
Environmental Applications 
of Remote Sensing

Edited by Maged Marghany

Edited by Maged Marghany

Photo by Anastasiya_Voronova / iStock

Nowadays, the innovation in space technologies creates a new trend for the Earth 
observation and monitoring from space. This book contains high quality and 

compressive work on both microwave and optical remote sensing applications. This 
book is divided into five sections: (i) remote sensing for biomass estimation, (ii) remote 

sensing-based glacier studies, (iii) remote sensing for coastal and ocean applications, 
(iv) sewage leaks and environment disasters, and (v) remote sensing image processing.

Each chapter offers an opportunity to expand the knowledge about various remote 
sensing techniques and persuade researchers to deliver new research novelty for 

environment studies.

ISBN 978-953-51-2443-6

Environm
ental A

pplications of Rem
ote Sensing





ENVIRONMENTAL
APPLICATIONS OF
REMOTE SENSING

Edited by Maged Marghany



Environmental Applications of Remote Sensing
http://dx.doi.org/10.5772/60828
Edited by Maged Marghany

Contributors

Ana Teodoro, Dericks Shukla, Sharad Kumar Gupta, Chandra Dubey, Manoj Thakur, Pasquale Imperatore, Antonio 
Pepe, Guido Staub, Catherinne Muñoz, Saba Mudaliar, C. P. Vendhan, C. Prabavathi, Maged Marghany, Benoit Vozel, 
Sergey Abramov, Sergey Krivenko, Vladimir Lukin, Philippe Maillard, Marilia Ferreira Gomes, Arshad Ashraf, Igor 
Ogashawara, Carlos Araujo, Marcelo Curtarelli, Jose Luiz Stech, Pratima Pandey, Ramanathan Alagappan, Gopalan 
Venkataraman, Monika GĂhler, Mauricio Galeana, Juan Manuel Nuñez, Nirani Corona Romero, Naftaly Goldshleger, 
Uri Basson

© The Editor(s) and the Author(s) 2016
The moral rights of the and the author(s) have been asserted.
All rights to the book as a whole are reserved by INTECH. The book as a whole (compilation) cannot be reproduced, 
distributed or used for commercial or non-commercial purposes without INTECH’s written permission.  
Enquiries concerning the use of the book should be directed to INTECH rights and permissions department 
(permissions@intechopen.com).
Violations are liable to prosecution under the governing Copyright Law.

Individual chapters of this publication are distributed under the terms of the Creative Commons Attribution 3.0 
Unported License which permits commercial use, distribution and reproduction of the individual chapters, provided 
the original author(s) and source publication are appropriately acknowledged. If so indicated, certain images may not 
be included under the Creative Commons license. In such cases users will need to obtain permission from the license 
holder to reproduce the material. More details and guidelines concerning content reuse and adaptation can be 
foundat http://www.intechopen.com/copyright-policy.html.

Notice

Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those 
of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published 
chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the 
use of any materials, instructions, methods or ideas contained in the book.

First published in Croatia, 2016 by INTECH d.o.o.
eBook (PDF) Published by  IN TECH d.o.o.
Place and year of publication of eBook (PDF): Rijeka, 2019.
IntechOpen is the global imprint of IN TECH d.o.o.
Printed in Croatia

Legal deposit, Croatia: National and University Library in Zagreb

Additional hard and PDF copies can be obtained from orders@intechopen.com

Environmental Applications of Remote Sensing
Edited by Maged Marghany

p. cm.

Print ISBN 978-953-51-2443-6

Online ISBN 978-953-51-2444-3

eBook (PDF) ISBN 978-953-51-5071-8



Selection of our books indexed in the Book Citation Index 
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 
For more information visit www.intechopen.com

3,450+ 
Open access books available

151
Countries delivered to

12.2%
Contributors from top 500 universities

Our authors are among the

Top 1%
most cited scientists

110,000+
International  authors and editors

115M+ 
Downloads

We are IntechOpen,  
the first native scientific 

publisher of Open Access books

 





Meet the editor

Dr. Maged Marghany received his Ph.D. from the Uni-
versity Putra Malaysia in 2000. He was also awarded the 
ESA Post-doctoral Fellowship by the International In-
stitute of Aerospace and Earth Observation (ITC) in En-
schede, the Netherlands, in 2001. Dr. Maged Marghany 
is microwave remote sensing expert. Currently, he is 
associate professor in Geospatial Information Science 

Research Centre, Faculty of Engineering, University Putra Malaysia. Dr. 
Maged Marghany has authored more than 200 reviewed papers and book 
chapters and had served as a reviewer of several international research 
journals. He was the main leader for several projects related to the applica-
tion of microwave remote sensing to Malaysian coastal waters, funded by 
the Ministry of Science and Technology, Malaysia (MOSTE), and Ministry 
of High Education, Malaysia (MOHE).





Contents

Preface XI

Section 1 Remote Sensing for Biomass Estimation    1

Chapter 1 Remote Sensing-Based Biomass Estimation   3
José Mauricio Galeana Pizaña, Juan Manuel Núñez Hernández and
Nirani Corona Romero

Chapter 2 Detection of Tree Crowns in  Very High Spatial Resolution
Images     41
Marilia Ferreira Gomes and Philippe Maillard

Section 2 Remote Sensing Based Glacier Studies    73

Chapter 3 Climate Factors’ Effects on Glacier Variations in the Commune
of Alto del Carmen, Chile   75
Guido Staub and Catherinne Muñoz

Chapter 4 Remote Sensing of the Glacial Environment Influenced by
Climate Change   99
Arshad Ashraf, Manshad Rustam, Shaista Ijaz Khan, Muhammad
Adnan and Rozina Naz

Chapter 5 Remote Sensing of Mountain Glaciers and
Related Hazards   131
Pratima Pandey, Alagappan Ramanathan and Gopalan
Venkataraman

Section 3 Remote Sensing For Coastal and Ocean Applications    163

Chapter 6 Optical Satellite Remote Sensing of the Coastal Zone
Environment — An Overview   165
Ana C. Teodoro



Chapter 7 Remote Sensing of the Ocean Environment Using Finite
Element Methods   197
Saba Mudaliar, C.P. Vendhan and C. Prabavathi

Chapter 8 Bio-Optical Modeling in a Tropical Hypersaline Lagoon
Environment   235
Igor Ogashawara, Marcelo P. Curtarelli, Carlos A. S. Araujo and José
L. Stech

Section 4 Sewage Leaks, and Enviroment Disasters    259

Chapter 9 Utilization of Ground-Penetrating  Radar and Frequency
Domain Electromagnetic  for Investigation of Sewage
Leaks      261
Goldshleger Naftaly and Basson Uri

Chapter 10 Geo-spatial Technology for Landslide Hazard Zonation and
Prediction   281
Dericks P. Shukla, Sharad Gupta, Chandra S. Dubey and Manoj
Thakur

Chapter 11 Remote Sensing for Natural or Man-made Disasters and
Environmental Changes   309
Monika Gähler

Section 5 Remote Sensing Image Processing    339

Chapter 12 Topological Characterization and Advanced Noise-Filtering
Techniques for Phase Unwrapping of Interferometric
Data Stacks   341
Pasquale Imperatore and Antonio Pepe

Chapter 13 Processing of Multichannel Remote-Sensing Images with
Prediction of Performance Parameters   373
Benoit Vozel, Oleksiy Rubel, Alexander Zemliachenko, Sergey
Abramov, Sergey Krivenko, Ruslan Kozhemiakin, Vladimir Lukin and
Kacem Chehdi

X Contents



Chapter 7 Remote Sensing of the Ocean Environment Using Finite
Element Methods   197
Saba Mudaliar, C.P. Vendhan and C. Prabavathi

Chapter 8 Bio-Optical Modeling in a Tropical Hypersaline Lagoon
Environment   235
Igor Ogashawara, Marcelo P. Curtarelli, Carlos A. S. Araujo and José
L. Stech

Section 4 Sewage Leaks, and Enviroment Disasters    259

Chapter 9 Utilization of Ground-Penetrating  Radar and Frequency
Domain Electromagnetic  for Investigation of Sewage
Leaks      261
Goldshleger Naftaly and Basson Uri

Chapter 10 Geo-spatial Technology for Landslide Hazard Zonation and
Prediction   281
Dericks P. Shukla, Sharad Gupta, Chandra S. Dubey and Manoj
Thakur

Chapter 11 Remote Sensing for Natural or Man-made Disasters and
Environmental Changes   309
Monika Gähler

Section 5 Remote Sensing Image Processing    339

Chapter 12 Topological Characterization and Advanced Noise-Filtering
Techniques for Phase Unwrapping of Interferometric
Data Stacks   341
Pasquale Imperatore and Antonio Pepe

Chapter 13 Processing of Multichannel Remote-Sensing Images with
Prediction of Performance Parameters   373
Benoit Vozel, Oleksiy Rubel, Alexander Zemliachenko, Sergey
Abramov, Sergey Krivenko, Ruslan Kozhemiakin, Vladimir Lukin and
Kacem Chehdi

ContentsVI

Preface

Nowadays, the innovation in space technologies creates a new trend for the Earth observa‐
tion from space. Consequently, the rapid innovation of sensor developments allows high
resolution of less than 1 m for optical satellite such as GeoEye-1 satellite, which collects im‐
ages at nadir with 0.41-meter panchromatic (black and white). Synthetic aperture radar
(SAR), as a result, also delivers 1-m high-resolution image, which is assembled by Terra‐
SAR-X spotlight mode. In these contexts, advanced Earth observation from space has com‐
menced novel perceptions for environmental research.

Satellite remote sensing has a plentiful of promise applications in a wide range of environ‐
ment disciplines. Exploiting satellite data, the status, and temporal growth of the environ‐
ment over large areas at short-time intervals can be monitored accurately. Integrating this
with in situ data and mathematical models tolerates us to monitor and empathize the vital
processes at work in huge areas, such as snow cover evolution, vegetation development, or
land-slide movements. For instance, British National Antarctic Expedition, which is known
as Discovery Expedition, spent 3 years cruising across the world oceans and documenting
abundant significant ground information about biology, zoology, geology, meteorology, and
magnetism. The expedition discovered the existence of the only snow-free Antarctic valleys.
This is because Discovery Expedition’s researchers had a healthy environment of research
and the great aim of the research novelty.

Successively, the following high-quality book chapters cover wide range of remote sensing
uses and address the theories behind each application. Instead, this book is portrayed high-
quality and compressive work on both microwave and optical remote sensing applications.
This book is divided into five sections: (i) remote sensing for biomass estimation; (ii) remote
sensing-based glacier studies; (iii) remote sensing for coastal and ocean applications; (iv)
sewage leaks and environment disasters; and (v) remote sensing image processing. Accord‐
ingly, the first two chapters are devoted for biomass estimation. Chapter 1 involves Lidar
(Light Detection and Ranging) application for monitoring biomass spatial variations in Mex‐
ico City. Furthermore, the study explores the capability of canopy fraction cover and digital
canopy height model (DCHM) for modeling the spatial distribution of the above-ground bi‐
omass of two forests, dominated by Abies religiosa and Pinus spp., located in the central of
Mexico. Chapter 2 demonstrates new hybrid approach developed by the authors that inte‐
grates geometrical-optical modeling (GOM), marked point processes (MPP), and template
matching (TM) to individually detect tree crowns in VHR images. Section 2 involves differ‐
ent techniques for remote sensing applications about glacier studies. With this regard, Chap‐
ter 3 utilizes the LANDSAT-7 ETM+ satellite data with ground sampling to investigate the
climate change effects on glaciers in the Commune Alto del Carmen, Chile. This study cov‐
ers 21 years, from 1994 to 2015. Such study had tremendous benefits to climate change re‐



search. The interesting part of Chapter 4 is that the authors implemented snow runoff
modeling with multisensor remote sensing data. The authors implemented MODIS, Land‐
sat-7 and 8, and SPOT-5 XS, with Google Earth and digital elevation model (DEM) data to
investigate the snow/glacier resources and their dynamics in the Karakoram-Himalaya ba‐
sins. Indeed, this plays important role in climate changes all over the world. Chapter 5,
therefore, explores the prospective of remote sensing technology for understanding and sur‐
veying glaciers formed at high, inaccessible mountains and glacier-induced hazards.

The third section comprises remote sensing for coastal and ocean applications. In this con‐
text, Chapter 6 presents overview of potential of optical remote sensing data for monitoring
the coastal environment. Subsequently, Chapter 7 operates a new approach of integration of
finite element model with remote sensing data to model coastal dynamic in shallow zone.
Furthermore, Chapter 8 overviews the uses of remote sensing to monitor water quality pa‐
rameters, mainly chlorophyll- a (chl- a) and turbidity. This chapter synopsizes the main con‐
cepts of bio-optical modeling through a case study of the application of the hyperspectral
data for monitoring water quality in a tropical hypersaline aquatic environment.

The fourth section is devoted for such precise studies of sewage leaks and environment dis‐
asters. With this regard, Chapter 9 operates precise method and model for sewage leak de‐
tection using ground-penetrating radar (GPR) and frequency domain electromagnetic
(FDEM). This work concluded that advances in active remote sensing technologies, GPR,
and FDEM can be used to identify sewage leaks that might cause pollution and to identify
minor spills before they cause widespread damage.

Chapter 10 discusses geospatial technology for landslide hazard zonation and prediction.
The geospatial technology is demonstrated by soft computing of fuzzy logic, artificial neural
network, discriminant analysis, direct mapping, and neuro-fuzzy approach. Moreover,
Chapter 11 deliberates precisely the potential of remote sensing applications for nature or
man-made disasters. The chapter embraces excellent and wonderful examples of flooding in
Germany 2013, earthquake in Nepal 2015, forest fires in Russia 2015, and searching for the
Malaysian aircraft 2014.

The last section is assigned for some examples of advanced remote sensing image process‐
ing. With this regard, Chapter 12 presents new approach for processing multichannel re‐
mote sensing data, especially synthetic aperture radar data (SAR), using new proposed
statistical filters. This study is important for feature detection in such coherence data of SAR
data. Finally, Chapter 13 addresses the problem of phase unwrapping interferometric data
stacks, obtained by multiple SAR acquisitions over the same area on the ground, with a two‐
fold objective. First, a rigorous gradient-based formulation for the multichannel phase un‐
wrapping (MCh-PhU) problem is systematically established, thus capturing the intrinsic
topological character of the problem. The presented mathematical formulation is consistent
with the theoretical foundation of the discrete calculus. Then within the considered theoreti‐
cal framework, we formally describe an innovative procedure for the noise filtering of time-
redundant multichannel multilook interferograms. The strategy underlying the adopted
multichannel noise filtering (MCh-NF) procedure arises from the key observation that mul‐
tilook interferograms are not fully time consistent due to multilook operations independent‐
ly applied on each single interferogram. Accordingly, the presented MCh-NF procedure
suitably exploits the temporal mutual relationships of the interferograms.
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Chapter 1

Remote Sensing-Based Biomass Estimation

José Mauricio Galeana Pizaña, Juan Manuel Núñez Hernández and
Nirani Corona Romero

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61813

Abstract

Over the past two decades, one of the research topics in which many works have been
done is spatial modeling of biomass through synergies between remote sensing, for‐
estry, and ecology. In order to identify satellite-derived indices that have correlation
with forest structural parameters that are related with carbon storage inventories and
forest monitoring, topics that are useful as environmental tools of public policies to
focus areas with high environmental value. In this chapter, we present a review of dif‐
ferent models of spatial distribution of biomass and resources based on remote sens‐
ing that are widely used. We present a case study that explores the capability of
canopy fraction cover and digital canopy height model (DCHM) for modeling the
spatial distribution of the aboveground biomass of two forests, dominated by Abies
Religiosa and Pinus spp., located in Central Mexico. It also presents a comparison of
different spatial models and products, in order to know the methods that achieved the
highest accuracy through root-mean-square error. Lastly, this chapter provides con‐
cluding remarks on the case study and its perspectives in remote sensing-based bio‐
mass estimation.

Keywords: Aboveground biomass, forest, remote sensing, modeling, resources

1. Introduction

Forest ecosystems are about 31% of the total land cover of the earth [1], being one of the most
important ecosystems due to economic goods and environmental services they provide. One
of these services is as an environmental regulator, reducing the concentration of carbon dioxide
(greenhouse gas) from the atmosphere and transforming it into oxygen and biomass through
photosynthesis, thereby playing an important role in the global carbon cycle [2–4].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Biomass is defined as the dry weight of both aboveground biomass (AGB) and belowground
biomass (BGB) living mass of vegetation, such as wood, bark, branches, twigs, stumps, or roots
as well as dead mass of litter associated with the soil [4–6]. According to this, it can be
considered as a measure of forest structure and function. Thus, by knowing the spatial
distribution of biomass, it is possible to calculate the net flow of terrestrial carbon, nutrient
cycling, forest productivity, biomass energy, and carbon storage and sequestration by the
forest, reducing the uncertainty of carbon emission and sequestration measures to support
climate change modeling studies [5–8].

Since calculating field measures of BGB is difficult, most studies have focused on calculating
AGB. The most accurate way to obtain AGB data is by using field measurements and allometric
equations for individual trees; however, these techniques are difficult to implement because
they are time consuming and labor intensive. Furthermore, forests are a complex and widely
distributed ecosystem, which makes these techniques expensive to apply in large areas;
therefore, they cannot provide the spatial distribution of biomass [4,6].

An alternative form to map and monitor spatial distribution of AGB is through the use of
remote sensing-based techniques, because through them it is possible to obtain a continuous
and repetitive collection of digital data from the same area with different spatial resolutions,
covering large areas and reducing processing time and costs [5,6]. Due to the increasing
availability of satellite imagery, several researches have been developed to prove the effec‐
tiveness of both imagery data provided by different sensors and diverse modeling approaches
[4,6,9]. In order to estimate AGB, two main kinds of models have been used: direct and indirect.
The direct models measure biomass throughout the relationship between spectral data
response and biomass field measurements. For the indirect models, biomass is estimated from
biophysical parameters or forest structural metrics [10].

This chapter reviews the main models used for estimating biomass and key resources used in
remote sensing (Sections 1 and 2). The case study integrates some models and resources
applied in forests dominated by Abies Religiosa and Pinus spp. located in Central Mexico. In
the last section, concluding remarks are provided about the best biomass estimation models
as well as their limitations.

2. Biomass modeling

Several factors can affect the remote sensing-based AGB estimation, such as insufficient sample
data, atmospheric conditions, complex biophysical environments, scale of the study area,
availability of software, spatial resolution of remotely sensed data, or mixed pixels, among
others [6, 10]. In order to introduce different approaches that have been developed to reduce
the uncertainties produced by these factors on the estimation of the spatial distribution of AGB,
the most commonly used models will be described in this section.

Environmental Applications of Remote Sensing4
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2.1. Field measurements and allometric equations

All spatial distribution AGB estimation models need high quality and representative field data
to be implemented. Therefore, forest inventories are the most common approach to obtain
detailed and periodic data. They are held for monitoring, modeling, and predicting several
biophysical processes, such as stocking levels, harvests, diseases, and pests, among others.
Therefore, they are generally implemented at several scales to obtain different structural
parameters, either through the data aggregated from stand-level management inventories or
by plots established through a statistical sampling design [3,4,6,11].

Since the grouping of data from stand-level management inventories tend to underestimate
the forested areas and stock volume calculation, presently in most of the countries a statistical
sampling design is used. In this procedure, the sampling plots are randomly selected from a
population where each one of them has the same positive known probability to be chosen.
They can be selected by different methods. One of them is a systematic sampling procedure
based on the use of grids of randomly selected points in two dimensions, with a 0.5–20-km
separation range. In other cases, plot locations are randomly selected by regular polygons
created by a tessellation of large areas, which can be stratified when different sampling
intensities are required, for example, when different land uses and covers exist [11].

In order to make a more efficient sampling, a plot generally conforms clusters, commonly of
four plots but, in some cases, they can be as large as 18, with a huge variety of shapes and sizes.
Circular plots are commonly used in Boreal and Temperate forests, whereas square and
rectangular ones are used in rainforests. Plots can be combined with other sampling methods
like transect for measuring deadwood or soil pits to assess soil carbon [11].

Commonly, the information gathered about a plot is location, number of trees, species, health,
and site description, among others. In addition, individual tree dendrometric variables are
considered, such as diameter at breast height (DBH), tree height, crown size, and canopy cover,
DBH and tree height being the most commonly used parameters to derivate AGB through
allometric equations [3,4,10].

The allometric biomass equation is the most common and accurate method to translate forest
inventory reports of individual tree data to tree and stand biomass. It is a mathematical relation
between total tree biomass (stem, branch, and foliage) and its DBH or both DBH and height,
applying a least-squares regression of logarithmic equation. It can be both species- or site
specific (e.g., Pinus montezume or Abies religiosa) or more generic (e.g., pine gender or tropical
hardwoods); however, it has been observed that biomass equations at the site-specific level
produce better results than generic equations [3,8,12].

The most accurate method to obtain allometric equations is a destructive process in which
individual trees from a wide range of DBH, distributed in a local forest, must be felled and
separated into boles, branches, and leaves. Then boles are cut into sections and weighted in
the field as leaves and branches. After that, a thick disc sample must be cut from the base of
each bole section and a subsample is extracted for the other side of the disk, both being dried
at 105°C until a constant weight is reached to obtain the dry mass, to estimate the moisture

Remote Sensing-Based Biomass Estimation
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5



content and the wood density. The total biomass therefore is the sum of the dry mass of the
branches, the leaves, and the various sections of the stem [3,13].

Since it has been observed that growing plants maintain the weight proportion between
different parts, it is possible to build a nonlinear mathematical model to relate biomass with
DBH using these parameters [12]. One of the most common models used is the logarithmic
equation (1):

( ) ( ) ( )= +Ln Ln LnB a b D (1)

where B is the biomass, a and b are scalar coefficients estimated by least-squares linear
regression, and D is the DBH.

Using allometric equations, it is possible to compute the total AGB for a given area using
biomass expansion factors or conversion tables; however, these approaches do not provide the
spatial distribution of AGB [3,10]. Later in this chapter, different models created to obtain
spatial distribution of AGB are explained.

2.2. Regression models

One of the most common methods to estimate biomass is the regression analysis, which is a
statistical technique to investigate and model the relationship between variables. Traditionally,
in the remote sensing approach, the regression analysis techniques applied to AGB estimation
are based on the quantitative relationship between ground-based data and satellite informa‐
tion, such as spectral reflectance, radar, or light detection and ranging (LiDAR) data [6,14,15].
Models based on regression analysis are considered to be relatively easy to implement and can
provide accurate results through their application at all spatial scales [16]. Generally, these
methodologies consist of three major steps: biomass estimation based on fieldwork, establish‐
ment of regression model between field biomass and satellite information of corresponding
pixels, and the use of regression models to generate a biomass image with the spatial predic‐
tion.

These remote sensing-based biomass estimation methods assume that the forest information,
obtained by the sensors, is highly correlated with AGB. According to this, the keys for biomass
estimation are the use of appropriate variables and the development of suitable estimation
models for sufficient sample plots, using regression methods that aim for an efficient integra‐
tion of multisource data, necessary to get better biomass estimation. Spectral data, radar, and
LiDAR have their own positive and negative characteristics and proper integration of them
can improve biomass estimation accuracy [17].

After data integration, the correct use of regression methods for establishing biomass estima‐
tion models is also important. Many models have been developed based on multiple combi‐
nations of in situ tree parameters calculated through linear regression (LR) or nonlinear
regression (NLR) models [18–20]. Multiple regression analysis may be the most frequently
used approach for developing biomass estimation models [21–23]. In both cases, these
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parametric algorithms assume that the relationships between dependent (e.g., biomass) and
independent (derived from remote sensing data) variables have explicit model structures that
can be specified a priori by parameters [15]. Generally, the independent variables can be
spectral bands, vegetation indices, textural images, LiDAR height, and synthetic aperture radar
(SAR) backscatter; in some cases, the use of subpixel information offered better estimation
results than per-pixel-based spectral signatures [24].

However, the linear regression approach has been known to mislead the prediction of the
studied variable at values beyond a saturation point of the canopy reflectance [25]. Since
biomass is usually nonlinearly related to remote sensing variables, nonlinear models such as
power models [26], logistic regression models [27], and geographically weighted regression
models [16] were often used to estimate biomass with more accuracy. Nonetheless, some
estimation methods have been established as a nonparametric alternative to the use of
regression approaches for biomass modeling: k-nearest neighbor (k-NN), artificial neural
network (ANN), regression tree, random forest, support vector machine (SVM), and maximum
entropy (MaxEnt) [15].

2.3. Geostatistical models

Some studies have used geostatistics as the main approach for biomass forest estimation in
order to predict variables related to forest structure (e.g., tree height and volume) and
aboveground biomass and carbon measurements in unsampled sites based on known values
of adjacent spatial data as forest inventory sites [28,29]. Other recent works have explored the
synergy between geostatistical models with remotely sensed data to improve estimations
using remote sensing indices as spatial secondary variables [10, 16, 30–32].

Geostatistics was defined in the 1960s by Georges Matheron, who generalized a set of techni‐
ques developed by Krige (1951) in order to exploit the spatial correlation to make predictions
in evaluating reserves of gold mines in South Africa. This generalization is detailed in his
regionalized variable theory in 1970 [33]. The purpose of geostatistics is the estimation,
prediction, and simulation of the values of a variable that is distributed through space [34].
This theory assumes that a variable measured in a spatial domain corresponds to a random
variable z(x), assuming that the structure of the phenomenon having spatial correlation is
considered a regionalized variable; therefore, a set of spatially distributed random variables
will be a random function Z(x). This provides the theoretical basis for establishing the spatial
structural characteristics of natural phenomena. Moreover, it can be used as a tool for calcu‐
lating the value of a variable in a certain position in space, knowing the values of that variable
among adjacent positions in space, which is known as interpolation [35].

There are diverse methods of interpolations, which can be classified into two main groups:
deterministic and geostatistical. The deterministic techniques are based directly on some
properties of similarity of adjacent measured values (e.g., distance), which establish a set of
mathematical formulas that determine the smoothness of the resultant surface interpolated.
Examples of these are the inverse distance weighting (IDW), nearest neighbors, splines, and
triangular irregular network (TIN) [35]. Geostatistical techniques studied spatial autocorrela‐
tion of the variables in order to fit a spatial dependence model to a set of random variables.

Remote Sensing-Based Biomass Estimation
http://dx.doi.org/10.5772/61813

7



This approach produces predictions and also generates an error surface concerning the
uncertainty-associated analyzed model [33].

The spatial dependence is the spatial behavior of a phenomenon, derived from spatial patterns
in terms of distance and similarity and/or contrast of a spatial unit or relative spatial location
to other spatial units [36]. It has its basis in Tobler’s first law of geography proposed in 1970
that says, "everything is related to everything else, but near things are more related than distant
things" [37].

The kriging algorithms are one such example, which is mostly used in geosciences, ecology,
and geomatics [35]. Kriging is a generic name for a family of generalized least-squares
regression techniques, where the spatial structural characteristics are accomplished by the
semivariogram function as a metric of the spatial autocorrelation [33].

All kriging estimators are variants of the following basic equation (2):

( ) ( ) ( )m l m
=
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where µ is a known stationary mean, assumed to be constant over the whole domain and
calculated as the average of the data. The parameter λ is the kriging weight; n is the number
of sampled data points used to make the estimation, and µ(x0) is the mean of the samples within
the search window [33].

Different studies have applied univariate and bivariate geostatistical interpolations in order
to calculate the forest volume [28], aboveground biomass [10,16,29–31], and carbon in the
aboveground biomass [32]. The most commonly used technique for univariate-based model‐
ing is kriging [28], whereas in bivariate-based modeling regression-kriging [10,30–32],
cokriging [31], kriging with external drift [29], cokriging regression [31], and geographically
weight regression (GWR) are used [16].

2.4. Nonparametric models

Similar to regression models, nonparametric algorithms are based on the use of different sensor
data, for example, spectral, radar, and LiDAR [21,38], using many of these models in the forest
attributes estimation [39–41]. They are a framework for creating complex nonlinear biomass
models based on the use of remote sensing variables and as alternatives for the parametric
approaches. Common nonparametric algorithms include k-nearest neighbor (k-NN), artificial
neural network (ANN), random forest, support vector machine (SVM), and maximum entropy
(Max Ent).

One of the most applied nonparametric methods is the nearest neighbor approach (NN). In
the context of forest attribute estimation, the NN methods have been first introduced in the
late 1980s [42]. In the NN methods, the value of the target variable at a certain location is
predicted as a weighted average of the values of neighboring observations, with k-nearest
neighbors spectrally using a weighting method [43]. Several methods have been offered to
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measure the distance from the target unit to the neighbors. In the NN approach, the choice of
the k value, type of distance measure including Euclidean and Mahalanobis, along with
weighed function are the critical factors influencing the estimation accuracy [44,45].

The ANN provides a more robust solution for complicated and nonlinear problems due to its
properties [46]. The network commonly consists of one input layer, one or more hidden layers,
and one output layer. Since it does not require the assumption that data have normal distri‐
bution and linear relationships between biomass and independent variables, the ANN can
deal with different data through approximation, using various complex mathematical
functions, with independent variables from different data sources such as remote sensing and
ancillary data [15]. A detailed overview of ANN approach is provided in Ref. 47.

Regression tree and random forest are a family of tree-based models; in the first one, data are
stratified into homogeneous subsets by decreasing the within-class entropy, whereas in the
second one, a large number of regression trees are constructed by selecting random bootstrap
samples from the discrete or continuous dataset. In fact, the random forest algorithm is now
widely used for biomass estimation [48,49].

SVM is an important method to estimate forest biophysical parameters using remote sensing
data [50, 51]. It is a statistical learning algorithm with the ability to use small training sample
data to produce relatively higher estimation accuracy than other approaches like ANN [15].
Ref. 51 provides a detailed overview of the SVM approach used in remote sensing. The Max
Ent approach is a general-purpose machine-learning method for predicting or inferring target
probability distribution from incomplete information [52]. These kinds of nonparametric
algorithms have become popular in biomass modeling when large representative field datasets
exist for calibration [53,54].

3. Remote sensing products for biomass modeling

3.1. From optical sources

Optical sensors are those that detect electromagnetic radiation emitted or reflected from the
earth, the main source of light being the sun. Among the passive sensors are photographic and
optical-electronic sensors that combine similar photographic optics and electronic detection
system (detectors and push scanning) and image spectrometers [55,56]. Optical remote sensing
refers to methods and technologies that acquire information from the visible, near-infrared,
shortwave infrared, and thermal infrared regions of the electromagnetic spectrum. They are
called optical, because energy is directed through optical components such as lenses and
mirrors.

3.2. Spectral indices

Remotely sensed spectral vegetation indices represent an integrative measure of both vegeta‐
tion photosynthetic activity and canopy structural variation that are widely used and have
benefited numerous disciplines interested in the assessment of biomass estimation [57,58].
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Different kinds of vegetation indices have been in use for a long time in AGB estimation and
the number of publications is immense [6].

The key to the development of vegetation indices is the ability of the canopy of green vegetation
to interact differently with certain portions of the electromagnetic spectrum. Since this contrast
is particularly strong between red and near-infrared regions (NIR), it has been the focus of a
large variety of attempts to build up quantitative indices of vegetation condition using
remotely sensed imagery [59]. Theoretically, the ideal vegetation indices should be particularly
sensitive to different vegetation covers, insensitive to soil brightness and color, and little
affected by atmospheric effects [60]. However, in reality, different factors affect the reflectance
of vegetation and consequently the vegetation index (e.g., atmospheric correction is essential
when biomass is extracted from the vegetation indices as a final product).

According to Ref. 58, vegetation indices can be classified into (1) slope-based, (2) distance-
based, and (3) transformation indices. The slope-based indices are simple arithmetic combi‐
nations that focus on the contrast between the spectral responses patterns of vegetation in the
red and near-infrared portions of the electromagnetic spectrum. The most known of them are
the ratio vegetation index (RVI) proposed by Birth and Mc Vey [61], normalized difference
vegetation index (NDVI) introduced by Rouse et al. [62], and soil-adjusted vegetation index
(SAVI) developed by Huete [63]. The vegetation indices show better sensitivity than individual
spectral bands for the detection of biomass [64].

Distance-based indices measure the degree of vegetation from the soil background (known as
a soil line) to the pixel with the highest content of vegetation in a perpendicular incremental
distance. In this group of indices, the slope and intercept of the soil line have to be defined for
each particular image; perpendicular vegetation index (PVI) introduced by Richardson and
Weigand [65] cancels the effect of soil brightness in cases where vegetation is sparse and the
pixels contain a mixture of green vegetation and soil background. The effect of the background
soil is a major limiting factor in certain statistical analyses geared toward the quantitative
assessment of AGB [59].

Transformation indices are transformations of the available spectral bands to form a new set
of uncorrelated bands within which a vegetation index band can be defined. Tasseled cap (TC)
is one of the most widely used indexes of this type and may apply to various remote sensing
images with multiple resolutions [66–72].

In the specialized literature, many vegetation indices have been proposed, and depending on
the complexity of the forest stand structure, indices vary in their relationships with biomass
[23,60,73]. For forest sites with complex stand structures, vegetation indices including near-
infrared wavelength have weaker relationships with biomass than those including shortwave
infrared wavelength. In contrast, for areas with poor soil conditions and relatively simple forest
stand structure, near-infrared vegetation indices had a strong relationship with biomass, and
finally the results of transformation indices showed stronger relationships with biomass
independent of different biophysical conditions [15].
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3.3. Textural indices

Some studies have used regression analyses between remote sensing textural indices and
biomass data from sampling sites [30,32,74–77]. This framework has been applied to different
optical and synthetic aperture radar-derived indices in order to use the textural parameters as
continuous spatial variables to improve biomass estimations.

In 1973, Haralick proposed a statistical analysis based on a set of parameters according to
spatial dependence of gray tones in an image, defined as second-order statistics [78]. Textures
are intrinsic properties of surfaces and its importance lies in image–objects segmentation,
because they are related to structural arrangements of the land surface and the connections
between neighboring spatial objects [79]. The most common mathematical method used to
measure texture parameters is the co-occurrence matrix (gray-level co-occurrence matrix) [78].
It describes the frequency of a gray level displayed, in a specific spatial relationship, to another
gray value within a neighborhood represented by a mobile window or kernel [79]. Its con‐
struction is based on four steps: (1) Window or kernel size definition, (2) band selection input,
(3) texture parameters selection, and (4) spatial dependency criteria.

Textures applied parameters are described below:
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∑
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Table 1. Textures
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Pij = Pr (Is = i ∩ It = j) = pixel probability of s is i and t is j, for separated pixels through one pixel
distance in a relative displacement vector between neighboring pixels.

These texture parameters and the indices derived (e.g., ratios) have been applied in different
satellite inputs, for example, on high spatial resolution optical-infrared images as SPOT-V
images [30,32] and ALOS AVNIR-2 [74], medium spatial resolution resources as Landsat TM
[76] and Landsat OLI [76], and SAR images as Jers-1 [76] and ALOS Palsar [32,75].

3.4. Biophysical variables

A forest biophysical parameter is a measure that simplifies the aboveground organization of
plant materials [4]. In this context, several studies in remote sensing field have focused on
determining canopy structural parameters such as leaf area index (LAI), canopy height or
canopy fraction [80–86], the second one being the most commonly used for biomass estimation.
Because canopy height is most commonly derived from active sensors [87], this part of the
chapter is focused on canopy fraction.

The reflectance of forest canopy cover recorded by the instantaneous field of view (IFOV) of
the sensor is a spectral mixture obtained from the interaction between electromagnetic
radiation and both canopy and forest elements such as nonphotosynthetic vegetation (NPV;
such as branches, stem, and litter), photosynthetic vegetation (PV; such as leaves), and others,
such as bare soil and shadow. Therefore, image pixels are generally composed of more than
one element, making the image interpretation difficult, which can result in a poor relation
between AGB and spectral bands [88–91].

One of the most widely used remote sensing approaches to derive and extract fraction covers
from mixed pixels is the spectral mixture analysis (SMA) [92]. It decomposes the mixed pixel
using a collection of constituent spectra (end members) to obtain their areal proportions or
abundances in a pixel, and therefore unmixing a multispectral image into fraction images of
end members [88,93]; it can be linear or nonlinear. The linear model assumes a single interac‐
tion between each incident photon and the surface object, and therefore the mixed pixel is a
linear combination of pure spectral signatures (end members) of the surface materials weight‐
ed by their area covered. The nonlinear model is the opposite of linear model, since electro‐
magnetic radiation can intercept more than one element of surface, with mixed pixels resulting
from a multiple-scattered signal [94].

As green leaves scatter radiation at NIR spectra, vertical structure of vegetation commonly
produces a multiple-scattered signal; however, nonlinear spectral mixture approaches are
barely used because they require more specific information, such as scattering properties of
end members, the illumination of the sensor, and certain geometrical parameters of the scene
[91,93]. For these reasons, linear approaches have been largely implemented [92].

The linear mixture model is expressed in matrix form in the following equation (3):

e= +p Mf (3)
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where p = [p1...pn]T is the mixed pixel, f = [f1...fm]T is the fractional end-member abundance,
M is an n ×m matrix with n end-member spectra as column vectors, and ε is the residual not
explained by the model. If p and M are known, it is possible to estimate it from ordinary least-
squares procedure [93,95]), with two common constraints: the full additive condition, which
determines that the fraction must sum to one, and the nonnegative condition, which makes all
abundances nonnegative, thus making the model physically meaningful [92].

SMA has been successfully applied in vegetation studies to estimate the land cover fractions
of PV, NPV, bare soil, and shade [96–98] or mapping the fractional cover of coniferous species
[99–101]. In biomass studies, it has been proved that using ASTER fraction images (green
vegetation, soil, and shade) in regression models improve the AGB estimation in Mediterra‐
nean forests, being better than NDVI or tasseled cap components [88]. Ref. [15] uses the same
Landsat Thematic Mapper (TM) fractions and TM spectral signatures to relate with AGB,
finding that fractional images perform better for successional forest biomass estimation than
TM spectral signatures, but not for primary biomass estimation. SMA has also been applied
to remove subpixel atmospheric and soil reflectance contamination in order to improve dry
biomass estimations, showing that unmixed vegetation indices are better [102] than those
which are not unmixed. Through geometric-optical reflectance models, Peddle et al. also
estimated areal fractions of sunlit canopy, sunlit background, and shadow at subpixel scales
showing higher accuracy than NDVI [103]. The other case in which sunlit crowns, background,
and shadow fractions were compared with seven different vegetation indices (NDVI, SR, MSR,
RDVI, WDVI, GEMI, and NLI) and three different soil-adjusted vegetation indices (SAVI,
SAVI-1, and SAVI-2) to estimate biomass, LAI, net primary productivity (NPP), DBH, stem
density, and basal area was the study conducted by Peddle et al. In this study, the authors
concluded that the SMA shadow fraction improves the results by about 20% compared to
vegetation indices [104].

3.5. From active sources

Active sensors are those that provide its own energy source in order to control the double
operation of signal emission and reception of known characteristics. These sensors have the
advantage of an operational capacity to produce information both at night and in the day, in
addition to working in a region of the electromagnetic spectrum that makes them less sensitive
to atmospheric conditions. Of these, radar and LiDAR systems [55,56] are the most known. In
this section, we briefly describe each of them, pointing out the relevant examples of their
application in biomass modeling.

3.6. Radio detection and ranging

RAdio detection and ranging (RADAR) is the system name of active sensors that work in
microwave region of the electromagnetic spectrum. Their mechanism is performed through
signal transmission–reception of a portion of energy that interacts with the surface, which is
referred as backscattered, being a measure of strength and time delay of the returned signals
[105].
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Such energy is considered consistent or coherent (illumination beam has same wavelength and
phase), which makes it possible to use different polarization schemes (orientation of emitted
and detected electromagnetic fields) to generate images [106]. The spatial resolution of radar
images is strongly dependent on the antenna length (aperture) of the receptor and sensor
inclination angle.

Synthetic aperture radar is widely used in forest monitoring through remote sensing, which
is able to generate high-resolution imagery by taking advantage of the movement of the aircraft
or satellite platform. SAR simulates a long virtual antenna that comprises long coherent
successive radar signals, transmitted and received by a small antenna, which simultaneously
moves along a given flight path [105,106].

Since microwave energy can penetrate forest canopies, the backscattered energy of SAR
systems is modulated or influenced by the structural parameters of trees (e.g., branches, leaves,
and stems), which in turn depends on different ecological variables [6,107,108]. Analyses of
these data have been used to determine forest state [109], forest types [110], biomass density
[32,111], forest canopy height [112], forest fire degradation [49,69], deforestation [113], and
forest soil moisture [114].

The sensor sensitivity to forest parameters is a function of the wavelength, for instance, bands
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Forest components scatter energy transmitted by the SAR systems in all directions. A portion
of energy recorded by radar is translated to a proportional ratio between density of energy
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coefficient (σ°) or sigma nought is the amount of radar cross section [106,108]. Generally, this
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The backscatter coefficient value is related to two variables of sensor and target parameters.
Sensor characteristics are a function of wavelength, polarization, and incidence angle, whereas
target characteristics are associated with roughness, geometry, and dielectric properties [106,
108].

Biomass modeling through this approach has been usually applied from simple regression
models under the assumption of correlation between backscatter coefficient and aboveground
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biomass/carbon [32,108,111,116,118]. The results are different because they rely on saturation
of the signal, which is a function of wavelength, polarization, and the characteristics of the
vegetation cover as well as of the difficulties caused by the specific properties of the ground
as slope and aspect.

Recently, some of them have combined spatial models with remotely sensed data to improve
geostatistical estimations using backscatter coefficient as spatial secondary variables [32].

3.8. Interferometry SAR data

Interferometric synthetic aperture radar (Figure 1) is a framework containing diverse methods
or techniques that use phase information derived by recording phase difference or state of
vibration of the wave at the instant that is received by the radar between two SAR images
(known as master and slave) acquired from different sensor positions [106], called the
interferometric phase (ΔΦInt). The interferometric phase can be written as equation (5):

Figure 1. Interferometric synthetic aperture radar.
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where ΦS and ΦM are the phase observations of slave image and phase observations of master
image, respectively, ΦTopo is the topographic component, ΦMov is the shift component,
ΦAtm is the atmospheric component, and ΦNoise is the phase noise.

One parameter obtained by this approach is the coherence or correlation image as an indicator
of the phase stability [105]. Its mathematical expression is (6)
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* *
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where γ is the coherence, the brackets () denote the ensemble average, and * denotes the
complex conjugate; S1 denotes the complex value of the master single-look complex (SLC) for
pixels x,y and S2

* indicates the complex conjugate value for pixels x,y in the second image
known as slave. Coherence values are included between 0 and 1 and a coherence image
quantifies the decorrelation between two SLC images as the loss of coherence [106]. Decorre‐
lation is the combination of impacts in the radar phase: (1) the baseline decorrelation due to
changes in the acquisition geometry of the images (which increases as the distance between
the satellite orbits at the moment of acquisition increases) and (2) the temporal decorrelation
due to variations in reflectivity in the zone, which can be caused by rain, phonological changes,
and agricultural factors [105].

The interferometric coherence in biomass modeling is used under the assumption that for
forested areas, coherence diminishes with the increment in vegetation density, as the volu‐
metric scattering increases with movement (wind) and forest growth. Biomass modeling
through this approach has been typically used from simple regression models under the
assumption of correlation between interferometric coherence and aboveground biomass/
carbon [32,84,116], another approach is by combining methods such as regression-kriging [32]
and classification algorithms [119]. In this case, results are related to baseline and temporal
decorrelations, forest type, polarization, and sensor wavelength.

3.9. Polarimetric SAR data

Antennas of radar systems can be configured to transmit and receive electromagnetic radiation
polarized either horizontally or vertically. The two most common bases of polarizations are
horizontal linear or H, and vertical linear or V. When the energy transmitted is polarized in
the same direction as the received, it is called as like-polarized and when the transmitted
energy depolarizes in a direction orthogonal to the received system, it is known as cross-
polarization [120]. The polarization schemes are HH (for horizontal transmit and horizontal
receive), VV (for vertical transmit and vertical receive), HV (for horizontal transmit and vertical
receive), and VH (for vertical transmit and horizontal receive).

A radar system can be configured in different levels of polarization complexity:

• Single polarized – HH, VV, HV, or VH
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• Dual polarized – HH and HV, VV and VH, or HH and VV

• Quad polarized – HH, VV, HV, and VH

A quadrature polarization or polarimetric radar uses these four polarizations in order to
measure the magnitudes and relative phase difference between the polarization schemes or
channels through an ellipse shape [106,120]. These kinds of radar systems promoted a new
framework called polarimetry of synthetic aperture radar, which describes the surface through
different combinations of polarization under the assumption that the interaction of electro‐
magnetic energy and elements of the land surface can change the polarization of a portion of
the wavelength transmitted by the sensor, and therefore receive information of amplitude and
relative phase of the same target in four channels of information, which is considered as a basis
for description of scattering polarimetric of surface targets [106,120]. It is mathematically
simplified in the so-called scattering matrix (equation (7)):
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= ê ú
ë û

hh hv

vh vv

S S
S
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which describes different forms of the polarized electric fields between incident wave and the
scatter wave in order to be the basis for diverse ways to analyze the scattering properties of a
target (e.g., the covariance and coherency matrices) and diverse transformations as polarimet‐
ric decompositions and through the synergy between polarimetry and interferometry (polari‐
metric interferometric coherence) [120].

The use of polarimetry in biomass modeling is under the assumption of correlation between
forest structural properties and polarimetric behavior. It may be construed through scattering
mechanism analysis. This has been addressed mainly by polarimetric decompositions, such
as Freeman Durden [49,121], eigenvector–eigenvalue [49], and Cloude and Pottier [31,121].
Biomass modeling through this framework has been usually performed from simple and
multiple regression models [31,121] and nonparametric model random forest regression [49].
In this framework, results are related to forest type, spatial resolution, and sensor wavelength.
3.10. Light detection and ranging

Light detection and ranging is an active laser sensor, which emits pulses of polarized light or
pulse echo, which can be calibrated within a narrow range of wavelength. The most commonly
used wavelength is 1,064 nm (near-infrared), although it can range from ultraviolet to infrared
range of electromagnetic spectrum (500–1500 nm) [122–124].

These laser scanners consist of a range finder, global positioning system (GPS), inertial
measuring unit (IMU), and a clock capable of recording travel times to within 0.2 of a nano‐
second. The integration of these systems produce accurate measurements of the position and
orientation of objects registered. These technologies allow us to measure elapsed time of pulse
echo between laser transmitter and objects on the surface. The energy that interacts with
surfaces is backscattered over different times exhibiting multiple laser pulse returns associated
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with distinct surface layers toward a laser scanner that can be mounted on an aerial or
terrestrial platform [123,125,126].

LiDAR information is essentially a three-dimensional point cloud composed of simple
derivative returns and multiple laser pulses, this type of LiDAR data is known as discrete
LiDAR returns. In addition to three-dimensional information, most LiDAR systems record the
intensity as a fraction of pulse energy reflected at that location [127].

The use of LiDAR in forest areas is mainly to analyze forest vertical structural metrics under
the assumption that laser can be sensed from the top of the canopies, elements of different
canopies, or even to the ground, which will be reflected in the number of returns. The depth
of laser penetration depends on the density of canopies and density of point clouds, which
vary from less than one point per square meter to several dozens, with vertical accuracies
around 12.5 cm [123,127].

One of the most widely used products in forest analysis is the result of the processing of three-
dimensional point cloud, the canopy height model (CHM) (Figure 2). It is derived from the
difference or subtraction between digital elevation models and digital terrain models, both
datasets generally are a result of different interpolation methods, such as nearest neighbor,
splines, inverse distance weighting, and kriging [127]. The first one is associated with first
returns and the second one is related to the last returns. Other forest structural measurements
are the fractional crown cover, crown area, crown diameter, basal area [38,125], and canopy
volume [126], which are of key interest to the managers and represent information that is
expensive and time consuming to collect in the field. When small-footprint LiDAR data are
acquired at very high enough densities, individual tree crowns can readily be observed in the
point clouds, processing algorithm for automated measuring and modeling of vegetation at
individual tree crown segmentation (e.g., watershed segmentation) [95,128,129].

Biomass modeling through this approach has been usually used in simple and multiple
regression models [38,125,126,130]. Other works have explored the use of learning machines
[131,132]. Other approach is through combining methods that integrate LiDAR information
with other sensors [22,31,124,133].

4. Case study

Mexico City is a continuous truss of multiple ecosystems, which is administratively divided
into two large areas: urban land (41%) governed by the Urban Development Programs and
Environmental Conservation Zone (ECZ; 61%) steered by the General Ecological Planning
Program (Figure 3). The ECZ provides Mexico City with environmental services such as carbon
capture, aquifer recharge, biodiversity, and scenic beauty. The zone is under anthropogenic
pressure, including human settlements, land use changes, and extraction of natural resources,
and therefore immediate action for conservation and appropriate resource management is
necessary. This has led to deforestation, degradation, development of pest infestations, fires,
and erosion. Models of the spatial variability of forest density are required in order to obtain
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an inventory of carbon storage, useful for public policies in areas with high environmental
value in order to facilitate decision-making by reducing the complexity involved in integrating
and interpreting values at a pixel level.

The study area lies within the ECZ of Mexico City (882 km2) and is covered by sacred fir or
oyamel (Abies religiosa) and Mexican mountain pine (Pinus hartwegii) forests. Fir forests
generally grow at 2,700–3,500 m above sea level. They are evergreen forests with heights of
20–40 m and their understory is densely shaded. This type of forest contains important
elements, including alders (Alnusfir mifolia), white cedar (Cupressus lindleyi), oak (Quercus
laurina), Mexican Douglas-fir (Pseudotsuga macrolepis), willows (Salix oxylepis), and black cherry
(Prunus serotina). Pine forests (Pinus hartwegii) grow above 3,000 m, this species being most
tolerant to the extreme environmental conditions of the high mountains. This pine develops
along with Festuca and Muhlenbergia grasses [134].

Figure 2. Canopy height model.
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The present case study is a comparative analysis between regression-cokriging and multiple
regression approaches using satellite-derived indices for modeling the aboveground biomass
of forests in the Environmental Conservation Zone of Mexico City. The objectives are:

1. to identify satellite-derived indices that are better associated with aboveground biomass,
either from LiDAR or fraction cover (SPOT-5) imagery

2. to quantify spatial patterns of the residuals derived from simple regression between
satellite indices and carbon values, using spatial autocorrelation

3. to determine whether spatial statistical methods improve the estimates of aboveground
biomass carbon pools over nonspatial conventional regression methods

In order to achieve these objectives, a correlation analysis was performed between digital
canopy height model (LiDAR data) and vegetation fraction cover (SPOT-5 data) and, on the
other hand, ground biomass estimates at forest inventory sites. Then, the spatial autocorrela‐
tion was calculated for residuals in order to define the variables to be used in multiple models
and regression-cokriging methods. Once models were obtained, the root mean square error
(RMSE) was computed for each approach.

4.1. Methods

4.1.1. Models of aboveground biomass carbon used three sources of data: Forest inventory data from in
situ measurements

Since aboveground carbon is the amount of carbon stored in aboveground biomass, compris‐
ing all living plant material above the soil (e.g., trunks, branches, and leaves) [3], the calculation
of carbon stock from biomass consists of multiplying the total biomass by a conversion factor

Figure 3. Environmental Conservation Zone.
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that represents the average carbon content in biomass. A common assumption is that biomass
is around 50% carbon expressed in tons of dry matter per unit area [135]. Typically, the terms
of measurement are density of biomass expressed as mass per unit area (e.g., t/ha). Here, forest
inventory data were obtained from Mexico City Environmental and Land Planning Authority
(PAOT, because of its name in Spanish) and were derived from sampling 283 plots during
2008–2010. Their sampling is based on the design of the National Forest and Soil Inventory of
the National Forest Commission (CONAFOR, because of its name in Spanish). In it, each
sampling conglomerate is composed of four circular secondary sampling plots in an inverted
“Y” shape, each of which covers an area of 400 m2 and peripheral plots are at 45.15 m from the
center of the conglomerate (Figure 4). Of the 283 plots, 155 were among pines, 86 in fir forest,
30 in mixed forest, 10 in scrub, and 2 in planted forests. Per-tree carbon was estimated from
allometric carbon equations developed by Acosta-Mireles et al., Jiménez, and Avendaño-
Hernández et al. for the species of the region [136–138]. Conversion of biomass carbon from
conglomerate to hectares [139] used the “ratio of means” as shown in equation (8):
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where Yi is the total aboveground carbon in all plots of 400 m2 and Xi is the total area sampled
in i plots.

Figure 4. Sampling plots and conglomerate form.
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4.1.1.1. SPOT image

Four multispectral SPOT-5 HRG images were used: two from February 25, 2010 (zenith 51.72°
and 52.03°, azimuth 136.96° and 136.43°) and two from March 28, 2010 (zenith 62.67° and 62.89°,
azimuth 125.66° and 124.75°). These were radiometric and atmospherically corrected with the
second simulation of a satellite signal in the solar spectrum (S-6) code through CLASlite
software and orthorectified with the polynomial coefficients and geoid information based on
Geocover 2000 of Landsat as reference images.

4.1.2. LiDAR data

LiDAR data used were acquired from the ALS50-II sensor flown by the National Institute for
Statistics and Geography (INEGI, because of its name in Spanish) between November and
December of 2007 over the entire Mexico Valley. The data had an average horizontal distance
of 2.0 m, minimum point density of 0.433 points/m2, and vertical root mean square error of 7.3
cm. These points are used as the basis for the generation of digital terrain model (DTM) and
digital surface model (DSM) with a resolution of 5 m.

4.1.2.1. Photosynthetic vegetation fraction cover

Photosynthetic vegetation fraction cover was estimated throughout the Automated Monte
Carlo Unmixing (AutoMCU) model. This model integrates spectral mixture analysis and
spectral end-member libraries resulting from fieldwork (ground spectrometer) and high-
resolution hyperspectral information of Hyperion Sensor, in order to separate photosynthetic
vegetation, non-photosynthetic vegetation, and bare substrate. The photosynthetic vegetation
fraction cover was calculated by CLASlite v3.2 software (Figure 5) [140].

4.1.2.2. Canopy height model

The calculation of canopy height model used altitude values of different digital terrain model
(DTM) and digital surface model (DSM) in order to extract differences between both models
(Figure 6).

4.1.2.3. Correlation and autocorrelation coefficients

Correlation analysis based on multiple regressions explored statistical relationships between
aboveground biomass carbon and satellite indices. The sampling points were randomly
divided into 50% for model calibration and 50% for model verification. Residuals from
regressions were retained and their spatial autocorrelation was quantified [141]. Moran’s I
index was used to identify the type and intensity of spatial pattern, measuring the degree of
autocorrelation or dependence of a distribution. Moran’s I index can be written as in the
equation (9):
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where n is the number of spatial units indexed by i and j, x is the variable of interest, and ϖij

is the spatial weight matrix. Moran’s I values near to 1 indicate clustering negative values near
to −1 represent spatial dispersion, and a value of zero indicates randomness. Statistical
significance was expressed in terms of the Z descriptor and confidence level 1−α. Construction
of the spatial weight matrix was distance based, since the spatial representation units are
points. This distance or spatial lag includes at least 12 samples as recommended by Isaaks and
Srivsatava [33].

4.1.3. Regression models

In addition to multiple regression, the present study compared models derived from regres‐
sion-cokriging. The regression-cokriging was calculated through the estimation of a simple
linear regression approach between aboveground carbon and canopy height model (equation
(10)) and the addition of interpolated layer via ordinary cokriging integrated by regression
residuals and the secondary variable (photosynthetic vegetation fraction cover) [31, 142]. The
predictions were carried out separately for drift and residuals, and were added together later
as in the following equation (11):

( ) ( ) ( )= +0 0 0ˆ ˆ ˆzRCoK S m S e S (10)

Figure 5. Photosynthetic vegetation fraction cover.
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where βk are the coefficients of the drift model, qk is the number of auxiliary variables, ϖi(S0)
and ϖ2 j are the weights determined by covariogram for regression residuals, and secondary
variable and e are the regression residuals [31].

4.1.3.1. Model accuracy

The regression models were validated with data from the field sampling [143]. The RMSE
criterion was used to determine which regression models have more precision in the estimation
of stored carbon in the area, the RMSE can be written as equation (12):
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Figure 6. Digital canopy height model.

Environmental Applications of Remote Sensing24



( ) ( ) ( ) ( )b v v
= = =

æ ö
= + +ç ÷ç ÷

è ø
å å å0 0 2 2

0 1 1

ˆ *ˆ
p n n

k k i j i
k i j

zRCoK S q S e So Z S (11)

where βk are the coefficients of the drift model, qk is the number of auxiliary variables, ϖi(S0)
and ϖ2 j are the weights determined by covariogram for regression residuals, and secondary
variable and e are the regression residuals [31].

4.1.3.1. Model accuracy

The regression models were validated with data from the field sampling [143]. The RMSE
criterion was used to determine which regression models have more precision in the estimation
of stored carbon in the area, the RMSE can be written as equation (12):

( ) ( )( )
=

-
= å

2

1

RMSE
n si si

i

Z z

n
(12)

where Z(si) is the reference value, z(si) is the estimated value, and n is the total number of
samples.

Figure 6. Digital canopy height model.

Environmental Applications of Remote Sensing24

4.2. Results

4.2.1. Correlation

The degree of association between carbon stored and each index derived from remote sensing
and multiple associations (Table 2) was the synergy between canopy height model and
photosynthetic vegetation fraction cover with an r coefficient of 0.88. All these correlations
were positive, indicating that, as stored carbon increases, vegetation indices increase.

Satellite indices r Error

Canopy Hieght Model 0.85 24.17

Photosynthetic Vegetation Fraction Cover 0.52 39.29

Multiple regression 0.88 22.26

Table 2. Correlation coefficients above-ground carbon and remote sensing indices.

4.2.2. Moran’s I index

Once the satellite-derived index, that is the most associated with carbon storage, was identified,
Moran’s I was calculated from regression residuals according to sampling sites in order to
identify spatial autocorrelation and, hence, the information could be included as auxiliary
information in the regression-cokriging model. A value of 0.31 (z = 2.96, α = 0.01) was obtained
for the regression residuals between canopy height model and aboveground carbon. In this
case, a low-positive spatial autocorrelation was present, with statistical significance, indicating
that the neighboring spatial units presented near or close values and a slight trend toward
plots.

4.2.3. Spatial distribution

To identify the spatial distribution of stored carbon, models were developed with the appli‐
cation of equations resulting from multiple regression and regression-cokriging spatial
methods. By obtaining the covariograms for the theoretical fit, no significant variation was
found between anisotropic and isotropic covariograms, therefore, the isotropic model was
settled.

As the empirical covariogram showed strong spatial dependence, it did not present constant
semivariances as a function of distance. In this case, the adjusted theoretical models ranged
from 10,000 to 15,000 m, distances at which the observations were independent.

We used the best fit (according to root mean squares in prediction errors) for the ordinary
cokriging interpolation to evaluate which is more effective in the predictions throughout the
study area. Table 3 shows the parameters obtained.
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Remote Sensing indices model Sill Range Nugget

Photosynthetic Vegetation Fraction Cover and
regression residuals

Exponential 0.89 12,007 0

Table 3. Covariogram indices

4.2.4. Model accuracy

Comparison of the models with the set of verification sites produced the RMSE in tC/ha (Table
4). The models based on regression-cokriging presented the least error. Figure 5 shows the
spatial distribution obtained by regression-cokriging and multiple regressions for stored
carbon. The delineation of forest types (fir and pine) was based on the map of land use and
vegetation of PAOT [144].

Models RMSE (tC/ha)

Multiple regression 34.1

Regression-Cokriging 28.6

Table 4. RMSE

Figure 7. Spatial distribution of the aboveground carbon storage in Environmental Conservation Zone, estimated by
two regression models.
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The results of this research indicated that consideration of spatial autocorrelation can improve
estimates of carbon content in aboveground biomass, specifically using the regression
cokriging method. This could be due to its sensitivity to local variations [142], since it is
particularly developed to consider the adjustment of the spatial variance model in order to
improve predictions obtained from global models. The present work uses spatial modeling of
indices related to carbon for the purpose of exploring the spatial autocorrelation of auxiliary
variables, which is useful for representing the way in which a phenomenon radiates through
spatial units. Although the primary method used for the estimation of carbon stocks in Mexico
is the stratify-and-multiply approach, which assigns a single value or a range of values to each
vegetation type and then multiplies these values by the areas covered by the vegetation to
estimate total carbon stock values, this investigation has demonstrated a more accurate,
spatial-explicit, repeatable alternative.

According to Ref. [145], autocorrelation is “perhaps, after the average and variance, the most
important property of any geographic variable and, unlike these, it is explicitly linked with
spatial patterns.” The present comparative analysis demonstrates the importance of the use of
spatial methods to model carbon stored in the aboveground biomass, since these methods
consider the spatial pattern of the data. The hypothesis of the homogeneity of the relationships
between stored carbon and remote sensing indices sometimes does not consider the spatial
heterogeneity of many factors affecting this relationship, such as geographic differences in
orientation and climatic and soil conditions [28].

This analysis provided a synoptic mapping of aboveground biomass as a potentially valuable
tool for environmental protection policies in the ECZ of Mexico City, one of the most important
ecological reserves for the inhabitants of the Mexico Valley in the economic, cultural, and social
sense, as well as for the volume and quality of the environmental services it provides.

5. Conclusion

Remote sensing-derived indices play a major role in forest monitoring, because traditional
methodologies derive their estimates of carbon content in the biomass through forest inven‐
tories and, for its implementation, they require much time and money and are generally limited
to 10-year intervals. The information resulting from them is designed to present average timber
volumes linked to administrative regions, which not represent the spatial variability and
therefore it generate a bias in carbon measures..

This has led to great interest to estimate, map, and monitor the carbon stored in forests more
precisely, enhancing the recognition of their role in the global carbon cycle, particularly in the
mitigation of greenhouse gases. Through the estimation of carbon content, a base line for
calculating the dynamics of this gas as a mitigation strategy can be established.

An overview of modeling options and remote sensing resources that have been used for
monitoring and researching the forest biomass was presented. Techniques ranging from
collecting georeferenced data in the field to the information extraction methods from satellite
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images and synergies between remote sensing and geostatistics were described. A case study
was selected to illustrate the application of some of these techniques in the modeling of spatial
distribution of aboveground carbon in Mexican coniferous forests.

Based on the study, the following conclusions can be drawn:

1. According to these results, the synergy between remote sensing and geostatistics has the
potential to estimate forest biomass to improve estimations using remote sensing indices
as spatial secondary variables.

2. Geospatial methods have a better modeling adjustment (e.g., RMSE) than conventional
statistical methods as multiple regressions, because geospatial methods considerer local
spatial variations.

3. Best Pearson coefficient between the two variables tested in the study is the digital canopy
model, which resulted from LiDAR data. This kind of information is very expensive, so
integrating multispectral information can be a way to capitalize on multitemporal study
of biomass.
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Abstract

The requirements for advanced knowledge on forest resources have led researchers to de‐
velop efficient methods to provide detailed information about trees. Since 1999, orbital re‐
mote sensing has been providing very high resolution (VHR) image data. The new
generation of satellite allows individual tree crowns to be visually identifiable. The in‐
crease in spatial resolution has also had a profound effect in image processing techniques
and has motivated the development of new object-based procedures to extract informa‐
tion. Tree crown detection has become a major area of research in image analysis consid‐
ering the complex nature of trees in an uncontrolled environment. This chapter is
subdivided into two parts. Part I offers an overview of the state of the art in computer
detection of individual tree crowns in VHR images. Part II presents a new hybrid ap‐
proach developed by the authors that integrates geometrical-optical modeling (GOM),
marked point processes (MPP), and template matching (TM) to individually detect tree
crowns in VHR images. The method is presented for two different applications: isolated
tree detection in an urban environment and automatic tree counting in orchards with an
average performance rate of 82% for tree detection and above 90% for tree counting in
orchards.

Keywords: Tree crown detection, VHR image, Template matching, Marked point process,
Valley-following, Watershed segmentation, Local maxima, Region growing

1. Introduction

Inventories on forest communities are performed with the objective of providing support to
the management and conservation activities in rural or urban forests or even in tree plantations.
The traditional method of obtaining information on forest communities is to use systematic or
random sampling or by sampling stands, so that the final parameters for the population are
obtained on the basis of statistical extrapolation [1, 2]. Usually, the following parameters are
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determined for each tree included in the sampling: location, diameter at breast height (DBH),
basal area (BA), height, identification of the species, crown size, and crown closure. Based on
these measurements, other parameters such as volume of wood and biomass can be derived
for the community stand. This renders the field survey techniques for forest inventories
expensive, time consuming, and unsuited for large areas.

Remote sensing with high spatial resolution is a cost-effective and reliable way to obtain
information about trees. It may be the only practical manner to assure sustainable management
of forests with the necessary information, such as biochemical and biophysical data on the
vegetation in a synoptic and repetitive manner for large areas and over long periods of time
[3]. The tree crown is the basis of the data required for the inventory, for it allows to determine
not only its size but also its position, crown closure, and, in some cases, the species. It also
allows the derivation of parameters such as the density of the population, the health condition
of the trees, the volume, the biomass, and the carbon sequestration rates [3–6]. This information
is crucial to a series of applications such as the inventory and management of forested areas
as well as in parks and urban forests. It can also be used for counting and monitoring trees in
orchards or under power lines to prevent damage and accidents.

The study of individual trees with remote sensing started with the use of aerial photography
with very high spatial resolution (scale greater than 1:10.000), driven mainly by the use of
stereoscopy techniques. The task was performed by photointerpreters trained to recognize
individual tree species, extract a series of measurements, or evaluate different types of damage
[2]. The use of orbital optical remote sensing data for forest studies began in the 1970s, with
the development of techniques to separate forested from non-forested areas [7]. The spatial
resolution of these satellite images was the main limiting factor for more detailed studies about
the forests, and as a result, the studies remained focused on the disturbances affecting forests
(such as land clearing, burning, diseases, and pest) or to estimate some biophysical parameters
of the vegetation [3,8]. It was only toward the end of the 1990s that orbital remote sensing
began to provide very high resolution (VHR) data with a spatial resolution under 1 m, allowing
the study of individual trees. Launched in 1999, Ikonos was the first of what is now a series of
VHR satellites (Table 1), consolidating the use of orbital data for the study of individual trees.
However, the increase in spatial resolution was not always accompanied by an increase in
spectral resolution for VHR data which is often restricted to a single panchromatic band.

The increase in spatial resolution changed the focus of many remote sensing studies, which
started to analyze not only classes of objects but also each object individually [9]. Branches and
irregularities within the crowns became visible, and as a result, the spectral response of a tree
is influenced by variations in the shape of the crown (differential illumination) and background
effects. This causes an increase in the intra-class variance and often results in a reduced
accuracy when using conventional pixel-based classification [10]. This had a significant effect
on the image processing techniques for forest studies and generated the development of new
forms of information extraction.

Within the study of individual objects, the automatic detection and delineation of tree crowns
using remote sensing VHR imagery have attracted much attention from researchers in forestry
and computer vision [4,7]. Researchers have developed several automatic and semiautomatic
methods for extracting individual trees and their characteristics using digital aerial photos of
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various types and VHR satellite images [11]. The applications range from the identification of
tree crowns to their delineation and classification and are often based on image segmentation
algorithms and other advanced image processing and analysis techniques [9,12]. Most of these
algorithms were specifically developed for the detection and delineation of trees in temperate
forests based on the assumption that the trees are cone shaped and round (mostly coniferous)
in the images, with the apex of the tree having the highest reflectance of the crown area [4].

Satellite
Launch

Year
Px resolution* (m) Mx resolution* (m) Multispectral bands

Ikonos II 1999 0.82 3.2 Blue, Green, Red, Near IR (4)

QuickBird 2001 0.65 2.62 Blue, Green, Red, Near IR (4)

WorldView-1 2007 0.46 - -

Geoeye-1 2008 0.46 1.84 Blue, Green, Red, Near IR (4)

WorldView-2 2009 0.46 1.85
Coastal, Blue, Green, Yellow, Red, Red

Edge, Near IR, Near IR2 (8)

Pleiades 1A 2011 0.5 2.0 Blue, Green, Red, Near IR (4)

Pleiades 1B 2012 0.5 2.0 Blue, Green, Red, Near IR (4)

Kompsat-3 2012 0.7 2.8 Blue, Green, Red, Near IR (4)

SkySat-1 2013 0.9 2.0 Blue, Green, Red, Near IR (4)

WorldView-3 2014 0.31 1.24
Coastal, Blue, Green, Yellow, Red, Red

Edge, Near IR, Near IR2 (8)

SkySat-2 2014 0.9 2.0 Blue, Green, Red, Near IR (4)

Kompsat-3A 2015 0.55 2.2 Blue, Green, Red, Near IR (4)

WorldView-4 2016 0.34 1.36 Not available at time of printing

* Panchromatic (Px) and Multispectral (Mx) resolution at nadir.

Table 1. Very High Resolution satellites (1999-2006), with their spatial resolutions and spectral bands. Note that there
is not any available satellite with VHR in multispectral bands.

The analysis of individual trees based on remote sensing images is a complex problem. Images
of trees with varied crown size increase the difficulty of the analysis. What is detected as a
single object may in fact represent a separate branch or even a group of trees [10]. Other sources
of error are caused by the proximity between neighboring trees, trees located under other trees,
trees in the shade, or trees that have a low spectral contrast with the background [13]. Conse‐
quently, high-level complex algorithms are necessary to exploit this contextual information [1].

This chapter provides an overview of the state of the art in individual tree crown detection
based on optical VHR remote sensing data. An original method developed by the authors is
also presented as an alternative approach to the problem of tree crown detection. In Part I, we
present the main algorithms developed for the detection of individual trees, be it for tree
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identification or delineation. The principle of each approach is presented as well as its potential
and limitations. Part II is dedicated to outlining the original MPP–TM approach, a hybrid
method that combined two methods used in pattern recognition: marked point process and
template matching. The results are shown for tree detection and delineation in an urban
environment and for tree counting in orchards.

2. Part I – Review of tree crown detection methods

We present six of the main algorithms used in individual tree detection in high spatial
resolution images. The algorithms are summarily described individually, but it should be
noted that many approaches use hybrid methods for the detection and delineation of tree
crowns. For instance, some authors might use one algorithm for detecting the trees and another
to delineate them; some may even use one approach as a first approximation and another to
fine-tune the results.

2.1. Local maxima filtering

Local maxima (LM) filtering is a technique used for identifying tree crowns in high spatial
resolution imagery which is based on the recognition of the points with the greatest brightness
within a search window that scans the entire image [4,14]. The search window, with a fixed
size, defines which pixel has the greatest reflectance compared to all the other pixels inside the
window. The pixels with the highest digital number are identified as possible tree locations.
This method is adequate for trees which have the greatest reflectance at their top, surrounded
by lower intensity pixels, and due to its concept, it is widely used for detecting conifers.

When the kernel window passes over the image, it does not take into account the presence of
trees with different crown sizes, and the success of the LM tree recognition depends on the
careful selection of the size of the search window. If it is too small, errors of commission occur
by selecting nonexistent trees or multiple radiance peaks for an individual tree crown; if it is
too big, the algorithm is likely to miss some trees (omission errors) [13].

The identification of trees by LM is affected by false bright pixels, which are not part of the
brightest part of the crown. An effective method for dealing with the problem is to apply a
Gaussian filter to the image. This allows the low-pass filter function to grant more weight to
the crown center pixels (surrounded by much lower values) compared to those located toward
the crown edge which might belong to other bright objects or noise. Applying a Gaussian filter
directly affects the number of local maxima identified and causes the smoothing off of the
brightness values on the tree crown edges [15].

In order to minimize the problem of the window size with LM, reference [13] used windows
of varying sizes based on the assessment of the spatial structure of the image obtained by
analyzing the local semi-variogram with different pixel lags and different window sizes. This
results in a personalized window for each pixel, leading to greater accuracy when compared
to using a single fixed window size. Reference [16] used LM to identify the centroid of
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eucalyptus trees in Australia. The search for the trees is carried out based on the maxima in
four linear kernels pertaining to the four main directions (0°, 45°, 90°, and 135°) of the image
and by summing the individual maxima found in each pass (Figure 1).

(a) (b) 

(c) 

Figure 1. Examples of the surface produced by applying a LM kernel operator: (a) original image, (b) the local maxima
appearing in the third dimension are associated with the presence of trees, (c) application of local maxima filter in four
linear cumulative kernels (0°, 45°, 90°, and 135°).

2.2. Template matching

Template matching (TM) is a technique used for object recognition widely cited in the
specialized literature which uses quantitative descriptors, such as length, area, and texture to
describe recurring patterns in an image [17,18]. Based on a synthetic model or a sample
extracted from the image, the correlation coefficient between the model and the image is
calculated in order to determine the strength of the match between the two matrices. The object
is assumed to be located where the measurement of the match reaches a maximum [4].

For tree crown detection, the study of reference [19] was the first to propose an elliptical 3D
model for tree crowns based on an ellipsoid of generalized revolution (Equation 1).

( )
1 

n/ 22 2n

n n

x + yz = =
a b

(1)

where z is the vertical axis of the center of the tree crown in its origin, a is half the height of the
ellipsoid, b is half the radius, and n is the parameter of the shape of the tree crown. Subse‐
quently, the model is illuminated using the acquisition parameters of the image (sun elevation
and azimuth) and the characteristics of crown absorption and reflection of light in the chosen
spectral band.
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Because it is based on a physical model (rather than a complex mathematical concept), TM is
considered a user-friendly method. Its limitation is mainly due to the need to use a library of
models if many types of trees are present in the image, which may involve a complex phase
for generating the models. Figure 2 shows examples of synthetic tree models and an application
in a orchard.

References [20 and 21] used this technique to identify tree crowns in aerial images. Other
researchers used this technique to recognize individual tree crowns, using templates made
from small sub-images of the actual scene to identify the trees [22, 23]. Reference [24] proposed
an improved version by generating separate models for trees and their shade in VHR images
of unmanned aerial vehicles (UAV). The authors explored the relation between the tree and
shade models separately and then joined them to generate a more powerful object detector.

(a) (b) 

Figure 2. Left: examples of synthetic tree models to different tree crown shape. Right: identification of trees in an apple
orchard showing the model used at the upper right corner.

2.3. Valley-following

Valley-following (VF) is a crown delineation method which identifies the shaded areas
between the trees. This methodology was initially described in reference [25] and makes an
analogy with topographic data, where the shades of gray of the pixels represent local lows in
the third dimension. In this analogy, the bright tree crowns would be the hills and the darker
zones around the trees the valleys (Figure 3). This darker zone is the one which typically helps
human interpreters to separate one tree crown from the other. In this approach the shaded
areas are eliminated, making it possible to separate the trees in the image. This was not
sufficient to separate all of the trees, so the authors developed an approach based on a series
of rules (e.g., no discontinuity, checking directions, context, gap filling, etc.) to accurately
describe the boundaries of each tree, one at a time [26].

This approach performed well in images with a combination of low solar elevation angle and
conical trees. Conversely, the approach failed to produce good results when the canopy was
composed of trees of very different sizes, or when the tree crowns were very large and have
internal shadows. The latter case resulted in subdividing the individual tree into two or more
parts. Smaller trees, in contrast, tended to be grouped together. Reference [27] found that this
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approach causes many false positives (FPs) in open areas (clearings). As a solution, they
suggested the exclusion of these areas by retaining only the high-value pixels in the normalized
difference vegetation index (NDVI).

2.4. Watershed

Like VF, the watershed segmentation (WS) is a technique related to thresholding that uses the
gray levels in the images as if it were a topographic surface [28]. It is used not only for the
delineation of individual tree crowns but also for generic segmentation of images. The
watershed concept is based on a 3D image representation, with the third dimension being
provided by the intensity of gray. The main objective of the watershed algorithm is to find the
“drainage” divide lines. The “relief” in the image is inverted (high gray values become valleys)
and progressively filled with a virtual liquid, and when the liquid is almost overflowing from
one basin to another, a virtual dam is built, to create the watershed. These lines are considered
the limits of each segment. The simplest approach to the construction of the dam is the use of
morphological dilation of the minima, without merging the regions [17].

The images are usually preprocessed before the WS is applied. In fact, this segmentation is
frequently applied to the gradient of an image, and not to the image itself. This is due to the
relative homogeneity of the gray values of objects that do not provide sufficient contrast for

Figure 3. Results of the valley-following applied on a forest image in Canada (source: Gougeon and Leckie, 2003; re‐
produced with permission from Natural Resources Canada).
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an effective segmentation. In this formulation, the regional minimum value of the catchment
basins usually correlates well with the lower gradient values that match the contours of the
objects of interest [17,28]. The direct application of the WS algorithm generally leads to over-
segmentation due to noise or other local irregularities of the gradient (Figure 4a). One of the
approaches used to limit the number of regions is to use markers. The selection of markers can
be based on simple procedures, intensity and connectivity between pixels, or even complex
descriptors, such as size, format, location, relative distances, texture, and others. The use of
markers provides prior knowledge to support the segmentation process [17].

The approaches that use WS for the delineation of the tree crowns normally use markers
representing the center of the tree crown, to assist the segmentation process. For instance,
reference [29] used WS to detect and delineate tree crowns in a VHR forest image in Canada
but divided the approach into two phases, namely using LM to detect the crown and applying
WS for the delineation. The LM image with the detected crowns was produced by using a
Laplacian of Gaussian edge detection operator. The tree crowns were modeled based on their
geometry and radiometry, resulting in an image of markers. This image then served to guide
the WS in delineating the crowns. Reference [30] developed a bitemporal procedure for the
automatic segmentation and reconciliation of groups of pixels (called blobs) within the forest
using WS. By using two dates, they were able to increase the probability of properly defining
the tree contours. Many problems were encountered in the segmentation process of the
individual trees. For instance, trees with spread branches were sometimes split into two or
more segments or contrarily by including several crowns in the same segment when trees were
not sufficiently separated.

2.5. Region growing

Region growing (RG) is another segmentation technique that groups pixels or groups of pixels
based on predefined growth criteria in an attempt to separate and recognize objects in the
image [4]. Like WS, RG is used as a generic segmentation method and can be adapted for the
delineation of individual tree crowns (Figure 4b). Starting with some seed pixels (which can
be random if no other information is provided), the neighboring pixels are examined one by
one and added to the growth region if their predefined properties are similar to those of the
seeds (such as specific intervals of intensity or color) [17]. When no more pixels can be added
or some predefined limit is reached (e.g., number of pixels), these pixels are labeled as
belonging to the specific region of the seed pixel. Additional criteria can increase the power of
an RG algorithm by introducing a higher concept like size and similarity between candidate
pixels and the pixels selected or even the format of the region [17,31].

Reference [16] used RG integrated with LM to identify and delineate tree crowns in Australia.
The LM method served to find the center of potential trees, which were then used as seeds for
the RG. Reference [6] tested two different types of segmentation by RG, one by Brownian
motion and the other by random walk, to detect conifers in a boreal forest. The methods were
capable of detecting about 80% of the illuminated portion of the crowns, with a better per‐
formance found in larger crowns (Figure 5).
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Figure 4. Comparison between two segmentation algorithms: (a) watershed and (b) region growing on a WorldView-2
image (panchromatic band with a 50 cm resolution). The WS was applied to the gradient image without using markers
and resulted in the over-segmentation of the tree crowns. In (b), the RG segmentation was performed within an object-
oriented classification (GEOBIA) approach, where the correct delineation of the tree crowns is noteworthy (source:
Gomes and Maillard, 2013).

2.6. Marked point processes

The marked point process refers to a probabilistic method which has been used in recent years
for the recognition of objects in high spatial resolution imagery [5,11,32–35]. In an MPP, sets
of random points in a given space (x, y) are provided with a mark which is complete and
separable, allowing the definition of a topology (defined by the mark) and the attribution of a
label. An image is considered a random model where the gray tones are the realization of a
random point process [34]. This random configuration of gray levels in the images is then
modeled based on geometric figures (ellipses, circles, rectangles, and lines), respecting certain
geometric (nature of the objects) and radiometric constraints (type of image).

The laws of density and probability distinguish various types of point processes, which can
be Poisson, Strauss, Markov, or Gibbs, among others. The Markov or Gibbs point processes
have been used for the recognition of tree crowns by a number of authors [5,32,33]. These
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processes are defined by a density function using a form of energy expressed as a sum of the
a priori energy and the local energy. The process seeks to minimize the global energy of the
model, by iterating it with some optimization scheme (Markov random fields, algorithm of
multiple births and deaths, and Monte Carlo-Monte Carlo simulations).

Reference [5] proposed two different models to serve as marks in an MPP, one in 2D for
detection of trees in densely forested zones (Figure 6) and the other in 3D for scattered or
isolated zones, based on aerial photos of high spatial resolution in the infrared band. The MPP
was integrated with a reversible jump Markov Chain Monte Carlo in a simulated annealing
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(b) 

 
(c) 

 

 

 
(a) 
 
(b) 

 

Figure 5. Example of RG segmentation to delineate tree crowns in a boreal forest. (a) The original image (with a spatial
resolution of 3 cm), (b) with the results using Brownian motion, (c) and random walk (Source: Erikson, 2004).
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method. Reference [32] used an MPP to automatically detect the tree crowns in high spatial
resolution images, based on the modeling of the crowns as 2D circles on high-resolution spatial
images. The method was successfully tested on mangrove forests and eucalyptus plantations.

2.7. Discussion

In the previous section, we have presented some of the most common algorithms used in the
detection of individual trees, be it for their identification, delineation, or both. Table 2 presents
a summary of these principles through their main characteristics and limitations.

Trees may differ in shape, size, spectral properties, height, foliage type, and density, and their
spatial context varies with illumination, ground type, and inclination. They can also be
surrounded by many other objects, especially in an urban setting. As such, the task is not trivial
and can become highly complex depending on the number of parameters involved. Converse‐
ly, in planted forest and orchards where trees have the same age and species, tree crown
extraction can take advantage of their relative uniformity.

Figure 6. Example of the application of MPP for tree crown recognition on a poplar plantation. The original image is
shown at the top and the results at the bottom (Source: Perrin, 2006).
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Algorithm Usage Principle Researches Characteristics / Limitations

Local
Maxima
(LM)

Identification of
tree crown

Identification of
brightest points
locally as corresponding
to the apex of a
treetop within a
search window.

Wulder et al.
(2000)
Culvenor (2002)
Pouliot (2002),
Wang et al. (2004)

Appropriate for conifers, with a conical
shape and high reflectance point at the
top of the tree.
Simple method to use.
Results are affected by the spatial
distribution of trees, variation of tree
crowns size, search window size
(increased omission errors in larger
windows and commission errors in
smaller windows).

Template
Matching
(TM)

Pattern
recognition

Quantitative descriptors
used to describe patterns.
Calculate the correlation
between the image and
the model. Model may be
a sample extracted from
the image or not.

Pollock (1996)
Larsen (1997)
Larsen and
Rudemo (1998)
Quackenbush et
al. (2000)
Erikson (2004)
Hung et al. (2012)

Enables analysis of the tree crown from
its spectral, textural and structural
characteristics.
Allows neighborhood analysis of the
tree crown by considering its shadow.
User-friendly method.
Needs a template library, making it
unpractical in complex forests.
Recognition errors increase with
irregularity of the tree crowns.
Easier to detect larger trees than smaller
ones.
Performance reduced in very dense
environments.

(VF)
Delineation of
tree crown

Derives from an analogy
with a topographical
surface, programmed to
identify the shaded
portion between the tree
crowns (valleys).

Gougeon (1995,
1999)
Leckie and
Gougeon (1998)
Gougeon and
Leckie (2003)
Erickson (2004)
Gougeon and
Leckie (2006)

Appropriate for trees with conical shape
that create shadow areas between
individuals.
Most successful to delineate populations
of the same age without intertwined tree
crowns.
Best performance for images in mid-low
solar elevation angle.
Performance reduced when trees are
asymmetrical, of from different species,
with different tree crown sizes or when
shadows of trees protrude over each
other.
Tendency to group smaller trees
together and split larger trees into
multiple segments.
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Algorithm Usage Principle Researches Characteristics / Limitations

Watershed
(WS)

Delineation of
tree crown

Performed from the
image gradient. Image is
seen as an inverted
topographic surface
flooded to determine
watershed divides.
Commonly uses markers
to limit the number of
segments.

Wang et al. (2004)
Lamar et al. (2005)

Performs best when applied after
selection of markers to control
segmentation process. More suitable for
conifers, which allow preselection of
treetops by using another approach
(usually LM).
Over-segmentation occurs when applied
directly to the image or without the use
of markers.
Can separate tree crowns in different
segments when the branches are too
spread, or may include several trees in
the same segment when there is no
spatial separation between them.

Region
Growing
(RG)

Delineation of
tree crown

Groups pixels or sub-
regions based on
predefined criteria for the
growth of region in order
to separate and recognize
objects in the image.

Culvenor (2002)
Pouliot et al.
(2002)
Erikson (2004)
Bunting and
Lucas (2006)
Pu and Landry
(2012)

More complex shapes of trees are better
delineated.
Method more complex as it requires
different rules for different
environments.
Tends to create more than one segment
when the tree has branches with dark
portions, and tends to group different
trees if they are very similar.

Marked Point
Processes
(MPP)

Pattern
recognition

Stochastic process in
which unordered points
in a space are provided
with marks. Marks are
modeled from geometric
and radiometric
characteristics of objects.

Perrin (2006)
Zhou (2012)
Larsen et al.
(2012)

Performs best with plantations of trees
of same species and age and in images
of isolated trees.
It is less effective to detect trees in more
complex environments.

Table 2. Summary of Local Maxima, Template Matching, Valley Following, Watershed, Region Growing and Marked
Point Processes algorithms used to individual tree crown detection. The principles, main researches and main
characteristics and limitations are presented.

Reference [11] compared six different algorithms (valley-following, region growing, template
matching, scale-space theory, marked point processes, and Markov random fields) in six
different aerial images, ranging from a homogeneous plantation and an area with isolated tree
crowns to an extremely dense deciduous forest type. The authors found that none of the
algorithms can by itself reach a high rate of success in all of the tested images and concluded
that there is no single optimum algorithm for all types of images and forests. They also
emphasized that for complex types of forests, monoscopic images are insufficient for a
consistent detection of tree crowns, even for human interpreters.
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3. Part II – A hybrid approach integrating marked point process and
template matching

As shown in our brief review, many methods have been developed for trees in temperate forest
environments. In an exploratory research [23], three algorithms in urban tropical environments
were tested: region growing, watershed, and template matching. Better results were generally
obtained by combining region-growing segmentation and geographic object-based image
analysis (GEOBIA) for classification. Although highly effective, the approach requires much
parameter setting and experience and is not especially dedicated to the problem of tree crown
detection.

Studies that use marked point processes have triggered our attention and made us consider
that they could benefit from using marks modeled from 3D objects in a different approach than
from that developed by reference [5]. We propose to use a geometrical-optical tree model in a
manner resembling that of template matching that uses some form of correlation between
image and model to identify candidate pixels. An MPP taking advantage of a geometrical
optical 3D model and measurements of similarity to seek tree crowns could represent a
significant improvement to using simpler marks. Considering such a hypothesis, we devel‐
oped an algorithm for tree crown detection that combines elements from MPP, TM, and tree
crown geometrical-optical modeling for the automatic detection and (simplified) delineation
of trees in VHR satellite imagery. We have named our algorithm MPP–TM.

In our approach, the TM did not scan the whole image like it was initially conceived but rather
uses an MPP approach to select random locations within the image. Additionally, the 3D marks
receive a random diameter between a predetermined range depending on the type of envi‐
ronment. The geometrical-optical model includes both the sunlit and shaded areas of the crown
and a portion of the projected shadow to allow a better match between model and image. Some
statistical and spectral parameters were also included in the model-matching phase.

MPP-based algorithm for pattern recognition usually alternates between phases of birth and
death during which the objects are created (placed) and destroyed when they do not comply
with the matching rules. This is also a characteristic of MPP–TM, but we have somewhat
deviated from the original concept where the destruction phase also incorporated a random
process.

The following subsections are devoted to describe the construction process of the 3D geomet‐
rical-optical model and the functioning of the algorithm.

3.1. Description of MPP–TM approach

3.1.1. A geometrical-optical 3D tree crown model

The parameters that determine the radiance pattern of a tree crown are direct and indirect
radiation, shape of tree, branch pattern, leaf reflectance, multiple reflectances within the
canopy, etc. [36]. In creating a valid 3D geometrical-optical model, we have chosen a simplified
version in which the crown is represented by a dome of varying skewness, a Lambertian
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reflectance model with ambient light, and a projected shadow on the ground (or on another
tree). Equations 2 and 3 give the formulation of our model in which each pixel is treated as a
singular surface.

( ) ( ) ( ) ( ) ( ){ }s n s n scos( ) cos cos sin sin cosi nq q q q q j j= + - (2)

where θi is the local solar incidence angle, θs is the solar zenith angle, θn is the slope of the
object surface, φs is the solar azimuth and φn is the aspect of the object surface.
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where LM  is the maximum reflectance of the model, "amb" represents the diffuse ambient
lighting. The geometrical-optical model is adjusted according to the specific illumination
parameters of the image, and the size of the trees present on the scene. Figure 7 shows two
examples of tree models with similar reflectance but different solar elevations.

Figure 7. Illustration of the geometrical-optical model of tree crown as seen in the same sun azimuth (32°) but in two
different solar elevation angles: (left) 20° and (right) 45°

A parameter of projected shadow clipping has also been added to account for the fact that it
was not beneficial to use the whole shadow in situations where it was projected onto another
tree and not on the ground. The height of the tree also affects the size of the shadow so that it
did not appear wise to set the height to a fixed value. To illustrate this, Figure 8 shows a
comparison between the tree model and an actual tree from the image both with whole and
clipped shadows.

3.1.2. Algorithm description

According to reference [32], using MPP to extract objects consists in searching for the “best”
possible object configuration in a scene, the one that will respect a certain number of properties
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both of the objects being sought and the radiometric properties of the image. In our algorithm,
the “best” configuration be it geometric or radiometric is given by the model.

The process consists in alternating phases of birth and death. The MPP starts with a birth phase
during which tree crowns represented by circles of varying size (a randomized interval) are
inserted on a matrix of equal size to the image being processed. Tree crowns are only inserted
where no other crowns are present. Once all the circles have been inserted (determined by a
density parameter Nc), a similarity (Sm) value between the image and a version of the model
fitted on each circle is computed and stored in a list along with the parameters of the model.
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Figure 8. Comparison between an isolated tree from the (a) WorldView-2 image and (b) the geometrical-optical 3D
model. A clipping factor of about 80% was applied to the same images in (c) and (d) to enable the use of only a portion
of the shadow in cases where that shadow is not projected on the ground but on another object.
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density parameter, 2) one of the interruption criteria has been attained, or 3) the maximum
number of iteration has been reached.

The Sm value is computed as the subtraction of two parameters: cross-correlation and the
normalized absolute difference as defined by the following relation (Equation 4):

NDSm = -g a (4)

where γ is the cross-correlation between image and model, ND is the normalized sum of
absolute differences between them, and α is a constant weight factor (normally approx. 0.5).
The cross-correlation and absolute difference are calculated as follows (Equations 5 and 6).
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In Equation 5, the cross-correlation is calculated between the model matrix (w(i , j)) and the
portion of the image that corresponds to the circle of the same radius ( f (i , j)). In other words,
two matrices of same dimensions are always compared. w̄ and f̄  are their respective means.
The values of gamma range between −1 and 1. The same logic is used in Equation 6 which
computes a normalized difference value between the same two matrices.
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In the death phase, tree crowns are kept if their similarity is larger or equal to a pre-set
threshold. Because we found that such a threshold represented a weak element in our
algorithm, we implemented a strategy by which it needs not be predetermined with a fixed
value but rather adjusts itself as the number of iterations grows. The threshold is set very high
at the beginning but then starts to decay when a certain number of iterations do not find any
"new" tree crown (typically 100 iterations). Additionally, if more than a certain amount of
iterations (say 1000) still does not add any new tree crown, then the process is stopped.
Ultimately, it will be stopped if the maximum number of iterations is reached. A flowchart of
our algorithm is presented in Figure 9 and schematically described in Table 3.

Figure 10a shows the state of the crown matrix after a single birth phase with 163 circles of
random radius (between 3 and 15 m) and randomly located within the image matrix. After the
death phase, using a similarity threshold of 0.98, only one tree crown was kept (Figure 10b).

Detection of Tree Crowns in Very High Spatial Resolution Images
http://dx.doi.org/10.5772/62122

57



3.1.3. A modified approach for orchards

Because trees in orchards are often individually distinguishable and have similar shape and
size, they are perfect candidates for TM with a 3D geometrical-optical model. By using a GOM,
the effects of varying illumination (sun elevation and azimuth) become an advantage rather
than an obstacle especially when the background is homogeneous. In terms of data, VHR image
data such as a large proportion of Google Earth images have sufficient resolution for identi‐

Figure 9. Flowchart of the MPP–TM algorithm.
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fying orchard trees. In this case, however, illumination parameters are not readily available
and must be determined.

The objective of this modified approach is to introduce an adaptation of the algorithm
described earlier to detect and count trees in orchards of different types. Because it was aimed
at a more regional or even global application, Google Earth images were used in an attempt
to simulate a generic operational framework. The modified approach uses a similarity
measurement between the GOM and the image to calculate the probability of being the center
of tree and then places trees in nonoverlapping positions (unless some overlapping is allowed).
The algorithm also incorporates a module to determine the illumination parameters from a
sample.

1. Task: Tree crown detection in Very High Resolution images.
2. Set parameters:

a. 3D model: maximum reflectance, ambient light, sun elevation, sun azimuth, tree shape, clip factor.
b. Descriptors of the objects: minimum and maximum radius, minimum and maximum standard
deviation (δ) threshold,maximum and minimum similarity(sm) threshold, trees density.
c. Change the process: maximum iterations for decrease similarity
d. Interruption of the process: total iterations, maximum iterations without find new trees.

3. Approach to tree crown detection:

a. While the number of searched trees is not achieved or some of the interruption process (total iterations
or minimum threshold for similarity).

4. Starts the birth phase:

a. Randomly pick a radius within model catalogue
b. Randomly pick i and j coordinates within the image space
c. Check if crown is already present
d. If not:

i. Fill area with circle of radius r
ii. Extract corresponding area in the image matrix
iii. Compare image and model matrices
iv. Calculate and store values: i,j, average, standard deviation and Sm

5. Starts the death phase:

a. Input parameters: birth image matrix; crown statistics (Sm sorted); Sm threshold; tree models catalogue
with radius between maximum and minimum radius
b. While smcrown < smthreshold:

i. Zero crown pixels in birth image matrix

c. While δ crown < min δ threshold and δ crown > max δ threshold:

i. Zero crown pixels in birth image matrix

6. Update object and global statistics
7. Update number of crowns eliminated for next birth phase
8. When the process finish: reports, graphs and image with individual tree crowns

Table 3. Description of MPP-TM algorithm.
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The algorithm is based on three principles. First, it assumes that the trees have a dome-like
shape approximated with a GOM and the right illumination parameters. Second, there is little
or no overlapping between trees, and third, the pixel with the highest similarity represents the
most likely central position of the tree.

The GOM is a simple dome model for which the height is estimated at 1.5 times the diameter
of the crown, and to simplify the problem we have assumed a unique diameter for all trees in
the orchard (this can easily be modified to incorporate a range of diameters). The algorithm
responsible for the detection of trees are best explained through a list of steps.

Step 1. Get user parameters: percent overlapping allowed minimum similarity value, tree
diameter, and coordinate of sample tree. These parameters cannot be estimated automatically
and are entered by the user. The illumination parameters can optionally be entered by the user,
else they will be estimated by the program using the tree sample.

Step 2. If sun elevation and azimuth are not provided by the user, the parameters are auto‐
matically estimated by the program using the coordinates of a single-tree sample. The program
then computes the similarity between the sample and all possibilities of illuminations param‐
eters in steps of 10 degrees.

Step 3. Calculate the similarity value for each pixel.

Step 4. Sort pixels by decreasing similarity and store coordinates. If the value is lower than the
minimum allowed, the pixel is not stored.

Step 5. Place a temporary tree “stamp” (flat template) at the next pixel location with highest
similarity value.

Step 6. Verify if space is already occupied by a tree. If some overlapping is allowed, make sure
that the number of nonzero pixel is smaller than the percentage of overlapping allowed. An
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(b) 

 
(c) 

 
(d) 

 

 

 
(a) 
 
(b) 

 

Figure 10. Illustration of the (a) birth and (b) death phases of the MPP–TM algorithm. In this example, of the 163 ran‐
domly positioned crowns, only one had a similarity value larger than the threshold of 0.98.
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output image is created to receive a permanent "stamp" of the GOM shape with the value of
similarity associated.

Step 7. Validate the results. Validation is performed by estimating the overall number of trees
using the density of a representative sample and comparing with the number of trees found.

3.2. Testing the MPP–TM approach

3.2.1. Urban trees

Urban trees play an important role in the welfare and quality of life in cities. They contribute
to improving air and water quality, mitigate the carbon dioxide and other pollutants, moderate
the microclimate and air temperature, help control soil erosion, reduce the flow of rainwater,
and provide biodiversity [37–39]. A good knowledge of the species planted in cities and their
health contributes to the inventory and management of these trees. To fulfill their role in the
urban environment, trees need to be looked after through maintenance practices such as
pruning and monitoring them for pests and diseases.

A WorldView-2 (WV-2) image of the campus of the Universidade Federal de Minas Gerais
(UFMG) (and surroundings) in Belo Horizonte, Brazil, was used as our test data (Figure 11).
The scene was already orthorectified and radiometrically corrected. Although WV-2 offers
nine different spectral bands, only the panchromatic band (λ ≈ 450–800 nm) with a ground
resolution of 50 cm was used since all other bands have a ground resolution of 2 m.

Three WV-2 sub-images were selected to test the performance of MPP–TM algorithm (Figure
10). These images were chosen from different contexts with both isolated and grouped trees
and with other objects present in the scene. A wide variety of crown radii is also present in
these images. The first two images (Figure 12a and b) are from the university campus of UFMG,
and the last is from an urban park (Figure 12c).

To assess the quality of the results produced by MPP–TM, validation was done by comparing
our results with a visual interpretation of the trees in the image. For these, only tree counting
was used as validation. For the crown counting validation, we considered the following
situations: 1) true positives (TP) for found trees, 2) false positives (FP) when a detected object
is not a tree, and 3) false negatives (FN) for trees not encountered. The success score was
computed as follows (Equation 7):

TD FPA  100
N FN

æ ö-
= ´ç ÷+è ø

(7)

where TD represents the total detected trees and N  is the total number of trees.

These results are shown below with their respective overall similarity and standard deviation
graphs (Figure 13). The validation results are presented in Table 4.
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Image Number of Trees Trees Detected False Positive False Negative
Overall Accuracy

(%)

WV image 1 47 43 3 8 72.73

WV image 2 50 59 8 5 92.73

WV image 3 175 161 5 20 80.00

Table 4. Validation of the MPP-TM results with the three WV-2 images.

In the two images of the campus, the program was able to find 73% and 93% of the trees,
respectively, with very few errors in isolated trees (Figure 13a and b). The presence of other
objects (buildings, streets, and sidewalks) did not hinder the identification of trees and few
false positives (3 and 8, respectively) were found. In both images, MPP–TM was able to find
most grouped trees, but the crown diameter was often slightly off. It should be noted that some
cases are even difficult to correctly identify and delineate visually. Mostly, the errors came
from dividing a single crown into two, or including two different crowns as a single object.

The WV-2 image 3 is from a protected urban park area with predominantly isolated trees and
relative homogeneous crown size of about 6 m (Figure 13 c). A total of 161 objects were detected
with only 5 false positives and 20 false negatives for an overall success of 80%. Although most
deciduous trees were selected, the crown size was often incorrect but given the highly irregular

Figure 11. Location of study area. The image on the right is a WorldView-2 false color composite
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shape of many of these trees, this was somewhat expected, and similar problems have been
reported by reference [4].

The behavior of the overall similarity during the iterations tend to increase as the image is
progressively occupied by found trees and this is why the overall similarity increases. The
standard deviation, however, is very different for each image and is mostly related to the
amount of contrast in the original image. Images with highly contrasting objects (e.g., building
tops) will tend to show a progressively decreasing standard deviation. Images of low contrast
will tend to see it increasing as the trees are progressively added because of the double
illumination nature of the trees.

3.2.2. Orchards

Orchards are collections of individual trees often arranged regularly for which the MPP–TM
algorithm could easily be adapted. Tree counting in orchards can be very useful for inventory
and management purposes. For instance, the European Union (EU) Common Agricultural
Policy (CAP) regulations (EC 73/2009) provide support for permanent crops such as hazelnuts,
almonds, walnuts, and fruits in general [40–42]. Eligible orchards need to have a certain size
and tree density depending on the type of crop. It has been estimated that orchard fruit
production represents approximately 3– 4% of the total arable land [43], so the task of esti‐
mating fruit production needs tools for counting trees in a timely fashion. Furthermore, the
task can take advantage of the near-global high-resolution image cover provided by Google
(Google Earth and Google Map) and other Internet-based image services.

(a) (b) 

(c) 

Figure 12. Sub-images selected from the WV-2 image.
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Orchards are plantation of trees of the same species and often of the same age. Consequently,
trees of orchards usually have similar size and shape and are regularly spaced. Image proc‐
essing can easily be adapted to such a task providing VHR images are available. To illustrate
the adapted MPP–TM algorithm (which no longer is a real MPP), we have tested over three
different types of orchards: a mango plantation in Brazil near Juazeiro, a walnut plantation in
France near Grenoble, and an olive plantation in Italy near Bracciano. The three images were
directly extracted from Google Earth and had a relatively bad quality as they appeared to have
been enhanced for sharpness. To validate the results, we have asked three geography students

Figure 13. MPP–TM results obtained with the three WV-2 image 1–3 (left) and their graphs of global similarity (center)
and standard deviation (right). The yellow circles correspond to correctly identified trees (true positive or TP), the ob‐
jects marked with a yellow "A" are false negatives (FN) and the objects marked with a yellow "B" are false positives
(FP).
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to manually interpret and mark the trees belonging to orchards for the three test images, and
we have evaluated the results in the following way:

• the total number of trees (NT) was determined by the interpreters;

• matched trees were computed as true positive and are defined by the number of trees found
by the algorithm minus the false positives;

• unmatched trees (present on the image but absent from the results) were computed as false
negative (FN);

• trees marked by the algorithm but not by the interpreters were marked as false positive;

• the final accuracy was computed as TP / (NT + FN).

To be fair, the interpreters were told not to mark the trees that seem too small or too big for
the orchards. In addition, valid trees that were found by the algorithm but did not pertain to
an orchard were not computed as false positive. As a further improvement, restricting the
search within the boundaries of the orchards would increase the accuracy and enable the
similarity parameter to be relaxed. The addition of other spectral bands should also improve
the results.

Test Image Number of trees True positives False positives False negatives Overall accuracy

Grenoble 2435 (2358-69)= 2289 69 103 90.19%

Bracciano 837 (1071-264)=807 264 29 93.19%

Juazeiro 2534 (2555-114)= 2441 114 93 92.92%

Table 5. Results of the tree counting algorithm for the three regions (France, Italy and Brazil).

Table 5 shows an overview of the results for the three test images, and Figure 14 shows the
graphical results. The top row shows the original images, the center row shows the results of
the tree identification (as well as false positives and negatives), and the bottom row displays
a detailed section of the image on which the results were overlaid. The Grenoble test image
(Figure 14 left column) was characterized by densely arranged walnut trees, which have a large
round crown so that the model was well correlated with trees on the image, but the fact that
the trees are close to one another produced a relatively large number of “miss” (103). This
forced to relax the similarity threshold and caused a few false positives (69). In the case of the
Bracciano image (Figure 14 center column), the olive trees are more ill- shaped than the walnut
trees, and the relaxation of the similarity threshold caused a large number of false positives,
especially in the nearby forested areas. Conversely, very few trees were missed. Finally, the
last test image from Juazeiro (Figure 14 right column) is populated by mango trees that, like
the walnut trees, have large round crowns. Still, the algorithm produced a fair amount of both
false positives and false negatives mainly because of the variation of tree crown size and the
particular situation of the dirt road at the top of the image that created a pattern of light and
shade similar to the trees (approximately one-third of the false positives came from that road).
The three very different images still produced similar accuracy results between 90 and 93%.
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Figure 14. Illustration of the results of the tree counting for the three test images: Grenoble (left column), Briacciano
(center column), and Juazeiro (right column). The empty circles represent the trees that were found, “x” represents the
false positives and the black circles represent the false negatives.

4. Final considerations

The detection of individual tree crown in images of very high resolution is a growing and
challenging field of research within the remote sensing community. In addition to the struc‐
tural complexity of the forest, many other factors such as the characteristics of the scene
(topography, illumination, and other environmental variables) and forest type (season and
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biodiversity) make the task difficult. To reference [16], the ability to achieve individual tree
crown delineation of all trees in a forest was recognized as an unrealistic expectation.

In an effort to provide the reader with an overview of the current state of the research in tree
crown detection, Part I presented a brief review of some of the most common computerized
techniques for detecting and delineating trees in optical VHR images. Part II describes the
concepts and implementation of a novel approach based on two mathematical/pattern
recognition concepts integrated to improve performance. MPP–TM was developed based on
concepts from marked point processes and template matching for the former to take advantage
of a mark built from a geometrical-optical model.

MPP–TM was highly effective in finding trees in urban environment with images from the
WorldView-2 satellite (ground resolution of 50 cm). A total of 263 trees out of 272 were found
(96%), and taking false positives into account, a success rate over 90% was still achieved. The
algorithm was also adapted for a tree counting application such as is often needed in large
orchards. To count trees in orchards, the approach works very well when the trees are easily
distinguishable. Results from three datasets of different crops show an average success better
than 90%. Out of 5806 trees, 5537 were found excluding all false positives.

The growing availability of VHR images from commercial satellites or even from web mapping
services opens a wide field of applications especially that VHR multispectral images are
becoming increasingly common. Multi-temporal studies will further strengthen these appli‐
cations for monitoring purposes.

Finally, we should mention that Lidar (light detection and ranging) data are also becoming
widely available, and its integration with VHR images promises to further improve the results
of tree detection algorithm. By adding a third dimension to the images, Lidar reduces the
probability of errors by strengthening the evidence around the digital representation of trees.
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Abstract

Ice bodies in the semi-arid mountainous regions of Chile are of vital importance for the
local population. As variations of their extent are often associated with climate change,
this study focuses on the glaciers and glacierets situated in the Commune Alto del Car‐
men and local and regional climate. We combine statistically Landsat satellite imagery,
historical and ongoing weather data. The present study covers a time span of 21 years,
1994–2015. Our results indicate that the extent of all ice bodies has continuously dimin‐
ished as a consequence of long-term climate variability.

Keywords: Glaciers, Andes, Climate ENSO

1. Introduction

Since the end of the Little Ice Age, from about 1300 to about 1850, many worldwide glaciers
have decreased in volume and extent [1]. Therefore, some of them at present are finished and
others will disappear in the near future [2, 3]. It is understood, but still not very well docu‐
mented, that glacier retreat is closely coupled to global climate change and anthropogenic
interventions [4, 5, 6, 7]. This is mainly due to the complexity of weather system because of
difficult climate history reconstruction. The main causes of receding glaciers, which can be
attributed to climate variations, are constantly increasing global and regional temperature and
lower stationary precipitation in the affected areas. Glaciologists have found out that the
phenomenon of glacier retreat coincides with an increase in greenhouse gas emissions during
and after the industrial revolution in the 18th century, see Figure 1. This means that human
activities play a major role in this context. Even in a more direct way humans intervene, as
exploration and exploitation of nature are activities that can be dated back till the beginning
of the new age. It is quite clear that nowadays these interventions are carried out in a different

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



way due to the possibility to use highly developed machines, and that the principal purpose
has changed as in the past natural resources were exploited by humans as personal necessities
had to be covered. At present, more economic reasons are in the foreground [8, 9, 10].

Figure 1. Trend of greenhouse gas emissions over the past 2,000 years (Source: [11])

Nevertheless, by all the interventions that are carried out by humans, ecosystems, our planet
in general, suffer continuous alterations. But it would be simple to attribute every trend to
humans as there are also natural circumstances, seasonal, periodic and single events, which
affect nature. In any case, regardless of what or who have responsibility, the phenomenon of
glacier retreat has to be studied as its impact is huge and might affect a whole region or even
a country [12].

It has to be mentioned that glacier retreat should not be confused with other cyclical phenom‐
ena, like some melt during spring and summer months, which have almost no negative impact
on glaciers. Annual thaw starts each spring in the mountains and causes melting of snow and
ice accumulated during winter. The melting snow during spring and summer months causes
an overall positive impact, since it generates a valuable source of fresh water. During winter
months, snow fall results in a recuperation of melted snow. In consequence, an almost neutral
mass balance between warm and cold periods is achieved by nature as this process repeats
year after year. This is not the case if glaciers melt as there is a negative mass balance during
a certain period of time. So the problem arises when the phenomenon is not seasonal, the glacier
does not recover its initial volume in the cold months, year after year, so its volume and extend
gets diminished and in consequence, natural fresh water source for human consumption and
irritation is threatened [13].

In South America, a total surface of about 26,000 km2 is covered by glaciers. Almost 77% of
this area can be found in Chile [14]; considering 1,751 glaciers (16,893 sqkm) already mapped
and 5,000 sqkm estimated of not yet registered glaciers. Their distribution from north to south
can be grouped as it is shown in Table 1.
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Natural Region Region Number of Glaciers Surface [sqkm]

Far North XV, I, II 28 42

Near North III – IV 60 107

Central V – VII, RM 1500 1019

South IX, XIV, X 87 265

Far South XI – XII 76 15460

Table 1. Geographical distribution of Glaciers in Chile

The current state of Chilean glaciers, according to [14] and [15], indicates that 87% is in decline,
6% in advance and 7% still remains unchanged.

Nowadays and in a near future, the water scarcity is a major concern all over the world.
Especially in the arid to semi-arid mountainous regions, the local population hugely depends
on alternative water resources such as those stored in glaciers or snow. Glaciological processes
at high altitudes in such regions of Chile and Argentina (27°S to 33°S) have previously been
studied with special focus on hydrology (e.g. [17]) and climatology (e.g. [17, 18]).

In the rivers that originate in the central Andes, the main water supply is generated from the
snowfall that normally covers the upper mountain peaks each winter. Furthermore, besides
these melting processes, surface runoff gradually flows into the rivers. During wet years, this
runoff can deliver sufficient amount of water throughout the spring and summer period to
compensate missing precipitation. In dry years, however, it tends to decrease towards the end
of summer. In these drier periods, ice bodies have to provide enough melt water due to its
natural resources accumulated in winter. The water contribution of glaciers, glacierets and

Figure 2. Glaciers and glacierets located in the study area
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other ice bodies is directly proportional to their area, as it is on the surface where melting
caused by solar radiation, ambient heat and other environmental factors happens. As an
example, the Chilean General Water Directorate (DGA – Dirección General de Aguas)
estimates that the average, annual melting during summer fluctuates between 0.5 liters per
second (l/s) per hectare and 1.8 l/s per hectare. The total area of the three glacierets located at
the southern end of the study area was 16.5 hectares in March 2005, so that the total flow
contributing to the basin was estimated to range from 8 l/s to 30 l/s during maximum of the
melting period. In comparison, the average flow of Huasco River in Algodones, more westerly
in an agricultural zone, is greater than 4000 l/s in summer.

In the Chilean Commune Alto del Carman, in the Atacama region, Figure 2, several glaciers
can be found that have shown important variations during the past few decades. These glaciers
namely are: Toro 1, Toro 2, Esperanza, Guanaco, Estrecho, Amarillo and Los Amarillos. Several
other studies on glacier variations induced by climate have already been carried out in the past
at different study sites, but in the vicinity of the mentioned glaciers. Ref. [19] studied the
terminus of the Agua Negra Glacier (Argentine); [20] the Tronquitos glacier; [21] Cerro
Topado; [22] the Huasco catchment. In 2003, [23] started a glacier and glaceriets (very small
glaciers or ice masses of indefinite shapes in hollows and that have little or no movements; [24])
monitoring program in the region where all of the above mentioned glaciers are located.

1.1. Remote sensing of glaciers

Nowadays, traditional ground-based glacier monitoring studies can be complemented or even
replaced by satellite-based data. Reflected solar radiation by the earth's surface is detected by
optical, passive sensors in the visible (400–700 nm), near and short-wave infrared (700 nm – 7
μm) bands of the electromagnetic spectrum. Radiation emitted by the surface is detected by
sensors in the thermal infrared (7 μm – 1 mm) bands. Electromagnetic radiation in the
microwave bands (1 mm – 1 m) in remote sensing is used mostly by so-called synthetic aperture
radar (SAR) active and passive systems [25].

Glacier monitoring can focus on several parameters such as glacier area and length, surface
elevation, surface flow fields, accumulation and ablation rates or albedo. For mass balance
study, in particular equilibrium line altitude (ELA), accumulation area ratio (AAR) and the
mass balance gradient δb/δz are of importance [26].

All these parameters are relevant to study the influence of glaciers on the environment [27].
Important fields are:

• Glacier Geology: Bedrock material removed by glaciers is redistributed in the landscape.
Erosion and deposition caused by glaciers forms U-shaped valleys, cirques, moraines and
other glacial landforms. Glacial sediment is redistributed by wind or water, forming new
soils and affecting the water quality of rivers, lakes and oceans.

• Glacier Hydrology: Glaciers store water during cool, wet winter periods and release it
during warm, dry summer.
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• Glacier Ecology: Glaciers are habitats for flora and fauna. Their meltwater provides aquatic
habitat for endangered species.

• Glacier Hazards: Significant hazards are outburst floods, lahars, ice avalanches and
spontaneous landslides.

Considering these two principal aspects, sensor types and glacier characteristics, one has to
decide what kind of data has to be generated and which method is the most appropriate [28].
For example, digital elevation models are a key element for glacier volume change studies.
Several conclusions can be drawn out of it, such as mass balance variability due to climate
change. Furthermore, glacier surface flow velocity can be derived from differential InSAR
observations and/or feature tracking in optical satellite images.

In scientific literature, a lot of examples can be reviewed that highlight the potential of remote
sensing for glaciologic studies carried out all over the world, such as those in Alaska [29],
Patagonia [30], the Andes [31], the Alps [32], the Himalaya [33] and Central Asia [34].

Table  2  gives  an  overview  of  most  common  satellites  and  their  application  in  glacier
monitoring.

Satellite Operation dates Bands Glaciological application

Landsat Series of satellites since 1972 VIS, IR Glacier variations, spectral
characteristics of snow and

ice

SPOT Series of satellites since 1986 VIS, IR Glacier variations, spectral
characteristics of snow and

ice

SENTINEL Series of satellites since 2014 VIS, IR, MW Glacier variations, spectral
characteristics of snow and

ice, elevation change
monitoring

CRYOSAT-2 Single mission since 2010 MW Glacier variations, surface
velocity estimation, elevation

change monitoring

TERRA Single mission since 2000 VIS, IR, MW Glacier variations, elevation
change monitoring

Table 2. Satellites and their possible application in glacier monitoring

2. Climate

Inter-annual global climate variability is mostly caused by the coupled ocean–atmosphere
phenomenon ENSO (El Niño Southern Oscillation). It is a naturally, irregularly occurring
phenomenon that is characterised by fluctuating ocean temperatures in the equatorial Pacific,
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between Australia and the west coast of South America. El Niño refers to a warming phase
whereas La Niña refers to a cooling phase of the Pacific sea surface temperature (SST), the
upper layer (0–10 cm) of the ocean. As ENSO is a coupled ocean–atmosphere phenomen‐
on, air surface pressure in the tropical Western Pacific is higher than normal in case of El
Niño and lower in case of La Niña. Both in general last several months or even years and
vary in intensity.

ENSO has particular impact on inter-annual climate variability in Latin and South America.
In Mexico and parts of the Caribbean, El Niño causes an augmentation in winter precipitation
and a diminution in summer precipitation [35]. Severe droughts in Mexico have occurred
during summer when El Niño was present [36]. La Niña, however, has an almost opposite
effect, precipitation increases during summer months and decreases in winter.

In case of Colombia, El Niño causes reductions in precipitation, whereas La Niña is associated
with stronger precipitation, which might result in floods [37]. Furthermore, they indicate that
there exists a very high positive correlation between the Southern Oscillation Index (SOI) and
river discharge in Colombia. During the December–January period, this relationship is
stronger and weaker during April and May. There is also a regional difference. In western
Colombia the influence of El Niño is stronger than in the east.

Large positive precipitation anomalies over the eastern part of the Andes (Ecuador and
northern Peru) typically are observed during the warm episode [38].

In the Amazon region of Brazil northward to the Caribbean, deficiency in precipitation has
been observed during El Niño [39]. In contrast, El Niño effects in southern Brazil are opposite
to that in northeast Brazil and northern Amazonia. Positive and extremely large anomalies of
rainfall have been observed during El Niño years [40, 41].

Between 30°S and 40°S, northern and central Chile and at high altitudes of the Andes in
Argentina, most precipitation is recorded during winter months, with positive anomalies,
which can be registered during early stages of El Niño. Due to the area’s semi-arid condi‐
tions, local and regional economy might strongly be affected [42, 43, 44]. These events stand
in contrast to what happens at low altitudes of Chile. Between 1991 and 1993, El Niño years,
heavy rainfall  triggered debris flows in Santiago de Chile,  Antofagasta and surrounding
areas [45].

At high altitudes of the Andes, large amounts of snow are consistently recorded. During
summer, melting of accumulated snow is the main cause of river runoff. In Chile and central-
western Argentina, north of 40°S, during El Niño years, streamflows were normal or above
normal [46, 47]. In contrast, during La Niña years, negative anomalies of rainfall and snowfall
can be observed with opposite consequences, which include below-normal summer stream‐
flow. For this region, it is more probable that dry conditions occur during La Niña than wet
conditions happen during El Niño years [42].

SST observations and analysis are often used to identify this oscillation and to predict the
upcoming climate variability. Nevertheless, it has to be mentioned that it is the sub-surface
ocean temperature, which indicates first an upcoming change, a transition from a cold to a
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warm phase or vice versa. It is important to understand that changes in sub-surface ocean
temperatures are the first to respond to an oncoming change in the ENSO phase.

Figure 3. Multivariate ENSO Index (MEI) since 1990 (Source: [48])

Nevertheless, to monitor ENSO in literature the Multivariate ENSO Index (MEI), Figure 3,
which is based on the six main observed variables over the tropical Pacific, can be found. These
six variables are: sea-level pressure, zonal and meridional components of the surface wind,
sea surface temperature, surface air temperature and total cloudiness fraction of the sky. At
first, the MEI is computed separately for two consecutive months (Dec/Jan, Jan/Feb,...). Then,
spatially filtering of the individual fields into clusters is applied [49]. The MEI is calculated
afterwards as the first unrotated principal component (PC) of all six observed fields combined.
Finally, the first PC on the co-variance matrix of the combined fields is extracted [50]. In Figure
4, the results of the past 25 years are illustrated. Positive values (in red) indicate El Niño phases
whereas negative values (in blue) represent La Niña phases.

2.1. Remote sensing of climate

Since 1959 when the first space-borne observations of solar irradiance and cloud reflectance
were made by the Vanguard-2 satellite, remote sensing gradually became a key observation
and research method in climate change studies [51]. Satellite data of land, ocean and atmos‐
phere are used to model and simulate the dynamics climate system in the past, present and
future [52, 53].

Although satellite remote sensing, on a climate history time scale, is a relatively new technique,
and therefore has some limitations such as short data spans of satellite records, biases associ‐
ated with instruments and uncertainties in retrieval algorithms, it has to be considered in a
series of particular applications that are listed in Table 3.
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Application Observation Satellites

Global warming Global temperature trends, particularly
at the ocean surface and in the
atmosphere.

NOAA, AQUA, TERRA

Snow and ice Monitoring the dynamics
of snow extent and ice covers

NOAA, SSM/I, ERS

Sea level change Mapping of ocean surface topography TOPEX/Poseidon, GRACE, Sentinel

Solar radiation Determination of changes in the sun’s
luminosity

SORCE, Meteosat, Eumetsat

Aerosols Atmospheric particles concentration TERRA, AQUA

Water vapour and precipitaion Precipitable water in the troposphere;
spatial and temporal variability of
precipitation at global scale

TERRA, AQUA

Clouds Estimation of net cloud forcing Cloudsat, TERRA, AQUA

Table 3. Remote sensing in climate change studies

3. Objectives and study area

The main objective of the present work was to determine surface area changes of glaciers in
the Commune of Alto del Carmen (Chile) in the near north during the past two decades. And
the specific goal of the study was to link these changes to climate variability in the study area.

Our study focuses on the following glaciers and glacierets located in the Commune of Alto del
Carmen: Toro 1, Toro 2, Esperanza (all defined as glacierets) Guanaco, Estrecho, Amarillo and
Los Amarillos (all defined as glaciers), see Figure 2. Ref. [22] found out that their spatial
distribution is highly correlated with natural factors, such as terrain characteristics, solar
radiation and shadowing effects. Ref. [54] indicates that only little ice flow exists and that
surface areas are smaller than 2 sqkm in 2007. Furthermore, they mention, based on ground
penetration radar (GPR) measurements, that ice thickness can reach up to 100 meters. More
historical studies of area changes [23] have shown that during the past 50 years, surface area
has reduced significantly in almost all glaciers and glacierets.

Furthermore, it is noteworthy that an important mining project of gold, silver, copper and
minerals is developed in the nearby vicinity. At first, the responsible mining company (Barrick
Gold) proposed to move Toro 1, Toro 2 and Esperanza glacier, as they were considered of little
relevance to the basin water, are located in the pit area of the foreseen mine and were in process
of disappearance (observed high melt rates). National and Regional Environmental commis‐
sions (CONAMA and COREMA, respectively) approved the mining project in general.
Nevertheless, they made a couple of observations to the initial proposal and prohibited to
move glaciers. As a consequence to the already carried out exploitation activities, such as
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drilling, and installation of infrastructure, e.g. access roads, several negative effects can already
be observed.

• Watershed: There are two rivers, which are directly affected by the Pascua Lama mining
project, as their source is in that area and are fed by melting snow that infiltrates the ground:
On the Argentinian side, it is river Turbio and on the Chilean side, it is El Estrecho river. On
its way through rocks and materials that make up the upper river sources, the water comes
into contact with the minerals in the soils of the Pascua-Lama deposit. Due to its chemical
and mineralogical composition, water becomes acid and can dissolve metals contained in
the rocks.

• Glacier: In 2001, COREMA approved the so-called Environmental Impact Assessment of the
Pascua Lama Project, which was presented by Barrick Gold. In this study report, several
environmental impacts were outlined. Furthermore, several mitigation measures and
monitoring programs were proposed to protect the environment. The assessment covered
those environmental components, which were considered as most relevant, including: air
quality; levels of noise and vibration; flow and quality of surface and groundwater;
geomorphology, drainage and soil; vegetation and flora; terrestrial fauna; aquatic flora and
fauna; landscape; cultural heritage; road service levels; and socio economy. Nevertheless,
glaciers were not considered to be protected. It was proposed to move them to a different
location. As this was never realized, the mining company constructed a transportation road
right through one of them.

4. Methodology and data

Glacier and glacieret surface area were determined from georeferenced satellite images
acquired by Landsat 5, 7 and 8. These satellite images were acquired during summer months
from 1994 until present, for two reasons: (1) Cloud cover in the satellite images had to be less
than 10% and (2) glaciers can be detected very easily and with high certainty as seasonal snow
cover does not exist anymore. Their ground sampling distance (GSD) is 30 m in all spectral
bands. Landsat 7 satellite images with SLC (Scan Line Correction) off had to be re-processed
to fill gaps. This was done by spectral interpolation for every affected satellite image.

Satellite Time Span Total Number of images

Landsat 5 1994-2003 10

Landsat 7 2004-2013 10

Landsat 8 2014-2015 2

Table 4. Satellite images used in this study

With all the satellite images acquired, corrected and georeferenced, at first, a visual identifi‐
cation, interpretation and analysis of the glaciers and glacierets were carried out to detect inter-
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annual variations. In a second processing step, image digitalization was applied with the aim
to measure glacier extent and to derive surface area variations.

Figure 4. Climate chart for the city of Vallenar

Climate data, which is relevant for this study, is available for free on the internet. There are
several weather stations situated in the Atacama region close to the study area. The most
complete data set of precipitation and temperature records is available for the city of Vallenar,
located at 100 km to the northwest of the study area. Furthermore, climate data registered for
the cities of Conay (60 km to the north) and Chollay (50 km to the northwest) are available,
but only from 2008 onwards and with some gaps. Therefore, measurements until 2008 at a
fourth station, namely La Olla (80km to the southwest), are taken into account. This data was
taken from [23].

In a final step, Pearson product–moment correlation between climate and digitised data is
generated. Both are linked together with a special focus on anomalies and unusual events, e.g.
high temperature events, heavy and prolonged rainfall. The statistical correlation is deter‐
mined by the relationship or dependence between the two studied variables: area (sqkm),
temperature (T °), precipitation (mm), in a two-dimensional distribution. In case that there can
be found one of these variables influencing another, it can be stated that the variables are
correlated or that there exists correlation between them.

The linear correlation coefficient is calculated as follows:

y/  ;   -1,1xy xr r r r r e é ù= ë û
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where rxy is the xy covariance, rx and ry are the standard deviations, respectively.

ρ can vary between –1 and 1. In case that the correlation coefficient is 1, there is a perfect
increasing linear correlation; if it is –1, a perfect decreasing linear relationship can be found

Figure 5. Climate chart for the city of Chollay

Figure 6. Climate chart for the city of Conay
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between the variables; in all other cases, the value indicates to which degree a linear depend‐
ency exists. So, a 0 value means that no correlation exists between two analysed parameters.

For our study, this can be interpreted the following way:

rsurface, temperature rsurface, precipitation

Positive Glacier surface area decrease (increase)
due to temperature decrease (increase)

Glacier surface area decrease (increase)
due to precipitation decrease (increase)

Zero No correlation between glacier surface
area and temperature variations

No correlation between glacier surface
area and temperature variations

Negative Glacier surface área decrease (increase)
due to temperature increase (decrease)

Glacier surface área decrease (increase)
due to precipitation increase (decrease)

Table 5. Possible results of correlation coefficients statistics and their interpretation regarding surface

5. Results and discussion

The Figures 7–13 show how surface area of the studied glaciers and glacierets has reduced
during the past 25 years. The blue line indicates the glacier extent in 1994, whereas the green
line delimitates the glacier area which was observed in the last suitable satellite image. The
surface area which was lost during the past two decades is highlighted by linear hatching in
red colour.

In case of Los Amarillos glacier (Figure 7), surface area difference between 1994 and 2015 is –
43.53%. More area loss can be identified in the southeastern part of the glacier.

Amarillo glacier (Figure 8), during the past 20 years, has diminished 62.12%. In particular, the
southern extend of the glacier has significantly reduced.

Figure 9, which shows the surface area loss at Estrecho glacier, indicates that it has lost surface
area almost uniformly; no specific spatial trend can be identified. All margins have uniformly
reduced by means of extend. Surface area loss was 43.45%.

For Guanaco glacier (Figure 10), a similar behaviour as for Estrecho glacier can be identified,
except the most westerly area, which has completely gone. In 1994, it was already isolated and
only connected to the main glacier area by an ice bridge. Total surface area loss during the past
2 decades was 33.84%.

Toro 1 and Toro 2 (Figures 11 and 12) have shown similar spatial behaviours. The eastern part
of both glacierets is gone. Only about 4% of the original surface area remains.

In Esperanza glacier (Figure 13), whose spatial extend was from north to south, surface area
loss happened mostly in this spatial direction. Nowadays, the geometry of this glacieret is
almost circular.
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Figure 7. Surface area change of glacier Los Amarillos

Figure 8. Surface area change of glacier Amarillo
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Figure 9. Surface area change of glacier Estrecho

Figure 10. Surface area change of glacier Guanaco
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Figure 11. Surface area change of glacieret Toro 1

Figure 12. Surface area change of glacieret Toro 2
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Figure 13. Surface area change of glacieret Esperanza

Table 6 shows the results of the digitalisation carried out to determine surface area variations.
Only summer months were considered and satellite images of every second year were taken
into account. The generated graphs show that all glaciers and glacierets have suffered surface
area loss during the past 21 years. Nevertheless, some of them were able to recover during
2004, 2006 and/or 2008.

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2015

Los
Amarillos

1,291 1,104 1,293 1,296 1,149 1,263 1,031 1,274 0,855 0,796 0,852 0,729

Amarillo 0,378 0,376 0,491 0,379 0,331 0,317 0,334 0,278 0,168 0,134 0,173 0,143

Estrecho 1,459 1,865 1,366 1,311 1,081 1,356 1,439 1,350 1,117 0,954 0,986 0,825

Guanaco 2,077 2,254 2,181 2,038 1,999 1,942 1,720 1,893 1,668 1,479 1,482 1,374

Toro 1 0,163 0,137 0,233 0,101 0,059 0,063 0,090 0,084 0,019 0,000 0,008 0,000

Toro 2 0,199 0,124 0,364 0,044 0,022 0,060 0,089 0,113 0,000 0,000 0,007 0,000

Esperanza 0,036 0,015 0,106 0,009 0,025 0,018 0,079 0,043 0,009 0,000 0,056 0,034

Table 6. Absolute surface area values in sqkm from 1994 till 2015
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Toro 1, Toro 2 and Esperanza have not been gone. Here, zero values indicate that it was not
possible to detect them in the satellite images of the corresponding years due to spatial
resolution.

Since 1994, surface area of glaciers and glacierets analysed in this study has reduced as shown
in Table 7. Toro 1 and Toro 2 have lost almost its entire surface. Esperanza seems to be stable
as it was able to recover during the past decade and although it has lost 5% of its surface
between 1994 and 2015. All the other glaciers show a continuous trend of surface area loss
during the past 20 years.

Glacier
Glacier surface area sqkm

Loss between 1994 and last year
1994 2004 Last year

Los Amarillos 1,291 1,031 0,729 43,53%

Amarillo 0,378 0,317 0,143 62,12%

Estrecho 1,459 1,356 0,825 43,45%

Guanaco 2,077 1,942 1,374 33,84%

Toro 1 0,163 0,063 0,008 95,10% (until 2014)

Toro 2 0,199 0,060 0,007 96,48% (until 2014)

Esperanza 0,036 0,018 0,034 5,60%

Table 7. Surface aera loss over the last 2 decades

In order to characterise the temporal behaviour of the glacier surface area lost and to detect its
correlations with rainfall and temperature, trends and correlation coefficients as shown in
Table 8 were calculated.

Trend (sqkm/a) rSurface, Temperature rSurface, Precipitation

Los Amarillos -0,024 -0,4 0,2

Amarillo -0,015 -0,4 0,4

Estrecho -0,032 -0,4 0,8

Guanaco -0,039 -0,5 0,5

Toro 1 -0,009 -0,2 0,5

Toro 2 -0,010 0,0 0,4

Esperanza -0,001 0,4 0,1

Table 8. Trend in surface area lost and correlation coefficients

Precipitation at the mentioned climate stations Conay, Chollay and Vallenar are shown in
Table 9. A couple of peaks can be observed which in general coincide with El Niño years.
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Furthermore, compared to long-term observations as shown in Figures 6, 7 and 8, in 2004, 2006,
2012 and 2015, an absence of precipitation is observable. This also coincides with La Niña
events that have been reported. During the past two decades, precipitation only in 1994
(Vallenar) and 2014 (Vallenar, Conay, Chollay) reached normal values.

Station 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2015

Vallenar 24,885 5,27 0,125 1,965 0,763 0,000 0,000 7,900 4.875 0,100 12.300 0,575

Conay -- -- -- -- -- -- -- 8,150 5,400 0,050 12,100 0,000

Chollay -- -- -- -- -- -- -- 8,15 5,525 0,175 11,65 0,525

Table 9. Average precipitation in mm during winter months

At all three stations, a positive temperature trend can be observed. Table 10 shows mean
temperature during summer from 1994 onwards at Vallenar and from 2010 onwards for Conay
and Chollay. In particular, summer of 2013 and 2015 shows huge variations in comparison to
long-term climate observation (Figures 6, 7 and 8). Summer (December, January, February)
mean temperature observed between 1982 and 2012 (Source: http://en.climate-data.org/)
Vallenar station is 19.8°C; at Conay station 13.5°C; at Chollay station 14.4°C.

Our results indicate that all studied ice bodies have reduced in terms of extent over the past
few decades and that there is a significant surface area loss in the glaciers and glacierets
studied. Some of them show significant changes (Guanaco, Estrecho and Los Amarillos),
whereas others seem to be more stable (Esperanza). Smaller ice bodies, glacierets, are more
affected than glaciers. In particular, the Guanaco glacier shows major loss of surface area with
a trend of –0.039 sqkm/a. It has already been reported by [55] that Guanaco, in comparison to
other glaciers and glacierets in this area, shows major melt rates during summer months. On
the other hand, the Esperanza glacier is the one which has almost remained stable. Its surface
area loss has a tendency of –0.001 sqkm/a.

Station 1994 1996 1998 2000 2002 2004 2006 2008 2010 2011 2012 2013 2014 2015

Vallenar 19,7 19,9 21,0 19,4 19,3 17,2 -- -- 18,3 19,0 21,5 22,7 22,3 23,3

Conay -- -- -- -- -- -- -- -- 19,6 18,5 20,7 22,6 20,1 24,4

Chollay -- -- -- -- -- -- -- -- 19,5 19,6 20.5 22,7 20,6 24,3

Table 10. Average temperatura in °C during summer months

In addition, considering climate variables like temperature and precipitation, surface area
variation of glaciers and glacierets does weakly correlate with them. Only in case of Guanaco
glacier, where the coefficient of correlation between surface temperature and surface-precip‐
itation reaches values around 0.5, relationship between the variables can be interpreted as more
dominant.

ENSO events can clearly be identified using MEI. Although in case of the Chilean Andes region,
it is supposed that during El Niño years precipitation increases (as in 1998), this does not mean
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that glaciers and glacierets do not suffer surface area loss. But this does not mean that during
La Niña years (e.g. 2010/11), surface area loss does accelerate neither.

A possible negative impact on the glaciers caused by the Pascua-Lama mining project or any
other human activity was not considered, and our results do not indicate any correlation either.
This coincides with a scientific report, which was recently published by [56]. They also could
not find any evidence for surface area loss due to anthropogenic intervention in the study area.
They attribute glacier variability to climate change and ENSO events. Nevertheless, due to
contentious issues, this subject has to be analysed apart.

6. Conclusions

It has to be concluded that the overall climate situation at high latitudes of the Chilean Andes
Mountain does have a negative impact on ice bodies. La Niña and El Niño events can be
detected and it is possible to correlate them with variations in temperature and precipitation.
As temperature during the past 25 years has augmented and precipitation has decreased,
glaciers and glacierets have diminished their surface area.

There is evidence that lack of precipitation has a major impact on surface area loss. As an
example, Esperanza glacieret was able to recover surface area loss in 2014 when precipitation
average at all three stations was almost normal. This coincides with the results reported by [23].
Nevertheless, our results also indicate huge temperature variations and therefore we conclude
that nowadays both climate variables have to be considered as responsible for glacier and
glacieret surface area loss in the Commune of Alto del Carmen.

Although anthropogenic interventions in the study area are present, such as Pascua-Lama
mining project, climate variability does play a major role in glacier changes. Nevertheless, this
does not mean that human interference on ecosystems has to be tolerated. Every man-made
alteration has to be reviewed critically and in particular in case of exploitation of natural
resources, vital for flora and fauna, they have to be carried out complying with several
standards protecting our planet. Nowadays, there are lots of technical possibilities, such as
GIS and remote sensing that are well known and understood from geosciences, which allow
a sustainable management of natural resources.
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Abstract

Remote sensing-based observations prove to be critical for the monitoring and assess‐
ment of cryosphere in the Himalayan region, where routine data collection in mountain‐
ous regions is often hampered by highly inaccessible terrain and harsh climatic
conditions. The glacierized region of High Asia is also facing the effects of climate change
in the form of rapid melting of glacial ice, creation of new lakes, and expansion of the ex‐
isting ones, which eventually result in hazardous glacial floods downstream. Multisensor
remote sensing (RS) data, e.g., MODIS, Landsat-7 & 8, and SPOT-5 XS, coupled with Goo‐
gle Earth and digital elevation model (DEM) data were used to investigate the snow/
glacier resources and their dynamics in the Karakoram–Himalaya basins adopting varia‐
ble image interpretation and modeling techniques. Minimum numbers of large-sized gla‐
ciers were identified in the Himalaya range, which points toward higher rates of glacial
ice melting in this range. On the contrary, the presence of relatively higher numbers of
medium- to large-sized glaciers in the Karakoram range provides an evidence of favora‐
ble climate conditions for the glaciers' existence at higher altitudes. A significant gain in
snow cover was observed in Hunza basin during the 2001–2011 period, which may feed
high-altitude zone resulting in net expansion of the snow cover and ice mass gain in the
Karakoram. The integrated use of RS and geographical information systems (GIS) techni‐
ques with sparse in situ data is found to be helpful in analyzing the glacial environment
in the context of changing climate in the high-altitude Himalayan region.

Keywords: Snow cover, Glacial environment, Climate change, Karakoram range

1. Introduction

The glacierized region of Hindu Kush–Karakoram–Himalaya (HKH) often referred to as the
‘water tower of Asia’ stores large volumes of water in the form of ice and snow after the polar
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ice releases freshwater to the Indus, Ganga, and Brahmaputra rivers. Climate change is being
predicted by glacial lakes due to their property of acting as sensitive indicators [1], and unstable
lakes can pose potential threats to downstream communities and infrastructure [2]. Monitoring
of glaciers, glacial lakes, and assessment of glacial lake outburst flood (GLOF) impact down‐
stream can be done quickly and rather reliably through remote sensing data interpretation and
analysis. RS technology and GIS have often been used by decision makers as an effective and
powerful tool to solve environmental issues [3]. In combination with GIS, RS methods provide
useful means to detect potentially hazardous situations and to perform a preliminary assess‐
ment of the related hazard potential [4]. Remote sensing data from satellites are very helpful
for mapping and monitoring glaciers and their changes over large areas, repeatedly, and by
covering large regions with sufficient spatial detail at the same time [5, 6]. In combination with
digital elevation models, RS data and methods offer the possibility to generate standardized
glacier and glacial lake inventories.

When electromagnetic (EM) energy encounters matter, such as solid, liquid, or gas, a number
of interactions are possible that may take place at the surface or beneath the surface of a
substance. These interactions produce numerous changes in the incident EM radiation
primarily in the form of change in magnitude, direction, wavelength, polarization, and phase.
The science of RS detects and records these changes, which can be interpreted to identify the
characteristics of the matter or land use/land cover, such as various types of vegetation cover,
water bodies, soils, farming fields, and exposed rocks. The reflectance characteristics of the
features like snow and ice vary according to their surficial/physical characteristics: the
reflectance of snow is generally very high in the visible portions of the spectrum, whereas the
reflectance of old snow and ice is always lower, i.e., due to compaction and presence of
impurities, than that of fresh snow and clean/fresh glacier [7]. Similarly, the reflectance of fine-
grain snow is comparatively higher than that of coarse-grain snow and glacial ice in the visible
portion of the spectrum [8] (Figure 1). Comprehensive reviews of remote sensing systems, data
types, techniques, and application to glacier-related hazards have been provided in Refs. [9–
11]. RS technique provides additional opportunities for more complete surveys of glaciers to
provide early warning of the potential formation of ice-dammed lakes [12]. The widely used
earth observation (EO) sensors in the context of glacier inventory production include the
Landsat MSS (Multispectral Scanner), TM (Thematic Mapper), ETM+ (Enhanced Thematic
Mapper Plus), OLI (Operational Land Imager), ASTER (Advanced Spaceborne Thermal
Emission and Reflection Radiometer) onboard the Terra platform, and the SPOT (Satellite Pour
l’Observation de la Terre) satellites. In combination with freely available DEM datasets, remote
sensing data offer integrative approaches for observing and assessing the current situation of
glaciers, glacier lakes, and associated hazard potential, as well as the means to develop
scenarios of potential future evolutions [13]. The snow and ice-melt model like SRM (snowmelt
runoff model), which is used to simulate and forecast daily streamflow in snowy and glacier‐
ized basins [14], requires accurate data on snow-cover area (SCA), which are provided by
Landsat, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer), ERS-SAR (Euro‐
pean Remote Sensing-Synthetic Aperture Radar), and NOAA-AVHRR (National Oceanic and
Atmospheric Administration-Advanced Very High Resolution Radiometer) satellite sensors
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[15]. For the first time, NOAA began to use remote sensing in 1966 for the detection of SCA to
provide weekly estimates of snow cover in the Northern Hemisphere [16].

Figure 1. Reflectance response of snow and glacial ice in multisensor remote sensing data [8].

2. Climate change impacts on glacial environment

Glaciers are considered as very reliable and easily understandable natural indicators of climate
change [17] due to their sensitive response to changes in temperature and precipitation [18].
They have been selected for this reason as an essential climate variable (ECV) by the global
climate observing system (GCOS) [19]. According to IPCC [20], the global temperature has
risen by 0.85°C since 1880 and the surface warming amounting to 3.7°C will be likely between
2081 and 2100 if greenhouse gas emissions stay roughly on their current path. The observed
and projected changes in global average temperature relative to the 1986–2005 average under
four emissions pathways are shown in Figure 2. The increase in air temperature influences the
glacier mass balance [21], which is the balance between accumulation and ablation of glaciers
[22]. The changes in mass balance cause variations in the volume and thickness of glaciers,
which ultimately affect the flow of ice [21], and as a large fraction of the Indus flow is originated
from meltwater, both magnitude and timing of the flow are vulnerable to climate change [23].
Furthermore, due to the temperature increase in the region, more precipitation in winter will
fall as rainfall than as snowfall compared with the current situation. This rainfall will be added
directly to the river system, instead of storing in the form of ice or snow in glaciers [24].
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The IPCC Report of 2007 estimates a further warming of 3.7°C at the end of the 21st century;
climate change has been observed through significant warming in the Hindu Kush Himalayas
[25]. The climatic change in recent decades has made considerable impact on the glacier life
cycle in the Himalayan region. With few exceptions, there has been a global trend toward
glacier retreat since the beginning of the 20th century, with this retreat becoming more rapid
and more uniform since the 1980s [26]. There will be a decrease of the glacier coverage in the
coming decades as a result of global warming. This will lead to a short-term increase in water
availability, in the coming decades, due to an increase in meltwater. However, the water
availability will decrease in the long term during the second half of the 21st century. This
decrease in water availability combined with a projected increase in water demand will cause
water shortage for irrigation and thus food insecurity [27].

Figure 2. The changes in observed and projected global average temperature relative to the 1986–2005 average. The
projections are averaged across a range of climate models. The vertical bars shown at right are likely ranges in temper‐
ature by the end of the century [20].

Some of the serious consequences of global warming in the Himalayan region include rapid
melting of glaciers, creation of new lakes, and expansion of the existing ones posing high risk
of glacial lake outburst flood hazard for downstream communities. The sudden increase in the
frequency of floods in recent years, e.g., during 2007, 2008, 2010, 2012, and 2013 [28], demands
a better understanding and investigation of the prevailing situation of the glaciers and glacial
lakes in this region. The chapter describes a remote sensing-based approach to investigate
environmental challenges posed by global warming in the Himalayan region.
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2.1. Case study

According to Chaudhry et al. [29], Pakistan experienced 0.76°C rise in temperature during the
last four decades and the increase was 1.5°C in the mountain environment hosting thousands
of glaciers. The average annual temperature and annual rainfall at Gilgit meteorological station
in the Central Karakoram indicated overall rising trends during the 1960–2013 period (Figure
3). Under varying climate conditions, glaciers in various regions of the Hindu Kush–Karakor‐
am–Himalayan belt behave differently under changeable climate conditions. A general
shrinkage of glaciers has been observed in the Himalaya [30, 31]; however, this does not imply
a synchronous behavior of all glaciers, because there can be local differences and even
advancing of existing glaciers [32, 33]. In the present study, snow-cover mapping of Hunza
River basin situated in the Karakoram range of Pakistan was carried out using MODIS snow
product for assessment of snow-cover dynamics under the changing climate. Multisensor RS
data, i.e., MODIS product, LANDSAT-7 ETM+ (Enhanced Thematic Mapper plus), LAND‐
SAT-8, and SPOT-5 XS (Multispectral) coupled with Google Earth and digital elevation model
data (ASTER/SRTM) were used to investigate the snow/glacier resources and their dynamics
in the selected Karakoram and Himalayan basins adopting variable image interpretation and
modeling techniques. The snowmelt runoff model was employed to simulate the daily
discharges at Gilgit stream gauging station in Gilgit River basin. World Meteorological
Organization (WMO) tested SRM successfully for runoff simulations [34]. The model has been
applied widely all over the world to compute snowmelt runoff. With the development of
satellite remote sensing (SRS) and GIS, it is possible to apply SRM to a large-sized basin. It uses
remote sensing snow-cover data for the estimation of snowmelt runoff. The study would
provide base for future monitoring of glaciers and glacial lakes in response to changing climate
in this high-altitudinal mountainous region.

Figure 3. Trends of average annual temperature (a) and annual rainfall at Gilgit (b) during 1960–2013.

2.2. Description of the study area

The glacierized region of Pakistan lies within longitudes 70° 57´–77° 52´ E and latitudes 33° 52
´–37° 09´ N (Figure 4). The elevation ranges from 366 m in the south to more than 8,500 m in

Remote Sensing of the Glacial Environment Influenced by Climate Change
http://dx.doi.org/10.5772/62134

103



the northeast. The snow and glacial ice reserves of freshwater nourish the main Indus River
system (IRS) of the country. Approximately 11.57% of the overall area (i.e., 22,000 km²) of
Upper Indus basin (UIB) is covered by seasonal glacial ice occupied by majority of the largest
valley glaciers, the biggest and prevailing snow/ice-covered area outside the polar regions [35].
The high mountain region, i.e., between 35° and 37° N, is mostly dominated by winter rains,
whereas the submountainous region, i.e., between 33.5° and 35°N, is dominated by summer
rains. The bulk of the snowfall received from westerlies during the winter half of the year and
more local conditions prevail in winter under the existing influence of the Tibetan anticyclone
[36]. In addition to the influence of global weather systems, the mountain climates are also
influenced on the medium and local scale by elevation, valley orientation, aspect, and slope
[37]. The Himalayas have four subregions. The sub-Himalayas or Siwaliks are a range of low
hills up to 1,000 m altitude above the mean sea level. The outer Himalayas go up to about 5,000
m altitude. The central Himalayas have an average height of about 6,000 m. The trans-
Himalayas including the Karakoram Range are also very high, which include the second
highest peak (8,611 m) in the world. The Hindu Kush and the Western Mountains form the
boundary between Pakistan, Afghanistan, and China. The main rivers in these ranges are Swat
and Kabul, which eventually run into the river Indus.

Gilgit basin is bounded in the west by Chitral River basin, a small portion in the north by
Afghanistan, in the east by Hunza River basin, and in the south by Indus and Swat River basins.
The basin occupies an area of about 14,082.4 km2 out of which about 6.9% is glacierized. The
elevation ranges from 1,500 masl to more than 6,500 masl. Hunza basin is located in the
upstream part of Upper Indus basin covering an area of about 14,235 km² in which about 27.6%
area is glacierized. The Hunza River has formed the main subbasin of the Gilgit basin. The
tributaries joining the Hunza River are Chapursan, Khunjerab, Ghujerab, Shimshal, and
Hispar rivers. Generally, most parts of the ablation areas are debris covered in this region. The
Hunza River gauged at Dainyor bridge has a mean annual flow of 323 m³ s−¹ based on 1966–
2008 flow record of the Surface Water Hydrology Project of the Water and Power Development
Authority (SWHP-WAPDA). The Astor basin lies in the eastern side of the Nanga Parbat
mountain. Astor River drains the snow- and glacier-covered mountains of Ladakh – Deosai
and High Himalayas in the northern territory of Pakistan. Shingo basin (4,680 km2) lies in the
southeast of Astore basin within the elevation range of 3,800–6,000 m. Generally, the glaciers
are few in number and small in size in this basin. The Jhelum basin is bounded in the west by
southwestern part of Indus River basin, in the north by Astore basin, and in the east by Shingo
basin (Figure 4). The elevation in this basin ranges from 1,200 m to more than 4,700 m.

3. Material and methods

3.1. Data used

A dataset of MODIS processed images of MOD10A2 (h23V05, h24V05) and MYD10A2
(h23V05, h24V05) available since 2000–2011 was downloaded from the web link http://
nsidc.org/cgi-bin/snowi/ with a minimum cloud cover of 15%. MODIS is an optical sensor that
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provides imagery of the earth’s surface and clouds in 36 discrete, narrow spectral bands
ranging from 0.4 to 14.4 μm of the electromagnetic spectrum. MODIS snow-cover images are
available globally at a variety of different resolutions and projections. MODIS, aboard terra
spacecraft of earth observing systems (EOS), is being very handy for the estimation of nor‐
malized differential snow index (NDSI). The MODIS snow-cover product used in this study
(MOD10A2 and MYD10A2) contains data fields for maximum snow extent over an 8-day
repeated period and has a spatial resolution of 500 m covering the Hunza River basin com‐
pletely in two scenes (h23V05 and h24V05).

The glaciers and glacial lakes mapping was based on the Landsat 7 ETM plus and Landsat 8
satellite data of 2001 and 2013, respectively. The later data were downloaded from the web
link http://glovis.usgs.gov with minimum cloud and snow cover. The detail of satellite data
used in the present study is given in Table 1. The RS analysis for glacial lakes mapping was
supplemented by Google Earth imageries and the topographic maps published by Survey of
Pakistan. The Landsat 8 satellite images the entire earth every 16 days in an 8-day offset from
Landsat 7 ETM plus. The images are terrain-corrected having spatial resolution of 30 m for
multispectral bands 1–7, 9, and 15 m for panchromatic band 8 and 100 m for thermal infrared
sensor (TIRS) bands 10–11 resampled to 30 m to match the multispectral bands. The Landsat
8 carries two instruments: the OLI sensor includes refined heritage bands, along with three
new bands and thermal infrared sensor provides two thermal bands. The satellite remote

Figure 4. Location map of the glacierized region of Pakistan indicating various river basins and altitudinal ranges.
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sensing data of 1993 (Landsat MSS), 2001 (Landsat TM), and 2005 (SPOT XS multispectral)
periods acquired from various sources, such as SUPARCO, were used for spatiotemporal
analysis of glaciers and lakes in the Astore basin. The location of selected glaciers and lakes in
the basin is shown in Figure 5. For historical trend analysis, glacier cover from topographic
map of 1:50,000 scale of the year 1964 was acquired from Survey of Pakistan. Digital elevation
model data of shuttle radar topography mission (SRTM) 90 m were used to estimate altitudinal
characteristics of the glacial lakes. The DEM is provided with a geographic coordinate system
(CGS), and the elevation values refer to datum WGS-84 both horizontally and vertically.

Figure 5. Location of the study site in Astore basin in Himalayas.

The daily flows data of Hunza and Astore rivers were acquired from SWHP-WAPDA for
seasonal correlation with climate data and snow-cover dynamics in the catchment since 2000.
The Hunza River is gauged at Dainyor Bridge, whereas the Astore River is gauged at Doyean
station near Bunji.

3.2. Image processing and geo-spatial analysis

Originally downloaded MODIS product was in sinusoidal projection, which was then re-
projected into Universal Transverse Mercator (UTM) Zone 43N projection with datum
WGS-1984 using MODIS Re-projection Tool. MODIS images only for the months of January,
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February, and March were mosaicked and used for mapping the maximum SCA to observe
snow-cover dynamics in Hunza basin, Karakoram range. The snow cover in these months
usually dominates most of the basin area. The month-wise distribution of SCA in the study
area during 2011 is shown in Figure 6. The SCA was minimum during August, followed by
July, June, and May. It appears to increase from September to March then starts declining. The
maximum snow-cover area change (SCAC) was assessed using the MODIS snow-cover
product, e.g., MOD10A2 and MYD10A2, available since 2000. Subset of the study area was
masked from the MODIS layer. The snow extracts of maximum snowfall period consist of the
five classes of the MODIS attribute data from which the snow class (value = 200) was extracted.

Figure 6. Monthly distribution of maximum SCA during 2011 in Hunza basin.

SRS data Resolution Period

MODIS snow-cover product 500 m 2000–2011

Landsat 8 OLI/TIRS 30 m 2013

Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) 15 m, 30 m 2001

Landsat MSS (Multispectral Scanner) 80 m 1993

SPOT 4 XS (multispectral) 20 m 2005

Google Earth Variable Variable

Table 1. Satellite remote sensing data used in the present study.
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The spatiotemporal and altitudinal changes in the lakes were studied to observe the influence
of climatic changes occurred during recent decades in this part of the HKH region. The spatial
database of the lakes such as location coordinates, area, and length was systematically
developed and analysis was performed for each river basin for 2001 and 2013. For the glacial
lakes mapping, the methodology developed by Lanzhou Institute of Glaciology and Geo‐
cryology, the Water and Energy Commission Secretariat, and the Nepal Electricity Authority
[38] was adopted. The uncertainty analysis for lakes area was performed following the
methods provided by researchers, e.g., Refs. [39, 40]. According to the analysis, the shoreline
of the glacial lake passes through the center of pixel giving an uncertainty of 0.5 pixel.

Five glaciers and five associated glacial lakes were selected in Astore basin of the Himalaya
range. Spatial data layers of the glaciers and glacial lakes were developed through on-screen
digitization in GIS and using different analytical techniques and logical operators. All the
polygons representing glaciers and glacial lakes are numbered clockwise sequentially. For geo-
spatial analysis, the attribute data were linked to the spatial data layers of glaciers and glacial
lakes in GIS. Time series data of hydrometeorology were used to study the trends in climate
data, i.e., summer and winter temperatures (maximum and minimum), precipitation, and river
discharge.

3.3. Remote sensing technique in glaciers and lakes mapping

The detection of glacial lakes using multispectral imagery involves discriminating between
water and other surface types. Delineating surface water can be achieved using the spectral
reflectance differences. Water strongly absorbs in the near- and middle-infrared wavelengths
(0.8–2.5 μm). Vegetation and soil, in contrast, have higher reflectance in the near- and middle-
infrared wavelengths; hence, water bodies appear dark compared with their surroundings
when using these wavelengths [41]. Methods for semiautomated mapping of glaciers and lakes
based on remote sensing data have been well established for several years, and model
approaches to assess the hazard potential of glacier lakes have been developed and success‐
fully tested as well. The global elevation datasets of the shuttle radar topography mission and
the ASTER global DEM (GDEM) offer the possibility to derive such topographic parameters
for glaciers in most regions of the world.

The spatial and radiometric resolution of panchromatic band of Landsat ETM plus images was
used for delineation of glacier’s boundaries in selected basins. The very low reflectance of ice
and snow in the middle-infrared has been widely used for glacier classification, for example,
with threshold ratio images from raw data of digital number of TM bands 4 and 5 [42, 43]. This
technique has proved to be simple, robust, and accurate [44]. It has also been proposed as a
method for reducing multiple effects (e.g., the topographic effect of direct light) within
multispectral data [45–47]. Visual interpretation is considered to be the most accurate way to
delineate snow line in the scale of one outlet glacier, because it is the only method to take
topography into account [48]. Because of a pronounced topographic effect, none of the most
common band ratios or principal components could offer sufficient contrast to set one
threshold value to delineate the ice-cap glaciers. The glaciers were mapped based on meth‐
odology developed by the Temporary Technical Secretary (TTS) at the Swiss Federal Institute
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of Technology, Zurich, for the data compilation of World Glacier Inventory [49]. The flowchart
of the methodology adopted is shown in Figure 7. After digitization of glaciers' polygons, the
numbering of glaciers was started from mouth of the major stream and proceeded clockwise
round the basin. If there is a name assigned to the glacier, it was recorded through literature
search and information included in the topographic maps. The geographic location of the
glacier was recorded from the grid. The area of the glacier was calculated through database of
the delineated glacier.

Figure 7. Flowchart of methodology adopted for temporal analysis of glaciers and glacial lakes.

3.4. Snow Runoff modeling

Currently, SRM is being used to analyze the effects of changed climate on seasonal river flows
in snow and glacierized basins using MODIS satellite data. The daily input data used in the
model are precipitation, air temperature, and snow-covered area. The model also requires
some basin characteristics such as latitude–longitude, number of zone, zone areas, and means
hypsometric elevation of each zone of basin. In the model phenomena, snowmelt and rain are
computed every day and then superimposed on the calculated recession flow and transformed
into the daily discharge from the catchment. The main equation used in SRM for snowmelt
runoff simulation is:
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where Q is the average daily discharge (m³/s), Csn and CRn are the coefficients of snow and rain,
respectively, an is the degree-day factor (cm oC−1d−1), Tn is the number of degree days in oC d,
S is the ratio of the snow-covered area to the total area, P is the precipitation contributing to
runoff (cm), Tcrit (oC) is the critical temperature that differentiates between snow and rain, A is
the area of the basin or zone in km, K is the recession coefficients that indicate the decline of
discharge in a period without snowmelt or rainfall, and n is the sequence of days during
discharge computation period. The degree-day factor is evaluated with regard to snow density,
stage of the snowmelt season, and presence of glaciers. The runoff coefficient is an expression
of hydrological losses and is estimated by comparing the annual precipitation and runoff, by
taking into account the vegetation and current snow coverage, as well as size of the basin. The
critical temperature (Tcrit) can be estimated using actual meteorological records, stage of
snowmelt season, and visual observations.

Figure 8. Major steps involved in simulation of snowmelt runoff model (SRM).
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The Gilgit River basin is a snow-covered and glacierized basin, therefore the snowmelt runoff
model can be successfully used to simulate and forecast daily stream flows as well as to study
the effect of climate change on river flows. The SRM model was calibrated for 4 years from
2001 to 2004 and the model simulations were performed from year 2007 to 2010. The initial
values of  the parameters  used during model  calibration such as  temperature lapse rate,
degree-day factor snow and rain coefficients, and recession coefficients were extracted from
past data and from previous studies, e.g., Ref. [50]. The parameters were adjusted during the
calibration process until satisfactory results were achieved. The SRM model was calibrated
with a coefficient of determination (R2) value of 0.64 and validated with R2 value of 0.78,
indicating a close agreement between the observed and the simulated discharge data. The
stepwise methodology followed in the study is shown in Figure 8. Different scenarios were
used in SRM to predict future flows of Gilgit River: i. under rise in annual temperature ‘T’
and ii. increase in cryosphere area in the basin.

4. Results and discussion

4.1. Analysis of maximum snow-cover area

The maximum SCA in the Hunza basin, Karakoram range, was evaluated for trend and
change analysis using MODIS product of the 2001–2011 period. Figure 9 shows the maxi‐
mum snow-cover area in the Hunza basin during the 2001–2011 period. Except central valleys
consisting of drainage network of the basin, most of the land appears to be snow covered
during the period from January to March. From the results, it was observed that percent‐
age SCA is predominantly increasing with time in this high-altitude cryospheric region. From
the trend analysis of percentage snow-cover area on annual basis, it was observed that more
than 80% of the basin area was snow covered particularly during the time periods of 2003,
2004, 2005, 2009, and 2011 (Figure 10). The maximum SCA during these years ranged from
80% to 92% of the study area. The historical data of precipitation (1961–2000) exhibited a
rising trend in the Northern areas [51]. This may give rise to an increasing trend of SCA,
which  likely  feeds  the  high-altitude  zones  (usually  above  5,000  masl),  resulting  in  net
expansion of the snow cover and ice mass gain in the basin.

The maximum snow-cover area change observed during 2001–2011 indicated a significant
increase of about 719 km² in SCA during an 11-year period (Figure 11). From the trend analysis
of maximum snow extent on annual basis, it has been observed that the maximum snow‐
fall month has shifted slightly from December to January indicating a spatial shift of winter
season, which generally starts from November and continues until the end of March. The
possible  reasoning for  this  shift  might  be attributed to the observed facts  that  the solid
precipitation in  winter  has  been converted into  liquid precipitation probably due to  in‐
creased atmospheric temperatures.
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Figure 9. Maximum snow-cover area (SCA) in Hunza basin during the 2001–2011 period.

Figure 10. Trend of maximum snow-cover area (SCA) in Hunza basin during the 2001–2011 period.
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Figure 11. Snow-cover area change (SCAC) during 2001–2011 in Hunza basin.

The snow accumulation has an increasing tendency in the central Karakoram experiencing
unique climate signatures, characterized by low temperatures, and enhanced precipitation
[52]. The fact also points toward previous observations, e.g., Ref. [53], indicating a regional
deviation of the Karakoram glaciers from the usual glacier thinning observed in most glacier‐
ized areas of the world and a retreat of some other neighboring Asian glaciers [54]. Since the
early 1960s, a rise in winter precipitation in the Karakoram has been observed [55]. From the
analysis of interannual variations in the snow-cover area, it has been observed that snow gain
is predominantly increasing at the rate of 360 km²/year in this region perhaps because of high
elevation and complex orographic features. During the periods of maximum snow gain, snow
was found even at the lowest elevation of 1,400 m. Retention of snow at this low-elevation
zone indicates heavy snowfall during this period. Snow gain may be characterized by many
factors because the high-altitude region is influenced by complex weather systems. From the
analysis of snow loss in terms of elevation (extracted from DEM), it was seen that maximum
loss occurred at an elevation ranging from 2,000 to 4,000 m during 2002, 2004, 2005, and 2009
probably because of more liquid precipitation than solid within this elevation range. Most of
the snow loss was observed within lower elevations of the valley glaciers, such as Batura,
Hispar, and Khinyang.
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4.2. Analysis of the glacial environment

The identification of glacial features was performed effectively through variable stretching of
the pixel values of Landsat ETM+ panchromatic image data (Figure 12). The land features such
as ridgelines and drainage network are highlighted in 0–150 stretch in values of panchromatic
image. Similarly, the moraine boundaries are distinct in this stretch range providing good
approximation of limits of debris-covered glaciers. Low stretch in values (i.e., 0–100) has
proved helpful in extracting glacial ice appearance within the high mountainous shadows.
Table 2 indicates stretching values of panchromatic image suitable for identification and
delineation of various glacial features. The delineation of snow-/ice-covered ridge and
catchment boundaries in panchromatic image is possible using greater than 200-value range.
The surface variations and flow pattern of glacial ice become highly distinct using this range
in the image.

In the Hunza basin, a total of 1,050 glaciers were identified, which contain 10 glaciers of more
than 100 km2 area (Figure 13), Batura, Hispar, and Hasanabad being the renowned ones. These
and some other glaciers in this basin penetrate well below 3,000 m, e.g., the 59-km-long Batura
glacier, one of the eight largest glaciers of the middle and low latitudes, has its terminus at
about 2,400 m. About two-thirds of the middle and lower parts of the glacier is covered with
debris (shown in reddish brown color resembling the surrounding rocks in Figure 14) except
for a thin strip of white ice (visible in variable shades of cyan color) that extends to within
about 4 km of the terminus. There are seven glaciers that have an area ranging within 50–100
km2, whereas 12 glaciers belong to 20–50 km2 category. The medium-sized glaciers (10–20
km2) are 24 in number, whereas the rest belong to small-sized glaciers (less than 10 km2 in size).
According to Hewitt [53], the central Karakoram region is one of the exceptional and exclusive
cases throughout the world where the expansion of glaciers has been observed. The Karakoram
glaciers are the largest store of moisture in Central Asia and the single-most concentrated
source of runoff for the whole Upper Indus basin. The glaciers residing on the steep mountains
as well as lying in valleys are highly susceptible to global warming, which may create future
hazards for downstream communities (Figure 15a). One of the glaciers of surging type in the
Upper Hunza valley, e.g., Ghulkin, has burst several times in the past (recently in early 2015)
resulting in a loss of infrastructure, property, and valuable lives (Figure 15b). The glaciers
prone to surging or that display irregular flow might be expected to be possible candidates for
the generation of outburst floods [13].

In the Astore basin, there were 588 glaciers identified, among which about 99% glaciers belong
to 0–10 km2 size category, while only 0.2% glaciers belong to 50–100 km2 category (Figure 13).
No glacier of greater than 100 km2 area was found in this basin. The presence of relatively
higher numbers of medium- to large-sized glaciers in the Karakoram basin provides an
evidence of favorable climate conditions for the glaciers' existence at higher altitudes. The
minimum numbers of large-sized glaciers identified in the Himalayan basin point toward
higher rates of glacial-ice melting due to increased warming conditions in this range.
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Figure 12. The extraction of glacial features is facilitated by stretching of gray scale values of Landsat ETM+ panchro‐
matic image.

Three basins of the Himalayas, e.g., Shingo, Astore, and Jhelum, were selected to analyze
variations in the glacial lakes during 2001 and 2013. Overall, 463 glacial lakes common during
the two periods were selected for the analysis. The 204 glacial lakes in Shingo basin indicated
an increase in area from 10.35 to 10.84 km2 (Table 3). The 93 lakes in Astore and 166 lakes in
Jhelum basin indicated a minor decrease in coverage during the 12-year period. Overall
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changes in the lakes area were positive in the three river basins indicating a net expansion in
lakes area in the Himalaya range. Variable changes in the lakes area in the basins during the
2001–2013 period are shown graphically in Figure 16 and geographically in Figures 17a–c. The
formation of several new glacial lakes is mainly a result of glacier retreat that is observed in
most of the Hindu Kush–Karakoram–Himalayan region [19]. The influence of climate on
glacial lakes is rather complex and cannot solely account for lake variations [4].

S.No. Feature 50 100 150 200 250 Slice

1 Exposed ridgeline L M H M L L

2 Ridgeline covered under snow/ice N P L M H N

3 Snow/ice in shadow cover H M L P N P

4 Cascading glacier/ice flow pattern N P L M H P

5 Glacial lake H M L P P L

6 Drainage network P M H M L P

7 Moraine boundary P M H M L P

8 Cloud cover/shadow M M L L P P

H = High; M = Medium; L = Low; P = Poor, N = Nil

Table 2. Suitability of stretching values of panchromatic image for identification of various glacial features.

Figure 13. Glaciers and lakes distribution in Hunza and Astore basins.
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Figure 14. Landsat ETM+ image of a large valley glacier – Batura in upper Hunza valley.

Basin Number Area 2001 (km2) Area 2013 (km2) Change (km2)

Shingo 204 10.35 10.84 0.49

Astore 93 4.20 3.98 −0.22

Jhelum 166 10.78 10.52 −0.25

Total 463 25.32 25.34 0.02

Table 3. The glacial lakes status in the Himalayas during 2001 and 2013.

In terms of altitude, the expansion in the lakes area of Shingo basin was positive within the
3,500–5,000 elevation range (Table 4). The expansion in the glacial lakes area within 4,500–5,000
m points toward changes in the climatic pattern, e.g., increase in warming condition resulting
in melting of snow/ice or liquid precipitation that might contribute to growth of lakes area. In
Astore basin, the change in glacial lakes area was positive within 3,000–4,000 and 4,500–5,000
m elevation ranges (Table 4). The maximum number of glacial lakes within 4,000–4,500 m
indicated a decline in area due to the effect of glacial hydrodynamics and/or climatic variations
at this elevation range. In Jhelum basin, the change in glacial lakes area was positive within
3,000–3,500 m, while it was negative within 3,500–4,500 m elevation range (Table 4). The
maximum number of glacial lakes lie within 4,000–4,500 m in this basin (similar to Astore
basin), which also indicated a decline in coverage during the 12-year period.
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Figure 15. (a): The glaciers descending from steep gradients of Karakoram mountains are susceptible to global warm‐
ing. (b): Frequency of glacial floods has been increased in the HKH region.
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Figure 16. Variable changes in the lakes area in three river basins during the 2001–2013 period.

Elevation (m) No. of Lakes Area_2001 (km2) Area 2013 (km2) Difference

Shingo Basin

3,500–4,000 1 0.01 0.23 0.22

4,000–4,500 75 4.02 4.16 0.14

4,500–5,000 128 6.31 6.45 0.14

Total 204

Astore Basin

3,000–3,500 2 0.18 0.21 0.03

3,500–4,000 12 1.37 1.42 0.05

4,000–4,500 62 2.24 1.93 −0.31

4,500–5,000 17 0.41 0.42 0.01

Total 93

Jhelum Basin

3,000–3,500 3 1.29 1.46 0.17

3,500–4,000 28 3.27 3.13 −0.14

4,000–4,500 135 6.21 5.93 −0.28

Total 166

Table 4. Changes in the lakes area by elevation in three river basins during the 2001–2013 period.
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The glacier retreat in the Himalayas has resulted in the formation of new glacial lakes and
the  enlargement  of  existing  ones  due  to  the  accumulation  of  meltwater  behind  loosely
consolidated end-moraine dams [56]. There was a rising trend observed in Astore River flow
during the period 1974–2005. The situation may be attributed to the increase in contribu‐
tion of snow and ice melts in the river flows. The increase in summer temperatures had
affected the overall  glacial coverage, thickness, and ice reserves during the period 1964–
2005. There was a gradual decline in the glacial coverage since 1960s (Figure 18). The melting
rates of small glaciers appeared higher than those of the large ones. The trend in depletion
of the glacial coverage during 1964–2005 is shown in Figure 19. There are previous studies
that highlight the receding of glaciers in most of the Himalaya and a general shrinkage on a
global scale [30, 31].

Figure 18. Spatiotemporal analysis of glaciers and glacial lakes in Astore basin.

The melting of glaciers results not only in reduction of surface area and thickness of glaciers
but also in expansion of the associated glacial lakes. A large valley glacier Folvi (Gr 1) is
expanding at a rate of about 0.013 km2 y−1 [57], while the depletion of this glacier resulted in
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expansion of its associated glacial lake at a rate of about 0.009 km2 y−1 since 1993. Local
geomorphic and climatic parameters may influence the retreat of individual glaciers and may
not represent the regional changes in climatic condition.

Figure 19. Variation in glacierized area at different time periods in Astore basin.

4.3. Scenarios of impact of climate change

The impact of rise in annual temperature ‘T’ on river flows was analyzed. It was observed that
there was an increasing trend in winter maximum and minimum temperatures of Gilgit from
2011 to 2099. The average values of winter maximum and minimum temperatures were used
in snowmelt runoff model to predict future flows of Gilgit River. By increasing the annual
maximum and minimum temperatures to 1.24°C until 2050, the summer flows will increase
by 16%, and when this temperature increases to 2.78°C untill 2099, summer flows will increase
by 34% (Figures 20a&b). Global warming may intensify the summer monsoon, and thereby
enhances precipitation especially downstream of the Indus River [25]. The rise in temperature
may accelerate the process of seasonal snow and glacier melting resulting in a gradual increase
in the river flows.

The results obtained from regional climate model (PRECIS) show that there is an increasing
trend of winter precipitation in Gilgit River basin. On this basis, scenarios were developed
such that if cryosphere area in Gilgit increases in future due to increase in winter precipitation
then what will be its effect on future flows? In previous studies, it was assumed that cryosphere
area would increase due to increase in precipitation in Karakorum region as explained in Refs.
[53, 58]. Therefore, on this basis, the scenario of 10% increase in the cryosphere area until 2050
and 20% increase in the cryosphere area until 2075 was used in SRM to predict future flows of
Gilgit River. According to the modeling results, if cryosphere area increases to 10% and 20%
in the basin, summer flows will increase to 13% and 27%, respectively (Figures 20c&d).
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Figure 20. Climate effected runoff due to rise in average annual temperature until 2050 (a); until 2099 (b); increase in
cryosphere area by 10% (c); and by 20% (d) in Gilgit basin, Central Karakoram.

4.4. Hazard assessment and early warning using RS technique

The primary functions of remote sensing approach within the climate risk cycle in glacial
environment are to develop understanding of the hazards and monitoring the status of glacial
lakes and associated glaciers. Predicting whether a glacier will block a valley and, if so, whether
a hazardous lake will develop is difficult and requires monitoring of glaciers through physical
approach or remote sensing technique. Current hazard assessment efforts depend on detecting
margin fluctuations of those glaciers in physiographical settings favorable to lake development
observed through field inspection or derived from optical satellite images. Small supraglacial
lakes in majority of cases are not hazardous, but they may generate surprisingly large floods
that represent hazards at local scales. They can be particularly difficult to identify and assess
using remote sensing because of their frequent small size and short life span. Because of the
tendency for repeat events from a single glacier, historical reports of GLOFs and local knowl‐
edge are important sources of information.

Early warning systems are helpful in reducing the threat of glacial hazards posed to people in
downstream. A complete and effective early warning system mainly comprises interrelated
elements: risk knowledge, monitoring and warning service, dissemination and communica‐
tion, and response capability. The human dimensions of early warnings imply that traditional
systems are more likely to factor in attachment to the home environment, assets, belief systems,
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and traditional coping strategies [59]. Although community’s involvement in early warning
systems is important, remote sensing technology can facilitate in solving the scientific issues
related to hazard monitoring, forecasting, and telecommunications.

5. Conclusions

The results of the study reveal that glaciers in this part of Himalayan region are being affected
by global warming. Increase in the number of glacial lakes in the recent decade provides clue
to the changing glacial environment of the Upper Indus basin. The integrated use of RS and
GIS techniques with sparse in situ data is found helpful in analyzing the glaciers’ behavior of
the Himalayan region. Minimum numbers of large-sized glaciers were identified in the
Himalaya basin, which points toward higher rates of glacial ice melting in this range. On the
contrary, the presence of relatively higher numbers of medium- to large-sized glaciers in the
Karakoram basin provides an evidence of favorable climatic conditions for the glaciers'
existence at higher altitudes. Similarly. the increase in snow coverage observed in the Hunza
basin of Karakoram during the 2001–2011 may result in ice mass gain in the basin. In order to
detect potentially critical glacial lakes in advance, adoption of reliable and robust RS-based
approaches is required. The rapidly expanding glacial lakes especially near the headwaters
and settlements in the glacierized basins needs to be monitored periodically on a long-term
basis to mitigate the risk of any future flood hazards in the HKH region. An in-depth study of
the impact of global warming on cryosphere of the Himalayan region using high-resolution
remote sensing data (IKONOS, QuickBird, aerial photographs) combined with detailed field
investigations is required to cope up with situations such as diminishing water resources and
flood hazards in the downstream areas in future.
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Abstract

Mountain glaciers are highly sensitive to temperature and precipitation fluctuations and
active geomorphic agents in shaping the landforms of glaciated regions which are direct
imprints of past glaciations, providing reliable evidence of the evolution of the past Cryo‐
sphere and contain important information on climatic variables. But most importantly,
glaciers have aroused a lot of concern in terms of glacier area changes, thickness change,
mass balance and their consequences on water resources as well as related hazards. The
contribution of glacier mass loss to global sea-level rise and increasing number of glacier-
related hazards are the most important and current socioeconomic concerns. Therefore,
understanding the dynamics of the changes and constant monitoring of glaciers are es‐
sential for studying climate, water resource management and hydropower and also to
predict and evade glacier-related hazards. The recent advances in the techniques of earth
observations have proved as a boon for investigating glaciers and glacier-related hazards.
Remote sensing technology enables extraction of glacier parameters such as albedo/reflec‐
tance/scattering, glacier area, glacier zones and facies, equilibrium line, glacier thickness,
volume, mass balance, velocity and glacier topography. The present chapter explores the
prospective of remote sensing technology for understanding and surveying glaciers
formed at high, inaccessible mountains and glacier-induced hazards.

Keywords: Mountain glacier, hazard, assessment, remote sensing

1. Introduction

Glaciers require standard and accurate technology to be studied. Remote sensing technologies
play tremendous role for monitoring glaciers. In fact, a glacier can be considered as a large
body of moving ice wherein water penetrates in the form of snow. The snow then transforms
into ice by compaction and recrystallization and the ice flows through the system under its
own weight and leaves the system by melting and evaporation [1]. The glacier is thus a large
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body of moving ice. Therefore, glaciers store considerable amount of fresh water in frozen
form. The water supply from the glaciers located in the upstream mountains is vital for
sustaining and maintaining downstream cultures. The melt water from the snowpack and
glaciers fulfil manifold requirements of humankind. In the dry season, the water from glaciers
is released by delayed response through snow and ice melting and enhances the river runoff,
therefore providing water to the downstream when there is no other source of water [2]. For
instance, the melt water released from the glaciers in the Alps and Himalayas and other
mountain ranges is crucially important and plays a major role in the water supply of large
downstream population [3–6]. The ice sheets, ice caps and glaciers constitute 10% of the earth’s
land surface contributing to about 3% of the total water on earth corresponding to about 80%
of the world’s freshwater [7]. According to the estimate made by Meier and Bahr [8], the total
area of the glaciers and ice sheets are about 680,000 km2 and according to Dyurgerov and Meier
[9], the same is about 785,000 km2. The Hindu-Kush Himalayan region alone contains a total
of 60,054 km2 glaciated area, which is the largest concentration of glaciers outside the polar
caps. The Hindu-Kush Himalayan region is home to about 54,252 glaciers and is aptly called
as the “Water Tower of Asia” as it provides 86,000,000 m3 of water annually.

These glaciers feed the world’s largest rivers such as the Ganga, Indus, Brahmaputra, Salween,
Mekong, Yangtze and Huang Ho and supply water to about one billion people living down‐
stream. The fresh water coming from the glaciers of high mountains in these rivers is an
important resource for agriculture, navigation, fishing, generation of hydropower and
tourism. Apart from being a boon to society, glaciers also play havoc to life and property of
the people residing downstream. The mountain glaciers are a potential source of severe natural
hazards [10–12]. Besides playing many roles in hydrological sectors, glaciers are also consid‐
ered as a key indicator of climate. Any change in the climate is visible through glacier behavior
and response. Glaciologists and climatologists carry out research on glacier changes to
understand the change in the past and present climate and to predict the future changes.
Contribution of glacier melt water to sea level rise under warming climate is the burning topic
among the glaciologists and the hydrologists.

Glaciers form under the climatic condition when snowfall is more than snowmelt and this
condition in the tropics is fulfilled at very high altitude where the temperature is very less.
Therefore, the mountain glaciers are generally located at remote and inaccessible locations.
Monitoring of these glaciers through ground survey is costintensive, difficult and sometimes
dangerous to life. Remote sensing offers an innovative and valuable tool for gathering
information about remotely located glaciers which are otherwise inaccessible and significantly
capable of extending the scale of the study both spatially and temporally. In the past few
decades, the remote sensing has proved to be a crucial resource for glaciologist. The advent,
advancement and increase in the number and quality of earth observing sensors, the devel‐
opment of new technologies, algorithms, high processing capability and new methodologies
have brought huge revolution in understanding the Cryospheric processes [13].

Keeping in view the importance of glaciers in society and environment, this chapter will
provide information on the remote sensing data available for glaciological studies, the glacier
parameters studied by remote sensing and the method of studying those parameters. The
chapter will focus on the method of estimating snow and glacier area change, volumetric
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change, mass change, velocity and assessment of glacier-related hazards. The chapter will
broadly address two major topics: (a) study of snow and glacier parameters and (b) hazard
assessments. This chapter will provide an overview of the importance, impact and the place
of mountain glaciers in our social life as well in scientific research.

The objectives of the chapter are very precise and clear, that is, to endow the readers with the
scope of studying various glaciological parts and subjects with remote sensing. Our aim is to
make the readers familiar with mountain glaciers, their parts and dynamics and the method‐
ology to study the same. Thus, in the chapter we will attempt to discuss about the remote
sensing data types and the different glacier parameters which can be studied and derived by
them. The emphasis will be given to the methodology of extracting various glaciological
parameters from remotely sensed data. Figure 1 is the field photograph of Chhota Shigri glacier
taken during September 2014.

Figure 1. Field photograph of a Himalayan glacier, September 2014 (Chhota Shigri, western Himalaya, India), showing
debris on the glacier, the surrounding avalanche prone steep cliffs and the Bergshrund line separating the glacier body
from the cliff.

2. Glacier zones and features

Glaciers form when in a year fall of snow is more than the wasting of snow and the trend
continues for many years. The formation and sustenance of glacier thus are functions of
climatic parameters such as precipitation and temperature. The transformation of snow into
glacier ice takes place through compaction and recrystallization [14]. Snowfall, snow ava‐
lanches and snow drift are some of the accumulation processes through which glaciers gain
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in mass, whereas melting, evaporation and calving are the ablation processes by which glaciers
lose mass. Climate and topography play major role in determining the shape, size and type of
glacier [15]. Starting from the upper elevation to the terminus, a glacier can be divided into
several specific zones. A typical temperate mountain glacier consists of (1) accumulation zone,
which is the upper most part of the glacier and where there is net gain of ice, and (2) ablation
zone, the lower part of the glacier where there is net loss in the ice through melting, calving
and evaporation. The accumulation and ablation zones are separated by equilibrium line
where there is neither gain nor loss of glacier ice. The lowest part of the glacier where the glacier
ends and the discharge starts is known as snout/terminus/glacier toe. A glacier is a dynamic
system which along with snow and ice also transports rocks and debris avalanching on the
glacier from the side valley walls. These rocks and debris materials are transported through
the glacier system from upper zone to the lower zone. Below the equilibrium line, after melting
of ice, these rocks and debris concentrates linearly to the sides of the glacier to form lateral
moraine. When a tributary glacier meets the main glaciers, the two adjacent lateral moraines
form medial moraine. Terminal and end moraines are the rocks and debris piled near the end
of the glacier. When these rocks and debris appear on the surface of the glacier through melting
of ice, they are called supra glacier debris. Most of the mountain glaciers are debris-covered
glaciers. The debris cover on the glacier changes the interaction of glacier with the climate.
Sometimes, a glacier ends with a lake near its snout. This type of lake is known as pro-glacier
lake. Many times, these proglacial lakes are dammed with moraines. In the enhanced melting
condition of glaciers, these lakes can breach the dam and can cause havoc [16].

3. Remote sensing of snow and glacier

The remote sensing is an art and science that can gather information about an object without
being in contact with it [13]. The remote sensing system can be airborne or space-borne and
uses electromagnetic radiation to collect the information about the object. When the remote
sensing system uses naturally occurring radiation, it is called passive remote sensing and when
the remote sensing instrument generates its own radiation, it is known as active remote
sensing. A glacier surface consists of snow, firn, ice, rock, debris and water, and each compo‐
nent has variable properties in the different electromagnetic spectrum.

3.1. Optical visible and near infrared

The optical visible and near infrared (VNIR) regions of electromagnetic spectrum (0.4–3.0 μm)
are the workhorses of remote sensing [17]. The sensors in the VNIR measure radiance radiated
from the object, which is related to the reflectance and albedo of the object. Various glaciers
zones such as accumulation, ablation, debris covered and water on the glacier have their own
specific reflectance characteristics in the VNIR region, based on which the glacier and its
various facies can be mapped (Figure 2). Snow has a very high reflectance in the visible
wavelength region and a considerable low reflectance in the near-infrared and middle- and
short-wave-infrared regions. The reflectivity of freshly fallen snow is very high in visible and
infrared regions. Firn, which is one year old snow, has 25–30% less reflectance than snow. The

Environmental Applications of Remote Sensing134



in mass, whereas melting, evaporation and calving are the ablation processes by which glaciers
lose mass. Climate and topography play major role in determining the shape, size and type of
glacier [15]. Starting from the upper elevation to the terminus, a glacier can be divided into
several specific zones. A typical temperate mountain glacier consists of (1) accumulation zone,
which is the upper most part of the glacier and where there is net gain of ice, and (2) ablation
zone, the lower part of the glacier where there is net loss in the ice through melting, calving
and evaporation. The accumulation and ablation zones are separated by equilibrium line
where there is neither gain nor loss of glacier ice. The lowest part of the glacier where the glacier
ends and the discharge starts is known as snout/terminus/glacier toe. A glacier is a dynamic
system which along with snow and ice also transports rocks and debris avalanching on the
glacier from the side valley walls. These rocks and debris materials are transported through
the glacier system from upper zone to the lower zone. Below the equilibrium line, after melting
of ice, these rocks and debris concentrates linearly to the sides of the glacier to form lateral
moraine. When a tributary glacier meets the main glaciers, the two adjacent lateral moraines
form medial moraine. Terminal and end moraines are the rocks and debris piled near the end
of the glacier. When these rocks and debris appear on the surface of the glacier through melting
of ice, they are called supra glacier debris. Most of the mountain glaciers are debris-covered
glaciers. The debris cover on the glacier changes the interaction of glacier with the climate.
Sometimes, a glacier ends with a lake near its snout. This type of lake is known as pro-glacier
lake. Many times, these proglacial lakes are dammed with moraines. In the enhanced melting
condition of glaciers, these lakes can breach the dam and can cause havoc [16].

3. Remote sensing of snow and glacier

The remote sensing is an art and science that can gather information about an object without
being in contact with it [13]. The remote sensing system can be airborne or space-borne and
uses electromagnetic radiation to collect the information about the object. When the remote
sensing system uses naturally occurring radiation, it is called passive remote sensing and when
the remote sensing instrument generates its own radiation, it is known as active remote
sensing. A glacier surface consists of snow, firn, ice, rock, debris and water, and each compo‐
nent has variable properties in the different electromagnetic spectrum.

3.1. Optical visible and near infrared

The optical visible and near infrared (VNIR) regions of electromagnetic spectrum (0.4–3.0 μm)
are the workhorses of remote sensing [17]. The sensors in the VNIR measure radiance radiated
from the object, which is related to the reflectance and albedo of the object. Various glaciers
zones such as accumulation, ablation, debris covered and water on the glacier have their own
specific reflectance characteristics in the VNIR region, based on which the glacier and its
various facies can be mapped (Figure 2). Snow has a very high reflectance in the visible
wavelength region and a considerable low reflectance in the near-infrared and middle- and
short-wave-infrared regions. The reflectivity of freshly fallen snow is very high in visible and
infrared regions. Firn, which is one year old snow, has 25–30% less reflectance than snow. The

Environmental Applications of Remote Sensing134

glacier ice has high reflectance in the blue (0.4–0.5 μm) and green (0.5–0.6 μm) wavelength
band but sharply decreases to near zero in the red (0.6–0.7 μm) band [17]. The debris on the
surface of the glacier significantly lowers the reflectance. The majority of the space-borne
sensors operate in number of bands and known as multispectral. One of the most successful,
longest and continuous VNIR program is the Landsat program which is continuously
observing earth and gathering data since 1972 (Landsat MSS, TM, ETM+, OLI/TIR). The other
optical VNIR operating sensors are ASTER, SPOT, MODIS, IRS LISS III/IV and AWiFS,
Quickbird and IKONOS. Table 1 lists the spectral regions of optical bands used in Landsat TM
and Table 2 presents some of the important satellite missions with their specifications.

Bands Spectral region

Visible (VIS) 0.45–0.52 (blue)
0.52–0.60 (green)
0.63–0.69 (red)

Near infrared (NIR) 0.76–0.90

Short-wave infrared (SWIR) 1.55–2.35

Thermal infrared (TIR) 10.42–12.50

Table 1. The spectral region in different optical bands
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Figure 2 shows the satellite image of Samudra Tapu glacier showing different features of the
glacier based on reflectance. As evident from the spectral response curve, the snow has
maximum reflectance followed by firn and ice. The debris cover on the glacier has similar
reflectance of surrounding rocks. The same can be confirmed from the satellite image of the
Samudra Tapu glacier.

3.2. Thermal infrared

The thermal infrared (TIR) (3–15 μm) is a powerful remote sensing tool for discriminating
surface objects with different temperature or emissivities [18]. Between the thermal band 8–14
μm, it is possible to measure the temperature of the earth surface and sea surface as atmosphere
works as window for these wavelength regions. The surface temperature of glacier is lower
than the surroundings and thus can be differentiated using thermal data. The thermally active
layer of a glacier has only 10 m depth upto which the seasonal variations can be felt [17]. The
most commonly used thermal band sensors for the glaciological study are AVHRR, MODIS,
Landsat series and ASTER.

Platform/sensors Launch Number of bands Spatial resolution Spectral resolution

Landsat MSS
Landsat TM
Landsat ETM+
Landsat OLI/TIR

1972
1984
1999–2003
2013

80m
15, 30, 60/100m

4MS
PAN, 6MS, 1TIR
2TIR, PAN,8MS

ASTER 1999 15, 30, 90m 14 bands 3VIS/NIR, 6SWIR, 5TIR

SPOT 1984 20m/10m 4 bands 3VIS, 1PAN

MODIS 1999 250, 500, 1000m 36 bands VIS, TIR

Quick bird 2001 0.6m 4 bands 3VIS/NIR, PAN

IKONOS 1999 1m 4 bands 3VIS/NIR, PAN

IRS LISS III/IV, AWiFS 1988–2011 72 m to 5.8m 4 bands VIS/NIR

Table 2. List of selected optical remote sensing satellite missions

3.3. Microwave electromagnetic spectra

Microwave spectrum is the most popular wavelength region for studying snow and glacier
properties after optical VNIR. The microwave sensors can be passive (radiometer, 3–6 mm
spectral range) and active (radar, 1 mm to 1 m spectral range). The atmosphere is transparent
in all weather conditions for the whole microwave spectral bands, and therefore, the micro‐
wave can be used to study the glacier in all weather conditions and day and night. The major
advantage of microwave in monitoring glacier is the ability of microwave signals to penetrate
into snow and ice upto various depth and providing information about the internal structure
of the glacier. The depth of penetration of the signals depends on the wavelengths. In the dry
snow zones, the penetration has been reported to be tens of meters [19]. The L-band radar can
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be significantly used for collecting information about the glaciers’ internal stratigraphy. The
ability to penetrate in the wet snow conditions is lesser than the dry snow. With the increase
in wavelength, the ability of penetration increases. Surface roughness also influences the
reflection and backscattering of microwave significantly. With the usage of synthetic aperture
radar (SAR) technology, the spatial resolution of the radar remote sensing can be greatly
improved. High-quality and high-resolution SAR data can be used to study glacier facies,
glacier stratigraphy and other parameters such as glacier thickness and movement. Table 3
and 4 provide the details of microwave bands and satellites.

Band Wavelength (cm) Instrument

Ka 0.8–1.1 –

K 1.1–1.7 –

Ku 1.7–2.4 –

X 2.4–3.8 TerraSAR-X, TanDEM-X, COSMO-SkyMed

C 3.8–7.5 SIR-C, ERS 1/2, ENVISAT ASAR, RADARSAT 1/2

S 7.5–15 ALMAZ

L 15–30 JERS-1, SEASAT, ALOS PALSAR

P 30–100 –

Table 3. Microwave spectrum bands and sensors

System Country Year of launch Band Resolution (m)

SEASAT USA 1978 L 25

ERS 1/2 Europe 1991/1995 C 30

J-ERS Japan 1992 L 18

SIR-C USA 1994 L –

X-SAR Germany/Italy 1994 C/X 15–25

Radarsat-1/2 Canada 1995/2007 C 10–100/3–100

SRTM USA/Germany/Italy 2000 C/X 90/30

ENVISAT Europe 2002 C 30, 150, 1000

ALOS Japan 2006 L 7–100

TerraSAR-X Germany 2007 X 1–16

TanDEM-X Germany 2009 X 1–16

COSMOS-SkyMed Italy 2009 X 1–100

Table 4. List of some selected SAR missions
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3.4. Interferometric SAR

Apart from the amplitude of the returned signal, SAR also exploits the phase of the returning
signals to extract information of the target. The interferometric SAR (InSAR) technique is based
on the phase difference of at least two complex SAR images acquired from either different orbit
positions (single pass) or different times (repeat pass). SAR interferometry uses the phase
difference between the two returned signals to measure the slight changes in the earth surface.
With the single pass interferometry, where the radar is equipped with two antennas, the same
point on the ground can be measured at the same time with slightly different angles and this
can produce stereo images. These images can be used to produce highly accurate topographic
information of the point and can be used to prepare height maps. The InSAR is highly suitable
for computing change in the surface thickness of glaciers over large spatial and temporal scales.
SRTM is the best example of single pass interferometry, which has been used to produce high-
precision global DEM. Tandem data of ERS 1 and 2 (1996/1997) were the first repeat pass SAR
data with interferometric generation capability. TerraSAR-X add-on for Digital Elevation
Measurement (TanDEM-X) is the new member of InSAR family along with SRTM, consisting
of two satellites TerraSAR-X and TanDEM-X developed by German Aerospace Centre (DLR)
and Astrium GmbH. The TanDEM-X (TDX) was launched in June 2010 as an extension of
TerraSAR-X in a close formation which enables stereoscopic views. The main aim of this
mission was to collect interferometric data over entire global to provide a homogeneous high-
resolution global DEM with a relative vertical accuracy of better than 2m within a horizontal
resolution of 12 m [20]. The advantage of this single pass bistatic mission is generation of high-
quality accurate DEM against low coherence and limited accuracy of data from repeat pass
mission. The generation of DEM from InSAR procedure involves interferometry generation,
phase unwrapping, multilooking, reflattening, phase to height conversion and geocoding [21].
From the phase difference of returned signals from the two antennas, an interferogram is
generated. The phase in an interferogram is influenced by the geometric effects and the
topography of the target assuming no movement of the target [22]. By removing the geometric
effects, the elevation of a target can be obtained and a DEM can be created [22]. The DEM
created by InSAR method is highly accurate and can be used to derive the elevation change of
the glacier along with other topographical parameters. The elevation change can further be
used to calculate the mass balance of the glaciers. The phase from repeat pass interferometry
is the key source for studying small coherent motions of the target between the imaging times.
In repeat pass interferometry, the phase difference from the target acquired by the antenna for
a nominal time interval enables the measurement of motion of the target during the small
acquisition interval. The velocity of the target is obtained by removing the phase obtained due
to topography and retaining only the motion phase. The ERS1/2 tandem mission has been
extensively used to derive motion of various objects [23]. Figure 3 demonstrates the acquisition
geometry of radar interferometry. SAR1 and SAR2 fly on parallel tracks and view the terrain
simultaneously from slightly different directions (single pass interferometry) [24]. The
technique of InSAR is based on the phase of returned signals from SAR1 and SAR2. The phase
difference resulting from the fractional difference of wavelengths of pulse travel time would
provide a parallax due to the topography and the shift in location of the target due to motion
[13]. The InSAR technique can be exploited to obtain the topographical information and the
motion of the target at high precision.
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Figure 3. Principal of InSAR acquisition geometry (figure from Balmer and Hartle [24]).

4. Glacier parameters studied with remote sensing

4.1. Snow cover mapping and snowpack properties retrieval

Snow is the most essential and fundamental constituent of a glacier and a key component of
earth’s energy balance [25]. The mountain snow and the subsequent snow melt can play a
dominant role in modulating the local to regional climate and hydrology [26]. The knowledge
of snow coverage and snow properties such as albedo, snow grain size, snow depth, snow
density and snow water equivalent (SWE) are crucial to know and predict the snow melt. The
unique characteristics of snow like high reflectance relative to other surrounding materials
(rocks, water, clouds) in the visible part and low reflectance in the mid-infrared part of the
spectrum are the foundation of snow cover mapping from space in optical remote sensing [25].
Dozier and others [26] have developed an automatic algorithm to distinguish snow from soil,
rocks and clouds by using ratio of reflectance in the VNIR wavelengths (Landsat TM band 2
and 5)which is known as normalized differential snow index (NDSI). According to Dozier [27],
a normalized difference snow index (NDSI) is calculated from reflectance in bands at wave‐
lengths where snow is bright (e.g., TM band 2 or MODIS band 1) and where it is dark (e.g.,
TM band 5 or MODIS band 6), along with a band used for threshold brightness (e.g., TM band
4 or MODIS band 2):

-
=

+
TM bands 2 TM bands 5NDSI
TM bands 2 TM bands 5 (1)

A snow cover area is mapped when NDSI > 0.4 (Figure 4). Although the snow cover can be
mapped with a number of remote sensing devices, multispectral bands in the optical VNIR
region of electromagnetic spectrum are most suitable and widely used. In general, the VNIR
bands of Landsat MSS, Landsat TM, AVHRR, MODIS, SPOT, ASTER, and IRS have been
extensively utilized to map the world’s snow cover area. Apart from snow cover mapping,
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optical VNIR remote sensing has little use in retrieving snow pack properties such as snow
depth and SWE. SWE is the most essential snowpack properties in the sense that it represents
the total amount of water available if the snowpack has to melt instantaneously [28]. However,
in comparison with snow mapping, retrieval of SWE and snow depth through remote sensing
has limited success till date; only microwave remote sensing offers measurement of snow
depth and SWE as there is penetration through the snowpack at these wavelengths [22]. Most
of the studies have used empirical relations to retrieve SWE. The passive microwave radio‐
meters have been used to retrieve SWE since 1978 [29]. Chang and others [29] have used the
difference in brightness temperature at 19 and 37 GHz in the SWE retrieval algorithm to derive
SWE from passive microwave. They have used radiative transfer calculation to derive snow
depth from SMMR data. The Advanced Microwave Scanning Radiometer–Earth Observing
System (AMSR-E) has been used to provide global SWE product since 2002 [30, 31]. The most
recent methods of SWE and snow depth retrieval use active microwave data. Rott and others
[32] have used Ku-band and X-band for SWE retrieval.

Figure 4. NDSI of Gangotri glacier derived from IRS LISS III image, September 11, 2000, for ablation season. The white
part is the snow covered area and the grey is the non snow areas.

4.2. Glacier surface temperature

In global warming situation, the glacier surface temperature is the most important parameter
to study the effect of climate change. However, use of traditional method of measuring surface
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temperature is difficult in mountain terrains. Thermal bands from satellite data provide an
excellent alternative for estimating temperatures. TIR can be used to deduce the temperature
of snow, ice, clean glacier and debris-covered glaciers. The most widely used TIR sensors are
Landsat ETM+, Landsat OLI/TIR, ASTER and MODIS to extract the surface temperature of
glaciated areas. In the longer wavelength region, snow acts as a perfect black body. In the
infrared region, the strong absorption by snow allows the estimation of temperature from
thermal bands [33]. To estimate the surface temperature, the digital number (DN) is converted
into radiance. The radiance is converted into surface radiance by reference channel emissivity
(RCE) method [33], which then can be converted into surface temperature. The conversion of
top-of-the atmosphere (TOA) radiance to surface radiance can be done by following Ref. [34].
Barsi and others [35] have provided a formula to calculate the surface temperature:

+surface
K2=

ln[ 1 1 / LT]
T

K
(2)

where Tsurface is temperature in Kelvin, K1 and K2 are the calibration constants and LT is surface
radiance calculated as:

t e t e= - - - ´ ´TOA v D(1 ) / ( )TL L L L (3)

where LTOA is TOA radiance, Lv is upwelling spectral radiance between surface and sensor, LD

is downwelling spectral radiance from sky, τ is atmospheric transmittance and ε is the surface
emissivity. With the use of thermal band data, it is possible to map the debris-covered glaciers
and also mapping of supra and pro glacial lakes can be done with the thermal data. Figure 5
illustrates the thermal map of glaciated region of Chandra-Bhaga basin, Indian Himalaya,
using thermal band of Landsat ETM+ for the year 2000.

Figure 5. Temperature image of Chandra-Bhaga basin Himachal Himalaya, India, derived from the thermal band of
Landsat ETM+ data during ablation season.
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4.3. Glacier inventory, monitoring and mapping

Satellite is the backbone of World Glacier Inventory (WGI) and monitoring. Development of
new tools and techniques in remote sensing and availability of advanced high-resolution
satellite data have brought a revolution in the inventory of world’s mountain glaciers. The
history of global glacier inventory goes back to 1957–1958, the International Geophysical years,
when the inventory of global glaciers was first proposed in the form of national lists of glaciers
[35]. This list later known to be WGI under the leadership of Muller and the status was assessed
by World Glacier Monitoring Service (WGMS1989), and the digital version of the data was
made available by National Snow and Ice Data Center (NSIDC), Boulder, Colorado, USA [35].
A large-scale inventory of global glaciers has been initiated with Global Ice Measurements
from Space (GLIMS) in 1995. The GLIMS project was designed to monitor the world’s glaciers
primarily using data from optical satellite instruments, such as ASTER. GLIMS provide
coverage of 58% of global glacierized area with extensive set of attributes [35]. The most recent
global inventory is the Randolph Glacier Inventory (RGI), which provides complete collection
of digital outlines of global glacierized area excluding ice sheets. The RGI was developed to
meet the needs of the fifth assessment of the IPCC on climate change for estimates of past and
future mass balance [35]. Satellite images from Landsat 5 TM, Landsat 7 ETM+, ASTER and
SPOT 5 HRS have been used to derive the outline of glaciers for RGI.

There are numerous methods to map and delineate mountain glaciers. One of the best methods
is the manual delineation of the glaciers through visual interpretation of satellite images
acquired during end of ablation season with no recent snowfall. On a false color composite
(FCC) image with enhanced contrast, the visual inspection and hence delineation of glacier
and other facies become easier. However, to map and monitor glaciers on regional scale, the
manual delineation is very cumbersome and time taking and hence not very useful. From the
various methods of glacier delineation and mapping on regional scale, the band rationing is
simple, robust, accurate, time effective and most suitable [36–39]. The band ratio method is
based on the simple rationing of two bands, that is, TM3 and TM5 (RED/SWIR) or TM4 and
TM5 (NIR/SWIR) or combination of two bands (NDSI) with application of a threshold [39]
with an additional threshold of TM1. The band ratios strongly enhance a specific surface type
as well as reduce the bias in illumination from the terrain at the same time. The band ratios
method is based on the contrasting response of glacier in the visible and SWIR regions. When
the high reflectance of glacier in the VNIR region is divided by the low reflectance in the SWIR
region, a high ratio value results [40]. By applying a threshold value, the glacier can be
separated from the surrounding rock, soil and vegetation by setting the value above the
threshold to black and all others to white (Figure 6). The ratio of TM3/TM5 (RED/SWIR) has
the advantage over TM4/TM5 in the sense that it works better in shadows and with thin debris-
covered glacier [33, 36, 38]. However, when TM4/TM5 is used, the threshold of TM1 is not
required for the fact that TM4 is not much sensitive to atmospheric scattering as TM3 and also
rocks in shadows are not mapped [39]. However, Paul and Hendriks [40] have found the NDSI
method to be better than the TM3/TM5 method. Andreassen and others [41] have demon‐
strated the robustness and simplicity of the band ratio method for mapping of glaciers.
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Figure 6. Glacier delineation with NDSI showing glaciated (white) and non-glaciated (black) regions, Chandra-Bhaga
basin, Himachal Himalaya, India, obtained from IRS LISS III dated September 11, 2000, data.

4.4. Glacier facies mapping with SAR

SAR data can be efficiently used to distinguish the different zones of glacier such as dry snow
zone, percolation zone, wet snow zone, firn zone, ablation zone and debris cover. However,
the interpretation of SAR data is complicated and difficult than the optical data. The wave‐
length, polarization, incidence angle, dielectric properties, roughness and grain size are the
important glacier parameters that crucially affect the strength of SAR backscatter signals.
Based on the contrasting backscatter, the different glacier zones can be mapped with SAR data.
Rau and others [42] have identified various radar glacier zones by their backscattering
characteristics. These zone are dry snow radar zone, frozen percolation radar zone, wet snow
radar zone and bare ice radar zone. Partington [43] has proposed a methodology for facies
mapping using multitemporal SAR data. This method involves generation of composite
images using winter, early summer and late summer radar backscatter images. Composites
are generated by assigning blue to the winter image, green to the late summer image and red
to the early summer image. This color combination SAR image is useful to identify different
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glacier zones due to tonal variations (Figure 7). The color composite will be overlaid on a digital
elevation model (DEM). This combination helps to obtain the elevation value as well as
backscatter coefficient value for any particular pixel to carry out quantitative analysis.
Generally, the winter image defines maximum freezing conditions and late summer image
defines maximum melt conditions. This methodology is based on the principle that different
zones have typical backscatter signatures related to the snow pack characteristics, influenced
by the balance of accumulation and melt at different altitudes.

Figure 7. FCC from multitemporal ENVISAT SAR data showing Hamtah glacier region. Three images from winter,
early summer and summer have been taken to make the FCC image. In the image, the cyan color indicates fresh snow,
blue indicates firn and violet indicates debris cover.

4.5. Equilibrium line altitude extraction

The equilibrium line elevation can be extracted by overlaying an optical image on a DEM. The
snowline altitude at the end of ablation season is supposed to be coinciding with the equili‐
brium line altitude. The cloud-free VNIR optical images with no recent snowfall of ablation
season are selected for this purpose. To demarcate ELA on glacier and to differentiate snow
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from firn and ice, reflectance images are classified (supervised classification by giving
maximum number of training classes for better accuracy). The classified images are then
draped over a DEM (SRTM has been proved to be good for the purpose) to get elevation points.
Before extracting the elevation points, the DEM and the optical images are brought to a
common platform in terms of resolution and datum, and hence they are required to be
reprojected, resampled and co-registered properly with each other. The classified images are
draped on the DEM, and elevation points are determined along the demarcated line for the
glacier. The average of the elevations along the line is considered as the ELA of the glacier
(Figure 8).

Figure 8. Method of ELA extraction on image: (a) reflectance image from IRS LISS III for Samudra Tapu glacier; (b) the
demarcated ELA on the classified LISS III image dated September 11, 2000, draped on SRTM DEM.

4.6. Glacier topography and morphometry

If climate is the driving force behind the glacier change, the glacier topographical parameters
are the controlling factors that modulate the changes. Glacial topography is an important factor
that explains the variability in the recessional rates of glaciers of the same basin [44]. The
topographical parameters of a glacier can be listed as maximum, minimum, median and mean
elevation of the glacier, the altitude range of the glacier, slope and orientation of the glacier.
Derivation of topographical parameters of the glacier requires DEMs. Properly co-registered
visible optical image overlaid on a DEM can be used to extract the maximum elevation of the
glacier, the elevation of snout and equilibrium line altitude. SRTM and ASTER GDEM are the
two freely available global DEM which have been extensively used to derive the topographical
parameters of the glaciers along with the used of images from Landsat series, ASTER, SPOT
and IRS series. The average slope and mean orientation of the glacier can be extracted from
the SRTM or ASTER GDEM in ArcGIS (Figure 9). The compactness ratio, the relative upslope
area and the slope of the upslope area are the glacier indices which provide the information
about the contribution of the avalanching from the surrounding to the glacier and affect the
mass balance of the glacier. The method of calculation of these glacier indices has been
discussed in Refs [45, 46]. The compactness ratio is the measure of glacier morphometry and
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can be derived from the formula (4πarea)/(perimeter)2 following Refs [45, 46]. The relative
upslope area is defined as the ratio of the upslope area to glacier surface area and represents
the contribution of the surrounding upslope area in the glacier mass balance. The upslope area
and the mean slope of the upslope area of glaciers are calculated from the optical data in the
visible region along with a DEM in the ArcGIS environment.
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4.7. Glacier thickness and mass balance

Glacier mass balance is the most important glacier parameter to be measured and is of interest
to glaciologist, climatologist and hydrologists. In a hydrological year, the net gain or loss of
the glacier mass is known as glacier mass balance. The glacier mass balance is direct, un-
delayed and un-filtered response of climate. Mass balance of glaciers reflects the precipitation
and temperature conditions surrounding the glacier and hence is studied to infer the condition
and/or variability of climate. Due to the remote location, vastness and irrepressible nature of
the Himalayan glaciers, remote sensing-based techniques offer effective alternatives to field-
based measurement of mass balance of glaciers. The direct/glaciological surveys of glaciers for
mass balance is not feasible for a large number of glaciers as many glaciers does not fulfill the
criteria of benchmark glaciers in terms of size, length, geometry, altitudinal range, accessibility
and safety. Geodetic mass balance measurement derived from elevation comparisons method
complements glaciological method for large number of glaciers. In this method, the change in
surface elevation of glaciers is derived by differencing two DEMs of different times. The brief

Environmental Applications of Remote Sensing146



can be derived from the formula (4πarea)/(perimeter)2 following Refs [45, 46]. The relative
upslope area is defined as the ratio of the upslope area to glacier surface area and represents
the contribution of the surrounding upslope area in the glacier mass balance. The upslope area
and the mean slope of the upslope area of glaciers are calculated from the optical data in the
visible region along with a DEM in the ArcGIS environment.

IRS series. The average slope and mean orientation of the glacier can be extracted from the 

SRTM or ASTER GDEM in ArcGIS (Figure 9). The compactness ratio, the relative upslope area 

and the slope of the upslope area are the glacier indices which provide the information about the 

contribution of the avalanching from the surrounding to the glacier and affect the mass balance 

of the glacier. The method of calculation of these glacier indices has been discussed in Refs [45, 

46]. The compactness ratio is the measure of glacier morphometry and can be derived from the 

formula (4πarea)/(perimeter)2 following Refs [45, 46]. The relative upslope area is defined as the 

ratio of the upslope area to glacier surface area and represents the contribution of the surrounding 

upslope area in the glacier mass balance. The upslope area and the mean slope of the upslope 

area of glaciers are calculated from the optical data in the visible region along with a DEM in the 

ArcGIS environment.  

 

 
 
Figure 9: Slope and aspect map derived from SRTM DEM for Chandra-Bhaga basin, Indian 
Himalaya. 
 
 
4.7 Glacier thickness and mass balance  

Glacier mass balance is the most important glacier parameter to be measured and is of interest to 

glaciologist, climatologist and hydrologists. In a hydrological year, the net gain or loss of the 

glacier mass is known as glacier mass balance. The glacier mass balance is direct, un-delayed 

Figure 9. Slope and aspect map derived from SRTM DEM for Chandra-Bhaga basin, Indian Himalaya.

4.7. Glacier thickness and mass balance

Glacier mass balance is the most important glacier parameter to be measured and is of interest
to glaciologist, climatologist and hydrologists. In a hydrological year, the net gain or loss of
the glacier mass is known as glacier mass balance. The glacier mass balance is direct, un-
delayed and un-filtered response of climate. Mass balance of glaciers reflects the precipitation
and temperature conditions surrounding the glacier and hence is studied to infer the condition
and/or variability of climate. Due to the remote location, vastness and irrepressible nature of
the Himalayan glaciers, remote sensing-based techniques offer effective alternatives to field-
based measurement of mass balance of glaciers. The direct/glaciological surveys of glaciers for
mass balance is not feasible for a large number of glaciers as many glaciers does not fulfill the
criteria of benchmark glaciers in terms of size, length, geometry, altitudinal range, accessibility
and safety. Geodetic mass balance measurement derived from elevation comparisons method
complements glaciological method for large number of glaciers. In this method, the change in
surface elevation of glaciers is derived by differencing two DEMs of different times. The brief
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methodology of deriving glacier mass change from DEMs has been illustrated by methodo‐
logical chart in Figure 10.
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Figure 10. Flow chart showing the methodology of estimating geodetic mass balance of glaciers.

The change in elevation is converted into volume change by multiplying the surface thickness
change with the area of the glacier. Now using the density of glacier, the change in volume is
converted into mass change.
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where dvz is volume, dhz is the elevation change curve, dm is the mass change, A is area and ρ
is glacier density. The estimation of mass balance through elevation comparisons method has
become frequent with the increasing number of available elevation measurements from
satellites data such as ICESat, TanDEM-X, SPOT5 and SRTM and aircrafts [47, 48]. The geodetic
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mass balance has been found to be more accurate for longer periods [49] and has also been
used to correct the biases in the in-situ direct measurement [50, 51]. Besides, due to the ability
of large spatial coverage of satellite data, the method is able to determine mass balance on
regional scale [39, 48]. However, the most vital assumption in converting mass change from
elevation change is the density of snow/ice lost or gained [52, 53]. In geodetic method, glacier
surface elevation is converted into volume change and with the knowledge of density of
material lost or gained; the volume is converted into mass change [54]. It is assumed that the
density profile remains unchanged and only ice is lost or gained from glacier surface [14, 51].
The assumption of glacier density is taken from Sorge’s law, which states that “the density of
snow at a given depth below the surface does not change with time” given rates of melting
near the surface and refreezing at depth are constant and equal. It follows from Sorge’s law
that a change of glacier thickness can be converted to an equivalent change of mass by
multiplying by the density of glacier ice [47]. Figure 11 shows the elevation change map of a
glacier in Chandra basin derived by subtracting SRTM of the year 2000 from TanDEM-X DEM
of the year 2011.

Figure 11. Elevation change map of a glacier of Chandra basin, Himachal Himalaya, India, derived by subtracting
SRTM (2000) from TanDEM-X DEM (2011).

4.8. AAR method of mass balance estimation

The mass balance of mountain glaciers at regional scale can be inferred from accumulation–
area ratio (AAR) and ELA derived from satellite data. The method is discussed elaborately by
Kulkarni [55], who has used this to derive the mass balance of Himalayan glaciers using AAR
method on basin scale. The method is based on the relation between AAR/ELA and mass
balance of glacier. The AAR is the ratio between the accumulation area and the area of an entire
glacier [56]. The AAR of a glacier is characteristic of glacier mass balance and also indicates
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the state of health of glacier. AAR of a glacier is closely linked with its mass balance. The
variation in the AAR of a glacier from year to year can be used as an indicator of variation in
net mass balance [14]. Since it is practically not feasible to monitor large number of glaciers on
field, hence even the mass balance data of benchmark glaciers are not available for long time
series. AAR method has been used as an alternative to estimate the mass balance of glaciers at
many regions [55]. This method involves establishing a relationship between AAR and specific
mass balance from long-term field observation. A regression equation is constructed between
AAR and mass balance with AAR on the x-axis and specific mass balance on the y-axis. The
equation obtained is then used to derive mass balance by using AAR values estimated from
remote sensing. The mass balance of glaciers can be estimated through this method by using
remote sensing data for the periods during which field data are not available. AAR can easily
be determined from satellite images. Landsat data, IRS data, ASTER data at medium-resolution
scale and SPOT, Quickbird and IKONOS data at higher scale can be utilized to obtain AAR at
high precision. To determine the AAR, images at the end of ablation season without cloud
cover and recent snowfall are required. The accumulation area can be easily determined by
differentiating accumulation zone from ablation zone either manually or by various classifi‐
cation methods. The division of accumulation area from the total glacier area will give the
AAR. In Figure 12, an equation has been developed from the linear relation between the specific
mass balance and the AAR of Chhota Shigri glacier from the field. From the relation, the
following linear equation has been obtained:

= -0.038 2.455y x (7)

In this equation, the x is AAR of the glacier and y is specific mass balance. If we derive AAR
from remote sensing data, from the above equation we can compute the specific mass balance
of the glacier.

Figure 12: Example of relationship between specific mass balance and AAR, established from 
field data of Chhota Shigri glacier (data from Ramanathan 2011). 
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Figure 12. Example of relationship between specific mass balance and AAR, established from field data of Chhota Shi‐
gri glacier (data from Ramanathan 2011).
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4.9. Glacier velocity

4.9.1. Glacier velocity with feature tracking

Study of glacier velocity provides an understanding of various ongoing dynamical processes
of the glacier such as ice flow and ice instabilities, ice flux, mass transportation, development
of surge and also the formation and growth of glacier lakes and associated hazards [37, 39].
As the global temperature is reported and predicted to be rising, the glaciers on average are
experiencing negative mass balance. In response to the negative mass balance, glacier surface
velocity is found to be slowing down in mountainous regions [57, 58]. The glacier surface
velocity and movement can be tracked by both optical and SAR satellite data on regional scale.
With sequential satellite imageries, the glacier velocity can be determined by tracking glacier
surface features such as crevasses and big boulders. This method of calculating glacier velocity
with repeat optical and SAR satellite data is known as feature tracking method in general,
image matching in optical domain and offset tracking in microwave domain [39]. The temporal
baseline in the optical domain can range from weeks to years whereas in the microwave
domain it is within weeks. The key point of image matching is the precise co-registration and
cross-correlation of the two repeat pass images. Also, the temporal baseline of the repeat
images should be such that the displacement of the glacier should not be larger than the
accuracy of the method and surface changes due to melting, snowfall and deformation should
be very small so that the intensity can be matched properly [39].

A correlation matching is commonly used to obtain both azimuth and range-direction offsets
based on intensity pattern patches of two repeat-pass SAR image acquisitions. Through
oversampling of the correlation surface, the matching peak can be determined to a small
fraction of a pixel. The range offset and the azimuth offset are detected from cross-correlation
matching. The successful estimation of the local image offsets depends on the presence of
nearly identical features in the two SAR images at the scale of the employed patches. If
coherence is retained, the speckle pattern of the two images is correlated and tracking with
small image patches can be performed to remarkable accuracy.

The most popular and widely used optical repeat pass satellite images to determine glacier
velocity are from Landsat TM, Landsat ETM+ pan, ASTER and SPOT [59, 60]. In the microwave
realm, the Envisat ASAR, ALOS PALSAR and TerraSAR-X have been used for offset tracking
to calculate glacier surface flow.

In the feature matching technique, the repeat images are co-registered by cross-correlation
applied on stable nonmoving areas. Glacier features such as crevasses or debris and big rock
boulders which are detectable in images are generally preferred for tracking [61]. The glacier
velocity can be determined from the temporal separation and the surface displacement. In
recent years with the advent sophisticated computer software and tools as well as high
precision remote sensing data, many glaciologists have determined the glacier flow velocity
successfully with high accuracy. Luckman and others, Quiney and others and Rankl and others
[61–63] have shown that the technique of feature/offset tracking is suitable for Himalayan
glaciers due to the presence of respective features.

Environmental Applications of Remote Sensing150



4.9. Glacier velocity

4.9.1. Glacier velocity with feature tracking

Study of glacier velocity provides an understanding of various ongoing dynamical processes
of the glacier such as ice flow and ice instabilities, ice flux, mass transportation, development
of surge and also the formation and growth of glacier lakes and associated hazards [37, 39].
As the global temperature is reported and predicted to be rising, the glaciers on average are
experiencing negative mass balance. In response to the negative mass balance, glacier surface
velocity is found to be slowing down in mountainous regions [57, 58]. The glacier surface
velocity and movement can be tracked by both optical and SAR satellite data on regional scale.
With sequential satellite imageries, the glacier velocity can be determined by tracking glacier
surface features such as crevasses and big boulders. This method of calculating glacier velocity
with repeat optical and SAR satellite data is known as feature tracking method in general,
image matching in optical domain and offset tracking in microwave domain [39]. The temporal
baseline in the optical domain can range from weeks to years whereas in the microwave
domain it is within weeks. The key point of image matching is the precise co-registration and
cross-correlation of the two repeat pass images. Also, the temporal baseline of the repeat
images should be such that the displacement of the glacier should not be larger than the
accuracy of the method and surface changes due to melting, snowfall and deformation should
be very small so that the intensity can be matched properly [39].

A correlation matching is commonly used to obtain both azimuth and range-direction offsets
based on intensity pattern patches of two repeat-pass SAR image acquisitions. Through
oversampling of the correlation surface, the matching peak can be determined to a small
fraction of a pixel. The range offset and the azimuth offset are detected from cross-correlation
matching. The successful estimation of the local image offsets depends on the presence of
nearly identical features in the two SAR images at the scale of the employed patches. If
coherence is retained, the speckle pattern of the two images is correlated and tracking with
small image patches can be performed to remarkable accuracy.

The most popular and widely used optical repeat pass satellite images to determine glacier
velocity are from Landsat TM, Landsat ETM+ pan, ASTER and SPOT [59, 60]. In the microwave
realm, the Envisat ASAR, ALOS PALSAR and TerraSAR-X have been used for offset tracking
to calculate glacier surface flow.

In the feature matching technique, the repeat images are co-registered by cross-correlation
applied on stable nonmoving areas. Glacier features such as crevasses or debris and big rock
boulders which are detectable in images are generally preferred for tracking [61]. The glacier
velocity can be determined from the temporal separation and the surface displacement. In
recent years with the advent sophisticated computer software and tools as well as high
precision remote sensing data, many glaciologists have determined the glacier flow velocity
successfully with high accuracy. Luckman and others, Quiney and others and Rankl and others
[61–63] have shown that the technique of feature/offset tracking is suitable for Himalayan
glaciers due to the presence of respective features.

Environmental Applications of Remote Sensing150

In the example shown in Figure 13, SAR intensity tracking technique is used for glacier 2-D
velocity estimation. The TerraSAR-X high-resolution spotlight mode images acquired on
September 27 and October 8, 2012, are used. These images are acquired over the Gangotri
glacier, Uttarakhand, India. The estimated surface velocity is varying from 0.1 to 1.1 cm/day
over glaciated area (along the medial axis from the accumulation zone to the snout).

Figure 13. Gangotri glacier velocity estimated using offset tracking method employing TerraSAR-X images. The veloci‐
ty values are in cm/day (figure and results provided by M. Surendar, CSRE, IIT Powai).

4.9.2. Glacier velocity using SAR interferometry

Goldstein and others [64] for the first time have determined the glacier surface velocity from
InSAR data. In InSAR technique, the phase information of radar acquisition from two receiving
antennas, separated in either time (repeat track) or space (single track), is used. Two SAR
images will have a different distance from target when they are taken from an orbit separated
by temporally/spatially from each other. An interferogram can be generated by subtracting
the phase of the two images, the phases of which contain range difference. When there is no
motion of the target, the phase is influenced by topographical and geometrical effects. If the
geometrical effect is removed, the topographical information can be extracted from the phases
in interferogram. Now, if the target is moving, then having removed the geometrical effect and
the topographical effect, the motion of the target can be measured from the interferogram. ERS
tandem data and TerraSAR-X data have been used widely to find the surface velocity of
mountain glaciers as well as ice sheets by InSAR method.

5. Comparison between optical, thermal and microwave for Cryospheric
studies

The optical remote sensing is based on the detection of reflected solar radiation from surface
of the earth in VNIR regions of electromagnetic spectrum which range from 0.4 to 2.5 μm. The
basis of TIR remote is the emitted radiation in the spectral range between 8 and 14 μm. Glacier
surface has unique spectral properties in the visible-infrared and thermal region, which makes
it possible to identify and monitor by optical remote sensing sensors. Optical data at high and
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medium spatial resolutions from SPOT5, IKONOS, Quickbird, Landsat TM, ETM+, IRC-1C
and ASTER are highly useful for regular monitoring and mapping of glacier. The optical
remote sensing is exceedingly of use for temporal change analysis of spatial extent of snow
and glacier area. Aided with a DEM, information about the glacier geometry and topography
can be obtained from optical data. The thermal bands from satellite data have the potential to
distinguish debris cover on the glacier. However, one of the main drawbacks of working in
optical remote sensing is their limitation to cloud-free condition and daylight, which are
sometimes not possible in mountain region where there are always possibilities of forming
cloud due to orographical effects. The active microwave system has the capability of acquiring
data at all weather conditions, during any time of the day. The microwave remote sensing is
more effectively used in extracting snow properties such as snow depth, snow wetness and
SWE and glacier facies mapping. The emerging technologies of InSAR and DInSAR have great
potential in deriving glacier volume change, mass balance, surface elevation change and
glacier velocity. Thus, for studying the evolution and dynamics of mountain glaciers, the
complemented usage of optical, thermal and microwave remote sensing is needed.

6. Glacier hazards

The strong interrelation between climatic changes, glacier recession and increasing number of
glacier-related hazards is evident in many mountainous parts of the world including the Alps
and the Himalayas [65, 66]. Fundamental changes are taking place rapidly in the high mountain
regions due to continued global warming [65]. In consequence to rising temperature and
climate change, it is predicted that the existing glaciated may soon transform into new
landscape with vegetation sparse-bare lands, loose debris and abundant lakes [65]. Such newly
transformed landscape definitely would not be in equilibrium with the ecosystem and would
thus cause many hazards in order to balance with the system. The most dangerous glacier-
related hazards are formation and growth glacier lakes, glacier lake outburst floods (GLOFs),
debris and mud flow triggered by flood, snow/ice/rock avalanches and development of
crevasses which pose threat to both life and livelihood and brings devastation to mankind and
infrastructure including hydropower [67, 68]. The glacier-related hazards has the potential to
cause huge casualties in one single event, the damage amounting to hundreds of million [69].
Thus, the risk of loss of life and the devastation of infrastructure are the main motive for
studying glacier-related hazards. Monitoring, assessment and management of glacier-related
hazards are highly required for the timely prediction of catastrophes and saving of lives
downstream. However, due to remote location, complicated terrain, harsh environment and
political restrictions, it is not possible to monitor the mountain glacier-related hazards by field
observations. The launching of high-resolution satellites in recent decades, emergence of
sensor technologies and development of sophisticated tools have posed remote sensing as
effective and efficient alternatives to monitor, assess and manage the mountain glacier-related
hazards. The optical spectral region of remote sensing is most suitable for glacier hazards
assessment. The nature, characteristics, size and growth of hazards decide the selection of
remote sensing data. Fusion of multispectral data with the DEMs is the most promising method
of glacier hazards monitoring and assessment. The medium-resolution data from Landsat TM/
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ETM+/OLI/TIR, ASTER and IRS LISS III can cover regional- to global-scale hazard assessment,
whereas high-resolution data such as Quickbird and IKONOS can contribute in providing
detailed information [70]. The geometry of the potential dangerous hazardous sites can be
obtained from ASTER DEM, SRTM DEM and DEM from other sources. The geometrical
assessment of mountain terrain with the help of DEM can provide information about the
potential sites of hazards.

6.1. Glacial lake outburst floods

In response to warming of climate, the increasing number and volume of glacier lakes are
raising wide concern. Regular monitoring of supra and pro glacial lakes are the key parameter
to identify the glacier lake hazards [71–73]. Most of the glacier lakes form near the snout of the
glacier and are dammed by unstable moraines and are called moraine dammed lakes. The
enhanced melting of glaciers due to rising temperature amplifies the storage of water in the
lakes. This occasionally may lead to the breaching of the moraine dams, releasing huge amount
of lake water, which in its course gathers the surrounding debris along with it and cause
destruction in the downstream. This phenomenon of flash flood is known as GLOF and is one
of the most severe catastrophes to occur in the Alpine and Himalayan regions. Richardson and
Reynolds [66] have suggested three mechanism of glacier outburst: the rupture of an internal
water pocket, the progressive enlargement of internal drainage channels and catastrophic
glacier buoyancy. The term GLOFs is most commonly used for the glacier flash floods of
Himalaya. A large number of GLOFs have been recorded in central and eastern Himalaya [67,
74]. Compared to the central and eastern part, the western Himalayas have seen lesser number
of GLOFs. The application of modern remote sensing technology to locate and monitor the
formation and growth of potentially dangerous lakes is necessary due to their far reach. The
glacier dynamics, probability of formation and future development of lakes can be assessed
by time series of multispectral images. DEMs are found to be crucial in the assessment of
moraine dam characteristics, dam geometry, surface material and geometry. The visual
interpretation of time series data have been extensively exploited in the study if glacier
fluctuations and glacier lake outburst [75]. Data from Landsat, ASTER, IRS, SPOT, Quickbird
and IKONOS can be used for mapping and classification of glacial lakes. The topographical
settings of GLOFs can be obtained from ASTER DEM, freely available ASTER GDEM and
SRTM DEM [16] with high accuracy level. Huggel and others [75] have proposed an automatic
methodology for mapping of Himalayan glacier lakes employing Landsat TM data. The
method is known as normalized difference water index (NDWI) and uses TM1 and TM4 for
distinguishing the lakes. NDWI is given as

-
=

+
TM bands 4 TM bands 1NDWI
TM bands 4 TM bands 1 (8)

In order to calculate the volumetric changes of glaciers, especially the debris-covered type [76],
stereo-capable data are useful. The Advanced Land Observing Satellite (ALOS) PRISM is a
relatively new remote sensing satellite program (launched in 2006) that has stereo capability
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able to generate digital terrain models (DTMs) and 3D maps and that also offers high spatial
resolution stereo-data (2.5 m). Several studies have investigated volumetric changes in glaciers
in the Himalayas using ALOS data [77]. The estimation of area of potentially dangerous supra
and proglacier lake area from remote sensing data can be used to find the glacier volume. The
lake volume (V: ×106 m3) and lake area (A: km2) have the following relationship [78]:

= ´ 1.530743.24V A (9)

Huggel and others [75] have also represented similar relationships from glacial lakes located
in the Swiss Alps, including ice-dammed lakes. The relationship between the maximum depth
of lakes (Dmax: m) and lake areas can then be calculated as follows [78]:

= ´ 0.489
max 95.665D A (10)

The depth, area and volume of glacier lakes, estimated from remote sensing technology, greatly
felicitate in the assessment of GLOFs and maintain the early warning system. Figure 14
demonstrates the continuous growing of a moraine dammed lake located at the snout of
Samudra Tapu glacier in Himachal Himalaya, India.
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Figure 14: Growth of a moraine dammed lake in western Himalaya as shown using Landsat 

MSS, IRS LISS III and Landsat OLI/TIRS data of ablation season.  
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Figure 14. Growth of a moraine dammed lake in western Himalaya as shown using Landsat MSS, IRS LISS III and
Landsat OLI/TIRS data of ablation season.

6.2. Snow, Ice and rock avalanches

The hazards associated with debris cover and unstable rock in the glacial environment are
crucial to study as they are influenced by glacier down-wasting, glacier retreat and permafrost
degradation [37] and are connected with ice avalanches and GLOFs [79]. The increasing
number of ice avalanches is basically due to the changes in climatic and socioeconomic settings
in the mountain region [12]. Typically an ice avalanche occurs from the surrounding steep
cliffs in the glacier environment with the breaking of large mass from these cliffs and peaks.
The hazards potential of ice avalanches are confined to the high mountain areas only and affect
the tourists, trekkers/climbers and glaciologists. Figure 15 illustrates an avalanche prone steep
slope present at the backwall of Hamtah glacier, western Himalaya. The monitoring of
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able to generate digital terrain models (DTMs) and 3D maps and that also offers high spatial
resolution stereo-data (2.5 m). Several studies have investigated volumetric changes in glaciers
in the Himalayas using ALOS data [77]. The estimation of area of potentially dangerous supra
and proglacier lake area from remote sensing data can be used to find the glacier volume. The
lake volume (V: ×106 m3) and lake area (A: km2) have the following relationship [78]:

= ´ 1.530743.24V A (9)

Huggel and others [75] have also represented similar relationships from glacial lakes located
in the Swiss Alps, including ice-dammed lakes. The relationship between the maximum depth
of lakes (Dmax: m) and lake areas can then be calculated as follows [78]:

= ´ 0.489
max 95.665D A (10)

The depth, area and volume of glacier lakes, estimated from remote sensing technology, greatly
felicitate in the assessment of GLOFs and maintain the early warning system. Figure 14
demonstrates the continuous growing of a moraine dammed lake located at the snout of
Samudra Tapu glacier in Himachal Himalaya, India.
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6.2. Snow, Ice and rock avalanches

The hazards associated with debris cover and unstable rock in the glacial environment are
crucial to study as they are influenced by glacier down-wasting, glacier retreat and permafrost
degradation [37] and are connected with ice avalanches and GLOFs [79]. The increasing
number of ice avalanches is basically due to the changes in climatic and socioeconomic settings
in the mountain region [12]. Typically an ice avalanche occurs from the surrounding steep
cliffs in the glacier environment with the breaking of large mass from these cliffs and peaks.
The hazards potential of ice avalanches are confined to the high mountain areas only and affect
the tourists, trekkers/climbers and glaciologists. Figure 15 illustrates an avalanche prone steep
slope present at the backwall of Hamtah glacier, western Himalaya. The monitoring of
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occurrence of ice avalanches and the settings of early warning systems for mitigation require
high-quality data and tools for systematic region wide coverage. The combination of GIS tool
with the remote sensing data has been found to be useful for hazard mapping in particular to
debris flow and snow/ice/rock avalanches. Clague and Evans [80] have demonstrated the use
of DEM for comparison of volume of ice avalanched material before and after an event.
Salzmann and others [12] have shown that the glacier inventory data can be combined with
the slope and aspect maps to locate the potential avalanches zones. The multitemporal data
combined with DEMs can be used to identify and monitor the rock avalanches, debris flow
and areas to be affected by the debris movement.

Figure 15. Landsat OLI/TIRS image dated September 28, 2014, overlaid on ASTER GDEM to show the steep back wall
and surroundings of Hamtah glacier, which are susceptible to rock and ice avalanches.

6.3. Glacier surges

The glacier surges are abnormally rapid movement of large glacier parts with increased
velocity due to the temporal instability of the glacier. The velocity of the glacier increases by
an order of magnitude or more during the surging and the glaciers advance drastically. The
glacier surges itself are not a hazard, but they induce and trigger other hazards such as ice/
rock avalanches, outburst floods, blocking of river, instability of moraines and hence associated
hazards. The phenomena of glacier surges are best monitored by high-frequency remote
sensing data [81]. A number of glaciers in the Karakoram have been found to be showing the
surging phenomena. Bhambri and others [81] have studied the surge type behavior of glaciers
in Karakoram by using CORONA, Landsat TM/ETM+ data and SRTM DEM.

7. Conclusion

Glaciers are the most visible indicators of climate change, and the study of glacier parameters
specifies the prevailing climate. The numbers of glaciological parameters which can be
assessed and monitored by remote sensing technology are very long. The optical and radar
data are equally valuable and useful for snow cover mapping, glacier area monitoring, glacier
feature study, volumetric change, mass balance and velocity measurements. Optical remote
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sensing data is more suitable for snow cover mapping, glacier area and snout monitoring.
However, glacier facies mapping, mass balance and glacier velocity can be accurately studied
from radar data. DEMs are the essential requirement for studying glacier topographical and
geometrical parameters. Although remote sensing methods provide an efficient tool for glacier
study, the field method is the most accurate and recommended one, and remote sensing should
be applied in conjunction with field work for validation.
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Abstract

Optical remote-sensing data are a powerful source of information for monitoring
the coastal environment. Due to the high complexity of coastal environments,
where different natural and anthropogenic phenomenon interact, the selection of
the most appropriate sensor(s) is related to the applications required, and the differ‐
ent types of resolutions available (spatial, spectral, radiometric, and temporal) need
to be considered. The development of specific techniques and tools based on the
processing of optical satellite images makes possible the production of information
useful for coastal environment management, without any destructive impacts. This
chapter will highlight different subjects related to coastal environments: shoreline
change detection, ocean color, water quality, river plumes, coral reef, alga bloom,
bathymetry, wetland mapping, and coastal hazards/vulnerability. The main objec‐
tive of this chapter is not an exhaustive description of the image processing meth‐
ods/algorithms employed in coastal environmental studies, but focus in the range of
applications available. Several limitations were identified. The major challenge still
is to have remote-sensing techniques adopted as a routine tool in assessment of
change in the coastal zone. Continuing research is required into the techniques em‐
ployed for assessing change in the coastal environment.

Keywords: Shoreline Change Detection, Ocean Color, Optical Water Quality, River
Plumes, Coral Reef, Alga Bloom, Bathymetry, Wetland Mapping, Hazards, Vulnera‐
bility

1. Introduction

One of the most useful reviews of remote sensing of the coastal zone was the work published
by Cracknell [1], where a review of the current state of the use of remote sensing in estuaries
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and coastal waters at the end of the 20th century was performed. He identified that period
(end of the 20th century) as a stage of potential great changes and advances in the use of remote
sensing. Since then, the advances in the use of remote sensing for coastal areas have been huge.
These advances are related to the availability of new sensors, more adequate for the study of
this area, and also the improvements in the classification algorithms. Several useful reviews
related to the value of remote sensing in the coastal zone environment have been published
since then [2, 3]. Malthus and Mumby [2] update the information given by Cracknell [1], and
highlight a number of priority areas. Advances were identified in the benefit of high spatial
and spectral resolution data and complementary remote-sensing techniques. Further benefits
are identified in rapid and more frequent data acquisition, faster and more automated
processing and a greater sampling intensity over conventional field-based techniques. All
these aspects were fully confirmed. Issues associated with adoption of remotely sensed data
for coastal management were also discussed. This issue still is a topic of extreme importance.
Although remotely sensed data are currently used for decision-making, their use is not yet an
integrated tool for coastal management. Several research priorities were identified in the work
of Malthus and Mumby [2]. Areas of value that continue to remain poorly investigated include
the improvements to be gained from synergistic use of multiwavelength remote-sensing
approaches, change detection techniques, and multitemporal comparisons and knowledge-
based approaches to improve classification [2]. The lack of accuracy remains a challenge task.
Therefore, the major challenge is to implement the remote-sensing techniques as a routine tool
in assessment of coastal zone changes. Unfortunately, this challenge is still unfulfilled, as will
be described in this chapter. More recently, Klemas [3] published an overview of remote
sensing of emergent and submerged wetlands. Kelmas [3] discusses the impact of climate
change on coastal wetland (sea-level rise, increase of temperature, and changes in precipita‐
tion), and the impacts due to anthropogenic activities. He has enumerated the recent advances
in sensor design (high-resolution multispectral and hyperspectral imagers, light detection and
ranging (LiDAR), and radar systems), and image processing techniques that making remote-
sensing systems more practical and attractive for monitoring coastal ecosystems. The lack of
accurate near-shore bathymetric data was identified as a key limitation in the application of
geospatial data to coastal environments. He concludes that when remote-sensing systems are
used wisely, including complementary combinations of different satellite and airborne
sensors, they can provide data that enhance the research and management of coastal ecosys‐
tems. According to Klemas [3], the future research priorities should include better under‐
standing and description of the radiative properties of coastal environments. Additional
knowledge is required about the spatial and temporal variations of water column optical
properties and its constituents. Best approaches for processing hyperspectral data need to be
further investigated [3].

The main objectives of this chapter are (i) to provide an overview of the optical satellite remote
sensing of the coastal zone environment and (ii) to highlight a number of application fields
related to coastal areas where optical remote sensing plays an important role.

Environmental Applications of Remote Sensing166
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2. Optical remote sensing for coastal areas: Principles

Optical imaging sensors are a crucial technology in the field of coastal remote sensing. The
main function of electro-optical imaging sensors is to collect incident electromagnetic (EM)
radiation and convert it to a stored representation useful for remote-sensing analysis. These
sensors operate in the optical region of the EM spectrum defined as radiation with wavelengths
between 400 and 15000 nm. This range includes the visible (400–700 nm), the near infrared
(NIR, 700–1100 nm), the short infrared (SWIR, 1100–2500 nm), the midwave infrared (MWIR,
2500–7500 nm) and the long-wave infrared (LWIR, 7500–15000 nm) spectral regions [4]. Optical
remote sensing involves acquisition and analysis of optical data-EM radiation captured by the
sensing modality after reflecting off an area of interest on ground/water. Different materials/
water constituents reflect and absorb differently at different wavelengths. Thus, the targets/
elements can be differentiated by their spectral reflectance signatures in the remotely sensed
images. The optically active water constituents, including phytoplankton (chlorophyll a –
Chla), detritus and minerals, Colored Dissolved Organic Matter (CDOM – also called gelbstoff
or yellow substances), and water itself, all have an impact on the optical signature of water in
the visible wavelengths. In the visible spectral range of solar radiation, light can penetrate in
water bodies and its color can change due to scattering and absorption processes in the water
body or at its bottom. This makes it possible to derive from optical remote-sensing data
information about the characteristics of the water body and the type/concentration of its
components. The water curve (spectral signature) is characterized by a high absorption at NIR
wavelengths range and beyond. Because of this absorption property, water bodies as well as
features containing water can easily be detected, located, and delineated with remote-sensing
data. Turbid water has a higher reflectance in the visible region than clear water. This is also
true for waters containing high Chla concentrations. Coastal waters are optically complex and
the signal that a remote detector collects is a mixed signal including various water optically
active constituents from different sources. Complex interaction among phytoplankton (Chla),
Total Suspended Mater (TSM), and CDOM results in poor predictive ability in retrieval of
various water quality proprieties in coastal waters.

Optical remote-sensing systems are classified into different types, depending on the number
of spectral bands used in the imaging process: 1) Panchromatic imaging system: the sensor is
a single-channel detector sensitive to radiation within a broad wavelength range. If the
wavelength range coincides with the visible range, then the resulting image resembles a “black-
and-white” image. 2) Multispectral imaging system: the sensor is a multichannel detector with
a few spectral bands. Each channel is sensitive to radiation within a narrow wavelength band.
The resulting image is a multilayer image which contains both the brightness and spectral
information of the targets. 3) Hyperspectral Imaging Systems: the sensor acquires images in
several (typically hundred or more) contiguous spectral bands. The precise spectral informa‐
tion contained in a hyperspectral image enables better characterization and identification of
targets. Hyperspectral images have a great potential in applications regarding coastal man‐
agement.

Optical Satellite Remote Sensing of the Coastal Zone Environment — An Overview
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3. Sensors

In coastal and inland waters, optically active constituents often vary independently requiring
improved spectral and radiometric resolutions, while physical drivers such as tides and
geographic boundaries set up different spatial and temporal scales compared to the open ocean
[5]. Due to the large number of sensors available, with distinct characteristics, it is a challenge
to choose the most appropriate satellite images for monitoring coastal environments. The
selection of the sensor is related to the applications required and the different types of
resolution (spatial, spectral, radiometric, and temporal) should be considered. Another aspect
that could interfere with the selection of the sensor is the data availability. Some images are
really expensive and some data can be freely downloaded or granted by national/international
organizations for research purposes. A list of the most relevant optical sensors used in the last
decade to the assessment of coastal zone environment is shown in Table 1. A number of sensors
have been launched since the Coastal Zone Color Scanner (CZCS) in 1978, including the Sea-
viewing Wide Field-of-viewSensor (SeaWiFS), the MODerate resolution Imaging Spectrora‐
diometer (MODIS), and the MEdium Resolution Imaging Spectrometer (MERIS). These
instruments are equipped with sensors optimized for measuring water-leaving radiance or
reflectance over most of the world’s oceans, but not over many inland or coastal waters.
Recently, significant advances have been made in studying coastal and inland waters using
global sensors such as MODIS medium resolution data and MERIS full resolution (FR) data
[6-8]. The primary mission of MERIS was the measurement of sea color in the oceans and in
coastal areas. The applicability of MERIS data to coastal studies is extensive. Unfortunately,
the MERIS instrument is no longer available (since May 2012).

Traditionally, the Landsat (TM and ETM+), the French Système Pour l’Observation de la Terre
(SPOT), and Terra/ASTER have been reliable data sources for large coastal watersheds’ land-
cover [9, 10], water turbidity quantification [11], suspended sediments’ concentration estima‐
tion [12-15], vegetation cover [16], among others. However, the 30 m, 20 m, and 15 m,
respectively, spatial resolutions in the visible and Near Infra-Red (NIR) bands were initially
designed for land-cover studies. The availability of high spatial and spectral resolution satellite
data has significantly improved the capacity for mapping coastal ecosystems. High-resolution
imagery obtained from satellites, such as IKONOS-2, Quick Bird-2, GeoEye-1, and Orbview-3
can be used for different purposes regarding coastal applications. WorldView-2 has a spatial
resolution of 2 m for 8 multispectral (MS) bands (4 standard colors: red, blue, green, NIR, and
4 new colors: red edge, coastal, yellow, NIR2, and 0.5 m spatial resolution for the panchromatic
(PAN) band (450–800 nm). The Pleiades 1A/1B satellites were designed with urgent tasking
option, and images can be requested less than six hours before they are acquired. This
functionality will prove invaluable in situations where the expedited collection of new image
data is crucial, such as coastal crisis monitoring. This sensor is comparable to the other high-
resolution sensors (e.g., GeoEye-1, Orbview-3). The Hyperion provides a high-resolution
hyperspectral imager capable of resolving 220 spectral bands with a 30 m resolution. Through
these spectral bands, complex coastal ecosystems can be imaged and accurately classified.
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Sensor Spectral
Range (nm)

No.
Bands

Spatial
Resolution

Temporal
Resolution

Swath
width

Landsat
TM

450–900
1550–2350

10410–12500

4 VNIR
2 SWIR
1 TIR

30 m
30 m
120 m

16 days 185 km

Landsat
ETM+

450–900
1550–2350

10410–12500
520–900

4 VNIR
2 SWIR
1 TIR

1 PAN

30 m
30 m
60 m
15 m

16 days 183 km

SPOT 4-5
HRVIR

500–890
1580–1750
610–680

3 VNIR
1 SWIR
1 PAN

20 m
20 m
10 m

26 days 60 km

SPOT 5
HRS

500–890
1580–1750
510–730

3 VNIR
1 SWIR
1 PAN

10 m
20 m
5 m

26 days 60 km

ASTER 520–860
1600–2430

8125–11650

3 VNIR
6 SWIR
5 TIR

15 m
30 m
90 m

16 days 60 km

MODIS 620–14385 16 VNIR
4 SWIR
16 TIR

250 m–1 km 1 day 2330 km

SeaWIFS 402–885 8 VNIR 1.1 km 1 day 2800 km

MERIS 290–1040 15 VNIR 300 m <3 days 1150 km

Hyperion EO-1 400–2500 220 30 m 16 days 8 km

IKONOS-2 455–850
760–850

4 VNIR
1 PAN

4 m
1 m

1–3 days 11 km

Quick Bird 430–918
405–1053

4 VNIR
1 PAN

2.44 m
0.61 m

<3 days 16.5 km

Orbview-3 450–900
450–900

4 VNIR
1 PAN

4m
1m

<3 days 8 km

GeoEye-1 450–920
450–800

4 VNIR
1 PAN

1.65 m
0.41 m

2.1–8.3 days 15.2 km

WorldView-2 400–1040
450–800

8 VNIR
1 PAN

1.85 m
0.46 m

1.1–2.7 days 16.4 km

Pleiades 1A/1B 430–950
480–830

4 VNIR
1 PAN

2.0 m
0.5 m

1 day 20 km

Sentinel-2 420–2370 VNIR-SWIR 10,20, 60 m <3 days 290 km

Table 1. Characteristics of some optical systems used in coastal zones applications
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Shortly, the assessment to the Sentinel-2 data will improve coastal environment monitoring
programs. The Sentinel-2 was launched in June 2015 within COPERNICUS programme of the
European Space Agency (ESA). The design of the Sentinel-2 mission aims at an operational
multispectral Earth-observation system that complements the Landsat and SPOT and im‐
proves data availability for users. More information about Sentinel-2 can be found in Drusch
et al. [17].

The development of specific techniques based on the processing of optical satellite data makes
possible the production of information really useful for coastal environments, without any
destructive impacts. Different image processing techniques have been applied to the satellite
images in order to study the coastal environment. These techniques differ depending on the
subject of study. Most of the techniques widely used in land and ocean studies are also applied
in coastal research. Some techniques have also been intentionally developed to study specific
aspects of this area. The topic of this chapter is not an exhaustive description of the image
processing methods/algorithms employed in coastal environmental studies, but focus in the
range of applications available. In this chapter will be gathered the most cited/important
applications of optical remote sensing regarding the coastal zone environment of the last
decade.

4. Applications

In this section, several application fields related to coastal environments, where optical remote
sensing plays an important role, are addressed.

4.1. Shoreline change detection

Shorelines are inherently dynamic features that mark the transition between land and sea and
are vulnerable to waves, winds, nearshore currents, and anthropogenic actions [18]. It is
estimated that there are around 350 000 km of shoreline in the world and more than 60% of
the world’s population lives within 100 km of the coastal/sea. Therefore, monitoring and
managing shorelines evolution are of considerable social, cultural, and economic importance.
Furthermore, shoreline erosion and coastal flooding were highlighted among the gravest
effects of climate change [19]. Several studies have investigated the potential of optical satellite
images to study shoreline change. An idealized definition of shoreline is that it coincides with
the physical interface of land and water [20]. Because of the dynamic nature of the idealized
shoreline boundary, the use of shoreline indicators has been adopted for coastal studies. A
shoreline indicator is a feature that is used as a proxy to represent the “true” shoreline position.
Boak and Turner [21] reviewed shoreline definition and detection techniques, and carried out
a comprehensive literature study. They categorized shoreline indicators in three groups: (i)
visible discernible features; (ii) tidal datum-based indicators; and (iii) indicators based on the
processing technique to extract the shoreline. One of the most common technique for shoreline
detection was (and still is in some cases) visual interpretation. However, this approach is highly
subjective and is not possible to access to any accuracy indicator. The alternative employs
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digital image processing techniques, as supervised and unsupervised classification algo‐
rithms. Gen [22] presents a paper that reviews the status of the use of remote sensing for the
detection, extraction, and monitoring of coastlines. The review takes the US system as an
example. However, the issues researched can be applied to any other part of the world. He
concludes that visual interpretation of airborne remote-sensing data is still widely and
popularly used for coastal delineation. However, a variety of remote-sensing data and
techniques are available to detect, extract, and monitor the coastline.

Guariglia et al. [23] used a multisource approach to coastline mapping, in Basilicata region
(Italy). They stated that satellite images are affected by tidal variations depending on their
spatial resolution and concluded that the coastline can be extracted from Landsat TM images,
without the interference of the tidal factor. Instead,tidal effects must be considered when the
coastline is identified from images having higher spatial resolution that are comparable to the
errors induced by tide.

Ekercin [24] present a work on the coastline movements at the northeast coasts of the Aegean
Sea (Turkey). In this study, the coastline changes were examined using data from Landsat MSS,
TM, and ETM collected between 1975 and 2001. In the image processing step, an unsupervised
image classification algorithm (ISODATA) was employed and temporal image ratioing
techniques were used to carry out coastline change assessment. Significant coastline move‐
ments were identified.

Maiti and Bhattacharya [25] used multidate satellite images from Landsat MSS, TM, ETM+,
and ASTER to demarcate shoreline positions, from which shoreline change rates have been
estimated using linear regression, along the coast of Bay of Bengal (India), between 1973 and
2003. The shorelines have been identified through the NIR bands, and included gray level
thresholding and segmentation by edge enhancement technique. The result shows that 39%
of transects have uncertainties in shoreline change rate estimations. On the other hand, 69%
of transects exhibit lower Root Mean Square Error (RMSE) values for the short-term period,
indicating better agreement between the estimated and satellite-based shoreline positions.

Kuleli et al. [26] presented a research focused on the shoreline change rate analysis by
automatic image analysis techniques through histogram-based segmentation of land and
water based on automatic thresholding algorithm, using multitemporal Landsat images (MSS,
TM and ETM+) between 1972 and 2009 along the coastal Ramsar wetlands of Turkey. Accretion
or erosion processes were observed on multitemporal satellite images along the areas of
interest.

Kumar et al. [27] applied and developed the method established by Maiti and Bhattacharya
[25] for calculating the rates of shoreline change, shoreline positions, and morphology of spits
along the Karnataka coast, western India, for the period from 1910 to 2005 using multidated
satellite images and topographic maps. Satellite images (IRS 1C, LISS-III) of IR band were
employed. Binary images are used as input layers in unsupervised classification module to a
complete separation between land and water classes, and to remove effect of suspended
materials, if any. Significant changes in morphology of spits have been recorded.
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Wang et al. [28] presented a class association rule algorithm on the basis of the Apriori
algorithm. To test the feasibility of the method, Landsat ETM+ image scene of Jiaozhou Bay
near Qingdao city (China) was used to interpret the coastline. First, the association rules of the
sea–land separation of the study area were discovered from learning samples by using the
class association rule algorithm. Second, the sea and the land of the image were separated with
the mined rules. Third, the coastline was interpreted from the separation result. This approach
includes not only spectral attributes but also the texture attributes (entropy) and the statistical
analysis variables (mean and variance).

Regarding sand spits’ behavior, Teodoro and Gonçalves [29] present different approaches in
order to extract sand spits from IKONOS-2 data (Figure 1). A semiautomatic approach is
proposed in this work, which is based on global thresholding through the Otsu’s method,
further refined through detected edges (GThE). The performance of GThE is compared with
traditional pixel-based and object-based classification algorithms. The dataset is composed by
six IKONOS-2 images, acquired between 2001 and 2007, covering a sand spit located in
Portugal. The performance of the different methods used in the estimation of the sand spit area
was evaluated through two sets of reference values of the sand spit area. The proposed GThE
method presented better results than the other traditional methods, with a clear advantage of
a considerable faster performance, beyond requiring a minimum operator intervention.

A high-precision geometric method for automated shoreline detection in the Spanish Medi‐
terranean coast, from 45 Landsat TM and ETM+ imagery was presented by Pardo-Pascual et
al. [30]. The methodology is based on an algorithm for subpixel shoreline extraction. The
algorithm is based on the assumption that the separation between water and land will occur
where the infrared intensity gradient around the pixel-level shoreline is maximum. The results
confirm that the use of Landsat imagery for detection of instantaneous coastlines yields
accuracy comparable to high-resolution techniques.

More recently, García-Rubio et al. [31] developed a method to identify the shoreline from
satellite optical images (SPOT), applying an unsupervised classification (ISODATA), using the
NIR spectral band to separate the sea and the land in Progreso (Yucatán, México). The shoreline
was validated using quasi-simultaneous in situ shoreline measurements, both adjusted to
equal water levels. The validation of shoreline obtained by satellite data revealed that the
shoreline is located consistently seaward of the in situ shoreline. The success of this method
suggests that it should be applicable to other locations, after adapting the confidence bounds
to the beach conditions.

In conclusion, several techniques for coastline extraction and change detection from optical
satellite imagery have been developed in the recent years. Manual identification, image
enhancement, density slice using single or multiple bands, and image classification (super‐
vised and unsupervised) are still the most common techniques employed. In addition, several
image processing methods related to segmentation algorithms and statistics approaches have
also been used. The data more used still are the traditional Landsat and SPOT images, but
some works had also used high spatial resolution data (e.g., IKONOS 2), regarding the
availability of an NIR band. In the future, should be considered the recent availability of the
new sensors in conjunction with classification/segmentation algorithms more efficient. The
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accurate extraction of the shoreline is one of the most important parameter to estimate the
erosion rates.

4.2. Coastal color

Remote sensing of ocean color has an important role to play as a cost-effective tool for global
and frequent observations that can be interpreted in terms of surface concentrations of Chla,
TSM, or CDOM. However, this global capability is to some extent questioned by the uneven
distribution of field data that are at the basis of empirical algorithms, or are used for the
definition of parameters in semianalytical bio-optical algorithms, and frequently these
algorithms are not calibrated for coastal waters. The dominant optically active constituent in
the open sea (case-1 waters) is the Chla, whereas in coastal waters (case-2 waters), TSM and
CDOM often dominate the spectral signal of Chla [32].

Chlorophyll-a (Chla)

Chla is certainly the most commonly derived parameter in water quality mainly because of its
use in determining the trophic status of waters. The Chla estimation allows forecasting of the
phytoplankton concentration and is therefore an important component in the derivation of
secondary products such as primary production. Several techniques/algorithms have been
applied in order to estimate the Chla concentration [33]:

i. In high-biomass waters the 700/670 nm ratio reflectance has been widely used. The
explanation for the strength of the correlation of Chla with the 700/670 nm is based
on the interaction between backscattering from phytoplankton and the strong
absorption of water, which both increase toward the IR. The offset to scattering due
to absorption by water near 700 nm causes a sharp peak in highly scattering waters.
The height and position of this peak is known to be well-correlated with Chla, with
the peak shifting toward greater wavelengths (apx. 715 nm) as Chla increases. In
contrast, the reflectance near 670 nm is uncorrelated, with Chla being almost constant
owing to the Chla absorption maximum, which offsets backscattering. The position‐
ing of the MERIS bands at 665 and 709 nm makes MERIS ideally suited for predicting

Figure 1. (a) Panchromatic band of the IKONOS-2 image from Jun. 2005; (b) the sand spit extraction with object-based
approach; (c) global thresholding of the image in Fig. 1(a) through the Otsu’s method; (d) edges of the image in Fig.
1(a) obtained through the Canny edge detector; (e) final extraction of the sand spit in Fig. 1(a), through the refinement
of the global thresholding in (c) through the edges represented in (d) (adapted from [29])
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Chla using this ratio, and many studies have recently been carried out [34, 35]. Three-
band algorithm has also been used to estimates of Chla in turbid and very high
biomass hypertrophic waters [36]. A four-band algorithm, including an additional
band near 700 nm, was found to be an improvement over the three-band model in
highly turbid lake water through better accounting for absorption by water and
nonnegligible scattering by TSM in the NIR band [37].

ii. The fluorescence maximum near 685 nm has been used to estimate Chla [38, 39]. The
fluorescence line height (FLH) algorithm measures the height of the fluorescence peak
at 685 nm from a linear baseline drawn between two points on either side of the peak
[40]. It is important to consider that the FLH algorithm is only suitable for Chla
concentrations generally not exceeding 30 mg m-3 as the backscattering peak near 700
nm overwhelms the fluorescence peak in high-biomass water.

iii. Sensors such as Landsat [41], SPOT [42], and IKONOS [43] are also frequently used
to estimate Chla. However, the lack of narrow bands and low Signal–Noise Ratio
(SNR) make very difficult the use of the algorithms already described. Therefore,
simple linear regressions of single bands or band ratios are used and with less-
significant correlations. An alternative could be the use of advanced algorithms, such
as Artificial Neural Networks (ANN) and genetic algorithms [44], multivariate
regression analysis [45], or spectral decomposition algorithm [46]. The use of these
and other complex algorithms generally leads to improved significance of correla‐
tions.

Total Suspended Mater (TSM)

TSM is the total mass of suspended particles as measured per volume of water including
inorganic (minerals) and organic (detritus and phytoplankton) components. The study of TSM
concentration has a huge ecological importance, because the suspended matter is the main
carrier of various inorganic and organic substances and becomes the main substrata for
biochemical processes [47]. The TSM concentration affects ocean/coastal productivity, water
quality, navigation, and coastal defense. The TSM concentration and distribution in the coastal
zone varies with several hydrodynamic factors, such as tidal condition, currents’ direction and
velocity, river discharges, and wind stress [12]. The discrimination of TSM from water
reflectance is based on the relationship between the scattering and absorption properties of
water and its constituents. In the visible and NIR region, most of the scattering is caused by
suspended sediments, and the absorption is controlled by Chla and CDOM. Therefore, the
visible and NIR regions are the most adequate to estimate the TSM concentration. These
absorptive in-water components decrease the reflectance in a substantial way. However, these
absorptive effects occur generally for wavelengths less than 500 nm [32]. Several works have
demonstrated that optical remotely sensed data can be used to retrieve TSM concentration
from turbid coastal waters [14]. Many TSM models based on empirical methods have been
used in operational satellite systems. These models were developed on the basis of statistical
relationships between TSM concentrations and single-band or multiband reflectance [12, 13].
Although empirical models may be effectively applied to satellite images concurrent with the
calibration dataset, their accuracy may be reduced outside the conditions of the calibration
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dataset because of the empirical basis [48]. Therefore, semianalytical models that combine
physical methods with statistical methods were proposed for several authors in order to
retrieve the TSM concentration [49]. Teodoro et al. [12] present different methodologies to
estimate the TSM concentration in a particular area of the Portuguese coast, from remotely
sensed multispectral data (ASTER, SPOT HRVIR, and Landsat TM), based on single-band
models, multiple regression, and ANNs. The analysis of the RMSE achieved by both the linear
and nonlinear models supports the hypothesis that the relationship between the seawater
reflectance and TSM concentration is clearly nonlinear. The ANNs have been shown to be
useful in estimating the TSM concentration from reflectance of visible and NIR bands of
ASTER, HRVIR (Figure 2), and TM sensors, with better results for ASTER and HRVIR sensors.

Colored Dissolved Organic Matter (CDOM)

CDOM, also called gelbstoff or yellow substances, is primarily composed of humic acids
produced from the decomposition of plant litter and organically rich soils within coastal
watersheds and upland areas is a significant contributor to water color, because humic
substances absorb strongly in the blue region of the spectrum, turning the water brown. The
absorption by CDOM (aCDOM – usually referenced at 440 nm) takes the form of an exponential
function decreasing toward longer wavelengths so that its effects are usually negligible at
wavelengths higher than 550 nm. CDOM concentrations increase in coastal waters due to the
in situ creation of fulvic acids produced from the seaweed decomposition as a by-product of
primary production estimulated by nutrients and the anthropogenic input of industrial or
domestic effluents from populated areas. In the coastal environment, the optical properties of
CDOM change owing to seawater mixing and photodegradation. Absorption by CDOM is one
of the primary additive absorption Inherent Optical Properties (IOPs), along with phytoplank‐
ton and water, and is of great interest from a bio-optical perspective. Algorithms using ratios
of reflectance in visible range have been found to be well-correlated with aCDOM [50]. In
waters with low TSM concentration, Bowers et al. [51] showed theoretically, while making
some assumptions about particulate absorption, that there is a linear relationship between
aCDOM and the ratio of reflectance in the red and blue bands. Doxaran et al. [52] used a 400/600
nm ratio, whereas D’Sa and Miller [53] used the SeaWiFS band configurations 412/510, 443/510,
and 510/555 nm, all of which gave good results, although this may reflect the existence of strong
covariance between Chla and CDOM. Comparable red/blue ratios produced with the MERIS
data also give similarly strong correlations [54]. The low radiometric resolution of some sensors
(TM, IKONOS) makes CDOM estimations infeasible [55]. More recently, Loisel et al. [56]
proposed a new method to assess aCDOM, based on the theoretical link between the vertical
attenuation coefficient and the absorption coefficient. This method, confirmed from radiative
transfer simulations and in situ measurements, and tested on an independent in situ data set
allows aCDOM to be assessed with higher accuracy.

The optically active water constituents, including Chla, TSM, CDOM, and water itself, all have
an impact on the optical signature of water in the visible wavelengths. The water-leaving
radiance is modified through the backscattering and absorption of light by these constituents
(IOPs). Absorption by Chla, CDOM and detritus, and water itself, are well-defined in the
literature and can be used to explain the causal relationships between the observed remote-
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sensing reflectance and the biogeophysical parameters of interest. The backscattering coeffi‐
cients for water, minerals, Chla, and TSM can be used in the same way. Strong absorption by
water at wavelengths >750nm effectively masks out the signals from other constituents except
in highly turbid water where scattering by minerals overwhelms absorption by water.
Therefore, wavelengths between 400 and 750 nm generally contain the the most important
information on the water constituents, which is detectable by remote-sensing instruments,
with the exception of highly turbid water where the signal in the NIR is also useful [33].
Matthews [33] present a review of the empirical procedures of remote sensing in inland and
near-coastal transitional waters. A review of empirical algorithms for quantitatively estimating
a variety of parameters, including Chla, TSM, turbidity, and aCDOM, were proposed. The
theoretical basis of the empirical algorithms was given using fundamental bio-optical theory
of the IOPs. More recently, Mouw et al. [7] presented a review that describes the current and
desired state of the aquatic satellite remote sensing, namely, mission capability, in situ
observations, algorithm development, and operational capacity. They concluded that signifi‐
cant advances have been made in supporting in situ observations, algorithm development,
and operational capacity and user engagement, but challenges still exist.

One of the major challenges in coastal and inland waters is the high turbidity and strong
absorption. As absorption increases, the effect of self-shading of upwelling radiance increases.
For IOPs, the available scattering sensors have the capability to effectively resolve backscat‐
tering at very high levels, but standard gain settings for these sensors are typically set to
saturate at levels an order of magnitude lower to maximize resolution in the dynamic ranges
observed in the ocean.

4.2.1. Optical Water Quality (OWQ)

Optical water quality (OWQ) has been defined by Kirk [57] as “the extent to which the
suitability of water for its functional role in the biosphere or the human environment is
determined by its optical properties.” There are four main natural constituents, broadly
classified, that attenuate light besides water itself: CDOM, TSM, nonalgal particulate organic
matter (POM), and phytoplankton. Assessing OWQ involves quantifying the behavior of light
in waters as affected by these light-attenuating constituents. Several publications have
described the application of optical remote-sensing systems to measure water-quality condi‐
tions in lakes [45], river systems [58], and coastal zones [59, 60]. The interpretation of optical
remote-sensing data of estuaries and tidal flat areas is hampered by optical complexity and
often extreme turbidity. Extremely high concentrations of TSM, Chla and CDOM, local
differences, seasonal and tidal variations, and resuspension are important factors influencing
the optical properties in such areas [61].

There are mainly two approaches for deriving water-quality products from remotely sensed
data: the model-based and the empirical approach. The model-based (or analytical) approach
seeks to model the remote-sensing reflectance in terms of the water IOPs through radiative
transfer modeling [62]. The remote-sensing reflectance from the water IOPs is obtained
through a bio-optical model and an approximation of the radiative transfer equation [63] or
through direct solution of the Radiative Transfer Equation (RTE). The reflectance at the top of
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the atmosphere can then be modeled using radiative transfer calculations for the atmosphere
through codes such as 6S [64]. The main concerns with these kinds of algorithms are their
sensitivity to errors from atmospheric correction procedures and the existence of nonunique
or ambiguous solutions arising from the additive nature of the IOPs and the consequences of
using a ratio in the reflectance approximation [65]. The analytical approach is complex and
requires measurements of local/regional IOPs to develop a robust forward model. Empirical
algorithms are relatively simple to derive and use: simultaneously acquired experimental sets
of limnological, atmospheric, and remotely sensed data are used to normally derive site-and-
time specific algorithms for a certain parameter using statistical regression techniques. These
algorithms generally produce robust results for the areas and data sets from which they are
derived. There are many varieties of algorithms that use either single bands, band ratios, band
arithmetic, or multiple bands as independent variables in linear, multiple linear, or nonlinear
regression analyses [33]. The empirical approach is computationally simpler, and it is em‐
ployed in the majority of studies in inland waters.

Mélin and Vantrepotte [66] presented a study about the satellite data (SeaWiFS) available for
coastal/shelf waters and marginal seas to derive a set of optical water types encompassing the
full extent of the optical variability found in these regions. The spatial and temporal sampling
considered is well-adapted to capture the optical variability found in coastal waters, whereas
a higher level of averaging would tend to smooth out peculiar spectral characteristics. The
focus of this work was all the coastal regions and marginal seas of the world. The classification
allows the quantification of the optical similarity between regions. The set of 16 classes used
in this work covers very turbid waters founded close to river outflow regions to oligotrophic
waters. The general variability in optical types at any location has been addressed by quanti‐
fying the number of classes selected as dominant during the period and an index of optical
diversity that has been linked to indices of marine biodiversity.

The works referred forecast an increasingly important role for OWQ studies driven by
increased awareness of the need to protect ecosystems, manage water resources, and advance
remote-sensing capabilities.

4.2.2. River plumes

River discharge into the coastal waters represents a major link between terrestrial and marine
systems. River plumes are a mixture of freshwater and river sediment load, with some dilution
caused by currents, and are affected by many factors such as river discharge, coastal wind
fields, water stratification, surface layer mixing, tides and current, etc. It is known that plume
waters near river mouths can contain high concentrations of nutrients and are excessively
turbid [68].

CDOM is often used as an effective tracer for evaluating relative levels and the spatial
distribution of dissolved organic carbon in aquatic environments. In addition, both Chla
concentrations and turbidity are typically much higher in river systems, when compared to
open sea environments. The river plumes are also distinguished from surround marine waters
by their high concentration TSM, which changes the color of the ocean surface. Optical satellite
images have been widely employed to study the spatio temporal variations of major river
plumes around the world. The river plume observations/quantification included data from
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AVHRR [69], SeaWiFS [70], MODIS [71], MERIS [72], Landsat TM/ETM [74], or combining data
from different sensors [73].

Zhu and Yu [75] present a study that aimed to evaluate the effectiveness of an inversion
algorithm for the extraction of riverine and estuarine CDOM properties at global scales
through EO-1 Hyperion images applied to ten major rivers from five continents. The river
plumes are distinguished from surrounding marine waters by their high concentration of TSM
which changes the color of the ocean surface. Since the TSM concentration can be associated
with nutrients, pollutants, and other materials, it is of crucial importance to remotely survey
their dispersal in order to assess the coastal environmental quality of the regions surrounding
river mouths.

Lihan et al. [76] present a study to identify the Tokachi River plume by satellite images
(SeaWiFS) and determine its relationship with river discharge and clarify its temporal and
spatial dynamics. A supervised (Maximum Likelihood – ML) classifier was used to identify
the plume and empirical orthogonal functions were applied to determine the spatial and
temporal variability of the plume during 1998–2002.

Gonçalves et al. [4] proposed an automatic procedure for the identification of the Douro river
plume (Portugal) based on the thresholding of the 71 of MERIS FR scenes (level 2 data – TSM
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Figure 3. Illustration of the characterization of the river plume (2009-02-26) shape according to the adjusted ellipse (its
major and minor axis) and the orientation of the river plume (adapted from [4])

Typically, outflow plumes are tracked in shelf water using density or salinity on account of
the notably fresher composition of estuarine water. Unfortunately, there are no satellite-based
remote-sensing platforms from which salinity can be directly measured. However, several
studies have shown that these outflows carry large amounts of dissolved organic materials
and suspended particles, which should allow plume events to be readily identified by remotely
sensed optical images [77]. Kim et al. [78] related Chla concentration to salinity in the Chang‐
jiang plume area and presented the monthly summer plume area within a limited area during
1998–2007.

Hopkins et al. [79] used four satellite data products to examine the Sea Surface Temperature
(SST), Sea Surface Salinity (SSS), Chla, and Mean Sea Level Anomaly (MSLA) fields in an area
of the Angola Basin surrounding the Congo River mouth. Although it was not possible to
extract a clear plume signature from the SST and MSLA alone, they provide useful supple‐
mentary understanding of the regions dynamics. Correlations between the SST, MSLA, Chla,
and SSS help identify those areas persistently influenced by river input and those where
variability is dominated by other processes.

4.2.3. Coral reef and Alga bloom

Coral reefs are one of the most biodiverse marine ecosystems on the planet. Worldwide, coral
reef ecosystems are being increasingly threatened by sediment loads from river discharges,
which in turn are influenced by changing rainfall patterns due to climate change and by
growing human activity in their watersheds. Water turbidity and associated light attenuation
are factors widely known to limit coral reef development. Coral reefs are generally limited to
shallow and clear water with a mean water temperature of 18°C or higher, and are thus largely
confined to the tropics [80]. Coral reef can be classified to show different forms of coral reef,
dead coral, coral rubble, algal cover, sand, lagoons, different densities of seagrasses, etc.
Several environmental variables have been shown to influence the biodiversity of a given
habitat. Mapping such habitat variables could indicate the likely spatial distribution of
biodiversity at a local scale and suggest priority areas for conservation, at least for the species
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for which habitat–biodiversity relationships have been identified. Remote-sensing technolo‐
gies have been used to map coral reefs since the early days of Landsat program [81], and
research into the use of remote-sensing technology continues with the advent of new sensors
and data-processing methods [82]. The mapping of coral reefs and general bottom character‐
istics from satellites has become more accurate since high-resolution multispectral imagery
became available [83, 84]. The development of hyperspectral instruments has also improved
the degree to which accessory pigments can be used to separate detailed classes, and they have
therefore enabled mapping of detailed classes while retaining satisfactory mapping accuracy
[85, 86].

The work of Mumby et al. [85] reviews what can, might, and cannot be mapped using remote
sensing, and not only covers aspects of reef structure and health but also discusses the diversity
of physical environmental data such as temperature, winds, solar radiation, and water quality.
Knudby et al. [87] reviewed coral reef biodiversity, the influence of habitat variables on its
local spatial distribution, and the potential for remote sensing to produce maps of these habitat
variables. Andréfouët et al. [88] present a review, where a new path is provided by following
the diversity of units that have been mapped and characterized using high spatial resolution
optical remote-sensing data for the main New Caledonian coral reef complexes and their
individual reef-forming units. The combined examination of the different sources of data, and
the exhaustive description of remotely sensed reef units, allows to a qualitative synoptic
parallel to be drawn between the morphology of modern reefs and the contrasting patterns of
reef growth, subsidence, and uplift rates occurring around New Caledonia. Hamel and
Andréfouët [89] present a review about the use of very high resolution remote sensing for the
management of coral reef fisheries. The rapid degradation of many reefs worldwide calls for
more effective monitoring and predictions of the trajectories of coral reef habitats as they cross
cycles of disturbance and recovery. Palandro et al. [90] used an 18-year (1984-2002) time series
of Landsat 5/TM and 7/ETM+ images to assess changes in eight coral reef sites in the Florida
Keys National Marine Sanctuary. A Mahalanobis distance classification was trained for four
habitat classes. A detailed pixel-by-pixel examination of the spatial patterns across time
suggests that the results range from ecologically plausible to unreliable due to spatial incon‐
sistencies and/or improbable ecological successions.

Harmful Algal Blooms (HABs) phenomena are global and have been increasing in severity
and extent, with many devastated implications. They cause eutrophic conditions, depleting
oxygen levels needed for organic life, and limiting aquatic plant growth by reducing water
transparency. HABs could be defined by an increase in the concentration of a phytoplankton
species that has an adverse impact on the environment, with more serious implications when
there is toxin production, but also with high biomass accumulation. HABs have been found
to occur frequently in optically complex case-2 waters, such as in the Korean South Sea [91],
East China Sea [92], Yellow Sea [91], Bohai Sea [93], Gulf of Mexico [94], among others. These
blooms are dominated mostly by Cochlodinium polykrikoides (hereafter referred to as C.
polykrikoides), Alexandrium tamarense, Prorocentrum dentatum, Ceratium furca, and Karenia
brevis, causing massive mortalities of aquaculture fish and numerous ecological and health
impacts since the last few decades. High concentrations of nutrients exported from agriculture
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or urban sprawl in coastal watersheds are also causing algal blooms in many estuaries and
coastal waters [95]. Satellite detection and monitoring of HABs require methods/algorithms
that have been developed mostly based on extensive in situ bio-optical observations from
optically less complex oceanic waters and optical modeling of water properties. Remote-
sensing bio-optical algorithms explore the optical properties (absorption, backscattering, and
reflectance) of each water component (CDOM, TSM, and Chla) in order to establish equations
that can indicate a relationship between the optical characteristics of each component and the
total sensor signals. These relationships are generally obtained through empirical, semiana‐
lytical, or radiation transfer models, and require in situ data in order to validate the equations/
models. However, this approach is only appropriate for case 1 waters. Several spectral band
algorithms have been developed to overcome the limitation of the standard optical algorithms.
One of the most common methods for identifying a HAB is to estimate the Chla concentration.
More details about the use of remote-sensing techniques for detecting phytoplankton and
mapping HABs could be found in Klemas [95]. A range of disciplines including biochemistry,
physical oceanography, and geology can be brought together to improve the identification of
HABs.

4.3. Wetland mapping and coastal hazards/vulnerability

The coastal zone represents a comparatively small but highly productive and extremely
diverse system, with a variety of ecosystems. Remote sensing allows to quantitatively retriev‐
ing several parameters useful for produce multi-hazard and vulnerability maps [96], wetland
mapping [97] and identify infestations of invasive plants [98]. Satellite remote sensors can map
coastal ecosystems and their changes cost-effectively at appropriate scales and resolutions,
minimizing the need for extensive field and ship measurements. Traditionally, the Landsat
TM and ETM and SPOT data have been reliable data sources for wetlands mapping [99]. The
current status of methodologies and the most innovative works will be described in the
following. The final part of this section will also include a brief reference to beach monitoring/
classification, due to its importance in coastal management.

Wetland health is strongly impacted by runoff from land and its use within the same water‐
shed. To study the impact of land runoff on estuarine and wetland ecosystems, a combination
of models is frequently used, including watershed models, hydrodynamic models, and water-
quality models [100]. The availability of high spatial and spectral resolution satellite data has
significantly improved the capacity for mapping salt marshes and other coastal ecosystems
[101]. Major plant species within a complex, heterogeneous tidal marsh have been classified
using multitemporal, high-resolution images. Hyperspectral data have also been used for
mapping coastal wetlands. The advantages and problems associated with hyperspectral
mapping have been clearly demonstrated by Hirano et al. [102]. A number of techniques have
been developed for mapping wetlands and even identifying wetland types and plant species
[99, 103, 104]. To identify long-term trends and short-term variations, such as the impact of
rising sea levels and hurricanes on wetlands, one needs to analyze time-series of remotely
sensed imagery [105, 106]. Submerged aquatic vegetation is an important part of wetland and
coastal ecosystems, playing a major role in the ecological functions of these habitats. Alga
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bloom and coral reefs have been discussed in section 3.3. The classification of Land Use and
Land Cover (LULC) in delta regions was also the subject of several works. For instance, Fan
et al. [107] investigated LULC in the Pear River Delta (China) using Landsat TM and ETM+
images and employed ML classifier. El-Kawy et al. [108] applied a supervised classification
(ML) to four Landsat images (TM and ETM+) collected between 1984 and 2009 that provided
recent and historical LULC conditions for the western Nile delta. The LULC mapping accuracy
of 96% indicates that the integration of visual interpretation with the supervised classification
of remote-sensing imagery is an effective method for the identification of changes in LULC.
More recently, Tran et al. [109] presented a study where the main objective was to assess the
spatiotemporal dynamics of LULC changes in the lower Mekong Delta (Vietnam) over the last
40 years. LULC change dynamics are derived from Landsat and SPOT satellite imagery
between 1973 and 2011.

Vulnerability can be defined as the degree to which a person, community, or a system is likely
to experience harm due to exposure to an external stress. Vulnerability also encompasses the
idea of response and coping, since it is determined by the potential of a community to react
and withstand a disaster [110]. A Multi-Hazard Vulnerability Map (MHVM) incorporates
vulnerability in understanding the risk due to a hazard. Mahendra et al. [96] present a study
that aims developing a methodology for assessing the multi-hazard vulnerability and gather
quantitative estimate on the spatial extent of the inundation caused by composite hazards in
Tamil Nadu state in the Bay of Bengal (India). The parameters used in this study were: shoreline
change rate, sea level change rate, historical storm surges, and the high-resolution topography.
Data from Landsat MSS, TM, and ETM and QuickBird were used to extract some parameters
and, afterward, generate the hazard and risk maps. Risk maps and evacuation routes are
generated by imbibing land use, transport, and structural information. Scientific study of the
natural hazards and coastal processes of the Indian coast has assumed greater significance
after the December 2004 tsunami because the country learned lessons on the impact of natural
hazards in terms of high damage potential for life, property, and the environment. Several
works were published related to this topic. Römer et al. [111] presents a case study that focuses
on a local assessment of tsunami hazard and vulnerability, including the socioeconomic and
ecological components. High-resolution optical data (IKONOS-2) were employed to create
basic geo-data including LULC, to provide input data for the hazard and vulnerability
assessment. Results show that the main potential of applying remote-sensing techniques and
data derives from a synergistic combination with other types of data. Kumar et al. [27] develop
a coastal vulnerability index for the maritime state of Orissa (India), using eight relative risk
variables. Ortho-rectified Landsat MSS and TM images covering the Orissa coastline (India)
for the years 1970, 1980, and 2000 were used to digitize the shoreline. Indian Remote Sensing
Satellite (IRS) P6 Linear Imaging Self-scanning Sensor-IV (LISS-IV) was used to extract the
coastal geomorphology. Zones of vulnerability to coastal natural hazards of different magni‐
tude are identified.

Beach morphological classification was mainly based on in situ data (wave, tidal, and sediment
parameters). However, parameters such as those are usually unavailable for several coastal
areas. Optical remote sensing is a very powerful tool for beach monitoring/classification, since
it allows identification and classification of beach morphologies. Teodoro et al. [112] applied
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a pixel-based (supervised or unsupervised) and region-based (object-oriented classification)
classification to high-resolution data (aerial photographs and IKONOS-2 image) in order to
identify, measure, and classify beach features/patterns and further classify the beach extension
considered (Northwest coast of Portugal). Thereafter, in order to implement an automatic
beach patterns extraction methodology, Teodoro et al. [113] present a new approach based on
Principal Components Analysis and Histogram segmentation (PCAH) aiming to identify and
analyze morphological features and hydrodynamic patterns, also applied to aerial photo‐
graphs and IKONOS-2 image. More recently, Teodoro [114] applied data-mining techniques,
particularly ANN and Decision Trees (DT), to the same image in order to identify and classify
beach features and their geographic patterns. Teodoro [114] concludes that the use of ANNs
and DTs for beach classification from optical remotely sensed data resulted in an increased
classification accuracy when compared with traditional classification methods, as shown in
Fig. 4. The results of this work should be used as an input in beach classification models, in
sediment budget estimation, and also in the identification/characterization of rip currents and
bars (location, spacing, persistence, size, and strength).

Figure 4. Beach patterns/forms identification and two zoomed areas obtained through (a) DT with pruning and (b)
ANN (adapted from Teodoro [114])

Traditionally, the Landsat TM and ETM and SPOT satellite have been reliable data sources for
wetlands mapping. However, in recent years the use of high spatial resolution data and
hyperspectral data has become quite popular. In the vulnerability and hazards studies,
different optical satellite data were commonly used to extract some parameters (e.g., shoreline
change rate, land use) essential to hazard and risk maps generation. The use of high spatial
resolution data is crucial. All these approaches are the key for a correct and efficient manage‐
ment of coastal environments.
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4.4. Bathymetry

Bathymetric information is of crucial importance in coastal areas, such as in estuarine areas,
which often exhibit a high population density, and vulnerable natural ecosystems. Optical
remote sensing offers a cost-effective alternative to echo sounding and bathymetric LiDAR
techniques for deriving bathymetric estimates in shallow coastal and inland waters [115- 117].
Images from optical remote sensors possess attractive properties for bathymetric mapping,
including synoptic coverage of water surface areas, wide availability for most geographical
regions, and relatively low cost [118]. The availability of optical high-resolution satellites, such
as IKONOS, QuickBird, and WorldView, has renewed interest in applying optical remote-
sensing techniques to the retrieval of bathymetric information for shallow coastal and inland
waters, due to their high spatial resolution and enhanced water penetration capability. In this
context, several inversion algorithms and models have been proposed in the literature for
retrieving bottom depth estimates from multispectral remote-sensing imagery [115, 116,
118-120]. The simplest method of retrieving water depth from single-band remote-sensing
imagery was first proposed by Lyzenga [121]. Later, Lyzenga [122, 123] derived a log-linear
inversion model for inverting multispectral imagery to water depth. This inversion model uses
the linear logarithmic-transformed multispectral remote-sensing data as the predictors to
estimate water depth.

Minghelli-Roman et al. [124] present a comparison of bathymetric estimation using different
satellite images (Quickbird, ETM, Hyperion, MERIS) in coastal seawaters. The aim of this study
was to compare, for one bathymetric estimation method and one mesotrophic site, the results
of depth estimation with a large panel of satellite and aerial images. For each image, the pair
of spectral bands chosen to compute the bathymetry has been optimized. This comparison was
discussed, in order to identify the influence of image parameters (spectral bands, SNR, spatial
resolution, and quantization) on the bathymetric results and to propose the most adapted
image parameters for bathymetric estimation. Regarding the depth RMSE errors obtained, no
sensor seems to be the perfect sensor to estimate bathymetry. Regarding the spectral config‐
uration, three spectral bands are required to generate the mask on water: the first in the blue-
green domain; the second in the green domain; and a final band in the near-infrared domain.
The atmospheric correction has to be efficient because a strong diffusion operates in the blue
domain. A very high resolution such as Quickbird’s is not necessary, but a lower resolution
than 30 m induces mixed pixels on the shore and then degrades the estimation in shallow
waters.

Teodoro et al. [125] propose a model for the estimation of depth based on Principal Component
Analysis (PCA) of an IKONOS-2 image, for the Douro River estuary (Porto, Portugal).
Subsequently, Teodoro et al. [117] proposed alternative univariate and bivariate models for
the same IKONOS-2 image based on PCA and Independent Component Analysis (ICA). The
PCA is the standard method for separating mixed signals. Such analysis provides signals that
are linearly uncorrelated. Although the separated signals are uncorrelated they could still be
depended, i.e., nonlinear correlation remains. The ICA was developed to investigate such data.
The results obtained were compared with the bathymetric estimation through PCA. Best
univariate ICA-based model allowed to estimate depth with a mean error that outperforming
the best PCA based univariate model results, even with the first PCA component explains 80%
of data variance. With bivariate models the results improved.
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Kanno et al. [116] proposed a method that combines a spatial interpolation method based on
nonparametric regression and Lyzenga et al. [115] method on a statistical basis. A multispectral
image of QuickBird of a coral reef site along Ishigaki City (Japan) was used in this approach.
This method is based on a semiparametric regression model that consists of a parametric
imagery-based term and a nonparametric spatial interpolation term that complement one
another. An accuracy comparison in a test site showed that this new method is more accurate
than either of the existing methods when sufficient training data are available and far more
accurate than the spatial interpolation method when the training data are scarce.

Su et al. [118] propose a geographically adaptive inversion model for improving bathymetric
retrieval in complex and heterogeneous marine environments for Hawaiian Islands. By using
IKONOS-2 and Landsat ETM+ images, they demonstrated that regionally and locally calibrat‐
ed inversion models can effectively address the problems introduced by spatial heterogeneity
in water quality and bottom type, and provide significantly improved bathymetric estimates
for more complex coastal waters.

More recently, Eugenio et al. [126] presented an optimal atmospheric correction model, as well
as an improved algorithm for sunglint removal based on combined physical and image-
processing techniques. The spectral capabilities of World View-2 multispectral imagery (for
Granadilla in Tenerife Island and Corralejo in Fuerteventura Island) was exploited for
bathymetry retrieval. Using the radiative model to compute bathymetry has yielded good
results and allowed to improve the outcome of the ratio algorithm as it considers the physical
phenomena of water absorption and backscattering and the relationship between the seafloor
albedo, its depth, and the water IOPs. The accuracy of the proposed bathymetry retrieval
algorithm output for each coastal area image was assessed with a scatter plot of the algorithm
output versus acoustic field data.

In the recent years, several methods based in inversion algorithms and radiative models have
been proposed in the literature for retrieving bottom depth from optical remote-sensing
imagery. Other approaches have also been tested mainly based in statistical methods. The use
of high-resolution optical images seems to improve the accuracy of depth estimation. How‐
ever, several problems related to atmospheric conditions, SNR, and seafloor contributions are
yet to be resolved. There is still a long way to go in using this type of data to estimate the depth
for coastal environments through optical remote-sensing data.

5. Conclusions

Different optical satellite data and different methodologies could be used to monitor the coastal
environment. There is not an ideal sensor, or an effective technique/algorithm that can be
applied to all the coastal environments components/parameters. Depending on what param‐
eter or element is being studied, the selected sensor should have the best characteristics (spatial,
spectral, radiometric, and temporal resolution) for the objective proposed. The optimal spatial
resolution for the assessment of coastal ecosystems is not consensual. Despite the high spatial
resolution images that provide more detail, for several studies low or moderate spatial
resolution is enough. Moreover, the low spatial coverage of the high spatial resolution images
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could be a limiting factor for regional or global studies. The recent developments of hyper‐
spectral sensors that provide very high spectral resolutions introduce a new scenario in this
field, allowing, for instance, the development of bio-optical algorithms, more adequate for
coastal zones environments. The temporal resolution also depends on the objectives of the
research. Various image-processing techniques have been applied to the satellite images in
order to study the coastal environment. These techniques differ depending on the subject of
study. In the shoreline change detection, beyond visual interpretation, several image segmen‐
tation and image classification algorithms are used to identify and detect the evolution of the
coastline. Also, several types of algorithms are employed in the quantification of water
constituents. A variety of parameters, including Chla, TSM, turbidity, and aCDOM, can be
estimated. For instance, in the estimation of Chla, the 700/670 nm ratio reflectance (for high-
biomass waters) has been widely used. Alternatively, more complex algorithms, such as ANN,
can be employed. Many TSM models are based on empirical methods. However, other
algorithms, such as ANN, can also be applied to retrieve the TSM concentration. The identi‐
fication and monitoring of river plumes can be done considering the water constituents (TSM,
salinity, Chla) or applying segmentation and classification algorithms that allow identification
of the plume boundaries. The detection and monitoring of HABs require algorithms that have
been developed mostly based on extensive in situ bio-optical observations from optically less
complex oceanic waters and optical modeling of water properties. Remote-sensing bio-optical
algorithms explore the optical properties of each water component. A number of techniques
have also been developed for mapping wetlands hazards/vulnerability. When LULC is
required, different image classification algorithms can be used. Other algorithms, such PCA,
DT, and ANN, can also be used, for instance, in the identification of beach patterns. In the
bathymetric estimation, beyond the inversion algorithms and radiative models widely
applied, statistical algorithms, such as PCA and ICA can also be used to estimate the depth for
estuarine areas. Several advances were discussed related to the recent availability of data from
new sensors and hyperspectral data. In short, the assessment of the Sentinel-2 data will
improve coastal environment monitoring programs. The elimination of the degree of uncer‐
tainty in some procedures should be a priority. There are available at present, a lot of robust,
well-tested algorithms that allow quantification and accurate estimation of several parameters.
The major challenge still is to have remote-sensing techniques adopted as a routine tool in
assessment of change in the coastal zone. Continuing research is required into the techniques
employed for assessing change in the coastal environment.
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Abstract

Oceans are a vast, complex world where underwater sound is the most efficient tool
available to understand its detailed characteristics. However the underwater chan‐
nel has a very complex geometrical and material structure and hence special techni‐
ques are required to model it. Analytical solutions are feasible only when one
makes gross assumptions and approximations. Several numerical and semi-numeri‐
cal techniques have been developed for estimating the sound field in the ocean
channel. But no single method is capable of handling all possible environmental
conditions, frequency, and ranges of interest in remote sensing problems. We ex‐
plore in this chapter the scope and feasibility of finite element method in underwa‐
ter remote sensing. The current study is based on a channel model with cylindrical
symmetry and a time-harmonic source signal. A variational formulation is used to
derive the finite element model for acoustical radiation, scattering and propagation
in the ocean. A Bayliss-type radiation boundary condition is used to model the far
field behaviour without the need to deal with a large solution domain. Since the
ocean geometry can support several propagating, evanescent, and radiation modes,
a penalty function approach is employed to impose the far field radiation condition.
A distinct feature of the ocean channel is its depth-dependent sound speed. The ei‐
gensolution for this channel is required for imposing the radiation condition at the
truncation boundary. We have cast this eigenproblem in a variational form and em‐
ployed a Rayleigh-Ritz method to obtain an approximate eigensolution. This ap‐
proach has provided a good approximation of the depth eigenmodes in a compact
semi-analytic form. We have employed our finite element algorithm to model sever‐
al range- and depth-dependent ocean problems. Our numerical study has establish‐
ed that our finite element algorithm gives accurate results with reasonable effort. In
particular, our finite element approach is most appropriate for shallow water prob‐
lems where the interaction of wave modes with irregular ocean bottom is quite
complex. The penalty function approach employed to implement the radiation
boundary condition has been found to be robust over a wide range of penalty scale
factors. We have also extended this work for the case of irregular elastic sea bed. We
continue to explore and further develop our finite element approach by applying it

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



to several other ocean acoustic problems encountered in the remote sensing of
ocean environment.

Keywords: Wave propagation, scattering, ocean wave guide, irregular boundaries

1. Introduction

Oceans are a vast, complex, mostly dark, optically opaque but acoustically transparent world
which is only thinly sampled by today’s limited science and technology. Underwater sound1

is used as the premier tool to determine the detailed characteristics of physical and biological
bodies and processes in the ocean. The distributions within the sea of the physical variables
affect the transmission of sound. The wide range of acoustic frequencies and wavelengths,
together with the diverse oceanographic phenomena that occur over full spectra of space and
time scales, thus give rise to a number of interesting effects and opportunities. Because of its
great practical importance, especially to naval submarine operations, ocean-acoustics research
[1-5] has been driven by applications more than other branches of ocean science.

Acoustic remote sensing in a generic sense refers to sending out acoustic signals and recording
the scattered waves, which is hence processed to ascertain the nature of target/obstruction that
was encountered by the transmitted signal. This remote sensing in general involves transmis‐
sion, processing of received signals and some form of inversion. This chapter is exclusively
dedicated to accurate modeling of propagation and scattering of acoustic signals in the ocean
channel.

The amplitude and phase of sound field generated by an acoustic source in the ocean can be
deduced, in principle, by solving either the wave equation or the Helmholtz equation in the
case of a harmonic acoustic source [1]. However, this procedure is generally difficult to
implement due to the complexity of the ocean-acoustic environment: the sound-speed profile
is usually non-uniform in depth and/or range, giving rise to waveguide focusing and shad‐
owing effects; the sea surface is rough and time-dependent; the ocean floor is typically a very
complex, rough boundary which may be inclined to the horizontal; and the bottom may be an
elastic medium, capable of supporting shear waves along the ocean-bottom boundary. To
compound the problem, various ocean processes, including internal waves and small-scale
turbulence, introduce small fluctuations in the sound speed, which are responsible for
significant acoustic fluctuations over long transmission paths.

Analytical solutions of the governing differential equations in underwater acoustics are not
always feasible and can only be obtained if the sound speed of the water column and physical
boundaries can be described in simple mathematical terms. This is rarely the case in reality
and so it is generally necessary to employ approximate models. A variety of numerical

1 There exists a vast body of literature in remote sensing of ocean using electromagnetic and optical sensors from satellites.
Although such methods have definite advantages in several aspects, they have serious limitations for sensing deep
underwater channels.
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techniques have been developed for estimating sound fields in the ocean, but no single method
is capable of handling all possible environmental conditions, frequencies, and transmission
ranges of interest in the applications. Even the existing ocean-acoustic propagation models
[6-7] with restricted scope often take several hours to run on a supercomputer.

Several different approaches for the solution of the sound field in the ocean have evolved
over the past few decades: ray tracing [8], normal-mode techniques [9] and coupled-mode
models [10], the parabolic-equation approximation [11] and fast field programs (FFP) [12]. In
this chapter, we will discuss in detail the scope of the finite element method [13-15] in ocean
remote sensing applications. In order to motivate our finite element approach and put it in
proper  context,  we  briefly  summarize  the  analytical  and  computational  tools  that  are
currently in use in the ocean remote sensing literature especially to point out their main merits
and shortcomings.

2. Background

Ray-based methods [8-9] involve following the paths of a set of rays as they leave the source
and tracking them as they propagate through the medium. They can be used for range-
dependent and range-independent problems, but are most commonly used for range-
independent problems. They are most useful for short-range, high-frequency modeling.
Straightforward ray theory suffers from following drawbacks: (i) Need to deal with situations
involving caustics and singularities. (ii) At each incidence on surface or bottom, each ray has
to be “told” at what angle to go off, and with what percentage of total reflection. (iii) Since
problems are almost entirely numerical, each variation is nearly as hard as the first try, e.g., a
new source depth or a greater range. The main shortcoming of the ray method is the inherent
high-frequency approximation.

A class of propagation models exist which gives the full-wave solution for the field in a
horizontally stratified medium. This type of a model is known as “fast field program”. This
technique is basically a numerical implementation of the integral transform technique for
horizontally stratified media [12, 9]. The field solution is in the form of a wavenumber integral
which is evaluated by numerical quadrature. This approach is distinguished by its use of the
fast Fourier transform (FFT) to calculate the integral. FFPs determine the field which satisfies
the Helmholtz equation or similar equations which include shear wave effects. The Helmholtz
equation for the stratified medium is a partial differential equation in two independent
variables, range and depth, and hence in principle could be solved by the application of two
integral transforms [12]. For certain specific sound-speed profiles having a particular analytical
form, this can be achieved, yielding an exact solution for the field. For a general sound-speed
profile, however, the transform over depth is intractable and an alternative technique must be
sought. Nevertheless, a transform over range can be applied, and this is the starting point of
the FFP argument [16]. In contrast to the ray solution, the FFP model yields a result which is
essentially exact. Starting from the Helmholtz equation for a stratified medium, the only
additional approximation is that of using the asymptotic approximation to the Bessel function.
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This approximation turns out to include negligible errors beyond a wavelength or so from the
source.

As an alternative to “exact” numerical propagation models, with their heavy computational
overhead, a number of methods have been developed whose starting point is a parabolic
equation [11]. Such an equation which is an approximation for the elliptic Helmholtz equation
is valid over a small range of angles, usually, but not necessarily, extending about the hori‐
zontal. Given their inherently approximate nature, the parabolic-equation (PE) models are
distinguished by a lack of precision, the extent of which depends by and large on the problem
under consideration. They have acquired popularity amongst the ocean-acoustics community
because they give the field over the entire water column with no additional effort and they can
handle range-dependent environments. PE methods are often said to be valid within a cone
of angles extending +/− 20° (narrow angle) and +/− 40° (wide angle) about the horizontal. One
of the shortcomings of the PE models is that, when these angles are exceeded, the output
continues to look reasonable, showing no obvious indication of error [7]. Apart from the
excessive inaccuracy of these results, the lack of consistency among the PE codes highlights
the general difficulty of assessing their performance in any given environment. Although the
PE is relatively easy to implement, there is a price to be paid: a) it is valid over only a limited
range of angles, a consequence of the paraxial approximation, and b) it is a one-way solution,
capable of handling only outgoing waves, since incoming radiation, represented by a Hankel
function of the second kind of zero order, is neglected in the solution. Little can be done to
remedy the backscatter limitation, but considerable effort has gone into extending the angular
range of the forward-scatter regime [17]. The advantage of the parabolic equation over the
original Helmholtz equation is that the PE can be solved by a straightforward marching in
range which requires much less computational effort. From a numerical point of view, this
range marching is typically implemented using either standard finite difference techniques or
using a fast Fourier transform as in the so-called split-step method. There are other approaches
to solve the parabolic wave equation in ocean waveguides. Lee et al. [18] employed the finite
difference method whereas Huang [19] used a finite element method to solve the PE.

The sound field in a horizontally stratified ocean can be expressed as an infinite sum of
uncoupled normal modes plus one or more branch line integrals [9, 1]. At large ranges from
sources, the branch line integral component is negligible and the field is given accurately by
the normal-mode sum, but in the vicinity of the source, within the cycle distance of each mode,
the integrals are significant and should be taken into account. If the environment shows some
range dependence, through either the sound-speed profile or the boundary conditions, the
field is no longer separable and strictly (uncoupled) normal-mode theory does not apply.
However, provided the range dependence is sufficiently slow, the adiabatic approximation is
valid, i.e. there is essentially no transfer of energy between modes as they propagate the
channel. If the range dependence is too fast for the adiabatic approximation to hold, mode
coupling is significant, which requires the calculation of the coupling coefficients—a time
consuming procedure. The normal-mode method is typically accurate for ranges greater than
the first 10 water depths or so, a figure which depends on the number of modes that are
included in the solution. In the near field, more modes should be computed to closely predict
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the fields accurately. The normal-mode models tend to be thought of as providing solutions
to range-independent problems. Range-dependent solutions can be obtained using (a)
adiabatic mode theory or (b) coupled-mode theory. The later approach involves more com‐
putational cost but can provide more accurate results.

When the range dependence is too strong for mode coupling to be neglected, a different
approach than the usual normal-mode theory is required. A complete two-way (i.e. including
backscattering) solution to this problem has been formulated in terms of stepwise coupled
normal modes [10]. The medium is sub-divided into a large number of thin vertical segments,
in each of which the acoustic parameters are held constant in the range direction but are
allowed to vary in depth. Across the segment boundaries, the pressure and horizontal particle
velocity are required to be continuous. In this method, the field is expressed as a sum of local
modes representing both outgoing and incoming cylindrical waves. Again, the modal
eigenvalue problem has to be solved, and in this case, the Galerkin method is used, whereby
the solution is expanded in a set of basis modes, yielding a tractable eigenvalue matrix problem
[20]. This involves rather, complex coupling integrals which have to be evaluated for all modes
at all segment boundaries. This method is computationally demanding, but it is essentially
exact and forms the basis of the model [10, 21-22]. When the coupling effects are neglected, the
full coupled-mode expressions reduce to the adiabatic approximation.

Ray tracing, normal-mode techniques, and coupled-mode models are accurate but computa‐
tionally intensive; the parabolic equation is an approximation to the wave equation that has
been solved using explicit and implicit finite difference schemes; Green’s function solutions
(fast field programs) are essentially models for which exact solutions are available that cannot
account for sound-speed variation. If the variation of sound-speed profile is independent of
range, the ocean is said to be horizontally stratified. Several of the numerical ocean-acoustic
propagation models assume horizontal stratification. The advantage, from the point of view
of the computation, is that the solution field separates into range and depth components, which
simplifies the calculation of the field considerably. The speed of sound in the ocean shows only
small departures from 1500 m/s, but nevertheless its effect on sound propagation on the ocean
is profound. In the deep ocean, for example, the profile acts as an acoustic waveguide,
supporting propagation to long ranges with little attenuation. However, for a general ocean
environment, which has a range-dependent sound-speed profile, an ocean bed having
irregular geometry, and turbulence in the water column, none of the existing methods
described above work satisfactorily.

3. Finite element method

For general ocean environments, the finite element method (FEM) [13-15] is a good choice for
the numerical modeling of ocean-acoustic wave propagation because it is exact within the
limits of numerical accuracy and can accurately account for all the scattering processes.
Although the literature on finite element technique on wave scattering and propagation is
extensive, the number of available FEM models for ocean remote sensing is fairly small [23-24].
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Part of the reason for this is the large computational cost involved. However, we feel that for
shallow-water applications, the FEM is both feasible and appropriate. The very nature of the
waves to radiate into the far field when unbounded requires the domain to be truncated with
an artificial boundary, on which an approximate radiation boundary condition should be
imposed [25-29]. In the present work, a variational approach is used to derive the finite element
approximation for time-harmonic acoustic wave propagation in an axisymmetric, heteroge‐
neous oceanic waveguide, and a BGT-type boundary damper [26] is used to model the effect
of the far field. Since a waveguide in general supports multiple propagating/radiation modes
in the far field, a penalty function approach has been employed to impose the modal radiation
boundary condition in conjunction with the orthogonality property of the depth modes of the
waveguide.

In our finite element model for depth- and range-dependent waveguides, the eigensolution of
the depth problem is required for the imposition of the radiation condition at the truncation
boundary. Unfortunately, the depth eigenproblem could be solved exactly only for a few
special profiles. In view of this, several numerical methods have been developed to solve the
depth problem [1]. Porter and Reiss [30] employ a finite difference model for the depth
equation, and the resulting algebraic eigenproblem has been solved using a combination of
iterative techniques and Richardson extrapolation to obtain the radial wavenumbers and
modal vectors to a great degree of precision. For our finite element model [31-32], it would be
convenient to have the depth modes in a compact analytical form. We have accomplished this
by adopting the following procedure: The depth eigenproblem is cast in a variational form by
suitably defining a functional. The classical Rayleigh–Ritz (RR) method is employed to find a
variational approximation to the eigensolution of the depth problem in ocean-acoustic
waveguides. The depth modes thus obtained have a compact semi-analytical form in contrast
to methods using finite difference or other finite element methods. An interesting feature of
the model is that the trial functions are derived from an isovelocity problem that has an exact
solution. It is important to note that such trial functions automatically satisfy even the dynamic
interface condition at the seabed, thus contributing to the accuracy of the numerical model.
Our procedure has been tested for several different ocean profiles and the results compare well
against those obtained using the method of Porter and Reis [33]. The proposed model thus
provides an accurate representation of the depth eigenmodes in a compact semi-analytical
form.

We have chosen several isovelocity waveguide examples, for which analytical solutions are
available, to validate the FE model developed and ascertain its versatility to impose modal
radiation boundary condition. We have confirmed the efficacy of the FE model by applying it
to several examples of depth- and range-dependent waveguides. This numerical study
establishes that our FE model gives accurate results with reasonable computational effort. The
penalty function approach employed to implement the radiation boundary condition has been
found to be robust over a wide range of penalty scale factors. We have also extended this work
for the case of irregular elastic seabed. We continue to explore and further develop our FE
model by applying it to several other ocean-acoustic problems encountered in the remote
sensing of ocean environment.
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4. Governing equations and boundary conditions

The fluid domain Ω=ΩI + ΩO  (Fig. 1) of the waveguide problem consists of the inner domain
ΩI  truncated by the artificial radiation boundary SR, and the outer domain ΩO  (far-field
domain). The waveguide is assumed to be axially symmetric about the vertical axis containing
a source at depth zs, with r  denoting the radial coordinate or the range. It is bounded at the
top by the z =0 plane, which is the air–sea interface (SF ), and at the bottom by a seabed of
arbitrary topography (SB). The waveguide is assumed to have unbounded range. For time-
harmonic linear acoustic waves with the pressure field denoted as p̂(r , z, t)= p(r , z)e −iωt , ω
being the circular frequency of the source, the governing equation is given by

( ) ( )21 1
2 ( ) ,o srp k p f r z zr pr d dÑ Ñ + = - - (1)

where ∇  is the gradient operator, ρ the density of the acoustic fluid, k the acoustic wavenum‐
ber, c the local speed of sound, and f o defines the point source at r =0 and z = zs.

Figure 1. Geometry of the ocean waveguide

Considering the large impedance mismatch between air and water, a pressure release boun‐
dary condition may be used at the free surface. Thus,

0 on Fp S= (2)

As the waves encounter the seabed, there is partial reflection and the remaining energy is
transmitted into the seabed. A part of the transmitted waves may be coupled back into the
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water column because of refraction through the sediment layers. However, for now, a rigid
bottom is assumed, for which the normal derivative of the pressure should vanish at the bottom
boundary. In other words,

B0 on ,p S
n
¶

=
¶

(3)

where SB denotes the sea bottom.

For the purpose of FE modeling, the waveguide, which is unbounded in range, is truncated at
r = rb, and the truncation boundary is treated as the radiation boundary SR, on which a suitable
approximate radiation condition should be imposed. Here, the boundary damper approach
[26] has been adopted. The first-order cylindrical damper equation may be written as

0, 1,2, , on ,m
m R

p p m M S
n

a
¶

+ = =
¶

L (4)

where M denotes the number of propagating modes, and the damper coefficient αm associated
with the m-th mode is given by

1
2 ,m rmr ika = - (5)

where krm denotes a horizontal wavenumber. It may be noted that Eq. (5) is exact for the
asymptotic form of a cylindrically symmetric wave. On the truncation boundary SR, acoustic
pressure may be expressed as a sum of normal pressure modes as

1
( ) ( ) ,

M

m
m

p z p z
=

= å (6)

where p(z), m=1,2,..., are the normal modes of propagation for the problem in Eq. (1). Following
Fix and Marin [31], the radiation boundary condition for the waveguide problem may be
written, using Eqs. (4) and (6), as

1
on .
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m m R
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p p S
r

a
=

¶
+
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Denoting a normal-mode function at the radiation boundary by f m(z), which is associated with
the m-th propagating mode eigenvalue, the pressure modes in Eq. (6) may be written as

( ) ( ), 1,2, , ,m m mp z a f z m M= = L (8)
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where am denotes a modal participation factor. Then the radiation boundary condition in Eq.
(7) may be rewritten as

1
( ) ( ) 0 on ,

M

m m m R
m

p z a f z Sa
=

+ =å (9)

where the constants am are determined by using the (1 /ρ(z)) -orthogonality of the normal
modes. It has tacitly been assumed here that the waveguide has constant water depth and
range-independent but depth-dependent sound speed in the vicinity of the truncation
boundary SR and beyond, so that the depth eigenproblem corresponding to the problem in
Eq. (1) could be solved at least numerically [23].

Note that while the radiation condition in Eq. (4) on an individual mode is local, the radiation
condition in Eq. (9) is global, meaning that nodes of an element on the truncation boundary
are linked to other elements there in view of the coefficients am.

5. Constraints

In view of Eq. (8), Eq. (6) may be written as

{ }1 2[ ] ( ), , , , 0 on ,T
M RC p z a a a S=K (10)

where

1 2[ ] 1, ( ), ( ), , ( ) ,MC f z f z f zé ù= - - -ë ûK (11)

and the companion vector in Eq. (10) is unknown. Equation (10) will be treated as a constraint
in the following FE model.

6. Variational formulation

For the purpose of finite element modeling, it would be convenient to construct a variational
formulation [34-35]. In the present study, in order to avoid possible numerical difficulties with
handling a point source, a small fluid domain ΩS  surrounding the source has been excluded
so that the computational domain is Ω̄I =ΩI −ΩS . Consider the following axisymmetric
functional I (p) defined in the cylindrical coordinate system (r , z) (see Fig. 1):
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where SD denotes the surface on which a Dirichlet boundary condition is prescribed and SN

the surface with prescribed Neumann boundary condition, and the other domains of integra‐
tion are identified in Fig. 1.

It can readily be shown that the variational condition

0Id = (13)

leads to the governing differential equation in Eq. (1) and the boundary conditions in Eqs. (2)–
(4). Thus, Eqs. (12) and (13) can be used to develop an FE model using the Rayleigh–Ritz
approximation. However, the resulting solution should also obey the constraints in Eq. (10),
which will ensure the imposition of the radiation boundary condition as discussed above. This
will be achieved by modifying the discrete approximation to the functional in Eq. (12).

7. Finite element model

The finite fluid domain Ω̄I  (which excludes the source) of the axisymmetric waveguide in Fig.
1 may be discretized using eight-noded axisymmetric quadrilateral elements with Co -
continuity and the well-known isoparametric formulation [15]. The computational domain is
discretized into a mesh of finite elements. The finite element approximation for the field
variable p may then be written as

{ }
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( , ) ( , ) ,
n T

ej j e
j

p r z p N N px z
=

é ù» = ë ûå
%

(14)

where ñ denotes the number of element nodes (eight in the present study), p̄ej the nodal
pressure variable/degrees of freedom (dofs) and Nj(ξ, ζ) the polynomial shape function in the
parametric coordinates (ξ, ζ) in the (r , z) plane [15]. The subscript e is used to indicate the
quantity at the element. Substituting Eq. (14) into Eq. (12) yields the following discrete form:
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where { p̄em} denotes nodal pressure on the radiation boundary due to the m-th mode and the
various matrices above will be identified subsequently. The stationary condition of the
potential I (pe) above should be sought subject to the constraint in Eq. (10). There are two ways
of implementing this, one the classical Lagrangian multiplier approach and the other the
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penalty function approach; the latter, which is commonly used in the context of finite element
analysis [15, 13] is adopted in the present work. To achieve this, a modified potential I ′ may
be defined as

{ } { }1
2 ,T T

e e P e eI I p C C pb¢ ¢ ¢é ù é ù é ù= + ë û ë û ë û (16)

where Ce  denotes the constraint matrix in Eq. (11) specific to an element. The penalty
coefficient matrix βP  above may be chosen to be diagonal for convenience, with βPm denoting
the penalty parameter associated with the m-th mode. Equation (16) may be expanded as
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where the enlarged element dof vector is defined as
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The enlarged stiffness, mass and damping matrices, and load vector in expanded Eq. (16),
consistent with { p̄′e} in Eq. (17), are given by
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(18)

The matrices Ke , Me , and Re  in Eq. (18) are traditionally called the element stiffness, mass
and radiation damping matrices, and { f e} the load vector, respectively. They are given as
follows:
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where N  denotes the shape-function matrix [see Eq. (14)], pν =∂ p / ∂n, and f zm(zj) denotes the
j-th nodal value of the m-th mode on a finite element in contact with the radiation boundary
SRe. The steps required to derive Eq. (19c) are outlined in Appendix A. It is of interest to note
that the radiation-damping matrix Re  in Eq. (19c) implies uncoupled modal participation.
However, the constraint term involving the matrix Ce  in expanded Eq. (16) brings about
modal coupling. The various integrals above are defined over relevant finite element domains.
The stationary condition of the potential I ′ in expanded Eq. (16) is obtained by setting

{ } 0
e

I
p
¢¶

=
¢¶ (20)

Equation (20) leads to general element equations of the form

( ){ } { }.T
e e e e P e e eK M R C C p fb¢ ¢ ¢ ¢ ¢é ù é ù é ù é ù é ù é ù- + + =ë û ë û ë û ë û ë û ë û (21)

It may be noted that if the penalty matrix βP =0 in Eq. (21), the constraints are ignored; as the
penalty parameter values increase, the error in satisfying the constraint equations decreases,
and for very high values of penalty, the numerical solution may break down. Hence, a judicious
choice of the penalty parameters is essential. The radiation-damping matrix R ′

e  and the
constraint matrix Ce  in Eq. (21) correspond to elements on the radiation boundary. Hence,
for this case, the FE equation may be deduced from Eqs. (18) and (21) as

( ){ } { }.e e e eK M p fé ù é ù- =ë û ë û (22)

The radiation-damping matrix R ′
e  in Eq. (19c), which is complex in view of Eq. (5), is defined

only for elements that share one or more of their boundaries with the artificial boundary SR.
Carrying out thus the finite element assemblage operation, yields the following global finite
element equations:

( ){ } { } ,K M R C p f¢ ¢ ¢ ¢ ¢ ¢é ù é ù é ù é ù- + + =ë û ë û ë û ë û (23)

where the global solution vector { p̄′} consists of all the pressure dof in the computational
domain as well as the unknown vector {a} in Eq. (8).

The global finite element matrices in Eq. (23) may formally be written as
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(24)
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where Σe denotes the standard finite element assemblage operation [15].

8. Modeling of a point source

When the inhomogeneous Helmholtz equation in Eq. (1) is employed in the FE model, the
source term involving the delta function, as the other terms of the differential equation, is
satisfied only approximately over the finite elements in contact with the point source. Of
course, the error is expected to decrease with mesh refinement. The present FE formulation
uses the complex pressure p as the field variable. Hence, a kinematic/Dirichlet boundary
condition in terms of p would be satisfied exactly at the finite element nodes. In light of this,
it would be interesting to see whether the effect of the source could be modeled as a kinematic
boundary condition. To facilitate this, the computational domain employed above (see Eq.
(12)) excludes the source. This is achieved by matching each finite element node with the
source, and excluding all the finite elements that are in contact with the source node. Then the
free field pressure due to the source on the periphery of the excluded domain is imposed as a
kinematic boundary condition in the finite element model. The discontinuity of the fields on
the periphery of the region enclosing the source is our equivalent source. It may be argued
that the pressure distribution on the excluded domain boundary is not the actual one, which
would be known only after solving the FE equations. However, the following argument
justifies the approach. It is known that for small volume sources, the pressure in the far field
is not affected by the individual shape of a source, as long as the source strengths are equal.
Thus, this justifies the use of a computational domain that excludes a small FE domain around
a point source. In the present study, the size of the excluded domain has been kept at about a
tenth of the wavelength. Comparison of the FE results with an analytical solution indicates
that such a choice is satisfactory.

9. Solution of FE equations

The global FE equation in Eq. (23) may be written for brevity as

{ } { }A p f¢ ¢é ù =ë û (25)

It may be noted that for an acoustic medium with real sound speed, the coefficient matrix A
above is complex even though K ′ , M ′ , and C ′  are real. This is because { f ′} is complex.
Also, note that R ′  is complex due to the presence of αm in Eq. (19d). For a lossy medium
modeled with complex sound speed, M ′  is also complex. Although A  is non-self-adjoint, it
is a complex symmetric matrix and hence the Gauss solver employed here to obtain the solution
to Eq. (25) exploits the attendant computational advantage. Since such solvers for FE equations
are coded as block solvers with compact storage scheme, large finite element models can be
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handled even with modest computer storage. Of course, such a solution strategy involves
overhead in the form of read/write operations on secondary storage devices. This approach
may be contrasted against those of Bayliss et al. [36] and Athanassoulis et al. [37] who have
used iterative methods based on the conjugate-gradient technique. Solvers based on the
conjugate-gradient method have been found much more efficient than Gauss solvers when the
size of the matrix equation is very large, say, several tens of thousands of equations, and hence
they hold promise for high frequency FE models.

Since the present FE model adopts a penalty function approach to impose the radiation
boundary condition with multiple radiating modes, the choice of suitable penalty parameter
αPm is important. This can be resolved through numerical experiments. The penalty parameter
was obtained by prescribing a scale factor on the average value of the diagonals of the
coefficient matrix A  in Eq. (25); i.e.,

1
,

n
s

Pm ii
i

A
n
b

b
¢

=

=
¢ å (26)

where n ′ denotes the total number of FE equations/dof and βs a user-specified penalty scale
factor. Computations indicate that the results are stable over a wide range of βs values. The
results reported here have been obtained using βs =100.

10. Normal modes in an ocean waveguide with depth dependence

The sound speed in an ocean-acoustic waveguide is in general both depth- and range-
dependent. Depth dependence is considered very important because it is responsible for many
interesting phenomena in waveguide propagation. The two well-known methods that have
been developed to study acoustic waves in depth-dependent waveguides are the fast-field
technique and the normal-mode expansion [9, 1], the latter being the method that we have
used. The normal-mode approach consists of first solving the depth eigenproblem for a given
sound-speed profile to obtain the radial wavenumbers and the associated depth modes, which
respectively are the eigenvalues and eigenfunctions. The depth eigenproblem could be solved
exactly only for a few special profiles. In the finite element model for depth- and range-
dependent waveguides [31-32], the eigensolution of the depth problem is required for
imposition of the radiation condition at the truncation boundary. For such applications, it
would be convenient to have the depth modes in a compact analytical form. We have explored
this aspect with specific reference to shallow-water waveguides.

The depth eigenproblem can be cast in a variational form by suitably defining a functional.
Then, the classical Rayleigh–Ritz method may be employed to find a variational approximation
to the eigensolution of the depth problem in ocean-acoustic waveguides. The depth modes
obtained would have a more compact analytical form than those derived using finite difference
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or finite element methods. The present work provides an RR model for the depth eigenproblem
and demonstrates its utility for shallow-water waveguides.

11. Mathematical model

For the cylindrically symmetric waveguide having depth-dependent density ρ and sound
speed c, the inhomogeneous pseudo Helmholtz equation governing the linear harmonic
acoustic pressure field p(r , z) in the waveguide is given in cylindrical coordinates (r,z) as [9, 1]

2

2

( ) ( )1 1( ) ,
( ) 2( )

sr z zp pr z p
r r r z z z rc z

d dwr
r p

-æ öæ ö¶ ¶¶ ¶
+ + = -ç ÷ç ÷¶ ¶ ¶ ¶è ø è ø

(27)

where r denotes the range coordinate and z the depth coordinate as shown in Fig. 2, and the
r.h.s. denotes a point source of unit amplitude located at r = 0 and z = zs, with δ denoting the
Dirac delta function. Eq. (27) can also be applied to problems with attenuation by introducing
a complex sound speed.

Figure 2. A two-layer cylindrically symmetric waveguide

A variable separable solution for the homogeneous form of Eq. (27) may be written as

( , ) ( ) ( )p r z R r Z z= (28)

Then, upon using Eq. (28) in the homogeneous form of Eq. (27), the following ordinary
differential equations are obtained:
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where ω denotes the circular frequency and kr
2, the separation constant, which turns out to be

the square of the radial/horizontal wavenumber. Eq. (29) evidently pertains to the radial/
horizontal modes R̄(r), and Eq. (30) pertains to the depth modes Z (z). Choosing a pressure
release boundary at the top (z =0) and a mixed/Robin boundary condition at the seabed
(z = D1), the boundary conditions of our problem are written as [1, 30, 33]

(0) 0Z = (31)
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with ρb denoting the density of the acoustic fluid in the isovelocity half-space underlying the
water column. Eq. (32) facilitates replacing the half-space in the Pekeris waveguide [38] by
means of an impedance-type boundary condition. It may be noted that Eq. (30) together with
the homogeneous boundary conditions in Eqs. (31) and (32) do not constitute a proper Sturm-
Liouville problem because Eq. (32) depends on the unknown eigenvalue kr

2. Porter and Reiss
[30] employed a finite difference model to solve Eq. (30) together with the boundary conditions
in Eqs. (31) and (32). As an alternative to the above formulation, the waves in the fluid half-
space below the water column are also considered here [1]. The governing equation for the
waves in this fluid half-space is given as,

2
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wr
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(33)

where Zb denotes the depth function in the fluid half-space having depth-dependent density
ρb and sound speed cb. The interface conditions at the seabed are given by the kinematic and
dynamic conditions,
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where Zb denotes the depth function in the fluid half-space having depth-dependent density
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dynamic conditions,
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In addition, the depth mode Zb should remain bounded as z→∞. Our primary objective is to
consider a variational formulation for Eqs. (30) and (33), together with appropriate boundary
conditions, and obtain a RR approximation to the depth-dependent problem.

12. Variational formulation and Rayleigh–Ritz approximation

A variational formulation that leads to the boundary value problem in the last section is sought
now. The operator being symmetric, there exists a functional, the variation of which leads to
Eq. (30) and appropriate boundary conditions, and similarly for the half-space. Consider the
functional Π(Z ) and Πb(Zb) defined respectively in the water column and the half-space as
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where suffix ν denotes z-derivative. At the interface z = D1 between the water column and the
half-space, the conditions noted in Eq. (30) must be imposed. In view of Eq. (34b), this can be
achieved by setting in Eq. (35)
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and in Eq. (36),

1
1

( )1 1( )b
b

dZ DZ D
dznr r

= (38)
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In addition, Eq. (34a) should be imposed. Then, it can be easily shown that the variational
condition δΠ =0 leads to Eq. (30) and the boundary conditions in Eq. (31) as well as the interface
condition in Eq. (37), where δ denotes the first variation. Similarly, the variational condition
δΠb =0 leads to Eq. (33), and the interface conditions in Eq. (34a) and Eq. (38). In addition, at
z = D2, we obtain the condition
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where (see Eq. (32)),
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Note that there are three cases that can be analyzed using Eq. (36):

Case 1: D2 is finite, β→0

This corresponds to the case when a depth-dependent seabed of finite thickness is terminated
by a rigid boundary.

Case 2: β is finite, D2→∞

This corresponds to a depth-dependent seabed of infinite thickness.

Case 3: D2 and β are finite

This is a three-layer problem, where the top layer is the water column, the second layer is a
layer of seabed with depth varying density and speed, and the bottom layer represents the
seabed of infinite extent with uniform sound speed and density.

We now seek an assumed mode solution with n terms to the above variational problem in the
form
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where n =n1 + n2, and ψj and ψbj denote the known mode function (coordinate function)
satisfying the kinematic boundary condition in the water column and ϕ̄ j an unknown constant,
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where n =n1 + n2, and ψj and ψbj denote the known mode function (coordinate function)
satisfying the kinematic boundary condition in the water column and ϕ̄ j an unknown constant,
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and their counterparts with suffix b correspond to those of the half-space. The two sets of mode
functions above are such that they satisfy the relevant boundary conditions as well as the
interface conditions in Eq. (34) and the conditions in Eq. (39). Such functions may readily be
constructed by solving a two-layer depth problem, which is nothing but the Pekeris waveguide
[38], with an appropriate choice of constant velocity and density in the water column and the
seabed half-space. This approach has been adopted here. Then, it follows that the continuity
of pressure field at the interface z = D1 implies that the assumed mode expansion in Eq. (40)
reduces as,

2
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( ) ( ) 0
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j
j

Z z z z Df y
=

» £ £å (41)

where we have combined the depth modes of a two-layer isovelocity waveguide as one
combined set with redefined coefficients ϕ̄. Then, using Eq. (40) in the functionals in Eqs. (35)
and (36), and combining them, an algebraic approximation for the functionals is obtained as
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It has been assumed in the above that the contribution due to the term in Eq. (36) is negligible
as D2→∞. Further, it may be noted that since the boundary and interface conditions are
satisfied by the trial functions chosen above, when the functionals in Eqs. (35) and (36) are
combined to obtain Eq. (42), the boundary and interface terms add up to become trivial and
hence do not contribute to the discrete approximation in Eq. (42).

The variational condition is now replaced by the condition
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Eq. (44) yields a symmetric algebraic eigenproblem given by

( ){ } { }2 II I 2 IIIK K Krkw f fé ù é ù é ù- =ë û ë û ë û (45)

The eigensolution of Eq. (45) may be denoted as

( ){ }( )2 , , 1,2,..j
rjk j nf = (46)

It may be noted here that the eigenproblem in Eq. (45) remains linear unlike the Porter and
Reiss model that is based on Eqs. (30)–(32). Having obtained the eigenvalues krj

2 and the

eigenvectors {ϕ̄( j)}, the eigenfunctions /depth modes may be written, using Eq. (40), as

( ) { } ( ){ }( ) Tj
j z zf=Ζ ψ (47)

where

( ){ } 1 2( ), ( ), , ( )
T

nz z z zy y y=ψ L (48)

Eq. (47) provides a compact semi-analytical form for the depth modes that are convenient to
employ in FE models such as those in Fix and Marin [31] and Vendhan et al. [32] for approx‐
imating the radiation condition at the truncation boundary. The depth modes obtained can of
course be used to set up the normal-mode solution to the forced Helmholtz equation in Eq.
(27). Note that for a Pekeris waveguide, the normal-mode solution based on the discrete
spectrum has to be augmented with the continuous spectrum contribution [1]. Since the
eigenvectors in Eq. (45) are KIII  -orthogonal, it can easily be shown that the eigenfunctions in
Eq. (47) satisfy the following orthogonality condition:
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The orthonormal depth functions are obtained as
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Tj jIII
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In terms of finite element terminology, the RR model for each layer may be looked upon as a
super-element with C1 continuity at the inter-element boundary and the operation leading to
Eq. (42) is equivalent to element-assemblage operation.

13. Numerical analysis and discussion

In our Rayleigh–Ritz model, the first task is to compute the symmetric matrices KI , KII , and
KIII  in Eq. (43). The next task is to find the eigensolution to Eq. (45). For problems with no

attenuation, the real eigenvalues have been obtained employing the bisection method. For
problems with attenuation, approximations to the complex roots have been obtained using a
search procedure [39] and the eigenvalues refined by employing Newton–Raphson iteration.
In all cases, the eigenvectors are obtained using inverse iteration.

To validate our algorithm, we applied the Rayleigh–Ritz model first to single-layer isovelocity
waveguide examples without attenuation for which exact solutions are available. Different
sound-speed profiles have been chosen to evaluate the accuracy of the RR model. Attenuation
in the fluid half-space has also been considered. Different sets of RR approximations have been
obtained by varying the number of assumed modes n in Eq. (41). The results for n = 2np, where
np denotes the number of propagating modes turned out to be of good accuracy.

One should note the following remarks in connection with the performance of the RR model
for the depth eigenproblem:

a. The mode shapes of an isovelocity waveguide have been chosen as trial functions, which
satisfy appropriate interface conditions and the condition at the free surface. This renders
the RR matrix highly diagonally dominant, which also greatly aids in numerical evalua‐
tion of the eigensolution.

b. For ocean waveguides, the depth variation of the sound speed is normally only a small
percentage of the unperturbed value.

c. When the variation in sound speed is large, the above procedure may not give good
results. One has to resort to high-order solutions. Even then, one can expect accurate
eigenvalues, but not eigenvectors. This is because the convergence rate for the eigenvec‐
tors is slower than that for the eigenvalues.

14. Numerical examples

We considered several examples to illustrate the versatility of our FEM approach in remote
sensing problems. In all our examples, we employed a Dirichlet boundary condition on the
air–sea interface, a Neumann boundary condition on the ocean bottom boundary, and a unit
point source at a depth of 36 m below the air–water interface. Both depth-dependent and
uniform sound-speed water columns are considered.
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14.1. Isovelocity case

The finite element method for the solution of inhomogeneous ocean-acoustic waveguide
problems is validated first with analytical results for isovelocity waveguides. A cylindrically
symmetric plane parallel waveguide of depth 100 m with a point source is shown in Fig. 3.
The finite element model consists of a uniform grid of isoparametric quadrilateral elements,
with the element length being about a tenth of the source signal wavelength. As discussed
previously, a domain of two elements has been excluded to remove the source from the
truncated domain (Fig. 1). The FE mesh consists of 1000 elements in range and 60 elements in
depth. The computed acoustic pressure along the range at the depth of the source is compared
in Fig. 3 with the normal-mode solution with 50 modes, of which only the leading few modes
are propagating. In all cases, the FEM results compared well with analytical results. The mesh
is chosen appropriately so that the modal error is less than 5%.

Figure 3. Idealized ocean waveguide

14.2. Rectangular hump

Sea mounts are often encountered in under-water ocean problems. In order to understand their
impact on wave propagation characteristics in shallow-water environment, we considered a
rigid rectangular hump of width 40 m and height 20 m on ocean bottom as shown in Fig. 4(a).
The contour map of transmission loss (TL) of a 60-Hz point source located on the z-axis at a
depth of 36 m from the water surface is shown in Fig. 4. Panel (a) shows the TL in the presence
of a rectangular hump on the seabed. Panel (b) shows the TL of the water column without the
rectangular hump. Notice that the rectangular hump has a distinct signature in TL pattern
especially on the right of the hump.

It is instructive to take a look at the acoustic power distribution in the modes. Figure 5 shows
the modal power spectrum of the shallow-water column with the rectangular hump in panel
(a) and without the rectangular hump in panel (b). Notice that there is a substantial redistrib‐
ution of power among the modes due to the presence of the rectangular hump.

Environmental Applications of Remote Sensing218



14.1. Isovelocity case

The finite element method for the solution of inhomogeneous ocean-acoustic waveguide
problems is validated first with analytical results for isovelocity waveguides. A cylindrically
symmetric plane parallel waveguide of depth 100 m with a point source is shown in Fig. 3.
The finite element model consists of a uniform grid of isoparametric quadrilateral elements,
with the element length being about a tenth of the source signal wavelength. As discussed
previously, a domain of two elements has been excluded to remove the source from the
truncated domain (Fig. 1). The FE mesh consists of 1000 elements in range and 60 elements in
depth. The computed acoustic pressure along the range at the depth of the source is compared
in Fig. 3 with the normal-mode solution with 50 modes, of which only the leading few modes
are propagating. In all cases, the FEM results compared well with analytical results. The mesh
is chosen appropriately so that the modal error is less than 5%.

Figure 3. Idealized ocean waveguide

14.2. Rectangular hump

Sea mounts are often encountered in under-water ocean problems. In order to understand their
impact on wave propagation characteristics in shallow-water environment, we considered a
rigid rectangular hump of width 40 m and height 20 m on ocean bottom as shown in Fig. 4(a).
The contour map of transmission loss (TL) of a 60-Hz point source located on the z-axis at a
depth of 36 m from the water surface is shown in Fig. 4. Panel (a) shows the TL in the presence
of a rectangular hump on the seabed. Panel (b) shows the TL of the water column without the
rectangular hump. Notice that the rectangular hump has a distinct signature in TL pattern
especially on the right of the hump.

It is instructive to take a look at the acoustic power distribution in the modes. Figure 5 shows
the modal power spectrum of the shallow-water column with the rectangular hump in panel
(a) and without the rectangular hump in panel (b). Notice that there is a substantial redistrib‐
ution of power among the modes due to the presence of the rectangular hump.

Environmental Applications of Remote Sensing218

20 
 

 

 
Fig. 4. Transmission loss of a shallow-water column with a (a) rectangular hump on the seabed and 
(b) flat-bottom surface 
 
It is instructive to take a look at the acoustic power distribution in the modes. Figure 5 shows the 
modal power spectrum of the shallow-water column with the rectangular hump in panel (a) and 
without the rectangular hump in panel (b). Notice that there is a substantial redistribution of power 
among the modes due to the presence of the rectangular hump.  
  

                             
                          (a)                                                            (b) 

       Fig. 5. Spectra of modal efficiencies for (a) seabed with a rectangular bump and  
                         (b) a flat seabed 
 
 
<H2>Down-Sloping Bottom 
 
Shallow-water conditions are encountered in the near-coast context where the ocean bottom has a 
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14.3. Down-sloping bottom

Shallow-water conditions are encountered in the near-coast context where the ocean bottom
has a sloping geometry. There are two situations to consider, up-slope and down-slope,
depending on the location of the source with respect to the slope. First we consider the down-
sloping case where the ocean-bottom slopes down from 100 m to 230 m over a distance of 600
m. The details of the geometry are shown in Fig. 6.
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Figure 7. Comparison of TL at 36 m depth of an ocean with down-sloping bottom and a flat bottom

Panel (a) shows the TL with the down-sloping bottom. Panel (b) shows the TL for a water
column with the flat bottom at depth 100 m. Both results are for the source frequency of 150
Hz. Notice the distinct spatial power distribution manifested by the sloping bottom. To
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facilitate a better comparison, we have shown in Fig. 7 the TL at 36 m depth corresponding to
the flat and sloping bottoms. Notice that the TLs for the two cases are similar in the region
between the source and the middle of the slope. Beyond that, the TL corresponding to the
sloping bottom is significantly larger than that of the flat bottom.
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In order to better understand the propagation phenomenology, the modal power spectrum for the 
shallow-water ocean with (a) down-sloping bottom and (b) flat bottom are shown in Fig. 8. Notice 
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Next we consider the problem of sloping bottom where the ocean bottom slopes up (with respect to 
location of the source) from 230 m to 100 m over a distance of 600 m. The details of the geometry 
are shown in Fig. 9. The acoustic source is located at 36 m below the water surface on the left. 

Figure 8. Modal power spectrum of shallow-water column with (a) down-sloping bottom and (b) flat bottom of depth
100 m

In order to better understand the propagation phenomenology, the modal power spectrum for
the shallow-water ocean with (a) down-sloping bottom and (b) flat bottom are shown in Fig.
8. Notice that there is a significant redistribution of energy in the case of sloping bottom
although the total power flows in both cases are approximately the same.

14.4. Up-sloping bottom

Next we consider the problem of sloping bottom where the ocean bottom slopes up (with
respect to location of the source) from 230 m to 100 m over a distance of 600 m. The details of
the geometry are shown in Fig. 9. The acoustic source is located at 36 m below the water surface
on the left.

Panel (a) shows TL for the case of 105Hz and panel (b) shows the case of 150 Hz. We notice
that at 105 Hz there is a substantial reduction in power flow. However, at 150 Hz the power
flow is as good as that of a flat-bottom waveguide. The mode spectral distribution in Fig. 10
shows the details of how the power flows in the two cases. We notice that for the up-slope
case, power flow can be good at certain frequencies and not good at others, depending on the
impedance matching conditions. In contrast, for the case of down slope the power flow is good
for all the frequencies that we studied.
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14.5. Object in the water column

Characterizing the signatures of objects in the ocean is an important remote sensing problem.
We consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown
in Fig. 11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL
for the source frequency at 150 Hz. We notice that the power flow can be substantially
influenced by the object, depending on the frequency of operation. This is because of the
interference phenomena involving the object and the boundaries of the waveguide.

22 
 

                                                            
                                      (a)                                                                             (b) 
Fig. 9. Transmission loss of shallow-water column with up-slope bottom at 105 Hz and 150 Hz 
 
Panel (a) shows TL for the case of 105Hz and panel (b) shows the case of 150 Hz. We notice that at 
105 Hz there is a substantial reduction in power flow. However, at 150 Hz the power flow is as 
good as that of a flat-bottom waveguide. The mode spectral distribution in Fig. 10 shows the details 
of how the power flows in the two cases. We notice that for the up-slope case, power flow can be 
good at certain frequencies and not good at others, depending on the impedance matching 
conditions. In contrast, for the case of down slope the power flow is good for all the frequencies that 
we studied.  
 
 

                           
  (a)                                                                       (b) 

 Fig. 10. Modal spectrum of shallow-water column with up-sloping bottom (a) 105 Hz (b) 150 Hz  
 
 
<H2>Object in the Water Column 
 
Characterizing the signatures of objects in the ocean is an important remote sensing problem. We 
consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown in Fig. 
11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL for the 

Figure 9. Transmission loss of shallow-water column with up-slope bottom at 105 Hz and 150 Hz

Environmental Applications of Remote Sensing222



22 
 

conditions. In contrast, for the case of down slope the power flow is good for all the frequencies that 
we studied.  
 
 

                           
  (a)                                                                       (b) 

 Fig. 10. Modal spectrum of shallow-water column with up-sloping bottom (a) 105 Hz (b) 150 Hz  
 
 
<H2>Object in the Water Column 
 
Characterizing the signatures of objects in the ocean is an important remote sensing problem. We 
consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown in Fig. 
11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL for the 
source frequency at 150 Hz. We notice that the power flow can be substantially influenced by the 
object, depending on the frequency of operation. This is because of the interference phenomena 
involving the object and the boundaries of the waveguide.  
 

                           
     (a)                                                                      (b) 

         Fig. 11. TL of a shallow-water column with an object (a) 135 Hz (b) 150 Hz 
 
<H2>Shallow-Water Column with Rippled Top Surface 

Figure 10. Modal spectrum of shallow-water column with up-sloping bottom (a) 105 Hz (b) 150 Hz

14.5. Object in the water column

Characterizing the signatures of objects in the ocean is an important remote sensing problem.
We consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown
in Fig. 11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL
for the source frequency at 150 Hz. We notice that the power flow can be substantially
influenced by the object, depending on the frequency of operation. This is because of the
interference phenomena involving the object and the boundaries of the waveguide.

22 
 

                                                            
                                      (a)                                                                             (b) 
Fig. 9. Transmission loss of shallow-water column with up-slope bottom at 105 Hz and 150 Hz 
 
Panel (a) shows TL for the case of 105Hz and panel (b) shows the case of 150 Hz. We notice that at 
105 Hz there is a substantial reduction in power flow. However, at 150 Hz the power flow is as 
good as that of a flat-bottom waveguide. The mode spectral distribution in Fig. 10 shows the details 
of how the power flows in the two cases. We notice that for the up-slope case, power flow can be 
good at certain frequencies and not good at others, depending on the impedance matching 
conditions. In contrast, for the case of down slope the power flow is good for all the frequencies that 
we studied.  
 
 

                           
  (a)                                                                       (b) 

 Fig. 10. Modal spectrum of shallow-water column with up-sloping bottom (a) 105 Hz (b) 150 Hz  
 
 
<H2>Object in the Water Column 
 
Characterizing the signatures of objects in the ocean is an important remote sensing problem. We 
consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown in Fig. 
11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL for the 

Figure 9. Transmission loss of shallow-water column with up-slope bottom at 105 Hz and 150 Hz

Environmental Applications of Remote Sensing222

22 
 

conditions. In contrast, for the case of down slope the power flow is good for all the frequencies that 
we studied.  
 
 

 
Fig. 10. Modal spectrum of shallow-water column with up-sloping bottom (a) 105 Hz (b) 150 Hz  
 
 
<H2>Object in the Water Column 
 
Characterizing the signatures of objects in the ocean is an important remote sensing problem. We 
consider a cylindrical rigid object of radius 20 m in the middle of a water column as shown in Fig. 
11. Panel (a) shows the TL for the source frequency at 135 Hz. Panel (b) shows the TL for the 
source frequency at 150 Hz. We notice that the power flow can be substantially influenced by the 
object, depending on the frequency of operation. This is because of the interference phenomena 
involving the object and the boundaries of the waveguide.  
 

                           
     (a)                                                                      (b) 

         Fig. 11. TL of a shallow-water column with an object (a) 135 Hz (b) 150 Hz 
 
<H2>Shallow-Water Column with Rippled Top Surface 
 
Ripples on the water surface can be generated by gravity and wind conditions. Such surface 
undulations can considerably influence the wave propagation in the shallow-water waveguide. To 
illustrate this phenomenon, we have taken a periodic structure on the air–water interface as shown 
in Fig. 12. The top surface has a sinusoidal undulation of amplitude 5 m and period 50 m.  
                
 

Figure 11. TL of a shallow-water column with an object (a) 135 Hz (b) 150 Hz

14.6. Shallow-water column with rippled top surface

Ripples on the water surface can be generated by gravity and wind conditions. Such surface
undulations can considerably influence the wave propagation in the shallow-water wave‐
guide. To illustrate this phenomenon, we have taken a periodic structure on the air–water
interface as shown in Fig. 12. The top surface has a sinusoidal undulation of amplitude 5 m
and period 50 m.
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Figure 12. TL in a shallow-water column with (a) wind-generated rippled air–water interface, and (b) flat water surface
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Our FEM results show that the surface ripples causes substantial transmission loss compared
to that of the flat water surface for the case when the source frequency is 120 Hz. However,
this pattern is quite sensitive to source frequency. For some frequencies, the TL may be large
and for others, TL can be low. Dimensions of the waveguide and ripple geometry in terms of
the source signal wavelength are key factors influencing the physics.

14.7. Shallow-water column with depth-dependent sound speed

In all the examples considered thus far, we have assumed that the water column has uniform
sound speed. This is rarely true in practice even for the shallow-water ocean. The normal
modes for the depth-dependent waveguide are required to impose the radiation boundary
condition in our finite element procedure. The Rayleigh–Ritz approximation is used for
obtaining normal modes for this problem. The sound-speed profile taken for this study is
shown in Fig. 13.

Figure 13. Sound-speed profile (S1) used for our study

The TL for our geometry with the sound-speed profile given in Fig. 13 is shown in Fig. 14. The
result for source frequency of 150 Hz is shown in Panel (a) and that corresponding to isovelocity
is shown in Panel (b). Although the sound-speed variation is very small, we notice the impact
of depth dependence of sound speed on TL is substantial. However, at lower frequencies, this
kind of sound-speed variation does not influence the TL much.
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14.8. Shallow-water column with depth-dependent sound speed and a rectangular bump on
seabed

Next, we consider the case of shallow-water ocean with depth-dependent sound speed and a
rigid rectangular hump on the seabed.
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14.9. Shallow-water column with depth-dependent sound speed and rippled top surface

Finally, we consider the case of shallow-water ocean with depth-dependent sound speed (Fig.
13) and a rippled air–water surface. The results are shown in Fig. 16.
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Note that for source frequency of 30Hz, the presence of ripples has reduced the transmission loss in 
most regions. This is in contrast to the last case (Fig. 15) where there is a rectangular bump on the 
seabed. However, these characteristics are due to interference phenomenon and hence have strong 
frequency dependence. The important point is that small features such as ripples can have a 
significant impact on the underwater propagation characteristics. 
 
<H1>Conclusion	
 
A finite element approach has been presented for remote sensing in shallow-water ocean 
environment. The three principal elements of remote sensing are: (a) signal propagation and 

Figure 16. TL for the shallow-water ocean with (a) depth-dependent sound speed and a rippled air–water interface,
and (b) depth-dependent sound speed

Note that for source frequency of 30Hz, the presence of ripples has reduced the transmission
loss in most regions. This is in contrast to the last case (Fig. 15) where there is a rectangular
bump on the seabed. However, these characteristics are due to interference phenomenon and
hence have strong frequency dependence. The important point is that small features such as
ripples can have a significant impact on the underwater propagation characteristics.

15. Conclusion

A finite element approach has been presented for remote sensing in shallow-water ocean
environment. The three principal elements of remote sensing are: (a) signal propagation and
reception, (b) data analysis, and (c) inversion or retrieval. This chapter exclusively deals with
part (a) of the trilogy of remote sensing. Although several approaches have been developed
for wave propagation studies in underwater ocean, they all have limitations when encountered
with complex geometries and environments as in shallow-water ocean. An FE approach is
both accurate and feasible for such applications. In order to minimize the problem size, a
Bayliss-type damper was imposed to truncate the solution domain. Since several propagating
modes can exist in the ocean waveguide, a penalty function approach was used to impose the
radiation boundary condition in the variational finite element formulation of the problem. This
penalty function approach was found to be robust over a wide range of penalty scale factors.
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both accurate and feasible for such applications. In order to minimize the problem size, a
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For the shallow-water ocean waveguide with depth-dependent sound-speed problem, the
eigensolution was obtained using a Rayleigh–Ritz approximation. The trial functions are
derived from an isovelocity problem that has exact solution. It is important to note that such
trial functions automatically satisfy even the dynamic interface condition at the seabed, thus
contributing to the accuracy of the numerical model. The proposed model is accurate and
provides a compact semi-analytical form for the depth modes.

We thus have an accurate FE model for the remote sensing in range- and depth-dependent
ocean-acoustic waveguides. Numerous examples were considered to illustrate the accuracy
and versatility of this model. Admittedly, the computational effort in setting up the matrix in
the proposed RR model using numerical quadrature is high compared to setting up the finite-
difference-based matrix in the Porter and Reiss approach. However, noting the diagonal
dominance of the matrix obtained in the RR model, it would be worthwhile exploring the
possibility of approximating it by a narrow banded matrix in order to reduce the volume of
computation in setting up the matrix and possibly in obtaining the eigensolution. We have
also extended this work for the case of irregular elastic seabed. We continue to explore and
further develop our finite element approach by applying it to several other ocean-acoustic
problems encountered in the remote sensing of ocean environment.

16. Appendix A: Derivation of multimode radiation damping matrix

Consider the functional in Eq. (12). The contribution, IR(pe), from the radiation boundary of a
finite element is represented by the second integral in that equation; i.e.,
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where M denotes the number of propagating modes, αm the damper coefficient associated with
the m-th mode [see Eq. (5)], pm(z) the pressure associated with the m-th normal mode, and SRe

the element surface on the radiation boundary (see Fig. 1).

The modal pressure on the radiation boundary is given by Eq. (8):
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where f m(z) denotes the normal-mode function and am the modal coefficient. Using the finite
element representation, the modal pressure on the radiation boundary may be written as
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where N  denotes the shape functions and { p̄em} the nodal pressure vector on an element edge
on the radiation boundary due to the m-th mode. The summation symbol is used to indicate
that Eq. (53) is a piecewise polynomial representation over the entire depth of the waveguide.
Using Eqs. (52) and (53), Eq. (51) may be written in a discrete form for a finite element as [also
see Eq. (15)]
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In view of Eq. (52), the vector of modal pressure at the nodes of an element in Eq. (53) may be
written as

{ } { }1 2( ), ( ), , ( ) ,T
em m zm zm zm n m zmp a f z f z f z a f= =K (56)

where f zm(zj) denotes the j-th nodal value of the m-th eigenmode on a finite element in contact
with the radiation boundary. Now, using Eqs. (55) and (56), the functional in Eq. (54) may be
written as
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The foregoing steps form the basis for Eq. (19c).

17. Appendix B: Normal-mode functions for isovelocity waveguides

The Rayleigh–Ritz model presented for the depth eigenproblems employs the analytical depth
modes for an isovelocity waveguide as the trial functions. The details of the various isovelocity
waveguide examples encountered in the ocean context are presented here. It should be kept
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in mind that in our problem, the acoustic source and reception points are both in the water
column. Therefore, the wave functions given here have been chosen particularly for this
application.

For a single-layer waveguide of depth D with Dirichlet boundary condition on top and
Neumann boundary condition on the bottom surface, the trial functions are given by

sin( )j j zja k zy = (59)

where
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where aj is chosen to normalize the mode functions.

For a two-layer waveguide shown in Fig. 17, the trial functions are given by
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Figure 17. A bounded two-layer waveguide
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In the case of a Pekeris waveguide (for which D2 →∞ in Fig. 17), the trial functions are given
by

1

1
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where kzj = ω 2 / c 2 −krj
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Note that discrete guided modes in the water column exist only for the case when krj
2 >ω 2 / cb

2.

There are two cases to consider:

Case 1: k <kb

This applies to the situation when the sound-speed velocity in the seabed is smaller than that
in the water column. In this case, there are no guided modes. The entire spectrum is continuous
and does not have contribution to sound transmission in the water column at long distances.

Case 2: k >kb

This applies to the situation when the sound speed in the seabed is larger than that in the water
column. Here the spectrum consists of (a) discrete guided modes, (b) continuous radiation
modes, and (c) surface modes. Among the three, it is the discrete guided modes that carry the
sound signal over long distances in the water column.

Since our interest is in long-range sound transmission in the water column, we have restricted
attention to discrete guided modes as shown above.

One should observe that our two-layer waveguide problem does not share the above men‐
tioned behavior. Note that the two-layer waveguide is terminated at the bottom by a rigid
boundary. Therefore, the underlying physical processes are different.

Case 1: k <kb

Here the entire spectrum in the waveguide consists of discrete guided modes.

Case 2: k >kb

In this case, the spectrum consists of discrete guided modes and surface modes. However, for
long range propagation, the modes of significance are the discrete guided modes.
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Abstract

In this chapter, we attempted to present an overview of the use of remote sensing to mon‐
itor water quality parameters, mainly chlorophyll-a (chl-a) and turbidity. We summarized
the main concepts of bio-optical modeling and presented a case study of the application
of the Hyperspectral Imager for the Coastal Ocean (HICO) for the monitoring of water
quality in a tropical hypersaline aquatic environment. Using HICO, we evaluated a set of
different semi-empirical bio-optical algorithms for chl-a and turbidity estimation devel‐
oped for inland and oceanic waters in the Araruama Lagoon, RJ, Brazil, which is an ex‐
treme environment due to its high salinity values. We also developed an empirical
algorithm for both water quality parameters and compared the performances. Results
showed that for chl-a estimation all models have a low performance with a normalized
root mean square error (NRMSE) varying from 24.13 to 30.46. For turbidity, the bio-opti‐
cal algorithms showed a better performance with the NRMSE between 15.49 and 28.04.
Overall, these results highlight the importance of including extreme environments, such
as the Araruama Lagoon, on the validation of bio-optical algorithms as well as the need
for new orbital hyperspectral sensors which will improve the development of the field.

Keywords: Water quality, chlorophyll-a, turbidity, bio-optical modeling

1. Introduction

Earth Observations from space began in August, 1972, with the launch by National Aeronautics
and Space Administration (NASA) of the Earth Resources Technology Satellite (ERTS-1) [1].
However, the use of remote sensing techniques to monitor inland water quality parameters
such as chlorophyll-a (chl-a), total suspended solids (TSS) and turbidity only started to be
extensively used in the past two decades with the development of bio-optical algorithms as

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



well as the new hyperspectral and multispectral sensors. The use of optical remote sensing
enables spatiotemporally comprehensive assessment of optical properties of the water column.

Water column optical properties are grouped into inherent optical properties (IOPs) and
apparent optical properties (AOPs). IOPs are related to those properties that depend only upon
the environment, thus, they are independent of the environment light field. The two most
essential IOPs are the total absorption coefficient (a) and the total scattering coefficient (b) and
the sum of both coefficients is the attenuation coefficient (k). AOPs, on the other hand, are those
properties that depend on the environment and also on the directional structure of the
environment light field. AOPs are also used as descriptors of a water body due to their regular
features and stability. The most common AOPs are the irradiance reflectance (R), the remote-
sensing reflectance (Rrs) and various diffuse attenuation functions [2]. A list of the most
common IOPs and AOPs used in the literature is shown in Table 1.

Quantity Units (SI) Simbology

Inherent Optical Properties

Absorption coefficient m-1 a

Volume scattering function m-1 sr-1 β

Scattering phase function m-1 β∼

Scattering coefficent m-1 b

Backscatter coefficient m-1 bb

Beam attenuation coefficient m-1 c

Single-scattering albedo - ϖ0

Apparent Optical Properties

Irradiance reflectance (ratio) - R

Remote sensing reflectance sr-1 Rrs

Remote sensing reflectance (sub) sr-1 rrs

Attenuation coefficients:

of radiance L(z, θ, φ) m-1 K(θ, φ)

of downwelling irradiance Ed(z) m-1 Kd

of upwelling irradiance Eu(z) m-1 Ku

of Photosynthetic Active Radiation
(PAR)

m-1 KPAR

Table 1. IOPs and AOPs commonly used in optical hydrology

Environmental Applications of Remote Sensing236



well as the new hyperspectral and multispectral sensors. The use of optical remote sensing
enables spatiotemporally comprehensive assessment of optical properties of the water column.

Water column optical properties are grouped into inherent optical properties (IOPs) and
apparent optical properties (AOPs). IOPs are related to those properties that depend only upon
the environment, thus, they are independent of the environment light field. The two most
essential IOPs are the total absorption coefficient (a) and the total scattering coefficient (b) and
the sum of both coefficients is the attenuation coefficient (k). AOPs, on the other hand, are those
properties that depend on the environment and also on the directional structure of the
environment light field. AOPs are also used as descriptors of a water body due to their regular
features and stability. The most common AOPs are the irradiance reflectance (R), the remote-
sensing reflectance (Rrs) and various diffuse attenuation functions [2]. A list of the most
common IOPs and AOPs used in the literature is shown in Table 1.

Quantity Units (SI) Simbology

Inherent Optical Properties

Absorption coefficient m-1 a

Volume scattering function m-1 sr-1 β

Scattering phase function m-1 β∼

Scattering coefficent m-1 b

Backscatter coefficient m-1 bb

Beam attenuation coefficient m-1 c

Single-scattering albedo - ϖ0

Apparent Optical Properties

Irradiance reflectance (ratio) - R

Remote sensing reflectance sr-1 Rrs

Remote sensing reflectance (sub) sr-1 rrs

Attenuation coefficients:

of radiance L(z, θ, φ) m-1 K(θ, φ)

of downwelling irradiance Ed(z) m-1 Kd

of upwelling irradiance Eu(z) m-1 Ku

of Photosynthetic Active Radiation
(PAR)

m-1 KPAR

Table 1. IOPs and AOPs commonly used in optical hydrology

Environmental Applications of Remote Sensing236

Based on the interaction among AOPs and IOPs, absorption, scattering and attenuation
properties of the water column are retrieved from proximal, aerial or orbital measurements of
the solar spectrum mainly in the visible and near-infrared (NIR) spectral range. These optical
properties allow the estimation of different water quality parameters such as: primary
production, turbidity, eutrophication, particulate and dissolved carbon contents or the
assessment of currents and algal blooms [3]. The relation among all these optical properties as
well as the equipment to measure them were developed by oceanographers based on the
modeling of downwelling solar and sky radiation spectra with the air–water interface and the
subsurface aquatic absorption and scattering centers. Studies such as [4–8], among numerous
others, established the main theory of the field before or around the launch of ERTS-1.

The first application of the theories of hydrologic optics was described by [9], which used a
Monte Carlo simulation of the radiative transfer equation to relate the AOPs to the IOPs in
oceanic waters containing optically active constituents, molecular water and chl-a. For inland
waters, the first application of the hydrologic optics theories was developed for Lake Ontario,
Canada, by a Monte Carlo simulation of the radiative transfer equation and non-linear
multivariate optimization analyses [10]. These applications started a relatively new area for
remote sensing applications known as bio-optical modeling, which focus on the use of the
radiative transfer theory to derive optical properties or biological activity in the water column
[2]. In [11], a classification of the bio-optical modeling products (algorithms) was proposed by
describing five different types of algorithms: empirical, semi-empirical, semi-analytical, quasi-
analytical and analytical. In this classification, the first two types (empirical and semi-
empirical) and the last one (analytical) are usually used to estimate the biological activity from
AOPs using more statistical methods, while the other two types (semi-analytical and quasi-
analytical) are used to estimate IOPs from AOPs using the radiative transfer theory.

The development of bio-optical algorithms usually starts by collecting in situ limnological data
as well as hyperspectral Rrs using a proximal sensor. The use of a hyperspectral sensor is
appropriated to explore absorption peaks, which are very narrow to be identified by a
multispectral one, to develop an algorithm. However, the ultimate goal for a bio-optical
algorithm is to test its applicability on orbital sensors in order to become an important
monitoring tool. Two of the most used satellite sensors to monitor water quality are the
medium resolution imaging spectrometer (MERIS) and moderate resolution imaging spec‐
troradiometer (MODIS); both sensors provide the necessary spectral bands; however, their
coarse spatial resolution makes them suitable only for very large aquatic systems. Despite the
limitation on their spatial resolution, several research focus on the use of these two sensors for
the monitoring of water quality parameters in inland water. Ref. [12] evaluated the perform‐
ance of different chl-a semi-empirical algorithms developed, especially for MERIS on a tropical
reservoir in Brazil, and in [13] the authors developed a series of steps to improve the estimation
of chl-a and cyanobacteria blooms in inland and near-coastal waters based on the MERIS
imagery. For MODIS, empirical [14] and semi-empirical [15–17] algorithms have been
developed for the monitoring of different water quality parameters.
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To overpass the problem of the spatial resolution and to keep a good spectral resolution,
hyperspectral airborne sensors have been used to monitor the quality of inland waters. One
of the most common airborne hyperspectral sensor used to monitor water quality parameters
is the airborne imaging spectrometer for application (AISA), which is a push-broom system
that collect spectral-radiance data (upwelling radiance and downwelling solar irradiance) in
the visible and NIR range of the electromagnetic spectrum (approximately from 392 to 982 nm
with a bandwidth of 7–8 nm). From an altitude of 1,000 m, this sensor has a spatial resolution
of 1 m, surpassing the problems caused by medium to low spatial resolutions found in orbital
sensors. In [18], AISA imagery was used to estimate chl-a and phycocyanin (PC) concentrations
in a mesotrophic reservoir in Central Indiana, USA, based on a series of semi-empirical
algorithms. In [19], the authors used the same imagery from the previous study [18] to apply
a quasi-analytical algorithm and spatialize the chl-a, backscattering (bb) and a. In [20], AISA
imagery was used to measure chl-a, suspended solids, turbidity and other measures of water
clarity from major rivers of Minnesota, USA. Although the use of airborne hyperspectral
sensors showed to be an alternative to the development of bio-optical algorithms, because of
the expenses of the acquisition and low temporal availability, airborne sensors have not been
highly used for water quality monitoring.

An orbital hyperspectral sensor could be the solution for the high costs of flying an airborne
sensor, and this was accomplished by the launch of Hyperion, in 2000. However, this sensor
was not used in a water quality research because of its signal-to-noise ratio which was very
low [21], and also because of its unreliability caused by problems such as radiometric insta‐
bility. An alternative for the acquisition of hyperspectral images with a medium spatial
resolution was the hyperspectral imager for the coastal ocean (HICO), a hyperspectral sensor
with 87 spectral bands covering the visible and NIR range (400–900 nm) on-board of the
International Space Station (ISS). HICO acquired programmed images from September 2009
to September 2014 with a spatial resolution of 90 m, higher than MERIS (300 m) and MODIS
(250, 500 and 1000 m). Since HICO was a sensor developed for the monitoring of aquatic
environments, several researches used it to monitor several parameters such as: seagrass and
algae mapping [22], cloud removal [23], red tide detection [24], improved chl-a detection [25]
and harmful cyanobacteria bloom detection [26]. These studies showed strong relationships
between these aquatic constituents and reflectance data which could be used to monitor water
quality. They also highlight the importance of having an orbital hyperspectral sensor with a
high signal-to-noise ratio to improve the development of bio-optical algorithms for inland and
coastal waters. The bio-optical modeling of water quality parameters can be used as a com‐
plement to conventional monitoring programs which are usually based on sampling and
analyzing of few spots in the aquatic system. Moreover, traditional monitoring programs are
costly and time-consuming [27], while bio-optical modeling can quickly provide a synoptic
view of the environment.

1.1. Hypothesis

Bio-optical algorithms developed for inland or deep ocean waters are unable to uptake
empirical algorithms developed especially for extreme environments.
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1.2. Objectives

In this chapter, we attempted to present an overview of the application of bio-optical algo‐
rithms to monitor water quality parameters as well as to assess chl-a and turbidity from a
hypersaline tropical lake (Araruama Lagoon) in Rio de Janeiro, Brazil, using HICO imagery
and different bio-optical algorithms. A secondary goal of this chapter was to evaluate the
performance of bio-optical algorithms for the estimation of chl-a and turbidity in an extreme
aquatic system such as the Araruama Lagoon.

2. Study site

The Araruama Lagoon is a hypersaline coastal lagoon located in the central coast of Rio de
Janeiro State, Southeastern Brazil, between latitudes 22°50’S and 22°57’ S and the longitudes
42°00’ W and 42°44’ W. It is situated in a micro-region called “Região dos Lagos”, around 120
km from Rio de Janeiro City (Figure 1a,b). This region is densely populated showing a
population density around 268 habitants per square kilometer [28]. The lagoon area encom‐
passes five municipalities: Araruama, Arraial do Cabo, Cabo Frio, Iguaba Grande, São Pedro
da Aldeia and Cabo Frio (see Figure 1c).

Figure 1. The Araruama Lagoon: (a) Location in Southeastern Brazil, (b) position within the Rio de Janeiro State, and
(c) orbital image of the Araruama Lagoon acquired on 1st August 2015 by the Operational Land Imager (OLI) on-
board Landsat-8 satellite. The satellite images are presented in false color composition R4G5B2.
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From the morphological point view, the Araruama Lagoon consists of a series of elongated
spits and shallow embayment presenting a longitudinal elongated shape with around 35 km
in length and a mean width of 8 km; the maximum width is around 13 km. The surface area
is around 220 km2 and the depth ranges from 1 to 17 m; the mean depth is around 3 m [29].
The only connection between the Araruama Lagoon and sea, the Itajuru Channel, is located in
the Cabo Frio City, Northeastern portion of the lagoon (see Figure 1c). The drainage basin
covers around 320 km2, and permanent sources of freshwater come from Moças River and
Mataruna River, in the Western portion of the Lagoon (see Figure 1c); the two rivers present
a combined discharge of 1 m3/s [30].

The salinity of the Araruama Lagoon ranges from 35 to 43 practical salinity unit (psu) in the
Itajuru Channel and from 46 to 56 psu in the main body of the Lagoon, being the salinity mainly
balanced by the climatology of the area [29]. According to the Köppen-Ginger classification
scheme [31], the climate in the region can be classified as Tropical Monsoon (Am) with rainfall
ranging between 36 (August) and 101 mm per month (December) and the air temperature
ranging from 21 (August) and 25.4°C (February–March) along the year ([32], see Figure 2); the
mean annual precipitation is 771 mm per year and the mean air temperature is around 23°C.

Figure 2. Climatological (1961–1990) monthly rainfall and air temperatures in the Araruama Lagoon region. Data regis‐
tered on Cabo Frio meteorological station (Lat. -22.98°; Long. 42.03°). Source [32].

The water quality in the Araruama Lagoon has changed over the time, showing an increasing
eutrophication along the past few years as a result of the increasing urban growth in the Região
dos Lagos [33]. According to the Trophic State Index (TSI) classification scheme proposed by
[34], the Araruama Lagoon can be classified as eutrophic environment, with an average total
phosphorous concentration around 0.09 mg/L and the average chl-a concentration around 11.7
μg/L [35]. Cyanobacteria (Synechococcus sp, Oscillatoria sp and Synechocystis sp) is the dominant
community in the water column along the year (around 84% of the total cell count), followed
by Diatomaceous (around 7% of the total cell count) and Dinoflagellates (around 5% of the
total cell count) [36].
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3. Materials and methods

3.1. Remote sensing data

HICO imageries of Araruama Lagoon were acquired from HICO's website database at Oregon
State University (OSU) [37]. The acquisition of the images over Araruama Lagoon occurred
from 2011 to 2013, where only images without cloud cover over the lagoon were selected. HICO
images are available with a Level 1B of processing, which corresponds to the radiance in the
top of the atmosphere (LTOA) given in Wm-2μm-1sr-1 after the application of a division factor of
50. Table 2 lists the HICO imagery with clear sky over the Araruama Lagoon.

Year Julian
day

Image Name

2011 220 iss.2011220.0808.120519.L1B.GLT_Habitat_Brazil.v04.7594.20110809180058.100m.hico

2012 037 iss.2012037.0206.112051.L1B.GLT_Habitat_Brazil.v04.9365.20120206182247.100m.hico

2012 040 iss.2012040.0209.100728.L1B.GLT_Habitat_Brazil.v04.9394.20120209193848.100m.hico

2012 094 iss.2012094.0403.122511.L1B.GLT_Habitat_Brazil.v04.9907.20120403190851.100m.hico

2012 282 iss.2012282.1008.094232.L1B.GLT_Habitat_Brazil.v04.11631.20121009174522.100m.hico

2013 152 iss.2013152.0601.114032.L1B.GLT_Habitat_Brazil.v04.13707.20130603175752.100m.hico

2013 215 iss.2013215.0803.110724.L1B.GLT_Habitat_Brazil.v04.14303.20130805151206.100m.hico

2013 279 iss.2013279.1006.094546.L1B.GLT_Habitat_Brazil.v04.14826.20131007170614.100m.hico

Table 2. List of clear sky HICO images over Araruama Lagoon

All these images were atmospherically corrected by the Second Signal in the Solar Spectrum
(6S) implementation of Tafkaa algorithm [38]. Tafkaa is a radiative transfer algorithm devel‐
oped mainly for applications in the field of oceanic hyperspectral remote sensing, and it is
based on an earlier code named ATmospheric REMoval (ATREM) [39]. Tafkaa is available for
processing HICO images online via a web tool [37], with prior registration. For the atmospheric
correction over the Araruama Lagoon, the aerosol model was set to "maritime" and the
atmospheric model was set to "tropical", since these characteristics seem to be the more
appropriate for the study site. The final products of this process are delivered in units of Rrs,
sr-1, and the spectra from the 12 sampling points of the Inter-Municipal Consortium Lagos São
João [35] were obtained for the bio-optical modeling.

3.2. Limnological data

Chl-a (μg/L) and turbidity (NTU) data were acquired from the reports from the Inter-municipal
Consortium Lagos São João, which are available at [35]. This consortium collects monthly data
from 12 sampling points in the Araruama Lagoon and has the goal to propose and execute
actions to recover the environment in the watershed of three different lagoons (Jaconé,
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Saquarema e Araruama) in Rio de Janeiro State, Brazil. Reports matching the HICO imagery
(i.e., field campaigns that were carried out on the nearest date as possible as the images
acquisition, Table 2) were used to acquire chl-a and turbidity data and a total of 87 useful
sampling locations were found. These data were divided into two datasets: calibration (53
sampling points using data from 2011 to 2012) and the validation (34 sampling points using
data from 2013). Figure 3 shows box-plots to access the statistical distribution of the chl-a (μg/
L) and turbidity (NTU) values from Araruama Lagoon that were used to calibrate and validate
the bio-optical algorithms.

Figure 3. Box-plots of chl-a (μg/L) and turbidity (NTU) values used for calibration (2011–12) and for validation (2013)
of the bio-optical algorithms.

3.3. Bio-optical algorithms

Several empirical and semi-empirical bio-optical algorithms for chl-a and turbidity have been
developed in the past decade. Since HICO is a hyperspectral sensor, it is possible to apply
several bio-optical algorithms which use different spectral bands. For the estimation of chl-a
spectral features such low reflectance (troughs) at ~430 nm and ~670 nm caused by the
absorption of chl-a and a phytoplankton scattering peak at ~700 nm are commonly used in the
development of semi-empirical algorithms. The combination of these spectral features makes
the ratio of between Rrs around 700 and 670 nm [40] widely used for bio-optical algorithm for
estimating chl-a concentration in turbid waters. There are other algorithms that employ slight
variations of this ratio, such as the three band algorithm [41] which uses a third band to
minimize the effect of scattering which should be a spectral band with minimal absorption
(usually around 750 nm). Another variation is the four band algorithm [42] which includes a
spectral band located near 700 nm to enhance the minimization of scattering of suspended
matter at the NIR and the absorption by water. Recently, a Normalize Difference Chlorophyll
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Index (NDCI) [43] was proposed to estimate chl-a concentrations in turbid waters and also
used the relationship between 700 and 670 nm. All these algorithms were proposed to estimate
chl-a concentration in turbid waters; however, for deep ocean waters chl-a can also be estimated
by algorithms based on band ratios focusing on the chl-a absorption around 430 nm and the
scattering of particulate matter around 560 nm [44].

Name Algorithm Reference

Chl-a Algorithms

2BDA
Rrs(band54)
Rrs(band47) [40]

3BDA
 Rrs(band62)

Rrs(band47) − Rrs(band54) [41]

4BDA { 1
Rrs(band46) − 1

Rrs(band51) } / { 1
Rrs(band60) − 1

Rrs(band54) } [42]

NDCI
Rrs(band54) − Rrs(band47)
Rrs(band54) + Rrs(band47)

[43]

OC3A
Rrs(band8)
Rrs(band27) [44]

OC3B
Rrs(band16)
Rrs(band27) [44]

OC3C
Rrs(band20)
Rrs(band27) [44]

Turbidity Algorithms

1BDA Rrs(band43) [45]

2BDA
Rrs(band81)
Rrs(band43) [46]

LSBA Rrs(band15) + Rrs(band28) [47]

Table 3. List of bio-optical algorithms for chl-a and turbidity using HICO spectral bands

Turbidity is usually identified by the high reflectance in the red and NIR spectral bands and
is usually correlated to the total suspended solids concentration. Therefore, bio-optical
algorithms for TSS can be used to estimate turbidity. The simplest algorithm uses the Rrs at 645
nm to estimate turbidity [45]; however, other algorithms were also proposed to estimate
turbidity using the relationship between NIR and red spectral bands, such as the band ratio
proposed by [46]. Another algorithm to estimate turbidity is based on the sum of Rrs in the blue
and green spectral bands [47]. However, most of the algorithms were developed for inland,
coastal or oceanic waters and have not been applied in extreme environments such as the
hypersaline Araruama Lagoon. Table 3 lists the published semi-empirical bio-optical algo‐
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rithms for chl-a and turbidity evaluated in this chapter. The algorithms in this list are expressed
according to the 87 HICO’s spectral bands.

3.4. Bio-optical algorithm development

Since the Araruama Lagoon is a hypersaline aquatic system, and the bio-optical algorithms
listed in the previous section were develop for fresh or oceanic waters, we developed two
empirical algorithms for the estimation of chl-a and turbidity. The development of these
empirical algorithms was conducted by calculating the correlation among different band ratios
and the concentrations of chl-a and turbidity values. To perform this analysis, we used a web
tool named Interactive Correlation Environment (ICE) described by [48] and available at [49].
This web tool builds a two-dimensional correlation plot of the HICO’s Rrs and its relation to
the interested limnological parameter (i.e., chl-a or turbidity). The two-dimensional color
correlation plot can cover all possible band ratios, which in the HICOs case is equal to 7,569
possible combinations, making it a useful tool for the analysis of hyperspectral measurements
with a large number of spectral bands.

3.5. Bio-optical algorithms comparison

As described in Section 3.2, the data were divided in calibration (2011–12, 53 sampling points)
and validation (2013, 34 sampling points) datasets. For the calibration dataset, a linear
regression analysis was computed by the values of slope and intercept for each of the algo‐
rithms listed on Table 3 plus the two empirical algorithms developed by the use of ICE. The
determination coefficient (R2) was also computed and the algorithms that had the highest R2

values were used for validation.

The validation process was computed by analysing a scatter plot between the measured and
the estimated values of chl-a and turbidity. For chl-a, the concentration values were trans‐
formed to log (chl-a) and for the turbidity, no transformation was needed. We also used errors
estimators such as the root mean squared error (RMSE in μg/L or NTU, equation 1) and the
normalized root mean squared error (NRMSE, equation 2) to evaluate the performance of the
bio-optical algorithms after their calibration.
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where: yi and xi are the measured and predicted chl-a/turbidity values, respectively. In the i-
th sample, yi,max and yi,min are the maximum and minimum chl-a/turbidity values, respectively.
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4. Results and discussions

4.1. ICE’s results

To compute the two-dimensional color correlation plot, the Rrs spectra were extracted from
HICO imagery over the sampling locations in the Araruama Lagoon (Figure 4). Figure 4
presents the Rrs spectra of the calibration (Figure 4A) and validation (Figure 4B) datasets. Both
datasets presented spectral features of an eutrophic water, with a high reflectance peak in the
green range around 550 nm, a trough near 620 nm, another trough around 665 nm and a peak
in the NIR around 700 nm. The reflectance peak around 550 nm represents the minimal
absorption of all algal pigments and the scattering of non-organic suspended matter and
phytoplankton cell walls [50]. The trough around 620 nm occurs due to the absorption of
phycocyanin, a phycobillin presented in inland water cyanobacteria [51–52]. The trough
around 665 nm is due to the absorption of chl-a in the red range of the spectrum and the peak
around 700 nm is also dependable of the chl-a since it represents the scattering of the suspended
matter which includes algal biomass [53]. The two-dimensional color correlation plot was
computed using the Rrs from the calibration dataset as well as the limnological dataset
presented in Section 3.2.

Figure 4. Rrs spectra from HICO imagery after atmospheric correction. A) Rrs spectra from 2011 and 2012 used for the
calibration; B) Rrs spectra from 2013 used for the validation.

The use of ICE generates two different two-dimensional color correlation plots, one for chl-a
(Figure 5A) and one for turbidity (Figure 5C). Using the filtering tool implemented in ICE, it
was possible to select the band ratio that gives the highest R2 for each of the parameters. Figure
5B shows the filtered plot for chl-a estimation which highlights only the band ratios with high
R2, Figure 5D shows the same filtered plot for the turbidity. Since the choices of spectral bands
are only based on the statistical estimators among all possible band ratios, the algorithms
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derived from this web tool can be classified as empirical, and does not have a biophysical
background to support the spectral bands used in each band ratio.

Figure 5. Two-dimensional color correlation plots produced by the web tool. (A) For chl-a estimation; (B) After the fil‐
tering the chl-a plot; (C) For turbidity estimation; (D) After the filtering the turbidity plot.

For chl-a the best R2 was found in correlation to the ratio between band 26 and band 25 which
in wavelengths are around 547 and 541 nm, respectively. This relationship is totally empirical
and since both bands are very close to each other, the value from this ratio is probably close
to 1. For the turbidity band ratio, ICE selected the ratio between band 36 and band 87, which
respectively corresponds to 604 and 896 nm. Although it is an empirical model, these two bands
can be justified by the fact in both wavelengths the suspended matter will have a high
scattering, and if the suspended matter is high, the turbidity will also be high. The formulation
and name of these two empirical bio-optical algorithms were described in Table 4.
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Name Parameter Algorithm

EMPC Chl-a
Rrs(band26)
Rrs(band25)

EMPT Turbidity
Rrs(band36)
Rrs(band87)

Table 4. Empirical algorithms for chl-a and turbidity developed using ICE

4.2. Algorithms performances

4.2.1. Calibration

Calibration was conducted using the semi-empirical (Table 3) and empirical (Table 4) bio-
optical algorithms. Linear regressions were computed between bio-optical algorithms and chl-
a and TSS values; the R2, slope and intercept from each of the regressions were shown in Table
5. For the calibration of chl-a algorithms, all the algorithms showed a poor performance with
the highest R2 value of 0.087 found by applying EMPC to the calibration dataset. The other
high values of R2 were found by using OC3C (0.065), OC3B (0.037) and 4BDA (0.011), which
showed that algorithms developed for deep ocean (OC3B and OC3C) have better performance
than algorithms developed for inland waters (4BDA). If compared to other Brazilian tropical
inland water aquatic systems, the performance of 2BDA, 3BDA and NDCI showed R2 values
higher than 0.9 during the calibration step [12]. However, for the Araruama Lagoon, the R2

values from these three algorithms were lower than 0.003. This difference in the performance
could be related to the fact that Araruama Lagoon is a hypersaline environment and the high
concentration of salt in the water could be masking the results, although the Rrs spectra show
the features of a reservoir dominated by cyanobacteria. This poor performance in the calibra‐
tion of all algorithms highlights the importance of having an extreme environment as a study
site in bio-optical modeling studies, since one of the goals of this field is to have an algorithm
that can perform well in different aquatic systems.

The poor performance of all algorithms could be associated to the fact that none of these
algorithms were developed for hypersaline aquatic systems, which make their calibration
difficult in this type of environment. Another source of error could be associated to the
temporal window between the image acquisition and field sampling. Since we are using
ground truth data that are collected as part of a routine monthly monitoring, we could not find
an exact match with temporal windows ranging from 2 to more than 10 days. This can lead to
erroneous interpretations since the dynamics of parameters, mainly the biotic ones such as
phytoplankton, in the water column can change within days according to the environment
dynamics. Adopting a 3-days window, the calibrations showed in Table 5 improved mainly
for the chl-a algorithms. Table 6 shows the calibrations using only the images within the 3-
days window from the field campaign, which shows that EMPC got a R2 value of 0.43, while
using the entire dataset the R2 value was around 0.08. For the turbidity estimations, the
improvement was not big as for the chl-a estimations varying from an R2 of 0.574 for the 1BDA
using the entire dataset to an R2 of 0.596 using only the 3-days window data. These results
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showed that the calibration is most affected by the temporal window when a biotic parameter
is being analysed.

Chl-a algorithms

Name R2 Slope Intercept

4BDA 0.049 19.022 15.061

OC3A 0.223 -33.516 29.576

OC3B 0.186 -23.12 23.798

EMPC 0.430 159.3 -164.79

Turbidity algorithms

Name R2 Slope Intercept

1BDA 0.596 1031.2 3.054

2BDA 0.211 -3.193 10.512

LSBA 0.509 437.33 2.757

EMPT 0.304 0.890 5.550

Table 6. R2, slope and intercept of the linear regression from the bio-optical algorithms tested using a 3 days temporal
window

Chl-a algorithms

Name R2 Slope Intercept

2BDA <0.001 -0.026 14.369

3BDA 0.002 -0.256 14.270

4BDA 0.011 9.806 14.097

NDCI 0.003 7.878 12.561

OC3A 0.006 -4.510 15.753

OC3B 0.037 -16.635 21.911

OC3C 0.065 -29.037 28.519

EMPC 0.087 101.760 -98.513

Turbidity algorithms

Name R2 Slope Intercept

1BDA 0.574 1145.1 1.1929

2BDA 0.127 -3.5418 8.2162

LSBA 0.385 453.18 0.3646

EMPT 0.450 1.2385 3.518

Table 5. R2, slope and intercept of the linear regression from the bio-optical algorithms tested (shaded areas represents
the algorithms that were used for validation)
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If compared to the performance of 2BDA and 3BDA for the estimation of chl-a in Taganrog
Bay [25] the calibration for Araruama is poor, since the R2 values found by [25] were 0.84 and
0.87 for the 2DBA and 3BDA, respectively. However, if compared to another hypersaline
environment, such as Mono Lake, CA, USA, the results are equivalent since an R2 of 0.49 was
found to correlate chl-a and a bio-optical algorithm developed for the airborne visible/infrared
imaging spectrometer (AVIRIS) sensor [54]. These results highlight the current need for a
global database of bio-optical modeling data for inland waters, as well as the development of
more semi- and quasi-analytical algorithms. Although few attempts have been proposed to
create a global database of bio-optical modeling data for inland waters [55–56], we still need
an organization such as the International Ocean Colour Coordinating Group (IOCCG) to
coordinate the protocols, products and database of algorithms and bio-optical modeling data.
Thus, the global bio-optical modeling of inland waters will only be achieved when we have
algorithms developed and tested for all different types of environments.

4.2.2. Validation

The validation of the bio-optical algorithms with the best R2 in the calibration was computed
using two different methods: validation plots between the measured and the estimated values
of chl-a and turbidity and error estimators. Figure 6 showed the validation plots for the four
bio-optical algorithms analysed in this chapter: 4BDA (Figure 6A), OC3C (Figure 6B), OC3B
(Figure 6C) and EMPC (Figure 6D). The dashed red line represents the 1:1 line where the points
of the scatter plot should be over that line. In Figure 6A, we observed that the points are
vertically distributed showing that there is no variation in the estimated values of log (chl-a);
however, the error estimator showed that 4BDA has the lowest NRMSE of 24.13% among the
tested algorithms. This fact showed that error estimators are only statistical and do not
represent well the reality of the distribution of the data. Figure 6B and 6C showed the results
for the algorithms proposed for ocean color remote sensing, OC3B and OC3C, the NRMSE for
these bio-optical algorithms were 27.37% and 30.80%, respectively. The validation plots for
both bio-optical algorithms showed a better distribution than the 4BDA since they showed a
better distribution over the 1:1 line. However, both of the ocean color algorithms showed to
underestimate (Figures 6B and 6C) the high values of log (chl-a). Figure 6D showed the scatter
plot for the empirical algorithm (EMPC), which showed a NRMSE of 30.46%. This validation
plot showed a similar pattern to the previous semi-empirical models and also underestimate
the values of log (chl-a).

Based on these results for the chl-a bio-optical algorithms, we observed that although the
lowest NRMSE was found in the 4BDA, the validation plots showed that the other algorithms
showed a better distribution and can explain better the estimation of the log (chl-a). Therefore,
OC3B showed the best performance with a NRMSE of 27.37% and a validation plot that
underestimates the high values of chl-a. This underestimation was expected since for the ocean
color bio-optical modeling the concentration of chl-a is not high and in the case of Araruama
Lagoon the concentration can reach 130 μg/L of chl-a. As discussed in the calibration results,
if compared to another tropical inland water body, the NRMSE are higher. In [12] the NRMSE
founded for 2BDA, 3BDA and NDCI were 18.32%, 19.68% and 17.85%, respectively, for bio-
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optical models calculated using proximal hyperspectral sensor. These differences can be
related to the atmospheric correction, which is not needed for the proximal hyperspectral
sensor [12], but also for the fact that Araruama Lagoon has a very unique biogeochemical
cycling, which could lead to different composition of the water column. Overall, more studies
should be conducted in Araruama Lagoon to better understand the optical properties in this
aquatic system.

Figure 6. Validation plots for the chl-a bio-optical algorithms: (A) 4BDA; (B) OC3C; (C) OC3B; (D) EMPC

The validation for the turbidity bio-optical algorithms showed a better agreement between the
validation plots and the error estimators. Figure 7 showed the validation plots for the four bio-
optical algorithms analysed in this chapter: 1BDA (Figure 7A), 2BDA (Figure 7B), LSBA (Figure
7C) and EMPT (Figure 7D). The lowest NRMSE was 15.49% and was achieved by applying the
1BDA to the Rrs data (Figure 7A); the validation plot also showed most of the points close to
the 1:1 line, but as well as for the chl-a algorithms for high values of turbidity the algorithms
underestimated the values. The empirical algorithm (EMPT) had the second best NRMSE
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(17.87%) among the turbidity bio-optical algorithms analysed and the validation plot showed
to be similar to the previous algorithm. 2BDA and LSBA showed a NRMSE of 22.37% and
28.04%, respectively, which are higher than the 1BDA and EMPT algorithms. The validation
plot for 2BDA and LSBA also showed a worst distribution of the scatter points and also showed
an underestimation of the high values of turbidity. Overall, the performance of 1BDA showed
the best validation plot and NRMSE value among the four bio-optical algorithms analysed in
this chapter.

Figure 7. Validation plots for the turbidity bio-optical algorithms: (A) 1BDA; (B) 2BDA; (C) LSBA; (D) EMPT

4.3. Spatial distribution

Applications of bio-optical modeling to monitor water quality in inland waters have been
increasing in the past decade, and this increase is also noticed in the public and private sector
investments on remote sensing technologies to monitor water quality and quantity. The
advantages of using remote sensing technologies over traditional methods to monitor water
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quality parameters were already discussed in the introduction of this chapter; however,
another advantage of using remote sensing is in the spatial distribution of the data. While using
traditional methods of water quality monitoring computes the spatial assessment of the water
quality by performing spatial interpolations or by geostatistical methods of few sampling
points, remote sensing images can provide different values for each pixel within the aquatic
system. The difference is that the few sampling points used to interpolate the data for the
aquatic system area is now replaced for several pixels values in the image, where the interpo‐
lation is not needed; therefore, it does not have the error caused by data interpolation methods.
Figure 8 shows the spatial distribution of chl-a and turbidity in the Araruama Lagoon where
we observed that the west part of the lagoon has the highest values of chl-a and for the turbidity
regions close to the bays have highest turbidity values. These spatial patterns are related to
the hydrodynamic of the aquatic system, and the combination of bio-optical and hydrody‐
namic modeling [57] is a powerful tool to understand the spatial dynamics of the environment.

Figure 8. Application of the bio-optical algorithms to the HICO image from Araruama Lagoon acquired on August 3,
2013. (A) Application of calibrated OC3C; (B) Application of calibrated 1BDA

5. Final considerations

Based on the case study of Araruama Lagoon, we observe the need for calibration and
validation of bio-optical algorithms in different inland waters since the variability of water
column constituents from region to region is big. We also observe that the use of orbital
hyperspectral sensors is important for the development of bio-optical modeling due to the
number of spectral bands which allow us to study small features, such as the absorption peak
of PC around 620 nm. Thus, narrow spectral bands can highlight specific absorption features
which can be used in the development and improvement of bio-optical algorithms, mainly the
semi- and quasi-analytical algorithms which are based on the radiative transfer theory.
Therefore, future hyperspectral missions such as the Hyperspectral Imager SUIte (HISUI), the
PRecursore IperSpettrale della Missione Applicativa (PRISMA), and the Environmental
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quality parameters were already discussed in the introduction of this chapter; however,
another advantage of using remote sensing is in the spatial distribution of the data. While using
traditional methods of water quality monitoring computes the spatial assessment of the water
quality by performing spatial interpolations or by geostatistical methods of few sampling
points, remote sensing images can provide different values for each pixel within the aquatic
system. The difference is that the few sampling points used to interpolate the data for the
aquatic system area is now replaced for several pixels values in the image, where the interpo‐
lation is not needed; therefore, it does not have the error caused by data interpolation methods.
Figure 8 shows the spatial distribution of chl-a and turbidity in the Araruama Lagoon where
we observed that the west part of the lagoon has the highest values of chl-a and for the turbidity
regions close to the bays have highest turbidity values. These spatial patterns are related to
the hydrodynamic of the aquatic system, and the combination of bio-optical and hydrody‐
namic modeling [57] is a powerful tool to understand the spatial dynamics of the environment.

Figure 8. Application of the bio-optical algorithms to the HICO image from Araruama Lagoon acquired on August 3,
2013. (A) Application of calibrated OC3C; (B) Application of calibrated 1BDA

5. Final considerations

Based on the case study of Araruama Lagoon, we observe the need for calibration and
validation of bio-optical algorithms in different inland waters since the variability of water
column constituents from region to region is big. We also observe that the use of orbital
hyperspectral sensors is important for the development of bio-optical modeling due to the
number of spectral bands which allow us to study small features, such as the absorption peak
of PC around 620 nm. Thus, narrow spectral bands can highlight specific absorption features
which can be used in the development and improvement of bio-optical algorithms, mainly the
semi- and quasi-analytical algorithms which are based on the radiative transfer theory.
Therefore, future hyperspectral missions such as the Hyperspectral Imager SUIte (HISUI), the
PRecursore IperSpettrale della Missione Applicativa (PRISMA), and the Environmental
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Mapping and Analysis Program (EnMAP) are important for the development of bio-optical
modeling.

Moreover, these new hyperspectral missions will support a global mapping of inland water
quality which is only possible through multispectral sensors such as Landsat, MODIS and
MERIS. However, not all water quality parameters are possible to be measured only using
multispectral sensors, for example, the Landsat series which have a poor spectral resolution
that does not detect the spectral features such as peaks and trough of chl-a. MODIS, on the
other hand, have a narrow band moderate spectral resolution; however, its spatial resolution
makes the monitoring of small and medium inland water bodies difficult. Therefore, the
development of new global hyperspectral sensors will make the assessment of water quality
through remote sensing possible because of the high spectral and spatial resolution.

Finally, our case study showed that even by developing an empirical algorithm, the semi-
empirical algorithms outperform them. The best performance for chl-a bio-optical algorithms
was found by applying OC3B (NRMSE of 27.37%) and for turbidity, the 1BDA showed the best
performance with a NRMSE of 15.49%. Although the lower errors estimators validation plots
(Figures 6 and 7) showed that all algorithms underestimated the high values of chl-a and
turbidity, highlighting the need of different calibrations for different water types. This chapter
showed a very small set of methods used in bio-optical modeling and also highlighted the
need for development and improvement of bio-optical algorithms.
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Abstract

Fact 1: Underground sewage pipe systems deteriorate over time, developing cracks and
joint defects; therefore, leakage is inevitable. Fact 2: The massive worldwide urbanization
process, together with rural development, has meaningfully increased the length of sew‐
age pipelines. Result: The concomitant risk of sewage leaks exposes the surrounding land
to potential contamination and environmental harm. It is therefore important to locate
such leaks in a timely manner, enabling damage control. Advances in active remote-sens‐
ing technologies (GPR and FDEM: ground-penetration radar and frequency domain elec‐
tromagnetic) were used to identify sewage leaks that might cause pollution and to
identify minor spills before they cause widespread damage.

Keywords: Active remote sensing, FDEM, GPR, Sewage leak, Contamination, Water pol‐
lution

1. Introduction

Water pollution is the contamination of bodies of water such as aquifers, lakes, ponds, rivers
and oceans. This contamination occurs due to direct or indirect discharge of pollutants into
the water bodies, without a suitable treatment to remove harmful compounds (pollutants may
simply be defined as substances added to the environment that do not belong there). A
substantial proportion of water and environmental contaminants are due to leaks from
underground sewage pipeline systems in rural, urban and industrial areas, since any sewage
pipeline system deteriorates over time, developing cracks and joint defects. Therefore, if
sewage pipeline systems are not maintained properly, it is only a matter of time before the
sewage leaks out and contaminates the surrounding groundwater and surface water.

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Here, we suggest detecting sewage leaks from pipeline systems using two orthogonal active
remote-sensing methods: (I) ground-penetrating radar (GPR) and (II) frequency domain
electromagnetic (FDEM). Our hypothesis is that GPR and FDEM screening, which creates
subsurface images around and along pipeline systems, will enable the extraction of residual
signals and the detection of meaningful leaks. Like most complex near-surface detection
missions, detection of sewage leaks in an urban environment requires a professional under‐
standing of the regional setting, from geomorphological, environmental and engineering
perspectives.

Advances in remote-sensing technologies now enable their use to identify leakage that is
potentially responsible for pollution and to identify minor spills before they can cause
widespread damage. The detection of pollutants using GPR [1], was based on the research of
Basson [2]. Basson [3] presented a combination of GPR and FDEM methods to detect and
monitor saline contaminants in agricultural fields. Goldshleger [4, 5] demonstrated the ability
to detect saline-affected soils using remote-sensing methods, toward improved management
of these soils. Basson [6] described the detection of subsurface water/sewage/drainage pipe
systems and leaks/contamination from such pipes. Ben-Dor [7, 8] reviewed remote-sensing–
based methods to assess soil salinity and improve the management of salinity-affected soils.
Ly and Chui [9] developed accurate representations of weep holes and leaky sewage pipes,
and further showed the systems' long-term and short-term responses to rainfall events. Their
simulation results provided a better understanding of local-scale migration of sewage leaks
from a sewage pipe to nearby storm water drains. The last few years in Israel have seen
increasing use of new methods based on active remote-sensing tools to study subsoil quality.
These tools include GPR and underground monitoring systems measuring spatial moisture
content, such as FDEM in the subsurface. The use of GPR is based on a method that was
originally developed for measuring sand dunes of medium moisture content at an unsaturated
resolution of a few percentage points [2]. The GPR helped define the possible reason for
emerging high-salinity areas, such as a subsurface regional structure that reduces water
infiltration into the deeper groundwater position [5]. The FDEM method provided a very
important view of salt contamination in the soil layers (except the root zone layer) and also
pinpointed areas with salinity problems. The images obtained from FDEM readings provided
a subsurface view that also helped identify the reason for the high salinity in certain areas. In
the soil salinity experiment in Israel, a severe defect in the drainage pipelines could be
observed, which helped the farmers solve the problem before the subsequent season [5].

The present study focuses on the development of these electromagnetic (EM) methods to
replace conventional acoustic methods for the identification of sewage pipe leaks. EM methods
provide an additional advantage in that they allow mapping the fluid transport system in the
subsurface. Leak-detection systems using GPR and FDEM are not limited to large amounts of
water, but can also detect leaks of tens of liters per hour, because they can locate increases in
pipes’ or tanks’ environmental moisture content that amount to only a few percentage points.
The importance and uniqueness of this research lies in the development of practical tools to
provide a snapshot of the spatial changes in soil moisture content to depths of about 3–4 m (in
areas with asphalt overlay) at relatively low cost, in real time or close to real time. Spatial
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measurements performed using GPR and FDEM systems allow monitoring many tens of
thousands of measurement points per hectare, thus providing a picture of the spatial situation
along the pipelines. The main purpose of this study was to develop a method for detecting
sewage leaks using the above-proposed geophysical methods, as the resultant contaminants
can severely affect public health. We focused on identifying, locating and characterizing such
leaks in sewage pipes in residential and industrial areas.

2. Methods

In recent years, there has been an increase in the use of active remote-sensing tools, such as
GPR (Figure 1a) and subsurface FDEM (Figure 1b), for measuring the subsurface's EM velocity
and dielectric constant (GPR), and its electrical conductivity profile and magnetic susceptibility
(FDEM).
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Passive remote-sensing spectroscopy of ground surface and cross-sections using an optical
fiber termed SPSP (subsurface-penetrating spectral probe), developed [10] and have been
conducted as well. This study focuses on remote-sensing tools to replace acoustic methods [11,
12, 13]. EM methods provide the added advantage of being able to map underground liquid-
carrying pipelines. Ground leak-detection systems using GPR and FDEM are not limited to
large amounts of water: small leaks of tens of liters per hour can be detected in the environment
by comparing medium-dry to minimum moisture content in the pipeline and the canal zone.

Our aim was to develop practical tools that would provide a snapshot of changes in spatial
soil moisture content to depths of about 3–4 m in areas covered with asphalt at relatively low
cost and in real time. The spatial measurements were performed with FDEM and GPR systems
that allow measuring tens of thousands of points per hectare and thus enable monitoring the
spatial situation along the pipeline.

2.1. FDEM

Traditionally, the electrical method “measures” apparent resistivity using electrodes that
require ground contact in a DC electrical survey, while the EM method “measures” apparent
conductivity without ground contact. The EM method, known as a “potential method”,
involves transmitting and receiving EM fields, commonly using a set of coils. The common
unit of resistivity is ohm-m and conductivity is its inverse, in Siemen/m. The apparent
resistivity ρa is defined in DC resistivity as:

2a
VG
I

r p D
= (1)

where ΔV is the voltage between a pair of potential electrodes, I is the current that flows
through another pair of source electrodes, and G is the geometric factor that depends on the
geometry of the electrodes. For a Wenner array that uses four equally spaced electrodes, for
instance, G is the electrode spacing itself. Even for this simple array, each electrode spacing
generates a different apparent resistivity because the spacing controls the volume of the
subsurface sampled by the measurement. It is only when the earth is a homogeneous half space
that the apparent resistivity is the same as the true resistivity.

Similarly, apparent conductivity is only same as the true conductivity when the earth is a
homogeneous half space. As an example, consider a pair of horizontal coils separated by a
distance r. A routinely measured quantity is called the mutual coupling ratio which, for a
horizontal coplanar (or vertical dipole) coil configuration over a layered earth as derived by
[14, 15, 16, 17], among others is written as:
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Hp and Hs are the primary and secondary fields at the receiver coil; J0 is the 0th order Bessel
function; r is the coil separation and h is the sensor height above the ground. Q represents the

Environmental Applications of Remote Sensing264



Passive remote-sensing spectroscopy of ground surface and cross-sections using an optical
fiber termed SPSP (subsurface-penetrating spectral probe), developed [10] and have been
conducted as well. This study focuses on remote-sensing tools to replace acoustic methods [11,
12, 13]. EM methods provide the added advantage of being able to map underground liquid-
carrying pipelines. Ground leak-detection systems using GPR and FDEM are not limited to
large amounts of water: small leaks of tens of liters per hour can be detected in the environment
by comparing medium-dry to minimum moisture content in the pipeline and the canal zone.

Our aim was to develop practical tools that would provide a snapshot of changes in spatial
soil moisture content to depths of about 3–4 m in areas covered with asphalt at relatively low
cost and in real time. The spatial measurements were performed with FDEM and GPR systems
that allow measuring tens of thousands of points per hectare and thus enable monitoring the
spatial situation along the pipeline.

2.1. FDEM

Traditionally, the electrical method “measures” apparent resistivity using electrodes that
require ground contact in a DC electrical survey, while the EM method “measures” apparent
conductivity without ground contact. The EM method, known as a “potential method”,
involves transmitting and receiving EM fields, commonly using a set of coils. The common
unit of resistivity is ohm-m and conductivity is its inverse, in Siemen/m. The apparent
resistivity ρa is defined in DC resistivity as:

2a
VG
I

r p D
= (1)

where ΔV is the voltage between a pair of potential electrodes, I is the current that flows
through another pair of source electrodes, and G is the geometric factor that depends on the
geometry of the electrodes. For a Wenner array that uses four equally spaced electrodes, for
instance, G is the electrode spacing itself. Even for this simple array, each electrode spacing
generates a different apparent resistivity because the spacing controls the volume of the
subsurface sampled by the measurement. It is only when the earth is a homogeneous half space
that the apparent resistivity is the same as the true resistivity.

Similarly, apparent conductivity is only same as the true conductivity when the earth is a
homogeneous half space. As an example, consider a pair of horizontal coils separated by a
distance r. A routinely measured quantity is called the mutual coupling ratio which, for a
horizontal coplanar (or vertical dipole) coil configuration over a layered earth as derived by
[14, 15, 16, 17], among others is written as:

( ) ( )3 2
0

0

s
p

hHQ r R J r e d
H

ll l l l
¥

-= = - ò (2)

Hp and Hs are the primary and secondary fields at the receiver coil; J0 is the 0th order Bessel
function; r is the coil separation and h is the sensor height above the ground. Q represents the

Environmental Applications of Remote Sensing264

secondary field normalized against the primary field at the receiver coil. Most frequency-
domain sensors measure Q in parts per million (ppm). The kernel R corresponding to a
homogeneous half space is:

( )
2

2

2

2

f
R

f

l l i p ms
l

l l i p ms

- +
=

+ +
(3)

where f is the transmitter frequency in Hz, µ the magnetic permeability and σ the half-space
conductivity. Based on Q measured at a particular frequency over a real (heterogeneous) earth,
we can invert Equation (2) to obtain the apparent half-space conductivity σa. It is obvious from
Equation (2) that the resulting σ depends on coil separation, sensor height and frequency. In
addition, each coil configuration (vertical coplanar, coaxial, etc.) has a different formula for Q.
Figure 2 shows a coplanar coil pair at height h above layered earth [18], and a damped least-
squares inversion based on singular value decomposition to solve the nonlinear inverse
problem.

Figure 2. Geometry of the horizontal coplanar electromagnetic sensor over layered earth where σ is the conductivity, t
is the thickness of each layer, the subscripts stand for the number of layers, s is the coil separation and h is the sensor
height [18].

Figure 3 shows the responses of the Gem-2 sensor over a half space as a function of induction
number:

( )1/ 2 2µ sq s w= (4)

where ω is the angular frequency, µ is the magnetic permeability and s is coil separation.
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The depth of investigation of an EM system can be estimated using the skin depth δ, which is
defined in classical EM theory as the distance in a homogeneous medium over which the
amplitude of a plane wave is attenuated by a factor of 1/e, or about 37% of its original ampli‐
tude. The skin depth δ is:

2
µ

d
s w

= (5)

The skin depth and the ability to transmit in several frequencies allows us to perform “fre‐
quency sounding” using a multifrequency sensor, thereby resolving different depths of
penetration as sketched in Figure 4.

Figure 4. Frequency sounding for various depths using a multifrequency FDEM sensor such as Gem-2.

Figure 3. The in-phase and quadrate responses as a function of induction number (from Huang and Won, 2003).
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2.2. GPR

GPR, a reflection-scattering imaging method, is widely used for subsurface imaging in
geophysics. GPR uses high frequencies (wavelengths; MHz–GHz). EM waves may form
images of the subsurface by transmitting radar pulses into the ground and receiving the
deflected waves from the interfaces below. Using wave methods and analysis, GPR images
can be analyzed for their derived electrical properties and subsurface characteristics and for
spatial mapping of water content [2, 3]. The range resolution is a function of the subsurface
dielectric constants and the wave's frequency. It may vary from several centimeters to several
tens of centimeters at the relevant effective frequencies [19, 20] For a certain wavelength, the
penetration of GPR waves into the subsurface is mainly a function of the host material's
conductivity, and therefore GPR waves decay significantly in conductive and saline soils.
Using wave methods and analysis, GPR images can be analyzed for their derived electrical
properties and subsurface characteristics and for spatial mapping of water content [2,3], as
described in the following model.

The connection between the EM velocity and dielectric constant is expressed as:

cv
k

= (6)

where c is the speed of light in a vacuum and k is the dielectric constant.

The dielectric constant of water (kw) is about 80. The dielectric constant of air (ka) is 1. The
dielectric constant of common “dry” soil (kdry soil) with residual moisture content can range
between 6 and 15 (the effective dielectric constant of dry soil is determined according to
volumetric mixing ratios between soil, water and air components).

The difference in the effective dielectric constant of "dry" and "wet" soils is mainly a function
of the ratio between the air and water volumes, when the volumes are normalized to:

dry soil w a 1V V V+ + = (7)

then:

( )eff dry soil dry soil w w w1k k V k V k V= + + - (8)

The maximal soil–water absorbency is a strong function of the effective porosity.

3. Leak detection in Ariel

Ariel is a small city (about 20,000 residents) in Israel, located in the central highland region
known as the Samarian Hills. It is situated 40 km (25 miles) east of Tel Aviv and 40 km west
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of the Jordan River. It is situated 700 m (more than 2000 feet) above sea level. The city stretches
over 12 km (8 miles) in length and 2 km in width. The research was performed with Yuvalim,
the company that is responsible for maintaining the water and sewage network in the Ariel
area and for supplying available water to residents. The mutual research was performed to
identify sewage leaks before they pollute and damage the surrounding area. The research was
supported by the Israeli Water Authority. The work was performed in several stages.

3.1. Selecting study sites

Areas were selected in Ariel for system calibration (Figure 5). Two areas were chosen for the
method calibration: the first was an industrial area and the second a residential area, both with
well-mapped networks of water and sewage pipes. These areas were selected on the basis of
information from computerized data, observations, field visits, use of orthophotos, aerial
photography and geological and pedological data.
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Figure 5. Maps showing Ariel's location (a) and the drainage infrastructure, sewerage and water supply for this city (b).

3.2. Soil characterization

To characterize the pedological structure of the subsurface layers, excavations were performed.
We sampled grain size, void content and porosity, moisture content, soil density and soil
characteristics. We dug a channel in an underground sewage pipe replacement area at the
experimental sites. Figure 6 presents the characterization of the sub layer.
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3.2. Soil characterization

To characterize the pedological structure of the subsurface layers, excavations were performed.
We sampled grain size, void content and porosity, moisture content, soil density and soil
characteristics. We dug a channel in an underground sewage pipe replacement area at the
experimental sites. Figure 6 presents the characterization of the sub layer.

Environmental Applications of Remote Sensing268

Figure 6. Soil subsurface cross-section at site 1. Wooden pegs mark the changing soil layers.

The soil in the area is red Mediterranean, also known as Terra Rossa [21] and Lithic ruptic
Xerochrept [22]. Terra Rossa occurs in areas where heavy rainfall dissolves carbon from the
parent calcium carbonate rock and silicates are leached out of the soil, leaving residual deposits
that are rich in iron hydroxides, causing the red color. Such areas are usually depressions
within limestone. The soil was sampled in a 0.5-m-wide ditch at a depth of 2 m. The area has
an easterly aspect, with an average elevation of 400 m above sea level. The local slopes vary
between 7% and 25%. Soil texture was clay loam with an average composition of 45% sand,
25% silt and 30% clay. The sand content increased toward the lower part of the area. The
average lime content was 30%. Rock fragments of up to 40 cm appeared together with the soil.

3.3. GPR calibration

Calibration of the GPR system to the subsurface properties of the cross-section in a dry state
(without leakage) is shown in Figure 7. The depth to the pipe was measured in a nearby
manhole.
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Figure 7. Part of the GPR profile performed for calibration of the GPR system in the Ariel industrial zone, on the road
close to a rubber factory. The black circle displays diffraction created by the drain pipe. Above it, the trench is detected
as well. The horizontal scale describes the measurement location (in meters) along the profile. The vertical scales de‐
scribe the time (in nanoseconds) and depth (in meters). The amplitude–intensity scale is shown as well.

Figure 7 shows the results of advanced processing of a cross-section for calibration of the
system in the industrial area. On the horizontal scale, simulations are described above the
measurement location along the incision in meters; the vertical scales describe the time and
depth of the reflections on a timescale of 50 ns and scale depth of 2.5 m below the surface (the
strength of the reflections is graded according to the color scale in Figure 7, where the diffrac‐
tion created by the drainage pipe can be deduced from a return time from the pipe of approx‐
imately 32 ns). The diffraction depth is 2.45 m, and the data from the system matches the data
measured on the ground. This adaptation makes it possible to determine the velocity of the
EM wave. The average measured subsurface speed of the EM wave (v) was 0.093 ± 0.001 m/ns
at the Ariel industrial site. It is important to note that the speed of the wave depends on the
directly calculated form and location of the anomaly and thus data processing is critical to the
research results.

3.4. The experimental site

The experimental site for sewage pipeline and manhole leaks was located near Ariel's old
stadium, not far from HaAtsmaut Street (Figure 8, blue rectangle), where a project for the
replacement of old sewer pipes has been initiated.
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Figure 8. The experimental site is located at the western end of the sewage line adjacent to HaAtsmaut Street (blue
rectangle). It includes 12-in. diameter iron pipes carrying on the order of 1000–1200 m3 sewage water per day, and an
average 100 m3/h during peak flow.

Leakage was initiated in two places at the western site by cracking the sewer pipes close to
their bottom side. One crack was made about 6 m from the sewage pit in the northern iron
pipe using an electrical disk that created a wedge-shaped hole 15–20 cm in diameter; the second
crack was also a circle of 15–20 cm diameter in the lower part of the pipe (Figure 9). The
experimental site was monitored daily by radar and FDEM before the start of and during the
controlled leakage.

Figure 9. Pictures of the two cracks made in the sewer pipes for the controlled leakage experiment.

4. Results

Daily monitoring with the FDEM method included five cross-sections: four were parallel to
the sewer pipeline and the fifth was above it, running on each side of the pipeline at a distance
of 0.5 m. During the experiment, FDEM scanning was performed to qualify the effect of
moisture on the soil cross-section. Figure 10 shows the status of the subsurface before the start
of the controlled leak; it was in a relatively dry state characteristic of the month of May at this
site.
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Figure 10. Map of the integrated electrical conductivity at 60,025 Hz before the start of the controlled leak at the west‐
ern site (locations of the measurements are shown by the blue rectangle in Figure 8). The map is based on measure‐
ments performed with a GEM-2 FDEM sensor. The location of the sewer pipe is marked with a black line. Data were
collected prior to the leak with dimensional scanning of approximately 30 m × 25 m. Lower conductivity (σ) values (11
mS/m) appear in blue-green in the southwestern corner of the area, while the highest conductivity appears in red-pur‐
ple (55 mS/m) in the northeastern part of the map. These conductivity changes suggest anomalous subsurface moisture
from the water pipe near the old stadium, as well as the accumulation of water from the slope, where there is a garden.

Figure 11 shows a pronounced increase in electrical conductivity of about 40 mS/m after 4 days
of controlled leakage. The area has high conductivity because of changes in wetness due to a
significant increase in liquid as a result of the sewage flow.

The  results  of  the  FDEM  measurements  conducted  10  days  after  the  beginning  of  the
controlled leak are presented in Figure 12. This picture may look similar to Figure 11 in terms
of colors, but their intensity has increased due to an increase in the conductivity values to
about 152 mS/m.

On the map in Figure 12, low visibility, reflecting low electrical conductivity, is shown in blue-
green shades, high visibility in red-colored shades. Purple indicates sewer leakage on the
background of the driest area, highlighting the differences in moisture. A wide area can be
seen west of the pipe (black line in Figure 12) with relatively low electrical conductivity
compared to the rest of the region. Northeast of the pipe, there is high electrical conductivity
resulting from the spillover of sewage water.
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Figure 11. Map of the electrical conductivity at 60,025 Hz after about 4 days of leakage. Measurements were collected
during the sewage leak, under wet conditions, with the GEM-2 sensor (locations of the measurements are shown by
the blue rectangle in Figure 8). The location of the sewer pipe is marked with a black line. The highest conductivity
value was about 95 mS/m. The significant increase in electrical conductivity is a result of the sewer liquids that were
spilled during the 4 days of the controlled leak, in both the southwestern and northeastern sides of the area, probably
due to a subsurface topography gradient.

Figure 12. Map of integrated electrical conductivity at 60,025 Hz. Measurements were collected with the FDEM system,
under wet conditions, after 10 days of controlled leakage (locations of the measurements are shown by the blue rectan‐
gle in Figure 8). Electrical conductivity ranged from 0 to 152 mS/m. Low conductivity is expressed in blue-green
shades, high conductivity in purple-red colors.
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Figure 13 shows maps made by FDEM monitoring of electrical conductivity at various
frequencies in the first tested area. The maps are arranged, from left to right, at increasing
frequencies and depth: the frequencies were 2,025 Hz, 4,725 Hz, 11,025 Hz, 25,725 Hz and
60,025 Hz, each frequency representing a 30 cm increase in depth. The low-visibility electrical
conductivity is represented by blue-green hues, and the high-visibility electrical conductivity
by red-purple hues. There were a few quantitative differences in the map scales.

Figure 13. Maps made by FDEM monitoring of electrical conductivity at 2,025 Hz, 4,725 Hz, 11,025 Hz, 25,725 Hz and
60,025 Hz. The lower EC values are represented by blue-green hues, and the higher EC values by red-purple hues.
There were a few quantitative differences between the maps' scales.

Four sections, two on each side of the sewer, were monitored by GPR and are shown in Figure
14. The distance between the main radar cross-sectional cuts was approximately 0.5 m. The
radar sections shown in Figure 14 were collected with an antenna at a nominal frequency of
250 MHz over the location of the underground sewage pipe at the first (western) test site. The
first cross-section was obtained before the leak started and reflects the typical dry state of the
ground in May. An incision was made a few days after the initiation of the leak and shows a
relatively wet subsoil. The right cross-section shows an incision made at a lower depth, 10 days
after leak initiation, indicating a further increase in wetness. Similar data processing was
carried out for the three cross-sections to highlight their differences.
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Figure 14. Soil moisture reflected by GPR cross-section (locations of the measurements are shown by the blue rectangle
in Figure 8).

5. Modeling subsurface moisture content

Moisture content was computed on the basis of subsurface GPR and FDEM measurements and
its spatial spread was obtained for calibration and wetness testing with water- and sewage-
carrying pipelines. In these experiments, radar velocities were measured and dielectric
constants were computed. Their correlations were used to measure the moisture content from
data collected in the residential and industrial neighborhoods.

The computation of moisture content using GPR was based on the method developed by
Basson [2] From the calibration measurements conducted at the end of May 2012, the average
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subsurface EM wave velocity was 0.093 ± 0.001 m/ns. The calculated dielectric constant during
this period was about 10.4. This value is low but not minimal, as minimal moisture content is
typically found in the mid-to-late summer months (according to data from the Israel Mete‐
orological Service, the rain that accumulated in the area in the months before the GPR
measurements amounted to about 161 mm).

The velocity of EM waves in a substance is mainly a function of that substance's bulk dielectric
properties and moisture content. When a substance is composed of a mixture of materials, the
velocity is a function of their mixing ratios. In the case of a subsurface environment, we can
treat the substance as a bulk property composed of soil, rock, minerals and organic materials
mixed with air and water. When the rate of air increases, the velocity increases as well.
However, when the moisture content increases, the average dielectric constant decreases as
well and fro equation (6) it can be seen that the EM velocity (v) decreases as well.

The difference in the effective dielectric constant of "dry" and "wet" soils is mainly a function
of the ratio between the air and water volumes, when the volumes are normalized according
to equations (7) and (8). The maximal soil–water absorbency is a strong function of the effective
porosity. For soils in the Ariel region, the effective porosity can vary from 40% to 60%. We
used an average effective porosity of 50% in our computations. Therefore, the possible mixing
ratios relative to the normalized volume are:

dry soil tot0.5 V V= (9)

w a tot0.5V V V+ = (10)

Since kdry soil is the effective dielectric constant measured using GPR imaging for a soil with
residual moisture content and since ka = 1:

top soil dry soil w w0.5 80 0.5k k V V= + + - (11)

The radar wave velocity for “dry” soil at the surface will be measured and is expected to vary
with the GPR and its value, vtop soil ~ 0.07–0.14 m/ns. From Equation (1), this velocity range can
reflect dielectric constant values of ~4.6–18.4 for ktop soil. For example, for maximal dielectric
constant values of 5–14 for delicate quartz-based soils and for the presented computations, the
moisture content in the surface can vary as Vw top soil ~ 0.4%–2.1%. In the same way, we can
investigate deeper soils where the moisture content is expected to be greater. The average radar
wave velocity (vhumid soil) measured by the GPR at the calibration site in Ariel at the end of May
is 0.093 m/ns. Using Equation (1), this velocity reflects a dielectric constant value (khumid soil) of
10.406. The additional volume of water needed to increase the dielectric constant from 4.6 to
10.41 can be computed as:

5.81kD = (12)
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w80k VD = D (13)

7.26wVD = (14)

We develop a moisture content model using relative values of the moisture content (based on
Equations (6–14)) causing an increase in electrical conductivity as measured by the FDEM. We
had to consider the overall subsurface features, such as texture, density and effective porosity,
as well as the content of salts in soils irrigated with brackish effluent water. The model results
are presented in the graph in Figure 15.

Figure 15. Volumetric moisture content calculated from measurements and from the FDEM model in the experimental
zones in Ariel (accuracy ±10% of the measured value).

6. Discussion and conclusions

We introduced a combination of GPR and FDEM orthogonal methods to detect subsurface
leaks from a sewage pipeline system. The rationale for this combination is to increase the
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probability of detection, especially in complex urban environments and when the soil–rock
setting can vary from relatively resistive to relatively conductive. The results of our study
indicate that even minor leaks, such as the minor controlled leaks created in the experiment,
and changes in the subsurface moisture content can be accurately detected. We could detect
sewage leakage, as well as its progress. The combination of the two methods enabled not only
the detection of the leak but also a qualitative assessment of its size. Factors affecting the ability
to detect leaks were limited by the soil–rock conductivity, as well as the density of the terrain
and subterrain systems and structures. The geophysical methods may detect sewage effluent
flow paths as well as the contaminant in the soil.

The limestone and dolomite bedrock in the Ariel area is suitable for GPR mapping. The clarity
of the GPR profile enabled analysis and interpretation of the physical data with good accuracy.
We could detect sewage leakage, as well as its progress. The anomalous moisture of the leakage
accumulating around the sewage pit in the southwest research area validated the efficiency of
the methods.
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Abstract

Similar to other geo hazards, landslides cannot be avoided in mountainous terrain.
It is the most common natural hazard in the mountain regions and can result in
enormous damage to both property and life every year. Better understanding of the
hazard will help people to live in harmony with the pristine nature. Since India has
15% of its land area prone to landslides, preparation of landslide susceptibility zo‐
nation (LSZ) maps for these areas is of utmost importance. These susceptibility zo‐
nation maps will give the areas that are prone to landslides and the safe areas,
which in-turn help the administrators for safer planning and future development
activities. There are various methods for the preparation of LSZ maps such as based
on Fuzzy logic, Artificial Neural Network, Discriminant Analysis, Direct Mapping,
Regression Analysis, Neuro-Fuzzy approach and other techniques. These different
approaches apply different rating system and the weights, which are area and fac‐
tors dependent. Therefore, these weights and ratings play a vital role in the prepa‐
ration of susceptibility maps using any of the approach. However, one technique
that gives very high accuracy in certain might not be applicable to other parts of the
world due to change in various factors, weights and ratings. Hence, only one meth‐
od cannot be suggested to be applied in any other terrain. Therefore, an under‐
standing of these approaches, factors and weights needs to be enhanced so that
their execution in Geographic Information System (GIS) environment could give
better results and yield actual ground like scenarios for landslide susceptibility
mapping. Hence, the available and applicable approaches are discussed in this
chapter along with detailed account of the literature survey in the areas of LSZ
mapping. Also a case study of Garhwal area where Support Vector Machine (SVM)
technique is used for preparing LSZ is also given. These LSZ maps will also be an
important input for preparing the risk assessment of LSZ.

Keywords: Landslide, LSZ, Remote Sensing and Geographic Information System,
Modeling, SVM, Garhwal Himalaya
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1. Introduction

According to the information on the International Red Cross, there are roughly 200 major
natural disasters that occur each year in the world. These natural disasters cause an annual
average loss of nearly 130,000 persons, and more than 140 million normal lives are affected.
The frequency of occurrences of these natural disasters has increased many times in the recent
past, and its effects are becoming more severe in the coming years. The major attribute is being
the population growth, urbanization/industrialization leading to climate change. In general,
most of the “natural risks” are accentuated by humans themselves by direct or indirect
interference with the nature. Understanding a natural disaster is very difficult as it is a very
complex system that involves various controlling and contributing factors. This means that no
easy, one-sided solutions can be found, but applying the holistic approach to tackle such
problems could yield some beneficial results. Currently, many researches are being carried out
to understand the phenomenon acting behind these natural disasters such as floods, tsunamis,
cyclones, earthquakes, landslides, etc. So to combat these natural risks, the holistic concepts
should be developed and applied, particularly to tackle landslide risk as landslides are one of
the major environmental problems in our society.

The adverse impacts of climate change on developing countries have been highly consequen‐
tial. High-magnitude flash floods and increased rains has been one of the pertinent causes of
extensive landslides, which accounts for around 4.89% of the globally occurring natural
disasters during the last two decades. The unplanned urbanization and development coupled
with continued deforestation may be attributed to this rise in figure. Landslides are quite
frequent along the tectonically active Himalayan region. In the year 1984, Varnes defined the
term hazard as “the probability of occurrence of a potentially damaging phenomenon within
a specified period of time and within a given area”. When such spatial distributions of hazards
are represented on maps into various classes, it gives zonation maps. Thus, landslide hazard
zonation refers to the division of area into various classes, which is categorised on the basis of
degrees of actual/potential hazard caused by landslides. Hence, hazard zonation forms a
critical factor for effective landslide management and is used as a tool for planning mitigation
measures. The preparation of the landslide hazard map requires the analysis of most deter‐
mining factors that leads to soil failure. The preparation of landslide hazard zonation requires
detailed landslide inventory, processes involved in slope instability, triggering factors and
many other associated studies. Landslides may occur due to a variety of conditional and
triggering factors such as change in slope angle, slope aspect, faults, lithology, deforestation,
improper drainage system, rainfall, and earthquakes. Thus, this zonation can be carried out at
various scales from national (1:1 million) to local (1:5000). Depending on the scale of map, the
parameters/factors and their accuracy varies.

With the advent of satellite data and various sensors, the scope of remote sensing has increased
widely. The bird’s eye view of the area at moderate to fine resolution gives fast and quick
information about the terrain. Clubbed with the spectral and temporal characteristics of the
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recognition of landslide features. This preparation of inventory map has been made more
effective with recent developments of resolution merging where data from different sensors
could be merged to obtain better, sharp and good resolution images. Not only in the identifi‐
cation of landslides but also in the preparation of other contributing and controlling factors,
remote sensing plays a crucial role. The elevation data from DEM (Digital Elevation Model)
are used for the preparation of slope, aspect, relief, curvature, etc., parameter that controls the
behaviour of landslide as well as the slope stability/instability. Not only the optical and
multispectral data but the Radar and SAR data are being used for the analysis of landslides.
The interferometric SAR technique is capable of distinguishing very minute changes in
elevation and slope; hence, it is used for the identification of higher-resolution and corre‐
spondingly smaller area. Data from various sensors, i.e. optical, multispectral, thermal and
microwave/radar, are being used for landslide studies.

There are various methods for the preparation of Landslide Susceptibility Zonation (LSZ) such
as based on Fuzzy logic, Artificial Neural Network, Discriminant Analysis, Direct Mapping,
Regression Analysis, Neuro-Fuzzy approach and other techniques. These different approaches
apply different rating system and the weights, which are area and factors dependent. There‐
fore, these weights and ratings play a vital role in the preparation of susceptibility maps using
any of the approach. However, one technique that gives very high accuracy in certain might
not be applicable to other parts of the world due to change in various factors, weights and
ratings. Hence, only one method cannot be suggested to be applied in any other terrain. This
chapter discusses the methods being used in the field of LSZ, what are the input parameters
being used, what the accuracy is and how best the method map the LSZ. However, it should
be kept in mind that most of these methods/analysis are based on landslide inventory of any
area, so the first and foremost step for working towards LSZ should be preparation of landslide
inventory. Finally, this chapter discusses a case study of application of geo-spatial technology
for preparation of LSZ in Garhwal Himalayan region, which is tectonically very active and
prone to landsliding.

2. Various Approaches for LSZ Mapping

2.1. Regression Analysis

People are normally interested in finding the relationship between different variables. For
example, whether smoking causes lung cancer? Regression analysis is the statistical method
of finding relationship between dependent/predicted variable (denoted as y) and independent/
predictor variables (denoted as  x1, x2,  …,  xn), where n denotes the number of predictor
variables [1]. The true relationship between y and  x1, x2,  …,  xn can be approximated by the
regression model as indicated in equation 1

( )1 2, , ,= ¼ +ny f x x x   e (1)
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where ε is assumed to be a random error representing the discrepancy in the approximation.
It accounts for the failure of the model to fit the data exactly [2]. Typically, regression analysis
is used for one of these three purposes [3] viz. (i) Modelling the relationship between x and
y,   (ii) Prediction of target variable, and (iii) Testing of hypotheses.

There are three types of regression models:

Simple linear regression: It models the linear relationship between two variables; out of which
one is dependent variable y, and other is independent variable x. In this model, regression
equation is given as below in equation 2

= + +y ax b e (2)

where a = slope of regression line, b = intercept and ε = random error. Simple linear regression
is shown in Figure.1.

Multiple linear regression: There are many situations when result depends on one or more
predictor variables. In such situations, simple linear regression is not sufficient to model the
output, hence it requires a regression equation as given in eq 3, which models the linear
relationship between one dependent variable y and more than one independent variables
 x1, x2,  …,  xn. In this model, regression equation is given as below

1 1 2 2 0= + +¼+ + +ny a x a x a x an e (3)

where a1, a2, …, an are regression coefficients, a0 = intercept and ε = random error

After the determination of regression model, its parameters are estimated based on the
collected data. This is called as parameter estimation and model fitting. Most commonly used
method of estimation is called the least square method [1, 2, 3].

Nonlinear regression: When the relationship between dependent and independent variable
cannot be modelled using straight line, nonlinear regression is used. For example, nonlinear
regression model for growth of a particular organism (y) as a function of time (t) can be written
as

1
= +

+ ty
eb

a e (4)

where α and β are model parameters and ε = random error. All nonlinear functions that can
be transformed into linear functions are called linearizable functions [2, 3].
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2.1.1. Estimation Using Least Square

The least square method for linear regression finds regression coefficients a0, a1, a2, …, an such

that sum of squared distance from actual value yi and fitted value yi

˰
 reaches minimum for all

possible choices of regression coefficients a0, a1, a2, …, an, [1, 4] using the given eq 5.

( ) 2

0 1 1 2 2
1=

é ù- + + +¼+ë ûå i i iy a a x a x a x
n

i
(5)

For any choice of observed coefficients  a˰, the estimated/fitted value given for the observed
values is

µ µ µ µ µ
0 1 1 2 2= + + +¼+i i iy a a x a x a x (6)

The difference between observed value yi and fitted value yi

˰
 is called residual.

Figure 1. Simple linear regression model, solid line corresponds to true regression line and the dotted line corresponds
to random error ε [3].
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When dealing with regression analysis, if there is only one response variable, regression
analysis is called univariate regression, and in case of two or more response variables, the
regression is called multivariate regression. The difference between simple and multiple
regressions is determined by the number of predictor variables (i.e. simple means one predictor
variable and multiple means two or more predictor variables), whereas the difference between
univariate and multivariate regressions is determined by the number of response variables. A
brief summary of various classifications is given in Table-1. Out of all these regression types,
logistic regression method is used a lot since most variables in hazard zonation mapping tends
to be qualitative rather than quantitative.

Types of Regression Conditions

Univariate Only one quantitative response variable

Multivariate Two or more quantitative response variables

Simple Only one predictor variable

Multiple Two or more predictor variables

Linear All parameters enter the equation linearly, possibly after transformation of the
data

Nonlinear The relationship between the response and some of the predictors is nonlinear or
some of the parameters appear nonlinearly, but no transformation is possible to
make the parameters appear linearly

Analysis of Variance All predictors are qualitative variables

Analysis of Covariance Some predictors are quantitative variables and others are qualitative variables

Logistic The response variable is qualitative

Table 1. Various Classifications of Regression Analysis [2].

2.1.2. Logistic Regression

Logistic regression model is a general linear model, which models the data with binary
responses [1], i.e. it predicts the presence or absence of an outcome based on the values of a
set of predictor variables [5]. The dependent variable in logistic regression is binary (i.e. 0 or
1, true or false), whereas the independent variable can be categorical, dichotomous or interval
[6]. For landslide study, dependent variable is binary, showing either the presence or the
absence of landslide.

Example: For determining risk factor for cancer, health data of several people were collected
on several variables such as age, sex, smoking, diet, and the family’s medical history. The
response variable "y" is the person having cancer (y=1) or not having cancer (y=0) [2].

Coefficients of logistic regression can be used to calculate ratios for each independent variable
in the model. Logistic regression model can be represented in simplest form as shown in
equation 7

Environmental Applications of Remote Sensing286



When dealing with regression analysis, if there is only one response variable, regression
analysis is called univariate regression, and in case of two or more response variables, the
regression is called multivariate regression. The difference between simple and multiple
regressions is determined by the number of predictor variables (i.e. simple means one predictor
variable and multiple means two or more predictor variables), whereas the difference between
univariate and multivariate regressions is determined by the number of response variables. A
brief summary of various classifications is given in Table-1. Out of all these regression types,
logistic regression method is used a lot since most variables in hazard zonation mapping tends
to be qualitative rather than quantitative.

Types of Regression Conditions

Univariate Only one quantitative response variable

Multivariate Two or more quantitative response variables

Simple Only one predictor variable

Multiple Two or more predictor variables

Linear All parameters enter the equation linearly, possibly after transformation of the
data

Nonlinear The relationship between the response and some of the predictors is nonlinear or
some of the parameters appear nonlinearly, but no transformation is possible to
make the parameters appear linearly

Analysis of Variance All predictors are qualitative variables

Analysis of Covariance Some predictors are quantitative variables and others are qualitative variables

Logistic The response variable is qualitative

Table 1. Various Classifications of Regression Analysis [2].

2.1.2. Logistic Regression

Logistic regression model is a general linear model, which models the data with binary
responses [1], i.e. it predicts the presence or absence of an outcome based on the values of a
set of predictor variables [5]. The dependent variable in logistic regression is binary (i.e. 0 or
1, true or false), whereas the independent variable can be categorical, dichotomous or interval
[6]. For landslide study, dependent variable is binary, showing either the presence or the
absence of landslide.

Example: For determining risk factor for cancer, health data of several people were collected
on several variables such as age, sex, smoking, diet, and the family’s medical history. The
response variable "y" is the person having cancer (y=1) or not having cancer (y=0) [2].

Coefficients of logistic regression can be used to calculate ratios for each independent variable
in the model. Logistic regression model can be represented in simplest form as shown in
equation 7

Environmental Applications of Remote Sensing286

1
1 -

=
+ yp

e
(7)

where p is the probability of occurrence of an event (varies between 0 and 1 on S-shaped curve),
and y is dependent variable and calculated using the logistic regression equation 8

0 1 1 2 2= + + +¼+ n ny a a x a x a x (8)

where a1, a2, …, an are logistic regression coefficients and a0 = intercept, x1,  x2, ….,  xn are
independent variables [7].

2.1.3. Applications [2, 4]

i. Agricultural sciences (e.g. analysis of data of milk production).

ii. Management, industrial and labour relations (e.g. Do chief executive officers (CEOs)
and their top managers always agree on the goals of the company?).

iii. Environmental sciences (e.g. exploration of relationship between water quality and
land use).

iv. Psychology (e.g. What are the factors that impact the likelihood of a moonlighting
worker becoming aggressive toward his or her supervisor?).

v. Geography (Can the population of an urban area be estimated without taking a
census?).

2.1.4. Landslide Hazard Zonation using Regression Analysis

Regression analysis is one of the most widely used statistical tool as it provides simple methods
for establishing a functional relationship among variables. Logistic regression has been used
widely for preparation of landslide hazard zonation maps [5, 6, 8, 9]. Slope, aspect, curvature,
distance from drainage, lithology, distance from lineaments, land cover, vegetation index, and
precipitation are considered as landslide-causing factors in many literatures. In logistic
regression model, LHI is calculated by solving the regression equation. Correlation between
landslide event and landslide affecting factors is estimated, and then, equation predicting the
landslide is obtained.

2.2. Analytic Hierarchy Process

AHP, developed by Thomas L. Saaty in 1975, is an effective tool for decision making. It helps
the decision makers in setting priorities and making best decision on complex decisive
problems. It distributes the problems in hierarchy of criteria and options (alternatives), i.e. it
reduces complex decisions to pairwise comparisons and then synthesizes the result. The AHP
considers both the rational and the intuitive to select the best from a number of alternatives
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evaluated with respect to several criteria. It checks for consistencies in decision maker’s
evaluation and also allows limited inconsistencies in judgements.

2.2.1. Working of AHP

The AHP uses a set of evaluation criteria and a set of alternative options among which the best
decision is to be made. It generates a weight for each evaluation criteria according to pairwise
comparisons of criteria. The criteria with higher weight are selected since it is most important
of all the criteria. Further, for fixed criteria, it assigns a score to each alternative option
according to pairwise comparisons of options based on those criteria. Higher the score for an
option, better the performance of that option w.r.t. considered criteria. Information is then
arranged in a hierarchical tree. Finally, the AHP generates global score for each option using
the combinations of the criteria weights and options scores and determines relative ranking
of alternatives. A simple hierarchy with three levels is shown in Figure.2.

Figure 2. A three level hierarchy [10].

Implementation of AHP

AHP can be implemented in three simple steps

i. Computation of weight vector for all criteria

ii. Computation of score matrix for all options

iii. Ranking of options based on final score

Once the goal has been set, then for all the alternatives, different ranks are given based on the
criterion fixed to reach that goal. In this way, the priorities are set, and these factors are
compared pairwise. For example, in case of landslide zonation, the goal could be to identify
the areas that are prone to landsliding and the factors/parameters, such as slope, elevation, soil
type, rock type, distance to drainage, etc., controlling it would become the alternatives. And
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to select the areas prone to landsliding, the criteria could be fixed such as slope should be more
than 45º, soil type should be clayey, rock type should be other than granite/gneiss (hard rock),
etc. Hence, the area fulfilling these criteria will be selected. This way of preparing the landslide
susceptibility map is area specific, and the criteria applicable to one location may not be true
for other location. Hence, a different approach is needed where the system adjust itself with
the given conditions and scenarios.

2.2.2. The Fundamental Scale

The AHP is a general theory of measurement and is used to derive relative priorities of different
criteria on absolute scales. Pairwise comparison judgments in the AHP are applied to pairs of
homogeneous elements. The fundamental scale represents the intensities of judgments. In
many cases, the elements to be compared are almost equal in measurements. In this situation,
comparison must be made not on what fraction it is larger than the other [10]. Pairwise
comparisons of criteria and/or options are performed based on the scale given in Table-2.

Intensity of
Importance

Definition Explanation

1 Equal importance Two activities contribute equally to the objective

2 Weak

3 Moderate importance
Experience and judgment slightly favour one activity over
another

4 Moderate plus

5 Strong importance
Experience and judgment strongly favours one activity over
another

6 Strong plus

7
Very strong or demonstrated
importance

An activity is favoured very strongly over another; its
dominance is demonstrated in practice

8 Very, very strong

9 Extreme importance
The evidence favouring one activity over another is of the
highest possible order of affirmation

Table 2. The fundamental scale by T. L. Saaty [10, 11].

2.2.3. Applications of AHP [10, 12, 13].

i. Evaluation of cities for livelihood and planning

ii. Ranking of countries

iii. Customers adoption of mobile devices and mobile services

iv. Human organ transplants

v. Prediction of winners in chess matches

vi. Natural resource management
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2.2.4. Landslide Hazard Zonation using AHP

Various authors [14, 15, 16, 17, 18, 19] have used AHP for giving weights to various factors of
landslide occurrence. The effect of each factor and factor classes, on landslide occurrence, is
determined using pairwise comparison, and an equation is modelled for landside susceptible
index (LSI), as given below in equation 9

1=

=å iAHP i AHPLSI Factor W
n

i

* (9)

where Factori = landslide conditioning factor such as slope, aspect, lithology, etc. W AH Pi
 =

Weightage for each causative factor. Pixel (LSI) values derived from above equation are
classified into various susceptibility classes (low, moderate, high, and very high) based on
natural break.

2.3. Artificial Neural Network

Artificial neural network attempts to model the information processing capabilities of the
brain. The operation of the brain is based on simple basic elements called as neurons. Neurons
are connected to each other with transmission lines called as axons and receptive lines called
as dendrites. Information is stored at synapses. Each neuron has an activation level that ranges
between some minimum and maximum value [20,  21].  A neural network is a massively
parallel distributed processor made from simple processing units, which can store knowl‐
edge gained from experiments and can utilize it later. It replicates the processing of the brain
in two respects [22].

i. Knowledge is acquired by the network from its environment through a learning
process.

ii. Synaptic weights are used to store the acquired knowledge.

Figure 3. McCulloch and Pitts model of artificial neuron [20].

In 1943, McCulloch and Pitts proposed a computational model for artificial neuron, based on
binary threshold [23]. This neuron calculates a weighted sum of 'n' input signals, xj where j =
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1, 2, 3…...n, and generates an output of 1 if this sum is above a certain threshold 'u', else output
0. The model [24] is shown in Figure. 3 and given by equation 10.

1

1, ,
=

= >å j jy if w x u
n

j

 (10)

 0, y otherwise=

ANN is a weighted directed graph, in which artificial neurons are nodes and directed edges
with weights are connections between neuron outputs and neuron inputs. ANN can be
grouped in two categories [20, 22].

i. Feed-forward network, where graph has no loops, as shown in Figure. 4. Here, all
the nodes in each layers are connected to every other node in forward layer, hence it
is called fully connected network. If some of the links are missing, then it is called
partially connected network. Example: single-layer perceptron, multilayer percep‐
tron, radial basis function, etc.

ii. Recurrent or feedback network, where graph has loops because of feedback connec‐
tions, as shown in Figure. 5. Here, output from all the neurons is applied to input
using feedback connection. Example: self-organizing map, adaptive resonance theory
model, Hopfield network, etc.

Figure 4. Example of feed forward network with one hidden layer & one output Layer
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Figure 5. Example of recurrent network with hidden layer

2.3.1. Learning Algorithms

To be able to learn is the fundamental trait of intelligence. Although it is difficult to formulate
a precise definition of learning, the process of learning in the context of ANN can be defined
as the problem of updating network architecture and connection weights so that a network
can efficiently perform a specific task [20]. Artificial neural network tries to learn input–output
relationships from the given collection of representative examples, instead of following a set
of rules specified by human experts. This is one of the major advantages of neural networks
over traditional expert systems. A learning algorithm refers to a procedure in which learning
rules are used for adjusting the weights. Some examples of learning algorithms are (i) Error
correction learning, (ii) Memory-based learning, (iii) Hebbian learning, (iv) Competitive
learning, (v) Boltzmann learning, etc. [23, 25].

2.3.2. Feed-Forward Back-Propagation Network (Based on error correction learning)

It is basically a feed-forward multilayer perceptron with back-propagation as learning/training
algorithm. In order to train a neural network to perform desired task, the weight of each input
has to be adjusted, such that the error between the desired and actual output is minimal (Figure.
6 after [21]) i.e.

( ) ( ) ( )Error Signal e  Desired Response d  – Actual Output y=
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Figure 6. Back-Propagation Neural Network [21].

2.3.3. Applications of ANN

1. Image processing, classification of satellite data, compression of large images, etc.

2. Medical signal processing and developing medical decision support system [26, 27].

3. Paper making industry for prediction of curl in paper reel [28].

4. Calculation of nonlinear interpolation algorithm [29].

5. Detection and classification of vehicles in traffic management [30].

6. Optical and handwritten character recognition [31].

7. Operations research [32].

8. Application in Mineral Potential Mapping [33].

9. Landslide Susceptibility Mapping [34-37].

2.3.4. Application of ANN in Landslide Hazard Zonation

ANN has been used widely in the preparation of LHZ maps [34–37]. People have used
variations of ANN with one input layer, two hidden layers, and one output layer for various
factors controlling landslide occurrence. ANN connection weights are used to provide weights
or rankings to the input data source (landslide-causative factors). Weights of factors and
rankings of categories are integrated to provide LSZ map.

2.4. Support Vector Machine

Support Vector Machine is a data classification technique, developed by Vapnik in 1990.
Classification process involves separating data into training and testing sets. Each element in
the training set contains a corresponding target value (i.e. the class labels) and several attribute
(i.e. the features of elements). The ultimate goal of SVM is to predict the target value for the
test data, with only attributes of the test data given [38, 39]. Support vector machines are based
on the concept of decision planes that define decision boundaries [40]. SVM finds the best
hyperplane (n-dimensional plane) that separates all data points of one class from those of other
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class. It uses kernel method to project linearly non-separable data to a higher dimension. The
kernel can separate classes even if mean values are near to each other. A simple illustration of
the method is shown in Figure.7. The data points shown are linearly separable. The maximum
margin hyper plane is shown in red, and the margin between the support vectors is shown by
the parallel light blue lines. The two classes do not overlap. The support vectors (patterns that
are on the margin) are shown [41] as yellow circles for class 1 and triangles for class 2.

Figure 7. Illustration of the support vector [41].

Let m-dimensional training inputs xi (i=1,...,M) belong to Class 1 or 2 and the associated labels
be yi = 1 for Class 1 and −1 for Class 2. If these data are linearly separable, we can determine
the decision function, which is represented by equation 11 [42]

( ) = +D x w x bT (11)

where w and b are weight and bias, respectively, to map the input into a higher dimensional
space. The optimal separating hyper plane (i.e., w T x + b = 0) is located where the margin
between the two classes is maximized, and the misclassification is minimized. The optimal
hyper plane satisfies the following constrained minimization as given by equations 12–13

1:
2

Min w wT (12)
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They can be obtained by solving the following constrained optimization problem by the
method of Lagrange multipliers and maximizing the equation 14 as given below
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where αi = Lagrange’s multiplier and αi ≥0. SVM can perform only binary classification;
however, classifying data in more than two classes can be performed using pairwise classifi‐
cation [42, 43].

2.4.1. Applications of Support Vector Machine

i. Image processing for classification of satellite images [44].

ii. Modelling of Seismic Liquefaction Potential [45].

iii. Financial Literacy Modelling [46].

iv. Text charactization [47].

v. Face detection [48].

vi. Texture classification [49].

3. Advantages and Disadvantages

All these methods mentioned above have certain advantages as well as disadvantage over the
other, hence a detailed comparative Table 3 showing their advantages and disadvantages are
given below.

Method Advantages Disadvantages

Regression Analysis

Model developer has full knowledge of variables. It requires the data to be independent.

It is most strongly predictive of an outcome. It is sensitive to outliers.

It runs faster than neural network/support vector
machine-based models.

It is not “black box” as ANN.

Analytic Hierarchy
Process (AHP)

It is simple, flexible and powerful. It requires a large number of comparisons.

All the calculations are driven by decision maker’s
experience.

Limitation of the use of 9 point T. L. Saaty’s
scale.

It does not require an expert system with the
decision maker’s knowledge embedded in it.

It adds extra burden on decision maker for
complex problem.

Rank reversal
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Method Advantages Disadvantages

Artificial Neural
Network (ANN)

It requires less formal statistical training to
develop the network.

Neural network are “black box”.

It can implicitly detect complex nonlinear
relationships.

Single-layer perceptron work only on
linearly separable classification problems.

Availability of multiple training algorithms. It requires greater computational resources.

It is prone to over fitting.

Can trap in local minima.

Support Vector
Machine (SVM)

It has high prediction accuracy and good
mathematical foundation.

The biggest limitation of the support vector
approach is the choice of the kernel.

Overfitting does not occur. It requires long training time.

It does not trap in local minima, i.e. it finds the
global solution.

Problem has to be formulated as two-class
problem.

It works well with fewer training samples (i.e.
number of support vectors do not matter much).

It requires fewer parameters (kernel, error cost).

Table 3. Advantages and Disadvantages of these methods [10, 12, 13, 50, 51]

4. Literature Survey

The literature survey of some of the available research works carried out for Landslide
Susceptibility Zonation is shown in Table 4 below:

S. No. Techniques used Accuracy (%) References

1. Discriminant Analysis 83.8 Carrara et al [52]

2. Regression Analysis 70 Jade & Sarkar [53]

3. Logistic Regression 74.8 Guzzetti et al. [54]

4. Multilayer Perceptron 73 Ermini et al. [55]

5. Neuro-Fuzzy approach 97 Pradhan et al. [36]

6. Combined Neural Network and Fuzzy 74.5 Kanungo et al. [56]

Table 4. A comparative table for various techniques uesd with their accuracy.

The results obtained showed that the Artificial Neuro Fuzzy (ANF) modeling is a very useful
and powerful tool for the regional landslide susceptibility risk assessments. Various member‐
ship functions should be selected and a number of training sets should be carefully and
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optimally selected to prevent over learning of the model. Therefore, the results that are to be
obtained from the ANF modeling should be assessed carefully because the over learning may
cause misleading results [35]. As a final recommendation, the results obtained from various
papers showed that the methods followed in the study based on Neuro-Fuzzy approach
exhibits a high performance. However, it is not forgotten that the performance of such type
maps depends not only on the methodology followed but also on the quality of the available
data and the factors considered for preparing LSZ. These input factors can be natural factors
(like rainfall, lithology, slope, etc.) and anthropogenic factors (like road construction, mining,
etc.). For this reason, if the quality of the data increases, the performance of the maps produced
by these methods could increase. The detailed literature survey where various different models
have been used for landslide hazard zonation is given below:

Lee and Pradhan[5] used frequency ratio and logistic regression model for mapping the
landslide susceptible areas by considering slope, aspect, curvature, distance from drainage,
lithology, distance from lineaments, land cover, vegetation index, and precipitation as
landslide stimulating factors. They calculated the Landslide Hazard Index (LHI) by summa‐
tion of frequency ratios for all the factors and solving the regression equation, respectively, for
both methods and concluded that the frequency ratio model has 2.7% (93.04–90.34%) better
predication accuracy than the logistic regression model.

Pradhan et al [57] combined frequency ratio and fuzzy algorithm for generating landslide
hazard maps. Fuzzy membership values were calculated using frequency ratio and detected
landslides. Fuzzy algebraic operators (such as fuzzy and, or, product, sum) and fuzzy gamma
operators were applied on fuzzy membership values for landslide hazard mapping. Value of
fuzzy gamma operator was set to 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.975
for detecting its effect on landslide hazard maps. After verification, they found that out of 17
cases tested, the gamma operator with value 0.8 performed best (prediction accuracy 80.26%),
while 'Fuzzy algebraic sum' and 'fuzzy or' showed worst accuracy of 64.77% and 56.86%,
respectively.

Pourghasemi et al[14] showed the applicability of fuzzy logic and analytic hierarchy process
in the mapping and zonation of landslide susceptible areas. A total of 12 data layers, which
correspond to 12 landslide conditioning factors, were exploited to detect the most susceptible
areas. Fuzzy membership values to all pixels were assigned based on the frequency ratio
model. Landslide susceptibility was then identified using fuzzy if then else rules. Using the
AHP model, weightage of each contributing factor was identified using pairwise comparisons
and an equation was modelled for landside susceptible index. Validation of the maps created
using both the methods was performed using ROC curve. They concluded that the model with
fuzzy logic has the highest area under the curve (AUC) value 0.9194, whereas AHP has 0.8887.

Devkota et al[6] compared certainty factor, index of entropy and logistic regression methods
for landslide susceptibility mapping. Slope gradient, slope aspect, altitude, plan curvature,
lithology, land use, distance from faults, rivers and roads, topographic wetness index, stream
power index and sediment transport index were considered as prominent factors for landslide
susceptibility study. The value of the certainty factor ranges between −1 and +1. A positive
value means an increasing certainty in landslide occurrence, while a negative value corre‐
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sponds to a decreasing certainty in landslide occurrence. CF values of the landslide condi‐
tioning factors were combined pairwise to generate landslide susceptibility index. Natural
breaks were used to classify LSI value to Landslide Hazard Zones. The performance of
landslide susceptibility models was assessed using ROC curves. They found that the hazard
map prepared using the index of the entropy model has the highest prediction accuracy
(90.16%), followed by the logistic regression model (86.29%) and the certainty factor model
(83.57%).

Nourani et al[8] prepared landslide hazard zonation maps using genetic programming and
compared it with frequency ratio, logistic regression, artificial neural network. Seven factors,
i.e. lithology, slope, aspect, elevation, land cover, distance to stream, and distance to road, were
considered prominent for landslide hazard zonation study. In the frequency ratio model,
landslide hazard index was calculated by summation of frequency ratios for all the factors. In
the logistic regression model, LHI was calculated by solving the regression equation. Corre‐
lation between landslide event and landslide affecting factors was estimated, and then,
equation predicting the landslide was obtained. Three layered feed-forward neural network
with back-propagation as training algorithm was used for calculation of LHI. Two different
criteria were used to measure the efficiency of the ANN method, i.e. the root mean square error
(RMSE) and the determination coefficient (DC). For producing the best landslide susceptibility
maps, sensitivity analysis was also implemented in ANN. For verification of LSM, produced
by FR, LR, ANN, and GP methods, landslide testing data were compared with these maps.
The assessment of AUCs showed that the prediction accuracy of FR, LR, ANN, and GP
methods were 89.42%, 87.57%, 92.37%, and 93.27%, respectively.

Bui et al[37] compared the accuracy of landslide prediction, using support vector machine,
multilayer perceptron neural network, radial basis function neural network, kernel logistic
regression and logistic model tree. Slope, aspect, altitude, relief amplitude, topographic
wetness index, stream power index, sediment transport index, lithology, fault density, land
use, and rainfall were studied as landslide conditioning factors. For choosing the best subset
of conditioning factors, predictive ability of the factors was assessed using the information
gain ratio with 10-fold cross-validation technique. The analysis of landslide inventory map
showed that landslides mainly occurred during and after the heavy rainfall. The performance
of landslide susceptibility models was assessed using receiver operating characteristics (ROC)
curves, and reliability was assessed using kappa index. They found that the MLP neural net
model has the highest prediction capability of 90.2%, followed by the SVM model 88.7%, the
KLR model 87.9%, the RBF neural net model 87.1%, and the LMT model 86.1%.

Youssef et al[9] combined logistic regression and frequency ratio for removing their weak‐
nesses and producing landslide susceptibility maps with better accuracy. Altitude, curvature,
distance from wadis, distance from road, distance from fault, stream power index, topographic
wetness index, soil type, geology, slope, and aspect were used as contributing factors in
landslide occurrences. Frequency ratio was calculated by analyzing the relationship between
11 conditioning factors and landslide occurrence. Landslide hazard index was calculated by
summation of frequency ratios for all the factors and solving the regression equation, respec‐
tively, for the frequency ratio and logistic regression methods. After this, the probability index
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for ensemble of FR and LR was calculated and normalized to be between 0 and 1. For calcu‐
lating the landslide susceptibility map from ensemble method, the probability index value was
classified in five categories using quantile classifier. Probability index value represents the
predicted probability of landslide for each pixel in the presence of given set of conditioning
factor. Validation of all three models was performed using ROC curves, and they observed
that the prediction accuracy of ensemble of FR and LR was higher (82%) than that of FR (58%)
and LR (77%) separately.

5. Case Study

The landslide susceptibility mapping is carried out in the Mandakini River basin of Uttarak‐
hand, which covers an area of about 2439 sq. km and is situated between 30°19'00"N to
30°49'00"N latitude and 78°49'00"E to 79°20'00"E longitude (Figure. 8a) falling in Survey of
India toposheet Nos. 53J and 53N.

5.1. Geological setting of the Study Area

The lithological mapping of the area (Figure. 8b) shows the presence of Vaikrita formation in
the north, forming most of the Greater/Higher Himalaya in Garhwal. South of this formation,
the Munsiyari formation is present in the Lesser Himalaya. South of the Munsiyari formation,
the Ramgarh group is present. The southernmost area of the basin is comprised of Berinag
Formation. Vaikrita, Munsiyari, Ramgarh, and Berinag formations are, respectively, separated
by Main Central Thrust (MCT-I), which is equivalent to Vaikrita Thrust; Main Central Thrust
(MCT-II), which is equivalent to Munsiyari/Jutogh Thrust and Main Central Thrust (MCT-III),
which is equivalent to Ramgarh/Chail Thrust [58, 59] (Figure. 8b). The presence of MCT Thrust
zone causes high shearing and fractures in this area, which makes the rocks weak and highly
prone to landslides and other natural hazards.

The high susceptibility to landslides in the Mandakini River basin is mainly due to complex
geological settings, varying slopes and relief, heavy rainfall, along with ever-increasing human
interference in the ecosystem. Extreme climatic events increase the instability of the terrain,
which results in landslides, example includes the Kedarnath disaster [60]. Some of the major
landslides occurred in the past are near Okhimath in 1997, 1998, 2010, 2012, 2013; in Phata
Byung area in 2001, 2005, 2013; in Madhyamaheshwar area in 1998, 2005, 2013, etc., which are
dependent on various factors such as geology, structure, land use, old slides, slope, slope
aspect, and drainage in the area [61, 62, 63].

5.2. Data Used

The Survey of India (SOI) toposheet Nos. 53N and 53J were used to create the base map of the
study area. Landsat satellite image of October 2008 with 30-m spatial resolution was taken to
finalize the tectonic and geologic map of the study area (after) [59]. Elevation data were taken
from ASTER-GDEM (Advance Spaceborne Thermal Emission and Reflection Radiometer,
Global Digital Elevation Model) having spatial resolution of 30 m with an accuracy of ±10 m.
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These data sets were analyzed, preprocessed and then categorized using Arc GIS 9.3, ERDAS
Imagine 9.1 software to generate various thematic layers such as elevation, slope, aspect,
drainages, geology/lithology, soil, buffer of thrusts/faults, and buffer of streams in the study
area (Figure 8 a-h).

Figure 8. Various thematic layers used in landslide susceptibility prediction using PSVM model. a) Classified elevation
map of the study area prepared from ASTER-GDEM showing major locations of Mandakini River basin. b) Geological
map showing various formations and structures mainly MCT-I, MCT-II and Ramgarh Thrust (after Shukla et al. [59]).
c) Drainage map derived from DEM showing third-order onwards and the presence of landslides in the study area. d)
DEM map. e) Aspect map showing variation in the hill facets. f) Slope map showing comparatively higher slopes in
northern sides as compared to southern side because of the presence of glacial features. g) Buffer map of the thrusts
present in the study area created at specified intervals and reclassified in nine classes. h) Buffer map of the drainages
third-order onwards. For the simplicity of the model, first- and second-order streams were not taken.

5.3. Model Selection and Results

All the data sets were generated in Geographic Information System (GIS) environment at 30 ×
30 m pixel resolution, the vector layers were converted to raster format with other raster data
sets. These raster data sets were converted to ASCII format to be read in MATLAB for using
Support Vector Machine (SVM) for prediction of Landslide susceptibility. The landslide data
for Okhimath River basin, procured from Geological Survey of India (GSI), were considered
to test the SVM model and generate the predictive susceptibility map. The study area contains
1,805,548 pixels, while 2207 pixels are present as landslides. Thus, the pixels representing the
landslides are mere 0.125% of the whole study area. The purpose of this study is to predict the
landslide, so 1 denotes that pixel involved in landslide and −1 represents pixels that are not
involved in landslide. In the whole study area, 2207 pixels were mapped as landslide based
on the past data from GSI and other published reports. The whole set of data were divided
into 60% as training data and 40% as testing data.
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Figure 9. Landslide Susceptibility Map prepared using PSVM model shows areas susceptible to landslides on the DEM
and drainage map of the study area with the actual past landslides.

Hence, the landslide susceptibility map for Mandakini River basin was prepared using the
Proximal Support Vector Machine (PSVM) model (Figure. 9). It is evident from this figure that
the PSVM model classified more areas in landslide susceptible zone as compared to certain
landslides have been missed. Hence, various performance metrics such as average prediction
accuracy (AA), true positive rate (TPR), true negative rate (TNR) and relative operating
characteristic curve (ROC) were computed on testing data to validate the performance of
prediction models [64, 65, 66]. The validation results in terms of AUC, and their corresponding
testing accuracy showed that the PSVM model has higher AUC values when rainfall data from
TRMM were considered with respect to when not considered as shown in Figure 10. The PSVM
model with TRMM and without TRMM has an AA of 82.85% and 84.20%, TPR of 79.43% and
72.46%, TNR of 82.85% and 84.22% and an AUC value of 81.15% and 78.34%, respectively
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(Table 5). The high value of TNR (82.85% and 84.22%) achieved by the PSVM model in this
case is due to the large number of pixels for the study area as compared to pixels forming the
landslides. Hence, this model predicted/demarcated the safe areas with 84.22% accuracy when
TRMM data were taken into consideration, while it predicted the areas prone to landslide with
79.43% accuracy when TRMM data were taken in consideration because of less number of
landslide pixels. Though the AUC values (78.34% and 81.15%) are good, the average accuracy
for the PSVM model is quite high between 82.85% and 84.20%. Similar results were also
obtained by Pradhan [67] where SVM yielded 81.46% AUC when applied on altitude, slope
angle, plan curvature, distance from drainage, distance from road, soil type and NDVI as the
input parameters considered for landslide susceptibility mapping for Penang Island in
Malaysia.

Model AA% TPR% TNR% AUC% C

PSVM (with TRMM) 82.85 79.43 82.85 81.15 100

PSVM (without TRMM) 84.2 72.46 84.22 78.34 128

Table 5. Prediction performance for PSVM model.

Best results are shown in bold. AA(%) is the average accuracy, TPR(%) is the true predictive
rate, TNR(%) is the true negative rate and AUC(%) is the area under the curve.

Figure 10. Best Prediction rate and area under the curves (AUC) produced by PSVM model with and without TRMM
data consideration.

5.4. Conclusion

In Garhwal Himalaya, Mandakini River basin is highly vulnerable to landslides, especially
the town of Okhimath and its nearby villages. In the vicinity of the study area, Mandakini
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79.43% accuracy when TRMM data were taken in consideration because of less number of
landslide pixels. Though the AUC values (78.34% and 81.15%) are good, the average accuracy
for the PSVM model is quite high between 82.85% and 84.20%. Similar results were also
obtained by Pradhan [67] where SVM yielded 81.46% AUC when applied on altitude, slope
angle, plan curvature, distance from drainage, distance from road, soil type and NDVI as the
input parameters considered for landslide susceptibility mapping for Penang Island in
Malaysia.

Model AA% TPR% TNR% AUC% C

PSVM (with TRMM) 82.85 79.43 82.85 81.15 100

PSVM (without TRMM) 84.2 72.46 84.22 78.34 128

Table 5. Prediction performance for PSVM model.

Best results are shown in bold. AA(%) is the average accuracy, TPR(%) is the true predictive
rate, TNR(%) is the true negative rate and AUC(%) is the area under the curve.

Figure 10. Best Prediction rate and area under the curves (AUC) produced by PSVM model with and without TRMM
data consideration.

5.4. Conclusion

In Garhwal Himalaya, Mandakini River basin is highly vulnerable to landslides, especially
the town of Okhimath and its nearby villages. In the vicinity of the study area, Mandakini
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River crosses various Himalayan thrusts, and due to the presence of these tectonically active
MCT zones, the rocks shows high shearing and fracturing and becomes more susceptible for
landsliding. The susceptibility to landslide is mainly controlled by valley slopes, attitude of
discontinuity  of  surfaces,  soil  type,  presence  of  drainage,  nature  of  rocks  exposed,  and
structural and tectonic features present, besides human interaction in the terrain.

Hence, recently developed Support Vector Machine (SVM) learning technique was applied
on this area to demarcate the landslide prone and safe areas. The PSVM method has been
applied for landslide susceptibility mapping of the study area. The PSVM model showed
higher average accuracy (AA) of 82.82%–84.20% for this study area,  and the ROC curve
indicates that the PSVM model has the prediction accuracy of 81.15%. Nevertheless, this
model can be effectively used for landslide susceptibility mapping in this area or similar
terrain with these sets of input parameters.
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Remote Sensing for Natural or Man-made Disasters and
Environmental Changes
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Additional information is available at the end of the chapter
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Abstract

Disasters can cause drastic environmental changes. A large amount of spatial data is re‐
quired for managing the disasters and to assess their environmental impacts. Earth obser‐
vation data offers independent coverage of wide areas for a broad spectrum of crisis
situations. It provides information over large areas in near-real-time interval and supple‐
mentary at short-time and long-time intervals. Therefore, remote sensing can support dis‐
aster management in various applications. In order to demonstrate not only the efficiency
but also the limitations of remote sensing technologies for disaster management, a num‐
ber of case studies are presented, including applications for flooding in Germany 2013,
earthquake in Nepal 2015, forest fires in Russia 2015, and searching for the Malaysian air‐
craft 2014. The discussed aspects comprise data access, information extraction and analy‐
sis, management of data and its integration with other data sources, product design, and
organisational aspects.

Keywords: Satellite Based Crisis Information, Environmental Changes, Natural Disaster,
Man-made Disaster

1. Introduction

The impact of disasters on the environment has become more severe over the last decades.
Moreover, the reported number of disasters has dramatically increased, as well as the costs to
the global economy and the number of people affected (see Figure 1 for natural disasters) [1,2].
The reasons for these disasters are manifold, and the impact can be found in the increasing
vulnerability of societies, infrastructure, and population. Furthermore, extreme weather
events have become more common and severe [3].

The increasing occurrences of natural and man-made disasters lead to a growing demand for
up-to-date geographic information, especially timely material on rapidly evolving events. This

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
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includes comprehensive, near-real-time Earth observation data, which offer independent
coverage of wide areas for a broad spectrum of civilian crisis situations [4]. Satellite imagery
can serve as a source of information in disaster situation. Accordingly, remote sensing can
provide information on various domains of the disaster management, from risk modelling and
vulnerability analysis to early warning and damage assessment [5].

Figure 1. World Map of Natural Disasters 2014 [2]

2. Disaster management and remote sensing

2.1. Disaster types and their environmental impact: A brief overview

There are several ways to classify disaster types [1,6]. One common classification is natural
and man-made disasters. Severe geo-physical or climatic events, such as volcanic eruptions,
floods, cyclones and fires that threaten people or property, are termed as natural disasters.
Man-made disasters are events which are caused by human activities (e.g. industrial chemical
accidents and oil spills). Sometimes, natural disasters that are accelerated by human influence
are termed human-induced disasters [6]. In addition, the Centre for Research on the Epidemi‐

Environmental Applications of Remote Sensing310



includes comprehensive, near-real-time Earth observation data, which offer independent
coverage of wide areas for a broad spectrum of civilian crisis situations [4]. Satellite imagery
can serve as a source of information in disaster situation. Accordingly, remote sensing can
provide information on various domains of the disaster management, from risk modelling and
vulnerability analysis to early warning and damage assessment [5].

Figure 1. World Map of Natural Disasters 2014 [2]

2. Disaster management and remote sensing

2.1. Disaster types and their environmental impact: A brief overview

There are several ways to classify disaster types [1,6]. One common classification is natural
and man-made disasters. Severe geo-physical or climatic events, such as volcanic eruptions,
floods, cyclones and fires that threaten people or property, are termed as natural disasters.
Man-made disasters are events which are caused by human activities (e.g. industrial chemical
accidents and oil spills). Sometimes, natural disasters that are accelerated by human influence
are termed human-induced disasters [6]. In addition, the Centre for Research on the Epidemi‐

Environmental Applications of Remote Sensing310

ology of Disasters [7] divides the natural disaster category into six sub-groups, which in turn
include 17 disaster types, and 33 sub-types (see Table 1). The technological disaster category
is segregated into three sub-groups which in turn include 15 disaster types (see Table 2).
Besides, disasters can be categorised as acute (e.g. earthquake) or slow (e.g. drought) based on
their onset.

Climatological Geophysical Hydrological Meterological Biological* Extraterrestrial*

Drought Earthquake Flood Storm Animal accident Impact
Glacial Lake Outburst Ground Shaking Coastal food Extra-tropical cyclone Insect infestation   Airburst

Wildfire Tsunami Riverine flood Tropical cyclone Grasshoper Space Weather
Forest fire Mass movement Flash flood Convective Storm Locust Energetic particles
Land fire Volcanic activity Ice jam flood Extreme temperature Epidemic Geomagnetic storm

Ash fall Landslide Cold wave Viral disease Shockwave
Lahar Avalanche (snow, debris, 

mudflow, rockfall)
Heat wave Bacterial disease

Pyroclastic flow Wave action Severe winter 
conditions

Parasitic disease

Lawa flow Rogue wave Fog Fungal disease
Seiche Prion disease

Natural disaster sub-group

Natural disaster types and sub-types

Table 1. Natural disasters categorisation after [7]; *not being considered below

Industrial accident Transport accident Miscellaneous accident

Chemical spill Air Collapse
Collapse Road Explosion
Explosion Rail Fire
Fire Water Other
Gas leak
Poisoning
Radiation
Other

Man-made disaster sub-group

Man-made disaster types

Table 2. Man-made disasters categorisation after [7]

There are many effects that result from disasters, whether natural or man-made. For instance,
the impacts of disasters have a human and an environmental dimension. UNEP concludes that
‘environmental conditions may exasperate the impact of a disaster, and vice versa, disasters
tend to have an impact on the environment’ [8, p.1]. Reference [9] discusses down the envi‐
ronmental impacts for different types of disasters in detail. They raise the interesting point that
while most environmental impacts are negative, some are positive. For example, ‘floods can
help rejuvenate floodplain vegetation and are important drivers of many ecological processes
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in floodplains’ [9, p. 55]. In Table 3, a selection of environmental impacts for different types of
disasters is listed.

Drought Droughts generally damage ecological systems: depletion of water resources, loss of plant and 
animal life, deterioration of soil, fire

Glacial lake 
outburst

Flooding, destruction of plant life, landslide, erosion

Wildfire Loss of plant and animal life, erosion, flooding, mud slides, long-term smog
Earthquake

Mass movement

Volcanic activity Loss of plant and animal life, deterioration of soil, air and water pollution, long-term smog

Flood
Major floods have varied effects on river-floodplain ecosystems: e.g. negative impact on trees if 
they are too long submerged; polluted water infiltrate floodplains and contaminate ground water 
aquifers; positiv impact like rejuvenate floodplain vegetation 

Landslide Destruction/ loss of plants, erosion, depletion of water resources

Wave action Modifies the dynamics of coastal marine communities e.g. the influence the structure of biological 
communities on rocky shores

Storm The dominant losses from storms are to structures and potentially to humans. The environmental 
effects are: e.g. destruction of plants, forest fire, flash flood.

Extreme 
temperature

Avalanche, snow melt, loss of plants and animals, flash floods, flooding, drougth, erosion, fire

Fog Loss of plant and animal life, decreasing the UV radiation, damages to health for humans, animals 
and vegetation

Te
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Chemical spill 
Collapse 
Explosion
Fire
Gas leak
Poisoning

Tr
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t Air 
Road 
Rail 
Water
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s Collapse
Explosion
Fire

The dominant losses from earthquakes and mass movements are to structures and potentially to 
humans. Nevertheless, both disasters can also result in adverse environmental consequences: flora 
and fauna damaged by the shocks, shifts in land surfaces, alterations in local hydrologic systems.
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There are several effects on the environment depending on the detailed subtype and dimension of 
the disaster. Some general impacts are for example:
Negative health outcomes from accidental releases of toxins,
Loss of plants and animals,
Water/soil/air pollution,
Damages to health for humans, animals and vegetation,
Destruction of plants,
Erosion,
Flooding,
Fog,
etc.M
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Table 3. Disasters and their environmental impacts [modified after 9]

The impact of disasters can be reduced through a proper disaster management [10]. The
process of disaster management is often interpreted as a cycle consisting of four main phases:
mitigation, preparedness, response and recovery (see Figure 2 and for more information [10]).

2.2. Earth observation for disaster management: potential and limitations

The Earth is being imaged each day by a constellation of remote sensing satellites. Two
complementary types of Earth observation satellites are particularly relevant to disaster
management. ‘Geostationary Earth observation satellites’ are placed at an altitude of approx‐
imately 35,800 kilometres. At this altitude, one orbit takes 24 hours, the same length of time as
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The impact of disasters can be reduced through a proper disaster management [10]. The
process of disaster management is often interpreted as a cycle consisting of four main phases:
mitigation, preparedness, response and recovery (see Figure 2 and for more information [10]).

2.2. Earth observation for disaster management: potential and limitations

The Earth is being imaged each day by a constellation of remote sensing satellites. Two
complementary types of Earth observation satellites are particularly relevant to disaster
management. ‘Geostationary Earth observation satellites’ are placed at an altitude of approx‐
imately 35,800 kilometres. At this altitude, one orbit takes 24 hours, the same length of time as
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the Earth requires to rotate once on its axis [11,12]. In effect, it means that satellites in this orbit
remain stationary above the ground and view the whole Earth disk below. Their spatial data
resolution is very low but is collected at the same point every 15 minutes. With these kinds of
data, the evolution of atmospheric phenomena can be observed, ensuring real-time coverage
of meteorological events such as severe local storms and tropical cyclones [13]. The importance
of this capability has been exemplified during several hurricane events.

The great advantage of ‘polar-orbiting satellites’ is the provision of relatively high spatial
resolution data (up to 0.3 meter for optical imagery and 1 meter for radar imagery) [11], which
is very important for mapping disaster damages in detail, such as affected infrastructure or
buildings after an earthquake [13]. Most of the Earth observation satellites are in a low and
‘near-polar’ orbit with an orbital period of approximately 90–100 minutes and an orbit
inclination near 90 degrees. This allows the satellite to see virtually every part of the Earth as
the Earth rotates underneath it. However, no spot on the Earth's surface can be sensed
continuously or at any point of time from a satellite in a polar orbit. The time elapsed between
observations of the same point on the Earth (revisit time) is limited to once every few days
with the same sensor parameters or maximum once a day for steerable satellite. Moreover,
most satellites do not continuously collect data due to limitations in power and memory. Some
offer regular and reliable data acquisition while others may be more ad hoc, collecting only 5

Figure 2. Disaster management cycle
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or 10 minutes’ worth of data in a 90-minute orbit. Data are stored on board the satellite until
it is in sight of a ground station to downlink the data. The time between an image being taken
and being available to download can range between a month to a few minutes and is getting
faster all the time. Thus, the collection of high-resolution data has some limitations regarding
acquisition time, data provision and image extent.

The Earth observation satellites have their own special systems of imaging sensors which make
use of the visible, infrared, microwave and other parts of the electromagnetic spectrum [11].
The characteristics of some sensors that are commonly used to support disaster management
are listed in Table 4.

Data type Sensor Nadir spatial 
resolution (m) Bands Swath

(km) Revisit Frequency

Worldview-3

0.31
1.24
3.7
30

Panchromatic
8 Multispectral

8 SWIR
12 CAVIS (Corrects for Clouds,
Aerosols, Vapors, Ice & Snow)

13.1 1.1 days at 1 m GSD or less
4.5 days at 20° off-nadir or less

Worldview-2 0.46
1.84

Panchromatic
8 Multispectral 16.4 1.1 days at 1 m GSD or less

3.7 days at 20° off-nadir or less

Pleiades-1A /  1-B 0.70
2.00

Panchromatic
4 Multispectral 20 Daily

SPOT-6 /  -7 1.50
6.00

Panchromatic
4 Multispectral 60 Daily

RapidEye 6.5 5 Multispectral 77 Daily

ASTER
15
30
90

4 Multispectral
6 SWIR
5 TIR

60 4-16 days

MODIS
250
500

1,000

36 bands
 (VIS, NIR, SWIR/MWIR, LWIR) 2,330 Daily

TerraSAR-X /  TanDEM-X
1
3

18

Spotlight
Stripmap
ScanSAR

10
30

100
11 days

Cosmo-SkyMed
<1

3-15
30-100

Spotlight
Stripmap
ScanSAR

10
40

100-200
1.5 days

Radarsat -2

3
25
8
8
25
25
50

100

Ultra-fine
Fine

Quad-pol fine
Standard

Quad-pol standard
ScanSAR narrow
ScanSAR wide
Extended high

20 Every few days

ALOS 10
100

PALSAR (Fine)
PALSAR (ScanSAR)

40-70
250-350

Several times per year as per 
JAXA acquisition plan

Synthetic 
Aperture Radar 

(SAR)

Optical
(multispectral)

Thermal

Table 4. Examples of sensors and their characteristics to support disaster management [modified after 16]

‘Optical data’ are of great importance for disaster management support, because they can be
used nearly for all disaster types and for all phases of disaster management. For example, they
are used for planning the logistics of relief actions in the field immediately after an earthquake
or tsunami [13–14]. Optical images are easy to understand and interpret even for non-
specialists, particularly when it consists of the three visual primary colour bands (red, green
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‘Optical data’ are of great importance for disaster management support, because they can be
used nearly for all disaster types and for all phases of disaster management. For example, they
are used for planning the logistics of relief actions in the field immediately after an earthquake
or tsunami [13–14]. Optical images are easy to understand and interpret even for non-
specialists, particularly when it consists of the three visual primary colour bands (red, green
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and blue) and the bands are combined to produce a ‘true colour’ image. However, the
interpretation of false colour composite images is not intuitive and requires expert knowledge;
likewise, all advanced analysis techniques need comprehensive know-how. To select the most
appropriate data type for the needs of the individual disaster situation, the characteristics of
the sensor are of great importance [15]. Particularly, temporal and spatial resolutions are key
factors. For example, for mapping an earthquake in an urban area optical data with a spatial
resolution of <0.5 meters are most valuable. The most crucial point for the use of optical images
is their availability. Due to cloud coverage, haze and other atmospheric conditions useful
optical images could not obtained by every satellite overpass. Aggravating this situation, there
are some disasters such as wildfire or severe storms which are characterised by clouds and
smoke.

The ‘thermal imagery’ offers excellent possibilities for automated extraction of anomalous
high temperature or hot spots caused by wild fires or information about volcanic erup‐
tions. However, due to the fact that energy decreases with increasing wavelength, thermal
wavelength have relatively low energy levels and consequently thermal image data have a
lower spatial resolution than optical data. [16]. Techniques for automatic fire detection from
the space are operational and are accepted by the users (e.g. European Forest Fire Informa‐
tion System) [17].

‘Microwave sensors’ are of great value for the fast response mapping and analysis tasks, as
they allow imaging at wavelengths almost unaffected by atmospheric disturbances such as
rain or cloud. Most modern synthetic aperture radar (SAR) sensors are designed to acquire
data from various ground resolution elements (see Table 4). In most applications, only the
relative variability of backscatter intensity within the image is used. Nonetheless, backscatter
intensity and the phase of SAR images can be utilised. Phase information of a single SAR data
set has no value, but the comparison of phases between two SAR images acquired at distinct
times are utilised in SAR interferometry or INSAR. Moreover, with modern satellites (e.g.
TerraSAR-X and Radarsat-2) it is possible to acquire simultaneous data with more than one
polarisation [16]. SAR systems can be used to map flooding or to measure earth deformations
before and during earthquakes or volcanic eruptions, particularly when post-event imagery
can be jointly analysed with archived reference imagery for change detection or interferometric
coherence or displacement measurements [15, 13].

Table 5 summarises the remotely sensed data types and image processing techniques for
information extraction about natural disasters.

In general, the availability of appropriate data with respect to acquisition time, image extent,
spatial as well as temporal and spectral resolution is an important consideration for most
applications in the disaster context [18]. Particularly, there are numerous examples for the
importance of the necessity of fast availability of remote sensing data like damage assessment
maps for earthquakes, landslides or flooding. However, for monitoring the spread of an oil
spill or the extent of flooding the revisit time is relevant too [13].

Remote sensing has proven to be useful for a range of applications. Especially high spatial
resolution data and remote sensing techniques are being deployed in the context of the disaster
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management domain, from risk modelling and vulnerability analysis to early warning and
damage assessment (see Table 6). A broad assessment of several remote sensing sensors
(optical, thermal, SAR, etc.) and their utility for providing information about natural disasters
is given in Ref. [13, p. 200–201].

Reference [19, p. 2-3] concludes that ‘the most evident parts are preparedness (warning for
storms, cyclones, floods, etc.,) and response (mapping of all types of crisis impact and
situations), while applications of satellite information during the phases of recovery and
mitigation prevention are being still further developed’. Additionally, the authors give the
following main reasons for a drastically increased demand for rapid satellite data analysis for
all kinds of disaster and phases over the past years:

• accessibility of very high resolution optical (up to 0.3 meter) as well as radar imagery (up
to l meter) from space has risen significantly over the past years even for the civilian domain

• relief agencies rapidly gain a better understanding on what these new geoinformation
technologies can bring to their work in the fields of mission planning, logistics, situation
awareness and even mission security

Data type Sensor examples Technique  Application

Manual interpretation Infrastructure and property damage due to flooding, 
earthquakes, landslides, etc.

Spectral classification Location and extent of flooding, landslides, volcanic 
debris, fire scars

Semivariogram analysis and 
other textural classifiers Damage due to earthquakes; location of landslides

Image thresholding 
(including band ratios)

Location and extent of flooding, landslides, volcanic 
debris, fire scars

Image differencing Location and extent of flooding, landslides, volcanic 
debris, fire scars

Postclassification change 
detection

Location and extent of flooding, landslides, volcanic 
debris, fire scars

DEM generation DEM is used as a supplementary information in variety 
of studies

Split window
Crater lake temperatures, lava flow, precursor to 
earthquake activity, temperature and size of fire 
hotspots

Dual band 
Crater lake temperatures, lava flow, precursor to 
earthquake activity, temperature and size of fire 
hotspots

Coherence Coherence Change detection due to landslide, flooding, 
fire, etc.

Backscatter intensity Coherence Change detection due to landslide, flooding, 
fire, etc.

Interferometry/DEM 
generation Change detection due to landslide, flooding, fire, etc.

Differential interferometry Surface deformation due to volcanic or tectonic 
activity; velocity and extent of slow moving landslides

Polarimetry Landcover classification and change detection

Synthetic 
Aperture 
Radar (SAR)

TerraSAR-X, 
TANDEM-X, 
Cosmo-SkyMed, 
Radarsat-1/2, 
JERS-1, ERS-1/2, 
ENVISAT, ALOS

Optical 
(multispectral)

Worldview, 
Pleiades, 
Quickbird, Ikonos, 
RapidEye, SPOT, 
ASTER, Landsat, 
ALOS 

Thermal ASTER, MODIS, 
AVHRR

Table 5. Remotely sensed data types and image processing techniques for information extraction about natural
disasters [modified after 13]
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• media and the public raise the demand for up-to-date easy-to-understand visual informa‐
tion on disaster areas and ongoing relief work

The following sections focus primarily on the contribution of remote sensing to the response
phase, in particular, giving a brief overview of the workflow from an emergency call or request
for assistance, through satellite tasking, data acquisition, analysis, map provision and further‐

Mitigation Preparedness Response Recovery

Drought

Risk modelling; 
vulnerability analysis; 
land and water 
management planning

Weather forecasting; 
vegetation monitoring; 
crop water requirement 
mapping; early warning

Monitoring vegetation; 
damage assessment 

Informing drought 
mitigation

Glacial Lake 
Outburst

Mapping glacial lake 
outburst-prone areas; 
glacial monitoring; 
delineating flood-plains; 
land-use mapping

Weather forecasting; 
glacial monitoring, lake 
outburst detection; early 
warning

Flood mapping; 
evacuation planning; 
damage assessment

Damage assessment; 
spatial planning

Wildfire
Mapping fire-prone 
areas; risk modelling

Fire detection; predicting 
spread/direction of fire; 
early warning

Coordinating fire fighting 
efforts

Damage assessment

Earthquake

Building stock 
assessment; hazard 
mapping

Measuring strain 
accumulation

Planning routes for search 
and rescue; damage 
assessment; evacuation 
planning; deformation 
mapping

Damage assessment; 
identifying sites for 
rehabilitation

Mass movement

Hazard mapping Measuring strain 
accumulation

Planning routes for search 
and rescue; damage 
assessment; evacuation 
planning; deformation 
mapping

Damage assessment; 
identifying sites for 
rehabilitation

Volcanic activity
Risk modelling; hazard 
mapping; digital 
elevation models

Emissions monitoring; 
thermal alerts

Mapping lava flows; 
evacuation planning

Damage assessment; 
spatial planning

Flood

Mapping flood-prone 
areas; monitoring fuel 
load; delineating flood-
plains; land-use mapping

Flood detection; early 
warning; rainfall mapping

Flood mapping; 
evacuation planning; 
damage assessment

Damage assessment; 
spatial planning

Landslide

Risk modelling; hazard 
mapping; digital 
elevation models

Monitoring rainfall and 
slope stability

Mapping affected areas; 
and slope stability

Damage assessment; 
spatial planning; 
suggesting management 
practices

Wave action Risk modelling;
vulnerability analysis

Wave action detection; 
early warning

Mapping affected areas Damage assessment; 
spatial planning

Storm

Risk modelling;
vulnerability analysis

Early warning;
long-range climate 
modelling

Identifying escape routes; 
storm surge predictions; 
cyclone monitoring; 
impact assessment; crisis 
mapping

Damage assessment; 
spatial planning

Extreme 
temperature

Risk modelling;
vulnerability analysis

Weather forecasting; 
long-range climate 
modelling; early warning

Crisis mapping; evacuation 
planning; damage 
assessment

Damage assessment; 
spatial planning

Fog
Risk modelling;
vulnerability analysis

Weather forecasting; 
long-range climate 
modelling; early warning
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more explaining some existing operational services, and finally a number of case studies are
presented.

2.3. Rapid mapping workflow

No decision maker or relief worker can work with raw satellite imagery. To generate the
required situation maps, reports or statistics, which can be read and understood by non-
satellite expert users, experts in remote sensing and cartography are necessary. In 2004,
German Aerospace Center (DLR) was one of the first institutions, which has set up a dedicated
interface called Center for Satellite Based Crisis Information (ZKI) to facilitate the use of its
Earth observation capacities in the services of national and international response to disaster
situations [18]. ZKI’s function is particularly ‘rapid mapping’ – the rapid acquisition, process‐
ing and analysis of satellite data and the provision of satellite-based information products.
Analyses are tailored to meet the specific requirements of national and international political
bodies or humanitarian relief organisations. In order to provide up-to-date and relevant
satellite-based cartographic information and situation analysis, it is necessary to establish
efficient and operational data flow lines between satellite operators, receiving stations and
distribution networks on the one hand and the decision makers and relief workers on the other
hand. Service lines and feedback loops have been created to allow best possible data and
information provision, as well as optimised decision support [20]. In order to meet with users’
demands and service requirements in crisis situations, ZKI set up a rapid mapping workflow
(Figure 3) ensuring a fast access to available, reliable and affordable crisis information
worldwide.

Schedules for the full cycle from the emergency call (mobilisation phase), satellite tasking (data
acquisition), pre-processing, analysis and interpretation, map production and data provision
to the end-user are tight (as fast as possible). Hence, rapid mapping is still a complex task [15].

After the mandatory decision process, whether satellite analysis is appropriate for the
respective crisis or not, the area of interest has to be defined and cross-checked to avoid false
geolocation. Following this iterative process, it has to be assured that all applicable satellites
are programmed for data acquisition. Furthermore, an enquiry for corresponding archive
imagery has to be set up for documentation of the pre-disaster situation and change detection
analysis. Besides the procurement of satellite data, it is necessary to check and prepare
supplementary geodata such as population and infrastructure data, road network, contour
lines and administrative boundaries. Experience of several activations and user feedback
shows that additional geoinformation increases the satellite data analysis significantly. This
includes place names, critical infrastructure, transportation network or further detailed
specifications. Availability and access to accurate and up-to-date spatial data, particularly in
remote regions, are the most crucial problems [18].

After receiving the archived and recently recorded satellite imagery, essential pre-processing
has to be done. This includes geo- and ortho-rectification as well as radiometric corrections
and data format conversions. Data re-projection is necessary due to varying demands and
standards. In the majority of activations, a Universal Transverse Mercator (UTM) projection
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is used due to global applicability and following international standards. Depending on user’s
needs, crisis type and extent, different analysis process chains have to be applied [18].

Figure 3. Rapid mapping workflow

Derivation of water surfaces or general damage assessment is dependent on input data type,
scale and possible availability of archived satellite imagery. Before and after image comparison
allows the quantification of affected areas. This change detection method can either be applied
for optical or radar imagery in order to detect areas where significant change can be identified.
Furthermore, general image classification and differencing methods allows quantification of
flooded areas, fire scars or damaged areas [19].

Situation and damage maps are generated in order to translate complex satellite information
in readable and coherent crisis information. Following this map compilation, an adapted map
generation process is applied. A settled quality control process takes place after each single
product generation step as well as before publishing. Delivery is accomplished via Internet,
intranet, ftp, e-mail or satellite communication. Furthermore, printed and laminated maps will
be sent via express delivery on request. User feedback from field units has proved to be an
important source for optimisation. Maps are updated when new and improved data are
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available or knowledgeable feedback is received even though the maps are published and
delivered [18].

In order to fulfil its tasks, DLR-ZKI is involved in international, European and national
mechanisms providing space-based information supporting the disaster relief (e.g. Interna‐
tional Charter Space and Major Disaster). The understanding of the organisational frameworks
of these mechanisms, their activation procedures and workflows are a prerequisite to take
advantage of the products provided by these mechanisms.

2.4. Mechanisms of providing satellite-based crisis information

2.4.1. International Charter ’Space and Major Disasters’

For providing fast and reliable image access on archive or new post-event imagery effectively,
there is a need for more than a single research-oriented or commercial system. Thus, ‘effective
and well-balanced coordination among the different observing systems is required in order to
allow best service to the civil-protection and humanitarian relief community’ [18, p. 1527].

With the installation of International Charter Space and Major Disasters in 1999, from now
onwards referred to as ‘Charter’, a globally functioning mechanism was established to provide
a unified system of rapid space data acquisition and delivery in case of natural or man-made
disasters [21]. The Charter is a consortium of space agencies and satellite data providers. Each
member agency of the Charter has committed resources to support relief organisations as well
as civil protection and defence organisations with free of charge satellite (raw) data in order
to help mitigating effects of disasters on man life and environment. Its members, conscious of
the need to improve its access globally, have adopted the principle of ‘Universal Access’: any
national disaster management authority will be able to submit requests to the Charter for
emergency responses [21]. Proper procedures have to be followed, but the affected country
does not have to be its member as it was before. A registration process is available for national
authorities to express interest in participating in the Charter. Universal Access implementation
started in September 2012 and is being implemented gradually [21].

Since its inception in 2000, the Charter has been activated for more than 470 disasters (as end
of September 2015), in more than 110 countries. In 2014, the Charter was activated 41 times for
disasters in 30 countries. In the same year, more than 75% of Charter activations were based
on weather-related disasters such as flooding, ocean storms and landslides, while solid Earth-
related hazards (e.g. earthquakes, volcanic eruptions) represented 10% of Charter activations;
activations for man-made disasters (e.g. oil spills) are marginal (<5%; see Figure 4) [21].

Comparing Charter activations with occurrence of disasters of hazard types reported by
emergency events database (EM-DAT), proportions of both fit together to some extent (see
Figure 5). One obvious difference can be recognised in category “Others” which incorporates
particularly all man-made disasters. Nevertheless, the Charter covered 7 of the 10 most severe
disasters by fatalities 2014 as reported by EM-DAT (Table 7).
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Top 10 Disasters – Number Killed – 2014

Country Disaster type Date #killed #Affected people
Total Damage

(000' $)

China P Rep Earthquake 3/8/2014 731 1,120,513 5,000,000

Nepal Landslide 2/8/2014 450 184,894 -

Afghanistan Flood 24/4/2014 431 140,100 -

Pakistan Flood 1/9/2014 367 2,470,673 2,000,000

India Flood 8-9/2014 298 275,000 16,000,000

Nepal Flood 12/8/2014 217 28,279 -

India Landslide 30/7/2014 209 - -

Sri Lanka Landslide 29/10/2014 196 - -

China P Rep Storm 7/4/2014 128 - -

Philippines Storm 15/7/2014 111 4,654,966 820576

Table 7. Ten most severe natural disasters by number of fatalities in 2014 based on EM-DAT statistics [7] and events
covered by Charter activations (indicated in bold and italics) [source 21; p.49]

Figure 4. Percentage of hazard-type Charter activations in 2014 [21, p.24]

Due to user feedbacks and meaningful statistics, it can be concluded that a meaningful satellite
observation information capacity was established for a variety of non-expert users.

However, it should be mentioned, that the Charter does not concern the whole disaster
management cycle (see Figure 2) and not for long humanitarian crisis as well. Moreover, the
rapid mapping value-adding activities (see the following section) are not primary in the
mandate of the Charter. The analysis of the satellite (raw) data and map production are often
entrusted to associated value-adders. Today there is no other operational capacity playing such
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an important role on a worldwide basis. However, other space-based initiatives are available
providing new capacities to other users.

2.4.2. Sentinel Asia

Another collaboration between space agencies is the so-called Sentinel Asia initiative. It has a
regional focus and was established in 2005, as a collaboration between regional space agencies
and disaster management agencies, applying remote sensing and Web-GIS technologies to
assist in disaster management in the Asia-Pacific region. Until today multiple national agencies
of about 25 countries in the region have joined and benefited from the disaster support services
provided by Sentinel Asia. It intends to expand efforts like the Charter and make relevant data
available to all countries and many more people in the region [22].

Sentinel Asia also cooperates with the Charter: since its inception Sentinel Asia provides a
regional enhancement to the Charter, as it allows any country in the region to join their network
and request disaster-relevant information, regardless of their membership of the Charter (even
before the Universal Access was implemented). Moreover, Sentinel Asia built up an expert
team with different knowledge base, such as disaster management agencies, space agencies,
as well as relevant regional and international entities. They created a network with so-called
data provider nodes (DPNs), where several regional space agencies and related institutes
providing satellite data from their national satellite systems to the so-called data analysis nodes
(DANs) [23]. These DANs analyse raw image data together with their own geospatial data.
Moreover, they implemented specific technical working groups, which aim to accelerate and
optimise information analysis process (e.g. expand utilisation of satellite-derived products for
tsunamis or wildfires). In parallel with the activities above, capacity building for technical and
emergency-response agencies users of the Sentinel Asia system is realised [22–23].

In summary, Sentinal Asia is a direct and active collaboration with regional disaster manage‐
ment agencies, and great regional network of data providers, data analysis nodes and users.
With regard to the fact that Asia comprises 39% of the worldwide total disasters, Sentinel Asia
is a very valuable initiative [22].

Figure 5. Occurrence of disasters in 2014 in percentage, by hazard type [data source 7]
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2.4.3. Copernicus Emergency Management Service

Yet another service which collaborates with the Charter is the Copernicus Emergency Man‐
agement Service (EMS). Copernicus EMS is intended as an operational service offered to
authorised users active in the field of crisis management in the EU member states, the European
civil protection mechanism, the Commission's Directorates-General (DGs) and the participat‐
ing executive agencies and international humanitarian aid [24]. The service started its opera‐
tions in April 2012 and is implemented by the European Commission DG Joint Research Centre
(JRC). The scope of the service is the provision of timely and accurate geospatial information
derived from the satellite remote sensing and completed by the available in situ or open data
sources. Copernicus EMS is provided free of charge for the users, during all phases of the
disaster management cycle, and in two temporal modes [25].

EMS service and all other Copernicus services such as land monitoring or atmosphere
monitoring are based on the provision of satellite imagery from contributing missions that are
made available through the Copernicus Space Component Data Access (CSCDA) system
operated by European Space Agency (ESA) since 2008. In future, the service will also be
supported by all the Sentinels; for Sentinel 1-A first maps were already produced [26].

Analysis products are standardised and depend on the set of parameters chosen by users when
placing the service request. For rapid mapping, the following product categories are offered:
reference maps, delineation maps (providing an assessment of the geographic extent of the
event) and grading maps (providing an assessment of the damage grade and its spatial
distribution) [25].

Unlike the Charter analysis and map, production is explicitly within the mandate of Coper‐
nicus EMS. Therefore, an agreement has been set up to exploit the advanced crisis mapping
capability of the EMS to support Charter requests pertinent to European policy sectors.
Another important advantage of Copernicus EMS is the opportunity to request geospatial
information in support of disaster management activities not related to immediate response.
This is of particular importance for activities dealing with prevention, preparedness, disaster
risk reduction and recovery phases [25]. For this purpose, there are three categories of maps
offered: reference maps, pre-disaster situation maps and post-disaster situation maps.

In summary, Copernicus EMS is a fully operational service with a predefined and standardised
product portfolio, covering the whole disaster cycle, which is free of charge for authorised
users. In contrast, satellite data providers as well as value adders have paid service contracts
with the European Commission, which leads often to a faster and guaranteed product delivery,
but not necessarily to better products. Some restrictions are given for the service: only large-
scale disasters and crises are within the scope of the service and the request should not be
related to an existing on-going conflict or crisis with EU military operations or in politically
sensitive areas [25].

2.4.4. UNITAR Operational Satellite Applications Programme (UNOSAT)

UNOSAT is the United Nations Institute for Training and Research (UNITAR) Operational
Satellite Applications Programme which was created in 2000 [27]. UNOSAT provides maps,
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reports as well as geographic information system (GIS) compatible data layers for natural
hazards, complex emergency situations or conflict crises – at no cost to the user. The users are
entities of the United Nations systems such as OCHA, UNHCR, UNICEF, WFP, UNDP, WHO,
IFRC, ICRC; International and national NGOs and the governments of affected countries.
UNOSAT is covering the response and recovery phase and is working worldwide. UNOSAT
collaborates with several partners (e.g. other services, satellite data providers, UN entities,
companies like Google and ESRI) [28].

2.4.5. SERVIR

SERVIR mechanism is a joint venture between NASA and the United States Agency for
International Development (USAID) [29]. It integrates satellite observations, ground-based
data and forecast models to help developing nations in Central America, East Africa and the
Himalaya region to assess environmental threats and to respond to and assess damage from
disasters of natural origin. SERVIR is a multi-agency and multi-government mechanism with
over 30 partners and collaborators and is endorsed by governments in Central America, Africa
and the Hindu-Kush Himalaya region of Asia. The coordination office is located in United
States and is supported by three regional centres: The Regional Centre for Mapping of
Resources for Development (RCMRD) in Kenya, the International Centre for Integrated
Mountain Development (ICIMOD) in Nepal and the Water Centre for the Humid Tropics of
Latin America and the Caribbean in Panama [28].

Program supports not only national governments, but also universities, non-governmental
organisations, and the private sectors. Users of SERVIR are government officials, disaster
managers, scientists/researcher, students and the general public [29]. SERVIR serves as a
source for satellite imagery and information provider during extreme events. The SERVIR
mechanism is intended to respond to needs for satellite-based geoinformation in Mesoamerica,
Africa or the Himalaya [28].

2.4.6. ZKI service for federal agencies

One of the first national operational services providing rapid space data acquisition and
delivery in case of natural or man-made disasters is the so-called ZKI Service for Federal
Agencies (ZKI-DE). ZKI-DE was established in January 2013, based on a framework contract
between German Federal Ministry of the Interior (BMI) and the German Aerospace Center
(DLR), coping all phases of the disaster management cycle. It enables German national
authorities and other authorised users to order products of DLRs Center for Satellite Based
Crisis Information (ZKI), even for requests at regional scale and for users like national security
authorities (with the option of arrangements of confidentiality). Moreover, aiming at a better
and more customised use of the products by public authorities, the service includes not only
the provision of maps and dossiers in case of a disaster but also user trainings, a consulting
service and continuous further developments based on user requirements and new technical
capabilities [30]. This cooperation is not limited to BMI and its special agency (e.g. like ‘Federal
Office of Civil Protection and Disaster Assistance’ or ‘Federal Criminal Police Office’). As a
first institution, the German Red Cross also uses ZKI-DE products for their emergency
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operations worldwide [30]. As a matter of fact, due to licence and safety regulations products
could often not be published.

2.4.7. Other initiatives

There are more and more actors gathering/providing further space-based disaster information
such as private companies (e.g. Digital Globe, Google, ESRI). Other interesting and upcoming
actors are volunteer organisations like Map Action and crowdsourcing crisis mapper (e.g.
Open Street Map initiative–OSM, Tomnod owned by Digital Globe). In this context, data
acquisition and reliability are often critical aspects. Depending on the expertise of volunteer’s
equipment and raw data quality, analysis can vary considerably. Nevertheless, changing data
policies in case of (major) disasters and new techniques in image analysis can facilitate the
access to satellite data, as well as the dissemination of rapid-mapping products.

3. Examples for applying satellite-based information in disaster
management: Case studies

In this section, a number of examples of satellite imagery application for disaster relief intend
to highlight swift and synergistic use of state-of-the-art processing techniques and rapid data
access. These rapid-mapping results could be achieved by building on existing scientific
results, long-term engineering experience in the domain of satellite data processing and last
but not least operational data access mechanisms. It is not indented to report major generic
methodological research results or method comparison here.

3.1. Flooding in Germany 2013

Extreme flooding in Germany and other parts of the Central Europe began after several days
of heavy rain in the late May and early June 2013 [31]. Flooding and damages primarily affected
southern and eastern German states as well as Czech Republic and Austria. Switzerland,
Slovakia, Belarus, Poland, Hungary and Serbia were affected to a lesser extent [31].

German Joint Information and Situation Centre (GMLZ) tasked Charter, Copernicus GIO EMS
(Precursor of Copernicus EMS) and national Service ZKI-DE with the provision of satellite
data and the creation of satellite and aerial image-based situation information covering the
regions most affected by the current floods in Thuringia, Saxony, Bavaria and Baden-Wuert‐
temberg [32-34]. GMLZ is a facility of the German Federal Office of Civil Protection and
Disaster Assistance (BBK). Charter and Copernicus EMS provided fast and cost-free access to
satellite images covering a disaster area; moreover, Copernicus EMS delivered 38 maps
(reference and disaster). National ZKI-DE service complemented the response products with
up-to-date airborne data and more than 50 products such as supplementing monitoring maps
or web services (see Figure 6).
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Figure 6. Flooding in Germany 2013 – ZKI-DE Web service [32]

Figure 7. Flooding in Germany 2013, Passau – first situation map 10 h after acquisition [34]
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ZKI-DE was able to present the first situation map products to the users. The products based
on the German radar-satellite TerraSAR-X and were delivered 10 hours after acquisition. The
maps show the flood extent derived from the radar data, as backdrop serves as a topographic
map (see Figure 7). Derivation of flood extent from TerraSAR-X data and map production/
dissemination just took 4 hours (6 hours for data downlink and pre-processing, respectively).
These fast rapid-mapping results could be achieved by building on existing operational
organisational structures (24/7) with trained staff, (semi-) automated image analysis proce‐
dures, and several templates as well as models/macros for the map products and their
dissemination.

Nearly all the products were published for everyone on websites and were used in the disaster
response phase by several users in Germany – from decision makers in the situation centres
as well as local or top-ranking politician. Moreover weeks and months after the disaster, vector
data sets of the disaster extent were requested several times by environmental and research
institutes. These entities work in different phases of the disaster management cycle. Following
up the experiences of the flooding 2013, several actions were implemented to reduce the impact
of such heavy weather conditions [35].

In general, optical as well as radar satellite remote sensing have proven to provide essential
large-scale information on flood situations. For optical input data, the standard semi-automatic
method is (unsupervised) classified [36]. If the spectral resolution of the sensor and/or the
cloud coverage does not allow clear semi-automatic classification, the flood information can
be extracted via visual interpretation. Change detection analysis is used if pre- and post-
disaster satellite data are available [34]. Even though, optical data provide positive result
information on inundation, radar data are a preferred input for flood detection. Fortunately,
the number of automatic image processing algorithms to derive flooding from high-resolution
SAR data (TerraSAR-X, Radarsat-2, Cosmo–SkyMed) has increased in the last years. One thing
in common in these algorithms is that they make use of automatic thresholding algorithms for
the initialisation of the classification process [36–39].

3.2. Earthquake and Landslide in Nepal 2015

On 25th April 2015, a 7.8 magnitude earthquake hit the Himalayan region. The epicentre was
located near Kathmandu, the capital of Nepal. In addition to Nepal, India, China and Bangla‐
desh were affected. The event and several aftershocks caused wide-ranging destruction. The
earthquake triggered several landslides, an avalanche on Mount Everest. More than eight
million people were affected by the earthquake [40]. Several actors were involved in produc‐
ing useful information as a response to the disaster. Copernicus EMS was activated by European
Commission's Humanitarian aid and Civil 40 products were published at the EMS webpage [41].

The International Charter on Space and Major Disasters was activated by several organisations
(e.g. Indian Space Research Organisation – ISRO), and a plenty of maps were made available
on webpage of the Charter in the aftermath of the earthquake [42]. Moreover, Sentinel Asia,
ZKI-DE and several other actors [43] delivered a number of standard maps (see Figure 8) and
innovative products such as a 3D-Animation flight over Kathmandu before the earthquake,
based on 10 cm airborne data (see Figure 9) [42,44]. Even the National Geospatial-Intelligence
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Agency released unclassified geospatial intelligence data, products and services [42]. Within
the crowdsource community also several initiatives were working on the Nepal earthquake
such as Tomnod and Open Street Map (see Figure 10), Map Action, Micromappers [45].

Various methodologies have been proposed for earthquake damage assessment using optical
and radar Earth observation data. For estimating infrastructural damages based on SAR,
methods exploiting changes in backscattering intensity and the related image correlation
coefficient [47] or a combination of backscatter intensity, phase changes and/or ancillary data
are often used [48]. Reference [15] stated that ‘most SAR-based change detection approaches
suffer from a lack of archive data with the same acquisition parameters as the post crisis imagery’.
Consequently, only very few of the SAR or optical-based approaches have been targeted for the
use in an operational rapid mapping environment. For analysing optical satellite data several
analysis methods were used to detect damages. Several authors applied either semi- or fully
automatic change detection methods for earthquake damage assessment [49,47]. However, for
various reasons, such methods have rarely been applied during rapid mapping activities [15].
For instance, automatic change detection approaches will potentially detect changes that are
not  related to  earthquake damages (e.g.  vegetation changes,  different  illumination,  etc.).
Moreover, in case of cloud coverage, haze or radiometric and spectral problems just manual
extraction methods like visual interpretation and grid interpretation can be performed. The

Figure 8. Earthquake in Nepal—Damage assessment map based on Pléiades data and visual interpretation [42]
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selection of the method depends on the requested information. For instance, if single (small-
scale and heterogeneous) objects (e.g. houses, streets, ships and other relevant objects) have to
be identified only visual interpretation is possible. Otherwise, the grid analysis allows the
interpretation in specified areas (grid cells) and takes the relation of the neighbourhood into
account by spatial aggregation of the thematic information content to be provided [18].

In summary, a fast activation of several mechanisms has taken place and resulted in large
amounts of satellite imagery and airborne data. Nearly all results are based on optical data
and visual interpretation. Many useful maps and visualisations facilitated a general under‐
standing of the situation as well as the assessment of detailed aspects of the disaster and the
relief  work,  including damage overview,  road and infrastructure  accessibility,  gathering
areas, strategic holding areas etc. According to several users’ feedback, the maps and layers
(streets, damage etc.) provided vital information with respect to evacuation planning, general

Figure 9. Earthquake in Nepal—Screenshot of a 3D-Animation flight over Kathmandu before the earthquake based on
10 cm airborne data (sensorDLR MACS) [44]
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pathfinding to get a better overview and understanding of problems on site. In addition,
these maps proved to be very useful for making decisions on logistics and joint operations
among relief organisations. Nevertheless, a multitude of websites and platforms hosted the
maps, which resulted for some users in an overflow of mapping and imagery. During such
extreme events, the authors of source [15] recommended a better coordination and harmoni‐
sation of global mapping efforts.  As a consequence, an International Working Group on
Satellite based Emergency Mapping (IWG-SEM) was initiated in 2012 resulting from the
experiences of the Haiti earthquake in 2011. The IWG-SEM is a voluntary group of organisa‐
tions involved in satellite-based emergency mapping which supports disaster response by
improving international cooperation in such mapping activities. The group was founded to
improve  cooperation,  communication  and professional  standards  among the  global  net‐
work of satellite-based emergency mapping providers.

3.3. Forest fire in Russia

In July 2015, a heat wave in Russia's Siberian district started with over one hundred forest
fires in the Buryatia and Irkustkaya Republics.  Fires spread to an area of approximately
100,000 hectares [50].

After a request from the Russian Federal Space Agency (ROSCOSMOS) together with the
Agency for Support and Coordination of Russian Participation in International Humanitari‐
an Operations(EMERCOM), the Charter was triggered [Charter]. Burned area was mapped
using the Russian satellite Resurs-P and its multispectral sensor with 12 meter resolution data
(see  Figure  10)  and furthermore  with  SPOT-7  and GAOFEN-1  for  another  area  [50].  In
addition, fire hot spots were detected using RapidEye, GAOFEN and SPOT 7 [e.g. see Figure
11]. Burnt area analysis and fire hot spot detection was obtained by visual interpretation.

Figure 10. Earthquake in Nepal—Online damage map created by tomnod/OSM based on WorldView-1,-2,-3 and Geo‐
Eye [46]
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In general, to identify fires and/or burnt areas optical data are the best choice and either semi-
automated methods or visual interpretations can be applied [51]. In case of cloud coverage or
direct fire effects such as smoke plumes or haze, visual interpretation usually gives better
results. If the area is completely covered with clouds, radar data is an option. First positive
results were gathered using SAR data for burnt area detection, applying backscatter coefficient
analysis [52–53]. Nevertheless, optical satellites are commonly the main data source used for
burnt area mapping in a rush-mode. In addition, fire hot spots can be detected automatically
with optical data and appropriate methods. For instance, based on data of the NASA-owned
MODIS sensors on board of the Terra-1 and Aqua-1 satellites, active fires can be detected [54].

3.4. Search for Malaysia Airlines Flight 370

On 11th March 2014, China Meteorological Administration requested the Charter for sup‐
porting search for Malaysia Airlines Flight 370 (MH370) [55]. The aircraft disappeared from
radar on March 7th 2014 with 239 people on board. Soon an international search began in the
South China Sea, the last known location of the aircraft. A few days later the search area has
been expanded several times (e.g. to Indian Ocean). Satellite imagery was used to search for
any evidence of the aircraft. Satellite images have revealed suspected debris or oil spill of

Figure 11. Forest Fires in Russia 2015 – Mapping hot spots and burned areas created by Research Center for Earth Op‐
erative Monitoring (NTs OMZ) [48]
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missing aircraft in a number of locations (see example in Figure 12), but despite efforts to search
an area of the southern Indian Ocean no trace of the plane has been found [55].

Figure 12. Searching for Malaysia Flight 370—Suspected oil spill of missing aircraft; created by National Satellite Mete‐
orological Center (NSMC), China Meteorological Administration (CMA) [55]

Tomnod, a company owned by the satellite provider DigitalGlobe, started a crowdsourcing
campaign in which over two million volunteers have studied WorldView-2 images of the area.
The search area was sliced up in many small images which every user was able to see and tag
with four types: Wreckage, Oil slick, Life raft and Other. Like other microtasking platforms,
Tomnod uses triangulation to calculate areas of greatest consensus by the crowd [56]. The
results are illustrated in Google Earth (see Figure 13).

Even though crowdsourced satellite information gave some reliable results or even misjudge‐
ments for this disaster, this way of data provision and processing information has been useful
in man-made disasters before [56-57] and is a powerful new approach of producing crisis
information based on satellite data. Nevertheless, Tomnod has to improve their infrastructure
such as adding server capacity. Due to the huge volume of traffic (an estimated 100,000 views
per minute), the site was down for several hours on March 11th and 12th.

However, the information provided by the Charter was also wrong. It is very difficult to search
small items even if the imagery has a spatial resolution of 0.5 meters in an unspecific area with
the current Earth observation technology. However, still there are a lot of data (e.g. SAR or
other complex information) and several applications in disaster management which need
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advanced image analysis procedures. Therefore, remote sensing experts and specific tools are
mandatory.

Figure 13. Searching for Malaysia Flight 370 – Online damage map created by tomnod based in Worldview-2 data and
illustrated in Google Earth [56-57, visualisation in GoogleEarth]

4. Conclusion and outlook

The increasing occurrence of natural disasters and humanitarian emergency situations cause
a growing demand for timely and up-to-date geoinformation for an effective disaster man‐
agement. Within the last 10–15 years, a promising and considerable development has taken
place to improve and accelerate the provision of Earth observation-based disaster information.
Accordingly, remote sensing technology plays an important role in disaster management,
especially during the preparedness and response phase.

Examples could be shown of how operational mechanisms (e.g. Charter, Copernicus EMS,
ZKI-DE, etc.) serve rapid mapping based on Earth Observation data. In addition, a number of
potential remote sensing data sources (TerraSAR-X, SPOT, RapidEye, WorldView and
airborne data) and new (semi-automated) algorithms as well as visual interpretation results
could be showcased for different disaster types.

Nevertheless, there are still some limitations with respect to the rapid availability of imagery
and the reliability of the rapid image analysis in case of a disaster. Even if the imagery has a
spatial resolution of 0.5 meters, geometric resolution is often still too coarse to assess damage
or other important disaster information. Moreover, compromise must be found between the
time spent on an analysis and the mapping accuracy that needs to be achieved. These aspects
also have to be evaluated against user requirements during an emergency.

Further effort and scientific work is needed to derive even better, faster and more standardised
crisis information from space-based imagery. In addition, in case of extreme disasters, a more
structured and coordinated way of collaboration is needed to achieve most powerful results
[15]. The International Working Group on Satellite based Emergency Mapping provides an
important framework in this context.
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Within the next years, new data sources (better geometric, spectral and temporal resolution),
new tools, modified data policies (open access or strictly regulated) and new actors/collabo‐
rations (crowdsourcing crisis mapper, national services, inter-organisational cooperation) will
influence the potential of remote sensing for natural or man-made disasters.
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Abstract

This chapter addresses the problem of phase unwrapping interferometric data stacks, ob‐
tained by multiple SAR acquisitions over the same area on the ground, with a twofold
objective. First, a rigorous gradient-based formulation for the multichannel phase un‐
wrapping (MCh-PhU) problem is systematically established, thus capturing the intrinsic
topological character of the problem. The presented mathematical formulation is consis‐
tent with the theoretical foundation of the discrete calculus. Then within the considered
theoretical framework, we formally describe an innovative procedure for the noise filter‐
ing of time-redundant multichannel multilook interferograms. The strategy underlying
the adopted multichannel noise filtering (MCh-NF) procedure arises from the key obser‐
vation that multilook interferograms are not fully time consistent due to multilook opera‐
tions independently applied on each single interferogram. Accordingly, the presented
MCh-NF procedure suitably exploits the temporal mutual relationships of the interfero‐
grams. Finally, we present some experimental results on real data and show the effective‐
ness of our approach applied within the well-known small baseline subset (SBAS)
processing chain, thus finally retrieving the relevant Earth’s surface deformation time ser‐
ies for geospatial phenomena analysis and understanding.

Keywords: SAR interferometry, phase unwrapping, discrete calculus

1. Introduction

Multichannel (or multitemporal) InSAR techniques address the processing of interferometric
data stacks obtained by combining multiple SAR acquisitions over the same area. These
approaches can be essentially categorized in two main classes: persistent scatterers (PS) and
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small baseline (SB)-based techniques. The solution of the multichannel phase unwrapping
(MCh-PhU) problem is generally required in multichannel InSAR techniques, whenever
multidimensional SAR data set, conveying information about complex Earth’s crust events,
have to be systematically investigated on suitable space-time scales for geospatial phenomena
understanding [1–29]. In this chapter, we focus on two different related main issues.

Primarily, we present a rigorous gradient-based formulation of the MCh-PhU problem that is
consistent with the theoretical foundation of the discrete calculus [30–34]. Emphasis is placed
on the topological characterization of the underlying discrete setting provided by the differen‐
tial operators of the discrete calculus, which are formally associated with matrix operators and
represent the discrete counterparts of the classical differential operators of the vector calculus.
Accordingly, MCh-PhU problem formulation is systematically established in terms of discrete
differential operators, which are defined by the topology of the intrinsically discrete spaces
upon which they act, thus capturing the essential topological character of the problem within
a systematic matrix formalism [35]. It is worth highlighting that our approach provides an
unambiguous and theoretical-consistent formalism for the MCh-PhU problem, overcoming
the conceptual inconsistencies of the existing gradient-based formulations [1, 17, 29]. Indeed,
the existing approaches pose some conceptual limitations from a mathematical viewpoint since
they rely on an intrinsically discrete setting based description and, at the same time, resort to
the concepts of gradient and curl of the conventional vectorial calculus, which inherently imply
a reference to an underlying continuum space and the notion of the infinitesimal [30]. In
addition, the proposed formal framework enables meaningful analytical investigations on a
mathematical consistent playground, also providing interesting implications and permitting
to express previous obtained results in a more general way.

Then we present an innovative procedure to filter out the noise affecting the phase components
of a redundant set of (multitemporal) multilook small-baseline interferograms. This is
achieved by independently solving, for each pixel of the scene, a nonlinear optimization problem
based on computing the wrapped phase vector that minimizes the (weighted) circular variance
of the difference between the original and noise-filtered interferograms [43]. This noise-
filtering procedure arises from the key observation that multilook interferograms are not fully
time consistent because they are generated through multilook operations that are independ‐
ently carried out on each single interferogram. Indeed, the wrapped discrete curl of the
interferometric phases defined on a graph whose nodes and edges describe SAR acquisitions
(in the time/perpendicular baseline domain) and inherent interferograms, respectively, is
different from zero. This modulo-2π cyclic inconsistency of multichannel interferometric
phases is properly handled by the presented multichannel noise-filtering (MCh-NF) proce‐
dure. The presented technique is very easy to implement because it does not imply a prelimi‐
nary time-consuming selection of statistically homogenous pixels (SHP), as for instance
required by the SqueeSAR technique [44], and it has no need of any a priori information on the
statistics of complex-valued SAR images. The effectiveness of the presented noise-filtering
approach as well as its impact on the quality of multichannel phase unwrapping procedures
are also fully investigated.
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2. Multichannel phase unwrapping problem

In this Section, we review the mathematical formulation of the multichannel phase unwrap‐
ping (MCh-PhU) problem within the purview of the discrete calculus. As a matter of fact, a
graph-based description naturally arises in formulating the MCh-PhU problem due to the
underlying discrete irregular data structure. Indeed, as far as discrete settings (e.g., graphs)
are concerned, resorting to the conventional vectorial calculus might not be adequate since it
inherently implies a reference to an underlying continuum space. On the contrary, discrete
calculus offers a rigorous methodological framework since it treats a discrete domain as entirely
its own entity. In particular, discrete calculus provides proper differential operators that make
it possible to purely operate onto a finite, discrete structure without referring to the continuous
space and notion of the infinitesimal [30]. More specifically, the introduction of some well-
known algebraic structures [30–33] capturing the essential topological character of the
underlying graphs permits to phrase pertinent differential operators as matrices. Therefore, one
of the most important consequences of this approach is that the purely topological nature of
the discrete differential operators is made more apparent and concrete. Accordingly, by
systematically adopting the relevant key concepts and tools available within this theoretical
framework, we here provide a description of the MCh-PhU problem on a suitable mathemat‐
ical playground. For such a purpose, we first establish the notation and terminology used
throughout the subsequent Sections 2.1, and then the problem at hand is reviewed within this
formalism (Sections 2.2 and 2.3). We remark that the focus here is on presenting key concepts
that are useful for the following analyses; however, a comprehensive treatment of the discrete
calculus and related huge fields of mathematics (e.g., algebraic topology, exterior calculus, and
differential forms) is clearly beyond the scope of this work but can be found in refs. [30–33].

2.1. The theoretical framework of discrete calculus

A graph G(V ;ℰ) is defined by two sets: V  and ℰ. The former is the set of nodes (or vertices) of
the graph, and the latter represents the corresponding set of edges. Let Q and M be the
cardinality of V  and ℰ, respectively. The vector space ℝM  is referred to as the edge space, and
the vector space ℝQ is referred to as the vertex space, with ℝ denoting the field of real numbers.
Without loss of generality, we here assume that the graph G is connected (i.e., every pair of
vertices in the graph is connected [33]). Moreover, an orientation establishes a default direction
on an edge that is considered positive or negative, thus yielding an oriented graph. The M ×
Q incidence matrix Π = Πmq  of an oriented graph G specifies its edge–node connectivity
relations, whose entries are defined as follows [30–33]:

1, if th edge starts at th node
1, if th edge ends at  th node
0, otherwise

mq

m q
Π m q

ì-
ïº +í
ï
î

(1)

with m = 1, 2,..., M and q = 1, 2,..., Q. It is important to note that the column rank of Π is Q − 1.
The incidence matrix Π generates an orthogonal decomposition ℝ(Π) ⊕ N (Π T)=ℝM , where
ℝ(Π) is the column space of the incidence matrix Π, and N (Π T) denotes the kernel (or null-
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space) of the matrix Π T. The notion of cycle space is also fundamental in graph theory. The
cycle space of the graph G, namely, C =C(G), is the subspace of edge space ℝM  spanned by all the
cycles in G. The dimension of C(G) is also referred to as the cyclomatic number of G [33]. It is also
well known that, for every connected graph G with Q nodes and M edges, the dimension of the
cycle space is given by R = dim(C  (G)) = M − Q + 1 [30]. Each basis for C(G) (i.e., the cycle basis)
is therefore uniquely specified by an M × R matrix Ω, called cycle matrix. Thus, the column
vectors of Ω = ω1, …, ωR  form a basis for an R-dimensional vector subspace (the cycle space
of C(G) of ℝM . C(G) is indeed the null-space of Π T so that a cycle basis provides a basis for N (Π T)
[30]. Accordingly, a fundamental property of a linear graph is expressed by the remarkable
relations:

T =Π Ω 0 (2)

T =Ω Π 0 (3)

Indeed, several methods for defining a cycle set have been studied, and they can be used to
define incidence relations between edges and cycles. Specifically, the definition of a cycle set
from the edge set can be obtained algebraically and geometrically (i.e., from an embedding).
Algebraic methods find a suitable M × R matrix Ω whose columns provide a basis for the null-
space of Π T, with R =dim(N (Π T) ). Geometric methods for defining a cycle set (i.e., from an
embedding) permit to identify algorithmically a cycle set (representing the faces) in this
embedding and may be used to produce the edge–face incidence matrix Ω (as illustrated in
Figure 1). In particular, it is possible to consider a normalized irreducible cycle basis forming
elementary (or irreducible) cycles [30–33], i.e., cycles that contain no other cycles, so that we
can associate to each elementary cycle an elementary cycle vector ωr = ω1, ..., ωM

T, whose
entries are defined as follows:

1 if th cycle traverses th edge forward  
1 if th cycle traverses th edge backward
0 otherwise                                     

i

r i
r iw

ì+
ïº -í
ï
î

(4)

Accordingly, the so defined Ω = ω1, …, ωR  provides a particularly attractive basis for
N (Π T), i.e., the cycle basis formed by all the elementary cycle vectors associated with the
elementary cycles in G. We also note that Ω defines the incidence connectivity relations
between edges and cycles (see Figure 1).

It is instructive to highlight that the topological operators Π, Π T, and Ω provide the discrete
counterparts of the classical gradient (∇ ), divergence (∇ ⋅ ), and curl (∇ × ) operators of the vector
calculus for continuous space, respectively. Accordingly, they can be regarded as differential
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operators on the discrete setting [30]. In addition, it is worth emphasizing that identities (2)
and (3) mimic the properties of their classical vector calculus counterparts ∇ ⋅∇ × =0 (div
curl = 0) and ∇ ×∇ =0  (curl grad = 0), respectively. It should be pointed out that Π yields
differences along edges of nodal “potentials” represented by Πx. Conversely, given an
arbitrary f∈ℝM , a solution of the equation Πx= f (if it exists) is called the potential of f. Note
also that x (if it exists) is not unique since the constant column = 1, ..., 1 T ∈ℝQ is an element
of the kernel of Π. Of course, not every f∈ℝM  is the discrete gradient of some x since f may
contain a curl component. Indeed, a prescribed f∈ℝM  can be written as a nodal difference
(f=Πx) if it is cyclically consistent, i.e., if it satisfies Ω Tf=0  (i.e., there is no component of the
flow in the cycle space). Note also that Ω is the (cross) differential operator of the graph whose
expression can be given in terms of a normalized cycle basis; N (Ω T)  denotes the subspace of
ℝM  with zero flow circulation (curl-free) around cycles. Moreover, Π Tf yields nodal accumu‐
lations from flows along edges. As a result, the differential operators, as basic tools of the
discrete calculus, have been established and properly phrased on the discrete space. This
mathematical abstraction meaningfully captures the topological structure of the underlying
discrete setting. Note that the topological characterization of the graph is essentially embodied
in the algebraic structure of the associated discrete (matrix) operators and their interrelations.
We also stress the significant distinction between the discrete operators and the commonly
adopted discretized versions of the continuous differential operations obtained via the method
of finite differences in numerical analysis; the latter generally lack the desirable topological
behaviour [42].
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Figure 1. An example graph shown along with its edge–node incidence matrix, , and cycle (edge
face incidence) matrix, . Note thatM=5, Q=4 and R=2.
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incidence matrix, in general, is not TU [30–34]. However, the edge–face incidence matrix is
TU when each edge is included in exactly two faces that traverse the edge in opposite
directions (e.g., a planar graph with a minimum cycle basis [30]). In this circumstance, total
unimodularity of the edge–face incidence matrix stems from the fact that the face–edge
incidence matrix is the edge–node incidence matrix of the dual graph [30]. Indeed, a TU
constraint matrix (and integer constraints) guarantees that the solution of the related
optimization problem (see also optimization problems (21) and (22) in the following) will be
integer. Nonetheless, TU property has a further practical significance since the relaxed
problem, obtained by neglecting the integer constraints, can also be solved using generic
linear (not integer) programming solvers.

2.2 Rigorous gradient based formulation of the MCh PhU problem

Once the basic concepts of the discrete calculus and graph theory are presented, we are in
the position to frame the formulation of the MCh PhU problem on an appropriate
mathematical playground. Let us consider a set of Q single look complex (SLC) SAR data
acquired over a certain area of interest. One of them is assumed as the reference (master)
image, with respect to which the images are properly coregistered. This set is characterized
by the corresponding acquisition times },,{1 Qtt and perpendicular baselines

},,{ 1 Qbb . Accordingly, for each coregistered SLC pair, a multilook phase interferogram

(suitably depurated by the flat Earth and topography contributions, by using a priori
information about the topography and acquisition geometry) can be produced [37];
however, a common practice (within the multitemporal SB InSAR class) is first to identify a
suitable small baseline subset of the relevant multibaseline (temporal and spatial
perpendicular baselines) interferometric pair set [6]. This is done to confine the effect of

Figure 1. An example graph shown along with its edge–node incidence matrix, Π, and cycle (edge-face incidence) ma‐
trix, Ω. Note that M=5, Q=4 and R=2.

As a final remark, some considerations on the total unimodularity (TU) property inherent to the
matrix operators, which is extremely important in integer linear programming, are in order.
We recall that a matrix is TU if the determinant of every submatrix is either zero or ±1. For any
graph, the edge–node incidence matrix is TU. On the contrary, the face–edge incidence matrix,
in general, is not TU [30–34]. However, the edge–face incidence matrix is TU when each edge
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is included in exactly two faces that traverse the edge in opposite directions (e.g., a planar
graph with a minimum cycle basis [30]). In this circumstance, total unimodularity of the edge–
face incidence matrix stems from the fact that the face–edge incidence matrix is the edge–node
incidence matrix of the dual graph [30]. Indeed, a TU constraint matrix (and integer constraints)
guarantees that the solution of the related optimization problem (see also optimization
problems (21) and (22) in the following) will be integer. Nonetheless, TU property has a further
practical significance since the relaxed problem, obtained by neglecting the integer constraints,
can also be solved using generic linear (not integer) programming solvers.

2.2. Rigorous gradient-based formulation of the MCh-PhU problem

Once the basic concepts of the discrete calculus and graph theory are presented, we are in the
position to frame the formulation of the MCh-PhU problem on an appropriate mathematical
playground. Let us consider a set of Q single-look-complex (SLC) SAR data acquired over a
certain area of interest. One of them is assumed as the reference (master) image, with respect
to which the images are properly coregistered. This set is characterized by the corresponding
acquisition times {t1, …, tQ} and perpendicular baselines {b⊥1, …, b⊥Q}. Accordingly, for each
coregistered SLC pair, a multilook phase interferogram (suitably depurated by the flat-Earth and
topography contributions, by using a priori information about the topography and acquisition
geometry) can be produced [37]; however, a common practice (within the multitemporal SB
InSAR class) is first to identify a suitable small-baseline subset of the relevant multibaseline
(temporal and spatial-perpendicular baselines) interferometric-pair set [6]. This is done to
confine the effect of decorrelation phenomena associated with inherent angular and temporal
electromagnetic backscattering variations [38]. Furthermore, a subset of common pixels of the
M interferograms are then usually identified via the estimated coherence [37,38], so that only P
pixels characterized by relatively high coherence values are singled out. In other words, the
coherence index, providing a quantitative estimation of the decorrelation effects, permits to
discriminate in favor of the “reliable” pixels.

The final aim is to reconstruct the absolute (i.e., not restricted in the principal [–π,π) interval)
interferometric phases values from the wrapped (i.e., observed only in the principal [–π,π)
interval) interferometric phase pertinent to M multichannel interferograms.

The problem we are interested in can be naturally framed on a discrete setting. Indeed, one
possibility is to regard the discrete set of P selected (typically sparsely distributed) coherent
pixels as a set of nodes, VB, in the Euclidean (azimuth, range) plane, and the set of Q SAR
acquisitions representing a set of nodes, VA, in the Euclidean (temporal-baseline, perpendicular-
baseline) plane [26]. Accordingly, a formal description of the problem at hand can be given in
terms of a couple of abstract graphs: GA =(VA;ℰA) and GB = (VB;ℰB) where the corresponding edge
sets ℰA and ℰB have to be properly defined. Accordingly, with Q and M, we denote the
cardinality of VA and ℰA, and with P and N the cardinality of VB and ℰB, respectively. Note also
that defining ℰA pertains to the M interferometric pairs selection. Defining a meaningful edge
set for a collection of nodes is now concerned since different criteria can be adopted to achieve
it. The dimensionality of the ambient space in which the graph is embedded deserves some
considerations. In this regard, we recall that a graph is called planar if it can be embedded in
the plane [30–33]. Note also that a graph is not generally guaranteed to be planar, even if the
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nodes are embedded in two dimensions. Since planarity is important for the workability of the
implicated optimization procedure with powerful numerical solvers, a typical option to
preserve graph planarity is resorting to the Delaunay triangulation in the Euclidean plane for
establishing the edge set from nodes embedded in two dimensions [26]. Note that such an
option specifically pertains to the solution strategy [26, 35]; nonetheless, our general formu‐
lation applies as well when different edge structures are adopted. Accordingly, once GA and
GB have been somehow defined, the topological properties inherent to each graph are alge‐
braically captured by the related differential operators, which are summarized in Table 1.

Symbol Quantity Related meaning

Q Nodes number of GA Number of SAR acquisitions

M Edges Number of GA Number of interferometric pairs

R Dimension of the cycle space of GA

ΠA M × Q incidence matrix of GA Discrete-gradient operator

ΠA
T Discrete-divergence operator

ΩA M × R cycle matrix of GA Discrete-curl operator

P Nodes number of GB Number of selected pixels

N Edges number of GB

L Dimension of the cycle space of GB

ΠB N × P incidence matrix of GB Discrete-gradient operator

ΠB
T Discrete-divergence operator

ΩB N × L cycle matrix of GB Discrete-curl operator

Table 1. Adopted notation

First of all, we consider the absolute phase relevant to the multichannel SAR acquisition as a
node variable pertinent to both the graphs GA and GB ; by using a matrix representation, this
information can be conveniently arranged in a Q × P matrix Φ as follows:

1
1[ , , , ]P

Q

é ù
ê ú

= = ê ú
ê ú
ë û

φ
φ φ

φ
K MΦ (5)

where ∀ p ∈ { 1, 2, ..., P} φ p ∈ℝQ encodes in a vectorial manner the pth node variable relevant
to the graphs GA ; similarly, ∀q ∈ { 1, 2, ..., Q} φq ∈ℝP encodes the qth node variable relevant
to GB.
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Widely adopted global gradient-based PhU approaches, which have historically been devel‐
oped for the single-channel case, generally consist in three processing steps [1, 29]. First, an
estimation of the (wrapped) phase gradient is obtained; the estimated phase gradient is then
suitably corrected (in terms of 2π multiples),and subsequently integrated to attain the
unwrapped (absolute) phase.

Within the formulation of the MCh-PhU problem we concern [26], a twofold estimation of the
discrete gradient field is carried out onto the considered two graphs GA and GB, as discussed
in the following. The stack of the absolute interferometric phases relevant to the M (vectorized)
interferograms can be formally represented through a P × M matrix denoted by

1
1[ , , ]M

P

é ù
ê ú= = ê ú
ê úë û

ψ
ψ ψ

ψ
K MY (6)

wherein the P-dimensional vector ψm refers to the absolute phase field pertinent to the mth
interferogram. Accordingly, Ψ is formally related to the absolute (unwrapped) phase matrix
Φ via the discrete gradient operator ΠA :

Τ
A= Π ΦY (7)

Note also that

Τ T T 1
1 A A[ , , ] [ , , ]P

P= =ψ ψ φ φK KΠ ΠY (8)

By applying the discrete gradient operator ΠB to the absolute phase of each interferometric
pair, we obtain

1
B B B[ , , ]M= ψ ψKΠ Π ΠY (9)

As a result, by using Eq. (7), we get

T T
B B A=Π Π Φ ΠY (10)

Second, we consider the (wrapped) interferometric phase that is uniquely defined only in the
principal value range since it is obtained as the phase of a complex function. Hence, it is
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convenient to formally introduce the non-injective (modulo-2π) wrapping operator
W :φ∈ℝ→mod (φ + π, 2π) −π∈ −π, π). It should be noted that the following trivial identi‐
ties hold:

( ( ) ( )) ( ) ( ( ) ) ( ( )) a
( ) 2 b

W W W W W W W W
W p

± = ± = ± = ±
= +
A B A B A B A B

A A Z (11)

where A and B represent two generic matrices and Z  is a suitable integer matrix. Given the
stack of the unknown absolute (unwrapped) interferometric-phases Ψ, the corresponding
stack of the wrapped phases Ψ̃ can be conveniently expressed in terms of the wrapped discrete
gradient of (wrapped) observed phase as follows:

Τ 1
A A A A[ ( ( )), , ( ( ))] ( ( )) ( )PW W W W W W W= = =φ φ% KΠ Π Π Φ Π ΦY (12)

where we have exploited Eq. (11b). Note also that the pth column of Ψ̃Τ, i.e.,
ψ̃ p

T =W (ΠAW (φ p)), can be regarded as an estimate of the absolute-phase discrete gradient on
the graph GA. It is worth remarking that the observed (multilook) interferometric phase can
however be corrupted by noise [39–41], which is taken into account by considering an additive
phase noise term D. Accordingly, by using Eq. (11a), we get

Τ
A A( ( ) ) ( )W W W= + = +% Π Φ D Π Φ DY (13)

More specifically, whenever a possible spatial filtering (e.g., conventional multilooking
followed by a noise-filtering step [42]) is independently applied to each SAR interferometric
data pair, the resulting term D in Eq. (13) implies that the phase interferograms ψ̃m, with
m ∈ { 1, 2, ..., M },  are no more fully time consistent (in the sense of [26, 43, 44]). To clarify this
point, we observe that by using Eq. (13), it turns out that

( ) ( )( ) ( ) ( )2 +T T T T T T
A A A A A A AW W W Wp= = = ¹D + Z D D 0W Y W P + W P F W W (14)

where we have used Eq. (11b) with A=ΠAΦ + D and noted that ΩA
T Z  is an integer matrix and

ΩA
TΠA =0 (according to Eq. (3)). Eq. (14) reads as “the wrapped discrete curl of the interfero‐

metric phase on GA (i.e., pertinent to the ‘temporal’ domain) is generally different from zero”;
it formally expresses the (modulo-2π) cyclic inconsistency of the multichannel interferometric
phase inherent to independently filtered SAR interferograms. Note also that Eq. (14) repre‐
sents, within our framework, the generalization (to a wider class of discrete settings) of the
“phase triangularity” condition in ref. [44], capturing the underlying structure of the problem
within a suitable matrix formalism. With reference to the mth interferometric pair, the
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estimated absolute interferometric-phase gradient on the graph GB is then obtained by wrapping
the discrete gradient of (wrapped) interferometric-phase field: gm =W (ΠBψ̃

m). Thus, by stacking the
so-obtained absolute phase gradient estimations, we get the N × M matrix
G = g1, g2, …, gM , where

B( )W= %G P Y (15)

Finally, by substituting Eq. (13) in Eq. (15), we obtain

( ) ( )( )T T
B B AW W W é ù= = +ë û%G DP Y P P F (16)

From Eq. (16), by using Eq. (11b), we get

( ) ( )T T T T T T
B A B B B A B2W Wp= + + = +G D Z DP F P P P P F P P (17)

where in the last equality we have noted that ΠBZ  is also an integer matrix. It should be
emphasized that, under the assumption D =o, the equality between Eqs. (10) and (17) holds
only up to an integer matrix multiplied by 2π.

2.3. The MCh-PhU problem as constrained optimization

In this Section, the nonlinear inversion MCh-PhU problem is reformulated as a (nonlinear)
constrained optimization problem. According to the presented general formulation, we
introduce in the following the MCh-PhU problem as the solution of the following matrix
equation:

T T T
B A B 2p+ + =Π Φ Π Π D K G (18)

where the columns of G represent the interferometric-phase pseudo-gradients estimated from
the observed phase, and K  is an (unknown) N × M integer matrix, whose columns represent
the corresponding (2π-normalized) corrections to be added to the (wrapped) interferometric-
phase pseudo-gradients in order to recover the absolute interferometric-phase discrete gradi‐
ents. It is worth noting that the term pseudo-gradient is used here to emphasize that the
integration of the estimated gradient is path-dependent (non-conservative behavior); the term
residues [1] is also typically used to connote the inconsistency of the estimated phase gradient.
As a matter of fact, matrix equation (Eq. (18)) describes an ill-posed problem, in which the data
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G generally do not constrain sufficiently the problem to get a unique solution. Additional
suitable constraints and a priori assumption have, thus, to be introduced to solve the problem.
First, for restoring the cyclic consistency (see Section 2.1) of the estimated pseudo-gradients
pertinent to the graphs GB and GA, two corresponding sets of (equality) constraints have to be
enforced, respectively. More specifically, pre-multiplying both sides of Eq. (18) by ΩB

T and
taking into account Eq. (3), we obtain

( )T
B 2p- =Ω G K 0 (19)

Similarly, by premultiplying both sides of the transposed version of Eq. (18) by ΩA
T and taking

also into account Eq. (3), we obtain

( )T T T
A B 2p- - =Ω G Π D K 0 (20)

Constraints stated by Eq. (19) imply that the columns of G −2π K  must lie in the null-space of
ΩB

T. Since the matrix ΠB represents a basis to span the null-space of ΩB
T (see Eq. (3)), we may

then write G −2π K = ΠBX , where X  is a new variable. Accordingly, the corrected pseudo-
gradients stack G −2π K  is enforced to be a stack of discrete gradients, which can thus be
unambiguously integrated. Similarly, Eq. (20) implies G −ΠBD T −2π K T =ΠAY. As a result, the
two sets of constraints, stated by Eqs. (19) and (20), guarantee that the solution of the problem
is effective in preserving the cyclic consistency (curl-free) property of the corrected gradients
pertaining to the graphs GB and GA, respectively. As a matter of fact, the solution of Eq. (18)
cannot be determined by using the two sets of constraints (Eqs. (19) and (20)) only; thus, the
inverse problem must be first regularized [45]. The minimum-norm methods search for a
global solution that minimizes a generalized error-norm associated with an optimality
criterion, so incorporating prior information about the behavior of the solution [1]. Accord‐
ingly, we resort to a regularization approach using l1-norm minimization in weighted version,
as a specific case of lp-norm general formulation. Formally, the MCh-PhU problem may be then
formulated as a constrained optimization problem for the field of integer corrections:

1,
ˆ arg min

N M´Î

=
C

K

K K
Z

(21)

subject to

( )
( )

T 1T T T T
A A B

1T T
B B

2

2

p

p

-

-

ì é ù= -ï ë ûí
ï =î

Ω K Ω G Π D

Ω K Ω G
(22)
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wherein

1,
1 1

M N

nm nm
m n

c k
= =

= ååC
K (23)

represents the weighted l1-norm [46] of the matrix K , C = cnm N ×M  denotes a suitable weighting
matrix, and ℤ indicates the field of integer numbers. As far as the existence of an integer
solution for Eqs. (21) and (22) is concerned, it should be noted that the considerations at the
end of Section 2.1 apply. Since the first matrix equation in Eq. (22) includes a generally not null
(unwanted) term ΩA

TD , its fulfillment deserves further discussion. Although the evaluation of
W (ΩA

TD) can be obtained according to Eq. (14), however, a full estimation for ΩA
TD is generally

not a simple task. Further discussion is provided in Section 3. The solution of the optimization
problem (Eqs. (21) and (22)) is also referred to as the minimum weighted discontinuity solution
(in a weighted l1-norm sense) [1, 23]. As a matter of fact, finding the global minimum point of
the problem stated by Eqs. (21) and (22) for an arbitrary pair of graphs is, in general, a difficult
task. A suboptimal strategy aimed at solving Eqs. (21) and (22) consists in adopting a two-stage
approach. This is, in particular, the solution strategy implemented through the extended
minimum cost flow (EMCF) technique [26], in which the edge structure of each considered graph
is usually defined via a Delaunay triangulation in the Euclidean plane, to take advantage from
efficient solvers for minimum cost flow (MCF) problems [47, 49, 50]. We remark that the
distinctive characteristic of the EMCF approach is the extensive use of the computationally
efficient MCF method. Moreover, a dual-level parallel model for EMCF has also been proposed
in refs. [35] and [36]. Moreover, different approaches toward full 3D phase unwrapping have
recently been proposed in refs. [63] and [64].

3. Noise-filtering of multichannel SAR interferograms

In this Section, we review the basic concepts concerning the filtering of noise that corrupts a
stack of multitemporal SAR interferograms. First, the noise-filtering operation for single-
channel multilook interferograms is discussed; subsequently, the general framework of the
multichannel noise-filtering (MC-NF) approach, which is intimately connected with the
problem of multichannel phase unwrapping, is described.

3.1. Decorrelation noise in SAR interferograms

In order to introduce the problem at hand, let us first consider one single-channel SAR
interferogram obtained starting from two SAR (synthetic aperture radar) images, namely, i1
and i2, acquired (over the same scene on Earth) at two different times, namely, t1 and t2,
respectively. The two SAR images can be represented via two complex-valued signals, say
i(x, r) and i2(x, r), with x and r  denoting the two independent spatial variables (with respect
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to azimuth and range direction, respectively) in the radar geometry. The two complex signals
can be expressed as follows [29, 51]:

( )

4

1 1 1
4

2 2 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

j r

j r r

i x r x r e n x r
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where δr  is the sensor-to-target slant range difference at time t2 with respect to time t1, and
γ1(x, r) and γ2(x, r) are the corresponding (complex-valued) reflectivity functions of the
illuminated scene at time t1 and t2, respectively. Furthermore, the two additive (noise)
contributions n1(x, r) and n2(x, r) describe random quantities that are included in Eq. (24). As
a result of these noise terms and of the intrinsic random nature of the two images reflectivity
functions, when the two SAR images are interfered to form a so-called interferogram, i.e., when
their phase difference ψ is extracted, the interferometric phase will be noisy. An important
parameter influencing the quality of the retrieved interferometric phase is the (complex) cross-
correlation factor between the two involved SAR images, which is typically defined as
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where ρ∈ 0, 1 , ψ∈ −π, π), and the asterisk denotes the conjugate complex value. Notewor‐
thy, the cross-correlation factor (Eq. (25)) is a complex-valued term that can be decomposed in
terms of amplitude ρ (i.e., ρ = |χ |) and phase ψ. For interferometric SAR images, χ can be
evaluated by performing spatial averaging (known as multilooking) operations on a statisti‐
cally homogeneous area. Indeed, the symbol E  in Eq. (25), which is representative of the
statistical expectation operation [52], can then be replaced by the spatial averaging operation.
The amplitude factor ρ, which is known to as coherence, accounts for the similarity between the
two SAR images, whereas ψ is the multilook interferometric phase. A value for the coherence
that approaches zero is representative of an uncorrelated scene, whereas coherence value that
is close to unity corresponds to a noise-free interferogram.

There are several causes that are responsible for coherence decrease. As matter of fact, the
cross-correlation factor in Eq. (25) depends on different noise sources, and it can be conven‐
iently factorized as follows [51]:

the tem spa dop mis vol
je yc c c c c c c= × × × × × × (26)
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where

• χthe is the contribution of the thermal noise.

• χtemp accounts for the effects due to (temporal) changes in the complex-valued reflectivity
function between the two passages of the radar sensor over the illuminated area. The so-
called temporal decorrelation is very difficult to be statistically modeled being associated
to complex modifications of the electromagnetic response of the scene: They can be induced
by human activities and/or natural causes.

• χspa is the term that takes into account the fact that from one SAR image to another the same
ground resolution cell is imaged from two slightly different looking angles. The change
change of the looking angle, in turn, leads to a shift between the range spectra of the two
SAR images, and accordingly, it causes decorrelation since the range spectra of the two
interfering SAR images are only partly overlapped. It can be shown that range spectra shift
depend on the perpendicular baseline of the considered SAR data pair, and there is a limit
value for the perpendicular baseline (known to as critical baseline) for which the two range
spectra are completely non overlapped (i.e., the images are definitely uncorrelated one
another) [29, 51].

• The term χdop takes into account of the so-called Doppler decorrelation effects due to the
fact that SAR azimuth spectra are centered on a specific frequency (Doppler Centroid). When
two SAR images with considerably different Doppler Centroid values interfere, a decorre‐
lation noise contribution arises from the imperfect overlapping of the two related azimuth
spectra. Hence, in the case that the two azimuth spectra are not overlapped at all, we have
χdop =0.

• χmis accounts for possible misregistration between two SAR images.

• χvol accounts for volumetric decorrelation effects [53].

The multilook operation, leading to the multilook phase ψ in Eq. (25), reduces the level of noise
corrupting interferograms, although this is paid in terms of a reduction of spatial resolution
of interferograms. Multilook interferometric phase can be described by using a random
quantity and, accordingly, it can be characterized via the knowledge of its probability density
function. It has been shown in literature [40, 41, 54] that the probability density function (pdf) of
an L-multilook interferometric phase (with L being the number of averaging samples in the
averaging window used for the estimation of the statistical average operation involved in the
calculation of Eq. (25)) can be given in terms of a Gauss hypergeometric function:
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where ψ∈ −π, π), β =ρcos(ψ −ψ0), ρ represents the coherence, F2 1
 denotes the Gauss hyper‐

geometric function, Γ(⋅ ) is the gamma function, and ψ0 represents the expected “true” value of
the interferometric phase. The peak of the distribution is located at ψ =ψ0.

The pdf in Eq. (27) is sketched in Figure 2a for different values of L and in Figure 2b for different
values of the ρ, with ψ0 =0. By observing Figure 2a, it is clear that pdfs become narrower as the
number of looks L increases (as expected). This finding is extremely important because it
demonstrates that the interferometric phase may be thought to be corrupted by an additive
noise random signal, namely, v, that has the same pdf as in Eq. (27) but with a zero-mean
expected value, i.e., we may assume as valid the following additive model for the interfero‐
metric noise [54]: ψ =ψ0 + v. To further investigate about the statistics of multilook interfero‐
grams, we can observe that the validity of Eq. (27) is only restricted to the [–π,π) interval.
However, this restriction does not apply when the phase signal is directly derived in the
complex plane instead of the real plane. In the works of Lopez (2003) [55] and Lopez and Pottier
(2007) [40], a comprehensive analytical derivation of the noise statistics in the complex plane
is derived. Nonetheless, the Cramér–Rao bound for the standard deviation of multilook phase
is given by [59]

211
2v L

r
s

r
-

= (28)

that shows that standard deviation depends on the coherence ρ and multilook factor L. Note
that the phase standard deviation approaches the limit (Eq. (28)) asymptotically as the number
of looks increases.
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Figure 2. Probability density function of the  interferometric phase   [rad]: (a) for different values of
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;    (b)  for different values of  the correlation coefficient    (0.1—black  line, 0.2—red  line, 0.5—
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that  shows  that  standard  deviation  depends  on  the  coherence r  and multilook  factor  L. 
Note that the phase standard deviation approaches the limit (Eq. (28)) asymptotically as the 
number of looks increases. 
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several  noise‐filtering  techniques,  mostly  working  on  single‐channel  data,  have  been 
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statistics of multilook interferograms can be characterized via a probability density function 
expressible  in  closed  form  (Eq.  (27)),  and  the noise  standard deviation generally depends 
upon the coherencer   and the number of looks L [see also Eq. (28)]. Three different multilook 
interferograms, which are characterized by  the  same perpendicular baseline  (of about 100 
m), have been obtained by using  three SAR sensors working at  the different  (C, X, and L) 
bands of the microwave region and are depicted in Figure 3. As it is evident from Figure 3, 
L‐band interferograms are less affected by noise than the ones pertinent to C and/or X‐band. 

Figure 2. Probability density function of the interferometric phase ψ [rad]: (a) for different values of the number of
looks L (1—black line, 2—red line, 5—blue line, 10—green line, 20—orange line), with ρ =0.7 ; (b) for different values
of the correlation coefficient ρ (0.1—black line, 0.2—red line, 0.5—blue line, 0.7—green line, 0.8—orange line) with L =
4.
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3.2. Single-channel noise-filtering approaches for multilook interferograms

In order to mitigate the effects of decorrelation noise artifacts affecting SAR interferograms,
several noise-filtering techniques, mostly working on single-channel data, have been proposed
in literature over the years [42, 54, 56, 57]. As shown in previous Section 3.1, the statistics of
multilook interferograms can be characterized via a probability density function expressible
in closed form (Eq. (27)), and the noise standard deviation generally depends upon the
coherence ρ and the number of looks L [see also Eq. (28)]. Three different multilook interferograms,
which are characterized by the same perpendicular baseline (of about 100 m), have been
obtained by using three SAR sensors working at the different (C, X, and L) bands of the
microwave region and are depicted in Figure 3. As it is evident from Figure 3, L-band inter‐
ferograms are less affected by noise than the ones pertinent to C and/or X-band.

Figure 3. Multilook interferogram computed by using different SAR data pairs: (a) July 11, 2011–August 16, 2011, X-
band Cosmo-SkyMed (CSK); (b) September 15, 2004–October 29, 2004, C-band ASAR/ENVISAT; (c) July 30, 2007–Sep‐
tember 14, 2007, L-band ALOS/PALSAR-1.
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It should be emphasized that coherence and noise levels can also significantly change from
one SAR system to another depending on the operational wavelength.Multilook processing
has been proved to be effective for noise reduction, but this is paid in terms of a decrease of
the image spatial resolution. Noise filtering constitutes a preliminary step before phase
unwrapping. Indeed, the multilook operation usually involves an averaging on neighboring
SAR pixels, hence reducing the spatial resolution of the interferograms. Several algorithms
have been proposed in literature. The most commonly used noise filter is the boxcar filter
applied in the complex plane. Another frequently used option is provided by the Golstein’s
frequency-domain algorithm [42], which is an empirical approach proposed for geophysical
applications. In this case, a complex interferogram (amplitude and phase) is segmented into
overlapping rectangular patches and for each patch the relevant power spectrum Z is com‐
puted.

Figure 4. Multilook interferogram relevant to the SAR data pair July 11, 2011–August 16, 2011, X-band Cosmo-SkyMed
(CSK): (a) Original, (b–d) Goldstein filtering, with (b) α =0.25, (c) α =0.5, and (d) α =1.0.
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The response of the Golstein’s filter is then computed from the power spectrum as follows:

( , ) ( , )H Z a
x h x h= (29)

where ξ and η denote the relevant spectral variables, respectively. Notice that the filtering
effect vanishes when α =0 ; conversely, the filtering effect is more pronounced as the parameter
α approaches unity. We show in Figure 4 the result of the application of the Goldstein’s filter
to a multilook interferogram, relevant to the Mt. Etna (Italy) volcano, obtained by using the
Cosmo-Skymed sensor of the Italian Space Agency (ASI). Specifically, different values of the
filtering parameter α have been considered in Figure 4. The limited effectiveness of the filtering
capabilities of Goldstein approach is evident from the result depicted in Figure 4. A modifi‐
cation of the Goldstein filter that relies on an adaptive choice of the filtering factor α (which
depends on the spatial coherence ρ) has also (more recently) been proposed by Baran in 2003
[58]. Other filters, such as the median filter [59] and the two-dimensional Gaussian filter, are
also used to reduce noise while performing multilooking operations. It is worth noting that
boxcar and Goldstein filters do not adapt to the direction of the fringes because these filters
are operated in a square window. In order to overcome such a limitation, Lee et al. 1998 [54]
then proposed a self-adaptive filter based on local gradient slope estimation that is able to
improve noise-filtering performance by exploiting directional characteristics of an InSAR
interferogram. Several adaptations and relevant improvements of the Lee filter have subse‐
quently proposed in literature over the recent years [56, 57], most of them based on the
exploitation of the intrinsic directional behavior of InSAR interferograms. In fact, compared
with the fringe phase and gradient, the fringe direction variation is gently, thus making it
possible to use fringe direction to guide interferogram filtering.

3.3. The multichannel noise-filtering (MCh-NF) algorithm

The noise-filtering methods discussed in the previous Section have historically been developed
to analyse and filter out the noise affecting single interferograms, separately, thus without
taking into account their mutual temporal relationships. A multichannel noise-filtering
problem arises when a stack of SAR interferograms need to be jointly exploited. In this case,
it is profitable to develop/use noise-filtering approaches that not only exploit spatial/frequency
information but can also take into account temporal relationships among available multichan‐
nel interferograms, in order to identify and filter out the noise affecting the whole interfero‐
metric data stack in the more reliable way as possible. A specific multichannel noise-filtering
(MCh-NF) method [43], which is based on using a stack of time-redundant multilook inter‐
ferograms, is described in this Section. The MCh-NF method is here described by adopting the
same rigorous formalism and terminology used for the topological description of multichannel
phase unwrapping problem presented in Section 2. According to the adopted symbolism, let
us consider Q SAR images and let M be the number of multilook interferograms characterized
by small perpendicular and temporal baselines.
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The resulting interferometric data stack of the M (wrapped) small-baseline multilook inter‐
ferograms can be expressed as Ψ̃Τ = ψ̃1

T, …, ψ̃P
T  ; thus, the M-dimensional vector ψ̃ p

T described
the (vectorized) multichannel interferometic-phase pertinent to the pth pixel, with
p ∈ {1, …, P} and P denoting the number of coherent pixels common to all interferograms. In
particular, Ψ̃ can be expressed in terms of discrete gradient ΠA, according to Eq. (13), as:

( )Τ
AW= +% Π Φ DY (30)

wherein Φ represents the (unknown) phases associated with the available SAR images, and
the matrix D describes the additive noise-term that corrupts the stack of interferograms. The
noise term should be estimated and properly filter out from the generated interferograms. As
discussed in Section 3.2, the term D arises since both a multilook operation and a noise-filtering
procedure are typically applied to each single interferogram, separately. Both these operations
are independently carried out on each single interferogram; hence, they are not necessarily
time consistent. The fact that the interferograms are not fully time consistent can be formally
expressed, according to Eq. (14), in terms of discrete curl ΩA

T, in the form:

( ) ( )W T T T
A AW= ¹D 0%W Y W (31)

which represents the topological generalization of the phase-triangularity condition exploited
by the SqueeSAR technique [44]. Therefore, the multichannel noise-filtering (MCh-NF) approach
suitably addresses the temporal inconsistencies inherent in the time-redundant multilook
interferograms, which can be mathematically described in terms of the (modulo-2π) cyclic
inconsistency of the multichannel interferometric phases [see Eq. (31)]. More specifically, MCh-
NF is based on the solution of the a nonlinear optimization problem, as detailed in the following.
First, ∀ p ∈ {1, …, P}, the Q-dimensional vector (Q is the number of SAR acquisitions) repre‐
senting the (unknown) wrapped phases Φ̃ p =W (Φ p) is estimated as follows:
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(32)

where j = −1 denotes the imaginary unit, P denotes the number of coherent pixels to which
the noise-filtering procedure is applied, the symbol  represents the Hadamard product, and
ζp

͟
= ζ͟ p

1 , ⋯ , ζ͟ p
M T  is an M-dimensional normalized weighting vector representing our confidence

on the quality of the exploited M (small-baseline) interferometric phases pertinent to the pth
pixel, with

Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of...
http://dx.doi.org/10.5772/61847

359



1

m
pm

p M
h
p

h

z
z

z
=

=

å
(33)

wherein the generic elements ζp
m can be related to the spatial coherence as detailed after.

Subsequently, these estimated vectors Φ̃
^ p are used to reconstruct a new (noise-filtered) stack

of time-consistent interferograms Ψ̃
^ Τ= ψ̃

^
1
T, …, ψ̃

^
P
T , where Ψ̃

^
p
T =W (ΠAΦ̃

^ p) and p∈ {1, …, P}.
We emphasize that, according to Eq. (32), the MCh-NF technique is based on searching for the
(unknown) wrapped-phase vector Φ̃ p∈ℝQ that minimizes the (weighted) circular variance of
the random (phase) vector representative of the phase difference, Ψ̃ p

T −W (ΠAΦ̃
p), between the

“original” and the “reconstructed” interferograms.

The evaluation of the weights for the optimization problem in Eq. (32) is now addressed. Let
Θ͜ = Θ͜i , j  be a matrix description for a generic 2-D phase map, whose corresponding vectorized
representation is provided by the P-dimensional vector Θ. Each pixel of the phase map is
identified by discrete range and azimuth coordinates, denoted by i and j, respectively.
Accordingly, each pair (i, j) is uniquely associated with a monodimension index p∈ {1, …, P}
identifying an element of the vector Θ. The spatial coherence relevant to Θ (i.e., Θ͜) evaluated
around the pixel (i, j) (associated with the index p) is defined as
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where 2LR + 1 and 2LA + 1 are the number of azimuth and range pixels within the used boxcar
averaging window, which is centred around the generic pixel identified by the discrete range
and azimuth coordinates, i and j, respectively. In particular, the mth weight ζp

m is expressed,
according to Eq. (34), in terms of spatial coherence relevant to the (vectorized) interferograms
ψ̃m and evaluated around the pixel associated with the index p, in the functional form
ζp

m =ζp(ψ̃m), ∀m∈ {1, …, M }. Therefore, ζ p = ζp
1, ⋯ , ζp

M T can be evaluated in terms of the
spatial coherence directly from the stack of M multilook interferograms Ψ̃ = ψ̃1, …, ψ̃M . As
experimentally demonstrated in ref. [43], the “reconstructed” interferograms with MCh-NF
are significantly less affected by noise than the original ones. However, a group of the
reconstructed interferograms, although limited, can exhibit spatial coherence values smaller
than the ones relevant to the corresponding original interferograms, thus implying that a
partial corruption of the spatial coherence occurs during the minimization procedure. In
particular, it happens in correspondence to interferograms that were originally significantly
coherent, and this is due to the fact that the strategy in Eq. (32) tends to “inject” coherence from
very coherent to incoherent interferograms, by exploiting the time redundancy of the small
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averaging window, which is centred around the generic pixel identified by the discrete range
and azimuth coordinates, i and j, respectively. In particular, the mth weight ζp

m is expressed,
according to Eq. (34), in terms of spatial coherence relevant to the (vectorized) interferograms
ψ̃m and evaluated around the pixel associated with the index p, in the functional form
ζp

m =ζp(ψ̃m), ∀m∈ {1, …, M }. Therefore, ζ p = ζp
1, ⋯ , ζp

M T can be evaluated in terms of the
spatial coherence directly from the stack of M multilook interferograms Ψ̃ = ψ̃1, …, ψ̃M . As
experimentally demonstrated in ref. [43], the “reconstructed” interferograms with MCh-NF
are significantly less affected by noise than the original ones. However, a group of the
reconstructed interferograms, although limited, can exhibit spatial coherence values smaller
than the ones relevant to the corresponding original interferograms, thus implying that a
partial corruption of the spatial coherence occurs during the minimization procedure. In
particular, it happens in correspondence to interferograms that were originally significantly
coherent, and this is due to the fact that the strategy in Eq. (32) tends to “inject” coherence from
very coherent to incoherent interferograms, by exploiting the time redundancy of the small
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baseline data pairs. Accordingly, in order to also preserve the spatial coherence of the very
coherent interferograms, a simple nonlinear combination between the original and the
reconstructed interferograms is carried out, thus further increasing the phase quality of the
whole set of M reconstructed interferograms. In particular, the two sets of interferograms are
combined through the following (wrapped) weighted averaging operation:
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where the symbol  represents the Hadamard product, and ζm and ζ̂m are two P-dimensional
vectors. In particular, ζm = ζ1

m, ⋯ , ζP
m T = ζ1(ψ̃

m), ⋯ , ζP(ψ̃m) T is expressed in terms of the spatial
coherence relevant to the original multilook interferogram ψ̃m. Similarly,
ζ̂m = ζ̂1

m, ⋯ , ζ̂P
m T = ζ1(ψ̃

^ m), ⋯ , ζP(ψ̃
^ m) T is expressed in terms of the spatial coherence relevant to

the reconstructed multilook interferogram ψ̃
^ m. The block diagram of the MCh-NF algorithm is

depicted in Figure 5. A pertinent pseudo-code for computing the filtered interferometric data
stack is also presented (Figure 6).

Note that the exploitation of “conventional” small baseline multilook interferograms is the
distinctive characteristic of MCh-NF approach with respect to other previous solutions, such
as the SqueeSAR [44] and Phase Linking [62] methods and other recently proposed multitem‐
poral-filtering techniques [60, 61] based on constraining the analysis to distributed scatter‐
ers [29], which are identified through a pixel-by-pixel selection procedure performed at the
full  resolution complex SAR image spatial  grid.  Such a  selection permits  to  rely on the
distributed scattering hypothesis, under which the probability density function (pdf) of the
complex-valued SAR image may be regarded as being a zero-mean multivariate circular
normal distribution, and an appropriate maximum likelihood (ML) estimation step of the
filtered phase values associated to each SAR acquisition is implemented. On the contrary,
the presented MCh-NF approach focuses on conventional multilook interferograms generat‐
ed without any a priori pixel selection step. Accordingly, in this case, it is not possible to rely
on the validity of the above-mentioned distributed scattering hypothesis. Therefore, both the
phase linking [62] and the phase triangulation of the SqueeSAR [44] algorithms require a
preliminary identification of the statistically homogeneous pixels (SHPs) on the full-resolu‐
tion range-azimuth grid. In particular, in ref. [44], the selection strategy of these pixels is
based on the application of the Kolmogorov–Smirnov test to carefully select a homogeneous
statistical population. Clearly, this requires working at the full resolution spatial scale and
implies the analysis of the amplitude values of the complex SAR image pixels. A more detailed
comparison among the presented MCh-NF method and the ones provided in ref. [44] can be
found in ref. [43].
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4. Experimental results

We present in this section some results we obtained by processing a data set consisting of 39
SAR images (Track 308, Frame 2754), collected by the ENVISAT sensor between December
2002 and August 2010 over the Abruzzi region (Italy). The test-site area includes the city of
L’Aquila and its surroundings, which were struck on 6 April 2009, by an Mw 6.3 earth‐
quake that caused more than three hundred fatalities, thousands of evacuees, as well as severe
industrial and residential building damages. Starting from the available SAR images, we
retrieved a stack of 338 small  baseline differential  SAR interferograms with a maximum
perpendicular baseline of 400 m and a maximum time span of 2000 days [43]. The interfero‐
grams have been computed by performing a complex multilook operation with 4 and 20
looks in the range and azimuth directions, respectively. For the interferogram generation, we
used precise satellite orbit information and a three-arcsecond shuttle radar topography mission
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L’Aquila and its surroundings, which were struck on 6 April 2009, by an Mw 6.3 earth‐
quake that caused more than three hundred fatalities, thousands of evacuees, as well as severe
industrial and residential building damages. Starting from the available SAR images, we
retrieved a stack of 338 small  baseline differential  SAR interferograms with a maximum
perpendicular baseline of 400 m and a maximum time span of 2000 days [43]. The interfero‐
grams have been computed by performing a complex multilook operation with 4 and 20
looks in the range and azimuth directions, respectively. For the interferogram generation, we
used precise satellite orbit information and a three-arcsecond shuttle radar topography mission
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 (SRTM)  digital  elevation  model  (DEM)  of  the  region  to  remove  the  topographic  phase
contributions. Finally, the multilook interferograms have been prefiltered by applying the
Goldstein’s filter [42].
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Figure 6. Pseudo code of the MCh‐NF algorithm.

To investigate the performance of the presented noise-filtering approach, we applied the
nonlinear minimization procedure in Eq. (32) to the stack of the generated (original) multilook
small baseline interferograms. As a result, we retrieved a new set of noise-filtered interfero‐
grams that are characterized by generally improved coherence values. This is clearly visible
in Figure 7a–f, where we compare three unfiltered (left side) interferograms with the corre‐
sponding (right side) noise-filtered interferograms. It is evident how the fringes due to the
earthquake are well recovered. Such interferometric data stacks can then be used for the
generation of surface deformation time series using the small baseline subset (SBAS) [6]
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processing chain, whose parallel version (P-SBAS) has been proposed in refs. [13, 14, 35, 36].
This is matter for the analysis presented in the next subsection.

Figure 7. Comparison between the original (left column) and noise-filtered (right column) multilook interferograms
relevant to the area of the Abruzzi region (Italy). (a–c) October 30, 2005, to November 8, 2009, August 21, 2005, to June
6, 2010, and August 1, 2004, to April 12, 2009, interferograms, characterized by perpendicular baseline values of 192,
145, and 395 m, respectively. (d–f) Noise-filtered multilook interferograms corresponding to the ones in panels a–c, re‐
spectively.

Environmental Applications of Remote Sensing364



processing chain, whose parallel version (P-SBAS) has been proposed in refs. [13, 14, 35, 36].
This is matter for the analysis presented in the next subsection.

Figure 7. Comparison between the original (left column) and noise-filtered (right column) multilook interferograms
relevant to the area of the Abruzzi region (Italy). (a–c) October 30, 2005, to November 8, 2009, August 21, 2005, to June
6, 2010, and August 1, 2004, to April 12, 2009, interferograms, characterized by perpendicular baseline values of 192,
145, and 395 m, respectively. (d–f) Noise-filtered multilook interferograms corresponding to the ones in panels a–c, re‐
spectively.

Environmental Applications of Remote Sensing364

Figure 8. Block diagram of the advanced EMCF-SBAS processing chain.

4.1. The use of MCh-NF algorithm within MCh-PhU framework

We present in this subsection how the MCh-NF algorithm can be efficiently used within the
SBAS processing chain, where phase unwrapping procedures are implemented through the
MCh-PhU technique known as extended minimum cost flow (EMCF), also discussed in the first
part of the chapter. Figure 8 shows the diagram block of the advanced EMCF-based SBAS
processing chain [26, 35, 43], which integrates the conventional SBAS codes, exploiting the
EMCF MCh-PhU procedure to perform phase unwrapping operations, with the presented
MCh-NF noise-filtering technique. In addition, an effective procedure for the selection of time-
redundant interferograms is also included; interested readers can find additional details in ref.
[43]. To provide an example of the potential of the advanced processing chain incorporating
both the discussed MCh-PhU and MC-NF techniques, we here focus on the area of Yellow‐
stone caldera, representing one of the largest and most active volcanic systems in the world.
We analyze the temporal evolution of the surface deformation occurring in this area by
applying the implemented EMCF-SBAS processing chain to a set of 22 ENVISAT images (Track
41, Frame 2709), acquired from May 2005 to September 2010, from which we have retrieved a
corresponding set of 122 small baseline interferograms [43]. As in the previous case study
(relevant to Abruzzi area), the prescribed maximum values of 400 m and 2000 days for
perpendicular and temporal baseline, respectively, have also been considered. The retrieved
mean deformation velocity map depicted in Figure 9, which has been obtained by applying
the processing chain (MCh-NF + EMCF-SBAS) of Figure 8, allows us to recognize the complex
deformation scenario affecting the Yellowstone Caldera region and its surroundings, where
uplift effects and broad subsidence patterns characterize the detected deformation field. In
addition, the deformation time series relevant to four pixels, whose locations are identified by
the black stars labeled as P1, P2, P3, and P4, are also illustrated in Figure 9.

5. Conclusion

Within the context of SAR interferometry, two main issues related to the multichannel phase
unwrapping and noise filtering for interferometric data stacks processing have been ad‐
dressed. First, a rigorous gradient-based formulation for the multichannel phase unwrapping
(MCh-PhU) problem has been systematically established, thus providing a topological
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characterization of the problem within the purview of the theoretical foundation of the discrete
calculus. Then the innovative MCh-NF procedure for the noise filtering of time-redundant
multichannel multilook interferograms has been properly presented within the considered
topological framework, by adopting a consistent formalism. Finally, some experimental results
obtained with real data have been shown, thus demonstrating the effectiveness of our
approaches and their relevance for geospatial phenomena analysis and understanding.
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Figure 9. (a) Mean deformation velocity map (in color) of Yellowstone Caldera, computed in coherent pixels only and
superimposed on the SAR amplitude image (gray-scale representation) of the zone, retrieved by applying the ad‐
vanced EMCF-SBAS processing chain. The black square marks the location of the reference SAR pixel. (b–e) Deforma‐
tion time series relevant to the four pixels identified via black stars in Fig. 8(a).

Environmental Applications of Remote Sensing366



characterization of the problem within the purview of the theoretical foundation of the discrete
calculus. Then the innovative MCh-NF procedure for the noise filtering of time-redundant
multichannel multilook interferograms has been properly presented within the considered
topological framework, by adopting a consistent formalism. Finally, some experimental results
obtained with real data have been shown, thus demonstrating the effectiveness of our
approaches and their relevance for geospatial phenomena analysis and understanding.

Acknowledgements

This work was supported by the Italian Ministry of University and Research (MIUR) under
the project “Progetto Bandiera RITMARE.” We would like to thank the European Space
Agency for providing the ENVISAT ASAR data and the University of Delft, Delft, The
Netherlands, for the related precise orbits. We would also like to thank Italian Space Agency
(ASI), which has provided us the Cosmo-SkyMed SAR images under the framework of the
European Union’s Seventh Program for research, technological development, and demon‐
stration MED-SUV project (grant no. 308665). Finally, the authors thank the Japanese Space
Agency (JAXA), which has provided the used ALOS-1 data through the project entitled
“Advanced Interferometric SAR Techniques for Earth Observation at L-band” (ID project 1149)
in the framework of “The 4-th ALOS Research Announcement for ALOS-2” call.

Figure 9. (a) Mean deformation velocity map (in color) of Yellowstone Caldera, computed in coherent pixels only and
superimposed on the SAR amplitude image (gray-scale representation) of the zone, retrieved by applying the ad‐
vanced EMCF-SBAS processing chain. The black square marks the location of the reference SAR pixel. (b–e) Deforma‐
tion time series relevant to the four pixels identified via black stars in Fig. 8(a).

Environmental Applications of Remote Sensing366

Author details

Pasquale Imperatore* and Antonio Pepe

*Address all correspondence to: imperatore.p@irea.cnr.it

Istituto per il Rilevamento Elettromagnetico dell’Ambiente (IREA), National Research
Council (CNR) of Italy, Napoli, Italy

References

[1] D. C. Ghiglia, M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms
and software, New York, John Wiley, 1998.

[2] Goldstein, and H.A. Zebker, “Mappings mall elevation changes over large areas: Dif‐
ferentia radar interferometry,” J. Geophys. Res., vol.94, no.B7, pp. 9183–9191, 1989.

[3] D. Massonnet and K. L. Feigl, “Radar interferometry and its application to changes in
the Earth’s surface,” Rev. Geophys., vol. 36, pp. 441–500, 1998.

[4] Bürgmann, P. A. Rosen, and E. J. Fielding, “Synthetic aperture radar interferometry
to measure Earth's surface topography and its deformation,” Annu. Rev. Earth Plan‐
et. Sci., vol. 28, pp. 169–209, May 2000.

[5] A. Ferretti, C. Prati, and F. Rocca, “Permanent scatterers in SAR interferometry,”
IEEE Trans. Geosci. Remote Sens., vol. 39, no. 1, pp. 8–20, Jan. 2001.

[6] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm for surface de‐
formation monitoring based on small baseline differential SAR interferograms,” IEEE
Trans. Geosci. Remote Sens., vol.40, no.11, pp. 2375–2383, Nov.2002.

[7] A. Hooper, H. Zebker, P. Segall, and B. M. Kampes, “A new method for measuring
deformation on volcanoes and other natural terrains using InSAR persistent scatter‐
ers,” Geophys. Res. Lett., vol. 31, no. 23, p. L23 611, Dec. 2004, DOI:
10.1029/2004GL021737.

[8] M. Crosetto, B. Crippa, and E. Biescas, “Early detection and in-depth analysis of de‐
formation phenomena by radar interferometry,” Eng. Geol., vol. 79, no. 1/2, pp. 81–
91, Jun. 2005.

[9] B. M. Kampes, “Radar Interferometry: Persistent Scatterer Technique,” Springer,
2006.

[10] A. Hooper and H. Zebker, “Phase unwrapping in three dimensions with applications
to InSAR time series,” J. Opt. Soc. Am. A, vol. 24, no. 9, pp. 2737–3747, Aug. 2007.

Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of...
http://dx.doi.org/10.5772/61847

367



[11] J. Hunstad, A. Pepe, S. Atzori, C. Tolomei, S. Salvi, and R. Lanari, “Surface deforma‐
tion in the Abruzzi region, Central Italy, from multi-temporal DInSAR analysis,” Ge‐
ophys. J. Int., vol. 178, no. 3, pp. 1193– 1197, Sep. 2009.

[12] S. Elefante, P. Imperatore, I. Zinno, M. Manunta, E. Mathot, F. Brito, J. Farres, W.
Lengert, R. Lanari, F. Casu, “SBAS-DINSAR time series generation on cloud comput‐
ing platforms,” Proc. IEEE IGARSS 2013, pp. 274–277, Melbourne (AU), July 2013.

[13] P. Imperatore, et al., “Scalable performance analysis of the parallel SBAS-DINSAR al‐
gorithm,” Proc. IEEE IGARSS 2014, pp. 350–353, Québec City, Canada, July 2014.

[14] F. Casu, S. Elefante, P. Imperatore, I. Zinno, M. Manunta, C. De Luca, R. Lanari,
“SBAS-DInSAR parallel processing for deformation time series computation,” IEEE J.
Select. Topics Applied Earth Observ. Remote Sens., vol.7, no.8, pp. 3285–3296, Aug.
2014.

[15] R. Gens, “Two-dimensional phase unwrapping for radar interferometry: Develop‐
ments and new challenges,” Int. J. Remote Sens., vol.24, N.4, pp. 703–710, 2003.

[16] C. W. Chen and H. A. Zebker, “Phase unwrapping for large SAR interferograms:
statistical segmentation and generalized network models,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 40, No. 8, pp-1709- 1719, Aug. 2002.

[17] M. Costantini, “A novel phase unwrapping method based on network program‐
ming,” IEEE Trans. Geosci. Remote Sens., vol. 36, pp. 813–821, May 1998.

[18] C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase un‐
wrapping: intractability and two new algorithms,” J. Opt. Soc. Am., vol.17, no. 3, pp.
401—414, Mar. 2000.

[19] K. Zhang, L. Ge, Z. Hu, A. Hay-Man Ng, X. Li, and C. Rizos, “Phase unwrapping for
very large interferometric data sets,” IEEE Trans. Geosci. Remote Sens., vol. 49, No.
10, pp. 4048–4061, Oct. 2011.

[20] W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrap‐
ping,” IEEE Trans. Geosci. Remote Sens., 37, pp. 124–134. 1999.

[21] G. F. Carballo and P. W. Fieguth, “Hierarchical network flow phase unwrapping,”
IEEE Trans. Geosci. Remote Sens., vol. 40, No. 8, pp. 1695–1708, Aug. 2002.

[22] G. Fornaro, A. Pauciullo,D. Reale, “A null-space method for the phase unwrapping
of multitemporal SAR interferometric stacks," IEEE Trans. Geosci. Remote Sens., vol.
49, no.6, pp. 2323–2334, June 2011.

[23] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted disconti‐
nuity,” J. Opt. Soc. Am. A, 14(10), pp. 2692–2701. 1997.

[24] O. Mora, J. J. Mallorquí, and A. Broquetas, “Linear and nonlinear terrain deformation
maps from a reduced set of interferometric SAR images,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 41, no. 10, pp. 2243–2253, Oct. 2003.

Environmental Applications of Remote Sensing368



[11] J. Hunstad, A. Pepe, S. Atzori, C. Tolomei, S. Salvi, and R. Lanari, “Surface deforma‐
tion in the Abruzzi region, Central Italy, from multi-temporal DInSAR analysis,” Ge‐
ophys. J. Int., vol. 178, no. 3, pp. 1193– 1197, Sep. 2009.

[12] S. Elefante, P. Imperatore, I. Zinno, M. Manunta, E. Mathot, F. Brito, J. Farres, W.
Lengert, R. Lanari, F. Casu, “SBAS-DINSAR time series generation on cloud comput‐
ing platforms,” Proc. IEEE IGARSS 2013, pp. 274–277, Melbourne (AU), July 2013.

[13] P. Imperatore, et al., “Scalable performance analysis of the parallel SBAS-DINSAR al‐
gorithm,” Proc. IEEE IGARSS 2014, pp. 350–353, Québec City, Canada, July 2014.

[14] F. Casu, S. Elefante, P. Imperatore, I. Zinno, M. Manunta, C. De Luca, R. Lanari,
“SBAS-DInSAR parallel processing for deformation time series computation,” IEEE J.
Select. Topics Applied Earth Observ. Remote Sens., vol.7, no.8, pp. 3285–3296, Aug.
2014.

[15] R. Gens, “Two-dimensional phase unwrapping for radar interferometry: Develop‐
ments and new challenges,” Int. J. Remote Sens., vol.24, N.4, pp. 703–710, 2003.

[16] C. W. Chen and H. A. Zebker, “Phase unwrapping for large SAR interferograms:
statistical segmentation and generalized network models,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 40, No. 8, pp-1709- 1719, Aug. 2002.

[17] M. Costantini, “A novel phase unwrapping method based on network program‐
ming,” IEEE Trans. Geosci. Remote Sens., vol. 36, pp. 813–821, May 1998.

[18] C. W. Chen and H. A. Zebker, “Network approaches to two-dimensional phase un‐
wrapping: intractability and two new algorithms,” J. Opt. Soc. Am., vol.17, no. 3, pp.
401—414, Mar. 2000.

[19] K. Zhang, L. Ge, Z. Hu, A. Hay-Man Ng, X. Li, and C. Rizos, “Phase unwrapping for
very large interferometric data sets,” IEEE Trans. Geosci. Remote Sens., vol. 49, No.
10, pp. 4048–4061, Oct. 2011.

[20] W. Xu and I. Cumming, “A region-growing algorithm for InSAR phase unwrap‐
ping,” IEEE Trans. Geosci. Remote Sens., 37, pp. 124–134. 1999.

[21] G. F. Carballo and P. W. Fieguth, “Hierarchical network flow phase unwrapping,”
IEEE Trans. Geosci. Remote Sens., vol. 40, No. 8, pp. 1695–1708, Aug. 2002.

[22] G. Fornaro, A. Pauciullo,D. Reale, “A null-space method for the phase unwrapping
of multitemporal SAR interferometric stacks," IEEE Trans. Geosci. Remote Sens., vol.
49, no.6, pp. 2323–2334, June 2011.

[23] T. J. Flynn, “Two-dimensional phase unwrapping with minimum weighted disconti‐
nuity,” J. Opt. Soc. Am. A, 14(10), pp. 2692–2701. 1997.

[24] O. Mora, J. J. Mallorquí, and A. Broquetas, “Linear and nonlinear terrain deformation
maps from a reduced set of interferometric SAR images,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 41, no. 10, pp. 2243–2253, Oct. 2003.

Environmental Applications of Remote Sensing368

[25] S. Usai, “A least squares database approach for SAR interferometric data,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no 4, pp. 753–760, April 2003.

[26] A. Pepe, and R. Lanari, “On the extension of the minimum cost flow algorithm for
phase unwrapping of multitemporal differential SAR interferograms,” IEEE Trans.
Geosci. Remote Sens., vol. 44, no. 9, pp. 2374–2383, Sept. 2006.

[27] A. P. Shanker and H. Zebker, “Edgelist phase unwrapping algorithm for time series
InSAR analysis,” J. Opt. Soc. Am. A, vol. 27, no. 3, pp. 605–612, Mar. 2010.

[28] M. Costantini, S. Falco, F. Malvarosa, F. Minati, F. Trillo, and F. Vecchioli, “A general
formulation for robust integration of finite differences and phase unwrapping on
sparse multidimensional domains,” in Proc. Fringe, Frascati, Italy, Dec. 2009.

[29] R. Bamler, P.Hartl, “Synthetic aperture radar interferometry,” Inverse Problems, vol.
14, no.4, R1, 1998.

[30] L. J. Grady, J. Polimeni, Discrete Calculus: Applied Analysis on Graphs for Computa‐
tional Science, Springer, 2010.

[31] N. Biggs, Algebraic Graph Theory. Cambridge University Press, Cambridge, UK,
1994.

[32] C. Berge, Graphs and Hypergraphs. North-Holland Publishing Co., Amsterdam,
1973.

[33] R. Diestel, Graph Theory, Springer-Verlag, New-York, 2000.

[34] L. Grady, “Minimal surfaces extend shortest path segmentation methods to 3D,”
IEEE Trans Pattern Anal. Mach. Intell., vol. 2, no. 32, pp. 321–334, 2010.

[35] P. Imperatore, A. Pepe, R. Lanari, “Multichannel phase unwrapping: problem topol‐
ogy and dual-level parallel computational model,” IEEE Trans. Geosci. Remote Sens.,
vol. 53, no.10, pp. 5774–5793, October 2015.

[36] P. Imperatore, A. Pepe, R. Lanari, “High-performance parallel computation of the
multichannel phase unwrapping problem,” Proceedings of the IEEE International
Geoscience and Remote Sensing Symposium, IGARSS 2015, Milan, Italy, July 2015.

[37] P. A. Rosen, S. Hensley, I. R. Joughin, F. K. Li, S. R. Madsen, E. Rodriguez, and R. M.
Goldstein, “Aperture radar interferometry,” Proc. IEEE, vol. 88, 3,pp. 333–381, 2000.

[38] H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar echoes,” IEEE
Trans. Geosci. Remote Sens., vol. 30, pp. 950–959, Sept. 1992.

[39] C. H. Gierull, “Statistical analysis of multilook SAR interferograms for CFAR detec‐
tion of ground moving targets,” IEEE Trans. Geosci. Remote Sens., vol. 42, n. 4, April
2004.

Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of...
http://dx.doi.org/10.5772/61847

369



[40] C. Lopez-Martinez and E. Pottier, “On the extension of multidimensional speckle
noise model from single-look to multilook SAR image, “IEEE Trans. Geosci. Remote
Sens., vol. 45, n. 2, February 2007.

[41] Lee, J. S. K. W. Hopple, S. A. Mango and R. Miller: “Intensity and phase statistics of
multilook polarimetric interferometric SAR imagery,” IEEE Trans. Geosci. Remote
Sens., 32(5), 1017–1028, 1994.

[42] R. M. Goldstein, and C. L. Werner, “Radar interferogram filtering for geophysical ap‐
plications,” Geophys. Res. Lett., vol. 25, pp. 4035–4038, 1998.

[43] A. Pepe, Y. Yang, M. Manzo, R. Lanari, “Improved EMCF-SBAS processing chain
based on advanced techniques for the noise-filtering and selection of small baseline
multi-look DInSAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8,
pp. 4394–4417, Aug. 2015.

[44] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, “A new algo‐
rithm for processing interferometric data-stacks: SqueeSAR,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 49, pp. 3460–3470, Sept. 2011.

[45] S. S. Rao, Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley
& Sons, Inc, 2009.

[46] K. Yosida, Functional Analysis, Berlin, Germany: Springer-Verlag, 1980.

[47] D. Bertsekas, P. Tseng, “The relax codes for linear minimum cost network flow prob‐
lems,” Ann. Oper. Res., V. 13, 1988.

[48] M. Costantini, P.A. Rosen, “A generalized phase unwrapping approach for sparse
data,” Proc. IGARSS99, pp. 267–269, Hamburg (Germany), 1999.

[49] R.K. Ahuja, T.J. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Ap‐
plications, Prentice Hall, Ney Jersey, 1993.

[50] D. Bertsekas and P. Tseng. RELAX-IV: a faster version of the RELAX code for solving
minimum cost flow problems. Technical report. Department of Electrical Engineer‐
ing and Computer Science, MIT, Cambridge, MA, 1994.

[51] G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing Boca Raton, FL:
CRC, Mar. 1999.

[52] H. Stark and J. W. Woods, Probability and Random Processes with Applications to
Signal Processing, 3rd edition, Pearson, 2012.

[53] C. Elachi, “Spaceborne radar remote sensing: applications and techniques. Institute
of Electrical and Electronics Engineers, 1998.

[54] Jong-Sen Lee, Konstantinos P. Papathanassiou, Thomas L. Ainsworth, Mitchell R.
Grunes, and Andreas Reigber, “A new technique for noise filtering of SAR interfero‐

Environmental Applications of Remote Sensing370



[40] C. Lopez-Martinez and E. Pottier, “On the extension of multidimensional speckle
noise model from single-look to multilook SAR image, “IEEE Trans. Geosci. Remote
Sens., vol. 45, n. 2, February 2007.

[41] Lee, J. S. K. W. Hopple, S. A. Mango and R. Miller: “Intensity and phase statistics of
multilook polarimetric interferometric SAR imagery,” IEEE Trans. Geosci. Remote
Sens., 32(5), 1017–1028, 1994.

[42] R. M. Goldstein, and C. L. Werner, “Radar interferogram filtering for geophysical ap‐
plications,” Geophys. Res. Lett., vol. 25, pp. 4035–4038, 1998.

[43] A. Pepe, Y. Yang, M. Manzo, R. Lanari, “Improved EMCF-SBAS processing chain
based on advanced techniques for the noise-filtering and selection of small baseline
multi-look DInSAR interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8,
pp. 4394–4417, Aug. 2015.

[44] A. Ferretti, A. Fumagalli, F. Novali, C. Prati, F. Rocca, and A. Rucci, “A new algo‐
rithm for processing interferometric data-stacks: SqueeSAR,” IEEE Trans. Geosci. Re‐
mote Sens., vol. 49, pp. 3460–3470, Sept. 2011.

[45] S. S. Rao, Engineering Optimization: Theory and Practice, Fourth Edition, John Wiley
& Sons, Inc, 2009.

[46] K. Yosida, Functional Analysis, Berlin, Germany: Springer-Verlag, 1980.

[47] D. Bertsekas, P. Tseng, “The relax codes for linear minimum cost network flow prob‐
lems,” Ann. Oper. Res., V. 13, 1988.

[48] M. Costantini, P.A. Rosen, “A generalized phase unwrapping approach for sparse
data,” Proc. IGARSS99, pp. 267–269, Hamburg (Germany), 1999.

[49] R.K. Ahuja, T.J. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Ap‐
plications, Prentice Hall, Ney Jersey, 1993.

[50] D. Bertsekas and P. Tseng. RELAX-IV: a faster version of the RELAX code for solving
minimum cost flow problems. Technical report. Department of Electrical Engineer‐
ing and Computer Science, MIT, Cambridge, MA, 1994.

[51] G. Franceschetti and R. Lanari, Synthetic Aperture Radar Processing Boca Raton, FL:
CRC, Mar. 1999.

[52] H. Stark and J. W. Woods, Probability and Random Processes with Applications to
Signal Processing, 3rd edition, Pearson, 2012.

[53] C. Elachi, “Spaceborne radar remote sensing: applications and techniques. Institute
of Electrical and Electronics Engineers, 1998.

[54] Jong-Sen Lee, Konstantinos P. Papathanassiou, Thomas L. Ainsworth, Mitchell R.
Grunes, and Andreas Reigber, “A new technique for noise filtering of SAR interfero‐

Environmental Applications of Remote Sensing370

metric phase images,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 5, pp. 1456–
1465, Sep. 1998.

[55] C. López-Martínez and X. Fàbregas, “Polarimetric SAR speckle noise model,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2232–2242, Oct. 2003.

[56] Sihua Fu, Xuejun Long, Xia Yang, and Qifeng Yu, “Directionally adaptive filter for
synthetic aperture radar interferometric phase images,” IEEE Trans. Geosci. Remote
Sens., vol. 51, no. 1,Jan 2013.

[57] Qingsong Wang, Haifeng Huang, Anxi Yu, and Zhen Dong, “An efficient and adap‐
tive approach for noise filtering of SAR interferometric phase images,” IEEE Trans.
Geosci. Remote Sens. Lett., vol. 8, no. 6, Nov 2011.

[58] I. Baran, M. P. Stewart, B. M. Kampes, Z. Perski, and P. Lilly, “A modification to the
Goldstein radar interferogram filter,” IEEE Trans. Geosci. Remote Sens., vol. 41, no.
9, Sept. 2003.

[59] E. Rodriguez, J. M. Martin, “Theory and design of interferometric synthetic aperture
radars,” IEE Proceedings F Radar and Signal Processing, vol.139, no.2, pp. 147–159,
Apr 1992.

[60] A. Parizzi, and R. Brcic, “Adaptive InSAR stack multilooking exploiting amplitude
statistics: a comparison between different techniques and practical results,” IEEE
Trans. Geosci. Remote Sens. Lett., 8, pp. 441–445, May 2011.

[61] G. Fornaro, D. Reale and S. Verde, “Adaptive spatial multilooking and temporal
multilinking in SBAS interferometry,” Proceedings of the IEEE International Geosci‐
ence and Remote Sensing Symposium (IGARSS), Munich (Germany), July 2012.

[62] A. Parizzi and R. Brcic, “Adaptive InSAR stack multi-looking exploiting amplitude
statistics: a comparison between different techniques and practical results,” IEEE
Trans. Geosci. Remote Sens. Lett., vol. 8, no. 3, pp. 441–445, May 2011.

[63] A. P. Shanker and H. Zebker, “Edgelist phase unwrapping algorithm for time series
InSAR analysis,” J. Opt. Soc. Am. A, Opt. Image Sci. Vis., vol. 27, no. 3, pp. 605–612,
Mar. 2010.

[64] M. Costantini, S. Falco, F. Malvarosa, F. Minati, F. Trillo, and F. Vecchioli, “A general
formulation for robust integration of finite differences and phase unwrapping on
sparse multidimensional domains,” in Proc. Fringe, Frascati, Italy, Dec. 2009.

Topological Characterization and Advanced Noise-Filtering Techniques for Phase Unwrapping of...
http://dx.doi.org/10.5772/61847

371





Chapter 13

Processing of Multichannel Remote-Sensing Images
with Prediction of Performance Parameters

Benoit Vozel, Oleksiy Rubel, Alexander Zemliachenko, Sergey Abramov,
Sergey Krivenko, Ruslan Kozhemiakin, Vladimir Lukin and Kacem Chehdi

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61853

Abstract

In processing of multichannel remote sensing data, there is a need in automation of basic
operations as filtering and compression. Automation presumes undertaking a decision on
expedience of image filtering. Automation also deals with obtaining of information based
on which certain decisions can be undertaken or parameters of processing algorithms can
be chosen. For the considered operations of denoising and lossy compression, it is shown
that their basic performance characteristics can be quite easily predicted based on easily
calculated local statistics in discrete cosine transform (DCT) domain. The described meth‐
odology of prediction is shown to be general and applicable to different types of noise
under condition that its basic characteristics are known in advance or pre-estimated accu‐
rately.

Keywords: Multichannel remote sensing data, automatic processing, denoising, lossy
compression, performance prediction, DCT

1. Introduction

Remote-sensing (RS) data are widely used for numerous applications [1], [2]. Primary RS
images acquired onboard of airborne or spaceborne carriers and intended for Earth surface
monitoring are usually not ready for direct use and, thus, are subject to a certain preprocessing.
This preprocessing can be carried out in several stages and includes the following operations:
geo-referencing and calibration, blind estimation of noise/distortion characteristics, pre-
filtering, lossless or lossy compression, [1], [2], etc. These operations can be distributed between
onboard and on-land computer means (processors) in different ways depending upon many
factors [3-5].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



Regardless of the distribution of functions, the operations onboard are usually performed in
a fully automatic manner (although there can be some changes in algorithm parameters by
command passed from Earth). In turn, the operations carried out on land can be, in general,
performed in an interactive manner and labor of highly qualified experts is exploited for this
purpose. However, a certain degree of automation of on-land data processing is required as
well. The need in processing automation is especially high if one deals with multichannel (e.g.,
hyperspectral) RS data [6], where the number of channels (components, sub-bands) can reach
hundreds. Such RS images have become popular and widespread (available) currently due to
their (potential) ability to provide rich information for various applications [6], [7].

Meanwhile, the multichannel nature of RS data results in new problems in their processing [3],
[8]. The main problems and actual questions are the following:

• How to manage large volumes of acquired data with maximal or appropriate efficiency
(here, different criteria of efficiency can be used)?

• Is it possible to skip some operations of data processing if their efficiency is not high and,
consequently, if it is not worth performing them?

The latter question can be mainly addressed as mentioned below. It is strictly connected with
other questions as follows:

• Is it possible to predict the performance of some standard operations of RS data (image)
processing?

• What is the accuracy of such a prediction and is this accuracy high enough to undertake a
decision to skip carrying out an operation or to set a certain value of some parameter used
in the image-processing chain [9]?

This chapter will focus on two typical operations of multichannel RS data processing, namely,
filtering and lossy compression. While considering them, the fact that the acquired images are
noisy is taken into account. One can argue that noise is not seen in many RS images (or
components of these images). This is true, and noise cannot be observed in approximately 80%
of the visualized sub-band images of hyperspectral data. This is explained by the peculiarities
of human vision, which does not see noise if peak signal-to-noise ratio (PSNR) in a given single-
channel (component) image exceeds 32–38 dB. However, recent studies [7], [10-12] have
demonstrated that noise is present in all sub-band images and this is due to the principle of
operation of hyperspectral imagers.

Moreover, it has been shown in [10], [11] that noise is (can be) of quite a complex nature and
the noise acquired in multichannel RS images has specific properties. First, it is signal-
dependent [10], [11], [13]. Second, it is of essentially a different intensity (see Abramov et al.,
2015 in [14]). More precisely, the wide variation of dynamic range and noise intensity in sub-
band images jointly leads to wide limits of signal-to-noise ratio (SNR) in components of
multichannel images. This has led to the use of the term “junk bands” [15] and different
strategies of coping with noisy channels in multichannel data. Some researchers prefer to use
these sub-bands in further processing while others propose to remove them; it is also discussed
whether they can be filtered or not [15]. It has been shown that if filtering of these junk bands
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is efficient, this can improve the classification of hyperspectral data [16]. However, the
aforementioned questions concern the efficiency of image preprocessing and its prediction.

The questions raised can be partly answered with the results obtained in recent research. The
objective is to show that important performance parameters of image denoising and/or lossy
compression can be quickly and quite accurately predicted using simple input parameter(s)
and dependences obtained in advance. The obtained results are divided into two parts. The
first part deals with the prediction of filtering efficiency. This research has started in 2013 [17]
and has its history in a study conducted in [18]. The second part relates to the compression of
noisy images [19], [20]. In fact, the results obtained for predicting the parameters of lossy
compression can be treated as based on the same principle as that for image filtering and for
further research.

Before taking the image performance criteria and preprocessing techniques into consideration,
it is important to note the following: first, there are two hypotheses. It is supposed that noise
type is known or determined in advance. It is also assumed that its parameters are either known
or accurately pre-estimated. It is to be noted that, currently, there are quite a few efficient
methods for estimating the parameters of pure additive noise [8], [21-25], speckle noise [26],
and different types of signal-dependent noise [10-12], [27], [28]. The noise parameters are taken
into account by the most modern filtering techniques that belong to the families of orthogonal-
transform-based filters [29-33] and nonlocal filters, for example, block-matching and three-
dimensional filtering (BM3D) [34]. The same relates to modern methods of lossy compression
of noisy images [19], [35].

Second, we restrict ourselves to consider the image- filtering and compression techniques
based on discrete cosine transform (DCT). This is explained using several reasons. DCT is a
powerful orthogonal transform widely exploited in image processing. Filters and compression
techniques based on DCT are currently among the best [34]. They can be quite easily adapted
to the signal-dependent noise directly [32], [36] or equipped with proper variance-stabilizing
transformations (VST) [19], [32], [37]. This restriction does not mean that the approach to
prediction cannot be applied to other filtering and lossy compression techniques. This
approach should be applicable (with certain modifications) but is yet to be thoroughly checked.

Third, in the analysis of the prediction approach, traditional quality metrics are employed such
as mean square error (MSE) and peak signal-to-noise ratio (PSNR), as well as some visual
quality metrics such as PSNR human visual system masking metric (PSNR-HVS-M) [38].
Behavior and properties of traditional metrics are understood well by those dealing with image
processing. Although PSNR-HVS-M is less popular, this is one of the best metrics that takes
into account the peculiarities of human visual system (HVS) and that can be calculated for
either one component of a multichannel image or a group of components of a multichannel
image. It is expressed in dB, and it is usually either slightly smaller than PSNR (for annoying
types of distortions like spatially correlated noise) or larger than PSNR (if distortions are
masked by texture). This is important since we assume that the processing of multichannel
images is carried out either component-wise or in groups of channel images, where a group
includes the entire image in marginal case.
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Fourth, other criteria of image-processing efficiency, such as classification accuracy, object
detectability, etc., are important for the preprocessed RS data. We are unable to predict them,
but recent research shows [39] that these criteria are connected with the traditional criteria of
image processing. Thus, it is expected that if good values of conventional and HVS metrics are
provided due to preprocessing, appropriate classification accuracy and other criteria will be
attained.

2. The considered image-performance criteria and preprocessing
techniques

This chapter considers the following model of an observed multichannel image:

noisy true true( ), 1,..., , 1,..., , 1,...,k ij k ij k ij kijI I n I i I j J k K= + = = = (1)

where Ik ij
noisy is ij -th sample of noisy (original) k-th component of a multichannel image, nk ij

denotes the ij-th value of the noise in k-th component statistic, which is, in general, supposed
to be dependent on the true image value Ik ij

true in this voxel (3D pixel), I and J define the image
size, and K denotes the number of channels. It is also assumed that the images {Ik ij

true} and {Ik +1 ij
true }

are strongly correlated and they have similar dynamic ranges Dk  and Dk +1  determined as
Dk = Ik

max − Ik
min, where Ik

max and Ik
min are maximal and minimal values in k-th channel image,

respectively. It is also possible to assume that noise is of the same type and neighbor channels
have quite close values of input MSEs (equal to noise variance σk

2 if the noise is pure additive)
as follows:

inp noise true 2

1 1
( ) / ( ), 1,...,

JI

k k ij kij
i j

MSE I I IJ k K
= =

= - =åå (2)

and input PSNR

inp inp2
1010log ( / ), 1,..., .k k kPSNR D MSE k K= = (3)

The same assumptions are valid for input PSNR − HVS −Mk
inp determined similarly to expres‐

sion (3) with the difference that MS Ek
inp is replaced by MS EHVS k

inp , which is a special kind of
weighted MSE calculated in spectral (DCT) domain considering the masking effects [38]. The
aforementioned assumptions are valid for color red, green, blue (RGB) images [27], multi‐
spectral and hyperspectral RS images [14], [40], dual polarization, and multifrequency radar
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images [2]. These properties can be effectively exploited in multichannel image preprocessing
[39].

After applying a considered filter, one obtains a filtered image
{Ik ij

f }, i =1, ..., I , j =1, ..., J , k =1, ..., K  that is supposed to be closer to

{Ik ij
true}, i =1, ..., I , j =1, ..., J , k =1, ..., K  according to a chosen metric (a quantitative criterion).

These output metrics are calculated as

out true 2

1 1
( ) / ( ), 1,..., ,

JI
f

k k ij kij
i j

MSE I I IJ k K
= =

= - =åå (4)

inp 2 out
1010log ( / ), 1,..., .k k kPSNR D MSE k K= = (5)

Output PSNR −HVS −Mk
out is determined similarly to (5).

Then, one has to characterize the efficiency of filtering. One way to do this is to use

inpout / ,k kMSE MSEk = (6)

inpout ,k k kIPSNR PSNR PSNR= - (7)

inpout- - - - .k k kIPHVSM PSNR HVS M PSNR HVS M= - (8)

Small values of the ratio in expression (6) and large values of expressions (7) and (8), both
expressed in dB, are evidence in favor of efficient filtering.

Similarly, after lossy compression, one obtains {Ik ij
c }, i =1, ..., I , j =1, ..., J , k =1, ..., K . It is

usually supposed that for a larger compression ratio (CR), the quality of compressed image is
worse. This is true for lossy compression of noise-free images where more distortions are
introduced for a larger CR. However, in lossy compression of noisy images, the situation is
specific [41]. Lossy compression results in certain filtering (noise removal) effect under certain
conditions. Due to this filtering effect, it is possible that

true 2

1 1
( ) / ( ), 1,...,

JI
c c
k k ij kij

i j
MSE I I IJ k K

= =

= - =åå (9)
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occurs to be less than MS Ek
inp. Then, the compression method parameter (quantization step

(QS), scaling factor (SF) or bits per pixel (bpp) depending upon a coder used) for which MS Ek
c

falls into global minimum is called optimal operation point (OOP). This parameter is important
and needs additional explanation. Fig. 1(a) presents the dependences of

2
1010log ( / ), 1,...,c c

k k kPSNR D MSE k K= = (10)
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variance σ 2 =100. The test image Frisco has a simpler structure – it contains more homogeneous
image regions that correspond to sea surface. Due to this, the filtering effect of lossy compres‐
sion is larger and the dependence has an obvious global maximum (i.e., the OOP), according
to PSN R c, since maximum of PSN R c corresponds to minimum of MS E c. Formally, there is no
OOP for the other test image Airfield, but the dependence PSN R c(QS) has local maximum.
Both aforementioned maxima take place for QSOOP ≈4σ, which is a recommended choice for
the coder AGU [43].
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specific (Al-Shaykh & Mersereau, 1998). Lossy compression results in certain filtering (noise 
removal) effect under certain conditions. Due to this filtering effect, it is possible that 
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Figure 1. Dependences PSN R c(QS) for the coder AGU (a) and test images Airfield (b) and Frisco (c) corrupted by
AWGN with noise variance equal to 100

The lossy compression in the neighborhood of OOP has obvious advantages. Compressed
images have high quality, and, at the same time, they have CR considerably larger than for
lossless compression [9], [44]. Because of these benefits, the lossy compression of noisy images
in the OOP neighborhood is considered. If OOP does not exist, nevertheless, the recommended
setting QSOOP ≈4σ can be considered. If noise is signal dependent and VST is not used, the

setting is QSOOP ≈4σequiv where σequiv
2 =MS E inp. Then, in OOP, one has parameters
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The lossy compression in the neighborhood of OOP has obvious advantages. Compressed
images have high quality, and, at the same time, they have CR considerably larger than for
lossless compression [9], [44]. Because of these benefits, the lossy compression of noisy images
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MS Ek
OOP, PSN Rk

OOP, PSNR-HVS -Mk
OOP and it is possible to determine for them the following

metrics (parameters characterizing compression performance):

inpOOP / ,k kMSE MSEk = (11)

inpOOP ,k k kIPSNR PSNR PSNR= - (12)

inpOOP- - - - ,k k kIPHVSM PSNR HVS M PSNR HVS M= - (13)

where MS Ek
OOP / MS Ek

inp <1 and positive IPSN Rk  or IPHVSMk  mean that OOP exists according
to the corresponding metric.

Certainly, there are also other valuable performance criteria. For image pre-filtering, it is
important to know the computational efficiency of the denoising method and how easily it can
be implemented, especially onboard. For image lossy compression, it is important to know CR
provided and how easily it can be attained. To partly address these issues, the filtering and
compression techniques are briefly described.

DCT-based filtering [18], [30] is performed in a block-wise manner, where 8 × 8 pixels are a
typically set block size. Filtering can be performed with nonoverlapping, partly overlapping,
and fully overlapping blocks. In the latter case, filtering efficiency (expressed in improvement
of PSNR (IPSNR) or improvement of PSNR-HVS-M (IPHVSM )) is the highest but more
computations are needed. Nevertheless, the filter is very fast since it is possible to use fast
algorithms and to parallelize computations.

There are three main steps in processing: direct 2D DCT in each block; thresholding of DCT
coefficients; inverse DCT applied to thresholded DCT coefficients; then, the filtered data from
overlapping blocks are aggregated. Within this structure, different variants of thresholding
are possible but employing hard thresholding is preferred, where DCT coefficient values
remain unchanged if their amplitudes exceed a threshold or are assigned zero values other‐
wise. If one deals with AWGN, the threshold is set fixed as

.T bs= (14)

For spatially uncorrelated signal-dependent noise with a priori known or accurately pre-
estimated dependence of local standard deviation on local (block) mean σloc = f (Ī bl), one has to
set a locally adaptive threshold:

bl bl( ).T f Ib= (15)
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Finally, for spatially correlated and signal-dependent noise with a priori known or properly
pre-estimated normalized DCT spectrum Wqs

norm, q =0, ..., 7, s =0, ..., 7 , where qs are indices of
DCT coefficients in blocks [33], the thresholds are locally adaptive and frequency dependent:

norm
bl bl( , ) ( ) .qsT q s f I Wb= (16)

In expressions (14–16), β is the parameter. Depending upon the image complexity and noise
intensity, its optimal value can vary a little [18], but the recommended choices are β = 2.6 to
provide good filtering according to IPSNR and β = 2.3 to ensure quasi-optimal denoising
according to IPHVSM . In further studies, β =2.6 will be used. A 3D version of the DCT–based
filter [39] performs similarly. The difference is that the blocks are 3D, of size 8 × 8 × Kgr, where
Kgr ≤ K denotes a channel group size.

Conventional BM3D [34] is a more sophisticated denoising method. It presumes search for
similar patches (blocks), with their joint processing in a 3D manner using DCT and Haar
transform, and post-processing stage. This filtering principle, originally designed to cope with
AWGN in gray-scale images, has been later adapted to the cases of signal-dependent noise
after a proper VST [37], spatially correlated noise [45] and color (three-channel) images
corrupted by AWGN [46]. The BM3D and its modifications provide a slightly better perform‐
ance than the corresponding modifications of the conventional DCT-based denoising by the
expense of considerably more extensive computations.

The lossy compression technique called AGU [42] is based on DCT in 32 × 32 pixel blocks, a
more efficient (compared to JPEG) coding of quantized DCT coefficients and post-processing
to remove the blocking artifacts after decompression. This coder is quite simple but slightly
more efficient than JPEG 2000) or set partitioning in hierarchical trees (SPIHT) in rate/distortion
sense. This coder has 3D version [19] and CR for both 2D and 3D versions is controlled
(changed) by QS.

3. Prediction of filtering efficiency

The main idea of filtering efficiency prediction is the following [17]. Suppose there is some
input parameter(s) able to jointly characterize image complexity and noise intensity and also
there is some output parameter(s) capable of adequately describing the image denoising
efficiency. Assume that there is a rather strict connection between these input and output
parameters that allows predicting output value(s) having input value(s).

An additional assumption (and requirement to prediction) is that input parameter(s) have to
be calculated easily and quickly enough, faster than denoising itself (otherwise, the prediction
becomes useless). If all these assumptions are valid, it becomes possible to determine a
predicted output value before starting image filtering and to decide whether it is worth filtering
a given image (component) or not. Another decision can relate to setting parameter(s) of a used
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filter. For example, if a processed image seems to be textural (having high complexity),
parameter(s) of a used filter can be adjusted to provide better edge/detail/texture preservation.
For example, the parameter β for the DCT-based filter can be set equal to 2.3.

Keeping these general principles in mind, we have to address several tasks:

• What is a good (in the best case, optimal) input parameter (or a set of parameters)?

• What is a good (proper, acceptable) output parameter (or a set of parameters) that allows
to characterize the filtering efficiency adequately and to undertake a decision (on using
filtering or not, on setting a filter parameter, etc.)?

• How to get dependence between output and input parameters and how accurate it is?

These questions are partly answered below and the outcomes obtained in design and per‐
formance analysis of prediction techniques are described. We believe that a partial answer to
the second question is the following. The ratio in expression (6) as well as the parameters
IPSN Rk  and IPHVSMk  (especially if analyzed jointly) are able to provide the initial insights
(characterization) of filtering efficiency. Note that expressions (6) and (7) are mutually
dependent metrics and IPSN Rk =10log10(MS Ek

inp / MS Ek
out). Thus, they can be used as output

parameter(s) at the current stage of research.

3.1. Input and output parameter sets testing and comparison

Based on the outcomes of the study [18], Abramov et al. in 2013 [17] observed that there is
dependence between efficiency of filtering expressed by (6) and simple statistics of DCT-
coefficients determined in 8 × 8 blocks. Two probability parameters have been considered. The
first one denoted as P2σ is the mean probability that the amplitudes of DCT coefficients are not
larger than 2σ, where σ denotes the standard deviation of additive white Gaussian noise. This
parameter originated from analogies with known sigma filter [47]. The second parameter
denoted as P2.7σ is the mean probability that the amplitudes of DCT coefficients are larger than
2.7σ. Here, there is an obvious analogy with hard thresholding in DCT-based filter, where the
recommended β = 2.7. At the starting point, Abramov et al., 2013 had no idea on the optimality
of input parameters. The objective was just to check whether the prediction is possible, in
principle, using a restricted set of test gray-scale images (18) and standard deviations of AWGN
(5, 10, 15). The data have been presented as scatterplots, where the Y-axis reflects the ratio in
expression (6) and X-axis corresponds to a considered statistical (input) parameter (either P2σ

or P2.7σ). These scatterplots are represented in Fig. 2. Obviously, the scatterplots’ points are
clustered well along the fitted lines (for easy fitting, second-order polynomials were used).
Interestingly, small P2σ and large P2.7σ correspond to complex structure images corrupted by
low-intensity noise. In this case, efficiency of image filtering is low (the ratio in expression (6)
is close to unity, see Fig. 2). Note that this is in agreement with the theory of filtering [48], [49].
It shows that efficient filtering of textural images is problematic for any existing filters
including the most sophisticated nonlocal ones [34].
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Fig. 2. Examples of scatterplots and curve fitting into them for P2σ (a) and P2.7σ (b) 
 
The results of the study conducted by Abramov et al. (2013) have also shown the following. 
First, quality of fitting has to be characterized quantitatively. For this purpose, the approach 
of Cameron et al. (1997) works well. It provides the parameter (coefficient of determination) 
R2 that tends to unity for perfectly fitted curves and root mean square error (RMSE) of 
fitting that should be as small as possible. These parameters are strictly connected with 
prediction accuracy. For perfectly determined P2σ or P2.7σ, RMSE of fitting directly describes 
the accuracy of prediction. 
 
The conclusions drawn in Abramov et al. (2013) can be recalled here. First, the prediction of 
filtering efficiency for BM3D is less accurate than for the conventional DCT-based filter. This 
conclusion has been confirmed in later studies. This is associated with the use of two 
denoising mechanisms (DCT denoising and similar block search with their joint processing), 
where the latter mechanism has no connection to DCT statistics. Second, although the 
prediction accuracy for both P2σ and P2.7σ is quite good (R2 > 0.9 and RMSE < 1.0), the 
probability P2σ provides sufficiently better prediction (quality of fitting) than P2.7σ. This 
shows that the use of other input parameters is possible. Third, different types of fitting 
functions (polynomials, power and exponential functions) were able to provide 
approximately the same quality of fitting (for example, the fitted curve in Fig. 2(a) is 

2
2 2-2.63 + 2.15P + 0.38 P   ; for the BM3D filter, the obtained function of 2.7P   is 

0.73
2.7= 1.86P  ). Thus, certain reserves in improving the fitting accuracy “are hidden” in 

choosing an approximating curve and its parameters. Fourth, it has also been shown that the 
probabilities P2σ and P2.7σ can be determined with appropriate accuracy from analysis of not 
all possible overlapping blocks but from partly or even nonoverlapping blocks if their total 
number is not less than 300…500. This additionally accelerates the prediction compared 
even to conventional DCT-based filtering.  
 
There are also observations understood later (in two recent years). First, there should be 
some restrictions imposed on the approximating function. For example, it is clear that the 
ratio in expression (6) cannot be negative. It is also clear that an approximating (fitting) 
function should be determined for all possible values of its arguments. Since the 
probabilities serve as arguments, they can vary from zero to unity. Meanwhile, arguments 

Figure 2. Examples of scatterplots and curve fitting into them for P2σ (a) and P2.7σ (b)

The results of the study conducted in [17] have also shown the following. First, quality of fitting
has to be characterized quantitatively. For this purpose, the approach [50] works well. It
provides the parameter (coefficient of determination) R2 that tends to unity for perfectly fitted
curves and root mean square error (RMSE) of fitting that should be as small as possible. These
parameters are strictly connected with prediction accuracy. For perfectly determined P2σ or
P2.7σ, RMSE of fitting directly describes the accuracy of prediction.

The conclusions drawn in [17] can be recalled here. First, the prediction of filtering efficiency
for BM3D is less accurate than for the conventional DCT-based filter. This conclusion has been
confirmed in later studies. This is associated with the use of two denoising mechanisms (DCT
denoising and similar block search with their joint processing), where the latter mechanism
has no connection to DCT statistics. Second, although the prediction accuracy for both P2σ and
P2.7σ is quite good (R2 > 0.9 and RMSE < 1.0), the probability P2σ provides sufficiently better
prediction (quality of fitting) than P2.7σ. This shows that the use of other input parameters is
possible. Third, different types of fitting functions (polynomials, power and exponential
functions) were able to provide approximately the same quality of fitting (for example, the
fitted curve in Fig. 2(a) is κ = - 2.63P2σ

2 + 2.15P2σ+ 0.38 ; for the BM3D filter, the obtained function

of P2.7σ is κ= 1.86P2.7σ
0.73). Thus, certain reserves in improving the fitting accuracy “are hidden”

in choosing an approximating curve and its parameters. Fourth, it has also been shown that
the probabilities P2σ and P2.7σ can be determined with appropriate accuracy from analysis of
not all possible overlapping blocks but from partly or even nonoverlapping blocks if their total
number is not less than 300...500. This additionally accelerates the prediction compared even
to conventional DCT-based filtering.
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The results of the study conducted in [17] have also shown the following. First, quality of fitting
has to be characterized quantitatively. For this purpose, the approach [50] works well. It
provides the parameter (coefficient of determination) R2 that tends to unity for perfectly fitted
curves and root mean square error (RMSE) of fitting that should be as small as possible. These
parameters are strictly connected with prediction accuracy. For perfectly determined P2σ or
P2.7σ, RMSE of fitting directly describes the accuracy of prediction.

The conclusions drawn in [17] can be recalled here. First, the prediction of filtering efficiency
for BM3D is less accurate than for the conventional DCT-based filter. This conclusion has been
confirmed in later studies. This is associated with the use of two denoising mechanisms (DCT
denoising and similar block search with their joint processing), where the latter mechanism
has no connection to DCT statistics. Second, although the prediction accuracy for both P2σ and
P2.7σ is quite good (R2 > 0.9 and RMSE < 1.0), the probability P2σ provides sufficiently better
prediction (quality of fitting) than P2.7σ. This shows that the use of other input parameters is
possible. Third, different types of fitting functions (polynomials, power and exponential
functions) were able to provide approximately the same quality of fitting (for example, the
fitted curve in Fig. 2(a) is κ = - 2.63P2σ

2 + 2.15P2σ+ 0.38 ; for the BM3D filter, the obtained function

of P2.7σ is κ= 1.86P2.7σ
0.73). Thus, certain reserves in improving the fitting accuracy “are hidden”

in choosing an approximating curve and its parameters. Fourth, it has also been shown that
the probabilities P2σ and P2.7σ can be determined with appropriate accuracy from analysis of
not all possible overlapping blocks but from partly or even nonoverlapping blocks if their total
number is not less than 300...500. This additionally accelerates the prediction compared even
to conventional DCT-based filtering.
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There are also observations understood later (in two recent years). First, there should be some
restrictions imposed on the approximating function. For example, it is clear that the ratio in
expression (6) cannot be negative. It is also clear that an approximating (fitting) function should
be determined for all possible values of its arguments. Since the probabilities serve as argu‐
ments, they can vary from zero to unity. Meanwhile, arguments in both scatterplots in Fig. 2
vary in narrower limits. Besides, it could be good for curve fitting to have point arguments
with approximately uniform density.

These requirements have been satisfied by using considerably more test images (including
highly textural ones) and a wider set of noise standard deviations (including quite small ones).
This has allowed obtaining scatterplot points for small P2σ and large P2.7σ.

Examples of the obtained scatterplots and fitted curves for the DCT-based denoising are shown
in Fig. 3. As it is seen, fitting is rather good and coefficient of determination is approximately
0.95 (see the details below). We believe these are already good results that allow practical
recommendations. For example, it is clearly seen that there is no reason to carry out filtering
if P2σ is smaller than 0.5 since the benefit obtained due to denoising is negligible (approximately
1 dB or less). Prediction itself is carried out as follows. Having the fitted curves obtained in
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Expressions for the obtained approximations for the DCT filter are as follows (we give only
the functions of P2σ, more details can be found in [51]):
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The values of R2 are presented in Table 1. The analysis confirms that it is better to use P2σ than
P2.7σ. Prediction of κ is slightly more accurate than the prediction of IPSNR. However, the
prediction of IPHVSM is worth improving.

Metric P2σ P2.7σ

Κ 0.978 0.955

IPSNR 0.963 0.935

IPHVSM 0.82 0.78

Table 1. Goodness of fit (R2) of the obtained approximations

It has been discovered that not only the mean of local (block) estimates of probability P2σ is
connected with predicted metrics [51], but the other statistical parameters of the distribution
of local estimates can also be exploited to improve prediction. The general framework to obtain
an estimate of a predicted metric by multiparameter fitting is described by the following
formula:

est
1

Metric = a* exp ( ) ,
n

i i
i

b O P
=

æ ö
ç ÷
è ø
å (20)

where a and bi are approximation factors, Oi. i = 1,...,n, is some parameter of distribution, n
defines the number of such parameters. As Oi, it is possible to use the distribution mean,
median, mode, variance, skewness, and kurtosis. The factors a and bi, i = 1,...,n have to be
obtained in advance by multidimensional (n-dimensional) regression.

The results of using multidimensional regression are presented in Table 2. The abbreviations
used are the following: M – mean; Var – variance; Med – median, Mod – mode; K – kurtosis; S
– skewness; all calculated for a set of local estimates of probability P2σ. The results are given
for both considered filters for the metrics IPSNR and IPHVSM. Only the best sets for n from 1
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to 5 are presented since the joint use of all considered parameters is less efficient than five input
parameters employed together.

Filter Metric Statistical Parameters R2

DCT filter

IPSNR

M 0.963

M, Var 0.971

M, Var, Mod 0.974

M, Var, Mod, K 0.976

M, Var, Med, Mod, S 0.977

IPHVSM

Med 0.848

M, Var 0.923

M, Var, Med 0.926

M, Var, Med, S 0.927

M, Var, Med, Mod, S 0.928

BM3D

IPSNR

M 0.95

M, Var 0.955

M, Var, Mod 0.959

M, Var, Mod, S 0.961

M, Var, Med, Mod, S 0.961

IPHVSM

Med 0.845

M, Var 0.905

M, Var, S 0.905

M, Var, S, K 0.909

M, Var, Med, S, K 0.917

Table 2. Goodness of the best multiparameter fit for P2σ

The conclusions are the following. The use of more input parameters leads to larger (better)
R2 for both filters and both metrics. The benefit of using several input parameters instead of
one is quite small for IPSNR, where R2 for one-parameter prediction is already quite high.
Meanwhile, for the visual quality metric IPHVSM, the improvement is quite large. Interest‐
ingly, the use of median of local estimates instead of the mean considerably improves predic‐
tion (compare the data in Tables 2 and 1) for IPHVSM for the DCT-based filter and P2σ.
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More input parameters provide better prediction. At the same time, more time is needed for
calculation of input parameters (although their calculation is not difficult). Then, a compromise
solution could be the use of the dependence of the type

( )est 1 2 loc 2 2 loc
ˆ ˆMetric = a* exp mean( ) var( ) ,b P b Ps s+ (21)

where P̂2σ loc denotes the local estimates of probabilities obtained in blocks. The approximation
coefficients for all cases are presented in Table 3.

The expression (20) is not the only way to combine several input parameters into a joint output.
Neural networks (NN) are known to perform this task rather well and to be good approxima‐
tors [52]. This property has been used by us in [53] to make the neural network predict the
considered metrics based on multiple input parameters. The obtained results are practically
the same as in Table 3. Therefore, there is no need to use a more complex NN approximator
instead of expression (20).

A more reasonable solution is to look for better input parameters. Such a study has been
conducted in [51]. It has been shown that the probability P0.5σ is more informative than P2σ, that
P0.5σ is the mean probability where the magnitudes of DCT coefficients in blocks are smaller
than 0.5σ. Theoretically, for Gaussian distribution, this probability does not exceed 0.38.
Gaussian distribution takes place for DCT coefficients of AWGN. Thus, the mean P0.5σ

approaches to 0.38 only if a considered image is “very homogeneous” and noise is intensive.
This is postulated in further studies.

The obtained results for multiparameter fitting are presented in Table 4. The abbreviations are
the same as in Table 2. The first observation is that even for one parameter (mean of local
probabilities), the values R2 are sufficiently better than the corresponding values for P2σ. Again
the results for the BM3D filter are slightly worse than for the DCT-based filter and the results
of predicting IPHVSM are worse than for predicting IPSNR. Again the use of only two input
parameters, mean and variance of local estimates, seems to be a good practical choice. Thus,
the best parameters of the function (21) are presented for this case in Table 5. Besides, we give
an example of scatterplot fitting by 2D surface (function) for two-parameter case of using mean
and variance of local estimates of the considered probability for predicting IPHVSM (see Fig. 4).

Filter Metric a b1 b2

DCT filter
IPSNR 0.023 6.338 7.459

IPHVSM 2.225*10−4 10.81 37.14

BM3D
IPSNR 0.019 6.591 6.849

IPHVSM 5.324*10−5 12.42 41.36

Table 3. Coefficient values of the obtained approximations for P2σ
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Filter Metric Statistical Parameters R2

DCT filter

IPSNR

M 0.986

M, Var 0.989

M, S, K 0.989

M, Med, S, K 0.989

M, Var, Med, Mod, S 0.99

IPHVSM

Mod 0.844

M, Var 0.944

M, Var, Mod 0.949

M, Var, Mod, S 0.951

M, Var, Med, Mod, S 0.952

BM3D

IPSNR

M 0.975

M, Var 0.977

M, Var, S 0.978

M, Var, Med, S 0.978

M, Var, Med, Mod, S 0.978

IPHVSM

Mod 0.852

M, Var 0.935

M, Var, Mod 0.939

M, Var, Mod, S 0.941

M, Var, Med, Mod, S 0.941

Table 4. Goodness of the best multiparameter fit for P0.5σ

Filter Metric a b1 b2

DCT filter
IPSNR 0.168 10.8 19.28

IPHVSM 0.01 15.66 144.3

BM3D
IPSNR 0.148 11.33 17.7

IPHVSM 0.004 18.25 161.7

Table 5. Approximation coefficients values of obtained approximations for P0.5σ
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Figure 4. Scatterplot of IPHVSM for the DCT-based filter efficiency on statistics of P0.5σ and the fitted surface

3.2. Analysis for signal-dependent and spatially correlated types of noise

Let us define the models of signal-dependent noise used. According to a first model [7], [11],
the expression (1) transforms to

noise true ,SI SD
kij kij kij kijI I N N= + + (22)

where Nkij
SI , Nkij

SD denote signal-independent (SI) and signal-dependent (SD) noise components.
Both the noise components in expression (22) are assumed zero mean, spatially uncorrelated
and Gaussian. Then, the model for the noise variance is σkij

2 =σk
2 + γIkij

true, where σk
2 is the SI noise

variance and γ is the SD noise parameter (which is usually between zero and unity). A second
model [2] presumes purely multiplicative noise with Ikij

noise = Ik ij
trueµkij, where µkij denotes unity

mean random factor with variance σµk
2  that is within the limits from 0 to 1. It is supposed for

both the models that the noise is spatially uncorrelated.

As mentioned in Section 2 (expression no. 15), the local threshold is set as Tbl =β σ0
2 + γ Ī bl for

signal-dependent noise (expression no. 22) and as Tbl =βσµĪ bl for pure multiplicative noise. In
addition to modifying the filtering algorithm, we need to modify the algorithm of input
parameter calculation. Then, the local probability estimate has to consider the local variation
of noise standard deviation. For instance, the local estimate of probability P2σ is obtained as

7 7
bl

2
0 0

ˆ / 63,qs
q s

P s d
= =

=åå (23)

where δqs =1, if | Dqs | ≤2σbl and 0 otherwise (σbl  is equal to σ0
2 + γ Ī bl or to σµĪ bl depending upon

a model used). DC component of DCT coefficients in blocks is not taken into account as it
always exceeds the local threshold.
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Some of the results of studies in our papers [54], [55] are presented next. One aspect that was
specially addressed in these studies was to check the influence of an image set used in forming
a scatterplot. In fact, two scatterplots have been formed separately: for the set of standard
images used in optical image processing as Baboon, Barbara, Lena, etc., and for the set of
images called “Remote Sensing” as Frisco, Diego, etc. The reason for such study was the
following fact. Some people from RS community are categorically against using standard gray-
scale test images in their studies although there are no commonly accepted sets of test RS
images.

The methodology of obtaining scatterplot was modified a little. For the noise expression model
(22), three different cases were modeled: prevailing influence of SI noise, dominant influence
of SD noise, and comparable contribution of both components. As a result, a wide range of
mean P2σ has been provided. Scatterplot points that belong to different image sets are indicated
by different signs (and different colors). There are also two fitted curves. We believe there is
no essential difference between the scatterplots and fitted curves. Thus, it can be concluded
that the prediction is quite universal and suitable for conventional gray-scale optical images
and component-wise (single-channel) RS images. Moreover, it has been shown in a study [55]
that prediction is valid for single-look SAR images corrupted by fully developed spatially
uncorrelated speckle. It is also possible to compare the results in Fig. 5 with the data in Fig.
3(b). They are very similar. Fig. 4 shows that IPSNR is approximately 1 dB or less for P2σ

approximately 0.5 and then denoising is practically useless. Meanwhile, if IPSNR is approxi‐
mately 4 dB for P2σ approximately 0.8, then the use of filtering is expedient. The parameter R2

for both fitting curves in Fig. 5 is approximately 0.96, that is, the prediction is approximately
as good as for AWGN case. Again, the results for P2σ are better than for P2.7σ; fitting for IPSNR
is more accurate than for IPHVSM. Improved fitting by means of using multiple input
parameters has not been investigated yet.

Figure 5. Scatterplots of IPSNR for the DCT-based filter efficiency on statistics of P2σ
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Two examples of image processing are presented here. Fig. 6(a) represents the noisy image
Frisco, where noise parameters are σ0

2=100; σ 2 =100, and γ =0.2. The output image for the DCT-
based filter is presented in Fig. 6(b). The effect of denoising is obvious. Actual provided
improvement of PSNR is equal to 9.77 dB. The predicted value for mean P2σ=0.92 is approxi‐
mately 9.5 dB (see the blue fitted curve in Fig. 5), that is, there is good agreement of attained
and predicted values. Prediction shows that it is worth applying denoising in this case.

For a real-life data, it is impossible to determine true values of the considered metrics charac‐
terizing filtering efficiency. However, it is possible to analyze the predicted values and
denoising results visually. For fragments of sub-band images of hyperspectral sensor, Hyper‐
ion, such analysis was done. For example, noise parameters of the expression model (22) have
been blindly estimated [11]. The noisy image for the 13th sub-band of the set
EO1H1800252002116110KZ is depicted in Fig. 7(a). Noise is clearly seen. The prediction of
IPSNR is approximately 8.5 dB and IPHVSM is approximately 5.7 dB. Thus, it is expedient to
perform denoising. The denoised image is presented in Fig. 7(b). As can be seen, its quality
has very much improved due to filtering.

(a) (b)
Fig. 6. Noisy (a) and output (b) images Frisco 
 

(a) (b)
Fig. 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor

Figure 6. Noisy (a) and output (b) images Frisco

The sub-bands 13...22 are considered for two sets of Hyperion data. The values IPSNR are
always larger than IPHVSM. This means that it is harder to provide an improvement of image
visual quality than to gain improvement according to standard metrics (MSE, PSNR). For the
sub-bands with indices k = 13...16, IPSNR is always larger than 1.6 dB and IPHVSM exceeds
0.6 dB, that is, filtering is desirable. For other sub-bands, as the predicted improvements are
small, it is doubtful whether it is worth carrying out filtering. Visual inspection of images in
sub-bands with k = 17...22 has shown that noise is either hardly noticeable or practically
invisible. Positive effect of its removal is partly or fully compensated by edge/detail/texture
smearing performed by any filter, even the most sophisticated one [56]. The texture filtering
is always problematic and the prediction approach is able to reliably predict this [56].
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Considering certain benefits achieved due to using P0.5σ as input parameter, the analysis similar
to the one presented in Fig. 5 has been performed. The results are presented in Fig. 8. The noise
is signal-dependent and most scatterplot points correspond to the expression model (22). The
curve is fitted employing all points (although they relate to optical and RS subsets). Obviously,
fitting is very good and, according to quantitative criteria, it is better than for the parameter
P2σ (Fig. 5). Four black points at the scatterplot in Fig. 8 correspond to one-look SAR images.
They fit the curve well and have the arguments close to the maximal potential limit (0.38),
where IPSNR attains very large values (approximately 10 dB and more).

Figure 8. Scatterplots of IPSNR for the DCT-based filter efficiency on the statistics of P0.5σ (two sets of images and two
fitted curves)
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Fig. 6. Noisy (a) and output (b) images Frisco 
 

(a) (b)
Fig. 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor

Figure 7. Noisy (a) and output (b) images of 13th sub-band images of Hyperion sensor
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Additional studies concentrated on the multi-look SAR images that were corrupted by pure
multiplicative noise [57]. Analysis has been done for speckle variance σµ

2 =0.273 / L , where L
denotes the number of looks. Scatterplot points are presented in Fig. 9 for different number of
looks. An obvious tendency is that mean P0.5σ becomes larger and IPSNR increases for smaller
number of looks. Other conclusions that can be drawn from analysis in a study in [57] are the
following. Prediction is possible for filtering techniques with and without VST, where the
prediction quality is better in the latter case. Prediction using different types of functions
(polynomial, power, exponential) produce fitting of approximately equal accuracy. Mean‐
while, accuracy of prediction is worth improving (RMSE is approximately 1 dB) since it is
sufficiently worse than for the case of AWGN.

Understanding that, in practice, noise can be spatially correlated [33], the case of spatially
correlated noise – additive in [45] and multiplicative in [57] – are also studied. A difficulty of
dealing with spatially correlated noise is that there are numerous shapes (and parameter sets)
of 2D auto-correlation function or spatial spectrum of such a noise. Thus, studying a particular
case of spatially correlated noise gives only limited information on general dependences.
Hence, two models of spatially correlated noise (called middle correlation and strong corre‐
lation) have been considered [45]. A peculiarity of prediction is that the local estimate of
probability P2σ is obtained according to expression (23), where, in the general case,
δqs =1, if | Dqs | ≤2σbl(W (q, s))1/2 and 0 otherwise (σbl  is the local standard deviation in a
considered block; expressions for its derivation depending upon noise model are given above).
If the probability P0.5σ is used, the condition is δqs =1, if | Dqs | ≤0.5σbl(W (q, s))1/2 and 0 otherwise.

Figure 9. Scatterplot for IPSNR vs. mean P0.5σ for a part of test images corrupted by spatially uncorrelated speckle

The scatterplots and fitted curves are presented in Fig. 10. The fitted curves are similar and
they clearly show that there is no reason to filter images if P0.5σ is smaller than 0.15. The
difference in the scatterplots for IPHVSM and IPSNR is that the latter one is more compact and,
thus, IPSNR can be predicted more accurately. An additional distinctive feature of the plot for
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while, accuracy of prediction is worth improving (RMSE is approximately 1 dB) since it is
sufficiently worse than for the case of AWGN.

Understanding that, in practice, noise can be spatially correlated [33], the case of spatially
correlated noise – additive in [45] and multiplicative in [57] – are also studied. A difficulty of
dealing with spatially correlated noise is that there are numerous shapes (and parameter sets)
of 2D auto-correlation function or spatial spectrum of such a noise. Thus, studying a particular
case of spatially correlated noise gives only limited information on general dependences.
Hence, two models of spatially correlated noise (called middle correlation and strong corre‐
lation) have been considered [45]. A peculiarity of prediction is that the local estimate of
probability P2σ is obtained according to expression (23), where, in the general case,
δqs =1, if | Dqs | ≤2σbl(W (q, s))1/2 and 0 otherwise (σbl  is the local standard deviation in a
considered block; expressions for its derivation depending upon noise model are given above).
If the probability P0.5σ is used, the condition is δqs =1, if | Dqs | ≤0.5σbl(W (q, s))1/2 and 0 otherwise.

Figure 9. Scatterplot for IPSNR vs. mean P0.5σ for a part of test images corrupted by spatially uncorrelated speckle

The scatterplots and fitted curves are presented in Fig. 10. The fitted curves are similar and
they clearly show that there is no reason to filter images if P0.5σ is smaller than 0.15. The
difference in the scatterplots for IPHVSM and IPSNR is that the latter one is more compact and,
thus, IPSNR can be predicted more accurately. An additional distinctive feature of the plot for
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IPSNR is that its maximal values are smaller than for AWGN case (data in Fig. 3(b)). The
scatterplots for a strong correlation of the noise and the conclusions derived from them are
similar.

We have also studied the case of spatially correlated speckle [57]. It has been shown that the
prediction seems possible for a spatially correlated noise. However, more research is needed
to understand how to select a parameter or several parameters to characterize spatial correla‐
tion and how it can be involved in prediction.

Finally, a preliminary research has been carried out for denoising color images corrupted by
AWGN with equal variance values in channels [58]. There are two differences in prediction.
First, all DCT coefficients in 3D block are subject to analysis for estimating the local probabil‐
ities. Second, the metric PSNR-HMA [59], which is a color extension of PSNR-HVS-M, and
improvement of this metric due to filtering similar to expression (8) have been used. In
addition, instead of BM3D, its color version called C-BM3D has been analyzed [46].

The scatterplots have been obtained and curves were fitted to them (see examples in Fig. 11).
As mentioned earlier, filtering is useless for P0.5σ < 0.15. However, this happens rarely (only for
highly textured images when noise standard deviation is small). Another observation is the
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The scatterplots have been obtained and curves were fitted to them (see examples in Fig. 11). 
As mentioned earlier, filtering is useless for P0.5σ < 0.15. However, this happens rarely (only 
for highly textured images when noise standard deviation is small). Another observation is 
the same as earlier – visual quality can be predicted worse than IPSNR. The prediction 
accuracy for C-BM3D is worse than for 3D DCT filter.  
 
Taking into account our previous experience, the multiparameter input was analyzed with 
exponential function expressed in (20). Considerable improvement has been reached, 
especially for IPHVSMA, for the 3D DCT filter. For the C-BM3D filter, the positive effect is 
less. One has IPHVSMA equal to 0.8481 for one input parameter and 0.8555 for four 
parameters. Again, a reasonable practical solution is to use the mean and variance of local 
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same as earlier – visual quality can be predicted worse than IPSNR. The prediction accuracy
for C-BM3D is worse than for 3D DCT filter.

Taking into account our previous experience, the multiparameter input was analyzed with
exponential function expressed in (20). Considerable improvement has been reached, espe‐
cially for IPHVSMA, for the 3D DCT filter. For the C-BM3D filter, the positive effect is less.
One has R2 equal to 0.8481 for one input parameter and 0.8555 for four parameters. Again, a
reasonable practical solution is to use the mean and variance of local estimates of probability.
One more important observation for color image filtering is that P0.5σ for 3D filter is larger than
for DCT filter applied to components of a processed color image. This again proves that 3D
processing of color and multichannel images iiis are potentially more efficient compared to
their component-wise denoising.

4. Prediction in lossy compression of noisy images

In this section, the compression of images corrupted by AWGN is considered. Lossy com‐
pression is carried out by the aforementioned coder AGU with QS =4σ. In this case, OOP may
exist or be absent. The task is to predict IPSNR and IPHVSM and to decide whether OOP exists
as well as to predict what CR is.

4.1. Prediction of OOP existence and metrics’ values in it

This section shortly describes how the scatterplots were obtained. As in the filtering case, a set
of gray-scale test images of different content and complexity was used. AWGN of different
intensity has been added and then the obtained images have been compressed by AGU. After
this, the parameters (12) and (13) have been calculated as well as P2σ for each compressed image.
Clearly, all these actions are done off-line before applying the prediction approach in practice.

The obtained scatterplot is presented in Fig. 12. A specific feature of this scatterplot is that it
has negative values and they seem to be approximately −3.5 dB for P2σ approaching to zero.
Therefore, not all fitting functions can be used. The study carried out by Zemliachenko et al.
in [44] has shown that the polynomials of the fourth and fifth order usually allow approxi‐
mating the dependence very well (with R2 almost equal to unity and RMSE approximately 0.25
for IPSNR). As can be seen from the analysis of the scatterplot in Fig. 12, there are quite many
images and/or noise variances when OOP does not exist (IPSNR is negative). OOP exists with
high probability if P2σ exceeds 0.82. This can be used as a basis for predicting OOP existence.

The scatterplot for the metric IPHVSM is presented in Fig. 13. In some sense, behavior of the
fitted polynomial is similar to the one in Fig. 12. There are many values about −4 dB showing
that due to lossy compression the visual quality becomes worse. However, this mainly happens
for small P2σ that corresponds to high-complexity images and/or low level of the noise. The
visual quality improves for P2σ exceeding 0.9 and this takes place for low-complexity images
and rather intensive noise.
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The scatterplot for the metric IPHVSM is presented in Fig. 13. In some sense, behavior of the 
fitted polynomial is similar to the one in Fig. 12. There are many values about −4 dB 
showing that due to lossy compression the visual quality becomes worse. However, this 
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of the noise. The visual quality improves for P2σ exceeding 0.9 and this takes place for low-
complexity images and rather intensive noise. 
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Although prediction has been studied by simulations only for images corrupted by AWGN, 
it can also be applied to images corrupted by a signal-dependent spatially uncorrelated 
noise under condition that a proper VST is applied to them before compressing. Such VST (a 
generalized Anscombe transform in this case) provides approximately constant noise 
variance that usually equals to unity. Thus, QS = 4 is used. This approach has been used for 
Hyperion data and the results are presented in Fig. 14. There are two groups of sub-bands 
that are usually not analyzed in Hyperion data since they are too noisy. Thus, the prediction 
values are not given for all sub-bands. Analysis of the presented values shows that there are 
only a few sub-bands where it is worth expecting OOP. For most other sub-bands, IPSNR is 
about −3 dB and the ways of dealing with them are considered in a study [44]. One 
proposition is to set less QS but this leads to smaller CR.  
 
Fig. 15 shows the original and the decompressed images in 110-th sub-band, where decrease 
of visual quality according to quantitative criteria is predicted. Noise is not seen in the 
original image and the compression practically does not influence the image quality (in our 
opinion, both images look the same). 

Figure 13. The scatterplot and the fitted curves for IPHVSM and the coder AGU
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both images look the same).
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Fig. 15. The 110-th sub-band images before (a) and after (b) compression 
 
A study [44] also presents data for three other DCT-based coders, where two of them are 
specially suited for providing better visual quality. It is demonstrated that the coder 
adaptive DCT (ADCT), which exploits the optimized partition schemes [60], provides 
certain improvements compared to AGU. Meanwhile, DCT coders oriented on improving 
the visual quality being applied to noisy images do not offer substantial benefits and, 
moreover, are even less efficient in many practical situations.   
 
4.2 Prediction of compression ratio in OOP 
 

The methodology of predicting CR in OOP is the same as that for filtering. It is based on the 
scatterplot obtaining and curve fitting. The only difference is that the vertical axis relates to 
CR, while the horizontal axis, as earlier, corresponds to mean probability. Two mean 
probabilities P2σ and P2.7σ have been considered where the latter occurred to be worse again. 
Therefore, the obtained results for the mean probability P2σ only are presented below. 
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A study [44] also presents data for three other DCT-based coders, where two of them are
specially suited for providing better visual quality. It is demonstrated that the coder adaptive
DCT (ADCT), which exploits the optimized partition schemes [60], provides certain improve‐
ments compared to AGU. Meanwhile, DCT coders oriented on improving the visual quality
being applied to noisy images do not offer substantial benefits and, moreover, are even less
efficient in many practical situations.
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A study [44] also presents data for three other DCT-based coders, where two of them are
specially suited for providing better visual quality. It is demonstrated that the coder adaptive
DCT (ADCT), which exploits the optimized partition schemes [60], provides certain improve‐
ments compared to AGU. Meanwhile, DCT coders oriented on improving the visual quality
being applied to noisy images do not offer substantial benefits and, moreover, are even less
efficient in many practical situations.
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4.2. Prediction of compression ratio in OOP

The methodology of predicting CR in OOP is the same as that for filtering. It is based on the
scatterplot obtaining and curve fitting. The only difference is that the vertical axis relates to
CR, while the horizontal axis, as earlier, corresponds to mean probability. Two mean proba‐
bilities P2σ and P2.7σ have been considered where the latter occurred to be worse again.
Therefore, the obtained results for the mean probability P2σ only are presented below.

Two lossy compression methods, namely, the coders AGU and ADCT, have been studied.
Their scatterplots are presented in Fig. 16. Contrary to other cases considered above, fitting is
performed using a sum of two weighted exponential functions. As can be seen, fitting in both
cases is very good with R2 exceeding 0.99. Slightly larger values of CR are provided by the
more sophisticated coder ADCT [60]. Very large (over 20) values of CR are provided for P2σ >
0.93, that is, for simple structure images corrupted by intensive noise.

We did not have real-life multichannel images corrupted by AWGN. But the hyperspectral
data for the sensors Hyperion and airborne visible/infrared imaging spectrometer (AVIRIS)
were available. Noise in them is signal dependent [14] with prevailing SD component for the
model (22). The parameters of this noise were estimated in an automatic manner [11] and, thus,
it became possible to apply VST (a generalized Anscombe transform with properly adjusted
parameters) with converting noise into pure additive with unity variance.

Lossy compression in OOP neighborhood has been applied after VST. After decompression,
inverse transform has to be applied, respectively. The obtained and predicted values of CR for
Hyperion data are depicted in Fig. 17(a). As can be seen, the curves are in good agreement.
There are some channels where predicted CRs are slightly larger than attained ones. This is
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Fig. 15. The 110-th sub-band images before (a) and after (b) compression 
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explained by the imperfectness of VST and blind estimation of noise parameters for channels
with high signal-to-noise ratio. The largest CRs take place for sub-bands with low SNR (these
are the sub-bands with indices 13–20, 125–130, and 175–180).

The results for the AVIRIS test image Lunar Lake are given in Fig. 17(b). Here, the agreement
between the predicted and the attained values is even better than for the Hyperion data. Again,
the largest CR is observed for sub-bands with low SNR. There are considerable differences in
maximal and minimal values of CR. The main reason is the different SNR and different
dynamic range in sub-band images. Certainly, CR also depends upon the image content.

5. Conclusions and future work

It is demonstrated that it is possible to predict the efficiency of image filtering as well as the
parameters of lossy compression of a noisy image in OOP neighborhood. As opposed to the
earlier known approaches that allow predicting potential efficiency of filtering, the present
approach predicts practically a reachable performance and makes this very rapidly, by one or
more orders faster than filtering or compression itself.
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Fig. 16. Scatterplots and fitted curves of dependences of CR vs. P2σ for the coders AGU (a) 
and ADCT (b)   
 
Lossy compression in OOP neighborhood has been applied after VST. After decompression, 
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Fig. 17. Results of a component-wise compression of Hyperion data (the analyzed set is 
EO1H1800252002116110KZ) (a) and AVIRIS Lunar Lake image (b) by the coder AGU after 
the generalized Anscombe transform  
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Certainly, a limited number of quality metrics, filtering, and compression techniques have
been considered. However, it is important that a general methodology of prediction is
proposed, and it is shown there are somewhat strict connections between simple input
parameters (that can be easily and quickly calculated) and output parameters that are able to
adequately characterize the efficiency of filtering or lossy compression techniques. In favor of
this methodology, there are certain facts. First, there are many modern filters that have filtering
efficiency of the same order as the DCT-based filter and BM3D. Thus, predicting denoising
efficiency for the filters mentioned above, it is possible to approximately predict performance
for other modern filters (although such prediction would be less accurate). Second, the same
holds for lossy compression methods. For example, AGU and JPEG2000 provide similar
performance characteristics. Then, by predicting compression parameters for AGU, they are,
in fact, estimated for JPEG2000 as well.

Concerning the decision making, whether to perform filtering or not, strict recommendations
have been given for probabilities P2σ and P0.5σ. Filtering can be expedient if P2σ exceeds 0.5 or
P0.5σ exceeds 0.15. Similarly, OOP is quite possible if P2σ is approximately 0.85 or larger. A very
important fact is that these rules for filtering are valid for different types of noise (pure additive
and signal-dependent, additive white Gaussian and spatially correlated). This generalization
can be considered as one of the main contributions of this chapter. Meanwhile, the case of
spatially correlated noise requires more attention in future. In prediction of filtering efficiency,
general prediction approximations for spatially correlated noise with a priori known or pre-
estimated properties (e.g., 2D spectrum) have not been obtained yet. It can only be expected
that the scatterplots for spatially correlated noise with other (not analyzed yet) shapes and
parameters of spatial power spectrum behave similarly. The studies for lossy compression of
images corrupted by spatially correlated noise are yet to be started. This opens a very wide
field for future research.

The results of this research show that although sometimes the prediction of performance
characteristics based on one input parameter is appropriately accurate, there are several means
to improve the prediction accuracy. One way that deals with multiparameter input has been
already used for particular cases. The use of mean P0.5σ has shown itself a good solution,
although it has not yet been tried for all possible applications. In particular, mean P0.5σ has not
been tested for lossy compression. It is hoped that performance can be improved due to this
reason. Neural networks or other approximators of multidimensional functions (surfaces) can
be useful.

There are also other possible directions for future research. 3D filtering warrants a more
thorough study, at least, for the case of more than three channels. The same relates to 3D lossy
compression performance, which has not been tried to predict yet. Compression parameters
for QS other than the one recommended for OOP is also of sufficient interest in DCT-based
lossy compression. Influence of errors in a priori information on noise parameters or their blind
estimates on prediction accuracy has to be studied as well.
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