay-independent, it allows
amount of time-delay to be infinity.

2.2 Delay independent stability analysis in time domain
Verriest (Verriest et al., 1993) showed that the system in (2) is uniformly asymptotically stable,
if there exist symmetric positive definite matrix P and Q such that

[
PA + ATP + Q PAd

AT
d P −Q

]
< 0. (3)

The condition (3) is a sufficient condition for delay-independent case. One may notice that the
matrix form is similar to that of the bounded real lemma.
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Fig. 1. Interconnection of a plant and time delay

Lemma 1 (Bounded real lemma): Assume G(s) which is the transfer function of a system, i.e.
G(s) := C(sI − A)−1B. �G(s)�∞ < γ, if and only if there exists a matrix P > 0,

[
PA + ATP + CTC

γ PAd

AT
d P −γIn

]
< 0. (4)

Suppose (A, B, C, D) of system (2) is (A, Ad, In, 0) and let G(s) = (sIn − A)−1 Ad be a transfer
function of the system and γ = 1 in (4), (3) and (4) are identical. This fact implies that a system
with time delay is stable regardless the value of time delay, if �G(s)�∞ < 1. This condition
corresponds to the small gain theorem.
Fig.1 shows an interconnection of system G(s) and delay block Δ(s), where u(t) = y(t− δ(t)).
In the figure, Δ(s) is a block of time delay whose H∞ norm �Δ(s)�∞ is induced by (5) .

�Δ(s)�∞ = sup
y∈L2

√∫ ∞
0 uT(t)u(t)dt

√∫ ∞
0 yT(t)y(t)dt

= sup
y∈L2

�u�2
�y�2

(5)

Because the input energy to the delay block is same as the output energy, H∞ norm of
Δ(s) is equal to 1, i.e. �Δ(s)�∞ = 1. Hence, the interconnected system is stable because
�G(s)Δ(s)�∞ < 1. This implies that if �G(s)Δ(s)�∞ > 1, the system becomes unstable when
the delay exceeds the limitation. If the delay δ(t) is bounded by the maximum value δ̄, system
in (2) is stable even if �G(s)Δ(s)�∞ > 1. Evaluation of conservativeness is often measured by
the upper bound δ̄ for the given system. A condition which gives larger δ̄ is regarded as less
conservative.

2.3 Delay dependent stability analysis with Lyapnouv-Krasovskii functional
Delay independent stability condition is generally very conservative, because it allows infinite
time delay and requires the system G(s) to be small in terms of the system gain. However, the
given system is not always �G(s)�∞ < 1. For the system whose H∞ norm is more than one,
there exist an upper bound of delay. Generally, an upper bound of delay is given and stability
conditions of the system with the upper bound are shown. There have been many studies on
Lyapnouv-Krasovskii based analysis for time varying delay system. These have been refining
forms of Lyapnouv-Krasovskii functional to reduce conservativeness. Following theorems are
LMI based stability conditions for a system with time-varying delay.
Theorem 1 (Li & de Souza, 1996):
The system given in (6) with time-varying delay is asymptotically stable for any delay δ(t)
satisfying condition (7) if there exist matrix X > 0 and constants β1 > 0 and β2 > 0 satisfying
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(8)
ẋ(t) = Ax(t) + Adx(t − δ(t)) (6)

0 ≤ δ(t) < δ̄ (7)

⎡
⎣

Ω1 XAd A XAd Ad
∗ β1

−1X 0
∗ ∗ β2

−1X

⎤
⎦ > 0 (8)

where

Ω1 = −δ̄−1
�
(A + Ad)

TX + X(A + Ad)
�
− (β1

−1 + β2
−1)X. (9)

Theorem 2 (Park, 1999):
The system given in (6) with time-varying delay is asymptotically stable for any delay δ(t)
satisfying condition (7) if there exist matrix P > 0, Q > 0, V > 0, and W such that

⎡
⎢⎢⎣

Ω2 −WT Ad AT AT
d V Θ

∗ −Q AT
d AT

d B 0
∗ ∗ −V 0
∗ ∗ ∗ −V

⎤
⎥⎥⎦ > 0 (10)

where
Ω2 = (A + Ad)

T P + P(A + B) + WTB + BTW + Q (11)

Θ = δ̄(WT + P). (12)

Theorem 3 (Tang & Liu, 2008):
The system given in (6) with time-varying delay which satisfies (7) is asymptotically stable for
any delay δ(t) which satisfies (13), if there exist matrices P > 0, Q > 0, Z > 0, Y and W such
that the following linear matrix inequality (LMI) holds:

0 ≤ δ(t) < δ̄, δ̇(t) ≤ ν < 1 (13)

⎡
⎢⎢⎣

Ω3 −Y + PAd + WT −Y d̄ATZ
∗ −W − WT − (1 − ν)Q −W dAT

d Z
∗ ∗ −Z 0
∗ ∗ ∗ −Z

⎤
⎥⎥⎦ < 0 (14)

where
Ω3 = PA + ATP + Y + YT + Q. (15)

In packet based networked system, the condition δ̇(t) < 1 implies that the preceding packet
is not caught up by the successive packet.

2.4 Delay dependent stability analysis in frequency domain
In frequency domain based, Nyquist criterion gives necessary and sufficient condition and the
eigen value based analysis described below is another option of the analysis.
Lemma 2 The system (2) is asymptotically stable for all δ ∈ [0, δ̄], if and only if ψ(jω, δ) �=
0, ∀ω > 0 where ψ(s, δ) := (sIn − A − Ade−sδ).
Corollary 1 The system (2) is asymptotically stable for all δ ∈ [0, δ̄], if and only if

det[In − G(jω)Φ(jδω)] �= 0, ∀ω ≥ 0, (16)
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0 ≤ δ(t) < δ̄, δ̇(t) ≤ ν < 1 (13)

⎡
⎢⎢⎣

Ω3 −Y + PAd + WT −Y d̄ATZ
∗ −W − WT − (1 − ν)Q −W dAT

d Z
∗ ∗ −Z 0
∗ ∗ ∗ −Z

⎤
⎥⎥⎦ < 0 (14)

where
Ω3 = PA + ATP + Y + YT + Q. (15)

In packet based networked system, the condition δ̇(t) < 1 implies that the preceding packet
is not caught up by the successive packet.

2.4 Delay dependent stability analysis in frequency domain
In frequency domain based, Nyquist criterion gives necessary and sufficient condition and the
eigen value based analysis described below is another option of the analysis.
Lemma 2 The system (2) is asymptotically stable for all δ ∈ [0, δ̄], if and only if ψ(jω, δ) �=
0, ∀ω > 0 where ψ(s, δ) := (sIn − A − Ade−sδ).
Corollary 1 The system (2) is asymptotically stable for all δ ∈ [0, δ̄], if and only if

det[In − G(jω)Φ(jδω)] �= 0, ∀ω ≥ 0, (16)
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Fig. 2. Robust control based method

where G(s) = F(sIn − Ā)−1H, Ad = HF, Ā := A+ Ad and Φ(δs) = φ(δs)Iq, φ(δs) = e−δs − 1.
Lemma 2 and Corollary 1 requires solving a transcendental equation. Thus, another set Δ(jω)
which covers Φ(δs) is chosen. This selection of set Δ(jω) seriously effects on conservativeness.
Zhang proposed very less conservative method using modified Pade approximation. It gives
very less conservative δ̄ which is very close to the Nyquist criterion.
The eigen value analysis including Pade based method can be only applicable for time
invariant delay. For time variant delay, stability analysis with robust control based methods
has been proposed.
The robust control based method regards a set Δ(jω) as the frequency dependent worst case
gain (Leung et al., 1997). In the method, a weighting function is chosen to cover the gain of
Φ(δs). Fig. 2 illustrates the block diagram of robust control method. Fig. 2 (a) shows a system
with a single delay and it can be converted to Fig. 2 (b), i.e. Φ(δs) = φ(δs) = e−δs − 1. Fig. 2
(c) represents multiplicable uncertainty with associated weighting function Wd(s) and Δu is a
unit disk (�Δu�∞ = 1).
Wd(s) is chosen such that H∞ gain of Wd(s) is more than φ(δs) − 1, i.e. �φ(δs)− 1�∞ <
�Wd(s)�∞ .
Fig. 3 shows the bode plot of φ(δs) = e−δs − 1, where (a) shows the plot of δ = 0.1, (b) shows
the plot of δ = 1 and (c) shows the case of δ = 10. As shown in the figures, the bode plot
shifts along frequency axis by changing value of δ. It shifts towards the low frequency when
δ becomes large.
The robust control method gives a sufficient condition based on the small gain theory by
choosing a unit disk with a weighting function Wd(s) for a set Δ(jω).

2.5 Conservation examination on LMI based method and robust control method
We examined conservativeness of LMI based conditions including Theorem 1, 2, 3 and
previously introduced robust control based method.

2.5.1 Numerical example
Suppose a second order LTI system whose parameters are

A =

[
0 1
−1 −2ζ

]
, Ad =

[
0 0

−1.1 0

]
(17)

where ζ corresponds to a damping factor.
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Fig. 3. Bode plot of e−δs − 1

ζ \ Nyquist Li’96 Park’99 Tang0 Tang1 Robust
0.1 0.1838 0.1818 0.1834 0.1834 0.1818 0.1809
0.3 0.6096 0.5455 0.5933 0.5933 0.5455 0.5289
0.5 1.2965 0.9091 1.1927 1.1927 0.9091 0.8690
0.7 2.9816 1.2727 2.4815 2.4815 1.2727 1.4210
1.0 7.9927 1.8182 6.0302 6.0302 1.8182 3.2000

10.0 117.0356 18.1818 85.0562 85.0562 18.1818 23.0000

Table 1. Upper bound of δ (δ̄)

By using YALMIP (Lofberg, 2005) with Matlab for the problem modeling and CSDP (CSDP,
1999) for the LMI solver, we calculated the maximum value of δ by solving LMI feasibility
problem with iteration operations.
Table 1 shows the maximum value δ̄ which measures conservativeness of the conditions. In
the table, Li’96 and Park’99 are obtained by the Theorem 1 and 2 respectively. Tang0 is the
result when ν = 0 and Tang1 is that of ν = 1, where ν is in (13).
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invariant delay. For time variant delay, stability analysis with robust control based methods
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The robust control based method regards a set Δ(jω) as the frequency dependent worst case
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The robust control method gives a sufficient condition based on the small gain theory by
choosing a unit disk with a weighting function Wd(s) for a set Δ(jω).

2.5 Conservation examination on LMI based method and robust control method
We examined conservativeness of LMI based conditions including Theorem 1, 2, 3 and
previously introduced robust control based method.

2.5.1 Numerical example
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A =

[
0 1
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]
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Table 1. Upper bound of δ (δ̄)

By using YALMIP (Lofberg, 2005) with Matlab for the problem modeling and CSDP (CSDP,
1999) for the LMI solver, we calculated the maximum value of δ by solving LMI feasibility
problem with iteration operations.
Table 1 shows the maximum value δ̄ which measures conservativeness of the conditions. In
the table, Li’96 and Park’99 are obtained by the Theorem 1 and 2 respectively. Tang0 is the
result when ν = 0 and Tang1 is that of ν = 1, where ν is in (13).
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Fig. 4. Bode plots of Wd(s) (blue line) and e−Ts − 1 (red dotted line)

Robust in Table 1 shows the results of the robust control method which regards the varying
delay as a perturbation, where the following weighting function was used.

Wd(s) =
2s(T2s2/4 + (T + T/4)s + 1)
(s + 2/T)(T2s2/4 + Ts + 1)

(18)

Fig. 4 shows the bode plots of Wd(s) and e−Ts − 1 where T = 1.
Notice that the results of Li’96 are exactly same as Tang1 and Park’99 are the same as Tang1.
This implies these two pairs are equivalent conditions. In fact, ν = 0 corresponds that time
delay is constant because ν = δ̇(t). Robust control results lie between Tang0 and Tang1, i.e.
between ν = 0 and ν = 1. In fact, the perturbation assumed by robust control shall include
the case ν = 1, thus these results imply that the robust control approach seems to be less
conservative.
So far, Lyapunov-Krasovskii controllers are mostly designed with (memory less) static
feedback of the plant state (Jiang & Han, 2005). From the performance point of view, the static
state feedback performs often worse than the dynamic controller such as H∞ based controllers.

2.5.2 Examination on LMI based method and μ-synthesis
Zhang also examined conservativeness on stability conditions formulated in LMI form and
robust control (Zhang et al., 2001), both delay independent and dependent condition were
also discussed. In the examination, a system in (2) with parameters in (19) and (20) was used,
which was motivated by the dynamics of machining chatter (Tlusty, 1985).

A =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−(10.0 + K) 10.0 1 0
5.0 −15.0 0 −0.25

⎤
⎥⎥⎦ (19)
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Fig. 5. Delay margin versus K.

Ad =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
K 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (20)

The paper examined conservativeness with μ-synthesis based method which is a
representative method of the robust control. Specifically, it calculates the structured singular
value μΔr(G(jω)) defined in (21) with respect to a block structure Δr in (22).

μΔr(G(jω)) = [min{σ̄(Δ) : det(I − GΔ) = 0, Δ ∈ Δr}]−1 (21)

Δr := {diag[λ1 In1 , λ2 In2 ] : λi ∈ C} . (22)

Because calculating of μ is NP-hard (non-deterministic polynomial-time hard), its upper
bound with D scales defined in (23) and (24) was used.

sup
ω∈R

inf
D∈Dr

σ̄
�

DG(jω)D−1
�
< 1 (23)

Dr :=
�

diag[D1, D2]|Di ∈ Cn×n, Di = Di
∗ > 0

�
(24)

The analytical results are shown in Fig. 5 (Zhang et al., 2001). In the figure, the plot (1) shows
the case of Nyquist Criterion, (2) shows μ upper bound with frequency-dependent D scaling,
(3) shows the upper bound by Theorem 2 and (3) shows the upper bound by Theorem 1.
The results show that the LMI based conditions are more conservative than D-scaled μ based
method. The reason of this is stated that the scale matrix D in μ method is frequency
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Robust in Table 1 shows the results of the robust control method which regards the varying
delay as a perturbation, where the following weighting function was used.

Wd(s) =
2s(T2s2/4 + (T + T/4)s + 1)
(s + 2/T)(T2s2/4 + Ts + 1)

(18)

Fig. 4 shows the bode plots of Wd(s) and e−Ts − 1 where T = 1.
Notice that the results of Li’96 are exactly same as Tang1 and Park’99 are the same as Tang1.
This implies these two pairs are equivalent conditions. In fact, ν = 0 corresponds that time
delay is constant because ν = δ̇(t). Robust control results lie between Tang0 and Tang1, i.e.
between ν = 0 and ν = 1. In fact, the perturbation assumed by robust control shall include
the case ν = 1, thus these results imply that the robust control approach seems to be less
conservative.
So far, Lyapunov-Krasovskii controllers are mostly designed with (memory less) static
feedback of the plant state (Jiang & Han, 2005). From the performance point of view, the static
state feedback performs often worse than the dynamic controller such as H∞ based controllers.

2.5.2 Examination on LMI based method and μ-synthesis
Zhang also examined conservativeness on stability conditions formulated in LMI form and
robust control (Zhang et al., 2001), both delay independent and dependent condition were
also discussed. In the examination, a system in (2) with parameters in (19) and (20) was used,
which was motivated by the dynamics of machining chatter (Tlusty, 1985).
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value μΔr(G(jω)) defined in (21) with respect to a block structure Δr in (22).

μΔr(G(jω)) = [min{σ̄(Δ) : det(I − GΔ) = 0, Δ ∈ Δr}]−1 (21)

Δr := {diag[λ1 In1 , λ2 In2 ] : λi ∈ C} . (22)

Because calculating of μ is NP-hard (non-deterministic polynomial-time hard), its upper
bound with D scales defined in (23) and (24) was used.
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Dr :=
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diag[D1, D2]|Di ∈ Cn×n, Di = Di
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The analytical results are shown in Fig. 5 (Zhang et al., 2001). In the figure, the plot (1) shows
the case of Nyquist Criterion, (2) shows μ upper bound with frequency-dependent D scaling,
(3) shows the upper bound by Theorem 2 and (3) shows the upper bound by Theorem 1.
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Fig. 7. Time varying delay as a perturbation

dependent function which is obtained by frequency sweeping of G(jω). On contrary, LMI
formed condition corresponds to fix D scale a real constant value. Constant D scaling is well
known to provide a more conservative result than frequency-dependent D scaling. This result
revealed that Lyapunov-Krasovskii based conditions formulated in LMI may be caught into
conservative issue and their robust margin possibly becomes smaller than μ based controller.
Through the investigations stated above, we determined to exploit a μ-synthesis based
controller design. Because μ-synthesis based controller is designed based on the robust control
theory. In the next section, we describe a model based μ controller design for a system with
time delay and model uncertainty.

3. Model based μ-synthesis controller

Fig. 6 shows basic structure of a network based system where C(s) is a controller and Gm(s)
is a remote plant. The block Δd is a delay factor which represents transmission delay on a
network. It represents round trip delay, which accumulates forward and backward delays.
The time varying delay δ(t) is bounded with 0 ≤ δ(t) ≤ δ̄. If the time delay δ(t) is a
constant value δc, the block can be written as Δd = e−δcs in frequency domain, however
e−δs is not accurate expression for time varying delay δ. As described in the previous
section, Leung proposed to regard time varying delay as an uncertainty and the delay is
represented as a perturbation associated with a weighting function (Leung et al., 1997) . In
particular, time delay factor can be denoted as shown in Fig. 7, where Δu is unknown
but assure to be stable with �Δu(s)�∞ ≤ 1 and Wd(s) is a weighting function which holds
|e−δ̄s − 1| < |Wd(jω)|,∀ω ∈ R, i.e. Wd(s) covers the upper bound of gain e−δ̄s − 1 . Applying
the small gain theory considering �Wd(s)Δu(s)�∞ ≤ �Wd(s)�∞, the system is stable if the
condition (25) holds.

�C(s)Gm(s)(1 + Wd(s))�∞ < 1 (25)

(25) is rewritten in (26)

�C(s)�∞ <
1

�Gm(s)(1 + Wd(s))�∞
. (26)
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Fig. 9. Overall structure with perturbations

(26) implies the maximum gain of C(s) is limited by the norm of Gm(s) and (1+ Wd(s)). If the
gain of C(s) is small, even the norm sensitivity function without delay cannot become small
as shown in (27).

�S(s)�∞ =

∥∥∥∥
1

1 + C(s)Gm(s)

∥∥∥∥
∞

(27)

In general, the norm of the sensitivity function directly represents the performance of the
system such as servo response and disturbance attenuation. The restriction due to the
bounded norm of the controller may degrade the performance of the system. In order to avoid
it, we propose a unification of model based control with μ-synthesis robust control design.
Fig. 8 shows a proposed model based control structure which includes the model of time
delay and the remote plant where G̃m(s) is a model of the plant. In the real implementation,
a model of time delay is also employed, which exactly measures the value of time delay. The
measurement of delay can be implemented by time-stamped packets and synchronization
of the local and remote node (Uchimura et al., 2007). By introducing the plant model, the
upper bound restriction of C(s) is relaxed if the model G̃m(s) is close to Gm(s), i.e. if∥∥G̃m(s)− Gm(s)

∥∥
∞ is smaller than �Gm(s)�∞.

�C(s)�∞ <
1∥∥(Gm(s)− G̃m(s))(1 + Wd(s))

∥∥
∞

(28)

In fact, perfect modeling of Gm(s) is impossible and property of the remote model may vary in
time due to various factors such as aging or variation of loads. Therefore we need to admit the
difference between G̃m(s) and Gm(s) and need to deal with it as a perturbation of the remote
plant Gm(s). Then another perturbation factor associated with a weighting function Wm(s)
is added. Additionally, another perturbation factor with Wp(s) after the remote plant is also
added to improve the performance of the system. W−1

p (s) works to restrict the upper bound
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dependent function which is obtained by frequency sweeping of G(jω). On contrary, LMI
formed condition corresponds to fix D scale a real constant value. Constant D scaling is well
known to provide a more conservative result than frequency-dependent D scaling. This result
revealed that Lyapunov-Krasovskii based conditions formulated in LMI may be caught into
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time delay and model uncertainty.
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network. It represents round trip delay, which accumulates forward and backward delays.
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constant value δc, the block can be written as Δd = e−δcs in frequency domain, however
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particular, time delay factor can be denoted as shown in Fig. 7, where Δu is unknown
but assure to be stable with �Δu(s)�∞ ≤ 1 and Wd(s) is a weighting function which holds
|e−δ̄s − 1| < |Wd(jω)|,∀ω ∈ R, i.e. Wd(s) covers the upper bound of gain e−δ̄s − 1 . Applying
the small gain theory considering �Wd(s)Δu(s)�∞ ≤ �Wd(s)�∞, the system is stable if the
condition (25) holds.

�C(s)Gm(s)(1 + Wd(s))�∞ < 1 (25)

(25) is rewritten in (26)

�C(s)�∞ <
1

�Gm(s)(1 + Wd(s))�∞
. (26)
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(26) implies the maximum gain of C(s) is limited by the norm of Gm(s) and (1+ Wd(s)). If the
gain of C(s) is small, even the norm sensitivity function without delay cannot become small
as shown in (27).

�S(s)�∞ =

∥∥∥∥
1

1 + C(s)Gm(s)

∥∥∥∥
∞

(27)

In general, the norm of the sensitivity function directly represents the performance of the
system such as servo response and disturbance attenuation. The restriction due to the
bounded norm of the controller may degrade the performance of the system. In order to avoid
it, we propose a unification of model based control with μ-synthesis robust control design.
Fig. 8 shows a proposed model based control structure which includes the model of time
delay and the remote plant where G̃m(s) is a model of the plant. In the real implementation,
a model of time delay is also employed, which exactly measures the value of time delay. The
measurement of delay can be implemented by time-stamped packets and synchronization
of the local and remote node (Uchimura et al., 2007). By introducing the plant model, the
upper bound restriction of C(s) is relaxed if the model G̃m(s) is close to Gm(s), i.e. if∥∥G̃m(s)− Gm(s)

∥∥
∞ is smaller than �Gm(s)�∞.

�C(s)�∞ <
1∥∥(Gm(s)− G̃m(s))(1 + Wd(s))

∥∥
∞

(28)

In fact, perfect modeling of Gm(s) is impossible and property of the remote model may vary in
time due to various factors such as aging or variation of loads. Therefore we need to admit the
difference between G̃m(s) and Gm(s) and need to deal with it as a perturbation of the remote
plant Gm(s). Then another perturbation factor associated with a weighting function Wm(s)
is added. Additionally, another perturbation factor with Wp(s) after the remote plant is also
added to improve the performance of the system. W−1

p (s) works to restrict the upper bound
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of the norm of the sensitivity function S(s). In the experiment described in later, the gain of
Wp(s) is large at low frequency range.
Fig. 9 shows the overall structure with perturbations of the proposed control system. There
are three perturbations in the system and each perturbation has no correlation with others.
Therefore we applied μ-synthesis to design the controller C(s). As previously mentioned, the
value of μ is hard to calculate thus we also employed frequency dependent scale D(jω) to
calculate the upper bound of μDr as follows.

μDr = sup
ω∈R

inf
D∈Dr

σ̄
(

D(jω)Pm(jω)D(jω)−1
)

(29)

Since there exist three perturbations in the proposed method, class of Dr is defined in (30).

Dr := {diag[d1, d2, d3] | di ∈ C } (30)

Pm(s) in (29) is the transfer function matrix of the augmented plant with three inputs and
three outputs. The plant Pm(s) includes three weighting functions Wd(s), Wm(s), Wp(s) and
controller C(s). Fig. 10 shows the augmented plant Pm(s) where the area surrounded by
dotted line corresponds to Pm(s) and it can be simplified to the block diagram shown in Fig.
11.
Because finding D(s) and C(s) simultaneously is difficult, so called D-K iteration is used to
find a adequate combination of D(s) and C(s).
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Fig. 13. Overview of the experimental device

4. Design of model based μ controller and experimental evaluation

4.1 Design procedure of a controller
In order to evaluate the performance of proposed controller, we set up an experiment. Fig. 12
shows the configuration of the experiment. As shown in the figure, we used wireless LAN
to transmit data in between local controller and remote plant. Fig. 13 shows the overview
of the experimental device of the remote plant (geared motor). In the experiment, we used a
geared DC motor with an inertial load on the output axis. We assumed load variation, thus
two different inertial loads are prepared. Through the examination of identification tests, the
nominal plant Gm(s) was identified as a first order transfer function in (31).

Gm(s) =
260.36

s + 154.28
(31)
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calculate the upper bound of μDr as follows.
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inf
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D(jω)Pm(jω)D(jω)−1
)

(29)

Since there exist three perturbations in the proposed method, class of Dr is defined in (30).

Dr := {diag[d1, d2, d3] | di ∈ C } (30)

Pm(s) in (29) is the transfer function matrix of the augmented plant with three inputs and
three outputs. The plant Pm(s) includes three weighting functions Wd(s), Wm(s), Wp(s) and
controller C(s). Fig. 10 shows the augmented plant Pm(s) where the area surrounded by
dotted line corresponds to Pm(s) and it can be simplified to the block diagram shown in Fig.
11.
Because finding D(s) and C(s) simultaneously is difficult, so called D-K iteration is used to
find a adequate combination of D(s) and C(s).
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4. Design of model based μ controller and experimental evaluation

4.1 Design procedure of a controller
In order to evaluate the performance of proposed controller, we set up an experiment. Fig. 12
shows the configuration of the experiment. As shown in the figure, we used wireless LAN
to transmit data in between local controller and remote plant. Fig. 13 shows the overview
of the experimental device of the remote plant (geared motor). In the experiment, we used a
geared DC motor with an inertial load on the output axis. We assumed load variation, thus
two different inertial loads are prepared. Through the examination of identification tests, the
nominal plant Gm(s) was identified as a first order transfer function in (31).

Gm(s) =
260.36

s + 154.28
(31)
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Fig. 14. Measurement results of time delay

We intentionally chose different transfer function for a plant model G̃m in (32). It aimed to
evaluate robust performance against unexpected load variations.

G̃m(s) =
182.25

s + 108.0
(32)

Fig. 14 shows one of the measurement results of time delay, green plot shows transmission
delay from local to remote and the blue plot shows ones from remote to local. Based on
measurements under various circumstances, we chose the upper bound of time delay as 100
[msec] and the weighing function Wd was chosen to be

Wd(s) =
2.1s

s + 10
. (33)

The second weighting function Wm(s) which is associated with model uncertainty was chosen
to cover the difference of Gm(s) and G̃m(s) as shown in (32).

Wm(s) =
78s2 + 12050s

260s2 + 92390s + 8056000
(34)

The third weighting function Wp(s) for performance is determined to maintain the value of
the sensitivity function to be small. It also aimed to attenuate the disturbance at low frequency.

Wp(s) =
0.421s + 4.21

s + 0.01
(35)

We used Robust Toolbox of Matlab for numerical computation including D-K iteration and
obtained a solution of C(s) which satisfied the condition μDr < 1. After 8 times D-K iterations,
peak μ value was converged to μ = 0.991 and a controller with 17th order was obtained. The
Bode plot of the obtained controller C(s) is shown in Fig.15.

4.2 Experimental result
We implemented obtained controller on PC hardware by transferring it into the discrete-time
controller with 1 [msec] sampling time. The controller tasks with motor control tasks
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Fig. 16. Block diagram of the system with the conventinal controller

were executed on RT-Linux. RT-Messenger (Sato & Yakoh, 2000) was used to implement
the network data-transmission task in Linux kernel mode process. IEEE802.11g compliant
wireless LAN device are used, which was connected to PC via USB bus. For the delay
measurement, a beacon packet was used as a time stamp. A beacon packet contains a counter
value of TSF (timing synchronization function), which is a standard function for IEEE 802.11
compliant devices and resolution of counter is 1 [μsec]. The function synchronize both timers
of local and remote node every 100 [msec] (Uchimura et al., 2007).
To evaluate the performance of the proposed controller, we prepared a controller for
comparison purpose, which was also designed by μ-synthesis, however it is designed
without the remote plant model G̃m(s) and the time delay model, hereinafter referred to
as conventional controller. Fig. 16 shows the overall block diagram with the conventional
controller. Compareing it with Fig. 9, one may notice that there is no plant model. The
conventional controller corresponds to the one which appears in (Leung et al., 1997).
Fig. 17 shows the result of a step response of the velocity control. The blue plot shows the
response of the proposed controller and the red plot shows the result by the conventional
controller. Comparing these two plots, the proposed controller shows better response in
transient response. Fig. 18 shows the result when we intentionally added 200 [msec] delay
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We intentionally chose different transfer function for a plant model G̃m in (32). It aimed to
evaluate robust performance against unexpected load variations.

G̃m(s) =
182.25

s + 108.0
(32)

Fig. 14 shows one of the measurement results of time delay, green plot shows transmission
delay from local to remote and the blue plot shows ones from remote to local. Based on
measurements under various circumstances, we chose the upper bound of time delay as 100
[msec] and the weighing function Wd was chosen to be

Wd(s) =
2.1s

s + 10
. (33)

The second weighting function Wm(s) which is associated with model uncertainty was chosen
to cover the difference of Gm(s) and G̃m(s) as shown in (32).

Wm(s) =
78s2 + 12050s

260s2 + 92390s + 8056000
(34)

The third weighting function Wp(s) for performance is determined to maintain the value of
the sensitivity function to be small. It also aimed to attenuate the disturbance at low frequency.

Wp(s) =
0.421s + 4.21

s + 0.01
(35)

We used Robust Toolbox of Matlab for numerical computation including D-K iteration and
obtained a solution of C(s) which satisfied the condition μDr < 1. After 8 times D-K iterations,
peak μ value was converged to μ = 0.991 and a controller with 17th order was obtained. The
Bode plot of the obtained controller C(s) is shown in Fig.15.

4.2 Experimental result
We implemented obtained controller on PC hardware by transferring it into the discrete-time
controller with 1 [msec] sampling time. The controller tasks with motor control tasks
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were executed on RT-Linux. RT-Messenger (Sato & Yakoh, 2000) was used to implement
the network data-transmission task in Linux kernel mode process. IEEE802.11g compliant
wireless LAN device are used, which was connected to PC via USB bus. For the delay
measurement, a beacon packet was used as a time stamp. A beacon packet contains a counter
value of TSF (timing synchronization function), which is a standard function for IEEE 802.11
compliant devices and resolution of counter is 1 [μsec]. The function synchronize both timers
of local and remote node every 100 [msec] (Uchimura et al., 2007).
To evaluate the performance of the proposed controller, we prepared a controller for
comparison purpose, which was also designed by μ-synthesis, however it is designed
without the remote plant model G̃m(s) and the time delay model, hereinafter referred to
as conventional controller. Fig. 16 shows the overall block diagram with the conventional
controller. Compareing it with Fig. 9, one may notice that there is no plant model. The
conventional controller corresponds to the one which appears in (Leung et al., 1997).
Fig. 17 shows the result of a step response of the velocity control. The blue plot shows the
response of the proposed controller and the red plot shows the result by the conventional
controller. Comparing these two plots, the proposed controller shows better response in
transient response. Fig. 18 shows the result when we intentionally added 200 [msec] delay
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Fig. 18. Experimental results (with intentionally added delay)

in the network transmission path. The delay was virtually emulated by buffering data in
memory.
Comparing two plots, the result by the conventional controller shows unstable response,
whereas the response by the proposed controller still maintains stability. In fact, we
designed both controllers under the assumption of 100 [msec] maximum delay, however
the results showed different aspect. These results can be analyzed as following reasons.
A μ-synthesis based controller guarantees to maintain robust performance of the system,
namely it accomplishes required performance as long as the perturbations of delay and model
uncertainty are within the worst case. In terms of robust performance, both proposed and
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conventional controllers may show similar performance, because they are designed with same
Wp(s) for performance weight. In μ-synthesis based design, the obtained controller assures
μΔr < 1 against all possible perturbations. However the system may be stable when one of
the perturbations goes beyond the maximum, if it is not the critical one. Namely, the stability
margins for different perturbations are not always same. As stated in previous section, model
based controller holds more margin in loop gain; hence the deference in the delay margin may
appear on the result. As a result, the proposed controller is more robust against time delay
than the conventional controller while maintaining same performance.

5. Conclusion

In this chapter, a model based controller design by exploiting μ-synthesis is proposed, which
is designed for a network based system with time varying delay and the plant model
uncertainty. The proposed controller includes the model of the remote plant and time
delay. The delay was measured by time-stamped packet. To avoid instability due to model
uncertainty and variation of delays, we applied μ-synthesis based robust control method to
design a controller. The paper also studied conservativeness on the stability condition based
on Lyapnov-Krasovskii functional with LMI and on the robust control including μ-synthesis.
Evaluation of the proposed system was carried out by experiments on a motor control system.
From the results, we verified the stability and satisfactory performance of the system with the
proposed methods.
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1. Introduction 
Hysteresis phenomenon occurs in all smart material-based sensors and actuators, such as 
shape memory alloys, piezoceramics and magnetostrictive actuators (Su, et al, 2000; Fu, et al, 
2007; Banks & Smith, 2000; Tan & Baras, 2004). When the hysteresis nonlinearity precedes a 
system plant, the nonlinearity usually causes the overall closed-loop systems to exhibit 
inaccuracies or oscillations, even leading to instability (Tao & Kokotovic, 1995). This fact 
often makes the traditional control methods insufficient for precision requirement and even 
not be able to guarantee the basic requirement of system stability owing to the non-smooth 
and multi-value nonlinearities of the hysteresis (Tao & Levis, 2001). Hence the control of 
nonlinear systems in presence of hysteresis nonlinearities is difficult and challenging (Fu, et 
al, 2007; Tan & Baras, 2004).   
Generally there are two ways to mitigate the effects of hysteresis. One is to construct an 
inverse operator of the considered hysteresis model to perform inversion compensation (Tan 
& Baras, 2004; Tao & Kokotovic, 1995; Tao & Levis, 2001). The other is, without necessarily 
constructing an inverse, to fuse a suitable hysteresis model with available robust control 
techniques to mitigate the hysteretic effects (Su, et al, 2000; Fu, et al, 2007; Zhou, et al, 2004; 
Wen & Zhou, 2007). The inversion compensation was pioneered in (Tao & Kokotovic, 1995) 
and there are some other important results in (Tan & Baras, 2005; Iyer, et al, 2005; Tan & 
Bennani, 2008).  However, most of these results were achieved only at actuator component 
level without allowing for the overall dynamic systems with actuator hysteresis nonlinearities. 
Essentially, constructing inverse operator relies on the phenomenological model (such as 
Preisach models) and influences strongly the practical application of the design concept (Su, et 
al, 2000). Because of multi-valued and non-smoothness feature of hysteresis, those methods are 
often complicated, computationally costly and possess strong sensitivity of the model 
parameters to unknown measurement errors. These issues are directly linked to the difficulties 
of guaranteeing the stability of systems except for certain special cases (Tao & Kokotovic, 
1995). For the methods to mitigate hysteretic effects without constructing the inverse, there are 
two main challenges involved in this idea. One challenge is that very few hysteresis models 
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are suitable to be fused with available robust adaptive control techniques. And the other is 
how to fuse the suitable hysteresis model with available control techniques to guarantee the 
stability of the dynamics systems (Su, et al, 2000). Hence it is usually difficult to construct new 
suitable hysteresis models to be fused into control plants, and to explore new control 
techniques to mitigate the effects of hysteresis and to ensure the system stability, without 
necessarily constructing the hysteresis inverse. 
Noticing the above challenges, we first construct a hysteresis model using play-like 
operators, in a similar way to L. Prandtl’s construction of the Prandtl-Ishilinskii model using 
play operators (Brokate & Sprekels, 1996), and thus name it Prandtl-Ishilinskii-Like model. 
Because the play-like operator in (Ekanayake & Iyer, 2008) is a generalization of the 
backlash-like operator in (Su, et al, 2000), the Prandtl-Ishilinskii-Like model is a subclass of 
SSSL-PKP hysteresis model (Ekanayake & Iyer, 2008). Then, the development of two robust 
adaptive control schemes to mitigate the hysteresis avoids constructing a hysteresis inverse.  
The new methods not only can perform global stabilization and tracking tasks of the 
dynamic nonlinear systems, but also can derive transient performance in terms of 2L  norm 
of tracking error as an explicit function of design parameters, which allows designers to 
meet the desired performance requirement by tuning the design parameters in an explicit 
way.  
The main contributions in this chapter are highlighted as follows: 
i. A new hysteresis model is constructed, where the play-like operators developed in 

(Ekanayake & Iyer, 2008) play a role of building blocks. From a standpoint of categories 
of hysteresis models, this class of hysteresis models is a subclass of SSSL-PKP hysteresis 
models.  It provides a possibility to mitigate the effects of hysteresis without necessarily 
constructing an inverse, which is the unique feature of this subclass model identified 
from the SSSL-PKP hysteresis model of general class in the literature; 

ii. A challenge is addressed to fuse a suitable hysteresis model with available robust 
adaptive techniques to mitigate the effects of hysteresis without constructing a 
complicated inverse operator of the hysteresis model; 

iii. Two backstepping schemes are proposed to accomplish robust adaptive control tasks 
for a class of nonlinear systems preceded by the Prandtl-Ishilinskii-Like models. Such 
control schemes not only ensure the stabilization and tracking of the hysteretic dynamic 
nonlinear systems, but also derive the transient performance in terms of 2L  norm of 
tracking error as an explicit function of design parameters. 

The organization of this chapter is as follows. Section 2 gives the problem statement.  In 
Section 3, we will construct Prandtl-Ishlinshii-Like model and explore its properties. The 
details about two control schemes for the nonlinear systems preceded by Prandtl-Ishlinshii-
Like model proposed in Section 3 are presented in Section 4. Simulation results are given in 
Section 5. Section 6 concludes this paper with some brief remarks. 

2. Problem statement 
Consider a controlled system consisting of a nonlinear plant preceded by an actuator with 
hysteresis nonlinearity, that is, the hysteresis is presented as an input to the nonlinear plant. 
The hysteresis is denoted as an operator 

 ( ) [ ]( )w t P v t=  (1) 
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with ( )v t as the input and ( )w t as the output. The operator [ ]P v will be constructed in detail 
in next section. The nonlinear dynamic system being preceded by the previous hysteresis is 
described in the canonical form as 

 ( ) ( 1)

1
( ) ( ( ), ( ), , ( )) ( )

k
n n

i i
i

x t a Y x t x t x t bw t−

=
+ =∑  (2) 

where iY are known continuous, linear or nonlinear function. Parameters ia and control 
gain b are unknown constants. It is a common assumption that the sign of b is known.  
Without losing generality, we assume b is greater than zero. It should be noted that more 
general classes of nonlinear systems can be transformed into this structure (Isidori, 1989). 
The control objective is to design controller ( )v t in (1), as shown in Figure 1, to render the 
plant state ( )x t to track a specified desired trajectory ( )dx t , i.e., ( ) ( )dx t x t→ as t →∞ . 
Throughout this paper the following assumption is made. 

 
Fig. 1. Configuration of the hysteretic system 

Assumption: The desired trajectory ( 1)[ , , , ]n T
d d d dX x x x −=  is continuous. Furthermore, 

( ) 1[ , ]nT T n
d ddX x R +∈Ω ⊂ with dΩ being a compact set. 

3. Prandtl-Ishlinskii-Like model 
In this section, we will first recall the backlash-like operator (Su, et al, 2000) which will serve 
as elementary hysteresis operator, in other words, the backlash-like operator will play a role 
of building blocks, then will show how the new hysteresis will be constructed by using the 
backlash-like operator and explore its some useful properties of this model. 

3.1 Backlash-like operator 
In 2000, Su et al proposed a continuous-time dynamic model to describe a class of backlash-
like hysteresis, as given by 

 1( )dF dv dvcv F B
dt dt dt

α= − +  (3) 
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where , ,cα and 1B are constants, satisfying 1c B> .  
The solution of (3) can be solved explicitly for piecewise monotone v as follows 

 0

0

( )sgn sgn (sgn )
0 0 1( ) ( ) [ ] [ ]

vv v v v v v
v

F t cv t F cv e e B c e dα α αζ ζ− − −= + − + −∫  (4) 

for v constant and 0 0( )w v w= . Equation (4) can also be rewritten as 

 

0 0
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It is worth to note that 
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Hence, solution ( )F t exponentially converges the output of a play operator with 

threshold 1c Br
α
−

= and switches between lines 1c Bcv
α
−

+  and 1c Bcv
α
−

− . We will construct 

a new Prandtl-Ishilinskii-Like model by using the above backlash-like model in next 
subsection, similar to the construction of the well-known Prandtl-Ishilinskii model from 
play operators, which is our motivation behind the construction of this new model indeed. 

3.2 Prandtl-Ishilinskii-Like model  
We now ready to construct Prandtl-Ishilinskii-Like model through a weighted superposition 
of elementary backlash-like operator [ ]( )rF v t , in a similar way as L. Prandtl (Brokate & 
Sprekels, 1996) constructed Prandtl-Ishilinskii model by using play operators. 

Keep 1c Br
α
−

= in mind and, without losing generality, set ( (0) 0) 0F v = = and 1c = , we 

rewrite equation (5) as 
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where r is the threshold of the backlash-like operator. 
To this end, we construct the Prandtl-Ishilinskii-Like model by 

 
0

( ) ( ) [ ]( )
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rw t p r F v t dr= ∫  (8) 
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where ( )p r is a given continuous density function, satisfying ( ) 0p r ≥ with
0

( )p r dr
∞

< +∞∫ , 

and is expected to be identified from experimental data (Krasnoskl’skill & Pokrovskill, 1983; 
Brokate & Sprekels, 1996). Since the density function ( )p r vanishes for large values of r , the 
choice of R = +∞ as the upper limit of integration in the literature is just a matter of 
convenience (Brokate & Sprekels, 1996).  
Inserting (7) into (8) yields 
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the hysteresis (9) can be expressed as 
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where 0 0
( )

R
p p r dr= ∫ is a constant which depends on the density function ( )p r .  

Property 1: Let 
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Based on the analysis in (Su, et al, 2000), for each fixed (0, )r R∈ , it is always possible there 
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where , ,cα and 1B are constants, satisfying 1c B> .  
The solution of (3) can be solved explicitly for piecewise monotone v as follows 
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Hence, solution ( )F t exponentially converges the output of a play operator with 
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− . We will construct 
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where r is the threshold of the backlash-like operator. 
To this end, we construct the Prandtl-Ishilinskii-Like model by 
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where ( )p r is a given continuous density function, satisfying ( ) 0p r ≥ with
0

( )p r dr
∞

< +∞∫ , 

and is expected to be identified from experimental data (Krasnoskl’skill & Pokrovskill, 1983; 
Brokate & Sprekels, 1996). Since the density function ( )p r vanishes for large values of r , the 
choice of R = +∞ as the upper limit of integration in the literature is just a matter of 
convenience (Brokate & Sprekels, 1996).  
Inserting (7) into (8) yields 

 

1

1

(1 )

0 0
1

0 0

( ) ( ) ( )( ) , 0
[ ]( )

( ) ( ) ( )( ) , 0

B vR R r

B vR R r

p r dr v t p r r re dr v
w v t

p r dr v t p r r re dr v

− −

−
−

⎧
⎪ ⋅ + − >⎪= ⎨
⎪

⋅ + − + <⎪⎩

∫ ∫

∫ ∫
 (9) 

the hysteresis (9) can be expressed as 

 

1

1

(1 )

0
0 1

0

( )( ) , 0
( )

( )( ) , 0

B vR r

B vR r

p r r re dr v
w t p v

p r r re dr v

− −

−
−

⎧
⎪ − >⎪= + ⎨
⎪

− + <⎪⎩

∫

∫
 (10) 

where 0 0
( )

R
p p r dr= ∫ is a constant which depends on the density function ( )p r .  

Property 1: Let 

 

1

1

(1 )

0
1

0

( )( ) , 0
[ ]( )

( )( ) , 0

B vR r

B vR r

p r r re dr v
d v t

p r r re dr v

− −

−
−

⎧
⎪ − >⎪= ⎨
⎪

− + <⎪⎩

∫

∫
 (11) 

satisfying ( ) 0p r ≥ with
0

( )p r dr
∞

< +∞∫ , then for any 0( ) ( , )pmv t C t∈ ∞ , there exists a constant 

0M ≥ such that [ ]( )d v t M≤ . 
Proof: since (7) can be rewritten as ( ) ( ) ( , )rF t v t R r v= + where 

1

1

(1 )

1

, 0
( , )

, 0

B v
r

B v
r

r re v
R r v

r re v

− −
−

−

⎧
⎪ − >⎪= ⎨
⎪
− + <⎪⎩

 

Based on the analysis in (Su, et al, 2000), for each fixed (0, )r R∈ , it is always possible there 
exists a positive constant 1M , such that 1( , )R r v M≤ . Hence  

1
0 0 0

[ ]( ) ( ) ( , ) ( ) ( , ) ( )
R R R

d v t p r R r v dr p r R r v dr M p r dr= ≤ ≤∫ ∫ ∫  



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

428 

By the definition of ( ),p r  one can conclude that 1
0

( )
R

M M p r dr= ∫ . 

Property 2: the Prandtl-Ishilinskii-Like model constructed by (9) is rate-independent. 
Proof: Following (Brokate & Sprekels, 1996), we let : [0, ] [0, ]E Et tσ →  satisfying (0) 0σ = and 

( )E Et tσ =  be a continuous increasing function, i.e. ( )σ ⋅ is an admissible time transformation 
and define [ ]f tw v  satisfying [ ] [ ]( ), [0, ]f t Ew v w v t t t= ∈ and [0, ]pm Ev M t∈  where tv  

represents the truncation of v at t , defined by ( ) ( )tv vτ τ= for 0 tτ≤ ≤  and ( ) ( )tv v tτ = for 

Et tτ≤ ≤ , and [ ]( )w v t constructed by (9). For the model (9), we can easily have 

( ) ( )[ ]( ) [( ) ] [ ] [ ] [ ]( ( )) [ ]( ) ( )f t f t f tw v t w v w v w v w v t w v t tσ σσ σ σ σ σ= = = = =  

Hence for all admissible time transformation ( )σ ⋅ , according to the definition 2.2.1 in 
(Brokate & Sprekels, 1996), the model constructed by (9) is rate-independent.  
Property 3: the Prandtl-Ishilinskii-Like model constructed by (9) has the Volterra property. 
Proof: it is obvious whenever , [0, ]pm Ev v M t∈  and [0, ]Et t∈ , then t tv v=  implies that 

( [ ]) ( [ ])t tw v w v= , so, according to (Brokate & Sprekels, 1996, Page 37), the model (8) has 
Volterra property.  
Lemma 1: If a functional : [0, ] ([0, ])pm E Ew C t Map t→ has both rate independence property 
and Volterra property, then w is a hysteresis operator (Brokate & Sprekels, 1996).   
Proposition 1: the Prandtl-Ishilinskii-Like model constructed by (9) is a hysteresis operator. 
Proof: From the Properties 1, 2 and Lemma 1, the Prandtl-Ishilinskii-Like model (9) is a 
hysteresis model. 
Remark 1: It should be mentioned that Prandtl-Ishilinskii model is a weighted superposition 
of play operator, i.e. play operator is the hysteron (Krasnoskl’skill & Pokrovskill, 1983), and 
that backlash-like operator can be viewed as a play-like operator from a 1st order 
differential equation (Ekanayake & Iyer, 2008). Hence, the model (8) is, with a litter abuse 
terminology, named Prandtl-Ishilinskii-Like model. As an illustration, Figure 2 shows 

( )w t generated by (9), with 
26.7(0.1 1)( ) (0,50]rp r e r− −= ∈ , 1 0.505B = , and input 

( ) 7 sin(4 ) /(1 ),v t t t= +  with ( (0) 0) 0.F v = =  
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Fig. 2. Prandtl-Ishlinskii-Like Hysteresis curves given by (10) 
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Remark 2: From another point of an alternative one-parametric representation of Preisach 
operator (Krejci, 1996), the Prandtl-Ishilinskii-Like model falls into PKP-type operator 
(Ekanayake & Iyer, 2008), as Prandtl-Ishilinskii model into Preisach model. As a preliminary 
step, in the paper we explore the properties of this model and its potential to facilitate 
control when a system is preceded by this kind of hysteresis model, which will be 
demonstrated in the next section. Regarding hysteresis phenomena in which kind of smart 
actuator this model could characterize, it is still unclear. The future work will focus on, 
which is beyond of the scope of this paper.     
To this end, we can rewrite (9) into 

 0( ) [ ]( )w t p v d v t= +  (12) 

where 0 0
( )

R
p p r dr= ∫ and [ ]( )d v t is defined by (11).  

Remark 3:  It should be note that (10) decomposes the hysteresis behavior into two terms. 
The first term describes the linear reversible part, while the second term describes the 
nonlinear hysteretic behavior. This decomposition is crucial (Su, et al, 2000, Fu, et al, 2007) 
since it facilitates the utilization of the currently available control techniques for the 
controller design, which will be clear in next section. 

4. Adaptive control design 

From (10) and Proposition 1 we see that the signal ( )w t is expressed as a linear function of 
input signal ( )v t plus a bounded term. Using the hysteresis model of (10), the nonlinear 
system dynamics described by (2), can be re-expressed as 
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 (13) 

where 1( ) ( ),x t x t= ( 1)
2( ) ( ), , ( ) ( ),n

nx t x t x t x t−= = 1 2[ , , , ]Tka a a= − − −a , and 0pb bp=  

1 2[ , , , ]TkY Y Y Y= , and [ ]( ) [ ]( )bd v t bd v t= . 
Before presenting the adaptive control design using the backstepping technique in (Krisic, et 
al, 1995) to achieve the desired control objectives, we make the following change of 
coordinates: 

 1 1
( 1)

1 , 2,3, ,
d

i
i i d i

z x x

z x x i nα−
−

= −

= − − =
 (14) 

Where αi-1 is the virtual controller in the i th step and will be determined later. In the 
following, we give two control schemes. In Scheme I, the controller is discontinuous; the 
other is continuous in Scheme II.  
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Where αi-1 is the virtual controller in the i th step and will be determined later. In the 
following, we give two control schemes. In Scheme I, the controller is discontinuous; the 
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Scheme I 
In what follows, the robust adaptive control law will be developed for Scheme I. 
First, we give the following definitions 

 

ˆ( ) ( )
ˆ( ) ( )

ˆ( ) ( )

t t

t t

M t M M t

φ φ φ
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where â is an estimate of a , φ̂ is an estimate of φ , which is defined as 1:
pb

φ = , and M̂ is an 
estimate of M . 
Given the plant and the hysteresis model subject to the assumption above, we propose the 
following control law 
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where nc , η , and γ are positive design parameters, and Γ  is a positive-definite matrix. 
These parameters can provide a certain degree of freedom to determine the rates of the 
adaptations. And 1nα − and the implicit 1 ,iα − 2,3, , 1i n= − in (16) will be designed in the 
proof of the following theorem for stability analysis. 
The stability of the closed-loop system described in (13) and (16) is established as: 
Theorem 1: For the plant given in (2) with the hysteresis (8), subject to Assumption 1, the 
robust adaptive controller specified by (16) ensures the following statements hold. 
i. The resulting closed-loop system (2) and (8) is globally stable in the sense that all the  

signals of the closed-loop system ultimately bounded; 
ii. The asymptotic tracking is achieved, i.e., lim[ ( ) ( )] 0dt

x t x t
→∞

− = ; 

iii. The transient tracking error can be explicitly specified by 

1 2 2
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1 1(0) (0) (0) (0)
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d
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c

φ
η γ
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a a

 

 

Proof: we will use a standard backstepping technique to prove the statements in a 
systematically way as follows: 
Step 1: The time derivative of 1z can be computed as 

 1 2 1z z α= +  (17) 

The virtual control 1α can be designed as 
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1 1 1c zα = −  

where 1c is a positive design parameter. 
Hence, we can get the first equation of tracking error 

1 2 1 1z z c z= −   

Step 2: Differentiating 2z  gives 

2 3 2 1z z α α= + −  

The virtual control 2α can be designed as 

2 2 2 1 1c z zα α= − − +  

Hence the dynamics is  

2 2 2 1 3z c z z z= − − +  

Following this procedure step by step, we can derive the dynamics of the rest of states until 
the real control appears. 
Step n: the n-th dynamics are given by 

 ( )
1( ) [ ]( )nT

n p n bdz b v t a Y x d v tα −= + − − +  (18) 

We design the real control as follows: 
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Note that ( )pb v t in (19) can be expressed as 

 1 1 1
ˆ( ) ( ) ( ) ( ) ( ) ( )p p pb v t b t v t v t b t v tφ φ= = −  (20) 

Hence, we obtain 

 1 1
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To this end, we defend the candidate Lyapunov function as 
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The derivative V  is given by 
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The virtual control 2α can be designed as 
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Hence the dynamics is  
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Following this procedure step by step, we can derive the dynamics of the rest of states until 
the real control appears. 
Step n: the n-th dynamics are given by 

 ( )
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We design the real control as follows: 
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Note that ( )pb v t in (19) can be expressed as 

 1 1 1
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Hence, we obtain 
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To this end, we defend the candidate Lyapunov function as 
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The derivative V  is given by 
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Equations (22) and (23) imply that V is nonincreasing. Hence, the boundedness of the 
variables 1 2, , , nz z z , φ̂ , â , M̂ are ensured. By applying the LaSalle-Yoshizawa Theorem 
(Krisic, et al, 1995, Theorem 2.1), if further follows that 0iz → , 1,2, ,i n= as time goes to 
infinity, which implies lim[ ( ) ( )] 0dt

x t x t
→∞

− = . 

We can prove the third statement of Theorem 1 in the following way. 
From (23), we know 
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= ≤ ≤∫  

Noticing 1 2 21 1(0) (0) (0) (0) (0)
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−= Γ + +a a after setting (0) 0, 1,2, ,iz i n= = , hence 
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Remark 4:  From (24), we know that the transient performance in a computable explicit form 
depends on the design parameters 1, ,cη γ and on the initial estimate errors (0), (0)φa (0)M , 
which gives designers enough tuning freedom for transient performance. 
Scheme II 

In the control scheme above, we notice that in the controller, there is sgn( )nz introduced in 
the design process, which makes the controller discontinuous and this may cause 
undesirable chattering. An alternative smooth scheme is proposed to avoid possible 
chattering with resort to the definition of continuous sign function (Zhou et al, 2004).  
First, the definition of ( )i isg z is introduced as follows: 
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where design parameter ( 1, , )i i nδ = is positive. It can be known that ( )i isg z has ( 2)n i− + -
th order derivatives.  
Hence we have 
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Given the plant and the hysteresis model subject to the assumption above, we propose the 
following continuous controller as follows: 
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 (26) 

where, similarly as Control Scheme 1, nc , η , and γ are positive design parameters, and Γ  
is a positive-definite matrix, and 1nα − and the implicit 1 ,iα − 2,3, , 1i n= − in (26) will be 
designed in the proof of the following theorem for stability analysis. 
Theorem 2: For the plant given in (2) with the hysteresis (8), subject to Assumption 1, the 
robust adaptive controller specified by (26) ensures the following statements hold. 
i. The resulting closed-loop system (2) and (8) is globally stable in the sense that all the 

signals of the closed-loop system ultimately bounded; 
ii. The tracking error can asymptotically reach to 1δ , i.e., 1lim[ ( ) ( )]dt

x t x t δ
→∞

− = ; 

iii. The transient tracking error can be explicitly specified by 
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Proof: To guarantee the differentiability of the resultant functions, 2
iz  in the Lyaounov 

functions will be replaced by 2( )n i
i i iz fδ − +−  in Section 3.1 and iz in the design procedure 

detailed below will be replaced by 1( )n i
i i iz sgδ − +−  as did in (Zhou et al, 2004).  

Step 1: We choose a positive-definition function 1V  as 
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Equations (22) and (23) imply that V is nonincreasing. Hence, the boundedness of the 
variables 1 2, , , nz z z , φ̂ , â , M̂ are ensured. By applying the LaSalle-Yoshizawa Theorem 
(Krisic, et al, 1995, Theorem 2.1), if further follows that 0iz → , 1,2, ,i n= as time goes to 
infinity, which implies lim[ ( ) ( )] 0dt
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We can prove the third statement of Theorem 1 in the following way. 
From (23), we know 
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Remark 4:  From (24), we know that the transient performance in a computable explicit form 
depends on the design parameters 1, ,cη γ and on the initial estimate errors (0), (0)φa (0)M , 
which gives designers enough tuning freedom for transient performance. 
Scheme II 

In the control scheme above, we notice that in the controller, there is sgn( )nz introduced in 
the design process, which makes the controller discontinuous and this may cause 
undesirable chattering. An alternative smooth scheme is proposed to avoid possible 
chattering with resort to the definition of continuous sign function (Zhou et al, 2004).  
First, the definition of ( )i isg z is introduced as follows: 
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where design parameter ( 1, , )i i nδ = is positive. It can be known that ( )i isg z has ( 2)n i− + -
th order derivatives.  
Hence we have 
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Given the plant and the hysteresis model subject to the assumption above, we propose the 
following continuous controller as follows: 

 

1
( )

1 1

1

ˆ( ) ( ) ( )
ˆˆ( ) ( 1)( ) ( ) ( )

ˆ( ) ( )( ) ( )
ˆ( ) ( ) ( )

( ) ( )

nT
n n n n n n n nd

n n n n n

n n n n n

n n n

v t t v t

v t c z sg z Y sg z M x

t v t z f sg z

t Y z f sg z

M t z f

φ

δ α

φ η δ

δ

γ δ

−

=

= − + − − − + +

= − −

= Γ −

= −

a

a

 (26) 

where, similarly as Control Scheme 1, nc , η , and γ are positive design parameters, and Γ  
is a positive-definite matrix, and 1nα − and the implicit 1 ,iα − 2,3, , 1i n= − in (26) will be 
designed in the proof of the following theorem for stability analysis. 
Theorem 2: For the plant given in (2) with the hysteresis (8), subject to Assumption 1, the 
robust adaptive controller specified by (26) ensures the following statements hold. 
i. The resulting closed-loop system (2) and (8) is globally stable in the sense that all the 

signals of the closed-loop system ultimately bounded; 
ii. The tracking error can asymptotically reach to 1δ , i.e., 1lim[ ( ) ( )]dt

x t x t δ
→∞

− = ; 

iii. The transient tracking error can be explicitly specified by 
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Proof: To guarantee the differentiability of the resultant functions, 2
iz  in the Lyaounov 

functions will be replaced by 2( )n i
i i iz fδ − +−  in Section 3.1 and iz in the design procedure 

detailed below will be replaced by 1( )n i
i i iz sgδ − +−  as did in (Zhou et al, 2004).  

Step 1: We choose a positive-definition function 1V  as 
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and design virtual controller 1α as 

 1 1 1 1 1 1 2 1 1( )( ) ( ) ( 1) ( )nc k z sg z sg zα δ δ= − + − − +  (28) 

with constant k satisfying 10
4

k< ≤  and a positive design parameter 1c , then  compute its 

time derivative by using (17)(28),  
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Step 2: We choose a positive-definition function 1V  as 
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and design virtual controller 2α as 
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2 2 2 2 2 2 1 3 2 2( 1)( ) ( ) ( 1) ( )nc k z sg z sg zα δ α δ−= − + + − + − +  (30) 
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for both cases 2 2 1z δ≥ + and  2 2 1z δ< + , we can conclude that 
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Step n: Following this procedure step by step, we can derive the real control 
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where 1nα − can be obtained from the common form of virtual controllers 
1

1 1( 1)( ) ( ) ( 1) ( ) , ( 3, , 1)n i
i i i i i i i i i ic k z sg z sg z i nα δ α δ− +
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design parameters ic . 
We define a positive-definition function as 
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and compute its time derivative by using (13), (28), (30) and (32), 
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Thus we proved the first statement of the theorem. The rest of the statements can be easily 
proved following those of the proof of theorem 1, hence omitted here for saving space.  
Remark 5: It is now clear the two proposed control schemes to mitigate the hysteresis 
nonlinearities can be applied to many systems and may not necessarily be limited to the 
system (2). However, we should emphasize that our goal is to show the fusion of the 
hysteresis model with available control techniques in a simpler setting that reveals its 
essential features.  

5. Simulation results 
In this section, we illustrate the methodologies presented in the previous sections using a 
simple nonlinear systems (Su, et al, 2000; Zhou et al, 2004) described by 
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1 ( )
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ex a bw t
e

−

−
−

= +
+

 (33) 

where w represents the output of the hysteresis nonlinearity. The actual parameter values 
are 1a = , and 1b = . Without control, i.e., ( ) 0w t = , (33) is unstable, because 

( ) ( )(1 ) /(1 ) 0x t x tx e e− −= − + > for 0x > , and ( ) ( )(1 ) /(1 ) 0x t x tx e e− −= − + < for 0x < . The 
objective is to control the system state x to follow the desired trajectory 12.5sin(2.3 )dx t= .  
In the simulations, the robust adaptive control law (19) of Scheme I was used, taking 

1 0.9,c = 0.2γ =  , 0.1η = , 0.1Γ = , ˆ(0) 0.8 / 3φ = , ˆ (0) 2M = , ˆ(0) 3.05x = , (0) 0v = , 1 0.505B = , 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

434 

and design virtual controller 1α as 

 1 1 1 1 1 1 2 1 1( )( ) ( ) ( 1) ( )nc k z sg z sg zα δ δ= − + − − +  (28) 

with constant k satisfying 10
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Step n: Following this procedure step by step, we can derive the real control 
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where 1nα − can be obtained from the common form of virtual controllers 
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Thus we proved the first statement of the theorem. The rest of the statements can be easily 
proved following those of the proof of theorem 1, hence omitted here for saving space.  
Remark 5: It is now clear the two proposed control schemes to mitigate the hysteresis 
nonlinearities can be applied to many systems and may not necessarily be limited to the 
system (2). However, we should emphasize that our goal is to show the fusion of the 
hysteresis model with available control techniques in a simpler setting that reveals its 
essential features.  

5. Simulation results 
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where w represents the output of the hysteresis nonlinearity. The actual parameter values 
are 1a = , and 1b = . Without control, i.e., ( ) 0w t = , (33) is unstable, because 
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In the simulations, the robust adaptive control law (19) of Scheme I was used, taking 
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26.7(0.1 1)( ) rp r e− −= for (0,50]r∈ . The simulation results presented in the Figure 3 is the 
comparison of system tracking errors for the proposed control Scheme I and the scenario 
without considering the effects of the hysteresis. For Scheme II, we choose the same initial 
values as before and 0.35δ = . The simulation results presented in the Figure 4 is the 
comparison of system tracking errors for the proposed control Scheme II and the scenario 
without considering the effects of the hysteresis. Clearly, the all simulation results verify our 
proposed schemes and show their effectiveness. 
 

 
Fig. 3. Tracking errors -- control Scheme I (solid line) and the scenario without considering 
hysteresis effects (dotted line) 

 
Fig. 4. Tracking errors -- control Scheme II (solid line) and the scenario without considering 
hysteresis effects (dotted line) 
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6. Conclusion 
We have for the first time constructed a class of new hysteresis model based on play-like 
operators and named it Prandtl-Ishlinshii-Like model where the play-like operators play a 
role of building blocks. We have proposed two control schemes to accomplish robust 
adaptive control tasks for a class of nonlinear systems preceded by Prandtl-Ishlinshii-Like 
models to not only ensure stabilization and tracking of the hysteretic dynamic nonlinear 
systems, but also derive the transient performance in terms of 2L  norm of tracking error as 
an explicit function of design parameters. By proposing Prandtl-Ishlinshii-Like model and 
using the backstepping technique, this paper has address a challenge that how to fuse a 
suitable hysteresis model with available robust adaptive techniques to mitigate the effects of 
hysteresis avoid constructing a complicated inverse operator of the hysteresis model. After 
this preliminary result, the idea in this paper is being further explored to deal with a class of 
perturbed strict-feedback nonlinear systems with unknown control directions preceded by 
this new hysteresis model.  
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1. Introduction 
This chapter presents the design of a controller that  ensures both the robust stability and 
robust performance of a physical plant using a linearized identified model . The structure of 
the plant and the statistics of the noise and disturbances affecting the plant  are assumed to be 
unknown. As the design of the robust controller relies on the availability of a plant model, the 
mathematical model of the plant is first identified  and the identified model, termed here the 
nominal model, is then employed in the controller design. As an effective design of the robust 
controller relies heavily on an accurately identified model of the plant, a reliable identification 
scheme is developed here to handle unknown model structures and statistics of the noise and 
disturbances. Using a mixed-sensitivity H∞ optimization framework, a robust controller is 
designed with the plant uncertainty modeled by additive perturbations in the numerator and 
denominator polynomials of the identified plant model. The proposed identification and 
robust controller design are evaluated extensively on simulated systems as well as on two 
laboratory-scale physical systems, namely the magnetic levitation and two- tank liquid level 
systems. In order to appreciate the importance of the identification stage and the interplay 
between this stage and the robust controller design stage, let us first consider a model of an 
electro-mechanical system formed of a DC motor relating the input voltage to the armature 
and the output angular velocity. Based on the physical laws, it is a third-order closed-loop 
system formed of fast electrical and slow mechanical subsystems. It is very difficult to identify 
the fast dynamics of this system, and hence the identified model will be of a second-order 
while the true order remains to be three. Besides this error in the model order, there may also 
be errors in the estimated model parameters. Consider now the problem of designing a 
controller for this electro-mechanical system. A constant-gain controller based on the identified 
second-order model will be stable for all values of the gain as long the negative feedback is 
used. If, however, the constant gain controller is implemented on the physical system, the true 
closed-loop third-order system may not be stable for large values of the controller gain. This 
simple example clearly shows the disparity between the performance of the identified system 
and the real one and hence provides a strong motivation for designing a robust controller 
which factors uncertainties in the model.  
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A physical system, in general, is formed of cascade, parallel and feedback combinations of 
many subsystems. It may be highly complex, be of high order and its structure may be 
different from the one derived from physical laws governing its behavior. The identified 
model of a system is at best an approximation of the real system because of the many 
difficulties encountered and assumptions made in completely capturing its dynamical 
behavior. Factors such as the presence of noise and disturbances affecting the input and the 
output, the lack of persistency of excitation, and a finite number of input-output samples all 
contribute to the amount of uncertainty in the identified model. As a result of this, high-
frequency behavior including fast dynamics may go un-captured in the identified model. 
The performance of the closed- loop system formed of a physical plant and a controller 
depends critically upon the quality of the identified model. Relying solely on the robustness 
of the controller to overcome the uncertainties of the identified plant will result in a poor 
performance. Generally, popular controllers such as proportional (P), proportional integral 
(PI) or proportional integral and derivative (PID) controllers are employed in practice as 
they are simple, intuitive and easy to use and their parameters can be tuned on line. When 
these controllers are designed using the identified model, and implemented on the physical 
system, there is no guarantee that the closed-loop system will be stable, let alone meeting 
the performance requirements. The design of controllers using identified models to ensure 
robust stability is becoming increasingly important in recent times. In (Cerone, Milanese, 
and Regruto, 2009),  an interesting iterative scheme is proposed which consists of first 
identifying the plant and employing the identified model to design a robust controller, then 
implementing the designed controller on the real plant and evaluating its performance on 
the actual closed-loop system. However, it is difficult to establish whether the identify-
control-implement-evaluate scheme will converge, and even if it does, whether it will 
converge to an optimal robust controller. In this work, each of these issues, namely the 
identification, the controller design and its implementation on an actual system, are all 
addressed separately with the clear objective of developing a reliable identification scheme 
so that the identified model will be close to the true model, hence yielding a reliable 
controller design scheme which will produce a controller that will be robust enough to 
ensure both stability and robust performance of the actual closed-loop system. Crucial 
issues in the identification of physical systems include the unknown order of the model,   
the partially or totally unknown statistics of the noise and disturbances affecting data, and 
the fact that the plant is operating in a closed-loop configuration. To tackle these issues, a 
number of  schemes designed to (a) attenuate the effect of unknown noise and disturbances 
(Doraiswami, 2005), (b) reliably select the model order of the identified system (Doraiswami, 
Cheded, and Khalid, 2010) and (c) identify a plant operating in a closed-loop (Shahab and 
Doraiswami, 2009) have been developed and are presented here for completeness. The 
model uncertainty associated with the identified model is itself modeled as additive 
perturbations in both the plant numerator and the denominator polynomials so as to 
develop robust controllers using the mixed-sensitivity H∞ controller design procedure 
(Kwakernaak, 1993). The mixed-sensitivity H∞ control design procedure conservatively 
combines and simultaneously solves both problems of robust stability and robust 
performance using a single H∞  norm. 
This design procedure is sound, mature, focuses on handling the problem of controller 
design when the plant model is uncertain, and has been successfully employed in practice in 
recent years (Cerone, Milanese, and Regruto, 2009), (Tan, Marquez, Chen, and Gooden, 
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2001). The proposed scheme is extensively tested on both simulated systems and physical 
laboratory-scale systems namely, a magnetic levitation and two-tank liquid level systems.  
The key contribution herein is to demonstrate the efficacy of (a) the proposed model order 
selection criterion to reduce the uncertainty in the plant model structure, a criterion which is 
simple, verifiable and reliable (b) the two-stage closed-loop identification scheme which 
ensures quality of the identification performance, and (c) the mixed-sensitivity optimization 
technique in the H∞-framework to meet the control objectives of robust performance and 
robust stability without violating the physical constraints imposed by components such as 
actuators, and in the face of uncertainties that stem from the identified model employed in 
the design of the robust controller. It should be noted here that the identified model used in 
the design of the robust controller is the linearized model of the physical system at some 
operating point, termed the nominal model.  
The chapter is structured as follows. Section 2 discusses the stability and performance of a 
typical closed-loop system. In Section 3, the robust performance and robust stability 
problems are considered in the mixed-sensitivity H∞ framework. Section 4 discusses the 
problem of designing a robust controller using the identified model with illustrated 
examples. Section 5 gives a detailed description of the complete identification scheme used 
to select the model order, identify the plant in a closed-loop configuration and in the 
presence of unknown noise and disturbances. Finally, in Section 6, evaluations of the 
designed robust controllers on two-laboratory scale systems are presented.      

2. Stability and performance of a closed-loop system 
An important objective of the control system to ensure that the output of the system tracks a 
given reference input signal in the face of both noise and disturbances affecting the system, 
and the plant model uncertainty. A further objective of the control system is to ensure that 
the performance of the system meets the desired time-domain and frequency-domain 
specifications such as the rise time, settling time, overshoot, bandwidth, and peak of the 
magnitude frequency response while respecting the constraints on the control input and 
other variables. An issue of paramount practical importance facing the control engineer is 
how to design a controller which will both stabilize the plant when its model is uncertain 
and ensure that its performance specifications are all met. Put succinctly, we seek a 
controller that will ensure both stability and performance robustness in the face of model 
uncertainties. To achieve this dual purpose, we need to first introduce some analytical tools 
as described next. 

2.1 Key sensitivity functions 
Consider the typical closed-loop system shown in Fig. 1 where 0G is the nominal plant, 

0C the controller that stabilizes the nominal plant 0G ; r and y  the reference input, and 
output, respectively; id and 0d  the disturbances at the plant input and  plant output, 
respectively, and v the measurement or sensor noise. The nominal model, heretofore 
referred to as the identified model, represents a mathematical model of a physical plant 
obtained from physical reasoning and experimental data.  
Let w  and z  be, respectively, a (4x1) input vector comprising r, 0d , id and v , and a (3x1) 
output vector formed of the plant output y, control input u, and the tracking error e , as 
given below by: 
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Let w  and z  be, respectively, a (4x1) input vector comprising r, 0d , id and v , and a (3x1) 
output vector formed of the plant output y, control input u, and the tracking error e , as 
given below by: 
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The four key closed-loop transfer functions which play a significant role in the stability and 
performance of a control system are the four sensitivity functions for the nominal plant and 
nominal controller. They are the system’s sensitivity 0S , the input-disturbance sensitivity 

0iS , the control sensitivity 0uS and the complementary sensitivity 0T , given by: 
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1 , , ,
1 1 1 1i u

G C G CS S S G S S C T
G C G C G C G C
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The performance objective of a control system is to regulate the tracking error e r y= −  so 
that the steady-state tracking error is acceptable and its transient response meets the time- 
and frequency-domain specifications respecting the physical constraints on the control input 
so that, for example, the actuator does not get saturated. The output to be regulated, namely 
e and u, are given by:  

 0 0 0 0( ) i ie S r d T v S d= − + −  (4) 

 0 0 0( )u iu S r v d T d= − − −  (5) 

The transfer matrix relating w to z is then given by:  

 0 0 0 0

0 0 0 0 0

i i

u u u

r
e S S S T d
u S T S S d

v

⎡ ⎤
⎢ ⎥− −⎡ ⎤ ⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎣ ⎦

 (6) 

2.2 Stability and performance 
One cannot reliably assert the stability of the closed-loop by merely analyzing only one of 
the four sensitivity functions such as the closed-loop transfer function 0( )T s  because there 
may be an implicit pole/zero cancellation process wherein the unstable poles of the plant 
(or the controller) may be cancelled by the zeros of the controller (or the plant). The 
cancellation of unstable poles may exhibit unbounded output response in the time domain. 
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In order to ensure that there is no unstable pole-zero cancellation, a more rigorous definition 
of stability, termed internal stability, needs to be defined. The closed-loop system is 
internally stable if and if all the eight transfer function elements of the transfer matrix of 
Equation (6) are stable. Since there are only four distinct sensitivity functions, 0S , 0iS , 

0uS and 0T , the closed-loop system is therefore internally stable if and only if these four 
sensitivity functions 0S , 0iS , 0uS and 0T are all stable. Since all these sensitivity functions 
have a common denominator ( 0 01 G C+ ), the characteristic polynomial 0( )sϕ of the closed-
loop system is: 

 0 0 0 0 0( ) ( ) ( ) ( ) ( )p c p cs N s D s D s N sϕ = +
 (7) 

where 0 0( ) , ( )p pN s D s and 0 0( ) , ( )c cN s D s are the numerator and the denominator 
polynomials of 0( )G s and 0( )C s , respectively. One may express internal stability in terms of 
the roots of the characteristic polynomial as follows. 
Lemma 1 (Goodwin, Graeb, and Salgado, 2001): The closed-loop system is internally stable 
if and only if the roots of 0( )sϕ all lie in the open left-half of the s-plane.  
We will now focus on the performance of the closed-loop system by analyzing the closed- 
loop transfer matrix given by Equation (6). We will focus on the tracking error e for 
performance, and the control input u for actuator saturation: 
• The tracking error e is small if (a) 0S  is small in the frequency range where r  and 

0d are large, (b) 0uS is small in the frequency range where id is large and (c) 0T and is 
small in the frequency range where v is large.  

• The control input u is small if (a) 0uS  is small in the frequency range where r , 0d and 
v are large, and (b) 0T  is small in the frequency range where id is large. 

Thus the performance requirement must respect the physical constraint that imposes on the 
control input  to be small so that the actuator does not get saturated. 

3. Robust stability and performance 
Model uncertainty stems from the fact that it is very difficult to obtain a mathematical model 
that can capture completely the behavior of a physical system and which is relevant for the 
intended application. One may use physical laws to obtain the structure of a mathematical 
model of a physical system, with the parameters of this model obtained using system 
identification techniques. However, in practice, the structure as well as the parameters need to 
be identified from the input-output data as the structure derived from the physical laws may 
not capture adequately the behavior of the system or, in the extreme case, the physical laws 
may not be known. The “true” model is a more comprehensive model that contains features 
not captured by the identified model, and is relevant to the application at hand, such as 
controller design, fault diagnosis, and condition monitoring. The difference between the 
nominal and true model is termed as the modeling error which includes the following: 
• The structure of the nominal model which differs from that of the true model as a result 

of our inability to identify features such as  high-frequency behavior, fast subsystem 
dynamics, and approximation of infinite-dimensional system by a finite- dimensional 
ones. 

• Errors in the estimates of the numerator and denominator coefficients, and in the 
estimate of the time delay 
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ones. 
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• The deliberate negligence of fast dynamics to simplify sub-systems’ models. This will 
yield a system model that is simple, yet capable enough to capture the relevant features 
that would facilitate the intended design.  

3.1 Co-prime factor-based  uncertainty model  
The numerator-denominator perturbation model considers the perturbation in the 
numerator and denominator polynomials separately, instead of lumping them together as a 
single perturbation of the overall transfer function. This perturbation model is useful in 
applications where an estimate of the model is obtained using system identification methods 
such as the best least-squares fit between the actual output and its estimate obtained from an 
assumed mathematical model. Further, an estimate of the perturbation on the numerator 
and denominator coefficients may be computed from the data matrix and the noise variance.  
Let 0G and G  be respectively the nominal and actual SISO rational transfer functions. The 
normalized co-prime factorization in this case is given by 

 
1

0 0 0
1

G N D

G N D

−

−

=

=
 (8) 

where 0N and N are the numerator polynomials, and both 0D  and D  the denominator 
polynomials. In terms of the nominal numerator and denominator polynomials, the transfer 
function G is given by: 

 ( )( ) 1
0 0N DG N D −= + Δ + Δ  (9) 

where NΔ and D RH∞Δ ∈ are respectively the frequency-dependent perturbation in the 
numerator and denominator polynomials (Kwakernaak, 1993). Fig. 2 shows the closed- loop 
system driven by a reference input r with a perturbation in the numerator and denominator 
polynomials. The three relevant signals are expressed in equations (10-12). 
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Fig. 2. Co-prime factor-based uncertainty model for a SISO plant 
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 [ ]1 2 N D
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q q
y
⎡ ⎤

− = Δ −Δ ⎢ ⎥
⎣ ⎦

 (12) 

3.2 Robust stability and performance 
Since the reference input does not play any role in the stability robustness, it is set equal to 
zero and the robust stability model then becomes as given in Fig. 3 

 

1
0 0uD S− 1

0 0D S−

NΔ
−

1 2q q−u

DΔ

y

 
Fig. 3. Stability robustness model with zero reference input  

The robust stability of the closed-loop system with plant model uncertainty is established 
using the small gain theorem. 
Theorem 1: Assume that 0C internally stabilizes the nominal plant 0G . Hence 0S RH∞∈  
and 0uS RH∞∈ . Then the closed-loop system stability problem is well posed and the system 
is internally stable for all allowable numerator and denominator perturbations, i.e.: 

 [ ] 01 /N D γΔ Δ ≤  (13) 

If and only if 

 [ ] 1
0 0 0 0uS S D γ−

∞
<  (14) 

Proof: The SISO robust stability problem considered herein is a special case of the MIMO 
case proved in (Zhou, Doyle, & Glover, 1996).  
Thus to ensure a robustly-stable closed-loop system, the nominal sensitivity 0S should be 
made small in frequency regions where the denominator uncertainty DΔ is large, and the 
nominal control input sensitivity 0uS should be made small in frequency regions where the  
numerator uncertainty NΔ is large.  
Our objective here is to design a controller 0C such that robust performance and robust 
stability of the system are both achieved, that is, both the performance and stability hold for 
all allowable plant model perturbations [ ] 01 /N D γΔ Δ ≤ for some 0 0γ > . Besides these 
requirements, we need also to consider physical constraints on some components such as 
actuators, for example, that especially place some limitations on the control input. From 
Theorem 1 and Equation (6), it is clear that the requirements for robust stability, robust 
performance and control input limitations are inter-related, as explained next: 
• Robust performance for tracking with disturbance rejection as well as robust stability in 

the face of denominator perturbations require a small sensitivity function 0S in the low-
frequency region and, 
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The robust stability of the closed-loop system with plant model uncertainty is established 
using the small gain theorem. 
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Proof: The SISO robust stability problem considered herein is a special case of the MIMO 
case proved in (Zhou, Doyle, & Glover, 1996).  
Thus to ensure a robustly-stable closed-loop system, the nominal sensitivity 0S should be 
made small in frequency regions where the denominator uncertainty DΔ is large, and the 
nominal control input sensitivity 0uS should be made small in frequency regions where the  
numerator uncertainty NΔ is large.  
Our objective here is to design a controller 0C such that robust performance and robust 
stability of the system are both achieved, that is, both the performance and stability hold for 
all allowable plant model perturbations [ ] 01 /N D γΔ Δ ≤ for some 0 0γ > . Besides these 
requirements, we need also to consider physical constraints on some components such as 
actuators, for example, that especially place some limitations on the control input. From 
Theorem 1 and Equation (6), it is clear that the requirements for robust stability, robust 
performance and control input limitations are inter-related, as explained next: 
• Robust performance for tracking with disturbance rejection as well as robust stability in 

the face of denominator perturbations require a small sensitivity function 0S in the low-
frequency region and, 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

446 

• Control input limitations and robust stability in the face of numerator perturbations 
require a small control input sensitivity function 0uS in the relevant frequency region.  

With a view to addressing these requirements, let us select the regulated outputs to be a 
frequency-weighted tracking error we , and a weighted control input wu to meet respectively 
the requirements of performance, and control input limitations. 

 [ ]Tw w wz e u=  (15) 

where wz  is a  (2x1) vector output to be regulated, we , and wu  are defined by their 
respective Fourier transforms: ( ) ( ) ( )w Se j e j W jω ω ω=  and ( ) ( ) ( )w uu j u j W jω ω ω= . The 
frequency weights involved, ( )SW jω and ( )uW jω , are chosen such that their inverses are 
the upper bounds of the respective sensitive functions so that weighted sensitive functions 
become normalized, i.e.:  

 0 0( ) ( ) 1 , ( ) ( ) 1S u uW j S j W j S jω ω ω ω≤ ≤      (16) 

The map relating the frequency weighted output wz and the reference input r  is shown in 
Fig. 4: 
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Fig. 4. Nominal closed-loop system relating the reference input and the weighted outputs 

The weighting functions ( )sW jω , and ( )suW jω  provide the tools to specify the trade-off 
between robust performance and robust stability for a given application. For example, if 
performance robustness (and stability robustness to the denominator perturbation DΔ ) is 
more important than the control input limitation, then the weighting function SW is chosen 
to be larger in magnitude than 0uW . On the other hand, to emphasize control input 
limitation (and stability robustness to the numerator perturbation NΔ ), the weighting 
function 0uW  is chosen to be larger in magnitude than SW  . For steady-state tracking with 
disturbance rejection, one may include in the weighting function SW  an approximate but 
stable ‘integrator’ by choosing its pole close to zero for continuous-time systems or close to 
unity for discrete-time systems so as to avoid destabilizing the system (Zhou, Doyle, and 
Glover, 1996). Let rzT  be the nominal transfer matrix (when the plant perturbation 0 0Δ = ) 
relating the reference input to the frequency-weighted vector output wz , which is a function 
of 0G and 0C  , be given by: 

 1
0 0 0

T
rz S u uT D W S W S− ⎡ ⎤= ⎣ ⎦   (17) 
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where 0s sW D W=  and 0u uW D W=  so that the 1
0D− term appearing in the mixed sensitivity 

measure rzT  is cancelled, thus yielding the following  simplified measure 
[ ]0 0

T
rz S u uT W S W S= . The mixed-sensitivity optimization problem for robust performance 

and stability in the frameworkH∞ −  is then reduced to finding the controller 0C such that : 

 ( )0 0, 1rzT C G γ
∞
≤ <  (18) 

It is shown in (McFarlane & Glover, 1990) that the minimization of rzT ∞ as given by 
Equation (18), guarantees not only robust stability but also robust performance for all 
allowable perturbations satisfying [ ] 1 /N D γ

∞
Δ Δ ≤ . 

4. H∞ controller design using the identified model  

Consider the problem of designing a controller for an unknown plant G. We will assume 
however that the system G is linear and admits a rational polynomial model. A number of 
identification experiments are performed off-line under various operating regimes that 
includes assumptions on the model and its environment, such as : 
• The model order 
• The length of the data record 
• The type of rich inputs 
• Noise statistics 
• The plant operates in a closed-loop, thus making the plant input correlated with both 

the measurement noise and disturbances  
• Combinations of any the above 
Let ˆ

iG be the identified model from the thi experiment based on one or more of the above 
stated assumptions. Let ˆ

iC be the corresponding controller which stabilizes all the plants in 
the neighborhood of ˆ

iG  within a ball of radius ˆ1 / iγ . Given an estimate of the plant model 
ˆ

iG , the controller ˆ
iC is then designed using the mixed-sensitivity H∞ optimization scheme , 

with both the identified model ˆ
iG  and the controller ˆ

iC based on it, now effectively replacing 
the nominal plant 0G and nominal controller 0C , respectively. Let the controller ˆ

iC   
stabilize the identified plant ˆ

iG for all ˆ ˆ1 /i iγ∞
Δ ≤  where ˆ

iΔ  is formed of the perturbations  

in the numerator and denominator of ˆ
iG . To illustrate the identification-based H∞ -

optimization scheme, let us consider the following example. Let the true order of the system G 
be 2 and assume the noise to be colored. Let ˆ : 1,2,3iG i = be the estimates obtained assuming 
the model order to be 2, 3, and 4, respectively and let the noise be a zero-mean white noise 
process; 4Ĝ  is obtained assuming the model order to be 2, the noise to be colored but the input 
not to be rich enough; Let 5Ĝ be an estimate based on correct assumptions regarding model 
order, noise statistics, richness of excitation of the input and other factors as pointed out above. 
Clearly the true plant G may not be in the neighborhood of ˆ

iG , i.e. ˆ
iG S∉ for all 5i ≠  where 

 { }ˆ ˆ ˆ ˆ: 1 /i i i iS G γ
∞

= Δ ≤  (19) 

The set ˆ
iS is a ball of radius ( ˆ1 / iγ ) centered at ˆ

iG . Fig. 5 below shows the results of 
performing a number of experiments under different assumptions on the model order, types 
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where 0s sW D W=  and 0u uW D W=  so that the 1
0D− term appearing in the mixed sensitivity 
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[ ]0 0

T
rz S u uT W S W S= . The mixed-sensitivity optimization problem for robust performance 

and stability in the frameworkH∞ −  is then reduced to finding the controller 0C such that : 

 ( )0 0, 1rzT C G γ
∞
≤ <  (18) 

It is shown in (McFarlane & Glover, 1990) that the minimization of rzT ∞ as given by 
Equation (18), guarantees not only robust stability but also robust performance for all 
allowable perturbations satisfying [ ] 1 /N D γ

∞
Δ Δ ≤ . 
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The set ˆ
iS is a ball of radius ( ˆ1 / iγ ) centered at ˆ

iG . Fig. 5 below shows the results of 
performing a number of experiments under different assumptions on the model order, types 
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of rich inputs, length of the data record, noise statistics and their combinations. The true 
plant G, its estimates ˆ

iG  and the set ˆ
iS  are all indicated by a circle of radius ( ˆ1 / iγ ) 

centered at ˆ
iG in Figure 5. The true plant G is located at the center of the set 5Ŝ .  

 

3Ŝ

4Ŝ5Ŝ1̂S

2Ŝ

3Ĝ

4Ĝ1Ĝ 5Ĝ G=

2Ĝ

 
Fig. 5. The set ˆ

iS is a ball of radius ˆ1 / iγ  centered at ˆ
iG  

4.1 Illustrative example: H∞ controller design   
A plant is first identified and then the identified model is employed in designing an H∞ 

controller using the mixed sensitivity performance measure. As discrete-time models and 
digital controllers are commonly used in system identification and controller 
implementation, a discrete-time equivalent of the continuous plant is used here to design a 
discrete-time H∞ controller. The plant model is given by: 

 ( )
( )1

0 1 2

0.5335 1

1 0.7859 0.3679

z
G z

z z

−

− −

−
=

− +
 (20) 

The weighting function for the sensitivity and control input sensitivity functions were 

chosen to be 1
0.01 , 0.1

1 0.99s uW W
z−

= =
−

. The weighting function for the sensitivity is chosen  

to have a pole close to the unit circle to ensure an acceptable small steady-state error. The 
controller will have a pole at 0.99 approximating a stable integrator. The plant is identified 
for (a) different choices of model orders ranging from 1 to 10 when the true order is 2, and 
(b) different values of the standard deviation of the colored measurement noise vσ . Fig. 6 
shows the step and the magnitude response of the sensitivity function. The closed-loop 
system is unstable when the selected order is 1 and for some realizations of the noise, and 
hence these cases are not included in the figures shown here. When the model order is 
selected to be less than the true order, in this case 1, and when the measurement noise’s 
standard deviation vσ is large, the set of identified models does not contain the true model. 
Consequently the closed-loop system will be unstable.  
Comments: The robust performance and the stability of the closed-loop system depend 
upon the accuracy of the identified model. One cannot simply rely on the robustness of the 
H∞ controller to absorb the model uncertainties. The simulation results clearly show that the 
model error stems from an improper selection of the model order and the Signal-to-Noise 
Ratio (SNR) of the input-output data. The simulation results show that there is a need for an 
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appropriate identification scheme to handle colored noise and model order selection to 
ensure a more robust performance and stability.  
 

 
Fig. 6. Figures A and B on the left show the Step responses (top) and Magnitude responses 
of sensitivity (bottom) when the model order is varied from 2 to 10 when the noise standard 
deviation is 0.001vσ = . Similarly figures C and D on the right-hand show when the  noise 
standard deviation vσ  is varied in the range [ ]0.02 0.11vσ ∈ . 

5. Identification of the plant               
The physical system is in general complex, high-order and nonlinear and therefore an 
assumed linear mathematical model of such a system is at best an approximation of the ‘true 
model’. Nevertheless a mathematical model linearized at a given operating point can be 
identified and the identified model successfully used in the design of the required 
controller, as explained below. Some key issues in the identification of a physical system 
include (a) the unknown statistics of the noise and disturbance affecting the input-output 
data (b) the proper selection of an appropriate structure of the mathematical model, 
especially its order and (c) the plants operating in a closed-loop configuration.     
For the case (a) a two-stage identification scheme, originally proposed in (Doraiswami, 2005) 
is employed here. First a high-order model is selected so as to capture both the system 
dynamics and any artifacts (from noise or other sources). Then, in the second stage, lower-
order models are derived from the estimated high-order model using a frequency-weighted 
estimation scheme. To handle the model order selection, and the identification of the plant, 
especially an unstable one, approaches proposed in (Doraiswami, Cheded, and Khalid, 
2010) and (Shahab and Doraiswami, 2009) are employed respectively.  

5.1 Model order selection 
For mathematical tractability, the well-known criteria based on information-theoretic criteria 
such as the famous Akaike Information Criterion  (Stoica and Selen, 2004), when applied to 
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a physical system, may require simplified assumptions such as long and uncorrelated data 
records, linearized models and a Gaussian probability distribution function (PDF) of the 
residuals. Because of these simplifying assumptions, the resulting criteria may not always 
give the correct model order. Generally, the estimated model order may be large due to the 
presence of artifacts arising from noise, nonlinearities, and pole-zero cancellation effects. 
The proposed model order selection scheme consists of selecting only the set of models, 
which are identified using the scheme proposed in (Doraiswami, 2005), and for which all the 
poles are in the right-half plane (Doraiswami, Cheded, and Khalid, 2010). The remaining 
identified models are not selected as they consist of extraneous poles.  
Proposed Criterion: The model order selection criterion hinges on the following Lemma 
established in (Doraiswami, Cheded, and Khalid, 2010).  
Lemma: If the sampling frequency is chosen in the range 2 4c s cf f f≤ < , then the complex-
conjugate poles of the equivalent discrete-time equivalent of a continuous-time system will 
all lie on the right-half of the z-plane, whereas the real ones will all lie on the positive real 
line. 
This shows that the discrete-time poles lie on the right-half of the z-plane if the sampling 
rate ( sf ) is more than twice the Nyquist rate ( 2 cf ). Thus, to ensure that the system poles are 
located on the right-half and the noise poles on the left-half of  the z-plane, the sampling 
rate sf must be larger than four times the maximum frequency max

sf of the system, and less 
than four times the minimum frequency of the noise, min

vf . 

 max min4 4s v
sf f f≤ <  (21) 

5.2 Identification of a plant operating in closed loop 
In practice, and for a variety of reasons (for e.g. analysis, design and control), it is often 
necessary to identify a system that must operate in a closed-loop fashion under some type of 
feedback control. These reasons could also include safety issues, the need to stabilize an 
unstable plant and /or improve its performance while avoiding the cost incurred through 
downtime if the plant were to be taken offline for test. In these cases, it is therefore necessary 
to perform closed-loop identification. There are three basic approaches to closed-loop 
identification, namely a direct, an indirect and a two-stage one. A direct approach to 
identifying a plant in a closed-loop identification scheme using the plant input and output 
data is fraught with difficulties due to the presence of unknown and generally inaccessible 
noise, the complexity of the model or a combination of both. Although computationally 
simple, this approach can lead to parameter estimates that may be biased due mainly to the 
correlation between the input and the noise, unless the noise model is accurately 
represented or the signal-to-noise ratio is high (Raol, Girija, & Singh, 2004). The 
conventional indirect approach is based on identifying the closed-loop system using the 
reference input and the system (plant) output. Given an estimate of the system open-loop 
transfer function, an estimate of the closed-loop transfer function can be obtained from the 
algebraic relationship between the system’s open-loop and closed-loop transfer functions. 
The desired plant transfer function can then be deduced from the estimated closed-loop 
transfer function. However, the derivation of the plant transfer function from the closed-
loop transfer function may itself be prone to errors due to inaccuracies in the model of the 
subsystem connected in cascade with the plant. The two-stage approach, itself a form of an 
indirect method, is based on first identifying the sensitivity and the complementary 
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sensitivity functions using a subspace Multi-Input, Multi-Output (MIMO) identification 
scheme (Shahab & Doraiswami, 2009). In the second stage, the plant transfer function is 
obtained from the estimates of the plant input and output generated by the first stage.  

5.2.1 Two-stage identification  
In the first stage, the sensitivity function ( )S z  and the complementary sensitivity functions 

( )T z  are estimated using all the three available measurements, namely the reference input, 
r, plant input, u and the plant output, y , to ensure that the estimates are reliable. In other 
words, a Multiple-Input, Multiple-Output (MIMO) identification scheme with one input 
(the reference input r), and two outputs (the plant input u and the plant output y) is used 
here rather than a Single-Input, Single-Output (SISO) scheme using one input u and one 
output y. The MIMO identification scheme is based on minimizing the performance 
measure, J, as:  

 2

ˆ
ˆmin

z
J z z= −  (22) 

where [ ]Tz y u= and [ ]ˆ ˆ ˆ Tz y u= , û is the estimated plant input and ŷ is the estimated 
plant output. The plant input u, and the plant output y are related to the reference input r 
and the disturbance w by: 

 ( ) ( ) ( ) ( ) ( )u z S z r z S z w z= +  (23) 

 ( ) ( ) ( ) ( ) ( ) ( )y z T z r z T z w z v z= + +  (24) 

As pointed out earlier, the proposed MIMO identification scheme will ensure that the 
estimates of the sensitivity and the complementary sensitivity functions are consistent (i.e. 
they have identical denominators), and hence will also ensure that the estimates of the plant 
input u and the plant output y , which are both employed in the second stage, are reliable. 
Note here that the reference signal r is uncorrelated with the measurement noise w and the 
disturbance v, unlike in the case where the plant is identified using the direct approach. This 
is the main reason for using the MIMO scheme in the first stage. In the second stage, the 
plant ( )G z is identified from the estimated plant input, û , and  plant  output, ŷ , obtained 
from the stage 1 identification scheme, i.e.:  

 ˆˆ( ) ( ) ( )u z S z r z=  (25) 

 ˆˆ( ) ( ) ( )y z T z r z=  (26) 

Note that here the input û and the output ŷ  are not correlated with the noise w and 
disturbance term v. Treating û  as the input and ŷ as the output of the plant, and ˆ̂y as the 
estimate of the plant output estimate, ŷ , the identification scheme is based on minimizing 
the weighted frequency-domain performance measure  

 ( ) 2

ˆ̂ ,

ˆˆ ˆmin ( ) ( ) ( )
y

W j y j y jω ω ω−  (27) 
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a physical system, may require simplified assumptions such as long and uncorrelated data 
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sensitivity functions using a subspace Multi-Input, Multi-Output (MIMO) identification 
scheme (Shahab & Doraiswami, 2009). In the second stage, the plant transfer function is 
obtained from the estimates of the plant input and output generated by the first stage.  
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where ( )W jω is the weighting function. Furthermore,  it is shown that: 
Lemma: If the closed-loop system is stable, then  
• The unstable poles of the plant must be cancelled exactly by the zeros of the sensitivity 

function if the reference input is bounded. 
• The zeros of the plants form a subset of the zeros of the complementary transfer 

function 
This provides a cross-checking of the estimates of the poles and the zeros of the plant 
estimated in the second stage with the zeros of the sensitivity and complementary functions 
in the first stage, respectively.  

6.1 Evaluation on a physical system: magnetic levitation system (MAGLEV) 
The physical system is a feedback magnetic levitation system (MAGLEV) (Galvao, 
Yoneyama, Marajo, & Machado, 2003). Identification and control of the magnetic levitation 
system has been a subject of research in recent times in view of its applications to 
transportation systems, magnetic bearings used to eliminate friction, magnetically-levitated 
micro robot systems, magnetic levitation-based automotive engine valves. It poses a 
challenge for both identification and controller design. 
 

 
Fig. 7. Laboratory-scale MAGLEV system 

The model of the MAGLEV system, shown in Fig. 7, is unstable, nonlinear and is modeled 
by: 

 2
( )
( )

y s
u s s

β
α

=
−

 (28) 

where y is the position, and u the voltage input. The poles, p, of the plant are real and are 
symmetrically located about the imaginary axis, i.e.:  p α= ± . The linearized model of the 
system was identified in a closed-loop configuration using LABVIEW data captured 
through both A/D and D/A devices. Being unstable, the plant was identified in a closed- 
loop configuration using a controller which was a lead compensator. The reference input 
was a rich persistently-exciting signal consisting of a random binary sequence. An 
appropriate sampling frequency was determined by analyzing the input-output data for 
different choices of the sampling frequencies. A sampling frequency of 5msec was found to 
be the best as it proved to be sufficiently small to capture the dynamics of the system but not 
the noise artifacts. The physical system was identified using the proposed two-stage MIMO 
identification scheme. First, the sensitivity and complementary sensitivity functions of the 
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closed-loop system were identified. The estimated plant input and output were employed in 
the second stage to estimate the plant model. The model order for identification was 
selected to be second order using the proposed scheme. Figure 8 below gives the pole-zero 
maps of both the plant and the sensitivity function on the left-hand side,  and, on the right-
hand side, the comparison between the frequency response of the identified model ˆ ( )G jω , 
obtained through non-parametric identification, i.e. estimated by injecting various 
sinusoidal inputs of different frequencies applied to the system, and the estimate of the 
transfer function obtained using the proposed scheme.  
 

 
Fig. 8. A and B show pole-zero maps of the plant and of the sensitivity function (left) while 
C and D (right)  show the comparison of the frequency response of the identified model 
with the non-parametric model estimate, and the correlation of the residual, respectively   

The nominal closed-loop input sensitivity function was identified as: 
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and the nominal plant model as:   
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6.1.1 Model validation  
The identified model was validated using the following criteria:  
• The proposed model-order selection was employed. The identifications in stages I and 

II were performed for orders ranging from 1 to 4. A second-order model was selected in 
both stages since all the poles of the identified model were located in the right-half of 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

452 

where ( )W jω is the weighting function. Furthermore,  it is shown that: 
Lemma: If the closed-loop system is stable, then  
• The unstable poles of the plant must be cancelled exactly by the zeros of the sensitivity 

function if the reference input is bounded. 
• The zeros of the plants form a subset of the zeros of the complementary transfer 

function 
This provides a cross-checking of the estimates of the poles and the zeros of the plant 
estimated in the second stage with the zeros of the sensitivity and complementary functions 
in the first stage, respectively.  

6.1 Evaluation on a physical system: magnetic levitation system (MAGLEV) 
The physical system is a feedback magnetic levitation system (MAGLEV) (Galvao, 
Yoneyama, Marajo, & Machado, 2003). Identification and control of the magnetic levitation 
system has been a subject of research in recent times in view of its applications to 
transportation systems, magnetic bearings used to eliminate friction, magnetically-levitated 
micro robot systems, magnetic levitation-based automotive engine valves. It poses a 
challenge for both identification and controller design. 
 

 
Fig. 7. Laboratory-scale MAGLEV system 

The model of the MAGLEV system, shown in Fig. 7, is unstable, nonlinear and is modeled 
by: 

 2
( )
( )

y s
u s s

β
α

=
−

 (28) 

where y is the position, and u the voltage input. The poles, p, of the plant are real and are 
symmetrically located about the imaginary axis, i.e.:  p α= ± . The linearized model of the 
system was identified in a closed-loop configuration using LABVIEW data captured 
through both A/D and D/A devices. Being unstable, the plant was identified in a closed- 
loop configuration using a controller which was a lead compensator. The reference input 
was a rich persistently-exciting signal consisting of a random binary sequence. An 
appropriate sampling frequency was determined by analyzing the input-output data for 
different choices of the sampling frequencies. A sampling frequency of 5msec was found to 
be the best as it proved to be sufficiently small to capture the dynamics of the system but not 
the noise artifacts. The physical system was identified using the proposed two-stage MIMO 
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closed-loop system were identified. The estimated plant input and output were employed in 
the second stage to estimate the plant model. The model order for identification was 
selected to be second order using the proposed scheme. Figure 8 below gives the pole-zero 
maps of both the plant and the sensitivity function on the left-hand side,  and, on the right-
hand side, the comparison between the frequency response of the identified model ˆ ( )G jω , 
obtained through non-parametric identification, i.e. estimated by injecting various 
sinusoidal inputs of different frequencies applied to the system, and the estimate of the 
transfer function obtained using the proposed scheme.  
 

 
Fig. 8. A and B show pole-zero maps of the plant and of the sensitivity function (left) while 
C and D (right)  show the comparison of the frequency response of the identified model 
with the non-parametric model estimate, and the correlation of the residual, respectively   

The nominal closed-loop input sensitivity function was identified as: 
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and the nominal plant model as:   
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6.1.1 Model validation  
The identified model was validated using the following criteria:  
• The proposed model-order selection was employed. The identifications in stages I and 

II were performed for orders ranging from 1 to 4. A second-order model was selected in 
both stages since all the poles of the identified model were located in the right-half of 
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the z-plane. Note here that the dynamics of the actuator (electrical subsystem) was not 
captured by the model as it is very fast compared to that of the mechanical subsystem.  

• A 4th order model was employed in stage I to estimate the plant input and the output 
for the subsequent stage II identification.  

• The plant has one stable pole located at 0.7580 and one unstable pole at 1.1158. The 
reciprocity condition is not exactly satisfied as, theoretically, the stable pole should be at 
0.8962 and not at 0.7580.  

•  The zeros of the sensitivity function contain the unstable pole of the plant, i.e. the 
unstable pole of the plant located at 1.1158 is a zero of the sensitivity function.  

• The frequency responses of the plant, computed using two entirely different 
approaches, should be close to each other. In this case, a non-parametric approach was 
employed and compared to the frequency response obtained using the proposed 
model-based scheme, as shown on the right-hand side of Fig. 8. The non-parametric 
approach gives an inaccurate estimate at high frequencies due to correlation between 
the plant input and the noise.  

• The residual is zero mean white noise with very small variance. 

6.1.2 H∞ Mixed sensitivity H∞ controller design 
The weighting functions are selected by giving more emphasis on robust stability and less 
on robust performance: ( ) 0.001sW jω =  and ( ) 0.1uW jω = . To improve the robustness of the 
closed-loop system, a feed-forward control of the reference input is used, instead of the 
inclusion of an integrator in the controller. The H∞ controller is given by: 
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Fig. 9. The step and frequency responses of the closed-loop system with H∞ controller 
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It is interesting to note here that there is a pole-zero cancelation between the nominal plant 
and the controller since a plant pole and a controller zero are both equal to 0.7578. In this 
case, the H∞ norm is 0.1513γ = and hence the performance and stability measure is 

[ ]0 0 0.1513S u uW S W S γ
∞
= =  with [ ] 1 / 6.6087.N D γ

∞
Δ Δ ≤ =  The step response and 

magnitude responses of the weighted sensitivity, complementary sensitivity and the control 
input sensitivity of the closed-loop control system are all shown above in Fig. 9. 

6.2 Evaluation on a physical sensor network: a two-tank liquid level system 
The physical system under evaluation here is formed of two tanks connected by a pipe. A dc 
motor-driven pump supplies fluid to the first tank and a PI controller is used to control the 
fluid level in the second tank by maintaining the liquid height at a specified level, as shown in 
Fig. 10. This system is a cascade connection of a dc motor and a pump relating the input to the 
motor, u , and the flow iQ  . It is expressed by the following first-order time-delay system: 

 ( )i m i mQ a Q b uφ= − +  (32) 

where ma and mb are the parameters of the motor-pump subsystem and ( )uφ is a dead-band 
and saturation-type of nonlinearity. The Proportional and Integral (PI) controller is given by: 

 3 2

3p I

x e r h
u k e k x

= = −
= +

 (33) 

where pk and Ik are the PI controller’s gains and r is the reference input. 
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Fig. 10. Two-tank liquid level system 
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where pk and Ik are the PI controller’s gains and r is the reference input. 
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Fig. 10. Two-tank liquid level system 



 
Recent Advances in Robust Control – Novel Approaches and Design Methods 

 

456 

With the inclusion of the leakage, the liquid level system is now modeled by : 

 
( ) ( )

( ) ( )

1
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2
2 12 1 2 0 2

i
dHA Q C H H C H
dt

dHA C H H C H
dt

ϕ ϕ

ϕ ϕ

= − − −

= − −
 (34) 

 

where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ= is the leakage flow rate, ( )0 0 2Q C Hϕ= is the output 

flow rate, 1H is the height of the liquid in tank 1, 2H the height of the liquid in tank 2, 1A  

and 2A  the cross-sectional areas of the 2 tanks, g=980 2/seccm  the gravitational constant, 
and 12C  and oC  the discharge coefficients of the inter-tank and output valves, respectively.  
The linearized model of the entire system formed by the motor, pump, and the tanks is 
given by: 
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where x, A, B and C are given by: 
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iq , q , 0q , 1h and 2h are respectively the increments in iQ , Q , oQ , 0
1H and 0

2H , whereas 

1a , 2a ,α and β are parameters associated with the linearization process, α is  the leakage 
flow rate, 1q hα= , and β is the output flow rate, and 2oq hβ= . The dual-tank fluid system 
structure can be cast into that of an interconnected system with a sensor network, composed 
of 3 subsystems ,euG uqG , and qhG relating the measured signals, namely the error e, 
control input u, flow rate Q and the height h, respectively. The proposed two-stage 
identification scheme is employed to identify these subsystems. It consists of the following 
two stages: 
• In Stage 1, the MIMO closed-loop system is identified using data formed of the 

reference input r, and the subsystems’ outputs measured by the 3 available sensors. 
• In Stage 2, the subsystems euG uqG , and qhG are then identified using the subsystem’s 

estimated input and output measurements obtained from the first stage. 
Figure 11 shows the estimation of the 4 key signals e, u, Q and h in our two-tank experiment, 
that are involved in the MIMO transfer function in stage I identification. Stage I 
identification yields the following MIMO closed-loop transfer function given by: 

 1ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
T
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Fig. 11. (Left) The error and flow rate and their estimates and (Right) the control input and                   
height and their estimates.  
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The zeros of the sensitivity function, relating the reference input r to the error e , are located 
at 1.02 and 1.0.  
Fig. 12 below shows the combined plots of the actual values of the height, flow rate and 
control input, and their estimates from both stages 1 and 2. From this figure, we can 
conclude that the results are on the whole excellent, especially for both the height and 
control input.  
Stage II identification yields the following three open-loop transfer functions that are 
identified using their respective input/output estimates generated by the stage-1 
identification process:  
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Fig. 12. The actual height (in blue), its estimate from stage 1(in green) and its estimate from 
stage 2 (in red). Similarly for the flow rate and the control input 

Comments: 
• The two-tank level system is highly nonlinear as can be clearly seen especially from the 

flow rate profile located at the top right corner of Fig. 11. There is a saturation-type 
nonlinearity involved in the flow process.  

• The subsystems euG and qhG   representing respectively the PI controller and the transfer 
function relating the flow rate to the tank height are both unstable with a pole at unity 
representing an integral action. The estimated transfer functions ˆ

euG and ˆ
qhG   have 

captured these unstable poles. Although the pole of ˆ
euG is exactly equal to unity, the 

pole of ˆ
qhG , located at 1.0039 , is very close to unity. This slight deviation from unity 

may be due to the nonlinearity effects on the flow rate     
• The zeros of the sensitivity function have captured the unstable poles of the open- loop 

unstable plant with some error. The values of the zeros of the sensitivity function are 
1.0178, and 1.0002 while those of the subsystem poles are 1 and 1.0039. 

6.2.1 Mixed-sensitivity H∞ controller design 
The identified plant is the cascade combination of the motor, pump and the two tanks, 
which is essentially the forward path transfer function formed of the cascade combinations 
of uqG and qhG  , that relates  the control input u to the tank height h , and which is given by: 
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The weighting functions are selected by giving more emphasis on robust stability and less 

on robust performance: ( )1( ) 0.01 / 1 0.99sW z z−⎡ ⎤= −⎣ ⎦  and ( ) 1uW z =  where jz e ω= . The H∞  

controller is then given by: 
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The controller has an approximate integral action for steady-state tracking with disturbance 
rejection and a pole at 0.99 which is very close to unity. In this case, the H∞ norm is 

0.0663γ = . The step response and the magnitude responses of the sensitivity, 
complementary sensitivity and the control input sensitivity of the closed-loop control 
system are all shown in Fig. 13. 

 
 
 

 
 
 

Fig. 13. Step and magnitude freq. res1ponses of the closed-loop system with H∞ controller 

6.2.2 Remarks on the mixed-sensitivity H∞ control design 
The sensitivity is low in the low frequency regions where the denominator perturbations are 
large, the control sensitivity is small in the high frequency regions of the numerator 
perturbations, and the complementary sensitivity is low in the high frequency region where 
the overall multiplicative model perturbations are high. As the robustness is related to 
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performance, this will ensure robust performance for steady-state tracking with disturbance 
rejection, controller input limitations and measurement noise attenuation. When tight 
performance bounds are specified, the controller will react strongly but may be unstable 
when implemented on the actual physical plant. For safety reasons, the controller design is 
started with very loose performance bounds, resulting in a controller with very small gains 
to ensure stability of the controller on the actual plant. Then, the performance bounds are 
made tighter to gradually increase the performance of the controller. The design method 
based on the mixed-sensitivity criterion generalizes some classical control design techniques 
such as the classical loop-shaping technique, integral control to ensure tracking,  
performance and specified high frequency roll-off, and direct control over the closed-loop 
bandwidth and time response by means of pole placement. 

7. Conclusion 
This chapter illustrates, through analysis, simulation and practical evaluation, how the two 
key objectives of control system design, namely robust stability and robust performance, can 
be achieved. Specifically, it shows that in order to ensure both robust performance and 
robust stability of a closed-loop system where the controller is designed based on an 
identified model of the plant, it is then of paramount importance that both the identification 
scheme as well as the controller design strategy be selected appropriately, as the tightness of 
the achieved robustness bound depends on the magnitude of the modeling error produced 
by the selected identification scheme. In view of this close dependence, a comprehensive 
closed-loop identification scheme was proposed here that greatly mitigates the effects of 
measurement noise and disturbances and relies on a novel model order selection scheme. 
More specifically, the proposed identification consists of (a) a two-stage scheme to overcome 
the unknown noise and disturbance by first obtaining a high-order model, and then 
deriving from it a reduced-order model, (b) a novel model-order selection criterion based on 
verifying the location of the poles and (c) a two-stage scheme to identify first the closed-loop 
transfer functions of subsystems, and then obtain the plant model using the estimates on the 
input and output from the first stage.  The controller design was based on the well-known 
mixed-sensitivity H∞  controller design technique that achieves simultaneously robust 
stability and robust performance. This technique is able to handle plant uncertainties 
modeled as additive perturbations in the numerator and denominator of the identified 
model, and provides tools to achieve a trade-off between robust stability, robust 
performance and control input limitations. The identification and controller design were 
both successfully evaluated on a number of simulated as well practical physical systems 
including the laboratory-scale unstable magnetic levitation and two-tank liquid level 
systems. This study has provided us with ample encouragement to replicate the use of the 
powerful techniques used in this chapter, on different systems and to enrich the overall 
approach with other identification and robust controller design.   
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modeled as additive perturbations in the numerator and denominator of the identified 
model, and provides tools to achieve a trade-off between robust stability, robust 
performance and control input limitations. The identification and controller design were 
both successfully evaluated on a number of simulated as well practical physical systems 
including the laboratory-scale unstable magnetic levitation and two-tank liquid level 
systems. This study has provided us with ample encouragement to replicate the use of the 
powerful techniques used in this chapter, on different systems and to enrich the overall 
approach with other identification and robust controller design.   
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