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Preface

This two-volume book ‘Recent Advances in Robust Control' covers a selection of
recent developments in the theory and application of robust control. The first volume
is focused on recent theoretical developments in the area of robust control and
applications to robotic and electromechanical systems. The second volume is
dedicated to special topics in robust control and problem specific solutions. It
comprises 20 chapters divided in two parts.

The first part of this second volume focuses on novel approaches and the combination
of established methods.

Chapter 1 presents a novel approach to robust control adopting ideas from catastrophe
theory. The proposed method amends the control system by nonlinear terms so that
the amended system possesses equilibria states that guaranty robustness.

Fuzzy system models allow representing complex and uncertain control systems. The
design of controllers for such systems is addressed in Chapters 2 and 3. Chapter 2
addresses the control of systems with variable time-delay by means of Takagi-Sugeno
(T-S) fuzzy models. In Chapter 3 the pole placement constraints are studied for T-S
models with structured uncertainties in order to design robust controllers for T-S
fuzzy uncertain models with specified performance.

Artificial neural networks (ANN) are ideal candidates for model-free representation of
dynamical systems in general and control systems in particular. A method for system
identification using recurrent ANN and the subsequent model reduction and
controller design is presented in Chapter 4.

In Chapter 5 a hierarchical ANN control scheme is proposed. It is shown how this may
account for different control purposes.

An alternative robust control method based on adaptive wavelet-based ANN is
introduced in Chapter 6. Its basic design principle and its properties are discussed. As
an example this method is applied to the control of an electrical buck converter.



XV

Preface

Sliding mode control is known to achieve good performance but on the expense of
chattering in the control variable. It is shown in Chapter 7 that combining quantitative
feedback theory and sliding mode control can alleviate this phenomenon.

An integral sliding mode controller is presented in Chapter 8 to account for the
sensitivity of the sliding mode controller to uncertainties. The robustness of the
proposed method is proven for a class of uncertainties.

Chapter 9 attacks the robust control problem from the perspective of quantum
computing and self-organizing systems. It is outlined how the robust control problem
can be represented in an information theoretic setting using entropy. A toolbox for the
robust fuzzy control using self-organizing features and quantum arithmetic is
presented.

Integral variable structure control is discussed in Chapter 10.

In Chapter 11 novel robust control techniques are proposed for linear and pseudo-
linear SISO systems. In this chapter several statements are proven for PD-type
controllers in the presence of parametric uncertainties and external disturbances.

The second part of this volume is reserved for problem specific solutions tailored for
specific applications.

In Chapter 12 the feedback linearization principle is applied to robust control of
nonlinear systems.

The control of vibrations of an electric machine is reported in Chapter 13. The design
of a robust controller is presented, that is able to tackle frequency varying
disturbances.

In Chapter 14 the uncertainty problem in dynamical systems is approached by means
of a variable gain robust control technique.

The applicability of multi-model control schemes is discussed in Chapter 15.

Chapter 16 addresses the control of large systems by application of partially
decentralized design principles. This approach aims on partitioning the overall design
problem into a number of constrained controller design problems.

Generalized internal model control has been proposed to tackle the performance-
robustness dilemma. Chapter 17 proposes a method for the design of the Youla
parameter, which is an important variable in this concept.

In Chapter 18 the robust control of systems with variable time-delay is addressed with
help of p-theory. The p-synthesis design concept is presented and applied to a geared
motor.



Preface

The presence of hysteresis in a control system is always challenging, and its adequate
representation is vital. In Chapter 19 a new hysteresis model is proposed and
incorporated into a robust backstepping control scheme.

The identification and H, controller design of a magnetic levitation system is
presented in Chapter 20.

Andreas Mueller
University Duisburg-Essen, Chair of Mechanics and Robotics
Germany
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Novel Approaches in Robust Control






Robust Stabilization by
Additional Equilibrium

Viktor Ten

Center for Energy Research
Nazarbayev University
Kazakhstan

1. Introduction

There is huge number of developed methods of design of robust control and some of them
even become classical. Commonly all of them are dedicated to defining the ranges of
parameters (if uncertainty of parameters takes place) within which the system will function
with desirable properties, first of all, will be stable. Thus there are many researches which
successfully attenuate the uncertain changes of parameters in small (regarding to
magnitudes of their own nominal values) ranges. But no one existing method can guarantee
the stability of designed control system at arbitrarily large ranges of uncertainly changing
parameters of plant. The offered approach has the origins from the study of the results of
catastrophe theory where nonlinear structurally stable functions are named as ‘catastrophe’.
It is known that the catastrophe theory deals with several functions which are characterized
by their stable structure. Today there are many classifications of these functions but
originally they are discovered as seven basic nonlinearities named as ‘catastrophes’:

3
X +kx (Fold);

x4 ko + kx (cusp);

X +kex® +kox? + kyx (swallowtail);

X+ kyx* +kyx® + kyx? + kx (butterfly);

X3+ X + k%, —kyx, + kyx, (hyperbolic umbilic);

x5 —3x,x7 + K, (xl2 +x3 ) —kyx, —kyx, (elliptic umbilic);
x2x, +x) + ka3 + kyx? —kyx, —kx, (parabolic umbilic).

Studying the dynamical properties of these catastrophes has urged to develope a method of

design of nonlinear controller, continuously differentiable function, bringing to the new

dynamical system the following properties:

1. new (one or several) equilibrium point appears so there are at least two equilibrium
point in new designed system,

2. these equilibrium points are stable but not simultaneous, i.e. if one exists (is stable) then
another does not exist (is unstable),
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3. stability of the equilibrium points are determined by values or relations of values of
parameters of the system,

4.  what value(s) or what relation(s) of values of parameters would not be, every time there
will be one and only one stable equilibrium point to which the system will attend and
thus be stable.

Basing on these conditions the given approach is focused on generation of the euilibria

where the system will tend in the case if perturbed parameter has value from unstable

ranges for original system. In contrast to classical methods of control theory, instead of zero

—poles addition, the approach offers to add the equilibria to increase stability and sometimes

to increase performance of the control system.

Another benefit of the method is that in some cases of nonlinearity of the plant we do not

need to linearize but can use the nonlinear term to generate desired equilibria. An efficiency

of the method can be prooved analytically for simple mathematical models, like in the
section 2 below, and by simulation when the dynamics of the plant is quite complecated.

Nowadays there are many researches in the directions of cooperation of control systems and

catastrophe theory that are very close to the offered approach or have similar ideas to

stabilize the uncertain dynamical plant. Main distinctions of the offered approach are the
follow:

- the approach does not suppress the presence of the catastrophe function in the model
but tries to use it for stabilization;

- the approach is not restricted by using of the catastrophe themselves only but is open to
use another similar functions with final goal to generate additional equilibria that will
stabilize the dynamical plant.

Further, in section 2 we consider second-order systems as the justification of presented
method of additional equilibria. In section 3 we consider different applications taken from
well-known examples to show the technique of design of control. As classic academic
example we consider stabilization of mass-damper-spring system at unknown stiffness
coefficient. As the SISO systems of high order we consider positioning of center of
oscillations of ACC Benchmark. As alternative opportunity we consider stabilization of
submarine’s angle of attack.

2. SISO systems with control plant of second order

Let us consider cases of two integrator blocks in series, canonical controllable form and
Jordan form. In first case we use one of the catastrophe functions, and in other two cases we
offer our own two nonlinear functions as the controller.

2.1 Two integrator blocks in series
Let us suppose that control plant is presented by two integrator blocks in series (Fig. 1) and
described by equations (2.1)

X X1=y
—>

Fig. 1.
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dy, 1
@
! 2.1)
dx, 1
—=—u
at T,
Let us use one of the catastrophe function as controller:
U =—x; +3%,07 — ki (xl2 + x%) +kyx, +kyxy, (2.2)

and in order to study stability of the system let us suppose that there is no input signal in
the system (equal to zero). Hence, the system with proposed controller can be presented as:

dx, 1
1 = _x2’
at T
dx, 1

3 2 2., .2
=—(=x5 +3x,x7 =k, |x7 +x5 |+ k,x +kx).
it Tz( 2 2% 1(1 2) 2%y +K3Xy

y=x (2.3)
The system (2.3) has following equilibrium points

xl,=0,x5,=0; (2.4)

xlzs = k—3 , xi =0. (2.5)

=

Equilibrium (2.4) is origin, typical for all linear systems. Equilibrium (2.5) is additional,
generated by nonlinear controller and provides stable motion of the system (2.3) to it.
Stability conditions for equilibrium point (2.4) obtained via linearization are

_ﬁ>0

2
2.6
" 26)
——<0.
I,

Stability conditions of the equilibrium point (2.6) are

3k3 ; k,k? .0,

kT 2.7)
k—3 > 0.
IT,

By comparing the stability conditions given by (2.6) and (2.7) we find that the signs of the
expressions in the second inequalities are opposite. Also we can see that the signs of
expressions in the first inequalities can be opposite due to squares of the parameters k; and
ks if we properly set their values.
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Let us suppose that parameter T; can be perturbed but remains positive. If we set k, and k3
. ks -
both negative and |k,| < 3k—32 then the value of parameter T3 is irrelevant. It can assume any
1

values both positive and negative (except zero), and the system given by (2.3) remains

stable. If T, is positive then the system converges to the equilibrium point (2.4) (becomes

stable). Likewise, if T is negative then the system converges to the equilibrium point (2.5)

which appears (becomes stable). At this moment the equilibrium point (2.4) becomes

unstable (disappears).

Let us suppose that T, is positive, or can be perturbed staying positive. So if we can set the k,
2

. k . .
and k; both negative and |k,|>3—=-  then it does not matter what value (negative or
1

positive) the parameter T; would be (except zero), in any case the system (2) will be stable. If
T is positive then equilibrium point (2.4) appears (becomes stable) and equilibrium point
(2.5) becomes unstable (disappears) and vice versa, if T; is negative then equilibrium point
(2.5) appears (become stable) and equilibrium point (2.4) becomes unstable (disappears).

Results of MatLab simulation for the first and second cases are presented in Fig. 2 and 3
respectively. In both cases we see how phase trajectories converge to equilibrium points

(0,0) and [%;0)

1
In Fig.2 the phase portrait of the system (2.3) at constant k=1, k»=-5, k3=-2, T1=100 and
various (perturbed) T (from -4500 to 4500 with step 1000) with initial condition x=(-1,0) is
shown. In Fig.3 the phase portrait of the system (2.3) at constant k;=2, k»=-3, ks=-1, T,=1000
and various (perturbed) T; (from -450 to 450 with step 100) with initial condition x=(-0.25;0)
is shown.

BEE

Fig. 2. Behavior of designed control system in the case of integrators in series at various T>.
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Fig. 3. Behavior of designed control system in the case of integrators in series at various T;

2.2 Canonical controllable form
Let us suppose that control plant is presented (or reduced) by canonical controllable form

o _
at
& _ —0,X, — X,y + U
T 2% — Xy + U
y=x (2.8)
Let us choose the controller in following parabolic form:
u =—kx? +kyx, 2.9)
Thus, new control system becomes nonlinear:
ax_
at Y
dx, 2
—= = -y, — X, — kX +kox
it 2% — Xy — KX+ KX
y=x. (2.10)
and has two following equilibrium points:
x5 =0, x5, =0; (2.11)
(2.12)

k,—a

2 2 2 .
7 x25:0/
1

2
Xis =
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Stability conditions for equilibrium points (2.11) and (2.12) respectively are
a, >0,
a, >k,.

a, >0,

a, <k,.
Here equlibrium (2.12) is additional and provides stability to the system (2.10) in the case
when k; is negative.

2.3 Jordan form
Let us suppose that dynamical system is presented in Jordan form and described by
following equations:

L

a Y

dr, ) (2.13)
_dt PrXy-

Here we can use the fact that states are not coincided to each other and add three
equilibrium points. Hence, the control law is chosen in following form:

Uy = —kxp +kpx,, uy = k3 +k.x, (2.14)

Hence, the system (2.13) with set control (2.14) is:

% = pxy —kgxi +kyx,,
(2.15)
dxz 2
T Paxy — kx5 +kx,.
Totaly, due to designed control (2.14) we have four equilibria:
xj, =0, X3, =0; (2.16)
2=0, 2 =Ptk (2.17)
: k.
P T (2.18)
WL P ALY (2.19)

Is P 25 = k

a

Stability conditions for the equilibrium point (2.16) are:
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o +k, >0,
Py +k.>0.

Stability conditions for the equilibrium point (2.17) are:
P +k, >0,
Py +k, <0.

Stability conditions for the equilibrium point (2.18) are:
o +k, <0,
py+k.>0.

Stability conditions for the equilibrium point (2.19) are:
o +k, <0,
Py +k.<0.

These four equilibria provide stable motion of the system (2.15) at any values of unknown
parameters p; and p; positive or negative. By parameters k,, ki, ke we can set the coordinates
of added equilibria, hence the trajectory of system’s motion will be globally bound within a
rectangle, corners of which are the equilibria coordinates (2.16), (2.17), (2.18), (2.19)
themselves.

3. Applications

3.1 Unknown stiffness in mass-damper-spring system
Let us apply our approach in a widely used academic example such as mass-damper-spring
system (Fig. 4).

F

m

=
kj;’ J_‘c
il ]

/ / v // v
I ey SLLASES LSS

Fig. 4.
The dynamics of such system is described by the following 2nd-order deferential equation,
by Newton’'s Second Law

mi¥+cx+kx=u, (3.1)

where x is the displacement of the mass block from the equilibrium position and F = u is the
force acting on the mass, with m the mass, c the damper constant and k the spring constant.
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We consider a case when k is unknown parameter. Positivity or negativity of this parameter
defines compression or decompression of the spring. In realistic system it can be unknown if
the spring was exposed by thermal or moisture actions for a long time. Let us represent the
system (3.1) by following equations:

5(1 = xz,
3.2
X, :L(—kxl—cx2)+iu. (32)
m m
that correspond to structural diagram shown in Fig. 5.
u 1 X X X
*—{m -ITH -
\\
e
k
Fig. 5.
Let us set the controller in the form:
u=kxt, (3.3)
Hence, system (3.2) is transformed to:
X =%y,
(34)
Xy = i(—kx1 —cxy )+ Lkuxlz.
m m
Designed control system (3.4) has two equilibira:
x=0,x,=0; (3.5
that is original, and
L I— (3.6)
ki
that is additional. Origin is stable when following conditions are satisfaied:
‘o0, %50 3.7)
m m

This means that if parameter k is positive then system tends to the stable origin and
displacement of x is equal or very close to zero. Additional equilibrium is stable when

50, X0 (3.8)
m m
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Thus, when k is negative the system is also stable but tends to the (3.6). That means that

displacement x is equal to K and we can adjust this value by setting the control parameter k..
u

In Fig. 5 and Fig. 6 are presented results of MATLAB simulation of behavior of the system

(3.4) at negative and positive values of parameter k.

0 ; : : ' : ;

005

03
0

Fig. 6.
0.04

0.0
ooz

001 b i B -

[=]

am

Displacemen

Rulird s

Tima, sac

Fig. 7.

In Fig. 6 changing of the displacement of the system at initial conditions x=[-0.05, 0] is
shown. Here the red line corresponds to case when k = -5, green line corresponds to k = -4,
blue line corresponds to k = -3, cyan line corresponds to k = -2, magenta line corresponds to

= -1. Everywhere the system is stable and tends to additional equilibria (3.6) which has

different values due to the ratio i .

u

In Fig. 7 the displacement of the system at initial conditions x=[-0.05, 0] tends tot he origin.
Colors of the lines correspond tot he following values of k: red is when k =1, green is when
k =2, blue is when k = 3, cyan is when k = 4, and magenta is when k = 5.
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3.2 SISO systems of high order. Center of oscillations of ACC Benchmark
Let us consider ACC Benchmark system given in MATLAB Robust Toolbox Help. The
mechanism itself is presented in Fig. 8.

Position
Position Measurement
Control — I3 Iy =y
Force
u st
O O Spring £
Fig. 8.
Structural diagram is presented in Fig. 9, where
1 1
Gl = 2 G2 = 7
ms M,S
r--- - - - - - - - - - - - - - - - --=-=- A
|

Fig. 9.

Dynamical system can be described by following equations:

X =Xy,
. k
Xy =——X +—X;,
m m

ST (39)
X3 ZX4,
. k k 1
Xy=—x ——+—1U

m mym

Without no control input the system produces periodic oscillations. Magnitude and center
of the oscillations are defined by initial conditions. For example, let us set the parameters of
the system k =1, m; =1, my = 1. If we assume initial conditions x = [-0.1, 0, 0, 0] then center
of oscillations will be displaced in negative (left) direction as it is shown in Fig. 10a. If initial
conditions are x =[0.1, 0, 0, 0] then the center will be displaced in positive direction as it is
shown in Fig. 10b.

After settting the controller
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u=x-kx, (3.10)
and obtaining new control system

X =X,,
. k
X, =——X; +—X;3,
TR (3.11)
x3 = X4,

k k
Xy=—x ——+—(x1 - kuxl)

m my

o1
fuluz]
L

T sez T, s0c

Fig. 10.a Fig. 10.b
Fig. 10.

In Fig. 11 and Fig.12 the results of MATLAB simulation are presented. At the same
parameters k =1, m; =1, mp = 1 and initial conditions x = [-0.1, 0, 0, 0], the center is “almost’
not displaced from the zero point (Fig. 11).

Ll

[ S—

Fig. 11.
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At the same parameters k =1, m; =1, m = 1 and initial conditions x = [0.1, 0, 0, 0], the center
is also displaced very close from the zero point (Fig. 12).

4|-|'| | |';::|HE||J]I:'H |'Illall:'il:'llll"”|:l‘
|| | |\|"|||. "||:] Iﬂ ]| i I | ||I |1I|I||J-I
|:,.}I' | JI .llll. I'{Hul ,a|, . 'Ei.||\
. A 1 1
I|E|||”'|||:I

- [ s X E [ [ i

Fig. 12.

3.3 Alternative opportunities. Submarine depth control
Let us consider dynamics of angular motion of a controlled submarine. The important
vectors of submarine’s motion are shown in the Fig.13.

Let us assume that #is a small angle and the velocity v is constant and equal to 25 ft/s. The

state variables of the submarine, considering only vertical control, are x; = 6, X, = ﬁ , X3=

a, where « is the angle of attack and output. Thus the state vector differential equation for
this system, when the submarine has an Albacore type hull, is:

= Ax+Bs,(t), (3.12)

where

0 a, O 0
A=|ay ay ay |, B=|b|,

0 ay ay by
parameters of the matrices are equal to:
a, =1, a,,=-0.0071, a,, =-0.111, a,;=0.12, a3, =0.07, a;3=-0.3,
b, =-0.095, b; =0.072,

and d;(t) is the deflection of the stern plane.
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Center of

gravity

Control
surface
Fig. 13. Angles of submarine’s depth dynamics.

Let us study the behavior of the system (3.12). In general form it is described as:

ax _
a Y
dx

d_t2 =y X) + AyXy + Ay3X; + 1,55 (1), (3.13)

dx
d_tS = (3X, + 3305 + b3S (1),

where input (t)=1. By turn let us simulate by MATLAB the changing of the value of each
parameter deviated from nominal value.

In the Fig.14 the behavior of output of the system (3.13) at various value of a,, (varies from -
0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is
presented.

In the Fig.15 the behavior of output of the system (3.13) at various value of a,, (varies from -
0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is
presented.

In the Fig.16 the behavior of output of the system (3.13) at various value of a,; (varies from -
0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.
In the Fig.17 the behavior of output of the system (3.13) at various value of a5, (varies from -
0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is
presented.

In the Fig.18 the behavior of output of the system (3.13) at various value of a;; (varies from -
1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is
presented.

It is clear that the perturbation of only one parameter makes the system unstable.

Let us set the feedback control law in the following form:

u=-k (x§ + x%) + kx5 + ks, (3.14)
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e

Fig. 18. Behavior of output dynamics of submarine’s depth at various ass.

Hence, designed control system is:

ax_

at

dx

d_t2 = yX) + (X, + Ay3X5 +by05 (1), (3.15)
dx; 2., .2

—p = Oata Yyt bySg () -k, (x2 + 3 )+ kyxy + kyx,.

The results of MATLAB simulation of the control system (3.15) with each changing
(disturbed) parameter are presented in the figures 19, 20, 21, 22, and 23.

In the Fig.19 the behavior designed control system (3.15) at various value of a,, (varies from
-0.0121 to 0.0009 with step 0.00125) and all left constant parameters with nominal values is
presented

In the Fig.20 the behavior of output of the system (3.15) at various value of a,, (varies from -
0.611 to 0.289 with step 0.125) and all left constant parameters with nominal values is
presented.



18 Recent Advances in Robust Control — Novel Approaches and Design Methods

In the Fig.21 the behavior of output of the system (3.15) at various value of a,; (varies from -
0.88 to 1.120 with step 0.2) and all left constant parameters with nominal values is presented.
In the Fig.22 the behavior of output of the system (3.15) at various value of a5, (varies from -
0.43 to 0.57 with step 0.125) and all left constant parameters with nominal values is
presented.

In the Fig.23 the behavior of output of the system (3.15) at various value of a;; (varies from -
1.3 to 0.7 to with step 0.25) and all left constant parameters with nominal values is
presented.

Results of simulation confirm that chosen controller (3.14) provides stability to the system.
In some cases, especially in the last the systems does not tend to original equilibrium (zero)
but to additional one.

Fig. 19. Behavior of output of the submarine depth control system at various a;.

Fig. 20. Behavior of output of the submarine depth control system at various a.
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4, Conclusion

Adding the equilibria that attracts the motion of the system and makes it stable can give
many advantages. The main of them is that the safe ranges of parameters are widened
significantly because the designed system stay stable within unbounded ranges of
perturbation of parameters even the sign of them changes. The behaviors of designed
control systems obtained by MATLAB simulation such that control of linear and nonlinear
dynamic plants confirm the efficiency of the offered method. For further research and
investigation many perspective tasks can occur such that synthesis of control systems with
special requirements, design of optimal control and many others.
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1. Introduction

Robust control theory is an interdisciplinary branch of engineering and applied mathematics
literature. Since its introduction in 1980’s, it has grown to become a major scientific domain.
For example, it gained a foothold in Economics in the late 1990 and has seen increasing
numbers of Economic applications in the past few years. This theory aims to design
a controller which guarantees closed-loop stability and performances of systems in the
presence of system uncertainty. In practice, the uncertainty can include modelling errors,
parametric variations and external disturbance. Many results have been presented for
robust control of linear systems. However, most real physical systems are nonlinear in
nature and usually subject to uncertainties. In this case, the linear dynamic systems are not
powerful to describe these practical systems. So, it is important to design robust control of
nonlinear models. In this context, different techniques have been proposed in the literature
(Input-Output linearization technique, backstepping technique, Variable Structure Control
(VSC) technique, ...).

These two last decades, fuzzy model control has been extensively studied; see
(Zhang & Heng, 2002)-(Chadli & ElHajjaji, 2006)-(Kim & Lee, 2000)-(Boukas & ElHajjaji, 2006)
and the references therein because T-S fuzzy model can provide an effective representation
of complex nonlinear systems. On the other hand, time-delay are often occurs in various
practical control systems, such as transportation systems, communication systems, chemical
processing systems, environmental systems and power systems. It is well known that the
existence of delays may deteriorate the performances of the system and can be a source of
instability. As a consequence, the T-S fuzzy model has been extended to deal with nonlinear
systems with time-delay. The existing results of stability and stabilization criteria for this
class of T-S fuzzy systems can be classified into two types: delay-independent, which are
applicable to delay of arbitrary size (Cao & Frank, 2000)-(Park et al., 2003)-(Chen & Liu,
2005b), and delay-dependent, which include information on the size of delays, (Lietal,
2004) - (Chen & Liu, 2005a). It is generally recognized that delay-dependent results are
usually less conservative than delay-independent ones, especially when the size of delay
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is small. We notice that all the results of analysis and synthesis delay-dependent methods
cited previously are based on a single LKF that bring conservativeness in establishing
the stability and stabilization test. Moreover, the model transformation, the conservative
inequalities and the so-called Moon’s inequality (Moonetal., 2001) for bounding cross
terms used in these methods also bring conservativeness. Recently, in order to reduce
conservatism, the weighting matrix technique was proposed originally by He and al. in
(He et al., 2004)-(He et al., 2007). These works studied the stability of linear systems with
time-varying delay. More recently, Huai-Ning et al. (Wu & Li, 2007) treated the problem
of stabilization via PDC (Prallel Distributed Compensation) control by employing a fuzzy
LKF combining the introduction of free weighting matrices which improves existing ones in
(Lietal., 2004) - (Chen & Liu, 2005a) without imposing any bounding techniques on some
cross product terms. In general, the disadvantage of this new approach (Wu & Li, 2007) lies in
that the delay-dependent stabilization conditions presented involve three tuning parameters.
Chen et al. in (Chen et al., 2007) and in (Chen & Liu, 2005a) have proposed delay-dependent
stabilization conditions of uncertain T-S fuzzy systems. The inconvenience in these works is
that the time-delay must be constant. The designing of observer-based fuzzy control and the
introduction of performance with guaranteed cost for T-S with input delay have discussed in
(Chen, Lin, Liu & Tong, 2008) and (Chen, Liu, Tang & Lin, 2008), respectively.

In this chapter, we study the asymptotic stabilization of uncertain T-S fuzzy systems with
time-varying delay. We focus on the delay-dependent stabilization synthesis based on the
PDC scheme (Wang et al., 1996). Different from the methods currently found in the literature
(Wu & Li, 2007)-(Chen et al., 2007), our method does not need any transformation in the
LKE and thus, avoids the restriction resulting from them. Our new approach improves
the results in (Li et al., 2004)-(Guan & Chen, 2004)-(Chen & Liu, 2005a)-(Wu & Li, 2007) for
three great main aspects. The first one concerns the reduction of conservatism. The second
one, the reduction of the number of LMI conditions, which reduce computational efforts.
The third one, the delay-dependent stabilization conditions presented involve a single fixed
parameter. This new approach also improves the work of B. Chen et al. in (Chen et al., 2007)
by establishing new delay-dependent stabilization conditions of uncertain T-S fuzzy systems
with time varying delay. The rest of this chapter is organized as follows. In section 2, we
give the description of uncertain T-S fuzzy model with time varying delay. We also present
the fuzzy control design law based on PDC structure. New delay dependent stabilization
conditions are established in section 3. In section 4, numerical examples are given to
demonstrate the effectiveness and the benefits of the proposed method. Some conclusions are
drawn in section 5.

Notation: R" denotes the n-dimensional Euclidiean space. The notation P > 0 means that P is
symmetric and positive definite. W + W is denoted as W + (%) for simplicity. In symmetric
bloc matrices, we use * as an ellipsis for terms that are induced by symmetry.

2. Problem formulation

Consider a nonlinear system with state-delay which could be represented by a T-S fuzzy
time-delay model described by
Plant Rulei(i =1,2,---,7): If 61 is p;; and --- and ) is p;, THEN

() = (A + AANx(t) + (Ari + AA)x(t— T(t)) + (B; + AB;)u(t)
x(t) = (), t € [-7,0],
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where 0;(x(t)) and (i = 1,---,r,j = 1,- -+, p) are respectively the premise variables and
the fuzzy sets; ¢(t) is the initial conditions; x(f) € R" is the state; u(t) € R™ is the control
input; r is the number of IF-THEN rules; the time delay, 7(¢), is a time-varying continuous
function that satisfies

0<t(t) <7, t(t) <B (2)

The parametric uncertainties AA;, AA;;, AB; are time-varying matrices that are defined as
follows

AA; = MpiF(t)Epi,; DAvi = Ma+iFi(t)Eavi,; AB; = Mp;Fi(t)Ep; 3)

where Ma;, M ai, Mpi, Ej, Ea<i, Eg; are known constant matrices and F;(t) is an unknown
matrix function with the property

E(t)TF(t) <1 @
Let Ai = Ai + AAi,' Aﬂ' = A-“‘ + AA-“',' Bi = Bi =+ ABl

By using the common used center-average defuzzifier, product inference and singleton
fuzzifier, the T-S fuzzy systems can be inferred as

T

() = ) mi(O(x(1))[Apx(t) + Arix(t — T(t)) + Bju(t)] ©)

i=1

where 0(x(t)) = [01(x(t)),---,0p(x(t))] and v;(0(x(t))) : RP — [0,1],i = 1,---,7r, is the
membership function of the system with respect to the ith plan rule. Denote h;(6(x(t))) =
vi(0(x(t)))/ Xi_q vi(0(x(t))). It is obvious that

Bi(8(x(£))) > 0and T, hy(6(x(1))) = 1
the design of state feedback stabilizing fuzzy controllers for fuzzy system (5) is based on the
Parallel Distributed Compensation.

Controller Rule i(i = 1,2,---,r): If 6y is pj; and --- and 6, is p;, THEN
u(t) = Kx(t) (6)

The overall state feedback control law is represented by

1= L0 Kex() %

In the sequel, for brevity we use h; to denote h;(8(x(¢))). Combining (5) with (7), the
closed-loop fuzzy system can be expressed as follows

r r
x(t) =Y ) hihj[Ajix(t) + Agx(t — T(t))] ®)
i=1j=1
with A\ZJ = A,’ + BIK]

In order to obtain the main results in this chapter, the following lemmas are needed
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Lemma 1. (Xie & DeSouza, 1992)-(Oudghiri et al., 2007) (Guerra et al., 2006) Considering IT < 0 a
matrix X and a scalar A, the following holds

XTTIX < —2AX — A%117! )
Lemma 2. (Wangetal., 1992) Given matrices M, E, F(t) with compatible dimensions and F(t)

satisfying F(t)TF(t) < L.
Then, the following inequalities hold for any € > 0

MF()E+ETF(t)™MT < eMMT + ¢ 'ETE (10)

3. Main results

3.1 Time-delay dependent stability conditions
First, we derive the stability condition for unforced system (5), that is

Zh [Aix(t) + Agx(t — (t))] (11)

Theorem 1. System (11) is asymptotically stable, if there exist some matrices P > 0,5 >0,Z > 0,Y
and T satisfying the following LMIs fori =1,2,..,r

@i +€aEL Eni PA4i—Y+TT ATZ —Y PMy; PMayi
. —(1-B)S—T—TT +e4ElE; ALZ —T 0
* * ?Z 0 ZMpi ZMy4i <0 (12)
* * * TZ 0
% * * x* —epqil 0
* * * * *  —€aqrl

where ¢; = PA;+ ATP+ S+ Y+ YT
Proof 1. Choose the LKF as

V(x(t)) = x(t)TPx(t) +ft « x(a)TSx() doc+f ft+a ()T Z%(a)dado (13)

the time derivative of this LKF (13) along the trajectory of system (11) is computed as

V(x(t) = 2x(t)TPx(t) + x(t )TSX( ) — (1 —#(1)x(t — (1) Sx(t — 7(t))

+Tx2(1) T Zx(t) ft _x(s)TZx(s)ds (14)
Taking into account the Newton-Leibniz formula
t
x(t— (1)) :x(t)f/ #(s)ds (15)
t—(t)

We obtain equation (16)
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r - -
)) = Y hil2x(H)T PAx(t) + 2x(t) T PAgx(t — (1))
+x(t)TSx(t) — (1= B)x(t — (1) TSx(t — (1))
t
T ()T Zi(t) — / #(5)T Z(s)ds
-7
t
+L2[x()TY + x(t—(0)TT] x [x(t) — x(t — (1)) — / ( )J&(s)ds] (16)
t—1(t
As pointed out in (Chen & Liu, 2005a)
pT A ZA A ZATZ
where n(H)T = [x(£)T, x(t — (¢ ))T]
Allowing WT = [YT, TT], we obtain equation (18)
r
Z T®; + 7wz Wy (1)
t
- / ( )[nT(t)W+ #(s)TZ)Z T (W + 3(s)7Z)Tds (18)
tT(t
where
& — |PAi+ATP+S+TATZA;+Y+ YT PAy+7TA[ZA;—Y+TT 19)
: * ~(1-B)S+TALZA,; —T-TT
By applying Schur complement ®; + TWZ~IWT < 0 is equivalent to
¢ PA;—-Y+TT AJI”{Z -Y
—(1— _T—-TT AT7 _
B - | * (1-B)S—T-T AgZ =T |
* * -zZ 0
* * —%Z
The uncertain part is represented as follows
[PAA; + AATP PAA,; AATZ 0
AD. — x 0 AALZO
P * * O 0
L * * * 0
-PMAi PM g+
0 0
= | zm,, F(t)[Eai 000] + (%) + ZM e F(t)[0Eazi 00] + (%)  (20)

0 0
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By applying lemma 2, we obtain

PM p; EL.
—1 0 T T O
AD; < €] ZM, [M3;P 0 My,Z 0] +eni | o | [Eai000]
0 0
PM gz 0
o 0 MT_PoML_Z0 Ehei | 10 Eqm 00 21
ez ZM pqi [ Ati Ati ]+€ATf 0 [ Ati ] 21)
0 0

where € 4; and € 4; are some positive scalars.
By using Schur complement, we obtain theorem 1.

3.2 Time-delay dependent stabilization conditions
Theorem 2. System (8) is asymptotically stable if there exist some matrices P > 0,5 >0,Z >0, Y,
T satisfying the following LMIs fori,j =1,2,..,rand i < j

Ci)i]' + <I>]l <0 (22)

where @; is given by

PAij+A§P+s+Y+YT PA,;—Y+TT ALz —Y

B — * ~(1-B)S—-T-T17 Afiz -T 23)
g * * —%Z 0
* * * —%Z

Proof 2. As pointed out in (Chen & Liu, 2005a), the following inequality is verified.

TZ r r (Ai]'""ZA]I)T Z (1/4\,]-; A]z) (A\ij'i'z/\ji)T Z (ATi;AT]) 24
- ~ e oA oL t
X ; ; i ]’7 (Ari-i-zArj)TZ (A,-/-;Af,-) (Ari-; Tj)TZ (AritAy) () @4
Following a similar development to that for theorem 1, we obtain
r r 1 T
< X Y hibyn () [@y+ TWZ Wy (1)
i=1j=1
t
e )[q(t)TW +1(5)TZ)Z7 (1) "W + 3(s)TZ] Tds (25)
t—(t
where ®; is given by
~T ) ~
PAz] +AP+S PA,; +7 i +2Aﬁ> (4 T,ZAT,)
(_‘P“ . 4T (A1]+A]z) (A1]+A]x) + Y + YT _Y_|_ TT (26)
ij = A LA
X _ (1 _ ‘B)S _|_ — (ATI+AT]) (A X;AT])
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r 14
By applying Schur complement y_ Y hihij®;; + TWZ~'WT < 0is equivalent to

i=1j=1
ror R 1. R R
i=1j=1 i=1j=1
1T _ _
= 2 Z Z hlh](qDZJ + (Dji) <0 (27)
i=1j=1

where ‘/Isij is given by

~ ~ _ AL ANT
PAj+ATP+S+Y+YT  PA;-y+TT Uiz _y
= A_‘ri _‘r' T
By = . —(1-ps—T—77 Utdal 7 7 (28)
* * f%Z 0
* * * -1z

Therefore, we get V (x(t)) < 0.

Our objective is to transform the conditions in theorem 2 in LMI terms which can be easily
solved using existing solvers such as LMI TOOLBOX in the Matlab software.

Theorem 3. For a given positive number A. System (8) is asymptotically stable if there exist some
matrices P> 0,5 >0, Z >0, Y, T and N; as well as positives scalars € ajj, € A<ij, €Bij, €Cis €Ctis €Di
satisfying the following LMIs fori,j =1,2,..,rand i < j

Eij + Eji <0 (29)
where E;j is given by
[ [&ij+ €aifMaiMy; T T
PAL —Y+T A;P + B;N; -Y
+epiMp;ME; W SR
~-(1-pS—-T-17
* AP
{ +eariMariML o
g = * * 1(—2AP+2A%2Z) 0
* * * —%Z
* * * *
* * * *
L * * * *
T NTET T 1
PE; Nj Epi PEjq
-T 0 0
T NTET T
PE; Nj Epi PE,q
0 0 0 (30)
_eAi]'I 0 0
* _eBijI 0
ES * 7€ATijI_
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in which §;; = PAT + N].TBl.T + AP+ BiN;j + S+ Y + YT. If this is the case, the K; local feedback
gains are given by

Ki=NPLi=12.r (31)

Proof 3. Starting with pre-and post multiplying (22) by diag[I, 1, Z~'P, I] and its transpose,we get

BL+E,<0, 1<i<j<r (32)
where
PA;+ AP +S+Y+YT  PAy—-Y+T" K§P -y
o
ol _ s -(1-ps-17-1" ALp -T (33)
ij % % ~-ipz=1P 0
* * * —%Z

As pointed out by Wu et al. (Wu et al., 2004), if we just consider the stabilization condition, we can

replace gij, A; with A\g and AL, respectively, in (33).

Assuming Nj = K;P, we get

E2482<0, 1<i<j<r (34)

N oo a
&ij PAL =Y+ TT AP+ BiN; —Y
-2 * {_(1_5)5] AyP  —T

= I A (35)
% * -1ipz-lp 0
It follows from lemma 1 that
—PZ71P < —2AP+A%Z (36)
We obtain
B} 4+E)<0, 1<i<j<r (37)
where
&ij PAL =Y+ TT AP+BN; —Y
—(1-=8)S _
3 { —(T - [;)T } AP =T
KA . -2aP] (38)
+A2Z)
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The uncertain part is given by

[ PAAT + NTABI + AA;P + AB;N; PAAT; AAP + AB;N; 0
= 0 AALP 0
A — * Ti
g * 0 0
L * * 0
_ | Mai F(t) [EaiP 0 EqP O] + (%)
| 031
M .
+ |:0 Bl:| F(t) [EBiNj 0 EBiNj 0} + (*)
3x1
0
+ | Mai | F(t) [EaciP 0 Ep¢iP 0] + (%) (39)
021
By using lemma 2, we obtain
pEl,
= M i T 1| O
AZj; < epjj OMI] [ M}, O1x3 ] +e4; PET, [E;POEPO]
0
TrT
NTEL,
Mp; T -1 0
+e€Bij {Osxﬂ [MT. 013 +eg N].TE; [EpiN; 0 Eg;N; 0]
0
T
0 PEOATi
+earij | Mazi | [0 MY, 012 ] +€Zii]~ pET [EaziP 0 EqziP 0] (40)
021 g

where € pjj, € A7ij and €p;j are some positive scalars.
By applying Schur complement and lemma 2, we obtain theorem 3.

Remark 1. It is noticed that (Wu & Li, 2007) and theorem (3) contain, respectively, B+ 1’3(1’ -1)
and %r(r + 1) LMIs. This reduces the computational complexity. Moreover, it is easy to see that the
requirements of B < 1 are removed in our result due to the introduction of variable T.

Remark 2. It is noted that Wu et al. in (Wu & Li, 2007) have presented a new approach to
delay-dependent stabilization for continuous-time fuzzy systems with time varying delay. The
disadvantages of this new approach is that the LMIs presented involve three tuning parameters.
However, only one tuning parameter is involved in our approach.

Remark 3. Our method provides a less conservative result than other results which have been
recently proposed (Wu & Li, 2007), (Chen & Liu, 2005a), (Guan & Chen, 2004). In next paragraph, a
numerical example is given to demonstrate numerically this point.
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4. lllustrative examples

In this section, three examples are used to illustrate the effectiveness and the merits of the
proposed results.

The first example is given to compare our result with the existing one in the case of constant
delay and time-varying delay.

4.1 Example 1
Consider the following T-S fuzzy model
i(t) = Yoq hi(xr () [(Ai + AADx(t) + (Agi + AAg)x(t — T(t)) + Bju(t)] (41)
where
00.6 10 0.50.9 09 0
A= [0 1 }'AZ_ [10}'“1_ [ 0 2 ]'Aﬂ_ [ 1 1.6]
1
o

AA; = MF(t)E;, AA; = MF(t)E;

—0.03 0
M_[ 0 0.03}
~0.15 0.2
bi=h= { 0 0.04}

~0.05 —0.35
En=En= [ 0.08 0.45}

The membership functions are defined by

1
hi(x1(t)) = 1+ exp(—2x1(t))

ho(x1(t)) =1 —hy(x1(t)) (42)

For the case of delay being constant and unknown and no uncertainties (AA; = 0,AA; = 0),
the existing delay-dependent approaches are used to design the fuzzy controllers.

Based on theorem 3, for A = 5, the largest delay is computed to be T = 0.4909 such that system
(41) is asymptotically stable. Based on the results obtained in (Wu & Li, 2007), we get this table

Methods Maximum allowed T
Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1524
Theorem of Guan and Chen (Guan & Chen, 2004) 0.2302
Theorem of Wu and Li (Wu & Li, 2007) 0.2664
Theorem 3 0.4909

Table 1. Comparison Among Various Delay-Dependent Stabilization Methods

It appears from this table that our result improves the existing ones. Letting T = 0.4909, the
state-feedback gain matrices are
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Ky = [5.5780 —16.4347 | , Ky = [4.0442 —15.4370 |
Fig 1 shows the control results for system (41) with constant time-delay via fuzzy controller (7)
with the previous gain matrices under the initial condition x(t) = [20]", t € [~0.4909 0].

I |
x'_ O T \\77\._7_7 PSR —
-2 L
0 2 4 6 8 10
2 T
1| T i
= 7 —_—
-9 i
0] 2 4 6 8 10
20 T
10 i
1
OPNC -

time (sec.)

Fig. 1. Control results for system (41) without uncertainties and with constant time delay
T = 0.4909.

It is clear that the designed fuzzy controller can stabilize this system.

For the case of AA; # 0, AA; # 0 and constant delay, the approaches in (Guan & Chen, 2004)
(Wu & Li, 2007) (Lin et al., 2006) cannot be used to design feedback controllers as the system
contains uncertainties. The method in (Chen & Liu, 2005b) and theorem 3 with A = 5 can be
used to design the fuzzy controllers. The corresponding results are listed below.

Methods Maximum allowed T
Theorem of Chen and Liu (Chen & Liu, 2005a) 0.1498
Theorem 3 0.4770

Table 2. Comparison Among Various Delay-Dependent Stabilization Methods With
uncertainties

It appears from Table 2 that our result improves the existing ones in the case of uncertain T-S
fuzzy model with constant time-delay.

For the case of uncertain T-S fuzzy model with time-varying delay, the approaches proposed
in (Guan & Chen, 2004) (Chen & Liu, 2005a) (Wu & Li, 2007) (Chen et al., 2007) and (Lin et al.,
2006) cannot be used to design feedback controllers as the system contains uncertainties and
time-varying delay. By using theorem 3 with the choice of A = 5, (t) = 0.25+ 0.15sin(t)(T =
0.4, = 0.15), we can obtain the following state-feedback gain matrices:

Ky = [4.7478 —13.5217], K, = [3.1438 —13.2255 ]
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The simulation was tested under the initial conditions x(f) = [20] T te [—040] and

. sin(t) 0
uncertainty F(t) = [ 0( ) cos(t)] '
4 ‘ ‘ ‘
_ 2(\ ]
Xv_ 0, J
2 j ‘ ‘
- 1f\ |
i T
15 > 4 6 z "
10 ‘
—_ 5 |
=
! o o
time (sec.)

Fig. 2. Control results for system (41) with uncertainties and with time varying-delay
T(t) = 0.25 4 0.15sin(t)

From the simulation results in figure 2, it can be clearly seen that our method offers a
new approach to stabilize nonlinear systems represented by uncertain T-S fuzzy model with
time-varying delay.

The second example illustrates the validity of the design method in the case of slow time
varying delay (8 < 1)

4.2 Example 2: Application to control a truck-trailer

In this example, we consider a continuous-time truck-trailer system, as shown in Fig. 3.

We will use the delayed model given by (Chen & Liu, 2005a). It is assumed that 7(¢) = 1.10 +
0.75sin(t). Obviously, we have T = 1.85, = 0.75. The time-varying delay model with
uncertainties is given by

2
2(t) = Y hi(x1 (1) [(Ai + AA)x(t) + (Agi + AAg)x(t — T(t)) + (Bi + ABu(t)]  (43)
i=1
where
—aL_”—i) 00 —(1—61)5—;]00
Al = ag’—;uz 00[,Aq=| (1—a)fL 00
2P of 2
—a% 00 —(1—a)g—fooo
Ay=| afy 00|, Ap=| (1—-a)f 00

dv’t" dot dv?F
5 ' O (1-a)5, 00
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Fig. 3. Truck-trailer system

BlzBZ:[%oo}T

AAy = AAy = Ay = My = MF(H)E

with
M= [0.255 0.255 0.255}T, E = [0.1 0 0]
ABy = ABy = M,F(t)E,
with
M, = [0.1790 0 O]T,Ebl =0.05,E;; =0.15
where

1=28,L=55uv=-1t=2t=05a4=07d= 10%

The membership functions are defined as
1 1
mO®) = 0= 300 —05m)) < T exp(—3(60t) 1 057))
ha(0(t)) =1—h

where

0(t) = xo(t) + a(vt/2L)x1(t) + (1 —a)(vt/2L)xq1 (t — T(t))
By using theorem 3, with the choice of A = 5, we can obtain the following feasible solution:

0.0566 0.0382 0.0775 —0.0262 0.0236 0.0847

0.2249 0.0566 —0.0259 0.2408 —0.0262 —0.1137
P = , S =
—0.0259 0.0775 2.7440 —0.1137 0.0847 0.3496
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0.0133 0.0083 0.0202 0.0075 0.0038 —0.0171
—0.0052 0.0202 1.0256 0.0001 0.0014 0.0642

[—0.0073 —0.0022 0.0192 ]
Y =

[ 0.0373 0.0133 0.0052} {0.0134 0.0053 0.0256 }
Z= , T =

—0.0051 —0.0031 0.0096
0.0012 —0.0012 —0.0804
€A1 = 0.1087, € 4o = 0.0729, € 41p = 0.1184
€Az = 0.0443, € 4o = 0.0369, € 4712 = 0.0432
ep1 = 0.3179, ey = 0.3383, €515 = 0.3250
Ky = [3.7863 —5.7141 0.1028 |
K = [3.8049 —5.8490 0.0965 |

The simulation was carried out for an initial condition x(t) = [—0.57 0757 —5] , t €
[—1.850].
5 T
= o\ S —
>
-5 L
0 10 20 30 40 50
5 T
= o
>
s i i ; i
0 10 20 30 40 50
0 ‘ —
g —10 % 1
>
20 i i i ;
0 10 20 30 40 50
50 T T T T
g op—
50 i i ; ;
10 20 30 40 50
time (sec.)

Fig. 4. Control results for the truck-trailer system (41)

The third example is presented to illustrate the effectiveness of the proposed main result for
fast time-varying delay system.

4.3 Example 3: Application to an inverted pendulum

Consider the well-studied example of balancing an inverted pendulum on a cart (Cao et al.,
2000).

J'Cl = X2 (44)
o = gsin(x;) — amlx3sin(2x1) /2 — acos(x1)u
2 41/3 — aml cos?(x1)

(45)
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Fig. 5. Inverted pendulum

where x7 is the pendulum angle (represented by 0 in Fig. 5), and x; is the angular velocity (
0) . ¢ = 9.8m/s? is the gravity constant , m is the mass of the pendulum, M is the mass of the
cart, 21 is the length of the pendulum and u is the force applied to the cart. a = 1/(m + M).
The nonlinear system can be described by a fuzzy model with two IF-THEN rules:

Plant Rule 1: IF xq is about 0, Then

x(t) = Ax(t) + Byu(t) (46)
Plant rule 2: IF x; is about +7, Then
x(t) = Azx(t) + Bou(t) (47)

where

0 1 0 1
A= {17.2941 0} A2 = {12.6305 0}

0 0
b= [—0.1765} B2 = {—0.0779]

The membership functions are

o= (1— : ) x (14 !
= 1+exp(—7(x; — /4)) 1+exp(—7(x; + /4))
hy=1—h

)

In order to illustrate the use of theorem (3), we assume that the delay terms are perturbed
along values of the scalar s € [0,1], and the fuzzy time-delay model considered here is as
follows:

X(t) = Zr: Bi[((1—s)A;j 4+ AA)x(t) + (sAgi + AAz)x(t —T(t)) + Biu(t)] (48)
iz

where

0 1 0 1
A= {17.2941 0} A= {12.6305 0}

0 0
B = [—0.1765} B2 = {—0.0779]

AAy = AAy = AAy = AAp = ME(t)E
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with

T
010 0. 0
M= { 0 0.1} B= [0 0.1}
_ . _[sin(t) 0
Let s = 0.1 and uncertainty F(t) = { 0 cos(t)
T(t) =02+ 12|sin(t)| (B=12 > 1).
Using LMI-TOOLBOX, there is a set of feasible solutions to LMIs (29).

} . We consider a fast time-varying delay

Ky = [159.7095 30.0354] , Ky = [347.2744 78.5552]

Fig. 4 shows the control results for the system (48) with time-varying delay 7(f) = 0.2 +
1.2 |sin(t)| under the initial condition x(t) = [2 0] Tte [—1.400].

= 1 A
> ol . .
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o] 2 4 6 8 10
2 T T T
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Fig. 6. Control results for the system (48) with time-varying delay7(t) = 0.2 4+ 1.2 |sin(t)].

5. Conclusion

In this chapter, we have investigated the delay-dependent design of state feedback stabilizing
fuzzy controllers for uncertain T-S fuzzy systems with time varying delay. Our method is
an important contribution as it establishes a new way that can reduce the conservatism and
the computational efforts in the same time. The delay-dependent stabilization conditions
obtained in this chapter are presented in terms of LMIs involving a single tuning parameter.
Finally, three examples are used to illustrate numerically that our results are less conservative
than the existing ones.
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Observer-Based Robust Control of Uncertain
Fuzzy Models with Pole Placement Constraints

Pages Olivier and El Hajjaji Ahmed
University of Picardie Jules Verne, MIS, Amiens
France

1. Introduction

Practical systems are often modelled by nonlinear dynamics. Controlling nonlinear systems
are still open problems due to their complexity nature. This problem becomes more complex
when the system parameters are uncertain. To control such systems, we may use the
linearization technique around a given operating point and then employ the known
methods of linear control theory. This approach is successful when the operating point of
the system is restricted to a certain region. Unfortunately, in practice this approach will not
work for some physical systems with a time-varying operating point. The fuzzy model
proposed by Takagi-Sugeno (T-S) is an alternative that can be used in this case. It has been
proved that T-S fuzzy models can effectively approximate any continuous nonlinear
systems by a set of local linear dynamics with their linguistic description. This fuzzy
dynamic model is a convex combination of several linear models. It is described by fuzzy
rules of the type If-Then that represent local input output models for a nonlinear system. The
overall system model is obtained by “blending” these linear models through nonlinear
fuzzy membership functions. For more details on this topic, we refer the reader to (Tanaka
& al 1998 and Wand & al, 1995) and the references therein.

The stability analysis and the synthesis of controllers and observers for nonlinear systems
described by T-S fuzzy models have been the subject of many research works in recent
years. The fuzzy controller is often designed under the well-known procedure: Parallel
Distributed Compensation (PDC). In presence of parametric uncertainties in T-S fuzzy
models, it is necessary to consider the robust stability in order to guarantee both the stability
and the robustness with respect to the latter. These may include modelling error, parameter
perturbations, external disturbances, and fuzzy approximation errors. So far, there have
been some attempts in the area of uncertain nonlinear systems based on the T-S fuzzy
models in the literature. The most of these existing works assume that all the system states
are measured. However, in many control systems and real applications, these are not always
available. Several authors have recently proposed observer based robust controller design
methods considering the fact that in real control problems the full state information is not
always available. In the case without uncertainties, we apply the separation property to
design the observer-based controller: the observer synthesis is designed so that its dynamics
are fast and we independently design the controller by imposing slower dynamics. Recently,
much effort has been devoted to observer-based control for T-S fuzzy models. (Tanaka & al,
1998) have studied the fuzzy observer design for T-S fuzzy control systems. Nonetheless, in
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the presence of uncertainties, the separation property is not applicable any more. In (El
Messousi & al, 2006), the authors have proposed sufficient global stability conditions for the
stabilization of uncertain fuzzy T-S models with unavailable states using a robust fuzzy
observer-based controller but with no consideration to the control performances and in
particular to the transient behaviour.

From a practical viewpoint, it is necessary to find a controller which will specify the desired
performances of the controlled system. For example, a fast decay, a good damping can be
imposed by placing the closed-loop poles in a suitable region of the complex plane. Chilali
and Gahinet (Chilali & Gahinet, 1996) have proposed the concept of an LMI (Linear Matrix
Inequality) region as a convenient LMI-based representation of general stability regions for
uncertain linear systems. Regions of interest include a-stability regions, disks and conic
sectors. In (Chilali & al 1999), a robust pole placement has been studied in the case of linear
systems with static uncertainties on the state matrix. A vertical strip and a-stability robust
pole placement has been studied in (Wang & al, 1995, Wang & al, 1998 and Wang & al, 2001)
respectively for uncertain linear systems in which the concerned uncertainties are polytopic
and the proposed conditions are not LML In (Hong & Man 2003), the control law synthesis
with a pole placement in a circular LMI region is presented for certain T-S fuzzy models.
Different LMI regions are considered in (Farinwata & al, 2000 and Kang & al, 198), for
closed-loop pole placements in the case of T-S fuzzy models without uncertainties.

In this work, we extend the results of (El Messoussi & al, 2005), in which we have developed
sufficient robust pole placement conditions for continuous T-S fuzzy models with
measurable state variables and structured parametric uncertainties.

The main goal of this paper is to study the pole placement constraints for T-S fuzzy models
with structured uncertainties by designing an observer-based fuzzy controller in order to
guarantee the closed-loop stability. However, like (Lo & Li, 2004 and Tong & Li, 2002), we do
not know the position of the system state poles as well as the position of the estimation error
poles. The main contribution of this paper is as follows: the idea is to place the poles associated
with the state dynamics in one LMI region and to place the poles associated with the
estimation error dynamics in another LMI region (if possible, farther on the left). However, the
separation property is not applicable unfortunately. Moreover, the estimation error dynamics
depend on the state because of uncertainties. If the state dynamics are slow, we will have a
slow convergence of the estimation error to the equilibrium point zero in spite of its own fast
dynamics. So, in this paper, we propose an algorithm to design the fuzzy controller and the
fuzzy observer separately by imposing the two pole placements. Moreover, by using the H.,
approach, we ensure that the estimation error converges faster to the equilibrium point zero.
This chapter is organized as follows: in Section 2, we give the class of uncertain fuzzy
models, the observer-based fuzzy controller structure and the control objectives. After
reviewing existing LMI constraints for a pole placement in Section 3, we propose the new
conditions for the uncertain augmented T-S fuzzy system containing both the fuzzy
controller as well as the observer dynamics. Finally, in Section 4, an illustrative application
example shows the effectiveness of the proposed robust pole placement approach. Some
conclusions are given in Section 5.

2. Problem formulation and preliminaries

Considering a T-S fuzzy model with parametric uncertainties composed of r plant rules that
can be represented by the following fuzzy rule:
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Plant rulei:

() = (A; + AA)x(t) + (B: + AB)u(t),
If z,(t)is Myiand ...and z,(t) is M,; Then X0 =4 ) ) (B; () 1)
y(t) =Cx(t) i=1,.,r
The structured uncertainties considered here are norm-bounded in the form:
AA; = H A, (HE,;,
)

AB; = H,Ay(HEy;, i=1,...,7
Where H,;,H,,; , E

A,i(1), Ay (t) are unknown matrix functions satisfying:

ais .i-Epi are known real constant matrices of appropriate dimension, and

Aai(t)Aai(t) < I' (3)
<I

Ai()AL (1) i=1,..,r

AlL(t)is the transposed matrix of A,(t)and I is the matrix identity of appropriate
dimension. We suppose that pairs (A;,B;) are controllable and (A;,C;)are observable. M;
indicates the ji fuzzy set associated to the if* variable z;(t), r is the number of fuzzy model
rules, x(t) e R"is the state vector, u(t) e R" is the input vector, y(t) e R' is the output vector,
A eR™", B, eR™™ and C, e R, z,(t),...,z,(t) are premise variables.

From (1), the T-S fuzzy system output is :

£(6) = ¥ I (2()[(A; + AA)(E) + (B, + AB,)u(®)]

- @
v(t)= 5 1 (=0)Cix()
where I (2(1) =L and. w,(a(6) = 11 s, (2(8)
5 (1) =

Where H, (z;(t))is the fuzzy meaning of symbol M.

In this paper we assume that all of the state variables are not measurable. Fuzzy state
observer for T-S fuzzy model with parametric uncertainties (1) is formulated as follows:
Observer rule i:

If z,(t)is My and ...and z,(t) is M,; Then X(t) = A(t) + Bu(t) = G, (y (1) - (1), ©)
| ; v vi ]}(t) :Cl-JAC(t) i=1,..,r

The fuzzy observer design is to determine the local gains G; € R in the consequent part.

Note that the premise variables do not depend on the state variables estimated by a fuzzy
observer.
The output of (5) is represented as follows:
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() = Y ) AR + Bu(t) -G, (y() - 7(1)

i=1

r ©)
7t = Y (2(H)CA()

i=1

To stabilize this class of systems, we use the PDC observer-based approach (Tanaka & al,
1998). The PDC observer-based controller is defined by the following rule base system:
Controller rule i :

If z;(t)is My and ...and z,(t) is M,,; Then u(t) = K;x(t) i=1,.,r 7)
The overall fuzzy controller is represented by:
r
2 wi(=B)KE(H)

)= - = S (K 8)
Yuwln)

Let us denote the estimation error as:

e(t) = x(t) - X(t) ©)
The augmented system containing both the fuzzy controller and observer is represented as
follows:
()| - x(#)
= A(z(t 10
o 1o
where

A(z(b) = Z Zh (z())h;(=(1))A

i=1j=1
_ [(A+AA)+(B+AB)K;, (B +AB)K, (11)
l] =
(AA; +ABK;) (4 +GC;-ABK;)

The main goal is first, to find the sets of matrices K; and G; in order to guarantee the global

asymptotic stability of the equilibrium point zero of (10) and secondly, to design the fuzzy
controller and the fuzzy observer of the augmented system (10) separately by assigning both
“observer and controller poles” in a desired region in order to guarantee that the error
between the state and its estimation converges faster to zero. The faster the estimation error
will converge to zero, the better the transient behaviour of the controlled system will be.

3. Main results

Given (1), we give sufficient conditions in order to satisfy the global asymptotic stability of
the closed-loop for the augmented system (10).
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Lemma 1: The equilibrium point zero of the augmented system described by (10) is globally
asymptotically stable if there exist common positive definite matrices P, and P,, matrices
W;, V; and positive scalars & -0 such as

Hll SO, i=1,...,1’ 12
Hij+Hﬁ£O,i<er (12)
And
2;<0,i=1,.,r 13
j+X;<0, i<j<r (13)
with
D, PRE, VE, B H,] D; KiE,; PRH,; PRH, K]
E;P, 05z 0 0 0 E,K; —&'1 0 0 0
1, =| BV 0 0551 0 0 |Z=|HyP, 0 —g'I 0 0
B; 0 0 gl 0 Hyp, 0 0 0551 0
| Hj, 0 0 0 —51']‘1_ K; 0 0 0 —gi}ll

D; = A;P, + PA] + BV, +ViB{ + &;H ;Hy; + £;H, Hy,;
Djj =DA; + AP, + WC; + cjwj + gi;lK§E£iEbin
Proof: using theorem 7 in (Tanaka & al, 1998), property (3), the separation lemma (Shi & al,
1992)) and the Schur’s complement (Boyd & al, 1994), the above conditions (12) and (13)
hold with some changes of variables. Let us briefly explain the different steps...

From (11), in order to ensure the global, asymptotic stability, the sufficient conditions must
be verified:

3X = X' >0: Mp(A, X) = AjX + X Ajj <0 (14)
Let: X = {XOH X2J where 0 is a zero matrix of appropriate dimension. From (14), we have:
Mp(A,X) =ML+ M3 (15)
With M}, = {131 lgj where
D, = AXy + X Af + BK Xy + X1 KB (16)

and

D, = A Xy, + XAl +GC X + Xzzcjcf (17)
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From (15),

v A, Xy AAf + Xy KIAB! ~ BK Xy, — ABK; XZZ}
D —

[AA X3 + ABK Xy — Xp,KB — X KABf A,

where A; = AA Xy + X;,AA] + ABK X, + X;KiAB] and A, = -ABK X, — X, K;AB;

From (15), we have:

0 ~BK; X5, —ABK X5,
Mp =%, +3%, +Z, with ¥, = . ,
X22K B! - X, KiAB; 0
0 X, AA! + X, KEAB! A, 0
22 11 i 117 =i and 23 _ 1
AA Xy +ABK X 0 0 A,

Let X;; =P, X;; = P;' . From the previous equation and (2), we have:

0 0 0 0 0 B; O 0 0 0 0 0
3 = e X a |t Apetpt || ot gt
o -p'k! "B 0|7l 0o k' [T|0 —pKEL | ALHL O

(18)
0 Hydy | |0 0
+ X »
0 0 0 -E,K;P,
And,
5, < 0 0 y E,p, 0O . PE. 0 |0 ALH! ) 0 0 Esz P o
H,A,; O 0 0 0 0] |0 0 HyAy, 0 0 0 (19)
N PKiE,; 0| [0 ALHy,
0 0| |0 0
And finally:
- Hy Ay HyiAy, % E;hy 0 n PlEttn' PlK]t‘Eltn' % A;iH;i 0
’ 0 0 E,K;P 0 0 0 ApHL 0
(20)

0] 0 0 0 0 0 0 0
i “lo Exp' Mo Pk, | f gt
0 -HypAy bk P 2 Kikyi | |0 —ApHy,

From (18), (19) and (20) and by using the separation lemma (Shi & al, 1992)), we finally obtain:

m2<|f (21)
D=
0T,

Where:

T, = ;' BB} +&; HyAyAyHy + &5 PEEGE Py + &' PKSELE, K Py
&5 H A M Hy + £3Hy Ay Ay Hy, + 65 PEGEGP, + &5 PKGELE, K D)

ai=ai"ai ar—'m
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and
Ty = &;P KK Py ' + 6P ' KGEREyK Pyt + 3 H A Ay Hy
+ginbiAbiAltJiHltzi + ginbiAbiAéiHéi + 5§1P£1K§E21EbinP£1
From (15), (16), (17) and (21), we have:
— D, +Ty 0 R, O
Mp(A,X)< = (22)
0 D, +T, 0 R,
In order to verify (14), we must have:
R0y 23
<
0 &, (23)
Which implies:
R, <0
! (24)
R, <0

First, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the
introduction of the new variable: V; =K;P :

R, <0
Dy PE; Vthlsi B Hy
E,P, -05¢;l 0 0 0
B! 0 0 -l 0
Hj, 0 0 0 —gl
Where [ is always the identity matrix of appropriate dimension

D; = AP + PA! + BV, + V;Bf + gi].Hm.H; + ginbiH{,i

Then, from (24), by using (3), using the Schur’s complement (Boyd & al, 1994) as well as the
introduction of the new variable: W, = B,G,; :

R, <0
' D; KE, RBH; PH, K |
E,K; —&'1 0 0 0

e HP 0 &'l 0 0 |<0
H!p, 0 0 0551 0
K 0 0 0 &'l

(25)

and

(26)
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Where Dj; = B,A; + A{P, + W,C; + CiW/ + & KiEL;E K

Thus, conditions (12) and (13) yield for all i, j from (25) and (26) and by using theorem 7 in
(Tanaka & al, 1998) which is necessary for LMI relaxations.

Remark 1: In lemma 1, the positive scalars ¢; are optimised unlike (Han & al, 2000), (Lee &
al, 2001), (Tong & Li, 2002), (Chadli & El Hajjaji, 2006). We do not actually need to impose
them to solve the set of LMIs. The conditions are thus less restrictive.

Remark 2: Note that it is a two-step procedure which allows us to design the controller and
the observer separately. First, we solve (12) for decision variables (P,K;,¢;) and secondly,
we solve (13) for decision variables (P,,G;)by using the results from the first step.
Furthermore, the controller and observer gains are given by: G, =P;'W, and K i=ViPr ',
respectively, for i,j=1,2,..,r.

Remark 3: From lemma 1 and (10), the location of the poles associated with the state
dynamics and with the estimation error dynamics is unknown. However, since the design
algorithm is a two-step procedure, we can impose two pole placements separately, the first
one for the state and the second one for the estimation error. In the following, we focus in
the robust pole placement.

We hereafter give sufficient conditions to ensure the desired pole placements by using the
LMI conditions of (Chilali & Gahinet (1996) and (Chilali & al, 1999) to the case of uncertain
T-S fuzzy systems with unavailable state variables. Let us recall the definition of an LMI
region and pole placement LMI constraints.

Definition 1 (Boyd & al, 1994): A subset D of the complex plane is called an LMI region if
there exists a symmetric matrix a =[aj;]e R and a matrix g =[By]e R"""" such as:

D={zeC:fp(z)=a+Bz+p'Z <0 27)

Definition 2 (Chilali and Gahinet, 1996): Let D be a subregion of the left-half plane. A
dynamical system described by: % =Axis called D-stable if all its poles lie in D. By
extension, A is then called D-stable.

From the two previous definitions, the following theorem is given.

Theorem 1 (Chilali and Gahinet , 1996): Matrix A is D-stable if and only if there exists a
symmetric matrix X >0 such as

Mp(A,X)=a®X+B®AX+ ' ®XA' <0 (28)

where ® denotes the Kronecker product.

From (10) and (11), let us define: T;; = (A; + AA;)+(B; + AB))K; and S; = A; + G,C; - ABK;.

We hereafter give sufficient conditions to guarantee that Zrlzr:h,-( z(t))h]-( Z(t))Ti]- and
i=1j=1

zr: ihi( z(t))h]-( Z(t))Si]- are Dy -stable and Dy -stable respectively in order to impose the
i=1j=1
dynamics of the state and the dynamics of the estimation error.

r T

Lemma 2: Matrix ZZhi(z(t))hj(z(t))Ej is Dy -stable if and only if there exist a symmetric
i=1j=1

matrix P >0 and positive scalars z; >0 such as
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Q.<0,i=1,..r,

i =
Q;+Q; <0, i<j<r. 29)
With
E,  (BORE,) (B ®VE)
= (ﬂ ® Eaipl) _/uijI 0
®E,;V; 0 —pi:1
(ﬂ bi ]) :uq (30)

Ejj = & + 1 (1 ® HaiHZ{i)+ Hij (I ® th‘Hztn‘)
§i=a®P +BOAP +[ ®PA +B®BV,+ [ ®V/B

Proof: Using theorem 1, matrix T;; is Dr-stable if and only if there exists a symmetric matrix
X >0 such that:
MD(l]’ )= a®X+ﬂ®Tin+,Bt®Xlet<o (31)

Mp (T;, X)=a®X + @ AX+ ' ® XA + fOBK, X + ' ® XKiB + f® H;AE,; X (
+f' ® XEyAyHy + f® HyAyEyK X+ ' ® XKiEyAyHy;

ar—ai

32)

MDT( ij’ ) 51/+(I®Ha1 az)
+(B' ®V/Ey)(I® AyHy;)

(B®E,P)+ (B ®PE z‘)(I®Ath)+(1®HbiAbi)(ﬂ®EbiVj)

a a

where
§i=a®P +B®AP +f ®PA + OBV, + [ ®V/B (34)

Using the separation lemma (Shi & al, 1992) and (3), we obtain:

MD ( ijs )<§z]+ﬂ1](I®H H )+tu1] (ﬂ ®Pl )(ﬂ®EmP1)

(35)
+u(I® Hy,Hy;) + M Y(B'® Vthi)(ﬁ ®E,V;)
Thus, matrix T,] is Dr-stable if:
Gij+ i (I1® H,Hy)+ w1 ® Hy,Hy,) + ﬂi}l(/”t ® PE,)(B®E,P,) 6)

+,Uz‘}1 (B ®V/Ey)(BRE,V,)<0

Where, of course, Hij € R Vi, j
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By using the Schur’s complement (Boyd & al, 1994),
E;  (B'®RE,) (B oVE,)
(BOEP) —pyl 0 <0,
(/” ® Ebivj) 0 —ul

Ey =+ (1 © HogHy ) + 1y (19 HiyHy ).

(37)

Thus, conditions (29) easily yield for all , j.

Lemma 3: Matrix Zr:zr:hi(z(t))hj(z(t))s
i=1j=1

jj is Ds-stable if and only if there exist a symmetric

matrix P, >0, matrices W;, K; and positive scalars 4; -0 such as

d,; <0, i=1,..,r

n -
O +®; <0, i<j<r (38)
with
©. — R + iij(ﬂt ®K;‘El§i)(ﬂ ®E,K;) 1®PH,
! 1®H!,P, il
Ri=a®P,+S®PA; + ' ® AP, + BOWC, + ' ®CIW/ (39)
W; = BG;
Proof: Same lines as previously can be used to prove this lemma.
Let:
Mp (S;, X)=a®X+BRAX+ ' @ XAl + BRG.C X + ' ® XC'G!
S y 1 1 1] ]t (40)

1

-f'® XK]t'EltJi(I ® AyHy) ~(1® Ay Hy ) (B ® E,K;X) <0

Using the separation lemma (Shi & al, 1992), by pre- and post- multiplying by I® X, we
obtain:

a®X '+ fR(XTA)+ B ®(AXT)+BO(XTGC))+ B ®(CIGIXT)

_ B (41)
+2(B' ® KIEy)(BOE,K)+1/ 4;(1® X' Hy)(I® HyX ) <0
Where, of course, /L-j eRVi,j
Thus, by using the Schur’s complement (Boyd & al, 1994) as well as by defining P, = X" :
a®P,+fOPA; + ' ® AP, + fROPGC; + i ®CIG{P, + %;(f' ®KIEy;)(B®E,K;) 1®PH,; 0 (42)
= <

/ [®HLP, n

By using W, = X"'G; , conditions (38) easily yield for all i, j. The lemma proof is given.
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Remark 4: Any kind of LMI region (disk, vertical strip, conic sector) may be easily used for
Dsand Dy .

From lemma 2 and lemma 3, we have imposed the dynamics of the state as well as the
dynamics of the estimation error. But from (10), the estimation error dynamics depend on
the state. If the state dynamics are slow, we will have a slow convergence of the estimation
error to the equilibrium point zero in spite of its own fast dynamics. So in this paper, we add
an algorithm using the H,, approach to ensure that the estimation error converges faster to

the equilibrium point zero.
We know from (10) that:

r

&(t) = Zihi(z(t))hl-(z(t))(Ai +G,C; —ABK; )e(t)

i=1j=1

+Zr:ihi(z(t))hj(z(t))5ij (AAi + ABin)x(t)

i=1j=1

(43)

This equation is equivalent to the following system:
A Ai+GiCj—ABin AA;+ABK e
ZZh, 2(t)h i . } (44)

The objective is to minimize the L, gain from x(t) to e(t) in order to guarantee that the
error between the state and its estimation converges faster to zero. Thus, we define the
following H, performance criterion under zero initial conditions:

el (He(t) - y2x' (H)x()}dt <0 (45)

o‘—.S

where y e ®*" has to be minimized. Note that the signal x(t) is square integrable because of
lemma 1.

We give the following lemma to satisfy the H_, performance.

Lemma 4: If there exist symmetric positive definite matrix P, , matrices W, and positive
scalars y >0, ﬂi]» >0 such as

r;<0,i=1,.,r

[+ <0, i<j<r (46)
With
Zij kHy PH, _ﬂi]’K;EltJiEbiK j
.- Hy;P, —p;l 0 0
I H.P, 0 —pl 0
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Z;; = DA + AP, + WC; + CW/ +1+ ;K E,E,K;

Uj=-r T+ ﬂin]t'Elt;iEbiK it ﬁijE;iEai
Then, the dynamic system:
A;+GC-ABK; AA, +ABin}{e} )

L}ZZhi(z(t»hj(z(t» ! )

i-1j=1 x

satisfies the H, performance with a L, gain equal or less than y (44) .

Proof: Applying the bounded real lemma (Boyd & al, 1994), the system described by the
following dynamics:

é(t) =(A; +GiC; — ABK, Je(t) + (AA; + ABK; )x(t) (48)

satisfies the H, performance corresponding to the L, gain y performance if and only if
there exists P, =P} >0:

(A; +GCj ~ABK,) Py + Py(A; + GC; ~ ABK))

(49)
+DPy(AA; + ABK ) (7*1) " (AA; + ABK,)' P, + 1< 0
Using the Schur’s complement, (Boyd & al, 1994) yields
Ji PAA; + BABK;
, o ) <0 (50)
AA;P, + K;AB; P, -y
o,
where
Jii = BA; + A{P, + B,GC; +C[G;P, - ,ABK; ~K/ABP, + (51)
We get:
o _| B4 +A{Py +PGC;+CiGP,+1 0 | TRABK; ~KiAB{P, PAA; +PABK; 52)
! 0 21| | AAIP, +K/ABP, 0
by
By using the separation lemma (Shi & al, 1992) yields
< KiEE,K; ~KiEWEK; Ll B 2 HyildyiHy Py + PoH i APy 0 (53)
o _K;‘EéiEbiK i K;EltaiEbin +EyEy; ! 0 0

With substitution into ®;; and defining a variable change: W; = P,G; , yields
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) _B.KELE K.
I P T 54
—BiKiEwEwK; =y + BiKiEyEyK; + BiE4E,

where

Q; =Ry + [31]1 P,Hy, Ay A HyPs + Sijl P,H, A AyHL P, 55)

R;; = PA; + AlP, + W,C; + CIW, + 1+ B,K'ELELK,.
Thus, from the following condition

tpt
Qji —B;iK;E,EyK; <0 56)
_:Bin;EltJiEbiK i 77 T+ ﬂin;EiiEbiK it ﬂijEZiEai

and using the Schur’s complement (Boyd & al, 1994), theorem 7 in ( Tanaka & al, 1998) and
(3), condition (46) yields for all i,;.

Remark 5: In order to improve the estimation error convergence, we obtain the following
convex optimization problem: minimization y under the LMI constraints (46).

From lemma 1, 2, 3 and 4 yields the following theorem:

Theorem 2: The closed-loop uncertain fuzzy system (10) is robustly stabilizable via the
observer-based controller (8) with control performances defined by a pole placement
constraint in LMI region D; for the state dynamics, a pole placement constraint in LMI

region Dg for the estimation error dynamics and a L, gain y performance (45) as small as

possible if first, LMI systems (12) and (29) are solvable for the decision variables
(Py,K;j, ;1) and secondly, LMI systems (13), (38) , (46) are solvable for the decision

variables (Pz,G,-,lij, ﬂ,]) . Furthermore, the controller and observer gains are K = V]»Pl_1 and

G; = P2’1VVZ» , respectively, for i,j=1,2,...,r.

Remark 6: Because of uncertainties, we could not use the separation property but we have
overcome this problem by designing the fuzzy controller and observer in two steps with
two pole placements and by using the H_ approach to ensure that the estimation error

converges faster to zero although its dynamics depend on the state.

Remark 7: Theorem 2 also proposes a two-step procedure: the first step concerns the fuzzy
controller design by imposing a pole placement constraint for the poles linked to the state
dynamics and the second step concerns the fuzzy observer design by imposing the second
pole placement constraint for the poles linked to the error estimation dynamics and by
minimizing the H_ performance criterion (18). The designs of the observer and the

controller are separate but not independent.

4. Numerical example

In this section, to illustrate the validity of the suggested theoretical development, we
apply the previous control algorithm to the following academic nonlinear system (Lauber,
2003):
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& (t) = (Cos2(x2(t)) - ﬁ]xz(t) + (1 + = iz(t)]u(t)
1 1

N 1

X, () = b[l + T2 20
+(acos2(x2(t))—2)u(t)

y(8)=x(1)

jsin(xz(t)) - 1.5, (£)-3x, (£) (57)

yeR is the system output, u € Ris the system input, x =[x xz]t is the state vector which

is supposed to be unmeasurable. What we want to find is the control law u which globally
stabilizes the closed-loop and forces the system output to converge to zero but by imposing
a transient behaviour.

Since the state vector is supposed to be unmeasurable, an observer will be designed.

The idea here is thus to design a fuzzy observer-based robust controller from the nonlinear
system (57). The first step is to obtain a fuzzy model with uncertainties from (57) while the
second step is to design the fuzzy control law from theorem 2 by imposing pole placement
constraints and by minimizing the Hoo criterion (46). Let us recall that, thanks to the pole
placements, the estimation error converges faster to the equilibrium point zero and we
impose the transient behaviour of the system output.

First step:

The goal is here to obtain a fuzzy model from (57).

By decomposing the nonlinear term and integring nonlinearities of x,(t) into

T+x7(t)
incertainties, then (20) is represented by the following fuzzy model:
Fuzzy model rule I:

If x,(t)is M, then{ = +AAyllz;(Bl+ABl)u (58)
Fuzzy model rule 2:
I x,(t)isM, then{ =4, *M;i’;wz B u (59)
where
A_o 0.5 B_1 [0 05 B_z
15| 15 g+ 1My | P17 %-2 27215 B+(1+mp) 2| L o)
01 0 0
0 05 0 05
E,= - , E,= ' ,C=(1 0),
1=l Lomy | Bamly o )<= 0

2
m=-0.2172, b=-0.5, a=2 and i=1,2
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Second step:
The control design purpose of this example is to place both the poles linked to the state
dynamics and to the estimation error dynamics in the vertical strip given by:

(a1 a,)=(-1 -6). The choice of the same vertical strip is voluntary because we wish to

compare results of simulations obtained with and without the H_ approach, in order to
show by simulation the effectiveness of our approach.

The initial values of states are chosen: x(0)=[-0.2 -0.1] and (0)=[0 0].

By solving LMIs of theorem 2, we obtain the following controller and observer gain matrices
respectively:

= - _ t _ t
K= [-1.95 -0.17],K2 =[-1.36 -O.OS],G1 =[-7.75 -80.80] /Gy = [-7.79 -82.27]" (60)
The obtained H,, criterion after minimization is:

¥ =0.3974 (61)

Tables 1 and 2 give some examples of both nominal and uncertain system closed-loop pole
values respectively. All these poles are located in the desired regions. Note that the
uncertainties must be taken into account since we wish to ensure a global pole placement.
That means that the poles of (10) belong to the specific LMI region, whatever uncertainties
(2), (3). From tables 1 and 2, we can see that the estimation error pole values obtained using
the H,approach are more distant (farther on the left) than the ones without the
H_ approach.

With the H_ approach Without the H_ approach
Pole 1 Pole 2 Pole 1 Pole 2
A+ BiKy -1.8348 -3.1403 -1.8348 -3.1403
Ay +BK, -2.8264 -3.2172 -2.8264 -3.2172
A+ GG -5.47 +5.991 | -5.47- 5.99i -3.47 + 3.751 -3.47- 3.751
A, +G,C, -5.59 +6.081 | -5.59 - 6.081 -3.87 + 3.961 -3.87 - 3.961

Table 1. Pole values (nominal case).

With the H_, approach Without the H_ approach

Pole 1 | Pole 2 Pole 1 Pole 2
A +HuE  +(By+HyE DK, | -2.56 + .43i | -2.56-0.43i | -2.56+ 0.43i -2.56 - 0.43i
Ay +HEp +(By + HyEp)K, | -3.03 +0.70i | -3.032-0.70i | -3.03 + 0.70i -3.03 - 0.70i
Ay —HuEq + (B + HyEy K, | -2.58 +0.10i | -2.58- 0.10i -2.58 +0.10i -2.58 - 0.10i
Ay —H,E, +(By + HypEpp)K, | -3.09 +0.54i | -3.09-0.54i -3.09 + 0.54i -3.09 - 0.54i
A, +G,C, - H,E, K, -5.38+5.87i | -5.38-5.87i | -3.38 +3.61i -3.38 - 3.61i
A, +G,C, - H,E,,K, -5.55+6.01i | -5.55-6.01i | -3.83 + 3.86i -3.83 - 3.86i

Table 2. Pole values (extreme uncertain models).
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Figures 1 and 2 respectively show the behaviour of error e;(t) and e,(tf) with and without
the H, approach and also the behaviour obtained using only lemma 1. We clearly see that
the estimation error converges faster in the first case (with H_ approach and pole
placements) than in the second one (with pole placements only) as well as in the third case
(without H, approach and pole placements). At last but not least, Figure 3 and 4 show
respectively the behaviour of the state variables with and without the H_ approach whereas
Figure 5 shows the evolution of the control signal. From Figures 3 and 4, we still have the
same conclusion about the convergence of the estimation errors.
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| | | N | | | | |
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Fig. 1. Behaviour of error ¢;(t) .
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Fig. 3. Behaviour of the state vector and its estimation with the H., approach.
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Fig. 5. Control signal evolution u(t).
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5. Conclusion

In this chapter, we have developed robust pole placement constraints for continuous T-S
fuzzy systems with unavailable state variables and with parametric structured uncertainties.
The proposed approach has extended existing methods based on uncertain T-S fuzzy
models. The proposed LMI constraints can globally asymptotically stabilize the closed-loop
T-S fuzzy system subject to parametric uncertainties with the desired control performances.
Because of uncertainties, the separation property is not applicable. To overcome this
problem, we have proposed, for the design of the observer and the controller, a two-step
procedure with two pole placements constraints and the minimization of a H,, performance

criterion in order to guarantee that the estimation error converges faster to zero. Simulation
results have verified and confirmed the effectiveness of our approach in controlling
nonlinear systems with parametric uncertainties.
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1. Introduction

In control engineering, robust control is an area that explicitly deals with uncertainty in its
approach to the design of the system controller [7,10,24]. The methods of robust control are
designed to operate properly as long as disturbances or uncertain parameters are within a
compact set, where robust methods aim to accomplish robust performance and/or stability
in the presence of bounded modeling errors. A robust control policy is static in contrast to
the adaptive (dynamic) control policy where, rather than adapting to measurements of
variations, the system controller is designed to function assuming that certain variables will
be unknown but, for example, bounded. An early example of a robust control method is the
high-gain feedback control where the effect of any parameter variations will be negligible
with using sufficiently high gain.

The overall goal of a control system is to cause the output variable of a dynamic process to
follow a desired reference variable accurately. This complex objective can be achieved based
on a number of steps. A major one is to develop a mathematical description, called
dynamical model, of the process to be controlled [7,10,24]. This dynamical model is usually
accomplished using a set of differential equations that describe the dynamic behavior of the
system, which can be further represented in state-space using system matrices or in
transform-space using transfer functions [7,10,24].

In system modeling, sometimes it is required to identify some of the system parameters.
This objective maybe achieved by the use of artificial neural networks (ANN), which are
considered as the new generation of information processing networks [5,15,17,28,29].
Artificial neural systems can be defined as physical cellular systems which have the
capability of acquiring, storing and utilizing experiential knowledge [15,29], where an ANN
consists of an interconnected group of basic processing elements called neurons that
perform summing operations and nonlinear function computations. Neurons are usually
organized in layers and forward connections, and computations are performed in a parallel
mode at all nodes and connections. Each connection is expressed by a numerical value
called the weight, where the conducted learning process of a neuron corresponds to the
changing of its corresponding weights.
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When dealing with system modeling and control analysis, there exist equations and
inequalities that require optimized solutions. An important expression which is used in
robust control is called linear matrix inequality (LMI) which is used to express specific
convex optimization problems for which there exist powerful numerical solvers [1,2,6].
The important LMI optimization technique was started by the Lyapunov theory showing
that the differential equation x(t)= Ax(t) is stable if and only if there exists a positive
definite matrix [P] such that AP+ PA <0 [6]. The requirement of { P >0, ATP+PA<0}is
known as the Lyapunov inequality on [P] which is a special case of an LMI. By picking any
Q=Q" >0 and then solving the linear equation ATP+PA=-Q for the matrix [P], it is
guaranteed to be positive-definite if the given system is stable. The linear matrix inequalities
that arise in system and control theory can be generally formulated as convex optimization
problems that are amenable to computer solutions and can be solved using algorithms such
as the ellipsoid algorithm [6].

In practical control design problems, the first step is to obtain a proper mathematical model
in order to examine the behavior of the system for the purpose of designing an appropriate
controller  [1,2,3,4,5,7,8,9,10,11,12,13,14,16,17,19,20,21,22,24,25,26,27].  Sometimes,  this
mathematical description involves a certain small parameter (i.e., perturbation). Neglecting
this small parameter results in simplifying the order of the designed controller by reducing
the order of the corresponding system [1,3,4,5,8,9,11,12,13,14,17,19,20,21,22,25,26]. A reduced
model can be obtained by neglecting the fast dynamics (i.e., non-dominant eigenvalues) of
the system and focusing on the slow dynamics (i.e., dominant eigenvalues). This
simplification and reduction of system modeling leads to controller cost minimization
[7,10,13]. An example is the modern integrated circuits (ICs), where increasing package
density forces developers to include side effects. Knowing that these ICs are often modeled
by complex RLC-based circuits and systems, this would be very demanding
computationally due to the detailed modeling of the original system [16]. In control system,
due to the fact that feedback controllers don't usually consider all of the dynamics of the
functioning system, model reduction is an important issue [4,5,17].

The main results in this research include the introduction of a new layered method of
intelligent control, that can be used to robustly control the required system dynamics, where
the new control hierarchy uses recurrent supervised neural network to identify certain
parameters of the transformed system matrix [ A ], and the corresponding LMI is used to
determine the permutation matrix [P] so that a complete system transformation {[ B, [C],
[D]} is performed. The transformed model is then reduced using the method of singular
perturbation and various feedback control schemes are applied to enhance the
corresponding system performance, where it is shown that the new hierarchical control
method simplifies the model of the dynamical systems and therefore uses simpler
controllers that produce the needed system response for specific performance
enhancements. Figure 1 illustrates the layout of the utilized new control method. Layer 1
shows the continuous modeling of the dynamical system. Layer 2 shows the discrete system
model. Layer 3 illustrates the neural network identification step. Layer 4 presents the
undiscretization of the transformed system model. Layer 5 includes the steps for model
order reduction with and without using LMI. Finally, Layer 6 presents various feedback
control methods that are used in this research.
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Closed-Loop Feedback Control
State Feedback
PID State (Pole Placement) Output Feedback
Feedback | State Feedback (LQR | (LQR Optimal
Control Optimal Control) Control)
Model Order Reduction
Complete System
Transformation: {{B],[C],[D]}
LMI-Based Permutation
Matrix [P]

System Undiscretization (Continuous form)
Neural-Based System Neural-Based State
Transformation: {[ A |,| B I} Transformation: [ A |

System Discretization
Continuous Dynamic System: {[A], [B], [C], [D]}

Fig. 1. The newly utilized hierarchical control method.

While similar hierarchical method of ANN-based identification and LMI-based
transformation has been previously utilized within several applications such as for the
reduced-order electronic Buck switching-mode power converter [1] and for the reduced-
order quantum computation systems [2] with relatively simple state feedback controller
implementations, the presented method in this work further shows the successful wide
applicability of the introduced intelligent control technique for dynamical systems using
various spectrum of control methods such as (a) PID-based control, (b) state feedback
control using (1) pole placement-based control and (2) linear quadratic regulator (LQR)
optimal control, and (c) output feedback control.

Section 2 presents background on recurrent supervised neural networks, linear matrix
inequality, system model transformation using neural identification, and model order
reduction. Section 3 presents a detailed illustration of the recurrent neural network
identification with the LMI optimization techniques for system model order reduction. A
practical implementation of the neural network identification and the associated
comparative results with and without the use of LMI optimization to the dynamical system
model order reduction is presented in Section 4. Section 5 presents the application of the
feedback control on the reduced model using PID control, state feedback control using pole
assignment, state feedback control using LQR optimal control, and output feedback control.
Conclusions and future work are presented in Section 6.
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2. Background

The following sub-sections provide an important background on the artificial supervised
recurrent neural networks, system transformation without using LMI, state transformation
using LMI, and model order reduction, which can be used for the robust control of dynamic
systems, and will be used in the later Sections 3-5.

2.1 Artificial recurrent supervised neural networks
The ANN is an emulation of the biological neural system [15,29]. The basic model of the
neuron is established emulating the functionality of a biological neuron which is the basic
signaling unit of the nervous system. The internal process of a neuron maybe
mathematically modeled as shown in Figure 2 [15,29].

Activation

Function
“ G
1%
k
o= ol
[ ]

X, o—» Output
. Summing I
Junction
° .
° °
0
k
xp 0_> Threshold
Input .
. Synaptic
Signals Wy:iglilts

Fig. 2. A mathematical model of the artificial neuron.

As seen in Figure 2, the internal activity of the neuron is produced as:

14
j=1

In supervised learning, it is assumed that at each instant of time when the input is applied, the
desired response of the system is available [15,29]. The difference between the actual and the
desired response represents an error measure which is used to correct the network parameters
externally. Since the adjustable weights are initially assumed, the error measure may be used
to adapt the network's weight matrix [W]. A set of input and output patterns, called a training
set, is required for this learning mode, where the usually used training algorithm identifies
directions of the negative error gradient and reduces the error accordingly [15,29].

The supervised recurrent neural network used for the identification in this research is based
on an approximation of the method of steepest descent [15,28,29]. The network tries to
match the output of certain neurons to the desired values of the system output at a specific
instant of time. Consider a network consisting of a total of N neurons with M external input
connections, as shown in Figure 3, for a 2nd order system with two neurons and one external
input. The variable g(k) denotes the (M x 1) external input vector which is applied to the
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network at discrete time k, the variable y(k + 1) denotes the corresponding (N x 1) vector of
individual neuron outputs produced one step later at time (k + 1), and the input vector g(k)
and one-step delayed output vector y(k) are concatenated to form the (M + N) x 1) vector
u(k) whose i element is denoted by u;(k). For A denotes the set of indices i for which gi(k) is
an external input, and § denotes the set of indices i for which u;(k) is the output of a
neuron (which is y;(k)), the following equation is provided:

(gk), ifien
”"(k)"{ y(k), ifiep

Outputs
“%k) System state:

r, ) . .
A i f internal input
B 11

/\delay/\ X (k+1)

System System
4 dynamics ? external input

e

Fig. 3. The utilized 2nd order recurrent neural network architecture, where the identified

: . i A Ap| g By ~ ~
matrices are given by { A, = ,B; = } and that W = [[Ad] [Bd]] .
Ay Ay 21

The (N x (M + N)) recurrent weight matrix of the network is represented by the variable [W].
The net internal activity of neuron j at time k is given by

v;(k)= > wj; (ku; (k)

icAUp

where A U fis the union of sets A and f§. At the next time step (k + 1), the output of the
neuron j is computed by passing v;(k) through the nonlinearity ¢(.), thus obtaining:

yi(k+1)=o(v;(k))

The derivation of the recurrent algorithm can be started by using d;(k) to denote the desired
(target) response of neuronj at time k, and ¢(k) to denote the set of neurons that are chosen
to provide externally reachable outputs. A time-varying (N x 1) error vector e(k) is defined
whose jih element is given by the following relationship:
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o= { 40)-yih),  ifjec(h)

0, otherwise

The objective is to minimize the cost function Eia1 which is obtained by:

total ZE(k) where E )——ZE (k

]eg

To accomplish this objective, the method of steepest descent which requires knowledge of
the gradient matrix is used:

OF a@
VwEiotal = mlz =2 VwE(k)
k

where Vy, E(k) is the gradient of E(k) with respect to the weight matrix [W]. In order to train
the recurrent network in real time, the instantaneous estimate of the gradient is used
(VwE(k)). For the case of a particular weight w,, (k), the incremental change Aw,,, (k)

made at k is defined as Awm[(k)=—7766E—% where 7 is the learning-rate parameter.
Wiy
Therefore:
OE(k) _ - Yei(h) && e oyi(k)
awm/(k jes m/ jes aw (k)

To determine the partial derivative oy;(k)/ow,, (k) , the network dynamics are derived. This

derivation is obtained by using the chain rule which provides the following equation:

0D oy ) o) a®) L dp(oy (k)
R A M A L e

Differentiating the net internal activity of neuron j with respect to w,,, (k) yields:

20, Oy (k) o), 0
Gon )y ) o) Tz G P

where (awﬁ (k)/@wml(k)) equals "1" only whenj=mand i= ¢, and "0" otherwise. Thus:

ov; (k) oui(k)
J = . ! ;
&Umé(k) ie/\z:jﬂwjl (k) awml (k) " 6m]u€(k)

where §,,; is a Kronecker delta equals to "1" when j = m and "0" otherwise, and:

0, ifie A

(k) L
| 2 1z

ou; (k) _
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Having those equations provides that:

dy;(k+1) _ (k)
T OO 2Oz, T o ®

The initial state of the network at time (k = 0) is assumed to be zero as follows:

y,00)
awm[ (0)

=0,for{je fi,me i, L € AUS}.

The dynamical system is described by the following triply-indexed set of variables ( 7/, ):

oy (k)
00, (k)

(k)=

For every time step k and all appropriate j, m and ¢, system dynamics are controlled by:

7y (k+1)= o0 (k) | Xw;; (k)h (k) + St (k) |, with 7},(0)=0.
ief

The values of 7z),(k) and the error signal ei(k) are used to compute the corresponding

weight changes:

Aawi(k)= 1 e (K)zhi(K) @)
Jes

Using the weight changes, the updated weight w,,, (k + 1) is calculated as follows:
Wy (k +1) = w0, (k) + Aww, (k) ©)

Repeating this computation procedure provides the minimization of the cost function and
thus the objective is achieved. With the many advantages that the neural network has, it is
used for the important step of parameter identification in model transformation for the
purpose of model order reduction as will be shown in the following section.

2.2 Model transformation and linear matrix inequality
In this section, the detailed illustration of system transformation using LMI optimization
will be presented. Consider the dynamical system:

x(t) = Ax(t) + Bu(t) )

y(t) = Cx(t) + Du(t) )

The state space system representation of Equations (4) - (5) may be described by the block
diagram shown in Figure 4.
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: l
u() (1) (1) - : L

v
=
—

A

Fig. 4. Block diagram for the state-space system representation.

In order to determine the transformed [A] matrix, which is [A ], the discrete zero input
response is obtained. This is achieved by providing the system with some initial state values
and setting the system input to zero (u(k) = 0). Hence, the discrete system of Equations
(4) - (5), with the initial condition x(0) =x, , becomes:

x(k+1) = Ayx(k) ©6)

y(k) = x(k) )

We need x(k) as an ANN target to train the network to obtain the needed parameters in
[ Ad ] such that the system output will be the same for [Aq4] and [ Ad ]. Hence, simulating this
system provides the state response corresponding to their initial values with only the [Aq]
matrix is being used. Once the input-output data is obtained, transforming the [A4] matrix is
achieved using the ANN training, as will be explained in Section 3. The identified
transformed [Ad ] matrix is then converted back to the continuous form which in general
(with all real eigenvalues) takes the following form:

Ay o Ay,

- A AL A
A=l IS A= 0 4 - A ®)

0 Ao
0o - 0 A
where A; represents the system eigenvalues. This is an upper triangular matrix that
preserves the eigenvalues by (1) placing the original eigenvalues on the diagonal and (2)
finding the elements ;1[] in the upper triangular. This upper triangular matrix form is used
to produce the same eigenvalues for the purpose of eliminating the fast dynamics and
sustaining the slow dynamics eigenvalues through model order reduction as will be shown

in later sections.

Having the [A] and [ A ] matrices, the permutation [P] matrix is determined using the LMI
optimization technique, as will be illustrated in later sections. The complete system

transformation can be achieved as follows where, assuming that ¥ =P 'x, the system of
Equations (4) - (5) can be re-written as:

PJLC(i’) = APX(t)+ Bu(t), j(t)=CPX(t)+ Du(t), where (t)=y(t) .
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Pre-multiplying the first equation above by [P-1], one obtains:
P'Px(t)= PTAPX(t)+ P'Bu(t), §(t)=CPX(t)+ Du(t)
which yields the following transformed model:
%(t) = Ax(t) + Bu(t) ©)

ij(t) = Cx(t) + Du(t) (10)

where the transformed system matrices are given by:

A=plApP (11)
B=P'B (12)
C=cCp (13)
D=D (14)

Transforming the system matrix [A] into the form shown in Equation (8) can be achieved
based on the following definition [18].

Definition. A matrix A € M,, is called reducible if either:

a. n=land A=0;o0r

b. n 2 2, there is a permutation matrix PeM,, and there is some integer r with

1<r<n-1 such that:

XY
P'AP= (15)
0 Z
where XeM, ,, ZeM,_,,,, YeM,, ,and0eM, ,  isa zero matrix.

The attractive features of the permutation matrix [P] such as being (1) orthogonal and (2)
invertible have made this transformation easy to carry out. However, the permutation
matrix structure narrows the applicability of this method to a limited category of
applications. A form of a similarity transformation can be used to correct this problem for
{f:R™" - R™"} where f is a linear operator defined by f(A)=P"AP [18]. Hence, based
on[A] and [A ], the corresponding LMI is used to obtain the transformation matrix [P], and
thus the optimization problem will be casted as follows:

min |P-P,| Subjectto [P AP-A|<s (16)
p
which can be written in an LMI equivalent form as:
s (P-P) I

&1 P'AP-A 0
5 >
(PAP - A)T I

S P-P
min trace(S) Subject to { } >0
(17)
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where S is a symmetric slack matrix [6].

2.3 System transformation using neural identification

A different transformation can be performed based on the use of the recurrent ANN while
preserving the eigenvalues to be a subset of the original system. To achieve this goal, the
upper triangular block structure produced by the permutation matrix, as shown in Equation
(15), is used. However, based on the implementation of the ANN, finding the permutation
matrix [P] does not have to be performed, but instead [X] and [Z] in Equation (15) will
contain the system eigenvalues and [Y] in Equation (15) will be estimated directly using the
corresponding ANN techniques. Hence, the transformation is obtained and the reduction is
then achieved. Therefore, another way to obtain a transformed model that preserves the
eigenvalues of the reduced model as a subset of the original system is by using ANN
training without the LMI optimization technique. This may be achieved based on the
assumption that the states are reachable and measurable. Hence, the recurrent ANN can
identify the [Ad ] and [ B, ] matrices for a given input signal as illustrated in Figure 3. The
ANN identification would lead to the following [Ad] and [ B ] transformations which (in
the case of all real eigenvalues) construct the weight matrix [W] as follows:

2’1 AlZ Aln b1

A ~ o A ~ |b
We[lAd 1] - A<D T e B
0 - 0 4 b

n

where the eigenvalues are selected as a subset of the original system eigenvalues.

2.4 Model order reduction

Linear time-invariant (LTI) models of many physical systems have fast and slow dynamics,
which may be referred to as singularly perturbed systems [19]. Neglecting the fast dynamics
of a singularly perturbed system provides a reduced (i.e., slow) model. This gives the
advantage of designing simpler lower-dimensionality reduced-order controllers that are
based on the reduced-model information.

To show the formulation of a reduced order system model, consider the singularly
perturbed system [9]:

x(t) = Apx(t)+ Apé() +Bu(t),  x(0)=x, (18)
gf(t) =Apx(t) + Apd(t) + Byu(t),  £(0)=¢4 (19)
y(£) =Cox(t)+Cr4(t) (20)

wherex e R"™ and &£e®R™ are the slow and fast state variables, respectively, u e R™ and
yeR™ are the input and output vectors, respectively, {[A;], [B;], [C;]} are constant
matrices of appropriate dimensions with ie€{1,2}, and ¢ is a small positive constant. The
singularly perturbed system in Equations (18)-(20) is simplified by setting £ =0 [3,14,27]. In
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doing so, we are neglecting the fast dynamics of the system and assuming that the state
variables £ have reached the quasi-steady state. Hence, setting & =0 in Equation (19), with

the assumption that [ A,, ] is nonsingular, produces:

§(t) = A Agyx, (1) — Ay Byu(t) (21)
where the index r denotes the remained or reduced model. Substituting Equation (21) in
Equations (18)-(20) yields the following reduced order model:

x,.(t) =Ax.(t)+B,u(t) (22)
y(t) = C,x,(t) + D) (23)

where { A, = Ay, — A12A£21A21 /B, =B, - A12A£§Bz ,C=C _CZAEAZl D, = —CzAiéBz )

3. Neural network identification with Imi optimization for the system model
order reduction

In this work, it is our objective to search for a similarity transformation that can be used to
decouple a pre-selected eigenvalue set from the system matrix [A]. To achieve this objective,
training the neural network to identify the transformed discrete system matrix [A,] is

performed [1,2,15,29]. For the system of Equations (18)-(20), the discrete model of the
dynamical system is obtained as:

x(k+1) = Agx(k)+ Byu(k) (24)
y(k) = C (k) + D u(k) (25)
The identified discrete model can be written in a detailed form (as was shown in Figure 3) as
follows:
Fl(k + 1)} _ {An A12i| Fl(k)} + {Bn} (k) (26)
k+1)| [An Ap][%o(k)] [Bn

. %, (k)
(k) = L } (27)

RRENC

where k is the time index, and the detailed matrix elements of Equations (26)-(27) were
shown in Figure 3 in the previous section.

The recurrent ANN presented in Section 2.1 can be summarized by defining A as the set of
indices i for which g;(k)is an external input, defining f as the set of indices i for which
y;(k)is an internal input or a neuron output, and defining u,(k) as the combination of the
internal and external inputs for which ie f§UA. Using this setting, training the ANN
depends on the internal activity of each neuron which is given by:

(k)= Y w(kyu (k) (28)

icAup
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where w;; is the weight representing an element in the system matrix or input matrix for
jef and ie fUA such that W:[[Ad] [ﬁd]]. At the next time step (k +1), the output

(internal input) of the neuron j is computed by passing the activity through the nonlinearity
@(.) as follows:

x;(k +1) = (v, (K)) (29)

With these equations, based on an approximation of the method of steepest descent, the
ANN identifies the system matrix [Aq] as illustrated in Equation (6) for the zero input
response. That is, an error can be obtained by matching a true state output with a neuron
output as follows:

(k) = x;(k) ~ % (k)

Now, the objective is to minimize the cost function given by:

Eya = 2 E(k) and E(k)=1"¢? (k)
k jes
where ¢ denotes the set of indices j for the output of the neuron structure. This cost

function is minimized by estimating the instantaneous gradient of E(k) with respect to the

weight matrix [W] and then updating [W] in the negative direction of this gradient [15,29].

In steps, this may be proceeded as follows:

- Initialize the weights [W] by a set of uniformly distributed random numbers. Starting at
the instant (k = 0), use Equations (28) - (29) to compute the output values of the N
neurons (where N = f§).

- Forevery timestep kand all je 5, me f§ and /e f§UA, compute the dynamics of the
system which are governed by the triply-indexed set of variables:

T (k+1) = 9(0;(K)) %wﬁ(k)ﬂ;a(k) + Ot (K)

with initial conditions 72'7{1{(0):0 and &, is given by (6wﬁ(k) /6‘wm[(k)),which is equal

to "1" only when {j = m, i=/} and otherwise it is "0". Notice that, for the special case of
a sigmoidal nonlinearity in the form of a logistic function, the derivative ¢(*) is given

by ¢(v;i(k)) =y ;(k+1)[1-y;(k+1)].
- Compute the weight changes corresponding to the error signal and system dynamics:

=7 Z k)l ( (30)
jes
- Update the weights in accordance with:
Wy (k +1) = Wy (k) + Ay (k) (31)

- Repeat the computation until the desired identification is achieved.
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As illustrated in Equations (6) - (7), for the purpose of estimating only the transformed
system matrix [ A, ], the training is based on the zero input response. Once the training is
completed, the obtained weight matrix [W] will be the discrete identified transformed
system matrix [ A4 |. Transforming the identified system back to the continuous form yields
the desired continuous transformed system matrix [A ]. Using the LMI optimization
technique, which was illustrated in Section 2.2, the permutation matrix [P] is then determined.
Hence, a complete system transformation, as shown in Equations (9) - (10), will be achieved.
For the model order reduction, the system in Equations (9) - (10) can be written as:

(1) _[A ATzo®] [B ) .
L‘co(t) [0 Ao}{fo(t)}+{80} ®) (32)

7.0 %] [D,
bwﬂ*q‘”&mJ{m}m )

The following system transformation enables us to decouple the original system into
retained (r) and omitted (0) eigenvalues. The retained eigenvalues are the dominant
eigenvalues that produce the slow dynamics and the omitted eigenvalues are the non-
dominant eigenvalues that produce the fast dynamics. Equation (32) maybe written as:

X,(t) = AX,(t)+AZ,(t)+Bu(t) and %,(t)= A%, (t)+B,u(t)

The coupling term A.X,(f) maybe compensated for by solving for ¥,(f) in the second
equation above by setting X,(tf) to zero using the singular perturbation method (by
setting & =0). By performing this, the following equation is obtained:

%,(t) = A, Byu(t) (34)
Using X,(t) , we get the reduced order model given by:
ir(t) = Arir(t) + [_AcAo_lBo + Br ]Ll(t) (35)
y(t) :Crir(t)'f'[_CoA(;lBo +D]u(t) (36)
Hence, the overall reduced order model may be represented by:
5(8) = Ay () + Byu(t) (37)

y(t) = Co, X, () + Dy u(t) (38)
where the details of the {[ A, ], [ By I, [ Cor I, [ Dy ]} OVerall reduced matrices were shown in
Equations (35) - (36), respectively.

4. Examples for the dynamic system order reduction using neural
identification

The following subsections present the implementation of the new proposed method of
system modeling using supervised ANN, with and without using LMI, and using model
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order reduction, that can be directly utilized for the robust control of dynamic systems. The
presented simulations were tested on a PC platform with hardware specifications of Intel
Pentium 4 CPU 2.40 GHz, and 504 MB of RAM, and software specifications of MS Windows
XP 2002 OS and Matlab 6.5 simulator.

4.1 Model reduction using neural-based state transformation and Imi-based

complete system transformation

The following example illustrates the idea of dynamic system model order reduction using
LMI with comparison to the model order reduction without using LMI. Let us consider the
system of a high-performance tape transport which is illustrated in Figure 5. As seen in
Figure 5, the system is designed with a small capstan to pull the tape past the read/write
heads with the take-up reels turned by DC motors [10].

™ Machine
reel

Forward
IS

Read/Write
head

Drive
capstan

Mylar — 1 Oxide
s.ubslrale (recording)
side side
(a)
f— - -
D i,
) -
R P
" Mir beas E
rictionl i
Fezads
- )
bzt
AP T ey
= L

Fig. 5. The used tape drive system: (a) a front view of a typical tape drive mechanism, and
(b) a schematic control model.
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As can be shown, in static equilibrium, the tape tension equals the vacuum force (T, =F)
and the torque from the motor equals the torque on the capstan ( K,i, =#T,) where T, is the
tape tension at the read/write head at equilibrium, F is the constant force (i.e., tape tension
for vacuum column), K is the motor torque constant, i, is the equilibrium motor current, and
r1 is the radius of the capstan take-up wheel.

The system variables are defined as deviations from this equilibrium, and the system
equations of motion are given as follows:

dey .

]1=7+[)’1a)1—r1T+Kti/ X1 =hw

L%Ri+Kea)1 =e, 5C2 =10,
]zil_azz+ﬂ2wz +nT=0

T =Ky(x3—x1)+ Dy (%5 — %)

T =Ky(xy —x3)+ D, (%, —%3)

X1~ X

x1=i’191, x2=1’2492, x3:

where D, , is the damping in the tape-stretch motion, e is the applied input voltage (V), i is
the current into capstan motor, J; is the combined inertia of the wheel and take-up motor, |
is the inertia of the idler, K is the spring constant in the tape-stretch motion, K, is the
electric constant of the motor, K; is the torque constant of the motor, L is the armature
inductance, R is the armature resistance, r; is the radius of the take-up wheel, r; is the radius
of the tape on the idler, T is the tape tension at the read/write head, x3 is the position of the
tape at the head, x5 is the velocity of the tape at the head, p1 is the viscous friction at take-
up wheel, f> is the viscous friction at the wheel, 8; is the angular displacement of the
capstan, 0, is the tachometer shaft angle, @1 is the speed of the drive wheel §,, and @; is the
output speed measured by the tachometer output 6, .

The state space form is derived from the system equations, where there is one input, which
is the applied voltage, three outputs which are (1) tape position at the head, (2) tape tension,
and (3) tape position at the wheel, and five states which are (1) tape position at the air
bearing, (2) drive wheel speed, (3) tape position at the wheel, (4) tachometer output speed,
and (5) capstan motor speed. The following sub-sections will present the simulation results
for the investigation of different system cases using transformations with and without
utilizing the LMI optimization technique.

4.1.1 System transformation using neural identification without utilizing linear matrix
inequality

This sub-section presents simulation results for system transformation using ANN-based
identification and without using LML

Case #1. Let us consider the following case of the tape transport:

0 2 0 0 0 0

-11 135 11 31 075 0
)= 0 0 0 5 0 [x(t)+]0 |u(t)»

135 14 24 -114 O 0

0 -003 0 0 -10 1
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0 0 1 0 0
y()=| 05 0 05 0 0|x(t)
~02 -02 02 02 0

The five eigenvalues are {-10.5772, -9.999, -0.9814, -0.5962 + j0.8702}, where two eigenvalues
are complex and three are real, and thus since (1) not all the eigenvalues are complex and (2)
the existing real eigenvalues produce the fast dynamics that we need to eliminate, model
order reduction can be applied. As can be seen, two real eigenvalues produce fast dynamics
{-10.5772, -9.999} and one real eigenvalue produce slow dynamics {-0.9814}. In order to
obtain the reduced model, the reduction based on the identification of the input matrix [ B ]
and the transformed system matrix [A] was performed. This identification is achieved
utilizing the recurrent ANN.

By discretizing the above system with a sampling time T; = 0.1 sec., using a step input with
learning time T; = 300 sec., and then training the ANN for the input/output data with a
learning rate r7 = 0.005 and with initial weights w = [[ Ad ] [ﬁd 1] given as:

-0.0059 -0.0360 0.0003 -0.0204 -0.0307 0.0499
-0.0283 0.0243 0.0445 -0.0302 -0.0257 -0.0482
w=|0.0359 0.0222 0.0309 0.0294 -0.0405 0.0088
-0.0058 0.0212 -0.0225 -0.0273 0.0079 0.0152
0.0295 -0.0235 -0.0474 -0.0373 -0.0158 -0.0168

produces the transformed model for the system and input matrices, [A] and []§] , as follows:

05967 08701 -01041 -02710 -0.4114 0.1414
-0.8701 -05967 0.8034 -04520 -0.3375 0.0974
it)=| 0 0 09809 04962 -0.4680 |x(t)+| 0.1307 |u(t)
0 0 0 9998 00146 -0.0011
0 0 0 0 -10.5764 1.0107

0 0 1 0 O
y®)=/05 0 05 0 O|x(t)
-02 -02 02 02 0
As observed, all of the system eigenvalues have been preserved in this transformed model

with a little difference due to discretization. Using the singular perturbation technique, the
following reduced 3rd order model is obtained as follows:

0597 08701 -0.1041 0.1021
i(t)=|-0.8701 -05967 0.8034 |x(t)+|0.0652 [u(t)
0 0 -0.9809 0.0860
0o 0 1 0

y(t)=] 05 0 05 |x(t)+| 0 |u(t)
-02 -02 02 0
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It is also observed in the above model that the reduced order model has preserved all of its
eigenvalues {-0.9809, -0.5967 + j0.8701} which are a subset of the original system, while the
reduced order model obtained using the singular perturbation without system
transformation has provided different eigenvalues {-0.8283, -0.5980 + j0.9304}.

Evaluations of the reduced order models (transformed and non-transformed) were obtained
by simulating both systems for a step input. Simulation results are shown in Figure 6.

0.14

0.12

0.1

0.08

0.06 - ~

System Output

0.04

0.02}

-0.02
0
Time[s]
Fig. 6. Reduced 3td order models (.... transformed, -.-.-.- non-transformed) output responses
to a step input along with the non-reduced model ( original) 5th order system output

response.

Based on Figure 6, it is seen that the non-transformed reduced model provides a response
which is better than the transformed reduced model. The cause of this is that the
transformation at this point is performed only for the [A] and [B] system matrices leaving
the [C] matrix unchanged. Therefore, the system transformation is further considered for
complete system transformation using LMI (for {[A], [B], [D]}) as will be seen in subsection
4.1.2, where LMI-based transformation will produce better reduction-based response results
than both the non-transformed and transformed without LMI.

Case #2. Consider now the following case:

0 2 0 0 O 0
11 <135 01 01 075 0 0o 0 1 0 0
= 0 0 0 2 0 |[x()+[0|ut), y(t)=| 05 0 05 0 Ox(f)
035 04 -04 24 0 0 -02 -02 02 02 0
0 -003 0 0 -10 1

The five eigenvalues are {-9.9973, -2.0002, -0.3696, -0.6912 + j1.3082}, where two eigenvalues
are complex, three are real, and only one eigenvalue is considered to produce fast dynamics
{-9.9973}. Using the discretized model with T; = 0.071 sec. for a step input with learning time
T; =70 sec., and through training the ANN for the input/output data with # = 3.5 x 105 and
initial weight matrix given by:
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-0.0195 0.0194 -0.0130 0.0071 -0.0048 0.0029
-0.0189 0.0055 0.0196 -0.0025 -0.0053 0.0120
w=|-0.0091 0.0168 0.0031 0.0031 0.0134 -0.0038
-0.0061 0.0068 0.0193 0.0145 0.0038 -0.0139
-0.0150 0.0204 -0.0073 0.0180 -0.0085 -0.0161

and by applying the singular perturbation reduction technique, a reduced 4th order model is
obtained as follows:

-0.6912 1.3081 -0.4606 0.0114 0.0837

#(t) = -1.3081 -0.6912 0.6916 -0.0781 x(t)+ 0.0520 u(t)
0 0 -0.3696 0.0113 0.0240
0 0 0 -2.0002 -0.0014

0 0 1 0
y(t)=[ 05 0 05 0 |x(t)
02 -02 02 02

where all the eigenvalues {-2.0002, -0.3696, -0.6912 + j1.3081} are preserved as a subset of the
original system. This reduced 4th order model is simulated for a step input and then
compared to both of the reduced model without transformation and the original system
response. Simulation results are shown in Figure 7 where again the non-transformed
reduced order model provides a response that is better than the transformed reduced
model. The reason for this follows closely the explanation provided for the previous case.

System Output

Time[s]

Fig. 7. Reduced 4th order models (.... transformed, -.-.-.- non-transformed) output responses
to a step input along with the non-reduced ( original) 5t order system output response.
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Case #3. Let us consider the following system:

0 2 0 0 0 0
01 -135 01 041 075 0 0 0 1 0 0
it= 0 0 0 5 0 |x()+|0fu@®).,y®)={ 05 0 05 0 0x(t
035 04 -14 54 0 0 02 -02 02 02 0
0 003 0 0 -10 1

The eigenvalues are {-9.9973, -3.9702, -1.8992, -0.6778, -0.2055} which are all real. Utilizing
the discretized model with T = 0.1 sec. for a step input with learning time T; = 500 sec., and
training the ANN for the input/output data with r = 1.25 x 105, and initial weight matrix
given by:

0.0014 -0.0662 0.0298 -0.0072 -0.0523 -0.0184
0.0768 0.0653 -0.0770 -0.0858 -0.0968 -0.0609
w=| 0.0231 0.0223 -0.0053 0.0162 -0.0231  0.0024
-0.0907 0.0695 0.0366 0.0132 0.0515 0.0427
0.0904 -0.0772 -0.0733 -0.0490 0.0150 0.0735

and then by applying the singular perturbation technique, the following reduced 3t order
model is obtained:

-0.2051 -1.5131 0.6966 0.0341
x(t)=| 0 -0.6782  -0.0329 |x(t)+| 0.0078 |u(t)
0 0 -1.8986 0.4649
0 0 1 0
y(t)=] 05 0 05 x(t)+| O |u(f)
-02 -02 02 0.0017

Again, it is seen here the preservation of the eigenvalues of the reduced-order model being
as a subset of the original system. However, as shown before, the reduced model without
system transformation provided different eigenvalues {-1.5165,-0.6223,-0.2060} from the
transformed reduced order model. Simulating both systems for a step input provided the
results shown in Figure 8.

In Figure 8, it is also seen that the response of the non-transformed reduced model is better
than the transformed reduced model, which is again caused by leaving the output [C]
matrix without transformation.

4.1.2 LMI-based state transformation using neural identification

As observed in the previous subsection, the system transformation without using the LMI
optimization method, where its objective was to preserve the system eigenvalues in the
reduced model, didn't provide an acceptable response as compared with either the reduced
non-transformed or the original responses.

As was mentioned, this was due to the fact of not transforming the complete system (i.e., by
neglecting the [C] matrix). In order to achieve better response, we will now perform a
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complete system transformation utilizing the LMI optimization technique to obtain the

permutation matrix [P] based on the transformed system matrix [A] as resulted from the
ANN-based identification, where the following presents simulations for the previously
considered tape drive system cases.
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Fig. 8. Reduced 3rd order models (.... transformed, -.-.-.- non-transformed) output responses
to a step input along with the non-reduced ( original) 5th order system output response.

Case #1. For the example of case #1 in subsection 4.1.1, the ANN identification is used now
to identify only the transformed [ A, ] matrix. Discretizing the system with T, = 0.1 sec.,
using a step input with learning time T; = 15 sec.,, and training the ANN for the
input/output data with 77 = 0.001 and initial weights for the [ A, ] matrix as follows:

0.0286 0.0384 0.0444 0.0206 0.0191
0.0375 0.0440 0.0325 0.0398 0.0144
w=| 0.0016 0.0186 0.0307 0.0056 0.0304
0.0411 0.0226 0.0478 0.0287 0.0453
0.0327 0.0042 0.0239 0.0106 0.0002

produces the transformed system matrix:

-0.5967 0.8701 -1.4633 -0.9860 0.0964
-0.8701 -0.5967 0.2276 0.6165 0.2114

A= 0 0 -0.9809 01395  0.4934
0 0 0 -9.9985  1.0449
0 0 0 0 -10.5764

Based on this transformed matrix, using the LMI technique, the permutation matrix [P] was
computed and then used for the complete system transformation. Therefore, the
transformed {[B], [C], [D]} matrices were then obtained. Performing model order
reduction provided the following reduced 3rd order model:
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-0.5967 0.8701
x(t) =|-0.8701 -0.5967

0

-0.0019

y(t)=| 0.0024 -0.0009
-0.0001  0.0004

0

0

146331 [35.1670
0.2276 |x(t)+| -47.3374 |u(t)
09809 | -41652
0.0139]  [-0.0025
-0.0088 |x(t) +| -0.0025 |u(t)
-0.0021] | 0.0006

where the objective of eigenvalue preservation is clearly achieved. Investigating the
performance of this new LMI-based reduced order model shows that the new completely
transformed system is better than all the previous reduced models (transformed and non-
transformed). This is clearly shown in Figure 9 where the 3rd order reduced model, based on
the LMI optimization transformation, provided a response that is almost the same as the 5th

order original system response.

System Output

Fig. 9. Reduced 3rd order models (.... transformed without LM], -.-.-.- non-transformed, ----
transformed with LMI) output responses to a step input along with the non reduced (
original) system output response. The LMI-transformed curve fits almost exactly on the

original response.

Time[s]

Case #2. For the example of case #2 in subsection 4.1.1, for T; = 0.1 sec., 200 input/output

data learning points, and 7 = 0.0051 with initial weights for the [ A, ] matrix as follows:

0.0332
0.0317
w=| 0.0745
0.0459
0.0706

0.0682
0.0610
0.0516
0.0231
0.0418

0.0476
0.0575
0.0040
0.0086
0.0633

0.0129
0.0028
0.0234
0.0611
0.0176

0.0439
0.0691
0.0247
0.0154
0.0273
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the transformed [ A | was obtained and used to calculate the permutation matrix [P]. The
complete system transformation was then performed and the reduction technique produced
the following 3rd order reduced model:

[-0.6910 1.3088 -3.8578]  [-0.7621]
(t)=|-1.3088 -0.6910 -1.5719 |x(t)+|-0.1118 |u(t)
0 0  -03697) | 0.4466]
(00061 00261 001117  [0.0015 ]
y(t)=| -0.0459 0.0187 -0.0946 |x(t)+| 0.0015 |u(t)
| 0.0117  0.0155 -0.0080| | 0.0014 |

with eigenvalues preserved as desired. Simulating this reduced order model to a step input,
as done previously, provided the response shown in Figure 10.

System Output

Timel[s]

Fig. 10. Reduced 3rd order models (.... transformed without LM], -.- -.- non-transformed,

---- transformed with LMI) output responses to a step input along with the non reduced (
___ original) system output response. The LMI-transformed curve fits almost exactly on the
original response.

Here, the LMI-reduction-based technique has provided a response that is better than both of
the reduced non-transformed and non-LMI-reduced transformed responses and is almost
identical to the original system response.

Case #3. Investigating the example of case #3 in subsection 4.1.1, for T; = 0.1 sec., 200

input/output data points, and 77 = 1 x 10 with initial weights for [A4] given as:
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0.0048 0.0039 0.0009 0.0089 0.0168
0.0072 0.0024 0.0048 0.0017 0.0040
w=| 0.0176 0.0176 0.0136 0.0175 0.0034
0.0055 0.0039 0.0078 0.0076 0.0051
0.0102 0.0024 0.0091 0.0049 0.0121

the LMI-based transformation and then order reduction were performed. Simulation results
of the reduced order models and the original system are shown in Figure 11.

System Output

Time[s]

Fig. 11. Reduced 3rd order models (.... transformed without LMI, -.-.-.- non-transformed,

---- transformed with LMI) output responses to a step input along with the non reduced (
___ original) system output response. The LMI-transformed curve fits almost exactly on the
original response.

Again, the response of the reduced order model using the complete LMI-based
transformation is the best as compared to the other reduction techniques.

5. The application of closed-loop feedback control on the reduced models

Utilizing the LMI-based reduced system models that were presented in the previous section,
various control techniques - that can be utilized for the robust control of dynamic systems -
are considered in this section to achieve the desired system performance. These control
methods include (a) PID control, (b) state feedback control using (1) pole placement for the
desired eigenvalue locations and (2) linear quadratic regulator (LQR) optimal control, and
(c) output feedback control.

5.1 Proportional-Integral-Derivative (PID) control
A PID controller is a generic control loop feedback mechanism which is widely used in
industrial control systems [7,10,24]. It attempts to correct the error between a measured
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process variable (output) and a desired set-point (input) by calculating and then providing a
corrective signal that can adjust the process accordingly as shown in Figure 12.
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Fig. 12. Closed-loop feedback single-input single-output (SISO) control using a PID
controller.

In the control design process, the three parameters of the PID controller {K,, K;, K4} have to
be calculated for some specific process requirements such as system overshoot and settling
time. It is normal that once they are calculated and implemented, the response of the system
is not actually as desired. Therefore, further tuning of these parameters is needed to provide
the desired control action.

Focusing on one output of the tape-drive machine, the PID controller using the reduced
order model for the desired output was investigated. Hence, the identified reduced 3rd order
model is now considered for the output of the tape position at the head which is given as:

0.0801s +0.133
s° +2.1742s% +2.2837s +1.0919

G(s)

original —

Searching for suitable values of the PID controller parameters, such that the system provides
a faster response settling time and less overshoot, it is found that {K, = 100, K; = 80, K; = 90}
with a controlled system which is given by:

7.209s° +19.98s% +19.71s + 10.64

G(s
) s* +9.383s% + 22.26s2 + 20.85 + 10.64

controlled —

Simulating the new PID-controlled system for a step input provided the results shown in
Figure 13, where the settling time is almost 1.5 sec. while without the controller was greater
than 6 sec. Also as observed, the overshoot has much decreased after using the PID
controller.

On the other hand, the other system outputs can be PID-controlled using the cascading of
current process PID and new tuning-based PIDs for each output. For the PID-controlled
output of the tachometer shaft angle, the controlling scheme would be as shown in Figure
14. As seen in Figure 14, the output of interest (i.e., the 2nd output) is controlled as desired
using the PID controller. However, this will affect the other outputs' performance and
therefore a further PID-based tuning operation must be applied.
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Fig. 13. Reduced 3rd order model PID controlled and uncontrolled step responses.
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Fig. 14. Closed-loop feedback single-input multiple-output (SIMO) system with a PID
controller: (a) a generic SIMO diagram, and (b) a detailed SIMO diagram.
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As shown in Figure 14, the tuning process is accomplished using Gir and Gsr. For example,
for the 1st output:

Y, =G;G,PID(R -Y,)=Y, =G,R (39)
R
Gp=—— (40)
PID(R-Y,)

where Y) is the Laplace transform of the 2nd output. Similarly, Gsr can be obtained.

5.2 State feedback control
In this section, we will investigate the state feedback control techniques of pole placement
and the LQR optimal control for the enhancement of the system performance.

5.2.1 Pole placement for the state feedback control
For the reduced order model in the system of Equations (37) - (38), a simple pole placement-
based state feedback controller can be designed. For example, assuming that a controller is
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needed to provide the system with an enhanced system performance by relocating the
eigenvalues, the objective can be achieved using the control input given by:

u(t)=—-Kx,(t)+r(t) (41)

where K is the state feedback gain designed based on the desired system eigenvalues. A
state feedback control for pole placement can be illustrated by the block diagram shown in
Figure 15.

D, l
r(t) + + = X (t + (1)
u(t) q Bar L 5 xr (Z J‘ xr ( )= Cor +' ( ) >
AO}"
K |4

Fig. 15. Block diagram of a state feedback control with {[ A, ], [ B, ], [ Cor I, [ Dy, ]} overall

reduced order system matrices.

Replacing the control input u(f) in Equations (37) - (38) by the above new control input in
Equation (41) yields the following reduced system equations:

%,(1) = Ay %, (1) + By [-KZ, (1) + 1(8)] (42)
y(t) = C,, %, () + D, [-KZ, (£) + r(t)] (43)
which can be re-written as:
X,(t) = A, %, (t) - B,,K%,(t)+ B,r(t) — %,(t)=[A,, - B,KIZ,(t)+B,,r(t)
y(t) = Coy &, (t) = D, K%, (£)+ D,y r(t) = y(t)=[C,, — D, KIZ, () + Dy r(t)

where this is illustrated in Figure 16.

D

or

a0 fy M0
Cor - D()I”K

=

0 " x,(t)

or

4
S
y

—

Aar - BorK

Fig. 16. Block diagram of the overall state feedback control for pole placement.
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The overall closed-loop system model may then be written as:
J’Z’(l’) = Aclir(t) + Bclr(t) (44)

y(t) = CaX, () + Dyr(t) (45)

such that the closed loop system matrix [Ag] will provide the new desired system
eigenvalues.

For example, for the system of case #3, the state feedback was used to re-assign the
eigenvalues with {-1.89, -1.5, -1}. The state feedback control was then found to be of K = [-
1.2098 0.3507 0.0184], which placed the eigenvalues as desired and enhanced the system
performance as shown in Figure 17.
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Fig. 17. Reduced 3rd order state feedback control (for pole placement) output step response
-.-.-.- compared with the original full order system output step response.

5.2.2 Linear-Quadratic Regulator (LQR) optimal control for the state feedback control
Another method for designing a state feedback control for system performance
enhancement may be achieved based on minimizing the cost function given by [10]:

= T(xTQx + uTRu) dt (46)
0

which is defined for the system #(t) = Ax(¢) + Bu(t), where Q and R are weight matrices for
the states and input commands. This is known as the LQR problem, which has received
much of a special attention due to the fact that it can be solved analytically and that the
resulting optimal controller is expressed in an easy-to-implement state feedback control
[7,10]. The feedback control law that minimizes the values of the cost is given by:

u(t) =-Kx(t) (47)



86 Recent Advances in Robust Control — Novel Approaches and Design Methods

where K is the solution of K=R™'B"g and [q] is found by solving the algebraic Riccati
equation which is described by:

ATqg+qA-gBR'B'g+Q=0 (48)

where [Q] is the state weighting matrix and [R] is the input weighting matrix. A direct
solution for the optimal control gain maybe obtained using the MATLAB statement
K =Igr(A,B,Q,R), where in our example R = 1, and the [Q] matrix was found using the

output [C] matrix such as Q = c'c.

The LQOR optimization technique is applied to the reduced 3rd order model in case #3 of
subsection 4.1.2 for the system behavior enhancement. The state feedback optimal control
gain was found K = [-0.0967 -0.0192 0.0027], which when simulating the complete system for
a step input, provided the normalized output response (with a normalization factor y =
1.934) as shown in Figure 18.

System Output

Time([s]
Fig. 18. Reduced 3 order LOR state feedback control output step response -.-.-.- compared
with the original full order system output step response.

As seen in Figure 18, the optimal state feedback control has enhanced the system
performance, which is basically based on selecting new proper locations for the system
eigenvalues.

5.3 Output feedback control

The output feedback control is another way of controlling the system for certain desired
system performance as shown in Figure 19 where the feedback is directly taken from the
output.
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D, l
" PR () %, (1) ' (o)
— O s s [ c —»(O—

or or +

or

K |«

Fig. 19. Block diagram of an output feedback control.

The control input is now given by u(t)=-Ky(t)+r(t), where y(t)=C,X,(t)+D,u(t). By

applying this control to the considered system, the system equations become [7]:

x,() = A, &, () + B,,[-K(C,, %, (t) + D,,u(t)) + r(t)]
= A, %, (t)- B, KC,%,(t)- B, KD,,u(t) + B, r(t)
=[A,, - B, KC,,1&,(t) - B,,KD,,u(t) + B, r(t)
=[A,, - B,K[I+D,K]'C, 1&,(t)+[B,[I + KD, 1 '1r(t)

}/(t) = Corir(t) + Dor[_Ky(t) + T(t)]
= Corir(t)_DorKy(t) +Dorr(t) (50)

=[[1+ D, KIC,,J%,(t) + [T+ D, K" D,, Ir(t

This leads to the overall block diagram as seen in Figure 20.

+ x,(t) x,(t) B
BOV [I + KDOV ]71 > j [I + DorK]il Cor
(1) + ()

A 4

Aor - BorK[I + DorK]ilcor

Fig. 20. An overall block diagram of an output feedback control.

Considering the reduced 34 order model in case #3 of subsection 4.1.2 for system behavior
enhancement using the output feedback control, the feedback control gain is found to be K =
[0.5799 -2.6276 -11]. The normalized controlled system step response is shown in Figure 21,
where one can observe that the system behavior is enhanced as desired.
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Fig. 21. Reduced 3rd order output feedback controlled step response -.-.-.- compared with the
original full order system uncontrolled output step response.

6. Conclusions and future work

In control engineering, robust control is an area that explicitly deals with uncertainty in its
approach to the design of the system controller. The methods of robust control are designed
to operate properly as long as disturbances or uncertain parameters are within a compact
set, where robust methods aim to accomplish robust performance and/or stability in the
presence of bounded modeling errors. A robust control policy is static - in contrast to the
adaptive (dynamic) control policy - where, rather than adapting to measurements of
variations, the system controller is designed to function assuming that certain variables will
be unknown but, for example, bounded.

This research introduces a new method of hierarchical intelligent robust control for dynamic
systems. In order to implement this control method, the order of the dynamic system was
reduced. This reduction was performed by the implementation of a recurrent supervised
neural network to identify certain elements [A] of the transformed system matrix [A],
while the other elements [A;] and [A,] are set based on the system eigenvalues such that [A,]
contains the dominant eigenvalues (i.e., slow dynamics) and [A,] contains the non-dominant
eigenvalues (i.e., fast dynamics). To obtain the transformed matrix [A ], the zero input
response was used in order to obtain output data related to the state dynamics, based only
on the system matrix [A]. After the transformed system matrix was obtained, the
optimization algorithm of linear matrix inequality was utilized to determine the
permutation matrix [P], which is required to complete the system transformation matrices
{{B],[C], [D]}. The reduction process was then applied using the singular perturbation
method, which operates on neglecting the faster-dynamics eigenvalues and leaving the
dominant slow-dynamics eigenvalues to control the system. The comparison simulation
results show clearly that modeling and control of the dynamic system using LMI is superior
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to that without using LMI. Simple feedback control methods using PID control, state
feedback control utilizing (a) pole assignment and (b) LOR optimal control, and output
feedback control were then implemented to the reduced model to obtain the desired
enhanced response of the full order system.

Future work will involve the application of new control techniques, utilizing the control
hierarchy introduced in this research, such as using fuzzy logic and genetic algorithms.
Future work will also involve the fundamental investigation of achieving model order
reduction for dynamic systems with all eigenvalues being complex.
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1. Introduction

There have been significant progresses reported in nonlinear adaptive control in the last two
decades or so, partially because of the introduction of neural networks (Polycarpou, 1996;
Chen & Liu, 1994; Lewis, Yesidirek & Liu, 1995; Sanner & Slotine, 1992; Levin & Narendra,
1993; Chen & Yang, 2005). The adaptive control schemes reported intend to design adaptive
neural controllers so that the designed controllers can help achieve the stability of the
resulting systems in case of uncertainties and/or unmodeled system dynamics. It is a typical
assumption that no restriction is imposed on the magnitude of the control signal.
Accompanied with the adaptive control design is usually a reference model which is
assumed to exist, and a parameter estimator. The parameters can be estimated within a pre-
designated bound with appropriate parameter projection. It is noteworthy that these design
approaches are not applicable for many practical systems where there is a restriction on the
control magnitude, or a reference model is not available.

On the other hand, the economics performance index is another important objective for
controller design for many practical control systems. Typical performance indexes include,
for instance, minimum time and minimum fuel. The optimal control theory developed a few
decades ago is applicable to those systems when the system model in question along with a
performance index is available and no uncertainties are involved. It is obvious that these
optimal control design approaches are not applicable for many practical systems where
these systems contain uncertain elements.

Motivated by the fact that many practical systems are concerned with both system stability
and system economics, and encouraged by the promising images presented by theoretical
advances in neural networks (Haykin, 2001; Hopfield & Tank, 1985) and numerous application
results (Nagata, Sekiguchi & Asakawa, 1990; Methaprayoon, Lee, Rasmiddatta, Liao & Ross,
2007; Pandit, Srivastava & Sharma, 2003; Zhou, Chellappa, Vaid & Jenkins, 1998; Chen & York,
2008; Irwin, Warwick & Hunt, 1995; Kawato, Uno & Suzuki, 1988; Liang 1999; Chen & Mohler,
1997; Chen & Mohler, 2003; Chen, Mohler & Chen, 1999), this chapter aims at developing an
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intelligent control design framework to guide the controller design for uncertain, nonlinear

systems to address the combining challenge arising from the following:

e The designed controller is expected to stabilize the system in the presence of
uncertainties in the parameters of the nonlinear systems in question.

e The designed controller is expected to stabilize the system in the presence of
unmodeled system dynamics uncertainties.

¢  The designed controller is confined on the magnitude of the control signals.

e The designed controller is expected to achieve the desired control target with minimum
total control effort or minimum time.

The salient features of the proposed control design framework include: (a) achieving nearly

optimal control regardless of parameter uncertainties; (b) no need for a parameter estimator

which is popular in many adaptive control designs; (c) respecting the pre-designated range
for the admissible control.

Several important technical aspects of the proposed intelligent control design framework

will be studied:

e Hierarchical neural networks (Kawato, Uno & Suzuki, 1988; Zakrzewski, Mohler &
Kolodziej, 1994; Chen, 1998; Chen & Mohler, 2000; Chen, Mohler & Chen, 2000; Chen,
Yang & Moher, 2008; Chen, Yang & Mohler, 2006) are utilized; and the role of each tier
of the hierarchy will be discussed and how each tier of the hierarchical neural networks
is constructed will be highlighted.

o  The theoretical aspects of using hierarchical neural networks to approximately achieve
optimal, adaptive control of nonlinear, time-varying systems will be studied.

e How the tessellation of the parameter space affects the resulting hierarchical neural
networks will be discussed.

In summary, this chapter attempts to provide a deep understanding of what hierarchical
neural networks do to optimize a desired control performance index when controlling
uncertain nonlinear systems with time-varying properties; make an insightful investigation
of how hierarchical neural networks may be designed to achieve the desired level of control
performance; and create an intelligent control design framework that provides guidance for
analyzing and studying the behaviors of the systems in question, and designing hierarchical
neural networks that work in a coordinated manner to optimally, adaptively control the
systems.

This chapter is organized as follows: Section 2 describes several classes of uncertain

nonlinear systems of interest and mathematical formulations of these problems are

presented. Some conventional assumptions are made to facilitate the analysis of the
problems and the development of the design procedures generic for a large class of
nonlinear uncertain systems. The time optimal control problem and the fuel optimal control

problem are analyzed and an iterative numerical solution process is presented in Section 3.

These are important elements in building a solution approach to address the control

problems studied in this paper which are in turn decomposed into a series of control

problems that do not exhibit parameter uncertainties. This decomposition is vital in the
proposal of the hierarchical neural network based control design. The details of the
hierarchical neural control design methodology are given in Section 4. The synthesis of
hierarchical neural controllers is to achieve (a) near optimal control (which can be time-
optimal or fuel-optimal) of the studied systems with constrained control; (b) adaptive
control of the studied control systems with unknown parameters; (c) robust control of the
studied control systems with the time-varying parameters. In Section 5, theoretical results
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are developed to justify the fuel-optimal control oriented neural control design procedures
for the time-varying nonlinear systems. Finally, some concluding remarks are made.

2. Problem formulation

As is known, the adaptive control design of nonlinear dynamic systems is still carried out on a
per case-by-case basis, even though there have numerous progresses in the adaptive of linear
dynamic systems. Even with linear systems, the conventional adaptive control schemes have
common drawbacks that include (a) the control usually does not consider the physical control
limitations, and (b) a performance index is difficult to incorporate. This has made the adaptive
control design for nonlinear system even more challenging. With this common understanding,
this Chapter is intended to address the adaptive control design for a class of nonlinear systems
using the neural network based techniques. The systems of interest are linear in both control
and parameters, and feature time-varying, parametric uncertainties, confined control inputs,
and multiple control inputs. These systems are represented by a finite dimensional differential
system linear in control and linear in parameters.

The adaptive control design framework features the following:

¢ The adaptive, robust control is achieved by hierarchical neural networks.

e The physical control limitations, one of the difficulties that conventional adaptive
control can not handle, are reflected in the admissible control set.

e The performance measures to be incorporated in the adaptive control design, deemed
as a technical challenge for the conventional adaptive control schemes, that will be
considered in this Chapter include:

e  Minimum time - resulting in the so-called time-optimal control

¢ Minimum fuel - resulting in the so-called fuel-optimal control

¢ Quadratic performance index - resulting in the quadratic performance optimal
control.

Although the control performance indices are different for the above mentioned approaches,

the system characterization and some key assumptions are common.

The system is mathematically represented by

x=a(x)+C(x)p+ B(x)u (1)

where x e G2 R" is the state vector, p e Q,c R! is the bounded parameter vector, u e R"

is the control vector, which is confined to an admissible control set U,

a(x)=[a(x) ay(x) - an(x)]T is an n-dimensional vector function of x,
_Cn(x) Cp(x) . Cy 1
C C .. C

C(x)= () Cn(x) 21(%) is an nxl-dimensional matrix function of x, and
_Cnl(x) CnZ(x) Cnl(x)_
_Bn(x) Bip(x) .. By, ]
B B .. B

B(x) = () Bn(¥) 2 (%) is an n x m -dimensional matrix function of x .
_Bnl(x) BnZ(x) Bnm(x)_
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The control objective is to follow a theoretically sound control design methodology to
design the controller such that the system is adaptively controlled with respect to
parametric uncertainties and yet minimizing a desired control performance.

To facilitate the theoretical derivations, several conventional assumptions are made in the
following and applied throughout the Chapter.

AST1: It is assumed that a(.), C(.) and B(.) have continuous partial derivatives with respect

Oa;(x)

to the state variables on the region of interest. In other words, a;(x), C;(x), By (x), pr
X :
j
oC; OB, . . .
is(%) , and () for i,j=1,2,---,n; k=1,2,---,m; s=1,2,---,1 exist and are continuous
0x; Ox;

and bounded on the region of interest.
It should be noted that the above conditions imply that a(.), C() and B(.) satisfy the

Lipschitz condition which in turn implies that there always exists a unique and continuous
solution to the differential equation given an initial condition x(f,)=¢&, and a bounded

control u(t).

AS2: In practical applications, control effort is usually confined due to the limitation of
design or conditions corresponding to physical constraints. Without loss of generality,
assume that the admissible control set U is characterized by:

Us={u:|ul<1,i=1,2,-,m} )

where u; is u's i th component.

AS3: It is assumed that the system is controllable.
AS4: Some control performance criteria | may relate to the initial time #, and the final time

t; . The cost functional reflects the requirement of a particular type of optimal control.

AS5: The target set ¢, is defined as ¢, = {x wy(x(ty)) = 0} where y,’s (i=1,2,---,q) are the
components of the continuously differentiable function vector y(.).

Remark 1: As a step of our approach to address the control design for the system (1), the
above same control problem is studied with the only difference that the parameters in Eq.
(1) are given. An optimal solution is sought to the following control problem:

The optimal control problem ( P, ) consists of the system equation (1) with fixed and known

parameter vector p, the initial time #, the variable final time ¢, the initial state x, = x(t;) ,

together with the assumptions AS1, AS2, AS3, AS4, AS5 satisfied such that the system state
conducts to a pre-specified terminal set ¢, at the final time f; while the control

performance index is minimized.
AS6: There do not exist singular solutions to the optimal control problem ( F ) as described
in Remark 1 (referenced as the control problem (F,) later on distinct from the original

control problem ( P)).
AST: *x isboundedon peQ, and x€Q, .
p ' '
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Remark 2: For any continuous function f(x) defined on the compact domain Q, cR",

there exists a neural network characterized by NN (x) such that for any positive number

g;, | f(x)=NN(x)|< g}.
AS8: Let the sufficiently trained neural network be denoted by NN(x,0,), and the neural
network with the ideal weights and biases by NN(x,0.) where ©, and ©. designate the

parameter vectors comprising weights and biases of the corresponding neural networks.
The  approximation of  NN(x,0;) to  NN;(x,0.) is measured by

ONN((x;0,;0.) = NN((x,0,) - NN ((x,0.)| . Assume that SNN((x;®;®.) is bounded by a
pre-designated number &° >0, ie, SNN(x;0,;0.)<&’.

AS9: The total number of switch times for all control components for the studied fuel-
optimal control problem is greater than the number of state variables.

Remark 3: AS9 is true for practical systems to the best knowledge of the authors. The
assumption is made for the convenience of the rigor of the theoretical results developed in
this Chapter.

2.1 Time-optimal control
For the time-optimal control problem, the system characterization, the control objective,
constraints remain the same as for the generic control problem with the exception that the
control performance index reflected in the Assumption AS4 is replaced with the following;:
t
£
AS4: The control performance criteria is | = .[1[15 where f; and f are the initial time and the
fo
final time, respectively. The cost functional reflects the requirement of time-optimal control.

2.2 Fuel-optimal control
For the fuel-optimal control problem, the system characterization, the control objective,
constraints remain the same as for the time-optimal control problem with the Assumption
AS4 replaced with the following;:
b
AS4: The control performance criteria is | = j [30 + Z’::l e | u kﬂds where t;, and t; are the
to
initial time and the final time, respectively, and ¢, (k=0,1,2,---,m) are non-negative
constants. The cost functional reflects the requirement of fuel-optimal control as related to
the integration of the absolute control effort of each control variable over time.

2.3 Optimal control with quadratic performance index

For the quadratic performance index based optimal control problem, the system

characterization, the control objective, constraints remain the same with the Assumption

AS4 replaced with the following:

AS4: The control performance criteria is
b

]:%(x(tf)—r(tf))’S(tf)(x(tf)—r(tf))+%_[[x’Qx+(u —u,)" R(u —ue)]ds where f; and t; are

fy
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the initial time and the final time, respectively; and S(¢ f) >0, Q20, and R>0 with
appropriate dimensions; and the desired final state r(t;) is the specified as the equilibrium

x,,and u, is the equilibrium control.

3. Numerical solution schemes to the optimal control problems

To solve for the optimal control, mathematical derivations are presented below for each of
the above optimal control problems to show that the resulting equations represent the
Hamiltonian system which is usually a coupled two-point boundary-value problem
(TPBVP), and the analytic solution is not available, to our best knowledge. It is worth noting
that in the solution process, the parameter is assumed to be fixed.

3.1 Numerical solution scheme to the time optimal control problem
By assumption AS4, the optimal control performance index can be expressed as

Jt) = [, 1t

where £, is the initial time, and ¢, is the final time.

Define the Hamiltonian function as
H(x,u,t)=1+ A" (a(x) + C(x)p + B(x)u)

where 1=[4 4, - A, isthe costate vector.

n

The final-state constraint is y/(x(f,))=0 as mentioned before.

The state equation can be expressed as
X= % =a(x)+C(x)p+B(x)u,t = ¢,

The costate equation can be written as

; _OH _ 0(a(x) +C(x)p + B(x)u)® P

-2 JA<T
ox ox

The Pontryagin minimum principle is applied in order to derive the optimal control (Lee &
Markus, 1967). That is,

H(x*,u*,/l*,t)SH(x*,u ,ﬂ*,t)

for all admissible u .

where 1", x" and 1" correspond to the optimal solution.
Consequently,

A Z:; B, (x* )u; <At z;":l By (x)uy
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where B, (x) is the k th column of the B(x).
Since the control components u, 's are all independent, the minimization of /Vzkm:l B, (x)u,

is equivalent to the minimization of 4B, (x)u,
The optimal control can be expressed as u, = —sgn(s, (t)), where sgn(.) is the sign function
defined as sgn(t)=1 if t>0 or sgn(t)=-1if t<0; and s.(f)=A'B,(x) is the kth
component of the switch vector S(t)=B(x)" 1.

It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value
problem, and its analytic solution is not available in general.

With assumption AS6 satisfied, it is observed from the derivation of the optimal time control
that the control problem ( F, ) has bang-bang control solutions.

Consider the following cost functional:

q
=], 1+ Y ()

where p;'s are positive constants, and y; 's are the components of the defining equation of

the target set 6, = {x wy(x(ty)) = O} to the system state is transferred from a given initial state

by means of proper control, and g is the number of components in y .

It is observed that the system described by Eq. (1) is a nonlinear system but linear in control.
With assumption AS6, the requirements for applying the Switching-Time-Varying-Method
(STVM) are met. The optimal switching-time vector can be obtained by using a gradient-
based method. The convergence of the STVM is guaranteed if there are no singular
solutions.

Note that the cost functional can be rewritten as follows:

J= I, Hag (o) < o), )N

where ay(x)=1+2Y""  py; <%,a(x)+€(x)p >, by(x)=2)7 1plz//z 61,/4 B(x), and a(x),

C(x), p and B(x) are as given in the control problem ( ;).

Define a new state variable x,(t) as follows:

xo(t) = [ [(ag e+ < b))t
Define the augmented state vector g:[xo x’}r, g(g):[aé)(x) (a(x)+C(x)p)TT, and

B(x)=[ bo(x) (B)) ] -

The system equation can be rewritten in terms of the augmented state vector as

= a(x) + B()u where x(to)=[0 x(t)" | .
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A Hamiltonian system can be constructed for the above state equation with the costate
equation given by

i= _6_‘1(2@) + B(x)u)" 1 where A(tf) = s—i |£(tf) .

It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal
switching times must be finite provided that no singular solutions exist. Let the zeros of

—s(t) be 7, (j=1,2,-,2Ng, k=1,2,-,;m;and 7;; <7;; for 1<j; <j, <2Ny).

Ni

”Z(t) = Z[sgn(t - T;,Zj—l) —sgn(t - Tf,z;')]'
j=1

Let the switch vector for the kth component of the control vector be sz :ZNE where

N T
I :|:le1 TI:,2N;:| . Let N,=2Nj. Then z"* is the switching vector of N,

dimensions.

Let the vector of switch functions for the control variable u, be defined as

¢Nk:[¢1wk (%J where ¢ = (1) "s(zy ;) (j=1,2,-,2N}).

The gradient that can be used to update the switching vector z"* can be given by

v =g
i

The optimal switching vector can be obtained iteratively by using a gradient-based method.

sz,m _ ZNk,i + Kk,i¢Nk

where K" is a properly chosen N, x N, -dimensional diagonal matrix with non-negative

Ny i

entries for the i th iteration of the iterative optimization process; and z represents the

i th iteration of the switching vector z* .

Remark 4: The choice of the step sizes as characterized in the matrix K*' must consider two

facts: if the step size is chosen too small, the solution may converge very slowly; if the step
size is chosen too large, the solution may not converge. Instead of using the gradient
descent method, which is relatively slow compared to other alternative such as methods
based on Newton's method and inversion of the Hessian using conjugate gradient
techniques.

When the optimal switching vectors are determined upon convergence, the optimal control
trajectories and the optimal state trajectories are computed. This process will be repeated for
all selected nominal cases until all needed off-line optimal control and state trajectories are
obtained. These trajectories will be used in training the time-optimal control oriented neural
networks.
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3.2 Numerical solution scheme to the fuel optimal control problem
By assumption AS4, the optimal control performance index can be expressed as

J(ty) = Jj{% + el @dt
0 k=1

where t, is the initial time, and ¢ f is the final time.

Define the Hamiltonian function as

H(x,u,t)=e,+ i e | uy | +A7 (a(x) + C(x)p + B(x)u)
k=1

where ] = [ A Ay e gn]f is the costate vector.
The final-state constraint is w(x(t f)) =0 as mentioned before.

The state equation can be expressed as
X= Z—ZI =a(x)+C(x)p+B(x)u,t > ¢,

The costate equation can be written as

e oH _ 0(a(x)+ C(x)p + B(x)u)" a4
ox ox
Oeo + 2y [e]) _ a(a(x) + Cx)p+ Bu)” o
ox - ox T

The Pontryagin minimum principle is applied in order to derive the optimal control (Lee &
Markus, 1967). That is,

H(x*,u*,l*,t) < H(x*,u ,l*,t) for all admissible u, where u, x* and 4~ correspond to the

optimal solution.
Consequently,

DL EAD I ACHTIE
zkmzlek | | lez:; By (x)uy
where B (x) is the kth column of the B(x).
Since the control components u,'s are all independent, the minimization of
ka=1 e, | Uy |+,172;”=1 B, (x)u, isequivalent to the minimization of e, |u [+A"By(x)uy .
Since ¢, #0, define s, =AB,(x)/¢e,. The fuel-optimal control satisfies the following
condition:
~sgn(si (). s (f) > 1
= 0.l sc(H)l<1
undefined,| s, (t)|=1
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where k=1,2,---,m.
Note that the above optimal control can be written in a different form as follows:

Mk = uk+ + uk_

where u,* = %[sgn(—s,:(t) -1+ 1} ,and u, = %[sgn(—s;(t) +1)- 1} .

It is observed that the resulting Hamiltonian system is a coupled two-point boundary-value
problem, and its analytic solution is not available in general.

With assumption AS6 satisfied, it is observed from the derivation of the optimal fuel control
that the control problem ( F ) only has bang-off-bang control solutions.

Consider the following cost functional:

n q
]=Ltf{€o +2 el I}dﬂ Y i (x(ty))
0 k=1 i-1

where p;'s are positive constants, and y; 's are the components of the defining equation of

the target set 0, = {x y(x(ty)) = O} to the system state is transferred from a given initial state

by means of proper control, and g is the number of components in i .

It is observed that the system described by Eq. (1) is a nonlinear system but linear in control.
With assumption AS6, the requirements for the STVM's application are met. The optimal
switching-time vector can be obtained by using a gradient-based method. The convergence
of the STVM is guaranteed if there are no singular solutions.

Note that the cost functional can be rewritten as follows:

m

J= [/ lao e+ <by(x)u>) + Y ey g 1t
0 k=1

' a H ! a ;
where a,(x)=¢,+ 22?:1piy/i < %,a(x) +C(x)p>, by(x)= 22?:1/31-% a—V;]’B(x) , and a(x),

C(x), p and B(x) are as given in the control problem ( ;).

Define a new state variable x,(t) as follows:

o(8) = [ o)+ < byl u>)+ ey g |
k=1

T
Define the augmented state vector x = [xo xTJ ,

T

a(@)=[a(x) (a(x)+C(x)p) |, and Bx)=[bo(x) (B))] -

The system equation can be rewritten in terms of the augmented state vector as

% =a(x)+ B(x)u where x(t))=[0 x(to)"| .
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The adjoint state equation can be written as

i:_a_i(g(g)+§(g)u)r/l where /1(tf)=%z(tf)-

It has been shown (Moon, 1969; Mohler, 1973; Mohler, 1991) that the number of the optimal
switching times must be finite provided that no singular solutions exist. Let the zeros of

—s(t)=1be 7;; (j=1,2,---,2N;, k=1,2,--,m;and 7;; <7, for 1<j <j, <2Ny) which
represent the switching times corresponding to positive control u,*, the zeros of —s,(t)+1
be 7, ; (j=1,2,--,2N;,k=1,2,---,;m;and 7, ; <7 ; for 1<j; <j, <2N; ) which represent
the switching times corresponding to negative control u,” . Altogether 7i;'s and 7 's

represent the switching times which uniquely determine u, as follows:

Ny

uy () = %{Z[sgn(t ~Tj2j-1) ~S8N(t =7 ;)] -
=i

N

D [sgn(t =7 0;1) —sgn(t —7i 0]}

p=1

Let the switch vector for the kth component of the control vector be
+ - v + T - T
Mol @y @ | where N [y e ] and 2 [my ey ] Let
! 7&Nk - ! 1&g
N, =2N; +2N; . Then "¢ is the switching vector of N; dimensions.

Let the vector of switch functions for the control variable u, be defined as

¢Nk:|:¢1Nk ¢21\11\k1; ¢£\I1\klg+1 ¢21\;\§;+2NJ where ¢]Nk:(_1)j_1ek(sk(rk+,j)+l)
(j=1,2,--,2N{), and ¢]?jk2N+ =(-1Y ey (s5¢(zi. )= 1) (j=1,2,,2N}).
k

The gradient that can be used to update the switching vector z"* can be given by

v =M
I, -

The optimal switching vector can be obtained iteratively by using a gradient-based method.

AN+l _ ZNk,i +Kk,i¢Nk

where K" is a properly chosen N, x N, -dimensional diagonal matrix with non-negative

N

entries for the i th iteration of the iterative optimization process; and z represents the

i th iteration of the switching vector 7" .

When the optimal switching vectors are determined upon convergence, the optimal control
trajectories and the optimal state trajectories are computed. This process will be repeated for
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all selected nominal cases until all needed off-line optimal control and state trajectories are
obtained. These trajectories will be used in training the fuel-optimal control oriented neural
networks.

3.3 Numerical solution scheme to the quadratic optimal control problem
The Hamiltonian function can be defined as

H(x,u,t)= %(x’Qx +(u—-u,) R(u-u,))+A"(a+Cp+Bu)
The state equation is given by
X = ot _ a+Cp+Bu
oA
The costate equation can be given by

. _OH _0(a+Cp+Bu)

-A A+Qx
ox ox Q

The stationarity equation gives

:ﬁ:(;‘(a+Cp+Bu) A+R
ou ou

0 (u—u,)

u can be solved out as

u=-R'B" A+u,
The Hamiltonian system becomes
i = a(x) +C(x)p + B(x)(-R'B" A +u,)

;0@ +C@)p+ B)(-R'B A +1,))*
- Ox

A+Qx

Furthermore, the boundary condition can be given by

Alty) = S(t,)xt )~ r(ty))

Notice that for the Hamiltonian system which is composed of the state and costate
equations, the initial condition is given for the state equation, and the constraints on the
costate variables at the final time for the costate equation.

It is observed that the Hamiltonian system is a set of nonlinear ordinary differential
equations in x(f) and A(t) which develop forward and back in time, respectively. Generally,
it is not possible to obtain the analytic closed-form solution to such a two-point boundary-
value problem (TPBVP). Numerical methods have to be employed to solve for the
Hamiltonian system. One simple method, called shooting method may be used. There are
other methods like the “shooting to a fixed point” method, and relaxation methods, etc.
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The idea for the shooting method is as follows:

1. First make a guess for the initial values for the costate.

2. Integrate the Hamiltonian system forward.

3. Evaluate the mismatch on the final constraints.

4. Find the sensitivity Jacobian for the final state and costate with respect to the initial
costate value.

5. Using the Newton-Raphson method to determine the change on the initial costate
value.

6. Repeat the loop of steps 2 through 5 until the mismatch is close enough to zero.

4. Unified hierarchical neural control design framework

Keeping in mind that the discussions and analyses made in Section 3 are focused on the
system with a fixed parameter vector, which is the control problem (F,). To address the
original control problem ( P ), the parameter vector space is tessellated into a number of sub-
regions. Each sub-region is identified with a set of vertexes. For each of the vertexes, a
different control problem ( P, ) is formed. The family of control problems ( F, ) are combined
together to represent an approximately accurate characterization of the dynamic system
behaviours exhibited by the nonlinear systems in the control problem (P). This is an
important step toward the hierarchical neural control design framework that is proposed to
address the optimal control of uncertain nonlinear systems.

4.1 Three-layer approach

While the control problem (P) is approximately equivalent to the family of control

problems (F), the solutions to the respective control problems (F,) must be properly

coordinated in order to provide a consistent solution to the original control problem (P ).

The requirement of consistent coordination of individual solutions may be mapped to the

hierarchical neural network control design framework proposed in this Chapter that

features the following:

¢  For a fixed parameter vector, the control solution characterized by a set of optimal state
and control trajectories shall be approximated by a neural network, which may be
called a nominal neural network for this nominal case. For each nominal case, a
nominal neural network is needed. All the nominal neural network controllers
constitute the nominal layer of neural network controllers.

e For each sub-region, regional coordinating neural network controllers are needed to
coordinate the responses from individual nominal neural network controllers for the
sub-region. All the regional coordinating neural network controllers constitute the
regional layer of neural network controllers.

e  For an unknown parameter vector, global coordinating neural network controllers are
needed to coordinate the responses from regional coordinating neural network
controllers. All the global coordinating neural network controllers constitute the global
layer of neural networks controllers.

The proposed hierarchical neural network control design framework is a systematic

extension and a comprehensive enhancement of the previous endeavours (Chen, 1998; Chen

& Mohler & Chen, 2000).
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4.2 Nominal layer

Even though the hierarchical neural network control design methodology is unified and
generic, the design of the three layers of neural networks, especially the nominal layer of
neural networks may consider the uniqueness of the problems under study. For the time
optimal control problems, the role of the nominal layer of neural networks is to identify the
switching manifolds that relate to the bang-bang control. For the fuel optimal problems, the
role of the nominal layer of neural networks is to identify the switching manifolds that relate
to the bang-off-bang control. For the quadratic optimal control problems, the role of the
nominal layer of neural networks is to approximate the optimal control based on the state
variables.

— Conventional NN |ee—)y —

v

Fig. 1. Nominal neural network for time optimal control

Consequently a nominal neural network for the time optimal control takes the form of a
conventional neural network with continuous activation functions cascaded by a two-level
stair case function which itself may viewed as a discrete neural network itself, as shown in
Fig. 1. For the fuel optimal control, a nominal neural network takes the form of a
conventional neural network with continuous activation functions cascaded by a three-level
stair case function, as shown in Fig. 2.

— Conventional NN —]

v

Fig. 2. Nominal neural network for fuel optimal control

For the quadratic optimal control, no switching manifolds are involved. A conventional
neural network with continuous activation functions is sufficient for a nominal case, as
shown in Fig. 3.
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— Conventional NN —]

Fig. 3. Nominal neural network for quadratic optimal control

4.3 Overall architecture

The overall architecture of the multi-layered hierarchical neural network control framework,
as shown in Fig. 4, include three layers: the nominal layer, the regional layer, and the global
layer. These three layers play different roles and yet work together to attempt to achieve
desired control performance.

At the nominal layer, the nominal neural networks are responsible to compute the near
optimal control signals for a given parameter vector. The post-processing function block is
necessary for both time optimal control problem and fuel optimal control problems while
indeed it may not be needed for the quadratic optimal control problems. For time optimal
control problems, the post-processing function is a sign function as shown in Fig. 2. For the
fuel optimal control problems, the post-processing is a slightly more complicated stair-case
function as shown in Fig. 3.

At the regional layer, the regional neural networks are responsible to compute the desired
weighting factors that are in turn used to modulate the control signals computed by the
nominal neural networks to produce near optimal control signals for an unknown
parameter vector situated at the know sub-region of the parameter vector space. The post-
processing function block is necessary for all the three types of control problems studied in
this Chapter. It is basically a normalization process of the weighting factors produced by the
regional neural networks for a sub-region that is enabled by the global neural networks.

At the global layer, the global neural networks are responsible to compute the possibilities
of the unknown parameter vector being located within sub-regions. The post-processing
function block is necessary for all the three types of control problems studied in this
Chapter. It is a winner-take-all logic applied to all the output data of the global neural
networks. Consequently, only one sub-regional will be enabled, and all the other sub-
regions will be disabled. The output data of the post-processing function block is used to
turn on only one of the sub-regions for the regional layer.

To make use of the multi-layered hierarchical neural network control design framework, it
is clear that the several key factors such as the number of the neural networks for each layer,
the size of each neural network, and desired training patterns, are important. This all has to
do with the determination of the nominal cases. A nominal case designates a group of
system conditions that reflect one of the typical system behaviors. In the context of control of
a dynamic system with uncertain parameters, which is the focus of this Chapter, a nominal
case may be designated as corresponding to the vertexes of the sub-regions when the
parameter vector space is tessellated into a number of non-overlapping sub-regions down to
a level of desired granularity.
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Once the nominal cases are identified, the numbers of neural networks for the nominal layer,
the regional layer and the global layer can be determined accordingly. Each nominal neural
network corresponds to a nominal case identified. Each regional neural network corresponds
to a nominal neural network. Each global neural network corresponds to a sub-region.

With the numbers of neural networks for all the three layers in the hierarchy determined,
the size of each neural network is dependent upon the data collected for each nominal case.
As shown in the last Section, the optimal state trajectories and the optimal control
trajectories for each of the control problems ( P, ) can be obtained through use of the STVM

approach for time optimal control and for fuel optimal control or the shooting method for
the quadratic optimal control. For each of the nominal cases, the optimal state trajectories
and optimal control trajectories may be properly utilized to form the needed training
patterns.

4.4 Design procedure

Below is the design procedure for multi-layered hierarchical neural networks:

e Identify the nominal cases. The parameter vector space may be tessellated into a
number of non-overlapping sub-regions. The granualarity of the tessellation process is
determined by how sensitive the system dynamic behaviors are to the changes of the
parameters. Each vertext of the sub-regions identifies a nominal case. For each nominal
case, the optimal control problem may be solved numerically and the nuermical
solution may be obtained.

e  Determine the size of the nominal layer, the regional layer and the global layer of the
hierarchy.

¢ Determine the size of the neural networks for each layer in the hierarchy.

e  Train the nominal neural networks. The numerically obtained optimal state and control
trajectories are acquired for each nominal case. The training data pattern for the
nominal neural networks is composed of the state vector as input and the control signal
as the output. In other words, the nominal layer is to establish and approximate a state
feedback control. Finish training when the training performance is satisfactory. Repeat
this nominal layer training process for all the nominal neural networks.

e Training the regional neural networks. The input data to the nominal neural networks
is also part of the input data to the regional neural networks. In addition, for a specific
regional neural network, the ideal output data of the corresponding nominal neural
network is also part of its input data. The ideal output data of the regional neural
network can be determined as follows:

e If the data presented to a given regional neural network reflects a nominal case that
corresponds to the vertex that this regional neural network is to be trained for, then
assign 1 or else 0.

¢  Training the global neural networks. The input data to the nominal neural networks is
also part of the input data to the global neural networks. In addition, for a specific
global neural network, the ideal output data of the corresponding nominal neural
network is also part of its input data. The ideal output data of the global neural network
can be determined as follows:

e If the data presented to a given global neural network reflects a nominal case that
corresponds to the sub-region that this global neural network is to be trained for,
then assign 1 or else 0.
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5. Theoretical justification

This Section provides theoretical support for the adoption of the hierarchical neural
networks.

As shown in (Chen, Yang & Moher, 2006), the desired prediction or control can be achieved
by a properly designed hierarchical neural network.

Proposition 1 (Chen, Yang & Mohler, 2006): Suppose that an ideal system controller can be

characterized by function vectors f"and fl (1<i<n =n,) which are continuous
mappings from a compact support Q< R™ to R, such that a continuous function vector
. n, 1 . . .
falso defined on Q can be expressed as f;(x) = Zi  fij(x)x fi i(x) on the point-wise basis
(xeQ;and f(x) and ff j(x) are the jth component of f* and f1). Then there exists a
hierarchical neural network, used to approximate the ideal system controller or system
identifier, that includes lower level neural networks nn!'s and upper level neural networks

. n
nni (1<i<m=n,) such that for any &; >0, sup,.|f; _Zi;1””zl',j xnn; ;|<e; where
nn; ;(x) and nnf,j (x) are the jth component of nn;’ and nnl .

The following proposition is to show that the parameter uncertainties can also be handled
by the hierarchical neural networks.

Proposition 2: For the system (1) and the assumptions AS1-AS9, with the application of the
hierarchical neural controller, the deviation of the resuting state trajectory for the unknow
parameter vector from that of the optimal state trajectory is bounded.

Proof: Let the estiamte of the parameter vector be denoted by p . The counterpart of system

(1) for the estimated paramter vector p can be given by

% =a(x)+C(x)p+B(x)u

Integrating of the above equation and system (1) from #,to ¢ leads to the following two

equations:

x1(8) = (1) + J, (a1 (9) + Clar () + B (<)) () s

%2 (8) = 33(t) + [, [a(x2(5) + Clxa () + By (9)u(s) s

By noting that x;(t,) = x,(t;) = x, , subtraction of the above two equations yields

1)) = %2 (8) = [ a(3(5) = a3 (9) + [Bx1 () ~ Bxa ()u(s) s +
J, (€)= p) + [ (9) - Cls (e

Note that, by Taylor’s theorem, a(xq(s)) — a(xy(s)) = ap (x1(s) — x,(s)) ,
B(x1(s)) = B(x5(5)) = By (%1 (5) = x2(5)) , and. C(x;(s)) =~ C(x2(s)) = Cr(x1(8) = %2(5)) -
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Define Ax(t)=x;(t)—x,(t), and Ap=p—p. Then we have

Ax(t) = '[: {arAx(s) + BrAx(s)u(s)] + CrAx(s)p}ds +
j; C(x, (5))Apds

If the both sides of the above equation takes an appropriate norm and the triangle inequality
is applied, the following is obtained:

[1AX(8)] <] 1] larAx(s) + Brax(shu(s)] + Crax(e)pds] |+

Jy €Ay 1ds

Note that | |C(x;(s)Ap| | can be made uniformly bounded by & as long as the estimate of
p is made sulfficiently close to p (which can be controlled by the granularity of tessellation),
and pis bounded; |u(t)|<1; ||ap||=sup,eoar(x)<wo, ||Br||=sup,enBr(x)<woand

| 1Cr | [=supyeq Cr(x) <.
It follows that

| 1Ax(B) | [<e(t—to) + (| lar | [+ | Br [ [+ [Cr[]]]p] I)j;AX(S)dS

Define a constant Ko =(| [ar|[+] B | |+||Cr[[[[pl]). Applying the Gronwall-Bellman
Inequality to the above inequality yields

|| Ax(t)] < &t —ty) + j:o Koe(s — ty)expi [, Kodorlds

(t=tp)?
<e(t—ty)+ekK, > exp(Ky(t—ty)) < Ke

t—t
where K =(1=t)(1+ Ko ' exp(Ky(t - ) and K <20

This completes the proof.

6. Simulation

Consider the single-machine infinity-bus (SMIB) model with a thyristor-controlled series-
capacitor (TCSC) installed on the transmission line (Chen, 1998) as shown in Fig. 5, which
may be mathematically described as follows:

F} wy(0—1)
=11 Vi\Veo .
® M(Pm—PO—D(w—l)—msmé')
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where ¢ is rotor angle (rad), @ rotor speed (p.u.), @, =27x60 synchronous speed as base
(rad/sec), P, =0.3665 is mechanical power input (p.u.), F, is unknown fixed load (p.u.),
D =2.0damping factor, M =3.5system inertia referenced to the base power, V,=1.0
terminal bus voltage (p.u.), V,=0.99 infinite bus voltage (p.u.), X,=2.0 transient
reactance of the generator (p.u.), X,=035 transmission reactance (p.u.),

sels =[0.2,0.75] series compensation degree of the TCSC, and (J,,1) is system

min /Smax]
equilibrium with the series compensation degree fixed at s, =0.4.

The goal is to stabilize the system in the near optimal time control fashion with an
unknown load F, ranging 0 and 10% of P,. Two nominal cases are identified. The
nominal neural networks have 15 and 30 neurons in the first and second hidden layer
with log-sigmoid and tan-sigmoid activation functions for these two hidden layers,
respectively. The input data to regional neural networks is the rotor angle, its two
previous values, the control and its previous value, and the outputs are the weighting
factors. The regional neural networks have 15 and 30 neurons in the first and second
hidden layer with log-sigmoid and tan-sigmoid activation functions for these two hidden
layers, respectively. The global neural networks are really not necessary in this simple
case of parameter uncertainty.

Once the nominal and regional neural networks are trained, they are used to control the
system after a severe short-circuit fault and with an unknown load (5% of P,,). The resulting
trajectory is shown in Fig. 6. It is observed that the hierarchical neural controller stabilizes
the system in a near optimal control manner.

Synchronous Transmission Infinite
Machine Line with TCSC Bus

Fig. 5. The SMIB system with TCSC
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Fig. 6. Control performance of hierarchical neural controller. Solid - neural control; dashed -
optimal control.

7. Conclusion

Even with remarkable progress witnessed in the adaptive control techniques for the
nonlinear system control over the past decade, the general challenge with adaptive control
of nonlinear systems has never become less formidable, not to mention the adaptive control
of nonlinear systems while optimizing a pre-designated control performance index and
respecting restrictions on control signals. Neural networks have been introduced to tackle
the adaptive control of nonlinear systems, where there are system uncertainties in
parameters, unmodeled nonlinear system dynamics, and in many cases the parameters may
be time varying. It is the main focus of this Chapter to establish a framework in which
general nonlinear systems will be targeted and near optimal, adaptive control of uncertain,
time-varying, nonlinear systems is studied. The study begins with a generic presentation of
the solution scheme for fixed-parameter nonlinear systems. The optimal control solution is
presented for the purpose of minimum time control and minimum fuel control, respectively.
The parameter space is tessellated into a set of convex sub-regions. The set of parameter
vectors corresponding to the vertexes of those convex sub-regions are obtained.
Accordingly, a set of optimal control problems are solved. The resulting control trajectories
and state or output trajectories are employed to train a set of properly designed neural
networks to establish a relationship that would otherwise be unavailable for the sake of near
optimal controller design. In addition, techniques are developed and applied to deal with
the time varying property of uncertain parameters of the nonlinear systems. All these pieces
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come together in an organized and cooperative manner under the unified intelligent control
design framework to meet the Chapter’s ultimate goal of constructing intelligent controllers
for uncertain, nonlinear systems.
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1. Introduction

Robustness is of crucial importance in control system design because the real engineering
systems are vulnerable to external disturbance and measurement noise and there are always
differences between mathematical models used for design and the actual system. Typically, it
is required to design a controller that will stabilize a plant, if it is not stable originally, and to
satisfy certain performance levels in the presence of disturbance signals, noise interference,
unmodelled plant dynamics and plant-parameter variations. These design objectives are best
realized via the feedback control mechanism (Fig. 1), although it introduces in the issues of
high cost (the use of sensors), system complexity (implementation and safety) and more
concerns on stability (thus internal stability and stabilizing controllers) (Gu, Petkov, &
Konstantinov, 2005). In abstract, a control system is robust if it remains stable and achieves
certain performance criteria in the presence of possible uncertainties. The robust design is to
find a controller, for a given system, such that the closed-loop system is robust.

In this chapter, the basic concepts and representations of a robust adaptive wavelet neural
network control for the case study of buck converters will be discussed.

The remainder of the chapter is organized as follows: In section 2 the advantages of neural
network controllers over conventional ones will be discussed, considering the efficiency of
introduction of wavelet theory in identifying unknown dependencies. Section 3 presents an
overview of the buck converter models. In section 4, a detailed overview of WNN methods is
presented. Robust control is introduced in section 5 to increase the robustness against noise by
implementing the error minimization. Section 6 explains the stability analysis which is based
on adaptive bound estimation. The implementation procedure and results of AWNN
controller are explained in section 7. The results show the effectiveness of the proposed
method in comparison to other previous works. The final section concludes the chapter.

2. Overview of wavelet neural networks

The conventional Proportional Integral Derivative (PID) controllers have been widely used
in industry due to their simple control structure, ease of design, and inexpensive cost (Ang,
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Chong, & Li, 2005). However, successful applications of the PID controller require the
satisfactory tuning of parameters according to the dynamics of the process. In fact, most PID
controllers are tuned on-site. The lengthy calculations for an initial guess of PID parameters
can often be demanding if we know a few about the plant, especially when the system is
unknown.

Command

(Reference)
Controller Input .

Output
Plant >

-+

Error

Fig. 1. Feedback control system design.

There has been considerable interest in the past several years in exploring the applications of
Neural Network (NN) to deal with nonlinearities and uncertainties of the real-time control
system (Sarangapani, 2006). It has been proven that artificial NN can approximate a wide
range of nonlinear functions to any desired degree of accuracy under certain conditions
(Sarangapani, 2006). It is generally understood that the selection of the NN training
algorithm plays an important role for most NN applications. In the conventional gradient-
descent-type weight adaptation, the sensitivity of the controlled system is required in the
online training process. However, it is difficult to acquire sensitivity information for
unknown or highly nonlinear dynamics. In addition, the local minimum of the performance
index remains to be challenged (Sarangapani, 2006). In practical control applications, it is
desirable to have a systematic method of ensuring the stability, robustness, and performance
properties of the overall system. Several NN control approaches have been proposed based
on Lyapunov stability theorem (Lim et al., 2009; Zigian, Shih, & Qunjing, 2009). One main
advantage of these control schemes is that the adaptive laws were derived based on the
Lyapunov synthesis method and therefore it guarantees the stability of the under control
system. However, some constraint conditions should be assumed in the control process, e.g.,
that the approximation error, optimal parameter vectors or higher order terms in a Taylor
series expansion of the nonlinear control law, are bounded. Besides, the prior knowledge of
the controlled system may be required, e.g., the external disturbance is bounded or all states
of the controlled system are measurable. These requirements are not easy to satisfy in
practical control applications.

NNs in general can identify patterns according to their relationship, responding to related
patterns with a similar output. They are trained to classify certain patterns into groups, and
then are used to identify the new ones, which were never presented before. NNs can
correctly identify incomplete or similar patterns; it utilizes only absolute values of input
variables but these can differ enormously, while their relations may be the same. Likewise
we can reason identification of unknown dependencies of the input data, which NN should
learn. This could be regarded as a pattern abstraction, similar to the brain functionality,
where the identification is not based on the values of variables but only relations of these.

In the hope to capture the complexity of a process Wavelet theory has been combined with
the NN to create Wavelet Neural Networks (WNN). The training algorithms for WNN



Robust Adaptive Wavelet Neural Network Control of Buck Converters 117

typically converge in a smaller number of iterations than the conventional NNs (Ho, Ping-
Au, & Jinhua, 2001). Unlike the sigmoid functions used in conventional NNs, the second
layer of WNN is a wavelet form, in which the translation and dilation parameters are
included. Thus, WNN has been proved to be better than the other NN in that the structure
can provide more potential to enrich the mapping relationship between inputs and outputs
(Ho, Ping-Au, & Jinhua, 2001). Much research has been done on applications of WNNSs,
which combines the capability of artificial NNs for learning from processes and the
capability of wavelet decomposition (Chen & Hsiao, 1999) for identification and control of
dynamic systems (Zhang, 1997). Zhang, 1997 described a WNN for function learning and
estimation, and the structure of this network is similar to that of the radial basis function
network except that the radial functions are replaced by orthonormal scaling functions. Also
in this study, the family of basis functions for the RBF network is replaced by an orthogonal
basis (i.e., the scaling functions in the theory of wavelets) to form a WNN. WNNs offer a
good compromise between robust implementations resulting from the redundancy
characteristic of non-orthogonal wavelets and neural systems, and efficient functional
representations that build on the time-frequency localization property of wavelets.

3. Problem formulation

Due to the rapid development of power semiconductor devices in personal computers,
computer peripherals, and adapters, the switching power supplies are popular in modern
industrial applications. To obtain high quality power systems, the popular control technique
of the switching power supplies is the Pulse Width Modulation (PWM) approach
(Pressman, Billings, & Morey, 2009). By varying the duty ratio of the PWM modulator, the
switching power supply can convert one level of electrical voltage into the desired level.
From the control viewpoint, the controller design of the switching power supply is an
intriguing issue, which must cope with wide input voltage and load resistance variations to
ensure the stability in any operating condition while providing fast transient response. Over
the past decade, there have been many different approaches proposed for PWM switching
control design based on PI control (Alvarez-Ramirez et al., 2001), optimal control (Hsieh,
Yen, & Juang, 2005), sliding-mode control (Vidal-Idiarte et al., 2004), fuzzy control (Vidal-
Idiarte et al., 2004), and adaptive control (Mayosky & Cancelo, 1999) techniques. However,
most of these approaches require adequately time-consuming trial-and-error tuning
procedure to achieve satisfactory performance for specific models; some of them cannot
achieve satisfactory performance under the changes of operating point; and some of them
have not given the stability analysis. The motivation of this chapter is to design an Adaptive
Wavelet Neural Network (AWNN) control system for the Buck type switching power
supply. The proposed AWNN control system is comprised of a NN controller and a
compensated controller. The neural controller using a WNN is designed to mimic an ideal
controller and a robust controller is designed to compensate for the approximation error
between the ideal controller and the neural controller. The online adaptive laws are derived
based on the Lyapunov stability theorem so that the stability of the system can be
guaranteed. Finally, the proposed AWNN control scheme is applied to control a Buck type
switching power supply. The simulated results demonstrate that the proposed AWNN
control scheme can achieve favorable control performance; even the switching power
supply is subjected to the input voltage and load resistance variations.
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Among the various switching control methods, PWM which is based on fast switching and
duty ratio control is the most widely considered one. The switching frequency is constant
and the duty cycle, U(N) varies with the load resistance fluctuations at the N th sampling
time. The output of the designed controller U (N ) is the duty cycle.

L
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Fig. 2. Buck type switching power supply

This duty cycle signal is then sent to a PWM output stage that generates the appropriate
switching pattern for the switching power supplies. A forward switching power supply
(Buck converter) is discussed in this study as shown in Fig. 2, where V, and V, are the
input and output voltages of the converter, respectively, L is the inductor, C is the output
capacitor, R is the resistor and Q1 and Q, are the transistors which control the converter
circuit operating in different modes. Figure 1 shows a synchronous Buck converter. It is
called a synchronous buck converter because transistor Q. is switched on and off
synchronously with the operation of the primary switch Q;. The idea of a synchronous buck
converter is to use a MOSFET as a rectifier that has very low forward voltage drop as
compared to a standard rectifier. By lowering the diode’s voltage drop, the overall efficiency
for the buck converter can be improved. The synchronous rectifier (MOSFET Q>) requires a
second PWM signal that is the complement of the primary PWM signal. Q»is on when Qs is
off and vice a versa. This PWM format is called Complementary PWM. When Q; is ON and
Q»is OFF, V, generates:

V.=(V,-V..) @

x

where V,, denotes the voltage drop occurring by transistors and represents the unmodeled

dynamics in practical applications. The transistor Q> ensures that only positive voltages are
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applied to the output circuit while transistor Qi provides a circulating path for inductor
current. The output voltage can be expressed as:

V),V

dt " R
Ly, 6y o ®

Vo(t)=Ve(h)

It yields to a nonlinear dynamics which must be transformed into a linear one:

av,(t) 1 1 dVy(t) 1
=——V (1) -——2 Ly~ U()V (¢t
dar? LC o (1) RC dt +Lc (HV.()

©)

Where, V, (t)/LC, is the control gain which is a positive constant and U(t) is the output of
the controller. The control problem of Buck type switching power supplies is to control the
duty cycle U(t) so that the output voltage V, can provide a fixed voltage under the

occurrence of the uncertainties such as the wide input voltages and load variations. The
output error voltage vector is defined as:

v, [ v
O av || a0 @
dt dt

where V, is the output desired voltage. The control law of the duty cycle is determined by
the error voltage signal in order to provide fast transient response and small overshoot in
the output voltage. If the system parameters are well known, the following ideal controller
would transform the original nonlinear dynamics into a linear one:

2
— Vo(t)+£dvo(t)+LCdVd(t)
R dt ar

+LCKe(t) )

If K= [kz,k1]T is chosen to correspond to the coefficients of a Hurwitz polynomial, which
ensures satisfactory behavior of the close-loop linear system. It is a polynomial whose roots
lie strictly in the open left half of the complex plane, and then the linear system would be as
follows:

de(t) . de(t)

7+k17+k26(t)20 = lim E(t) =0 (6)
t— o

Since the system parameters may be unknown or perturbed, the ideal controller in (5)
cannot be precisely implemented. However, the parameter variations of the system are
difficult to be monitored, and the exact value of the external load disturbance is also difficult
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to be measured in advance for practical applications. Therefore, an intuitive candidate of
U’ (t) would be an AWNN controller (Fig. 1):

uAWNN(t):uWNN(t)+uA(t) )
Where U, (t) is a WNN controller which is rich enough to approximate the system

parameters, and UA(t), is a robust controller. The WNN control is the main tracking

controller that is used to mimic the computed control law, and the robust controller is

designed to compensate the difference between the computed control law and the WNN

controller.

Now the problem is divided into two tasks:

e How to update the parameters of WNN incrementally so that it approximates the
system.

e How to apply U,(t) to guarantee global stability while WNN is approximating the

system during the whole process.

The first task is not too difficult as long as WNN is equipped with enough parameters to
approximate the system. For the second task, we need to apply the concept of a branch of
nonlinear control theory called sliding control (Slotine & Li, 1991). This method has been
developed to handle performance and robustness objectives. It can be applied to systems
where the plant model and the control gain are not exactly known, but bounded.

The robust controller is derived from Lyapunov theorem to cope all system uncertainties in
order to guarantee a stable control. Substituting (7) into (3), we get:

PV 1 1V 1
ol v, - e L, (v ®

The error equation governing the system can be obtained by combining (6) and (8), i.e.
de(t de(t
elt), , de(t)

2k S k() = V(U (1)U (1)U, (1) ©)

=T

4, Wavelet neural network controller

Feed forward NNs are composed of layers of neurons in which the input layer of neurons is
connected to the output layer of neurons through one or more layers of intermediate
neurons. The notion of a WNN was proposed as an alternative to feed forward NNs for
approximating arbitrary nonlinear functions based on the wavelet transform theory, and a
back propagation algorithm was adapted for WNN training. From the point of view of
function representation, the traditional radial basis function (RBF) networks can represent
any function that is in the space spanned by the family of basis functions. However, the
basis functions in the family are generally not orthogonal and are redundant. It means that
the RBF network representation for a given function is not unique and is probably not the
most efficient. Representing a continuous function by a weighted sum of basis functions can
be made unique if the basis functions are orthonormal.

It was proved that NNs can be designed to represent such expansions with desired degree
of accuracy. NNs are used in function approximation, pattern classification and in data
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mining but they could not characterize local features like jumps in values well. The local
features may exist in time or frequency. Wavelets have many desired properties combined
together like compact support, orthogonality, localization in time and frequency and fast
algorithms. The improvement in their characterization will result in data compression and
subsequent modification of classification tools.

In this study a two-layer WNN (Fig. 3), which is comprised of a product layer and an output
layer, was adopted to implement the proposed WNN controller. The standard approach in
sliding control is to define an integrated error function which is similar to a PID function.
The control signal U(t) is calculated in such way that the closed-loop system reaches a
predefined sliding surface S(t) and remains on this surface. The control signal U/(t)
required for the system to remain on this sliding surface is called the equivalent control
U’ (t) . This sliding surface is defined as follows:

S(t)z(%+hje(t), 7> 0 (10)
where 7 is a strictly positive constant. The equivalent control is given by the requirement
S(t)=0, it defines a time varying hyperplane in 8* on which the tracking error vector e(t)
decays exponentially to zero, so that perfect tracking can be obtained asymptotically.
Moreover, if we can maintain the following condition:

als (1)
- 11
g (1)
where 1 is a strictly positive constant. Then |S(t)| will approach the hyperplane |S(t)| =0in
a finite time less than or equal to |S (t)| /n . In other words, by maintain the condition in
equation (11), S(t) will approaches the sliding surface S(t)=0 in a finite time, and then
error, e(t) will converge to the origin exponentially with a time constant 1/7.If k,=0 and
h=k,, then it yields from (6) and (10) that:
ds(t) de(t)  de(t)
= +k,
dt dt* dt

(12)

The inputs of the WNN are S and dS/dt which in discrete domain it equals to S(1-z"),
where z' is a time delay. Note that the change of integrated error function S(1-z7), is
utilized as an input to the WNN to avoid the noise induced by the differential of integrated
error function dS/dt. The output of the WNN is U, (8. A family of wavelets will be
constructed by translations and dilations performed on a single fixed function called the
mother wavelet. It is very effective way to use wavelet functions with time-frequency
localization properties. Therefore if the dilation parameter is changed, the support region
width of the wavelet function changes, but the number of cycles doesn’t change; thus the
first derivative of a Gaussian function ®(x)=-xexp(-x’/2) was adopted as a mother
wavelet in this study. It may be regarded as a differentiable version of the Haar mother
wavelet, just as the sigmoid is a differentiable version of a step function, and it has the
universal approximation property.
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Yo = Uy
r'y

Fig. 3. Two-layer product WNN structure.
4.1 Input layer
net! = x.1; y.1 = f.l(net.l) = net! ,i=1,2 (13)
i i i i i i
where i=1,2 indicates as the number of layers.

4.2 Wavelet layer

A family of wavelets is constructed by translations and dilations performed on the mother
wavelet. In the mother wavelet layer each node performs a wavelet @, that is derived from
its mother wavelet. For the j th node:
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X. m.. 2
net; ::T, y; = fi(net)) = [, (net?), j:1,2,...,nM (14)
i i-1

There are many kinds of wavelets that can be used in WNN. In this study, the first
derivative of a Gaussian function is selected as a mother wavelet, as illustrated why.

4.3 Output layer
The single node in the output layer is labeled as %, which computes the overall output as
the summation of all input signals.

1y

net :Za;.yi, yi = f(net) = net; (15)
k

The output of the last layer is U,,,, respectively. Then the output of a WNN can be
represented as:

U, (SMD,0)=0TT (16)

where F=[yi,y§,...,y3nM ]T, @z[al,az,...,anM]T, M=[m,,m,,..,m,

D=[d, d,,....dy 1"

5. Robust controller

First we begin with translating a robust control problem into an optimal control problem.
Since we know how to solve a large class of optimal control problems, this optimal control
approach allows us to solve some robust control problems that cannot be easily solved
otherwise. By the universal approximation theorem, there exists an optimal neural controller
U,.(t) such that (Lin, 2007):

nc

e=U,(H)-U (1 (17)

To develop the robust controller, first, the minimum approximation error is defined as
follows:

* * * * *
e=U., (M ,D,0)-U @) a8)
e lr_u'w

* * *
Where M ,D ,0 are optimal network parameter vectors, achieve the minimum
approximation error. After some straightforward manipulation, the error equation
governing the closed-loop system can be obtained.

Sw=f%KUXUKO—UWAﬂ—UAQ) (19)

Define U,,,, as:
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~ * *
U =U () = U () = U (1) = U (B) — € (20)
0 lr-elr—¢
For simplicity of discussion, define e =®* -0 ; I'=r : —TI to obtain a rewritten form of
(20):
U,.=0 F+éTr—¢ 1)

In this study, a method is proposed to guarantee closed-loop stability and perfect tracking
performance, and to tune translations and dilations of the wavelets online. The linearization
technique was employed to transform the nonlinear wavelet functions into partially linear
form to obtain the expansion of I' in a Taylor series:

Y Y
gl oM oD
| [ 22| P
= . |=| oM |[M+| op |D+H (22)
e % n 8yn
M M
L oM | L oD |
[=AM+BD+H (23)
Where M = M>e -M;D= D>€ —-D; H is a vector of higher order terms, and:
T
oy
oy, Oy n
A=|—L 2 = _M (24)
oM oM oM
T
%y
oy, Oy n
B=|—1 =2  _M (25)
oD oD oD
Substituting (23) into (21), it is revealed that:
U, =0+6)F+6Tr—¢
0l (AM+BD+H)+ O T +6TT—¢ (26)

6'r+0TAM+0TBD+y
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Where the lumped uncertainty ¢ = 6T +6 T —¢ is assumed to be bounded by |y|<p, in
which |.| is the absolute value and p is a given positive constant.

p(t)=p(t)-p (27)

6. Stability analysis

System performance to be achieved by control can be characterized either as stability or
optimality which are the most important issues in any control system. Briefly, a system is
said to be stable if it would come to its equilibrium state after any external input, initial
conditions, and/or disturbances which have impressed the system. An unstable system is of
no practical value. The issue of stability is of even greater relevance when questions of safety
and accuracy are at stake as Buck type switching power supplies. The stability test for WNN
control systems, or lack of it, has been a subject of criticism by many control engineers in
some control engineering literature. One of the most fundamental methods is based on
Lyapunov’s method. It shows that the time derivative of the Lyapunov function at the
equilibrium point is negative semi definite. One approach is to define a Lyapunov function
and then derive the WNN controller architecture from stability conditions (Lin, Hung, &
Hsu, 2007).

Define a Lyapunov function as:

~ ~o= 1,
V.(5(1),p(t),6,M, ):ES (®)
1 1 1 1
A0 = A ) B A ) I A 1 B
21 2, 21, 21

(28)

where 1,17, ,1, and 7, are positive learning-rate constants. Differentiating (28) and using
(19), it is concluded that:

. 1 *
v, = S(t)EVX(t)[U (t)—UWNN(t)—UA(t)}
1 (29)
V(1)
LC ity LoTor LTy LpTr
+ T p(Hp(t) LCVX(t)Ll@ @+172M M+173D D}

For achieving V, <0, the adaptive laws and the compensated controller are chosen as:

@=nSMHI, M=n,S(tAO and D =1,S(t)BO (30)
U, (t) = p(t)sgn(S(t)) (31)
pH)=A[S(t) (32)

If the adaptation laws of the WNN controller are chosen as (30) and the robust controller is
designed as (31), then (29) can be rewritten as follows:
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V=V (0)SOp-p- V. (D]S0] S V. (IS Ollyl - p V. (1)1

=—V (t)|S(t -p|<0
=V (tlselflvl -]
SinceV, <0,V, is negative semi definite:
V,(S(t),A(t),0,M,D)<V,(5(0),5(0),6,M,D) (34)

Which implies that S(t), e , M and D are bounded. By using Barbalat’s lemma (Slotine &
Li, 1991), it can be shown thatt »>o = 5(t) > 0. As a result, the stability of the system
can be guaranteed. Moreover, the tracking error of the control system, e, will converge to
zero according to S5(t) > 0.

It can be verified that the proposed system not only guarantees the stable control
performance of the system but also no prior knowledge of the controlled plant is required in
the design process. Since the WNN has introduced the wavelet decomposition property into
a general NN and the adaptation laws for the WNN controller are derived in the sense of
Lyapunov stability, the proposed control system has two main advantages over prior ones:
faster network convergence speed and stable control performance.

The adaptive bound estimation algorithm in (34) is always a positive value, and tracking
error introduced by any uncertainty, such as sensor error or accumulation of numerical
error, will cause the estimated bound p(t) increase unless the integrated error function S(t)
converges quickly to zero. These results that the actuator will eventually be saturated and
the system may be unstable. To avoid this phenomenon in practical applications, an
estimation index I is introduced in the bound estimation algorithm as f)(t) = IA|S(t)| . If the
magnitude of integrated error function is small than a predefined valueS;, the WNN
controller dominates the control characteristic; therefore, the control gain of the robust
controller is fixed as the preceding adjusted value (i.e.1=0 ). However, when the magnitude
of integrated error function is large than the predefined value S,, the deviation of the states
from the reference trajectory will require a continuous updating of, which is generated by
the estimation algorithm (i.e.I =1), for the robust controller to steer the system trajectory
quickly back into the reference trajectory (Bouzari, Moradi, & Bouzari, 2008).

7. Numerical simulation results

In the first part of this section, AWNN results are presented to demonstrate the efficiency of
the proposed approach. The performance of the proposed AWNN controlled system is
compared in contrast with two controlling schemes, ie. PID compensator and NN
Predictive Controller (NNPC). The most obvious lack of these conventional controllers is
that they cannot adapt themselves with the system new state variations than what they were
designed based on at first. In this study, some parameters may be chosen as fixed constants,
since they are not sensitive to experimental results. The principal of determining the best
parameter values is based on the perceptual quality of the final results. We are most
interested in four major characteristics of the closed-loop step response. They are: Rise Time:
the time it takes for the plant output to rise beyond 90% of the desired level for the first time;
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Overshoot: how much the peak level is higher than the steady state, normalized against the
steady state; Settling Time: the time it takes for the system to converge to its steady state.
Steady-state Error: the difference between the steady-state output and the desired output.
Specifically speaking, controlling results are more preferable with the following
characteristics:

Rise Time, Overshoot, Settling Time and Steady-state Error: as least as possible

7.1 AWNN controller

Here in this part, the controlling results are completely determined by the following
parameters which are listed in Table 1. The converter runs at a switching frequency of 20
KHz and the controller runs at a sampling frequency of 1 KHz. Experimental cases are
addressed as follows: Some load resistance variations with step changes are tested: 1) from
20Q to 4 at slope of 300ms, 2) from 4Q to 20Q at slope of 500ms, and 3) from 20Q to
4Q at slope of 700ms . The input voltage runs between 19V and 21V randomly.

C L k, n, n, n, I8 S, n,

2.2mF 0.5mH 2 0.001 0.001 0.001 8 0.1 7

Table 1. Simulation Parameters.

At the first stage, the reference is chosen as a Step function with amplitude of 3 V.
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Fig. 4. Output Voltage, Command(reference) Voltage.
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At the second stage, the command is a burst signal which changes from zero to 2 V with the
period of 3 seconds and vice versa, repetitively. Results which are shown in Fig. 7 to Fig. 9
express that the output voltage follows the command in an acceptable manner from the
beginning. It can be seen that after each step controller learns the system better and
therefore adapts well more. If the input command has no discontinuity, the controller can
track the command without much settling time. Big jumps in the input command have a
great negative impact on the controller. It means that to get a fast tracking of the input
commands, the different states of the command must be continues or have discontinuities
very close to each other.
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Fig. 7. Output Voltage, Command(reference) Voltage.
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At the third stage, to show the well behavior of the controller, the output voltage follows the

Chirp signal command perfectly, as it is shown in Fig. 10 to Fig. 12.

Ref

AWNN
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Fig. 10. Output Voltage, Command (reference) Voltage.
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Fig. 11. Output Current.
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Fig. 12. Error Signal.

7.2 NNPC

To compare the results with other adaptive controlling techniques, Model Predictive
Controller (MPC) with NN as its model descriptor (or NNPC), was implemented. The name
NNPC stems from the idea of employing an explicit NN model of the plant to be controlled
which is used to predict the future output behavior. This technique has been widely
adopted in industry as an effective means to deal with multivariable constrained control
problems. This prediction capability allows solving optimal control problems on-line, where
tracking error, namely the dierence between the predicted output and the desired reference,
is minimized over a future horizon, possibly subject to constraints on the manipulated
inputs and outputs. Therefore, the first stage of NNPC is to train a NN to represent the
forward dynamics of the plant. The prediction error between the plant output and the NN
output is used as the NN training signal (Fig. 14). The NN plant model can be trained offline
by using the data collected from the operation of the plant.
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Fig. 13. NN Plant Model Identification.
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The MPC method is based on the receding horizon technique. The NN model predicts the
plant response over a specified time horizon. The predictions are used by a numerical
optimization program to determine the control signal that minimizes the following
performance criterion over the specified horizon: (Fig. 15)

ND

J= 2 (v, (t+]) -y, (t+))) +PTZIZ(“’(HJ‘—l)—u’(fﬂ‘—z))z (35)

N1

I
* bl . J
v, e R o 2
CIprimization % FJ -
’"»f’ Sy B e
- ~-L-_“;.+-«' R
k\ Neural Notwark /
Controller " V.
i Planl

Fig. 14. NNPC Block Diagram.

where N,, N,, and N, define the horizons over which the tracking error and the control
increments are evaluated. The u' variable is the tentative control signal, y, is the desired
response, and y, is the network model response. The p value determines the contribution

that the sum of the squares of the control increments has on the performance index. The
following block diagram illustrates the MPC process. The controller consists of the NN plant
model and the optimization block. The optimization block determines the values of ' that
minimize |, and then the optimal u is input to the plant.

Hidden Delayed Delayed

Layers  Inputs Outputs Training Algorithm Iterations

Levenberg-Marquardt

5 2 0.05 30 10 20 Optimization

Table 3. NNPC Simulation Parameters.
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(36)

16.5924 ,

0 . Figure 17 shows the Bode plot of the considered PID

RZ
z—P

R‘l
z—-1

G(z)=K+

-15.2527 and P
compensator. The output voltages with two different reference signals are shown in Fig. 18

0.0214, R,

second-order PID compensator (controller) can be designed for the output voltage feedback

loop, using small-signal analysis, to yield guaranteed stable performance. A generic second-

order PID compensator is considered with the following transfer function:
startup) is known such that a conservative compensator design can be performed. The

Based on the power stages which were defined in the previous experiments, a nominal
It is assumed that sufficient information about the nominal power stage (i.e., at system
following parameters were used for system initialization of the compensator: K

and Fig. 19. As you can see it cannot get better after some times, because it is not adaptive to
system variations, but on the other hand its convergence is quite good from the beginning.
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7.3 PID controller
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8. Conclusion

This study presented a new robust on-line training algorithm for AWNN via a case study of
buck converters. A review of AWNN is described and its advantages of simple design and
fast convergence over conventional controlling techniques e.g. PID were described. Even
though that PID may lead to a better controller, it takes a very long and complicated
procedure to find the best parameters for a known system. However on cases with some or
no prior information, it is practically hard to create a controller. On the other hand these PID
controllers are not robust if the system changes. AWNN can handle controlling of systems
without any prior information by learning it through time. For the case study of buck
converters, the modeling and the consequent principal theorems were extracted.
Afterwards, the Lyapunov stability analysis of the under controlled system were defined in
a way to be robust against noise and system changes. Finally, the numerical simulations, in
different variable conditions, were implemented and the results were extracted. In
comparison with prior controllers which are designed for stabilizing output voltage of buck
converters (e.g. PID and NNPC), this method is very easy to implement and also cheap to
build while convergence is very fast.
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1. Introduction

A robust control method that combines Sliding Mode Control (SMC) and Quantitative
Feedback Theory (QFT) is introduced in this chapter. The utility of SMC schemes in robust
tracking of nonlinear mechanical systems, although established through a body of published
results in the area of robotics, has important issues related to implementation and chattering
behavior that remain unresolved. Implementation of QFT during the sliding phase of a SMC
controller not only eliminates chatter but also achieves vibration isolation. In addition, QFT
does not diminish the robustness characteristics of the SMC because it is known to tolerate
large parametric and phase information uncertainties. As an example, a driver’s seat of a
heavy truck will be used to show the basic theoretical approach in implementing the
combined SMC and QFT controllers through modeling and numerical simulation. The SMC
is used to track the trajectory of the desired motion of the driver’s seat. When the system
enters into sliding regime, chattering occurs due to switching delays as well as systems
vibrations. The chattering is eliminated with the introduction of QFT inside the boundary
layer to ensure smooth tracking. Furthermore, this chapter will illustrate that using SMC
alone requires higher actuator forces for tracking than using both control schemes together.
Also, it will be illustrated that the presence of uncertainties and unmodeled high frequency
dynamics can largely be ignored with the use of QFT.

2. Quantitative Feedback Theory Preliminaries

QFT is different from other robust control methodologies, such as LQR/LTR, mu-synthesis,
or Ho/ H” control, in that large parametric uncertainty and phase uncertainty information
is directly considered in the design process. This results in smaller bandwidths and lower
cost of feedback.

2.1 System design

Engineering design theory claims that every engineering design process should satisfy the
following conditions:

1. Maintenance of the independence of the design functional requirements.

2. Minimization of the design information content.
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For control system design problems, Condition 1 translates into approximate decoupling in
multivariable systems, while Condition 2 translates into minimization of the controller high
frequency generalized gain-bandwidth product (Nwokah et al., 1997).

The information content of the design process is embedded in G, the forward loop controller
to be designed, and often has to do with complexity, dimensionality, and cost. Using the
system design approach, one can pose the following general design optimization problem.
Let G be the set of all G for which a design problem has a solution. The optimization
problem then is:

M(z}nezrgze {Information contentofG|

subject to:

i.  satisfaction of the functional requirements

ii. independence of the functional requirements

iii. quality adequacy of the designed function.

In the context of single input, single output (SISO) linear control systems, G is given by:

I. = H)G log |G (i) do )

c

where @ is the gain crossover frequency or effective bandwidth. If P is a plant family given
by

P = P(4,s5)[1+A] , AeA , AeH" ,

Al < Wy(w) , ()
then the major functional requirement can be reduced to:
n(w,2,G(io)) = Wy(@)|S(4,io)| + Wy (0)|T(4,iw)| <1,

Vo20,YAleA, where W,;(w) and W,(w) are appropriate weighting functions, and S
and T are respectively the sensitivity and complementary sensitivity functions. Write

77 (0,Gli)) = T2 n(1,0,G(io)).

Then the system design approach applied to a SISO feedback problem reduces to the
following problem:

* ] o, ,
I = &8% OG log|G(iw)| dw, 3)
subject to:
i 7(oG(ivw)<l, Vo=0,
PG
ii. quality adequacy of T = .
qrattly adequacy 1+ PG

Theorem: Suppose G*€ G . Then:
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I = énen(l} ;)G log|G| dew = .[O{U*G log|G *| de if and only if 77 (w,G*(iw)) = 1, V& 20.

The above theorem says that the constraint satisfaction with equality is equivalent to
optimality. Since the constraint must be satisfied with inequality V& 20 ; it follows that a

rational G* must have infinite order. Thus the optimal G * is unrealizable and because of

order, would lead to spectral singularities for large parameter variations; and hence would
be quality-inadequate.

Corollary: Every quality-adequate design is suboptimal.

Both W, W, satisfy the compatibility condition min{W;,W,}<1, Ve [0,]. Now

define
7(0,G(io) = "% 1(0,2,G(i0)) < 7(0,G(io)) <1, Voe[0,x]. @)

Here W,;(w)=0 €L; or in some cases can be unbounded as o—0, while W, (w)eL,, and

satisfies the conditions:

i, M Wy(w) = o, W, 20,

i T [log W, ()|

D do <o )

—00

Our design problem now reduces to:
et . * log |G(iw)| do,

subject to:
7(o,G(io) <1, Va)e[O,oo] )

The above problem does not have an analytic solution. For a numerical solution we define
the nominal loop transmission function

Ly(iw) = PyG(iw),
where FyeP is a nominal plant. Consider the sub-level set I': M — C given by
I'(@,G(iw)) = {RG : 7(w,G(iw)) <1} =C , (6)
and the map
oWy, W,,4,q) : M—T(w,G(io)) ,

which carries M into I'(@,G(iw)) .
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Also consider the level curve of (( T'(@,G(iw)))) &' : M — C \ {0} given by,

a(0,G(iw)) = {RG : 7(0,G(iw)) = 1} < C\{x}.
The map
f: M- d(o,G(ie)) < C,

generates bounds on C for which f is satisfied. The function f is crucial for design purposes
and will be defined shortly.
Write

P(4,s) = P,(4,5) P,(4,s) ,

where P, (4,s) is minimum phase and P,(4,s) is all-pass. Let P,,(s) be the minimum

phase nominal plant model and P,)(s) be the all-pass nominal plant model. Let

PO(S) = mO(s) : PuO(S)'

Define:
LO(S) = LmO(S) ’ PaO(S) = mO(S) G(S)'PaO(S)
. P (iw) ) ) Py(iw)
,A,G <le|—8——+ L - Wy(w)|L > W (0) | —2——
Mo Go) <1 ol s v Lygtio) = Wa@lLun(io] > @) 20 @)
V ieA , Vwel0,x]
By defining;:
; P, (iw) ) i
3 i0(1,0) _ 0 , dL — ip(w) ,
pla,0) 10 = Lot and Lyg(io) = q(o)e
the above inequality, (dropping the argument ), reduces to:
Fl@,8, Wi, Wa,g) = (1-W3 g +2p(2)(cos(8(4) — ¢) - W, W, )q ®

+(1-W2)p*(2) 20, ¥AeA Vo .

At each ®, one solves the above parabolic inequality as a quadratic equation for a grid of
various A €A . By examining the solutions over ¢ e [—271,0] , one determines a boundary

Cp(w,9) = {PG : ij(o,G(iw)) = 1}<C ,
so that

a(w,G(iw)) = ICp(w,9) .
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Let the interior of this boundary be ¢ p(w,¢) < C . Thenfor W, <1, it can be shown that
(Bondarev et al., 1985; Tabarrok & Tong, 1993; Esmailzadeh et al., 1990):

I(,G(io)) = C\Cp(o,4) = {PG : 7(o,Gliw)) < 1}, )

while for W, > 1

I'(,G(io)) = 6Cp(w,¢) U Cp(a,8) = Cp(a,4).

In this way both the level curves d'(w,G(iw)) as well as the sub level sets I'(®,G(iw)) can
be computed V @ €[0,]. Let N represent the Nichols’ plane:

N ={(4r) : 27 <$<0, -0 <r < oo}

If s=ge, then the map L,, : s — N sends s to N by the formula:

L,s =r+ig=20 log(ge?) =201logq+ig . (10)

Consequently, L, : d'(w,G(iw)) - IBp(w,$,2010g q)
converts the level curves to boundaries on the Nichols” plane called design bounds. These
design bounds are identical to the traditional QFT design bounds except that unlike the QFT
bounds, d'(w,G(i®)) can be used to generate JBp V we [O,oo] whereas in traditional QFT,
this is possible only up to a certain @ =@, < ». This clearly shows that every admissible
finite order rational approximation is necessarily sub-optimal. This is the essence of all QFT
based design methods.

According to the optimization theorem, if a solution to the problem exists, then there is an
optimal minimum phase loop transmission function: L (iw) = P,,(iw) - G (iw) which

satisfies
7(@G (o)) =1, Vo e[0,x] (11)

such|L, | = q (@), gives 20 log g (w) whichlieson dBp , ¥V @ € [0,%]. If 4" (@) is found,
then (Robinson, 1962) if W, (w) € L; and W, (@) € L, ; it follows that

Lo(s) = exp 1 le 1- 2 Jog 1 (a)2 da|e H, . (12)
T s —la 1+a

Clearly L,,(s) is non-rational and every admissible finite order rational approximation of it
is necessarily sub-optimal; and is the essence of all QFT based design methods.
However, this sub-optimality enables the designer to address structural stability issues by

proper choice of the poles and zeros of any admissible approximation G(s). Without control
of the locations of the poles and zeros of G(s), singularities could result in the closed loop
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characteristic polynomial. Sub-optimality also enables us to back off from the non-realizable
unique optimal solution to a class of admissible solutions which because of the compactness
and connectedness of A (which is a differentiable manifold), induce genericity of the
resultant solutions. After this, one usually optimizes the resulting controller so as to obtain
quality adequacy (Thompson, 1998).

2.2 Design algorithm: Systematic loop-shaping

The design theory developed in section 2.1, now leads directly to the following systematic
design algorithm:

1. Choose a sufficient number of discrete frequency points:

W), 0 ... ON <0,

2. Generate the level curves JI'(w;, G(iw)) and translate them to the corresponding
bounds 7 B, (w;, ¢).
3. With fixed controller order n;, use the QFT design methodology to fit a loop

transmission function L, (iw), to lie just on the correct side of each boundary
2 B, (w;, ¢) atits frequency @;, for -2z <$<0 (start with ng =1or 2).

4. If step 3 is feasible, continue, otherwise go to 7.

5. Determine the information content (of G(s)) I., and apply some nonlinear local

c’
optimization algorithm to minimize I, until further reduction is not feasible without

violating the bounds & S, (#;, ¢). This is an iterative process.

6. Determine C,. If C, <1, go to 8, otherwise continue.

7. Increase n;by 1 (ie., set n; =n; +1) and return to 3.

8. End.
At the end of the algorithm, we obtain a feasible minimal order, minimal information
content, and quality-adequate controller.

Design Example
Consider:

k(1-Dbs)

P(A,9)[1 + A]= (T do)

(1+4) , 4 = [kbd] eA .

ke[L,3], bel0.0501], de[03 1]

PO(S) _ 3(1 — 0.055) |A| < |W2| .
s(1 + 0.35)
s+18 2(0.0074s> + 0.333s% + 1.551s + 1) (.00001s + 1
W) = and y(s) = = - ols + 1) )
2.80s 3(0.0049s® + 0.246s2 + 1.157s + 1)

W,(s) € RH® but W, (s) eRH?. Since we are dealing with loop-shaping, that W, ¢ RH*
does not matter (Nordgren et al., 1995).
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Using the scheme just described, the first feasible controller G(s) was found as:

Glo) = 394 (s +066)(s + 1.74) (s + 4.20)
T (s +079) (s + 2.3) (s+ 857) (s + 40)

This controller produced: I, = 206, and C, =39.8. Although X(/4,,s) is now structurally
stable, C

matrix condition number x(V).

. is still large and could generate large spectral sensitivity due to its large modal

Because reduction of the information content improves quality adequacy, Thompson
(Thompson, 1998) employed the nonlinear programming optimization routine to locally
optimize the parameters of G(s) so as to further reduce its information content, and obtained
the optimized controller:

G(s) = 34.31 (s + 0.5764) (s + 2.088) (s + 5.04)
(s + 0.632) (s + 1.84) (s + 6.856) (s + 40)

This optimized controller now produced: I, = 0, and C, =0.925.

Note that the change in pole locations in both cases is highly insignificant. However,
because of the large coefficients associated with the un-optimized polynomial it is not yet
quality-adequate, and has C, = 39.8. The optimized polynomial on the other hand has the

pleasantly small C, = 0.925, thus resulting in a quality adequate design. For solving the
a(A) singularity problem, structural stability of X(4,,s) is enough. However, to solve the

other spectral sensitivity problems, C, <1 is required. We have so far failed to obtain a

quality-adequate design from any of the modern optimal methods (¢, H,,H”, u).

Quality adequacy is demanded of most engineering designs. For linear control system
designs, this translates to quality- adequate closed loop characteristic polynomials under
small plant and/or controller perturbations (both parametric and non parametric). Under
these conditions, all optimization based designs produce quality inadequate closed loop
polynomials. By backing off from these unique non-generic optimal solutions, one can
produce a family of quality-adequate solutions, which are in tune with modern engineering
design methodologies. These are the solutions which practical engineers desire and can
confidently implement. The major attraction of the optimization-based design methods is
that they are both mathematically elegant and tractable, but no engineering designer ever
claims that real world design problems are mathematically beautiful. We suggest that, like
in all other design areas, quality adequacy should be added as an extra condition on all
feedback design problems. Note that if we follow axiomatic design theory, every MIMO
problem should be broken up into a series of SISO sub-problems. This is why we have not
considered the MIMO problem herein.

3. Sliding mode control preliminaries

In sliding mode control, a time varying surface of S(t) is defined with the use of a desired
vector, X4, and the name is given as the sliding surface. If the state vector X can remain on
the surface S(t) for all time, t>0, tracking can be achieved. In other words, problem of
tracking the state vector, X= X, (n- dimensional desired vector) is solved. Scalar quantity, s,
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is the distance to the sliding surface and this becomes zero at the time of tracking. This
replaces the vector X; effectively by a first order stabilization problem in s. The scalar s
represents a realistic measure of tracking performance since bounds on s and the tracking
error vector are directly connected. In designing the controller, a feedback control law U can
be chosen appropriately to satisfy sliding conditions. The control law across the sliding
surface can be made discontinuous in order to facilitate for the presence of modeling
imprecision and of disturbances. Then the discontinuous control law U is smoothed
accordingly using QFT to achieve an optimal trade-off between control bandwidth and
tracking precision.

Consider the second order single-input dynamic system (Jean-Jacques & Weiping, 1991)

i= f(X)+b(X)U, (13)

where

X - State vector, [x x |T

x — Output of interest

f- Nonlinear time varying or state dependent function

U - Control input torque

b - Control gain

The control gain, b, can be time varying or state-dependent but is not completely known. In
other words, it is sufficient to know the bounding values of b,

0<byy <b<b (14)

max *

The estimated value of the control gain, bes, can be found as (Jean-Jacques & Weiping, 1991)

bes = (bminbmax )1/2
Bounds of the gain b can be written in the form:
-1 b es
pleE<p (15)
Where
1/2
bmax
ﬂ_{ bmin :|

The nonlinear function f can be estimated (fes) and the estimation error on fis to be bounded
by some function of the original states of f.

|fes_f|SF (16)

In order to have the system track on to a desired trajectory x(#) =x4(t), a time-varying
surface, S(t) in the state-space R? by the scalar equation s(x;t) = s = 0 is defined as

s:(%+ﬁjx=x;+/ﬁ (17)
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where X =X - X, =[x ﬂT
and A = positive constant (first order filter bandwidth)

When the state vector reaches the sliding surface, S(t), the distance to the sliding surface, s,
becomes zero. This represents the dynamics while in sliding mode, such that

§=0 (18)
When the Eq. (9) is satisfied, the equivalent control input, Ues, can be obtained as follows:

b—>b

es

b, U—-U,

f - fes,
This leads to

Ues='fes +jc.d'ﬂ'x;/ (19)

and U is given by

es

- [bi](u kx)sgn(s) )

where

k(x) is the control discontinuity.

The control discontinuity, k(x) is needed to satisfy sliding conditions with the introduction
of an estimated equivalent control. However, this control discontinuity is highly dependent
on the parametric uncertainty of the system. In order to satisfy sliding conditions and for the
system trajectories to remain on the sliding surface, the following must be satisfied:

1d,_4e. nls| (20)

where 1 is a strictly positive constant.
The control discontinuity can be found from the above inequality:

S| (f = bbg fio)+ (1= b)) (=5, + A%) — bb, k(x)sgn(s) | < —n]s|
S| (f =bbg. o) + (1= ) (=5 + 4%) |+ ns| < bb, k(x)]s]
S

k(x)> ﬂ[bgsbflf ~ fus (0™ =)=y + 2%) |+ b
S

For the best tracking performance, k(x) must satisfy the inequality

k(x) >

besbilf - fes + (beslf1 - 1)(_jéd + ﬂf)| + besb7177
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As seen from the above inequality, the value for k(x) can be simplified further by
rearranging f as below:

f =f‘35 * (f-' fES) and |fes_f|SF
k(x) 2 |bes bil(f _fes) + (besb71 _1)(fes _jéd + ﬁ,f)| +besb_177

k(x) 2 [b

“ b_l (f - fes )| + besb_l - 1)(fes - jéd + ﬂ“f | + besb_ln

k()2 B(F+0)+(B=1)|(f — 4+ A% |

k(x)2 BF+m)+(B-1)|U,, | (21)

By choosing k(x) to be large enough, sliding conditions can be guaranteed. This control
discontinuity across the surface s = 0 increases with the increase in uncertainty of the system
parameters. It is important to mention that the functions for f.; and F may be thought of as
any measured variables external to the system and they may depend explicitly on time.

3.1 Rearrangement of the sliding surface

The sliding condition $ = 0 does not necessarily provide smooth tracking performance across
the sliding surface. In order to guarantee smooth tracking performance and to design an
improved controller, in spite of the control discontinuity, sliding condition can be redefined,
ie. $=-as (Taha et al., 2003), so that tracking of x — x; would achieve an exponential
convergence. Here the parameter « is a positive constant. The value for « is determined by
considering the tracking smoothness of the unstable system. This condition modifies U,s as
follows:

U, =—f.+¥;—Ax—as

and k(x) must satisfy the condition

k(x) >

bub™ f = fio 4 (b b7 = 1) (=it + A%)| +becb -t
Further k(x) can be simplified as

als
k)2 BF+ )+ (- D[]+ (5-2) @
Even though the tracking condition is improved, chattering of the system on the sliding
surface remains as an inherent problem in SMC. This can be removed by using QFT to
follow.

(22)

3.2 QFT controller design
In the previous sections of sliding mode preliminaries, designed control laws, which satisfy
sliding conditions, lead to perfect tracking even with some model uncertainties. However,
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after reaching the boundary layer, chattering of the controller is observed because of the
discontinuity across the sliding surface. In practice, this situation can extremely complicate
designing hardware for the controller as well as affect desirable performance because of the
time lag of the hardware functionality. Also, chattering excites undesirable high frequency
dynamics of the system. By using a QFT controller, the switching control laws can be
modified to eliminate chattering in the system since QFT controller works as a robust low
pass filter. In QFT, attraction by the boundary layer can be maintained for all ¢ >0 by varying
the boundary layer thickness, ¢ , as follows:

|s|2¢—>%%s2 <(¢-n)ls| (23)

It is evident from Eq. (23) that the boundary layer attraction condition is highly guaranteed
in the case of boundary layer contraction (¢ <0) than for boundary layer expansion (4> 0)
(Jean-Jacques, 1991). Equation (23) can be used to modify the control discontinuity gain, k(x),
to smoothen the performance by putting k(x)sat(s/¢) instead of k(x)sgn(s). The
relationship between k(x)and k(x) for the boundary layer attraction condition can be
presented for both the cases as follows:

¢>0—k(x)=k(x)-¢ /5 (24)

$<0—>k(x)=k(x)-¢ f° (25)

Then the control law, U, and $§ become

b

es

u- [ij(ues ~k(x)sat(s / 9))
§=—bb,} (k(x)sat(s / @) + as) + Ag(x,x,)
Where Ag(x,x;)=(f —bb,. f..)+ (1-bb,})(~i, + 1X)

Since k(x) and Ag are continuous in x, the system trajectories inside the boundary layer can
be expressed in terms of the variable s and the desired trajectory x; by the following relation:
Inside the boundary layer, i.e.,

|s|<p—>sat(s/g)=5/¢ andx > x,.

Hence

s=— Bk (x)(s / )+ @ T8 (26)

bes (xd )min

The dynamics inside the boundary layer can be written by combining Eq. (24) and Eq. (25)
as follows:

1/2
Where ﬂd — |:bes(xd)max :| .
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¢>0—k(x;)=k(x,) -9/ 2 27)

$<0—>k(x))=k(x,)-¢/ Bi (28)

By taking the Laplace transform of Eq. (26), It can be shown that the variable s is given by
the output of a first-order filter, whose dynamics entirely depends on the desired state x4

(Fig.1).

Ag(xd) 1 S
P+ Bk (x,)/ p+a) P+

X
—>

A 4

¢ selection s selection
Fig. 1. Structure of closed-loop error dynamics

Where P is the Laplace variable. Ag(x;) are the inputs to the first order filter, but they are

highly uncertain.

This shows that chattering in the boundary layer due to perturbations or uncertainty of
Ag(x;) can be removed satisfactorily by first order filtering as shown in Fig.1 as long as
high-frequency unmodeled dynamics are not excited. The boundary layer thickness, ¢ , can
be selected as the bandwidth of the first order filter having input perturbations which leads
to tuning ¢ with A4:

k(xg)=(4/ B -a)¢ 29)
Combining Eq. (27) and Eq. (29) yields
k(xa) > #(2/ Bi — ) and g+ (2 - i) = fik(x,) (30)
Also, by combining Eq. (28) and Eq. (29) results in
k(x)<g(2/ B3 —a) and g+ (¢ / D[ (2] B - | =K(x)) / B (31)
Equations (24) and (30) yield
$>0-k(x)=k(x) = (B, / B [K(xo) - (2 / fi — )] (32)
and combining Eq. (22) with Eq. (28) gives
$<0>k(x)=k(x)=(8/ Bi)[K(xs) = 42/ i - )] 3)

In addition, initial value of the boundary layer thickness, ¢(0), is given by substituting x; at
t=01in Eq. (29).
k(x,4(0
(A Bi)-a



Quantitative Feedback Theory and Sliding Mode Control 151

The results discussed above can be used for applications to track and stabilize highly
nonlinear systems. Sliding mode control along with QFT provides better system controllers
and leads to selection of hardware easier than using SMC alone. The application of this
theory to a driver seat of a heavy vehicle and its simulation are given in the following
sections.

4. Numerical example

In this section, the sliding mode control theory is applied to track the motion behavior of a
driver’s seat of a heavy vehicle along a trajectory that can reduce driver fatigue and
drowsiness. The trajectory can be varied accordingly with respect to the driver
requirements. This control methodology can overcome most of the road disturbances and
provide predetermined seat motion pattern to avoid driver fatigue. However, due to
parametric uncertainties and modeling inaccuracies chattering can be observed which
causes a major problem in applying SMC alone. In general, the chattering enhances the
driver fatigue and also leads to premature failure of controllers. SMC with QFT developed
in this chapter not only eliminates the chattering satisfactorily but also reduces the control
effort necessary to maintain the desired motion of the seat.

Relationship between driver fatigue and seat vibration has been discussed in many
publications based on anecdotal evidence (Wilson & Horner, 1979; Randall, 1992). It is
widely believed and proved in field tests that lower vertical acceleration levels will increase
comfort level of the driver (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop,
1998). Heavy vehicle truck drivers who usually experience vibration levels around 3 Hz,
while driving, may undergo fatigue and drowsiness (Mabbott et al., 2001). Fatigue and
drowsiness, while driving, may result in loss of concentration leading to road accidents.
Human body metabolism and chemistry can be affected by intermittent and random
vibration exposure resulting in fatigue (Kamenskii, 2001). Typically, vibration exposure
levels of heavy vehicle drivers are in the range 0.4 m/s? - 2.0 m/s? with a mean value of 0.7
m/s? in the vertical axis (U. & R. Landstorm, 1985; Altunel, 1996; Altunel & deHoop, 1998;
Mabbott et al., 2001).

A suspension system determines the ride comfort of the vehicle and therefore its
characteristics may be properly evaluated to design a proper driver seat under various
operating conditions. It also improves vehicle control, safety and stability without changing
the ride quality, road holding, load carrying, and passenger comfort while providing
directional control during handling maneuvers. A properly designed driver seat can reduce
driver fatigue, while maintaining same vibration levels, against different external
disturbances to provide improved performance in riding.

Over the past decades, the application of sliding mode control has been focused in many
disciplines such as underwater vehicles, automotive applications and robot manipulators
(Taha et al., 2003; Roberge, 1960; Dorf, 1967; Ogata, 1970; Higdon, 1963; Truxal, 1965;
Lundberg, 2003; Phillips, 1994; Siebert, 1986). The combination of sliding controllers with
state observers was also developed and discussed for both the linear and nonlinear cases
(Hedrick & Gopalswamy, 1989; Bondarev et al., 1985). Nonlinear systems are difficult to
model as linear systems since there are certain parametric uncertainties and modeling
inaccuracies that can eventually resonate the system (Jean-Jacques, 1991). The sliding mode
control can be used for nonlinear stabilization problems in designing controllers. Sliding
mode control can provide high performance systems that are robust to parameter
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uncertainties and disturbances. Design of such systems includes two steps: (i) choosing a set
of switching surfaces that represent some sort of a desired motion, and (ii) designing a
discontinuous control law that ensures convergence to the switching surfaces (Dorf, 1967;
Ogata, 1970). The discontinuous control law guarantees the attraction features of the
switching surfaces in the phase space. Sliding mode occurs when the system trajectories are
confined to the switching surfaces and cannot leave them for the remainder of the motion.
Although this control approach is relatively well understood and extensively studied,
important issues related to implementation and chattering behavior remain unresolved.
Implementing QFT during the sliding phase of a SMC controller not only eliminates chatter
but also achieves vibration isolation. In addition, QFT does not diminish the robustness
characteristics of the SMC because it is known to tolerate large parametric and phase
information uncertainties.

Figure 2 shows a schematic of a driver seat of a heavy truck. The model consists of an
actuator, spring, damper and a motor sitting on the sprung mass. The actuator provides
actuation force by means of a hydraulic actuator to keep the seat motion within a comfort
level for any road disturbance, while the motor maintains desired inclination angle of the
driver seat with respect to the roll angle of the sprung mass. The driver seat mechanism is
connected to the sprung mass by using a pivoted joint; it provides the flexibility to change
the roll angle. The system is equipped with sensors to measure the sprung mass vertical
acceleration and roll angle. Hydraulic pressure drop and spool valve displacement are also
used as feedback signals.

Mass ofthe | |
driver & Seat Xp, Os
mp
Actuator
Spring g ]
Motor
Sprung Mass, m; X5, O

Fig. 2. The hydraulic power feed of the driver seat on the sprung mass

Nomenclature

A - Cross sectional area of the hydraulic actuator piston

Fof - Actuator force

Fy - Combined nonlinear spring and damper force of the driver seat

ky - Stiffness of the spring between the seat and the sprung mass
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mp - Mass of the driver and the seat

M - Sprung mass

Xn - Vertical position coordinate of the driver seat

Xs - Vertical position coordinate of the sprung mass

0s - Angular displacement of the driver seat (same as sprung mass)

4.1 Equations of motion
Based on the mathematical model developed above, the equation of motion in the vertical
direction for the driver and the seat can be written as follows:

jC'h = _(1 / mh)Fh +(1 / mh)Fa ’ (34)
where
B, = ki dy, + khzdi + Chldh + Chzdﬁ Sgn(dh)

kn1 - linear stiffness

ky2 - cubic stiffness

Ch1 - linear viscous damping

Ch2 - fluidic (amplitude dependent) damping
sgn - signum function

Fﬂf:APL

dy, = (x, —x;) — ay;8Iin G,

Complete derivation of Eq. (34) is shown below for a five-degree-of-freedom roll and
bounce motion configuration of the heavy truck driver-seat system subject to a sudden
impact. In four-way valve-piston hydraulic actuator system, the rate of change of pressure
drop across the hydraulic actuator piston, Py, is given by (Fialho, 2002)

- = Q_ClpPL _A(xh —J'CS) (35)

Vi - Total actuator volume

b. - Effective bulk modulus of the fluid

Q - Load flow

Ciy - Total piston leakage coefficient

A - Piston area

The load flow of the actuator is given by (Fialho, 2002):

Q=sgn[P, - sgn(x,)P,|Cyox,[(1/ p)|P, ~sgn(x, )P | (36)

P, - Hydraulic supply pressure
® - Spool valve area gradient
X, — Displacement of the spool valve
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p - Hydraulic fluid density

Ca - Discharge coefficient

Voltage or current can be fed to the servo-valve to control the spool valve displacement of
the actuator for generating the force. Moreover, a stiction model for hydraulic spool can be
included to reduce the chattering further, but it is not discussed here.

Fi Fo Tires &iaxle Fis Fuy

LN
A
\ 4

Fig. 3. Five-degree-of-freedom roll and bounce motion configuration of the heavy duty truck
driver-seat system.

Nonlinear force equations

Nonlinear tire forces, suspension forces, and driver seat forces can be obtained by
substituting appropriate coefficients to the following nonlinear equation that covers wide
range of operating conditions for representing dynamical behavior of the system.

F=kd+k,d® +Cyd +C,d*sgn(d )

where

F - Force

ki - linear stiffness coefficient

k> - cubic stiffness coefficient

Ci - linear viscous damping coefficient

C; - amplitude dependent damping coefficient
d - deflection

For the suspension:

F; =kgdg + ksizdgi + Csildsi + Csi2d52i sgn(dsi)
For the tires:

Fy =kyrdy + ktizdg + Cﬁldti + CtiZdé sgn(dti)
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For the seat:

Ey = kady +Kioddy +Coadhy, +Ciodly sgn(d),)
Deflection of the suspension springs and dampers
Based on the mathematical model developed, deflection of the suspension system on the
axle is found for both sides as follows:
Deflectionof side1, d; = (x, —x,) + S;(sin 6, —sin6b,)
Deflectionofside?2, d, = (x, —x,) - S;(sind, —sin6,)
Deflection of the seat springs and dampers
By considering the free body diagram in Fig. 3, deflection of the seat is obtained as follows
(Rajapakse & Happawana, 2004):
dy = (X, = x;) = ay; in 6
Tire deflections
The tires are modeled by using springs and dampers. Deflections of the tires to a road
disturbance are given by the following equations.
Deflectionof tire1, d,; = x,, + (T; + A;)sin g,
Deflectionof tire2, d,, = x,, + T;sin 6,
Deflectionof tire3, d;5 = x,, — T; sin 6,
Deflectionof tire4, d,, = x,, —(T; + A;)sin 6,
Equations of motion for the combined sprung mass, unsprung mass and driver seat

Based on the mathematical model developed above, the equations of motion for each of the
sprung mass, unsprung mass, and the seat are written by utilizing the free-body diagram of
the system in Fig. 3 as follows:

Vertical and roll motion for the if* axle (unsprung mass)

m¥, =(Fq +Fp)—(Fq + By + B3 + Fy) 37)

]uéu =5;(F;1 —Ey)cos0, + Ty(F3 — Fy)cos 6, +(T; + A;)(Fy — Fy)cos6, (38)

Vertical and roll motion for the sprung mass

mX, =—(Fq +Fo)+F, (39)
]sés = Si(Fs2 —Fsl)COS Hs + aliPh COSHs (40)

Vertical motion for the seat
myX, = -F, (41)

Equations (37)-(41) have to be solved simultaneously, since there are many parameters and
nonlinearities. Nonlinear effects can better be understood by varying the parameters and
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examining relevant dynamical behavior, since changes in parameters change the dynamics
of the system. Furthermore, Eqs. (37)-(41) can be represented in the phase plane while
varying the parameters of the truck, since each and every trajectory in the phase portrait
characterizes the state of the truck. Equations above can be converted to the state space form
and the solutions can be obtained using MATLAB. Phase portraits are used to observe the
nonlinear effects with the change of the parameters. Change of initial conditions clearly
changes the phase portraits and the important effects on the dynamical behavior of the truck
can be understood.

4.2 Applications and simulations (MATLAB)
Equation (34) can be represented as,

¥, =f+bU 42)

where
f=-(1/m,)F,
b:1/mh
U=Faf

The expression f is a time varying function of x, and the state vector x;, . The time varying
function, x,, can be estimated from the information of the sensor attached to the sprung
mass and its limits of variation must be known. The expression, f, and the control gain, b are
not required to be known exactly, but their bounds should be known in applying SMC and
QFT. In order to perform the simulation, x,is assumed to vary between -0.3m to 0.3m and it
can be approximated by the time varying function, Asin(wt), where @ is the disturbance
angular frequency of the road by which the unsprung mass is oscillated. The bounds of the
parameters are given as follows:

My min < my, < My max

Xsmin < Xs < Xsmax

bn <b <b

max

Estimated values of mand Xxs:

_ 1/2
Mg = |(mh min"h max ) |

1/2

Xees = |(xs min¥smax )|

Above bounds and the estimated values were obtained for some heavy trucks by utilizing
field test information (Tabarrok & Tong, 1993, 1992; Esmailzadeh et al.,, 1990; Aksionov,
2001; Gillespie, 1992; Wong, 1978; Rajapakse & Happawana, 2004; Fialho, 2002). They are as
follows:
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My min = O0kg , 1y, 0 =100kg , x i =—0.3m, x =0.3m,w=27(0.1-10)rad /s, A=0.3

smin smax

The estimated nonlinear function, f, and bounded estimation error, F, are given by:

fes = _(kh /mhes)(xh _xses)

F =max|f,, - f]
b, =0.014

p=1.414

1/2

xses = |(xs min%smax )|

The sprung mass is oscillated by road disturbances and its changing pattern is given by the
vertical angular frequency, o =27(0.1+(9.9sin(27t))) . This function for wis used in the
simulation in order to vary the sprung mass frequency from 0.1 to 10 Hz. Thus @ can be
measured by using the sensors in real time and be fed to the controller to estimate the
control force necessary to maintain the desired frequency limits of the driver seat. Expected
trajectory for x;, is given by the function, x;; = Bsinw,t , where @, is the desired angular
frequency of the driver to have comfortable driving conditions to avoid driver fatigue in the
long run. B and w, are assumed to be .05 m and 27 *0.5 rad/s during the simulation which
yields 0.5 Hz continuous vibration for the driver seat over the time. The mass of the driver
and seat is considered as 70 kg throughout the simulation. This value changes from driver to
driver and can be obtained by an attached load cell attached to the driver seat to calculate
the control force. It is important to mention that this control scheme provides sufficient
room to change the vehicle parameters of the system according to the driver requirements to
achieve ride comfort.

4.3 Using sliding mode only

In this section tracking is achieved by using SMC alone and the simulation results are
obtained as follows.

Consider x;, =x(1)and x;, =x(2) . Eq. (25) is represented in the state space form as follows:

(1) =x(2)

#(2) = ~(ky / my)(x(1) = x,0) + bU

Combining Eq. (17), Eq. (19) and Eq. (42), the estimated control law becomes,

ues = _fes + xhd - A(x(z) - J.Chd)

Figures 4 to 7 show system trajectories, tracking error and control torque for the initial
condition: [x;,%,]=[0.1m, Im/s.] using the control law. Figure 4 provides the tracked
vertical displacement of the driver seat vs. time and perfect tracking behavior can be

observed. Figure 5 exhibits the tracking error and it is enlarged in Fig. 6 to show it's
chattering behavior after the tracking is achieved. Chattering is undesirable for the
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controller that makes impossible in selecting hardware and leads to premature failure of
hardware.

The values for Aand 7 in Eq. (17) and Eq. (20) are chosen as 20 and 0.1 (Jean-Jacques, 1991) to
obtain the plots and to achieve satisfactory tracking performance. The sampling rate of 1
kHz is selected in the simulation. $=0 condition and the signum function are used. The
plot of control force vs. time is given in Fig. 7. It is very important to mention that, the
tracking is guaranteed only with excessive control forces. Mass of the driver and driver seat,
limits of its operation, control bandwidth, initial conditions, sprung mass vibrations,
chattering and system uncertainties are various factors that cause to generate huge control
forces. It should be mentioned that this selected example is governed only by the linear
equations with sine disturbance function, which cause for the controller to generate periodic
sinusoidal signals. In general, the road disturbance is sporadic and the smooth control
action can never be expected. This will lead to chattering and QFT is needed to filter them
out. Moreover, applying SMC with QFT can reduce excessive control forces and will ease
the selection of hardware.

In subsequent results, the spring constant of the tires were 1200kN/m & 98kN/m3 and the
damping coefficients were 300kNs/m & 75kNs/m2. Some of the trucks’ numerical
parameters (Taha et al., 2003; Ogata, 1970; Tabarrok & Tong, 1992, 1993; Esmailzadeh et al.,
1990; Aksionov, 2001; Gillespie, 1992; Wong, 1978) are used in obtaining plots and they are
as follows: my, = 100kg, m, = 3300kg, m, = 1000kg, ka1 = ko1 = 200 kKN/m & ke =kso = 18
kN/m3, kh] =1 kN/m & khz =0.03 kN/m3 ,C511 = C521 =50 st/m & C512 = Cszz =5 kl\IS/Il‘l2 ’
Cn1 = 0.4 kNs/m & Gy, = 0.04 kNs/m , J; = 3000 kgm?, [, = 900 kgm?, A; =03 m, S; =09 m,
and a;; = 0.8 m.
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Fig. 4. Vertical displacement of driver seat vs. time using SMC only
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4.4 Use of QFT on the sliding surface

Figure 8 shows the required control force using SMC only. In order to lower the excessive
control force and to further smoothen the control behavior with a view of reducing
chattering, QFT is introduced inside the boundary layer. The following graphs are plotted
for the initial boundary layer thickness of 0.1 meters.
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Fig. 8. Vertical displacement of driver seat vs. time using SMC & QFT
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Fig. 9. Tracking error vs. time using SMC & QFT
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Fig. 13. s-trajectory with time-varying boundary layer vs. time using SMC & QFT

Figure 8 again shows that the system is tracked to the trajectory of interest and it follows the
desired trajectory of the seat motion over the time. Figure 9 provides zoomed in tracking
error of Fig. 8 which is very small and perfect tracking condition is achieved. The control
force needed to track the system is given in Fig. 11. Figure 12 provides control forces for
both cases, i.e., SMC with QFT and SMC alone. SMC with QFT yields lower control force
and this can be precisely generated by using a hydraulic actuator. Increase of the parameter
A will decrease the tracking error with an increase of initial control effort.

Varying thickness of the boundary layer allows the better use of the available bandwidth,
which causes to reduce the control effort for tracking the system. Parameter uncertainties
can effectively be addressed and the control force can be smoothened with the use of the
SMC and QFT. A successful application of QFT methodology requires selecting suitable
function for F, since the change in boundary layer thickness is dependent on the bounds of
F. Increase of the bounds of F will increase the boundary layer thickness that leads to
overestimate the change in boundary layer thickness and the control effort. Evolution of
dynamic model uncertainty with time is given by the change of boundary layer thickness.
Right selection of the parameters and their bounds always result in lower tracking errors
and control forces, which will ease choosing hardware for most applications.

5. Conclusion

This chapter provided information in designing a road adaptive driver’s seat of a heavy
truck via a combination of SMC and QFT. Based on the assumptions, the simulation results
show that the adaptive driver seat controller has high potential to provide superior driver
comfort over a wide range of road disturbances. However, parameter uncertainties, the
presence of unmodeled dynamics such as structural resonant modes, neglected time-delays,
and finite sampling rate can largely change the dynamics of such systems. SMC provides
effective methodology to design and test the controllers in the performance trade-offs. Thus
tracking is guaranteed within the operating limits of the system. Combined use of SMC and
QFT facilitates the controller to behave smoothly and with minimum chattering that is an
inherent obstacle of using SMC alone. Chattering reduction by the use of QFT supports
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selection of hardware and also reduces excessive control action. In this chapter simulation
study is done for a linear system with sinusoidal disturbance inputs. It is seen that very high
control effort is needed due to fast switching behavior in the case of using SMC alone.
Because QFT smoothens the switching nature, the control effort can be reduced. Most of the
controllers fail when excessive chattering is present and SMC with QFT can be used
effectively to smoothen the control action. In this example, since the control gain is fixed, it
is independent of the states. This eases control manipulation. The developed theory can be
used effectively in most control problems to reduce chattering and to lower the control
effort. It should be mentioned here that the acceleration feedback is not always needed for
position control since it depends mainly on the control methodology and the system
employed. In order to implement the control law, the road disturbance frequency, @, should
be measured at a rate higher or equal to 1000Hz (comply with the simulation requirements)
to update the system; higher frequencies are better. The bandwidth of the actuator depends
upon several factors; i.e. how quickly the actuator can generate the force needed, road
profile, response time, and signal delay, etc.
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1. Introduction

In this chapter we will study the robust performance control based-on integral sliding-mode
for system with nonlinearities and perturbations that consist of external disturbances and
model uncertainties of great possibility time-varying manner. Sliding-mode control is one
of robust control methodologies that deal with both linear and nonlinear systems, known for
over four decades (El-Ghezawi et al., 1983; Utkin & Shi, 1996) and being used extensively from
switching power electronics (Tan et al., 2005) to automobile industry (Hebden et al., 2003),
even satellite control (Goeree & Fasse, 2000; Liu et al., 2005). The basic idea of sliding-mode
control is to drive the sliding surface s from s # 0 to s = 0 and stay there for all future
time, if proper sliding-mode control is established. Depending on the design of sliding
surface, however, s = 0 does not necessarily guarantee system state being the problem of
control to equilibrium. For example, sliding-mode control drives a sliding surface, where
s = Mx — Mxg, to s = 0. This then implies that the system state reaches the initial state,
that is, x = x( for some constant matrix M and initial state, which is not equal to zero.
Considering linear sliding surface s = Mx, one of the superior advantages that sliding-mode
has is that s = 0 implies the equilibrium of system state, i.e, x = 0. Another sliding
surface design, the integral sliding surface, in particular, for this chapter, has one important
advantage that is the improvement of the problem of reaching phase, which is the initial
period of time that the system has not yet reached the sliding surface and thus is sensitive to
any uncertainties or disturbances that jeopardize the system. Integral sliding surface design
solves the problem in that the system trajectories start in the sliding surface from the first
time instant (Fridman et al., 2005; Poznyak et al., 2004). The function of integral sliding-mode
control is now to maintain the system’s motion on the integral sliding surface despite model
uncertainties and external disturbances, although the system state equilibrium has not yet
been reached.

In general, an inherent and invariant property, more importantly an advantage, that all
sliding-mode control has is the ability to completely nullify the so-called matched-type
uncertainties and nonlinearities, defined in the range space of input matrix (El-Ghezawi et al.,
1983). But, in the presence of unmatched-type nonlinearities and uncertainties, the
conventional sliding-mode control (Utkin etal., 1999) can not be formulated and thus is
unable to control the system. Therefore, the existence of unmatched-type uncertainties has
the great possibility to endanger the sliding dynamics, which identify the system motion on the
sliding surface after matched-type uncertainties are nullified. Hence, another control action
simultaneously stabilizes the sliding dynamics must be developed.



166 Recent Advances in Robust Control — Novel Approaches and Design Methods

Next, a new issue concerning the performance of integral sliding-mode control is addressed,
that is, we develop a performance measure in terms of L;-gain of zero dynamics. The
concept of zero dynamics introduced by (Lu & Spurgeon, 1997) treats the sliding surface
s as the controlled output of the system. The role of integral sliding-mode control is to
reach and maintain s = 0 while keeping the performance measure within bound. In short,
the implementation of integral sliding-mode control solves the influence of matched-type
nonlinearities and uncertainties while, in the meantime, maintaining the system on the
integral sliding surface and bounding a performance measure without reaching phase.
Simultaneously, not subsequently, another control action, i.e. robust linear control, must be
taken to compensate the unmatched-type nonlinearities, model uncertainties, and external
disturbances and drive the system state to equilibrium.

Robust linear control (Zhou et al., 1995) applied to the system with uncertainties has been
extensively studied for over three decades (Boyd et al.,, 1994) and reference therein. Since
part of the uncertainties have now been eliminated by the sliding-mode control, the
rest unmatched-type uncertainties and external disturbances will be best suitable for the
framework of robust linear control, in which the stability and performance are the issues to
be pursued. In this chapter the control in terms of £;-gain (van der Schaft, 1992) and H,
(Paganini, 1999) are the performance measure been discussed. It should be noted that the
integral sliding-mode control signal and robust linear control signal are combined to form a
composite control signal that maintain the system on the sliding surface while simultaneously
driving the system to its final equilibrium, i.e. the system state being zero.

This chapter is organized as follows: in section 2, a system with nonlinearities, model
uncertainties, and external disturbances represented by state-space is proposed. The
assumptions in terms of norm-bound and control problem of stability and performance issues
are introduced. In section 3, we construct the integral sliding-mode control such that the
stability of zero dynamics is reached while with the same sliding-mode control signal the
performance measure is confined within a bound. After a without reaching phase integral
sliding-mode control has been designed, in the section 4, we derive robust control scheme
of £;-gain and H, measure. Therefore, a composite control that is comprised of integral
sliding-mode control and robust linear control to drive the system to its final equilibrium is
now completed. Next, the effectiveness of the whole design can now be verified by numerical
examples in the section 5. Lastly, the chapter will be concluded in the section 6.

2. Problem formulation

In this section the uncertain systems with nonlinearities, model uncertainties, and
disturbances and control problem to be solved are introduced.

2.1 Controlled system
Consider continuous-time uncertain systems of the form

N
x(t) = A(H)x(t) + B(t) (u(x,t) + h(x)) + ;gi(x, t) + Byw(t) (1)

where x(t) € R" is the state vector, u(x, t) € R™ is the control action, and for some prescribed
compact set S € RP, w(t) € S is the vector of (time-varying) variables that represent
exogenous inputs which includes disturbances (to be rejected) and possible references (to be
tracked). A(t) € R™" and B(t) € R"*™ are time-varying uncertain matrices. By € R"*?
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is a constant matrix that shows how w(t) influences the system in a particular direction. The
matched-type nonlinearities 1(x) € R™ is continuous in x. g;(x,t) € R", an unmatched-type
nonlinearity, possibly time-varying, is piecewise continuous in t and continuous in x. We
assume the following:

1. A(t) = A+ AA(t) = A+ EgFy(t)Hp, where A is a constant matrix and AA(t) = EqFy(t)Hy
is the unmatched uncertainty in state matrix satisfying

IFo()] <1, @)

where Fy(t) is an unknown but bounded matrix function. Ey and Hy are known constant
real matrices.

2. B(t) = B(I+ AB(t)) and AB(t) = F;(t)Hy. AB(t) represents the input matrix uncertainty.
F;(t) is an unknown but bounded matrix function with

(8] <1, ©)
Hj is a known constant real matrix, where
IHLll = p1 <1, (4)
and the constant matrix B € R"*™ is of full column rank, i.e.
rank(B) = m. )
3. The exogenous signals, w(t), are bounded by an upper bound @,
[w(t)]| <. ©6)
4. The g;(x,t) representing the unmatched nonlinearity satisfies the condition,
Igi(x, )| < 6illx[l, ¥¢=0, i=1,---,N, )

where 6; > 0.

5. The matched nonlinearity /i(x) satisfies the inequality

1R () < 7 (x), ®)
where 7(x) is a non-negative known vector-valued function.

Remark 1. For the simplicity of computation in the sequel a projection matrix M is such that MB = 1
for rank(B) = m by the singular value decomposition:

B = (U U) (ﬁ) v,

where (Uy  Up) and V are unitary matrices. . = diag(coq, - - -, 0p). Let

M=VT (=710 (%) : €)
2

It is seen easily that
MB =1 (10)
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2.2 Control problem
The control action to (1) is to provide a feedback controller which processes the full
information received from the plant in order to generate a composite control signal

u(x,t) = us(t) +ur(x, t), (11)

where u;(t) stands for the sliding-mode control and u,(x,t) is the linear control that
robustly stabilize the system with performance measure for all admissible nonlinearities,
model uncertainties, and external disturbances. Taking the structure of sliding-mode control
that completely nullifies matched-type nonlinearities is one of the reasons for choosing the
control as part of the composite control (11). For any control problem to have satisfactory
action, two objectives must achieve: stability and performance. In this chapter sliding-mode
controller, us(t), is designed so as to have asymptotic stability in the Lyapunov sense and the
performance measure in £; sense satisfying

T T
| sl < g [ ot (12)

where the variable s defines the sliding surface. The mission of us(t) drives the system to
reach s = 0 and maintain there for all future time, subject to zero initial condition for some
prescribed p > 0. It is noted that the asymptotic stability in the Lyapunov sense is saying
that, by defining the sliding surface s, sliding-mode control is to keep the sliding surface
at the condition, where s = 0. When the system leaves the sliding surface due to external
disturbance reasons so that s # 0, the sliding-mode control will drive the system back to
the surface again in an asymptotic manner. In particular, our design of integral sliding-mode
control will let the system on the sliding surface without reaching phase. It should be noted
that although the system been driven to the sliding surface, the unmatched-type nonlinearities
and uncertainties are still affecting the behavior of the system. During this stage another part
of control, the robust linear controller, u,(x, t), is applied to compensate the unmatched-type
nonlinearities and uncertainties that robust stability and performance measure in £;-gain
sense satisfying

T T
| lar <o [l (13)

where the controlled variable, z, is defined to be the linear combination of the system state,
x, and the control signal, u,, such that the state of sliding dynamics will be driven to the
equilibrium state, that is, x = 0, subject to zero initial condition for some ¢ > 0. In addition
to the performance defined in (13), the H, performance measure can also be applied to the
sliding dynamics such that the performance criterion is finite when evaluated the energy

response to an impulse input of random direction at w. The H, performance measure is
defined to be

J(x0) = sup_ [ (14)
x(0)=xo

In this chapter we will study both performance of controlled variable, z. For the composite
control defined in (11), one must aware that the working purposes of the control signals of
us(t) and ur(x, t) are different. When applying the composite control simultaneously, it should
be aware that the control signal not only maintain the sliding surface but drive the system
toward its equilibrium. These are accomplished by having the asymptotic stability in the
sense of Lyapunov.
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3. Sliding-mode control design

The integral sliding-mode control completely eliminating the matched-type nonlinearities and
uncertainties of (1) while keeping s = 0 and satisfying £-gain bound is designed in the
following manner.

3.1 Integral sliding-mode control
Let the switching control law be

s(x,t)
us(t) = —a(t . (15)
U FEX]
The integral sliding surface inspired by (Cao & Xu, 2004) is defined to be
s(x, ) = Mx(t) +sp(x, 1), (16)
where sy(x, t) is defined to be
t
so(x, t)=—-M <x0 +/0 (Ax(1) +Bur(T)dT> ; xg = x(0). 17)
The switching control gain a(t) being a positive scalar satisfies
1
alt) 2 75 (A4 Po+ (14 By (x) + Paljur) (18)
where
N
Po = x| MEoll[| Holl + x[[MI] }_ 6; + || MBq]| . (19)

i=1
A is chosen to be some positive constant satisfying performance measure. It is not difficult to
see from (16) and (17) that
s(xg,0) =0, (20)
which, in other words, from the very beginning of system operation, the controlled system is
on the sliding surface. Without reaching phase is then achieved. Next to ensure the sliding
motion on the sliding surface, a Lyapunov candidate for the system is chosen to be

Vs = %sTs. (21)

Itis noted that in the sequel if the arguments of a function is intuitively understandable we will
omit them. To guarantee the sliding motion of the sliding surface, the following differentiation
of time must hold, i.e.

Vi =sTs<0. (22)

It follows from (16) and (17) that
§ = Mx + M(Ax + Buy) (23)
Substituting (1) into (23) and in view of (10), we have

§=MAA(t)x+ (I+AB(t))(u+h(x))+M % gi(x,t) + MByw — uy. (24)
i=1
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Thus the following inequality holds,

Vi =sT (MAA(t)x + (I+AB(t))(u+h(x))+M %gi(x,t) + MByw — ur> 25)
i=1

< [Isll(Bo + (1 + 1) (x) + Ballurl + (B1 — Da(t)).
By selecting «(t) as (18), we obtain
Vs < sl <