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Preface

There is not a discovery in science, however revolutionary, however sparkling with insight that does
not arise out of what went before.

Isaac Asimov, Adding a Dimension.

This year, 2015, marks the 150th anniversary of the Morovian monk Gregor Mendel’s seminal
paper on pea-plant genetics. He discovered the statistical patterns of inheritance from one
generation to the next and deduced that the basic unit of inheritance was inherited in pairs, one
unit from each parent that segregated and manifested in the offspring as dominant or recessive
traits. Twenty-three years after Mendel’s death in 1884, the English biologist William Bateson
described the study of heredity as genetics, and a few years later the Danish botanist Wilhelm
Johannsen named the gene as the physical and functional unit of inheritance. Soon after the
rediscovery and understanding of Mendel’s publication, his experimental observations be‐
came known in the biological sciences as Mendel’s laws of heredity with (1) the law of segrega‐
tion, (2) the law of independent assortment and (3) the law of dominance. Thus, by the early
and mid-1900s, the science of genetics was well and truly born to evolve, amplify and spread
far beyond the pea plants and impact on all the life sciences for the next 100 years, all the way
across to the present age of next-generation genomics.

And what of the physical nature of the gene itself? It was only 62 years ago that Watson and
Crick published their landmark paper ‘Molecular structure of Nucleic Acids’ in Nature on
25th April 1953. Their opening paragraph was ‘We wish to suggest a structure for the salt of
deoxyribose nucleic acid (D.N.A). This structure has novel feature which are of considerable biologi‐
cal interest.’ They put forward their hypothesis of the DNA structure as a sequence of four
nucleotides as if these nucleotides were beads on two complementary helical strings or
chains that coiled about each other in antiparallel and around the same axis. The nucleotides
on the inside of the helix or strand always bound covalently to those on the opposite helix in
a complimentary fashion, adenine to thymine and guanidine to cytosine. Thus, ‘the two
chains are held together by the purine and pyrimidine bases’ by hydrogen bonds. Further, ‘It has
not escaped our notice that the specific pairing we have postulated immediately suggests a possible
copying mechanism for the genetic material.’ The history of how Watson and Crick surrepti‐
tiously established their DNA model as a double helix by using the unpublished X-ray dif‐
fraction data of Rosalind Franklin is well established and has been variously dramatized in
print, theatre, film and on the TV screens. Two years prior to the Watson and Crick discov‐
ery, Erwin Chargaff and his colleagues had pointed out in a Nature paper that DNA was
composed of equivalent amounts of nucleotides with A=T and G=C. Even earlier, in 1944,
Oswald Avery and his colleagues, Colin MacLeod and Maclyn McCarty, already had identi‐



fied DNA as the molecule of heredity in their published experimental work on bacterial
transformation.

The impact of the Watson and Crick publication on the structure of DNA as a double helix
was profound because it quickly led to the establishment of the Central Dogma that genetic
information was transcribed from DNA to messenger RNA and translated to build a pro‐
tein, and that it could not again flow in the reverse direction from protein to RNA. The proof
that triplets or codons of the DNA sequence coded for amino acids that were the building
blocks of peptides and proteins soon followed in the late 1950s and throughout the 1960s
with the works of Marshall Nirenberg, Heinrich Matthaei, Sydney Brenner, Symour Benzer
and others. Thus, DNA and RNA were strongly asserted to contain the genetic code and
that the genetic information encoded within DNA was undoubtedly universal to all forms of
life. It was not until 1970 that Crick’s Central Dogma was jolted by Howard Temin and Da‐
vid Baltimore and their colleagues with the discovery that the reverse transcriptase enzyme
allows the flow of genetic information from RNA to DNA by RNA retroviruses like human
immunodeficiency virus and via certain cellular enzymes such as telomerase and a reverse
transcriptase-like protein encoded by the RVT gene. Moreover, the sequencing of the human
genome in 2001 revealed that at least half of our genome is made of fossils of past retrotrans‐
poson integrations, some of which have evolved to act as regulators and insulators in a com‐
plex, regulatory process of transcription and translation. Only 2–3 % of our genome consists
of loci that we call genes and that code for proteins. The rest of the genome, once referred to
as ‘junk DNA’, appears to be regulatory, although it remains mostly as ‘dark matter’ , waiting
to be fully deciphered. Nevertheless, Crick’s fundamental insight that the sequence of the
nucleotides in DNA is transcribed and translated into the synthesis of proteins via messen‐
ger RNA and amino acids carried by three-base coded (anticodons) transfer RNA molecules
remains the basis of modern genetics and genomics.

The first published natural polynucleotide sequence was a yeast transfer RNA and not
DNA. It was published in Science in 1965 by Robert W. Holley and his colleagues 12 years
after the Watson and Crick paper proposed the structure of DNA, and it had taken them
many years to obtain a gram of RNA by complicated purification procedures so that they
had sufficient amounts to identify its sequence by spectrophotometry and chromatography.
A number of different laborious DNA and RNA sequencing procedures were developed
during the late 1960s and early 1970s mostly using two-dimensional chromatography and/or
electrophoresis and hazardous chemicals and/or large doses of radioisotopes. The first ge‐
nome to be sequenced was in 1976, a viral RNA genome from the bacteriophage MS2 by
Walter Fiers’ group at the University of Ghent in Belgium using an RNA sequencing techni‐
que based on RNA fragmentation and the separation of fragments by two-dimensional gel
electrophoresis. The following year, Fred Sanger and his colleagues in the UK published the
first DNA genome, the 5386 base-pair Phage Phi-X174. In the same year, they also published
two technical papers on the rapid determination of DNA sequence that was safer, easier and
more reliable than the other sequencing techniques such as the Maxam and Gilbert chemical
method. The Sanger method was based on plasmid cloning of DNA fragments and DNA
polymerase reactions using fluorescent-labelled or radiolabelled dideoxynucleotides to fol‐
low the sequencing reactions that were amendable more easily to automation. The coupling
of the Sanger fluorescent DNA sequencing method with automated capillary electrophoresis
led to the establishment of sequencing centres and factories with hundreds of DNA se‐
quencing instruments operated in parallel by large numbers of personnel. This led to the
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domination of Sanger sequencing as the first-generation sequencing procedure and gold
standard for 30 years since its inception, and it has had an enormous impact on our under‐
standing of DNA and gene organization and what happens at the genomic level in humans
and various plants and animals and microorganisms. By 2001, a mosaic version of the whole
human genome was sequenced to 90 % completion with announcements of the accomplish‐
ment by the 42nd US President Bill Clinton at the White House, universal fanfare and two
major papers published in Science and Nature at about the same time. In addition to the hu‐
man genome, sequencing groups had already published the full genomes for eukaryotic and
prokaryotic viruses, bacterial plasmids and partial genomes for a variety of different species.

Although the need for DNA sequencing and generating sequences for analytical consump‐
tion was great during the era of Sanger sequencing, the cost and effort of sequencing were
still prohibitively expensive and far too slow for many laboratories to join in to work on the
maturing field of genomics. This began to change dramatically by 2007 with the emergence
of a number of different next-generation automated sequencing technologies such as those
developed by 454 Life Sciences, Solexa, Applied Biosystems and Helicos that increased the
number of sequencing reactions in miniaturized arrays, fibre-optic slides or flow cells and
greatly reduced the cost of sequencing from millions to thousands of US dollars in only a
few years. A single next-generation sequencing (NGS) run using any one of the new mas‐
sively parallel-sequencing platforms could generate more sequencing data than simultane‐
ously running a hundred Sanger sequencing machines. Although the short read lengths,
sequencing errors and the large volumes of data generated by NGS were at first seen as a
problem with the technology, the lower costs, large capacity, high coverage of reasonably
accurate sequencing information and the versatility of NGS for a wide range of applications
soon began to win over the scientific community and funding agents. The NGS market has
grown exponentially over the last decade and promises to continue its enormous expansion
with ongoing improvements and cost reductions provided by the manufacturers and service
providers. It is envisaged that desktop sequencers for personal genomics and single investi‐
gators and small laboratory groups will be developed in the near future that will be no larg‐
er than portable hard drives stacked together and connected to laptop or desktop
computers. However, with the sudden technical and economic ease to generate vast
amounts of sequencing information comes the problem and burden of sequence data acquis‐
ition, storage, transmission and analysis. The bottleneck for genomics is no longer about
generating sequences, the holdup is now at the level of bioinformatics, storing, processing,
analysing and interpreting the sequencing information.

Unsurprisingly, the developments in DNA sequencing technology progressed almost hand
in hand with those in computing and information systems technology. When Apple released
the Macintosh 128K in 1984, its first Macintosh personal computer, the sequences available
for analysis were from genes, genomic fragments, and genomes of plasmids and viruses.
They were simple sequences that were analysed using the primitive, pioneering computer
software such as DNA Inspector, DNAStrider and, later, GeneJockey, MacVector, Sequench‐
er and others. With the arrival of the World Wide Web on the open Internet and personal
computer web browsers in the early 1990s, the sequences available for analysis were increas‐
ing in number and complexity and they required more sophisticated algorithms, software
and hardware with ever-increasing computation capacity and speed. The Human Genome
Project was formally initiated in October of 1990 and it required a 13-year international ef‐
fort to complete the sequence of most of the 3 billion DNA nucleotides and annotate the
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estimated 20,000–24,000 human genes for further study. Today, NGS and genomics are seen
much more as a science of Biological Information Systems and ‘Big Data’. There has been an
inundation of DNA and RNA sequences that heavily taxes the limitations of the parallel de‐
velopment of computers to store and process the rapidly accumulating DNA and RNA data
and to translate and manage the information systematically, efficiently and securely. For ex‐
ample, as of November 2014, half of the 7,597 prokaryote species in the NCBI Refseq dataset
still were uncharacterized, and there are estimates that zetabases (> 1 × 10 21) of sequence per
year will need to be processed in a projected trillion dollar industry by 2025, including the
personal data of a million or more human genome sequences. Thus, much attention is now
drawn towards solving the problems of computational greed and how to integrate, process,
filter and secure astronomical amounts of genomic data.

What is next-generation sequencing (NGS)? In brief, NGS is a sequencing technology that is
faster, cheaper and more versatile than the first-generation sequencing methods that preceded
it such as the Sanger sequencing method. NGS permits high-throughput sequencing of the
whole genome (DNA-seq), exomes (exomic DNA-seq) or targeted genomic regions (targeted
DNA-seq), genomic RNA or the transcriptome (RNA-seq), DNA methylation sites throughout
the genome (Methyl-Seq) and the genomic regions involved in protein–DNA interactions
(ChIP-seq) and three-dimensional genome structure (Hi-C) of any organism. However, NGS is
not just a sequencing technology, it is also an information systems technology with enormous
implications for man’s future in various fields and aspects of life. It is the interrogation, collec‐
tion and spread of biological information for our enlightenment and for the development of
novel biological applications and innovations both good and bad in biotechnology, biodefense,
the environment, ecosystems, agriculture, industry and human health.

Many of the advances, applications and challenges associated with NGS are dealt with com‐
prehensively and insightfully in this book in the form of reviews and original studies by
leading researchers providing expert and novel information and insights in their particular
fields of interest. This is a book for scientists, clinicians, technicians, academics, specialists,
graduate and postgraduate students and for all who are interested in DNA sequencing and
bioinformatics across all fields of the life sciences. This book consists of 16 chapters present‐
ed in four sections. The first section, ‘Genomics, Transcriptomics and Methylomics’, contains
five chapters starting with an overview of the basic tools and technological developments
pertaining to NGS and ‘omics’, followed by examples of the application of NGS in the as‐
sembly of aquatic genomes, targeted NGS to genotype the polymorphisms of the MHC ge‐
nomic region, NGS transcriptomic profiling and the computational analysis of methylome
data. The three chapters in the second section, ‘NGS of Microorganisms’, cover the impact
and progress of NGS techniques and the computational applications in the generation and
analysis of NGS data for microorganisms, especially viruses and bacteria. The three chapters
in the third section, ‘NGS of Agricultural Plants’, address the role of NGS in the study of
plants that are part of the agricrops that sustain and feed humans and their livestock. The
fourth and final section, ‘NGS in Humanomics’, consists of five chapters that focus on NGS
in the analysis of ancestral haplotypes, ambiguities and quality measures using NGS for
genotyping polymorphic HLA genes, NGS in the diagnosis of inherited macrothrombocyto‐
penias as a Mendelian disease using signature sequence markers, NGS for the detection of
non-invasive genetic diseases in the foetus using the pregnant mother’s DNA, and it con‐
cludes with a chapter on the impact of RNA-seq data analysis on human gene annotation.
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NGS is a vast and rapidly evolving area of science, and it is beyond the scope of this book to
cover all the issues and topics related to this subject. The authors in this book are experts
from various areas of NGS, structural and functional genomics, bioinformatics and complex
data analysis who have devoted their time, despite their busy schedules, to write their val‐
uable and thought-provoking chapters with tireless dedication in the few months allowed to
them to meet the demanding deadlines. We thank them for their tireless dedication to over‐
come the challenges and to complete the book project on schedule. We welcome, savour and
appreciate the information and knowledge imparted by these different authorities in their
chapters presented in this book.

Last but not least, we thank the staff of InTech and the Publishing Process Manager Sandra
Bakic for their valuable contribution to the editing and smooth publication of this book. We
hope that it will become a valuable reference and a further inspiration for basic and practical
research on the implementation of NGS technologies and bioinformatics and assist in eluci‐
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Abstract

Next-generation sequencing (NGS) technologies using DNA, RNA, or methylation se‐
quencing have impacted enormously on the life sciences. NGS is the choice for large-scale
genomic and transcriptomic sequencing because of the high-throughput production and
outputs of sequencing data in the gigabase range per instrument run and the lower cost
compared to the traditional Sanger first-generation sequencing method. The vast
amounts of data generated by NGS have broadened our understanding of structural and
functional genomics through the concepts of “omics” ranging from basic genomics to in‐
tegrated systeomics, providing new insight into the workings and meaning of genetic
conservation and diversity of living things. NGS today is more than ever about how dif‐
ferent organisms use genetic information and molecular biology to survive and repro‐
duce with and without mutations, disease, and diversity within their population
networks and changing environments. In this chapter, the advances, applications, and
challenges of NGS are reviewed starting with a history of first-generation sequencing fol‐
lowed by the major NGS platforms, the bioinformatics issues confronting NGS data stor‐
age and analysis, and the impacts made in the fields of genetics, biology, agriculture, and
medicine in the brave, new world of ”omics.”

Keywords: Next-generation sequencing, tools, platforms, applications, omics

1. Introduction

Next-generation sequencing (NGS) refers to the deep, high-throughput, in-parallel DNA
sequencing technologies developed a few decades after the Sanger DNA sequencing method
first emerged in 1977 and then dominated for three decades [1, 2]. The NGS technologies are
different from the Sanger method in that they provide massively parallel analysis, extremely
high-throughput from multiple samples at much reduced cost [3]. Millions to billions of DNA
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nucleotides can be sequenced in parallel, yielding substantially more throughput and mini‐
mizing the need for the fragment-cloning methods that were used with Sanger sequencing [4].
The second-generation sequencing methods are characterized by the need to prepare amplified
sequencing libraries before undertaking sequencing of the amplified DNA clones, whereas
third-generation single molecular sequencing can be done without the need for creating the
time-consuming and costly amplification libraries [5]. The parallelization of a high number of
sequencing reactions by NGS was achieved by the miniaturization of sequencing reactions
and, in some cases, the development of microfluidics and improved detection systems [6]. The
time needed to generate the gigabase (Gb)-sized sequences by NGS was reduced from many
years to only a few days or hours, with an accompanying massive price reduction. For example,
as part of the Human Genome Project, the J. C. Venter genome [7] took almost 15 years to
sequence at a cost of more than 1 million dollars using the Sanger method, whereas the J. D.
Watson (1962 Nobel Prize winner) genome was sequenced by NGS using the 454 Genome
Sequencer FLX with about the same 7.5x coverage within 2 months and for approximately
100th of the price [8]. The cost of sequencing the bacterial genome is now possible at about
$1000 (https://www.nanoporetech.com), and the large-scale whole-genome sequencing (WGS)
of 2,636 Icelanders [9] has brought some of the aims of the 1000 Genomes Project [10] to abrupt
fruition.

Rapid progress in NGS technology and the simultaneous development of bioinformatics tools
has allowed both small and large research groups to generate de novo draft genome sequences
for any organism of interest. Apart from using NGS for WGS [11], these technologies can be
used for whole transcriptome shotgun sequencing (WTSS) — also called RNA sequencing
(RNA-seq) [12], whole-exome sequencing (WES) [13], targeted (TS) or candidate gene se‐
quencing (CGS) [14–16], and methylation sequencing (MeS) [17]. RNA-seq can be used to
identify all transcriptional activities (coding and noncoding) or a select subset of targeted RNA
transcripts within a given sample [12], and it provides a more precise and sensitive measure‐
ment of gene expression levels than microarrays in the analysis of many samples [18–21]. In
contrast to WGS, WES provides coverage for more than 95% of human exons to investigate
the protein-coding regions (CDS) of the genome and identify coding variants or SNPs when
WGS and WTSS are not practical or necessary [13]. Since the exome represents less than 2% of
the human genome, it is the cost-effective alternative to WGS and RNA-seq in the study of
human genetics and disease [13]. However, WGS may be preferred over WES because it
provides more data with better uniformity of read coverage on disease-associated variants and
reveals polymorphisms outside coding regions and genomic rearrangements [19, 22]. The
analysis of the methylome by MeS complements WGS, WES, and CGS to determine the active
methylation sites and the epigenetic markers that regulate gene expression, epistructural base
variations, imprinting, development, differentiation, disease, and the epigenetic state [23–30].
The impact of NGS technology is indeed egalitarian in that it allows both small and large
research groups the possibility to provide answers and solutions to many different problems
and questions in the fields of genetics and biology, including those in medicine, agriculture,
forensic science, virology, microbiology, and marine and plant biology.
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The aim of this chapter is to provide an overview of the advances, applications, and challenges
of NGS, starting with a history of first-generation sequencing followed by the major NGS
platforms, the bioinformatics issues confronting NGS data storage and analysis, and the
applications and challenges for biology and medicine in the world of “omic” expansion.

2. First-generation sequencing: A brief history

Twelve years after the publication of the Watson and Crick double-helix DNA structure in
1953 [31], the first natural polynucleotide sequence was reported [32]. It was the 77-nt yeast
alanine  tRNA  with  a  proposed  cloverleaf  structure,  although  the  anticodon,  the  three
nucleotides that bind to the mRNA sequence, was not yet identified in the sequence [32].
It  took  7  years  to  prepare  up  to  1  g  of  the  tRNA  from  commercial  baker’s  yeast  by
countercurrent distribution before fragmenting the RNA into short oligonucleotides with
various  RNase  enzymes  to  reconstruct  and  identify  the  nucleotide  residues  using  two-
dimensional  chromatography  and  spectrophotometric  procedures  [33].  At  that  time,
scientists could sequence only a few base pairs per year, not nearly enough to sequence an
entire gene. Nevertheless, despite the time-consuming and laborious nature of these very
first sequencing methods that were developed for tRNA and other oligonucleotides, there
was  a  flurry  of  RNA  and  DNA  sequencing  for  the  next  10  years  that  improved  the
sequencing procedures of fragmented DNA and provided new information on the sequences
of more than 100 different tRNA. These initial labor-intensive sequencing efforts resulted
also in the first complete genome sequence — the 3,569-nucleotide-long bacteriophage MS2
RNA, the lysozyme gene sequence of bacteriophage T4 DNA, and the 24-bp lac operator
sequence [33–36]. This eventually led to the Maxam and Gilbert chemical degradation DNA
sequencing  method  that  chemically  cleaved  specific  bases  of  terminally  labeled  DNA
fragments  and  separated  them  by  electrophoresis  [37].  New  data  on  how  to  sequence
bacteriophage DNA by specific primer extension methods resulted in Sanger et al. [1] using
primer-extension  and  chain-termination  methods  for  sequencing  polynucleotides  longer
than  oligonucleotide  lengths.  Subsequently,  the  new  Sanger  DNA  chain-termination
sequencing method [1],  known simply as the Sanger sequencing method, prevailed over
the Maxam and Gilbert chemical degradation method [37] because of its greater simplici‐
ty and reliability and the use of fewer toxic chemicals and lower amounts of radioactivi‐
ty.  The  first-generation  automated  DNA  sequencers  developed  by  Applied  Biosystem
Instruments  (ABI)  used the Sanger method with fluorescent  dye-terminator  reagents  for
single-reaction  sequencing  rather  than  the  usual  four  separate  reactions  [34–36].  These
sequencers were later improved by including computers to collect, store, and analyze the
sequencing data [38]. The invention of the PCR technology [39] and thermal cyclers and
the use of a heat-resistant enzyme such as Taq polymerase from Thermus aquaticus between
1985 and 1990 enabled the generation of random or specific sequences for de novo sequenc‐
ing,  filling  gaps,  and  resequencing  particular  regions  of  interest  [35].  The  discovery  of
reverse  transcriptase  in  1970  [40,  41]  led to  the  development  of  RNA sequencing using
cDNA reverse transcribed from RNA. In 1991, Adams et al. [42] initiated a systematic cDNA
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sequencing project using the Sanger method and the 373A DNA semiautomated sequenc‐
ers to generate large batches of cDNA sequences with an average length of 397 bases, which
they named ”expressed sequence tags” (ESTs) and used as substrates and markers for RNA
contig and transcriptome mapping. These improvements, together with the establishment
of GenBank (http://www.ncbi.nlm.nih.gov/genbank) in 1982, resulted in the generation of
hundreds of thousands of more DNA sequences throughout the 1980s, 1990s [34–36], and
right up to the beginning of the new millennium, with the publication of the first  draft
sequence of the human genome [43, 44].

A sudden increase in  the  number of  DNA and RNA sequences  generated for  GenBank
between  1992  and  2004  (http://www.ncbi.nlm.nih.gov/genbank/statistics)  resulted  mostly
from three main initiatives: the development of automated sequencers and the emergence
of service providers, the industrialization and the establishment of sequencing centers and
international  consortiums,  and  the  continued  development  of  computing  hardware  and
software  to  store  and  analyze  nucleotide  sequences.  The  automated-industrialized  ap‐
proach based on random or shotgun sequencing was initiated by The Institute for Genom‐
ic  Research  (TIGR)  in  Rockville,  Maryland,  and  resulted  in  the  publication  of  337  new
human genes  and 48  homologous  genes  from other  organisms  [42].  By  1999,  the  TIGR
venture generated 83 million nucleotides of cDNA sequence, 87,000 human cDNA sequen‐
ces,  and the complete genome sequences of  two bacterial  species,  Haemophilus influenzae
[45] and Mycoplasma genitalium  [46]. This success was in part due to the development of
the TIGR sequence assembler, an innovative computer program to assemble vast amounts
of EST data [47]. By the end of 2001, the automated sequencers, such as the fully automat‐
ed Prism 3700 with 96 capillaries that could produce 1.6×105 bases of sequence data per
day, sequencing centers and international consortiums, such as the TIGR in the USA, the
Sanger Centre in the United Kingdom, and RIKEN in Japan, produced the complete genomic
sequences of the bacteria E. coli and Bacillus subtilis, the yeast Saccharomyces cerevisiae, the
nematode C. elegans, the fruit fly Drosophila melanogaster, the plant Arabidopsis thialiana, and
the human genome (see references cited by Stein [48]). Although sequencing was still hugely
expensive  and  time  consuming,  Sanger  sequencing  was  by  then  the  dominant  method.
Pundits  now placed  DNA  sequencing  into  a  postgenomic  era  and  predicted  functional
genomics,  SNPs,  and  transcript  arrays  as  the  future  of  biological  investigation  [49,  50].
Indeed, after the establishment of the first Affymetrix and GeneChip microarrays in 1996,
the decade saw a rapid growth in DNA array technology and applications for various gene
expression studies in prokaryotes and eukaryotes [21, 51, 52]. Nevertheless, the outputs for
genomic and/or RNA sequencing had neither finished nor slowed; new sequencing methods
continued  to  emerge  after  2005  to  challenge  the  cost  and  supremacy  of  the  Sanger  di‐
deoxy method [34–36]. These new methods became known as next-generation sequencing
because  they  were  designed  to  employ  massively  parallel  strategies  to  produce  large
amounts of sequence from multiple samples at very high-throughput and at a high degree
of  sequence  coverage  to  allow for  the  loss  of  accuracy  of  individual  reads  when  com‐
pared to Sanger sequencing. These different approaches brought the cost of sequencing the
genome down from $100 million in 2001 to less than $10,000 in 2014 [53].
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3. Second-generation sequencing

A more detailed history of the development of the first- and next-generation sequencing
platforms has been presented in a number of previous reviews [2–6, 11, 34–36, 54]. Table 1
outlines the basic features and performances of the common next-generation sequencing
platforms. The basic characteristics of second-generation sequencing technology are the
following. Shotgun sequencing of random fragmented genomic (fg) DNA or cDNA reverse
transcribed from RNA is performed without the need for cloning via a foreign host cell: instead,
linker and/or adapter sequences are ligated to the fgDNA or cDNA for construction of template
libraries. Library amplification is performed on a solid surface or on beads while isolated
within miniature emulsion droplets or arrays. Nucleotide incorporation is monitored directly
by luminescence detection or by changes in electrical charge during the sequencing procedure.
NGS generates many millions of nucleotide short reads in parallel in a much shorter time than
by the Sanger sequencing method. The read types generated by NGS are digital and therefore
enable direct quantitative comparisons. Either single or pair end reads can be obtained at
fragment ends.

3.1. DNA and RNA library preparations for second-generation sequencing

The general workflow for second-generation sequencing is the preparation and amplification
of libraries prepared from DNA or RNA samples, clonal formation, sequencing, and analysis
[55–59]. Head et al. [55] have reviewed the methods and problems encountered for preparing
NGS libraries for whole-genome sequencing, exome sequencing, target sequencing, RNA-seq,
ChIP-seq, RIP-seq, and methylation sequencing (methyl-seq). Prior to library preparation, the
genomic DNA is fragmented by acoustic shearing, sonication, or enzymatic digestion with
DNase I or fragmentase and then labeled with adapters, tags, barcodes, and primers using
established ligation and PCR methods. Alternatively, Illumina’s fragmentation technology,
called Nextera Tagmentation, can be implemented using a transposase enzyme to simultane‐
ously fragment and insert adapter sequences into the ds DNA and thereby reduce sample
handling and preparation time [57]. For targeted sequencing, the exomes or regions of interest
within the fragmented DNA can be captured and enriched by probe-hybridization-capture
kits or by PCR amplification with custom-designed primers. For RNA-seq of mRNA, polyA-
RNA is isolated usually from total RNA or rRNA-depleted RNA and reverse transcribed to
cDNA with reverse transcriptase and polyT or polyU primers before being treated much the
same way as the fragmented genomic DNA. RNA sequencing libraries also can be created
from immunoprecipitated RNA-binding proteins. To isolate noncoding RNAs (micro, small,
and long) from total RNA, these sequences are selectively ligated to 3′ and 5′ adapters and
reverse transcribed to cDNA. For methylation sequencing, the genomic DNA is reacted usually
with bisulfite chemicals prior to library construction. On the other hand, ChIP-seq and RIP-
seq use antibody capture to enrich the relevant sequences before preparation of the genomic
DNA fragments for sequencing. In comparison to high-input gDNA libraries, the RNA and
ChIP libraries may be limited by low cell numbers as starting material and consequently result
in a low input of extracted DNA from the immunoprecipitated histones or DNA-binding
proteins and in a limited sequence coverage.
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Numerous DNA and RNA library kits and machines are available for the semiautomated or
fully automated preparation of DNA libraries both for second- and/or third-generation
sequencing. Some of these are GemCode from x10 (http://10xgenomics.com) and Raindrop’s
Thunderstorm (http://raindancetech.com) for all sequencing platforms, cBot for the Illumina
platform [58], and Ion Chef and Ion OneTouch for the Ion Torrent platform [59]. All of these
kits and auxiliary machines attempt to reduce workload and costs for the main platform
sequencers. The DNA libraries are labeled with barcode sample tags, such as the multiplex
identifier (MID) for Roche/454 sequencing, to enable the libraries to be pooled and therefore
maximize the sequence output as a multiplex amplicon sequencing step for each sequencing
run. After library construction, the DNA fragments are clonally amplified by emulsion PCR
with microbeads [4, 6, 60] or by solid-phase PCR using primers attached to a solid surface [4,
61, 62] in order to generate sufficient single-stranded DNA molecules and detectable signal
for producing sufficiently reliable sequencing data [54]. Roche 454, Life Technologies’ SOLiD,
and Ion Torrent platforms use emulsion PCR, whereas Illumina’s HiSeq/MiSeq platforms use
solid-phase PCR [4]. More recently, isothermal PCR amplification on a solid surface of a flow
cell [62] was developed for the SOLiD 5500 W series of sequencing machines.

A problem with preparing sequencing libraries by PCR amplification is that PCR introduces
GC bias, a major source of unwanted variation and errors in the sequencing coverage [63].
Using alternative methods to PCR amplification improves library complexity and the coverage
of high GC regions and reduces the number of duplicate reads [64]. A number of different
PCR-free library preparation kits are available commercially, such as NEXTflex PCR-Free from
Bioo Scientific, Accel NGS 2S PCR-free library kit from Swift Biosciences, and the Illumina
TruSeq DNA PCR-Free Sample Preparation Kit that uses ligation amplification for Illumina
and other sequencing platform systems.

3.2. NGS platforms

The main features and performances of five commonly used second-generation sequencing
technologies that have been reviewed in detail by others [2–4, 11, 36, 54] are shown in Table 1.

NGS platforms/company/max

output per run

Read

length per

run (bp)

No. reads

per run

Time (h or

days)

Cost

per 106

bases

Raw

error

rate (%)

Platform

cost (USD

approx.)

Chemistry

First generation

Sanger/Life Technologies/84 kb 800 1 2 h 2400 0.3 95,000 Dideoxy terminator

Second generation

454 GS FLX+/Roche/0.7 Gb 700 1×106 24/48 h 10 1 500,000 Pyrosequencing

GS Junior/Roche/70 Mb 500 1×105 18 h 9 100,000 Pyrosequencing

HiSeq/Illumina/1500 Gb 2x150 5×109 27/240 h 0.1 0.8 750,000 Reversible terminators

MiSeq/Illumina/15 Gb 2x300 3×108 27 h 0.13 0.8 125,000 Reversible terminators

SOLiD/Life Technologies/120 Gb 50 1×109 14 days 0.13 0.01 350,000 Ligation

Retrovolocity/BGI/3000 Gb 50 1×109 14 days 0.01 0.01 12×106 Nanoball/ligation
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length per
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No. reads

per run

Time (h or

days)

Cost

per 106

bases

Raw

error

rate (%)

Platform

cost (USD

approx.)

Chemistry

Ion Proton/Life Technologies/100

Gb

200 6×107 2–5 h 1 1.7 215,000 Proton detection

Ion PGM/Life Technologies/2 Gb 200 5×106 2–5 h 1 1.7 80,000 Proton detection

Third generation

SMRT/Pac Bio/1 Gb >10,000 1×106 1–2 h 2 12.9 750,000 Real-time SMS

Heliscope/Helicos/25 Gb 35 7×109 8 days 0.01 0.2 1.35×106 Real-time SMS

Nanopore/Oxford Nanopore

Technologies/1 Gb

>5000 6×104 48/72 h <1 34 1000 Real-time SMS

Electron microscopy/ZS 7200 14 h <0.01 1×106 Real-time SMS

Genia nanopore (http://

www.geniachip.com)

Real-time SMS

Table 1. Basic features and performances of NGS platforms. Sources are [4, 11, 20, 54, 115]. For comparison of the NGS
outputs, the human genome has 3×109 bp or 3 Gb.

3.2.1. Roche 454 pyrosequencing

Roche 454 pyrosequencing by synthesis (SBS) was the first commercially successful second-
generation sequencing system developed by 454 Life Sciences in 2005 and acquired by Roche
in 2007 (http://www.my454.com). This technology uses sequencing chemistry, whereby visible
light is detected and measured after it is produced by an ATP sulfurylase, luciferase, DNA
polymerase enzymatic system in proportion to the amount of pyrophosphate that is released
during repeated nucleotide incorporation into the newly synthesized DNA chain [2, 4, 6]. The
system was miniaturized and massively parallelized using PicoTiterPlates to produce more
than 200,000 reads at 100 to 150 bp per read with an output of 20 Mb per run in 2005 [6]. The
upgraded 454 GS FLX Titanium system released by Roche in 2008 improved the average read
length to 700 bp with an accuracy of 99.997% and an output of 0.7 Gb of data per run within
24 h. The GS Junior bench-top sequencer produced a read length of 700 bp with 70 Mb
throughput and runtime of 10 to 18 h. The major drawbacks of this technology are the high
cost of reagents and high error rates in homopolymer repeats. The estimated cost per million
bases is $10 by Roche 454 compared to $0.07 by Illumina HiSeq 2000 [54]. A more serious
challenge for those using this technology is the announcement by Roche that they will no
longer supply or service the 454 sequencing machines or the pyrosequencing reagents and
chemicals after 2016 [65].

3.2.2. Illumina (Solexa) HiSeq and MiSeq sequencing

Illumina (http://www.illumina.com) purchased the Solexa Genome Analyzer in 2006 and
commercialized it in 2007 [66, 67]. Today, it is the most successful sequencing system with a
claimed >70% dominance of the market, particularly with the HiSeq and MiSeq platforms. The
Illumina sequencer is different from the Roche 454 sequencer in that it adopted the technology
of sequencing by synthesis using removable fluorescently labeled chain-terminating nucleo‐
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tides that are able to produce a larger output at lower reagent cost [4, 6, 66]. The clonally
enriched template DNA for sequencing is generated by PCR bridge amplification (also known
as cluster generation) into miniaturized colonies called polonies [66]. The output of sequencing
data per run is higher (600 Gb), the read lengths are shorter (approximately 100 bp), the cost
is cheaper, and the run times are much longer (3-10 days) than most other systems [54]. Illumina
provides six industrial-level sequencing machines (NextSeq 500, HiSeq series 2500, 3000, and
4000, and HiSeq X series five and ten) with mid to high output (120–1500 Gb) as well as a
compact laboratory sequencer called the MiSeq, which, although small in size, has an output
of 0.3 to 15 Gb and fast turnover rates suitable for targeted sequencing for clinical and small
laboratory applications [68]. The MiSeq uses the same sequencing and polony technology such
as the high-end machines, but it can provide sequencing results in 1 to 2 days at much reduced
cost [54]. Illumina’s new method of synthetic long reads using TruSeq technology apparently
improves de novo assembly and resolves complex, highly repetitive transposable elements [69].

3.2.3. Sequencing by Oligonucleotide Ligation and Detection (SOLiD)

Supported Oligonucleotide Ligation and Detection (SOLiD) is a next-generation sequencer
instrument marketed by Life Technologies (http://www.lifetechnologies.com) and first
released in 2008 by Applied Biosystems Instruments (ABI). It is based on 2-nucleotide
sequencing by ligation (SBL) [4, 6, 66]. This procedure involves sequential annealing of probes
to the template and their subsequent ligation. Sequencers on the market today, such as the
5500 W series, are suitable for small- and large-scale projects involving whole genomes,
exomes, and transcriptomes. Previously, sample preparation and amplification was similar to
that of Roche 454 sequencing [66]. However, the upgrades to Wildfire chemistry have enabled
greater throughput and simpler workflows by replacing beads with direct in situ amplification
on FlowChips and paired-end sequencing [62]. The SOLiD 5500 W series sequencing reactions
still use fluorescently labeled octamer probes in repeated cycles of annealing and ligation that
are interrogated and eventually deciphered in a complex subtractive process using Exact Call
Chemistry that has been well described by others [2, 36, 66]. The advantage of this method is
accuracy with each base interrogated twice. The major disadvantages are the short read lengths
(50–75 bp), the very long run times of 7 to 14 days, and the need for state-of-the-art computa‐
tional infrastructure and expert computing personnel for analysis of the raw data.

3.2.4. DNA nanoball sequencing by BGI Retrovolocity

Complete Genomics (http://www.completegenomics.com) developed DNA nanoball sequenc‐
ing (DNBS) as a hybrid of sequencing by hybridization and ligation [70]. Small fragments (440–
500 bp) of genomic DNA or cDNA are amplified into DNA nanoballs by rolling-circle
replication that requires the construction of complete circular templates before the generation
of nanoballs. The DNA nanoballs are deposited onto an arrayed flow cell, with one nanoball
per well sequenced at high density. Up to 10 bases of the template are read in 5′ and 3′ direction
from each adapter. Since only short sequences, adjacent to adapters, are read, this sequencing
format resembles a multiplexed form of mate-pair sequencing similar to using Exact Call
Chemistry in SOLiD sequencing [2, 36, 66]. Ligated sequencing probes are removed, and a new
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pool of probes is added, specific for different interrogated positions. The cycle of annealing,
ligation, washing, and image recording is repeated for all 10 positions adjacent to one terminus
of one adapter. This process is repeated for all seven remaining adapter termini. Although the
developers have sequenced the whole human genome, the major disadvantage of DNBS is the
short length of reads and the length of time for the sequencing projects. Claimed cost of the
reagents for sequencing of the whole human genome is under $5000. The major advantage of
this approach is the high density of arrays and therefore the high number of DNBs (~350
million) that can be sequenced. In 2015, the Chinese genomics service company BGI-Shenzhen
acquired Complete Genomics and introduced the Retrovolocity system for large-scale, high-
quality whole-genome and whole-exome sequencing with 50x coverage per genome and with
the sample to assembled genome produced in less than 8 days [71]. Complete Genomics claims
to have sequenced more than 20,000 whole human genomes over 5 years and published widely
on the use of their NGS platform. They provide public access to a human repository of 69
genomes data and a cancer data set of two matched tumor and normal sample pairs at http://
www.completegenomics.com/public-data/.

3.2.5. Ion torrent

Ion Torrent technology (http://www.iontorrent.com) was developed by the inventors of 454
sequencing [60], introducing two major changes. Firstly, the nucleotide sequences are detected
electronically by changes in the pH of the surrounding solution proportional to the number of
incorporated nucleotides rather than by the generation of light and detection using optical
components. Secondly, the sequencing reaction is performed within a microchip that is
amalgamated with flow cells and electronic sensors at the bottom of each cell. The incorporated
nucleotide is converted to an electronic signal detected by the electronic sensors. The two
sequencers in the market that use Ion Torrent technology are the high-throughput Proton
sequencer with more than 165 million sensors and the Ion Personal Genome Machine (PGM),
a bench-top sequencer with 11.1 million sensors. There are four sequencing chips to choose
from [72]. The Ion PI Chip is used with the Proton sequencer, and the Ion 314, 316, or 318 Chips
are used with the Ion PGM. The Ion 314 Chip provides the lowest reads at 0.5 million reads
per chip, whereas the Ion 318 Chip provides the highest reads of up to 5.5 million reads per
chip. The Proton sequencer provides a higher throughput (10–100 Gb vs. 20 Mb–1 Gb) and
more reads per run (660 Mb vs. 11 Mb) than the PGM chips, but the read lengths (200–500 bp),
run time (4–5 h), and accuracy (99%) are similar [54, 72]. Sample preparation for the generation
of DNA libraries is similar to the one used for Roche 454 sequencing but can be simplified with
the use of the Ion Chef system for automated template preparation and chip loading. The Ion
Torrent chip is used with an ion-sensitive field-effect transistor sensor that has been engineered
to detect individual protons produced during the sequencing reaction. The chip is placed
within the flow cell and is sequentially flushed with individual unlabeled dNTPs in the
presence of the DNA polymerase. Incorporation of nucleotide into the DNA chain releases H
protons and changes the pH of the surrounding solution that is proportional to the number of
incorporated nucleotides. The major disadvantages of the system are problems in reading
homopolymer stretches and repeats. The major advantages seem to be the relatively longer
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read lengths, flexible workflow, reduced turnaround time, and a cheaper price than those
provided by the other platforms [54, 73].

4. Third-generation sequencing: Emerging technologies for single-
molecule sequencing

Third-generation single-molecule sequencing technologies have emerged to reduce the price
of sequencing and to simplify the preparatory procedures and sequencing methods [4, 74, 75].

4.1. Single-molecule real-time (SMRT) sequencing by pacific biosciences

Pacific Biosciences (http://www.pacificbiosciences.com) markets the PacBio RS II sequencer
and the SMRT real-time sequencing system [74, 75]. SMRT sequencing is performed in SMRT
cells that contain 150,000 ultra-microwells at a zeptoliter scale where one molecule of DNA
polymerase is immobilized at the bottom of each well using the biotin-streptavidin system in
nanostructures known as zero-mode waveguides (ZMWs). Once the template single-strand
DNA is coupled with immobilized DNA polymerase, fluorescently labeled dNTP analogs are
added and detected when the nucleotide is incorporated into the growing strand. CCD
cameras continuously monitor the 150,000 ZMWs as a series of observed pulses that are
converted into single molecular traces representing the template sequences. Since all four
nucleotides are added simultaneously and measured in real time, the speed of sequencing is
much increased compared to technologies where individual nucleotides are flushed sequen‐
tially. Although the reported accuracy was 99.3% initially with read lengths of about 900 bp
[4], circularizing the template and sequencing it several times using a technology called
SMRTbell templates provided longer reads and improved the accuracy to >99.999% [76, 77].
Once sequencing is initiated, the system’s computational Blade Center performs real-time
signal processing, base calling, and quality assessment. Primary analysis data, including trace
and pulse data, read-length, distribution, polymerase speed, and quality measurement, is
streamed directly to the secondary analysis software called SMRT Analysis that is capable of
processing sequencing data in real time. The secondary analysis tools also include a full suite
of tools to analyze single-molecule sequencing data for a broad range of applications.

4.2. Helicos sequencing by the genetic analysis system

The Helicos sequencing system was the first commercial implementation of single-molecule
fluorescent sequencing [66, 78], marketed by the now bankrupt Helicos Biosciences. Today,
the sequencing provider Seqll (http://seqll.com) sequences genomic DNA and RNA using the
Helicos sequencing system and HeliScope single-molecule sequencers. DNA is sheared, tailed
with polyA, and hybridized to a flow cell surface containing oligo-dT for sequencing-by-
synthesis of billions of molecules in parallel. The polyA-tailed fragments of DNA molecules
are hybridized directly to the oligo-dT50 bound on the surface of disposable glass flow cells.
The addition of fluorescent nucleotides with a terminating nucleotide pauses the cyclical
process until an image of one nucleotide for each DNA sequence has been captured, and then
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the process is repeated until the fragments have been completely sequenced [75, 76]. This
sequencing system is a combination of sequencing by hybridization and sequencing by
synthesis using a DNA polymerase [79]. Sample preparation does not require ligation or PCR
amplification and, therefore, largely avoids the GC content and size biases observed in other
technologies [56]. The HeliScope sequencing read lengths range from 25 to over 60 bases, with
35 bases being the average. This method has successfully sequenced the human genome [80]
to provide disease signatures in a clinical evaluation [81] and sequenced RNA to produce
quantitative transcriptomes of tissues and cells [82].

4.3. Nanopore sequencing by Oxford Nanopore Technologies (MinION and PromethION)

Oxford Nanopore Technologies provides the latest single-molecule sequencing system [83,
84]. The MinION Mkl is a portable handheld device for DNA and RNA sequencing that
attaches directly to a laptop/computer using a USB port, whereas the PromethION is a small
bench-top system. Nanopore sequencing uses pores formed from proteins, such as haemoly‐
sin, a biological protein channel system in Staphylococcus aureus [85]. The idea behind DNA
and RNA sequencing using nanopores is that the conductivity of ion currents in the pore
changes when the strand of nucleic acid passes through it [83]. The flow of ion current depends
on the shape of the molecule translocating through the pore. Since nucleotides have different
shapes, each nucleotide is recognized by its effect on the change of the ionic current [86]. The
key advantage of this approach is that sample preparation is minimal compared to second-
generation sequencing methods, and long read lengths can be obtained in the kbp range. In
addition, there are no amplification or ligation steps required before sequencing. The main
problem with this technology is the requirement to optimize the speed of DNA translocation
through the nanopore to ensure reliable measurement of the ionic current changes and reduce
the high error rates of base calling [83–86]. At this time, Oxford Nanopore Technologies is in
the beta testing phase, and users are required to join the MinION Access Programme and pay
a fee of $1000 [83] to access a MinION starter pack (3 MinION MkI flow cells, a Nanopore
sequencing kit, and a wash kit). Laver et al. [87] have assessed the performance of an earlier
version of the MinION sequencing device and concluded that “the MinION is an exciting
prospect; however, the current error rate limits its ability to compete with existing sequencing
technologies, though we do show that MinION sequence reads can enhance contiguity of de
novo assembly when used in conjunction with Illumina MiSeq data.” They resequenced three
bacterial genomes and estimated the error rate to be 38.2%, with mean and median reads of 2
and 1 kb, respectively, and with the longest single read of 98 kb. The low depth of coverage
provided by the present nanopore technology is a possible barrier to accurate eukaryotic
genome sequencing at the moment. Nevertheless, these are not intangibles and nanopore
nucleic acid sequencing is envisaged to include methylation and direct RNA sequencing in the
near future [83].

4.4. NGS by electron microscopy

The sequence of long, intact DNA molecules can be visualized and identified by using electron
microscopy. The first report on the successful application of electron microscopy for NGS was
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for the partial sequencing of DNA base pairs within intact DNA molecules using synthesized
genomes of 3.3 and 7.2 kb length that were sequenced by enzymatically incorporating modified
bases that contained atoms of increased atomic number and allowed for the direct visualization
and identification of individually labeled bases [88]. In this sequencing process, the double
strands of the DNA sample are separated into single strands using common enzymes and
reactions. Then, the single-stranded DNA is labeled by PCR using dNTPs attached to heavy-
atom metal labels that can be separated into identifiable electron microscope-generated images
showing large black dots, small black dots, and large gray dots along the DNA molecule
linearized by ZSG threading. Standard image-based technologies perform the reads and
analysis of the labeled DNA using image analysis software that provides sequence data in real
time. The sequenced molecules are reads in the range of 5 to 50 kb in length that are useful for
de novo genome assembly and for analysis of full haplotypes and copy number variants. The
company ZS Genetics (http://www.zsgenetics.com) offers a service to provide accurate, long-
read, single-molecule DNA sequences using the NGS electron microscopy platform.

5. NGS service providers

Researchers who cannot afford to purchase NGS machines at prices varying between $80,000
and over 1 million USD (depending on the platform) plus the many add-ons, computing
requirements, and infrastructural changes, instead, might consider using one of the many
available sequencing service providers. For example, Novogene, which was founded in Beijing
in 2011 and now is located also in Great Britain and the USA, provides NGS for human, animal,
plant, and microbe applications using Illumina MiSeq, HiSeq, and X platforms for whole-
genome de novo sequencing and resequencing, exome sequencing, targeted sequencing,
transcriptomics for mRNA and small RNA, and metagenomics. Similarly, the South Korean
company Macrogen provides all the NGS services using Illumina platforms as well as
epigenome sequencing for methylations by bisulfite conversion, methyl-CpG binding domain,
or chromatin immunoprecipitation. Prices may vary between $500 and $2,000 USD per sample
depending on the sequencing project and the project workflow from sample preparation to
bioinformatics analysis (https://www.scienceexchange.com). Table 2 lists some of the service
providers, and others can be accessed at http://omicsmaps.com.

Service provider Platforms DNA sequencing
(TS WG WES)

RNA-seq Methyl-seq Web address

BGI All + + + + + bgiamericas.com

Novogene Illumina + + + + + novogene.com

Macrogen Illumina
Ion Torrent

+ + +
+ + +

+
+

+
+

macrogen.com

CD Genomics Illumina
Ion Torrent

+ + +
+ + +

+
+

+
+

cd-genomics.com
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Service provider Platforms DNA sequencing
(TS WG WES)

RNA-seq Methyl-seq Web address

PacBioRS II
CEA**

+ + + + +
+

SeqWright Genomic Illumina
Ion Torrent
Roche 454

+ + +
+ + +
+ + +

+
+
+

+
+

seqwright.com/researchservices

EpigenDx Ion Torrent + epigendx.com

Centrillion Genomic Illumina + + + + centrillionbio.com

NXT-DX Illumina + + nxt-dx.com

AGRF*** Illumina
CEA**

+ + + + +
+

agrf.org.au

Broad Institute Illumina + + + + + genomics.broadinstitute.org

Illumina Illumina + + + + + illumina.com

Exiqon Illumina + exiqon.com

SEQLL Helicos + + + + + seqll.com

Eurofins Genomics Illumina
Roche 454
Ion Torrent
PacBioRS II

+ + +
+ + +
+ - +
+ - +

+ eurofinsgenomics.eu

Millennium Science PacBioRS II + + + + mscience.com.au/view/

Oxford Nanopore
Technologies

MINion + + + + nanoporetech.com

Complete Genomics Nanoball arrays + + completegenomics.com

Table 2. NGS service providers. In the DNA sequencing column, TS is targeted sequencing, WG is whole-genome
sequencing, and WES is whole-exome sequencing. *RNA-seq includes whole transcriptome, mRNA, long, small, and
microRNA sequencing. **Methyl-seq (methylation sequencing) or epigenetic analysis is usually performed by bisulfite
sequencing and either NGS or capillary electrophoresis analysis (CEA). Other analyses such as MBD, MeDIP-seq, or
ChIP-seq may be provided. Helicos and PacBio platforms also enable the detection of methylation sites. ***AGRF =
Australian Genomic Research Facility. Most of the listed service providers also may perform sample and library
preparation, Sanger sequencing, specialist genotyping, data analysis, and bioinformatics service. Other service
providers can be accessed via the High-Throughput Sequencing Map site at http://omicsmaps.com.

6. Performance of NGS platforms and sequencing errors

All NGS systems produce unique sequencing errors and biases that need to be identified and
corrected. The major sequencing errors are largely related to high-frequency indel polymor‐
phisms, homopolymeric regions, GC- and AT-rich regions, replicate bias, and substitution
errors [89–91]. While the PGM quality scores underestimate the base accuracy, the Roche 454

Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications
http://dx.doi.org/10.5772/61964

15



quality scores tend to overestimate the base accuracy. A key consideration for generating high-
quality, unbiased, and interpretable data from next-generation sequencing studies is to achieve
sufficient sequence depth and coverage for statistical certainty. Low sequencing depth can
contribute to high error rates stemming from base calling and mapping errors, which in turn
can affect the statistical significance for identifying true genotypes, nucleotide variants, and
single nucleotide polymorphism. Increased depth of coverage can help sequence alignment
mapping to differentiate between true variants and errors, although it might not resolve errors
due to assembly gaps. Good sequence library preparation is paramount to producing good
sequence depth and coverage. A number of different library methods are available to achieve
this goal depending on the NGS applications [55]. Sims et al. [92] reviewed in critical detail the
guidelines and precedents for optimal sequencing depth and coverage in regard to sequencing
genomes, exomes, transcriptomes, methylomes, and epigenomes by chromatin immunopre‐
cipitation and sequencing and/or chromosome conformation capture.

No single study has compared the performance of all the available NGS platforms simultane‐
ously using the same control genomic sequences. However, a comparison of three bench-top
sequencers, the Roche GS Junior, the Illumina MiSeq, and Ion PGM, revealed large differences
in cost, sequence capacity, and performance outcomes of genome depth, stability of coverage
and read lengths, and quality for sequencing bacterial genomes [54, 93]. Most sequencing
errors arose with indel polymorphisms, GC-rich regions, and homopolymeric regions. Overall,
the two laboratories concluded that all the machines had certain limitations that needed to be
taken into account when designing sequencing experiments [54, 93]. In a comparison of
bacterial genome sequencing between PacBio, Ion Torrent, and three Illumina machines
(MiSeq, GAIIx, and HiSeq 2000), the sequencers all provided high accuracy for GC-rich,
neutral, and moderately AT-rich genomes [94]. The main exception was the poor coverage in
the extremely AT-rich region of Plasmodium falciparum with a single 316 chip for the Ion Torrent
PGM that resulted in no coverage for 30% of the genome. In this study, PacBio generated the
longest reads but produced the least accurate SNP detection and the highest error rate of 13%
compared to 1.78% for Ion Torrent and less than 0.04% for the Illumina platforms. In a different
comparison, the performance of whole-genome sequencing platforms Illumina’s HiSeq2000,
Life Technologies’ SOLiD 4 and 5500xl SOLiD, and Complete Genomics’ sequencing system
were evaluated for their ability to call SNVs and to evenly cover the genome and specific
genomic regions [95]. The authors concluded that all the platforms had their shortfalls with a
pronounced GC bias in GC-rich regions and false-positive rates and that the best solution is
to integrate the sequencing data from the four different platforms because it combined the
strengths of different technologies. In an analysis of bacterial CREBBP exons, three different
NGS platforms appear to have worked comparably well for targeted exomic sequencing with
the percentage of total read numbers aligned to a reference sequence resulting in 99.8% for
Roche 454, 98.1% for Illumina MiSeq, and 90.7% for Ion Torrent PGM sequence reads [96].
However, the Illumina MiSeq data showed the highest substitution error rate, whereas the
PGM data revealed the highest indel error rate. On the other hand, there was little difference
between the Junior Roche and the Ion PGM platforms for ”in phase” sequence genotyping of
HLA loci, and either platform could be used with excellent results [16]. In this case, the lower
cost of reagents and a slightly quicker turnaround time favored the Ion PGM platform [97].
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Five sequencing platforms, Illumina HiSeq, Ion PGM, Ion Proton, PacBio RS, and Roche 454,
were tested in a comparative evaluation of RNA-seq reproducibility using reference RNA
standards at 19 laboratory sites [20]. The results showed high intraplatform and interplatform
concordance for expression measures across the deep-count regions but highly variable
reproducibility for splice junction and variant detection between all platforms. Despite fewer
bases sequenced, the Proton, PGM, and 454 platforms detected more known junctions
compared to Illumina HiSeq.

7. Bioinformatics: DNA and RNA data analysis and storage

Bioinformatics is a major rate-limiting step for NGS technology with respect to overcoming
the growing challenges of storage, analysis, and interpretation of NGS data [98–100]. There
are at least four tiers of nucleotide sequence analysis to consider when using the NGS platforms
[98–104]. The first is generation of sequence reads using the software integrated within the
sequencing instruments that convert the raw signals into base calling with short reads of
nucleotide sequences and associated quality scores. The second is the alignment and assembly
of contigs and scaffolds and variant detection. The third is annotation, data integration, and
visualization of the assembled sequence. The fourth is the amalgamation of all the data from
the different NGS platforms into a single, coherent, bioinformatic output with accessible links
and tools for general and particular biological or forensic interest. The Internet-web addresses
to source the bioinformatics tools and databases for NGS data analysis from the original raw
sequencing data to functional biology can be obtained from the following references [99–104]
and Table 3.

The raw sequencing signals produced by the manufacturer’s sequencing machine or system
are converted into nucleotide bases of short read data (base calling) with base quality scoring
using the system’s FASTQ format or the native raw data file formats (Illumina, SFF, HDF5,
CG, or SOLID). Storage of raw signal (image) and sequencing data as short read archives in
the FASTQ format or native raw data file formats is a problem in regard to computing resources
for many research sequencing laboratories and commercial service providers. Thus, the
conversion of FASTQ files to the more compact Sequence Alignment Map (SAM) format and
its compressed Binary Alignment Map (BAM) format is recommended because it is easier to
read and process for later bioinformatics analysis [99, 102]. The safe storage of the original raw
sequences is important for bioinformatics analysis and corrections because it is the source of
the initial sequencing errors that are either filtered out or left within the final assembled
sequence. Quality checks are necessary to remove reads with low phred levels, sequence errors,
and sequences such as primers, vectors, adapters, tags, and tails that were introduced exper‐
imentally during the preparation of the sequencing libraries [101]. Errors or biases associated
with raw reads from the Illumina, Roche, and SOLiD platforms are mainly fluorophore-
dependent errors, whereas the non-fluorophore platforms such as Ion Torrent produce their
own unique errors and biases [99, 101]. Therefore, many different signal and image detection
programs and base calling algorithms still need to be developed and tested in an attempt to
improve the accuracy of base calling [101}. The raw sequence data (a mixture of raw files and
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other metadata) from the NGS technologies can be submitted to the NCBI Sequence Read
Archive database for DNA studies and to Gene Expression Omnibus and ArrayExpress for
mRNA-seq or ChIP-Seq studies in order to receive a database accession number and to
reference the raw sequence data in scientific publications [105]. The Sequence Read Archive
(SRA) at NCBI also provides a fee-free, downloadable SRA computing toolkit to read the raw
graphs and files from the different NGS platforms and to convert between different file formats
(Table 3). Archive files in the SRA format (.sra) are converted into the FASTQ or SAM/BAM
formats for input to downstream analysis using software programs (Table 3) to undertake the
second tier analysis of sequence alignment (spliced and genomic), assembly, and variant
detection.

The requirement for sequence alignment and variant detection at the second tier of bioinfor‐
matics depends on the complexity of the NGS project. Small sequence reads from small
genomes (e.g., viruses) are less complex and easier to compute and align and assemble than
the many more reads generated from large genomes of mammals or higher plants. The transfer
of the preedited DNA data in the correct format to alignment and variant detection software
is generally straightforward and there are many free and commercial software packages
available to perform these tasks [99–104]. As often is the case, a single package does not suit
all analytical requirements. There may need to be a degree of interchange and testing to find
the best solutions as well as using appropriate and informative controls for standardization
and normalization. Schlotterer et al. [104] have reviewed programs for genotype and SNP
calling. ANGSD is a new multithreaded program suite that was developed recently to perform
association mapping, population genetic analyses (population structure measures, allele
frequency for cases and controls, admixture, and neutrality tests), SNP discovery, and
genotype calling using the raw sequence data and genotype likelihoods in NGS data of human
DNA samples for the 1000 Genomes Project [106].

The alignment of sequences to provide long assemblies (contigs and/or scaffolds) may take
two different paths. One is comparative mapping of short reads aligned to reference sequences
and the other is de novo assembly of overlapping reads [101]. The accuracy of de novo assembly
can be confirmed or improved by integrating it with comparative alignment mapping to
reference genomic sequences. Sequencing assemblers may employ different graph construc‐
tion algorithms and preprocessing and postprocessing filter computations to flag, correct, or
eliminate sequencing errors with no single computation solution. Some genome assemblers
forgo the preprocess filtering step and they all differ in their ease of use, in the accuracy,
efficiency, and quality of assembly, ability to fill gaps, and differentiate between error driven
variants and true variants or SNPs and in the detection and elimination of repeats and
sequencing errors [99]. According to El-Metwally et al. [99], an ideal assembler should have a
set of layers with clearly defined inputs, communication output messages to facilitate the
development of innovative, interactive, independent assemblers using the SAM/BAM file
formats and the language of FASTG (http://fastg.sourceforge.net) for the next-generation
environment. Another way to improve the quality of sequencing and assembly is to adopt a
hybrid approach by using two or more different sequencing platforms and assembly software.
A new software package anytag that fills gaps between paired-end reads to generate near-error-
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free contigs of up to 190 kb appears to be a fivefold improvement over existing de novo genome
assemblers such as soap and Newbler [107].

In a recent evaluation of the most commonly used de novo genome assemblers to assemble the
genomes of three vertebrate species (snake, bird, and fish) by Assemblathon, the authors
recommended not to trust the results of any single assembly, nor place too much faith in a
single metric of quality or accuracy, but instead to choose an assembler that excels in the area
of interest and expectation to provide sufficient coverage, continuity, and error-free bases
[108]. End users were reminded that the use of the assembly tools is not straightforward and
that they should first gain considerable familiarity with the computing hardware and software
and become aware of the ”ease of installation, use, and management” of each assembly tool.
Many problems with de novo genome assembly remain inherent with recognizing and
evaluating highly heterozygous and repetitive regions, segmental duplications, and sequenc‐
ing errors and gaps. This is complicated further by the different read lengths, read counts, and
error profiles that are produced by different NGS technologies. In addition, most assembled
genomic sequences in publicly accessible databases are at the level of or below a standard draft
(minimum standards for submission to public databases) rather than a ”high-quality draft”
assembly that is completed to at least 90% of the expected genome size.

The third tier of bioinformatics is to annotate, transcribe, and translate the genomic sequences
to a higher informatics level, such as defining gene exon coding (CDS) and noncoding (5′
noncoding, introns, and 3′ terminal end) untranslated regions (UTRs), alternate transcript
isoforms, signal peptides, repeat elements, and other nontranscribed regions such as viral
integration sites and chromosomal common fragile sites [103]. Genomic sequences of prokar‐
yotes are a thousand times smaller and less complex than those of eukaryotes and consequently
are easier to assemble and annotate. A typical methodology for prokaryote annotation
suggested by the National Pathogen Data Resource to annotate 1000 genomes is to first submit
the genomic sequence to the Rapid Annotation Server (RAST) at the Argonne National
Laboratory and receive back the protein-encoded genes (CDS), the RNA-encoded genes
(tRNAs and rRNAs), and identified subsystems such as metabolic pathways, complex
structures, and phenotypes (Table 3). This initial annotation should then be reanalyzed in detail
to find discrepancies between the sequence and the translation using any other public or
commercial genomic tools to fix miscalled genes and variants, frameshifts, insertion sequences,
and pseudogenes. The public web server CRISPRfinder detects and annotates the bacterial
CRISPRs and tandem repeat sequences that may impact on genes and pseudogenes (Table 3).
After the reanalysis and final fixes, the annotated and curated genome should be rerun through
RAST to update the subsystems output. Other useful web-based microbial annotation servers
can be accessed at MicroScope, BASys, and NCBI’s Prokaryotic Genome Annotation Pipeline
(PGAP), with additional software provided at Prokka (Table 3). A typical prokaryotic genome
annotation process is outlined at NCBI (http://www.ncbi.nlm.nih.gov/genome/annota‐
tion_prok/process/).

Eukaryote genome annotation is more complex and challenging than prokaryote genome
annotation. In an overview of the available tools and best practices for eukaryotic genome
annotation, Yandell and Ence [103] pointed to five basic categories of annotation software: (1)
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ab initio and evidence-drivable gene predictors; (2) EST, protein, and RNA-seq aligners and
assemblers; (3) choosers and combiners; (4) genome annotation pipelines; and (5) genome
browsers for curation. A typical eukaryotic genome annotation pipeline is outlined by NCBI
at http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/. The essential first step for
eukaryote genome annotation and gene determination is to identify and mask repeat elements
(microsatellites, retrotransposons, and transposons) using RepeatMasker, Censor, or Win‐
dowMasker (Table 3). Without the initial masking step, the repeats would seed millions of
spurious BLAST alignments and create incorrect gene annotations and corrupt the genome
annotation with artifacts and false metadata. After masking, the annotation pipeline includes
the following steps: transcript, RNA-seq read, protein/domain alignments; guided/ab initio
gene model predictions; curated genomic sequence alignments; selection of the best evidence
based models; gene naming and locus typing; assignment of GeneIDs; and annotation of small
RNAs. In addition, there are the special considerations such as annotation of multiple assem‐
blies and updated assemblies before the annotated products can obtain an Annotation Release
number and a release date for availability in various NCBI resources, including the databases
for nucleotides, proteins, BLAST, gene, Map Viewer, and FTP sites. Other websites and tools
considered important for eukaryote annotation are BUSCO for assessing the “core” eukaryote
genes, Babelomics for the functional analysis of transcriptomic and genomic data, the PASA
and MAKER tools for updating annotations with RNA-seq data, and other data and informa‐
tion (Table 3). The annotated and mapped data can then be integrated, visualized, and
presented at a fourth tier of bioinformatics with genome browsers such as those displayed at
UCSC, Ensembl, JBrowse, Web Apollo (Table 3), and others such as Genome Maps [109]. The
new Emsembl 2015 provides an up-to-date genomic interpretation system for annotations,
query tools, and access methods for chordates and key model organisms [110].

Gene ontology is a bioinformatics initiative that provides (a) defined terms representing gene
product properties and pathways covering biological domains such as cellular components,
molecular function, and biological processes with their various subcategories and (b) func‐
tional annotation tools to find functions for large gene lists. It sits somewhere between the third
tier (annotation) and the fourth tier of bioinformatic analyses and structures. The first major
Gene Ontology (GO) project was founded in 1998 to address a need for standard filtered
descriptions of gene products across different databases. GO is a collaborative effort that
started between three model organism databases, FlyBase (Drosophila), the Saccharomyces
Genome Database (SGD) and the Mouse Genome Database (MGD) but now incorporates many
databases for plant, animal, and microbial genomes. The GO Contributors page lists all
member organizations (http://geneontology.org/page/go-consortium-contributors-list). Some
other ontology providers among many are the Open Biological and Biomedical Ontologies
(OBBO), Reactome, DAVID, and the KEGG Pathway database (Table 3).

NGS manufacturers provide their own unique software for the first tier analysis to process the
raw acquisition data and produce read files that contain high-quality consensus reads for the
draft assemblies. However, only a few have attempted to include all three tiers of nucleotide
sequence analysis into a fourth tier that is an easily accessible single integrated package.
Illumina has provided the BaseSpace genomics cloud-computing program for integrated data
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storage and analysis (Table 3). This cloud storage and analysis program permits instrument
integration with sequence analysis viewing and access to a wide range of software applications
to align, assemble, and analyze reads and variants for RNA and DNA. These apply to various
workflows, including basic analyses for prokaryotic and eukaryotic genomics and transcrip‐
tomics, metagenomics, and for more specialist interests such as detection and analysis of tumor
variants, haplotype analysis, pathways and networks, forensic profiles, and many others, too
numerous to list here. In comparison, Ion Torrent has storage devices and servers with a web
browser driving the Torrent Suite Software (Table 3) on computers attached to their respective
sequencing instruments. The manufacturer’s software can be used to preprocess the DNA
sequencing read data before transferring the preedited data onto other analytical software
systems that are either provided by the manufacturer (vendor) or obtained from elsewhere.
The National Center for Biotechnology Information (NCBI) is an example of a fourth tier
bioinformatics provider (Table 3) that is a free, one-stop shop for DNA and RNA sequence
data, analysis, and information. There are direct links at NCBI to 65 accessible databases, 35
download sites (for databases, tools, and utilities), 17 public submission portals, and 60
computing tools for sequence and data analysis, reports, and tutorials. In addition, NCBI is a
resource for books and journals through its online library and the PubMed webpage.

Program Website

1. Aligner, assembly, and postassembly tools

MUMmer aligner http://mummer.sourceforge.net

Bowtie aligner http://bowtie-bio.sourceforge.net/index.shtml

TopHat RNA-seq aligner https://ccb.jhu.edu/software/tophat/index.shtml

Anytag aligner http://sourceforge.net/projects/anytag/files/anytag2.0/

Soap de novo assembler http://soap.genomics.org.cn/soapdenovo.html

Allpaths-LG assembler http://www.broadinstitute.org/software/allpaths-lg/blog/

Celera assembler http://wgs-assembler.sourceforge.net/wiki/index.php?title=Main_Page

Velvet assembler https://www.ebi.ac.uk/~zerbino/velvet/

SPAdes assembler http://bioinf.spbau.ru/spades

Galaxy tools https://usegalaxy.org

Genomic tools http://molbiol-tools.ca/Genomics.htm

BaseSpace Illumina https://basespace.illumina.com/home/sequence

Torrent Suite Software http://www.lifetechnologies.com/torrentsuite

RATT: rapid annotation transfer tool http://ratt.sourceforge.net

2. Prokaryote annotation web servers

RAST http://www.nmpdr.org/FIG/wiki/view.cgi/FIG/RapidAnnotationServer

http://rast.nmpdr.org
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Program Website

CRISPRfinder http://crispr.u-psud.fr/Server/CRISPRfinder.php

Mreps http://bioinfo.lifl.fr/mreps/mreps.php

MicroScope https://www.genoscope.cns.fr/agc/microscope/home/index.php

BaSys https://www.basys.ca

PGAP http://www.ncbi.nlm.nih.gov/genome/annotation_prok/

Prokka http://www.vicbioinformatics.com/software.prokka.shtml

3. Eukaryote annotation web servers

NCBI pipeline http://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/

RepeatMasker http://www.repeatmasker.org/

Censor http://www.girinst.org/censor/

WindowMasker http://nebc.nerc.ac.uk/bioinformatics/docs/windowmasker.html

CEGMA tool http://korflab.ucdavis.edu/datasets/cegma/

BUSCO http://busco.ezlab.org

PASA http://pasapipeline.github.io

MAKER http://www.yandell-lab.org/software/maker.html

Babelomics http://www.babelomics.org

4. Archives and databases

DDBJ http://www.ddbj.nig.ac.jp

EMBL http://www.embl.org

GenBank http://www.ncbi.nlm.nih.gov/genbank/

REPBASE http://www.girinst.org

dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi

dbGAP http://www.ncbi.nlm.nih.gov/gap

Complete Genomics data http://www.completegenomics.com/public-data/

SRA http://www.ncbi.nlm.nih.gov/sra

OMIM http://www.ncbi.nlm.nih.gov/omim

COSMIC http://cancer.sanger.ac.uk/cosmic

ENCODE https://www.encodeproject.org

GTEx http://www.gtexportal.org

FANTOM http://fantom.gsc.riken.jp

Roadmap epigenomics http://www.roadmapepigenomics.org

Blueprint epigenomics http://www.blueprint-epigenome.eu

Regulome DB http://regulomedb.org
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Program Website

ExPASy proteomics http://www.expasy.org/proteomics/protein-protein_interaction

PRIDE proteomics http://www.ebi.ac.uk/pride/archive/

FAME metabolomics http://f-a-m-e.fame-vu.cloudlet.sara.nl

Metabolomexpress https://www.metabolome-express.org

MetaboAnalyst http://www.metaboanalyst.ca

AromaDeg http://aromadeg.siona.helmholtz-hzi.de

EGA phenome https://www.ebi.ac.uk/ega/home

GOLD https://gold.jgi-psf.org

MG-RAST https://metagenomics.anl.gov

ViralZone http://viralzone.expasy.org

UCNEbase UC elements http://ccg.vital-it.ch/UCNEbase/

UCbase 2.0 UC elements http://ucbase.unimore.it/

DEG database http://www.essentialgene.org

PhylomeDB http://phylomedb.org/

Compara GeneTrees http://asia.ensembl.org

TreeFam http://treefam.genomics.org.cn

PANTHER http://pantherdb.org

FATCAT http://phylogenomics.berkeley.edu

HOGENOM database http://doua.prabi.fr

5. Gene ontology databases and tools

Gene Ontology Consortium http://geneontology.org

OBBO http://www.obofoundry.org, http://obofoundry.github.io

Reactome http://www.reactome.org/

DAVID 6.7 https://david.ncifcrf.gov/

KEGG Pathway database http://www.genome.jp/kegg/pathway.html

6. Genome browsers, projects, and fourth tier providers

Kbase http://kbase.us/glossary/systems-biology/

Earth Microbiome Project http://www.earthmicrobiome.org

Terragenome Project http://www.terragenome.org

Tara Oceans Project http://ocean-microbiome.embl.de/companion.html

MetaHit project http://www.metahit.eu

Vertebrate Genome 10K http://genome10k.org

Human Microbiome http://hmpdacc.org
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Program Website

Personal Genome Project http://www.personalgenomes.org

1000 Genomes Project http://www.1000genomes.org

HapMap http://hapmap.ncbi.nlm.nih.gov/

UCSC browser https://genome.ucsc.edu

Ensembl browser http://www.ensembl.org

Jbrowse browser http://jbrowse.org

Web Apollo browser http://genomearchitect.org

NCBI mapview http://www.ncbi.nlm.nih.gov/projects/mapview/

NCBI resources http://www.ncbi.nlm.nih.gov/guide/all/ - tab-all_

KEGG http://www.genome.jp/kegg/

7. Optical mappers

BioNano mapper http://www.bionanogenomics.com

Whole-Genome Mapping http://opgen.com/genomic-services/what-is-whole-genome-mapping

8. NGS and bioinformatics software providers and biological databases

Omicsmap for NGS http://omicsmaps.com/

The NGS WikiBook http://en.wikibooks.org/wiki/Next_Generation_Sequencing_(NGS)

The Sequencing Marketplace http://allseq.com

Genomeweb https://www.genomeweb.com

Bioinformatic software http://seqanswers.com/wiki/Software/list

https://en.wikipedia.org/wiki/List_of_open-source_bioinformatics_software

http://bioinformaticssoftwareandtools.co.in

Bioinformatics Web http://www.bioinformaticsweb.net

Biological databases https://en.wikipedia.org/wiki/List_of_biological_databases

Applied Bioinformatics http://www.appliedbioinformatics.com.au

Table 3. Useful websites for NGS tools, browsers, portals, providers, and online databases.

8. Impact and applications of NGS: Opening the doors into the world of
“omics”

All hereditary information is contained within the structure, organization, and function of an
organism’s genome. The continual emergence of many new public bioinformatics databases
(Table 3) on the World Wide Web demonstrates and reflects the impact of NGS on the life
sciences and our need to constantly develop new methods to interrogate and decode hereditary
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information in and around DNA (or RNA for some viruses) and its nucleotide sequences
(http://www.bioinformaticsweb.net).

Although genomics is a relatively young field, arguably starting sometime between 1976 with
the publication of the bacteriophage MS2 RNA genome [111] and 1986 when the word ”ge‐
nomics” was first used [112], it already has made an enormous impact on the life sciences. The
term ”genomics” coined by Thomas Roderick in 1986 encompassed the structure and function
of genes, and comparative genomics elucidated the hereditary relationships and evolution
within and between different species [112]. Since the advent of NGS, the meaning of ”genom‐
ics” has been narrowed more towards mapping the structure and organization of genomes
and differentiating between de novo sequences, resequenced genomes, exonic or targeted
sequences, and metagenomic sequences. The other implied meanings of ”genomics” are
attributed now to the suffix “-omics,” added to integrated fields undertaken on a large or
genome-wide scale such as transcriptomics, haplomics, methylomics, epigenomics, proteo‐
mics, metabolomics, nutrigenomics, physiomics, evolomics, epidemiomics, systeomics,
personomics, multinomics, etc. [113]. Thus, NGS broadens our understanding of structural
and functional genomics through the concepts of “omics” to provide new insight into the
workings and meaning of genetic conservation and diversity of living things (http://
www.nature.com/omics/index.html). It is more than ever about how different organisms use
genetics and molecular biology to survive and reproduce with and without mutations, disease,
and diversity within their own life cycles and within their population networks and changing
environmental conditions.

8.1. Genomics

A detailed organizational analysis and an understanding of the full landscape of a genome are
possible only after de novo whole-genome shotgun sequencing and annotation has been
performed [11]. WGS has had an enormous impact on viral, bacterial, and archaeal genomics
[114–117]. Some of these successes are provided in the metagenomics section (see section 8.5).
Others have reviewed the impact of WGS and genomics on fungi [118, 119], algae [120], animals
[121, 122], and humans [10, 13, 123–127]. WGS has become increasingly easier, faster, and
cheaper because of technological improvements and the availability of hundreds of sequenced
genomes that can be used as references for annotation. Although it seems unlikely that the
genomes of all the 11 million extant worldwide species will ever be or need to be sequenced,
the genomic sequences for a large number of eukaryote species are already available for
scientific scrutiny, including the genomes of some endangered vertebrate species that may
need assistance in the management of their breeding and survival [122]. In 2009, an interna‐
tional consortium established the Genome 10K Project to sequence and analyze the complete
genomes of 10,000 vertebrate species (http://genome10k.org).

NGS has blasted human genomics into an exciting new era of genetic investigation geared
towards humanomics and disease (see section 8.9) and the management of an individual’s life
cycle and health issues by way of personal genomes or personomics [123]. Targeted or whole-
genome resequencing of individuals from within the same or different species is aimed to
detect and catalogue SNPs, mutations, and sequence variants such as indels, copy number,
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and structural variations [14–16]. PCR-based candidate gene and whole-exome analysis are
two widely used methods that can be performed with higher coverage and at much lower cost
than whole-genome resequencing. Genotyping HLA genes of humans for clinical diagnosis or
research by sequencing the entire gene [97, 128] or just the exons [129] is an example of targeted
resequencing to identify polymorphisms that are important in tissue or cell matching for
transplantation [130]. Exomics is targeted specifically towards coding genes and discovering
exonic mutations responsible for rare Mendelian disorders such as hearing loss, intellectual
disabilities, and movement disorders and for investigating common disorders such as heart
disease, hypertension, diabetes, and cancer [13, 123, 125], and many others that are listed at
the Online Mendelian Inheritance in Man (OMIM) database (Table 3, [49]). In contrast to WES,
WGS can assess alterations in the coding genes and the regulatory and noncoding regions [123,
126], especially multiallelic copy number variations [127]. Cancer research has shown that it
is important to target all types of somatic/germ-line genetic alterations, including nucleotide
substitutions, small insertions and deletions (indels), CNVs, and chromosomal rearrange‐
ments in the noncoding regions [13, 15, 123]. WGS has been used to identify variants, indels,
and multiple numbers of genes involved in rare and common diseases such as Charcot-Marie-
Tooth neuropathy, dopa-responsive dystonia, acquired essential thrombocytosis, erythrocy‐
tosis, and many others [123, 126].

8.2. Transcriptomics and RNA sequencing

RNA-seq is the NGS method that sequences the transcriptome, that is, all the RNA transcript
sets expressed by the genome in cells, tissues, and organs at different stages of an organism’s
life cycle [12, 18, 19, 20, 30]. High-throughput RNA sequencing using cDNA fragments was
first employed in mammalian cells [131] and yeast [132], and now it is used for a wide range
of organisms [133]. Without transcriptome data, the genome sequence alone is of limited use
for understanding the intricacies of genome function in biology. RNA-seq provides technical
reliability and sensitivity and unambiguous maps of the transcribed regions of the genome
with high accuracy in quantitative expression levels, identification of tissue-specific transcript
variants and isoforms (SNPs and mutations), transcription boundaries and splicing events,
transcription factors, and small and large noncoding RNAs (ncRNA) involved in the regulation
of gene expression [131–137].

At least 90% of the mammalian genome is actively transcribed to produce different classes of
ncRNAs [135, 136], including ribosomal RNA (rRNA), transfer RNA (tRNA), microRNA
(miRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), small interfering
RNA (siRNA), PIWI-interacting RNA (piRNA), and large intergenic noncoding RNA (lincR‐
NA) [138–141] and retrotransposons [142–146]. The known classes of functional ncRNAs
consists largely of those supporting protein translation (ribosomal, transfer, and small
nucleolar RNAs), transcript splicing (snRNAs) [137, 138], and miRNA that target conserved
binding sites of mRNAs to decrease their stability [139]. The new class of small piRNA was
discovered to interact with PIWI regulatory proteins and RNA to silence transposons in the
germ line and regulate gene expression in the soma [140]. The lincRNAs are expressed by a
different class of actively transcribed RNA genes and they have diverse roles in processes such
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as cell cycle regulation, immune responses, brain processes, and gametogenesis [147–150]. A
substantial fraction of lincRNAs binds to chromatin-modifying proteins and may modulate
gene expression by bringing together protein complexes for specific functions [150].

Defective splicing of transcripts and expression levels are believed to contribute to at least 50%
of inherited human diseases [151]. Altered expression levels of specific isoforms or alleles have
been identified in ischemic stroke, type 2 diabetes, colorectal cancer, chronic lymphocytic
leukemia, and many other diseases [30]. Dysregulation of gene expression, splicing, and other
editing events in specific cell types have been associated also with the pathogenesis of
cardiovascular diseases, neurological disorders, and different cancers [137, 151–153]. Similarly,
different classes of small and large ncRNAs have been found to be associated with different
diseases and cancers [147–149]. The expressed information of the transcriptome varies
enormously between different cells of a multicellular organism and depends on the cell type
and its functional and temporal state. At least two important databases, the Encyclopedia of
DNA Elements (ENCODE) and Genotype-Tissue Expression (GTEx) (Table 3), have focused
on mapping functional elements at high resolution and the regulation of gene expression and
the transcriptome in different tissues of humans. The GTEx project is one of the most recent
projects that have generated a large amount of RNA sequence data by RNA-seq technology to
investigate the patterns of transcriptome variation across 43 tissues and 1641 samples from 175
postmortem individuals [153]. The analysis included 20,110 protein-coding genes and 11,790
lncRNAs with 88% and 71%, respectively, detected in at least one sample. A relatively small
number of genes (a few hundred) were expressed for most tissues with a definite, differential
modular profile showing tissue-preferential expression. In addition, 3,046 protein-coding
genes were expressed together with an adjoining repeat element such as Alu, L1, ERV, Tigger,
and Charlie [153]. These findings provide a better systematic understanding of the heteroge‐
neity among a diverse set of human tissues and the enormous complexity and variation
involved in the regulation of genome expression.

8.3. Methylomics and epigenomics

Epigenomics is the study of heritable gene regulation that does not involve the DNA nucleotide
coding sequence itself but acts on a genome-wide scale via DNA nucleotide methylation and
posttranslational modifications of histones, the interaction between transcription factors and
their targets, and nucleosome positioning [23–30]. Methylomics is the genome-wide analysis
of DNA methylations and their effects on gene expression and heredity [28]. Methyl-seq uses
NGS to analyze and map DNA cytosine methylation at single-base resolution usually by
employing bisulfite DNA sequencing [24, 25]. Treatment of genomic DNA with sodium
bisulfite converts cytosines but not methylcytosines to uracils so that the uracils are PCR
converted and sequence differentiated at the SNP locations as thymidines and the methylcy‐
tosines are sequenced as cytosines. Bisulfite DNA sequencing is used widely for DNA
methylation profiling in various organisms as well as humans for assessing disease genes [23,
27, 29].

ChIP-seq is chromatin immunoprecipitation (ChIP) that is followed by NGS sequencing. It
permits genome-wide profiling of DNA-binding proteins and histone and nucleosome

Next-Generation Sequencing — An Overview of the History, Tools, and “Omic” Applications
http://dx.doi.org/10.5772/61964

27



modifications [30]. The ChIP-seq technology was partly adapted from microarray ChIP-chip
technology and first implemented in 2007 and since then has been used widely to analyze
transcription factor binding sites, histone modifications, and chromatin-modifying complexes
and sequences in a wide variety of organisms [154]. ChIP-seq provides higher resolution, less
noise, and greater coverage than the array-based ChIP-chip method that was previous used,
and therefore, it has become the preferred tool for studying gene regulation and epigenetic
mechanisms. Two other NGS tools commonly used for epigenetic studies are Hi-C and ChIA-
PET that provide insights into the global 3D organization of eukaryote genomes [30]. Hi-C
utilizes NGS on cross-linked DNA fragments to identify the DNA regions such as promoters,
enhancers, and insulators that come together to mediate their regulatory activities. ChIA-PET
uses immunoprecipitation of crosslinked-interacting protein-DNA and paired-end sequenc‐
ing to reveal the interaction between enhancer and promoter regions located at intergenic
distances away from each other but either on the same (cis) or different (trans) chromosomes
[30]. de Wit and de Laat [155] provided an overview of the various derived chromosomal
conformation capture (3C) methods, including 4C (chromosome conformation capture-on-
chip) and 5C (chromosome conformation carbon copy) and their application in the study of
chromatin interactions. Two epigenomic databases on the Internet, the NIH Roadmap
Epigenomics Project and Blueprint (Table 3), catalogue the chemical modifications to the
genome and how they activate gene expression in human tissues and cell types.

8.4. Proteomics, metabolomics, and systeomics

Proteomics is the large-scale study of the structure, function, identification, and characteriza‐
tion of peptides and proteins [113, 156, 157]. This includes information on protein abundance,
variations and polymorphisms, modifications, and their interactions and networks in cellular
processes. As a first step, the sequence translation of open reading frames of genomes, exons,
and transcripts using a codon table and one or more bioinformatics tools is the simplest way
of constructing proteomic profiles from NGS data. However, this is not the only analytical
protocol used in the domain of proteomics, and protein specialists often employ a variety of
other hardware and software tools to build up an organism’s peptide and protein profiles.
Among these are the detection and analysis of proteins and their functions by two-dimensional
polyacrylamide gels, liquid chromatography coupled with tandem mass spectrometry,
affinity-tagged proteins, and yeast two-hybrid assays [156, 157]. A number of public databases
for proteomics and protein-protein interactions are available on the Internet such as ExPASy
and PRIDE (Table 3).

Metabolomics is the study of an organism’s total metabolic response to an environmental
stimulus or a genetic modification [113]. The metabolomics of organisms are drawn indirectly
from NGS data, mainly from the known functions of enzymes and proteins involved in
metabolic and biochemical pathways. Metabolomics data also provide biochemical and
physiological snapshots of processes that are obtained from cellular and tissue experimental
studies using various technologies of separation (gas chromatography, high-performance
liquid chromatography, and capillary electrophoresis) and detection (mass spectrophotome‐
try, NMR spectrometry, ion mobility, and thin-layer chromatography) [158]. Metabolomics is
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an important part of functional genomics for determining the phenotypic effects of genetic
manipulations such as gene deletions, insertions, and mutations. Nutrigenomics is an arm of
metabolomics that links genomics, transcriptomics, proteomics, metabolomics, and microbio‐
mics together in an examination of the effects of nutrition and energy metabolism on gene
expression in relation to an organism’s genotype [113, 159]. The use of constraint-based
methods such as the Flux Balance Analysis to design models of metabolite flow in microbes
has connected ”omic” to phenotypes in the science of Fluxomics [160]. Some web-based
metabolomic resources include FAME, AromaDeg, Metabolomexpress, and MetaboAnalyst
(Table 3).

Systeomics is the integration of genomics, proteomics, metabolomics, and phenomics into a
single network system. It is a branch of biology that uses computational techniques to analyze
and model how the components of a biological system such as cells or organisms interact with
each other to produce the characteristics and behavior of that system [160–162]. Systeomics is
a biology-based interdisciplinary field applied to biomedical and biological scientific research
that focuses on complex interactions within biological systems using a holistic approach. For
example, the U.S. Department of Energy’s Genomic Science program uses microbial and plant
genomic data, high-throughput analytical technologies, and modeling and simulation to
develop a predictive understanding of biological systems behavior relevant to solving energy
and environmental challenges (http://doegenomestolife.org). The U.S. Department of Energy
Systems Biology Knowledgebase (KBase) is a software and data platform for systems biology
mechanisms (Table 3) to assist with the prediction and design of biological functions of
microbes and plants. KBase integrates data, tools, and their associated interfaces into one
unified, scalable environment to allow users to upload their own data for analysis, to build
models, and to share and publish their workflows and conclusions. Another example is the
Kyoto Encylopedia of Genes and Genomes (KEGG), which is a database resource to integrate
high-level functions and utilities of biological systems from molecular-level information (Table
3). Other “omics” that contribute to the ”omic” lexicon and biology are epidemiomics [163],
physionomics [113], variomics [164], and phenomics [165–167]. In the case of phenomics, the
European Genome-phenome Archive (EGA) provides accession numbers that refer to the
relationship between genomics and phenotype/traits, such as the physical and biochemical
traits of humans (Table 3). It integrates physical traits or phenotypes with genomics, tran‐
scriptomics, methylomics, proteomics, and metabolomics [166].

8.5. Metagenomics and microbiomes

Metagenomics, or beyond genomics, is the study of the total genomic content of a microbial
community that bridges the three domains of life, Archaea, Bacteria, and Eukaryotes [100, 114–
118, 168–179]. The total DNA and/or RNA is isolated from a microbial population without
prior cultivation, sequenced, and compared with previously known sequences to identify
known species or to discover previously unknown species. Some of the environments from
which microbial communities are isolated and studied include aquatic and terrestrial envi‐
ronments, host-associated ecosystems, and various human engineered systems such as those
involved with food, water, and waste production, agriculture, animal husbandry, and various
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human and animal habitations [100, 115, 168, 169]. Hospitals are a worrying source of patho‐
genic microorganisms, especially those that develop resistance to commonly used medical
antibiotics [115, 168]. Thus, NGS is an important growing application for epidemiological
studies of various pathogens, such as mycobacteria, S. aureus, E. coli, cholera, influenza, HIV,
Ebola virus, etc. [169–171]. The Earth Microbiome Project (http://www.earthmicrobiome.org)
is an ambitious multidisciplinary attempt to analyze microbial communities across the globe
using approximately 500,000 reconstructed microbial genomes.

The earliest metagenomic studies targeted 16S rRNA genes to genotype and identify the
different species within the environment before the first NGS microbial studies using the Roche
pyrosequencing and Illumina platforms targeted mining sites and the surface waters of the
gulfs, seas, and oceans [114, 169]. Many big projects and consortia for sequencing metagenomes
have been launched in the past 10 years, such as the TerraGenome project for soils (Table 3)
and the Tara Oceans project on the microbiome, eukaryotic plankton, and viromes of the global
oceans [172–174].

Microbes colonize the human body (microbiome) in numbers that are estimated to outnumber
human genes and somatic cells by more than 100-fold [175]. These microbes (viruses, prokar‐
yotes, and eukaryotic microbes) occupy various anatomical habitats including gut, skin,
vagina, and oral mucosa and are believed to markedly influence human physiology, nutrition,
and health [175–177]. Advances in NGS and computing methods have enabled human
microbiome studies such as the MetaHit project and the Human Microbiome Project (HMP)
(Table 3). In May 2015, SRA that was established by NCBI in 2008 to store raw sequence data
from the NGS technologies had over 2,068 trillion open access nucleotides in its database to
massively outgrow GenBank, EMBL, and DDBJ for bacterial sequence storage. The genomic
sequences continue to accumulate in other databases as well [114], such as 47,083 prokaryotic
genomes projected for Genomes Online Database (GOLD) [178] and 152,927 metagenomes for
the MG-RAST server [179]. As of October 2014, the GOLD database contained 544 metage‐
nomics studies associated with 6726 metagenome samples, whereas MG-RAST held 150,039
metagenomic samples, of which 20,415 were publicly available (Table 3). Recently, Zelezniak
et al. [180] gathered and modeled NGS 16S rRNA sequence data to map interspecies metabolic
exchanges and resource competition based on the genomic potential encoded by the microbial
communities. They analyzed more than 1,297 communities and 261 species in soil, water, and
human gut samples and concluded that the interplay between competitive and cooperative
strategies for resources and the ability to exchange metabolites, such as amino acids and sugars,
shapes the composition of microbial communities.

8.6. Comparative genomics, phylogenomics, and the phylomes of life

Comparative  genomics  and phylogenomics  via  NGS and the  phylome (complete  collec‐
tion of all gene phylogenies in a genome) provide powerful applications for classifying and
understanding the  differences  and similarities  of  all  life  forms and for  unraveling  their
evolutionary histories  [100,  116,  176,  181–186].  The three basic  domains of  life,  Bacteria,
Archaea, and Eukarya, were first identified and classified phylogenetically on the basis of
ribosomal RNA sequences [181]. Although Bacteria and Archaea are both placed into the
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kingdom of  the  Prokaryotes  or  Monera  (lacking a  membrane-bound nucleus,  mitochon‐
dria,  and chloroplasts but containing a cell  wall),  their separate rRNA sequence clusters
clearly  divided  them  into  distinct  domains  [181].  The  Eukarya  (eukaryotes)  have  been
subdivided into four basic kingdoms, Protista, Fungi (Mycota), Plantae (Metaphyta), and
Animalia (Metazoa) [182]. However, on the basis of metagenomic and phylogenomic studies
and NGS data, the classifications and nomenclatures of eukaryotes continue to be revised
and organized into other supergroups such as Amoebozoa, Opsthokonta, Ecavata, Archae‐
plastida (Plantae),  SAR (Stra/Alveo/Rhizaria),  and Incertae sedis [183,  184].  On the other
hand, because viruses do not have rRNA genes,  they have missed out on a life-domain
classification [185, 186]. There is still a strong debate about whether or not viruses without
rRNA genes should be classified as a separate life form (a fourth domain) or simply be
viewed as exogenous parasites, infectious agents, and endogenous mobile elements that are
dependent on and exist within the life forms of the three defined domains [185, 186]. Viruses
impact  greatly  on  all  life  forms,  so  they  are  a  major  interest  for  NGS applications  and
phylogenomics [34, 114, 174, 187–189], especially emerging viruses such as dengue, Ebola,
Chikungunya, MERS, lyssavirus, and norovirus (http://viralzone.expasy.org), which are of
a great concern to human health [114, 171, 189].

NGS, phylogenomics, and taxonomy profiling during the past decade has greatly expand‐
ed our knowledge of the diversity of bacterial genomes from the same and different species
[116,  190],  with  the  discovery  of  many  DNA  sequence  repeats  and  transposons  that
contribute to at least 10% of the genome and play an important role in immunity [100, 191].
Archaea and thermophiles have a large proportion of their genomes consisting of defense
genes often localized in genomic islands as a consequence of horizontal gene transfers [191,
192]. For example, the family of clustered regularly interspaced short palindromic repeats
(CRISPRs) and the CRISPR-associated proteins in the CRISPR-Associated System (CAS) that
have an important role in the host’s adaptive immunity to pathogens and as responders to
environmental stress [192–194] have been translocated between different prokaryote strains
and species [191, 192]. CAS includes distinct gene families of 50 or more that show strong
evidence  of  extensive  plasticity  and horizontal  gene  transfer  to  protect  prokaryote  cells
against the replication of phage and plasmids that integrate into the CRISPR locus [193–
195].  Moreover,  the CRISPR/CAS systems have been developed as an “in vitro” genetic
engineering tool to be transfected into the cells of various organisms to manipulate their
genes [196], including the foreign defense system introduced into human cells against HIV-1
infection [197].  Other bacterial  defense systems that have been studied or discovered by
NGS  include  the  toxin/anti-toxin,  antigen,  novel  restriction-modification,  and  DNA
phosphorathioation systems as well as those involved with infection-induced dormancy or
programmed  cell  death  [192].  Genomic  sequencing  also  has  revealed  new  bacterial
microcompartments, protein structures, or organelles that are used in metabolic pathways
[198], such as those involved in carbon fixation and metabolism of amino alcohols, ethanol,
rhamnose, and fucose [199]. Bacterial genomes also provide sequences for phylogenetic and
gene comparisons, taxonomic classification, transcriptomics, and methylomics and for the
assessment  of  sequence  diversity  and variants  for  a  better  understanding of  gene  func‐
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tions [100]. Although the classical operon structure predominates in bacteria and archaea,
a variety of other transcription unit  architectures have been elucidated [100].  More than
4,661 transcription units have been described with an average of 1.7 promoters per operon,
and transcription factor binding sites have been determined for virtually all the transcrip‐
tion factors in E. coli [100]. DNA methylation was first discovered in bacterial restriction-
modification systems with diverse functions in addition to cellular defense [200], and it is
now seen as an evolutionarily conserved form of transcriptional repression and an ancestral
form of defense against foreign DNA molecules and transposons and other mobile elements
in all life forms [201].

Phylogenomics has been used to reevaluate the evolutionary affiliation between archaea
and  eukaryotes  and  to  infer  that  the  nuclear  lineage  in  eukaryotes  emerged  from  the
archaeal radiation and most probably from the archaeal TACK superphylum [202]. Recently,
Spang et al. [203] sequenced uncultivated metagenomes from a deep-sea vent and discov‐
ered novel archaeal genomes in the new phylum that they named ”Lokiarchaeota.” These
novel  archaea  contain  homologues  of  many  eukaryotic  proteins  that  function  in  the
endomembrane system and in phagocytosis, including actin and related proteins, and Ras
superfamily GTPases, suggesting that this newly discovered phylum is the missing link in
eukaryogenesis.  Although  eukaryotes  possess  the  membrane-enclosed  mitochondrial
organelle and prokaryotes do not, the eukaryotic mitochondria are believed to have evolved
from a bacterial system, probably by endosymbiosis [204] involving an ancestor within the
bacterial  phylum  Alphaproteobacteria  [205].  Although  mitochondrial  phylogenomics
suggests a monophyletic origin and assemblage, it  is now evident that the mitochondria
are genetic chimeras and functional mosaics with the bulk of the mitochondrial proteome
originating during eukaryote evolution outside the Alphaproteobacteria and other bacteri‐
al phyla. It seems that the mitochondrial genome has expanded and contracted in various
lineages  during  evolution  with  much  of  the  original  mitochondrial  genetic  information
transferred to the nucleus [205]. Eukaryotic diploid cells appear to have evolved 2 billion
years after haploid prokaryotes,  and their evolution from proto-eukaryotic cells,  such as
the multinucleated Giardia organism [206], seems to have involved chromosomal crossing
over  from mitotic  recombination  to  meiosis  and  to  sexual  reproduction  where  a  set  of
chromosomes is inherited from each parent [207]. The genomes of diploid eukaryotes are
usually  larger  than  those  in  haploid  prokaryotes  probably  because  greater  information
complexity is needed by multicellular organisms to regulate and coordinate the multiple
stages of their life cycles with the added requirement for more molecular regulatory systems
to communicate and interact between multiple tissues and organs [206].

Eukaryotic genomes vary markedly in size and gene number and appear to be variable in
their susceptibility to polyploidy (a doubling of the diploid sets of chromosomes), redundan‐
cy, duplication, and the persistent accumulation of interspersed repeats and mobile elements
[208–210]. For example, the genomes of plants can range from the simplest like Ostreococ‐
cus tauri  with a 12.6 Mb genome, containing less than 8,000 genes and minimal genome
duplication [211], to the highly complex such as the canopy and pale-petal flowering plant
Paris japonica, with a 150 Gb genome and eight sets of chromosomes derived by allopolyploi‐

Next Generation Sequencing - Advances, Applications and Challenges32



tions [100]. Although the classical operon structure predominates in bacteria and archaea,
a variety of other transcription unit  architectures have been elucidated [100].  More than
4,661 transcription units have been described with an average of 1.7 promoters per operon,
and transcription factor binding sites have been determined for virtually all the transcrip‐
tion factors in E. coli [100]. DNA methylation was first discovered in bacterial restriction-
modification systems with diverse functions in addition to cellular defense [200], and it is
now seen as an evolutionarily conserved form of transcriptional repression and an ancestral
form of defense against foreign DNA molecules and transposons and other mobile elements
in all life forms [201].

Phylogenomics has been used to reevaluate the evolutionary affiliation between archaea
and  eukaryotes  and  to  infer  that  the  nuclear  lineage  in  eukaryotes  emerged  from  the
archaeal radiation and most probably from the archaeal TACK superphylum [202]. Recently,
Spang et al. [203] sequenced uncultivated metagenomes from a deep-sea vent and discov‐
ered novel archaeal genomes in the new phylum that they named ”Lokiarchaeota.” These
novel  archaea  contain  homologues  of  many  eukaryotic  proteins  that  function  in  the
endomembrane system and in phagocytosis, including actin and related proteins, and Ras
superfamily GTPases, suggesting that this newly discovered phylum is the missing link in
eukaryogenesis.  Although  eukaryotes  possess  the  membrane-enclosed  mitochondrial
organelle and prokaryotes do not, the eukaryotic mitochondria are believed to have evolved
from a bacterial system, probably by endosymbiosis [204] involving an ancestor within the
bacterial  phylum  Alphaproteobacteria  [205].  Although  mitochondrial  phylogenomics
suggests a monophyletic origin and assemblage, it  is now evident that the mitochondria
are genetic chimeras and functional mosaics with the bulk of the mitochondrial proteome
originating during eukaryote evolution outside the Alphaproteobacteria and other bacteri‐
al phyla. It seems that the mitochondrial genome has expanded and contracted in various
lineages  during  evolution  with  much  of  the  original  mitochondrial  genetic  information
transferred to the nucleus [205]. Eukaryotic diploid cells appear to have evolved 2 billion
years after haploid prokaryotes,  and their evolution from proto-eukaryotic cells,  such as
the multinucleated Giardia organism [206], seems to have involved chromosomal crossing
over  from mitotic  recombination  to  meiosis  and  to  sexual  reproduction  where  a  set  of
chromosomes is inherited from each parent [207]. The genomes of diploid eukaryotes are
usually  larger  than  those  in  haploid  prokaryotes  probably  because  greater  information
complexity is needed by multicellular organisms to regulate and coordinate the multiple
stages of their life cycles with the added requirement for more molecular regulatory systems
to communicate and interact between multiple tissues and organs [206].

Eukaryotic genomes vary markedly in size and gene number and appear to be variable in
their susceptibility to polyploidy (a doubling of the diploid sets of chromosomes), redundan‐
cy, duplication, and the persistent accumulation of interspersed repeats and mobile elements
[208–210]. For example, the genomes of plants can range from the simplest like Ostreococ‐
cus tauri  with a 12.6 Mb genome, containing less than 8,000 genes and minimal genome
duplication [211], to the highly complex such as the canopy and pale-petal flowering plant
Paris japonica, with a 150 Gb genome and eight sets of chromosomes derived by allopolyploi‐

Next Generation Sequencing - Advances, Applications and Challenges32

dy and hybridization of four species [212]. The genomic size of Paris japonica,  which has
still to be fully sequenced, is 50 times larger than the human genome and extends the range
of genome sizes to 2,400-fold across angiosperms and 66,000-fold across eukaryotes [212].
Genome  duplication  and  polyploidy,  both  recent  and  ancient,  have  contributed  to  the
considerable genomic complexity in eukaryotes, particularly in plants, amoeba, fungi, and
vertebrates [208–223]. Following ancient polyploidization, most duplicated genes are deleted
by  intrachromosomal  recombination,  a  process  referred  to  as  fractionation,  and  any
remaining evidence for the polyploidy event is not easy to find by phylogenomic analy‐
sis  [214].  Nevertheless,  a  phylogenomic  comparison  of  gene  duplications  in  a  four-way
comparison of paralogous regions in tunicate, fish, mouse, and human provided unmistak‐
able  evidence  of  two  distinct  genome  duplication  events  (the  2R  event)  early  in  verte‐
brate evolution and before the divergence of fish and mammalian lineages [215], as was
proposed by Ohno in 1970 [216]. Interestingly, polyploidy also can occur in humans during
normal development and cancer [208, 209]. Fetal polyploidy in the form of triploidy (69,XXX
chromosomes) and tetraploidy (92,XXXX chromosomes) is a rare and lethal event, result‐
ing in spontaneous abortions or brief postpartum survival times [208], whereas polyploi‐
dy is common in stressed tissues and cells and in tumor development [208, 209]. On the
other hand, comparative genomic studies have revealed that polyploidy is common in the
evolutionary history of many different flowering plants [208, 214],  for example, between
different species of the allopolyploid tobacco plants, Nicotiana  section Repandae [217]. In
comparing the allotetraploid genomes of Nicotiana repanda and Nicotiana nudicaulis, it was
assessed that the loss of low-copy sequences along with the loss of duplicate copies of genes
and upstream regulators reflects genome diploidization, whereas genome size divergence
between the allopolyploids is manifested through differential accumulation and/or deletion
of  high-copy-number  sequences  and  transposable  elements  [217].  Diploidization  and
genome size change in Nicotiana allopolyploids is associated with differential dynamics of
low- and high-copy sequences [218]. The induction of polyploidy is a common technique
to  overcome  the  sterility  of  a  hybrid  species  during  plant  breeding;  therefore,  many
agriculturally important plants such as the genus Brassica are polyploids [219-221]. Wheat,
after millennia of hybridization and modification by humans, has strains that are diploid
(2  sets  of  chromosomes),  tetraploid  (4  sets  of  chromosomes),  and  hexaploid  (6  sets  of
chromosomes) [222, 223], whereas the invasive weed Spartina anglica has up to 12 sets of
chromosomes [224].

A recent comparative genomic study has revealed how genomes change with speciation in an
examination of genomes from five cichlid fish species, an ancestral lineage from the Nile, and
four species from the East Africa lakes, Tanganyika, Malawi, and Victoria [225]. Compared to
the ancestral Nile lineage, the East African cichlid genomes had many alterations in regulatory
elements, accelerated evolution of protein-coding elements in genes for pigmentation, an
excess of gene duplications, and other distinct features that affect gene expression associated
with transposable element insertions and novel microRNA. Each species contains a reservoir
of mutations different from the other species [225]. Much of the diversity between species
evolves in a nonparallel manner often rapidly due to sexual selection and genetic conflicts
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between males and females and between different regions of the genome at a regulatory level
rather than by the slower and weaker forces of classical natural selection [226].

Most genomes range between newly derived genes and the ultraconserved or the essential
core coding and noncoding genes [100, 227, 228]. Comparative genomics has resulted in the
discovery of ultraconserved noncoding elements (UCNE) across different phyla, starting with
481-long segments (>200 bp) that are 100% conserved between orthologous regions of the
human, rat, and mouse genomes and 95% to 99% conserved in chicken and dog genomes [229].
A more recent comparison of 28 vertebrate genomes identified millions of additional con‐
served elements with distinct types of functional elements including regulatory motifs present
in the promoters and untranslated regions of coregulated genes, insulators that constrain
domains of gene expression, and conserved secondary structures in RNAs and in develop‐
mental regulators [230]. A webpage at http://ultraconserved.org provides study protocols,
computer software, and references dedicated to ultraconserved elements [229]. Also, there are
at least two databases for the conserved noncoding elements and the genomic regulatory
blocks (Table 3), the UCNEbase for human and chicken [231], and the UCbase 2.0 for the 481
UCNE that were longer than 200 bp and that were discovered in the genomes of mammals
[229]. The UCNEbase suggests that the evolution of species depends more on innovation and
change in regulatory sequences than in proteins [231]. Indeed, there are essential genes that
are indispensable for the survival of an organism and therefore are considered a foundation
of life. The database of essential genes (DEG) (Table 3) catalogues known essential genomic
elements, such as protein-coding genes and noncoding RNAs, within the bacteria, archaea,
and eukaryotes that constitute a minimal genome and are useful for annotating newly
sequenced genomes [232].

Phylomes provide the combined analysis of genome-wide collections of phylogenetic trees to
aid in the inference of orthological and paralogical relationships and the detection of evolu‐
tionary events such as whole-genome duplication (polyploidization), gene family expansion
and contraction, horizontal gene transfer, recombination, inversion, and incomplete lineage
sorting [233, 234]. The online PhylomeDB v4 database was created as a phylogenomic reposi‐
tory and is useful for preliminary phylogenetic data analysis of genomes of interest from
various phyla as well as for annotating newly derived genomic sequences [234]. As an example,
Fig. 1 shows the PhylomeDB analysis of the duplications of the RLTPR gene, a gene that was
first discovered in humans in 2004 [235]. The PhylomeDB analysis shows that the RLTPR gene
has two paralogs, LRRC16B and LRRC16, which were generated by two separate duplication
events at least prior to the divergence of mice and humans (Fig. 1). The functions of RLTPR
are not well characterized, but its distinct functional domains suggest that it may multitask in
protein-protein interactions, as recently demonstrated in the development of regulatory T cells
in mice [236]. The analytical approach to find orthologous and paralogous relationships with
maximum genomic coverage for the RLTPR gene is both gene-centric and genome-wide in
PhylomeDB. Also of particular interest are the well-conserved genomic mechanisms of innate
immunity, such as Apolipoprotein B Editing Catalytic subunit proteins 3 (APOBEC3s) in
mammals that mutate and inactivate viral genomes [237]. Other phylogenetic databases that
complement PhylomeDB in a comparative analysis are Ensembl Compara GeneTrees,
TreeFam, PANTHER, PhyloFacts FATCAT, and the HOGENOM database (Table 3).
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Figure 1. RLTPR gene tree shows the RLTPR gene orthologs and paralogs in 10 vertebrate species. The human gene
RLTPR (NCBI Gene ID: 146206), first reported in 2004 [235], was used as the search query for the Phylome tree at
http://phylomedb.org with the phylome data settings of AS seed in (Qf0) mouse phylome (2) and JTT (lk:-27586.1). The
tree shows the speciation events (blue squares) and three duplication events (red squares) at the nodes with the first
duplication event arising early in vertebrate evolution before the divergence of fish and mammalian lineages [215].

8.7. Mobilomics and Horizontal Gene Transfer (HGT)

The science of mobile genetic elements (mobilomics) developed long before the advent of
genomics and NGS [238]. The 1983 Nobel Prize winner Barbara McClintock first reported the
existence of mobile elements as jumping genes in maize in the late 1940s [239]. The discovery
of new classes and families of DNA transposons and autonomous and nonautonomous
retrotransposons continued slowly for the next five decades until the first online repeat
element screening webserver CENSOR and database REPBASE (Table 3) was established by
Jerzy Jurka and his colleagues between 1992 and 1996 [240, 241]. Since then, RepeatMasker
(Table 3) and other tools such as Mobster [242], Red [243], and Visual TE [244] have followed
on to help define the mobilome, the totality of mobile genetic elements in a particular genome.
A list and description of some of the families, types, and classes of transposons and retro‐
transposons in prokaryotes and eukaryotes can be found in the following reviews [238, 245–
251]. A recent survey of repeats and mobile elements that affect genomic stability has eluci‐
dated how some bacteria can control the mobilome through postsegregation killing systems
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[192–195, 247]. Different classes of TEs are found in the genomes of different eukaryotes that
contribute to at least 50% of the human genome [237] and up to 90% of the maize genome [252].
In humans, there are solitary Long Terminal Repeats (LTR) and LTR retrotransposons
(endogenous retroviruses) that are characterized by the presence of LTR at both ends; Long
Interspersed Nuclear Elements (LINEs) like L1 that represent families of non-LTR TEs about
6 kb in length and encode two proteins, a nucleic acid chaperone, and a reverse transcriptase/
nuclease for retrotransposition; Nonautomomous Miniature Inverted-Repeat Transposable
Elements (MITEs); Mammalian-wide Interspersed Repeats (MIRs), an ancient family of tRNA-
derived SINEs exapted as enhancers and regulatory sequences; and Short Interspersed Nuclear
Elements (SINEs) like Alu that are usually less than 300 bp and need a helper transposon
element like L1 for transposition [245]. Most ERVs, SINEs, and LINEs in the human genome
are now remnants of past insertions and are no longer capable of actively ”jumping” like
functional TEs [238, 245, 248]. Indeed, many of the TE ancient relics have undergone exaptation
and developed new functions, such as transcript repeat elements, within regulatory gene
networks to generate lineage-specific adaptation [145, 249].

The importance of widespread HGT in creating genomic diversity in microbes has been
highlighted  by  the  many  comparative  genomic  studies  using  metagenome  data  [191].
Comparative genomic analysis of different strains of E. coli revealed that up to 30% of genes
in  pathogenic  strains  were  acquired  by  HGT  often  creating  duplication  events  and
modifying metabolic networks by adding operons that encode two or more enzymes [253].
Comparative genomics of photosynthetic prokaryotes revealed that they have evolved as
complex mosaics via multiple HGT events [254]. Similarly, photosynthetic gene clusters and
gene clusters  that  encode various toxins,  resistance genes,  metabolic  genes,  and compo‐
nents of secretion systems appear to be the products of HGT [247, 253–255]. Indeed, many
HGT events probably were mediated by genomic mobile elements, such as bacteriophag‐
es,  plasmids,  viruses,  transposable elements,  and toxin/antitoxin systems that  are persis‐
tent in all life forms [191, 228, 246, 255, 256].

Before the new millennium, transposons and repeat elements were largely viewed as junk and
as parasites that created unnecessary burden on the genome. Comparative genomics and
online databases dedicated to transposons and repeat elements such as SINES, LINES, and
ERVs, however, began to change this picture in the 1990s, and it soon became evident that
these elements were the drivers of evolutionary innovation. Many integrated transposons
mutate with time to interact with the host transcriptional machinery and therefore provide a
useful substrate for evolution of novel regulatory elements [145, 228, 255–258]. Moreover, some
of the ancient integrated retrotransposons appear to have been involved in advantageous
segmental genomic duplications such as in the major histocompatibility complex region [259–
261], and others have dispersed regulatory controls to provide coordinated regulation across
the genome [257, 258].

8.8. Agrigenomics

Agrigenomics or agricultural genomics can be defined as the research and development
activities that translate NGS and genomics technology into a better understanding of plant
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nuclease for retrotransposition; Nonautomomous Miniature Inverted-Repeat Transposable
Elements (MITEs); Mammalian-wide Interspersed Repeats (MIRs), an ancient family of tRNA-
derived SINEs exapted as enhancers and regulatory sequences; and Short Interspersed Nuclear
Elements (SINEs) like Alu that are usually less than 300 bp and need a helper transposon
element like L1 for transposition [245]. Most ERVs, SINEs, and LINEs in the human genome
are now remnants of past insertions and are no longer capable of actively ”jumping” like
functional TEs [238, 245, 248]. Indeed, many of the TE ancient relics have undergone exaptation
and developed new functions, such as transcript repeat elements, within regulatory gene
networks to generate lineage-specific adaptation [145, 249].

The importance of widespread HGT in creating genomic diversity in microbes has been
highlighted  by  the  many  comparative  genomic  studies  using  metagenome  data  [191].
Comparative genomic analysis of different strains of E. coli revealed that up to 30% of genes
in  pathogenic  strains  were  acquired  by  HGT  often  creating  duplication  events  and
modifying metabolic networks by adding operons that encode two or more enzymes [253].
Comparative genomics of photosynthetic prokaryotes revealed that they have evolved as
complex mosaics via multiple HGT events [254]. Similarly, photosynthetic gene clusters and
gene clusters  that  encode various toxins,  resistance genes,  metabolic  genes,  and compo‐
nents of secretion systems appear to be the products of HGT [247, 253–255]. Indeed, many
HGT events probably were mediated by genomic mobile elements, such as bacteriophag‐
es,  plasmids,  viruses,  transposable elements,  and toxin/antitoxin systems that  are persis‐
tent in all life forms [191, 228, 246, 255, 256].

Before the new millennium, transposons and repeat elements were largely viewed as junk and
as parasites that created unnecessary burden on the genome. Comparative genomics and
online databases dedicated to transposons and repeat elements such as SINES, LINES, and
ERVs, however, began to change this picture in the 1990s, and it soon became evident that
these elements were the drivers of evolutionary innovation. Many integrated transposons
mutate with time to interact with the host transcriptional machinery and therefore provide a
useful substrate for evolution of novel regulatory elements [145, 228, 255–258]. Moreover, some
of the ancient integrated retrotransposons appear to have been involved in advantageous
segmental genomic duplications such as in the major histocompatibility complex region [259–
261], and others have dispersed regulatory controls to provide coordinated regulation across
the genome [257, 258].

8.8. Agrigenomics

Agrigenomics or agricultural genomics can be defined as the research and development
activities that translate NGS and genomics technology into a better understanding of plant
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biology and advancing crop improvements. During the past decade, NGS had an enormous
impact on developing fundamental genome resources to directly address many of today’s
concerns in agriculture and agronomics. Since the publication in 2000 of the first plant genome,
Arabidopsis thaliana, 54 new plant genomes were published by 2013 [221] followed by at least
another 6 plant genomes including the hexaploid bread wheat genome [223]. In reviewing the
first 55 plant genomes, Michael and Jackson [221] concluded that, although these genomes
have provided a glimpse at the gene number, types, and numbers of repeats and genomic
growth, contraction, and rearrangement, we are only just at the beginning of defining the
functional aspects of plant genomes ”and various other ‘omics’ data layered on genomes.”

8.9. Humanomics, personomics, and health

The accumulation of knowledge on the human genome and its genetic and molecular processes
(humanomics) has amplified considerably since the first draft assembly was published in 2001
[262]. The first human hybrid genome took about 15 years to sequence and assemble, and when
released to the public, it covered 90% of the euchromatic genome, contained about 250,000
gaps, and had many errors in the nucleotide sequence [43, 44]. Ten years after the publication
of the first human draft sequence, six more human genome sequences were completed with a
much greater coverage and accuracy, enabling more informative comparisons to be made
between them [7, 8, 79]. Studies by the 1000 Genomes Project [10], the Personal Genome Project
[263], the HapMap Consortium [264], and the Pan-Asian Single Nucleotide Polymorphism
Project [265] revealed the enormous sequence diversity that exists between individuals. Since
then, 225 Ethiopian and Egyptian genomes were compared to reconstruct their population
history out of Africa [266], 911 genomes from 10 populations of African, East Asian, and
European ancestries were sequenced to elucidate novel patterns and signatures of genetic
differentiation [267], and whole-exome sequences from 951 genomes of a ClinSeq cohort were
compared to discover new loss-of-function mutations [268]. Today, there are many 1000
human genome projects, and WGS of the human genome for personalized medicine (per‐
sonomics) is already a reality for 2,638 Icelanders [9] and for some others [269, 270] of the 7.3
billion individuals currently populating the globe (http://www.worldometers.info/world-
population).

Veeramah and Hammer [271] recently reviewed the usefulness of NGS to sequence ancient
DNA samples for phylogenetic and evolutionary studies and for the reconstruction of human
population history. Some of these NGS studies have helped to refine the demographic histories
of human evolution. These studies include those of the ancient DNA of extinct hominins
(Neanderthals, Denisovans) and ancient modern humans such as 7,000-year-old Mesolithic
hunter-gathers in northwestern Spain, Neolithic and post-Neolithic (5,300- to 4,000-year-old)
hunter-gathers and farmers in Scandinavia, a 4,000-year-old Paleo-Eskimo from southern
Greenland, and a 24,000- and 17,000-year-old South-Central Siberian [271]. NGS of ancient
nonhuman genomes such as those of pathogens, parasites, and domesticated animals and
plants also can provide new information about human history in regard to life styles, health,
and the spread of agriculture [272].
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NGS has allowed a detailed analysis of single nucleotide variants (SNVs), structural variants
(SV), and methylations in coding and noncoding regions and to assess their role in human
disease [9, 14, 15, 19, 22, 25, 29, 30, 123, 125–127, 144, 148, 151, 152]. The establishment of the
International HapMap Project in 2003 (Table 3) to develop a “hapmap” of human haplotype
genomes from samples of large populations was an important initiative to find genes and
genomic variations (SNP and CNV frequencies, genotypes, and phased haplotypes) that affect
health and disease [264]. More than 97 million validated SNPs (dbSNP) have been discovered
from human genome sequencing projects and many of the variants have been linked to a range
of medical and phenotypic conditions and catalogued at dbGAP (Table 3), the database of
genotype and phenotype [273]. In July 2015, dbGAP had links to 592 disease and phenotype
studies and 3,711 data sets. In addition to SNV, small and large SVs that are duplicated, deleted,
or rearranged relative to the reference sequences and individuals have been identified in NGS
studies and associated with various diseases [9, 30, 127]. NGS has been used to diagnose rare
Mendelian diseases and genetically heterogeneous complex disorders, such as X-linked
intellectual disability, congenital disorders, cancer genome heterogeneity, and fetal aneuploi‐
dy [13, 15, 123, 125, 208, 209, 274, 275]. The impact of NGS on the diagnosis of rare genetic
diseases is evidenced by the growth of the genes and OMIM database [49, 276] that has doubled
in data since 2007 [274]. However, it should be noted that NGS does not always reveal causative
mutations but instead may provide a list of possible candidates. Many detected SNPs, SNVs,
and SV have not been associated to disease or phenotype and many diseases still await a genetic
or genomic cause. NGS in human studies must be used with caution because of the significant
levels of false-positive and false-negative rates in sequencing errors and amplification biases.

Soon et al. [30] listed and reviewed the various NGS methods employed in the ENCODE project
to annotate and analyze the transcriptome and map elements and identify the methylation
patterns of the whole human genome. The information in ENCODE and other databases such
as GTEx, FANTOM, NIH ROADMAP, and BLUEPRINT (Table 3) has enabled researchers to
map genetic variants to gene regulatory regions and assess indirect links to disease. The
Regulome DB based on the accumulation of nongenic functional regulatory regions obtained
from ENCODE is a useful resource for the evaluation of polymorphisms of regulatory regions
[276]. Although disease-associated SNPs obtained from GWAS studies may point to gene
coding regions, they actually might reside in regulatory sites of downstream genes that are in
linkage disequilibrium with the reported SNPs [262]. RNA-seq and NGS has confirmed that
98% of the human genome is transcribed from noncoding genomic regions, that only about
2% of the human genome codes for peptides and proteins with about 20,000 distinct protein-
coding genes, and that alternative splicing seems to occur for 90% of protein-coding genes to
yield many more different types of proteins than genes [134, 135, 151, 152]. The vast majority
of the human genome is not functionless ”junk DNA” as previously thought [262], but rather,
it can be viewed as DNA/RNA ”dark matter” expressing hundreds to millions of transcribed
short and long noncoding RNA molecules that have important regulatory roles in transcrip‐
tion, translation, transport, metabolism, and innate immunity [133]. Some of these are the
interspersed retroelements such as Alu and L1 and endogenous retroviruses (ERVs) that have
evolved before and during primate history to function as regulators of transcription and
translation [24, 25, 142, 145, 257, 258].
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NGS has especially revolutionized the field of cancer genomes revealing mutations, amplifi‐
cations, deletions, translocations, and dysregulation of noncoding and coding RNAs to
provide a better understanding of the complex genetics and loss of regulation in cancer [15,
25, 29, 208, 209, 275]. For example, paired end sequencing showed that about half of structural
rearrangements in breast cancer genomes were fusion transcripts resulting from the rear‐
rangements of segmental tandem duplications involving multiple genes [277]. Similarly, other
cancer types were found to be dominated by duplications, translocations, structural variations,
and complex rearrangements called ”chromothripsis” that involve chromosomal rearrange‐
ments as single events confined to genomic regions in one or a few chromosomes [278]. NGS
also has been applied to circulating tumor cells isolated from the body fluids (blood, urine,
sputum, saliva, and stools) [30, 274]. A genomic landscape and a catalogue of somatic muta‐
tions in cancer are provided on the Internet at COSMIC (Table 3, [275]). Thus, NGS potentially
provides cancer patients with opportunities for personalized diagnosis and optimized
therapeutic treatment [279, 280].

The integration of NGS data obtained from whole genome, exome, transcriptome, and
methylome to build up individual genomic profiles is a growing reality in human health care.
Recently, Chen et al. [269] developed ”integrated personal omic profiling” in an individual by
sequencing their genome at high accuracy and profiling their transcriptome, metabolome, and
proteome over a 14-month period. In the study, they tracked the emergence of type 2 diabetes
and assessed the individual’s genetic make-up and disease risks. Others have performed
similar studies demonstrating that monitoring the longitudinal trends and changes within
individuals is an important future protocol for the diagnosis, management, and treatment of
disease [9, 81, 270]. The challenges for ”person omics,” however, remain formidable at many
levels, not least the time, cost, and effort required to gather, process, and interpret the data
[101]. The cost benefits of NGS for personomics have still to be assessed with many economic,
securities, personal, familial, social, and ethical issues to be considered and resolved.

9. Futuromics

The first-generation sequencing technologies and the pioneering computing and bioinformat‐
ics tools produced the initial sequencing data and information within a framework of structural
and functional genomics in readiness for the following NGS developments. NGS provides
substantially cheaper, friendlier, and more flexible high-throughput sequencing options with
a quantum leap towards the generation of much more data on genomics, transcriptomics, and
methylomics that translate more productively into proteomics, metabolomics, and systeomics.
This major progression towards a more comprehensive characterization of genomes, epige‐
nomes, and transcriptomes of humans and other species provides even more data as a proxy
to probe diverse molecular interactions in the era of ”omics” in many fields of biology,
industry, and health care. A few years ago, the McKinsey Global Institute produced a report
predicting that NGS and genomics, including the sequencing of a million human genomes,
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would become an economically and socially disruptive technology as well as an annual trillion
dollar industry by 2025 [281]. The authors assessed that next-generation genomics would affect
many high impact areas of molecular biology and bioindustry such as improving genetic
engineering tools to custom build organisms, genetically engineer biofuels, modify crops to
improve farming practices and food stocks, and develop drugs to treat cancers and other
diseases. Although these technologies promise huge benefits, they also come with social,
ethical, and regulatory risks in regard to privacy and security of personal genetic information,
the dangerous effects of modified organisms on the environment, the spectre of bioterrorism,
eugenics, and concerns about the ownership and commercialization of genomic information.
The application of prenatal genome sequencing for genetic screening already points to the
potential of producing genetically modified babies with desired traits. Much will need to be
done to educate and inform regulators and society about the risks and benefits when formu‐
lating the regulatory policies about the advances and applications of these next-generation
technologies.

Today, NGS is the science of biological information systems and ”Big Data,”, but many
challenges still remain in regard to NGS data acquisition, storage, analysis, integration, and
interpretation [282, 283]. Future advancements will undoubtedly rely on new technologies and
large-scale collaborative efforts from multidisciplinary and international teams to continue
generating comprehensive, high-throughput data production and analysis. The availability of
economically friendlier bench-top sequencers and third-generation sequencing tools will allow
smaller laboratories and individual scientists to participate in the genomics revolution and
contribute new knowledge to the different fields of structural and functional genomics in the
life sciences. The authors of the following chapters in this book present additional examples,
more detailed information, and a broader view of the methods and many advances, applica‐
tions, and challenges of NGS that were either missed or not covered adequately in this opening
chapter, particularly in regard to the RNA sequencing and transcriptome methods and data
that provide us with a better understanding of functional genomics in microorganisms, plants,
animals, and humans. Te volo, bonam lectionem.
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Abstract

The most valuable application of next generation sequencing (NGS) technology is
genome sequencing. Genomes of several aquatic models had been sequenced in the
past few years due to their importance in genomics, development biology, toxicology,
pathology, and cancer research. NGS technology is greatly advanced in sequencing
length and accuracy, which facilitate the sequencing process, but sequence assembly,
especially for the species with complicated genomes, is still the biggest challenge for
bench-top scientists.

This chapter will focus on the application of NGS in aquatic genome and transcrip‐
tome assemblies. However, the associated techniques, problems, concerns, and
solutions can also be applied to genome sequencing of other eukaryotic systems.
Using our Xiphophorus genome and transcriptome sequencing as examples, this
chapter will cover the technical details of NGS, data processing, genome assembly,
and different methods of transcriptome assembly, as well as genome/transcriptome
annotation. Additionally, the problems that were confronted in genome sequencing
of several fish models and alternative approaches to assemble these genomes will be
discussed. Lastly, the problems that remain to be the bottleneck of genome sequencing
will be discussed, and a plan of what needs to be fulfilled is proposed.

Keywords: NGS, genome, aquatic models

1. Introduction

Next generation sequencing (NGS) technology has been broadly used in biomedical research.
The most valuable application of this technology is genome and transcriptome sequencing,
which form a bridge to link fundamental discoveries in research using disease model systems

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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to clinical application. Aquatic animal models are widely used in genomics, development
biology, toxicology, pathology, and cancer research (for a recent review, see [1]). The genomes
of several aquatic models had been sequenced using NGS technology over the past few years
[2, 3]. NGS technology has been trending toward reduced cost with greater sequencing length
and accuracy. While this has facilitated the sequencing process, sequence assembly remains a
significant challenge for bench-top scientists, and especially for species with complicated
genomes.

In this chapter, we will focus on the application of NGS in aquatic genome and transcriptome
assemblies. Although our focus will be on the genome sequencing of aquatic models, the
associated techniques, problems, concerns, and solutions can also be applied to genome
sequencing of other model systems. Using Xiphophorus maculatus (X. maculatus), X. couchia‐
nus, and X. hellerii genome sequencing as examples, we will discuss the technical details of
NGS, data processing, and genome assembly using guided approaches. We will also discuss
the problems encountered in genome sequencing of several feral fish models (ice fish, blind
cave fish, etc.) and alternative approaches to sequence and assemble these genomes. Some
problems remain and these are causing a bottleneck to broadening the representation of
aquatic models with genome assemblies. These problems are summarized and methods to
address them in the next five years are proposed.

2. Aquatic animal models in biomedical research

In recent years, aquatic animal models have been widely used in human disease research.
These model systems have demonstrated the usefulness for improving our understanding of
disease pathology at the molecular and cellular biology levels and have facilitated the
development of new diagnostic and therapeutic methods. A few examples of diseases modeled
by aquatic models are summarized in Table 1.

An example of the use of an aquatic model for human disease research is the Xiphophorus
model. In the 1920s, it was found that F1 interspecies hybrids between X. maculatus (X.
maculatus) and X. hellerii, when backcrossed to X. hellerii, result in melanoma development
among 25% of the backcross progeny (Gordon-Kosswig cross [4–6]). The melanoma develops
from naturally occurring macromelanophores that are found in Xiphophorus. In this cross,
melanoma development is the result of interaction of a melanoma locus Tu and a tumor
suppressor locus (R/Diff) that is capable of inhibiting Tu’s oncogenic effect in the parental X.
maculatus fish. Since Tu and Diff are on different chromosomes, the segregation of Tu and Diff
into backcross hybrids results in 25% of the animals with inherited Tu but do not inherit
melanoma suppression by the R/Diff and thus exhibit melanomagenesis. The gene corre‐
sponding to Tu was discovered to be a mutant copy of the human epidermal growth factor
receptor (EGFR) termed Xmrk, while a candidate gene for R/Diff is a Xiphophorus homologue
of human cdkn2a/b (i.e., p15/16) [7–9]. It has been found that the mutational inactivation of
human cdkn2a (p16) is associated with human melanoma (for a review, see [10]), and EGFR-
driven downstream signaling by Ras-Raf-MAPK activation is a marker of human melanoma
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(for a review, see [11, 12]). This makes Xiphophorus a good model for genetic study of melano‐
ma, a cancer that shows increasing worldwide incidence but has forwarded very few experi‐
mentally tractable animal models [13–15]. In addition to this spontaneous melanoma model,

Table 1. Aquatic models for human diseases
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different Xiphophorus interspecies hybrids have been shown to be melanoma inducible after
exposure to DNA damaging agents such as UVB light. Some of these inducible melanoma
models involve hybridization of X. maculatus and X. couchianus with a following backcross of
the F1 hybrid to the X. couchianus parent. Both the heavy pigmented backcross progeny and
F1 hybrids can develop melanoma after UVB or MNU exposure in their early life stage [16–20].

Genomes of aquatic disease models serve as bridges to link phenotypic changes to genetic
responses and allow physiological and pathophysiological discoveries from animal models to
be applied to human disease research. The sequencing of model system genomes offers
researchers great resources for biomedical research. Genome sequences allow researchers to
(a) find sequence variation among genomes and transcriptomes between different species and
populations; (b) compare genetic response between different phenotypes, development stages,
disease conditions, drug treatment, etc.; and (c) discover gene/gene and gene/environment
interactions and use these findings to direct medical applications.

For Xiphophorus, genome sequencing, assembly, and annotation for 3 Xiphophorus species (X.
maculatus, X. couchianus, and X. hellerii) were accomplished in 2014 ([3, 21] and unpublished
data). In the post-Xiphophorus genome era, these genomes resources have strengthened the
Xiphophorus melanoma models by establishing high similarity in gene expression patterns for
Xiphophorus and human melanoma tumors. The genome assemblies for both parents of an
interspecific disease model are now allowing regulatory dissection of melanoma relevant gene
expression in hybrids and after tumor-inducing treatments [22]. The gene expression features
that characterize metastatic melanoma progression in humans closely mimic those found in
Xiphophorus melanoma tumors (unpublished data). For the purpose of screening potential anti-
melanoma compounds, a mutant Xmrk gene has been used to make a transgenic medaka
(Oryzias latipes) fish model that develops melanoma very early after hatching [23, 24]. Whole
transgenic melanoma medaka at 3–4 weeks post hatch are being utilized to characterize
melanoma disease markers and for use in screening of small compounds for inhibitors of
melanoma progression. In this way, several aquatic models systems represent a direct
connection from “fish tank” discovery to “bedside” therapeutic application (for additional
information on this topic, see https://dpcpsi.nih.gov/sites/default/files/orip/document/
zebrafish_workshop_final_report_orip_website.pdf).

3. Xiphophorus genome assembly

3.1. Next generation sequencing

The NGS technique produces millions of short sequences (typical read length of 125 bp), which
represent many unconnected small pieces of a genome or transcriptome, in each flow cell of
the sequencing platform per sequence run. With these short sequences, one may de novo
construct transcripts or genomes, characterize sequence variation (i.e., single nucleotide
variation (SNV), insertion, and deletion), quantify sequence architecture (i.e., sequence
repeats, copy numbers, and gene expression), and most importantly provide a sequence
reference to expand discoveries from one species to another. Over the past decade, the
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sequence length of NGS (specifically Illumina technology) has significantly increased from 35
bp to current commonly produced 125 bp (Illumina HiSeq), and new long single sequence
technology platforms are delivering sequence lengths of up to 40 kb in size (e.g., Pacific
Bioscience RSII at 20 kb) that are changing the paradigm for whole genome de novo assembly.

It is beyond the scope of this chapter to examine all of the current and upcoming sequencing
technologies, and thus we focus on the most common NGS platform that is currently being
employed to establish genomic and transcriptomic resources in aquatic models systems.

The Illumina genome analyzer platform is currently the most widely used NGS system
accounting for over 70% of the NGS market [25]. In Figure 1, we illustrate the basic steps of
Illumina sequencing technology. The sequencing process starts with preparation of a library.
The DNA (for genomic sequencing) or cDNA (for RNA sequencing) sample is sheared, usually
by physical, enzymatic, or chemical method, into short fragments predetermined to be a
specific size, and then sequencing adaptors are ligated to both ends of each short fragment by
annealing. The fragments are then loaded onto a flow cell. The flow cell has oligonucleotides
bound to the surface of the flow cell, and their sequences are complementary to the adaptors
such that the free end of the fragment is attached to the flow cell via base pairing. A PCR step
converts the initial fragment to its complementary sequence, and now both the forward strand
and the reverse strand of fragments are bound to the surface of the flow cell (Figure 1). To
amplify the signal, PCR is repeated for several rounds resulting in a cluster of copies around
the initial copy of a fragment. Cyclic sequencing of these fragment clusters is very similar to
Sanger sequencing and utilizes a sequence-by-synthesis process. One of two unique primers
is attached to the free end of the bound fragments, and then nucleotides that each carries a
different fluorescent reporter tag and a reversible terminator are flowed onto the flow cell.
Since each nucleotide contains an elongation terminator, only a single nucleotide can be
incorporated into newly synthesized sequences per sequencing cycle. After the nucleotide
incorporation, laser sources excite the fluorescent reporter, and an optical sensor scans the
entire flow cell to capture colors that represent newly added bases in every cluster. This optical
information is converted to a base call for each growing sequence. At the end of each cycle, the
terminator is removed and the next cycle continues until the desired sequence length is
attained. In paired-end sequencing, after the forward strand sequence is attained, another
sequence primer initiates the sequencing of the reverse strand of each fragment.

This massively parallel sequencing platform allows high throughput sequencing. Each flow
cell contains 8 lanes with each lane producing 250 million reads (i.e., up to 500 GB/flow cell)
with length of each sequence read ranging from 35 bp to 250 (Illumina HiSeq-2500) or 300 bp
(Illumina MiSeq). Each sequencing adaptor has incorporated into it a unique barcode in the
format of oligonucleotides. Thus, multiple samples from different sources can be pooled
together in one lane, and this greatly facilitates the sequencing throughput.

Before subsequent sequence assembly or reference sequence alignment, a quality control step
is usually necessary to attain sequences that best represent the biology being studied. A short
sequencing result file contains two types of “contaminants” that can hinder the sequence
assembly and result in misrepresentation of actual nucleotide sequence: adaptor sequence and
low quality base calls. For paired-end sequencing, the length of DNA fragment between the
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two adaptor sequences is defined as “insertion size.” When the desired sequencing length is
longer than insertion size, the short sequencing can contain adaptor sequence in it. This
artificial sequence must be trimmed off, so as not to produce significant sequence error in
sequence assemblies. Another contaminant, the low quality base call, has many sources, from
equipment to sequencing glitches. The quality of a base call is defined as Phred quality score
(QPhred score). If we assign P as base calling error probabilities [26], then

Phred 10 – 10 Q log P=

To retain the most usable as high-quality sequencing reads, the adaptor sequences are first
clipped off, subsequently trim off low-quality base calls at the end of sequencing reads, and
finally filter out sequence reads that contain a certain percentage of base calls that are below
a defined QPhred score. Several tool software packages are available that can be utilized to
perform the read filtering steps (e.g., fastx_toolkit: http://hannonlab.cshl.edu/fastx_toolkit/).

Figure 1. Outline of Illumina genome analyzer sequencing process. (1) Adaptors are annealed to the ends of sequence
fragments. (2) Fragments bind to primer-loaded flow cell and bridge PCR reactions amplify each bound fragment to
produce clusters of fragments. (3) During each sequencing cycle, one fluorophore attached nucleotide is added to the
growing strands. Laser excites the fluorophores in all the fragments that are being sequenced and an optic scanner col‐
lects the signals from each fragment cluster. Then the sequencing terminator is removed and the next sequencing cycle
starts.
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3.2. Sequence assembler algorithms

There are two major types of sequence assembly methods, Overlap-Layout-Consensus
assembly and De Bruijn graph assembly. Current efficient and successful sequence assembly
programs, including the ones employed for Xiphophorus genome assemblies (i.e., ALLPATHS),
utilize the De Bruijn graph as a central data processing structure (De Bruijn-based assemblers
are summarized in Table 2).

Table 2. De Bruijn-based sequence assembler

De Bruijn graph-based assembler begins the assembling process by breaking the sequencing
reads into k-mers, which in a genome is defined as a sequence of k consecutive bases. To build
a De Bruijn graph, each k-mer is split into two parts, the left (k– 1) base x and right (k– 1) base
y. Then all the x and the possible y are joined together by directed edges (x → y). A De Bruijn
graph is obtained by taking the x and the y as nodes and the adjacencies as edges. The edges
represent (k– 1) overlap between the connected nodes. In DNA sequencing, each node can have
8 possible connections, 4 are from the upstream sequence and 4 are to the downstream
sequence, respectively. Actual connections are recorded in the memory as they are observed
in the sequencing data. As sequencing data runs through the graph-building algorithm,
discrete seed graphs are joined as the reads connecting to them are identified. In Figure 2, we
present a simplified assembly and a sequence feature that can lead to problems in the sequence
assembling process.

In Figure 2, 4 short DNA fragments that were attained from a randomly sheared 21 nt genome
are sequenced. The k-mer length of 5 was chosen for this assembly. In the De Bruijn graph,
there are 11 balanced nodes, where the number of indegree equals that of outdegree, and two
semibalanced nodes, where indegree differs from outdegree. This graph is directed, connected,
and considered as Eulerian since it has and only has at most 2 semibalanced nodes. The node
in this directed graph that has more outdegree than indegree is considered to be the staring
site of the assembly, while the other semibalanced node is the end of the assembly. At the end
of the graph, where a cyclic edge forms, a problem for short sequence assemblers when
repetitive sequence regions are encountered is presented. De Bruijn algorithms cannot resolve
this problem and will simply ignore it, resulting in gaps in the contigs assembled. Long repeats
present in the genome constantly cause assembly issues in practice. A detailed solution to this
will be discussed in the following part of this chapter.
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Taking ALLPATHS for instance, the memory use is estimated to be roughly 1.7 bytes per read
base, which equals to a 102-GB RAM of a 60× coverage 1-GB genome. This level of RAM
requirement can be fully fulfilled nowadays. Alternatively, this RAM requirement can be
solved by sharing memory from different computer nodes, or by distributing the workload to
different nodes within a computer cluster, which is normally accessible in most universities
and research institutions. In addition, the development of cloud computing allows one to gain
access to high-speed computer clusters in a pay-as-you-go manner, and there are several
recently developed cloud-based sequence assemblers (summarized in Table 3).

Table 3. Cloud computing-based sequence assemblers

Figure 2. Outline of De Bruijn graph build during the sequence assembling process. A short model genome is se‐
quenced. Four short reads were generated from template. The k-mer length of 5 was chose to be used in sequence as‐
sembly. For each k-mer, the left k– 1 and right k– 1 were represented as nodes in the De Bruijn graph, and all left parts
are connected to possible right parts by directed edges. The red digit shows the number of occurrence of each node.
The cyclic edge at the rightmost end of the graph causes the gap of contig assembly. Thus, the final assembly does not
fully represent the “repeat” in the genome sequence.
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3.3. Xiphophorus genome sequencing and assembly

Sequencing of X. maculatus genome is of great value to the aquatic model community [3, 21].
A problem encountered by those using the Xiphophorus model was that a genome sequence of
one single Xiphophorus parent used in an interspecies cross did not allow the regulation of
allele-specific gene expression to be determined in interspecies hybrid. The interspecies crosses
are important in disease model research for both spontaneous and induced melanoma and
other life history traits that involve complex genetic interactions. Therefore, 2 additional
Xiphophorus species genomes (X. couchianus and X. hellerii) have been sequenced and assem‐
bled. In this section, sequencing and assembling multiple Xiphophorus species genomes is used
as real-world example of the process of genome sequencing.

3.3.1. Biological sample

X. couchianus were maintained by sibling inbreeding, and the fish that were sequenced were
in their 77th generation of inbreeding. X. hellerii was maintained by reciprocal cross breeding
between 2 distinct X. hellerii strains, differing by sword color. All the fish that were used for
genome sequencing were female since the high degree of repetitive DNA generally found to
make up Y-chromosomes can confound the downstream assembly.

3.3.2. Genome sequencing and assembly

The Illumina HiSeq-2000 platform was chosen for Xiphophorus genome sequencing. Sequenc‐
ing libraries with different insert sizes (300 bp, 500 bp, 3 kb, and 8 kb) were prepared. The
purpose of using different insert size libraries is to using the paired-end reads that span
different lengths of genome to estimate the gap size in a higher level of assembly. Over 700
(X. couchianus) and 360 (X. hellerii) million 100 bp paired-end short sequence reads were
obtained from sequencer.

Genomes of X. couchianus and X. hellerii were constructed at three stages: contig, scaffold, and
chromosome. The contigs were assembled in a de novo manner to maximally capture any
sequences that are not present in X. maculatus, while scaffolds and chromosomes were
assembled using the X. maculatus genome as a reference to guide assembly.

The first stage contig assembly was carried out by ALLPATHS using only the Illumina
sequencing reads. This step generated contig-level assembly with N50 of 60 kb and 30 kb for
X. couchianus and X. hellerii, respectively.

These contigs were further grouped into scaffolds using the X. maculatus scaffolds assembly
as reference. X. couchianus and X. hellerii de novo assembled contigs, as well as the sequencing
reads, were aligned to X. maculatus genome scaffold assembly using a multi-phase aligner
SRprism (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/srprism/). The sequence gaps between
consecutive contigs were filled with long-insertion paired-end Illumina reads that bridge the
upstream ends and downstream ends of contigs that are right next to the gaps. Scaffolding of
contigs and gap fillings increased the length of both assemblies to N50s of 1.8 Mb and 1.6 Mb,
respectively.
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The construction of chromosomal level genome was accomplished by aligning de novo
assembled contigs to the X. maculatus chromosome assembly using Mummer 3 package
Nucmer3.0 (http://mummer.sourceforge.net). For each species, sequences of contigs and the
location of X. maculatus chromosome alignments were recorded. By using a customized Perl
script, these sequences and alignment information were organized into chromosomes.

3.3.3. Genome annotation

To annotate the newly assembled X. couchianus and X. hellerii genome, two methods, rapid
annotation of transfer tool (RATT) and de novo assembled transcriptome, were used and the
result from each were compared to each other.

Transcript sequences and associated functional annotations can be transferred between closely
related species. A modified gene annotation method, RATT, was applied using the X. macu‐
latus genome and gene model as a reference to quickly transfer genome annotation [27]. Since
the X. maculatus genome was already available, using RATT to transfer annotation can
minimize computational and human resources that are required for genome annotation. Both
X. couchianus and X. hellerii genomic scaffold sequences were used as query species to be
aligned to the well annotated X. maculatus genome using Nucmer3.0 with parameters imple‐
mented by RATT for annotation transfer. To avoid frame shift between two species, the synteny
between both species and reference was established and insertions/deletions were also
identified, respectively. X. maculatus gene models were then transferred and corrected to both
query species. Of the 20,482 gene models annotated in Xiphophorus genome, 20,300 and 20,325
of them were transferred to X. couchianus and X. hellerii, respectively (Table 4).

To compare to this RATT annotation transfer method, X. couchianus and X. hellerii genome
annotations were also annotated with a different method using de novo assembled transcrip‐
tomes. This method is reference genome independent. Briefly, RNA samples from one month
old whole fish of X. hellerii and X. couchianus and a collection of tissues of mature individuals
of each species were sequenced using Illumina GAIIx platform as 60 bp paired-end reads as
well as HiSeq-2000 platform as 100 bp paired-end reads. De novo transcript assemblies and
reports of putative transcripts were performed using velvet v1.1.05 and Oases v0.1.22 [28, 29].
The transcriptome assembly resulted in 110,604 and 242,675 transcripts for X. couchianus and
X. hellerii, respectively.

Table 4. Comparisons between reference-based annotation and de novo-based annotation

Comparing these two methods of annotation to each other in perspective of transcriptome
quality, de novo method produced very larger transcriptomes in number of transcripts and final
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reports of putative transcripts were performed using velvet v1.1.05 and Oases v0.1.22 [28, 29].
The transcriptome assembly resulted in 110,604 and 242,675 transcripts for X. couchianus and
X. hellerii, respectively.

Table 4. Comparisons between reference-based annotation and de novo-based annotation

Comparing these two methods of annotation to each other in perspective of transcriptome
quality, de novo method produced very larger transcriptomes in number of transcripts and final
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assembly size (Table 4). Many transcripts produced this way are unverified isoforms of same
genes and redundant splicing isoforms of the same gene. In contrast, the RATT gene model
transfer produced transcriptomes are similar to the reference [27]. In addition, both methods
produced comparable N50s; however, reference-based method had longer average length,
suggesting this method is superior.

In conclusion, the de novo assembly of a species transcriptome and its use in biological inference
studies is appropriate, when a reference genome is not available and assuming tissue diversity
is adequately captured. Nonetheless, reference-based gene model transfer is a reliable,
economical, and efficient means to annotate closely related species.

3.3.4. Transposable elements analysis

As found previously, X. maculatus transposable elements (TEs) make up ~5% of the transcrip‐
tome [3]. Although the percentage of TEs is only slightly higher than the compact genomes of
puffer fishes and is close to that of chicken genome, there is a high diversity of TE families in
X. maculatus genome [3, 30, 31].

To annotate the TEs in X. couchianus and X. hellerii genomes, a previously established library
was further completed employing RepeatScount (http://bix.ucsd.edu/repeatscout/) and
RepeatModeler (http://www.repeatmasker.org/RepeatModeler.html) software. Redundant
sequences were discarded, leaving 1019 sequences in the new library. RepeatMasker (http://
www.repeatmasker.org/) was subsequently utilized to mask genome assemblies. Custom Perl
script was then used to establish repeat coverage and copy numbers. After removing TE
sequences that are smaller than 80 nt and share less than 80% identity with reference library,
TEs were found to make up ~12% of each Xiphophorus genome (X. maculatus, 12.11%; X.
couchianus, 12.61%; X. hellerii, 12.14%; unpublished data). A detailed classification of TEs in
each Xiphophorus genome is shown in Table 5.

Table 5. Transposable elements in Xiphophorus genomes

4. Problems and potential resolutions in genome assembly

4.1. Repetitive sequences in genome result in gaps of assembly

Several aquatic model genomes have been sequenced, assembled, and annotated for public
use due to the activities of the aquatic model community. During the genome sequencing and
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assembling process for many of these model systems, several problems have been encountered.
Specific sequence architecture (e.g., repetitive sequences) may confuse assembly algorithms
and results in gaps in sequence contiguity that ultimately lead to a poorly-assembled genome
or no assembly at all. For example, k-mer frequency estimation showed the toadfish genome
consisted of ~48% repetitive sequences, which account for the rather high assembly fragmen‐
tation. Regions that have assembling difficulties typically include repeats (repetitive sequences
of varied lengths, usually found in intergenic regions), telomere sequences (short sequence
repeated thousands of times), centromere sequences (large array of repetitive DNA), segmen‐
tal duplication of loci (segments of DNA with near-identical sequence), and closely organized
gene families (portion of genome with genes of very similar sequences). The problems in
assembling these regions are also present in genome sequencing projects of other model
organisms. During the sequence assembly of aquatic models listed in Table 6, a conservative
estimation of missing bases in each draft genome shows a range of 66 to 239 Mb within
scaffolds, and 14 Mb to 26 Mb between scaffolds, respectively.

Table 6. Reference assembly gap sequence estimates from NCBI or Ensembl

Although the length of sequencing reads continues to expand, repetitive sequences are still
the main barrier encountered, toward a goal of uninterrupted consensus base counts. It is well
known no graphical-based assembly method completely resolve repeat structure. Both
graphical approaches, De Bruijn and Overlap-Layout-Consensus, will exclude repetitive
sequence by truncating the assembly when certain repeat types are encountered or alterna‐
tively collapse unique repeats into a single representation (Figure 2). This leaves gaps in
sequence assembly and collapses long repeat sequences. Some of the gaps can be closed by
using proper oriented paired-end reads with long insertion sizes, such as bacteria artificial
chromosome or P1-derived artificial chromosome clones. However, in most cases, such long
insert resources are not available. During scaffold assembly of X. couchianus and X. hellerii
genomes, consensus contigs were built by locating consecutive contigs bridged by mate pairs
having 30-mers on each side of the gap, followed by de novo assembly in gaps using the bridged
contigs and 30-mers from reads that were used in the first-level contig assembly. However,
repetitive regions that expand hundreds of Mb can still not be resolved by this method.

4.2. Long sequencing reads are possible solution to assembly issues

Since repetitive sequences are the major causes of gaps in sequence assemblies, one way to
maximize assembly contiguity is to employ long reads that are capable of covering the entire
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repetitive regions. The Pacific Bioscience (PacBio, www.pacificbiosciences.com) P6-C4
sequencing platform now offers the longest sequencing reads in the field, with longest
sequence read length of 40 kbp and an average length of ~10 kbp (Figure 3).
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Figure 3. Outline of PacBio Single Molecule Real Time sequencing (SMRT) technology. Unlike Illumina sequencing
platform, the sequencing adaptor form loops at the ends of double-stranded DNA fragments and ultimately form a
circular sequencing template. After removing the adaptor sequences from raw reads, the genomic sequence informa‐
tion can be retained for de novo assembly. P6-C4 chemistry offers currently longest sequence reads. (The figure on the
right is from Pacific Biosciences, http://www.pacificbiosciences.com/products/smrt-technology.)

Since PacBio long sequencing reads are capable of traveling through the repeat regions,
therefore gaps are less likely to be present when assembling the genome. In several recent
aquatic genome-sequencing projects, the incorporation of PacBio sequencing technology in
concert with very deep Illumina 100 bp paired-end reads (60× coverage) significantly improved
the quality of genome assembly. For example, using 8×–30× PacBio sequence coverage, 62% of
gaps could be closed with a 2-fold increase in N50 contig length for the blind cavefish genome
build (unpublished data). Similarly, gap filling using long sequencing reads almost tripled the
N50 contig length (from 5 kb to 14 kb) for the ice fish genome, but this genome assembly
remains plagued with difficult regions that have yet to be resolved (unpublished data).

The usage of long sequencing reads to improve the current genome builds is not limited to
aquatic genome research as this application has also been utilized in the improvement of
genome quality of other model organisms as well (e.g., avian models [32]). For example, the
current chicken reference genome has 8106 gaps within scaffolds. After PacBio’s long sequence
reads (10× coverage) were incorporated, 6888 of these gaps were closed, along with 6.3 Mb of
new sequence added (unpublished data).
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For small genomes (<200 Mb haploid size), long sequencing read technology has advanced to
a stage where near complete genomes can be represented. For example, the Drosophila genome
has 139.5 million base pairs located on 4 pairs of chromosomes that can be covered once by
10,000 averaged-length PacBio sequencing reads [33]. One concern of PacBio long sequencing
technology is its high error rate (median error rare of ~11%) in base calls. However, this “error-
prone” problem can be addressed. First, PacBio sequencing technology utilizes a circular
template. It allows the polymerase to travel through the template multiple times, thus
generating several copies of reads that represent the same genome fragment. Second, although
the error rate of “single-pass” PacBio sequencing reads is high, the errors are distributed
randomly and can be filtered out upon building consensus for all sequence copies of a given
fragment. Quiver (www.pacbiodevnet.com/Quiver) was developed to deliver high-quality
consensus sequences by averaging the sequence information for each base call vertically to
each other. Based on the error rate, 9 out of 10 reads will contain a correctly sequenced base,
making it straightforward to distinguish the correct base call. This error correction is capable
of generating >99.9% accurate consensus sequence [34, 35].

In addition to improving current genome assembly quality, long sequencing reads are capable
of sequencing full-length transcripts, thus facilitating gene expression analyses and transcrip‐
tome assembly. Current RNA-Seq tasks apply short reads (50 bp single-end to 125 bp paired-
end depends on experiment design) to fragmented cDNA libraries. These short reads are then
aligned to either reference genome or an array of reference transcripts for statistical analysis
of gene expression. Uniquely aligned short reads provide solid evidence of the expression
levels of the aligned genes. However, inappropriate treatment of ambiguously aligned reads
can lead to biased or even mistaken expression profiles in complicated vertebrate genomes
(e.g., zebrafish genome and human genome). This problem severely affects transcript variance
discovery such as alternative splicing and relative expression of alternative splicing isoforms,
which play significant roles in pathological processes (e.g., Bcl11b1). Alternative splicing
isoform expression quantification heavily relies on distribution of short reads on each exon;
thus, low-coverage splicing isoforms cannot be distinguished [36]. The utilization of PacBio
long-read sequencing platform can eliminate this problem by providing long reads that are
capable of covering all connected exons in one single read, thus avoiding mistakes in assigning
reads to a certain exons [37].

5. Perspectives in aquatic genome research

The availability of aquatic genome models in the past few years significantly expends the
resources for biological and biomedical discovery. However, as detailed, problems persist in
the current aquatic model draft assemblies (i.e., gaps in and between scaffold and repetitive
sequence). Over the next few years, there should be a concerted effort to (a) de novo assemble
genomes by combining standard Illumina library builds with new PacBio long-read sequenc‐
ing and (b) developing new assembly routines to resolve assembly errors and create chromo‐
some builds for each species.
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5.1. De novo genome assembly using long sequencing reads

In Table 6, we show estimated sequence gaps missing from within scaffolds. It is estimated
that 2–5% of each genome is not sequenced or assembled outside of scaffold gaps (unpublished
result). Previous tasks to close gaps in the assemblies of other species genomes have shown
that structurally variant alleles, simple tandem repeats, and high GC content regions account
for the majority of these gaps. The new PacBio sequencing technology, if used to produce high
coverage (at least 60×) fragments, may be expected to overcome many of these assembly
problems and should result in better-represented genome models. Assembling genomes using
PacBio sequencing reads requires special treatment to the raw reads, as well as the sequence
assembling processes. For example, the multiple-pass raw reads from circular sequencing
template need to be clipped into subreads that represent the DNA fragment. The PacBio
sequencing reads also need to be error-corrected using Quiver. The sequence assembling
process with these very long reads requires different tools than what were discussed above.
MinHash Alignment Process (MHAP) that is included in Celera Assembler PBcR pipeline is a
reference implementation of a probabilistic sequence overlapping algorithm that is designed
for detecting overlaps between long-read sequence data [33]. It is therefore a proper tool for
sequence assembly that employs long sequencing reads.

During the process of de novo genome assembly using long sequencing read technology,
higher-quality genome models are expected. This will provide animal disease model com‐
munities much better genome references (longer N50, less gaps and less missing bases) in
newly developed draft de novo assemblies. In addition, re-sequencing to enhance the contiguity
of current genome assemblies by incorporating PacBio reads promises to produce much
improve reference genomes in the next few years.

5.2. Chromosome level aquatic genome assembly

Accurate chromosome assemblies require correctly ordered contigs in scaffolds for gene
functional interpretation. During chromosome construction, the placement and order of
scaffolds on chromosomes relies on a genetic map, which is based on meiotic recombination.
Among the aquatic genome models created in the past few years, the Xiphophorus genome
assembly has been aligned to chromosomes using a Rad-Tag approach to generate a meiotic
gene map having over 16,000 markers ([21] and unpublished data). The RAD-tag markers and
microsatellite makers from older studies were used to guide the placement of scaffolds into
the Xiphophorus chromosomes (for RAD-tag method, see [38]). However, the RAD-tag map
method is resource and labor intensive, for examples, 267 backcross Xiphophorus hybrids were
used for genetic mapping and sequence alignment [21].

Recently, new optical mapping technology has been provided by BioNano (http://www.bion‐
anogenomics.com). The optical mapping improves the process of constructing whole genome
physical map. In this process, high molecular weight genomic DNA is immobilized onto the
positively charged glass surface of a chip-like device having engraved nano-channels that are
only wide enough to stretch a single DNA molecule. Buffer fluid that flows though the channel
stretches a single DNA molecule to maintain its orientation and integrity. The DNA molecules
are subsequently sheared by a restriction enzyme into fragments that are stained with
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florescent dye. An imaging system then measures the florescent light intensity that represents
the length of each DNA fragment. Accompanied with the restriction enzyme site sequence,
the length of each fragment is linked to form a single-molecule optical restriction map.

During chromosome assembly, the scaffold sequences can be converted to in silico restriction
map. The location of the restriction enzyme digestion sequence and the distance between these
sequences can then be used to assign scaffolds into chromosomes [39]. Using this approach,
incorrect joining errors of contigs may be corrected to improve the current reference genome
continuity concurrent with scaffolds alignment into chromosomes.

Figure 4. Illustration of optic mapping technology. Genomic DNA is obtained from lysed cells and is loaded onto a
chip-like channel-forming device. DNA molecules are stretched onto a positively changed glass surface by buffer fluid
that flows through the channels. This step maintains the integrity and orientation of the DNA molecule for subsequent
steps. The stretched and immobilized DNA molecules are digested with a restriction enzyme and subsequently stained
with florescent dye. The florescent light intensity of each DNA fragment was imaged, and the images are analyzed to
measure the size of DNA fragments. Using the restriction enzyme digestion site sequence and the distance between
digestion sites, a single-molecule restriction map can be generated to guide scaffold assignment.

6. Conclusion

Aquatic models are proven to be as important and useful as other animal models to study the
etiology and progression of human disease. Aquatic models have gained the attention of
funding agencies, and the overall research community using aquatic models has grown
rapidly. This growth has resulted in the availability of genome and reference transcriptome
resources. The aquatic genome models that were constructed in the past few years are available
through NCBI or Ensembl with new updates constantly being made. Although problems
persist in genome assembly of complicated structures, newer sequencing platforms, mapping
technologies, and sequence assembly algorithms are expected to rapidly address these
problems and soon offer the community much improved resources.
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Abstract

The major histocompatibility complex (MHC) is a highly polymorphic genomic region
that encodes the transplantation and immune regulatory molecules. It receives special
attention for genetic investigation because of its important role in the regulation of
innate and adaptive immune responses and its strong association with numerous
infectious and/or autoimmune diseases. Recently, genotyping of the polymorphisms
of MHC genes using targeted next-generation sequencing (NGS) technologies was
developed for humans and some nonhuman species. Most species have numerous
highly homologous MHC loci so the NGS technologies are likely to replace traditional
genotyping methods in the near future for the investigation of human and animal
MHC genes in evolutionary biology, ecology, population genetics, and disease and
transplantation studies. In this chapter, we provide a short review of the use of
targeted NGS for MHC genotyping in humans and nonhuman species, particularly
for the class I and class II regions of the Crab-eating Macaque MHC (Mafa).

Keywords: HLA, MHC, polymorphism, genotyping, NGS

1. Introduction

The major histocompatibility complex (MHC) genomic region consists of a large group of
evolutionary-related genes involved functionally with the innate and adaptive immune
systems in jawed vertebrates [1]. In humans, the MHC is located on the short arm of chromo‐
some 6, band p21.3, and the MHC class I and class II genomic regions encode the highly
polymorphic gene complex classified as the human leukocyte antigen (HLA) complex [2, 3].
The HLA class I and class II molecules expressed by the MHC play important roles in restricted
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cellular interactions and tissue histocompatibility due to cellular discrimination of “self” and
“nonself” that require an essential knowledge of the effects of HLA allele matched and
mismatched donors in transplantation medicine [4] and transfusion therapy [5]. While the
HLA class I molecules are expressed by all nucleated cells to present processed peptides of
intracellular origin to CD8+ cytotoxic T cells and serve as ligands for natural killer cells, the
class II molecules are expressed by antigen-presenting cells such as B cells, dendritic cells, or
macrophages to present exogenous peptides to CD4+ helper T cells of the immune system [6].
In addition, the classical HLA class I genes, HLA-A, HLA-B, and HLA-C, and the classical
HLA class II genes, HLA-DR, HLA-DQ, and HLA-DP are distinguished by their extraordinary
polymorphisms, whereas the nonclassical HLA class I genes, HLA-E, HLA-F, and HLA-G, are
distinguished by their tissue-specific expression and limited polymorphism [2, 3, 7].

The highly polymorphic HLA genomic region is critically involved in the rejection and graft-
versus-host disease (GVHD) of hematopoietic stem cell transplants [8, 9], the pathogenesis of
numerous autoimmune diseases [10–13], and infectious diseases [14]. Apart from regulating
immunity, the MHC genes may have a role in reproduction and social behavior, such as
pregnancy maintenance, mate selection, and kin recognition [15]. The MHC genomic region
also appears to influence drug adverse reactions [16, 17], CNS development and plasticity [18–
22], neurological cell interactions [23, 24], synaptic function and behavior [25, 26], cerebral
hemispheric specialization [27], and neurological and psychiatric disorders [28–32]. Hence, the
MHC is one of the most biomedically important genomic regions that warrant special attention
for genetic investigation.

In general, the study of the diversity and polymorphic variation of the MHC genomic region
has been focused more on humans than any other species and animal population [1] largely
because of the high cost and limited throughput of the first generation Sanger sequencing
method [33, 34]. However, this is now changing because the next-generation sequencing (NGS)
technologies are becoming the method of choice for lower-cost, high-throughput genotyping
of MHC genes that are composed of highly homologous multiple loci such as those found in
the macaque primate species [35]. Thus, the NGS technologies are expected to perform precise
MHC genotyping in human and model animals that already have a collection of MHC allele
references, and to facilitate MHC genotyping of wild animals that as yet have no MHC allele
references. In addition, the NGS technologies are likely to replace traditional genotyping
methods such as subcloning, Sanger sequencing, and previously developed PCR-based MHC
typing methods (PCR-RFLP, PCR-SSP, and so on) in the near future. Recently, many articles
concerning the development of NGS technologies for precise MHC genotyping and genotyp‐
ing data of MHC genes using the new NGS technologies have been published on the investi‐
gations of human and nonhuman MHC polymorphisms in various fields of study such as
medical science, evolutionary biology, ecology, and population genetics.

In this chapter, we provide a short review of the current HLA polymorphism information and
the use of PCR-based NGS for MHC genotyping in human and nonhuman species, particularly
for the Filipino crab-eating macaque MHC (Mafa) class I (Mafa-A, -B, -E, -F, and -I) and class
II loci (Mafa-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1).
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2. HLA allele number

A total of 13,840 HLA allele sequences, 10,297 in the class I and 3543 in the class II gene re‐
gions, were released by the IMGT/HLA database [7] release 3.22 in October 2015 (Table 1).

Category Locus Allele no. Protein no.

Class I HLA-A 3285 2313

HLA-B 4077 3011

HLA-C 2801 1985

HLA-E 18 7

HLA-F 22 4

HLA-G 51 17

Pseudogene 43 0

Total 10,297 7337

Class II HLA-DRA 7 2

HLA-DRB1 1825 1335

HLA-DRB3 60 48

HLA-DRB4 17 10

HLA-DRB5 22 19

HLA-DQA1 54 32

HLA-DQB1 876 595

HLA-DPA1 42 21

HLA-DPB1 587 480

HLA-DMA 7 4

HLA-DMB 13 7

HLA-DOA 12 3

HLA-DOB 13 5

Pseudogene 8 0

Total 3543 2561

Table 1. Number and genomic distribution (loci) of HLA alleles

The IMGT/HLA database is a specialist database for HLA sequences. Ten years ago, the
allelenumbers were only 2182, but since then, the numbers have increased by 1000 allele
sequenceseach year. Of 10,297 HLA class I alleles, 3285, 4077, 2801, 18, 22, and 51 alleles were
countedin HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, and HLA-G genes, respectively (Table 1);
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10,163 and91 alleles were counted in the classical and nonclassical HLA class I genes, respec‐
tively.Of the 3543 HLA class II alleles, 7, 1825, 99, 54, 876, 42, 587, 7, 13, 12, and 13 alleles were
countedin HLA-DRA, HLA-DRB1, HLA-DRB3/4/5, HLA-DQA1, HLA-DQB1, HLA-DPA1,
HLA-DPB1, HLA-DMA, HLA-DMB, HLA-DOA, and HLA-DOB genes, respectively (Table
1), with3490 and 45 alleles in the classical and nonclassical HLA class II genes, respectively.

3. History of HLA genotyping methods

Many variations of the conventional HLA genotyping methods such as incorporating restric‐
tion fragment polymorphisms (RFLP) [36], single strand conformation polymorphism (SSCP)
[37], sequence-specific oligonucleotides (SSOs) [38], sequence-specific primers (SSPs) [39], and
sequence-based typing (SBT), like the Sanger method [33], have been used for the efficient and
rapid HLA matching in transplantation therapy [40–43], research into HLA-related diseases
[2, 3], population diversity studies [44–46], and in forensic and paternity testing [47]. The HLA
genotyping methods mainly applied today are PCR-SSOP, such as the Luminex commercial
methodology [48, 49], and SBT by the Sanger method employing capillary sequencing based
on chain–termination reactions [33, 34]. However, both methods often detect more than one
pair of unresolved HLA alleles because of chromosomal phase (cis/trans) ambiguity [50, 51].
To solve the phase ambiguity problem, new HLA genotyping technologies have been reported
and commercialized that combine the PCR amplification of targeted HLA genomic regions
with NGS platforms such as the ion PGM system (Life Technologies), GS Junior system
(Roche), and the MiSeq system (Illumina) [52}. The PCR/NGS methods are expected to produce
genotyping results that detect new and null alleles efficiently without phase ambiguity.

4. Summary of NGS-based human MHC genotyping methods

Table 2 shows list of publications on NGS-based human MHC genotyping that includes
information for PCR range, targeted HLA locus, NGS platform, and allele assignment method.
The MHC genotyping methods in human are basically composed of three steps, PCR, NGS,
and allele assignment. We summarize the important points in each of the three steps below.
The more detailed information is described in our previous publication [52].

4.1. PCR step

4.1.1. Long- and short-range PCR

PCR methods produce amplicons of different sequence lengths depending on the primer
design and the type of DNA polymerase used for the PCR. The amplicon sizes are usually
classified into two size ranges: the short-range system where the amplicon size is <1 kb and
the long-range system where the amplicon size is >1 kb as shown in Figure 1.
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The short-range PCR system is a method based on PCR amplification of each exon that includes
polymorphic exons 2 and 3 in HLA-A, HLA-B, and HLA-C and exon 2 in HLA-DR, HLA-DQ,
and HLA-DP. One of the advantages of the short-range system is that it is the most suitable
for application of physically fragmented DNA samples as templates such as those extracted
from swabs because the PCR length is relatively short, ranging from 250 bp to 900 bp, per

No. PCR range Sorting from
PCR range

Targeted HLA locus NGS platform Allele assignment
method

Ref.

1 410–790 bp Short-range
system

A, B, C, DRB1/3/4/5,
DQA1, DQB1, DPB1

454 GS FLX Conexio Assign ATF [66]

2 400–900 bp Short-range
system

A, B 454 GS FLX GS-FLX amplicon variant
analyzer

[67]

3 Unknown Long-range
system

A, B, C, DRB1, DQB1 454 GS FLX Conexio Assign-NG [51]

4 410–790 bp Short-range
system

A, B, C, DRB1/3/4/5,
DQA1, DQB1, DPB1

454 GS FLX Conexio Genomics ATF [68]

5 381–537 bp Short-range
system

A, B, C 454 GS FLX SSAHA2 [69]

6 4.6–11.2 kb Long-range
system

A, B, C, DRB1, DQA1,
DQB1, DPA1, DPB1

454 GS Junior,
Ion PGM

SeaBass [70]

7 2.7–4.1 kb Long-range
system

A, B, C, DRB1 HiSeq2000, Miseq Alignment with
IMGT/HLA data

[71]

8 410–790 bp Short-range
system

A, B, C, DRB1/3/4/5,
DQA1, DQB1, DPB1

454 GS FLX, (or
GS Junior)

Conexio Assign ATF 454 [72]

9 3.4–13.6 kb Long-range
system

A, B, C, DRB1, DPB1,
DQB1

MiSeq BWA, Samtools, GATK,
PerlScript

[73]

10 5.1–5.6 kb Long-range
system

DRB3, DRB4, DRB5 454 GS Junior SeaBass [74]

11 250–270 bp Short-range
system

A, B, C, DRB1, DPB1,
DQB1

MiSeq neXtype [75]

12 250–270 bp Short-range
system

DRB1/3/4/5, DQA1,
DQB1, DPA1, DPB1

MiSeq Genetics Management
System

[76]

13 Unknown Long-range
system

A, B, DRB1 PacBio Bayes’ theorem,
NGSengine

[77]

14 4.0–7.2 kb Long-range
system

A, B, C, DRB1/3/4/5,
DQB1, DPB1

Ion PGM SeaBass [54]

Table 2. Publication list of NGS-based MHC genotyping in human. Bold letter shows publications from the author’s
group
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amplicon. On the other hand, the short-range system is less effective for genotyping recombi‐
nant alleles that have been generated by recombination events of the HLA genes because it is
difficult to avoid the phase ambiguities generated by recombinations. For example, in Figure
2, B*15:20 has an identical nucleotide sequence with B*15:01 in exon 2 and B*35:01 in exon 3,
but B*35:43 has an identical nucleotide sequence with B*35:01 in exon 2 and B*15:01 in exon 3.
When we genotype a DNA sample that has B*15:01 or B*15:20 and B*35:01 or B*35:43, ambig‐
uous genotyping can result in assignments such as B*15:01/20 and B*35:01/43 that are difficult
to assign correctly and definitively.

The long-range PCR system is a method based on PCR amplification of the entire HLA gene
region including the promotor-enhancer region, 5′ untranslated region (UTR), all exons, all
introns, and the 3′ UTR or partial gene regions that include polymorphic exons and adjacent
introns (Figure 1). Primer sets for long-range systems have already been developed and
published for HLA-A, HLA-B, HLA-C, HLA-DRB1/3/4/5, HLA-DQA1, HLA-DQB1, HLA-
DPA1, and HLA-DPB1 (Table 2). The advantage of long-range PCR is that this system can
easily solve phase ambiguity even if recombinant alleles such as those shown in Figure 2 are
present in DNA samples. Also, the long-range PCR method is expected to detect new poly‐
morphisms and variations throughout the entire HLA gene region. Therefore, the long-range

Figure 1. Outline of NGS-based human MHC typing.
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system is an important and useful alternative to the short-range system for donor-recipient
matching in bone marrow transplantation and HLA-related disease studies. In fact, one of the
main themes of the upcoming 17th International HLA and Immunogenetics Workshop
(IHIWS) in 2017 [53] is “NGS of full length HLA genes,” with the following objectives: (1) to
complete the sequence of all HLA alleles of the reference cell lines from the 13th IHIWS and
(2) to perform HLA genotyping of 10,000 quartet families of varied ancestry, utilizing at least
one NGS method.

4.1.2. Development of multiplex PCR methods

Recently, we developed four kinds of multiplex PCR methods based on the long-range system
for genotyping nine HLA loci (HLA-A, -B, -C, -DRB1/3/4/5, -DQB1, and -DPB1) [54] (Figure 3).

Figure 3. Two different nine loci HLA genotyping procedures at the PCR step.

Figure 2. Example of recombinant HLA alleles. B*15:01 and B*15:20 and B*15:01 and B*35:43 have identical nucleotide
sequences in exon 2 and in exon 3, respectively (red boxes), and B*35:01 and B*35:43 and B*35:01 and B*15:20 have
identical nucleotide sequences in exon 2 and in exon 3, respectively (blue boxes). “X” indicates the recombination site.
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The multiplex PCR methods contributed greatly to simplifying, accelerating, and reducing
costs and the number of reagents for the PCR step that is used to prepare samples and libraries
for NGS in the NGS-based HLA genotyping method. The multiplex methods also conserved
on the amounts of DNA samples needed to genotype a multiple number of HLA loci. Overall,
the multiplex PCR method is a powerful tool for providing precise genotyping data without
phase ambiguity, with a strong potential to replace the current routine genotyping methods
to find polymorphisms. Commercialized PCR amplification reagents such as NEType (One‐
Lambda) that are based on multiplex PCR methods will be made available in the near future,
whereas those based on the one-locus, one-tube PCR methods (left side of Figure 3) such as
the TruSight HLA panel (Illumina) and NGSgo (GenDX) are already available in the market
place.

4.2. NGS step

Although the 454 GS FLX was used often in the early stages of development of NGS-based
HLA genotyping, the benchtop next-generation sequencers such as the GS Junior system, Ion
Torrent PGM system, and the MiSeq system have been used more recently for the development
and application of the HLA genotyping methods (Table 2). At the moment, complicated
operations such as the preparation of NGS libraries are necessary for each of the different
second generation sequencing platforms. However, the NGS companies are attempting to
overcome these procedural bottlenecks by simplifying, automating, and speeding-up of the
preparatory steps for NGS. For example, a new protocol using Ion Isothermal Amplification
Chemistry that enables sequence reads of up to and beyond 500 bp, and Ion Hi-Q™ Sequencing
Chemistry that reduces consensus insertion and deletion (indel) errors, including homopoly‐
mer errors, might lead to further simplification and cost reduction with higher data quality.

4.3. Allele assignment step

A variety of different allele assignment methods have been developed with some allele
assignment software packages such as Assign (CONEXIO), OMIXON Target (OMIXON), and
NGSengine (GenDX) commercially available, and others such as TypeStream (Life Technolo‐
gies) still to be made commercially available in the near future. From our knowledge, Assign
and NGSengine only support NGS data obtained from the one-locus, one-tube PCR method,
whereas OMIXON Target and TypeStream also support NGS data obtained by the multiplex
PCR methods. However, accuracy rates of the assignment methods are not 100% with
genotyping errors caused by (1) missing HLA allele sequences, (2) generation of excessive
allelic imbalance (ratio of sequence read numbers of allele 1 and allele 2), and (3) interference
of HLA-DRB1 genotyping by participation of sequence reads originating from highly homol‐
ogous HLA-DRB3/4/5 and other HLA-DRB pseudogenes. To avoid the errors raised in point
1, it is necessary to have a full and proper collection of all the HLA allele sequences to achieve
precise HLA genotyping. In this regard, a much greater collection of high-quality full-length
HLA allele sequences are expected to be obtained by way of international collaborations at the
17th IHIWS meeting in 2017 [53].
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4.3.1. In-house Sequence Alignment-Based Assigning Software (SeaBass)

Recently, we developed a new next sequence allele assignment program (Sequence Alignment-
Based Assigning Software; SeaBass) to solve the problems previously outlined in points 2 and
3 above. The program includes (1) output of sequence reads, (2) homology search using the
Blat program [55] with the “match” variable set to 100% to detect identical exons within the
known HLA alleles released from the IMGT-HLA database [7], (3) selection of allele candi‐
dates, (4) mapping of the sequence reads to the selected allele candidates as references with
the “match” set at 100% using Reference Mapper (Roche), (5) calculation of coverages, and (6)
confirmation of the mapping data and allele assignment (Figure 4).

Figure 4. Allele assignment method using the newly developed Sequence Alignment-Based Assigning Software, Sea‐
Bass.

The operations from Eqs. (2) to (5) are automatically processed. If a new polymorphism is
included in the exon, we can detect its presence at the Blat search stage as shown in Figure 5,
and if a new polymorphism is included in the intron, we can detect its presence during the
calculation of the coverage and the final confirmation stages (Figure 6).

After the detection of the new polymorphisms, we further confirm them by traditional
methods such as Sanger sequencing and subcloning. In addition, we validated the use of the
SeaBass assignment methods for three next-generation sequencers, the GS Junior system, the
Ion Torrent PGM system, and the MiSeq system. To evaluate the SeaBass program, we used a
total of 2414 HLA sequences from all the classical HLA loci that have frequent HLA alleles in
Caucasians, African-Europeans, and Japanese, and we obtained an overall accuracy rate of
>99.8% and 100% for the Japanese subjects (Table 3).

The accuracy rate was not 100% for HLA-DRB1/3/4/5 and HLA-DPB1 of the non-Japanese
subjects because the complete coding sequences have not been determined as yet for some of
their HLA-DRB and HLA-DPB1 alleles. Nevertheless, the allele assignment method that we
developed for SeaBass appears to be the most accurate and efficient way to detect new and
null alleles by NGS.
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Figure 5. Detailed information concerning selection of allele candidates using the SeaBass computer program. (A) “Ex‐
traction of allele candidates” by Blat search. We select allele candidates that are extracted in all of the exons. (B-1) New
allele detection. In this example, one allele was called B*15:18:01, but the other allele was called B*44:03:01 excluding
the exon 3. (B-2) Confirmation of the new allele by NGS. Mapping of the sequence reads with B*44:03:01 as a reference
suggested six nucleotide differences with B*44:03:01 were detected in exon 3. We confirmed the polymorphisms by
Sanger sequencing and deposited the sequence to DDBJ and IMGT-HLA database. Now the formal allele name is
B*44:184 [94].
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5. NGS-based MHC genotyping methods in nonhuman species

NGS technology provides the opportunity to genotype MHC sequences either by PCR targeted
DNA sequencing or by PCR targeted RNA sequencing, that is, by DNA sequencing after
converting the RNA samples to cDNA by reverse transcriptase. Usually, one or other of the

Figure 6. Detection of a new allele during the calculation of the coverage and final confirmation stages in SeaBass.
Mapping results of the sequence reads using GS Reference Mapper are shown. (A) In this case, there is no mismatch
between the reference and consensus sequence. (B) In this case, there is a mismatch between the reference and consen‐
sus sequence (reference: C; consensus: -) indicated by yellow background.
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sequencing methods is chosen rather than using both methods on the same samples. In the
following sections, we compare the use and limitations of targeted NGS sequencing using
DNA or RNA samples for MHC genotyping of MHC class I and class II genes in nonhuman
species such as the Filipino cynomolgus macaques.

5.1. Advantage and disadvantage of using DNA and RNA samples for NGS

Table 4 shows a summary of the advantages and disadvantages of using DNA and RNA
samples for NGS-based MHC genotyping.

DNA RNA

Difficulty of sampling Easy Difficult

Extraction cost of nucleic acid Cheap Expensive

Preparation before PCR No RT reaction

Primer location Both of exons and introns Exons only

Required sequence read number Few Many

Exclusion of pseudogene Difficult Easy

Estimation of expression level Impossible Possible

Table 4. Advantages and disadvantages of DNA and RNA samples for NGS-based MHC genotyping

Worldwide subject (1916 loci)

Total A C B DRB345 DRB1 DQA1 DQB1 DPA1 DPB1

Locus
number

1916 250 250 242 186 239 140 234 140 235

Allele
number

3832 500 500 484 372 478 280 468 280 470

Accuracy rate
(%)

99.8 100 100 100 99.2 99.6 100 100 100 99.6

Japanese subject (498 loci)

Total A C B DRB345 DRB1 DQA1 DQB1 DPA1 DPB1

Locus
number

498 86 80 77 50 68 4 65 4 64

Allele
number

996 172 160 154 100 136 8 130 8 128

Accuracy rate
(%)

100 100 100 100 100 100 100 100 100 100

Table 3. Evaluation of the SeaBass program
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The advantages of using DNA samples instead of RNA samples are that (1) the sampling and
extraction of the DNA nucleic acids are easier and cheaper than RNA samples, (2) PCR
amplification can be perform directly without an additional reaction such as the reverse
transcriptase (RT) reaction, (3) design of primers in the exon and intron regions, and (4) fewer
read sequences are required for DNA than RNA samples if all alleles are amplified without
allelic imbalance. Although many more read sequences are necessary for RNA samples than
DNA samples to genotype all the MHC alleles that have different transcription levels, the
advantages of using RNA samples for genotyping are that (1) they provide an opportunity to
examine MHC gene expression, (2) transcription levels are possible to be estimated for each
of MHC alleles from the read sequence depth [56], and (3) only transcribed MHC genes are
detected without contamination of PCR products originating from pseudogenes if the primer
locations cross over to at least two homologous exons. Thus, the use of RNA samples is thought
to be more effective for precise MHC genotyping on duplicated MHC genes that have high
similarities among the genes. However, DNA and RNA samples have their own unique
advantages and disadvantages for informative NGS-based MHC genotyping and widen the
choices for experimentation and data collection.

5.2. Methodology

Table 5 shows a publication list of the MHC genotyping by PCR-based NGS methods in
different animal species, and it includes the MHC species name, target gene, PCR method,
degree of allele data accumulation, and the allele assignment method.

Species MHC
name

Animal
model or
nonmodel
type

Templat
e

Target
gene

NGS
platform

Degree of
allele data
accumulation

Allele
assignment
method

Ref.

Mammal Rhesus
macaque

Mamu Model RNA Class I and
II

454,
Illumina

Relatively rich Mapping de
novo
assembly

[78, 79]

Cynomolgus
macaque

Mafa Model RNA Class I and
II

454,
Illumina,
PacBio

Relatively rich Mapping de
novo
assembly

[35, 78,
80, 81]

Pig-tailed
macaque

Mane Model RNA Class I and
II

454,
Illumina

Relatively rich Mapping de
novo
assembly

[78, 82]

Swine SLA Model RNA Class I 454 Relatively rich Mapping de
novo
assembly

[56]

Grey mouse
lemur

Mimu Nonmodel DNA DRB and
DQB

454 Poor De novo
assembly

[83]
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Species MHC
name

Animal
model or
nonmodel
type

Templat
e

Target
gene

NGS
platform

Degree of
allele data
accumulation

Allele
assignment
method

Ref.

Alpine
marmots

Mama Nonmodel DNA Class I and
DRB

454 Poor De novo
assembly

[84]

New Zealand
sea lion

Phho Nonmodel DNA DRB and
DQB

454 Poor De novo
assembly

[85]

Avian Collared
flycatcher

Fial Nonmodel DNA Class II 454 Poor De novo
assembly

[86]

Great tit Pama Nonmodel DNA Class I 454 Poor De novo
assembly

[87]

House
Sparrows

Pado Nonmodel DNA Class I 454 Poor De novo
assembly

[88]

Berthelot’s
pipittawny
pipit

AnbeAnc
a

Nonmodel DNA Class II 454 Poor De novo
assembly

[89]

New Zealand
passerine

Peph Nonmodel DNA Class II PGM Poor De novo
assembly

[90]

Eurasian Coot Fuat Nonmodel DNA Class II 454 Poor De novo
assembly

[91]

Reptile Ornate dragon
lizard

Ctor Nonmodel DNA Class I 454 Poor De novo
assembly

[92]

Fish Stickleback fish Gaac Nonmodel DNA Class II 454 Poor De novo
assembly

[93]

Table 5. Publication list of MHC genotyping by PCR-based NGS methods in nonhuman species

As discussed previously, for humans, the HLA alleles obtained by next-generation sequencers
are mainly assigned by mapping to known allele sequences that are used as the read references
because a large number of HLA allele sequences already have been collected in the IMGT-HLA
database [7] (Table 2). On the other hand, de novo assembly of read sequences and subcloning
of PCR products identifies novel allele sequences. Of the nonhuman species, RNA samples
tend to be used for MHC genotyping in experimental animals (model animals) such as
macaque species and swine, whereas DNA samples are mainly used for MHC genotyping wild
(nonmodel) animals because collecting RNA samples from them in their natural environment
is more difficult than sampling captured or domesticated experimental animals (Table 5).

5.2.1. MHC genotyping RNA samples collected from Filipino cynomolgus macaques

MHC alleles in humans and experimental animals such as the macaque species and swine are
mainly assigned by mapping methods because of the large amount of MHC allele information
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already available for them than for most other species. This allele information is collected and
released by the IPD-MHC database [57]. When novel alleles are detected, de novo assembly of
the read sequences and subcloning of PCR products identifies the sequences.

We identified homozygous and heterozygous cynomolgus macaques (Mafa) that have specific
Mafa MHC haplotypes by genotyping the MHC of more than 5000 Filipino animals, and we
found that they have a smaller number of different Mafa-class I and Mafa-class II alleles than
the Indonesian and Vietnamese populations. In this section, we outline the MHC genotyping
method using RNA samples and provide some results as an example of the method. Figure
7 shows a comparative genomic map of MHC regions between human and Filipino cynomol‐
gus macaque.

Figure 7. Comparative genomic map of the human (HLA) and the Filipino cynomolgus macaque (Mafa) Class I and
Class II transcribed genes.

The MHC class I genomic region has many more Mafa-class I genes than HLA-class I genes
generated by gene duplication events, whereas the organization of Mafa-class II genes are well
conserved between the two species. Also, there are many Mafa-class I pseudogenes located in
the Mafa-class I region. Therefore, we performed MHC genotyping by amplicon sequencing
with the Roche GS Junior system using RNA samples from the Filipino cynomolgus macaques
to prevent contamination of PCR products originating from the pseudogenes (Figure 8).

The workflow that we used is composed mainly of five steps: (1) RNA extraction and cDNA
synthesis, (2) multiplex PCR amplification, (3) pooling of the PCR products, (4) amplicon NGS
sequencing, and (5) allele assignment. In step 1, we usually extracted total RNA from the
peripheral white blood cell samples using the TRIzol reagent (Invitrogen/Life Technologies/
Thermo Fisher Scientific, Carlsbad, CA) and synthesized cDNA by oligo d(T) primer using the
ReverTraAce for the reverse transcriptase reaction (TOYOBO, Osaka, Japan) after treatment
of the isolated RNA with DNase I (Invitrogen/Life Technologies/Thermo Fisher Scientific,
Carlsbad, CA). In step 2, we designed a single Mafa-class I-specific primer set in exon 2 and
exon 4 (PCR product size: 514 bp or 517 bp) that could amplify all known Mafa-class I alleles,
whereas the Mafa-class II locus-specific primer sets included the polymorphic exon 2 in Mafa-
DRB (420 bp), Mafa-DQA1 (435 bp), Mafa-DQB1 (396 bp), Mafa-DPA1 (407 bp), and Mafa-
DPB1 (333, 336 or 339 bp) for massively parallel pyrosequencing (Figure 9).
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Figure 9. Location of primer sites to amplify Filipino cynomolgus macaque MHC genes. Yellow boxes and blue arrows
indicate polymorphic exons and PCR regions, respectively. Numbers indicate exon numbers.

In addition to these primer sets, we also designed 50 different types of fusion primers that
contained the 454 titanium adaptor (A in forward and B in reverse primer), 10 bp MID (multiple
identifier), and MHC-specific primers (Figure 8). Moreover, we constructed a multiplex PCR
method using the primer sets by carefully optimizing primer composition and PCR conditions
and by comparing the sequence read data obtained by NGS (Figure 10).

As a result of these primer designs, 51.5%, 13.6%, and 8.6–8.9% of all read sequence numbers
were detected in Mafa-class I, Mafa-DRB, and the other Mafa-class II genes, respectively, and
we confirmed that the genotypes obtained by the multiplex PCR method were consistent with

Figure 8. A schematic workflow of the successive steps of the MHC genotyping method by NGS amplicon sequencing
for the Filipino cynomolgus macaques.
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our previous uniplex PCR methods. Therefore, the multiplex PCR method greatly simplified
the procedures required in preparing the DNA samples for NGS by reducing the time of
preparation and the amount and cost of reagents. In the pooling step of the PCR products, we
quantified the purified PCR products by the Picogreen assay (Invitrogen) with a Fluoroskan
Ascent micro-plate fluorometer (Thermo Fisher Scientific, Waltham, MA), mixed each of the
PCR products at equimolar concentrations and then diluted them according to the manufac‐
ture’s recommendation. In the NGS amplicon sequencing step, we perform emulsion PCR
(emPCR) and emulsion-breaking according to the manufacturer’s protocol (Roche, Basel,
Switzerland). After the emulsion-breaking step, we enriched and counted the beads carrying
the single-stranded DNA templates, and deposited them into a PicoTiterPlate to obtain the
sequence reads.

A schematic workflow of the allele assignment process as a follow on from Figure 8 is shown
in Figure 11.

After the sequencing run, image processing, signal correction, and base calling are performed
by the GS Run Processor Ver. 3.0 (Roche) with full processing for shotgun or paired-end filter
analysis. Quality-filter sequence reads that are passed by the assembler software (single sff
file) are binned according to the MID labels into each separate sequence sff file using the sff
file software (Roche). These files are further quality trimmed to remove poor sequence at the
end of the reads with quality values (QVs) of less than 20. After separation of the trimmed and
MID-labeled sequence reads in each of forward and reverse side read sequences, we inde‐
pendently detect the Mafa-class I and Mafa-class II allele candidates from both sides of the
forward and reverse reads by using the BLAT program to match the trimmed and MID labeled
sequence reads at 99% and 100% identity while setting the minimum overlap length at 200 and
the alignment identity score parameter at 10 against all the known Mafa-class I and Mafa-class
II allele sequences released in the IMGT/MHC-NHP database [58]. After the extraction of
common allele candidates from both sequencing sides, we finally assign the “real alleles” by
confirming nucleotide sequences of the allele candidates using the GS Reference Mapper Ver.

Figure 10. Ratio of read sequence numbers obtained by amplicon sequencing of multiplex PCR products.
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3.0. To discover novel Mafa-class I sequences, we perform the de novo assembly set to detect
>85% matches using the trimmed and MID-binned sequences after converting the outputs to
ace files for the Sequencher Ver. 5.01 DNA sequence assembly software (Gene Code Co., Ann
Arbor, MI). We then use the defined consensus sequence obtained from the de novo assembly
as a reference sequence to identify and map the correct allele sequences. Using this process,
we genotyped a set of 400 unrelated animals by the Sanger sequencing method and high
resolution pyrosequencing and identified 190 different alleles, 28 at Mafa-A, 54 at Mafa-B, 12
at Mafa-I, 11 at Mafa-E, 7 at Mafa-F, 34 at Mafa-DRB, 13 at Mafa-DQA1, 13 at Mafa-DQB1, 9
at Mafa-DPA1, and 9 at Mafa-DPB1 alleles [35, 59].

On the basis of our large-scale project to genotype the MHC of 5000 Filipino cynomolgus
macaques by NGS, we so far have detected 15 different types of Mafa haplotypes (HT1~HT15)
in 45 homozygous animals. These Mafa homozygous animals provided the basis to efficiently
estimate other Mafa haplotypes. For example, we estimated a variety of Mafa-A, Mafa-B/I,
Mafa-E, and Mafa-class II (Mafa-DRB, Mafa-DQA1, Mafa-DQB1, Mafa-DPA1, and Mafa-
DPB1) haplotypes by comparing the homozygous animals with heterozygous animals that

Figure 11. A schematic workflow of the allele assignment process using the SeaBass software.
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carry the identical Mafa-class I and Mafa-class II alleles in the homozygous animals. In
addition, we estimated the Mafa haplotypes and haplotype frequencies by the PHASE 2.1.1
program [60] using the allele data obtained by amplicon sequencing. From these procedures,
we estimated a total of 84 Mafa-class I and 18 Mafa-class II haplotypes. Of the 15 different Mafa
HT haplotypes, the haplotype frequencies of HT1, HT2, HT4, and HT8 were the highest. Of
them, HT1 and HT8 have entirely different Mafa alleles, whereas HT2 and HT4 are thought
to be recombinants of HT1 and HT8 (Figure 12).

Figure 12. Gene composition of representative Mafa MHC haplotypes HT1 and HT8 and their recombinants HT2 and
HT4.

Namely, the Mafa-A allele in HT2 is identical to that in HT8, whereas HT2 also has alleles at
other loci that are identical with those in HT1. Similarly, HT4 has alleles in Mafa-class I loci
that are identical with those in HT8, and alleles in the Mafa-class II loci that are identical with
those in HT1. Therefore, Mafa homozygous animals with known haplotypes such as H1 and
H2 are important for biomedical research, such as the transplantation outcomes of induced
pluripotent stem (iPS) cells (Figure 13) because such studies are undertaken on animals with
a defined genetic background and relatively well-characterized MHC haplotypes that might
regulate the adaptive immune system in different ways and efficiencies.

5.2.2. MHC genotyping using DNA samples of wild animals

At this time in the development of MHC genotyping by NGS, it is difficult to apply the RNA-
sequencing mapping method to accurately genotype the MHC of wild animals using known
allele sequences as references. This is because the present allele information is relatively poor
for most of them (Table 5). Therefore, MHC genotyping of wild animals or poorly studied
species by NGS is based on de novo assembly of DNA sequences. In this case, the definition of
“real alleles” and “artifact alleles” is important because NGS errors such as monostretch
sequences are frequently observed in the assembled consensus sequences. Some of the allele
assignment approaches based on de novo assembly that have been published include the allele
validation threshold (AVT) method [61], clustering method [62–64], and the relative sequenc‐
ing depth modeling methods [65]. These methods suppose that the contigs that have a sequence
depth greater than the threshold level are the “real alleles,” and they are determined by
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statistical calculation of the threshold using the sequence depth values of all contigs obtained
in de novo assembly. Therefore, the detection of exact or “real” alleles depends largely on the
setting of the threshold level and the quality of the sequence reads [65]. To enable the correct
setting of the threshold level, it is important to use primers that can amplify all alleles of the
target locus or loci without allelic imbalance. Furthermore, additional considerations such as
repeating independent NGS experiments at least three times and detecting identical allele
sequences in at least two animals are necessary to distinguish between real and artifactual
alleles.

6. Conclusion

Genotyping the polymorphisms of MHC genes using targeted NGS technologies has been
developed for humans and some nonhuman species to replace the use of other more cumber‐
some and less accurate procedures. We found that targeted NGS of DNA or RNA samples is
feasible, productive, and generates high-quality MHC allele information from a large number
of samples not easily achievable by other genotyping methods. We used second-generation
sequencing protocols to target the DNA region and RNA subsets of interest in our NGS studies.
It is likely that the longer sequence reads produced by third-generation platforms such as the

Figure 13. Application of Mafa homozygous and heterozygous animals for nonclinical trials of induced pluripotent
stem (iPS) cells.
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Pacific Biosciences single-molecule real-time sequencing or the Oxford nanopore sequencing
platform will enable and improve the task of MHC sequence phasing and haplotyping,
although this has yet to be demonstrated and proved to be advantageous and more economical.
Continued allele data collection for different species, improvements to the reagents, protocols,
and data analysis tools also are likely to simplify procedures and lower the costs of generating
sequencing data in future. Most species have numerous highly polymorphic MHC loci; hence,
the many benefits of using NGS technologies are likely, in the near future, to replace many of
the traditional genotyping methods for the investigation of human and animal MHC genes
and their role in evolutionary biology, ecology, population genetics, disease, and transplan‐
tation.
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Abstract

Transcriptome, the functional element of the genome, is comprised of different kinds of
RNA molecules such as mRNA, miRNA, ncRNA, rRNA, and tRNA to name a few. Each
of these RNA molecules plays a vital role in the physiological response, and understand‐
ing the regulation of these molecules is extremely critical for the better understanding of
the functional genome. RNA Sequencing (RNASeq) is one of the latest techniques applied
to study genome-wide transcriptome characterization and profiling using high-through‐
put sequenced data. As compared to array-based methods, RNASeq provides in-depth
and more precise information on transcriptome characterization and quantification.
Based upon availability of reference genome, transcriptome assembly can be reference-
guided or de novo. Once transcripts are assembled, downstream analysis such as expres‐
sion profiling, gene ontology, and pathway enrichment analyses can give more insight
into gene regulation. This chapter describes the significance of RNASeq study over array-
based traditional methods, approach to analyze RNASeq data, available methods and
tools, challenges associated with the data analysis, application areas, some of the recent
advancement made in the area of transcriptome study and its application.

Keywords: RNASeq, de novo and reference-based transcriptome assembly, Differential
gene expression, Next Generation Sequencing

1. Introduction

Completion of the Human Genome Project in 2001 brought with it the realization that while
understanding the genome is of great value, our understanding of biology is woefully
incomplete without the knowledge of the functional elements of the genome. The functional
element of the genome is the transcriptome, which is the set of RNA molecules such as mRNA,
rRNA, tRNA, and various small RNAs. A large number of research projects are now focused
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on the transcriptome rather than on genome and proteome as only 1-2% of genes are coding
and 80-90% of the transcribed genes are not translated to proteins. However, these are known
to be involved in epigenetic regulation and gene expression regulation [1-4]. Gene expression
is a complex process regulated at multiple levels such as gene transcription, post-transcrip‐
tional modifications, and translation. Briefly, complexity at the transcription regulation arises
from the presence of multiple Transcription Start Sites (TSSs), which can result in production
of multiple transcripts from a single gene [5] and alternate splicing as well as alternate
polyadenylation of the primary RNA to produce several different forms of transcripts
originating from the same gene [6, 7]. Because of different TSSs, eventually each mature
transcript will code for different protein [8]. Additionally, noncoding RNAs, which are not
translated to proteins, play catalytic and structurally important roles. For example, tRNAs and
rRNAs play a critical role in translation, small nuclear RNAs (snRNAs) participate in mRNA
splicing, small nucleolar RNAs (snoRNAs) regulate rRNA splicing, guide RNAs (gRNAs)
regulate RNA editing, and miRNA are involved in translational repression [9]. Study of the
transcriptome provides an understanding of the regulation of gene expression pattern [10],
alternative splicing and transcript structure [11], dynamic regulation of transcripts in different
tissues [12], and detailed information about the gene regulation in normal and diseased
conditions [13].

Transcriptome profiling is typically performed using hybridization or sequencing-based
methodologies. Hybridization-based methods involve binding of fluorescently labeled
fragments to complementary probe sequences either in solution or on a solid surface, e.g.,
microarray [14, 15]. These approaches, however, suffer from limitations such as low resolution,
low specificity, and low sensitivity [16]. Later, Sanger sequencing-based approaches such as
SAGE (Serial Analysis of Gene Expression) [17], CAGE (Cap Analysis of Gene Expression) [18],
and MPSS (Massively Parallel Signature Sequencing) [19] were developed, but these ap‐
proaches have serious limitations such as consideration of partial transcripts structure for gene
expression and inability to distinguish between isoforms [20]. With the advent of Next
Generation Sequencing (NGS), a technology that enables sequencing of millions of nucleotide
fragments in parallel, RNA Sequencing (RNASeq) has emerged as a powerful method for
studying the transcriptome. Though microarrays are high-throughput and economical,
RNASeq offers numerous advantages over microarrays [15]. Some of the key benefits of using
RNASeq over microarrays are:

a. Genome-wide coverage of transcripts is offered by RNASeq.

b. No prior knowledge of genome sequence is required in the case of RNASeq as opposed
to microarray and hence RNASeq experiment can be performed in the absence of the
reference genome.

c. Improved sensitivity and specificity: RNASeq offers enhanced detection of transcripts and
differentially expressed genes and isoforms. Moreover, RNASeq is known to be more
accurate in terms of fold change detection for both high- and low-abundance genes.

d. Detection of novel transcripts: Unlike microarray, RNASeq enables genome-wide
unbiased study and is not dependent on transcript or region-specific probes and hence it
investigates both known and novel transcripts.
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e. Detection of low-abundance transcripts if sequencing is done at high depth.

f. No or minimal background signal: While mapping the reads to the genome, one can
consider reads mapping unambiguously, which results in noise reduction. On the other
hand, cross-hybridization increases noise-to-signal ratio in microarrays.

g. SNP detection: RNASeq data can be used for SNP detection especially for highly and
medium expressed genes.

Because of its wider detection range, more sensitivity, genome-wide capture of expression
profile, and rapidly decreasing cost, RNASeq technology is being preferred over array-based
methods for transcriptome profiling. RNASeq has been widely used in the detection of
differentially expressed genes between cancerous and normal tissue samples [21], identifica‐
tion of novel gene fusion events in melanoma [22], discovery of several novel miRNAs in
cancerous cells [23], identification of differential gene expression and splicing events in
Alzheimer’s disease [24], identification of differential promoter usage, and higher expression
of noncoding RNA in diabetes [25, 26]. RNASeq is now being used extensively for transcrip‐
tome assembly, thus enabling better characterization of economically important plants such
as Garlic [27], Pea [28], Chickpea [29], Rice [30], Olive [31], Wheat [32], and many other plants
[33]. Further, combination of molecular biology and biochemical techniques with sequencing
has led to the study of different aspects of the transcriptome, such as mRNASeq, miRNASeq,
GROSeq, CLIPSeq, NETSeq, PARESeq, and ChIRPSeq (additional information in Table 1).
Projects such as ENCODE (ENCyclopedia of the DNA Elements) and TCGA (The Cancer
Genome Atlas) have characterized transcriptome of several different human cell lines and
tumor samples, respectively, using NGS-based transcriptome profiling. Goal of ENCODE
(https://www.encodeproject.org/) is to identify genome-wide transcriptome profile to under‐
stand the downstream effects of gene regulation in the human genome. TCGA (www.cancer‐
genome.nih.gov/), which contains information on cancer patient data, aims to understand the
mechanism of tumor transformation and progression.

RNASeq methods Description Reference

mRNASeq To identify messenger RNAs (mRNAs) [12]

miRNASeq To identify micro RNAs (miRNAs) [167]

GROSeq (Global Run On
Sequencing), PROSeq

To identify nascent RNAs that are actively transcribed by RNA
Pol II

[168]

ChIRPSeq (Chromatin Isolation
by RNA Purification)

To discover regions of the genome bound by a specific RNA [169]

RiboSeq (Ribosome profile
Sequencing)

To identify RNAs that are being processed by the ribosome and
hence this method helps to monitor the translation process

[170]

CLIPSeq (Cross-Linking and
Immunoprecipitation
Sequencing)

To identify the binding sites of cellular RNA-binding proteins
(RBPs) using UV light to cross-link RNA to RBPs without the
incorporation of photoactivatable groups into RNA

[171]
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RNASeq methods Description Reference

PAR-CLIP
Seq(Photoactivatable-
Ribonucleoside-Enhanced
Cross-Linking and
Immunoprecipitation
Sequencing)

To identify and sequence the binding sites of cellular RNA-
binding proteins (RBPs) and microRNA-containing
ribonucleoprotein complexes (miRNPs)

[172]

NETSeq (Native Elongation
Transcript Sequencing)

It sequences and captures nascent RNA transcripts after
immunoprecipitation of RNA Pol II elongation complex

[173]

TRAPSeq (Targeted
Purification of Polysomal
mRNA Sequencing)

To detect and identify translating mRNAs [174]

PARESeq (Parallel Analysis of
RNA Ends Sequencing) and
GMUCT (Genome-wide
Mapping of Uncapped
Transcripts)

To detect and identify miRNA cleavage sites and uncapped
transcripts that undergo degradation

[175]

TIFSeq (Transcript Isoform
Sequencing) or Paired-End
Analysis of Transcription start
site (PEAT)

RNA isoforms are identified after 5' and 3' paired-end
sequencing

[176]

CELSeq (Cell Expression by
Linear amplification and
Sequencing), SMARTSeq
(Switching Mechanism At the
5′ end of the RNA Template
Sequencing), STRT (Single-cell
Tagged Reverse Transcription)

Single-cell transcriptomics methods [177]

Table 1. Various RNASeq-based methods to study transcriptome

One of the first steps while designing the RNASeq experiment is choosing an appropriate
sequencing platform. Several sequencing platforms such as Illumina, Roche, PacBio, and Ion
Torrent, which are based on different sequencing chemistry and technology, are available
[reviewed in 34, 35]. Current leading platform for RNASeq (and other NGS-based analyses) is
the HiSeq series of sequencers from Illumina (https://www.illumina.com/systems.html)
because it provides high throughput, deep sequencing, low sequence error, and long enough
read data to be useful in multiple applications. Recently, the PacBio RS II (http://www.pacif‐
icbiosciences.com/) is gaining popularity for better transcriptome construction, because of its
ability to generate long reads. Once the millions of reads are generated from an RNASeq
experiment, the bioinformatics data analysis begins. In the following section, we briefly present
the bioinformatics data analysis steps, tools, and methods.
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One of the first steps while designing the RNASeq experiment is choosing an appropriate
sequencing platform. Several sequencing platforms such as Illumina, Roche, PacBio, and Ion
Torrent, which are based on different sequencing chemistry and technology, are available
[reviewed in 34, 35]. Current leading platform for RNASeq (and other NGS-based analyses) is
the HiSeq series of sequencers from Illumina (https://www.illumina.com/systems.html)
because it provides high throughput, deep sequencing, low sequence error, and long enough
read data to be useful in multiple applications. Recently, the PacBio RS II (http://www.pacif‐
icbiosciences.com/) is gaining popularity for better transcriptome construction, because of its
ability to generate long reads. Once the millions of reads are generated from an RNASeq
experiment, the bioinformatics data analysis begins. In the following section, we briefly present
the bioinformatics data analysis steps, tools, and methods.
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2. Bioinformatics analysis of RNASeq data

Analysis of the RNASeq data is a multistep process that typically includes quality check, data
preprocessing, transcriptome assembly (reference-guided and de novo transcriptome assem‐
bly), quantification, statistical analysis, and functional annotation (Figure 1). These steps are
described in details in the following.

Figure 1. Basic RNASeq data analysis workflow. Firstly, raw sequenced data are checked for the quality and, if re‐
quired, low-quality reads and artifacts are removed. In the case of reference-based assembly, the reads are mapped to
the reference genome in order to know their location. All the mapped reads are then analyzed for expression profiling.
Further, differentially expressed genes and isoforms can be annotated using Gene Ontology (GO) and Pathway enrich‐
ment analyses. In de novo assembly approach, after preprocessing of the raw reads, transcriptome can be assembled
using different de novo transcriptome assemblers. Once transcripts are constructed and abundance estimate is obtained,
the complete Open Reading Frames (ORFs) transcripts are predicted. The predicted ORFs can be annotated or ana‐
lyzed for expression profiling and then annotated using remote homology search method, GO, and pathway enrich‐
ment analyses.

2.1. Quality check and data preprocessing

Next generation sequencers assign a Phred quality score, which is the probability of the base
call being inaccurate, to the called bases. Low Phred scores (Q< 30) indicate read data of poor
quality. Poor-quality read data can arise from problems in the library preparation or from
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sequencing itself. Additionally, PCR artifacts, sequence-specific biasness, untrimmed adapter
sequences, and other possible contaminants can lead to poor data quality. These factors can
affect the downstream analysis and data interpretation, and can give inaccurate results. In
order to assess quality of raw sequenced data several tools such as FastQC (http://www.bioin‐
formatics.babraham.ac.uk/projects/fastqc/) and PRINSEQ [36] are available. Once the data are
checked for quality, they should be processed to remove reads with low-quality bases, adapter
sequences, and other contaminating sequences. Tools such as Cutadapt [37], Trimmomatic
[38], TrimGalore (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/), FASTX-
Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/), which trim adapter or other contaminants
based upon user-provided parameters, can be used for performing these operations. A brief
description of some of these quality and data preprocessing tools is provided below:

FastQC: FastQC is a simple, easy-to-use tool that evaluates the quality of read data generated
from the next generation sequencers. The input file/s for FastQC can be in Fastq, SAM, or BAM
format either in the compressed or uncompressed form. FastQC reports basic statistics for the
read data such as overrepresented sequences, k-mer content, base quality and content, adapter
content, read duplication level, etc. FastQC is available as a stand-alone Java-based program
with a graphical user interface and can be run from both Linux (using command line) and
Windows systems.

PRINSEQ: PRINSEQ reports base quality, GC content, duplicates, adapters, presence of
ambiguous sequences represented as “N,” poly A tails, etc. Unlike FastQC, PRINSEQ also has
the option of trimming and filtering reads. PRINSEQ is available as stand-alone as well as web
application (http://prinseq.sourceforge.net/). It accepts uncompressed files in Fasta, Qual, and
Fastq formats.

Trimmomatic: Trimmomatic is a Java-based program for the preprocessing of NGS read data
(http://www.usadellab.org/cms/?page=trimmomatic). It can trim contaminant sequences,
adapters, and filter reads based upon the quality. It supports compressed files in Fastq format
and generates output in Fastq format. Because of its multithreading option, its data processing
speed is higher than other tools available to perform the same function. Unlike some of the
other tools, Trimmomatic can analyze both single-end as well as paired-end read data.

Cutadapt: Cutadapt is a python-based tool for read preprocessing and can be run as a
command line application (https://cutadapt.readthedocs.org/en/stable). It accepts compressed
files in Fasta, Qual, and Fastq formats, and supports both paired-end and single-end files. It
trims low-quality bases, multiple adapter sequences from either 3’, 5’, or from both ends. In
addition, Cutadapt can remove fixed number of bases from either ends of the sequences and
supports demultiplexing, i.e., reads can be written to different output files depending upon
the adapter sequence found in the reads. The demultiplexing feature is particularly useful since
pooling multiple samples in a single run is an increasingly common practice as a result of
increased sequencer throughput.

TrimGalore: TrimGalore is a wrapper tool written around FastQC and Cutadapt for quality
check and adapter trimming for regular as well as MspI-digested RRBS-type (Reduced
Representation Bisufite-Seq) libraries. It accepts compressed Fastq files and supports paired-
end and single-end data.
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FASTX-Toolkit: FASTX-Toolkit is a collection of tools that accepts read data in Fasta and Fastq
file formats and trim the data based on base quality and adapter sequence contamination.
Additionally, the toolkit has tools that can perform file format conversion, split sequences
based upon barcodes, and generate reverse complement of sequences.

Once the read data are filtered and trimmed to remove low-quality bases, adapter sequence,
and contaminants, they are ready for transcriptome assembly and profiling analysis. There are
two different approaches for constructing full-length transcripts: reference-based assembly
(when a reference genome is available) and de novo assembly (when the reference genome is
not available), a computationally intensive and complex process (Table 2). Reference-based or
genome-guided assembly refers to mapping sequenced reads to the reference genome
followed by assembling the transcripts. In contrast, in de novo transcriptome assembly,
transcripts are constructed directly from the overlapping sequenced reads. For the transcrip‐
tome assembly of organisms without reference genome, only de novo transcriptome assembly
approach is available for transcriptome construction. However, for organisms with known
reference genome, both reference-based and de novo transcriptome assembly can be employed
for transcriptome construction. In fact, in this case, de novo transcriptome assembly will be
more effective in filling in the gaps (observed due to variation in reference genome sequence
and poor-quality annotation) and hence would complement the reference-based transcriptome
assembly. More details on these two transcriptome assembly approaches are discussed in the
following sections.

Reference-based assembly de novo assembly

Reference genome is required to assemble
the transcriptome

Transcriptome is assembled de novo

Relatively less computation- intensive Computation- intensive

Contaminants and sequencing artifacts
are not of major concern

Contaminants and sequencing artifacts can lead to poor quality of
assembled transcriptome

Mapping quality of transcripts is
dependent on splice aligners

Mapping is not required

Can assemble transcripts of low
abundance

Difficult to assemble the transcripts of low abundance unless sequencing
depth is high

Can work well with low sequencing
depth data (~10X)

Work well with high sequencing depth data (~30X)

Less efficient in identifying novel isoforms
and SNPs

Efficient in identifying novel isoforms and SNPs

Completeness and contiguity of
transcriptome is relatively higher

Completeness and contiguity of transcriptome is relatively lower
especially for low sequencing depth data

Table 2. Difference between reference-based and de novo assembly approaches
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2.2. Transcriptome assembly

2.2.1. Reference-based transcriptome assembly and profiling

Typically, in a reference-based transcriptome profiling study, the computational workflow
starts with aligning the quality-checked reads to the reference genome or transcriptome using
a suitable read aligner. The aligned reads are then used to quantitate the genomic features
(genes/isoforms). The quantity of the features needs to be normalized before comparison
between different experimental conditions. The normalized feature counts are then used for
drawing statistical inference on their difference in expression between samples under study.
Finally, the differentially expressed set of genes is processed to derive biological insights
relevant to the experimental setup. The success of this analysis depends very much on
decisions that the user takes while choosing reference genome, annotation, tools, and associ‐
ated parameter values at every step of the analysis. Steps involved in reference-based tran‐
scriptome assembly and analysis are described below.

2.2.1.1. Choice of reference build and annotation file

Reference genome and annotation files of a large number of species are available from a
number of publicly available resources. Three of the most widely used resources are Ensembl
(http://www.ensembl.org), the National Center of Biotechnology Information (NCBI; ftp://
ftp.ncbi.nih.gov/genomes), and UCSC genome browser (http://genome.ucsc.edu). Ensembl is
jointly headed by the European Molecular Biology Laboratory – European Bioinformatics
Institute (EMBL-EBI) and the Wellcome Trust Sanger Institute (WTSI). Ensembl generates
genome annotation for vertebrates and other eukaryotic species, and the information is made
freely available to the research community [39]. According to the latest Ensembl release 81, a
total 23,636 genomes from 4,991 species are available. The NCBI also hosts genome sequence
annotation data of over 1000 organisms including bacteria, archaea, eukaryote, viruses,
phages, viroids, plasmids, and organelles. The UCSC genome browser is maintained by the
UCSC Genome Bioinformatics group and provides data for over 90 organisms that belong to
vertebrates, deuterostomes, insects, nematodes, yeast, viruses, and others [40]. In addition to
the aforementioned data resources, Genome Reference Consortium (GRC), comprising of
WTSI, the Genome Institute of Washington University (TGI), EBI, and NCBI ensures that the
human, mouse, and zebrafish, and the genome assemblies of other model organisms are
continuously updated and properly maintained.

Irrespective of the source, it is always recommended to use the latest genome sequence and
its annotation. Zhao et al. [41] demonstrated that the choice of a gene model (annotation
information/annotation catalog) has a dramatic effect on both gene quantification and
differential analysis. We would recommend using Ensembl as it provides more detailed
annotation of the genomic features.

2.2.1.2. Choice of read aligner

One of the most challenging parts of RNASeq analysis is mapping the sequencing reads to the
genome correctly, especially for eukaryotes where presence of splicing events adds to the
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complexity. Multiple aligners, which can be divided into two categories, are available for
aligning short-reads to the genome:

1. Non-spliced aligners: These aligners do not handle splicing events and are therefore
suitable for prokaryotic RNASeq analysis only.

2. Spliced aligners: These aligners can place spliced reads across introns and determine
exon–intron boundaries. Therefore, these are preferred for eukaryotic RNASeq analysis.

The non-spliced aligners can be further classified, on the basis of the algorithm used, into two
categories:

• Hash table-based aligners: This set of aligners uses a seed sequence to identify alignment
candidates, which are then either extended or discarded using more precise dynamic
programming alignment algorithms. These aligners can be further divided, based upon the
approach of finding a seed, into two groups:

a. Reference indexing: Aligners create index using reference genome. Examples include
BFAST [42], Novoalign (http://www.novocraft.com), GNUMAP [43], SHRiMP2 [44],
Mosaik [45].

b. Read indexing: Aligners use read-based index. Examples include MAQ [46], RMAP
[47], and RazerS [48].

• FM-index-based aligners: This set of aligners creates FM-index of the genome using Burrows
Wheeler Transform data compression algorithm. FM-index’s compressed, yet searchable
suffix array-like structure makes these aligners both memory-efficient and ultrafast.
Examples include Bowtie1 [49], Bowtie2 [50], BWA [51], and SOAP2 [52].

Example of spliced aligners include GSNAP [53], MapSplice [54], SpliceMap [55], STAR [56],
and TopHat2 [57]. GSNAP can identify a splice site in two ways: first, by evaluating the
surrounding genomic sequence using probabilistic models of donor and acceptor splice site;
second, by utilizing user-provided database of known exon–intron boundaries, which
improves the sensitivity and specificity of the tool. Both MapSplice and TopHat2 use a two-
step algorithm where in the first step potential splice sites are detected, which are then used
in the second step to find correct map of reads. MapSplice is a de novo spliced aligner, whereas
TopHat2 can perform both de novo and gene-annotation-based splice alignment. TopHat2
incorporates Bowtie1 or Bowtie2, in the back-end, for initial alignments. SpliceMap is also a
de novo splice aligner, which is highly sensitive and specific in finding novel splice junctions
without using any existing gene model information in arbitrary RNASeq read lengths. Another
splice-aware aligner, STAR, utilizes sequential maximum mappable seed search in uncom‐
pressed suffix arrays followed by seed clustering and stitching procedure. It has been evalu‐
ated to be the fastest aligner among the above-listed spliced aligners with lowest false-positive
rate at high sensitivity [56]. However, its RAM requirement is higher as compared to its
counterparts.

The latest addition to the list of spliced aligners is HISAT (Hierarchical Indexing for Spliced
Alignments of Transcripts) [58], which is claimed to be the fastest aligner currently available.
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The reason for this highly efficient system is believed to be the indexing scheme it utilizes. As
compared to its counterparts, HISAT uses two different types of indexes instead of a single
index: (i) a whole-genome FM index to anchor each alignment, and (ii) numerous local FM
indexes for very rapid extension of these alignments. HISAT is 50 times faster than TopHat2,
12 times faster than GSNAP, and slightly faster than STAR [56]. In addition, HISAT requires
comparable amount of RAM as TopHat2 but maximum 20% of RAM as GSNAP or STAR needs.
Similar to TopHat2, HISAT also uses Bowtie2 in the back-end. Furthermore, it is the only
aligner that can work directly on an SRA file, which eliminates the sra to fastq file conversion
requirement.

Considering the options available, selecting the right aligner is a nontrivial task and there are
several publications comparing the read aligners. Fonseca et al. [59] published a feature-level
comparison of 60 mappers and highlighted the difficulties in determining the best aligner (in
terms of accuracy and speed). Other comparative studies include one by Lindner and Friedel
[60] on non-spliced aligners and another by Engstrom et al. [61] on spliced aligners.

Answers to the following questions may help to choose a suitable aligner:

1. Does the genome sequence belong to a prokaryote (where a gene lacks intron) or eukaryote
(where a gene has introns)?

If the genome is bacterial (example of a prokaryote), then computationally intensive splice
aligners such as TopHat2 or STAR are not required. In this case, non-splice aligners such as
Bowtie1, Bowtie2, or BWA are more appropriate because of the contiguous read mapping to
the reference genome. On the contrary, for eukaryotic genomes such as human/mouse, where
the reads will span an exon boundary and therefore a part of it will not map contiguously on
the reference genome; it is better to use a splice aligner that can identify splice sites.

2. Are the sequence data available in base space or color space format?

If the data are generated from a SOLiD sequencing platform, they will be in color space format
and almost all recently developed tools do not support color space data. In this case, the only
available options are aligners such as BWA (older than 0.6.x), Bowtie1, and TopHat2.

3. Does the aim of RNASeq experiment include calling variants in transcripts?

In experiments where the aim is to find variants in transcripts, mapping quality plays a crucial
role, and hence it is advisable to use only aligners that provide accurate mapping quality. BWA
and STAR aligners are suitable for this purpose; however, Bowtie 1 is not because it does not
assign appropriate quality score to the mapped reads.

Additionally, one should also consider the comparative precision and recall statistics, CPU,
and RAM requirements of the aligners. In addition to the aligners used, the data type itself
plays a critical role in the quality of mapped data. For example, paired-end information
improves mapping accuracy and, therefore, paired-end data are favored over single-end data
for RNASeq experiment.

The aligned read data generated from aligners mentioned in the previous section are stored
in Sequence Alignment/Map (SAM) file format, which is a gold standard to store alignment
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data. The SAM format has been created by the SAM/BAM format specification working group
(https://samtools.github.io/hts-specs/SAMv1.pdf) for standardizing the format in which
aligned data are stored. A SAM file contains information about the reference sequence name,
query sequence name, alignment position and direction of the read on the genome, mapping
quality, etc. However, SAM files are typically very large; hence, these files are converted into
binary counterpart known as BAM (Binary of SAM) files. This is done typically using SAMtools
[62], which provides a set of programs to manipulate the alignment files. Alignment files can
be further manipulated with utilities such as SAMtools and Picard (http://broadinsti‐
tute.github.io/picard/) to efficiently retrieve reads and regions of interest.

2.2.1.3. Choice of annotation source

Depending upon the biological question of interest, one may wish to perform expression study
either on known transcripts only, as per a given annotation catalog, or on reconstructed
transcriptome built using a known reference annotation. This enables the quantification of
novel genes/isoforms in addition to the known ones. In the first case, the mapped reads and
the annotation catalog can be used to assign read counts to each feature (genes/transcripts)
using a tool like htseq-count [63], and then perform statistical analysis to identify the differ‐
entially expressed genes/isoforms. In the second case, transcriptome reconstruction is required
prior to differential expression analysis. It requires assembly of reads into transcription units
using either the reference-based or de novo assembly approach. Given a reference genome and
an annotation catalog, there are tools such as Cufflinks [64, 65] that first map all the reads to
the genome and then use spliced reads directly to reconstruct the transcriptome. It generates
a GTF file that contains the assembled isoforms along with isoform-level relative abundance
in Fragments Per Kilobase of exon model per Million mapped fragments (FPKM) units [65].

2.2.2. De novo transcriptome assembly

Building a transcriptome using de novo methods is a powerful way to create the transcriptome
of a divergent or novel species. Mainly three features affect the quality of assembled transcripts:
a) type of transcript: presence of repeats, polymorphisms, splicing event, complexity of
organism, e.g., ploidy level, GC content; b) sequencing technology: library preparation,
sequencing accuracy; c) bioinformatics workflow: assembly algorithms and annotation.
Currently available de novo assemblers have different sensitivity, and specificity in terms of
transcript identification are error-prone, and lead to fused transcripts, splicing errors, and gaps
[66]. In order to enhance the sensitivity and specificity one can take the combined approach,
which employs de novo assembly method with reference-guided approach.

2.2.2.1. De novo assembly approaches

There are several algorithms available for de novo transcriptome assembly (Table 3). In de
novo transcriptome assembly, contigs or transfragments are created from overlapping reads.
Process of assembly involves either de Bruijn graphs construction using k-mers or overlap-
layout-consensus (OLC) approach for short and long reads, respectively [67].
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Tool name Algorithm Read type Reference

Trinity de Bruijn graph Single and Paired end [78]

Velvet-Oases de Bruijn graph Single and Paired end [74, 77]

SOAPdenovo-Trans de Bruijn graph Single and Paired end [80]

IDBA-tran de Bruijn graph Paired end [178]

Trans-ABySS de Bruijn graph Single and Paired end [79]

EBARDe novo Extension, Bridging, and
Repeat-sensing de novo

Paired end [179]

Bayesembler Bayesian model Paired end [180]

Mira Overlap graph Single and Paired end [68]

Table 3. A list containing different de novo transcriptome assemblers

Overlap-Layout-Consensus (OLC) approach:

OLC approach was initially developed for reconstruction of the genome from Sanger sequence
and EST (Expressed sequenced tag) data. As the name suggests, in the OLC approach, the read
data are searched for overlapping sequences and merged to create longer reads. Depending
on the volume of data and complexity of genome (e.g., repeats), the OLC approach is compu‐
tation- intensive. Some of the OLC-based assemblers are MIRA [68], Newbler (from Roche/454
Life Sciences), and CAP3 [69]. The assemblers using the OLC approach are more suitable for
small volume of data, not sensitive to repeat region detection and resolution, and cannot
handle the high-depth short read data generated from sequencers such as Illumina. The
Eulerian path assemblers, which are based on de Bruijn graph algorithms [70], are more suitable
for the high-depth short read data and are discussed in detail below.

De Bruijn-graph-based approach:

De Bruijn graph is a mathematical graph that uses a substring of letters (here nucleotides) of
length k to represent nodes. Nodes are connected if shifting a substring by one nucleotide
creates an exact k-1 overlap between the nodes [70]. De Bruijn graph can be created for both
small as well as large sequences. Based upon the defined k-mer (a nucleotide substring of
length k) length, reads are broken in k-length to generate substrings. Using these substrings,
de Bruijn graph is generated in which each unique substring represents a node (or vertex)
connected with overlaps between the last k-1 nucleotides of the previous sequence with the
first k-1 nucleotides of the subsequent sequence [71]. Identical overlaps of k-mers are merged
and counted while creating the graph. If the assembler finds differences in the nodes, the graph
is branched. Upon subsequent identity and overlap in the nodes, the graph will join the ends.
Presence of single nucleotide difference between the sequence data gives rise to bubbles in the
graph. In the case of RNASeq data, occurrence of large bubbles and open-ended branches in
the graph suggests presence of alternative splicing and alternative transcription start and end.
Occurrence of small bubbles can be due to single nucleotide variation or sequencing errors [72].
In most of the de Bruijn-graph-based assemblers, the preferred value of k-mer is usually an
odd number in order to avoid reverse complement of k-mers. The chosen size of k-mer has
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Tool name Algorithm Read type Reference

Trinity de Bruijn graph Single and Paired end [78]

Velvet-Oases de Bruijn graph Single and Paired end [74, 77]

SOAPdenovo-Trans de Bruijn graph Single and Paired end [80]

IDBA-tran de Bruijn graph Paired end [178]

Trans-ABySS de Bruijn graph Single and Paired end [79]

EBARDe novo Extension, Bridging, and
Repeat-sensing de novo

Paired end [179]

Bayesembler Bayesian model Paired end [180]

Mira Overlap graph Single and Paired end [68]

Table 3. A list containing different de novo transcriptome assemblers
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great impact on the assembly process as using a large k-mer can result in a unique de Bruijn
graph, but this approach is computationally intensive. On the other hand, using small k-mers
can result in a fragmented assembly. According to some of the previous studies it has been
observed that smaller k-mers can be useful in more accurate transcriptome assembly of lowly
expressed genes whereas larger k-mers perform better for abundant transcripts [73-75]. It is
therefore essential to identify the optimal k-mer for the sequence being assembled and it
depends to a large extent on the read length, sequencing depth, sequencing error rate, and the
complexity of the genome. Additionally, using directionality of the read from paired-end data,
assemblers can generate more accurate assembly as compared to single-end data [76]. Some
of the most commonly used de Bruijn-graph-based assemblers are: Velvet/Oases [74, 77],
Trinity [78], Trans-Abyss [79], SOAPdenovo-Trans [80].

Oases: Oases has a set of algorithms that post-processes the assembly generated by Velvet at
different k-mers such as dynamic filtering of the noise, resolution of alternative splicing
transcripts, and merging of the multiple assemblies generated using different k-mers
(www.ebi.ac.uk/~zerbino/oases/). Data generated from different k-mers are merged to
generate a complete assembly. Oases works well for the correction of errors and resolution of
repeats in the case of paired-end data.

Trinity: Trinity uses three steps to produce transcriptome assembly: inchworm, chrysalis, and
butterfly. Inchworm builds initial sets of contigs using k-mer graphs. Chrysalis groups these
contigs and builds de Bruijn graphs from them. Butterfly simplifies and resolves the graphs to
generate the final set of transcripts containing spliced variants and isoforms.

Trans-Abyss: Trans-Abyss considers multiple assemblies generated from Abyss to optimize
the assembly and can tackle varying coverage of the transcripts very well.

SOAPdenovo-Trans: SOAPdenovo-Trans is derived from the genome assembler, SOAPdeno‐
vo2 [81] and is known to construct transcriptome faster than the above-mentioned assemblers.

2.2.2.2. Choosing the transcriptome assembler

Choosing an assembly algorithm is difficult as it depends on a number of factors such as read
type, length, and complexity of the genome. Some instrument vendors such as Roche provide
assembly algorithms, e.g., Newbler, which can handle the long read data and the homopoly‐
mer issue frequently observed in the data generated from 454. A recent study using peanut
plant RNASeq data suggests that performance of Trinity is better than TransAByss and
SOAPdenovo-Trans when raw reads are mapped to the reconstructed assembly of the
polyploidy transcriptome [82]. Another study suggested use of multiple k-mers and clustering
of k-mer assemblies and at the same time identifying unique contigs from each assembly for
effective extraction of biological information from transcriptome assembly [83].

2.2.2.3. Assessing quality and accuracy of de novo assembled transcriptome

Because of sequencing errors and presence of repeats in the genome, it is hard to achieve a
perfect assembly. Moreover, different assemblers use different heuristic approaches to
assemble the transcriptome, which results in different number of identified transcripts.
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Quality and accuracy of assembled transcriptome are assessed in several different ways [84, 85]:

1. Assembly statistics: Most algorithms generate an assembly statistic that includes the
number of contigs/transfragments generated, total contigs/transfragments length and
singletons, size of the assembly (in number of nucleotides), percentage of reads assembled
to transfragments, percent GC content, etc. Assembly statistics provide overview of the
organisms’ transcriptome.

2. Transfragments/contigs statistics: This statistics includes lengths of the largest and
shortest transfragments, average and median length of transfragments, and N50 of
assembled transcriptome. N50 of the assembly is calculated by sorting the contigs in
descending order and the size of the contig that makes the total greater than or equal to
50% of the genome size is regarded as the N50 value. A large N50 is indicative of a more
contiguous assembly.

3. Mis-assembly and variations: Some of the major reasons for mis-assembly of the tran‐
scriptome are presence of ambiguous bases, repeat regions, insertions, deletions, SNPs,
and chromosomal rearrangements in the transcriptome. Percentage of mis-assembled
contigs can be calculated by mapping the contigs back to the reference genome. QUAST,
a tool, generates consolidated report on mis-assembly statistics [84].

4. Number of transfragments matching with the closest reference genome: Once transcripts
are assembled, it can be compared against a closely related species/genome. Assembly is
considered to be of high quality if the number of reference transcripts matching with the
transfragments is high. However, the genes that are not expressed, or lowly expressed,
might not be captured.

5. Hybrid or fused transcripts: Hybrid transcripts result from joining of two or more different
transcripts and hence matching to different locations of the genome. Reasons for hybrid
transcript generation are sequencing error, improper trimming of the adapter/contami‐
nant from the raw read, similarity of the transcripts, assembly algorithm’s parameters,
etc. Low number of hybrid transcripts reflects better assembly.

2.3. Quantification

Choice of expression unit: CPM, RPKM, FPKM, TPM, or read count

Once the read data is aligned to the reference genome, the gene expression can be quantitated
by read counting at exon, transcript, or gene-level. Here are few possible expression units:

a. Read Count: read counts are number of reads overlapping a genomic feature such as a
gene or transcript.

b. CPM (Counts Per Million mapped reads): CPMs are read counts scaled by the number of
fragments sequenced times one million. This unit is used in a differential expression
analysis R package edgeR [86].

c. RPKM (Reads Per Kilobase of transcript per Million): RPKM for a feature is computed by
dividing the number of read counts by it length and total number of reads sequenced,
followed by multiplication with one billion [12]. Applicable only for single-end data.
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d. FPKM (Fragments Per Kilobase of transcript per Million): similar as RPKM. But takes into
account a fragment (not reads) [65]. For pair-end data, there will be two reads for a single
fragment of genome while for single-end data, there will be one read for a single fragment.
Both the situations will add only one count.

e. TPM (Transcripts Per Million): TPM for a transcript is calculated by dividing the ratio of
its read counts over its length by the summation of ratios for all the transcripts, and
multiplying with one million [87]. Especially for transcript abundance.

2.4. Normalization

Why should one normalize the expression data?

RNASeq experiments have multiple sources of systematic variations introduced through inter-
sample differences such as difference in library size (sequencing depth) or unwanted variations
due to batch effects such as sampling time or different sequencing technology [12] or through
intra-sample differences such as difference in read length [88] or GC content between genes
[89, 90]. These variations, if ignored, can dramatically reduce the accuracy of statistical
inference and hence should be removed or controlled during statistical analysis. Therefore,
read count and FPKM of a feature, as calculated for example by htseq-count and Cufflinks,
respectively, may not be appropriate to compare across features and samples without nor‐
malization.

Normalization is a process that aims to ensure that expression estimates are comparable. There
are a number of normalization methods, such as:

a. Total Count: each read count of a feature expression is divided by total number of mapped
reads in that sample and multiplied by the average total count across all the samples.

b. Upper Quartile: each feature expression is divided by the upper quartile of expression
values, other than 0, in that sample and multiplied by the average upper quartile across
all the samples [91]. Upper quartile for FPKMs or fragment counts has been implemented
in Cuffdiff2 tool from Cufflinks suite [92].

c. Median: each feature expression is divided by the median of these expression values (other
than 0) in that sample and multiplied by the average median expression across all the
samples.

d. Quantile: the distribution of expression values for each sample is made identical [93].
Quantile method is available in R package limma [94].

e. Trimmed Mean of M-values (TMM): TMM normalization factor for each sample is
computed as the weighted mean of log ratios between a test sample and a reference sample
after excluding the features with highest expressions and features with largest log ratios.
These factors are rescaled by the mean of normalized library sizes. Finally, each feature
expression value is divided by these rescaled normalization factors to get the normalized
expression [86, 95]. TMM method has been implemented in R package edgeR [86].
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f. Median of ratio: the normalization factor for each sample is computed as the median of
ratios of expressions of features over their geometric means across all samples. Finally,
each feature expression is divided by this factor to get the normalized expression [96].
Median of ratio has been implemented in R packages DESeq [96], DESeq2 [97], and in
Cuffdiff2 [92].

Several publications [98, 99] comparing normalization methods suggest that median of ratio
is the best method for normalization in differential expression study for mRNASeq experiment.

In addition to normalization methods, several packages have been developed to control batch
effects, for example, svaseq [100]. svaseq can work on both, count-based data (e.g., htseq-count
generated data) as well as FPKMs (Cufflinks generated data).

2.5. Differential expression analysis

Differential expression analysis helps identify genes that are important in the experimental
conditions being tested and hence is the most routine analysis performed using the RNASeq
data. In RNASeq data, a linear relationship has been observed between the number of reads
that map to a transcript and the abundance of the transcript [12]. The goal of differential
expression analysis is to compare these read counts for a feature between distinct sample
groups and perform a statistical test to determine whether the difference is significant. For this
purpose, a distribution is required to be fitted to the count data using generalized linear model
(GLM). Based upon the assumption that reads are independently sampled from a population
with a given, fixed fractions of genes, it can be said that the read counts will follow a multi‐
nomial distribution. This multinomial distribution can be approximated by the Poisson
distribution and therefore Poisson distribution has been used to test differential expression in
several studies [101-103]. But it has been found that this distribution predicts smaller variations
than what is seen in the data. To overcome this issue, negative binomial (NB) distribution and
beta negative binomial distribution were proposed. NB has been used in several differential
expression tools such as edgeR [86], DESeq [96], DESeq2 (an enhanced version of DESeq) [97],
and BaySeq [104]. Though these tools use a common distribution, the method of variance
(dispersion) estimation differs, which affects the final outcome of the analysis. Cuffdiff2 uses
beta negative binomial distribution to fit fragment counts [92].

Recent advances in this area of research suggest that a combination of Poisson distribution and
NB distribution may yield better results. Chen et al. [105] derived a novel algorithm XBSeq
from DESeq, where they used Poisson distribution to fit read counts that map to nonexonic
regions (considered as sequencing noise) and used NB distribution to fit read counts that map
to exonic regions (considered as true signals).

Recently, limma [94], a well-known R package for performing differential expression analysis
of microarray data, has been empowered with RNASeq data analysis ability. It does not use
the above-mentioned distribution, rather converts count data (or normalized count data) to
log-counts per million using voom transformation, then fits a linear model to this data and
performs differential expression analysis using an empirical Bayes method.
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There is no clear evidence as such about the best tool for differential expression analysis;
however, multiple studies comparing available methods have been performed. Soneson and
Delorenzi [106] evaluated and compared eleven methods for differential expression analysis
on simulated and real RNASeq data, whereas Seyednasrollah et al. [107] compared eight
widely used tools on real data sets. Both the studies concluded that no single method is optimal
under all circumstances. Soneson and Delorenzi [106] observed that limma performed well
under many different conditions and Seyednasrollah et al. [107] found limma and DESeq as
the preferred choice. Additionally, these studies have suggested that the method of choice
should depend on the experimental conditions that include the number of samples per
condition.

2.6. Annotation and pathway analysis

2.6.1. Annotation of de novo assembled transcriptome

In addition to transcriptome abundance calculation after mapping the assembled contigs/
transfragments to the assembled transcriptome or reference genome and differential expres‐
sion data analysis, coding regions within de novo assembled transcripts can be searched using
ORF predictor tools such as Transdecoder (http://transdecoder.github.io/). Further, homolo‐
gous gene/protein identification of assembled transcripts can be done using tools such as BLAT
and BLAST [108].

2.6.2. Making sense of the differentially expressed gene list

List of differentially expressed genes is just the first tangible outcome of an RNASeq experi‐
ment. In order to derive biological insight from this list of genes, it is important to identify
functional categories of the genes that are differentially expressed and the biological pathways
that are enriched as a result of these differentially expressed genes. In order to do so, enrich‐
ment analysis is typically performed using publicly available resources such as GO (Biological
Processes and Molecular Functions) databases [109], KEGG pathways [110], BioCarta
(www.biocarta.com), and Reactome [111].

In a review article, Khatri et al. [112] elaborated the current approaches of pathway analysis
and their challenges and divided the existing approaches into three generations:

a. First Generation: Overrepresentation Analysis (ORA) approach

This approach statistically evaluates the fraction of genes, among the set of differentially
expressed genes, in a particular pathway. There are many tools that follow this approach, for
example, Onto-Express [113], GenMAPP [114], GoMiner [115], and DAVID [116, 117]. How‐
ever, this approach has certain limitations. For example, it does not consider the fold change
values associated with the genes, thereby ignoring the extent of regulation. Moreover, it does
not consider the gene product interactions that are found in a pathway. This approach also
ignores the dependency between the pathways.

b. Second Generation: Functional Class Scoring (FCS) approach
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This approach addresses few limitations of ORA. It considers all the genes and their expression
for pathway enrichment, so as to take into consideration the coordinated changes (irrespective
of the magnitude) unlike ORA where only differentially expressed genes were considered and
that too without considering their expression levels. Example of such tools include global test
[118], GSEA [119].

But this approach too has some limitations. Similar to ORA, this approach ignores the
dependency between the pathways and the interaction between gene products in a given
pathway.

c. Third Generation: Pathway Topology (PT)-based approach

To overcome the limitations of ORA and FCS, the Pathway-Topology-based approach has been
devised. It uses pathway knowledgebase to include pathway topology information for
enrichment analysis [112]. This information includes genes that are interacting, their mode of
interaction (e.g, activation, inhibition), and their location of interaction (e.g, cytoplasm,
nucleus). SPIA [120], an R package, is an example of this category of pathway analysis
approach, which combines evidence of pathway overrepresentation and unusual signaling
perturbations. NetGSA [121] is another method in this category that takes into consideration
the change in correlation as well as the change in network structure as experimental condition
changes. However, in the absence of high-resolution knowledge databases that can provide
knowledge for all conditions, tissue- and cell-specific functions of a gene product; the true
pathway topology is rarely inferred. And hence this restricts a researcher to investigate the
dynamic states of a system [112].

2.7. Visualization

Analyzed RNASeq data can be visualized in many different ways. Several tools such as
Cummerbund (an R package), RNAseqViewer for single and multiple sample visualization
[122], HeatmapGenerator for heatmap visualization, GOexpress for GO term enrichment
visualization (http://www.bioconductor.org/packages/devel/bioc/html/GOexpress.html),
RNASeq-specific genome viewers such as RNASeqExpressionBrowse [123], and RNASeq‐
Browser [124] are available for RNASeq data visualization.

We have recently developed SanGeniX (www.sangenix.com), an easy-to-use client-server-
based NGS data analysis application with a highly intuitive user interface (manuscript under
preparation). SanGeniX supports primary, secondary, and tertiary analysis of sequence data
from Illumina, Ion Torrent, SOliD, and PacBio RS. SanGeniX integrates multiple robust and
validated algorithms in the form of predefined workflows and offers flexibility to construct
custom workflows for RNASeq (reference-based as well as de novo), genome assembly,
ChIPSeq and DNASeq (for SNP and CNV calling). For example, in the case of RNASeq
workflow, the analysis starts with quality check (using tool FastQC), contaminant/adapter
trimming and removal (using Cutadapt and in-house scripts), read mapping using splice
aware aligners (using STAR, TopHat2), transcript quantification, differential expression
analysis (using Cufflinks packages and DESeq2), and gene ontology, as well as pathway
enrichment analysis (using GoMiner) (Figure 2). Further, graphically enriched visuals such as
heatmap based on clustering, scatter plot, and volcano plot for differentially expressed genes,
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pie chart on gene-ontology-based annotation, visualization of read data in the genome viewer,
etc., are generated for easy interpretation of the data (Figure 3). These figures and underlying
data can be downloaded in svg, png, and tsv formats. Moreover, the raw output files such as
output of mapping in SAM and BAM formats can also be downloaded. The executed work‐
flows can be shared with peers, rerun after changing parameters or tools. SanGeniX is available
as cloud-hosted as well as on premise solution and supported on multiple Linux platforms
such as Ubuntu, CentOS, and RedHat.
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Figure 3. Snapshots from RNASeq results dashboard from SanGeniX for an experiment consisting of four groups (or
samples). (A) Boxplot: It displays distribution of normalized expression values among different groups. Similar distri‐
bution of normalized expression values among the different groups of interest indicates that any technical biases due
to difference in sequencing depth have been taken care of. (B) Heatmap is a convenient way to visualize cluster of
genes based upon their expression. Here, log2 fold change of genes in three groups with respect to a reference group,
Group1 has been plotted. The color-code helps to infer gene expression level. Scatter plot (C), MA plot (D), and Volca‐
no plot (E) present visual investigation of differentially expressed genes between two conditions, for example, here
Group 4 and Group 1. Scatter plot helps to quickly compare the expression of a gene between the two conditions,
while MA plot depicts trends of difference in expression over the average expression, and Volcano plot helps to spot
genes by considering both fold change and test statistic.

3. Challenges in RNASeq data generation and analysis

As described above, NGS-based transcriptomic data generation and analysis is a complex and
multistep process. Every step has some key challenges that hinder the data analysis.

3.1. Library preparation

The process of library preparation is generating cDNA from the large RNA fragments, adding
the adapters, and amplifying the cDNA for sequencing. Due to a series of experimental
reactions, several biases can be introduced in the library preparation step. In majority of the
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cases, fragmentation of RNA or DNA, which plays an important role in the preparation of
high-quality sequencing library, is done using physical or enzymatic methods or chemical
shearing. The fragmentation of RNA has even coverage in the gene body and hence it is biased
toward the gene body as compared to the 5′ and 3′ ends where the coverage is relatively
depleted [20]. The library preparation step is further complicated by the presence of several
identical short reads and hence duplicate sequences in the library could arise from abundance
of RNA molecules. Another source of duplicate sequences in a library could be due to PCR
artifacts. These two different scenarios can be assessed by considering biological replicates in
the study. In the case of total RNAseq, abundance of ribosomal RNA (rRNA) dominates
sequenced reads and hence creates bias if not removed.

3.2. Sequencing platform

Sequencing platforms are available from multiple vendors such as Illumina (http://www.illu‐
mina.com/), Life Technologies (https://www.lifetechnologies.com/), and Pacific Biosciences
(www.pacificbiosciences.com/), and each of the platforms has its set of advantages and
disadvantages [35]. In choosing a sequencing platform, some of the factors to be considered
are sequencing length, sequencing type (single end or paired end), throughput, error rate, and
type of errors in the generated sequence data. The gigabytes of short reads generated from the
current platforms are not error-free, which affects the downstream analysis and interpretation.
For transcriptome assembly, the larger read length (such as produced from 454, PacBio) is
preferred over short read length (as produced by Illumina) as it will result in assembly of the
high-quality and reliable transcripts. However, both 454 and PacBio platforms have limited
throughput and hence the approach most commonly used is to generate data from multiple
platforms and combine the data during analysis.

3.3. Mapping

Accurate mapping of RNASeq reads is a challenging issue because of large data volume, slow
mapping speed, false-positive splicing events and incorrect estimation of exon–intron boun‐
daries, large genome size, repeat sequences in the genome, and annotation quality of the
genome. Usually, aligners search for introns smaller than a fixed length to reduce the compu‐
tational power, which often leads to missing the splice reads spanning longer introns [66].
Multiple mapping of reads is another major problem that can be due to presence of repeat
regions, similar sequences, and number of mismatches allowed in the mapping step. If such
reads mapping to multiple regions are discarded, it will lead to gap in the regions that cannot
be mapped uniquely, and if it is included, it can lead to false-positive transcription status.
Reference-based assembly cannot efficiently detect trans-spliced genes that are formed from
splicing and joining of two different precursor mRNAs and found in some disease conditions
such as cancer [125, 126]. Additionally, aligners have to cope with sequencing errors, SNP,
InDels, other genomics variations and parameters-based, suboptimal mapping outcome. In
summary, mapping-based RNASeq analysis can be more effective and complete when reads
are long, genome is well-annotated, and it can be combined with de novo genome assembly to
identify novel transcripts.
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3.4. Read quantification for the estimation of gene expression

Once the sequenced reads are aligned, gene expression is measured. The most common way
of read quantification is counting the number of reads overlapping the exons of a gene and if
the exon boundaries are not well-annotated, it may lead to false-positive hits. Another major
challenge in read quantification is reads mapping to multiple locations.

3.5. Count normalization

There are several methods such as quantile-based normalization, GC-content-based normali‐
zation, Poisson model with variable rates for different positions, available to normalize and
correct the biasness in the count data for the improved detection of differentially expressed
genes [91, 127, 128]. The increasing number of normalization methods requires a state-of-the-
art technique for comparing these methods. In the absence of such technique, there is no
consensus on the best method for normalization. For example, Zyprych-Walczak et al. [99]
found that TMM method worked poorly for them while Dillies et al. [98] found TMM and
median of ratio methods to be the best as compared to other methods. The transcript length is
another source of bias and leads to detection of more differential expression in longer tran‐
scripts compared to shorter transcripts [88].

3.6. Differential expression analysis

There are several tools and methods developed for the differential expression analysis
comparing differences in gene expression in different conditions (see section 2). Nonparamet‐
ric methods are not capable of better differential expression detection in the absence of sample
replicates and hence parametric methods are preferred for differential expression analysis
[129]. A study comparing various differential expression methods suggests that there is no
optimized method that can serve well for all the different conditions. As compared to other
tools, Cuffdiff performed poorly with large number of false-positives [130]. The accuracy of
differentially expressed genes is statistically significant and makes more sense if multiple
replicates are used in the analysis.

Similar to the situation as in normalization, picking up the best tool for differential analysis is
a tricky job. This is because there is no consensus about the tool best-suited for all experimental
setups. Soneson and Dolerenzi [106] found limma performing well under many conditions but
it required at least three replicates. Furthermore, they found limma performing worse when
dispersion differed between two conditions. They also observed that with large sample sizes
DESeq was overly conservative, while edgeR was producing large number of false-positives.

3.7. De novo assembly

The performance and accuracy of the de novo transcriptome assembly is largely dependent on
the complexity of the genome (e.g., genome size, number of paralogs, ploidy level), differential
read coverage of the sequenced data, and sequencing error. Transcriptome assembly is
complex and different from genome assembly in which read coverage is uniform. In contrast,
in RNASeq, the abundance of reads vary based upon gene expression, in which case isoforms
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originating from same gene can have different expression levels and hence poses significant
challenge in estimating the abundance especially for the lowly expressed genes if the sequenc‐
ing depth is too low. In general, de novo transcriptome requires much higher sequencing depth
than the reference-based transcriptome assembly.

The de novo transcriptome assembly generally consumes more time and is more computation-
intensive than reference-based assembly [131]. The number of transfragments produced using
the de novo approach is quite high, which can be due to multiple similar transcripts/isoforms
at the locus from allelic variation, or could be due to artifacts. Additionally, the contiguity and
completeness of the de novo assembled transcriptome is less than the reference-based assembly
especially for the data with less sequencing depth [132].

3.8. Deep sequencing versus cost

Another challenge associated with the RNASeq technology is read coverage and cost associ‐
ated with it. In order to detect lowly expressed genes or rare variants in the coding region,
high read coverage is required. According to Nagalakshmi et al. [10], for simple organism such
as yeast, which does not undergo alternative splicing, 30 million reads are sufficient to observe
genome-wide transcriptome profile [10]. But for larger and complex genomes such as the
human genome, higher-depth RNASeq data are required in order to capture the complete
transcriptomes. Moreover, in a given organism the number of transcripts expressed in different
conditions is different and hence same coverage may not be sufficient to capture all the
transcripts expressed under different conditions. Hence, before designing an experiment, one
should be aware of both sequencing depth required and the number of samples to be se‐
quenced. If the aim of experiment is to detect rare variants or lowly expressed genes, one
should go for high coverage of the transcriptome, whereas, if the aim of the experiment is
focused on gene expression differences between different samples (or conditions), one should
consider generating replicate data for statistical power [133].

There are other bioinformatics challenges such as data retrieval, storing, unavailability of
optimized statistical methods, and high-end compute infrastructure requirement that add to
the complexity of transcriptome analysis.

4. Applications of RNASeq

RNASeq provides an unprecedented view into the complexity of the transcriptome and hence
is a powerful tool to characterize and profile transcriptome on a genome-wide scale. Some of
these applications with detailed examples are discussed below.

4.1. Transcriptome profiling of economically important plants

Understanding the transcriptome and the functional elements of the economically important
plants can provide tremendous insights into biological entities, critical for traits such as disease
resistance, productivity, and characteristics such as flavor. Recently, Hu et al. [134] performed
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transcriptome assembly and annotation for the spice black pepper. Black pepper is one of the
most widely used fruit for adding flavor to food as well for its medicinal properties. The
authors were able to identify genes that might participate in piperidine, quinolizidine,
indolizidine, and lycopodium alkaloid biosynthesis, of which piperidine alkaloids account for
pungent taste and medicinal properties of black pepper. Similarly, Shudeesh et al. [135]
performed assembly and annotation of field pea, a legume that is cultivated worldwide for
human as well as livestock consumption. Studies have also been undertaken to identify
transcriptomes of the pathogens that infect economically important plants and the defense
mechanisms deployed by the plants. For example, the transcriptome of coffee leaf rust
pathogen Hemileia vastatrix was sequenced by Talhinhas et al. [136] to identify genes/
pathways that play a key role in the early stage of the infection, and Yang et al. [137] sequenced
the sand pear germplasm with differential resistance to infection by Alternaria alternata to
identify genes that contribute toward the resistance.

4.2. Transcriptome profiling of economically important animals

Similar to the value provided by transcriptome profiling of plants, transcriptome profiling of
economically important animals contributes toward better understanding of disease resist‐
ance, productivity, breeding, quality of meat, etc., in animals. Ropka-Molik et al. [138] have
used the NGS transcriptome profiling approach to identify genes that are differentially
expressed between two pig breeds with differences in muscularity that could contribute
toward the quality of meat. Gene expression profiles have been generated from different
breeds of cows to identify genes that contribute toward milk protein and fat percentage in cow
milk [139, 140] and milk yield [141]. Transcriptome profiling has also been used very recently
to identify the genes that are differentially expressed in silkworms (B. mori) undergoing
thermal parthenogenesis [142]. Thermal parthenogenesis is a process that is used in silkworm
breeding and selection.

4.3. Cancer

Cancer is a complex and heterogeneous genetic disorder that results from either inherited or
somatic genetic variations such as single nucleotide variations (SNV), insertions, deletions,
copy number variations, dysregulation of gene expression, and epigenetic modifications. As
changes in the gene expression pattern play a key role in tumorigenicity [143], metastasis [144],
prognosis [145], and relapse [146, 147], gene expression profiling has been used extensively in
cancer research and diagnosis. OncotypeDx (http://www.oncotypedx.com/) is a gene-expres‐
sion-based commercially available test that is used for breast cancer, colon cancer, and prostate
cancer diagnosis and prognosis.

Contrary to microarrays and RT-PCR-based approaches used earlier, RNASeq, which can
detect coding and noncoding RNA, strand orientation, and genetic variants all in one go, is a
very powerful tool in deciphering the complex transcriptome changes usually found in cancer.
One of the most comprehensive studies published recently is the transcriptome profiling of
4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types [148]. In this
study, in addition to identifying tissue specific gene signature, the authors were able to identify
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a 14-gene signature that accurately distinguished the cancer samples from the normal. Using
a whole transcriptome sequencing approach, Koh et al. [149] recently reported 14 candidate
genes that are important in rhabdoid glioblastoma (R-GBM) tumor, a rare form of GBM.
Similarly, RNASeq approach was used to identify gene signature in flow-sorted viable EpCAM
+ tumor epithelial cells and CD45+ tumor-infiltrating immune cells that were obtained from
cervical cancer samples [150]. The authors identified TCL1A as a novel biomarker, found
specifically in the immune cells, for predicting survival in cervical cancer patients.

The aforementioned studies highlight the varied approaches that can be used for identifying
biomarkers or gene signatures associated with distinct cancer characteristics.

4.4. Reproductive health

With the advancing parental age and a desire to limit the number of pregnancies, many couples
opt for assisted reproduction for childbearing. The advanced parental age is a key factor that
contributes toward the complications in assisted reproduction, and genomics-based ap‐
proaches are widely used to ensure a high success rate. Gene expression changes in ovarian
granulosa cells in women >35 years of age include downregulation of polo-like kinase
pathway, which plays an important role in cell cycle arrest of granulosa cells, and the G2/GM
checkpoint pathway [151]. Another very recent study also used the RNASeq approach to
identify differential gene expression profiles in women with successful pregnancy and a failed
pregnancy through assisted reproduction [152]. The authors found that the genes that were
differentially expressed played a role in immune response and inflammation, oocyte meiosis,
and rhythmic process.

The application of RNASeq in reproductive health is relatively new and as more knowledge
is gleaned through this, it might be possible to develop a signature that can be used for
predicting the success of assisted reproductive approach.

4.5. Developmental disorders

Developmental disorders are ones in which the child develops slower than peers in areas such
as motor function, social skills, and cognitive ability. Developmental disorders include
Austism, Asperger’s Syndrome, Attention Deficit Hyperactivity Disorder (ADHD), Rett
Syndrome, and stereotypic movement disorder, to name a few. Gene expression profiling has
been used extensively in Austism and genes involved in neuronal action potential, myelina‐
tion, axon ensheathment, cellular development, and cellular proliferation have been found to
be differentially expressed in autistic children [153]. Another study, using an in vitro model of
Autism found expression differences in genes involved in cell proliferation, neuronal differ‐
entiation, and synaptic assembly [154]. Similarly, a gene expression study in Rett Syndrome
[155], which is a rare variant of Austism, has identified genes involved in mitochondrial
functions, cellular protein metabolic processes, and RNA processing and DNA organization
to be differentially regulated.

In addition to the applications listed here, gene expression profiling can be used in number of
other human disorders such as diabetes, hypertension, psychiatric disorders, and infectious
diseases.
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5. Future perspective

RNASeq technology is proving to be a valuable tool to study known and novel transcripts of
an organism by providing more insights into the role of gene expression in development,
differential expression between different conditions, changes in gene expression in disease
progression, alternative splicing events, RNA editing, fusion transcripts, allele-specific
expression, etc. This technology is revolutionizing the field of plant and animal transcriptome,
where many of the species lack reference genome because of genome size and complexity.
Metatranscriptomic-NGS technology employed to study microbial transcriptome is another
emerging area of research in which construction of transcriptome assembly has led to simul‐
taneous identification of thousands of transcripts from the microbial community of the human
gastrointestinal tract [156], and the marine [157, 158] and soil [159]. Because of the fact that
gene expression levels vary significantly from one cell to another, researchers are now moving
toward single-cell transcriptomics, in which cell-to-cell variability on a genome-wide scale can
be profiled. Hence, transcriptome of single cell can be probed more efficiently as compared to
cell population where average transcript abundance of population is seen [160, 161]. A recent
study by Sasagawa et al. developed the method Quartz-Seq for individual cell isolation
followed by RNA sequencing and distinguished mouse embryonic stem cells from primitive
endoderm based upon transcriptome profile as well as cell-to-cell stochastic variation [162].
Another recently developed method, RaceID, is very useful in identifying rare cell types in
healthy and diseased tissues using mRNA sequencing [163]. Tissue-specific RNASeq is another
emerging area of research that can reveal tissue-specific requirement of RNA expression. A
recent study done on 13 different cell types discovered many tissue-specific and novel
miRNAs, which suggests that the repertoire of human miRNA is more extensive than our
current knowledge [164]. RNASeq is used as a powerful tool for clinical application as well. A
recent study developed exome capture RNASeq protocol for degraded clinical formalin-fixed
samples, which has shown to work successfully on prostate cancer samples suggesting that
capture transcriptome study can be used beyond cell lines and in the clinical setting [165].

Moreover, there are several publicly available RNASeq data repositories such as ENCODE
(https://www.encodeproject.org/), TCGA (www.cancergenome.nih.gov), and The Geuvadis
Project (http://www.geuvadis.org/), which provide enormous amount of data to researchers
to conduct genome-wide analyses beyond traditional gene expression and profiling analysis.
Mining data from public repositories will provide new insights into the transcriptome and
hence enable researchers to gain more information on gene regulation, which has been
previously neglected.

Sequencing method and experimental protocols are also continuously improving to reduce
the challenges associated with the technology. Platforms such as PacBio can produce a full-
length transcript in a single read, which can eventually eliminate the transcript assembly step
of the data analysis.

Additionally, to cater to the high volume of data and the demand for high-end computational
resources for the transcriptome assembly, many assemblers have started supporting parallel
data processing, which has significantly reduced the time required for the assembly (reviewed
in [66]). Cloud computing is another lucrative approach for parallel computing, which is
scalable and can be used as per the user requirement [166].
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Abstract

The combinatorial number of possible methylomes in biological time and space is astro‐
nomical. Consequently, the computational analysis of methylomes needs to cater for a va‐
riety of data, throughput and resolution. Here, we review recent advances in 2nd

generation sequencing (2GS) with a focus on the different methods used for the analysis
of MeDIP-seq data. The challenges and opportunities presented by the integration of
methylation data with other genomic data types are discussed as is the potential impact
of emerging 3rd generation sequencing (3GS) based technologies on methylation analysis.

Keywords: DNA methylation, methylome, immuno precipitation, analysis pipeline

1. Introduction

For many years it’s been widely known by scientists that, despite possessing the same DNA
sequence, not all genes can be active in all cells within an organism all of the time. It is through
the regulation of genes that we are able to see phenotypic differences between cells with
identical genotypes. In the late 1930’s, Conrad Waddington introduced the term ‘epigenetic
landscape’ to provide a metaphor for the cellular mechanisms leading to this regulation [1].
These regulatory, or epigenetic, patterns can be seen to persistently influence gene expression
levels through cell division. Hence, epigenetics involves the study of marks and mechanisms
that control gene expression in a mitotically and potentially meiotically heritable manner [2].

One such mechanism is DNA methylation (or more specifically cytosine methylation), an
important epigenetic modification. DNA methylation, in conjunction with histone modifica‐
tions, remodeling complexes and non-coding RNAs, plays a vital role in regulating genome
dynamics. In combination with these other modifications, DNA methylation can control the
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accessibility of the underlying DNA to the transcriptional machinery through the modulation
of chromatin density. As a result DNA methylation is involved in a diverse range of processes
including embryogenesis, genomic imprinting, cellular differentiation, DNA protein interac‐
tions and gene regulation [3].

In mammalian genomes, DNA methylation occurs almost exclusively at palindromic CpG
dinucleotides. CpG dinucleotides are found throughout the genome but are significantly
depleted (21% of that expected in the human genome [4]) in comparison to other dinucleotide
combinations. This is due to the hypermutability of methylated cytosines [5] where sponta‐
neous deamination to thymine occurs. However as a result of chance or potentially due to their
functional importance, a minority of CpGs are maintained against this loss.

The surviving CpGs are often found at a high density in localised genomic regions termed
CpG islands (CGIs) [3]. Unlike the majority of CpGs, these regions, of approximately 1kb in
length (though different algorithms produce different CGI predictions [6]), are largely
unmethylated and have been found to overlap the promoter regions of 60–70% of all human
genes, representing all constitutively expressed genes and approximately 40% of those
displaying tissue specific expression patterns [7, 8]. Unmethylated CGIs are able to recruit CpG
binding proteins such as Cfp1 [9], these in turn lead to the modification of histone tails [10]
and the formation of permissive chromatin domains, potentially enabling the initiation of
transcription [11]. In contrast, methylated CGIs are associated with gene silencing. This
silencing can occur via various routes such as inhibiting the recruitment of DNA binding
proteins from their target sites [12] or alternatively through the recruitment of methyl-CpG-
binding domain (MBD) proteins that in turn recruit histone modifying complexes to the
methylated sites [13].

Whilst methylation changes at CGIs is perhaps the most studied region, methylation occurs
in other genomic locations as well. CpG island shores represent regions of lower CpG density
flanking a CGI. They are generally defined as reaching 2kb upstream and downstream of an
island. It has been found that most tissue specific methylation occurs in these shore regions
rather than the islands [14, 15]. Additionally, high levels of DNA methylation can be found in
repetitive genomic regions. Rather than directly regulating the transcriptional potential of a
gene, this methylation is seen to prevent chromosomal instability [16-18].

Although DNA methylation is largely found in the CpG dinucleotide, it has also been reported
in humans and mouse at CHG and CHH sites [19, 20]. In comparison with a methylated CpG
site, methylated non-CpG sites display a much lower level of methylation within a cell
population [21] and show lower conservation between cell lines [22]. The mechanisms and
functionality of non-CpG methylation are currently unclear but the levels appear to decrease
during differentiation whilst being restored in induced pluripotent stem cells. This potentially
suggests a role in the origin and maintenance of the pluripotent state [19, 23, 24].

DNA methylation changes have been associated with numerous conditions. Many cancers
have shown hypomethylation at repetitive sequences thus promoting chromosomal instabil‐
ity. Examples include the LINE repeat L1 in a range of tumours [25] and satellite repeats
ALRα and SATR1 in peripheral nerve sheath tumours [26]. Hypomethylation at specific
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promoters can lead to aberrant expression of oncogenes, whilst in contrast hypermethylation
at specific island or shore sites can lead to transcriptional inactivation of genes involved in
pathways such as DNA repair and apoptosis [2, 13]. Neurological disorders such as Alzheim‐
er’s and Multiple sclerosis have been associated with aberrant DNA methylation as have
autoimmune diseases such as ICF syndrome and rheumatoid arthritis [2].

2. Methods for the study of genome-wide DNA methylation

Even within the relatively new field of second-generation (or next-generation) sequencing
(2GS), a plethora of methods exist for the exploration of DNA methylation and the analysis of
the ensuing data (Table 1). Such methods include the use of restriction endonucleases, or the
bisulphite conversion of DNA. Here we discuss in detail the analysis of affinity enrichment
techniques, specifically MeDIP-seq. For a full review of other methods see [27].

Software Method Summary Publication

Batman MeDIP-seq Bayesian tool for methylation analysis of MeDIP
profiles

[33]

Bismark Bisulphite Maps bisulfite treated sequencing reads through in-
silico bisulfite conversion of both reads and
genome. Performs methylation calling in a quick
and easy-to-use fashion.

[81]

Bis-SNP Bisulphite Estimates methylation probabilities of different
cytosine context to determine genotypes and
methylation levels simultaneously.

[61]

BSMAP Bisulphite Mapping software for bisulphite sequencing.
BSMAP aligns the Ts in the reads to both Cs and Ts
in the reference by building a “seed” index of the
reference genome.

[82]

BS-Seeker Bisulphite Accurate and fast mapping of bisulfite-treated short
reads through in-silico bisulfite conversion of both
reads and genome.

[83]

EpiExplorer Various Web tool that allows you to use large reference
epigenome datasets for your own analysis without
complex scripting or preprocessing.

[58]

Epigenome
Browser

Various Resource for visualizing and interacting with
whole-genome datasets. The browser currently
hosts Human Epigenome Atlas data produced by
the Roadmap Epigenomics project.

[84]
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Software Method Summary Publication

MEDIPS MeDIP-seq Bioconductor package providing a comprehensive
approach for normalizing and analyzing MeDIP-
seq data

[38]

MeDUSA MeDIP-seq Performs a full analysis of MeDIP-seq data,
including sequence alignment, QC and
determination and annotation of DMRs

[40]

MeQA MeDIP-seq Pipeline for the pre-processing, quality assessment,
read distribution and methylation estimation for
MeDIP-seq datasets

[39]

MethMarker Validation Implements a systematic workflow for design,
optimization and (computational) validation of
DNA methylation biomarkers.

[85]

Methylcoder Bisulphite Software pipeline for bisulfite-treated sequences [86]

MethylSeekR Bisulphite Accurately identifies the footprints of active
regulatory regions from bisulfite-sequencing data

[87]

Metmap Methyl-seq Produces corrected site-specific methylation states
from MethylSeq experiments and annotates
unmethylated islands across the genome.

[88]

Sherman Validation Simulates ungapped high-throughput datasets for
bisulfite sequencing. Allows for evaluation of the
influence of common problems observed in many
sequencing experiments.

http://tinyurl.com/bwkttgh

Table 1. Examples of software available for the analysis of 2GS methylation data.

Buoyed by the success of combining chromatin immunoprecipitation with second generation
sequencing for genome-wide studies of histone modifications and transcription factor binding
sites [28] (termed ChIP-seq), similar techniques were adopted for methylation. These methods
generally involve either enrichment through methylcytosine-specific protein domains (e.g.
MethylCap[29], MBD-seq[30]) or through antibody-mediated immunoprecipitation (e.g.
MeDIP[31], MRE-seq[32]) prior to sequencing[33, 34]. Such approaches, whilst not offering the
resolution of bisulphite sequence data, are both genome-wide and increasingly affordable.
Concordance in methylation calls between different enrichment and bisulphite methods have
been shown to be high[35, 36]. In methylated DNA immunoprecipitation (MeDIP), an antibody
capable of recognizing 5mC is utilized to immunoprecipitate the methylated fraction of the
genome. One issue that has been highlighted with enrichment methods such as MeDIP, is the
necessity to take the sequencing to saturation in order to confirm lack of methylation at a CpG
site. Such a policy would be costly and would generate a vast amount of redundant data and
as such saturation has not been reached with these methods. Methylation-sensitive restriction
enzymes (MRE) target unmethylated CpGs for sequencing thus one alternative suggestion is
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sequencing experiments.

http://tinyurl.com/bwkttgh

Table 1. Examples of software available for the analysis of 2GS methylation data.

Buoyed by the success of combining chromatin immunoprecipitation with second generation
sequencing for genome-wide studies of histone modifications and transcription factor binding
sites [28] (termed ChIP-seq), similar techniques were adopted for methylation. These methods
generally involve either enrichment through methylcytosine-specific protein domains (e.g.
MethylCap[29], MBD-seq[30]) or through antibody-mediated immunoprecipitation (e.g.
MeDIP[31], MRE-seq[32]) prior to sequencing[33, 34]. Such approaches, whilst not offering the
resolution of bisulphite sequence data, are both genome-wide and increasingly affordable.
Concordance in methylation calls between different enrichment and bisulphite methods have
been shown to be high[35, 36]. In methylated DNA immunoprecipitation (MeDIP), an antibody
capable of recognizing 5mC is utilized to immunoprecipitate the methylated fraction of the
genome. One issue that has been highlighted with enrichment methods such as MeDIP, is the
necessity to take the sequencing to saturation in order to confirm lack of methylation at a CpG
site. Such a policy would be costly and would generate a vast amount of redundant data and
as such saturation has not been reached with these methods. Methylation-sensitive restriction
enzymes (MRE) target unmethylated CpGs for sequencing thus one alternative suggestion is
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to integrate the MRE-seq method with MeDIP-seq. Such integration will have the benefit of
reducing the need for saturation sequencing and will highlight regions of intermediate
methylation, which would be difficult to detect using a single method. Going a step further,
if coupled with single nucleotide polymorphism (SNP) profiling, it would also be possible to
detect potential allele-specific epigenetic states[35].

MeDIP-seq is a popular enrichment technique for interrogating the methylation status of
cytosines across entire genomes. It has been used in numerous studies including the first
mammalian methylome [33] and the first cancer methylome [26]. In the next section, ap‐
proaches for the analysis of MeDIP-seq data will be discussed in greater detail.

3. Computational approaches for the analysis of MeDIP-seq data

A number of computational tools have been developed for the analysis of MeDIP data (Table
1), including Batman [33], MEDME [37], MEDIPS [38], MeQA [39] and MeDUSA [40]. The
method to use depends very much on the questions you want to ask of the data, and as a result
the type of analysis performed can be described as analyzing absolute methylation or,
alternatively, relative methylation.

3.1. Absolute methylation

The efficiency of immunoprecipitation in MeDIP is largely dependent on the density of
methylated CpG sites. Therefore, it is difficult to distinguish true variation in enrichment, and
hence methylation, from confounding effects caused by fluctuations in CpG density. This bias
needs to be corrected for in order to perform accurate and biologically relevant comparisons
of methylation states between different genomic regions.

The first method to try and correct for this bias was called Batman (Bayesian Tool for Meth‐
ylation Analysis)[33]. This tool was originally written to analyse MeDIP-chip data, but can also
be applied to 2GS. Batman, distributed as a suite of Java scripts, models the effect of varying
densities of methylated CpGs on MeDIP enrichment, resulting in the transformation of the
count of the aligned sequence read depth within a 100bp region into a quantitative measure
of DNA methylation. Such data can then be used to compare global methylation scores
between methylomes or between feature types (e.g. CpG islands, exons) within a methylome.
Batman was used for the analysis of the first mammalian methylome[33] and also the first
cancer methylome[26]. Unfortunately, Batman was disproportionately time consuming to run,
even when running with multiple processors. The R BioConductor package[41] MEDIPS v1.8
[38] attempted to utilize much of the methodology used in the Batman approach whilst
outperforming the computation time by orders of magnitude. By implementing MEDIPS as
an R package, this method is also more approachable for the majority of users, requiring less
computational knowledge to run the methods. In addition to generating genome-wide
methylation scores, MEDIPS sought to provide MeDIP-seq specific quality control metrics
such as calculating the degree of enrichment of CpG-rich sequenced reads relative to genomic
background. Finally, MEDIPS provided a methodology for determining the location of
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differentially methylated regions (DMRs) between samples. Whilst MEDIPS, building on the
strengths of Batman, undoubtedly provided an important step forward in the analysis of
MeDIP-seq data, it also had significant issues that need to be considered both before use and
when interrogating output from the program. For example, the DMR calling algorithm
requires an input sample to be sequenced in addition to the immunoprecipitated sample, thus
effectively doubling costs.

3.2. Relative methylation

Methods for calculating absolute methylation have proven to be useful when identifying large
global changes, for example hypomethylation of satellite repeats in peripheral nerve sheath
tumours[26]. Additionally, transforming MeDIP-seq data from read counts to a methylation
score has assisted in validating experiments against bisulphite data[33]. However, as yet, these
methods have not provided a framework for determining the location of DMRs in a statistically
rigorous manner. To achieve this, relative changes in DNA methylation between cohorts can
be determined, rather than absolute changes within a cohort. As such the problem has much
in common with other sequencing protocols, such as identifying differential expression
between RNA-seq cohorts or identifying peaks from a ChIP-seq sample. This commonality
opens up an abundance of methods that can be used or adapted for MeDIP-seq sample analysis,
for example peak finding using MACS[42, 43], or DMR finding using DESeq [44] or edgeR [45].

There are several hurdles to cross when analysing MeDIP-seq data, particularly during the
identification of DMRs. Read counts need to be normalized to eliminate biases as a result of
variability in sequencing depth between samples. Whilst global read count normalization can
help address this problem, it does not account for ‘competition’ effects. RNA-seq provides an
example of such effects, in which condition specific highly expressed genes can lead to a
depressed read count in other genes and hence a bias when comparing samples[46]. An
analogous situation can be found in MeDIP-seq, where sample-specific repeat methylation
could potentially diminish reads in other genomic regions and introduce bias to analyses,
particularly given the large amount of repetitive sequence methylated in the genome. Further,
despite falling sequencing costs, MeDIP-seq experiments will often have few biological
replicates. As a result, it can be difficult to obtain reliable estimates of model parameters to fit
statistical models and thereby locate real differences between samples. By using methods such
as DESeq that estimate variance in a local fashion, it is possible to remove potential selection
biases [44]. Additionally, DESeq estimates a flexible, mean-dependent local regression rather
than attempting to reliably estimate both the variance and mean parameters of the distribution
from limited numbers of replicates. Typically, there is enough data available in these experi‐
ments to allow for sufficiently precise local estimation of the dispersion [44] and hence avoid
bias towards certain areas of the dynamic range when identifying DMRs. Finally, accurate
biological interpretation could be compromised by differences in DNA fragment size distri‐
butions between samples. Performing fragment length normalization through read sub-
sampling to equalize the distributions can eliminate this potential bias.

Additionally, the methods developed for absolute methylation calculation are unable to take
account of non-CpG methylation and, due to the models used being based on local CpG

Next Generation Sequencing - Advances, Applications and Challenges158



differentially methylated regions (DMRs) between samples. Whilst MEDIPS, building on the
strengths of Batman, undoubtedly provided an important step forward in the analysis of
MeDIP-seq data, it also had significant issues that need to be considered both before use and
when interrogating output from the program. For example, the DMR calling algorithm
requires an input sample to be sequenced in addition to the immunoprecipitated sample, thus
effectively doubling costs.

3.2. Relative methylation

Methods for calculating absolute methylation have proven to be useful when identifying large
global changes, for example hypomethylation of satellite repeats in peripheral nerve sheath
tumours[26]. Additionally, transforming MeDIP-seq data from read counts to a methylation
score has assisted in validating experiments against bisulphite data[33]. However, as yet, these
methods have not provided a framework for determining the location of DMRs in a statistically
rigorous manner. To achieve this, relative changes in DNA methylation between cohorts can
be determined, rather than absolute changes within a cohort. As such the problem has much
in common with other sequencing protocols, such as identifying differential expression
between RNA-seq cohorts or identifying peaks from a ChIP-seq sample. This commonality
opens up an abundance of methods that can be used or adapted for MeDIP-seq sample analysis,
for example peak finding using MACS[42, 43], or DMR finding using DESeq [44] or edgeR [45].

There are several hurdles to cross when analysing MeDIP-seq data, particularly during the
identification of DMRs. Read counts need to be normalized to eliminate biases as a result of
variability in sequencing depth between samples. Whilst global read count normalization can
help address this problem, it does not account for ‘competition’ effects. RNA-seq provides an
example of such effects, in which condition specific highly expressed genes can lead to a
depressed read count in other genes and hence a bias when comparing samples[46]. An
analogous situation can be found in MeDIP-seq, where sample-specific repeat methylation
could potentially diminish reads in other genomic regions and introduce bias to analyses,
particularly given the large amount of repetitive sequence methylated in the genome. Further,
despite falling sequencing costs, MeDIP-seq experiments will often have few biological
replicates. As a result, it can be difficult to obtain reliable estimates of model parameters to fit
statistical models and thereby locate real differences between samples. By using methods such
as DESeq that estimate variance in a local fashion, it is possible to remove potential selection
biases [44]. Additionally, DESeq estimates a flexible, mean-dependent local regression rather
than attempting to reliably estimate both the variance and mean parameters of the distribution
from limited numbers of replicates. Typically, there is enough data available in these experi‐
ments to allow for sufficiently precise local estimation of the dispersion [44] and hence avoid
bias towards certain areas of the dynamic range when identifying DMRs. Finally, accurate
biological interpretation could be compromised by differences in DNA fragment size distri‐
butions between samples. Performing fragment length normalization through read sub-
sampling to equalize the distributions can eliminate this potential bias.

Additionally, the methods developed for absolute methylation calculation are unable to take
account of non-CpG methylation and, due to the models used being based on local CpG

Next Generation Sequencing - Advances, Applications and Challenges158

density, the presence of non-CpG methylation could adversely skew the output. In contrast,
a relative methylation approach should be able to locate differences in methylation driven by
asymmetric non-CpG methylation[47], taking advantage of the affinity of the MeDIP-seq
antibody for methylated cytosine (rather than exclusively selecting for methylated CpGs).

The first pipeline to provide a comprehensive methodology for analyzing MeDIP-seq data,
with the focus on accurate and statistically rigorous identification of DMRs, was MeDUSA
(Methylated DNA Utility for Sequence Analysis) (https://www.ucl.ac.uk/cancer/medical-
genomics/medusaproject) [40]. MeDUSA (v1) utilized a number of software packages to
perform a complete analysis of MeDIP-seq data. This included sequence alignment, quality
control (QC), and determination and annotation of DMRs. The novel aspect of MeDUSA was
the approach to DMR calling. It utilized the USeq suite of tools, specifically MultipleReplicaS‐
canSeqs (MRSS) and EnrichedRegionMaker [48]. MRSS formatted data for use in the BioCon‐
ductor package DESeq [44]. DESeq determined significant differential counts between cohorts.
These regions are passed to EnrichedRegionMaker to determine if multiple regions can be
combined to create single larger regions. MeDUSA proceeded to provide initial annotation of
these DMR regions.

More recently new versions of both MEDIPS (v1.10) and MeDUSA (v2) have been released.
The MEDIPS package now incorporates methods from the edgeR [45] bioconductor package
to provide a DMR calling methodology analogous to that used in MeDUSA. However, the
approach and implementation employed by MEDIPS is more efficient (both time and compu‐
tational) than the DMR calling method used in MeDUSA v1. As a consequence, MeDUSA (v2)
now utilises MEDIPS for the DMR calling stage of the pipeline.

4. Data integration

As more studies are published and sequencing costs fall, the opportunity to integrate meth‐
ylation datasets with other data types increases[49]. Whilst being able to detect changes in
methylation is interesting, it is more interesting, and indeed more likely to be of functional
importance, if this change associates with other detectable biological signals. For example, the
potential of associating a methylation change with a corresponding change in transcription of
a particular splice variant[50-52] from RNA-seq, or with an increase in binding of a specific
transcription factor using ChIP-seq data[53].

In addition to the published sequence and array based datasets stored in public repositories
such as GEO[54], a number of datasets are pre-loaded in public Genome Browsers. For
example, the UCSC Genome Browser provides access to data from the ENCODE project[55],
including expression data in the form of RNA-seq and regulatory data generated through
ChIP-seq representing several different cell lines and various primary tissue types. Com‐
pressed file formats such as bigWig and bigBed[56] make it relatively simple to load and
visualize multiple data types (Figure 1) whilst software such as bedTools[57] allow for quick
intersections between data to be determined. EpiExplorer functions as a user-friendly web-
based solution for providing initial annotations of feature sets [58], such as differentially
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methylated regions. It enables exploratory analysis of user-uploaded data and provides links
to many external public datasets. As datasets become larger and more complex, other methods
of integration may be required, for example an unsupervised clustering approach may be
useful [49, 59].

Figure 1. Visualising MeDUSA output in UCSC Genome Browser. MeDIP tracks are shown for 3 embryonic stem cell
(ESC) replicates and 3 Mouse embryonic fibroblasts (MEF) replicates over the Hoxc13 gene. The CpG island in the pro‐
moter region is hypomethylated in the ESC samples, suggesting more permissible chromatin in ESCs than in MEFs.
This is supported by the ES-CJ7 DNase I Hypersensitivity track. Additionally the RNA-seq tracks show transcriptional
differences in this gene between ESCs and MEFs.

In addition to transcriptomic and regulatory data, it is also possible to integrate methylation
data with genomic information. A perceived difference in methylation at a given CpG
dinucleotide between samples could be caused by one sample possessing a methylated
cytosine whilst the other sample possesses an unmethylated cytosine. Alternatively, the
methylation difference could be due to the presence of a SNP, seeing the cytosine replaced
with an alternative base. Therefore, the use of genotype profiling can clarify whether a
methylation difference is a result of genetic or epigenetic changes. The need to consider both
genetic and epigenetic changes came to the fore with the release of the Illumina Infinium
HumanMethylation450 BeadChip. This chip allows for the interrogation of 485000 potential
sites of methylation. However, a significant proportion of these sites are also sites of known
SNPs[60]. Thus, any difference detected at these sites could be driven by epigenetic or genetic
factors. Whilst this is an issue for the array analysis, tools such as Bis-SNP are able to make
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SNP calls from bisulphite sequencing data, in doing so allowing for both accurate quantifica‐
tion of methylation levels and for identification of allele-specific epigenetic events such as
imprinting [61].

A recent study utilised a combination of SNP, expression and methylation data to determine
whether methylation has a passive or active role in gene regulation [62]. Three models were
considered for the relationship between methylation and regulation. The first model described
how a SNP would independently influence expression and methylation, for example through
SNP modification of a transcription factor binding site (the impact on methylation of small
changes to nucleotides constituting a TFBS have been explored in a recent tri-primate meth‐
ylome study [89]). In the second model, a SNP would impact upon methylation, which, in turn,
would modify expression. The final model shows a SNP affecting expression that consequently
alters the methylation state. It was found that, in reality, each of these models occurs in different
contexts with the frequency of the model varying according to cell type [62, 63]. Such studies
underline the complexity inherent in, and the difficulty in deciphering, regulatory interactions
and should serve as a warning to those seeking overly simplistic interpretations [63].

Extending the genetic effect out from a single site to an entire region, it is possible that
methylation levels could be strongly influenced by the haplotypic phase[64]. Haplotype
specific methylation (HSM) is a result of the cumulative methylation effect driven by the phase
of a number of CpG-SNPs within the haplotype. This signal was strong enough to be identified
across the 47kb FTO linkage disequilibrium block[65]. Such a finding is only possible through
the integration of DNA methylation data and genome wide association study data. It is also
worth remembering at this juncture that whether a measured methylation difference is due to
a SNP or not, the downstream impact on the transcriptional potential of the chromosomal
region in question could be the same.

5. Future perspectives

The field of epigenetics and specifically the study of DNA methylation have emerged as major
areas of research in recent years. This rise can be largely attributed to the impact of emerging
technologies, particularly 2GS. Projects that would have been perceived as impossible just a
few years ago have been completed and more are underway. The International Human
Epigenome Consortium (IHEC) (http://www.ihec-epigenomes.org/) was established to
provide high-resolution reference epigenome maps to the research community by coordinat‐
ing large-scale international efforts. The grand aim of which is to generate 1000 reference
epigenomes. Various initiatives worldwide have joined IHEC in an attempt to complete the
goal. In Europe, the BLUEPRINT Project[66] will take the IHEC goal forward and in doing so
improve our understanding of the human epigenome – of which the methylome is a key
constituent.

There are still many questions associated with the role of DNA methylation. Some with regards
to the biology, and some the techniques used. It is important to know, for example, if using an
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enrichment based technique, what the specificity of your antibody is. Different antibodies
appear to show differing levels of repeat enrichment when performing MeDIP[67]. It would
be of benefit to standardize these analyses. Similarly, different bisulphite conversion protocols
may lead to differing conversion success. Global CpG methylation levels obtained from WGBS
for 3 human embryonic stem cell (HESC) lines showed surprising variability (72% - 85%)[68].
This could be due to unstable gain and loss of methylation as previously reported in embryonic
stem cells (ESCs)[69, 70], but it could also be a result of pre-analysis protocol and lab specific
differences in sample preparation. Equally, it will be interesting to discover more about the
biological roles and genomic location of the different cytosine modifications (5-hydroxyme‐
thylcytosine[47], 5-Formylcytosine and 5-Carboxylcytosine[71]) and also non-CpG methyla‐
tion.

New technologies with the potential for adaption for the analysis of DNA methylation are
being developed constantly. For example, improved methods of methylation validation would
be highly beneficial. Often hundreds or thousands of potential candidate regions are generated
from a multi-sample MeDIP-seq comparison, and similar numbers could be produced by
future EWAS (Epigenome-Wide Association Studies)[72]. Ideally, many of these regions
would be validated using a different technology. Targeted bisulphite sequencing is often used,
however this can often be laborious and time-consuming. Combining new technologies such
as microdroplet-based PCR target enrichment (e.g. RainDance Technologies) with 2GS has
recently been developed into a high-throughput platform termed RainDropBS-seq [73],
providing an excellent option to remove the validation bottle-neck. There is also the emergence
of third generation sequencing on the horizon. Third generation sequencing (3GS) theoretically
promises many advantages over existing 2GS methods including higher throughput, longer
read lengths, improved accuracy and requiring smaller amounts of starting material[74],
indeed some companies e.g. Oxford Nanopore Technologies, are promising single molecule
sequencing[75, 76]. The potential of single molecule nanopore sequencing is particularly
exciting for researchers working in the field of DNA methylation. Theoretically, it should be
possible to sequence complex mammalian genomes and determine any base modifications
such as methylation[77], potentially including hitherto undiscovered modifications, without
the need for any of the treatments or enrichments discussed above.

As the large-scale projects, such as IHEC, BLUEPRINT and increasingly clinically oriented
projects such as OncoTrack progress, it is expected that many methods and tools will become
standardized. This will be an important step in translating epigenomic knowledge from the
bench to the clinic[78, 79]. In the future, it is hoped that a patient will be treated with drugs
tailored to their particular condition – this is of particular relevance for cancer patients.
Preliminary work using whole genome, exome and RNA-seq has demonstrated the potential
for treating a real patient in a relatively short time period (24 days) and a relatively low cost
(~$3600)[80]. Adding reliable epigenetic information, utilising the IHEC reference genomes,
to this diagnostic toolbox is a logical next step. Extrapolating from these advances, it is quite
clear that the bottleneck is shifting from logistics and data generation to computational
analysis.

Next Generation Sequencing - Advances, Applications and Challenges162



enrichment based technique, what the specificity of your antibody is. Different antibodies
appear to show differing levels of repeat enrichment when performing MeDIP[67]. It would
be of benefit to standardize these analyses. Similarly, different bisulphite conversion protocols
may lead to differing conversion success. Global CpG methylation levels obtained from WGBS
for 3 human embryonic stem cell (HESC) lines showed surprising variability (72% - 85%)[68].
This could be due to unstable gain and loss of methylation as previously reported in embryonic
stem cells (ESCs)[69, 70], but it could also be a result of pre-analysis protocol and lab specific
differences in sample preparation. Equally, it will be interesting to discover more about the
biological roles and genomic location of the different cytosine modifications (5-hydroxyme‐
thylcytosine[47], 5-Formylcytosine and 5-Carboxylcytosine[71]) and also non-CpG methyla‐
tion.

New technologies with the potential for adaption for the analysis of DNA methylation are
being developed constantly. For example, improved methods of methylation validation would
be highly beneficial. Often hundreds or thousands of potential candidate regions are generated
from a multi-sample MeDIP-seq comparison, and similar numbers could be produced by
future EWAS (Epigenome-Wide Association Studies)[72]. Ideally, many of these regions
would be validated using a different technology. Targeted bisulphite sequencing is often used,
however this can often be laborious and time-consuming. Combining new technologies such
as microdroplet-based PCR target enrichment (e.g. RainDance Technologies) with 2GS has
recently been developed into a high-throughput platform termed RainDropBS-seq [73],
providing an excellent option to remove the validation bottle-neck. There is also the emergence
of third generation sequencing on the horizon. Third generation sequencing (3GS) theoretically
promises many advantages over existing 2GS methods including higher throughput, longer
read lengths, improved accuracy and requiring smaller amounts of starting material[74],
indeed some companies e.g. Oxford Nanopore Technologies, are promising single molecule
sequencing[75, 76]. The potential of single molecule nanopore sequencing is particularly
exciting for researchers working in the field of DNA methylation. Theoretically, it should be
possible to sequence complex mammalian genomes and determine any base modifications
such as methylation[77], potentially including hitherto undiscovered modifications, without
the need for any of the treatments or enrichments discussed above.

As the large-scale projects, such as IHEC, BLUEPRINT and increasingly clinically oriented
projects such as OncoTrack progress, it is expected that many methods and tools will become
standardized. This will be an important step in translating epigenomic knowledge from the
bench to the clinic[78, 79]. In the future, it is hoped that a patient will be treated with drugs
tailored to their particular condition – this is of particular relevance for cancer patients.
Preliminary work using whole genome, exome and RNA-seq has demonstrated the potential
for treating a real patient in a relatively short time period (24 days) and a relatively low cost
(~$3600)[80]. Adding reliable epigenetic information, utilising the IHEC reference genomes,
to this diagnostic toolbox is a logical next step. Extrapolating from these advances, it is quite
clear that the bottleneck is shifting from logistics and data generation to computational
analysis.

Next Generation Sequencing - Advances, Applications and Challenges162

Acknowledgements

Research in the Beck lab was supported by: Wellcome Trust (99148), Royal Society Wolfson
Research Merit Award (WM100023), IMI-JU OncoTrack (115234) and EU-FP7 projects,
EPIGENESYS (257082) and BLUEPRINT (282510).

Author details

Gareth A. Wilson* and Stephan Beck

*Address all correspondence to: gareth.wilson@crick.ac.uk

Medical Genomics, UCL Cancer Institute, University College London, London, UK

References

[1] Waddington CH. An introduction to modern genetics. New York,: The Macmillan
company; 1939. 2 p.l., 7 -441 p. p.

[2] Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol.
2010;28(10):1057-68.

[3] Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):
6-21.

[4] Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial se‐
quencing and analysis of the human genome. Nature. 2001;409(6822):860-921.

[5] Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature.
1980;287(5782):560-1.

[6] Illingworth RS, Bird AP. CpG islands--'a rough guide'. FEBS Lett. 2009;583(11):
1713-20.

[7] Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, et al. Distribution,
silencing potential and evolutionary impact of promoter DNA methylation in the hu‐
man genome. Nat Genet. 2007;39(4):457-66.

[8] Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the
human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U
S A. 2006;103(5):1412-7.

Computational Analysis and Integration of MeDIP-seq Methylome Data
http://dx.doi.org/10.5772/61207

163



[9] Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influ‐
ence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):
1082-6.

[10] Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ. CpG islands
recruit a histone H3 lysine 36 demethylase. Mol Cell. 2010;38(2):179-90.

[11] Blackledge NP, Klose R. CpG island chromatin: A platform for gene regulation. Epi‐
genetics. 2011;6(2):147-52.

[12] Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin
gene expression is regulated by DNA methylation. PLoS One. 2009;4(9):e6953.

[13] Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol
Genet. 2007;16 Spec No 1:R50-9.

[14] Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methyla‐
tion of tissue- and cancer-specific CpG island shores distinguishes human induced
pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):
1350-3.

[15] Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human
colon cancer methylome shows similar hypo- and hypermethylation at conserved tis‐
sue-specific CpG island shores. Nat Genet. 2009;41(2):178-86.

[16] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps.
Nat Rev Genet. 2007;8(4):286-98.

[17] Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induc‐
tion of tumors in mice by genomic hypomethylation. Science. 2003;300(5618):489-92.

[18] Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is
constrained by cytosine methylation. Nature genetics. 1998;20(2):116-7.

[19] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Hu‐
man DNA methylomes at base resolution show widespread epigenomic differences.
Nature. 2009;462(7271):315-22.

[20] Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, et al. DNA-binding fac‐
tors shape the mouse methylome at distal regulatory regions. Nature. 2011;480(7378):
490-5.

[21] Dyachenko OV, Schevchuk TV, Kretzner L, Buryanov YI, Smith SS. Human non-CG
methylation: are human stem cells plant-like? Epigenetics : official journal of the
DNA Methylation Society. 2010;5(7):569-72.

[22] Chen PY, Feng S, Joo JW, Jacobsen SE, Pellegrini M. A comparative analysis of DNA
methylation across human embryonic stem cell lines. Genome Biol. 2011;12(7):R62.

Next Generation Sequencing - Advances, Applications and Challenges164



[9] Thomson JP, Skene PJ, Selfridge J, Clouaire T, Guy J, Webb S, et al. CpG islands influ‐
ence chromatin structure via the CpG-binding protein Cfp1. Nature. 2010;464(7291):
1082-6.

[10] Blackledge NP, Zhou JC, Tolstorukov MY, Farcas AM, Park PJ, Klose RJ. CpG islands
recruit a histone H3 lysine 36 demethylase. Mol Cell. 2010;38(2):179-90.

[11] Blackledge NP, Klose R. CpG island chromatin: A platform for gene regulation. Epi‐
genetics. 2011;6(2):147-52.

[12] Kuroda A, Rauch TA, Todorov I, Ku HT, Al-Abdullah IH, Kandeel F, et al. Insulin
gene expression is regulated by DNA methylation. PLoS One. 2009;4(9):e6953.

[13] Esteller M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum Mol
Genet. 2007;16 Spec No 1:R50-9.

[14] Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al. Differential methyla‐
tion of tissue- and cancer-specific CpG island shores distinguishes human induced
pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet. 2009;41(12):
1350-3.

[15] Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, et al. The human
colon cancer methylome shows similar hypo- and hypermethylation at conserved tis‐
sue-specific CpG island shores. Nat Genet. 2009;41(2):178-86.

[16] Esteller M. Cancer epigenomics: DNA methylomes and histone-modification maps.
Nat Rev Genet. 2007;8(4):286-98.

[17] Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, et al. Induc‐
tion of tumors in mice by genomic hypomethylation. Science. 2003;300(5618):489-92.

[18] Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is
constrained by cytosine methylation. Nature genetics. 1998;20(2):116-7.

[19] Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Hu‐
man DNA methylomes at base resolution show widespread epigenomic differences.
Nature. 2009;462(7271):315-22.

[20] Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, et al. DNA-binding fac‐
tors shape the mouse methylome at distal regulatory regions. Nature. 2011;480(7378):
490-5.

[21] Dyachenko OV, Schevchuk TV, Kretzner L, Buryanov YI, Smith SS. Human non-CG
methylation: are human stem cells plant-like? Epigenetics : official journal of the
DNA Methylation Society. 2010;5(7):569-72.

[22] Chen PY, Feng S, Joo JW, Jacobsen SE, Pellegrini M. A comparative analysis of DNA
methylation across human embryonic stem cell lines. Genome Biol. 2011;12(7):R62.

Next Generation Sequencing - Advances, Applications and Challenges164

[23] Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, et al. Dynamic changes in
the human methylome during differentiation. Genome Res. 2010;20(3):320-31.

[24] Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, et al. Hotspots of aber‐
rant epigenomic reprogramming in human induced pluripotent stem cells. Nature.
2011;471(7336):68-73.

[25] Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Bio‐
chim Biophys Acta. 2007;1775(1):138-62.

[26] Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, et al. Comparative
methylome analysis of benign and malignant peripheral nerve sheath tumors. Ge‐
nome research. 2011;21(4):515-24.

[27] Laird PW. Principles and challenges of genome-wide DNA methylation analysis. Nat
Rev Genet. 2010;11(3):191-203.

[28] Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nature re‐
views Genetics. 2009;10(10):669-80.

[29] Cross SH, Charlton JA, Nan X, Bird AP. Purification of CpG islands using a methy‐
lated DNA binding column. Nature genetics. 1994;6(3):236-44.

[30] Serre D, Lee BH, Ting AH. MBD-isolated Genome Sequencing provides a high-
throughput and comprehensive survey of DNA methylation in the human genome.
Nucleic Acids Res. 2010;38(2):391-9.

[31] Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-
wide and promoter-specific analyses identify sites of differential DNA methylation
in normal and transformed human cells. Nat Genet. 2005;37(8):853-62.

[32] Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, et al.
Conserved role of intragenic DNA methylation in regulating alternative promoters.
Nature. 2010;466(7303):253-7.

[33] Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, et al. A Bayesian decon‐
volution strategy for immunoprecipitation-based DNA methylome analysis. Nat Bio‐
technol. 2008;26(7):779-85.

[34] Brinkman AB, Simmer F, Ma K, Kaan A, Zhu J, Stunnenberg HG. Whole-genome
DNA methylation profiling using MethylCap-seq. Methods. 2010;52(3):232-6.

[35] Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, et al. Comparison
of sequencing-based methods to profile DNA methylation and identification of mon‐
oallelic epigenetic modifications. Nat Biotechnol. 2010;28(10):1097-105.

[36] Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, et al. Quantitative
comparison of genome-wide DNA methylation mapping technologies. Nat Biotech‐
nol. 2010;28(10):1106-14.

Computational Analysis and Integration of MeDIP-seq Methylome Data
http://dx.doi.org/10.5772/61207

165



[37] Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, et al.
MEDME: an experimental and analytical methodology for the estimation of DNA
methylation levels based on microarray derived MeDIP-enrichment. Genome re‐
search. 2008;18(10):1652-9.

[38] Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, et al. Com‐
putational analysis of genome-wide DNA methylation during the differentiation of
human embryonic stem cells along the endodermal lineage. Genome research.
2010;20(10):1441-50.

[39] Huang J, Renault V, Sengenes J, Touleimat N, Michel S, Lathrop M, et al. MeQA: a
pipeline for MeDIP-seq data quality assessment and analysis. Bioinformatics.
2012;28(4):587-8.

[40] Wilson GA, Dhami P, Feber A, Cortazar D, Suzuki Y, Schulz R, et al. Resources for
methylome analysis suitable for gene knockout studies of potential epigenome modi‐
fiers. GigaScience. 2012;1(1).

[41] Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Biocon‐
ductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80.

[42] Sati S, Tanwar VS, Kumar KA, Patowary A, Jain V, Ghosh S, et al. High resolution
methylome map of rat indicates role of intragenic DNA methylation in identification
of coding region. PLoS One. 2012;7(2):e31621.

[43] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-
based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

[44] Anders S, Huber W. Differential expression analysis for sequence count data. Ge‐
nome Biol. 2010;11(10):R106.

[45] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differen‐
tial expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):
139-40.

[46] Robinson MD, Oshlack A. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

[47] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, et al. Dynamic reg‐
ulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
Nature. 2011;473(7347):398-402.

[48] Nix DA, Courdy SJ, Boucher KM. Empirical methods for controlling false positives
and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics. 2008;9:523.

[49] Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach.
Nature reviews Genetics. 2010;11(7):476-86.

Next Generation Sequencing - Advances, Applications and Challenges166



[37] Pelizzola M, Koga Y, Urban AE, Krauthammer M, Weissman S, Halaban R, et al.
MEDME: an experimental and analytical methodology for the estimation of DNA
methylation levels based on microarray derived MeDIP-enrichment. Genome re‐
search. 2008;18(10):1652-9.

[38] Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, Lehrach H, et al. Com‐
putational analysis of genome-wide DNA methylation during the differentiation of
human embryonic stem cells along the endodermal lineage. Genome research.
2010;20(10):1441-50.

[39] Huang J, Renault V, Sengenes J, Touleimat N, Michel S, Lathrop M, et al. MeQA: a
pipeline for MeDIP-seq data quality assessment and analysis. Bioinformatics.
2012;28(4):587-8.

[40] Wilson GA, Dhami P, Feber A, Cortazar D, Suzuki Y, Schulz R, et al. Resources for
methylome analysis suitable for gene knockout studies of potential epigenome modi‐
fiers. GigaScience. 2012;1(1).

[41] Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Biocon‐
ductor: open software development for computational biology and bioinformatics.
Genome Biol. 2004;5(10):R80.

[42] Sati S, Tanwar VS, Kumar KA, Patowary A, Jain V, Ghosh S, et al. High resolution
methylome map of rat indicates role of intragenic DNA methylation in identification
of coding region. PLoS One. 2012;7(2):e31621.

[43] Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-
based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137.

[44] Anders S, Huber W. Differential expression analysis for sequence count data. Ge‐
nome Biol. 2010;11(10):R106.

[45] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differen‐
tial expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):
139-40.

[46] Robinson MD, Oshlack A. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

[47] Ficz G, Branco MR, Seisenberger S, Santos F, Krueger F, Hore TA, et al. Dynamic reg‐
ulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation.
Nature. 2011;473(7347):398-402.

[48] Nix DA, Courdy SJ, Boucher KM. Empirical methods for controlling false positives
and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics. 2008;9:523.

[49] Hawkins RD, Hon GC, Ren B. Next-generation genomics: an integrative approach.
Nature reviews Genetics. 2010;11(7):476-86.

Next Generation Sequencing - Advances, Applications and Challenges166

[50] Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, et al. Rela‐
tionship between nucleosome positioning and DNA methylation. Nature.
2010;466(7304):388-92.

[51] Hodges E, Smith AD, Kendall J, Xuan Z, Ravi K, Rooks M, et al. High definition
profiling of mammalian DNA methylation by array capture and single molecule bi‐
sulfite sequencing. Genome research. 2009;19(9):1593-605.

[52] Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epi‐
genomes: differential methylation of brain DNA in queens and workers. PLoS Biol.
2010;8(11):e1000506.

[53] Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, et al. CTCF-
promoted RNA polymerase II pausing links DNA methylation to splicing. Nature.
2011;479(7371):74-9.

[54] Barrett T, Edgar R. Gene expression omnibus: microarray data storage, submission,
retrieval, and analysis. Methods Enzymol. 2006;411:352-69.

[55] A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol.
2011;9(4):e1001046.

[56] Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: ena‐
bling browsing of large distributed datasets. Bioinformatics. 2010;26(17):2204-7.

[57] Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics. 2010;26(6):841-2.

[58] Halachev K, Bast H, Albrecht F, Lengauer T, Bock C. EpiExplorer: live exploration
and global analysis of large epigenomic datasets. Genome Biol. 2012;13(10):R96.

[59] Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, et al. Combinato‐
rial patterns of histone acetylations and methylations in the human genome. Nature
genetics. 2008;40(7):897-903.

[60] Wang D, Yan L, Hu Q, Sucheston LE, Higgins MJ, Ambrosone CB, et al. IMA: an R
package for high-throughput analysis of Illumina's 450K Infinium methylation data.
Bioinformatics. 2012;28(5):729-30.

[61] Liu Y, Siegmund KD, Laird PW, Berman BP. Bis-SNP: Combined DNA methylation
and SNP calling for Bisulfite-seq data. Genome Biol. 2012;13(7):R61.

[62] Gutierrez-Arcelus M, Lappalainen T, Montgomery SB, Buil A, Ongen H, Yurovsky
A, et al. Passive and active DNA methylation and the interplay with genetic variation
in gene regulation. Elife. 2013;2:e00523.

[63] Muers M. Gene expression: Disentangling DNA methylation. Nature reviews Genet‐
ics. 2013;14(8):519.

Computational Analysis and Integration of MeDIP-seq Methylome Data
http://dx.doi.org/10.5772/61207

167



[64] Bell CG. Integration of genomic and epigenomic DNA methylation data in common
complex diseases by haplotype-specific methylation analysis. Personalized Medicine.
2011;8(3):243.

[65] Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, et al. Inte‐
grated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in
the FTO Type 2 Diabetes and Obesity Susceptibility Locus. PLoS One.
2010;5(11):e14040.

[66] Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al. BLUEPRINT
to decode the epigenetic signature written in blood. Nat Biotechnol. 2012;30(3):224-6.

[67] Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG. 5-Hydroxymethylcytosine: a
new kid on the epigenetic block? Mol Syst Biol. 2011;7:562.

[68] Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, et al. Ensembl 2011. Nucleic
Acids Res. 2011;39(Database issue):D800-6.

[69] Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP, et al. Dynamic instability
of genomic methylation patterns in pluripotent stem cells. Epigenetics Chromatin.
2010;3(1):17.

[70] Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM, 3rd, Biniszkie‐
wicz D, et al. Epigenetic instability in ES cells and cloned mice. Science.
2001;293(5527):95-7.

[71] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert
5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science.
2011;333(6047):1300-3.

[72] Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for
common human diseases. Nature reviews Genetics. 2011;12(8):529-41.

[73] Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE, et
al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for
TET2. Nat Commun. 2013;4:2166.

[74] Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum
Mol Genet. 2010;19(R2):R227-40.

[75] Mason CE, Elemento O. Faster sequencers, larger datasets, new challenges. Genome
Biol. 2012;13(3):314.

[76] Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated for‐
ward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol.
2012;30(4):344-8.

[77] Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identifi‐
cation for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):
265-70.

Next Generation Sequencing - Advances, Applications and Challenges168



[64] Bell CG. Integration of genomic and epigenomic DNA methylation data in common
complex diseases by haplotype-specific methylation analysis. Personalized Medicine.
2011;8(3):243.

[65] Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE, et al. Inte‐
grated Genetic and Epigenetic Analysis Identifies Haplotype-Specific Methylation in
the FTO Type 2 Diabetes and Obesity Susceptibility Locus. PLoS One.
2010;5(11):e14040.

[66] Adams D, Altucci L, Antonarakis SE, Ballesteros J, Beck S, Bird A, et al. BLUEPRINT
to decode the epigenetic signature written in blood. Nat Biotechnol. 2012;30(3):224-6.

[67] Matarese F, Carrillo-de Santa Pau E, Stunnenberg HG. 5-Hydroxymethylcytosine: a
new kid on the epigenetic block? Mol Syst Biol. 2011;7:562.

[68] Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, et al. Ensembl 2011. Nucleic
Acids Res. 2011;39(Database issue):D800-6.

[69] Ooi SK, Wolf D, Hartung O, Agarwal S, Daley GQ, Goff SP, et al. Dynamic instability
of genomic methylation patterns in pluripotent stem cells. Epigenetics Chromatin.
2010;3(1):17.

[70] Humpherys D, Eggan K, Akutsu H, Hochedlinger K, Rideout WM, 3rd, Biniszkie‐
wicz D, et al. Epigenetic instability in ES cells and cloned mice. Science.
2001;293(5527):95-7.

[71] Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, et al. Tet proteins can convert
5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science.
2011;333(6047):1300-3.

[72] Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for
common human diseases. Nature reviews Genetics. 2011;12(8):529-41.

[73] Guilhamon P, Eskandarpour M, Halai D, Wilson GA, Feber A, Teschendorff AE, et
al. Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for
TET2. Nat Commun. 2013;4:2166.

[74] Schadt EE, Turner S, Kasarskis A. A window into third-generation sequencing. Hum
Mol Genet. 2010;19(R2):R227-40.

[75] Mason CE, Elemento O. Faster sequencers, larger datasets, new challenges. Genome
Biol. 2012;13(3):314.

[76] Cherf GM, Lieberman KR, Rashid H, Lam CE, Karplus K, Akeson M. Automated for‐
ward and reverse ratcheting of DNA in a nanopore at 5-A precision. Nat Biotechnol.
2012;30(4):344-8.

[77] Clarke J, Wu HC, Jayasinghe L, Patel A, Reid S, Bayley H. Continuous base identifi‐
cation for single-molecule nanopore DNA sequencing. Nat Nanotechnol. 2009;4(4):
265-70.

Next Generation Sequencing - Advances, Applications and Challenges168

[78] Lyon GJ. Personalized medicine: Bring clinical standards to human-genetics research.
Nature. 2012;482(7385):300-1.

[79] Scudellari M. Genomics contest underscores challenges of personalized medicine.
Nat Med. 2012;18(3):326.

[80] Roychowdhury S, Iyer MK, Robinson DR, Lonigro RJ, Wu YM, Cao X, et al. Personal‐
ized oncology through integrative high-throughput sequencing: a pilot study. Sci
Transl Med. 2011;3(111):111ra21.

[81] Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisul‐
fite-Seq applications. Bioinformatics. 2011;27(11):1571-2.

[82] Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program. BMC Bio‐
informatics. 2009;10:232.

[83] Chen PY, Cokus SJ, Pellegrini M. BS Seeker: precise mapping for bisulfite sequenc‐
ing. BMC Bioinformatics. 2010;11:203.

[84] Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, et al. The Human Epige‐
nome Browser at Washington University. Nat Methods. 2011;8(12):989-90.

[85] Schuffler P, Mikeska T, Waha A, Lengauer T, Bock C. MethMarker: user-friendly de‐
sign and optimization of gene-specific DNA methylation assays. Genome Biol.
2009;10(10):R105.

[86] Pedersen B, Hsieh TF, Ibarra C, Fischer RL. MethylCoder: software pipeline for bisul‐
fite-treated sequences. Bioinformatics. 2011;27(17):2435-6.

[87] Burger L, Gaidatzis D, Schubeler D, Stadler MB. Identification of active regulatory re‐
gions from DNA methylation data. Nucleic Acids Res. 2013.

[88] Singer M, Boffelli D, Dhahbi J, Schonhuth A, Schroth GP, Martin DI, et al. MetMap
enables genome-scale Methyltyping for determining methylation states in popula‐
tions. PLoS Comput Biol. 2010;6(8):e1000888.

[89] Wilson GA, Butcher LM, Foster HR, Feber A, Roos C, Walter L, et al. Human-specific
epigenetic variation in the immunological Leukotriene B4 Receptor (LTB4R/BLT1)
implicated in common inflammatory diseases. Genome medicine. 2014;6(3):19.

Computational Analysis and Integration of MeDIP-seq Methylome Data
http://dx.doi.org/10.5772/61207

169





Section 2

Next Generation Sequencing of Microorganisms





Chapter 6

Analysis of Next-generation Sequencing Data in
Virology - Opportunities and Challenges

Sunitha M. Kasibhatla, Vaishali P. Waman, Mohan M. Kale and
Urmila Kulkarni-Kale

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61610

Abstract

Viruses are the most abundant and the smallest organisms, which are relatively simple to
sequence. Genome sequence data of viruses for individual species to populations out‐
number that of other species. Although this offers an opportunity to study viral diversity
at varying levels of taxonomic hierarchy, it also poses challenges for systematic and struc‐
tured organization of data and its downstream processing. Extensive computational anal‐
yses using a number of algorithms and programs have opened exciting opportunities for
virus discovery and diagnostics, apart from augmenting our understanding of the intri‐
guing world of viruses. Unravelling evolutionary dynamics of viruses permits improved
understanding of phenomena such as quasispecies diversity, role of mutations in host
switching and drug resistance, which enables the tangible measurements of genotype
and phenotype of viruses. Improved understanding of geno-/serotype diversity in corre‐
lation with antigenic diversity will facilitate rational design and development of effica‐
cious vaccines against emerging and re-emerging viruses. Mathematical models
developed using the genomic data could be used to predict the spread of viruses due to
vector switching and the (re)emergence due to host switching and, thereby, contribute to‐
wards designing public health policies for disease management and control.

Keywords: Virus/viral evolution, population diversity, recombination, selection pressure,
phylogeny and typing

1. Introduction

1.1. Viruses: Special class of organisms

Viruses form a major class of biological entities encompassing diverse environments ranging
from algae in marine ecosystems to soil, plant, human and animal systems. Several metage‐

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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nomic studies have revealed the possibility of viruses being the dominant species of our
biosphere [1]. Deep sequencing efforts have shown that viruses form 106–109 particles per
millilitre of seawater [2]. It is also interesting to note that ~90% of the reads obtained from such
experiments did not encode proteins, which are reported in other organisms, including viruses,
that have been characterised so far. This clearly demonstrates that the actual viral diversity
has not been sampled in an adequate manner so far. A crucial aspect of viral studies is the
disease burden associated with them, which is known to be enormous with serious economic
implications. World Health Organization documents that the global burden of communicable
diseases (of which viral diseases form a major chunk) is ~15 million annually [3].

Beyond abundance aspects, study of viral evolution and genetic variations enabled the
proposal of the virocentric standpoint of the evolution. Viruses gained centre stage for reasons
such as being smallest replicating entities, having short generation time, large population sizes
and high replication and mutation rates. Attributes such as variation in genome sizes, gene
pool, shape and assembly of particles are responsible for viruses to attain pivotal role in the
study of evolution [4]. It has been observed that all plausible replication and expression
strategies have been employed by viruses to dynamically adapt to the ever-changing envi‐
ronments. Processes like complementation, recombination, reassortment, high mutation rate
and existence as quasispecies enable the viruses to outgrow and outcompete the host immune
system. The molecular forces driving these processes can be delineated by sequencing and the
subsequent analyses.

1.2. Viral sequencing methods

The distinction of complete genome ever to be sequenced belongs to bacteriophage ΦX174
with  a  genome  size  of  5,386  bases  and  was  achieved  through  the  Sanger’s  shotgun-
sequencing approach [5]. The major aim of early sequencing projects was to characterize
the genomic content of an organism in terms of its coding potential. Over the last few years,
the unprecedented growth in the area of sequencing technologies has had a huge impact
on the way viral genomes are being addressed. The scale of generating and handling data,
which was unimaginable previously, has become a reality today due to the advent of Next-
Generation  Sequencing  (NGS)  technologies.  Advantages  of  NGS  over  the  conventional
Sanger sequencing approach are the rapid generation of sequencing data on a very massive
scale and at affordable cost. NGS also provides scope for wide range of studies that include
transcriptomics, gene expression and regulation (DNA–protein interaction), single-nucleo‐
tide polymorphism (SNP) and RNA profiling. Sequencing of viruses, in particular, has been
important  to  understand the spread of  epidemics,  the circulating viral  particles  and the
improvement of strains for vaccine design. Different technologies such as Roche 454 [6],
Illumina [7], Ion Torrent [8] and more recently the fourth-generation sequencing methodol‐
ogies  popularly  called  single-cell  sequencing,  viz.  Oxford  Nanopore  [9]  and  Pacific
Biosciences [10], are available for sequencing.

Sample  preparation  and  enrichment  are  the  prerequisites  for  sequencing  the  viromes.
Filtration and centrifugation on caesium chloride density gradient have proved to enrich
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such as being smallest replicating entities, having short generation time, large population sizes
and high replication and mutation rates. Attributes such as variation in genome sizes, gene
pool, shape and assembly of particles are responsible for viruses to attain pivotal role in the
study of evolution [4]. It has been observed that all plausible replication and expression
strategies have been employed by viruses to dynamically adapt to the ever-changing envi‐
ronments. Processes like complementation, recombination, reassortment, high mutation rate
and existence as quasispecies enable the viruses to outgrow and outcompete the host immune
system. The molecular forces driving these processes can be delineated by sequencing and the
subsequent analyses.

1.2. Viral sequencing methods

The distinction of complete genome ever to be sequenced belongs to bacteriophage ΦX174
with  a  genome  size  of  5,386  bases  and  was  achieved  through  the  Sanger’s  shotgun-
sequencing approach [5]. The major aim of early sequencing projects was to characterize
the genomic content of an organism in terms of its coding potential. Over the last few years,
the unprecedented growth in the area of sequencing technologies has had a huge impact
on the way viral genomes are being addressed. The scale of generating and handling data,
which was unimaginable previously, has become a reality today due to the advent of Next-
Generation  Sequencing  (NGS)  technologies.  Advantages  of  NGS  over  the  conventional
Sanger sequencing approach are the rapid generation of sequencing data on a very massive
scale and at affordable cost. NGS also provides scope for wide range of studies that include
transcriptomics, gene expression and regulation (DNA–protein interaction), single-nucleo‐
tide polymorphism (SNP) and RNA profiling. Sequencing of viruses, in particular, has been
important  to  understand the spread of  epidemics,  the circulating viral  particles  and the
improvement of strains for vaccine design. Different technologies such as Roche 454 [6],
Illumina [7], Ion Torrent [8] and more recently the fourth-generation sequencing methodol‐
ogies  popularly  called  single-cell  sequencing,  viz.  Oxford  Nanopore  [9]  and  Pacific
Biosciences [10], are available for sequencing.

Sample  preparation  and  enrichment  are  the  prerequisites  for  sequencing  the  viromes.
Filtration and centrifugation on caesium chloride density gradient have proved to enrich
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the virus-like particles. A strategy like depletion of host rRNAs is also known to increase
the virus fraction and has been attributed to the discovery of several novel RNA viruses
[11].  In  plant  virology,  use  of  CF11  cellulose  spin  column  is  routinely  used  for  deep
sequencing of dsRNA.

There exist several scenarios for sequencing viral genomes such as sequencing of individual
strains or population [12]. Sequencing of individual genomes helps to catalogue the genes
encoded in a particular strain and is a vital step for in-depth characterization studies. Se‐
quencing of multiple isolates/strains/species enables understanding of the factors responsible
for varying virulence using comparative genomic approaches [13]. For understanding the co-
evolution of viral and host genomes, in particular, archaea and bacteria, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR) spacer sequencing is used [14]. CRISPR are
found in archaea and bacteria that serve as an antiviral mechanism in which viral genomic
sequences are integrated as CRISPR spacers into the host, thereby making it immune to viral
infection [15]. Understanding complex dynamics of virus–host interactions in higher organ‐
isms using sequencing provides valuable insights into transmission between animal reservoirs
[16]. Sequencing of 'Auxiliary metabolic genes', which are involved in processes like motility
and transcriptional repression, enables to unravel the viral genes that influence host machinery
in diverse ways [17].

1.3. Data assembly and annotations

Output from NGS technologies results in gigabases of raw sequence data per experiment.
Extensive computational analysis using a number of algorithms and applications is required
to infer biological significance. Generic steps include mapping of reads using either de novo
approach or re-sequencing approach, identification of SNPs and detection of insertions/
deletions (indels) and further downstream processing.

The various steps involved in data preprocessing are:

i. Removal of adaptors and low-quality sequences: This is an important step in data
pre-processing, and tools such as FASTX [18] and FASTQC [19] are used for this
purpose. Care should be taken in case of paired-end sequences to ensure that the
reads trimmed based on the quality is reflected in both the forward and the reverse
FASTQ files. In case of multiplex sequencing data, an additional step of 'de-multi‐
plexing' based on barcodes is mandatory.

ii. Screening host sequences: Despite the methods being available for viral enrichment,
it has been observed that contamination of host/vector sequences is a routine scenario.
Filtering of such data ensures that no error is propagated.

Following preprocessing, reference-based mapping or de novo assembly of the processed reads
can be carried out.
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1.3.1. Reference-mapping

Alignment with a reference genome is a method of choice for most NGS experiments. Prepro‐
cessed reads when mapped to a well-annotated reference genome ensure transfer of annota‐
tions to the query genome in a hassle-free manner with statistical confidence, especially in
indel-free regions. Polymorphic regions can also be identified, which account for the isolate-
specific variants that may be responsible for the observed phenotype. The algorithms generally
rely on indexing of either the query reads or the reference genome using suffix tree or hashing
strategy [20–22]. Indexing the reference genome has been proved to be computationally
advantageous and is widely preferred. Indexing is followed by gapped or ungapped alignment
based on either Smith–Waterman [23] or Needleman–Wunsch dynamic programming
approaches [24]. Gaps indicate indels and are important to gain strain-/species-specific
properties. The quality of the reference alignment can be improved by using large inserts
available in paired-end reads as compared to single-end reads wherein forward and reverse
orientation of reads cannot be calculated. Downstream processing of aligned and assembled
reads involves delineating the variant regions followed by annotation. It is also important to
remove polymerase chain reaction (PCR) artefacts before variant calling as the duplicated
reads hamper its sensitivity. Discovery of Schmallemberg virus, a new member of genus
Orthobunyavirus that causes foetal abnormalities in ruminants [25], is attributed to a reference-
based assembly approach.

Delineation of variant regions: All deviations from reference genome can be delineated as
variants, which include SNPs and indels. Variant regions contribute to the nucleotide diversity
in virus populations and hence play a vital role in their evolution and dynamics. One of the
main parameters indicative of nucleotide diversity is the comparison of synonymous to non-
synonymous codon substitution. Synonymous mutations result in neutral substitution, which
enable in maintaining the phenotype, as compared to non-synonymous substitutions, which
lead to amino acid alteration and hence may affect phenotype. It is interesting to note that the
existence of overlapping reading frames in viruses often constrains synonymous substitutions.
Hence, computation of the magnitude of synonymous and non-synonymous polymorphism
within viral populations will provide a handle to assess the role of neutral evolution and
genetic drift in viral evolution. A more detailed discussion of the role of these substitution
ratios in adaptive evolution of viruses is given in Section 4.5.

Tools like SNPgenie [26] and VirVarSeq [27] have been developed with a focus on calling SNPs
from pooled viral samples by including codon information in an explicit manner and hence
are more sensitive than traditional SNP callers [28, 29].

1.3.2. De novo assembly

Preprocessed reads are assembled using de novo approaches, when a closely related homologue
is unavailable to serve as a reference. It should be mentioned that genome assembly is
computationally challenging and also requires trained manpower. Sequencing depth plays a
major role in determining the quality of the assembly as does the length of the reads. Popularly
used assemblers are based on de Bruijin graph approach in which reads are divided into
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subsequences called k-mers of length k [30]. The k-mers form the nodes of a graph, which are
linked when a k-1mer is shared among them. The overall process requires large amounts of
computer memory (RAM) and specialized compute clusters.

The steps involved in assembly process are:

i. Based on Overlap–Layout–Consensus principle, information stored in scattered
reads are used to make contiguous regions termed 'contigs', which are generally
devoid of polymorphisms.

ii. Using insert information, 'contigs' are combined to form 'scaffolds'. Gaps between
contigs are usually filled with nucleotides (Ns).

iii. Scaffolds in conjunction with synteny and geneorder information are used to build
larger scaffolds.

Building a draft genome is an iterative process and involves parameter optimization, and it is
advised that more than one type of assembler be used as each of them has been built for a
definite purpose and has unique features. The final assembled genome is evaluated on the
basis of N50 parameter. N50 is the median of assembled sequence lengths, in which longer
sequences are given more weightage. Mis-assemblies due to wrong orientation of reads and
low-complexity regions are, however, not accounted for in N50 parameter and tools like
amosvalidate, which combines multiple validation procedures, are recommended [31].

One of the major limitations of de novo assembly using NGS data is its reporting of large
proportion of incorrect recombinants. This arises mainly due to overlapping of short reads of
varying quality and coverage, which in turn pave way for the introduction of spurious SNPs,
ultimately resulting in artefacts in assembly. The in silico chimeras thus produced amplify
diversity estimation and complicate true recombination detection. Efforts are being made to
overcome this issue using probabilistic method, which assumes that true SNPs are under
selection pressure and hence co-occur within a haplotype as compared to random SNPs [32].
Methods such as Iterative Virus Assembler (IVA) [33] and Paired-Read Iterative Contig
Extension (PRICE) [34] have also been developed to overcome caveats associated with varying
read depths and enable detection of regions with extensive genomic diversity. Assembly
pipelines like VirAmp [35], VICUNA [36], SPAdes [37] offer many choices of tools and
parameters for carrying out hassle-free assembly of viral genomes.

Novel approaches are also being introduced with special emphasis on viral metagenomic
projects, viz. Progressive Filtering of Overlapping small RNAs (PFOR) [38]. PFOR is capable
of identifying replicating circular RNAs by separating terminal small RNAs from internal
small RNAs based on k-mer overlap. PFOR2, a multi-threaded version of PFOR, has recently
been developed, which reduced the running time of filtering step by 90%. Novel viroids like
Hop stunt viroid (HpSVd), Grapevine yellow speckle viroid (GYSVd) and Grapevine hammerhead
viroid-like RNA (GHVd RNA) have been identified using this tool. Hence, de novo assembly has
tremendous scope in unravelling the vast virome that has been unaddressed previously and
there exists need for development of more efficient assembly algorithms, which will make it
more tractable for use by larger scientific community.
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2. Genome databases

Initial effort towards sequencing of viral genomes resulted in accumulation of genomic data
in primary repositories such as GenBank [39], European Molecular Biology Laboratory (EMBL)
[40] and DNA Data Bank of Japan (DDBJ) [41] and now continues to rise in International
Nucleotide Sequence Database Collaboration (INSDC) [42]. Genome databases and resources
dedicated to viruses were developed subsequently [43–47]. Lists of useful databases, resources
and analysis tools have also been compiled previously [13, 48]. Most of these resources archive
complete genome sequences, their annotations and derived data such as viral variations,
multiple sequence alignments (MSAs) and phylogenetic trees, to name a few. Some of the viral
genome resources are briefly described below.

2.1. National Center for Biotechnology Information (NCBI) viral genome resource

This reference resource is designed to catalogue publicly available genomic sequences of
viruses deposited in INSDC [49]. It attempts to curate reference genome sequences and
leverages on the knowledge of experts to annotate as well as to identify important viral
sequences.

2.2. ViralZone

This resource is developed and maintained at the Swiss Institute of Bioinformatics. The
objective of the resource is to link textbook knowledge, fact sheets and images to the genomic
and proteomic data with an objective to facilitate the study of viral diversity [50].

2.3. Virus Pathogen Database and Analysis Resource (ViPR)

The ViPR [51] is supported under the Bioinformatics Resource Centers (BRC) programme of
National Institute of Allergy and Infectious Diseases (NIAID). The database currently provides
access to molecular data of viruses including complete genomes of 14 viral families. Analytical
and visualization tools for metadata-driven statistical sequence analysis, data filtering,
analytical workflows and utility of personal workbench are provided to the users.

In addition to these, several organism-specific resources have been developed such as HCV
Database [52] for Hepatitis C virus and IVDB [53] for Influenza virus and HIV [54].

Annotation of the sequence (gene/genome/protein) records is an integral step in downstream
processing of database entries. A well-curated reference record serves as template for transfer
of annotation in terms of features such as gene boundaries, associated functions (molecular/
cellular/pathway) and non-coding regions [49]. Such annotations will be highly useful in
subsequent analysis and model building. The challenges of managing dedicated resources for
viral genomes are relatively different as compared to the genomic databases of model and
other organisms. The pace of sequencing and the quantum of genomic data being generated
are affecting identification of reference genomes and annotations of genomes of strains and
isolates. Additionally, to study the spatio-temporal evolution and to model the viral popula‐
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tions, it is desirable to tag metadata such as the place and date of isolation of viruses with the
corresponding genomic entries.

3. Impact of NGS technologies on virology

Molecular analysis of viruses using data generated by NGS has revolutionized virology. While
understanding the sequence–structure–function relationships, it has also resulted in the
development of new areas of research such as phyloinformatics and immunoinformatics,
which translates raw data into information. The information generated from these independ‐
ent yet interlinked areas, when put together fits as pieces of jigsaw puzzle (Figure 1), leading
to an improved understanding of the viral diseases and, thereby, the development of antiviral
therapies.

Figure 1. Scope of research in virology enabled and augmented due to availability of NGS data.

3.1. Unravelling mutational landscapes in viral quasispecies

Viral quasispecies are mutant swarms generated mainly by RNA viruses during replication,
which is known to be error-prone due to the lack of proofreading activity of RNA-dependent
RNA polymerase. The resulting mosaic is a dynamic distribution of non-identical but related
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replicons that cannot be detected using conventional sequencing approaches. Hence, quasis‐
pecies remained unexplored for a considerable time, even though the theoretical concept for
quasispecies was put forth by Eigen in 1970 [55]. With the advent of NGS technologies, the
generation of large genomic datasets became a reality. Due to the sequencing error issues, it
was still tough to demarcate true genetic variations. Circular Sequencing (CirSeq), a novel
experimental approach that creates template of tandem repeats of circularized genomic RNA
fragments has been developed by Andino's group [56]. CirSeq reduces the sequencing error
drastically as the repeats get sequenced in a redundant manner for every genomic fragment.
A consensus reduces the theoretical error close to 10−11, which enables capture of the entire
mutational spectrum of RNA virus populations. CirSeq was employed to study seven serial
passages of Poliovirus replicated in HeLa cells. Mutation frequency was computed for every
passage and their fitness was determined by mapping onto the 3D structure of proteins. As
expected, majority of the mutations detected were neutral substitutions, thus highlighting
robustness as driving force for adaptation and evolution [56]. This study clearly delineates the
viral mutations responsible for quasispecies structure and highlights the extent of genetic
variation that can be maintained in a population.

Microevolution in an evolving quasispecies population is responsible for the sequence
diversity in Porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV is the causative
agent of late-term reproductive failure in sows and respiratory distress in pigs and hence has
large economic impact. Genomic complexity of PRRSV due to multiple circulating genotypes
results in antigenic diversity, which, in turn, is responsible for lack of effective vaccine
development [57]. Sanger sequencing has identified open reading frames ORF5 and ORF7 as
the polymorphic regions of the virus genome, encoding major immunogenic epitopes. In order
to study the genome-wide polymorphisms, deep sequencing of PRRSV was carried out and
amino acid substitutions in ORFs 2–7 in PRRSV strains obtained from pigs that lack B and T
cells were studied [58]. By analysing nucleotide substitutions over time followed by compa‐
rative genomics with non-pathogenic variants, the role of mutation and selection in preserving
the pathogenesis or fitness of PRRSV was well documented in this study.

3.2. Detection of low-frequency variants

Low-frequency variants or minority quasispecies are the variants that occur with a frequency
of <20–25% in a viral population [59]. Minority quasispecies refers to the memory genomes
that were dominant at an earlier phase of quasispecies evolution and can play an important
role in conferring drug resistance in viruses such as Human Immunodeficiency Virus type-1
(HIV-1) and Influenza virus. Minority quasispecies of drug-resistant viruses can rapidly re-
emerge as major populations after the reintroduction of drug pressure. In case of HIV-1,
presence of such low-frequency variants has been linked with early failure to the antiretroviral
therapy [59, 60]. Emergence of highly pathogenic subtype of Avian Influenza viruses (HPAI)
has also been explained on the basis of low-frequency variants. Ultra-deep sequencing was
used to study the emergence of HPAI from that of less pathogenic (Low Pathogenic Avian
Influenza (LPAI)) progenitor viruses [61].
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3.3. Inter- and intra-host genetic diversity

The rate of viral evolution and the effectiveness of its transmission are determined by inter-
and intra-host genetic diversity. Mutation rate and selection pressure ascertain viral diversity.
Factors like mixed infections and random processes such as genetic drift and population
bottlenecks also contribute to the genetic diversity of viruses both within and among hosts.
Transmission fitness influences the effective spread of viruses and is responsible for its stable
maintenance in the environment [62].

Intra-host genetic diversity in Zucchini yellow mosaic virus (ZYMV), a plant RNA virus known
to infect Cucurbitaceae plants, has been studied using NGS [63]. Population bottlenecks were
investigated for this aphid-borne virus and are thought to occur during both inter-host vector
transmission and systemic movement within an individual plant. ZYMV populations infecting
cucumbers with and without vector were sequenced followed by de novo assembly and variant
calling. Analysis revealed that the low-frequency mutants present in the initial population got
fixed rapidly in vector-transmitted viruses, whereas the same continued to remain as minor
variants in mechanically inoculated viruses. In addition, regions known to be responsible for
vector transmission were conserved in all samples. It is interesting to know that previous
studies using Sanger sequencing of the coat protein of ZYMV, which is involved in interaction
with aphids, could not detect mutations when transmitted between or within plants. However,
this study reported six mutations in coat protein with frequency of occurrence as low as ~3%.
Such studies provide an insight into the complex dynamics of genetic diversity of an emerging
viral infection with implications in disease management.

3.4. Viral metagenomics

NGS has revolutionized metagenomics in a major way by ensuring high data throughput and
by removing the hassles of cultivation/isolation by providing cost-effective options. Metage‐
nomics involves sequencing of samples from diverse environments spanning across the
biosphere [64]. The initial attempts at characterizing the viral metagenomes were more of an
enumeration nature [65] and provided a glimpse of the enormous diversity underlying the
previously unculturable communities. NGS has paved way for extensive characterization of
the functional role of virome in hosts harbouring them [66, 67]. Analysis of metagenomics data
is challenging as it includes simultaneous assembly of multiple genomes/transcriptomes and
the complex interplay between them. Two major methods based on 'sequence-similarity' and
'sequence composition' are usually used for categorization of samples in metagenomics. It has
been observed that the alignment-free 'sequence composition'-based methods provide better
means of classifying viral samples as 'sequence similarity'-based methods could only classify
up to 30% of the reads [68].

In a major study involving analysis of dsDNA viruses from 43 ocean samples obtained from
across the globe revealed several intriguing observations [69]. Genes shared across different
samples were used as 'core genes' for comparison. 'Niche-differentiation' of different viral
populations based on the layer of the ocean they occupy was observed. As viruses rely on the
host machinery to replicate, a direct relationship was observed between the community
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structures of both viruses and hosts. Environmental factors like salinity also influenced the
viral persistence and hence their diversity. Technological advances in viral metagenomics
would help to unravel the underlying rules of viral evolution and ecology, the so-called
'Genomic rulebook of viruses' [70].

3.5. Genotype–phenotype correlation studies

3.5.1. Receptor switching

A key event during any viral infection is the interaction of viruses with the host receptors on
the plasma membrane. This serves as an entry point for viruses to access resources of the host
cell and is very crucial for tropism. This interaction is known to be very specific and is
responsible for activation of the signalling processes that recruit cellular machinery of the host
for viral replication. The specificity of receptor binding defines host range that a virus can
infect and the extent of tissue tropism that a virus can display. Switching of receptors thus
enables the virus to increase its host range and/or gain access to the previously unaffected cell
types.

HIV-1 enters the target host cell by binding to CD4 receptor along with a co-receptor (in
majority  of  cases,  chemokine  C-C  motif  receptor  5  (CCR5))  using  its  spike  protein.
Monitoring of the co-receptor usage using phenotype-based assays provided clues for the
likely shift from CCR5 to chemokine C-X-C motif receptor 4 (CXCR4). However, due to the
low resolution of these procedures, this transition could not be captured effectively. NGS
of  the  variable  loop  region  (V3)  of  the  envelope  gene  containing  determinants  of  co-
receptor usage revealed the stepwise mutational pathway involved in the transition from
CCR5 to CXCR4 [71]. The observation of the low-frequency intermediate variants provid‐
ed an insight into the fitness landscape of HIV-1 and provided clues to tackle the disease
progression in a rational manner.

3.5.2. Immune escape

The de novo sequencing approach has helped to analyse the heterogeneity of Influenza A virus
(strain A/Nagano/RC1-L/200 or H1N1) isolated from 2009 pandemic. The amino acid changes
in haemagglutinin protein (G172E and G239N) were observed to be associated with the
immune escape [72].

4. Bioinformatics methods for viral genomics

Bioinformatics approaches help to estimate and analyse population diversity by studying
genetic recombination, mutation, selection and, thereby, assist in correlation of genotype to
phenotype. The methods relevant to these aspects are discussed below with emphasis on the
analysis of viral populations.
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immune escape [72].

4. Bioinformatics methods for viral genomics

Bioinformatics approaches help to estimate and analyse population diversity by studying
genetic recombination, mutation, selection and, thereby, assist in correlation of genotype to
phenotype. The methods relevant to these aspects are discussed below with emphasis on the
analysis of viral populations.
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4.1. Methods for quasispecies reconstruction

Quasispecies reconstruction refers to the estimation of number of viral variants and their
frequency. Each viral variant in a quasispecies is considered as a haplotype. Tools available
for this purpose include Short Read Assembly into Haplotypes (ShoRAH) [73], Quasispecies
Reconstruction algorithm (QuRe) [74] and QuasiRecomb [75].

4.1.1. Short Read Assembly into Haplotypes (ShoRAH)

Principle: This method uses Bayesian principle to estimate the genetic diversity of mixed
samples obtained through NGS by incorporating subroutines for correction of sequencing
errors [73]. It can detect viral haplotypes with frequencies as low as 0.1%.

Algorithm steps:

i. Alignment: The program requires a FASTA input file of NGS reads along with a
reference sequence. It performs pairwise alignment of all reads to the reference
sequence and generates a multiple sequence alignment (MSA).

ii. Error correction (local haplotype reconstruction): Using MSA as a starting point, a set
of overlapping windows is analysed by employing a model-based probabilistic
clustering algorithm to obtain (i) haplotype sequences, (ii) their frequencies, (iii)
corrected reads and (iv) posterior probability of the reconstruction.

iii. Global haplotype reconstruction: The set of corrected reads is analysed under
parsimony principle, which results in identification of set of unique reads of maxi‐
mum length.

iv. Frequency estimation: Using maximum likelihood (ML) and expectation maximiza‐
tion algorithm, the frequencies of the reconstructed haplotypes are estimated.

4.1.2. Quasispecies Reconstruction algorithm (QuRe)

Principle: QuRe [74] is based on a heuristic algorithm and automatically reconstructs a set of
error-free, full-gene/genome variants from a collection of long NGS reads (>100 bp).

Algorithm steps:

i. Overlaps between the reference genome and reads are generated in terms of k-mers.

ii. Mapping of k-mers is then carried out to obtain genomic co-ordinates.

iii. Generates a multinomial distribution based on the alignment scores of true matches
along with the matches with randomly shuffled reads.

iv. Coverage, nucleotide content and entropy of each mapped genomic position are then
calculated.

v. Errors are corrected based on Poisson distribution model, parameterized differently
for homopolymeric and non-homopolymeric regions.
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vi. Reconstruction of quasispecies is carried out using the sliding window approach by
calculating maximal coverage and read diversity, which reduces the false positives,
i.e., in-silico recombinants.

4.1.3. QuasiRecomb

Principle: It employs the jumping Hidden Markov Model (HMM)-based probabilistic statistics
for inference of viral quasispecies, especially for estimating the intra-patient viral haplotype
distribution [75]. This method assumes that the true genetic diversity is generated by a few
sequences (called generators) through mutation and recombination, and that the observed
diversity results from additional sequencing errors.

Algorithm steps:

i. Distribution of haplotypes in a given population is modelled to account for either
point mutation or recombination in the form of probability tables and jumping HMM
states respectively.

ii. Expectation maximization algorithm is used to estimate posterior probabilities
associated with rare events of mutation and recombination.

4.2. Methods to study viral population genetics

Genetic structure of a population refers to the number of distinct subpopulations, identified
using a characteristic set of allele frequencies [76]. A model-based population analysis can be
performed using the STRUCTURE program [77] based on genomic data. The program can
infer the genetic structure in haploid, diploid and polyploid species [78].

4.2.1. STRUCTURE program

Principle: This method is based on Bayesian clustering approach and employs Markov Chain
Monte Carlo (MCMC) algorithm to identify genetically distinct subpopulations based on allele
frequencies. It assigns individuals to subpopulations based on likelihood estimates. In case of
haploids, the program assumes that the loci are in linkage equilibrium or only weakly linked
[78]. The program accounts for recombination by incorporating ancestry models such as
admixture and linkage models. An admixed strain is assigned with a membership score to
belong to two or more subpopulations, to indicate its mixed ancestry. Linkage model is an
extension of admixture model to account for weak linkage that arises as a result of admixture
linkage disequilibrium (LD). Therefore, the extent of linkage equilibrium within the markers
needs to be tested prior to usage of the STRUCTURE program. The relevant linkage analysis
(LIAN) programs and measures are discussed in Section 4.3.

Input genotype data: A wide range of markers such as multi-locus genotype data, microsatel‐
lites, SNPs can be used as an input. In case of viruses, the polymorphic sites or more specifically
the parsimony-informative (PIs) sites obtained from genome-based alignment are suitable
markers for population genetic analyses. A PI site contains at least two types of nucleotide
bases and at least two of which occur with a minimum frequency of two. The position of each
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PI corresponds to a locus. At every locus, any of the four bases (A, T, G and C) and the gap is
considered as an allele.

Algorithm steps:

i. Carry out MSA of complete genomes and extract PI sites.

ii. Estimate the degree of linkage equilibrium and test the null hypothesis about the
same.

iii. Simulate data using burn-in and burn-length with values in the range of 10,000–
1,00,000. Check the convergence of parameters and consistency of clustering results.

iv. Estimate the appropriate number of clusters (K) using independent runs with varying
values of K.

v. Determine the best K either by comparing mean of log likelihoods [77] or based on
an ad hoc statistic, ∆K [79].

vi. Validate the genetic structure hypothesis using Analysis of MOlecularVAriance
(AMOVA) based on Fixation index (FST) as implemented in ARLEQUIN software [80].
FST represents the extent of genetic differentiation among subpopulations and ranges
between 0 (no differentiation) and 1 (complete differentiation).

Salient features of the STRUCTURE program:

i. This method is advantageous over traditional molecular phylogenetic methods in
terms of classification of recombinant strains.

ii. User can incorporate prior information such as geographic location of samples.

Limitations:

i. Variation in sample size may affect the clustering.

ii. This method is not suitable for datasets having high linkage disequilibrium.

Case studies:

The ability of the admixture model to account for recombination has been used to analyse the
extent of recombination and its role in determining the population structure of viruses such
as Hepatitis B virus [81] and Rhinoviruses [82].

Population genomic study of Hepatitis B virus (HBV) was carried out using both admixture
and linkage models (with burn-in of 20,000 and burn-length of 40,000). HBV is an enveloped
DNA virus and belongs to the genus Orthohepadnavirus and family Hepadnaviridae. It is known
to consist of eight genotypes designated as A–H, each of which has characteristic geographic
distribution. This method helped to resolve the hierarchical nature of population subdivision
with the presence of four major clusters (FST = 0.497, p < 0.0001) and eight sub-clusters. The
extent of recombination was observed to be low [81].

Rhinoviruses represent the highly diverse members of genus Enterovirus and family Picornavir‐
idae. They are ss (+) RNA viruses with genome of ~7,200 bases. There are three species, viz.
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Rhinovirus  A, -B  and -C,  each of which is further subdivided into distinct serotypes. The
STRUCTURE-based analysis revealed a strong evidence for existence of seven genetically
distinct subpopulations (with FST = 0.45, p = 0). Rhinovirus A and Rhinovirus C were subdivid‐
ed into  four  and two subpopulations  respectively,  whereas  Rhinovirus  B  species  remain
undivided. Furthermore, usage of both the admixture and the linkage models (with burn-in of
20,000 and burn-length of 40,000) helped to resolve the role of recombination in diversifica‐
tion of subpopulations. In case of Rhinovirus A, intra-species recombination was common,
whereas in case of Rhinovirus C, intra- and inter-species recombination were observed to cause
diversity [82].

4.3. Methods to compute linkage disequilibrium

Linkage equilibrium refers to the statistical independence of alleles at all loci and indicates
evidence of free recombination [83]. Thus, linkage disequilibrium is a measure of the correla‐
tion between the occurrences of nucleotides at different loci of the genome. The extent to which
recombination occurs can be estimated in terms of the degree of linkage disequilibrium [84]
using measures made available by specialized programs such as Linkage Analysis (LIAN) [83]
and DNA Sequence Polymorphism (DnaSP) [85]. The extent of linkage can be inferred based
on the following parameters.

i. Standardized index of association, ISA: It is a measure of the degree of haplotype-
wide linkage derived from a given dataset. ISA is computed using a formula, ISA =
[1/(e−1)] [(VD/VE)−1], where 'VD' represents the observed variance of pairwise distan‐
ces between haplotypes and ‘VE’ represents the expected variance when all loci are
in linkage equilibrium. The term [(VD/VE)−1] is the function of rate of recombination,
which is zero in case of linkage equilibrium. The number of loci analysed is denoted
by ‘e’. The value of ISA can be computed by using the program called LIAN (for
Linkage Analysis), which requires haplotype data as an input. This program imple‐
ments both a Monte Carlo and an algebraic method to test the null hypothesis: VD = VE.

ii. |D’| and r2: The |D’| measure is the absolute value of the difference between the
observed and the expected haplotype frequency in the absence of linkage disequili‐
brium, which is normalized by the maximum (or minimum) possible value of this
difference. The squared value of the difference between the observed and the
expected haplotype frequency normalized by the variance of the allele frequency is
denoted by r2. These measures can be computed using DnaSP program [85]. The
values for these measures can range between 0 (no linkage disequilibrium) and 1
(complete linkage disequilibrium) [84, 86].

Case studies:

LD provides a good measure for analysing the extent of recombination in viruses [82, 87]. For
example, in case of Rhinoviruses, low values for LD measures (ISA = 0.0666, p < 10−4; |D’| =
0.5409 and that of r2 = 0.0613) were observed and correlated well with the evidence of recom‐
bination obtained using independent methods [82]. Similarly, LD analyses in serotypes of Foot
and mouth disease virus [87] helped to reveal low values of |D’| and r2, supporting high
recombination.
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4.4. Methods for detection of recombination

In addition to undergoing mutations, viruses are known to generate new variants through
genetic recombination. Genetic recombination refers to the exchange of genetic material
between strains of the same or different species of viruses [88]. Within a host, co-infected with
viruses, the recombination occurs either by homologous recombination or by reassortment
[89]. Homologous recombination can occur between highly similar RNA genomes usually
through the process called ‘copy-choice’ or ‘template-switching’ mechanism, whereas reas‐
sortment involves exchange of genomic regions between viruses that have segmented
genomes. Presence of recombinants can hamper analyses pertaining to molecular clock [90],
selection pressure, phylogenetic classification [91, 92] and thus need to be detected prior to
such analyses.

4.4.1. Virus Recombination Mapper (ViReMa)

ViReMa is developed to analyse the recombinants within the viral genome data derived
through NGS [93]. It can detect inter-virus or virus–host recombination. This method can also
detect insertion and substitution events and multiple recombination junctions within a single
read.

Algorithm steps:

i. Alignment of 5' end of each read to the reference genome(s) using seed-based
approach.

ii. Dynamic generation of a new read segment: 3' end of the read that fail to align is
extracted or the first nucleotide from the read is trimmed. This step is iterated until
all the reads are either mapped or trimmed or a combination of both.

iii. For each read, all possible recombinations are reported.

4.4.2. Recombination Detection Program version 4 (RDP4) package

In order to detect recombination, various methods have been developed and are provided in
RDP4 package [94]. It identifies the significant evidence of recombination events based on the
p-value and identifies the potential recombinant sequences and its both parents (major and
minor). The main strength of the package is that it does not need any prior knowledge
pertaining to non-recombinant set of reference sequences. The starting point of analysis is MSA
of genomic sequences.

Algorithm steps:

i. RDP4 package sequentially tests every combination of three sequences in MSA (a
triplet) for potential evidence that one of the three is a recombinant and the other two
are its parents. Various recombination detection methods, such as the Ramer–
Douglas–Peucker algorithm (RDP) method [95], BOOTSCAN [96, 97], maximum Chi-
square (MAXCHI) method [98, 99], CHIMAERA [99], 3'-end sequencing for expres‐
sion quantification (3SEQ) [100], gene conversion method (GENECONV) [101], Sister
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Scanning method (SISCAN) [102], LARD [103], Topal/Difference of Sums of Squares
(DSS) [104] and DNA distance plot, are used.

ii. Following the detection of a ‘recombination signal’, RDP4 determines approximate
breakpoint positions using HMM and then identifies the recombinant sequence using
various methods such as phylogenetic profiling (PHYLPRO) [105] and Visual
Recombination Detection (VisRD) [106].

iii. The minimum number of recombination events that are needed to account for these
signals are then inferred. It involves sequential disassembly of the identified re‐
combinant sequences into respective components and iteratively rescanning the
resulting expanded dataset until no further recombination signals are evident.

Salient feature:

RDP4 package provides a unified interface for multiple methods and facilitates visualization
of recombination events using genomic data (up to 2,500 sequences).

Limitations:

i. The genomic dataset up to 200 million nucleotides can be analysed and is reported
to have operational limits for large genomic datasets.

ii. Recombination analysis is likely to fail in case of poor alignments, if recombinant
sequences are used as reference and sequences having ambiguous characters are
included.

4.5. Methods for selection pressure analysis

Natural selection is one of the fundamental evolutionary processes that shape the genetic
structure of viral populations. The ratio of non-synonymous substitution rate (dN) to synon‐
ymous substitution rate (dS) is a useful means to infer selection pressure based on a codon
alignment for a particular gene. Positive selection (dN/dS > 1) increases the frequency of
advantageous alleles, whereas the negative selection (dN/dS < 1) is responsible for purging
(removal) of deleterious alleles.

Broadly, the selection pressure can be classified as pervasive and episodic. Pervasive selection
acts across all the lineages in a phylogenetic tree, whereas the episodic selection operates on a
few lineages of a tree. Various statistical methods for analysis of pervasive and episodic
selection are available at the Datamonkey web-server of Hypothesis testing using Phylogenies
(HyPhy) software package [107–109].

4.5.1. Single Likelihood Ancestor Counting (SLAC)

Principle: This method belongs to a class called counting methods [110]. It is suitable for
pervasive selection analysis and involves estimating the number of non-synonymous and
synonymous changes that have occurred at each codon throughout the evolutionary history
of the sample. It involves reconstructing the ancestral sequences using likelihood-based
method [111].

Next Generation Sequencing - Advances, Applications and Challenges188



Scanning method (SISCAN) [102], LARD [103], Topal/Difference of Sums of Squares
(DSS) [104] and DNA distance plot, are used.

ii. Following the detection of a ‘recombination signal’, RDP4 determines approximate
breakpoint positions using HMM and then identifies the recombinant sequence using
various methods such as phylogenetic profiling (PHYLPRO) [105] and Visual
Recombination Detection (VisRD) [106].

iii. The minimum number of recombination events that are needed to account for these
signals are then inferred. It involves sequential disassembly of the identified re‐
combinant sequences into respective components and iteratively rescanning the
resulting expanded dataset until no further recombination signals are evident.

Salient feature:

RDP4 package provides a unified interface for multiple methods and facilitates visualization
of recombination events using genomic data (up to 2,500 sequences).

Limitations:

i. The genomic dataset up to 200 million nucleotides can be analysed and is reported
to have operational limits for large genomic datasets.

ii. Recombination analysis is likely to fail in case of poor alignments, if recombinant
sequences are used as reference and sequences having ambiguous characters are
included.

4.5. Methods for selection pressure analysis

Natural selection is one of the fundamental evolutionary processes that shape the genetic
structure of viral populations. The ratio of non-synonymous substitution rate (dN) to synon‐
ymous substitution rate (dS) is a useful means to infer selection pressure based on a codon
alignment for a particular gene. Positive selection (dN/dS > 1) increases the frequency of
advantageous alleles, whereas the negative selection (dN/dS < 1) is responsible for purging
(removal) of deleterious alleles.

Broadly, the selection pressure can be classified as pervasive and episodic. Pervasive selection
acts across all the lineages in a phylogenetic tree, whereas the episodic selection operates on a
few lineages of a tree. Various statistical methods for analysis of pervasive and episodic
selection are available at the Datamonkey web-server of Hypothesis testing using Phylogenies
(HyPhy) software package [107–109].

4.5.1. Single Likelihood Ancestor Counting (SLAC)

Principle: This method belongs to a class called counting methods [110]. It is suitable for
pervasive selection analysis and involves estimating the number of non-synonymous and
synonymous changes that have occurred at each codon throughout the evolutionary history
of the sample. It involves reconstructing the ancestral sequences using likelihood-based
method [111].

Next Generation Sequencing - Advances, Applications and Challenges188

Algorithm steps:

i. Nucleotide model fit: Using maximum likelihood (ML), a nucleotide model of time-
reversible class is fitted to the data and tree, to obtain branch lengths and substitution
rates. If multiple segments are present in the input codon alignment, base frequencies
and substitution rates are inferred jointly from the whole alignment, while branch
lengths are estimated for each segment separately.

ii. Codon model fit: To obtain a global ω = dN/dS ratio, the branch lengths and substi‐
tution rate parameters are considered constant at the values estimated in ‘step i’. A
codon model is obtained using a combination of MG94 model and the nucleotide
model of ‘step i’ and then fitted to the data.

iii. Ancestral sequence reconstruction: Based on the parameter estimates obtained using
steps i and ii, codons of ancestral sequences are reconstructed site by site using
maximization of the likelihood of the data at the site over all possible ancestral
character states. Inferred ancestral sequences are treated as known for the next step.

iv. Inference of selection at each site: For every variable site, four quantities, viz. the
normalized expected (ES and EN) and the observed numbers (NS and NN) are
calculated for synonymous and non-synonymous substitutions respectively. SLAC
estimates dN = NN/EN and dS = NS/ES, and if dN < dS, a codon is called negatively
selected or if dN > dS, it is said to be positively selected. A p-value is derived to assess
the significance. The test assumes that under neutrality, a random substitution will
be synonymous with probability p = ES/(ES + EN).

4.5.2. Fixed-Effect Likelihood (FEL) and Internal Fixed-Effect Likelihood (IFEL)

Principle: These belong to a class of methods called ‘fixed effects’. It analyses pervasive
selection and involves fitting substitution rates on a site-by-site basis by assuming that the
synonymous substitution rate is the same for all sites. Thus, FEL and IFEL assume the same
dN/dS (ω) ratio, which is applicable to all branches and to interior branches, respectively [111].

Algorithm steps:

i. Nucleotide and codon model fitting procedure in these methods is similar to those
of SLAC method as detailed in Section 4.5.1.

ii. Site-by-site likelihood ratio test (LRT):

FEL method: For every site, based on the parameter estimates obtained using nucleotide- and
codon-fit procedure, two rate parameters namely α and β are first fitted independently and
then under the constraint of α = β. Here, the parameter α represents the instantaneous
synonymous site rate, while β represents the instantaneous non-synonymous site rate.
Furthermore, LRT is performed to infer whether α is different from β and a p-value is com‐
puted. If the p-value is significant, the site is classified based on whether α > β (indicates
negative selection) or α < β (indicates positive selection).

IFEL method: It differs from FEL in following aspects:
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• The selection is only tested for internal branches of the phylogenetic tree.

• Each site has three rate parameters, α, β_I (instantaneous non-synonymous site rate for
internal branches) and β_L (instantaneous non-synonymous site rate for terminal branches).
Here, the null model assumes that α = β_I.

4.5.3. Mixed Effects Model of Evolution (MEME)

Principle: MEME is categorized under the ’branch-site random effects’ phylogenetic methods
[112]. Though this method is a generalization of FEL method, it differs from FEL and IFEL, by
accounting for episodic positive selection that particularly affects a subset of lineages. MEME
uniquely allows the distribution of dN/dS (ω) to vary from site to site (the fixed effect) and also
from branch to branch at a site (the random effect).

Algorithm steps:

i. The steps ‘i’ and ‘ii’ are same as that of the SLAC method (Section 4.5.1), whereas
there is variation in step ‘iii’ as follows:

ii. The ω ratio is modelled across lineages at an individual site, i.e., each site is treated
as a fixed-effect component of the model using a two-bin random distribution with
ω− ≤ 1 (proportion p) and ω+ (unrestricted, proportion 1−p). Thus, a proportion (p) of
branches at a site evolve neutrally (or under negative selection), while the remaining
(1–p) may evolve under diversifying selection. To test for evidence of episodic
selection, a likelihood ratio test is applied.

4.6. Methods for reconstruction of molecular phylogeny

Molecular phylogenetic analyses are the most commonly performed studies in virology with
major applications in viral taxonomy, systematics and genotyping. Methods for reconstruction
of phylogenetic tree are broadly classified into three main categories, viz. distance-based,
character-based and Bayesian-based and are reviewed earlier [113, 114]. Distance-based
methods use pairwise distance matrix as an input for tree building. Neighbour-joining [115],
minimum evolution [116] and least square [117, 118] methods are widely used methods under
this category. These methods are computationally efficient and suitable for the analysis of large
datasets with low levels of sequence divergence. However, these methods do not perform
equally well in case of highly divergent sequences with low levels of sequence similarity.
Moreover, uncertainties can be introduced due to positioning of gaps in the MSA. Character-
based methods assume each site in MSA to evolve independently. The two classical methods
under this category are maximum parsimony and maximum likelihood [119], which estimate
the tree score based on the minimum number of changes and the log-likelihood value respec‐
tively. However, it needs to be mentioned that alignment-based phylogenetic methods are
observed to misclassify taxa with mixed ancestry and/or recombination [91, 92].

The alignment-free methods have been developed as an alternative and can be classified into
four categories based on the underlying principles employed. They are k-mer/word composi‐
tion, substring theory, information theory and graphical representation [120].
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tively. However, it needs to be mentioned that alignment-based phylogenetic methods are
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Whole genome-based phylogenetic trees are widely used for various viruses owing to their
small genome sizes and conservation of genomic structure. Phylogenomics field has gained
importance as whole genome data became available enabling the study of evolution in general
and epidemiology and disease surveillance, in particular. This field when analysed in the
context of spatio-temporal data helps to understand the disease spread and progression during
outbreaks. The program such as Bayesian Evolutionary Analysis by Sampling Trees (BEAST)
has been exclusively designed for phylogeography studies [121] and is used widely to study
spatio-temporal dynamics of viruses at population scale.

BEAST software provides a Bayesian Markov chain Monte Carlo (MCMC) framework for
parameter estimation and hypothesis testing of evolutionary models from molecular sequence
data. It brings together a large number of evolutionary models into a single coherent frame‐
work for evolutionary inference. Available evolutionary models include substitution, inser‐
tion–deletion, demographic, tree shape priors, node calibration and relaxed clock models. This
combinatorial principle is advantageous as it provides a flexible system to specify models to
understand various aspects of virus evolution. BEAST uniquely incorporates the time-scale
data to explicitly model the rate of molecular evolution on each branch in the tree. Under the
uniform rate assumption over the entire tree, the molecular clock model becomes applicable.
It is the first software to incorporate the relaxed molecular clock model that does not assume
constant rate across lineages.

4.7. Methods for typing of viruses

Phylogenetic analysis, whether alignment-based or alignment-free, is routinely used for
genotyping/serotyping of viruses. Such analysis is carried out using the regions that are
identified as markers for the purpose of classification by the expert evolutionary virologists
and the International Committee of viruses (ICTV) [122]. It has been observed that genotype
information for less than 10% of the viral genomes is available as part of their sequence records.
As NGS technologies are producing a large number of genomic sequences for various strains,
isolates and viral species, the genotype assignment gap is ever-increasing. Several tools for
genotyping have been developed using both alignment-based and alignment-free methods
and are most often organism-specific. NCBI Genotyping Tool is based on the sequence
similarity for identifying the genotype of recombinant and non-recombinant viral sequences
[123]. Similar tools exist for Influenza virus, viz. FluGenom [124]. Alignment-free method for
phylogeny and genotyping of viruses based on the concept of Return Time Distribution has
been developed in-house and its applicability for genotyping of viruses such as Mumps virus,
Dengue virus and West Nile virus has been demonstrated [125–127].

5. The way forward

NGS has proved to be extremely useful and has become an integral part of virus research and
opened up new vistas in studying viral evolution. Ample proof of the same is the characteri‐
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zation of the Ebola virus infection in West Africa (2014 outbreak), wherein the patient samples
were sequenced using NGS to trace the origin and transmission of the infection as part of the
global epidemic surveillance strategy [128]. The discovery followed by the development of
vaccine [129] has been made in a short time span owing to the genomics-enabled translational
research. In order to harness the use of NGS in virology, care needs to be exerted to avoid
misinterpretation and over-interpretation of the data. It must be noted that starting from
sample collection, DNA/RNA extraction, PCR amplification, library preparation up to
sequencing are prone to errors, which have been explained [130] very comprehensively.
Circumventing these issues, application of NGS in virology has enabled basic and applied
research to take a quantum leap. The thorough understanding of the intricacies of a quasis‐
pecies structure aids in tracing the mutational network operational due to selection pressures.
Furthermore, characterization of intra- and inter-host viral evolution helps in understanding
the role of host immune system on the genetic variability of viruses. Such data when analysed
in the context of population genetics provide constructs to understand emergence of new
strains/lineages. Reverse vaccinology [131] enabled via genomics is expected to accelerate the
rate of vaccine discovery, thereby, reducing the virus-associated disease burden.
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Abstract

New technologies are constantly being released and the improvements therein bring ad‐
vances not only to transcriptome, the focus of this chapter, but also to diverse areas of
biological research. Since the announcement and application of the RNA-seq approach,
discoveries are being made in this field, but when we consider bacterial species, this
progress proceeded a few years behind. However, with the application of RNA-seq de‐
rivative approaches, we can gain biological insights into the bacterial world and aspire to
uncover the mysteries involving gene expression, organization and other functional ge‐
nomic features.

Keywords: RNA-seq, bacteria, transcriptomics, bioinformatics analysis workflow

1. Introduction

RNA-seq technology has driven advances in gene expression analysis through new-generation
sequencing platforms, as they are versatile, powerful and ensure quality results with accuracy
and reproducibility never reached before. This technology generates information that provides
meaning to the set of transcripts (transcriptome), opening up possibilities for understanding
cell behavior in different environments. RNA is an important component within the cell, since
it plays different roles as a messenger regulatory molecule and carrier; and, it is also essential
for the maintenance of housekeeping genes [1].

In 2005, the first new generation of sequencing technology was released and has been evolving
rapidly [2]. After starting the process of gene expression analysis in bacteria [3, 4] at a more
accessible cost, shorter experimental time and without probes, the technology took off and
today overlaps other tools used for this purpose, such as microarray technology, until now
extremely useful for this type of analysis.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Applications of RNA-seq

Understanding the transcriptome is essential to knowledge of the functional genomics of an
organism. The development of next-generation sequencing (NGS) impacts different areas,
such as medical and industrial, and has gone through a revolutionary process. Different
approaches, among them the RNA-seq technique, have emerged in the fields of microbiology
and molecular biology in order to aid in understanding and bring solutions to bacterial domain
investigations. In this section, we will detail some applications that are part of our current
context.

2.1. The medical field

The applications of these NGS technologies in medicine have allowed expansion in the fields
of diagnosis, treatment and prevention, especially concerning bacterial diseases. One of their
major applications has been the quantification of expression levels of each transcript under
different conditions that simulate the intracellular environment. Such work has been done by
Pinto et al. (2014) to understand the host–pathogen relationship [5]. Westermann et al. (2012)
demonstrated the validity of this technique, with the transcriptome of the pathogenic bacteria
as their host, using the dual RNA-seq that simultaneously analyzed the gene expressions of
the pathogen and host [6]. This gives us better understanding of the systems biology involving
bacteria and their hosts, helping scientists to develop drugs and vaccines.

Another field that has been explored extensively involves metatranscriptome, as scientists
have sought to comprehend the composition and regulation of microbial ecosystems [7, 8]. To
pursue this, they have used the RNA-seq technique to generate, and allow the interpretation
of, a large volume of very reliable data. Leimena et al. (2013) also validated the RNA-seq
technique using the microbiota of a human small intestine with ileostomy. Their aim was to
understand the interactions involved in this microbial ecosystem and how these relationships
can be associated with disease [8]. Transcriptome analysis pipelines (see Section 5) can be used
with different experimental designs and applied to many bacteria in addition to those in the
medical field.

2.2. The industrial field

Industrial applications have been developed in recent years, mainly in the probiotic industry,
since it benefits the world economy. Bisanz et al. (2014) used the RNA-seq technique [9] to
show the metatranscriptome of probiotic yogurt, seeking to understand the metabolic activities
that allow the survival of this organism in the products. Their results show the adaptive
capacity of this bacterium, as well as the variation in differential gene expression, yielding the
taste or storage life of the product [9]. Studies such as these are important because they enrich
the knowledge of the industrial field and open new possibilities for an attractive area in the
marketplace, which results in improvement in the quality of the product that is ultimately
delivered to the consumer.
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In addition to the probiotic market, another important area is the bacterial production and
synthesis  of  biomolecules.  Wiegand et  al.  (2013)  used the RNA-seq technique to  under‐
stand the regulatory RNAs in the fermentation of Bacillus licheniformis. Their study identified
active genomic regions which, in turn, contribute to the efficiency and optimization of the
fermentation  process,  which  can  promote  the  industrial  production  of  exoenzymes  and
antibiotics [10].

Microorganisms produce antioxidant molecules that can be used in the pharmaceutical and
cosmetic industries. They also produce other compounds, such as propionate, that are
applicable in the production of chemical aids and are produced by Propionibacterium freuden‐
reichii ssp. shermanii, which one is considered valuable in the food industry [11]. In this area,
the RNA-seq technology is very promising and its application can bring advances in these
studies.

3. RNA-seq and derivative techniques

3.1. RNA-seq

The RNA-seq technology is able to identify all RNAs directly and quantitatively: coding and
non-coding, rare and abundant, smaller and larger. This method provides information about
the transcription start site (TSS), untranslated regions (UTRs), detection of unknown open
reading frames (ORFs), improved quality in genomic annotation [12], and also allows the
distinction between primary and processed transcripts (dRNA-seq) [13].

The major constraint is to ensure representatives for rare transcripts. In this case, the recom‐
mendation is either to increase the representation of reads per library [14] or to enhance these
transcripts, eliminating the ribosomal (rRNA) and transfer (tRNA) RNAs that are in abundance
in the cells representing about 95% of total RNA [15].

Despite RNA-seq generally being considered the gold standard for gene expression analysis,
some researchers nevertheless find it complicated to define this technology as the gold
standard. It is a method that is available in different platforms and address different strategies,
showing advantages and disadvantages. However, the superiority of this technology, com‐
pared to others in the past, is not questioned [16].

Despite the technological superiority, the need for biological replicates and depth of sequenc‐
ing remains. Hence, the results may achieve greater reliability and reproducibility [17].
Differentially expressed genes are better appraised when there are samples with more
biological replicates, as compared to enhanced depth with fewer replicates [18].

Transcriptomics studies have contributed a revolution in the study of the bacterial environ‐
ment. Different bacterial species have been targeted for RNA-seq studies [5, 13, 19, 20], and
gene expression-based discovery has transformed the scientific paradigm of these organisms.
The detection of an unexpected amount of coding genes in Helicobacter pylori has demonstrated
that, despite having a small compact genome, the transcriptome of this bacterium is extremely
complex [13].
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A surprising result was the detection of a large number of transcription start sites (TSS). This
has never been achieved before using any technology aside from derivative RNA-seq tech‐
nology, like the differential RNA-seq (dRNA-seq), which differentiated primary transcripts
that exhibit triphosphate ends from processed transcripts that present monophosphate ends,
such as rRNAs and tRNAs. In this case, to enrich mRNA, the strategy was to treat all the RNA
samples with exonuclease enzymes that degrade nucleotide monophosphate. This strategy
identified 5'UTR ends, operons and antisense transcription, thus providing a new perception
of the organization of the bacterial transcriptome and a new model for the analysis of indi‐
vidual genes [13].

The results obtained allow the inference of a role of 5'UTR regions. A correlation between size
and cell function was proposed by the researchers, who found that larger size is related to
pathogenicity [13]. These results show how little knowledge there is regarding microorgan‐
isms, believed to be the simplest form of life, yet which nevertheless prove to be more complex
than previously anticipated. This leaves a lot to be discovered.

An RNA-seq application that has been widely used in bacterial genomes is found in studies
focused on identifying small RNAs (sRNA). These elements are regulators of various biological
processes and were initially studied primarily in Escherichia coli [21]. However, with the
advances in technology, it has been possible to identify and characterize small RNAs in a
variety of bacterial species [13, 22, 23]. Yan et al. (2013) identified an expression profile of sRNA
in the Yersinia pestis, both in vitro and in vivo. This has allowed the identification of new sRNAs
and the recognition of gene expression modulation during the infection process, thus improv‐
ing the understanding of the transcription regulation mechanisms of this organism [24]. The
importance of studies involving sRNA also includes assistance in research related to antibiotics
therapies, a study in initial development despite a lot of knowledge to be better exploited [25].

RNA-seq has been used in different areas and situations. Advanced studies using this
technology can detect details in cell expression [26]. Even with the difficulties in separating
eukaryotic and prokaryotic materials, it was possible to distinguish the simultaneous expres‐
sion profiles between the host–pathogen responses through dual transcriptome studies. This
work allowed to disclosure the host response against the bacterial infection and virulence
factors, enabling the infectious process determination [27]. These studies contribute to the
research in the field of biological infection by examining diverse pathogens with different life
cycles and methods of infection and providing crucial knowledge for studies of diagnostics
and vaccines, such as metatranscriptomics study.

After a relatively short time on the market, RNA-seq can accurately reveal structural and
functional elements of bacteria. The mapping of transcripts in the genome can refine the
annotation or even identify new regions, improve the quality of the studied genome compared
to regions previously annotated by predictors or assembled using an ab initio approach [28,
29], and can even check the abundance of transcript expression.

Data coming from a quality genome tends to provide more promising results, responding to
the biological question being investigated by researchers. In search of a quality genome, ab
initio transcripts assembly or even a hybrid approach, which uses both the reference genome
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and ab initio assembly, become an auspicious endeavour to solve many problems encountered
in the genome and complicated to adjust [28].

Pinto et al. (2012) conducted a study of Corynebacterium pseudotuberculosis adopting ab initio
assembly and, therefore, were able to identify differences in the expression of active genes
under different environmental conditions. This allowed them to detect new possible virulence
factors involved in pathogenicity, making them targets for vaccine development, diagnosis or
treatment against caseous lymphadenitis disease caused by this bacterium [30].

These results suggest the importance of this technology and the possibility of going further
with a tool that aims to improve, and probably will expand, the field of analysis. This could
bring the results increasingly closer to bacterial molecular reality.

3.2. tagRNA-seq

Bacterial RNA can be divided in two groups: primary and processed transcripts. Primary
transcripts are represented by the presence of 5’-triphosphate (5’PPP), which includes
messenger RNA (mRNA) and small RNAs (sRNA). Processed transcripts are those carrying
5’-monophosphate (5’P), such as mature ribosomal RNA (rRNA) and transfer RNA (tRNA).

Transcriptome represents approximately 95% of the total bacterial transcriptome [15]. A
recently developed approach called dRNA-seq [13] revolutionized the study of the primary
transcripts by considering the 5’ difference between the primary and the processed groups, as
mentioned previously (see Section 3.1).

RNAs are very stable and during preparation, considering the “wet-lab” experiments, some
transcripts are partially or totally degraded. 5’PPP and 5’P are two of the mechanisms of
protection against exonucleases and the first degraded portion of the transcripts. During that
process, information is lost and some primary transcripts end up with 5’P and are treated as
processed transcripts. Consequently, they are eliminated by the dRNA-seq technique. A new
methodology was created to overcome this problem by tagging and clustering the two groups
together in an RNA-seq-derived approach named tagRNA-seq [31]. This technique also
considers the difference between processed and primary transcripts, but instead of degrading
the processed ones, two different ligation reactions are implemented with two different
markers: PSS-tag (processed start site) and TSS-tag (transcription start site). They differ in their
nucleotide sequence. Figure 1 exhibits briefly the methodology, considering the three main
steps: (1) the first reaction tags (PSS-tag) on the processed transcripts; (2) treatment with
tobacco alkaline phosphatase (TAP), where the 5’PPP loses two phosphates, which allows the
third step; (3) the second ligation reaction (TSS-tag) on the primary transcripts. After those
steps are completed, the transcripts are sequenced and, due to the different markers, they can
be distinguished and compared [31].

This methodology was first described for Enterococcus faecalis [31] and was based on another
technique, 5’tagRACE [32], a 5’RACE derived method. The results provided by tagRNA-seq
improved the annotation of the E. faecalis genome by having identified or corrected several
genome portions, including both non-coding and coding regions. This study also compared
different libraries to prove the effectiveness of this innovative approach. With this, it provided
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a new method capable of differentiating primary and processed RNAs and was suited to better
comprehending of the genetic information of bacteria as other groups [31].

dRNA-seq and tagRNA-seq are approaches that enable a new view of the transcriptome by
selecting the primary transcripts for sequencing or by differentiating the primary from the
processed transcripts, for a broader insight into the transcriptome. These state-of-the-art
techniques promise a better understanding of RNA structures like TSS, 5’UTR, promoters,
among others, besides the knowledge of non-annotated genes and small RNAs.

3.3. FRT-seq (flowcell reverse transcription sequencing)

Flowcell reverse transcription sequencing (FRT-seq) is a new and improved methodology,
derived from the RNA-seq technology that was created for Illumina sequencers. Unlike RNA-
seq, FRT-seq does not require amplification by PCR, a step that usually introduces bias into
the results by displaying an erroneous view of the quantity of some RNA species [33]. Other
important features of the Illumina sequencing methodology are the ability to generate strand-
specific information, the use of pair-end libraries and the need for a considerable initial amount
of RNA template. PCR-free amplification is a major step towards a more comprehensive
library, akin to the original one, but without the formation of intermolecular priming artefacts
among other errors. It will probably become a fairly useful technique in the near future [33,
34]. Third-generation sequencing platforms, like Nanopore and PacBio, also use amplification-

Figure 1. The three main steps of the tagRNA-seq approach. (1) The first ligation reaction, during which the attach‐
ment of the PSS-tag (blue) to the processed transcripts (5’P) occurs. (2) Treatment with tobacco alkaline phosphatase
(TAP), turning triphosphate to monophosphate groups. (3) The second ligation, corresponding to the TSS-tag (yellow)
marker on the previously 5’PPP group (primary transcripts). The different markers allow the differentiation of the tri‐
phosphate and monophosphate groups after sequencing.
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free approaches. However, neither is currently being broadly used since they still exhibit
sequencing errors.

FRT-seq comprises the fragmentation of the template (e.g., mRNA) followed by ligation of
adapters in both the 3’ and the 5’ ends, which are responsible for the hybridization of the
template with oligonucleotides on the flowcell surface. The next steps performed are quanti‐
fication, reverse transcription and then sequence reaction [33, 34].

This approach can be applied to both eukaryotes and prokaryotes, although the number of
published papers involving eukaryotes is more substantial. From the bacterial world, we can
quote papers involving Salmonella enterica [23] and Shigella fleneri [35] in which FRT-seq was
applied as a complementary approach to describe the transcriptional landscape of the species.
In both cases, FRT-seq showed greater sensitivity and excellent concordance when compared
to other approaches and replicates.

The S. enterica paper [23] shows that FRT-seq is as efficient as the RNA-seq and dRNA-seq
techniques (Figure 2) (Table 1). Figure 2 compares nine different RNA libraries: TEX (1, 2, 3),
RNA-seq (1, 2, 3, *) and FRT-seq (depleted and not depleted). TEX (libraries treated with
terminator exonuclease) is a dRNA-seq methodology (see Sections 3.1 and 3.2) that, together
with the first three RNA-seq biological replicates, was sequenced using a 454 (1 and 2) or an
Illumina GAII (3 and FRT-seq) sequencer and the RNA-seq* (library enriched for small RNA
species) was sequenced using Illumina HiSeq. The charts relate the percentages of different
RNA species and show that the FRT-seq libraries provide similar or better results than the
other approaches. The data presented in Table 2 also support this claim, especially considering
both the total number of reads and the uniquely mapped reads achieved using the FRT-seq
libraries.

Figure 2. Sequencing methodology comparison. Adapted from [23]. IGR – Intergenic region; TEX – libraries treated
with terminator exonuclease; RNA-seq* – library enriched for small RNA species (sRNA).
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Library
Sequencing
technology

Description
Total
number

Number of
reads (not
mapped)

Number of
reads
(uniquely
mapped)

Percent
uniquely
mapped
reads [%]

Minimum
fold
coverage#

TEX_1 454

dRNA-seq
library
biological
replicate 1

161,031 72,623 88,408 54.90 1.11

RNA-seq_1 454
RNA-seq library
biological
replicate 1

248,993 83,030 165,963 66.65 2.03

TEX_2 454

dRNA-seq
library
biological
replicate 2

111,462 10,785 100,677 90.32 2.16

RNA-seq_2 454
RNA-seq library
biological
replicate 2

93,337 38,577 54,760 58.67 0.61

TEX_3 Illumina GAII

dRNA-seq
library
biological
replicate 3

1,738,867 122,058 1,211,426 69.67 20.99

RNA-seq_3 Illumina GAII
RNA-seq library
biological
replicate 3

2,148,563 136,871 1,360,113 63.30 21.16

RNA-seq* Illumina HiSeq
RNA-seq library
biological
replicate 4

3,750,797 164,658 2,596,010 69.21 25.11

FRT-seq Illumina GAII
FRT-seq library
biological
replicate 5

18,563,218 4,203,715 2,456,792 13.23 16.42

FRT-seq dep Illumina GAII

FRT-seq library
biological
replicate 5
rRNA depleted

24,585,564 9,652,397 4,093,744 16.65 27.77

Table 1. Sequencing statistics. Adapted from [23]

The S. fleneri paper [35] also reports a favourable result concerning FRT-seq. In fact, this

approach revealed a larger gene repertoire than the RNA-seq (Table 2).
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The S. fleneri paper [35] also reports a favourable result concerning FRT-seq. In fact, this

approach revealed a larger gene repertoire than the RNA-seq (Table 2).
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RNA-seq FRT-seq

Condition A Condition B Condition A Condition B

Total number of
mapped reads

20,099,597 22,736,494 49,925,286 47,605,241

Total number of reads
mapping to genes

1,525,782 2,271,423 3,037,954 2,585,600

Reads mapping genes
in sense

1,195,446 1,958,533 2,469,828 2,129,951

Reads mapping genes
in antisense

330,336 312,890 568,126 455,649

Table 2. Sequencing statistics. Adapted from [31].

The data presented in this topic demonstrate the quality of this recently published methodol‐
ogy and, according to the authors [33, 34], new updates are still being developed. This will
probably provide an even better approach for users. The fact that this technique is only
applicable for Illumina sequencers is a drawback; but, since this sequencing platform is
available worldwide, this disadvantage can easily be fixed. Perhaps, in the near future, it can
be extended to work in other sequencing platforms. Another particularity of this technique is
its efficiency with AT-rich genomes, which does not constrain its application with AT-poor
genomes. This is due to the PCR-free amplification, which raises a question for other sequenc‐
ers like Nanopore and PacBio. Despite these issues, this technology has a bright future and is
a great advance over the conventional RNA-seq.

3.4. Chromatin immunoprecipitation followed by sequencing (ChIP-seq)

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) is a technique for the
genome-wide profiling of DNA-binding proteins, histone modifications or nucleosomes [36].
ChIP-Seq has become an essential tool for studying gene regulation and epigenetic mecha‐
nisms. It offers higher resolution, less noise and greater coverage than its array-based prede‐
cessor, the ChIP-chip [37, 38]. This approach has six main steps: (1) it is initiated with cell
cultures that are grown under defined conditions; and, when the cultures reach the desired
stage of development, they are treated with formaldehyde for the cross-linking of proteins and
DNA; (2) the chromatin is sheared by sonication into small fragments (200–600 bp); (3) an
antibody specific to the protein is used to immunoprecipitate the DNA–protein complex; (4)
the cross-links are reversed by heating; (5) the released DNA is subjected to high-throughput
sequencing and (6) in silico analysis is carried out in which the resulting sequencing reads are
studied for quality and then cropped, based on the quality of the reads [38–40]. The cropped
reads are then aligned to a reference genome. Afterwards, areas of enrichment in the ChIP-seq
data are identified and those areas, usually called peaks, represent where the transcription
factors (TF) bind throughout the genome. CisGenome, MOSAiCs and MACS are some known
algorithms that have been utilized in bacterial ChIP-seq analysis [38, 41]. After peaks are
associated with genes downstream, a number of bioinformatics analyses can be carried out,
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including identification and analysis of motifs, differential analysis and association with
expression data for deep understanding of bacterial regulon. This is shown in Figure 3 [36].

Figure 3. ChIP-seq sample preparation and analysis. Adapted from [36].

As whole-genome transcription profiling cannot reveal whether the influence of the transcrip‐
tion factors (TF) on RNA levels is direct or indirect, this requires identification of transcription
factors binding within the appropriate promoter region. ChIP-seq provides information about
where the TF are bound. Thus, by integrating ChIP methods and transcription profiling, it is
possible to identify all direct regulatory targets of a TF for a given condition. For example,
work carried out by Stringer et al. (2014) on the araC gene of Escherichia coli and Salmonella
enterica has identified direct regulatory targets of AraC, including five novel target genes: ytfQ,
ydeN, ydeM, ygeA and polB [42]. Although ChIP-seq has been used only in moderation to study
bacterial systems in a few bacterial species, such as Vibrio harveyi, V. cholerae, Rhodobacter
sphaeroides, Mycobacterium tuberculosis, S. enterica and Caulobacter crescentus [36, 37, 43–45], it is
used to identify novel regulatory interactions, even for well-studied proteins [46, 47].

ChIP-seq, in combination with RNA-seq, could be an efficient tool to get detailed information
about bacterial transcription regulation and how bacteria respond to different external
conditions.
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3.5. RNA immunoprecipitation sequencing (RIP-seq)

RNA immunoprecipitation (RIP) is the study of intracellular RNA and protein binding; it is a
tool for understanding the dynamic process of post-transcriptional regulatory networks. With
this technique, an antibody is used against a protein of interest to recover the RNA species
bound to the protein. Since the sequence information of the RNA species bound to a specific
protein is often desired, an approach combining RNA immunoprecipitation with sequencing
technology (RIP-seq) was created [48]. The main challenge of RIP-seq is the cross-linking step,
which is relatively inefficient and only a small amount of RNA is available to construct the
library [48, 49]. After that step, treatment with endonuclease elucidates the specific binding
sites within the RNA, as they will be protected from digestion. This is followed by purification
of the RNA–protein complexes using electrophoresis and high-throughput sequencing [48,
50]. Finally, the data obtained from the sequencer are analyzed using bioinformatics tools. The
first study using the RIP-seq-based technique was carried out on Salmonella by Sittka et al.
(2008) [51]. They used the RNA-binding property of the Hfq protein in their analysis and, as
a result, many new sRNA were discovered [52]. Thus, RIP-Seq could be an efficient tool for
the identification of bacterial non-coding RNAs.

3.6. LEA-seq (low error amplicon sequencing)

The LEA-seq technique (low error amplicon sequencing) emerged in 2013 and was developed
and patented by Gordon and Faith (2014) [53]. This method was created to improve the quality
and depth of sequencing runs, since the massive amount of data produced by NGS has caused
a high error rate in the sequencing, due to problems with the algorithms or platform reading
lengths [53].

LEA-seq is a nucleic acid sequencing technique that identifies events that occur at low
frequency, seeking to understand mutation events. The three basic steps for implementing this
technique are: (1) linear PCR, (2) exponential PCR and (3) sequencing. This technique is
performed based on bacterial 16S sequencing in which PCR carries numerous times and each
amplified PCR uses specific primers for each linear molecule [53].

The LEA-seq technique is a quantitative method that has the advantages of generating and
reading. This permits the formation of a consensus and the elimination of errors for each
molecule. Currently, the available techniques do not support error detection in sequencing or
identification of whether there is a real variation in the sequence of that microorganism. The
multiple sequencing, using the LEA-seq technique, supports better quality and precision about
the organism.

The study by Faith et al. (2013) aimed to identify the composition of the faecal microbiota of
adults and to understand the role of these bacterial species and their therapeutic potential for
intestinal diseases. This technique allowed them to work with a large number of samples (over
500 isolates), as well as to achieve a fast and accurate analysis of the data [54].
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Researchers have a continuing interest in improving this technique, since it can be used for
clinical investigation due to its high accuracy: for example, in patients with genetic mutations
or somatic mutations. LEA-seq can assist in the search for knowledge about intestinal micro‐
biota, as it may reveal their composition, opening up prospects for the diagnosis, treatment
and prevention of gastrointestinal tract diseases.

3.7. CRISPR (clustered regularly interspaced short palindromic repeats)

Ishino et al. (1987) were the first to describe CRISPR [55]. This system has been identified in
40% of bacterial genomes so far [56] and they are defined as short repetitions of grouped bases.
The determination of the CRISPR locus and the characterization of adjacent genes, known as
cas genes, responsible for the function of CRISPR, only occurred in 2002 [57]. The CRISPR/Cas
system uses small non-coding RNAs in association with Cas proteins. Cas9 is a nuclease which
cleaves DNA in the selected region, so that the CRISPR system/Cas9 can be used to edit
genomes.

CRISPR/Cas activity involves three main mechanisms: (1) acquisition, the step in which the
DNA fragment is inserted into the CRISPR locus in the genome of interest; (2) transcription,
in which the CRISPR locus is transcribed and processed; (3) interference, in which the ejection
of nucleic acids occurs. All those mechanisms contribute to bacterial persistence in the
environment [58, 59]. Furthermore, CRISPR provides mechanisms to limit the spread of
antibiotic resistance or virulence factors. However, Gophna et al. (2015) demonstrated that,
even though there are different measurements to evaluate horizontal gene transfer, it is not
possible to identify a correlation between the CRISPR/Cas system and the evolution of the
species. Changes occur only at the population level [60].

RNA-seq helped in the annotation transcription of regions, mainly non-coding, and also
enabled the identification of CRISPR elements in prokaryotes [61]. The CRISPR system can
also be used as a tool in studies centered on gene regulation, since this system is able to activate
or repress genes.

Zoephel and Randau (2013) discuss how the structure of CRISPR can affect the maturation of
RNA and, thus, influence the functionality of the CRISPR/Cas system [62]. The RNA-seq
approach was used to evaluate differential gene expression in S. aureus, a pathogen of major
importance. It was able to identify the CRISPR in these strains and helped in investigating their
possible role, since these regions show an adaptive response to infection [63]. Thus, we see the
importance of the use of the RNA-seq approach in the magnification of knowledge about
function in prokaryotes.

4. RNA Sequencing Platforms

The RNA-seq approach can be applied to different next-generation sequencing platforms and
the results obtained by them are proportional to the machine capability. In Table 3, a compar‐
ison is made with some of the platforms currently most employed [64].
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Company Name Instrument Version Run Time
(Hours)

Read
Lengths
(Mean)

Reads Per Run
(Millions)

Applications

Illumina HiSeq 2000 High Output 132 50 6,000 Gene expression, Splice
junction detection,

variant calling, fusion

Illumina HiSeq 2500 High Output 132 50 6,000 Gene expression, Splice
junction detection,

variant calling, fusion

Illumina MiSeq v2 kit 39 250 30 Splice junction detection,
variant calling,

Life Technologies PGM 318 Chip 7.3 176 6 Splice junction detection,
variant calling

Life Technologies Proton Proton I chip 2-4 81 70 Gene expression, Splice
junction detection,

variant calling

Pacific
Biosciences

RS RS 0.5-2 1,289 0.03 Splice junction detection,
variant calling, full-

length gene coverage

Roche 454 GS FLX+ 20 686 1 Splice junction detection

Table 3. Different Next Generations sequencing platforms in the study of RNA-seq. Adopted and modified from [64].

5. Bioinformatics Analysis

Experimental investigations in prokaryotes have been facilitated, extended and complemented
using computational approaches [65]. Large amounts of data have been generated from RNA-
seq experiments which need to be stored and analyzed using computational techniques and
tools [66]. This amount has become a bottleneck to bioinformatics analysis and to biologists,
since today's transcriptome analysis consists of experiments and data evaluation [65]. Extract‐
ing biological information from RNA-seq datasets requires bioinformatics knowledge and
tools, making the software choice an important issue for successful RNA-seq analysis [65, 67].

According to Chierico et al. (2015) [68] and Pinto et al. (2011) [67], RNA-seq can be understood
as a five-step process: (1) isolation of the total RNA of the organism; (2) mRNA enrichment;
(3) synthesis of cDNA; (4) NGS sequencing, which returns raw data to the (5) bioinformatics
analysis [67]. A flowchart of this process can be seen in Figure 4.
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Figure 4. RNA-seq five-step process.

This session focuses on bioinformatics analysis and the computational tools available. Based
on a literature review [29, 65, 67–69], bioinformatics analysis can be comprehended as the
extraction and classification/division of biological information gleaned from the sequencing
of raw data (Figure 5).

Figure 5. Bioinformatics analysis workflow

5.1. Bioinformatics workflow

The quality check step aims to increase the accuracy of the results by removing sequences that
may contain errors [70]; trimming sequences introduced in the library preparation step, such
as adapters and poly(A)-tails [71]; and, removing reads with low phred quality. However, in
that regard, the use of poor-quality databases can lead to less precise results [72]; considering
this, the quality check can affect the next steps drastically.

Some RNA-Seq pipelines, like ReaDemption [71], implement quality checking which performs
quality trimming, removes adapters and poly(A) tails and discards reads shorter than a given
cut-off (the default cut-off is 12 nucleotides (nt)). Quality assessment [72] evaluates the quality
based on quality-graph analysis and estimated coverage. According to Backofen et al. (2014)
[65], FastQC (http://www.bioinformatics.babraham.ac.uk/projects/ fastq c/) is a tool commonly
used to check read quality and to determine the quality profile of the reads. Software suites
can also be used for this purpose, FASTX-Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)
provides tools to remove sequences attached in previous steps and to perform other pre-
processing strategies on raw data.

After the quality check, if a reference genome is available, then a mapping step will be done;
otherwise, de novo assembly. Mapping consists of producing the transcriptome map by
aligning reads to a reference genome [67]. This aims to detect the right position of the reads
and to distinguish between sequencing errors and genetic variations [73]. Abundant mapping
software has been released, differing in their algorithms, memory management, velocity and
computational cost [65]. This makes the choice of a mapping tool a challenge. McClure et al.
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(2013) [69] made a comparison between SOAP2, BWA, Bowtie and Bowtie2 aligners using 75
RNA-seq experiment data. The comparison of mapping algorithms applied to IonTorrent data
can be seen in [73]. After mapping quality is evaluated, ReadXplorer software offers quality
classification of read mapping in order to provide information about the quality and quantity
of each single read mapping [74]. This approach is recommended when a high-quality genome
is available as a reference. If one is unavailable, transcripts should be assembled de novo [29].

De novo assembly can be used when investigating poorly studied organisms [14], complex
microbial communities or uncultivable organisms [29]. Both DNA and RNA must be assem‐
bled, but transcriptome assembly is significantly different than genome assembly [75]; thus, it
is important to use RNA assemblers. Tjaden (2015) [29] affirms that assemblers should be
specifically designed to prokaryotes, owing to the different challenges of eukaryotic and
prokaryotic transcriptomes. Bacterial genomes are often denser than eukaryotic genomes,
considering the proximity of the genes. Neighbouring bacterial transcripts can overlap,
making it difficult to identify transcript boundaries appropriately. Non-coding eukaryotic
RNA models are not appropriate for detecting bacterial small regulatory RNAs [29]. An
assembly comparison of three different software titles (Trinity, SOAPdenovo2 and Rockhoop‐
er 2), using data from nine different bacteria, can be seen in [29].

When reference mapping or de novo assembly is done, data can be analyzed structurally and
differentially. The main purpose of differential analysis is to determine the differences in
expression among different growth conditions or treatments [76]. Several software titles have
been released for this purpose, but there is no consensus about best practices, which makes it
difficult to select a tool or method. Seyednasrollah et al. (2013) [76] compared eight differential
expression software packages using two real, publicly available datasets. Software that
analyzes differential expression can be based on the Poisson method (DEGseq and Myrna),
negative binomial method (edgeR and DEseq) or other methods [67, 76]. Pinto et al. (2011) [67]
recommends using DEseq or edgeR when analyzing replicates.

Transcriptome annotation and classification can be based on structural analysis, evaluating
transcripts regarding the genomic region with which they have been associated and in which
they have been classified: protein-coding, non-coding and intergenic regions [65]. Aiming to
predict ncRNA transcripts, several computational methods have been developed. Herbig and
Nieselt (2011) [77] highlight the SIPHT, sRNAFinder, sRNAscanner, NOCORNAr and
sRNAPredict software. NOCORNAr distinguishes itself as it is useful for predicting and
characterizing ncRNAs in bacteria [77].

Assessing transcripts concerning genomic regions rely on transcript annotation. The compu‐
tational approach is convenient to use due to its velocity and precision, compared to manual
annotation. However, human supervision of the results is considered important in order to
avoid false-positives or missing features [1]. With this technique, some main structures must
be detected: 5' transcript ends, 3' transcript ends, TSS and operon [1, 65].

a. Transcript boundaries identification

Annotation of transcript boundaries is important for operon identification and regulatory
analyses [1]. Identifying 5' UTR is not always possible; a significant number of transcripts
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lacking 5' UTR were found in bacteria and called leaderless transcripts. In this situation, the
transcript translation start site and the transcription start site remain in almost the same
position [65]. Annotation of 3' UTR is important in order to obtain the entire analytical value
of the RNA-seq data. Creecy and Conway (2014) [1] affirm that the current best method for
detecting 3' ends is to search for correlations between replicates data. They highlight that the
software package TransTermHP can find intrinsic terminators successfully.

b. TSS identification

TSS annotation can assist in ncRNA annotation and polycistronic transcripts [65]. According
to Creecy and Conway (2013) [1], it is essential to discover unknown transcripts and to analyze
operon, 5' UTR and promoters architecture. Although there are no well-established strategies
for TSS identification, owing to scarce knowledge about transcription start sites in bacteria,
with computational developments in both computational analyses and “wet-lab” experiments,
TSS annotation has become more feasible [65]. TSSAR is a dRNA-seq data-based tool for rapid
annotation of TSS that considers dRNA-seq library statistics [78]. According to Backofen et al.
(2014) [65], the main advantage is in the statistical analysis presented as an easy-to-use web
service. The TSSpredator tool provides automated TSS detection and classification from RNA-
seq data, performing a genome-wide comparative prediction of TSS [79]. A comparison among
manual annotation, TSSpredator and TSSAR annotation can be seen in [78].

c. Operon identification

The operon represents clusters of co-transcribed genes regulated by the same regulatory
sequence and co-transcribed into a single mRNA. This structure has immense biological
importance, improving functional gene annotation and giving important information to
studies of drug targeting, functional analyses and antibiotic resistance [80]. To handle operon
occurrence complexity, the occurrence should be detected using operon architecture (i.e., 5'
ends and 3' ends) and have sufficient read coverage to connect promoters and terminators. A
strong indication that an operon is real is that at least 90% of the bases of the reads is covered
[1]. Chuang et al. (2012) [80] classify computational methods to predict operons and they
evaluate 15 algorithms with respect to accuracy, specificity and sensitivity.

5.2. RNA-seq pipeline tools

Not all pipeline tools feature the complete RNA-seq workflow described earlier. To help with
tool selection, a software functionalities comparison was developed and is shown in Table 4.
To provide additional support, important issues about each software are described, below.

Rockhopper  is  a  system designed  specifically  for  bacterial  transcriptome RNA-seq  data
analysis. A novel approach to mapping transcripts is implemented in this software (similar
to  the  Bowtie2  approach).  Mapping normalization  is  performed followed by  transcripts
assembly,  identification  of  transcript  boundaries,  quantification  of  transcript  abundance,
testing for differential gene expression and operon prediction. Analysis results are present‐
ed using  Integrative  Genome Viewer,  which  allows  different  experiments  to  be  viewed
simultaneously [69].

Next Generation Sequencing - Advances, Applications and Challenges220



lacking 5' UTR were found in bacteria and called leaderless transcripts. In this situation, the
transcript translation start site and the transcription start site remain in almost the same
position [65]. Annotation of 3' UTR is important in order to obtain the entire analytical value
of the RNA-seq data. Creecy and Conway (2014) [1] affirm that the current best method for
detecting 3' ends is to search for correlations between replicates data. They highlight that the
software package TransTermHP can find intrinsic terminators successfully.

b. TSS identification

TSS annotation can assist in ncRNA annotation and polycistronic transcripts [65]. According
to Creecy and Conway (2013) [1], it is essential to discover unknown transcripts and to analyze
operon, 5' UTR and promoters architecture. Although there are no well-established strategies
for TSS identification, owing to scarce knowledge about transcription start sites in bacteria,
with computational developments in both computational analyses and “wet-lab” experiments,
TSS annotation has become more feasible [65]. TSSAR is a dRNA-seq data-based tool for rapid
annotation of TSS that considers dRNA-seq library statistics [78]. According to Backofen et al.
(2014) [65], the main advantage is in the statistical analysis presented as an easy-to-use web
service. The TSSpredator tool provides automated TSS detection and classification from RNA-
seq data, performing a genome-wide comparative prediction of TSS [79]. A comparison among
manual annotation, TSSpredator and TSSAR annotation can be seen in [78].

c. Operon identification

The operon represents clusters of co-transcribed genes regulated by the same regulatory
sequence and co-transcribed into a single mRNA. This structure has immense biological
importance, improving functional gene annotation and giving important information to
studies of drug targeting, functional analyses and antibiotic resistance [80]. To handle operon
occurrence complexity, the occurrence should be detected using operon architecture (i.e., 5'
ends and 3' ends) and have sufficient read coverage to connect promoters and terminators. A
strong indication that an operon is real is that at least 90% of the bases of the reads is covered
[1]. Chuang et al. (2012) [80] classify computational methods to predict operons and they
evaluate 15 algorithms with respect to accuracy, specificity and sensitivity.

5.2. RNA-seq pipeline tools

Not all pipeline tools feature the complete RNA-seq workflow described earlier. To help with
tool selection, a software functionalities comparison was developed and is shown in Table 4.
To provide additional support, important issues about each software are described, below.

Rockhopper  is  a  system designed  specifically  for  bacterial  transcriptome RNA-seq  data
analysis. A novel approach to mapping transcripts is implemented in this software (similar
to  the  Bowtie2  approach).  Mapping normalization  is  performed followed by  transcripts
assembly,  identification  of  transcript  boundaries,  quantification  of  transcript  abundance,
testing for differential gene expression and operon prediction. Analysis results are present‐
ed using  Integrative  Genome Viewer,  which  allows  different  experiments  to  be  viewed
simultaneously [69].
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Rockhopper 2 is a comprehensive system focused on de novo assembly that supports differen‐
tial analysis and transcripts abundance quantification. According to Tjaden (2015) [29], it does
not require high-performance computers and can run on personal computers. Rockhopper 2
implements a novel de novo assembly algorithm for bacterial transcriptomes. The algorithm
works in two stages: (1) candidate transcripts are assembled using a found k-mer and (2)
sequencing reads are mapped to candidate transcripts aimed at filtering candidate transcripts
to high-quality final transcripts. Concerning differential analysis, Rockhopper 2 first normal‐
izes each RNA-seq dataset, enabling it to compare different experiments or samples [29].

RNA-Rocket aims to simplify the process of aligning RNA-seq data to a reference genome and
to generate quantitative transcript profiles. It is built on Galaxy, to provide the tools and
services necessary to process RNA-seq data. Some of its benefits are: the possibility of sharing
results across research groups; the support of batch analysis for multiple samples; and, the
integration of tools and projects, integrating data from the PATRIC platform [81].

READemption pipeline aims to integrate individual RNA-seq analysis tasks and provides a
user-friendly tool with a command line interface. This tool was primarily developed to analyze
bacterial transcriptome. In order to use the full capacity of modern computers and reduce run
time, READemption offers parallel data processing. First, it performs quality trimming of
polyA and adapters followed by mapping, coverage calculation, gene expression quantifica‐
tion, differential gene expression analysis and plotting. The software is able to analyze RNA-
seq data from Illumina and 454 platforms.

ReadXplorer offers straightforward visualization and analysis functions built around its
unique read mapping classification. Analyses such as TSS and operon detection, differential
expression, RPKM value and read count calculations are available in ReadXplorer and can be
exported to Microsoft Excel files. Read mapping classification sorts read mappings into three
different classes: perfect match, best match and common match. These classifications are
incorporated in all analyses functions.

Tool Quality Check Mapping De novoassembly Differential analyses

Rockhopper
[69]

- x x x

Rockhopper 2
[29]

- - x x

RNA-Rocket
[81]

x x - x

READemption
[71]

x x - x

ReadXplorer
[74]

x - - x

Table 4. Software comparison.
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5.3. Bioinformatics challenges

Through bibliographic research [29, 66, 69, 71, 82, 83], it has been concluded that bioinformatics
has many challenges related to computational issues. RNA-seq experiments generate large
amounts of data that must be computationally processed, analyzed, stored and retrieved using
a great deal of computational power. In addition to the computational issues, it is important
to take into account that not all bioinformatic researchers have extensive computational
experience: this makes the lack of user-friendly tools a problem for some users and an
important issue for developers. However, great computers, excellent bioinformatic researchers
and user-friendly tools do not guarantee successful analysis. The software selected must be
appropriate to each biological question and to the organisms studied. Even with all questions
presented here, RNA-seq analysis has been very successful in recent years. This success can
lead us to imagine the wonderful possibilities for RNA-seq bioinformatic analyses in the future.
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Abstract

Recent technological innovations have ignited an explosion in microbial genome se‐
quencing that has fundamentally changed our understanding of biology of microbes and
profoundly impacted public health policy. This huge increase in DNA sequence data
presents new challenges for the annotation, analysis, and visualization bioinformatics
tools. New strategies have been designed to bring an order to this genome sequence
shockwave and improve the usability of associated data. Genomes are organized in a hi‐
erarchical distance tree using single-copy ribosomal protein marker distances for distance
calculation. Protein distance measures dissimilarity between markers of the same type
and the subsequent genomic distance averages over the majority of marker-distances, ig‐
noring the outliers. More than 30,000 genomes from public archives have been organized
in a marker distance tree resulting in 6,438 species-level clades representing 7,597 taxo‐
nomic species. This computational infrastructure provides a foundation for prokaryotic
gene and genome analysis, allowing easy access to pre-calculated genome groups at vari‐
ous distance levels. One of the most challenging problems in the current data deluge is
the presentation of the relevant data at an appropriate resolution for each application,
eliminating data redundancy but keeping biologically interesting variations.

Keywords: Genome analysis, clusters, proteins, bacteria, prokaryotes

1. Introduction

Prokaryotes are probably the largest and the most diverse group of cellular organisms.

The number of described species is now about 12,000, and the number of species on earth is
estimated in the millions [1]. Recent rapid advances in sequencing technologies provided a
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relatively cheap and fast way of studying the diversity of microbial species by discovering
representatives of novel divisions or even phyla [2] and analyzing the variation within the
species by sequencing closely related genomes from the ecological microbial populations or
clinical studies of pathogenic bacteria.

Historically, prokaryotic organisms were organized by classical taxonomic ranking system
(species, genus, family, order, and phylum). Delineation of prokaryotic species was originally
based on phenotypic information, pathogenicity, and environmental observations. Due to the
high mutation level, fast replication rate, and efficient DNA exchange mechanisms, microbial
organisms can easily adapt to their habitats. Genomic studies have shown that different species
living in similar ecological environments show similarity at the genomic level (e.g., congruent
evolution of water-living bacteria from various taxonomic origins [3]) while same pathogenic
species (or symbionts) rapidly adapting to the new hosts become quite different at genomic
level (e.g., Buchnera aphidicola [4], Serratia symbiotica [5]).

Next-generation sequencing technologies provide new insights into the life of microbes and
their interactions with the host, but they do not classify the organisms in a traditional way.
Many novel species are described as “candidatus” or “<genus> sp.”

The genomes of uncharacterized isolates of the Candidatus Arthromitus, host-specific
intestinal symbionts, comprise a distinct clade within the Clostridiaceae [6].

http://www.ncbi.nlm.nih.gov/genome/13597

The number of uncharacterized species is rapidly growing in public genome collections. As of
November 2014, almost half of bacterial and archaeal species in NCBI Refseq data set remain
uncharacterized. (Bacteria: 3,559 uncharacterized, 7,597 total; Archaea: 162 uncharacterized,
399 total.)

The need for different approaches to the identification of microbial species that can take into
account the advantages of the growing massive volume of genomic sequence data is being
actively discussed in the research community.

Scientists from different disciplines (taxonomists, ecologists, and evolutionary biologists) have
different interpretations of species defined by the framework of their needs and the tools they
use for identification. A recent review [7] describes the history and present state of various
methods of description of prokaryotic species. The authors suggest the concept of species as
“a category that circumscribes monophyletic, and genomically and phenotypically coherent
populations of individuals that can be clearly discriminated from other such entities by means
of standardized parameters.”

Comparative analysis requires a target: a coherent group of isolates with some degree of
similarity defined by the goal of the study (the analysis of pathogen outbreak performed at
the species level or below, while biodiversity studies use broader group such as families or
phyla). Several groups have attempted to delineate the taxonomy of Archaea and Bacteria
using the methods based on single-copy universally conserved markers [8-13]. Other methods
are discussed in recent reviews [14].
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Different species vary dramatically in terms of the sampling density and data quality. Clinical
and epidemiological studies produce large data sets of closely related (clonal) genomes (Table
1), while other species are sampled very coarsely. Genomic and proteomic structure of a
densely sampled group of related strains is commonly described by the concept of pan-genome
[15] species.

The complexity of the data is challenging to the analysis, representation, and visualization of
the data sets. One of the challenges is the amount of the resources required for a brute-force
processing approach (e.g., BLAST all-to-all of 35 million proteins will take five days on 1,000
processors). Another big problem is data heterogeneity and redundancy: the closest-neighbor
results will often contain long list of nearly identical objects, making it difficult to identify more
distant neighbors.

Here we describe a combined approach that provides a robust, fast, and scalable method of
defining the sequence similarity genome groups that can be used for comparative genome
analysis  and  resolve  some  known  issues  with  the  delineation  of  species  in  traditional
taxonomy.

2. Materials and methods

The genomes are organized in hierarchical groups calculated with different methods. The
universal ribosomal markers approach is used to build a distance tree and to define species
and superspecies-level clades (genome groups). The species-level clades are further refined by
using whole-genome alignments and creating tight (clonal) genome groups.

2.1. NCBI hardware and software

The hardware available at NCBI includes a Univa Grid Engine (UGE) Grid-Engine-based
computer farm and PanFS scalable storage system connected through a powerful router. The
most recent version UGE 8.2.1 includes support for Linux GROUPs, support for Window
server execution nodes, and a beta version of DRMMA2 (Distributed Resource Management
and Application API 2). A large weakly coupled distributed computer system like this requires
coarse-grained parallelization approaches with minimal communication between the proc‐
esses. Many processing steps, such as computing BLAST hits, are naturally parallel.

2.2. Data snapshot

A given data snapshot represents a collection of genome (and protein) sequences and metadata
available at the time. Navigating through millions of nucleotide sequences in public archives
to find a set that comprises a whole-genome collection can be sometimes challenging. GenBank
release 207 contains 182,188,746 sequences, and 189,739,230,107 nucleotides. The traditional
NCBI sequence repository was designed for GenBank records in the early 1990s. It is organized
as a collection of single-nucleotide sequence records with annotated sequences stored as
nucleotide–protein sets. By GenBank requirements, each sequence record should be associated
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with the organisms registered in the NCBI Taxonomy Database. For the first 10 years of
microbial genome sequencing, each species has a unique genome representation in public
sequence archives. When sequencing costs decreased, researchers began to explore microbial
population structure and the intraspecies differences. NCBI Taxonomy group began assigning
Taxonomy ID for strain level nodes as proxies of unique genome identifiers. More recently,
next-generation sequencing and rapid pathogen detection approaches have shifted the
paradigm from a single isolate representing an organism to multiisolate projects often
representing almost identical isolates from the outbreak analysis. These closely related
genomes differ by metadata only: patient information, date, and place of sample collection.
NCBI has created new resources that capture the sequence data and metadata information:
BioProject, BioSample, and Assembly [16]. A triplet of these identifiers uniquely defines a
genome with the metadata that can be used for further comparative analysis.

NCBI internal database UniCol is used to store collections of the nucleotide and protein
sequence data associated with every BioProject, BioSample, Assembly triplet. The database
provides a tracking history for a given snapshot with the sequence assembly and metadata
available at the time.

Clade_id Name Genomes Clonal groups Taxonomy

19988 Staphylococcus aureus 4182 118 species

19668 Escherichia, Shigella 2479 986 multiple

20829 Mycobacterium tuberculosis 1844 11 species

19669 Salmonella 971 139 genus

19507 Acinetobacter 846 306 genus

19252 Helicobacter pylori 432 258 species

20104 Streptococcus 394 154 genus

19672 Enterobacter, Klebsiella 384 149 multiple

20137 Enterococcus 354 161 genus

19921 Brucella 335 9 genus

Table 1. Calculated clades may include a single species, a single genus, or multiple genera for closely related species.

2.3. Genome quality assessment

There are several criteria that are used to evaluate the quality of genome assembly.

The N50/L50 metrics are automatically calculated for each genome. Acceptable values are
dependent on genome size, and genomes which do not meet the criteria are not processed for
Refseq. For known clades, the genome size is expected to fall within 2 standard deviations
from the mean for clades, which have at least 10 members. This standard allows for the
identification of partial genomes and unusually large genomes, which may indicate a bad
assembly or contamination.
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Some genomes submitted to GenBank represent an assembly from a mixed culture (accession
# AKNF01000000 is a mixed culture of Shigella flexneri 1235-66 and an unknown Shigella species)
or a hybrid of different species or a chimera genome (accession # AP012495 chimera genome
constructed by cloning the whole genome of Synechocystis strain PCC6803 into the Bacillus
subtilis 168 genome). Partial and “anomalous” assemblies are clearly flagged in NCBI assembly
database and not included in clade analysis.

2.4. Marker to genome alignment

Genome distance is defined as an average of pairwise protein distances of universally
conserved single-copy proteins as defined in [8] (Table 2).

Genomic markers (E.coli K12 accessions) Genomic markers

NP_417801 ribosomal protein S12

NP_417800 ribosomal protein S7

NP_414564 ribosomal protein S2

NP_418410 ribosomal protein L11

NP_418411 ribosomal protein L1

NP_417779 ribosomal protein L3

NP_417774 ribosomal protein L22

NP_417773 ribosomal protein S3

NP_417769 ribosomal protein L14

NP_417767 ribosomal protein L5

NP_417765 ribosomal protein S8

NP_417100 ribosomal protein l6p/L9E

NP_417762 ribosomal protein S5

NP_417757 ribosomal protein S13

NP_417756 ribosomal protein S11

NP_417698 ribosomal protein L13

NP_417697 ribosomal protein S9

NP_417634 ribosomal protein S15P/S13E

NP_417770 ribosomal protein S17

NP_417772 ribosomal protein L16/L10E

NP_417760 ribosomal protein L15

NP_417763 ribosomal protein L18

NP_417755 ribosomal protein S4

Table 2. List of genomic markers used in genomic analysis. Escherichia coli K-12 accessions are given as an example.
Each marker has a corresponding protein cluster which is used in the analysis.

2.5. Genome distance

Protein marker distances and genomic distance are designed to be robust while remaining
appropriately sensitive. Protein distance measuring dissimilarity between markers of the same
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type is designed to ignore differences in protein lengths and tuned to measure dissimilarity in
internal parts of the sequences. The subsequent genomic distance averages over the majority
of marker-distances, ignoring the outliers.

2.5.1. Protein distances

Consider proteins i and j, having the best aggregated BLAST alignment of length L ij with
aggregated score Sij. Assume that the proteins have lengths L i   and L j and self-scores Sii and
S jj. Define normalized scores: sij =Sij / L ij, sii =Sii / L i, s jj =S jj / L j.

Then define protein distances:
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Distance (1) is an identity-like characteristic calculated from the aggregated BLAST [17] scores
(using positives based on BLOSUM62 matrix [22]). For full-length alignment, it can be reduced

to 1−
Sij

min(Sii ,  S jj) . However, when lengths are different; distance (1) avoids penalizing nona‐
ligned ends of the proteins, taking into account only mutation events.

2.5.2. Genomic distances

Suppose that genomes i and j have Nij
a types of markers found in both genomes, with Nij
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where lij
( p) are corresponding alignment length. The marker-protein distances are weighted by

alignment lengths lij
( p) in order to provide where possible results similar to the original method

in [8] based on concatenation of proteins. However, the use of offset Δij allows filtering out
outliers since the averaging in (2) is performed over Nij

h −2Δij distances in the middle. For each
phylum level group, an agglomerative hierarchical clustering tree is built using the complete
linkage clustering algorithm [19, 20].
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2.6. Genome clustering pipeline

The pipeline for calculating genome clades consists of three major components (see Figure 1).
The first is the collection of the input data from NCBI main sequence repositories. The genomic
data are dynamic: hundreds of new genomes and assembly updates are submitted to NCBI
each day. We create a snapshot of all live genome assemblies and their nucleotide sequence
components (chromosomes, scaffolds, and contigs) and store them in an internal relational
database: UniCol. The genome data set is organized into large groups (phyla and superphyla
defined by NCBI Taxonomy). The assemblies are then filtered by quality and passed to the
processing script. Ribosomal protein markers are predicted in every genome to overcome
problems with the genome annotations (missing and/or incorrect annotations) and to normal‐
ize markers’ data set. Marker predictions are performed by aligning reference protein markers
against full genome assemblies. Assemblies with at least 17 markers are passed to the next
step. Genome distance is calculated as an average of pairwise protein distances of markers
shared in a pair of genomes. Finally, agglomerative hierarchical clustering trees are built within
phylum-level groups. Clades at the species level are calculated using species-aware algorithm.
Superclade trees are constructed by sectioning the trees at the distance of 0.25.

Figure 1. Dataflow of ribosomal-marker-based clade (genome group) processing. Ribosomal markers (in green) are
maintained outside of the main pipeline (in blue). Clades and markers are available on NCBI FTP site: ftp://
ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS/CLADES/ ftp://ftp.ncbi.nlm.nih.gov/genomes/
GENOME_REPORTS/MARKERS/
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2.7. Clades and superclades

Due to biological, historical, and sampling reasons, microbial organisms have very different
levels of strain variation within species. Using the genome data available in public archives
we have calculated the diameter of the species defined by NCBI Taxonomy (see Figure 2).

Figure 2. Distribution of Taxonomy-defined species diameter. Y axes – diameter of species, X axes – species numbered
in the descending diameter order.

Instead of using one fixed threshold, we utilize a taxonomy-aware algorithm that allows
increasing the size of a genomic group in certain circumstances. Two distance threshold, the
lower threshold d_lower and the upper threshold d_upper, are established (currently, we use
values d_lower = 0.015 and d_upper = 0.025). Genomes with the lowest common ancestor with
height d_lower or below are always in the same group, while genomes with the lowest
common ancestor with height above d_upper are never placed together. In between d_lower
and d_upper, taxonomic information is used: two subgroups are merged in a larger group if
any pair of species in a group is already together in one of two subgroups (i.e., there are no
new merges of species). Species are defined according to the NCBI taxonomic records [16].

Phylum-level trees are not practical for presentation and evaluation of closely related genomes.
However, it is important to see the relationships (distance) between close clades (see Figure 3).

2.8. Genome groups

Species-level clades are further refined by whole-genome alignments using megablast with
default parameters [18]. The genome groups are defined by clustering the genomes at 95%
identity and 90% coverage. An example of genome groups for Klebsiella pneumonia clade is
shown in Figure 4. For each group a representative genome with the highest level of assembly
and annotation quality is selected.
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lower threshold d_lower and the upper threshold d_upper, are established (currently, we use
values d_lower = 0.015 and d_upper = 0.025). Genomes with the lowest common ancestor with
height d_lower or below are always in the same group, while genomes with the lowest
common ancestor with height above d_upper are never placed together. In between d_lower
and d_upper, taxonomic information is used: two subgroups are merged in a larger group if
any pair of species in a group is already together in one of two subgroups (i.e., there are no
new merges of species). Species are defined according to the NCBI taxonomic records [16].

Phylum-level trees are not practical for presentation and evaluation of closely related genomes.
However, it is important to see the relationships (distance) between close clades (see Figure 3).

2.8. Genome groups

Species-level clades are further refined by whole-genome alignments using megablast with
default parameters [18]. The genome groups are defined by clustering the genomes at 95%
identity and 90% coverage. An example of genome groups for Klebsiella pneumonia clade is
shown in Figure 4. For each group a representative genome with the highest level of assembly
and annotation quality is selected.
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3. Results and discussion

Large clades obtain additional members in each subsequent snapshot (see Figure 5). The
process assigns related genomes to the same clade consistently. There is also a large growth
in singleton clades, reflecting an increasing interest in sequencing taxonomically distinct
organisms.

We have developed an infrastructure for grouping all whole-genome sequence assemblies at
various proximity levels. By using universally conserved ribosomal genes we define the
species-level groups. We propose a set of 23 single-copy marker gene families that have
consistent evolutionary histories. The proposed ribosomal protein-marker distance and
genomic distance are tailored to achieve robustness, while remaining appropriately sensitive.

The major objective of our approach is to generate and actively maintain the target sets for
pan-genome analysis. These ribosomal-marker-based groups (clades) roughly correspond to

Figure 3. Superclade tree for three abundant groups: A – Salmonella, B – Bacillus, C – Streptococcus. Green boxes rep‐
resent clades; box size is proportional to the number of genome in a clade.
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Figure 4. Klebsiella pneumonia clade contains 534 full genome assemblies organized in 25 closely related genomic
groups. Blue circles at the end of the branch represent a single genome; green boxes represent a group of genomes with
the box size proportional to the number of genomes.

Figure 5. Clade growth in four sequential snapshots.
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the species level as defined by NCBI Taxonomy. The subclades are calculated to show the
closeness of the groups at the higher level. The relationship within the species-level group is
further refined with whole pairwise genome alignment performed by megablast [18]. Tight
genomic groups are defined at the level of 95% identity over the 95% genome coverage. By
using the representative genomes from the tight groups, we can reduce the redundancy in
comparative genomic studies. Other targets can be used for more refined population variation
studies within species or SNP analysis for pathogen outbreak detection. These target sets
require  more  accurate  distance  measure  such as  whole  genomic  alignments,  K-mer  dis‐
tance [21].

3.1. Clades and species

Using a taxonomy-aware clustering algorithm does not completely solve the discrepancies
between the species-level clades and traditional species. Genome sequences provide great
opportunity to refine the classical taxonomic description of prokaryotes [23]. All cases of
discrepancy were manually evaluated; most of them have been resolved by literature support.
Some examples are described below.

3.1.1. Different species merged into a single clade

Escherichia coli and some Shigella species are combined in a single clade by ribosomal marker
distance. Shigella, which is recognized as a genus with four species in most situations, taxo‐
nomically belongs to the diverse E. coli group, but the genus-level distinction has been retained
due to historical recognition of its medical significance. Shigella has adapted to higher primates
as the only natural hosts.

The genus Brucella consists of 10 classically recognized species [http://icsp.org/subcommittee/
brucella/] based on antigenic/biochemical characteristics and primary host species: Brucella
abortus(cattle); Brucella canis (dogs); Brucella ceti (marine mammals); Brucella inopinata; Brucella
melitensis (sheep and goats); Brucella microti; Brucella neotomae (rodents); Brucella ovis (sheep);
Brucella pinnipedialis (marine mammals); Brucella suis (swine, cattle, rodents, wild ungulates),
and recently described in [24] Brucella papionis isolated from baboons (Pappio spp.). The wave
of Next-Generation Sequencing brought in almost a hundred new isolates from a population
of Brucella, which are clearly distinct from currently recognized species that are tentatively
designated at the species level. These unnamed isolates have not yet been characterized using
traditional methods, or the species name has not yet been validly published. Brucella genus–
level clade is shown in Figure 6.

Single species represented by multiple clades

Prochlorococcus and marine Synechococcus organisms are small marine cyanobacteria, their
genomes are characterized by small size and an evolutionary trend toward low GC content
[25]. Whereas many shared derived characters define Prochlorococcus as a clade, many genome-
based analyses recover them as paraphyletic. The single species, Prochlorococcus marinus,
comprises six named ecotypes. Our ribosomal marker analysis and whole-genome alignment
(described above in section on Methods) analysis suggests that this species should be repre‐
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sented by 11 different clades (see Figure 7.) These results are supported by recent genomic
analysis of the genus of Prochlorococcus [26].

Novel species from noncultured not-isolated single cell and metagenome assemblies and new
unclassified isolates (<genus> sp.) from clinical and epidemiological studies can be organized
in hierarchical groups by genome sequence comparison methods. These groups can be used
for downstream analysis: 1) pan-genome by clades not species; 2) groups of closely related
genomes below species that can be calculated by nucleotide whole-genome comparison like
K-mer or BLAST; 3) classification validation; 4) visualization of large data sets by selecting the

Figure 6. Ribosomal-marker-based clade comprises various species of Brucella. The pairwise genome distance is de‐
fined by the number of shared proteins in the core set of Brucella pan-genome. Green dots – proteins present in CORE
set; red dots – proteins absent in CORE set.

Figure 7. Prochlorococcus marinus interspecies diversity. The dendrogram is calculated using blast genome alignment
score (%identity). The leaf nodes displayed as circles represent genomes of individual isolates/strains.
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genome representatives. Some of the applications marker-based clades and tight genome
groups have been previously briefly described in [27,28].

4. Conclusions

No matter how impressive the numbers of genome sequencing projects are, they represent a
miniscule fraction of the total number of bacterial species. The future genomic analysis tools
will have to take into consideration the uncertain origin of the DNA sequences during analysis.
Making sense of genomic data is one of the goals that are aided by the genome clustering
procedure. The hierarchical infrastructure provides the foundation for further development
of genome analysis and visualization tools.
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Abstract

Next-generation sequencing (NGS) technologies make possible the sequencing of the
whole genome of a species decoding a complete gene catalogue and transcriptome to al‐
low the study of expression pattern of entire genes. The huge data generated through
whole genome and transcriptome sequencing not only provide a basis to study variation
at gene sequence (such as single-nucleotide polymorphism and InDels) and expression
level but also help to understand the evolutionary relationship between different crop
species. Furthermore, NGS technologies have made possible the quick correlations of
phenotypes with genotypes in different crop species, thereby increasing the precision of
crop improvement. The Solanaceae family represents the third most economically impor‐
tant family after grasses and legumes due to high nutritional components. The current
advances in NGS technology and their application in Solanaceae crops made several pro‐
gresses in the identification of genes responsible for economically important traits, devel‐
opment of molecular markers, and understanding the genome organization and
evolution in Solanaceae crops. The combination of high-throughput NGS technologies
with conventional crop breeding has been shown to be promising in the Solanaceae trans‐
lational genomics research. As a result, NGS technologies has been seen to be adopted in
a large scale to study the molecular basis of fruit and tuber development, disease resist‐
ance, and increasing quantity and quality of crop production.

Keywords: Solanaceae, NGS, capsicum, eggplant, tomato, potato

1. Introduction

In developing countries, “population” and “food security” are the two major issues. These
problems get worse with the sudden climate changes that hamper production, yield, and
quality of food crops. Therefore, to keep in mind the food security for billions of peoples, an
initiative is required for improving the quality and yield of important crops. Several traditional
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plant-breeding practices have been carried out for producing new varieties that can withstand
with such changing climatic conditions besides increasing the productivity. These time-
consuming practices could make considerable progress in crop improvement using selective
germplasm, however, resulted in loss of biodiversity in the process. The recent advances in
crop genomics, particularly the use of high throughput next-generation sequencing (NGS)
technologies, look promising to identify causal genetic factors at genome by sequencing the
whole genome and transcriptome of a species. As a result, the complete gene catalogue of a
crop species and functional genes in different tissues could be identified besides allowing
studying the genetic pathways involved in growth and development and biochemical
pathways that eventually could be correlated with the crop phenotypes [1, 2]. Furthermore,
the sequence data generated in vast amount provide a basis of genetic variation such as single-
nucleotide polymorphisms (SNPs), which ultimately provide a relationship between genotype
and phenotype in different species.

The Solanaceae family comprises approximately 2500 flowering plant species under 102
genera. The family represents the third most economically important family after grasses and
legumes. Among the most important plants of this family are the potato (Solanum tuberosum),
eggplant (Solanum melongena), tomato (Solanum lycopersicun), and capsicum or pepper
(Capsicum annuum). They serve as important food crops and consumed worldwide due to their
high nutritional components. Solanaceae crops have high nutritional value due to the presence
of quality proteins, mineral salts, starch, vitamins, and antioxidants. Tomato majorly contrib‐
utes to dietary nutrition globally with beneficial effects to human health mainly attributed to
antioxidant compounds in the fruit such as lycopene and several other compounds such as
carotenoids, zeaxanthin, and vitamin C. Capsicum fruits are rich source of metabolites that are
beneficial for human health, such as carotenoids (provitamin A), vitamin C, vitamin A (which
destroy free radicals), vitamin E, flavonoids, and capsaicinoids (anticancer agent). Although
these compounds function as antioxidants and nutrients, they are used in traditional medicine
also due to their enormous medicinal properties. Eggplant serves as an excellent source of
antioxidants such as anthocyanins and several phenolics. Apart from this, it has a significant
effect in reducing blood and liver cholesterol rates in humans. Worldwide, potato tubers are
the principal source of starch along with proteins, vitamins, and antioxidants.

Here in this chapter, an attempt has been made to compile current research progress made
based on NGS technology in four most important Solanaceae crop plants: tomato, potato,
eggplant, and pepper. Furthermore, the application of NGS technology on those four crops
toward translational research has been discussed.

2. Next-generation sequencing technologies

Knowing the genome sequence of a species has an advantage in crop breeding. This became
possible with the revolution of DNA sequencing technologies. The Sanger method [3] was the
first-generation sequencing method based on DNA chain termination method of the single-
pass sequencing of one clone at a time. With the advent of NGS technologies, the sequencing
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of complete genome or transcriptome of a species/genotype has become possible within a few
hours. Utilizing various NGS platforms that are based on diverse chemistry and detection
methods, several crop genomes, including major Solanaceae crops have been sequenced [4–
7]. Among the various NGS technologies, three widely utilized platforms are Roche/454,
Illumina Genome Analyzer (GA), and ABI SOLiD. The Roche/454 GSFLX chemistry is based
on pyrosequencing and can produce up to 1 million reads of 600 bp to 1 kb [8]. The ABI SOLiD
chemistry is based on emulsion polymerase chain reaction and sequencing by ligation
technology, which can sequence up to 100 million reads of 50 bp in size [9]. The Illumina/Solexa
GA based on sequencing by synthesis method produces 320 to 640 million reads of 100–150
bp [10].

The third- and the fourth-generation sequencing technologies are being developed, the
majority of which allow the detection of single molecules with real-time sequencing. The
popular third-generation sequencing platforms are Ion Torrents/Life Technologies, Heli‐
Scope™/Helicos Biosciences, and PacBio RS/Pacific Biosciences. The fourth generation is
nanopore sequencing technology (Roche/IBM and Oxford). Ion Torrent company introduced
a very different approach in 2010 as “Personal Genomic Machine,” which was later commer‐
cialized by Life Technology. The chemistry is based on the real-time detection of the pH change
(release of hydrogen ions), with the incorporation of a nucleotide into a growing DNA strand
by a silicon detector [11]. The technology provides an average read length of ∼  200 bp. The
HeliScope introduced by Helicos BioSciences was the first commercially available single-
molecule sequencing (SMS) platform [12]. The technology is based on highly sensitive
fluorescence detection system with the incorporation of each nucleotide carrying fluorescent
dye in the growing strand. The read length obtained ranges from 30 to 35 bp. PacBio RS, a
single-molecule real-time (SMRT) sequencing technology, is based on the DNA sequencing by
synthesis method and contains the provision of the real-time imaging of fluorescently tagged
nucleotides for studying the sequence and structure of nucleic acid [13]. This technology not
only can produce a comparatively longer DNA sequence (average read lengths of 5500−8500
bp) but also has wider application in epigenetics research as the technology is able to detect
DNA methylation such as 4-methylctosine (mC), 5-mC, and 6-methyladenine (mA) [14].

The development of nanopore sequencing technology [15] begins an era of fourth-generation
sequencing technology and has promised a cheap and fast method of sequencing. The principle
involves threading a single-stranded DNA/RNA molecule electrophoretically through a
nanopore that causes altering the pore’s electrical properties and thereby modulating the ionic
current through the nanopore. Braha et al. [16] designed a biosensor using “α-hemolysin,” a
toxin isolated from Staphylococcus aureus. The first commercial sequencing device was an‐
nounced by Oxford Nanopore Technologies in 2012. Later, the technology was adapted and
commercialized by other companies like Roche with IBM, Electronic BioSciences, and NABsys
[17, 18]. This technology has advantage as sample preparation is not needed and the trans‐
duction and recognition occur in real time, on a molecule-by-molecule basis. The technology
produces very long reads (up to 10 kb), which could be are capable of inexpensive de novo
sequencing.
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3. Application of NGS technology in Solanaceae genetics and genomics
studies

NGS technologies have numerous potential applications in plant genetics and genomics, which
include generation of genomic resources, complete decoding of a species genome, differential
gene expression studies, whole genome association studies (WGAS), genomics assisted
breeding (GAB), etc. (Figure 1).

Figure 1. Overview of NGS applications in plant genetics and genomics

3.1. Transcriptome profiling of Solanaceae

Transcriptome sequencing of a species is the first step to access the functionally active genes.
The transcriptome sequencing either by first-generation Sanger sequencing or by high
throughput NGS approaches provides an insight into the expression of genes in a particular
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3.1.1. Potato

Potato (S. tuberosum) is the world’s fourth largest crop after maize, rice, and wheat. It has a
number of ploidy levels ranging from diploid (2n = 24) to triploids, tetraploids, pentaploids,
and hexaploids. Most of the cultivated varieties are autotetraploid (4n = 48). Potato is the
world’s most important food crops that have edible tuber produced from stolons under
favorable environmental conditions. It is accepted worldwide as a cheap source of dietary
starch, protein, vitamins, and antioxidants, especially to feed large populations in developing
countries. To date, only 4,20,074 ESTs are available in NCBI database (http://
www.ncbi.nlm.nih.gov/nucest/?term=potato) that served as a valuable resource in various
studies of gene discovery and expression analysis in potato germplasm [19–22]. In 2011, Massa
et al. [23] reported a transcriptome sequence of S. tuberosum group Phureja clone DM1-3 516R44
using Illumina GAII platform. In this study, a total of 22,704 transcripts were identified, and
83% of these were of known function. The expression analysis was performed in a set of 32
tissues at various developmental stages and revealed that more than twenty thousand genes
were found to be expressed in normal potato tissue and of these, some showed tissue-specific
expression. In another study, using the weighted gene correlation network analysis (WGCNA),
18 gene co-expression modules were identified that comprised of a total of 5400 genes [24].
These modules were classified according to the high correlated expression profiles of genes in
particular developmental stages. Two modules contained mainly transcription factors that
showed co-expression in fruit development (e.g., Leafy Cotyledon 1 and transcriptional factor
B3 domains) and tuber-tissue-specific expression (e.g., APETALA and WRKY). In another
study, using digital gene expression (DGE) profiling, five genes encoding for DOF protein, a
blue light receptor, a lectin, a syntaxin-like protein, and a protein with unknown function were
found to be specifically associated with photoperiodic tuberization [25]. Hamilton et al. [26]
published transcriptome sequencing of three potato cultivars and identified a total of 55,340
SNPs using the Maq SNP filter. In 2013, a whole-genome transcript analysis of the pollen
mRNA of Solanumtuberosum, S. demissum, and their reciprocal F1 hybrids was performed using
Illumina GAII platform [27]. A total of 12.6 billion bases were obtained and were assembled
into 13,020 transcripts. They identified the transcriptional differences between these samples
and also identified nuclear genes that contributed to the differences observed in reciprocal
crosses. Very recently, a comparative transcriptome analysis of white and purple potato was
reported using Illumina HiSeq 2000 platform [28]. De novo assembly of the reads was per‐
formed for each cultivar using Trinity version r20131110 (http://trinityrnaseq.source‐
forge.net/). A total of 209 million paired-end reads were assembled into 60,930 transcripts.
They identified candidate genes encoding transcription factors involved in anthocyanin
biosynthesis. In a very interesting study, Aulakh et al. [29] reported global gene expression
comparisons between wild-type (Bintje) and an activation-tagged mutant underperformer (up)
using RNA-seq and identified approximately 1600 genes that were differentially expressed
between them, thereby suggesting the modification of various biological pathways in the
mutant variety.

3.1.2. Tomato

Tomato is an important vegetable crop that supplies vitamins and nutrients and consumed in
different forms around the world. Whole transcriptome sequencing of six tomato accessions
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Solanum pimpinellifolium was performed by sequencing by synthesis method of Illumina GAII
[30]. This resulted in the generation of 17 Gb of sequence data with 291,915,037 high-quality
reads and represented an average of 32.5 Mb of transcriptomic sequence per accession. By
using these data, a large number of SNPs were identified to analyze genetic variation in
cultivated and wild populations. A leaf transcriptome sequence data of tomato cv. Hon‐
gtaiyang 903 were generated using Illumina RNA-seq, which resulted in 50,616 transcripts
[31]. Eighty-four percent of these transcripts were functionally annotated in the NCBI nr
database and 94.5% in the tomato reference genome [24]. Of these, 14,371 transcripts were
found to be involved in 310 pathways. An expression analysis revealed that 2787 transcripts
showed significant expression after exogenous ABA treatment. These transcripts were related
to ABA signaling pathway, various transcription factors, heat shock proteins, and pathogen
resistance. The RNA-seq of one cultivated (Solanum lycopersicum M82) and five wild species
with two red-fruited (Solanumpimpinellifolium and Solanum galapagense) and three green-fruited
(Solanum habrochaites, Solanum chmielewski, and Solanum pennellii) varieties of tomato was
performed to study the changes in gene expression and diversity in DNA sequence of these
six species [32]. From this analysis, they identified several distinguishable polymorphic
positions between cultivated and wild genotypes. Further, to examine the effect of the fungal
symbiosis of tomato root on tomato fruit metabolism, Zouari et al. [33] performed an RNA-
Seq of S. lycopersicum cv. Moneymaker using Illumina GA and studied transcriptome profiling
during fruit maturation. A total of 712 differentially expressed genes in fruits from mycorrhizal
and control plants were identified. The majority of the regulated genes were involved in
various functions such as photosynthesis, stress response, transport, amino acid synthesis, and
carbohydrate metabolism. Further, it was found that AM fungi can serve as a replacement of
exogenous fertilizer for the growth of tomato plant with nutrient rich fruits. In addition, to
examine the hormonal response in tomato roots, Gupta et al. [34] published a transcriptome
atlas of tomato root using Illumina RNA-Seq method. By mapping the 165 million reads onto
the tomato reference genome (S. lycopersicum), they identified differential expression pattern
after various hormonal treatments. To look into regulatory and metabolic pathways specific
to fruit tissues, Matas et al. [35] reported a transcriptome study coupled with laser capture
microdissection. Five fruit pericarp tissues were sequenced by the pyrosequencing method of
GSFLX platform (Roche) and identified 20,976 high-quality expressed unigenes, which
included genes that showed expression specific to particular cell type and tissue. Very recently,
Mou et al. [36] performed a global analysis of transcriptome of cherry tomato (Lycopersicon
esculentum var. cerasiforme “XinTaiyang”) fruit after exogenous treatment of ABA and nordi‐
hydroguaiaretic acid (an inhibitor of ABA biosynthesis) to study their effect on fruit ripening
process. Of the total 25,728 genes, 10,388 were found to be differentially expressed. The data
also revealed the upregulation and downregulation of pigment-related genes after exogenous
ABA and NDGA treatment, respectively. Moreover, they also suggested the transcriptional
abundance of candidate genes involved in photosynthesis during inhibition of endogenous
ABA, which highlighted the significance of ABA in the regulation of ripening process in tomato
fruit. Further, to utilize the large amount of transcriptome data for tomato for studying gene
expression analysis, Bostan and Chiusano [37] recently presented a web-based platform, i.e.,
NexGenEx-Tom, that contain collection of high quality transcriptome data of several tissue at
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various stages of the development of different tomato genotypes and serve as a useful
approach for analysis of gene expression profiling and comparisons in various tissues/
genotypes.

3.1.3. Pepper (Capsicum)

The capsicum is a diploid, 2x = 2n = 12, and self-pollinating plant. Capsicum is closely related
to other members of the Solanaceae family, such as potato, tomato, and tobacco, that originated
in the New World. The genus contains 39 species of which only six species are cultivated, such
as C. annuum, C. baccatum, C. frutescence, C. chinense, C. pubescens, and C. assamicum [38, 39].
These Capsicum species are grouped as pungent (hot/spicy) and nonpungent (sweet) pepper
based on the presence and absence of capsaicinoid compounds, respectively, and therefore
used as a major ingredient in various cuisines around the world. The fruit contains beneficial
metabolites such as carotenoids (provitamin A), vitamins C and E, flavonoids, and capsaici‐
noids. It is also used as a coloring agent in food and also have several medicinal properties
and thus used in making of traditional medicine. Moreover, several studies have suggested
an effective role of capsaicinoids in inhibiting the growth of cancer [40–42], the painkiller in
arthritis, reducing appetite, and weight management [43–45]. For chili pepper, a large number
of varieties are available that are well adapted in diverse climate conditions around the world
[46]. Many studies were targeted toward various aspects, including the development of genetic
and genomic resources for crop improvement [39]. A Capsicum transcriptome database (DB,
http://www.bioingenios.ira.cinvestav.mx:81/Joomla/) was developed by the sequencing of C.
annuum transcriptome from different tissues [47]. They have obtained 1,324,516 raw reads from
which 32,314 high-quality contigs, and 51,118 singletons were assembled. Functional annota‐
tion of the 75% of the contigs was done resulting in 7481 novel sequences. Further, using 454
GS-FLX pyrosequencing platform, the transcriptome analysis of red pepper (C. annuum L.
TF68) was carried out [48]. They obtained approximately 30.63 Mb of EST data with 9818
contigs and 23,712 singletons. In another study, Nicolai et al. [49] performed transcriptome
analysis using Roche 454 pyrosequencing, and this consists of 23,748 contigs and 60,370
singletons. Using the data, they identified a total of 11,849 SNPs and 853 SSRs. However, in a
separate study, Ashrafi et al. [50] used three chili genotypes, namely, Maor, Early Jalapeno,
and Criollo de Morelos-334 (CM334) for transcriptome sequencing. From the first assembly,
they identified a total of 4236 SNPs and 2489 SSRs, while the second transcriptome assembly
based on Illumina GAII resulted in 22,000 high-quality putative SNPs and 10,398 SSRs.
Recently, the Pepper GeneChip array from Affymetrix in Capsicum for polymorphism detec‐
tion and expression analysis was reported [51]. Further, the hybridization of genomic DNA
from 40 diverse C. annuum lines and few lines from other cultivated species such as C.
frutescens, C. chinense, and C. pubescens resulted in generation of 33,401 single-position marker
(SPP) from 13,323 unigenes. Liu et al. [52] constructed de novo transcriptome assembly in C.
frutescens and obtained 54,045 high-quality unigenes in which a total of 4072 SSRs were
identified, including three candidate genes i.e., dihydroxyacid dehydratase (DHAD), Thr
deaminase (TD), and prephenate aminotransferase (PAT) involved in the capsaicinoid
biosynthesis pathway. Additionally, a total of 9150 putative SNPs in 3349 contigs were
identified between C. frutescens and C. annuum. In another study, a high-throughput tran‐
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scriptome profiling in two C. annuum varieties resulted in 279,221 and 316,357 sequenced reads
with a total of 120.44 and 142.54 Mb of sequence data. A total of 9701 and 12,741 potential SNPs
were identified [53].

3.1.4. Eggplant

Eggplant or brinjal (S. melongena L.), an autogamous diploid (2n = 2x = 24), is the third most
important vegetable crop from the genus Solanum after potato (S. tuberosum) and tomato (S.
lycopersicum). The eggplant is widely grown in Asia, the Middle and Near East, Southern
Europe, and Africa [54]. The eggplant fruit serves as an excellent source of antioxidants like
anthocyanin and phenolics [55, 56] and the tolerance to abiotic and biotic stresses [57].
Therefore, several genetic studies have been carried out from the last two decades targeting
various fruit traits such as size/shape and color. Moreover, the different origin of eggplant
from other Solanaceae spp. makes it an important crop for comparative and evolutionary
studies. In this regard, various aspects have been focused by researchers such as the develop‐
ment of genetic resources like molecular markers and genetic map that have been utilized for
comparative analysis with other spp. of the Solanaceae family. The eggplant belongs to the
Leptostemonum clade, which is far lagged behind the potato and tomato (potato clade) in terms
of the development of genomic resources as only a total of 226,664 nucleotide sequences were
available in NCBI database, of which majority (98,086) were obtained from ESTs generated by
Fukuoka et al. [58]. These 98,086 ESTs were assembled into 16,245 unigenes that covered only
a limited portion of eggplant transcriptome. Later, transcriptome sequencing was carried out
using Illumina sequencing and reads were assembled into contigs using Trinity program [59].
Of these, 80% (27,393) of unigenes showed matches with the sequences available in NCBI nr
database. A total of 29,717 genes were functionally annotated. A comparison of eggplant with
11 plant proteomes resulted in 276 high-confidence single-copy orthologous groups and
revealed that eggplant and its wild Leptostemonum clade relative “turkey berry” split ~6.66
million years ago in the late Miocene and the Leptostemonum split ~15.75 Mya from the potato
clade in the middle Miocene.

3.2. Whole genome and transcriptome sequencing of Solanaceae spp.

Whole genome sequencing of a species reveals the structural organization of genome, includ‐
ing a number of protein-coding and non-protein-coding genes and repetitive elements and
serves as the basis for finding genome-wide analysis of genetic variation, QTL mapping,
diversity analysis, association mapping of agronomically important traits for crop improve‐
ment, and comparative study of genome evolution between different species.

3.2.1. Potato genome

The draft sequence of 844 Mb genome of a homozygous double-monoploid genotype named
DM (DM1-3 516R44) was sequenced using three methods, namely, Sanger method, Roche/454
Pyrosequencing, and Illumina sequencing-by-synthesis method and assembled using the
SOAPdenovo assembly algorithm (PGSC; The Potato Genome Sequencing Consortium, 2011)
[6]. A heterozygous diploid line, i.e., RH (RH89-039-16) was also sequenced using shotgun
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sequencing of BACs and WGS, and its reads were mapped to the reference assembly of DM
genome (http://potatogenome.net). About 86% of the genome was anchored and assembled
into pseudomolecules. A total of 39,031 protein-coding genes were obtained; of them, 90%
were located on 12 pseudomolecules. To overcome the problem of heterozygosity and
inbreeding depression, which is the major drawback in potato improvement using traditional
breeding practices, the researchers selected a homozygous, double-monoploid form, referred
as DM for sequencing and integrated with sequence data of heterozygous diploid line RH. The
potato genome was the first among the asterid species to be sequenced, and a total of 2642
high-confidence asterid-specific and 3372 potato lineage-specific genes were identified and
also found the collinearity with 97.5% identity between DM and RH genome. Furthermore,
they identified 3.67 million SNPs and 275 gene-specific presence/absence variations and
concluded that the homozygous alleles were the reason for the reduced level of vigor in DM
line. They also studied the evolution of tuber development, which revealed that about 15,235
genes were found to be expressed in developing tubers.

3.2.2. Tomato genome

In the year 2012, the Tomato Genome Consortium (TGC, 2012) [5] reported the draft genome
sequence of inbred cultivar of tomato “Heinz 1706” using a combination of NGS technologies
(454/Roche GS FLX, Illumina Genome Analyser, and SOLiD sequencing). They predicted the
genome size of 900 Mb, which were assembled in 91 scaffolds aligned to 12 chromosomes. The
data revealed only 0.6% nucleotide divergence (in two tomato genotypes) compared to 8%
divergence with potato. The alignment of tomato–potato orthologous regions confirmed nine
large inversions during evolution. They predicted about 34,727 (in tomato) and 35,004 (in potato)
protein-coding genes. The analysis suggested that the genome triplications could have added
new gene family members such as RIN (ripening-inhibitor), CNR (colorless nonripening), ACS
(associated with ethylene biosynthesis), PHYB1/PHYB2 for red light photoreceptors, and PSY1/
PSY2 (phytoene synthase) for lycopene biosynthesis that mediate important fruit-specific
functions such as fleshiness and color. Further, the study reported the presence of noncoding
RNAs (ncRNA) with the identification of 96 miRNA genes in tomato and 120 miRNA genes in
potato genome. In another study, Aflitos et al. [60] performed the resequencing of 84 tomato
accessions and explored the genetic variability present among those cultivated tomato and its
wild progenitor. They identified more than 10 million SNPs in wild species, signifying the
dramatic genetic erosion of tomato. Furthermore, through comparative sequence alignment,
group-, species-, and accession-specific polymorphism was observed, which may be linked to
agronomically important fruit traits. Such information may be easily used by recent high-
throughput  genotyping methods for  the  detection of  genetic  variability  across  extensive
populations. The genomic information provided by these projects could be used for compara‐
tive genetic and genomic studies and in-depth sequence analysis in Solanaceae.

3.2.3. Pepper genome

The recent advancement in the sequencing and development of NGS technologies has
accelerated the genetics and genomics studies of capsicum. Recently, a draft genome sequence
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of a diploid hot pepper, i.e., “C. annum cv ‘CM334’” (Criollo de Morelos 334), was published
[7]. The variety CM334 has been utilized in breeding practices as it showed resistance against
Phytophthora capsici, pepper mottle virus, and root-knot nematodes. The authors reported
sequencing a total of 650.2 Gb pepper genome, which is approximately equal to 186.6× genome
coverage of 3.48 Gb estimated C. annuum genome by utilizing Illumina platform. Filtered reads
were assembled into 37,989 scaffolds using SOAPdenovo and SPACE (total 3.06 Gb). Anchor‐
ing of those contigs on high-density genetic map could assembled 86% of the (2.63 Gb; 1357
scaffolds) scaffolds onto 12 pseudomolecules of capsicum genome. A total of 34,903 protein-
coding genes were identified using the PGA annotation pipeline. The comparative analysis
showed a high level of conservation with its closest relative, i.e., tomato, as 17,397 orthologous
gene sets were identified, and their expression studies revealed that 8.8% of them showed
expression in leaf tissue and 46.4% were found to be expressed in pericarp tissue. As the pepper
genome is four times larger than tomato, the genome size increment seen is mainly due to the
presence of a large number of repetitive elements such as LTR retrotransposons. Of the
reported retrotransposons, the Gypsy family was found to present 12-fold more than the Copia
family when compared to another genome such as tomato, maize, and barley. Moreover, the
expression analysis of different capsaicinoid pathway genes showed that all genes were
expressed at 16 DPA, 25 DPA, and mature green stages of pepper fruit, but their orthologous
genes hardly showed any expression in tomato and potato fruits. This study confirms the
specificity of capsaicinoid pathway in the development of pungent flavor in pepper fruit.

To provide a better understanding of evolution and domestication of capsicum, Qin et al. [61]
reported two reference genome sequences of cultivated Zunla-1 (C. annuum L.) and wild
Chiltepin (C. annuum var. glabriusculum) pepper. They estimated the genome size of 3.26 Gb
and 3.07 Gb, respectively. The reads were assembled in scaffolds comprising 3.48 and 3.35 Gb,
respectively. They found different transposable elements (TEs) that covered ∼2.7 Gb (81%) of
the genome and estimated that the pepper genome expanded ∼0.3 Mya. Approximately 79%
of 3.48 Gb scaffolds contained 34,476 protein-coding genes that were anchored to chromo‐
somes by a high-density genetic map. Using an in-house-generated program, they identified
6527 long noncoding RNAs (lncRNAs), which comprised 5976 intergenic and 222 intron-
overlapping lncRNAs. In addition, the sequencing of small RNAs from five different tissues
allowed the identification of 5581 phased siRNAs. Based on plant micro-RNAs (miRNAs)
miRBase database, a total of 176 miRNAs were discovered of which 35 were found to be specific
to pepper. They also predicted 1104 target genes that have putative functions such as dihy‐
drolipoamide dehydrogenase (Capana12g000245) and α-CT (Capana09g001602) genes from
capsaicinoid biosynthetic pathway, suggesting the regulation of capsaicinoid biosynthesis by
miRNAs. Further, they identified 31% constitutively expressed genes and also 3670 genes that
were showing tissue-specific expression. The annotation of these genes resulted in the
identification of candidate genes for various traits. By a comparison of cultivated and wild
pepper genomes with data of 20 resequencing accessions, they identified genes for domesti‐
cation, which revealed molecular footprints of artificial selection. Moreover, they identified 51
gene families involved in capsaicinoid biosynthesis, and based on the phylogenetic analysis,
they concluded that independent pepper-specific duplications in 13 gene families had occurred
compared with tomato, potato, and Arabidopsis.
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of 3.48 Gb scaffolds contained 34,476 protein-coding genes that were anchored to chromo‐
somes by a high-density genetic map. Using an in-house-generated program, they identified
6527 long noncoding RNAs (lncRNAs), which comprised 5976 intergenic and 222 intron-
overlapping lncRNAs. In addition, the sequencing of small RNAs from five different tissues
allowed the identification of 5581 phased siRNAs. Based on plant micro-RNAs (miRNAs)
miRBase database, a total of 176 miRNAs were discovered of which 35 were found to be specific
to pepper. They also predicted 1104 target genes that have putative functions such as dihy‐
drolipoamide dehydrogenase (Capana12g000245) and α-CT (Capana09g001602) genes from
capsaicinoid biosynthetic pathway, suggesting the regulation of capsaicinoid biosynthesis by
miRNAs. Further, they identified 31% constitutively expressed genes and also 3670 genes that
were showing tissue-specific expression. The annotation of these genes resulted in the
identification of candidate genes for various traits. By a comparison of cultivated and wild
pepper genomes with data of 20 resequencing accessions, they identified genes for domesti‐
cation, which revealed molecular footprints of artificial selection. Moreover, they identified 51
gene families involved in capsaicinoid biosynthesis, and based on the phylogenetic analysis,
they concluded that independent pepper-specific duplications in 13 gene families had occurred
compared with tomato, potato, and Arabidopsis.
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3.2.4. Eggplant genome

To elucidate the genome structure and complexity, a draft genome sequence of eggplant has
recently been published in which the whole genome shotgun sequencing of eggplant variety
named as “Nakate-Shinkuro” was carried out using HiSeq 2000 sequencer (Illumina) [62]. The
high-quality reads were assembled using SOAPdenovo v1.05 into 1,321,157 scaffolds and
presented a draft genome assembly “SME_r2.5.1” that spanned approximately 74% (833.1 Mb)
of the total 1127 Mb of the eggplant genome. Also, transcriptome sequencing of “AE-P03” and
“LS1934” was carried out using Roche/454 FLX sequencer (Roche Diagnostics, Basel, Switzer‐
land). By merging the two data sets, a hybrid assembly was produced using PCAP.rep that
constituted 81,273 hybrid scaffolds of a total of 836.8 Mb in size. They predicted about 42,035
protein-coding genes in SME_r2.5.1 by Augustus 2.7. A total of 16,573 genes were located on
superscaffolds and showed an orthologous relationship with tomato.

3.3. Sequence-based molecular marker discovery and genetic mapping

Sequence-based molecular markers have been used in many comparative and functional
genomics studies because of their preferable features like genome-wide distribution, chromo‐
some-specific location, co-dominant inheritance, and reproducibility. The high-throughput
NGS technologies produce a huge amount of data, which is highly suitable for the identifica‐
tion of a large number of sequence variations in genome or transcriptome. For SNP identifi‐
cation, various SNP calling programs such as SOAPsnp [63], MAQ [64], Atlas-SNP2 [65],
SAMtools [66], and GATK [67, 68] have been used commonly [69].

In tomato, Sim et al. [70] developed the first large-scale SNP genotyping array using 8784 SNPs
based on NGS-derived transcriptome sequences of six different genotypes [71]. They con‐
structed three high-density linkage maps using interspecific F2 populations (with various
accessions of S. lycopersicum and S. pennellii). The physical positions of about 7666 SNPs were
identified relative to the draft tomato genome sequence and found that the genetic and the
physical distances were persistent. Such maps help to provide details of genetic order and
recombination, also to improve gene assemblies and to dissect the complex traits. In another
study, the genome-wide SNP genotyping was carried out with 7617 SNPs in 40 tomato lines
and identified 6474 polymorphic SNPs [72]. Further, the effect of SNPs on protein function
was studied, which revealed that the function of about 200 genes was altered by the substitu‐
tions phenomenon.

In eggplant, Barchi et al. [73] mapped QTLs associated with anthocyanin pigmentation using
inter- and intraspecific linkage maps. They used a combination of the restriction site-associated
DNA (RAD) strategy with high throughput sequencing (Illumina) to generate SNPs. A total
of 415 of the 431 markers were assembled into twelve major and one minor linkage group,
covering 1390 cM distance.

Very recently, in pepper, Devran et al. [74] developed molecular markers tightly linked to
potyvirus resistance 4 (Pvr4) by sequencing the parental lines and progenies using Illumina Hi-
Seq2500 in combination with bulked segregant analysis (BSA) approach. By comparative
analysis, they identified the syntenic regions between resistant and susceptible progenies, and
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more than 5000 single-nucleotide variants (SNVs) were identified that were converted into
CAPS markers and used to map Pvr4 locus using F2 mapping populations. In a separate study,
intron-targeting (IT) markers were developed from the NGS (5500xl SOLiD)-derived tran‐
scripts in tetraploid potato cv. White lady [75]. These markers were tested on various potato
genotypes and in other Solanum species. A detailed list of reports of NGS-based molecular
marker is given in Table 1.

S. No. Type of study Population/species Number of
SSRs

Number of SNPs/
InDels

NGS
platform

Reference

Capsicum

1 Transcriptome
profiling

TF68 (Capsicum annuum) 751 1536 SNPs
101 InDels

454 GS-FLX [39]

2 Transcriptome
profiling

Yolo Wonder and Criollo
de Morelos 334 (both C.
annuum)

853 11,849 454 GS-FLX
and Illumina

[40]

3 Transcriptome
profiling

Bukang (C. annuum)
First assembly

2,489 4,236 Illumina [41]

Second assembly 10,398 22,000 Illumina

4 Transcriptome
profiling

Xiaomila (Capsicum
frutescens)

4,072 9,150 Illumina [43]

5 Transcriptome
profiling

Mandarin (C. annuum) – 1025 454 GS-FLX [44]

Blackcluster (C. annuum) – 1059

6 Whole genome re-
sequencing

BA3 (C. annuum) – 154,519 InDels Illumina [76]

BA07 (C. annuum) – 149,755 InDels

7 Genome sequencing
with BSA

SR231 and Criollo de
Morelos334 (C. annuum L.)

– 5,000 SNV Illumina
HiSeq 2500

[74]

Tomato

1 Whole genome re-
sequencing

Ailsa Craig, Furikoma,
M82, Tomato
Chuukanbonhon Nou 11,
Ponderosa and Regina (All
are inbred lines of Solanum
lycopersicum)

– 1536 SNPs were
selected for
genotyping of
which 1293
successfully
genotyped and 1248
found polymorphic

Re-
sequencing
with ABI
SOLiD and
Genotyping
by Illumina
GoldenGate
Assay

[77]

2 Whole
transcriptome
sequencing

8 accessions of (S.
lycopersicum) and 1 of
(Solanum pimpinellifolium)

– 62,576 non
redundant putative
SNPs

Illumina [30]
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S. No. Type of study Population/species Number of
SSRs

Number of SNPs/
InDels

NGS
platform

Reference

Capsicum

3 Whole genome re-
sequencing and
transcriptome re-
sequencing

Several accessions of S.
lycopersicum and S.
pimpinellifolium

– 4,812,432 non-
redundant SNPs

Illumina and
454 GS-FLX

[78]

4 Whole genome
sequencing

S. pimpinellifolium – 4,680,647 Illumina and
454 GS-FLX

[78]

5 Whole genome re-
sequencing

‘Micro-Tom’ and ‘Heinz
1706’ of S. lycopersicum

– 1,231,191 Illumina and
454

[79]

6 Genome sequencing
and transcriptome
sequencing

S. lycopersicum accessions – 6,000 (identified)
5528 (validated)

Illumina and
454

[80]

Eggplant

1 Genome sequencing accessions of Solanum
melongena and Solanum
aethiopicum

2,000
putative SSRs

10,089 SNPs
874 (InDels)

Illumina [81]

Potato

1 Transcriptome
sequencing

Solanum tuberosum – 575,340 SNPs Illumina [26]

2 Genome sequencing S. tuberosum – 111,212 SNPs
13,094 InDels

Illumina [82]

Note: SNP—single-nucleotide polymorphism, SNV—single-nucleotide variant, SSR—simple sequence repeat, InDels—
insertion/deletion.

Table 1. List of transcriptome and whole genome sequencing using NGS technologies for development of genomic
resources in Solanaceae crop plants

3.4. Epigenomics during the age of next-generation sequencing technologies

Molecular breeding has a crucial role in the improvement of crops. Although conventional
breeding program brought a substantial increment of food production, however, with rapid
population growth worldwide, crop improvement should be accelerated so that climate
resilient, biotic stress-resistant, high-nutritional, and high-productivity cultivars could be
developed. The advent of NGS made it possible to study phenotypic variations caused by
genetic and epigenetic modification to facilitates crop improvement. The term epigenotype
was first introduced by Conrad H. Waddington to demonstrate the sum of interrelated
developmental pathways that enable one genome to give rise to multiple epigenomes and
consequently to multiple cell types that make up the whole organism. Nowadays, the term
epigenetics is commonly referred to all kinds of heritable changes that are not caused by
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changes in the alteration of DNA sequences but are triggered by chemical modifications on
the DNA (cytosine methylation) or on histone modifications (e.g., acetylation, methylation)
bringing about modulation of chromatin structure and function [83]. In recent years, small
RNAs have been emerged as key players in controlling epigenetic changes throughout the
plant genome.

3.4.1. DNA methylation

DNA methylation refers to the covalent addition of methyl group to the cytosine base at
position 5 by the action of DNA methyl transferases. In mammals, cytosine methylation occurs
mostly at CG sites and rarely at non-CG sites, while in plants, cytosine methylation can occur
in both CG and non-CG contexts. Non-CG methylation involves both symmetrical and
asymmetrical sites, CHG and CHH, respectively (H = A, T, or C). Much of our knowledge with
respect to DNA methylation is based on the studies performed on model plant Arabidopsis
thaliana. DNA methylation in plants is being catalyzed principally by three different enzymes.
The maintenance of symmetrical CG methylation during DNA replication is carried out by
Methyltransferase1 (MET1) (homolog of animal DNA methyltransferase DNMT1), while CHG
methylation is catalyzed by the plant-specific chromomethylase 3 (CMT3) and asymmetric CHH
methylation is mediated by domains rearranged methyltransferase 2 (DRM2) (similar to the
mammalian DNMT3 family) activity, which works through RNA-directed DNA methylation
(RdDM) pathway [83, 84].

The first ever single-base resolution methylomes of tomato fruits were established, which
revealed that fruit epigenome is not static, and the changes occur continuously during different
stages of fruit development. The whole genome bisulfite sequencing was employed to study
four different stages of fruit development. This study identified 52,095 differentially methy‐
lated regions of the 90% of the genome covered in this analysis in wild-type tomato fruits.
Comparative analysis of fruits from two nonripening mutants of tomato viz ripening-inhibitor
(rin) and Colorless nonripening (Cnr) demonstrated the changes in the methylation patterns
in the wild type and the mutants [85]. The Cnr mutation in tomato restricts normal ripening
process in tomato resulted in a colorless fruits develop a colorless pericarp [86]. Silencing of
the SlCMT3 gene in tomato resulted in the increased expression of LeSPL-CNR that encodes
for SBP-box transcription factor, which was located in the Cnr locus that ultimately triggers
Cnr fruits to ripen normally. These studies revealed that the induced ripening of Cnr fruits is
associated with a reduction of methylation at CHG sites of the LeSPL-CNR promoter, while a
decrease of DNA methylation in differentially methylated regions associated with the
LeMADS-RIN binding sites [87, 88].

3.4.2. Histone modifications

The interaction between DNA and proteins has a crucial role in the regulation of gene
expression. Chromatin immunoprecipitation (ChIP) can be employed to study such interac‐
tions. These interactions can be explored using a technique called ChIP, microarray platforms
(ChIP-on-chip or ChIP-chip) [89, 90]. More recently, NGS-based techniques are being used for
studying histone modifications where ChIP-Seq combines ChIP with massively parallel direct
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sequencing. ChIP-enriched DNA is sequenced directly, using the Solexa/Illumina platform,
and the readings were mapped to the reference genome. Histone modification phenomenon
includes methylation, acetylation, phosphorylation, ubiquitination, sumoylation, and ADP-
ribosylation. These modifications bring changes directly and cause structural changes to the
chromatin or indirectly through the mediator proteins. All histone modifications are reversible
and provide versatile ways for regulating gene expression during plant development and their
responses to environmental stimuli. The study found that the reversible acetylation and
deacetylation of specific Lys residues on core histone N-terminal tails catalyzed by histone
acetyltransferases (HDA) and histone deacetylases (HDAC), respectively [91, 92]. The action
of both enzymes regulates biological processes like transcriptional regulation. It was found
that generally, hyperacetylated histones are associated with gene activation, whereas hypoa‐
cetylated histones were involved in gene inactivation. ChIP-seq was employed to identify the
targets of ASR1 starting out with the purification of ASR1, by using the high-quality anti-ASR1
antibody. ChIP-seq data generated through this helped in identifying the genes encoding
aquaporins and those associated with the cell wall; these genes were associated with drought
stress response [93]. There are several studies reported where ChIP-seq along with ChIP-chip
methods were used to search genomes for locations associated with binding of several
transcription factors (TFs) such as RIN and fruitful homologs (FUL1/FUL2) [85, 94, 95]. The
investigation of genome-wide targets for the main regulators of fruit ripening viz. RIN,
FUL1, and FUL2 by combining RNA-Seq with ChIP-chip assay identified a total of 292, 860,
and 878 target ripening-associated genes in tomato [85, 95]. Therefore, a combination of ChIP-
seq and RNA-Seq with ChIP-chip are imperative tools nowadays and can be employed for
better understanding of transcriptional networks underlying tomato development.

3.5. Noncoding RNA (ncRNAs) in crop improvement

Recent advances in next-generation genome and transcriptome sequencing with thorough
bioinformatics and computational analysis laid to the discovery of numerous RNA types.
The ncRNAs are one of the great examples of such techniques. The ncRNAs has emerged
as  a  key  product  of  eukaryotic  transcriptionary  machinery  with  a  critical  role  in  the
regulatory  mechanism.  The  ncRNAs  are  being  classified  as  housekeeping  ncRNAs  and
regulatory  ncRNAs [96].  The  rRNAs,  tRNAs,  small  nuclear  RNAs (snRNAs),  and small
nucleolar RNAs (snoRNAs) are under the “housekeeping” ncRNAs, whereas the “regulato‐
ry”  ncRNAs  are  known  as  small  ncRNAs  (such  as  miRNAs  and  siRNAs)  and  long
noncoding RNA (lncRNAs) [96, 97].

3.5.1. Role of long noncoding RNAs in Solanaceae

The lncRNAs are defined as a non-protein-coding functional RNAs of more than 200 bp in
length with regulatory function and principally transcribed by RNA polymerase II. The
identification of lncRNA in plants and especially in Solanaceae is still at infancy as compared
with the human/animal genome. The application of high-throughput NGS technologies
toward identification and the characterizations of lncRNAs are being reported. Recently, by
analyzing around 200 A. thaliana transcriptome data sets, about 6480 lncRNAs were identified
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in the intergenic regions of the genome [98]. Further, 439 lncRNAs were identified in maize
[99], and in a more comprehensive way by integrating all available data sets for maize
transcriptome, high confidence 1704 lncRNAs were identified [100]. However, a systemic
study on lncRNAs in Solanaceae has not been done except some few reports. In pepper, a total
of 5976 long intergenic ncRNAs (lincRNAs), 222 intronic overlapping lncRNAs, and 329
bidirectional overlapping lncRNAs were identified from RNA-seq data of unopened flower
buds [44]. Recently, a genome-wide identification of lncRNAs in tomato was reported [101].
The study identified a total of about 3679 lncRNAs from wild-type AC tomato and mutant
ripening fruit (rin). The analysis further reported that out of 3530 and 3679 lncRNAs identified
in wild-type and rin mutant tomatoes, only 23 and 126 lncRNAs were transcribed specifically
in wild-type and rin mutant tomatoes, respectively. Most of the lncRNAs are derived from
intergenic regions. It was also found that 490 lncRNAs were upregulated in ripening mutant
fruits, while 187 lncRNAs were downregulated, suggesting the involvement of lncRNAs in
the regulation of fruit ripening. However, the function of lncRNAs has not been fully under‐
stood and studied. In a more conclusive study, the role of lncRNAs known as COOLAIR (cool-
assisted intronic noncoding RNA) and COLDAIR (cold-assisted intronic noncoding RNA)
during vernalization was investigated. These lncRNAs are involved in the epigenetic silencing
of FLC gene that subsequently promotes flowering [102]. The identification and the charac‐
terization of novel lncRNAs have enormous potential to open new windows for crop im‐
provement. Therefore, databases of lncRNAs named as PLncDB (plant long noncoding RNA
database) [103] and PNRD (plant ncRNA Database) [104] have been developed which provide
information about the functions and role of lncRNAs in plants.

3.5.2. Role of miRNAs in regulation of gene expression

MicroRNAs (miRNAs) are approximately 21 nucleotides long in length, and they are a class
of noncoding RNAs that play an important role in regulating gene expression in plants [105–
107]. Plant miRNAs mostly exert their effects by cleavage of target mRNA with full comple‐
mentarity, and their target sites are mostly found in coding regions thus altering the gene
expression [105–107]. Recent studies have shown that plant miRNAs also repress translation
via a slicer-independent mechanism and, therefore, mediates the expression of the genes
posttranscriptionally [108, 109].

There are mainly two major approaches for identifying miRNAs in plants: (1) experimental
and (2) bioinformatic approaches. An experimental approach includes forward genetics, direct
cloning, and next-generation high-throughput sequencing. High-throughput sequencing
technology showed significant progress in small RNA identification and has become com‐
monly available and affordable tool nowadays. A large number of miRNAs have been
identified by means of high-throughput sequencing and available in online database (http://
www.mirbase.org, accessed June 21, 2014), which currently holds 35,828 mature miRNA
products from 223 species. The majority of miRNAs identified so far have been obtained from
only a few model plant species, such as A. thaliana, Oryza sativa, Glycine max, and Medicago
truncatula. Despite the largest family in the plant kingdom, the annotated miRNAs are still
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very limited in Solanaceae [110–113]. It is necessary to understand the function of miRNAs in
Solanaceae. The study of the miRNAs in pepper has been reported based on identification
using an in silico approach [114]. However, there is a need to employ high-throughput
sequencing approaches on the pepper to discover miRNAs. Recently high-throughput
sequencing technologies have been employed to identify miRNAs in pepper from ten different
tissues such as leaf, stem, root, flower, and six developmental stages of fruits. Based on a
bioinformatics pipeline, the researchers successfully identified 29 and 35 families of conserved
and novel miRNAs, respectively. Moreover, their miRNA targets were also predicted com‐
putationally, many of which were experimentally validated using 5′ rapid amplification of
cDNA ends (RACE) analysis. Among them, one of the confirmed novel targets of miR-396 was
a domain-rearranged methyltransferase, the major de novo methylation enzyme responsible for
RNA-directed DNA methylation in plants. These studies carried out using NGS technologies
provide a basis for understanding the functional roles of miRNAs in pepper that can be
explored for the crop improvement [115].

Kim et al. [114] identified miRNAs and their target genes by analyzing expressed sequence tag
(EST) data from five different species of Solanaceae, wherein they revealed the presence of at
least 11 miRNAs and 54 target genes in pepper (C. annuum L.) and 22 miRNAs with 221 target
genes in potato (S. tuberosum L.). Apart from this, they identified a total of 12 miRNAs with
417 target genes in tomato, 46 miRNAs with 60 target genes in tobacco (Nicotiana tabacum L.),
and 7 miRNAs with 28 target genes in Nicotiana benthamiana. Further, the identified miRNAs
with their target genes were submitted to the SolmiRNA database, (http://gene‐
pool.kribb.re.kr/SolmiRNA). They showed the presence of both conserved and specific
miRNAs, which may play crucial roles in the growth and development of Solanaceae plants.
In addition, 12 miRNAs were randomly selected from a differentially expressed conserved
miRNA family and subjected to qRT-PCR validation. Of these, the expression level of nta-
miR167d was highly enriched in the leaf tissue, whereas the expression level of nta-miR319a
and nta-miR160c were specifically found in stem and root tissues, respectively. The target
prediction showed that most of the targets genes were those which codes for transcription
factors involved in cellular and metabolic processes [116]. Similar study was performed where
deep sequencing of leaf, stem, and root, and four early developmental stages of tubers were
performed [117]. The study revealed a total of 89 conserved miRNAs belonging to 33 families
and 147 novel miRNAs with 112 candidate potato-specific miRNAs. Digital expression
profiling based on TPM (transcripts per million) and qRT-PCR analysis of conserved and
potato-specific miRNAs revealed that some of the miRNAs showed tissue-specific expression
(leaf, stem, and root), while a few demonstrated tuber-specific expressions. Further, targets
were predicted for the identified conserved and potato-specific miRNAs. The predicted targets
of four conserved miRNAs are as follows, ARF16 (auxin response factor 16) for miR160, NAM
(no apical meristem) for miR164, RAP1 (relative to Apetala2 1) for miR172, and HAM (hairy
meristem) for miR171. Later they were experimentally validated using 5′ RLM-RACE (RNA
ligase mediated rapid amplification of cDNA ends). The list of databases for miRNA identifi‐
cation is presented as Table 2.
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Database Description Link Reference

miRBase Database of published miRNA
sequences and their annotation

http://www.mirbase.org/ [118–122]

deepBase A platform for annotating and
discovering small and long
ncRNAs (microRNAs, siRNAs,
and piRNAs) from next generation
sequencing data

http://deepbase.sysu.edu.cn/ [123]

miRanda-
microRNA.org

Database for predicted microRNA
targets, target downregulation
scores and experimentally
observed expression patterns

http://www.microrna.org/microrna/home.do [124]

DIANA-mirGen
2.0

Database of miRNA genomic
information and regulation

http://diana.cslab.ece.ntua.gr/mirgen/ [125]

miRNAMap miRNAMap Genomic maps of
miRNA genes and their target
genes in human, mouse, rat, and
other metazoan genomes

http://mirnamap.mbc.nctu.edu.tw/ [126, 127]

PMRD Plant miRNA database with large
information of plant microRNAs
data, consisting of microRNA
sequence and their target genes,
secondary dimension structure,
expression profiling, genome
browser, etc.

http://bioinformatics.cau.edu.cn/PMRD/ [128]

Table 2. List of databases for miRNA identification

3.5.3. miRNAs in plant growth and development

To investigate the role of miRNAs in ovary and fruit development of tomatoes, transgenic
plants were generated by overexpressing MIR167. The transgenic plants showed a reduction
in leaf size and internode length as well as shortened petals, stamens, and styles. The RNA-
Seq analysis identified many genes with altered expression patterns in tomato. Of these,
SpARF6 and SpARF8 genes involved in flower maturation in Arabidopsis have been found to
be significantly down regulated [129]. In a separate study, it was found that transgenic tomato
plants harboring AtMIR156b (A. thaliana miRNA 156b family) precursor resulted in abnormal
flower and fruit morphology; in addition, the fruits were characterized by the growth of extra
carpels and ectopic structures [130]. Moreover, these transgenic lines also displayed increased
the expression of genes, which are involved in maintenance of meristem and formation of new
organs such as LeT6/TKN2 (a KNOX-like class I gene) and GOBLET (a NAM/CUC-like gene).
Overall, these observations suggest that the miR156 is involved in the maintenance of the
meristematic activity of ovary tissues and participates in the normal fleshy fruit development.
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Several miRNAs have been identified in the fruit tissue. However, no miRNA has been
experimentally validated to be involved in fruit ripening. Recently, SlymiR157 and Sly‐
miR156 have been shown to regulate ripening and softening of tomato fruits. SlymiR157
governs the expression of key ripening gene LeSPL-CNR by miRNA-induced mRNA degra‐
dation and by translational repression. Furthermore, qRT-PCR profiling of key ripening-
related genes reveals that the SlymiR157-target LeSPL-CNR may also affect the expression of
LeMADS-RIN, LeHB1, SlAP2a, and SlTAGL1 [131]. Table 3 contains the list of databases for
miRNA target gene prediction.

Database Description Link References

starBase Interaction Networks of lncRNAs,
miRNAs, competing endogenous RNAs
(ceRNAs), RNA-binding proteins (RBPs),
and mRNAs from large-scale CLIP-Seq
(HITS-CLIP, PAR-CLIP, iCLIP, and
CLASH) data

http://starbase.sysu.edu.cn/ [132, 133]

miRwalk 2.0 Database with collection of predicted and
experimentally verified miRNA–target
interactions with various novel and unique
feature

http://zmf.umm.uniheidelberg.de/
apps/zmf/mirwalk2/index.html

[134]

targetScan Database and Webserver for predicted
miRNA targets in animals

http://www.targetscan.org/ [135–137]

DIANA-TarBase
v7.0

DIANA-TarBase v7.0 provides for the first
time hundreds of thousands of high
quality manually curated experimentally
validated miRNA–gene interactions

http://
diana.imis.athenainnovation.gr/
DianaTools/index.php?r=tarbase/
index

[138, 139]

DIANA -microT
v3.0

Accurate microRNA target prediction
database

http://diana.cslab.ece.ntua.gr/microT/[140, 141]

miRecords Manually curated database of
experimentally validated miRNA–target
interactions

http://c1.accurascience.com/
miRecords/prediction_query.php

[142]

picTar PicTar: a computational method for
identifying common targets of microRNAs

http://pictar.mdc-berlin.de/ [143]

RNA22 Web based browser to identity miRNA
targets

https://cm.jefferson.edu/rna22/
Interactive/

[144]

micTarBase miRTarBase has accumulated more than
fifty thousand miRNA–target interactions
(MTIs)

http://mirtarbase.mbc.nctu.edu.tw/ [126, 127]
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Database Description Link References

RNALogo Database with novel graphical
representation of the patterns in an aligned
RNA sequences with a consensus structure

http://rnalogo.mbc.nctu.edu.tw/ [145]

miRGator Database with microRNA diversity,
expression profiles, and target
relationships

http://mirgator.kobic.re.kr/ [146–148]

miRNAMap miRNAMap Genomic maps of miRNA
genes and their target genes in human,
mouse, rat, and other metazoan genomes

http://mirnamap.mbc.nctu.edu.tw/ [112]

miRDB Webserver for miRNA target prediction
and functional annotation

http://mirdb.org/miRDB/ [149]

RNA hybrid This tool is primarily meant as a means for
microRNA target prediction

http://bibiserv.techfak.uni-
bielefeld.de/rnahybrid/

[150]

miRU,
psRNAtarget

A Plant Small RNA Target Analysis Server http://plantgrn.noble.org/
psRNATarget/

[151]

miRNEST miRNEST is an integrative collection of
animal, plant and virus microRNA data

http://rhesus.amu.edu.pl/mirnest/
copy/browse.php

[152]

PMTED Plant MicroRNA Target Expression
Database

http://pmted.agrinome.org/
by_mirna.jsp

[153]

MIREX A platform for comparative exploration of
plant pri-miRNA expression data

http://www.comgen.pl/mirex2/ [154]

TAPIR Target prediction for plant microRNAs http://bioinformatics.psb.ugent.be/
webtools/tapir/

[155]

PASmiR A database for miRNA molecular
regulation in plant abiotic stress

http://pcsb.ahau.edu.cn:8080/
PASmiR/

[156]

Table 3. List of databases for miRNA target gene prediction

3.5.4. miRNAs in biotic stress

miRNAs have been identified in many plants with their diverse regulatory roles in biotic
stresses. miRNA sequencing was used to investigate the miRNA expression difference
between the tomatoes treated with and without Phytophthora infestans. Using high-throughput
sequencing technologies, they could identify a total of 207 known miRNAs and 67 novel
miRNAs. In addition to this, a total of 70 miRNAs were differentially regulated in the plants
treated with P. infestans; of these, 50 were downregulated and 20 were upregulated. Also, a
total of 73 target genes were identified for 28 differentially expressed miRNAs by using
psRNATarget analysis [157].
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The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. A
comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato
cultivars were performed to explore the role of miRNAs in tomato defense against F. oxyspo‐
rum. SlmiR482f and SlmiR5300 were repressed during infection of Motelle with F. oxysporum.
Four predicted mRNA targets, two each of slmiR482f and slmiR5300, displayed increased
expression in resistant Motelle. This was further confirmed by co-expression analysis in N.
benthamiana. Silencing of the targets in the resistant Motelle cultivar compromised the resist‐
ance to F. oxysporum and confirmed the role of these genes in fungal resistance [158].

3.5.5. miRNAs in abiotic stress

Abiotic stress (such as salt, drought, and heat) is becoming a major constraint to crop produc‐
tion due to the climate change. miRNAs have been found to play a significant role in tolerance
to these stresses. For example, in tomato, transgenic lines were generated by the overexpression
of miR169 family member: Sly-miR169c that displayed reduced stomatal opening, decreased
transpiration rate, reduced water loss, and enhanced drought tolerance [159]. In eggplant, the
high-throughput sequencing of salt tolerant species was performed and identified 98 con‐
served miRNAs from 37 families [160]. Some of them were found to be expressed under salt
stress. These studies provide a better understanding about the regulation of gene expression
under abiotic stresses for genetic improvement of crops.

4. High-throughput genotyping technologies

With the development of various NGS platforms, thousands to millions of SNPs have been
identified from whole genome and transcriptome sequence data. Therefore, various high-
throughput genotyping platforms were developed simultaneously for large-scale genotyping
of SNPs in a large set of individuals. These platforms are the GoldenGate Genotyping Tech‐
nology (GGGT; Illumina, San Diego, CA, USA) [161], BeadChip-based Infinium assay (Illu‐
mina) [162], SNPStream (Beckman Coulter, USA) [163], GeneChip (Affymetrix, USA) [164],
and competitive allele-specific PCR, KASPar (KBioscience, UK) [165].

4.1. GoldenGate Genotyping Technology (GGGT)

The Illumina GGGT is a custom-based platform that covers construction of 96-1536 SNPs assay.
The method is based on BeadArray technology, which includes immobilization of genomic
DNA on avidin-coated particle. A further step is annealing of two allele-specific oligonucleo‐
tides and a locus-specific oligonucleotide for each SNP, later allele-specific primer extension
for generating allele-specific products followed by PCR amplification with universal primers.
It is a custom-based genotyping platform that allows screening of a vast number of samples
(up to 3072 SNPs) using a single multiplexed assay. Shirasawa et al. [77] utilized 1536-plex
SNP genotyping in tomato, of which 1293 were genotyped successfully. Moreover, 1248 SNPs
showed clear polymorphism in 663 accessions. For eggplant, Barchi et al. [73] identified >10,000
potential SNPs. Of these, 384 highest quality SNPs were used to genotype 23 diverse eggplant
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germplasm with respect to fruit shape and color, and observed polymorphic information
content values ranged from 0.29 to 0.5 with a mean value of 0.43.

4.2. BeadChip-based Infinium assay (Illumina)

It includes whole genome amplification followed by hybridization to oligonucleotide probe
attached to a bead, extension, and detection of fluorescence by iScan Reader. The assay considers
up to four million SNPs in a single sample run, or even up to several hundred thousand multiple
samples in the same array. The chemistry involves incubation of samples on bead chip where
they anneal to locus-specific 50-mers covalently linked to beads followed by allele-specific
single-base  extension,  fluorescent  staining,  signal  amplification,  scanning in  a  dual-color
channel reader, and analysis. This technology is advantageous as one can use a premade array
that is easily available commercially for selected species. Hamilton et al. [26] identified 69,011
high confidence SNPs from six potato cultivars and used for genotyping with the Infinium
platform. A total of 96 of these SNPs were used to assess allelic diversity in 248 germplasms and
found 82 informative SNPs for subsequent analyses. In 2012, Felcher et al. [166] reported
“Infinium 8303 Potato Array” comprising of 8303 functional markers which includes 3018 from
candidate genes of interest by utilizing the transcriptome data from Hamilton et al. [26]. These
were used for the genotyping and development of linkage maps. In tomato, a large-scale SNP
genotyping array using 8784 SNPs were obtained from transcriptome sequencing [30] and later
used for construction of a high-density linkage map of tomato [70].

4.3. SNPStream (Beckman coulter)

This method involves a single-base extension assay and tag array technology. It starts with a
multiplexed SNP-specific PCR followed by a primer extension reaction using tagged primers
and fluorescent-labeled nucleotide terminators, i.e., ddNTPs. The products are captured on a
tag array, which is then scanned to detect the hybridized extension primers and produce calls.
It allows the processing of up to three million genotypes in 384 samples at a time. This
genotyping system combines solid-phase primer extension assay and universal tags for SNP
genotyping. The instrument allows processing of 4,600–3,000,000 genotypes per day [167].

4.4. GeneChip (Affymetrix, USA)

The GeneChip assays are based on allelic discrimination by the direct hybridization of genomic
DNA to arrays containing locus- and allele-specific oligonucleotides (25 mers). Genomic DNA
is digested with a restriction endonuclease and ligated to adaptors, which are then amplified
by PCR using a single universal primer thereby creating a reduced representation of the
genome [168]. These PCR amplicons are fragmented, end-labeled, and hybridized. The
fluorescence signal is recorded by the GeneChip 3000 scanner (Affymetrix). The hybridization
scanning is evaluated as positive and negative signals. Hill et al. [42] developed a GeneChip®
array for analysis of polymorphism and expression in Capsicum. The array was designed from
30,815 unigenes, and hybridization was performed using genomic DNA of 40 diverse lines of
C. annum. They detected 33,401 single-position polymorphisms within 13,323 unigenes. A total
of 251 highly informative markers across these C. annuum lines were found. Also, a region of
8.7 cM was detected around Pun1 locus in nonpungent line that showed no polymorphism.
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In tomato, an oligonucleotide array was developed with 22,821 probe sets, which correspond
to 22,714 unigenes [169]. Genomic DNA isolated from three S. lycopersicum varieties, i.e.,
FL7600 (fresh-market), OH9242 (processing), and PI114490 (var. cerasiformae), were used to
hybridize with that array. They identified 189 putative single feature polymorphisms, and a
subset of these was utilized for validation which resulted in the identification of 279 SNPs and
27 InDels in 111 loci. Moreover, a subset of validated SNPs was used for analysis of genetic
diversity in 92 tomato varieties and accessions.

4.5. KASPar (KBioscience, UK)

The KBioscience-competitive allele-specific PCR (KASPar) is a simple, cost-effective, and
flexible way for determining both SNP and InDel in genotypes. It is a custom-based technology
that covers 96-1536‐well plate formats like Illumina’s GGGT. It relies on the discrimination
power of a novel form of competitive allele-specific PCR to determine the alleles at a specific
locus. The improvement has been made by incorporating a 5′–3′ exonuclease cleaved Taq DNA
polymerase (the engineered Taq increases its discrimination power) and a homogeneous
fluorescence resonance energy transfer (FRET) detection system, which makes this technology
more competent among the genotyping platforms. From the pepper transcriptome sequence
data, Ashrafi et al. [41] identified a large number of SNPs. A subset of them was validated by
KASPar assay and identified 78 polymorphic SNPs.

5. Genotyping By Sequencing (GBS)

This technology is comparatively new in which genomic DNAs from large mapping popula‐
tions are sequenced followed by SNP identification. This allows a rapid way for dissecting
QTLs for economically important traits in large mapping populations besides allowing genetic
diversity and the phylogenetic study between large numbers of accessions/genotypes. This
approach is based on reduced representation sequencing, which involves the digestion of
genomic DNA with appropriate restriction enzyme to capture a targeted portion of the genome
followed by adapter (DNA-barcoded) ligation, PCR amplification, and sequencing of multi‐
plexed libraries [170, 171]. For sequencing, the Illumina’s GAII and HiSeq and latest with the
Torrent PGM and Proton (Life Technologies) are used. To analyze the large sequencing data,
several automated pipelines are being developed, including TASSEL, UNEAK, and IGST.
Besides de novo SNP discovery, it offers the greatest advantage for those crops in which the
solid reference genome sequence is absent. GBS has emerged as a high-throughput, robust,
and cost-effective tool for genome-wide association studies and genomics-assisted breeding
in numbers of plant and animal species, in particular for those having a complex genome. The
utility of GBS has been demonstrated very well for discovery and genotyping of large number
of SNPs, genetic mapping, diversity analysis, and population structure [172]. Among Solana‐
ceae family, in potato, a high-quality sequence data of 12.4 Gb was obtained from which 129,156
sequence variants have been identified and mapped to 2.1 Mb of the potato reference genome
with average read depth of 636 per cultivar [173].
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6. Genome-Wide Association Study (GWAS)

The advent of NGS technologies provides a large number of sequence variants (mainly SNPs)
within a shorter period. These sequence variants can be utilized for QTL mapping, GWAS,
and germplasm characterization. The establishment of an association between genotype and
phenotype is a very challenging task. For crop improvement, it is necessary to determine the
genetic basis of the agronomic trait. GWAS is a powerful technique for detecting natural
variation and fine mapping of QTL underlying complex traits [174]. It requires a collection of
individuals or a population of diverse genotypes and highly polymorphic markers that
showed genome-wide distribution. This is a very robust method, in comparison to biparental
cross-mapping, to map multiple traits simultaneously. In tomato, Shirasawa et al. [77] reported
the whole genome resequencing of six tomato cultivars and detected 1.5 million SNPs by
mapping the reads onto the reference genome (SL2.40). They utilized Illumina GoldenGate
assay for genotyping of 1536 SNPs in 663 tomato accessions. There was no population structure
observed when analyzing the genetic relationship using the STRUCTURE software. Further,
they identified a total of nine SNP loci that were found to be associated with eight morpho‐
logical traits. To overcome the low polymorphism in cultivated tomato (S. lycopersicum), they
used genome admixture of the cultivated and its wild ancestor (S. pimpinellifolium) for
association mapping in tomato [175].

7. Next-generation sequencing toward translational research

7.1. Fruit traits (size, shape, ripening, and development)

The transcriptome studies in Solanaceae crops such as potato revealed the identification of
transcription factors associated with fruit development. A total of 632 lineage-specific genes
were identified, of which 289 genes were asterid specific and 343 were potato specific [23].
They identified 290 genes, including pectin esterase, lipoxygenase, and malate synthase. Leafy
Cotyledon 1 (LEC 1) and transcriptional factor B3 were found to be co-expressed in fruit tissues.
These TFs are consistently found to be involved in plant embryo development.

In tomato, using NGS technologies, several SNPs successfully differentiating between cherry
type and round/beef type tomatoes were identified [80]. The SNP data revealed that cherry
tomatoes share more SNPs with S. pimpinellifolium, a wild relative of the tomato. This revealed
a close phylogenetic relationship of cherry tomato with the wild type. Several SNPs belonged
to the chromosomal region that harbors genes/QTLs related to fruit weight, size, shape, and
color, indicating that the SNPs may be used to explore the other fruit traits. In a miRNA study,
it was observed that the transgenic tomato plants harboring AtMIR156b precursor resulted in
abnormal flower and fruit morphology [130], indicating that mir156b plays crucial role in
ovary and normal fleshy fruit development.

7.2. Tuber

The transcriptome of tuber tissue showed the presence of several transcripts that are specific
for tuber. Around 90 genes were co-expressed in tuber, including the genes involved in starch
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biosynthesis pathway such as glucose 6-phosphate/phosphate translocator and storage proteins
such as patatin [23]. The APETALA and WRKY transcription factors were specifically found to
be expressed in tubers. Further, using DGE profiling, the photoperiodic tuberization-specific
genes were identified and suggested that the potato tuberization may be controlled by the
genes associated with flowering time in other plant species [25]. These data contribute toward
the development of powerful resources that could be used in candidate gene mining for
important agricultural traits.

7.3. Pungency

Pungency is a special and economically important quality trait only found in pepper fruits,
and it has been studied extensively [7, 43]. NGS technology has a wide scope to explore this
trait and provides insights into the capsaicinoid pathway revealing the genes/loci associated
with pungency. The transcriptome profiling of C. frutescens revealed the identification of three
structural genes, namely, dihydroxyacid dehydratase (DHAD), Thr deaminase (TD), and
prephenate aminotransferase (PAT) involved in the capsaicinoid biosynthesis pathway [43].
They claimed the identification of several new candidate genes involved in the capsaicinoid
pathway. The comparative transcriptomic study of pepper with potato and tomato showed
that the different capsaicinoid pathway genes were expressed during placenta development
at 16 DPA, 25DPA, and mature green stages of pepper fruits, but their orthologous genes
hardly showed any expression in tomato and potato fruit [7]. The study confirmed the
specificity of capsaicinoid pathway in the development of pungency in pepper fruit.

7.4. Disease resistance

Using NGS technology, single-nucleotide variants (SNVs) were identified in resistant and
susceptible pepper population for potato virus Y and pepper mottle virus. The comparative
genomic tools were used to align the SNVs with syntenic region/loci of tomato. Later, the SNVs
were converted into PCR-based CAPS (cleaved amplified polymorphic site) marker to map
potyvirus resistance 4 (pvr4) locus. These molecular markers could be used in large-scale marker
assisted selection (MAS) programs [74].

7.5. Hormone and stress

Global transcriptome profiling of exogenously applied ABA tomato seedling revealed the
identification of a large number of genes related to various stress responses [31]. These
included several transcription factors, heat shock proteins, and pathogen resistance. Apart
from this, salicylic acid, jasmonic acid, and ethylene signaling pathways were upregulated by
exogenous ABA. The study suggested the role of ABA in improving pathogen resistance and
abiotic stress tolerance. Moreover, the tomato transgenic lines were developed with the
overexpression of Sly-miR169c, a miR169 family member. The transgenic plants displayed
reduced stomatal opening, decreased transpiration rate, reduced water loss, and enhanced
drought tolerance [159].
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8. Conclusion and future direction

As the sequencing technologies are advancing at a rapid rate, enormous genomic information
is being generated for Solanaceae crop plants. The question at present is how to utilize this
enormous NGS-generated information for Solanaceae translational research. The large-scale
phenotyping and transcriptome and whole genome resequencing of diverse genotypes from
each species and their correlation will help in the identification of genetic region and eventually
of candidate genes in the genomes. The integration of classical genetics, QTL mapping, and
whole genome and transcriptome sequencing would be helpful in accelerating the Solanaceae
translational research. Consideration of noncoding RNAs and epigenetics mechanism while
designing breeding strategies would expedite the manipulation of mechanisms underlying
various developmental aspects of plant biology in Solanaceae. Furthermore, the use of NGS
technology provides an opportunity to investigate and understand the structure and evolution
of complex Solanaceae genomes.
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Abstract

The persistent challenge of insufficient food, unbalanced nutrition, and deteriorating
natural resources in the most vulnerable nations, characterized by fast population
growth, calls for utilization of innovative technologies to curb constraints of crop
production. Enhancing genetic gain by using a multipronged approach that combines
conventional and genomic technologies for the development of stress-tolerant
varieties with high yield and nutritional quality is necessary. The advent of next-
generation sequencing (NGS) technologies holds the potential to dramatically impact
the crop improvement process. NGS enables whole-genome sequencing (WGS) and
re-sequencing, transcriptome sequencing, metagenomics, as well as high-throughput
genotyping, which can be applied for genome selection (GS). It can also be applied to
diversity analysis, genetic and epigenetic characterization of germplasm and
pathogen detection, identification, and elimination. High-throughput phenotyping,
integrated data management, and decision support tools form the necessary support‐
ing environment for effective utilization of genome sequence information. It is
important that these opportunities for mainstreaming innovative breeding strategies,
enabled by cutting-edge “Omics” technologies, are seized in Africa; however, several
constraints must be addressed before the benefit of NGS can be fully realized. African
breeding programs must have access to high-throughput genotyping facilities,
capacity in the application of genome selection and marker-assisted breeding must be
built and supported by capacity in genomic analysis and bioinformatics. This chapter
demonstrates how interventions with NGS-enabled innovative strategies can be
applied to increase genetic gain with insights from the Consortium of International
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Agricultural Research (CGIAR) in general and the International Institute of Tropical
Agriculture (IITA) in particular.

Keywords: Next-generation sequencing, genotype by sequencing, genome selection,
plant breeding, genetic gain, developing countries

1. Introduction

Africa  is  the  region  with  the  highest  prevalence  of  hunger  and  malnourishment.  The
persistent  challenge of  insufficient  food,  unbalanced nutrition,  and deteriorating natural
resources in the most vulnerable nations, characterized by fast population growth, calls for
utilization  of  innovative  technologies  to  curb  constraints  of  crop  production.  Major
revitalization of agricultural research in Africa is needed to underpin necessary increases
in  sustainable  productivity  in  anticipation of  the  increase  in  population and changes  in
climate.  Since many of  the clonally propagated crops grown in Africa,  such as  cassava,
yams, bananas, and plantains, and seed crops, such as cowpea, tef, sorghum, and millet,
are not commonly consumed as food outside of the region, researchers in Africa have the
responsibility to devise innovative breeding strategies for these crops. African agriculture
is  characterized by  subsistence  farming by  smallholder  farmers  growing various  locally
adapted crops, many of which are considered understudied or “orphan” crops. These crops
are vital for providing nutrition and income to resource-poor farmers, particularly in the
face  of  confounding  climatic  and  soil  constraints.  A  regular  supply  of  high-yielding
nutritional varieties that respond to the changing biotic and abiotic stress environment is
required.  Conventional  plant  breeding  has  contributed  tremendously  to  increased  crop
yields; however, the rate of genetic gain over the past few decades has been relatively slow
for  a  number of  reasons,  including the lengthy breeding cycle,  a  characteristic  of  many
clonally propagated crops [1].  Enhancing genetic gain entails a multifaceted approach of
combining conventional and new technological advances [2,3].

The Consortium of International Agricultural Research, abbreviated as CGIAR, in collabora‐
tion with partners, is spearheading agricultural biotechnology research in Africa [4]. Several
consortium research programs (CRP) are performing collaborative research on more than a
dozen staple food crops of developing countries, including vegetatively propagated root,
tuber, and banana (RTB), about seven grain legumes, and four dryland cereals. These crops
support the livelihood of hundreds of millions of resource-limited farmers and traders in
developing nations. The vegetatively propagated RTB crops (cassava, yam, potato, sweet
potato, banana, and plantain) share many breeding challenges, including pathogen transmis‐
sion from one generation to the next, polyploidy, low fertility and multiplication rates, and
long breeding cycles. These can best be addressed by exploiting synergies across crops and
technologies to increase genetic gain per unit time. Furthermore, the attainable yield potential
of extensively studied crops such as rice, maize, wheat, and soybean are considerably lower
in developing countries owing to unique production constraints in Africa calling for unique
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intervention, including genomics. Declining costs of DNA sequencing have triggered a surge
in research on crops of local or regional importance and, with time, should translate into
increased yields and yield stability, thus reducing the reliance on a smaller number of major
crops [2,5–7].

This chapter initially outlines current and prospective genomic resources pertaining to Africa’s
staple crops, and then discusses how genomics strategies in the era of high-throughput next-
generation sequencing technologies are being applied to increase genetic gain in developing
countries with insights from CGIAR in general, and IITA in particular.

2. NGS-based omics resources: Current and prospective

2.1. Whole-genome sequencing

Knowledge of a crop genome sequence is fundamental for understanding biochemical and
physiological processes that govern plant traits and the way in which they respond to
environments- and biotic and abiotic stresses. The rapid evolution of genome sequencing
technologies [8] has resulted in an explosion of genomic information, the sequencing of a vast
number of plant genomes, and opportunities to apply this to crop improvement, e.g., through
the development of genome-wide marker assays [9,10]. In the rapidly changing landscape of
life science technologies, a number of new disciplines have emerged, particularly for deci‐
phering gene function and metabolic pathways; these include transcriptomics, proteomics,
metabolomics, small RNAomics, epigenomics, interactomics, together with the corresponding
development of bioinformatics tools and databases to support these. It is important to ensure
that, as our understanding of biological processes increases, this is translated into enhanced
agricultural productivity through research for development (R4D).

The genome sequences of many major world crops have been completed in the past decade,
as well as a few crops of specific importance to the developing world, including cassava, yam,
tef, pigeon pea, and peanut, while many still remain to be sequenced [11–13]. A drive to
sequence more crop plants, particularly orphan crops of Africa, is in progress. A recent public
and private sector initiative called African Orphan Crops Consortium (AOCC, http://africa‐
norphancrops.org/) aims to sequence, assemble, and annotate the genomes of 100 traditional
African food crops.

The cost of DNA sequencing per raw million bases fell from $8,000 to $0.1 between 2001 and
2013 according to Wetterstrand, K.A. (http://www.genome.gov/sequencingcosts/) cited in [8].
With the advent of the third-generation sequencing technologies, the cost is expected to reduce
still further while the speed, quality, and throughput increase exponentially. Currently, most
of the staple food crops that IITA is working on have been sequenced or are being sequenced
(Table 1). The focus is thus on post-genomics analysis such as genome annotation and
describing gene functions as applied to crop breeding. With a fledging bioinformatics capacity,
and a network of partners in advanced laboratories as well as collaboration in the CRP of
CGIAR, the breeding programs in IITA are moving toward molecular breeding for enhanced

Perspectives on the Application of Next-generation Sequencing to the Improvement of Africa’s Staple Food Crops
http://dx.doi.org/10.5772/61665

289



genetic gain with the aim to transfer these innovative genomics-assisted breeding schemes to
our partners in the national agricultural research systems (NARS).

Species Subspecies/
genotype

Family Genome size
(Mbp)

No. of
predicted

genes

Chromosome no.
(2n)

Reference

Maize Zea mays ssp mays
B73

Poaceae 2,300 39,656 10 [15]

Soybean Glycine max,
variety Williams

Fabaceae 1,115 46,430 20 [16]

Cowpea Vigna unguiculata Fabaceae 620 5,888 GSRs 22 [17]

Cassava Manihot esculenta Euphorbiaceae 770 30,666 18 [18,19];

Banana Musa acuminata
(ssp. malaccensis)

Musaceae 523 36,542 22 [20]

Yam* Dioscorea rotundata Dioscoreaceae 594 21,882 20 [21]

Cacao Theobroma cacao
cv. Matina

Malvaceae 430 28,798 20 [22]

*At the time of the writing, manuscript is in preparation. Preliminary results were presented at an international conference.

Table 1. Current status of whole-genome sequences of IITA mandate crops

2.2. NGS-based genotyping and marker analysis

Massively parallel sequencing technology enabled high-throughput genotyping at an unpre‐
cedented scale. Whole-genome sequencing and re-sequencing of genome and transcriptome
have yielded hundreds of thousands of single-nucleotide polymorphism (SNP) markers in
several crop plants, including orphan crops. In recent years, diverse next-generation-based
reduced representation protocols have been developed for the simultaneous discovery and
generation of massive, genome-wide SNP data that have been applied to linkage mapping,
quantitative trait locus (QTL) analysis, diversity studies, genome selection, and population
genetics [14]. Protocols for reduced representation can be optimized to any species with or
without a reference genome sequence [15]. The most widely used strategies for complexity
reduction genotyping are restriction-site-associated DNA (RAD) [16] and genotyping by
sequencing (GBS) [17], and diversity array technology (DArT)-seq, which combine complexity
reduction methods and utilize a microarray platform [18]. All have been optimized for multiple
plant species.

GBS protocols allow for a high level of multiplexing of up to 384 samples in one sequencing
reaction, making it presently the most inexpensive and scalable assay with a library construc‐
tion less complicated than RAD [19,20]. Researchers in developing countries presently focus
on multiplex genotyping platforms such as GBS for genotyping cassava, yam, banana, maize,
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and cowpea for diversity analysis and molecular breeding. However, the deployment of such
SNP markers in forward breeding, where only a few specific markers are tracked, entails the
selection of suitable, cost-effective assays from a wide array of genotyping platforms such as
fixed arrays or flexible singleplex assays [21]. Conversion of SNPs of interest into one of the
above platforms requires bioinformatics analysis pipeline to design and optimize an assay. In
the CGIAR systems, the Kompetitive Allele-Specific PCR (KASP) genotyping assay is widely
applied (e.g., [22]). New initiatives are being developed to establish a cost-effective genotyping
hub aiming to reduce the cost of data points by fivefold. Multiplex genotyping assays such as
GBS, RAD, and DArT have been successfully used to identify SNP markers associated with
the trait of interest in understudied crops. Examples include disease resistance in lupin [23],
pepper [24], cassava [25,26], and beans [27].

Reduced representation sequencing (RRS)-based genotyping methods have the drawback of
missing mutations at the recognition site of the restriction enzymes used [19]. The use of other
enzyme combinations could circumvent this problem by altering the library construction [20,
28]. In addition, the accuracy of base calling in complex polyploids and heterozygous indi‐
viduals, of which there are several examples within the root and tuber staple crops of Africa,
can also be problematic. Given the rapid pace of advances in both the chemistry of sequencing
such as the advent of the third-generation sequencing with longer read length and shorter
assay time [29] and informatics pipelines (viz. imputation), the cost and accuracy of sequence-
based genotyping are anticipated to decline in the foreseeable future.

2.3. NGS-based gene expression analysis

Transcriptomics is the study of the complete set of transcripts in a cell, and their quantity, for
a specific developmental stage or physiological condition [30]. The transcriptome includes all
RNA molecules, including mRNA, rRNA, tRNA, small RNAs, and other noncoding transcri‐
bed RNA and can vary with external environmental conditions. Transcriptomics studies often
try to catalog these transcripts, as well as determining the transcriptional structure of genes,
in terms of their start sites, 5′ and 3′ ends, splicing patterns, and other posttranscriptional
modifications. By quantifying the expression levels of specific transcripts under different
conditions or development stages, transcriptomics can help to understand the functional
elements of the genome, including cellular processes and biochemical signaling pathways.
Two main approaches have been used: based on hybridization and sequencing. Cassava is one
of the very few African staple food crop to which microarrays have been applied [31–36].

Although hybridization approaches are relatively high throughput and inexpensive compared
to the alternative expression assays, they do have technical limitations and require a priori
knowledge of gene transcripts. NGS with its advantages of exceptional throughput and
relative affordability has now enabled sufficient depth of sequencing for the study of whole
transcriptome in a comprehensive manner. This method, termed RNA-Seq (RNA sequencing),
has clear advantages over other existing approaches and is fast becoming the most popular
method for analysis of eukaryotic transcriptome [30]. RNA-Seq also provides a far more precise
measurement of levels of transcripts and their isoforms than other methods. To date, the
majority of applications of RNASeq to Africa’s staple crops have focused on understanding
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natural host responses to plant viruses. RNA sequencing was used to identify 700 uniquely
overexpressed genes in the cassava brown streak disease (CBSD) resistant variety under
cassava brown streak virus (CBSV) infection [37]. Although none of the overexpressed genes
corresponded to known resistant gene orthologs, some belonged to hormone signaling
pathways and secondary metabolites, both of which are linked to plant resistance. Similarly,
the transcriptome of South African cassava mosaic virus-infected susceptible and tolerant
landraces of cassava (12, 32, and 67 days post infection) was investigated [38]. Significantly,
they found that susceptibility was mediated by transcriptome repression, rather than induc‐
tion, and many R-gene homologues were repressed throughout infection in the susceptible
individuals. In another study, NGS was deployed to investigate the role of miRNAs in plant
growth and starch biosynthesis [39,40]. IITA and partners have completed an RNA-seq study
in yam for the purpose of assembling the whole-genome sequence of Dioscorea rotundata and
annotating predicted genes [41]. In addition, RNA-seq-based transcriptome has revealed rice
genes involved in the signaling pathway for resistance to Striga [42] that may in turn shed light
on the mechanism of resistance in other African crops that are vulnerable to Striga (e.g., maize,
sorghum, and cowpea). Illumina-based sequencing of transcriptome from four underutilized
leguminous crops has led to the development of markers for phylogenetics and comparative
mapping [43]. NGS was used in modified bulk segregant RNA-seq (BSR-seq) method to clone
a mutant gene in maize [44].

In addition, RNA-seq has been used successfully to address several production constraints of
orphan crops [45–47], and it is envisaged that this will be a popular approach in the future.
Other areas of interest for application of this technique are to understand the mechanism of
Striga tolerance in maize and cowpea, yam anthracnose resistance, flowering and sex deter‐
mination in yam, and drought tolerance in several crops (maize, cassava, cowpea). A single
RNA-seq experiment involves taking samples at different stages of growth, tissue, and
replicates. Multiplying the aforementioned factors by the number of crops and the number of
traits per crops results in numerous libraries, which implies high assay cost. In this light, having
in-house capacity to construct the libraries will significantly lower the cost and allow proper
control of the experiment.

2.4. Bioinformatics and database

The field of bioinformatics has faced an unprecedented challenge, as a result of the new high-
throughput technologies, particularly NGS, which has redefined the last decade of research in
biology [48]. However, these technologies would never have made such progress without the
attendant advances in the field of bioinformatics. Sequencing DNA and RNA has become so
cheap and so vast that NGS is now a basic technology for many fields of research in medicine,
basic research, as well as research in agriculture. In agricultural research, NGS is applied in
whole-genome sequencing (WGS), whole-genome re-sequencing (WGRS), transcriptomics,
metagenomics, and reduced representation sequencing for high-throughput SNP genotyping
[15,21,28,29,49]. A genome sequence becomes only useful for biological applications when the
genome is annotated and genes are described and their functions revealed [50]. Besides the
functionality of genes, the variability of the genome of different varieties of a species is
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important to understand the different properties a species can demonstrate [13,51]. This last
point together with the functionality information is a very important opportunity to support
and improve breeding activities in crops of economic importance [52].

An extensive review of NGS data analysis is beyond the scope of this chapter. An insight into
the status of NGS analytical tools and cross-references (articles, books, and dedicated issues
of journals) are provided in a recent review [8]. The authors classified the NGS software tools
into four general categories – alignment of sequence reads, base calling, and/or polymorphism
detection, de novo, and genome browsing and annotation – and cited that a gamut of packages
have been developed for each category by Barba et al. [8]. Of course, as the sequencing
technology evolves, the bioinformatics software tools and algorithms have to be developed to
keep pace with them. Likewise, workflow and various analysis strategies and challenges have
been described for metagenomics [53–55].

The focus of this chapter is the application of NGS to the improvement of crops that are the
mainstay of hundreds of millions of people in the developing world. Presently, the major
application of NGS is genotyping by GBS and RNA-seq in crops such as cassava, yam, maize,
banana, and cowpea, among others. Using these technologies necessitated the establishment
of a moderate bioinformatics platform at IITA not only to serve basic bioinformatics needs but
also to support the genotyping efforts in the aforementioned crops. The platform hosts the
basic bioinformatics tools such as alignment and basic sequence analysis tools. For the data
analysis of NGS data, the server is equipped with tools for de novo assembly [56] and mapping
[57] as well as specific needs such as genotyping by sequencing [17], transcriptomics [58],
noncoding RNA (ncRNA) [59,60], DNA methylation [61,62], and metagenomics [63] as new
horizons to accelerate genetic gain.

It is worthwhile to describe some applications that are routinely run in IITA to support the
research activities of IITA because, ultimately, the technologies are transferred to partner
national research programs. GBS is a very cost-efficient genotyping approach by reducing the
complexity of the genome and increasing the number of genotypes per sequencing round.
There exist several bioinformatics pipelines to clean and analyze such data. IITA installed
Tassel5 [64] and GATK [65] as the most useful tools. The Tassel plug-ins are assembled to a
full automatic workflow to produce a filtered variant call format (VCF) file [66]. With Tassel,
the bioinformatics server of IITA is able to easily analyze more than 5,500 genotypes in parallel
having approximately 1.2 TB compressed sequencing data available. The analysis runs over 2
days using at most 250 GB RAM. The analysis picks about 350,000 SNPs, which get reduced
by filtering to about 170,000 high-quality SNPs, which are a reasonable number for down‐
stream analyses such as population genetics and clustering as well as QTL analysis. The same
workflow for genotyping is now applicable for different plant species, and analyses have been
performed for cassava, Dioscorea, maize, and planned for Musa.

A workflow using Picard Tools and GATK is under construction and will be available for any
kind of DNA sequencing data. IITA is also in the process of establishing a pipeline for the
analysis of RNA-seq data using several available Illumina RNA sequencing data sets from
contrasting genotypes. As a reference sequence was available, three different analyses were
performed: a de novo sequence assembly to discover new unannotated genes or new alterna‐
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tive splice variants; mapping on the reference genome to elaborate the expression level of
known, annotated genes; and the differential expression of selected genes between different
genotypes. Such studies will become increasingly important for modern breeding programs
since especially biotic and abiotic stresses are clearly regulated by different mechanisms other
than purely genetic variations.

First experiments were conducted to study the DNA methylation profile on the model plant
Arabidopsis to study epigenetic changes upon biotic stresses. A whole set of tools were installed
and in-house scripts developed to analyze data derived from whole-genome bisulfide (BS)
transformation [67]. The BS transformation converts non-methylated cysteine into a uracil and
later, after polymerase chain reaction (PCR) amplification, into a thymine, whereas the
methylated cysteine remains a cysteine. Since this technique is looking for single-nucleotide
events and since the genomic code is “falsified,” there is the need for a high-quality reference
and specialized mapping strategies and statistics for the methylation calling [68]. The availa‐
bility of a good-quality reference genome sequence of cassava and whole-genome re-sequenc‐
ing of several clones of interest prompted DNA methylation profiling for some relevant
cassava varieties. In this pilot study at IITA, currently in progress, the aim is to reveal dynamic
methylation events under biotic and abiotic stresses to gain information on possible epigenetic
markers for the next-generation breeding programs.

With the development of NGS noncoding RNA (ncRNA), especially the smaller species
became very easy to detect, and many studies demonstrated that these ncRNAs are important
players in gene regulation, regulation of DNA and histone methylation, and defense mecha‐
nisms in plants. ncRNA profiles are also important for diagnosing and characterizing virus
infections in plants [69]. The virus infection triggers a defense reaction where a cascade of host
ncRNA are involved, but also small interfering RNAs (siRNAs) corresponding to the viral
genome are found in the plant extract. These endogenous ncRNA and the viral small RNA
fragments can easily be detected by NGS. At IITA, we have the expertise and software suite
of tools to search and analyze any plant ncRNAs or virus siRNAs. Again biotic and abiotic
stresses in plants have a specific profile of expression of different species of ncRNA, and at
IITA, we study this phenomenon to create information and tools to improve the breeding
programs.

2.5. Genome editing

Genetics relies on the analysis of mutations and the phenotypic variation they cause to correlate
precise sequence changes to particular genes of interest. With the help of genetic engineering
techniques, desired traits can also be introduced into plants not expressing them naturally.
However, the use of genetically modified crops is hindered by health, environmental, and
ethical concerns. Genome editing with site-specific nucleases is the most advanced technology
for precise and effective genome engineering, which promises to revolutionize applied
research for crop improvement [70,71]. It involves the insertion, elimination, or replacement
of a fragment of DNA at desired locations in the genome, by using engineered nucleases that
create specific double-strand breaks (DSBs) and stimulate cellular DNA repair mechanisms.
There are currently four classes of targetable nucleases discovered and bioengineered that are
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used to create site-specific DSB: zinc finger nucleases (ZFNs), transcription activator–like
effector nucleases (TALENs), clustered regularly interspaced short palindromic repeat
(CRISPR)/CRISPR-associated (Cas) RNA-guided nucleases (RGNs), and engineered meganu‐
clease, also known as homing endonucleases [72–75].

Over  the  past  few  years,  all  of  the  above  nucleases  have  been  used  to  create  target-
specific mutations in model and crop plants,  albeit with some limitations. In all  cases, a
continuing issue is the delivery of all the reagents efficiently and functionally to the cells
or organisms under study. The CRISPR/CRISPR-associated protein 9 (Cas9) tool seems to
overcome some of the shortcomings of the other methods [76,77]. Successful examples of
targetable  nucleases  application  are  reported  for  Arabidopsis,  tobacco,  rice,  maize,  soy‐
bean, barley, cabbage, and bunchgrass by using different delivery technologies, including
T-DNA plasmid from Agrobacterium, protoplasts and embryonic callus manipulation, and
subsequent plant regeneration [70,78–82].

Targetable nucleases are attractive alternative biotechnological tools for trait manipulation and
breeding in crop plants. By means of targetable nucleases, mutations can be produced in a very
specific manner, and known mutations can be transferred between cultivars or breeding lines
without disrupting a favorable genetic background. Although genome editing approaches are
relatively new and not yet widely applied, their advantage in terms of safety, robustness,
speed, and precision over the classical mutagenesis and breeding is undisputable [75].
Targeted genome editing using artificial nucleases, combined with accurate gene expression
analyses, has the potential to accelerate plant breeding by providing the means to modify
genomes rapidly in a precise and predictable manner [71] and to restore lost traits through
reverse breeding [83]. Although genome editing has not yet been applied to African staple
crop species, there is no doubt that this technology will assume a great importance particularly
for genetic improvement of asexually propagated crops with limited flowering ability [71].

Furthermore, technologies based on targetable nucleases offer the opportunity to overcome
the major concerns of the general public about transgenic crops since the organism with the
edited gene do not contain the foreign DNA. In particular, the absence of extra copies of DNAs
upon nonhomologous end joining (NHEJ)-mediated gene knockout makes the final plant
comparable with those arising from natural mutations. However, the development of dedi‐
cated international legislations is required to effectively promote a wide application of genome
editing technologies for crop improvement [70,84]. As knowledge is gained about plant
genome organization and gene functions are revealed, the potential of genome editing could
be mainstreamed to broaden the genetic base of crops.

2.6. Targeting Induced Local Lesions in Genomes (TILLING) and NGS-based mutation
detection

One of the factors contributing to slow genetic gain in breeding of vegetatively propagated
crops is the narrow genetic base of the source population. This is a result of clonal propagation
as opposed to sexual reproduction, which limits recombination. TILLING (Targeting Induced
Local Lesions in Genomes) [85,86] provides an alternative approach for creating novel
variation in these crops [87,88]. Rare alleles harbored in germplasm collections and wild
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species can be accessed by TILLING and EcoTILLING by sequencing. TILLING may lead to
the development of functional markers for screening-associated traits through marker-assisted
selection (MAS). The technique of TILLING using high-throughput mutation discovery has
already been applied successfully to more than 20 plant species [89].

A wide spectrum of mutation detection assays, ranging from heteroduplex analysis with high-
pressure liquid chromatography (HPLC), screening with labeled primers, electrophoresis,
microarray, the use of fluorescent dye-labeled primers assayed on ABI genetic analyzer have
been used. However, these methods are generally slow, costly, and labor intensive. Applica‐
tion of NGS has been shown to be a cost-effective mutation detection system by re-sequencing
the gene of interest in mutagenized plants [90,91]. The availability of genome sequence enables
the use of reverse genetic approaches to identify mutations in specific target genes, thereby
accelerating the generation of novel phenotypes. Comparative genome analysis methods offer
the opportunity to select target genes involved in biosynthetic pathways and networks of
traits/phenotypes of economic importance. The use of multidimensional pooling of DNA
samples enables screening of DNA pools for multiple independent mutations in any target
gene using NGS, which provides a cost-effective assay. This has led to the discovery of rare
mutations in rice and wheat, termed TILLING by sequencing [92], tef [93], and in animals [94].
Different sample pooling schemes for NGS, which further enhance the power of NGS in
processing multiple samples in parallel have been developed [95]. In light of the rapidly
evolving sequencing technology together with a plethora of sample pooling schemes, com‐
bined with bar coding, it is feasible and imperative to apply TILLING by sequencing to
understudied crops of Africa. A direct application of NGS to detect mutant regions in a
segregating population of rice has been demonstrated in a method called MutMap [96].

2.7. QTL identification

This section discusses how NGS can be used to enhance QTL analysis. Following the advent
of first-generation molecular markers such as restriction fragment length polymorphism
(RFLP), random amplified polymorphic DNA (RAPD), and amplified fragment length
polymorphism (AFLP), numerous studies in many crop species were launched to identify QTL,
but for quantitative traits, affected by polygenes with small effects, limited success was
attained in terms of application [97]. One of the explanations [98] for the limited exploitation
of QTLs is the issues associated with the acquisition and summarizing of plethora of QTL
information.

The rapid advance in next-generation sequencing technologies and the wide array of ultrahigh-
throughput and cost-effective genotyping platforms have created a multitude of new possi‐
bilities for QTL mapping using large early-generation populations and high-density markers.
Variants of NGS-based QTL identification methods, such as X-QTL, MutMap, QTL-seq,
SHOREmap, and NGM, have been reviewed elsewhere [99]. Among the various NGS-based
QTL mapping approaches, QTL-seq, the whole genome re-sequencing-based mapping of QTL
[100], can successfully be applied to dissect key quantitative traits underlying biotic and abiotic
stresses in major African staple food crops such as cassava, yam, tef, and legumes. One of the
essential requirements for QTL-seq is the availability of a quality reference genome and
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mapping populations. The technique has been applied to rice where the whole genomes of
two pooled rice DNA samples with contrasting phenotypes each in F2 and recombinant inbred
line (RIL) populations were re-sequenced, after which the short reads were aligned to the
reference sequence to calculate an SNP index. QTL were declared at positions where the SNP
were different from the reference and had an SNP index value of 1. The analysis uses careful
filtering of spurious SNPs. Conventional QTL mapping verified the candidate QTLs detected
by the QTL-seq, and the method was validated by simulation analysis. QTL-seq has also been
used in cucumber to map a QTL involved in flowering trait [101]. Likewise, the deployment
of QTL-seq for rapid identification and fine mapping of QTLs was reported in chickpea [102]
and sorghum [103].

In IITA, there are ongoing projects aiming to apply this technique to mapping of QTLs
controlling disease resistance (e.g., anthracnose and yam mosaic virus), as well as root quality
traits such as starch content. In cassava, the approach of genome-wide association study
(GWAS) and conventional QTL mapping in F1 populations is being pursued to identify
markers associated with key traits, including yield, dry matter, quality, and resistance to
disease.

2.8. Metagenomics

Metagenomics is the direct genetic analysis of genomes contained within an entire community
of organisms such as a microbial community, and makes use of NGS technologies and
bioinformatics tools [104]. The advent of metagenomics has revolutionized the study of
microbial ecology, evolution, and diversity. In plant pathology and virology, metagenomics
has contributed to the sequencing of genomes within infected plants and has led to the
detection of many RNA and DNA viruses and/or viroids. Other areas of application include
ecology and epidemiology as well as functional genomics of pathogens, and the culture-
independent analysis of a mixture of microbial genomes [8,105,106].

The application of metagenomics in crop improvement is discussed below in the disease
diagnostics section as the majority of plant metagenomics studies, as applied to agriculture,
relate to virology. However, there are substantial shotgun metagenome sequencing studies
that investigate microbial communities in soil and plants and other environmental samples
[105,107–109]. The challenges of analysis are being addressed gradually [55,104]. The analysis
pipeline for metagenomics follows major steps such as raw data quality checking, filtering,
assembly, taxonomic classification, abundance estimation, and relative quantification of
taxons [53,54].

With growing experience in NGS data analysis and a fledging bioinformatics critical mass,
IITA and partners are moving toward the application of meta-omics (-genomics, -transcrip‐
tomics, and -proteomics). In the context of African agriculture, the rapidly evolving field of
metagenomics will have a significant impact in revealing the diversity of microorganisms, and
in describing the relationship between host-associated microbial communities and host
phenotype. The declining cost of sequencing and the associated analytical tools will likely
create the opportunity to develop cost-effective and efficient diagnostic kits to address the
challenge of multiple infections (pathogenic races and strains) in the major crops such as
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cassava [110], banana [111], and yams [112]. Survey of the incidence and distribution of viruses
infecting these crops makes it one of the important tools for understanding the microbial
genetics, physiology, and community ecology. The benefit of metagenomics extends to
agriculturally important microbes, both disease causing and beneficial, in plant and animal
production.

3. Application to crop improvement

3.1. Molecular breeding

The role of molecular markers in facilitating selection has substantially increased in the past
three decades. The rapid accumulation of genomic resources provides researchers with an
unprecedented wealth of information to access and manipulate genetic variation that is useful
for crop improvement [113]. Genomics-assisted breeding is expected to enhance the accuracy
and efficiency of breeding programs to deliver superior cultivars for sustainable agriculture.
The ultrahigh throughput and decreasing cost of genotyping have elicited concepts such as
genomics-assisted breeding [52] and breeding-assisted genomics [114]. Currently, the new
paradigm among the Consortium of International Agricultural Research Centers
(www.cgiar.org) is to mobilize “Omics” and bioinformatics-enabled interventions to assess
the level of available genetic variation, to broaden the genetic bases by creating new intra- and
inter-species variations, to construct new cultivars with combinations of desirable and novel
traits in more efficient and effective selection schemes. The ultimate goal is to accelerate genetic
gain, which will contribute to improved food and nutritional security, in an environmentally
sustainable way, in low-income countries.

The unprecedented scientific and technological progress in the fields of genomics and
bioinformatics can successfully be harnessed to benefit smallholder farmers in developing
countries. In the face of limited agricultural inputs in developing countries, genetic improve‐
ment can play a crucial role in raising crop productivity in an environmentally sustainable
way. Spurred by steadily declining costs of genotyping and unparalleled progress in compu‐
tational abilities, modern genomic tools and processes are being used to devise an efficient and
effective breeding strategy. The prominent constraints to breeding progress are slow genetic
gain, complex traits, and genotype by environment interaction. Besides these generic con‐
straints, neglected crops of Africa were affected by a paucity of genomic information until the
dawn of NGS.

It is now feasible to access genome-wide nucleotide variation by re-sequencing the whole
genome of thousands of accessions or by deploying one of the complexity reduction methods
to generate high-density, genome-wide SNP markers associated with key agronomic traits
attributed to quality, resilience to climate change, and biotic stresses. These technological
advances led to the design of experimental populations involving multiple parents, in addition
to the classical genetic mapping within specific biparental crosses. An overview of IITA’s (and
CGIAR’s) activities in addressing crop productivity and other agricultural problems has been
documented [4].
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Evidence is emerging that the massive availability and accessibility of genomic resources and
data management tools are paving the way for the deployment of innovative technologies to
accelerate genetic gain. A number of recent reviews analyze the potential benefit of the Omics
technologies to agricultural productivity and highlight various limitations that need to be
addressed [19,27,52,115].

The two major approaches in the new paradigm of molecular breeding are (1) MAS for highly
heritable traits and (2) GS for complex traits. These approaches involve the genotypic screening
of large numbers of individuals at an early stage, selection at the seedling stage, and extensive
phenotypic evaluation of fewer materials at a later stage. This reduced breeding cycles and the
cost of multi-environment testing. Strategies such as GS also allow simultaneous selection for
multiple traits through a selection index [52,116–119].

Broadly, there are two approaches to exploit QTLs. The first application is to detect large-effect
QTLs with linkage or association analysis, whereas approaches such as GS utilize the compu‐
tation of an individual breeding value based on genome-wide marker genotype, without
taking into consideration the single small-effect QTLs in the prediction model.

Numerous reviews, opinion articles, and research papers have addressed the benefit, chal‐
lenges, and prospect of GS crystallized in a recent review [113]. The salient features of GS
include benefits such as increased gain from selection, reduced breeding cycles, and thus
reducing cultivar development costs. Other advantages include utilization of genome-wide
markers, afforded by ultrahigh-throughput NGS assays (compared to predecessor approaches
to estimate breeding values), as well as the ability to target multiple traits for multiple
environments. In clonally propagated crops, an additional advantage is the use of historical
phenotype data to refine the prediction model.

Given the long cycle of breeding, African staple crops such as cassava are set to benefit from
GS approaches [117,118,120], where preliminary results have indicated reduced time of
breeding cycle and reasonable prediction accuracy in some traits. Various ways of refining the
prediction models via repeated phenotypic evaluations are being considered. Fig. 1 depicts a
1-year GS-based breeding cycle that is underway at IITA, Nigeria. The challenge in this
breeding scheme is, however, the situation of erratic flowering in some lines, which hinders
recombination of selected clones due to failure to flower. Addressing the biology of flowering
using genomics tools is imperative. In cereals, current studies are investigating at least two
key applications of GS in maize and wheat breeding programs – predicting the genotypic
values of individuals for potential release as cultivars and predicting the breeding value of
candidates in rapid cycle populations. Prediction accuracy is affected by genetic relatedness
of the populations and the heritability of the trait, where the prediction accuracy is lower in
complex traits [121].

Utilization of molecular technologies that have revolutionized commercial crop breeding can
be used as a proof of concept for adoption of such genomics-based prediction methodologies
[122,123] to improve trait performance in other less-studied crops [115,116]. These approaches
are being adopted in crops of importance in developing countries such as in maize and wheat
[121], rice [124], pulses (legumes) [11], cassava [118,120], cowpea [125], lentil [126], soybean
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[127,128], and pigeon pea [129]. With respect to the best practice for GS, various models are
being put forward [113]. Below is the rapid cycling breeding scheme for cassava, a long cycle
clonally propagated crop (Figure 1).

Figure 1. An overview of genomic selection-based annual breeding cycle implemented for cassava at the International In‐
stitute of Tropical Agriculture (IITA) in Nigeria. In June, crossing blocks are planted with parents selected using genom‐
ic selection and crosses made between September and November. Mature seeds are germinated and transplanted in
January under irrigation. DNA is extracted from seedlings in March for genotyping by sequencing at the Genomic Diver‐
sity Facility (GDF). Raw SNP data are released to “Cassavabase” for further processing. Genomic-estimated breeding val‐
ues (GEBVs) are then calculated and used to select candidate parents for the next recombination cycle. The remaining
clones are also evaluated in clonal evaluation yield trials for variety development as well as for re-training the GS predic‐
tion model. Cassavabase (www.cassavabase.org): A bioinformatics infrastructure that integrates phenotypic data from
field trials, genotypic data, as well as statistical tools in a single, user-friendly, web-based, and reliable database [130].
Breeders can use the intuitive web-based interphase to calculate genomic-estimated breeding values (GEBVs) of individ‐
uals by selecting a training population for modeling and estimating genomic-estimated breeding values of selection can‐
didates (http://cassavabase.org/solgs). GDF: Genomic Diversity Facility (http://www.biotech.cornell.edu/brc/genomic-
diversity-facility) provides expertise and state-of-the-art support for genotyping by sequencing (GBS) projects, including
project optimization, library production, DNA sequencing, and data analysis.

It has now become evident that with advances in genotyping, fueled by NGS, phenotyping
has become the rate-limiting step in genomics-enabled breeding. Concomitant development
in phenotyping speed and precision is pivotal to associate genome with phenome [131] and to
enable routine cost-effective high-throughput precision phenotyping. Approaches to increase
throughput and quality of phenotyping range from automated and mechanized field experi‐
ment management, digital data capture, improved sample tracking methods, to deployment
of ground-based and aerial advanced technologies in imaging and remote sensing [132–135].
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Precision phenotyping has led to accelerated genetic gain by increasing heritability, mainly
through reducing environmental variation [116,131], and reduced cost of trait measurement.
Furthermore, robust and standardized screening protocols and the establishment of pheno‐
typing hubs for abiotic (drought, nutrient use efficiency) and biotic (pest and disease hotspots)
stresses are key elements for precision phenotyping to dissect the genetics of quantitative traits.

Leveraging existing data management and decision support tools to accommodate new data
types and analytical tools, including digitized data collection (e.g., personal digital assistant
(PDA), electronic field books) and sample tracking using bar codes, will be keys to the ultimate
success of genomics breeding in developing countries.

3.2. Genetic resource management and utilization

Genebanks  play  an  important  role  in  safeguarding  crop  genetic  diversity  against  the
ongoing  loss.  They  provide  genetic  variation  for  breeding  for  continued  adaptation  to
changing  environmental  conditions  and  consumer  demands  [136,137].  The  recent  prog‐
ress in DNA sequencing technologies that require less investment for generating large data
is  an opportunity  to  further  investigate  genetic  variation maintained in  the  large  germ‐
plasm collections held in trust by the CGIAR and increase the efficiency of genebanks. The
11 genebanks of the CGIAR conserve over 666,000 accessions of mainly food crops [138].
The International Institute of Tropical Agriculture (IITA) maintains over 28,000 accessions
of  major  food  crops  of  Africa,  namely  cowpea  (Vigna  unguiculata),  cassava  (Manihot
esculenta), yam (Dioscorea spp.), soybean (Glycine max), bambara groundnut (Vigna subterra‐
nea), maize (Zea mays), and plantain and banana (Musa spp.). The aforementioned, including
other  important  crops  in  developing  countries  [e.g.,  finger  millet  (Eleusine  coracana),  tef
(Eragrostis  tef),  enset  (Ensete  ventricosum),  grass  pea  (Lathyrus  sativus)  and  their  wild
relatives], were considered understudied [2]. Large-scale characterization of all accessions
and other genetic stocks is imperative to stimulate their utilization in breeding programs
[139,140].

Traditionally, genebanks have used morphological descriptors for germplasm characteriza‐
tion; however, these are highly influenced by environmental conditions and different stages
of plant development [141]. Moreover, the number of descriptors can be quite limited, thus
greatly reducing the power to distinguish consanguineous varieties [142]. Molecular marker
technologies have been widely applied for characterization and utilization of germplasm
in genebanks [143]. However, the marker systems used prior to the advent of NGS, which
sample a subset of the genome, have restricted applications mainly because of their limited
abundance in the genome.  NGS has enabled marker analysis  at  a  much higher density.
NGS-based genotyping,  such as  GBS,  has  been used for  genetic  diversity  assessment  of
cultivated yam and its wild relatives [144] and cocoa [145], as well as other crop species.
Breeding programs in the public and private sector deploy whole-genome fingerprinting
of inbreds, to get an insight into the haplotype-level genetic diversity [116,140,146].
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The advance in sequencing technologies is an advantage for efficient sequencing of large
collections that include poorly studied species in genebanks with larger analytical power
than the conventional molecular marker systems. Diversity assessments per se have huge
utility in terms of germplasm utilization, such as definition of heterotic groups that enable
breeders to make decisions in planning crosses for the population development. In addition
to diversity  assessment,  NGS-based technologies  are  likely to  impact  further  analysis  of
genetic variation, in terms of characterization of functional genetic diversity [148] and can
be applied to pre-breeding activities to boost utilization of genetic resources in breeding
programs [29,52,147].

NGS  can  also  be  applied  to  enhance  management  aspects  of  the  genebanks,  including
identifying  duplicates  and  identification  of  mislabeled  accessions,  both  of  which  are
common challenges in genebanks [148]. Diversity assessments using NGS could help guide
the need for further targeted germplasm collection and improve the development of subsets
of the collection, also referred to as core or minicore or diversity research sets, that would
further improve the efficient utilization of germplasm for cultivar development.

A strong genomics and bioinformatics platform will greatly facilitate essential elements of
genebank management, particularly the verification of accession identity, characterization
of  duplicates  in  the  collection,  and  diversity  analysis.  Furthermore,  rapid  genotyping
methods (e.g.,  GBS and WGS) will  be essential for allele mining and large-scale associa‐
tion of genotype–phenotype, which are taken together with methods of developing trait-
specific subsets, also referred to as core or mini core or diversity research sets, to greatly
enhance the  value of  the  collections  for  breeding and research.  In  particular  gene pool,
enhancement (pre-breeding) will be strengthened in terms of both base broadening within
a species and use of crop wild relatives for the integration of key traits. Such approaches
can be applied not only to staple crops but also to obtain rapid advances in the improve‐
ment of underutilized and under-researched but important crops such as cocoyam, winged
bean, and African yam bean.

3.3. Breeding data management

The adoption of new Omics technologies by breeding programs in developing countries
can  contribute  to  the  enhancement  of  breeding  efficiency.  There  is  a  growing  effort  to
harness  advances  in  bio-computational  methods  and  information  and  communication
technology (ICT) to successfully utilize diverse phenotypic, environmental, genomic, and
other metadata to provide decision support tools at various stages of the breeding pipeline.
Modern breeding schemes such as GS and MAS involve a deluge of genotype data such
as GBS-derived SNP markers,  advanced statistical  analysis to compute GEBV, and large
amounts of high-throughput phenotype information, all of which require efficient informat‐
ics  tools,  automated data  analysis  pipelines,  and decision-making tools  for  analysis  and
integration. Efficient utilization of such unprecedented volumes of genotypic, phenotypic,
and other data entails development of informatics,  database, and decision support tools.
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Access to affordable genotyping platform by scientists  in developing countries has been
realized  through  various  bilateral  research-for-development  projects.  However,  it  is
inconceivable to make progress without modern breeding tools and management process‐
es that will facilitate the integration, analysis, and decision-making tools. One initiative that
aims at providing some of these tools is the breeding management system (BMS) devel‐
oped and promoted  by  the  integrated  breeding  platform (IBP)  (https://www.integrated‐
breeding.net/breeding-management-system).  The  service  of  BMS  is  delivered  by  IBP
regional hubs that are strategically located throughout developing countries and hosted by
partner research institutions such as IITA in Nigeria. The hubs provide support for adoption,
customization,  and use  of  BMS and related  services,  mainly  through capacity  building,
technical  support,  and  crop-specific  expertise.  Presently,  IBP  comprises  ready-to-use
information and tools for over 10 crops, including diagnostic markers and trait dictionaries.

In today’s Omics era, web-based, peer-reviewed molecular databases and web servers abound
[149]. An annual issue of the journal “Nucleic Acid Research” is dedicated to databases and
web servers and documents a wide spectrum of databases, including a substantial number on
plant databases. A comprehensive list of genomic resources (platforms and databases) relevant
to genomics-enabled crop improvement, including genome sequences of crop plants, has been
published recently [12]. Table 2 provides a partial list of deployed or planned breeding-
relevant technology and tools currently in use. The Kazusa marker database [150] features
genomics and genetics information for 10 plant species, whereas SolGenomics is a portal for
several solanaceous plant species [130]. These and other breeders’ toolboxes such as Soybase
and MaizeGDB can serve as a starting point for comparative analysis of orphan crops with
limited genomic resources.

Developments of several other similar and complementary custom-made breeding toolboxes
are underway in various projects implemented in developing countries. A concerted effort by
multidisciplinary teams, galvanized by various consortium research programs (CRPs),
including national programs, are diligently working on development of pipelines for connect‐
ing diverse types of data to appropriate analytical tools and for processing imaging and remote
sensing phenotype data.

The multidisciplinary nature of modern plant breeding/genetic research is underpinned by
acquisition, analysis, and utilization of “big data” not only from field trials but also from
laboratory analyses. Laboratory analysis includes analytical chemistry for profiling nutritional
content and other metabolites, which entails efficient data management system. Moreover,
high-density genome-wide marker data generated from next-generation sequencing for
marker–trait associations as well as whole-genome expression profiling are increasingly being
utilized for crop improvement pipelines. A comprehensive open-access database comprising
phenotype and marker data, trial design, and analysis pipeline is a must-have to aid in
streamlined integration of various data from plant breeding, including phenotypes recorded
from field trials; genotypic data, gene expression, and analytical chemistry requires reliable
and user-friendly database. Such a database must also have inbuilt quantitative genetics
analysis tools/pipelines that would allow breeders to not only store and retrieve raw data but
also calculate breeding values and selection index, design crosses, as well as field trials.

Perspectives on the Application of Next-generation Sequencing to the Improvement of Africa’s Staple Food Crops
http://dx.doi.org/10.5772/61665

303



Moreover, discovery research such as QTL mapping can be done on the database through
implementation of genetic mapping methods.

Project/Host Database/Tool Purpose URL Remark/

Reference

Integrated

breeding platform

Breeding management

system (BMS*)

Tools for Crop information management

Nursery and trial management Statistical

analysis Marker-assisted breeding

https://

www.integratedbreedi

ng.net/

Current regional

hubs: 4 in Africa, 3

in Asia

Cassavabase NextGen cassava

breeding project;

Boyce Thompson

Institute for Plant

Research

Breeders toolbox; maps and markers;

genes; phenotypes; genome sequences

http://

www.cassavabase.org/

Implemented based

on SolGenomics

SolGenomics Sol Genomics Network,

Boyce Thompson

Institute for Plant

Research

Tomato, pepper, potato, coffee, Nicotiana,

Petunia, and other solanaceous plants

http://solgenomics.net/ [159]

Soybase USDA, Soybean Genetics

Database

Iowa State University

Soybean breeder’s toolbox and database

including genome sequences, maps,

markers, genetic stocks (including mutants)

http://

www.soybase.org/

[160]

MaizeGDB USDA funded maize

genetics and genomics

database

Community-oriented informatics service

featuring genome browser, maps, locus,

gene, QTL, diversity, metabolic pathways

and others

http://maizegdb.org/ [161]

Phytozome Department of Energy’s

Joint Genome Institute

The Plant Comparative Genomics portal for

sequenced and annotated green plant

genomes and phylogenetics

http://

phytozome.jgi.doe.gov/

pz/portal.html

[162]

Kazusa Kazusa DNA Research

Institute

SSR markers and linkage maps for 10 plant

species

http://

marker.kazusa.or.jp

[158]

*BMS, hosted by IITA as a regional hub for integrated breeding platform (IBP), is a suite of interconnected software specifically designed to
help breeders manage their day-to-day activities through all phases of their breeding programs.

Note: Other CGIAR-driven initiatives include Genomic and Open-source Breeding Informatics Initiative (GOBII), Integrated Genotyping
Service and Support at Biosciences eastern and central Africa (BECA)/International Livestock Research Institute (ILRI), and Shared Indus‐
trial-Scale High-Throughput Genotyping Facility for delivering high-density genomics breeder’s tools and low-cost genotyping services.

Table 2. Partial list of crop- or project-specific databases and breeder’s toolboxes relevant to breeders in developing
nations that are in use or in progress.

4. Disease diagnostics and monitoring

Plant diseases are caused by a wide array of pathogens, including viruses, bacteria, and fungi.
A combination of techniques, including microscopy, serological [e.g., enzyme-linked immu‐
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nosorbent assay (ELISA)], and molecular (e.g., PCR) techniques, are used in detection and
identification of pathogens associated with major diseases of African food staples. Conven‐
tional methods of virus diagnostics, using antibodies and PCR, often lack the sensitivity to
detect viruses that exist in low abundance and emerging viruses with unknown genomes.
Therefore, next-generation deep sequencing approaches and bioinformatics analysis can be
used for de novo assembly of virus and viroid genomes, to perform reliable characterization
and diagnostics of known and unknown viruses and viroids [112,154,155]. In the wake of NGS
technologies, powerful and high-throughput novel approaches, such as metagenomics, have
been developed and widely used to analyze nucleotide sequence of microbial populations in
plant samples (see section 2.8) [8,105,156]. In particular, deep sequencing of small RNA families
such as short interfering RNAs (siRNAs) can be used to identify and reconstruct any DNA or
RNA virus genome and its microvariants with the help of bioinformatics tools [155,157].
Furthermore, the application of NGS can be extended to insect vectors for discovery and
characterization of insect viruses [109].

The potential use of NGS technologies for diagnostic programs in quarantine and certification
of some fruits have been demonstrated (reviewed in [8]). Existing diagnostics tools that are
deployed in several clonally propagated crops (cassava, yam, banana) for quarantine moni‐
toring during exchange of planting material can be enhanced using NGS. In IITA, diagnostic
tools have been combined with digital data capture tools for real-time surveillance and rapid
diagnosis. This has been put to use for monitoring pathogens of cassava and banana in East
Africa.

5. Conclusions: Prospects and perspectives

The productivity of staple food crops of hundreds of millions of people in developing countries
is stagnating or diminishing as natural resources are depleted as a result of overcultivation
and poor resource management, among other factors. Genetic improvement is heralded as the
best option to enhance crop productivity, resilience to climate effects, and nutritional quality.
The effective and efficient application of advanced biosciences tools and products holds
substantial promise for enhanced agricultural productivity, improved livelihoods, and better
prospects for food and nutrition security in Africa, where less-studied crops are grown as
staples [114,115,158]. Genomics-enabled breeding will enable scientists to more effectively tap
into the wealth of genetic variation in landraces and wild relatives for novel traits.

Next-generation sequencing has evolved to the third generation of sequencing technology and
boasts even longer read length, shorter run time, and lower cost per unit data [21]. Applications
of NGS are broadening at a remarkable pace from whole-genome sequencing and re-sequenc‐
ing to transcript sequencing, metagenomics, and methylome sequencing. Thus, the application
of NGS in agriculture is now vital to breeding, diagnosis, evolution, ecology, and basic
functional genomics. SNP markers are already becoming the predominant marker types in
modern breeding strategies [21,29]. Additional outcomes include the dissection of biochemical
and genetic mechanisms or metabolic pathways underlying agronomically important traits,
leading to a better understanding of how the genome and phenome are related [114].
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The ultrahigh-throughput capacity of NGS platforms and the commercial scale of automated
pipelines make it cheaper to outsource genotyping services such as GBS and RAD. Capital
investment in state-of-the-art genomics facilities in all laboratories is not prudent for several
reasons. However, establishment of shared resources at regional and subregional center of
excellence, such as BECA, is fully recognized by stakeholders. The West Africa Biotechnology
Initiative (WABI), copromoted by IITA and subregional organizations such as CORAF/
WECARD (West and Central African Council for Agricultural Research and Development), is
promoting such an idea and mobilizing resources toward this goal. This is likely to reduce
turnaround times for GBS samples, and raise the quality of cDNA libraries.

Mainstreaming this highly promising but complex and rapidly evolving next-generation
breeding scheme entails continuous training and effective information sharing. Although
recent scientific progress heralded the era of molecular breeding, most public sector research‐
ers in Africa are far from harvesting the fruit of the technological advances.

Reasons for this range from limited awareness of the technological advances to lack of adequate
infrastructure, knowledge, and limited resources that are required to make use of markers in
crop breeding. In recent times, that trend is changing as research institutions operating in
Africa (international, regional, and national systems) strive relentlessly to accelerate the
adoption and application of advanced biosciences tools in support of the region’s agricultural
transformation. WABI is striving to establish a center of excellence to promote the adoption of
biotechnology to enable innovative approaches, resulting in increased crop yield. Availability
of training and service platforms in various subregions of Africa (e.g., West and Central, East
and South) will not only make it more affordable and accessible to the users and trainees in
the continent but also focus more on the needs that are specific to the region’s research.

Developing in-house capacity for GBS data analysis pipeline, NGS library construction, and
automated DNA extraction is fundamental for routine applications of GS/MAS in breeding
programs. The spectacular diffusion of ICT throughout Africa, particularly mobile phone
technology and smart devices, paves the way for access to web-based education and genomic
resources. Given the poor connectivity in developing countries, however, developing Internet-
free databases and tools is necessary in the interim.

Efficient data management systems are a prerequisite for applying genomic information by
international, national, and private sectors involved in improving the rate of genetic gain in
crops. WGS and assembly require advanced instruments, skilled personnel, and strong
computational capacities. It also requires improvement of assembly and continual annotation
of genes as more and more information is generated by whole-genome re-sequencing or
functional genomics. Integration of genomics information with other phenotypic and envi‐
ronment data also requires strong skill in programming and database development. Moreover,
processing of big data requires basic programming skills in order to automate routine data
manipulation and processing needs. Thorough knowledge in bioinformatics will afford the
ability to apply comparative genomics with the aim of extending the power of genomics to
orphan crops with little DNA sequence information.
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The bioinformatics infrastructure at IITA can serve as a model for similar start-up bioinfor‐
matics units at the national program. Such platform hosts most of the standard bioinformatics
tools to deal with any kind of sequence analysis, including shotgun and targeted DNA/RNA
sequences. Importantly, analysis pipeline for GBS data is very essential for routine application
of genomics in selection schemes.

Such an effort demands full engagement and transformation in the policy of national programs
and other stakeholders. As expressed in previous views [52,159], relevant short-term and long-
term training and institutional capacity building should be intensified. Academic institutions
need to revise their curricula to develop expertise in NGS data analysis and bioinformatics.
The participation of the fledging private sector also needs to be boosted.

It is clear that certain activities such as efficient DNA extraction and associated databases and
decision-making breeding tools may need to operate at local levels; other activities such as
GBS, SNP genotyping for forward breeding, NGS, and training may need to operate at regional
levels; and curation of whole crop databases and development of analysis tools may operate
at global levels. It is vital that communication occurs at all of these levels and across levels,
including international institutes, NARS, and universities, and that the system remains
responsive to the rapidly changing scientific environment, if NGS is to close the yield gap of
staple crops in Africa.

6. Acronyms

AOCC; African Orphan Crops Consortium

BMS; Breeding management system

BS; Bisulfide

Cas9; CRISPR-associated protein 9

CBSD; Cassava brown streak disease

CBSV; Cassava brown streak virus

CGIAR; The Consortium of International Agricultural Research

CORAF/

WECARD; West and Central African Council for Agricultural Research and Development

CRISPR; Clustered regularly interspaced short palindromic repeat

CRP; Consortium research programs

DArT; Diversity Array Technology

DSB; Double-strand breaks

GBS; Genotyping by sequencing
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GDF; Genomic Diversity Facility

GEBV; Genomic-estimated breeding value

GS; Genome selection

GWAS; Genome-wide association study

IBP; Integrated breeding platform

ICT; Information and communication technology

IITA; International Institute of Tropical Agriculture

KASP; Kompetitive Allele-Specific PCR

MAS; Marker-assisted selection

NARS; National agricultural research systems

ncRNA; Noncoding RNA

NGS; Next-generation sequencing

NHEJ; Nonhomologous end joining

PDA; Personal digital assistant

QTL; Quantitative trait loci

R4D; Research for development

RAD; Restriction-site-associated DNA

RGN; RNA-guided nucleases

RRS; Reduced representation sequencing

RTB; Root, tuber, and banana

siRNA; small interfering RNA

SNP; Single nucleotide polymorphism

TALENs; Transcription activator–like effector nucleases

TILLING; Targeting Induced Local Lesions in Genomes

WGS; Whole-genome sequencing

ZFN; Zinc finger nuclease

WABI; The West Africa Biotechnology Initiative (WABI),
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Abstract

Twenty-one hop varieties from Europe and the United States were successfully identified
by DNA analysis, based on single nucleotide polymorphisms (SNPs; including insertion/
deletion sequences) as identification markers. Several dozen megabases of transcriptome
sequencing data were obtained by next-generation sequencing of samples from three hop
varieties and compared to search for the regions containing SNPs. Consequently, four
SNP-rich regions were selected as candidates for exploring identification markers in the
hop varieties. Sequence data from these regions in all the tested varieties were obtained
by the normal Sanger method and compared for the SNPs present. Combination of these
SNPs could work well for identification of the 21 hop varieties. Moreover, the mixture of
two varieties could be correctly evaluated by using this method. Hop pellet samples of
two different varieties were mixed in various ratios and DNA sequencing was carried
out. As a result, 5% contamination of a different variety could be detected by examining
the electropherogram of the SNP positions. More quantitative methods for mixture evalu‐
ation could be expected using DNA techniques, such as quantitative real-time PCR. Be‐
cause this SNP-based identification method utilizes the DNA sequence itself, it could be a
reproducible tool for accurate identification of the hop varieties.

Keywords: hop, identification, NGS, SNP, transcriptome, variety

1. Introduction

Accurate identification and use of hop (Humulus lupulus) varieties is very important for the
production of quality beer. Hop varieties are usually identified by sensory analysis (taste,
appearance, and smell), detection of the differences in the cone structure, and content of
different biochemical substances, including alpha acids and essential oils. However, these
methods present certain limitations, as accurate identification of the pelletized hop is not
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possible by observing its external appearance. Moreover, the content of biochemical substances
in hop can vary depending on the cultivation conditions.

There are several reports on the use of DNA-based analytical techniques such as random
amplified polymorphic DNAs (RAPDs) [1–5], restriction fragment length polymorphisms
(RFLPs) [3,6], amplified fragment length polymorphisms (AFLPs) [3,4,7,8], and microsatellites
(single sequence repeats, SSRs) [7, 9–14], besides other approaches like markers in the spacer
or noncoding regions [15], sequence-tagged site (STS) markers [3, 13, 16], and diversity arrays
technology (DArT) [17] for the assessment of the genetic diversity in hops. Since most of these
methods are based on fingerprinting approach, the results obtained are sometimes unclear and
prone to misjudgment, thereby limiting the detection of contaminating varieties.

Analysis of single nucleotide polymorphisms (SNPs; differences of single nucleotide in
homologous DNA among different varieties) in genomic DNA might be a better and more
reproducible tool for the identification of varieties. SNPs are widely distributed in the genome
and could be used as markers for the assessment of genotypes. For example, variation in DNA
sequence and expression of valerophenone synthase (VPS) gene, a key gene of the bitter acid
biosynthesis pathway, has been investigated in hop, using SNPs [18]. However, a large amount
of DNA sequence is needed to obtain sufficient SNPs in order to identify the different varieties.
In this context, high throughput next-generation sequencing (NGS) generally provides several
hundred thousand–times more sequence data in a single analysis compared to the conven‐
tional Sanger method, but the whole genome sequencing by either method is still very
expensive and time-consuming. In fact, genome sizes of two representative hop varieties,
lupulus and neomexicanus, are 2.74 and 2.97 Gb, respectively [19], which are comparable to
that of the human genome [20].

To overcome these problems, transcriptome analysis has been employed for the identification
of hop varieties. Transcriptome is the entire mRNA content, transcribed from the genome, and
its size ranges from one hundredth- to two hundredth-parts of the genome. Nevertheless, even
by a conservative estimate of an average of one SNP per 1000 bp, based on the frequency of
SNPs observed in the human genome [20], 13.5K to 30K SNPs could be expected in a relatively
short period. Such a high frequency of SNPs would be enough for the identification of hop
varieties. The discovery of a large number of SNPs and their specific combinations in each
variety could lead to the identification of many hop varieties and detection of contaminants
in mixed varieties using these specific SNP-combination-based markers. In the present study,
we developed an SNP-based identification method for the hop varieties [21].

2. Research protocols, methods, results, and discussion

2.1. Identification of SNP markers by second generation sequencing and transcriptome
analysis

2.1.1. SNPs

In order to obtain intravariety DNA polymorphic regions required for developing a hop
variety identification technique, we attempted searching for SNPs in a large amount of
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sequence data obtained using NGS. We focused on the transcriptome because transcriptome
analysis requires about 100-times less data processing than whole-genome analysis, thereby
reducing the lead time and cost. Besides, according to our calculation, there are already
available data for as many as 15000 SNPs in the transcriptome analysis; the data size, however,
is smaller than that for the whole-genome analysis. Thus, we performed an intravariety SNP
analysis, using this technique, based on the assumption that SNPs required for the identifica‐
tion of many varieties could be obtained, thereby.

2.1.2. Sample collection and storage

The hop varieties to be identified were Saaz, Sládek, and Premiant, which originated in Czech
Republic; Tradition, Spalter, Spalter Select, Perle, Tettnang, Brewer’s Gold, Northern Brewer,
Magnum, Herkules, German Nugget, and Taurus, which originated in Germany; and Cascade,
Zeus, Summit, Galena, Super Galena, Nugget, and Columbus/Tomahawk, which originated
in the United States (here, as is widely assumed, we considered that Columbus and Tomahawk
were genetically identical). Pellets or dried samples of these varieties were obtained from
appropriate suppliers. Three varieties (referred to as A, B, and C for convenience) were
selected, and fresh leaves were collected from these varieties. The leaves were sampled and
stored according to the procedure described below:

Tissue: Leaves as young (small, yellow-green, and soft) as possible were collected. Those with
white foreign matter on the surface were excluded.

Methodology: To prevent RNase contamination, leaves were collected with gloved hands and
were soaked in a reagent (RNA Save; Biological Industries Israel Beit Haemek Ltd., Israel) for
preventing RNA degradation.

Storage: Although RNA was stable for at least 1 week even at room temperature, the leaves
were stored under refrigeration for as much time as possible until being used for RNA isolation
and transcriptome and SNP sequence analysis.

2.1.3. Transcriptome analysis

The collected samples were used for transcriptome analysis. The procedure was subcontracted
to Eurofins Genomics (Ebersberg, Germany). Briefly, the total RNA was extracted from the
samples using RNeasy Plant Mini Kit (Qiagen Inc., Valencia, CA, USA) according to manu‐
facturer’s procedure. The quality of total RNA was evaluated in terms of the degree of
degradation of rRNAs with Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Normalized cDNA library for use in Roche GS FLX Titanium sequencing was prepared as
follows: poly (A) + RNA was isolated from the total RNA, and the first-strand cDNA synthesis
was primed with an N6 randomized primer. Normalization was carried out by one cycle of
denaturation and reassociation of the cDNA. Reassociated double-stranded (ds) cDNA was
separated from the remaining single-stranded (ss) cDNA by passing the mixture through a
hydroxylapatite column. The ss-cDNA was amplified by 9 PCR cycles. The cDNA library in
the size range 500–700 bp was eluted from a preparative agarose gel. Emulsion PCR and
sequencing were conducted according to standard protocols of Roche and the normalized
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cDNA library was sequenced in 1/2-plate run of GS FLX Titanium. Library preparations and
their sequencing were carried out by Eurofins Genomics.

2.1.4. Preparation and assembly of contigs for SNP searches

Using the transcriptome sequence data obtained as described above, contigs were prepared
under a subcontract to Eurofins Genomics. Briefly, the procedure comprised of sequence
clustering and assembly for each of the varieties, based on the nucleotide sequences of the
DNA fragments. De novo assembling from the unique single-read data was performed by
MIRA Assembler Version 2.9.45 x 1 (for sequence assembly; Rheinfelden, Germany). To search
for SNPs, contig and singlet data obtained in one of the hop varieties served as a reference for
the single-read data obtained from the other two varieties. Specifically, with the nucleotide
sequences of the contigs and singlets of variety C being used as reference sequences, single
reads of varieties A and B were each applied and mapped to the reference sequences according
to whether they shared a common portion. Further, contigs constituted by the mapped single
reads were identified from the assembling information deployed on the analysis software. The
reference sequences as well as the contigs and/or singlets of the other varieties were aligned
to search for SNPs using bioinformatics analysis. Average reads per contig were 7 and 6 in
variety A and B, respectively. The detected SNPs were reproducibly present in each variety
and were therefore not the artifacts of error. Further, the nucleotide sequences of the contigs
and singlets of variety B were used as reference sequences, and single reads of varieties A and
C were compared and mapped to the reference sequences to search for SNPs in the same way,
as mentioned above. A similar exercise was performed with the nucleotide sequences of the
contigs and singlets of variety A being used as reference sequences, and the single reads of
varieties B and C were applied and mapped to the reference sequences to search for SNPs.

The NGS performed in the 3 varieties generated a total of 589K to 638K reads with the total
number of bases without keys, tags, and bad-quality bases being 191 to 227 Mb and the average
read length without keys, tags, and bad-quality bases being 299 to 367. These values were
comparable to the equipment spec (Table 1). Numbers of contigs (part of cDNAs) assembled
in each variety were 42K to 45K. Among these contigs, there were about 4500–6700 contigs
with a length of 1000 bp or more (Table 2).

2.1.5. Evaluation of SNP detection by NGS RNA method

SNPs were searched in the contigs by comparing among the 3 varieties. As a result, 10.4K to
19.3K SNPs were obtained, as shown in Table 2. The numbers of SNPs were almost compatible
with the expected numbers, 13.5K to 30K.

2.1.6. Results for SNP analytical regions

To call variants, mapping analysis was performed among the three hop varieties, which were
combined with the contigs (as reference sequences) and single reads of each other. They were
mapped and called by GS Mapper Software (Roche Applied Science, Penzberg, Germany).

Next Generation Sequencing - Advances, Applications and Challenges326



cDNA library was sequenced in 1/2-plate run of GS FLX Titanium. Library preparations and
their sequencing were carried out by Eurofins Genomics.

2.1.4. Preparation and assembly of contigs for SNP searches

Using the transcriptome sequence data obtained as described above, contigs were prepared
under a subcontract to Eurofins Genomics. Briefly, the procedure comprised of sequence
clustering and assembly for each of the varieties, based on the nucleotide sequences of the
DNA fragments. De novo assembling from the unique single-read data was performed by
MIRA Assembler Version 2.9.45 x 1 (for sequence assembly; Rheinfelden, Germany). To search
for SNPs, contig and singlet data obtained in one of the hop varieties served as a reference for
the single-read data obtained from the other two varieties. Specifically, with the nucleotide
sequences of the contigs and singlets of variety C being used as reference sequences, single
reads of varieties A and B were each applied and mapped to the reference sequences according
to whether they shared a common portion. Further, contigs constituted by the mapped single
reads were identified from the assembling information deployed on the analysis software. The
reference sequences as well as the contigs and/or singlets of the other varieties were aligned
to search for SNPs using bioinformatics analysis. Average reads per contig were 7 and 6 in
variety A and B, respectively. The detected SNPs were reproducibly present in each variety
and were therefore not the artifacts of error. Further, the nucleotide sequences of the contigs
and singlets of variety B were used as reference sequences, and single reads of varieties A and
C were compared and mapped to the reference sequences to search for SNPs in the same way,
as mentioned above. A similar exercise was performed with the nucleotide sequences of the
contigs and singlets of variety A being used as reference sequences, and the single reads of
varieties B and C were applied and mapped to the reference sequences to search for SNPs.

The NGS performed in the 3 varieties generated a total of 589K to 638K reads with the total
number of bases without keys, tags, and bad-quality bases being 191 to 227 Mb and the average
read length without keys, tags, and bad-quality bases being 299 to 367. These values were
comparable to the equipment spec (Table 1). Numbers of contigs (part of cDNAs) assembled
in each variety were 42K to 45K. Among these contigs, there were about 4500–6700 contigs
with a length of 1000 bp or more (Table 2).

2.1.5. Evaluation of SNP detection by NGS RNA method

SNPs were searched in the contigs by comparing among the 3 varieties. As a result, 10.4K to
19.3K SNPs were obtained, as shown in Table 2. The numbers of SNPs were almost compatible
with the expected numbers, 13.5K to 30K.

2.1.6. Results for SNP analytical regions

To call variants, mapping analysis was performed among the three hop varieties, which were
combined with the contigs (as reference sequences) and single reads of each other. They were
mapped and called by GS Mapper Software (Roche Applied Science, Penzberg, Germany).

Next Generation Sequencing - Advances, Applications and Challenges326

Numbers and types of SNPs per contig or singlet were obtained. For example, if 16 single reads
were selected as candidate DNA fragments containing SNPs, in some cases, all of them had
the same nucleotide and were different from the reference, whereas in other cases, some of
them had same nucleotide and the others had a nucleotide same as that of the reference. We
called the former case “HOMO,” in which identification was thought to be done more easily
than in the latter case, designated as “HETERO.”

We selected the contigs that had more “HOMO” SNPs per single contig. For example, a contig
(A1 c1675) containing 6 different SNPs was selected when the mapping was performed in the
A1 region contig as a reference with single reads of variety B. This contig (A1 c1675) had 4
SNPs when single reads of variety C were used. In the same way, the other SNP-rich regions
were selected. Thus, 4 SNP-rich regions, A1, B1, C1, and A1-2, were obtained.

The results are shown in the Table 3.

Large run results Variety A Variety B Variety C Equipment spec

Total number of reads 618207 588711 638443 450–650 K

Total number of bases without keys, tags, and
bad-quality bases

227199992 210506914 191071744 180–280 Mb

Average read length without keys, tags, and
bad-quality bases (bp)

367 357 299 350–450

Table 1. NGS run results for 3 hop varieties.

Variety A Variety B Variety C

Assembly results
Number assembled 546411 516494 549226

Number too short 14436 16175 25343

Sum of large contigsa

Total number of reads 290726 274772 232407

Number of large contigs 6725 6157 4563

Total number of bases 10096155 9165669 6562275

Sum of all contigs

Total number of reads 546411 516494 549226

Number of all contigs 43638 42395 45432

Total number of bases 29918028 28215799 26612919

Total number of SNPs 10472 14408 19330

aContigs ≥1000 bp.

Table 2. NGS results of assembly, contigs, and SNPs.
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Reference/
variety supplied

Total number of
contigs

Total number of
SNPs detected

Number of SNPs
homozygous in 2 varieties
other than reference (per

contig)

Contig size
(bp)

Analysis
region

Variety A 43638 10472 6
1.4k A1

719 A1-2

Variety B 42395 14408 9 1.0k B1

Variety C 45432 19330 24 2.8k C1

Table 3. Results for SNP analytical regions.

Primers were designed for each region using DNASIS Pro software (Hitachi Software Engi‐
neering Co., Ltd.; Tokyo, Japan), and PCR amplifications of the four regions were performed
for further confirmation of the analysis regions.

2.2. Application of NGS-SNP genotypes to identify hop varieties by Sanger sequencing

2.2.1. DNA extraction from hop varieties

DNA was extracted from the pellets or dried cones of the three hop varieties (A, B, and C),
used in the transcriptome analysis described above. DNA extraction by the cetyltrimethylam‐
monium bromide (CTAB; Sigma-Aldrich Co. LLC., St. Louis, USA) method was carried out as
follows. The CTAB solution comprised of 2% (w/v) CTAB, 100 mM Tris–HCl (pH 8.0), 20 mM
EDTA (pH 8.0), 1.4 M NaCl, and 1% (w/v) polyvinylpyrrolidone (PVP). About 10–50 g of hop
pellets or 1 g of dried cones were ground in a mortar with or without liquid nitrogen. Next,
650 μL of the CTAB solution and 2 μL 1 mg/mL RNaseA solution were added to the ground
material in a 1.5 mL microtube and stirred well. This microtube containing the sample and the
CTAB solution was submerged in a constant temperature water bath held at 65°C such that
the content of the tube was completely underwater; the mixture was incubated for 1 h to disrupt
hop cells. An equal volume (650 μL) of chloroform/isoamyl alcohol (24:1; Sigma-Aldrich Co.
LLC.) was subsequently added, and the mixture was manually mixed by inversion for 3 min.
The mixture was centrifuged in a Beckman’s Allegra 21R centrifuge (with F2402H rotor) at
15,000 rpm (ca. 15,000×g) for 1–5 min and thereby fractionated into an organic solvent layer
(lower) and an aqueous layer (upper). The aqueous layer (ca. 400 μL) was removed to a new
tube. After the addition of an equal volume of isopropyl alcohol (Wako Pure Chemical
Industries, Ltd.), the mixture was mixed by inversion and then centrifuged in the same way
as described above. The supernatant was discarded and the remaining sediment was rinsed
with about 500 μL of 70% ethanol (Wako Pure Chemical Industries, Ltd.) and dried in an
MV-100 MicroVac Mini Vacuum-Centrifugal Evaporator (TOMY Seiko Co., Ltd.) for about 5
min. The residue was dissolved in 20–50 μL of TE buffer (pH 8.0, Nippon Gene Co., Ltd.) to
obtain the DNA sample.

The extracted DNAs were subjected to amplification of the respective regions A1, B1, C1, and
A1-2 using the primer sets shown in Table 4. The primers were designed using the DNASIS
Pro software (Hitachi Software Engineering Co., Ltd.).
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as described above. The supernatant was discarded and the remaining sediment was rinsed
with about 500 μL of 70% ethanol (Wako Pure Chemical Industries, Ltd.) and dried in an
MV-100 MicroVac Mini Vacuum-Centrifugal Evaporator (TOMY Seiko Co., Ltd.) for about 5
min. The residue was dissolved in 20–50 μL of TE buffer (pH 8.0, Nippon Gene Co., Ltd.) to
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Pro software (Hitachi Software Engineering Co., Ltd.).

Next Generation Sequencing - Advances, Applications and Challenges328

Primer Nucleotide sequence Length of amplified product
(bp)

A1_3L TAAGGTGTTGGGAGGGTTGA 651

A1_3R CCACCAATAACAGGCTCCAC

B1_1L CAGACTTGTGGCTGTCAAAAA 729

B1_1R CTTCTCCTTCGAACCTGTCG

C1_1L CGGCGTTTTTCAATTTTCAT 646

C1_1R GTGATGACTCGGGCTTCAGT

A1_2_1L GAAATCTGCTTKGAGAAACCTGG ca 1500

A1_2_1R GCAGGTATCTTTGTAGGTACATC

A1-2-M_F ATTTTTGCTATGCCTGGCA 507

A1-2-M_R ATTAGACCAGCACCAGTATG

Table 4. PCR primers used in the study.

PCR was performed in a Veriti 96 Well Thermal Cycler (Life Technologies Japan Ltd.) with
PerfectShot  Ex Taq (Loading dye mix,  Takara Bio Inc.),  as  described in its  manual.  The
temperature during the 30 PCR cycles was 98°C for 10 s, 60°C or 50°C for 30 s, and 72°C
for 60 s.

2.2.2. Confirmation of PCR amplification

Five microliters each of the PCR product obtained, as described above, was subjected to
agarose gel electrophoresis, performed using a mini gel electrophoresis system, Mupid (gel:
3% NuSieve 3:1 Agarose; FMC BioProducts or Cambrex Bio Science Rockland). The electro‐
phoresis was carried out at 100 V for 30 min, and the amplification products were visualized
under ultraviolet light illumination (Printgraph, Atto Corp.) after staining with ethidium
bromide (2 μg/mL) for about 40 min. The presence of the amplified DNA fragment of the
intended size was ascertained for each DNA sample. The sizes of DNA fragments amplified
using the respective primer sets are described in Table 4.

The purification of the resulting PCR products was performed using the QIAquick PCR
Purification Kit (Qiagen Inc., Valencia, CA, USA) according to the protocol recommended by
the manufacturer, as described below. Five volumes of PBI buffer (225 μL) was added to the
PCR product (45 μL) and mixed. The resulting solution was placed in the QIA quickspin
column and centrifuged at 13,000 rpm (ca. 11,000xg) for 1 min. The supernatant was discarded,
750 μL of PE buffer was added, and the mixture was centrifuged at 13,000 rpm for 1 min. The
supernatant was again discarded and the remaining solution was centrifuged at 14,000 rpm
(ca. 13,000×g) for 1 min. The supernatant was discarded, the column was transferred to a new
1.5 mL Eppendorf tube, and 30 μL of EB buffer was added. After being left to stand for 1 min,
the solution was centrifuged at 13,000 rpm for 2 min to elute the purified PCR product.
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2.2.3. Confirmation of SNP markers by Sanger DNA sequencing

Cycle sequencing was performed using the BigDye terminator v1.1 cycle sequencing kit (Life
Technologies Japan Ltd.), according to the protocol prescribed by the vendor. The purification
of the product as the template DNA for sequencing was performed by the Centri-Sep Spin
Column (Life Technologies Japan Ltd.) according to the manufacturer’s protocol. DNA
sequencing was performed on an ABI PRISM 310 genetic analyzer (Life Technologies Japan
Ltd.). Sequence data obtained from the 5’ and 3’ ends were checked, and the correct base
sequence was determined. The nucleotide sequences determined from the tested varieties were
aligned in each analysis region by using ClustalW (DDBJ; DNA Data Bank of Japan), which is
a popular multiple sequence alignment program for DNA.

Thus, the amplified regions were confirmed. Comparison was also made with the data
obtained using the next-generation sequencer, to confirm that the identification of the three
varieties A, B, and C was possible. The size of the amplified products from the regions, A1, B1,
C1, and A1-2, were 651, 729, 640/646, and ca. 1500 bp, respectively.

The PCR product from the B1 region was bigger in size than expected, and on close scrutiny,
it was found that this DNA region included a 111-bp insertion sequence, which might be that
of an intron.

For reference, the two different sizes of the amplicons obtained from the C1 region represented
the size with or without the 6-nucleotide insertion in this region.

Since the fragment  of  region A1-2 had a  length of  about  1,500 bp,  the sequencing data
obtained for this region consisted of sequences from two regions: an analytical region, A1-2-
L of 538 bp from the 5’ end (primer L), and an analytical region A1-2-R of 516 bp from the
3’ end (primer R).

It was determined that the analysis of regions A1, B1, C1, and A1-2 (and the SNPs con‐
tained, therein) was also applicable to the identification of other varieties in addition to the
three mentioned above. Thus, analysis of a number of varieties was carried out.

Name No. of SNPsa Size (bp)

A1 24 541

B1 14 645

C1 43 559a

A1-2-L 21 538

A1-2-R 67 516

A1-2-R-2 59 542

aIncluding indel (insertion/deletion) sequence.

Table 5. Properties of SNP-rich analytical regions.
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2.2.4. Identification markers for 21 hop varieties

Twenty-one varieties of hops were selected for identification based on the nucleotide sequence
in region A1.

Nucleotide sequences were aligned to determine the consensus sequence in region A1. The
nucleotide sequences determined in the varieties were evaluated for 24 SNPs in region A1
corresponding to the nucleotide positions 74, 77, 87, 103, 116, 118, 121, 125, 134, 135, 148, 192,
195, 197, 199, 203, 204, 226, 230, 235, 306, 316, 330, and 532. These 21 hop varieties showed 12
types (types 1 to 12) of combinations of 24 SNPs in region A1. The SNP positions are depicted
in red in Figure 1.

Figure 1. Nucleotide sequence of region A1. Each nucleotide is shown as per the IUPAC definition. Gaps are inserted
after every 10 letters to increase clarity. Number at the right in every line denotes the number of nucleotides up to that
position. Red letters represent the SNP positions.

Nucleotide sequences determined in the 21 varieties were aligned to determine the consensus
sequence in region B1. These sequences were evaluated for 14 SNPs in region B1, correspond‐
ing to the nucleotide positions 178, 204, 227, 234, 245, 246, 247, 248, 370, 426, 439, 547, 562, and
624. The 21 hop varieties to be identified showed 9 types (types a to i) of combinations of 14
SNPs in region B1. The SNP positions are depicted in red in Figure 2.

Similarly, 43 SNPs were found in region C1 (6 of these 43 SNPs, at positions 129–134, consti‐
tuted an indel portion) corresponding to the nucleotide positions 3, 13, 17, 76, 77, 87, 88, 93,
129, 130, 131, 132, 133, 134, 136, 138, 163, 165, 245, 254, 313, 321, 331, 356, 373, 375, 376, 380, 396,
398, 399, 421, 435, 438, 460, 474, 475, 476, 477, 480, 481, 500, and 547. The 21 hop varieties to be
identified showed 5 types (types i to v) of combinations of 43 SNPs or an indel portion in region
C1. The SNP positions are depicted in red in Figure 3.

The analyses of 24 SNPs in region A1, 14 SNPs in region B1, and 43 SNPs or an indel portion
in region C1 made it possible to classify 16 of the 21 varieties, excluding Perle, Northern Brewer,
Premiant, Zeus, and Summit, into distinct types, respectively. For identifying Perle, Northern
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Brewer, Premiant, Zeus, and Summit, the nucleotide sequences in region A1-2 of these varieties
were further analyzed. These nucleotide sequences were aligned to determine the consensus
sequence in region A1-2-L. The nucleotide sequences were evaluated for 21 SNPs in region
A1-2-L (10 of these 21 SNPs constitute indel portions) corresponding to the nucleotide positions
34, 101, 118, 124, 164, 168, 171, 186, 187, 188, 189, 190, 191, 192, 193, 194, 393, 398, 399, 459, and
502 (positions 186–194 and position 399 each constituted an indel portion). The SNP positions
are highlighted in red in Figure 4.

Figure 2. Nucleotide sequence of region B1. Please consult the legend of Figure 1 for details.

Figure 3. Nucleotide sequence of region C1. Please consult the legend of Figure 1 for details.
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These nucleotide sequences were aligned to determine the consensus sequence in region A1-2-
R. The nucleotide sequences determined in the varieties were evaluated for 67 SNPs in region
A1-2-R (4 of these 67 SNPs, at positions 57–59 and 65, constituted an indel portion) corre‐
sponding to the nucleotide positions 1, 2, 3, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 25, 26, 27,
28, 29, 30, 31, 33, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 50, 51, 56, 57, 58, 59, 63, 65, 68, 72, 78,
79, 84, 86, 88, 90, 92, 118, 153, 154, 191, 205, 206, 226, 228, 233, 254, 289, 315, 350, 392, and 405.
The SNP positions are highlighted in red in Figure 5.

Zeus, Summit, and Premiant were subjected to further analysis for region A1-2-R2. In region
A1-2-R2 (34 of these 59 SNPs constituted an indel portion), the SNPs corresponded to the
nucleotide positions 3, 8, 19, 20, 27, 28, 40, 41, 46, 47, 57, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 90, 112, 116, 118, 120, 121, 122, 123, 124, 125, 126, 127, 128,
129, 130, 131, 140, 156, 178, 191, 192, 244, 266, 271, 377, and 430 (positions 64–85, and 120–131
constituted the indel portions). The SNP positions are depicted in red in Figure 6.

Using nucleotides at the SNP positions in the fragments of A1-2-L (sequenced from 5’ primer)
and A1-2-R/R2 (sequenced from 3’ primer), Perle and Northern Brewer as well as Premiant,
Zeus, and Summit were successfully identified, when 21 and 67 SNPs were found between
Perle and Northern Brewer, and 59 SNPs were found among Premiant, Zeus, and Summit.

Figure 4. Nucleotide sequence of region A1-2-L. Please consult the legend of Figure 1 for details.

2.2.5. Characterization of SNP-rich regions and identification of hop varieties

In every SNP-rich region, consensus sequence and SNP positions were detected by the
alignment analysis. Nucleotide polymorphisms in each variety were evaluated at the SNPs
positions in all the regions. Within the 21 studied hop varieties, 24 SNPs were identified in the
A1 region and 14 SNPs (including indel) were observed in the B1 region. H. lupulus, with
normally a diploid chromosome, had heterozygous or homozygous SNPs in each DNA region.
For example, in the A1 region, European varieties had homozygous SNPs at 77th (C/T) and
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103th (A/G) positions. Such homozygous SNPs can be analyzed more easily than the hetero‐
zygous SNPs when mixed with another variety, having different nucleotides at the SNP
positions. In a case, where the variety Saaz was mixed with the variety Sládek, position 77
SNPs were T and C, respectively, in the A1 region (data not shown), and these nucleotides
could be easily distinguished on their electropherograms. On the other hand, position 74 SNPs
were W (A and T) and A, respectively, in the same region. In this case, it was difficult to
recognize whether the variety Saaz was mixed with the variety Sládek or not. Each variety had
a specific combination of SNPs as markers, and 12 and 9 DNA types in the A1 and B1 regions,
respectively, were identified among the 21 varieties. Indel was also found in the C1 region.
Nucleotides at the SNP positions including indel were observed. Forty-four SNPs were found

Figure 5. Nucleotide sequence of region A1-2-R. Please consult the legend of Figure 1 for details.

Figure 6. Nucleotide sequence of region A1-2-R2. Please consult the legend of Figure 1 for details.
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in this region, and 5 DNA types were identified among the 21 varieties. It was revealed that
Galena had 2 DNA types in the B1 region and Cascade and Super Galena had 2 DNA types in
the C1 region.

Additionally, the A1-2 region was searched because there was no difference in the combination
of the SNPs in A1, B1, and C1 regions between Perle and Northern Brewer, among Premiant,
Zeus, and Summit. Nucleotides at the SNP positions in the fragments of A1-2-L (sequenced
from 5’ primer) and A1-2-R/R2 (sequenced from 3’ primer) were shown, when 21 and 67 SNPs
were found between Perle and Northern Brewer, and 59 SNPs were found among Premiant,
Zeus, and Summit. Perle and Northern Brewer as well as Premiant, Zeus, and Summit were
successfully identified.

For confirmation, we tried to distinguish between Columbus and Tomahawk, considered
genetically identical [22–24], by analyzing the 4 regions and, additionally, the middle area of
the A1-2 region, with newly designed primers, A1-2-M_F and A1-2-M_R (Table 4). No
differences in the nucleotide sequences were detected between them. Therefore, we confirmed
that these 2 varieties are indeed identical and could be considered a single variety.

Consequently, 21 hop varieties were successfully identified by a combination of these geno‐
types of SNPs, with differences in the 4 SNP-rich regions. The summary results are shown in
Table 6.

Origin Variety Diplotype

A1 B1 C1 A1-2 A1+B1+C1+ (A1-2)

Czech Republic Saaz 1 a i A

Sládek 2 b i B

Premiant 2 c i β1 C

Germany Tradition 3 d ii D

Spalter 4 e i E

Spalter Select 2 f ii F

Perle 2 d i α1 G

Tettnang 5 g i H

Brewer’s Gold 7 c i I

Northern Brewer 2 d i α2 J

Magnum 2 d iii K

Herkules 6 d ii L

German Nugget 9 c i M

Taurus 8 d i N

USA Cascade 2 d iv O1
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Origin Variety Diplotype

A1 B1 C1 A1-2 A1+B1+C1+ (A1-2)

i O2

Zeus 2 c i β2 P

Summit 2 c i β3 Q

Galena
2

h
i

R1

i R2

Super Galena
11 c

i S1

v S2

Nugget 10 c i T

Columbus/Tomahawk 12 c i γ U

Table 6. Successful identification of 21 hop varieties

2.2.6. Comparison of DNA samples prepared from hop pellets and cones

Comparison was made between the results obtained in the two cases where DNA samples
were extracted from either the hop pellets or the dried hop cones, as described in Section 2.2.
It was confirmed that DNA extraction and sequencing were possible with both types of DNA
samples. Also, analyses using DNA samples of both types yielded the same results. This result
further demonstrates that inspection at a processing step (e.g., inspection for contamination at
a pelletization step) is technically possible.

2.2.7. Comparison between three Saaz clones

About 1 g each of dried cones of three Saaz clones (Osvald’s clones 31, 72, and 114) was ground
in a mortar in the presence of liquid nitrogen, and the DNA was extracted from about 50 mg
each of the ground materials by the CTAB method described in Section 2.2. Each of the
extracted DNA sample was subjected to amplification of the DNA fragments from regions A1,
B1, and C1 and followed by sequencing of the amplified fragments, according to the proce‐
dures as described above. For each region, the nucleotide sequences of the three clones were
aligned for comparison with each other.

The results obtained confirmed that there was no difference among the three Saaz clones in
terms of the nucleotide sequences in the analyzed regions. In other words, it was found that
any of Saaz clones could be identified through the above-described analysis using the inventive
variety identification regions. These results demonstrated that the analysis using regions A1,
B1, and C1 as the variety identification regions required no determination by clone.

2.2.8. Identification of variety mixtures using the newly identified SNP markers

Because it is important to detect contamination of other varieties, we developed a method for
detecting such contamination by using the SNPs markers. The mixed samples of Saaz and
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Premiant hops were analyzed (for region A1). To prepare different samples, pellets of these
varieties were ground as described above followed by mixing of the ground materials in the
relative proportions by weight as mentioned in Table 7.

A representative electropherogram, containing the SNP position 77 in the A1 region (A1_#77),
is shown in Figure 7. Peaks in the electropherogram represent fluorescence intensity of 4
different nucleotides at each DNA positions, which are depicted in different colors; A, C, G,
and T, are shown in green, blue, black, and red, respectively. Variety I is homozygous (TT) at
position 77, and variety II is homozygous (CC) at the same position. In the case of mixing of
varieties in 50% proportion, overlap of 2 peaks of T and C was observed at this position,
reflecting contamination. Figure 7 also shows peaks in the same region when variety II was
mixed at 5 and 10%. Peaks in blue at this position, derived from variety II, were detected even
at 5% contamination. It was the same for A1_#199 and A1_#204, in which variety I was
heterozygous (GC) and variety II was homozygous (CC), so it was not easy to recognize the
contamination by peak height of electropherogram.

Figure 7. Representative electropherogram containing the SNP positions 77, 199, and 204 in the A1 region (A1_#77,
A1_#199, and A1_#204): “T” is represented in red color, and “C” is in blue color.

We estimated more SNPs, with a focus on homozygous SNPs, and calculated an average of
the mixing rate in variety II. As a result, we obtained a closer estimate of the mixing rate. We
postulate that contamination at levels lower than 5% could be estimated; however, the
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acceptable contamination level for us might be 5% with reference to the genetically modified
organism contamination in Japanese food. Thus, the values below 5% have a slight importance.

Proportion of Premiant as a
contaminant

1 2 3 4 5

0% 5% 10% 50% 100%

Saaz 30 mg 28.5 mg 27 mg 15 mg 0 mg

Premiant 0 mg 1.5 mg 3 mg 15 mg 30 mg

Detection of Premiant – ○ ○ ○ ○

Table 7. Preparation of the 2-variety mixtures and results obtained for each sample.

Each sample was prepared by mixing pellets of two varieties in specified proportions by
weight.

3. Conclusions and future directions

The results obtained in the present study suggest that the SNP-combination method has high
reliability as it utilizes the sequence data. Computational handling of SNP data can be easily
carried out so that analysis among many varieties could be easily performed with digital
information. Other SNPs identified in the future could be used as additional identification
markers. Therefore, using this method, enhancement of accuracy and repeatability in the
variety identification could be accomplished in a relatively simple manner.

As SNP-rich DNA regions are only 0.6–1.5 kb in size, they are much less likely to be damaged
during the processing of hop products. However, upon degradation and fragmentation of the
SNP-rich regions, newly designed primers for the shorter fragments generated might be useful
for the amplification of the fragments and may contain several useful SNPs which can be used
as identification markers.

The SNP-based information could be also used for quantitative determination of the ratio of
variety mixture. In the future, more accurate results will be obtained by using quantitative
real-time PCR and/or NGS, which may provide a huge amount of sequence data and increase
reliability.
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Abstract

In this era of whole-genome, next-generation sequencing, it is important to have a
clear understanding of the concept of “haplotype”. We show here that most of the
important regions of the genome can be described in terms of polymorphic frozen
blocks (PFB). At each PFB, there are numerous, even hundreds, of alternative ancestral
haplotypes. Haplotypes, not genes, can be regarded as the principal unit of inheri‐
tance. We illustrate how sequence data can be analysed to reveal and define these
ancestral haplotypes.

Keywords: Ancestral haplotypes, Polymorphic frozen blocks, Genomic evolution

1. Introduction

Comparative analyses of haplotype sequences allow many efficiencies. It is not surprising that
there are many enthusiastic claims. Haplotypes, by any of many definitions, offer opportuni‐
ties to understand the inheritance of polymorphic traits and their regulation. The most useful
are markers of extensive complex polymorphic sequences of evolutionary significance even
when the functional components, whether coding or noncoding, are yet to be elaborated.

Substantial advances became possible with the elucidation of genomic structure and function
more than 20 years ago and long before recent advances in sequencing technology [1] and
bioinformatics [2]. It became clear that haplotypes, not genes, can be regarded as the principal
unit of inheritance.

This chapter evaluates some competing strategies and illustrates the power now available
through NGS.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Haplotype terminology

A review of current literature reveals a staggering collection of terms synonymous with
haplotypes, as listed in Table 1.

Ancestral haplotypes
Conserved extended haplotypes
Linkage groups
Linkage disequilibrium haplotypes
Hapmaps
Haplogroup
Haplobanks
Haploblocks
Haplotype block

Table 1. Terminology

Even if it were possible to define the various neologisms, it seems certain that confusion will
remain until there is recognition of the conceptual background.

We introduced the term ancestral haplotypes to emphasise the persistence of the founding pool
[3, 4]. Such haplotypes are conserved over thousands of generations; they allow identification
of remote ancestors and their contributions to the creation of individual members of the species
with their diseases. Unfortunately, others use the same term in different ways and even in the
opposite sense, that is, to refer to the single original haplotype which is presumed to have
mutated to give rise to all the so-called variants now present. Indeed, as just one example of
the problem, the reader has to be able to interpret the following: "we identified all nonredun‐
dant haplotypes with a frequency of ≥10% and consisting of at least 10 SNPs, which are likely
to represent the nonrecombinant descendants from a single ancestor" [5].

To yet further confound matters, increasingly, the term haplotype is being used to describe any
combination of alleles or markers, such as SNPs, without regard to their reproducibility,
inheritance, polymorphism or biological significance. Currently, there are conflicting methods
of detection. The problems appear to be increasing as ephemeral concepts diverge and as
claims for better approaches focus on just one or another competing technology or bioinfor‐
matic package.

Several other aspects are clear.

• Linkage groups relate to closely linked loci but do not define haplotypes.

• Linkage disequilibrium is affected by relative frequencies and therefore fails to detect rare
haplotypes.

• Trios can be misleading since the coverage of the family is limited.

• Haplobanks. The Tokunaga group has established some important principles with the
intention of establishing haplotype-matched pluripotential stem cell banks [6]. Unfortu‐
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nately, and amazingly, there is now uncertainty as to how to define the haplotypes. For
example, a recent paper urges international collaboration to avoid fragmentation [7]. It
would be wise to avoid neologisms and such redefinitions without clarity of meaning.

3. Definitions and concepts

In the presequencing era, there was a clear understanding of what was meant by the term
haplotype: Combinations of alleles at different loci segregating together in multigenerational
family studies [8]. Some seem unaware of this long history and have had to rediscover the
concept [2].

The implications were apparent at least 50 years ago: a specific allele A1 at locus A is inherited
together with a specific allele B1 at an adjacent, “closely linked” locus B [9]. The fact that these
two alleles segregated together through multiple generations was unexpected and lead to
controversy but, in retrospect, clearly implied that

1. The two alleles were encoded on the same chromosome, whether paternal or maternal.

2. The two loci were closely linked.

3. Recombination was rare.

4. The two loci arose by duplication.

5. Duplication is associated with polymorphism.

The repeated cosegregation of alleles came to be known as a haplotype: from άπλφούς =
single [9].

It  is  worth  emphasizing  that  it  was  the  cosegregation  as  haplotypes  through  “phased”
multigenerational families (rather than “unphased” populations) which foretold the later
demonstration that there was a continuous haplospecific sequence. It is also pertinent, with the
benefit of hindsight and in view of recent confusion, that the haplotypes, defined in one family,
occurred in other families of similar remote ancestry raising the radical possibility of conserva‐
tion beyond that expected from close linkage alone. In other words, recombination is patchy
and does not necessarily disperse the components of duplications, even after thousands of
meioses. The issue of linkage disequilibrium and the limits of LD mapping are considered below.

The implications of haplotypes, as listed above, became even clearer as the HLA A and HLA
B locus alleles and then HLA DR alleles were defined during the 1970s. However, in this case,
the loci were widely separated. Over time, it became clear that each of the A-B and B-DR
haplotypes were some 800 kb in length. Patently, close linkage could not explain these
haplotypes; either there was selection for cis interaction or there was suppression of recombi‐
nation [3, 4].

Through their studies of diseases, the Alper–Yunis group discovered that the B-DR haplotypes
contained specific alleles at duplicated loci which had no structural or functional relevance to
HLA (i.e. complement and 21 hydroxylase loci) but which happen to be located within the
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major histocompatibility complex [10–16]. Thus, cis interaction alone could be rejected as the
sole explanation.

The importance of discovery through disease was illustrated at a meeting held in 1982 [3, 4].
As shown in Table 2, it was disease associations which allowed the initial discovery of ancestral
haplotypes; note, these three disease-associated haplotypes could have only been discovered
through their associations. Two share DR3 and two share B18 but the frequencies differ. Thus,
the three haplotypes cannot be detected by linkage disequilibrium.

Designation A Cw B Bf C2 C4A C4B DR Disease

8.1 1 7 8 S C Q0 1 3 MG, SLE, IDDM
18.2 – – 18 F1 C 3 Q0 3 IDDM
18.1 25 – 18 S Q0 4 2 2 C2 deficiency

MG = myasthenia gravis, SLE = systemic lupus erythematosus, IDDM = insulin-dependent (type 1) diabetes mellitus.

Adapted from ref. [4]

Table 2. MHC haplotypes and disease associations

Once the numerous other ancestral haplotypes were defined, multigenerational family studies
identified cosegregating combinations of multiple alleles at separated loci, i.e. haplotypes
stretching over nearly 2 Mb from HLA A to DR. A haplotype was defined by the alleles
“inherited en bloc from one parent and implies the transmission of all of the chromosomal
segment” from one generation to the next [4].

When haplotypes defined in one family were compared with those identified in apparently
unrelated families, sharing was immediately apparent. There were specific combinations of
alleles at all the numerous unrelated loci as these were defined and typed. However, and
increasingly relevant today, as summarized in refs. [3, 4, 17, 18]:

1. The combinations observed are not a simple function of allele frequencies; only some of
the components inherited en bloc are in linkage disequilibrium.

2. Many haplotypes are rare combinations of frequent alleles at some loci but rare alleles at
other loci.

3. Very few alleles are entirely haplospecific.

4. Haplotype frequencies are often less than 1%.

5. The same haplotypes are found in multiple, apparently unrelated, families.

6. Many of these nonrandom combinations are associated with a disease (such as systemic
lupus erythematosus) or function (such as TNF production).

7. With a few dramatic exceptions (such as 21 hydroxylase and C2 deficiency carried by what
we now call the 47.1 and 18.1 ancestral haplotypes), the individual alleles do not explain
the haplospecific effects on disease and function.
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8. Penetrance is low. That is to say, the haplotypes are sine qua non in that they permit
particular diseases and functions but only in the presence of other genetic, infectious,
environmental, hormonal and age-related factors.

9. Recombination is rare and difficult to demonstrate even within multigenerational families
with the potential to confirm a meiotic recombinant. Nevertheless, over the life of an
ancestral haplotype—say 10, 000 meioses—there have been recombinations which have
resulted in shuffling between ancestral haplotypes [18, 19].
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Adapted from ref. [18].

Figure 1. Historic recombinations of AH 8.1. The HLA-B8 allele is carried by one ancestral haplotype marked by A1,
Cw7, B8, BfS, C4AQ0, C4B1, DR3. All the haplotypes in data set 1 carrying HLA-B8 are represented. These haplotypes
have been sorted so that haplotypes that carry all alleles of 8.1 from HLA-A to DR are shown at the top of the figure,
followed by haplotypes that extend from HLA-B to DR. Telomeric recombinants are shown at the bottom. The boxed
areas represent those portions of the 8.1 ancestral haplotype that are carried by unrelated B8-containing haplotypes.
Vertical lines approximately indicate the region where historical recombination has occurred.
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Some of these points are illustrated in Figure 1. It can be seen that subjects with B8 can be listed
to show conservation but also historic recombinations between HLA A and B, between C4B
and DR, and between HLA B and Bf.

By the mid-1990s, and long before the rediscoveries of the 2000s [2], such analyses led to the
conclusion that there are polymorphic frozen blocks (PFB), as illustrated in Figure 2.

Figure 2. Ancestral haplotypes and polymorphic frozen blocks within the human major histocompatibility complex.
Each ancestral haplotype has its own unique DNA sequence which includes single nucleotide polymorphisms (SNPs),
copy number variations, segmental duplications, insertion and deletion events (indels) including retroviral and retro‐
viral-like elements (RLEs). The full length is approximately 4 Mb. Higher degrees of diversity indicated by shading
define polymorphic frozen blocks (PFB). Recombination occurs far more frequently between, rather than within, these
blocks. Mutations within blocks are effectively suppressed. Adapted from refs. [17, 20] and [21]. Reproduced with per‐
mission from ref. [22].

PFB throughout the genome are the latter-day equivalents of loci. Sequences which define
ancestral haplotypes are the equivalent of alleles. The diversity is multifactorial with contri‐
butions from reiterative speciation as follows [17]:

• Retroviral integration

• Duplication

• Indels

• Polymorphism

These elements all contribute to the haplospecificity of the sequence of ancestral haplotypes
as shown in Figure 3. Similar distribution of diversity has been found by many others [5, 17,
19, 20, 23, 24]. The same patterns are also found in primates [25].

Next Generation Sequencing - Advances, Applications and Challenges350



Some of these points are illustrated in Figure 1. It can be seen that subjects with B8 can be listed
to show conservation but also historic recombinations between HLA A and B, between C4B
and DR, and between HLA B and Bf.

By the mid-1990s, and long before the rediscoveries of the 2000s [2], such analyses led to the
conclusion that there are polymorphic frozen blocks (PFB), as illustrated in Figure 2.

Figure 2. Ancestral haplotypes and polymorphic frozen blocks within the human major histocompatibility complex.
Each ancestral haplotype has its own unique DNA sequence which includes single nucleotide polymorphisms (SNPs),
copy number variations, segmental duplications, insertion and deletion events (indels) including retroviral and retro‐
viral-like elements (RLEs). The full length is approximately 4 Mb. Higher degrees of diversity indicated by shading
define polymorphic frozen blocks (PFB). Recombination occurs far more frequently between, rather than within, these
blocks. Mutations within blocks are effectively suppressed. Adapted from refs. [17, 20] and [21]. Reproduced with per‐
mission from ref. [22].

PFB throughout the genome are the latter-day equivalents of loci. Sequences which define
ancestral haplotypes are the equivalent of alleles. The diversity is multifactorial with contri‐
butions from reiterative speciation as follows [17]:

• Retroviral integration

• Duplication

• Indels

• Polymorphism

These elements all contribute to the haplospecificity of the sequence of ancestral haplotypes
as shown in Figure 3. Similar distribution of diversity has been found by many others [5, 17,
19, 20, 23, 24]. The same patterns are also found in primates [25].

Next Generation Sequencing - Advances, Applications and Challenges350

0 200 400kb 

δ β σ κ α 

H
LA

-D
Q

B1
 

M
IC

B 

M
IC

A 

H
LA

-B
 

H
LA

-C
 

H
LA

-E
 

H
LA

-3
0 

H
LA

-A
 

H
LA

-C
 

SC
A1

 S 
  

Adapted from ref. [26].

Figure 3. Sequence diversity is packaged as polymorphic frozen blocks (PFB). SNPs and indel occur in similar loca‐
tions within PFB. (a) The SNP profile after removing indels. Peaks higher than 20 SNPs per 1000 nucleotides are trun‐
cated. (b) The location of indels. Peaks higher than six indels per 1000 nucleotides are truncated. (c) The position of
indels greater than 100 nucleotides.

4. Use of ancestral haplotypes

Here, we illustrate the potential of sequence analysis, if designed to identify conserved,
extended, ancestral haplotypes. The utility depends very largely on the concept behind the
analysis. However, it also depends upon the genomic region actually sequenced and whether
it is possible to interpret the patterns in the context of the heterogeneous architecture of the
genome. Within PFB, there will be a multitude of alternative sequences to compare. In the
genome between these blocks, there is much less diversity with long stretches of monomorphic
sequence. Thus, the recent fashion for identifying homozygosity [27, 28], without regard to
diversity, shifts the focus to less informative regions of the genome. Of course, by way of
explanation for the fashion, homozygosity within PFB is much more difficult to find; the most
common ancestral haplotypes with frequencies of 0.1 will be homozygous in only 1% of the
general population. Until high-throughput NGS became available, it was necessary to examine
disease panels or consanguineous families.

The conceptual background is summarised in the following figures which contrast two
approaches. Population genetics teaches that free recombination effectively prevents the
packaging of polymorphism. The reality, designated here as quantal genomics, emphasises
clustering and conservation of polymorphism. Each haplotype is a specific sequence which
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regulates expressed genes by cis, trans or epistatic interaction. The whole sequence is conserved.
Linkage disequilibrium, when it occurs, is simply a reflection of this conservation which
includes haplotypes with alleles which are relatively common in one haplotype when com‐
pared with others. Each is ancestral, in the sense that they are shared by apparently unrelated
families separated by hundreds or even thousands of generations. It follows that the poly‐
morphisms are actively conserved and could not be a consequence of recent mutation.

Some of the implications are illustrated in Figures 4 and 5.

Population Genetics  Quantal Genomics 

Figure 4. Importance of clustering functional genes. Colours represent loci and numbers represent alleles at those loci.
On the left is the basis of the infinitesimal model used in population genetics. Loci are biallelic and can be homozygous
or heterozygous. Free recombination occurs between loci and alleles segregate independently. On the right, loci are
within polymorphic frozen blocks (PFB), shown by alignment of loci. Alleles within PFB segregate en bloc, forming
haplotypes, which are inherited intact through many generations. Important genes are carried within PFB, conserving
their cis interactions. Loci within PFB have multiple alleles, allowing for a greater degree of polymorphism clustered
within the block. There can be hundreds of ancestral haplotypes for each PFB. Trans interactions between haplotypes
increase the diversity expressed in the population. The loci shown in green and yellow are outside the PFB and follow
a pattern of inheritance similar to population genetics. De novo mutations are indicated by asterisk—on the right the
mutations occur at loci outside of conserved PFB and will have little if any consequence because truly important differ‐
ences are encoded within PFB. Monogenic diseases or traits are the partial exceptions. On the left, mutations can occur
at any loci but are generally assumed to occur at loci that were monoallelic. They may or may not be important, de‐
pending upon frequency, context, repair and heritability. Adapted with permission from ref. [22].

By 1987, it was clearly established that each ancestral haplotype has a specific content of
genomic features such as duplications and indels. These too are actively conserved and can
themselves be used as signatures for haplotypes of hundreds of kilobases and even megabases.
These observations were very difficult to explain in terms of any form of neo-Darwinism,
natural selection, random errors or population genetics as taught then and today. Rather, we
realised, the genome is not actually homogeneous but partitioned into protected quanta or PFB
[17, 22, 26, 29].
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5. Sequencing of critical genomic regions

By 1992, there was sufficient sequencing to confirm the earlier prediction that each ancestral
haplotype is actually a frozen sequence.

Figure 5. Modern haplotypes are derived from the deep past—they are ancestral haplotypes.
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Haplotype Geometric element at CL1 Length Geometric element at CL2 Length

57.1 (TC)12(TG)6(TC)14(TG)3(TC)12 94 TA (TC)18 TT (TC) 9 58

18.2 (TC)14 28 Deleted

8.1 (TC)28 56 (TC)15 TG (TC)6 TG (TC)8 TG (TC)5 96

7.1 (TC)12(TG)6(TC)14(TG)3(TC)12 94 (TC)14 TG (TC)6 TG (TC)8 TG (TC)5 94

Adapted from ref. [30].

Table 3. Haplospecific geometric elements. Ancestral haplotypes have specific sequence signatures at each of the
duplicons. Note in 18.2, the duplication did not occur or has been deleted.

We now know that examples of the 8.1 ancestral haplotype are almost identical over megabases
[31, 32].

We illustrate the differences between different haplotype sequences in Figure 6. It can be seen
that there are certain sites where haplotypes differ. Importantly, haplospecificity is conferred
by the whole sequence rather than single nucleotide polymorphisms. For example, reading
from left to right, 8.1 and 18.2 differ in T/G but not A/G, etc. Note also that some of the
differences are due to indels. Of critical importance is accurate, unmolested sequencing over
kilobases, as is now possible through NGS. It is clear, however, that assembly is hazardous
especially in areas of duplication and polymorphism. Note also, that there is no justification
for regarding one particular sequence as the reference. Rather, it is necessary to compare each
output with a library of known sequences within each PFB.

The number of differences depends on which haplotypes are compared (see Table 4). Two of
the most common Caucasian haplotypes, 8.1 and 7.1, differ by a hundred positions, repre‐
senting approximately 1% nucleotide diversity. The most different haplotypes are 18.2 and 7.1,
having 2.5% nucleotide diversity. Interestingly, these haplotypes are different functionally;
18.2 permits insulin-dependent diabetes mellitus whereas 7.1 is protective.

AH Haplotype 44.2 62.1 7.1 44.1* 8.1

44.2 0

62.1 187 0

7.1 249 221 0

44.1* 73 154 227 0

8.1 224 219 101 204 0

18.2* 184 130 250 137 245

Table 4. Pairwise differences between haplotypes. Total differences between each pair of haplotypes in the 9277 bp
region at HLA-B.
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Figure 6. Alignment of 9 kb sequence at HLA-B. Sequences of 6 individuals with homozygous ancestral haplotypes
were downloaded from UCSC browser [33] at HLA B and aligned using ClustalX2 [34]. For the purposes of illustration
only, common sequences were removed and the interruption marked as //. The nucleotides of AH 44.2 are displayed in
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the first row. Nucleotides of AH 62.1, 7.1, 44.1*, 8.1 and 18.2* are given only where they differ from AH44.2 and other‐
wise marked with a dot. Missing nucleotides are marked with a dash and shaded grey. The sequences are described by
Horton et al. [24], whereas AH haplotypes have been assigned from the HLA allele types given by Horton, according
to Cattley [35].

The degree of conservation of each ancestral haplotype is truly remarkable. For example, Smith
et al. [32] found variation at only 11 of 3, 600, 000 positions between HLA-A and DR. Similar
findings have been reported by others, including Aly et al. [31], see Figure 7. Mutation and
recombination must be suppressed.

Figure 7 illustrates the importance of interpreting nucleotide diversity according to the block
structure of the genome. Thus, conservation in the intervening, essentially monomorphic
regions, is of minor interest, whereas differences within PFB allow the discovery of evolution,
function and disease susceptibility.

Individuals 
homozygous 
for AH 8.1 
 

Individuals 
homozygous 
for HLA DR3 
but not HLA B8 

HLAA HLAB DRB1 
  

←Telomere  Centromere→   

Adapted from ref. [31].

Figure 7. Remarkable conservation within 8.1 haplotypes. A total of 656 SNPs spanning 4.8 Mb in the MHC region are
depicted. The lower frequency allele (row) for each SNP along each haplotype column is highlighted in yellow. The
top group depicts SNP results from 8.1 AH haplotypes (n = 31), the lower group are HLA-DR3, non-B8 haplotypes (n =
13). The 29.9 Mb range between HLA and DRB1 was >99.9% conserved, with only 9 variant alleles of the 10, 768 alleles
identified for the 384 SNPs in the 31 8.1 AHs.

The inescapable conclusion is that some parts of the genome have not two or three but hundreds
of alternative ancestral sequences.

6. Sequence analysis of ancestral haplotypes

The challenge in terms of sequence analysis is to compile a sufficient matrix to be able to
recognize each haplotype and its extent. Assume access to multigenerational families with
accurate, truly phased but unmolested raw sequences of at least 100, 000 bases:
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1. Clustering of these by independent criteria relating to as many as hundreds of distinct
ancestral haplotypes.

2. Alignments which take account of haplospecific duplicons, indels and retroviral-like
elements (RLE).

3. Functional information to address biological and disease significance.

Given NGS, this approach is now feasible, even if daunting.

Importantly, those regions which are complex because of duplications and indels should be
included rather than “corrected” based on the assumption that there is a single reference or
“wild” sequence. Some examples are shown in Figure 6.

In designing better algorithms [36], the strategy for comparative analysis will be crucial. In
many polymorphic regions, the density of differences can be as high as 1 per 10 bases when
different haplotypes are compared but as low as 0 if the haplotypes are the same. It follows
that analysis without haplotype assignment will be misleading.

7. Finding polymorphic frozen blocks and their ancestral haplotypes

The best clue to the location of these blocks is segmental duplication [17, 37].

To characterize the PFB, it is helpful to amplify haplospecific geometric elements [30], see also
Table 3. Essentially, this approach reveals duplications as seen in Figure 8. McLure developed
the approach to find PFB throughout the genome [36]. Paralogous regions are also helpful as
shown in Figure 9.

Once identified, we recommend tracking the polymorphism through panels of multigenera‐
tional families as illustrated in Figure 10. Although the region is over 10 megabases, recombi‐
nation was not found. The different haplotypes in the three breeds must have been conserved
for at least hundreds of generations and mark differences in function such as the melting point
of fat [37].

8. Applications to NGS and the 1000 genomes project

8.1. Mapping PFB from 1000 genomes data

Since it is known that PFB can be mapped by plotting diversity measurements (see Figure 3),
we asked whether it would be possible to use data from the 1000 Genomes Project [39] in the
same way.

Earlier work was based on haplotypes defined in multigenerational families. Initially, sequen‐
ces of haplotypes were determined from Sanger sequencing of homozygous cell lines. In
contrast, variations in 1000 genomes are determined from NGS for heterozygous and unrelated
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Figure 8. Segmental duplications in MHC alpha block. (a) Gene families and retroelements PERB 11, HLA, HCGIV,
AD-3, HERV-16, PERB3 are duplicated to form an ordered pattern within the alpha block of the MHC, indicating that a
segment containing multiple genes and retroelements has been duplicated to give 10 duplicons. Full-length duplicons
consist of PERB11, HLA, HCGIV, 1AD3, HERV-16 (P5) and PERB3 genes. HLA-80, HLA-A, HIA-K, HLA-16, HLA-90
and HLA-F duplicons lack PERB11 gene. f = fragment, 1 = LTR only, d = discontinuous. ψ = pseudogene. A, B and C
represent subgroups of duplicons with greater similarity. (b) A dot plot of the 319 kb genomic sequence encompassing
the alpha block was compared against itself. The oblique lines in the plot represent duplications whereas the dots rep‐
resent retroelements. Lines connect regions of the dotplot to the appropriate duplicons. The primers shown amplify
products of different lengths in each duplication. Sequence from GenBank accession number AF055066. Adapted from
ref. [17].

Next Generation Sequencing - Advances, Applications and Challenges360



8 

10 

9 

1AD3-F HERV-16 (P5)-R 

1 

2 

3 

4 

5 

6 

7 

A 

B 

Figure 8. Segmental duplications in MHC alpha block. (a) Gene families and retroelements PERB 11, HLA, HCGIV,
AD-3, HERV-16, PERB3 are duplicated to form an ordered pattern within the alpha block of the MHC, indicating that a
segment containing multiple genes and retroelements has been duplicated to give 10 duplicons. Full-length duplicons
consist of PERB11, HLA, HCGIV, 1AD3, HERV-16 (P5) and PERB3 genes. HLA-80, HLA-A, HIA-K, HLA-16, HLA-90
and HLA-F duplicons lack PERB11 gene. f = fragment, 1 = LTR only, d = discontinuous. ψ = pseudogene. A, B and C
represent subgroups of duplicons with greater similarity. (b) A dot plot of the 319 kb genomic sequence encompassing
the alpha block was compared against itself. The oblique lines in the plot represent duplications whereas the dots rep‐
resent retroelements. Lines connect regions of the dotplot to the appropriate duplicons. The primers shown amplify
products of different lengths in each duplication. Sequence from GenBank accession number AF055066. Adapted from
ref. [17].

Next Generation Sequencing - Advances, Applications and Challenges360

individuals. The phasing is an estimate based on ideas inherent in population genetics. It is
known that the approach is a risky approximation. For example, artefactual “switch-overs”
between haplotypes are misleading [40]. Since the reads tend to be short, such as just hundreds
of bases, assembly can be fraught. There is a risk of missing complex polymorphisms and
underestimating the number of ancestral haplotypes. Given these problems, we plotted several
indices related to the 1000 genomes. The intention was to identify any similarities with the
distribution as shown in Figure 3.

Unexpectedly, Figure 11 shows a remarkable correspondence between the classical measure‐
ments and our extraction from the 1000 Genomes database. The exception around 31.4 Mb was
missed by the NGS reanalysis presumably because it is a region which is rich in complex
iterative sequences, as shown in Figure 12.

These results are very encouraging in that the advantages of NGS can be coupled with
identification of genomic architecture and therefore targeting of the most informative regions.
The similarity, by simply counting the base differences per 10 kb, can be refined and applied
to the whole genome. The plot of number of “haplotypes” is also promising, although clearly
not indicative of the number of ancestral haplotypes.

6p21.3 19p13.1-13.3 1q21-25 9q33-34 6p21.3 9q33-34
MOG MPZ

S LOR VARS2 VARS1
MIC A/B MR1

HLA-A/B/C CD1 A/B/C/D/E
HSPA1 HXB

VARS2 (HSPA6/7) HSPA5 C4 C5
HSPA1 VARS1 TNX HSPA5
BAT2 BAT2 exon

CYP21 CYP2 PBX2 PBX3
C4A/C4B C3 C5

NOTCH4 PSMB7
TNX TNC TNR HXB TAP2 RING3-like
PBX2 PBX1 PBX3 PSMB8 COL5A1

NOTCH4 NOTCH3 (NOTCH2) NOTCH1 TAP1 RXRA
TAP 1/2 ABC2 PSMB9

PSMB8/9 PSMB7 RING3 NOTCH1
RING3 RING3-Like COL11A2 ABC2

COL11A2 COL11A1 COL5A1 RXRB
RXRB RXRG RXRA

LMNB2 LMNA
AK1/AK3 AK2

CACNL1A5 CACNL1A6
LMX exon LMX1

PTGS2 PTGS2
CPNA2 SPNA1
TAL2 TAL1
TPM2 TPM3

VAV1 VAV2
SPTA SPTAN1
ABL2 ABL1

Figure 9. Paralogous locations of MHC genes. MHC genes are found on four chromosomes: 1, 9, 19 as well as chromo‐
some 6. The arrangements of genes in each of the paralogous groups can be largely explained by duplication with and
without inversion events. The genes common to chromosomes 6 and 9 are shown.
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8.2. Comparing polymorphic sequences of well-characterised PFB

Since there are numerous ancestral haplotypes within a PFB, it is essential to compare as many
sequences as possible. An example is shown in Figure 6.

It can be seen that

• Only a minority of sites are informative and these must be selected from the remainder.

• Kilobases need to be examined and reduced 10- to 100-fold, retaining the informative sites.

• Different haplotypes are defined by specific combinations of bases at those informative sites.

• Very few single nucleotide polymorphisms are specific for a particular ancestral haplotype.
On the contrary, specific combinations may be best defined by comparison with a library of
reference sequences.

• Indels are important: alignments can be misleading.

Thus, although the identification of each of the many haplotype remains challenging, the
overall patterns of informative sites are helpful in screening for PFB and for localising
haplospecific sequences.

9. Conclusion

In analysing NGS databases, we recommend:

1. Screening for PFB.

Reproduced with permission from ref. [22].

Figure 10. Tracing segregation through three generation families. The alleles at MRIP, now known as myosin phospha‐
tase Rho-interacting protein, are used to designate haplotypes within the 5.5 Mb region of bovine chromosome 19 from
SREBF1 to TCAP. Within this region, there are many genes involved in muscle development, growth and fatty acid
synthesis. For further details, see Williamson et al. [38].
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2. Alignment based on the ability to detect multiple, and even hundreds of ancestral
haplotypes.

3. Analysis must recognise that haplospecificity is confirmed by many characteristics
including RLE, indels, copy number and complex iterative sequences.

4. Analysis may be facilitated by examining paralogous regions which help to define
interactions, including epistasis.

5. Validation of results by showing segregation in multigenerational family studies.

6. Confirming  biological  significance  by  demonstrating  permissive  or  sine  qua  non
associations.

Figure 11. Regions of high sequence diversity within 1000 genomes are similar to previously identified PFB. Imputed
haplotypes in the 600 kb region surrounding HLA-B from 553 individuals were downloaded from the 1000 Genomes
browser [41]. The population groups chosen were of African, European and Asian origin (ACB, ASW, BEB, CEU, CHB
and YRI). The majority of variations recorded in the 1000 Genomes vcf files are SNPs, but some indels up to 174 bp are
recorded. For each imputed haplotype, we counted the number of differences from the reference sequence in 10 kb
sections. Indels were counted as one difference, irrespective of length. The black curve represents the maximum differ‐
ence at each 10 kb. The red lines, taken from ref. [42], show the amount of nucleotide diversity between two individual
haplotypes, counted in 100 bp sections. Haplotypes compared for this section were 44.1 to 62.1, 44.1 to 8.1 and 8.1 to
14.1. Squares show the number of LD_link [41] “haplotypes”, calculated from sets of adjacent variants in 500 bp inter‐
vals. LD link requires that variants be biallelic and only takes single nucleotide changes, not indels. Only variants with
at least two examples in the CEU and YRI populations were included.
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Figure 12. Complex iterative element. Dotplot of a 10 kb region in the MHC between MICA and MICB showing a com‐
plex iterative element. Gaudieri [42] shows high nucleotide diversity for this region which was not recorded within
1000 Genomes data. Example sequences for AH 7.1 and AH 44.1 downloaded from UCSC genome browser. Dotplot
generated with Gepard [43] using word length 10.
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Abstract

The major histocompatibility complex (MHC) region of the human genome is the most
polymorphic sequence part on chromosome 6; this roughly 4 Mbase long stretch contains
many genes involved in immune response and disease association. The HLA genes have
a crucial role in transplantation; patients receiving organs or bone marrow from matching
donors have significantly higher chance for survival. NGS-based HLA typing brings the
hope of accurate genomic consensus sequences by relatively cheap and simple laboratory
workflow. Using either targeted or whole-genome sequencing data, there are a lot of pos‐
sibilities to get ambiguous results (combinations of several alleles as a result instead of a
single pair). These can be sample- or reference-related, or the results of artifacts generated
during the targeting and amplifying step. NGS technology itself has additional artifacts
leading to ambiguity listed in our paper. The final bioinformatics step will not be able to
resolve all the ambiguities; we are also proposing quality control metrics to assess the fi‐
nal ambiguity and typing failure.

Keywords: HLA, phasing, ambiguity, quality control, novel allele

1. Introduction

Every nucleated cell in our body expresses Class-I HLA genes (HLA-A, -B, and -C) and cells
involved in immune function express some of the Class-II HLA genes (such as HLA-DRB1, -
DQB1, etc.). These proteins on the cell membrane surface are the primary building blocks of
antigen presentation and immunological memory mechanisms. Their role in transplantation
became apparent about a hundred years ago [1], and for both solid organ and hematopoietic
stem cell transplantation the general practice is to find donors with matching HLA genes for
a patient. Besides transplantation, HLA loci (and MHC genes in general) have been found to

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



be associated with many traits and diseases [2]. Therefore, HLA genotyping from large datasets
and finding further associations is an ever ongoing effort.

The HLA genes are codominant, both alleles in the two chromosomes are expressed, and are
exceptionally polymorphic in their exons involved in antigen recognition (exon 2 and 3 for
Class-I and exon 2 for Class-II loci). These peptide-binding highly variable regions are in the
focus of HLA typing; there are 13,412 allele sequences in the IMGT/HLA reference database
at the time of writing this article [3], compared to the 1250+ alleles known in 2002 [4]. This
polymorphy, together with the high homology of these loci, makes the classical variant-call
NGS pipelines impractical: it is not the individual SNPs or indels, but whole exon or whole
gene sequences identifying alleles that have to be found by NGS-based HLA typing.

Sequence-based HLA typing (SBT) is relatively new, there are established methods to identify
unique sequence patterns of HLA loci by sequence-specific oligonucleotides [5]. These
methods are less precise though, it is not possible to obtain the whole sequence of an allele by
using probes either. Furthermore, as SBT focuses primarily on the previously mentioned
important exons, the phasing problem known from whole-genome assembly can be the main
source of ambiguity. During phasing the individual base differences are assigned unambigu‐
ously to one of the chromosomes. Fortunately, phasing short reads is easier when the two
alleles differ at many positions, making NGS-based HLA typing attractive. Unlike Sanger
traces, the signal from the two chromosomes can be separated reassuringly as for each base
there is only one signal, the base is treated unequivocally either A, C, G, or T.

Figure 1. The figure illustrates how overlapping short reads can be used to phase exon 2 and exon 3 of HLA-A using
the variants present in intron 2. Forward reads are colored pink/orange, reverse orientation is yellow. Colored bars in
reads are depicting nucleotide differences from the reference, the reference track is gray at homozygous positions, only
heterozygous bases are colored (A: red, C: blue, G: brown, T: green). Reads highlighted with black and yellow dashes
show how step-by-step phasing can happen using the reads overlapping the consecutive heterozygous positions. Since
all four marked reads overlap at the heterozygous position near the middle of intron 2, it is unambiguous which read
belongs to which chromosome. Therefore, the phase between the heterozygous positions in exon 2 and exon 3 can be
resolved too. Note that in practice phase resolution happens by considering large number of short reads for reliability.
Alignment was created by the Omixon HLA Twin 1.1 software.
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However, this cis/trans phase problem prevalent in HLA typing is not resolved in all cases,
calculating the phase is hindered by sequencing artifacts, missing references, and other factors
detailed below. Furthermore, these factors can introduce new typing issues different from
phase ambiguity.

1.1. Short introduction into HLA nomenclature

The name of an HLA allele reflects the precision of the DNA sequence determining the actual
allele. There are four fields separated by colons after the locus name and a star sign:

• The first field defines the general allele group: HLA-A*01 and HLA-A*02 belonging to
different allele groups, their molecular structure at the binding site is very different from
each other.

• The second field is related to a specific HLA protein: HLA-A*02:02:01 and HLA-A*02:02:02
differ only in their third fields, therefore, the sequence of their expressed proteins are the
same.

• Differences in synonymous codons are expressed in the third field: the two alleles mentioned
in the example above encode the same HLA proteins, but their coding DNA sequence differs.

• The fourth field denotes non-coding differences: HLA-C*07:01:01:01 and HLA-C*07:01:01:02
differs in two bases in intron 1: the importance of nucleotide diversity at splicing sites and
regulatory locations (UTRs) is just emerging [6].

The ultimate source of HLA nomenclature is at [7] maintained by the Anthony Nolan Research
Institute. The most up-to-date HLA reference database can be downloaded from [8].

1.2. The IMGT/HLA database

The IMGT/HLA database is part of the Immuno Polymorphism Database (IPD) system. Due
to the high polymorphism of HLA alleles, allele information is stored in individual sequences,
instead of a set of variants. Because of historical reasons (the first public release of IMGT/HLA
was in 1998), the database is mainly populated with partial allele sequences. As it is now
possible to obtain whole genomic sequences for many HLA loci, whole-gene (or near whole-
gene) submission is now obligatory for the database and the raw sequencing data needs to be
made public and available for independent analysis [3].

1.2.1. Undocumented regions and novel alleles

As the database is far from complete, finding novel sequences or known alleles with unknown
intronic parts is pretty likely, even during a single sequencing run. According to our findings,
most of the novelties are in introns/UTRs, since these regions were not investigated as
thoroughly as exons. However, even for a small sample size, it is possible to find novelties in
exons. In many cases, novelties have to be confirmed by an alternative method, and only high
quality data should be accepted for confirmatory typing because algorithms frequently assign
novel flags to low quality or failed samples.
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1.3. NGS HLA typing

1.3.1. Pros and cons of switching to NGS HLA typing

One of the advantages of switching to NGS HLA typing is that inherent phasing ambiguities
present in Sanger sequencing can be eliminated. As mentioned before, the two chromosomes
produce separate reads, and an adequate bioinformatics workflow can separate these reads
and assemble them into phased consensuses. Furthermore, using modern kits, it is not only
possible to sequence the most polymorphic exons, but whole genes and many loci can be typed
at once. This whole-gene sequencing approach provides an unprecedented precision, reveal‐
ing novelties mainly in intronic and untranslated (UTR) regions. On the other hand, the high
amount of data, the fundamentally different NGS workflow needs not only new laboratory
equipments and reagents, but some bioinformatics and IT skills: sequence search, alignment,
read filtering, database handling, etc. are among the daily routines of a HLA lab practitioner.
The amount of generated data is more by magnitudes compared to the size of Sanger traces,
and validating novelties by confirmatory typing can be cumbersome. In a low-throughput
laboratory processing the samples in the wet lab have to be planned in advance; many kits
accommodate more samples than the amount accumulating during a week/month.

Pros Cons

Phasing problem inherent in Sanger traces is not present There are still remaining ambiguities; some bioinformatics
skills are desired

Multiple loci sequenced in one sample Loads of data, needs serious IT infrastructure

Unprecedented precision: We do know that HLA
expression is heavily affected by introns/UTRs, we are
getting an insight into these sequences as well

Many novelties, mainly in introns

High-throughput lab workflow, more samples to process In a low-throughput lab have to plane forward

Table 1. Main advantages and disadvantages of NGS HLA typing.

1.3.2. NGS HLA typing methods

Algorithms and kits for genotyping the HLA loci using NGS reads are in the focus of several
publications in recent years [9]. Some of the authors use the straightforward read alignment
followed by the variant call approach [10], and others developed designated genotyping
algorithms for a wide variety of kits and sequencing approaches [11–14]. Since some of these
authors are more interested in primer and sequencing workflow development, and others
address the genotyping/bioinformatics problems concerning HLA typing, there is already a
high diversity of available workflows.

The pioneering publications for NGS HLA typing were already considering targeted long-
range PCR amplification and quality check measures [15–17] such as strand bias, though some
cases managed to achieve high concordance for two fields only by using population frequency
information. The ultimate goal is to have a primer set and a wet-lab and bioinformatics
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workflow to get phased, whole-gene consensus sequences with unambiguous four-fields
typing [18, 19].

Other approaches are trying to extract HLA types from existing whole-exome (WES), whole-
genome (WGS), or even RNA-Seq data. A short review of diverse methods addressing WES
and WGS reads can be found in [20], exploring how to tackle problems regarding HLA gene
homology (cross-mapping reads, see below) and missing intronic information.

It is expected that the number of both the kits and the typing algorithms will grow in the near
future, and laboratories will use more than one strategy for confirmatory testing (for a
comprehensive list of available HLA typing software see Table 2). Therefore, our goal was to
give details about the possible source of ambiguity and mistyping.

Name Availability Web page

ATHLATES*
Academic non-commercial
research purposes only

https://www.broadinstitute.org/scientific-community/
science/projects/viral-genomics/athlates

Bwakit Public https://github.com/lh3/bwa/tree/master/bwakit

Conexio/Illumina TruSight
HLA

Commercial
https://support.illumina.com/downloads/trusight-hla-
analysis-software-conexio-assign.html

GenDx NGSengine Commercial http://www.gendx.com/products/ngsengine

HLA Caller* Public http://gatkforums.broadinstitute.org/discussion/65/hla-caller

HLAforest
Academic non-commercial
research purposes only

http://code.google.com/p/hlaforest/

HLAminer Public http://www.bcgsc.ca/platform/bioinfo/software/hlaminer

HLAreporter Public http://paed.hku.hk/genome/software.html

hlaseq* Public http://sourceforge.net/projects/hlaseq/

HLAssign Public
http://www.ikmb.uni-kiel.de/resources/download-tools/
software/hlassign

NextGENe Commercial http://www.softgenetics.com/NextGENe_18.html

NXtype Commercial
http://www.onelambda.com/en/about-us/news/recent-news/
ngs-news.html

Omixon HLA Twin Commercial http://www.omixon.com/hla-twin/

OptiType Public https://github.com/FRED-2/OptiType

PHLAT
Academic non-commercial
research purposes only

https://sites.google.com/site/phlatfortype/home

seq2hla Public https://bitbucket.org/sebastian_boegel/seq2hla

SOAP-HLA* Public http://soap.genomics.org.cn/SOAP-HLA.html

Table 2. Collection of available HLA typing software for NGS data. Entries with a star (*) are considered obsolete, their
web pages have not been updated for more than two years.
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2. Sources of ambiguity

While surveying donors can be done fast and relatively cheaply by methods other than
sequence based HLA typing, finding the best match generally means that the nucleotide
sequences of both recipients and provisional donors are determined either by Sanger capillary
or by next-generation sequencing. Sanger sequencing can produce 1000 base-pairs long reads,
but the signals from the two chromosomes are mixed. Therefore, there is an inherent phase
ambiguity despite the long resulting reads. On the other hand, while reads from next-
generation sequencers are from different chromosomes, their length are usually behind the
stretch of Sanger traces, expected to be in the range of 4–500 basepairs that on average is 454
and 2 x 150 or 2 x 250 basepairs for Illumina sequencers. This again increases ambiguity: if the
allele pair to be typed has a homozygous sequence region that is longer than the average read
length and the insert between the pairs, the phase cannot be resolved. Instead of an allele pair,
we get only a list of possible alleles having similar nucleotide sequences but possibly different
expressed proteins.

Using the best sampling, targeting, and amplification technology combined with the latest
HLA typing bioinformatics workflow can lead to ambiguity, when the two alleles of a
heterozygous sample cannot be separated. The main causes for having multiple types instead
of a single pair are discussed below.

2.1. Sample-related ambiguities

2.1.1. Long homozygous stretches

For NGS, we usually consider short reads,  where the read length is less than 1000 base
pairs. The longer the reads, the better the phase resolution, but there can be long homozy‐
gous stretches where even the best workflow fails to resolve the phase between the two
chromosomes.  Pacific  Biosciences SMRT technology with thousands of  base pairs length
has the promise of covering a whole locus in a single read, but its clinical applicability has
yet to come [21].

2.1.2. Novel alleles

For alignment-based algorithms where input data is processed read by read, the differentiation
between mismatches imposed by the novel allele and mismatches related to random noise is
not possible during the alignment. For assembly-based algorithms, when the final consensus
is delivered including the novelty, then a name have to be proposed for the novel allele—or
at least an allele to which the novel allele is the most similar. Consider the case when an exon
2 novelty is found to have impact on the protein sequence as well; this is not a situation where
ambiguity of the naming and related closest alleles can be resolved automatically without
human investigation or additional experiments.
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2.2. Polymerase chain reaction related ambiguities

Polymerase chain reaction (PCR) is an essential part of most NGS workflows; in many cases
it is a step of the library preparation process (it can be used for targeting and/or amplification)
and in all major sequencing platforms PCR is part of the actual sequencing step (emulsion PCR
in Ion Torrent and Roche 454 and bridge PCR in Illumina). Considering the major role that
PCR plays in NGS, it is important to be aware of possible errors and artifacts that can originate
from PCR, as these can greatly affect the outcome of HLA genotyping. PCR-related ambiguities
are usually caused by two issues:

• signal loss caused by amplification imbalance or dropout can make consensus assembly
difficult or can cause low coverage, both of which can increase ambiguity;

• mixed signals caused by PCR crossover artifacts or PCR stutter basically create a mix of
artificial alleles in vitro that makes allele selection difficult.

2.2.1. Dropouts

From an HLA-typing perspective there are three main types of dropouts: both alleles drop out
completely (locus dropout), one allele is amplified (and later successfully sequenced) but the
signal for the other allele is missing completely (allele dropout), or one or both alleles are only
partially amplified and/or sequenced (partial dropout). All three cases can be caused by issues
in the pre-sequencing steps of the workflow. A locus dropout is very easy to detect at the end
of the workflow, but the affected samples or loci need to be re-processed and re-sequenced in
most cases, which can be very time consuming. This type of dropout can be caused by a long
list of errors, ranging from input DNA issues, to primer design problems or even instrument
malfunction or human error. An allele dropout is much harder to detect, as it can be basically
indistinguishable from a homozygous result. Allele dropouts can be caused by technical errors
(e.g., thermocycler malfunction or human error), protocol-related issues (e.g., primer design
problems), or allele-related issues (e.g., novel variant in primer binding site). Although most
cases of allele dropouts are likely PCR-related and generally can be considered extreme cases
of allele imbalance, it needs to be noted that in some blood cancers (e.g., acute lymphocytic
leukemia) and other cancer types, false homozygous HLA typing results due to chromosome
6 loss in cancer affected cells have also been reported [22].

2.2.2. Imbalance

Although some level of imbalance between amplicons within the same PCR reaction is
expected even under ideal conditions, a high level of amplification imbalance can cause
difficulties during HLA genotyping. When HLA alleles are amplified using a single pair of
primers (either to amplify a partial gene sequence or the whole gene using, e.g., long range
PCR), the main concern is imbalance between the two chromosomes. While most Sanger
sequencing methods need a minimum of 5–20% minor signal strength for detecting the weaker
signal, in some NGS-based HLA-typing methods, detectable imbalance as low as 2% have been
reported [23]. Other studies put the safe level of allele imbalance between 20% and 25% [24,
25], so it needs to be noted that the level of acceptable imbalance for reliable detection of minor
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alleles might highly depend on the exact protocol (e.g., average coverage depth and targeting
strategy), data characteristics (e.g., noise and artifact read percentage) and typing method used
in the workflow. If multiplex PCR is used, amplification imbalance between amplicons derived
from different chromosomes and between amplicons originating from the same chromosome
can potentially be observed. Balance between amplicons is influenced by several factors. In a
high number of cases, amplification imbalance is primer related. The high diversity of HLA
alleles combined with the presence of homologous genes and pseudogenes make primer
design for HLA loci difficult. Lack of sequence information for untranslated, non-coding, and
even exonic regions in and near HLA alleles provides an additional challenge. Also, in many
cases, multiple primer pairs are used for capturing multiple loci or simply all possible allele
combinations and/or the whole gene sequence for a single locus that adds another layer of
complexity to the primer selection and PCR optimization steps [19, 25]. Even if all available
information is considered and the theoretically best primers have been designed for a specific
workflow, it is always possible that previously unidentified novelties are present at or near
the primer site in a specific sample that can significantly lower the efficiency of primer binding
or even inhibit amplification altogether [26–29].

2.2.3. PCR crossover

PCR crossover artifacts can be generated by incomplete primer extension. After successful
primer annealing, the extension step finishes prematurely. The resulting partial amplicon then
re-anneals in the next cycle to a second amplicon and another extension cycle is started using
this re-annealed partial amplicon as a starting point. The “target” of re-annealing can be either
in a copy of the original contig or in the contig originating from the other chromosome (or even
in contigs from other homologous amplified or co-amplified genes). As one of the possible
causes behind incomplete extension is the annealing of already amplified complementary
sequences and the concentration of these templates is the highest at the end of the PCR process,
most PCR crossover artifacts are generated in the last few cycles of PCR. Reducing the number
of amplification cycles can greatly reduce the amount of PCR crossover artifacts [30]. Both
crossovers between homologous loci and between the two alleles within the same HLA loci
[23] have been reported. Even crossover artifacts corresponding to HLA alleles found in the
IMGT/HLA database have been described [30].

PCR crossover reads can be eliminated during the phasing process when the algorithms try to
determine the correct base combination for each consecutive variant pair. For example, if a
heterozygous position has bases A + C on the two chromosomes followed by another hetero‐
zygous position with bases T + G then based on the number of short reads (or read pairs)
supporting the A →  T + C →  G combination compared to the read support of the A →  G + C
→  T combination in most cases the correct phasing can be determined. If majority of the reads
support one combination then the reads belonging to the other combination can be considered
as crossover artifacts and can be ignored as a systematic noise.

If the crossover artifacts are strong and multiple artifact versions are present, it is not always
possible to determine which reads can be ignored. In this case, unfiltered artifacts can cause
phasing difficulties that can lead to increased ambiguity.
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Figure 2. The formation of PCR crossover artifacts: a) a primer anneals to the primer binding site of amplicon 1; b)
extension is started; c) the extension step is interrupted, a partial amplicon is created; d) the partial amplicon re-an‐
neals to a complementary section of amplicon 2; e) the annealed partial amplicon is extended for the second time; f) the
result of the second extension is an amplicon that contains sequence motifs from both amplicon 1 and amplicon 2.

2.2.4. PCR stutter

Short tandem repeats (STRs) are also present in HLA alleles, a well-known example is the low
complexity region at the border of HLA-DRB1 exon 2 and intron 2. Amplification of these
repeats can lead to PCR stutter [31] and ambiguity between alleles that differ only in the length
of these very repeats. The consensus assembly of these low-complexity regions are itself
difficult, and reads containing stutter artifacts are exacerbating this problem. For example, the
HLA-DRB1*03:01:01:01 and HLA-DRB1*03:01:01:02 alleles differing only in an SNP in intron
1 and the length of GT repeats in intron 2. When the whole intron 1 of HLA-DRB1 is not
sequenced (as for most of the available kits) these two alleles are hard to distinguish.

2.3. Next-gen sequencing technology artifacts leading to ambiguity

2.3.1. Missing coverage on important exons

While relatively deep coverage is desired in targeted gene experiments, coverage depth itself
is actually not that important. Several publications report >90% concordance using reads from
relatively shallow WGS sequencing with average ~ 20 reads depth [11, 12, 17, 32]. On the other
hand, if important parts of the exons are not covered, there is no hope for acceptable typing
for any sequencing depth. For targeted sequencing, it is expected that the most polymorphic
exons are fully and evenly covered through the whole extent of the exons. Our experience is
that even at parts where the coverage is low, at least eight reads are needed to support the
reference, and it is the extent of coverage that really matters; if there are uncovered regions on
the important exons the typing is unreliable and/or ambiguous.
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2.3.2. Homopolymer errors

Homopolymer errors in reads of Roche 454 and Ion Torrent sequencers are common, but
actually hardly effect the genotyping results. It is because aligner algorithms are dealing
differently with flow-space and letter-space reads (Illumina reads are belonging to the latter
category) and indels are tolerated by introducing a different error model into the aligner.
Nevertheless, alleles differing in the length of the homopolymer can be displayed as ambigu‐
ities, such as HLA-A*03:21N where there is an insertion in the originally 7 bases-long C
homopolymer in exon 4 of the allele compared to HLA-A*03:01:01:01. Similar to this null allele,
pseudogenes, such as HLA-H, the pseudogene related to HLA-A can occur in typing results,
particularly in typing from whole-genome data as these HLA-H alleles differ from the
corresponding HLA-A alleles in the length of homopolymers.

Homopolymer errors occur for Illumina reads as well, though mainly arising not from the
signal detection technology itself but due to polymerase slip on a homopolymer stretch [33].
A variation on polymerase slip is when it is not the length of the homopolymer that is changed,
but a base surrounded by two homopolymers such as CCCCACCCC changing to
CCCCCCCCC.

2.3.3. Low-quality reads

Apart from the cross-mapping ones,  there are reads that can be generally considered as
noise. The obvious ones are reads that are too short; excluding reads shorter than 90 bps
will dramatically increase typing reliability [32]. With current sequencing technologies, it
is possible to gain average read length much higher that 200 bps, but the low end of the
read  length  distribution  still  should  be  excluded,  especially  when  using  enzymatic
tagmentation [34].

2.3.4. Random artifact reads

Some reads do not map to our reference at all (off-target reads), or are not similar to any other
reads in the data: if the ratio of these “orphan” reads is too high (the threshold can be set as a
quality check metric), the resulting typing have to be treated with caution, particularly for
homozygous cases in deep sequencing. If the typing/assembly algorithm is not prepared for
random noise elimination, it can assemble bogus consensus sequences from noisy reads and
present it as a candidate.

2.4. Reference-related ambiguities

2.4.1. Cross-mapping reads, either from pseudogenes or homologous sequences

The conserved exons of HLA genes coding cross-membrane and intracellular components are
similar to each other. It is especially true for HLA-DRB1 and HLA-DQB1, where there is a
strong homology between intronic parts of HLA-DRB1/3/4/5/7 and HLA-DQB1. Weaker cross-
mapping can be seen among Class-I genes and between Class-I and Class-II sequences. Reads
covering these exons bear little useful information, as they are the same for many alleles and
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should be marked as non-uniquely mapping. However, the concept of the “uniquely mapping
read” is pretty murky; aligners use heuristics, the mapping quality is measured by the aligner
itself. The actual reference database and introducing gaps can complicate the picture further.
Repeats (e.g., few hundred bases long L2 and Alu stretches in intron 1 of DRB1) makes not
only the primer design difficult, but when using whole genome data, reads from other parts
of the genome can be mapped to these parts with little mismatch. Therefore, instead of using
“mapping-uniqueness”, a phred-scaled mapping probability is recommended [35, 36]. Using
this metric, excluding/involving reads that are mapping to multiple genes can be assessed more
objectively. Some algorithms simply discard these reads, risking coverage holes in homologous
regions.

2.4.2. Allele ambiguity due to missing parts in IMGT/HLA

The IMGT/HLA reference database has many alleles with sequenced exons only; for most of
the alleles, only the coding part is stored in the database, and for a number of the entries, only
the important exons (exon 2 an 3 for Class-I and exon 2 only for Class-II) are presented, while
some typing algorithms rely on the CDS sequences only [12, 17]. For example, the partially
defined HLA-B*53:17:02 - HLA-B*78:02:01 allele pair can be resolved also as HLA-B*35:01:01
- HLA-B*52:01:01. If the phase information is available, these kinds of ambiguities can be
resolved reassuringly. The list of ambiguous allele combinations can be found at the IPD IMGT/
HLA webpage [37].

When selecting the most probable alleles identified in the sample data, comparisons are
required between the alleles. Since most of the alleles are defined only partially, these com‐
parisons cannot be always done properly. Regardless of the genotyping approach, deciding
between two alleles defined on different regions when no perfect match is available cannot be
done unambiguously. Consider the example if an allele has an SNP mismatch on exon 1 and
the other has an SNP on exon 4 meanwhile the counterpart allele in each case has no sequence
defined on the corresponding region, there is no clear decision between them. This applies
even more to the coverage profile-based methods where the local mismatch information is not
necessarily always available.

As an extremity, there are also situations where there are multiple alleles without any
mismatch, even for whole gene targeting. In one of these situations the alleles of some exons
are a subsequence of the other corresponding allelic regions that have no defining introns to
let the algorithm distinguish between them. For example the frequent HLA-C*06:02:01:02 has
a full genomic sequence, but the similar HLA-C*06:116N allele has only some exons sequenced,
and exon 3 is five bases shorter than the same exon in HLA-C*06:02:01:02. Apart from this
shorter exon, the two references are identical at every position; the latter is a subset of the
former sequence. This means that it is possible to align the reads to both entries, and a
consensus generated from raw data perfectly incorporates both sequences. Although the
collection of null alleles [39] states that this allele is a result of a deletion: “615 > 619delCGCGG,
in codon 181, causes a premature stop at codon 198”, there is no further reference about the
rest of the intron.
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2.5. Ambiguities arising from typing workflow and bioinformatics

The process of determining genotypes based on the raw sequencing data contains multiple
points where ambiguity might be introduced. Source of ambiguities in the software pipeline
can be classified into the following categories:

• partial targeting of the gene(s)—by primer design—which results in lack of characterization
for certain regions;

• the mechanism of the algorithm used for genotyping.

2.5.1. Targeting related ambiguities

Selecting the most appropriate target regions for PCR amplification within a gene or genomic
region during primer design is necessary for reasons of technical and cost efficiency. As a
result, some exons and introns have to be excluded for some loci, e.g., exon 1 and most of intron
1 of HLA-DRB1. The ambiguity introduced by partial targeting depends on the selection of
the non-characterized regions. This is usually a compromise between precision and through‐
put. By analyzing the reference database, it is sometimes possible to omit exons/introns entirely
without introducing ambiguity in the genotyping. However, note that consensus sequences
will be still less specific by only covering parts of the gene.

Untranslated regions of Class-I loci are rarely targeted, although numerous alleles are differing
from each other in a single base in the UTRs. Prime examples are HLA-A*02:01:01:01 and HLA-
A*02:01:01:02L, the former having a significantly lower expression. The single T →  C difference
in the middle of the 5'UTR sequence has to be included into the whole gene consensus to
precisely determine these alleles. Another example is HLA-B*35:01:01:01 and HLA-
B*35:01:01:02 where the differentiating SNP is at the end of the 3'UTR: although both 5′ and 3′
UTR has influence to the gene expression after transcription, these parts are often left out from
targeting.

Apart from UTRs, some Class-II loci, notably HLA-DRB1, have introns longer than 5 K base
pairs incorporating repeats. For many DR loci the targeting primers are usually not in the UTR
region, but skipping both exon 1 and the long intron 1 together with the rest of the gene after
exon 4, where the remaining exons 5 and 6 are only 24 and 14 bases long, respectively. This
makes space for ambiguities such as HLA-DRB1*12:01:01 vs. HLA-DRB1*12:10 that are
differing in a single SNP on exon 1.

2.5.2. Algorithm-related ambiguities

Most genotyping algorithms incorporate reference alignment methods and/or assembly
methods that reconstruct the sample DNA as a whole. Alignment methods investigate the raw
sequencing data read by read (or read pair by read pair in case of paired data) and determine
the genotypes by using some statistical approach at the end—alignment-based consensus
generation and variant calling also fit into this category. Assembly methods consider multiple
reads together to generate some consistently supported larger sequence set (a.k.a. consensus
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sequences) and infer genotypes by comparing the assumed sample DNA to the reference
database.

Both alignment and assembly methods involve some statistical analysis that is inherently
related to the nature of NGS; raw sequencing data contains partial measurements (reads) with
significant error rate meanwhile providing high redundancy allowing the software pipelines
to reduce the potential errors at the end to a really low value. These statistical parts always
include some assumptions to avoid extremely high computation needs. When these assump‐
tions fail this leads to ambiguity in the results.

Alignment methods have to tolerate certain levels of error otherwise random noise would
prevent mapping significant proportion of the short reads. Since the alignment execution is
essentially independent for each read/read pair aligners miss the capability of differentiating
between random noise and systematic noise (e.g., artifacts). Meanwhile, random noise is not
disturbing the statistical methods (variant calling, coverage profile analysis, etc.)—usually
applied after the alignment step—systematic noise introduces significant error that might
prevent unambiguous genotype resolution due to not enough reliable information available
to decide between alleles.

Assembly methods have to consider only well-supported assembly paths to connect reads to
each other to avoid the situation when artifacts mislead the assembly. Also they have to try
keeping the whole targeted region continuous and not to be split into multiple separate contigs
(continuous consensus sequence parts) even if there are regions where the amount of reads is
relatively low (e.g., due to tandem repeats that are hard to sequence). When the assembly ends
up with multiple separated contigs, this might lead to ambiguity since not only is phasing
impossible between these separated parts but also in the in-between sequence when the
distance separation is unknown.

3. Quality Control (QC)

Quality control consists of a set of metrics calculated independently from the core genotyping
method to provide an additional control over the quality of the results. Here, independence is
very important otherwise reliability would decrease. Each QC metric has reference values that
behave as thresholds to map the actual values to QC result states (e.g., passed/failed).

Some metrics and methods routinely used in NGS quality control (e.g., read length, base
quality, quality based trimming) can provide valuable information in NGS-based HLA
genotyping as well. Other measures are more HLA typing-specific (e.g., number of result allele
pairs, important exon coverage).

The QC metrics, based on their focus in the genotyping pipeline, can be classified into the
following categories:

• Experiment qualification (e.g., fragment size, average read length, average read quality, read
count): thresholds for these metrics should be established based on knowledge about the
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underlying technology and workflow. Failure for these QC tests generally indicates issues
with the wet lab part of the genotyping workflow (e.g., over-fragmentation, unnoticed low
input DNA concentration). These QC failures can usually be eliminated by repeating the
experiment.

• Data qualification (e.g., cross-mapping read ratio, crossover PCR artifact ratio): the thresh‐
olds for these metrics are also experiment dependent, but a QC test failure is not necessarily
a consequence of an error during the sequencing process, therefore, a repeated experiment
won't necessarily resolve the issue. In most cases, these QC failures can be eliminated by
further optimization of the workflow (e.g., PCR cycle number optimization).

• Result qualification (e.g., consensus continuity, consensus phasing, consensus coverage
minimum depth, mismatch count): these metrics qualify the output, the result consensus
and genotype, regardless of the input quality.

A special case of QC is the concordance calculation between two independent genotyping
methods. In this case a complete alternative/secondary genotyping method is introduced to
provide results comparable to the controlled primary genotyping method and the result is
expressed as a concordance value that can be mapped to the standard QC result scheme (e.g.,
passed/failed).

4. Conclusion

As NGS-based HLA typing is getting more momentum, there is more and more accumulated
knowledge and experience concerning ambiguities. At the present state of art, apparently the
bioinformatics workflow and data management is the main hurdle that a HLA biologist has
to face. Therefore, it is important to know the main sources of sequencing and data errors
leading to ambiguities: when switching to NGS HLA typing, besides cost, consider its benefits
and drawbacks to make sure you are ready to change the laboratory and informatics workflow.
NGS-HLA is not a remedy for all the problems we have in Sanger SBT or in traditional non-
sequence-based HLA typing methods: to have a whole-gene fully resolved phased consensus
you have to use a kit that is designed to provide this sequence and a bioinformatics pipeline
that is delivering this result. Sequence annotation is mostly unresolved; we get a flood of novel
sequences, but assigning exon/intron/UTR boundaries is still a manual process. Sequencing
and assembling consensuses with UTRs are problematic and missing UTRs can lead to
ambiguities.

Introducing QC metrics can help find out the nature of ambiguities and failures; studying these
metrics, it is possible to decide whether it is the whole experiment, the sequencing part, or the
final bioinformatics workflow that needs to be repeated with altered input. Do not accept
genotyping results blindly, reconsider the QC metrics, look at the actual alignments, and
interpret the obtained ambiguities.
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Abstract

Inherited macrothrombocytopenias comprise a heterogeneous group of inherited platelet
disorders that are characterized by large platelets, thrombocytopenia and bleeding ten‐
dencies in affected individuals. Diagnostic platforms have traditionally involved a bat‐
tery of complex phenotypic tests that often fail to reach a diagnosis. Next-generation
sequencing lacks the pre-analytical and analytical shortcoming of these tests and pro‐
vides an attractive alternate diagnostic approach. Our group has developed a candidate
gene array targeting genes known to affect platelet function and tested it in a large cohort
of Australasian patients with presumed platelet function disorders, particularly macro‐
thrombocytopenia. This array identified causative variants in a significant portion of pa‐
tients with uncharacterized platelet disorders, including transcription factor mutations
that cannot easily be diagnosed with standard platelet phenotyping procedures. We pro‐
pose that targeted genotypic screening can identify the genetic basis of platelet function
defects and has the potential to be developed into a powerful clinical platform to help
clinicians diagnose these rare disorders.

Keywords: Inherited macrothrombocytopenia, next-generation sequencing, candidate
gene array

1. Introduction

Platelets are essential for clot formation after tissue trauma. Initiation of the platelet plug occurs
by adhesion of platelets to the damaged vascular endothelium mediated by interactions of
glycoprotein Ib/IX/V complexes with von Willebrand factor (vWF), and GPVI and integrin
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α2β1 with collagen [1]. Extension of the platelet plug requires activation of αIIbβ3 through an
“inside-out” signaling cascade which enables receptor cross-linking with fibrinogen and vWF
and activation of “outside-in” signaling events [1, 2].

Primary hemostasis relies on both adequate function and number of platelets. Abnormalities
in platelet function and/ or number may be acquired (liver disease, chronic kidney disease) or
inherited (inherited platelet function disorders, IPFDs or inherited platelet number disorders,
IPNDs). The group of inherited macrothrombocytopenias is included in the heterogeneous
IPNDs and are characterized by large platelets, thrombocytopenia and bleeding tendencies in
affected individuals (Figure 1A, Figure 1B, Figure 1C and Figure 1D) [3].

Figure 1. A normal blood film and three blood films demonstrating macrothrombocytopenia associated with muta‐
tions in different genes (MYH9, NBEAL2 and GFI1B, respectively). (A) A blood film with platelets of normal appear‐
ance (black arrows). (B) MYH9-related disorder with characteristic inclusion bodies in the neutrophils (small black
arrow) and large platelets (red arrow). Normal-sized platelets are also seen (long black arrow). (C) Gray platelet syn‐
drome showing distinctive pale or gray platelets (black arrows). (D) GFI1B-related thrombocytopenia (c.880-881insC
mutation) resulting in red cells with atypical shapes and sizes (red arrow) and thrombocytopenia with platelets that
appear large with normal granulation (long black arrow) as well as hypogranular or gray (short black arrows).

Unfortunately, inherited macrothrombocytopenia is under-recognized with the presence of
large platelets on blood film examination often leading to a misdiagnosis of immune throm‐
bocytopenic purpura (ITP), resulting in subsequent inappropriate treatment with steroids or
in some cases removal of the spleen [4]. Diagnostic algorithms have traditionally been based
around biological laboratory tests examining functional properties and activation pathways
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in isolated platelets [3, 5–7]. This phenotypic approach is poorly standardized, technically
difficult and not easily reproducible [6–11]. In addition, numerous pre-analytical variables may
affect phenotypic test results. These variables include the effect of food (garlic), alcohol, drugs
(herbal remedies, non-steroidal anti-inflammatory drugs, anti-platelet medications) and
stimulants (smoking and caffeine) on platelet function, activation of platelet samples during
venipuncture and transport necessitating careful sample handling as well as the relatively
large volume of blood needed (which becomes a major problem when assessing pediatric
samples) [12–14]. Despite these complex phenotypic tests, many cases remain without a
definitive diagnosis.

Genetic technology may overcome many of the problems surrounding phenotypic testing for
thrombocytopenia as DNA is stable, can easily be transported long distances and is not affected
by diet or drugs. Moreover, genetic-based tests have provided opportunities to reduce
redundancy and heterogeneity of diagnostic algorithms and have shifted our ability to describe
inherited platelet disorders from a level of the defective platelet pathway involved, to a
molecular level.

The Sanger sequencing method [15] has long been considered the “gold standard” technology
to rapidly analyze small regions across a limited number of samples, but it is not suited to
screening large numbers of genes in multiple patients [16]. The emergence of next-generation
sequencing (NGS) technologies as a diagnostic approach has been able to generate more test
sequence increasing the number of gene targets and decreasing the costs [17, 18]. Human whole
genome sequencing (WGS) or whole exome sequencing (WES) [19, 20] have proven to be
clinically appropriate and practical modalities in describing new genetic mutations in families
and identifying known pathogenic mutations in individuals formerly without a diagnosis [17].

Testing approaches may vary depending on whether a novel genetic mutation is likely. WGS
and WES are powerful platforms in discovering novel causal variants in individuals with rare
penetrant monogenic disorders [21], whilst a candidate gene approach allows assessment of
known mutations in genes causing clinical phenotypes.

Whole genome approaches incorporating NGS have recently reported novel mutations in an
essential platelet transcription factor GFI1B [22, 23], and a WES approach followed by targeted
Sanger sequencing was used successfully to describe mutations in ACTN1 causing macro‐
thrombocytopenia [24, 25]. Acknowledging these advancements, we employed a targeted
candidate gene approach to explore cases of suspected inherited macrothrombocytopenia that
remained uncharacterized despite phenotypic testing and hypothesized this to be an effective
approach to diagnose inherited macrothrombocytopenia.

2. Materials and methods

2.1. Patients

Diagnostic assessment of patients with uncharacterized thrombocytopenia was performed as
part of a human research ethics committee approved study conducted in accordance with the
Declaration of Helsinki.
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Following informed written consent, 20 ml of blood was taken from an antecubital vein and
collected into EDTA tubes. This blood was easily transported, in some cases, over 1,000 km
between diagnostic sites in Australia.

A total of 95 patient DNA samples were analyzed. This included two internal controls for
which DNA-based diagnosis had previously been established by Sanger sequencing.

32 male patients (mean age 37.4 years, range 18–92 years) and 44 female patients (mean age
38.7 years, range 18–79 years) were included in the NGS assay. The mean age of the cohort
was 38.1 years (range 18–92 years). Sixteen de-identified DNA samples were received from
referring institutions for which no additional laboratory data were available.

Phenotypic testing data were available for 59 (62.1%) individuals. This included platelet
functional analysis (PFA) (n = 25, 26.0% of the cohort), light transmission aggregometry / whole
blood impedance aggregometry (LTA/WBIA) (n = 39, 41.3% of the cohort), flow cytometry (n
= 45, 47.8% of the cohort) and electron microscopy (n = 12, 13% of the cohort). These phenotypic
test results suggested a diagnosis to a “pathway level”, that is, a description to the level of the
suspected defective biochemical pathway, in only 11 cases. Pathway orientated defects
included, storage pool disorders (n = 3), platelet glycoprotein deficiency (n = 3), platelet
signaling defects (n = 2), platelet secretion defects (n = 2) as well as α-granule disorder (n = 1).

2.2. DNA preparation

Genomic DNA (gDNA) was isolated from peripheral blood leukocytes using the Wizard®
Genomic DNA purification kit (Promega, Alexandria, NSW, Australia). DNA quality and
concentration were assessed using the Nanodrop™ 1000 spectrophotometer (Thermo Scien‐
tific, Scoresby, Vic, Australia) that measures the purity of DNA by the ratio of absorbance of
molecules at 260 and 280 nm. Samples with ratios between 1.8 and 2.0 were accepted for
analysis whilst ratios lower than this may represent the presence of contaminants and these
samples were not processed further [26]. At least, 250 ng of input gDNA was prepared per
sample.

2.3. Candidate gene identification and gene panel design

An extensive literature search using public databases was performed to assemble an initial
candidate gene list of all genes reasonably hypothesized to have an impact on platelet number
and size (n = 173). A final list of candidate genes (n = 19) was derived by including those genes
in which mutations were known to be definitively associated with IPNDs (predominantly,
macrothrombocytopenia) and by excluding genes, which although known to result in throm‐
bocytopenia, could easily be identified by conventional and clinical methods characterized by
distinct clinical phenotypes.

A TruSeq custom amplicon (TruSeq® Custom Amplicon Kit, Illumina Inc., Scoresby, Vic,
Australia) specific for the target regions of the selected 19 genes (Table 1, ACTN1, CD36, ETS1,
F2R, FLI1, GATA1, GFI1B, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9,
NBEAL2, P2RY12, RUNX1, TUBB1) was designed as an entire custom pool using the web-
based software tool, Illumina Design Studio (Illumina Inc.). This generated 201 gene targets
that were either exons or gene regions that were split into 632 amplicons, each of approximately
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250 base pairs (bps). There were no undesignable targets and a total coverage of 91% was
predicted for the panel.

Gene Description (OMIM) Inheritance Disorder (abbreviation in this paper, OMIM entry)

ACTN1 Alpha-Actinin-1 AD
α actinin-related thrombocytopenia (α actinin-RT,

615193)

CD36 (GPIV) Thrombospondin receptor (Glycoprotein IV) AD
Familial thrombocytopenia with GPIV deficiency (nd,

608404)

ETS1
V-Ets avian erythroblastosis virus E26 oncogene

homolog 1
nd nd

F2R Coagulation factor II (thrombin) receptor nd nd

FLI1 Friend leukaemia virus integration 1 AD
Paris-Trousseau syndrome / Jacobsen syndrome (TCPT/

JBS, 188025, 600588)

GATA1 GATA-binding protein 1 XL GATA1-related disorders (GATA1-RD, 300367, 314050)

GFI1B Growth factor-independent 1B AD GFI1B-related thrombocytopenia (GFI1B-RT, 187900)

GP1BA Glycoprotein 1b-alpha polypeptide

AR

AD

AD

AD

Bernard Soulier syndrome (BSS, 231200)

Platelet type-von Willebrand disease (PT-VWD, 177820)

Velocardiofacial syndrome (VCFS, 192430)

Mediterranean thrombocytopenia (nd, 153670)

GP1BB Glycoprotein 1b-beta polypeptide AR Bernard Soulier syndrome (BSS, 231200)

GP6 Glycoprotein VI AR*
Bleeding disorder, platelet type 11

(614201)

GP9 Glycoprotein IX AR Bernard Soulier syndrome (BSS, 231200)

ITGA2 Integrin, alpha-2 AR
GPIa/IIa deficiency (giant platelets and mitral valve

insufficiency) (nd,nd)

ITGA2B Integrin, alpha-2B AD
Monoallelic ITGA2B/ITGB3-related thrombocytopenia

(ITGA2B/ITGB3-RT, 187800)

ITGB1 Integrin, beta-1 AR
GPIa/IIa deficiency (giant platelets and mitral valve

insufficiency) (nd,nd)

ITGB3 Integrin, beta-3 AD
Monoallelic ITGA2B/ITGB3-related thrombocytopenia

(ITGA2B/ITGB3-RT, 187800)

MYH9 Myosin heavy-chain 9 AD MYH9-related disease (MYH9-RD,155100)

NBEAL2 Neurobeachin-like 2 AR Gray platelet syndrome (GPS, 139090)

P2RY12 Purinergic receptor P2Y, G protein-coupled 12 AR*
Bleeding disorder, platelet type 8

(609821)

RUNX1 Runt-related transcription factor 1 AD
Platelet disorder, familial, with associated myeloid

malignancy (FDP/AML, 601399)

TUBB1 Tubulin, beta-1 AD
β1 Tubulin-related thrombocytopenia ( β1 tubulin-RT,

613112)

Table 1. Candidate gene list. OMIM, online Mendelian inheritance in man; AR, autosomal recessive; AD, autosomal
dominant; XL, X-linked; nd, not defined, *In progress (OMIM)
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2.4. Next-generation sequencing

The Truseq custom amplicon library preparation kit and the MiSeq Illumina sequencer platform
(Illumina Inc.) were used to create the sequencing library and perform resequencing respective‐
ly. All steps were performed in-house according to the manufacturer’s instructions [27, 28].

Library preparation was performed by enrichment of the target regions using an amplicon-
based multiplex polymerase chain reaction (PCR) method. Here, a custom amplicon tube
(CAT) containing upstream and downstream oligonucleotides specific for the target regions
was hybridized to the unfragmented gDNA samples in a 96-well plate. Unbound oligonu‐
cleotides were then removed by a series of wash steps using manufacturer supplied reagents.
A proprietary extension–ligation mix containing DNA polymerase and ligase (Illumina Inc.)
extended and ligated the upstream bound oligonucleotide through the targeted region to the
5′ end of the downstream oligonucleotide. The resulting extension–ligation products contain‐
ing the targeted genomic region flanked by common sequences required for amplification were
then amplified by standard PCR on a thermal cycler. The amplicon size (250 bps), the number
of amplicons in the CAT (632 amplicons) and the type of input DNA (high quality) determined
the number of PCR cycles (n = 24). The PCR reaction incorporated two unique, sample-specific,
multiplexing index sequences (barcoding) that would later be used by the alignment software
(MiSeq reporter) to identify individual samples following library pooling, and common
adapters required for cluster generation. PCR products were purified by AMPure XP beads
(Beckman Coulter, Lane Cove, NSW, Australia) and the quantity of each library was normal‐
ized by an integrated bead-based method. Equal volumes of the normalized libraries were
then combined, diluted in hybridization buffer (Illumina Inc.) and heat denatured.

The MiSeq Illumina instrument was used to resequence the pooled library by paired-end
sequencing. The DNA library was immobilized to the single-use glass-based MiSeq flow cell
through the adapter sequences. Bridge PCR amplification then generated clusters of clonal
copies of each DNA molecule. These templates were then sequenced using platform-specific
reversible dye terminator sequencing-by-synthesis chemistry. Sequence alignment to the
reference genome (GRCh37/hg19) was performed using on-instrument software (MiSeq
reporter software, Illumina Inc.) that aligned the reads in BAM format and outputted variant
calls in.vcf files. Variant calls were generated using ANNOVAR software (http://www.open‐
bioinformatics.org/annovar) [29] with an acceptance threshold Q-score of 30, corresponding
to a 1:1000 error rate and genomic datasets were viewed using the Integrative Genomics viewer
(IGV) (www.broadinstitute.org/igv/) [30]. Sanger sequencing was performed to provide data
for bases with insufficient coverage and validate variants of clinical significance.

2.5. Data analysis

The University of California, Santa Cruz (UCSC), genome browser (http://genome.ucsc.edu)
was used for variant analysis and variants were cross-checked against databases including the
NHLBI-Extended Sequencing Project (ESP), 1000 Genomes Project Database [31] and the
Database of Single-Nucleotide Polymorphisms (dbSNP, http://www.ncbi.nlm.nih.gov/SNP/).
Bioinformatic tools, Sorting Intolerant From Tolerant (SIFT, http://sift.jcvi.org/) [32], Polymor‐
phism Phenotyping-2 (PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/) [33] and Mutation
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taster (http://www.mutationtaster.org/) [34] were used to predict variant effects on protein
structure and function in the cases of variants lacking published literature.

2.6. Nomenclature and descriptions for variant reporting

All variants identified were annotated according to Human Genome Variation Society (HGVS)
nomenclature for clinical reporting (http://www.hgvs.org). The variant elements included
gene name, zygosity, cDNA nomenclature, protein nomenclature, exon number and clinical
assertion.

Descriptions of sequence variations were adapted from the American College of Medical
Genetics and Genomics (ACMG) recommendations for standards for interpretation and
reporting of sequence variations and are listed below [35]:

Pathogenic: The sequence variation has been reported in the literature and is a recognized cause
of the disorder.

Likely pathogenic: The sequence variation is previously unreported and is of the type that is
expected to cause the disorder.

Variant of uncertain significance (VUS): The sequence variation is previously unreported and is
of the type which may or may not be causative of the disorder.

Likely non-pathogenic: The sequence variation is previously unreported and is probably not
causative of disease.

Non-pathogenic: The sequence variation is previously reported and is a recognized neutral
variant.

3. Results

3.1. Next-generation sequencing platform performance

Next-generation sequencing on the Illumina platform produced 13 690 589 (96.74%) reads that
passed initial filtering. This process removes any clusters demonstrating excessive intensity
corresponding to bases other than the called base. Only reads that passed the quality filter
were assigned a quality score. A quality score of Q30 was accepted in the run predictive of an
error probability of ≤0.1%. One sample was excluded from analysis due to poor DNA quality
that generated poor-quality scores across all genomic regions.

Overall coverage across all genomic targets was 92.3%. This was consistent with the initial
software prediction.

3.2. Candidate gene panel results

A total of 703 non-synonymous variants were detected; 75 of these variants were novel and
had not been reported in the dbSNP database. An average of eight non-synonymous variants
was detected per patient.
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Two individuals with known mutations in GFI1B, GP1BA and GP9 by Sanger sequencing were
included as controls. NGS successfully called the first, GFI1B c.880-881insC, but failed to detect
the second, a patient with a phenotype consistent with the inherited macrothrombocytopenia
Bernard-Soulier syndrome (BSS). This patient’s genotype had previously been confirmed by
Sanger sequencing and included mutations in both the GPIBA (GPIBA c.2217C>T) and the GP9
genes (c.1829A>G and c.1859T>G). Failure to detect these mutations may have been caused by
sequencing errors introduced by GC-rich motifs in these regions [36, 37].

Pathogenic mutations were detected in 16 individuals (17.4% of the cohort) whilst 36 individ‐
uals (39.1%) had VUS and 40 individuals (43.0%) were without identifiable pathogenic
mutations (Table 2, Table 3).

Genes
Number of individuals with pathogenic

mutations
Number of mutations detected of uncertain

significance

ACTN1 0 8

GP1BA 1** 2

GP1BB 0 2

GP9 0 1

MYH9 6 3

TUBB1 0 3

NBEAL2 1 7

FLI1 0 1

GATA1 0 3

GFI1B 3 2

RUNX1 2** 0

CD36 0 13

F2R 0 0

GP6 0 5

ITGA2 0 4

ITGA2B 3* 6

ITGB1 0 0

ITGB3 0 0

P2RY12 0 0

Total Number 16 60 mutations in 36 individuals

Number of individuals without pathogenic mutations identified: 40

*Parents heterozygous; child with homozygous mutation giving rise to a Glanzmann thrombasthaenia phenotype.

** These mutations are likely pathogenic.That is, the detected variation is unreported in the literature to date, however,
based on the type of variation, it’s deleterious effect predicted using bioinformatic tools (see data analysis) and the
associated phenotypic data, is of the type to cause the disorder

Table 2. Mutations detected in the candidate genes. Genes affecting the platelet cytoskeleton (top, white shading), the
platelet granules (light gray shading) and platelet-related transcription factors (dark gray shading).
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associated phenotypic data, is of the type to cause the disorder

Table 2. Mutations detected in the candidate genes. Genes affecting the platelet cytoskeleton (top, white shading), the
platelet granules (light gray shading) and platelet-related transcription factors (dark gray shading).
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Gene Chromosome Zygosity Nucleotide change Protein alteration Exon

GP1BA** 17 Heterozygous c.1432delT p.Phe478fs 2

MYH9 22 Heterozygous c.283G>A p.Ala95Thr 2

Heterozygous c.287C>T p.Ser96Leu 2

Heterozygous c.2104C>T Arg702Cys 17

Heterozygous c.4339G>C p.Asp1447His 31

NBEAL2 3
Compound

heterozygous
c.5935C>T

c.7103dupA
p.Arg1979Trp

His2368fs
37
45

GFI1B 9 Heterozygous c.503G>T p.Cys168Phe 4

RUNX1** 21 Heterozygous
c.503–504ins

ACCACAGAGCCATCAAA
AT

p.Ile168fs 3

Heterozygous Stop/gain c.766C>T p.Gln256X 5

ITGA2B* 17 Homozygous c.138–139insT p.Gly47fs 1

* Parents heterozygous. Child with homozygous mutation giving rise to a Glanzmann thrombasthaenia phenotype.

** Mutations are likely pathogenic.

Table 3. Pathogenic genetic variants detected: nucleotide cDNA changes and corresponding protein alterations.

The candidate array was successful in detecting mutations in genes commonly associated with
macrothrombocytopenia and included a total of nine MYH9 mutations (six of which had
previously been reported in the literature as pathogenic and three of which are of uncertain
significance) (Figure 2) and a compound heterozygous mutation of NBEAL2 in keeping with
Gray platelet syndrome.

Figure 2. MYH9 variants detected in the candidate gene panel. Exons 2–20 encode the head and neck domains of
NMMHC IIA (Blue block). Exons 21–41 encode the tail domains. Mutations were detected in exons 2, 17, 31 and 33. Six
pathogenic mutations (red text) and three variants of uncertain significance (black text) were detected.

A homozygous mutation of ITGA2B was also detected and confirmed a suspected Glanzmann
thrombasthenia phenotype. Several transcription factor variants were found, including a FLI1
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mutation of uncertain significance in one patient, three GATA1 mutations of uncertain
significance in three individuals from two families, three pathogenic GFI1B mutations in three
individuals from two families and two of uncertain significance in two individuals in another
two families. RUNX1 mutations were identified in three individuals from three families; two
of these were considered likely pathogenic, whilst the third was shown to represent a false
positive result (RUNX1, heterozygous, stop/gain, c. 966T>G (p.Tyr322X), exon 6). False
positivity was confirmed by Sanger sequencing that showed a wild-type sequence across that
region.

Sanger sequencing was also performed in selected samples across regions of low coverage (Q
< 30) from those genes in which the clinical significance is widely accepted and included, GP9,
GP1BA, GPIBB, FLI1 exon 3, FLI1 exon 9, MYH9 exon 20, MYH9 exon 37 and GFI1B exon 5.
This confirmatory step detected a novel mutation in FLI1 [38], not identified by NGS.

4. Discussion

The diagnosis of IPFD and IPNDs using classic phenotypic methods poses a challenge to
clinicians and laboratory scientists due to lack of consensus over classification and diagnostic
criteria, poor standardization of tests and heterogeneity of traditional diagnostic approaches
[6]. This diagnostic conundrum is evident in our cohort where only 11 patients received a
suspected diagnosis to a pathway level following multiple previous phenotypic tests. In
addition, only 62% of patients received any form of phenotypic test, reflecting the difficulty of
accessing these specialized techniques in many centers.

Sanger sequencing is widely regarded as a reliable platform for routine diagnostic genetic
testing and small-scale projects. However, effective analysis of numerous disease-associated
genes by Sanger sequencing in a diagnostic setting is time-consuming, expensive and not
always feasible [18]. A candidate gene array was selected as it has the potential to simultane‐
ously analyze all of the selected coding regions of disease-targeted genes. Moreover, relative
to WES and WGS, it provides good gene coverage and representation of exons, is relatively
fast and cheap and minimizes the problems with unexpected findings and development of
complex downstream bioinformatic pipelines for analysis [39].

We have demonstrated that high-quality sequence data can be generated from a candidate
group of platelet genes using the Illumina MiSeq platform. Our candidate gene panel com‐
prised 19 genes associated with IPNDs, predominantly inherited macrothrombocytopenia.
Pathogenic mutations were detected in 17.4% of the cohort. The most number of mutations
was detected in the MYH9 gene. MYH9-related disorders are the most common forms of
inherited thrombocytopenia and are frequently under-recognized or misdiagnosed as immune
ITP [40–42]. Immunofluorescence staining of the peripheral blood film demonstrating
abnormal clustering of non-muscle myosin heavy chain IIA (NMMHC IIA), seen as Döhle
bodies on the blood film is regarded as a suitable diagnostic test [40], but is not available at all
centers. A strong genotype–phenotype relationship is recognized in these disorders, with
mutations affecting the motor (head and neck) region of NMMHC-IIA causing more severe
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thrombocytopenia and a higher risk for nephritis, cataracts and deafness, whilst those
mutations affecting the tail region cause less severe thrombocytopenia and extra-hematolog‐
ical manifestations [43, 44]. Genetic confirmation of MYH9-related disorders, therefore, has
prognostic significance. In our group of patients, three pathogenic mutations in five individ‐
uals were detected and were predicted to affect the motor region of NMMHC IIA. Knowledge
of these mutations has provided an opportunity to offer advice regarding additional non-
hematological surveillance tests such as audiograms, renal function assessments and ophthal‐
mological screening for cataracts [40, 41, 45].

Transcription factors are the key regulators for the development of the hemostatic platelet from
blood stem cells. Stem cells differentiate into a bipotent megakaryocyte-erythroid progenitor,
then a committed megakaryocyte that undergoes endoreplication prior to extending propla‐
telet extensions from the cytoplasm into the bone marrow sinusoid forming platelets [46]. This
complex differentiation pathway is orchestrated by the activation and repression of groups of
genes important for blood cell development via transcription factors [46, 47]. The candidate
gene panel contained four genes that encode hemopoietic transcription factors, FLI1, GATA1,
GFI1B and RUNX1. Definitive diagnosis of platelet disorders caused by mutations in these
genes solely by phenotypic testing is not possible. We detected a pathogenic mutation in one
of these genes, GFI1B, and likely pathogenic mutations, in RUNX1. The RUNX1 gene is
responsible for the familial platelet disorder with a predisposition to acute myeloid leukemia
(FPD/AML) [48]. The propensity to develop acute leukemia is determined by the action of the
variant, with dominant negative and haploinsufficient mutations having different leukemo‐
genic risk. The former has a higher risk (up to 40% in some reports) of progression to AML or
myelodysplastic syndrome [49–51]. Other factors include the residual level of activity of wild-
type RUNX1 [52], deregulation induced by dominant negative mutations on hamopoietic stem
cell genes such as NR4A3 [53] as well as effects on p53 genes-dependent genes that induce
genomic instability of the granulomonocytic precursors [52]. The median age of onset of
progression to myelodysplastic syndrome / acute leukemia is 33 years of age, and therefore,
the detection of two, likely pathogenic, RUNX1 mutations by our candidate gene panel is of
obvious importance [49]. Despite their adverse risk, clinical guidelines regarding the best way
to counsel, test and manage these patients and their family members are lacking and recom‐
mendations are largely based on expert opinion [54]. Initial referral to a specialist team
comprising a physician as well as genetic counselor is recommended, as well as, full blood
count analysis, bone marrow biopsy (to detect occult malignancy) and full human-leukocyte
antigen (HLA) typing of patients and their first-degree relatives (in the event a bone marrow
transplant is required in the future). A biannual follow-up schedule thereafter should be
established to ensure close hematological surveillance [54]. GFI1B is another transcription
factor that plays an essential role in hematopoiesis [46, 55]. Two recent publications [22, 23]
described mutations in the DNA-binding zinc finger domain of GFI1B causing an autosomal
dominant bleeding disorder in affected families. Our candidate gene array detected another
mutation in a non-DNA-binding zinc finger domain of GFI1B (GFI1B c.503G>T). Further
characterization of this c.503G>T mutation indicates a milder platelet phenotype with less
clinical bleeding symptomatology than the DNA-binding mutants [56] (Figure 3). The
detection of this non-DNA-binding mutation has afforded us an opportunity to propose a
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genotype–phenotype relationship associated with mutations in two different regions of GFI1B.
This is important to enable classification, aid diagnosis and inform treatment strategies.

Figure 3. The blood film of an affected individual with the GFI1B c.503G>T mutation demonstrating macrothrombocy‐
topenia. Platelets show normal granulation unlike the platelets seen in individuals with the GFI1B c.880-881insC muta‐
tion (Figure 1D) that have a heterogeneous appearance (some platelets appear hypogranular or gray whilst others have
normal granulation).

The yield of pathogenic variants reported above may have been improved by more stringent
patient selection criteria. In this study, all patients suspected of an inherited thrombocytopenia
by treating hematologists were included regardless of the platelet phenotype. That is, not all
patients demonstrated macrothrombocytopenia. In addition, in 16 cases only DNA was
received and the platelet phenotype was not known. Noting that 15 of the 19 genes on the
candidate panel are known to cause macrothrombocytopenia and that only 5 genes on the
panel (ETS1, P2RY12, F2R, GP6, RUNX1) have an uncertain platelet phenotype or otherwise
known to cause functional disorders with normal-sized platelets, the pre-test probability of
detecting a pathogenic variant in samples where macrothrombocytopenia was not present was
low. Furthermore, this candidate array was performed in a research laboratory and therefore
included genes (ETS1 and F2R) where the association with inherited thrombocytopenia is not
well delineated. Exclusive inclusion of genes with clear evidence of disease association may
further improve the diagnostic yield.

Variants of uncertain significance (VUS) were detected in over a third of the cohort (39.1%).
Thirteen samples contained more than one VUS. One sample contained five VUS in five
different genes (GFI1B, ITGA2, MYH9, NBEAL2 and TUBB1). In many instances, these variants
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were novel. It is likely, as knowledge of the genes causing inherited platelet bleeding disorders
increases, this percentage will decrease, the VUS either becoming recognized as pathogenic or
definitely non-pathogenic. Our analytical pathway used three bioinformatics tools (SIFT,
PolyPhen2, Mutation taster) in variants lacking published literature to assist variant annota‐
tion. Bioinformatic tools using sequence and/or structure to predict the effects of amino acid
substitutions on protein function have been developed following observations that disease-
causing mutations are more likely to occur at positions that show evolutionary conservation
and/or common structural features which enable them to be distinguished from neutral
substitutions [57–60]. These tools serve to guide future experiments and should not be used
solely as a clinical predictor of pathogenicity. Consider the ACTN1 missense mutation
(ACTN1, heterozygous, c.580G>A [p.Gly194Arg], exon 6, rs145918825) detected in our
candidate gene array. It is predicted to disturb the calponin homology domain (CHD) within
the actin-binding domain (ABD) of α-actinin (an important platelet structural protein). All of
the mutations described in the literature to date have identified ACTN1 mutations within the
functional domains (ABD and the C-terminal calmodulin-like domain [CaM]) but not within
the spacer spectrin repeats [25, 61, 62]. Bioinformatic tools were applied to this variant. It is
predicted to be deleterious by SIFT (sequence homology-based tool), whereas PolyPhen-2
(structure/sequence based tool) predicts the amino acid alteration to be benign. This highlights
two points. Firstly, it is advisable that predictions are made by integrating the results from
several tools as reliance on one tool may lead to incorrect annotation [63], and secondly, that
bioinformatic tools provide predictions only. In this case, the functional consequences of the
ACTN1 DNA variant are yet to be described and thus the variant may or may not be significant.
Further family studies and additional structural analyses of the protein may clarify the
pathogenicity of the variant [35].

Coverage is a crucial metric for establishing accuracy as well as analytical sensitivity and
specificity of a NGS testing platform [64]. Coverage requirements depend on the application
of the NGS test. In general, sequencing more reads will increase the power of the assay. We
determined the necessary coverage level based on recommendations forwarded by the Royal
College of Pathologists of Australasia [65] whose guidance is in compliance with National
Pathology Accreditation Advisory Council (NPAAC) standards for testing of human nucleic
acids [66] and combined this advice with recommendations from published literature and
other international bodies such as the ACMG [35]. Our accepted Q score (Q30) was met in
92.3% of all genomic targets and in 97% of exonic targets. The read coverage distribution curve
displayed a classic Poisson-like distribution indicating uniformity of coverage, this data
accompanied by the high quality of base calls suggested that the NGS platform is able to deliver
reliable sequence data. However, there were also areas of lower coverage where the platform
did not perform as well, and lacked sensitivity. These regions were identified at genomic
targets in FLI1, GP1BA, GP1BB, GP9, ITGB1 and NBEAL2 and were predicted in the design
studio report. Two false negative results were confirmed in regions where coverage was low.
The first being the failed detection of GPIBA and GP9 mutations in the second internal control
sample and the second was a novel pathogenic mutation in FLI1 that was confirmed by Sanger
sequencing and additional laboratory investigations. To ensure coverage of the respective
amplicons over the GP9 region, parallel Sanger sequencing was performed. Targeted Sanger
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sequencing was also performed for GP1BA and GP1BB in cases in which phenotypic details
had been provided by the referring clinician and where confident exclusion of a variant in
those genes was necessary. Sanger sequencing performed over these regions did not detect
additional mutations. Only a single false positive result was confirmed by Sanger sequencing
(RUNX1, stop/gain, c.966T>G). This suggested good platform specificity. The question as to
whether confirmatory Sanger sequencing need be performed is debated in the literature [39,
67]. Proponents argue that it is required to confirm a diagnosis as well as remove incorrect
calls introduced by experimental errors. Whereas, opponents argue, in the setting where the
NGS platform performance metrics have been established to be comparable to Sanger
sequencing performance measures, a strategy dictated by the degree of coverage per nucleo‐
tide be adopted. Suggesting that parallel Sanger sequencing need not be performed as long as
the coverage is >30 times per nucleotide at that genomic target, adding that confirmatory
testing be performed where coverage is less than 20 times, and be determined by visual
inspection with coverage between 20 and 30 times. Authors commented that the laboratory
may also simply elect to exclude the target from the report if Sanger sequencing is not
performed despite low coverage [39].

An important aspect of the post-analytical process is the timely provision of a genomic test
report. In the setting of inherited platelet disorders, a false negative interpretation may lead
to a falsely conservative bleeding prophylactic strategy at the time of surgery, in turn, placing
the individual at a potentially increased risk of bleeding. A false positive result, on the other
hand, may cause undue stress to the individual and their family. A genomic test report was
therefore carefully and consistently structured taking into consideration recommendations
from professional bodies such as the RCPA [65] and ACMG [68]. The report (Appendix 1)
contained a summary of the genes analyzed and reflected the scope and limitation of the assay
and indicated the context in which the test was performed. A clear, succinct, interpretative
comment was made regarding the detected variant. This indicated whether or not the detected
variant was associated with the clinical phenotype and highlighted variants of uncertain
significance. The body of the report detailed, in a structured format (see materials and
methods), any detected pathogenic or clinically relevant variants and whether these had been
previously described. An interpretation on the significance of the detected variant was
supported by relevant references where possible, and recommendations regarding additional
validation tests and /or genetic counseling and clinical screening were provided. Following
the main body of the report, DNA variants that were considered to be non-pathogenic were
listed. The report was concluded by a description of the test method and limitations thereof.

In conclusion, our study has demonstrated the potential to successfully diagnose inherited
macrothrombocytopenia in cases that remained uncharacterized by traditional phenotypic
approaches. Optimization of this format will provide patients an opportunity for a “one stop,
one step” testing platform that is cost-effective and not affected by the pre-analytical variables
that hinder current testing methods based on functional analysis of platelets. However, the
translation of NGS from a powerful research tool into the clinical laboratory will require co-
operation from international groups to establish best practice, quality and reporting standards
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for these conditions, as well as to generate reliable databases that link platelet phenotypes to
genotypes to provide best hemostasis clinician advice.

5. Appendix

Test performed: Candidate gene array of 19 genes (ACTN1, CD36, F2R, FLI1, ETS1, GATA1,
GFI1b, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9, NBEAL2, P2RY12,
RUNX1, TUBB1) using the Illumina MiSeq next-generation sequencing platform.

Please Note:

This test has been performed for research purposes only and has not been NATA accredited
in our laboratory.

Validation by Sanger sequencing has not been performed on clinically significant or novel
detected variants and should be considered by the referring clinician.

Result: A mutation in a gene known or predicted to be associated with decreased platelet
counts and/ or function has been identified. A second variant of uncertain significance has also
been identified.

DNA variants: Variant 1: MYH9, Heterozygous, c.287C>T (p.Ser96Leu), Exon 2, rs121913657,
pathogenic.

Variant 2: NBEAL2, Heterozygous, c.6178C>T (p.Arg2060Cys), exon37, uncertain significance.

Previously described: Variant 1: Yes (rs121913657)

Variant 2: No.

Interpretation: A heterozygous 287C-T transition in the MYH9 gene, resulting in a ser96-to-
leu (S96L) substitution, has been predicted to disturb the helical region of the protein resulting
in MYH9- related disorder (Epstein syndrome).

The pathogenicity of variant 2 is uncertain as information regarding this mutation is not
available in the reported literature. Note that the classification of variants of uncertain/
unknown significance may change over time if additional information on these conditions
becomes available in the reported literature.

References: Arrondel C, et al. Expression of the non-muscle myosin heavy chain IIA in the
human kidney and screening for MYH9 mutations in Epstein and Fechtner syndromes. J Am
Soc Nephrol 2002;13: 65–74.

Utsch B, et al. Bladder exstrophy and Epstein type congenital macrothrombocytopenia:
evidence for a common cause? (Letter) Am J Med Genet 2006;140A:2251–3.

Kunishima S, et al. Immunofluorescence analysis of neutrophil non-muscle myosin heavy
chain-A in MYH9 disorders: association of subcellular localization with MYH9 mutations. Lab
Invest 2003;83:115–22.
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Recommendations: The pathogenicity of detected candidate variants should be validated
independently by Sanger sequencing. Where necessary, the functional significance of these
variants should be confirmed independently by appropriate biological assays to replicate the
phenotype of this patient.

MYH9-related disorders have an autosomal dominant inheritance. Genetic counselling is
recommended for this individual and their family. Family screening may be appropriate after
appropriate genetic counselling.

DNA variants detected of unlikely clinical significance:

NBEAL2, Heterozygous, c.1531C>G (p.Arg511Gly), Exon 13, rs11720139, likely non-patho‐
genic. GP6, Homozygous, c.691G>A (p.Ala231Thr), Exon 6, rs2304167, likely non-pathogen‐
ic. MYH9, Heterozygous, c.4876A>G (p.IIe1626Val), Exon 34, rs2269529, likely non-
pathogenic.

Test method:

A TruSeq custom amplicon specific for the target regions of 19 genes, ACTN1, CD36, F2R, FLI1,
ETS1, GATA1, GFI1b, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9,
NBEAL2, P2RY12, RUNX1, TUBB1 was designed using Illumina design studio (Illumina, Inc,
San Diego, CA, USA). Next-generation sequencing was performed using the MiSeq Illumina
sequencer platform (Illumina, Inc.). Obtained sequences were aligned to the reference genome
(GRCh37/hg19) using MiSeq reporter software (Illumina, Inc.) and the genomic datasets
viewed using the Integrative Genomics viewer (IGV) (www.broadinstitute.org/igv/). Variant
calls were generated using ANNOVAR software (http://www.openbioinformatics.org/
annovar) with an acceptance threshold Q-score of 30, corresponding to a 1:1000 error rate.
Sanger sequencing was performed to provide data for bases with insufficient coverage. The
University of California, Santa Cruz (UCSC), genome browser (http://genome.ucsc.edu) was
used for variant analysis and variants were cross-checked against databases including the
NHLBI-extended sequencing project (ESP), 1000 genomes project database and the Database
of Single-Nucleotide Polymorphisms (dbSNP). Bioinformatic tools (SIFT, PolyPhen-2 and
Mutation taster) were used to predict variant effects on protein structure and function in the
cases of variants lacking published literature.

Limitations: Overall gene coverage was 97% using this format. Therefore, it is possible that
the genomic region where a disease causing mutation exists in the proband was not captured
and therefore was not detected.

It is also possible that a particular genetic mutation was not recognised as the underlying cause
of the genetic disorder due to incomplete scientific knowledge of the impact of all variants at
this point in the literature.

Reported by:

An example of a NGS report.
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ETS1, GATA1, GFI1b, GP1BA, GP1BB, GP6, GP9, ITGA2, ITGA2B, ITGB1, ITGB3, MYH9,
NBEAL2, P2RY12, RUNX1, TUBB1 was designed using Illumina design studio (Illumina, Inc,
San Diego, CA, USA). Next-generation sequencing was performed using the MiSeq Illumina
sequencer platform (Illumina, Inc.). Obtained sequences were aligned to the reference genome
(GRCh37/hg19) using MiSeq reporter software (Illumina, Inc.) and the genomic datasets
viewed using the Integrative Genomics viewer (IGV) (www.broadinstitute.org/igv/). Variant
calls were generated using ANNOVAR software (http://www.openbioinformatics.org/
annovar) with an acceptance threshold Q-score of 30, corresponding to a 1:1000 error rate.
Sanger sequencing was performed to provide data for bases with insufficient coverage. The
University of California, Santa Cruz (UCSC), genome browser (http://genome.ucsc.edu) was
used for variant analysis and variants were cross-checked against databases including the
NHLBI-extended sequencing project (ESP), 1000 genomes project database and the Database
of Single-Nucleotide Polymorphisms (dbSNP). Bioinformatic tools (SIFT, PolyPhen-2 and
Mutation taster) were used to predict variant effects on protein structure and function in the
cases of variants lacking published literature.

Limitations: Overall gene coverage was 97% using this format. Therefore, it is possible that
the genomic region where a disease causing mutation exists in the proband was not captured
and therefore was not detected.

It is also possible that a particular genetic mutation was not recognised as the underlying cause
of the genetic disorder due to incomplete scientific knowledge of the impact of all variants at
this point in the literature.

Reported by:

An example of a NGS report.
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Abstract

The possibility to receive genetic information of the fetus from maternal blood during the
course of pregnancy has been one of the main goals of research in prenatal medicine for
decades. First, the detection of cell-free fetal DNA in maternal blood and finally, the de‐
velopment of the powerful technique of “next-generation sequencing” (NGS) were re‐
quired to finally transfer this analysis into clinical practice. Since its introduction in 2011,
the clinical demand for the technique of non-invasive prenatal testing (NIPT) has been
enormous. NIPT initially was available for the most common aneuploidies (trisomy 21,
13, and 18), but the varieties of diseases that can be detected prenatally by NIPT are in‐
creasing rapidly.

In this chapter, we aim to describe the current basic concepts of NIPT, give an overview
of the currently available NIPT tests and associated technical aspects. We will present our
studies on the clinical uptake of NIPT into clinical care in two different European centers
and its impact on prenatal diagnosis.

Keywords: Non-invasive prenatal testing, prenatal diagnosis, prenatal ultrasound, cell-
free fetal DNA, fetal aneuploidies

1. Introduction

The analysis of the fetal genome by an indirect approach from maternal blood during preg‐
nancy has been the focus of research in prenatal medicine for decades. The only option to
investigate the genetic condition of the fetus so far had been an invasive procedure such as
chorionic villous sampling and amniocentesis, which carries a 1% risk of miscarriage.

The basis of the current concepts to this non-invasive approach was the detection of cell-free
fetal DNA (cffDNA) in maternal blood in 1997 [1]. It finally was the development of the

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



technique of next-generation sequencing (NGS) that lead to the transfer of this research into
clinical practice. After the clinical availability and introduction of cell-free DNA analysis for
the most common fetal aneuploidies (Trisomy 21, 13, and 18) in 2011, there has been an
extremely high demand by pregnant women and to date approximately 1.4 million analyses
have been performed worldwide assuming that there will be around 1 million/year in 2015 [2].
Most current tests count DNA fragments, map them to the chromosomes, and quantitatively
compare the cell-free-DNA in maternal blood with a euploid reference genome. This new
screening tool in prenatal diagnostics has marked the beginning of a new era in prenatal care
and has significantly reduced the rate of invasive prenatal procedures such as chorionic villous
sampling and amniocentesis.

With the broad availability of non-invasive prenatal genetic testing, a number of new issues
have emerged concerning its reasonable clinical application, ethical concerns, integration into
current public healthcare plans, counseling issues, and the role of prenatal ultrasound
screening. In the following, we will discuss the current and future concepts of prenatal cell-
free fetal DNA testing and show the current impact on clinical care among different risk groups
taking into account medical, social, and ethical aspects.

2. Fetal cells and cell-free DNA

The idea that genetic information of the fetus can be discovered by investigating maternal
blood during pregnancy stems from the historic concept of Georg Schmorl, who described
cross-placental trafficking of fetal cells into the maternal circulation. Fetal trophoblast cells
were first demonstrated in lung tissue in mothers who died from eclampsia [3]. The isolation
of fetal cells has remained a challenge due to their very low quantity [4,5], the limited knowl‐
edge on the characteristics and suboptimal markers for identification [6]. The focus has moved
to the analysis of fetal cell-free DNA fragments which were first described in 1997 [1]. Cell-
free DNA in maternal blood is comprised of extracellular DNA fragments that can be found
in the maternal plasma and serum. The majority of cell-free DNA in maternal circulation is of
maternal origin and around 10% is of fetal origin. Cell-free fetal DNA is released into the
maternal circulation from cells of the placenta. It can be detected very early in pregnancy and
is cleared a few hours after birth [7].

Initially, it was only feasible to analyze sequences of paternal origin and de novo mutations
that were different from the maternal genome due to the high percentage of maternal cell-free
DNA. Therefore, early studies focused on fetal Rhesus-status and on the detection of autoso‐
mal-dominant disorders of paternal inheritance [8]. Real-time quantitative PCR technology
proved to be suitable for the detection of fetal loci that are different from the maternal genome
such as the Y chromosome. Fetal gender determination was applied in families with a high
risk for X-chromosome-linked disorders in which only male fetuses are affected from the
disease and for the detection of fetal Rhesus D in pregnancies at risk for hemolytic disease of
the newborn [9–11]. Just recently, non-invasive prenatal testing for routine fetal Rhesus D
genotyping in Rhesus-negative women has been proven to be highly accurate over a 2-year
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period after its implementation in Denmark and proved to have the ability to direct the use of
Anti-D Rhesus prophylaxis in prenatal care [12].

With the technique of next-generation sequencing, it is now possible to also reliably quantify
specific DNA sequences and therefore assess sequences that are not only present in the fetus
but also present in the maternal genome. This is accomplished by comparing the measured
quantity with a reference genome, hence offering the possibility for the widespread analysis
for the detection of most common fetal aneuploidies [13].

3. Technical principles of the clinically available Non-Invasive Prenatal
Tests (NIPT)

In the following passage, we will focus on the basic principles of the commercially available
cell-free DNA test that offers analysis for the three most common aneuploidies today. Basically,
there are three different types of approaches of prenatal cell-free DNA testing: whole genome
sequencing, targeted genome sequencing, and single-nucleotide polymorphism (SNP)-based
sequencing. Another fourth approach, epigenetic testing of fetal DNA methylation, which is
not yet clinically available, has shown promising results. It detects fetal-specific epigenetic
patterns and unique methylation profiles [14,15].

All techniques use massive parallel genomic sequencing (MPS) or NGS, which refers to the
high-throughput DNA sequencing technology that can sequence millions of DNA molecules
in parallel [13]. For prenatal testing, both cell-free DNA of maternal and fetal origin present in
maternal peripheral blood are sequenced and these fragments are mapped to a reference
chromosome. It is important to keep in mind that the majority of sequenced DNA is of maternal
origin and that the difference between a normal fetus and fetus with an additional chromosome
will only show a slight increase compared to a normal reference chromosome since the
aneuploid part forms only about 10% of the sequenced DNA. Quantitative accuracy of the
applied method, therefore, is crucial to exclude an aneuploidy. A minimum percentage of fetal
DNA is required to reliably perform an analysis and is usually set at a minimum of 4%.

3.1. Whole genome sequencing

For this analysis, the entire cell-free DNA is sequenced in short reads and compared to a
reference human genomic database and each sequence is matched to a specific chromosome.
The counts observed in the individual probe are then compared to an euploid reference sample.
If the fetus carries an additional chromosome (as in trisomy 21, 13, and 18), more fragments
are expected for the additional chromosome compared with a normal fetus. However, it is
necessary to sequence many millions of DNA fragments (12–15 × 106 mapped sequences) to
ensure that there are sufficient chromosome fragments (reads) from the specific chromosome
to detect statistically significant differences between aneuploid and euploid fetuses. Also, there
are several other aspects of sequencing and the fetal fraction as well as the guanine–cytosine
content, etc. that need to be taken into account.
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3.2. Targeted sequencing

Targeted sequencing sequences only the regions / chromosome of interest and thus can be
more time- and cost-efficient compared to whole genome sequencing. The principle is to
selectively amplify the regions from chromosome 21, 13, and 18 followed by NGS. This method
is also referred to as digital analysis of selected regions (DANSR). The amount of sequencing
for a reliable detection is significantly lower around 40,000 and 1 million mapped sequences /
sample. Unique to this type, the analysis uses a fetal fraction optimized risk score (FORTE)
and takes into account the a priori risk (maternal age and gestational age) and uses an odds
ratio approach to calculate the risk for aneuploidy.

3.3. SNP-based sequencing

This third approach was the most recent method introduced to the variety of clinically available
NIPT options. This technique involves targeted amplification and sequencing of single-
nucleotide polymorphisms (SNPs). SNPs are single base pairs that occur approximately once /
300 base pairs on the human genome and can be used to distinguish individuals. In addition
to the above mentioned applications, maternal and fetal DNA also can be distinguished by
SNP analysis. For this analysis, both maternal DNA from white cells from the buffy coat and
maternal plasma which includes fetal and maternal DNA are used. In the SNP-technology
originally introduced by Zimmermann et al. [16], 19,488 SNPs on the chromosomes 21, 13, 18,
X, and Y are analyzed simultaneously. Taking into account the parental genotype, the fetal
fraction, and the fetal chromosome copy number, billions of possible genotypes at a specific
locus are considered by a complex algorithm and the observed allele distributions are com‐
pared to the expected allele distributions. By this method, the most likely fetal genotype can
be calculated and a specific risk score for the analyzed aneuploidies is reported [16–19].

4. Evidence on the quality of NIPT from published literature

The initial studies on test quality for the most common aneuploidies were performed in high-
risk collectives and focused on the sensitivities and specificities of the different cell-free DNA
tests [20–26]. After the rapid clinical application of NIPT including many women at low risk,
there was a demand for information on the positive predictive value of each individual test.
The positive predictive value then was found to vary widely depending on the investigated
cohort and could be as low as 45.4% for trisomy 21 [27], meaning that when a NIPT-test was
positive only 45.4% of the fetuses were affected. This underlines the fact that although cell-free
DNA testing performs better than the previous screening algorithms for aneuploidy, a positive
test result requires confirmation with an invasive procedure such as amniocentesis or chorionic
villous sampling.

4.1. Trisomy 21, 13, and 18

The data for the three most common aneuploidies now stem from a number of large-scale
studies from mainly high-risk collectives. The detection rate for trisomy 21 ranged from 97.5%
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to 100%, with most of the studies showing sensitivities above 99%. For trisomy 18, the outcome
is similar ranging from 92.8% to 100%. The sensitivities for trisomy 13 are slightly lower
ranging from 78.6% to 100% [18–32]. All of the reported screening methods have significantly
lower false positive rates below 1% compared to conventional first trimester screening, which
typically is set at a 5% false positive rate.

4.2. Sex chromosome aneuploidies

While reporting of fetal gender is feasible with cell-free DNA testing with high sensitivities of
more than 95%, the reporting of sex chromosomal aneuploidies is more challenging. The most
common sex chromosomal aneuploidies are 45X0 (Turner syndrome), XXX (Triple X syn‐
drome), XXY (Klinefelter syndrome), and XYY (Jacob syndrome).

While Turner syndrome can be detected on prenatal ultrasound, the others typically do not
show sonographic signs but have been detected incidentally if an invasive procedure was
performed for  another  reason.  Compared to  the  most  common aneuploidies,  the  detec‐
tion rates of sex chromosomal aneuploidies have lower specificities leading to higher false
positive  rates  [23,33].  This  is  most  likely  due  to  the  guanine–cytosine  content  of  the  X
chromosome, which affects the reliability and accuracy of the sequencing data, the small
size of the Y chromosome, and the sequence similarity between the X and the Y chromo‐
some.  Furthermore,  an  unknown  maternal  or  fetal  mosaicism  can  interfere  with  the
quantifications of the chromosomal representations. The reported numbers on detected sex
chromosome aneuploidies other than Turner syndrome are very low with less than seven
cases of each aneuploidy per study [23,34–36] so that reliable data are not present to date.
The data on Turner syndrome need to be interpreted with caution since there may be a
bias toward the non-viable cases and those detected with sonography.  Furthermore,  the
follow-up data on test negative cases might be incomplete due to the fact that children with
Turner syndrome might not show a noticeable phenotype at birth. Also, the rate of tests
that do not receive a result due to difficulties with the interpretation of the sequencing data
(non-reportables) seems to be higher compared to the autosomal aneuploidies. Taking into
account some of these limitations, the detection rate for Turner syndrome ranges between
75% and 92% at a false positive rate of up to 0.3% [23,34–36].

4.3. Triploidy

The presence of a third additional copy of each chromosome is called triploidy. The third copy
stems from either the mother (digynic triploidy) or the father (diandric triploidy) and is a
challenge for NIPT. Since whole genome sequencing and targeted sequencing rely on the
proportions of chromosomes in relation to each other, it is impossible to detect this condition.
Only very few cases have been investigated in SNP-based arrays [37] and have shown that the
detection of diandric triploidy is feasible but digynic triploidy is difficult, most likely due to
the severe growth restriction and a very small placenta which is the typical phenotype
associated with this condition that will lead to non-reporting of NIPT due to the low fetal
fraction.
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4.4. Mosaicism

In mosaic autosomal trisomies, the detection with NIPT is less effective compared to complete
fetal trisomies. The major reason is that the representation of the fetal chromosome is only
partial. The detection of a fetal mosaicism is dependent on the fetal fraction and on the
percentage of abnormal cells in the mosaic. There have been two relevant studies investigating
the ability of detecting mosaicisms showing far less sensitive results for mosaic aneuploidies
with NGS. Since cell-free “fetal” DNA stems from the trophoblast, a confined placental
mosaicism can be a reason for a false positive result. Also, maternal mosaicism can lead to false
positive results. On the other hand, mosaicisms can be missed since it is more difficult to detect
due to the lower percentage of abnormal cells [38]. However, mosaicism is found in approxi‐
mately 0.25% of pregnancies in women undergoing amniocentesis and conventional karyo‐
typing [39]. Finally, if NIPT is positive for a trisomy, the distinction of mosaic versus complete
trisomy can only be made after karyotyping. This shows the importance of confirmation of the
findings detected by NIPT through an invasive procedure as recommended by the professional
societies.

4.5. Twins

Most of the approaches using whole genome NGS and targeted NGS offer an analysis for twin
pregnancies. The analysis, however, is more complex since maternal blood then carries the
cell-free DNA from three individuals. For monozygotic twins that usually carry the same
genetic information, the analysis can be made analogue to singletons. In dizygotic twins it is
likely that only one fetus is affected from an aneuploidy. NGS relies on a small increase of
reads identified for the trisomic chromosome. The total cell-free fetal DNA fraction is larger
compared to singleton pregnancies most likely due to a larger placental volume [40] and this
would be an advantage for NGS compared to singletons. However, this advantage is reduced
by the fact that in most cases only half of the fetal DNA fraction stems from the aneuploid
fetus. Furthermore, it is possible that the cell-free-DNA, which is found in the maternal
circulation, is not equally released half by half from each of the two fetuses. So the aneuploid
fetal fraction could be lower compared to the euploid fetus [41]. To circumvent the mistakes
of the total fetal fraction, the lower fetal fraction is used for the risk assessment. A consequence
of this policy is that the rate of non-reporting will be higher for twin pregnancies.

The published data from twin pregnancies now count almost one thousand analyzed twin
pregnancies [40,42–47]. The SNP-targeted approach does not yet offer twin analysis. The most
recent analysis on 515 twin pregnancies showed a test failure rate of 5.6% compared to 1.7%
in singletons. The median lower individual fetal fraction was lower than in singletons (8.7%
versus 11.7%). Among the 351 pregnancies with complete follow-up and with a test result,
there were no false positives among 334 euploid fetuses. All 5 cases of trisomy 18 were detected,
but there was 1 false negative case of trisomy 21 among the 12 pregnancies discordant for
trisomy 21 [43].

The analysis for twins, however, will not reach a diagnostic level with NGS from maternal
blood since it will never be able to tell which one of the fetuses is affected until this information
is acquired via separate analysis of each twin through an invasive procedure.
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4.6. Factors explaining false positive and false negative results

Even though NIPT is the best available screening test for the detection of the three most
common aneuploidies trisomy 21,13, and 18, the method of analyzing cell-free DNA in
maternal blood by NGS, false negative, as well as false positive results are possible. To
understand the technology, one has to keep in mind two essential things: first, cell-free “fetal”
DNA stems from the trophoblast rather than from the fetus itself [7], and second, the cell-free
DNA analysis of maternal and fetal cell-free DNA in NIPT uses maternal blood as the DNA
source for the analysis. As known from chorionic villous sampling for many years, there is the
phenomenon of feto-placental mosaicism in which only the cytotrophoblast but not the fetus
is affected by the aneuploid cell line or vice versa [48]. If only the cytotrophoblast is affected,
this would lead to a false positive result while a false negative NIPT result is expected if only
the fetus but not the trophoblast is affected from the aneuploid cell line.

Another potential cause for a false positive result could stem from cell-free DNA from an
unrecognized vanishing twin [42,49]. Fetal aneuploidy is a common reason for early fetal loss
and has been described as a reason for a false positive NIPT result [42]. In fact, an additional
fetal haplotype was identified in 0.42% of over 30,000 routine NIPT samples from a SNP-based
assay [49].

If an abnormal karyotype is present in the mother, this might lead to a false positive result.
False positive findings have been reported associated with maternal malignancies [50] or with
maternal X-chromosome abnormalities in otherwise healthy women [51]. As mentioned
before, the depth of sequencing and a low fetal fraction can be the causes of false negative
results due to the counting technology.

5. Integration of NIPT into current prenatal care

Although NIPT has just reached clinical application, the broad use of NIPT in high-risk and
low-risk pregnancies is remarkable. Most professional societies have given recommendations
to limit the application to women at higher risk [52–54], but the number of studies emerging
from low risk and general populations are increasing and models for integration into health
care plans are emerging.

A growing number of trials have now shown that NIPT can also be used in women at low risk
for aneuploidy [19,27,31,33,55,56]. Although the positive predictive value is assumed to be
lower in low-risk patients, test performance is still superior to conventional first trimester
screening [27]. With a broad acceptance among specialist societies that a positive NIPT result
requires confirmation by invasive testing, there seems to be no reason to withhold NIPT from
low-risk women.

Basically, there are two discussed options: one is to use NIPT as a primary screening test that
is offered to every pregnant woman and the second is to use NIPT as a secondary (contingent)
screening test used only in certain risk groups. This could be either women of increased
maternal age or women that screen positive in conventional screening. All discussed options
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refer to NIPT for trisomy 21,13, and 18 in singleton pregnancies as in traditional first trimester
screening. All the other available NIPT options are not considered in a form of general clinical
screening at this point.

A primary screening would lead to the highest detection rates of aneuploidies by lowering the
false positive rates and also the need for invasive procedures [32]. However, the benefit of the
first trimester ultrasound screening apart from aneuploidy detection needs to be remembered
carefully since correct pregnancy dating by measuring crown-rump length is crucial for
lowering perinatal mortality. Furthermore, the determination of twin chorionicity and an
evaluation of maternal adnexae are part of the routine workup in the first trimester. Also, the
majority of major fetal malformations that are not necessarily associated with genetic changes
can be assessed by ultrasound. Further, primary screening also would be an expensive option
by neglecting other benefits of first trimester ultrasound.

Considering contingent screening makes more sense from a healthcare point of view.

Since first trimester screening is widely used in many countries, it would make sense to offer
NIPT to a selected population which is screen positive after first trimester screening. Such an
approach was modeled with a test positive cut-off of 1:2,500 by first trimester screening and
showed an increase of the detection rate of Down Syndrome with a decrease of invasive testing
[57] at considerably lower costs compared to first-line screening.

In cases of a positive result, there is consensus among the specialist societies such as the
American College of Obstetricians and Gynecologists (ACOG), the Society of Maternal-Fetal
Medicine (SMFM), the International Society of Prenatal Diagnosis and the National Society of
Genetic counselors that they need to be confirmed with an invasive procedure and fetal
karyotyping. This seems especially important when a termination of pregnancy is considered
following a positive NIPT result. As discussed previously, this is mandatory due to the
occasional false-positive results, especially in low-risk patients.

Switzerland is the first country in Europe to have introduced a national policy on obligatory
health care coverage for NIPT for women with singleton pregnancies that have a risk of >
1:1,000 for trisomy 21, 13, or 18 after conventional first trimester screening.

6. Influence of NIPT on diagnostic procedures and changes in prenatal care

With the introduction of clinical available NIPT for the most common aneuploidies, a risk-free
additional option of prenatal testing has become available. So far, most pregnant women in
the western world had access to a detailed sonographic examination of the fetal anatomy
(Figures 1 and 2), correct pregnancy dating based on Crown rump length at 11–14 weeks, and
were offered the “combined first trimester test”, which is a risk assessment for the trisomy 21,
13, and 18. The first trimester screening combines the statistical background risk of the mother
incorporating her age, fetal anatomical markers, nuchal translucency measurements, and
biochemical markers in maternal blood (pregnancy associated plasma–protein–A (PAPP-A)
and free beta human chorionic gonadotropin (HCG). With this, aneuploidy screening for
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trisomy 21 can be achieved with a sensitivity of 90% at a false positive rate of 5% [58]. Women
at increased risk would usually undergo an invasive procedure such as amniocentesis or
chorionic villous sampling for karyotyping. Although this type of screening was better than
any previous serum marker tests or using the maternal age-risk alone, it still lead to a large
number of invasive tests and only few positive results. Putting mothers through an invasive
procedure exposes them to a risk of fetal loss of 0.5–1% [59,60].

(Archive Dr. G. Manegold-Brauer, University of Basel, Department of Prenatal Medicine and Gynecologic Ultrasound)

Figure 1. 4D-ultrasound image of a fetus in the first trimester

With NIPT a new technology was introduced, which has lead to changes in algorithms
previously used to guide patients. Since NIPT only requires a fetal blood sample, patients
report that the greatest benefit is the decreased rate of miscarriage as compared to amniocent‐
esis or chorionic villous sampling [61,62].

The medical profession rapidly had to face and solve many challenges on offering and
counseling patients about NIPT. It is especially challenging to distinguish scientific informa‐
tion on the different NIPT tests from commercial announcements due to the many different
laboratories that offer these tests and the flood of published studies that emerged in only a few
years. Adequate counseling has become very complex and should incorporate all the options,
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limitations, and risks for each type of prenatal testing (ultrasound screening, biochemical
screening, invasive procedures, NIPT, conventional karyotyping, and microarray analysis) in
a non-directive manner and in the end should allow pregnant women to make an informed
decision. For NIPT, it seems important to also counsel on non-reporting due to low fetal
fraction in correlation to maternal weight and gestational age and fetal karyotype [63]. Further
patients need to be informed on the need for an invasive procedure for confirmation in cases
of positive findings.

However, in clinical practice the changes in prenatal care were incorporated differently in
different health care systems and were highly dependent on the cohort that was investigated.
The high costs associated with NIPT might also have played a role in the uptake in different
societies. The introduction of NIPT has lead to an increased rate of prenatal testing in general.
Many women that might have relied on first trimester screening in the past would now choose
NIPT even if the results of first trimester screening were normal (Table 1). Not surprisingly,
the increase of additional testing in the intermediate-risk group was most significant [64,65].
While the total number of invasive testing decreased by 70% in some studies [65], the reduction
of invasive procedures was not significant in high-risk cohorts, especially when there is a high
percentage of patients that present with anomalies seen on prenatal ultrasound. This man‐
agement, however, is comprehensible since there is a high risk of chromosomal anomalies
other than trisomy 21, 13, and 18 when ultrasound anomalies are present (about one third) that

(Archive Dr. G. Manegold-Brauer, University of Basel, Department of Prenatal Medicine and Gynecologic Ultrasound)

Figure 2. 2D-ultrasound image of a fetal profile at 11–14 gestational weeks
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would not necessarily be picked up by NIPT but which can be detected by conventional
karyotyping or microarray analysis.

Risk category
after first trimester screening

n
No further tests

(%)
IPT
(%)

NIPT
(%)

IPT special
indication /

termination (%)

Low risk

Group 1 431 95.36 2.09 0 2.55

Group 2 391 92.58 1.02 5.88 0.51

p 0.997 0.372 <0.001*

Intermediate risk

Group 1 37 64.86 35.14 0 0

Group 2 35 54.29 5.71 40.00 0

p 0.835 0.018* <0.001*

High risk

Group 1 37 40.54 56.75 0 2.71

Group 2 20 40.00 40.00 15.00 5.00

p 0.333 0.054 0.103

Table 1. Differences in prenatal testing according to risk category before and after the introduction of NIPT. Group 1:
before the introduction of NIPT, group 2: after the introduction of NIPT (adapted from [63]) IPT: invasive prenatal
testing; p: p-value comparison before and after the introduction of NIPT, significant differences are marked with *

Structural
abnormality (n = 69)

NT >95th percentile
(n = 38)

Multiple
softmarker (n = 43)

Normal scan
(n = 32)

IPT 48 (69.6) 21 (55.3) 12 (27.9) 16 (50.0)

NIPT 0 (0.0) 1 (2.6) 3 (7.0) 8 (25.0)

No further tests 21 (30.4) 16 (42.1) 28 (65.1) 8 (25.0)

IPT: invasive prenatal testing; NIPT: non-invasive prenatal testing.

Data shows number (%).

Table 2. Management choices among high-risk patients after the introduction of NIPT. This table shows the presence
or absence of sonographic findings (normal scan) in the high-risk group (n = 182) and management choices in the
individual subgroups (adapted from [62]).

7. Ethical and social aspects

The introduction of NIPT by the technique of NGS used in prenatal diagnosis has raised some
ethical and social concerns. NIPT can theoretically provide information on the entire genome
of the mother and the fetus with relative ease. In fact, NIPT has already revealed a small number
of occult malignancies [66]. The sequenced DNA, however, could also reveal a BRCA mutation

Clinical Implementation of Next-generation Sequencing in the Field of Prenatal Diagnostics
http://dx.doi.org/10.5772/61799

419



or mutations on genes encoding for neurodegenerative diseases such as Chorea Huntington
that would have major consequences for the mother and the unborn child [67]. It becomes
obvious that the professional societies and national guidelines need to carefully regulate which
data will be analyzed, stored, and reported. Clearly, the mother needs to give written informed
consent to each specific analysis that is performed and needs to approve any individuals or
institutions that receive this type of information. Although most of today’s available NIPT tests
directly report to the physician who indicated the test there remains a concern that NIPT could
be offered directly to the pregnant woman without a medical request or indication. It seems
of highest importance that the expectant mother is appropriately counseled by a trained health
care professional who can offer and discuss all implications for testing, provide for and
interpret all options, discuss prognosis and can assist with the management of the pregnancy
and the subsequent prenatal care [68,69]. An important further aspect is that adequate
educational material is offered to health care professionals and to the public, as it will assist
in avoiding misunderstandings about the technology and possible misuse, thereby ease public
anxieties [70].

8. Conclusion

With the technology of NGS, prenatal care has reached a new era. It has changed prenatal
algorithms and has led to a reduction of invasive procedures which was one of the main goals
of this technology [65,71]. At present, the main domain of NIPT is the detection of the three
most common aneuploidies trisomy 21, 13, and 18, in singletons. However, further aneuploi‐
dies like sex chromosomal aneuploidies and some microdeletions are offered today in a clinical
setting and research is aiming on sequencing the whole genome by a non-invasive approach
with the ultimate dream of thereby opening an early “window of opportunity” for fetal
therapy.
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Abstract

RNA-seq has become increasingly popular in transcriptome profiling. One of the
major challenges in RNA-seq data analysis is the accurate mapping of junction reads
to their genomic origins. To detect splicing sites in short reads, many RNA-seq aligners
use reference transcriptome to inform placement of junction reads. However, no
systematic evaluation has been performed to assess or quantify the benefits of
incorporating reference transcriptome in mapping RNA-seq reads. Meanwhile, there
exist multiple human genome annotation databases, including RefGene (RefSeq
Gene), Ensembl, and the UCSC annotation database. The impact of the choice of an
annotation on estimating gene expression remains insufficiently investigated.

In this chapter, we systematically characterized the impact of genome annotation
choice on read mapping and gene quantification by analyzing a RNA-seq dataset
generated by Illumina’s Human Body Map 2.0 Project. The impact of a gene model
on mapping of non-junction reads is different from junction reads. We demonstrated
that the choice of a gene model has a dramatic effect on both gene quantification and
differential analysis. Our research will help RNA-seq data analysts to make an
informed choice of gene model in practical RNA-seq data analysis.

Keywords: RNA-seq, gene quantification, gene model, RefSeq, UCSC, Ensembl

1. Introduction

In recent years, RNA-seq has become a powerful approach for transcriptome profiling [1–3].
RNA-seq not only has considerable advantages for examining transcriptome fine structure—
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for example, in the detection of novel transcripts, allele-specific expression, and alternative
splicing—but also provides a far more precise measurement of levels of transcripts than that
of other methods such as microarray [4–7]. Previously, we had performed a side by side
comparison of RNA-seq and microarray in investigating T cell activation, and demonstrated
that RNA-seq is superior in detecting low abundance transcripts, differentiating biologically
critical isoforms, and allowing the identification of genetic variants [7]. In addition, RNA-seq
has a much broader dynamic range than microarray, which allows for the detection of more
differentially expressed genes with higher fold-change. Furthermore, RNA-seq avoids
technical issues in microarray related to probe performance such as cross-hybridization,
limited detection range of individual probes, and nonspecific hybridization [5–7]. Thus, RNA-
seq delivers unbiased and unparalleled information about the transcriptome and gene
expression. By RNA-seq technology, the Genotype-Tissue Expression (GTEx) project gener‐
ated large amount of RNA sequence data to investigate the patterns of transcriptome variation
across individuals and tissues [8–9]. An analysis of RNA sequencing data in the GTEx project
from 1,641 samples across 43 tissues from 175 individuals revealed the landscape of gene
expression across tissues, and catalogued thousands of tissue-specific expressed genes. These
findings provide a systematic understanding of the heterogeneity among a diverse set of
human tissues.

Current RNA-seq approaches use shotgun sequencing technologies such as Illumina, in which
millions or even billions of short reads are generated from a randomly fragmented cDNA
library. The first step and a major challenge in RNA-seq data analysis is the accurate mapping
of sequencing reads to their genomic origins including the identification of splicing events.
Despite of the fact that a large number of mapping algorithms have been developed for read
mapping [10–13] and RNA-seq differential analysis [14–15] in recent years, however, accurate
alignment of RNA-seq reads is a challenging and yet unsolved problem because of exon-exon
spanning junction reads, relatively short read lengths and the ambiguity of multiple-mapping
reads. Nowadays, many RNA-seq alignment tools, including GSNAP [16], OSA [17], STAR
[18], MapSplice [19], and TopHat [20], use reference transcriptomes to inform the alignments
of junction reads. In fact, this has become a common practice in RNA-seq data analysis.
However, no systematic evaluation has been performed to assess and/or quantify the benefits
of incorporating reference transcriptome in mapping RNA-seq reads.

The second aspect of transcriptome research is to quantify expression levels of genes, tran‐
scripts, and exons. Acquiring the transcriptome expression profile requires genomic elements
to be defined in the context of the genome. Gene models are hypotheses about the structure of
transcripts produced by a gene. Like all models, they may be correct, partly correct, or entirely
wrong. In addition to RefGene [21], there are several other public human genome annotations,
including UCSC Known Genes [22], Ensembl [23], AceView [24], Vega [25], and GENCODE
[26]. Characteristics of these annotations differ because of variations in annotation strategies
and information sources. RefSeq human gene models are well supported and broadly used in
various studies. The UCSC Known Genes dataset is based on protein data from Swiss-Prot/
TrEMBL (UniProt) and the associated mRNA data from GenBank, and serves as a foundation
for the UCSC Genome Browser. Vega genes are manually curated transcripts produced by the
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HAVANA group at the Welcome Trust Sanger Institute, and are merged into Ensembl.
Ensembl genes contain both automated genome annotation and manual curation, while the
gene set of GENCODE corresponds to Ensembl annotation since GENCODE version 3c
(equivalent to Ensembl 56). AceView provides a comprehensive non-redundant curated
representation of all available human cDNA sequences.

Although there are multiple genome annotations available, researchers need to choose a
genome annotation (or gene model) while performing RNA-seq data analysis. However, the
effect of genome annotation choice on downstream RNA-seq expression estimates is under-
appreciated. Wu et al. [27] demonstrated that the selection of human genome annotation
results in different gene expression estimates. Chen et al. [28] systematically compared the
human annotations present in RefSeq, Ensembl, and AceView on diverse transcriptomic and
genetic analyses. They found that the human gene annotations in the three databases are far
from complete, although Ensembl and AceView annotate many more genes than RefSeq. In
this paper, we performed a more comprehensive evaluation of different annotations on RNA-
seq read mapping and gene quantification, including RefGene, UCSC, and Ensembl, and
reported the main findings. More comprehensive reports were presented elsewhere [29–30].

2. Method

The Human Body Map 2.0 Project, using Illumina sequencing, generated RNA-seq data for 16
different human tissues (adipose, adrenal, brain, breast, colon, heart, kidney, leukocyte, liver,
lung, lymph node, ovary, prostate, skeletal muscle, testis, and thyroid) and is accessible from
ArrayExpress (accession number E-MTAB-513). We chose to analyze this public dataset
because gene expression is tissue specific [9] and analyzing those 16 high-quality RNA-seq
samples as a whole could result in less biased conclusions. The read length is 75 bp in all 16
samples, and there are 70 to 80 million reads for each sample (Supplementary Table 1 in [30]).
To demonstrate the impact of read length on analysis results, we created a new dataset in which
each original 75-bp long sequence read was trimmed to 50 bp. The same analysis protocol
described below was applied to both datasets. In this chapter, we mainly presented the results
for the read length of 75 bp, and for 50 bp reads, the detail reports could be found in [29–30].
We used the total number of reads mapped to each individual gene to represent expression
level. For a given tissue sample, we analyzed the same RNA-seq dataset using the same aligner
but with different gene models. The raw reads mapped to each gene across gene models can
be compared directly.

The RefGene, Ensembl, and UCSC annotation files in GTF format were downloaded from the
UCSC genome browser. Primary sequencing reads were first mapped to the reference
transcriptome and the human reference genome GRCH37.3 using Omicsoft Sequence Aligner
(OSA) [17]. Benchmarked with existing methods such as TopHat and others, OSA improves
mapping speed 4–10 fold, with better sensitivity and fewer false positives.

As shown in Figure 1A, the mapping result of a sequence read is gene model dependent. For
instance, read #2 can be uniquely mapped to gene #b if the gene model #A is chosen in the
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mapping step. However, this read became a multiple-mapped read when either gene model
#B or #C is used instead, because it can be mapped to genes #b and #e equally well. For a
junction read with short overlap with an exon, it can be aligned to genome with the help of a
reference transcriptome. Otherwise, it might fail to map to a genomic loci without the usage
of a gene model when mapping reads.

Note that none of the gene annotation is 100% complete. As a result, for those RNA-seq reads
not covered by a gene annotation, whether to use the gene model in the mapping step has no
impact on their mappings. Therefore, to fairly assess the impact of a gene model on RNA-seq
read mapping, only those reads covered by a gene model were used. In this study, we devised
a two-stage mapping protocol (Figure 1B) for our evaluation. In Stage #1, all RNA-seq reads
were mapped to a reference transcriptome only, and then only mapped reads are saved into
a new FASTQ file. In Stage #2, all remaining reads were re-mapped to the reference genome
with and without the use of a gene model, respectively. The role of a gene model in the mapping
step was then quantified and characterized by comparing the mapping results in Stage #2. The
two-stage mapping protocol is crucial for a fair evaluation. Otherwise, the impact of a gene
annotation on RNA-seq data analysis will be diluted or underestimated.

The effect of a gene model on RNA-seq read mapping could be characterized and quantified
by comparing the read mapping results in different mapping modes. We focused on those
uniquely mapped reads with a gene annotation and divided them into four categories (Figure
1C) with respect to their mapping results without a gene annotation in the mapping step: (1)
“Identical”, the same alignment results were obtained regardless of the use of a gene model;
(2) “Alternative”, the read was still mapped but mapped differently. It turns out that the
majority of reads in this category were junction reads. A junction read could be either mapped
as a non-junction read, or remain mapped as a junction read but with different start, end, and
splicing positions; (3) “Multiple”, a uniquely mapped read became a multiple-mapped one.
When a read is mapped across the whole reference genome, it is more likely to be mapped to
multiple locations; and (4) “Unmapped”, i.e., a read could not be mapped to anywhere in the
genome without the assistance of a gene model. Nearly all reads in this category were junction
reads.

The impact of a reference transcriptome on read mapping is dependent upon whether a
sequence is a junction read and how much it overlaps with an exon. Therefore, we split all
mapped reads into junction and non-junction ones based upon the CIGAR string in the SAM
files. Then we compared the mapping difference with and without a reference transcriptome
in the mapping step, and summarized the difference in each category shown in Figure 1C.
Additional analysis was performed on “Alternative” and “Unmapped” junction reads to
characterize the splicing patterns in terms of their overlaps with exons.

3. Results

3.1. The coverage of different gene annotations

The RNA-seq read mapping summaries for all 16 samples are shown in Figure 2. There are
two different mapping modes. In the “transcriptome only” mapping mode, all RNA-seq reads
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were mapped to a reference transcriptome only. If a read could not be mapped to a known
gene region, it became unmapped, even though it could potentially be aligned to a genomic
region without annotations. While in the “transcriptome + genome” mapping mode, reads
were first mapped to a reference transcriptome, and then the unmapped ones were mapped
to the reference genome. The impact of a reference transcriptome on the mapping of RNA-seq
reads is attenuated in the “transcriptome + genome” mapping mode because every unmapped
read has a second chance to be mapped to a genome.

Figure 1. Analysis protocol. (A) The mapping result for a sequence read is gene model dependent; (B) “two-stage”
mapping protocol: at Stage #1, all RNA-Seq reads are mapped to a reference transcriptome; at Stage #2, the mapped
reads at Stage #1 are re-mapped to the genome with and without the use of a gene model, respectively; (C) the protocol
for classifying uniquely mapped sequence reads into four categories, i.e., “Identical”, “Alternative”, “Multiple” and
“Unmapped” (or Fail).
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In the “transcriptome only” mapping mode, more reads were mapped in Ensembl than in
RefGene and/or UCSC. For each tissue type, the mapping rate was similar between RefGene
and UCSC. The average read mapping rates across all 16 samples were 86%, 69%, and 70% for
Ensembl, RefGene, and UCSC annotations, respectively. Short-read mapping is a basic step in
RNA-seq data analyses, and to a certain extent, the percentage of reads mapped to a given
transcriptome can roughly reflect the completeness or coverage of its annotated genes and
transcripts. Thus, Ensembl annotation has much broader gene coverage than RefGene and
UCSC. The patterns in “transcriptome + genome” mapping mode was different from those in
“transcriptome only” mode (left panel on Figure 2). In the “transcriptome + genome” mapping
mode, the average mapping rates for Ensembl, RefGene, and UCSC increased to 96.7%, 94.5%,
and 94.6%, respectively, and the mapping rate difference among different gene models
decreased. This large difference in the mapping rates between the two modes suggests the
incompleteness of gene models: there are many reads that were mapped to the genomic regions
without annotations.

Figure 2 shows that the read mapping percentage is also sample dependent, and this holds
true for every gene model. For instance, only 52.5% of sequence reads in the heart were mapped
to the RefGene model; while in leukocytes, 84.2% of reads could be mapped to RefGene. This
mapping difference between heart and leukocyte results from, at least in part, the incomplete‐
ness of the RefGene annotation. As more expressed genes are annotated in a gene model, a
higher percentage of reads will be mapped in the “transcriptome only” mapping mode.

In the “transcriptome only” mapping mode (the right panel in Figure 2), an average of 6.9%,
1.4%, and 1.8% of reads were multiple-mapped reads in Ensembl, RefGene, and UCSC gene
models, respectively. The percentage of multiple-mapped reads in Ensembl is higher than in
RefGene or UCSC. Usually, a more comprehensive annotation generally annotates more genes
and isoforms, and thus, increases the possibility of ambiguous mappings. These ambiguous
mappings directly translate to an increase in the percentage of non-uniquely mapped reads.

Different gene identifiers are used in different annotation databases; therefore, we mapped
those database-specific identifiers into the unique HGNC gene symbols from the HUGO Gene
Nomenclature Committee when comparing their gene quantification results across the
different gene models originating from these databases. Considering that annotations are more
or less incomplete in these databases, we only focused on common genes when comparing the
results from different annotations. The Venn diagram in Figure 3 showed the overlap and
intersection of RefGene, UCSC, and Ensembl annotations. Clearly RefGene has fewest unique
genes, while more that 50% of genes in Ensembl are unique. In general, the different annota‐
tions have very high overlaps: 21,598 common genes are shared by all three gene annotations.

3.2. The impact of a gene model on RNA-seq read mapping

To evaluate the impact of a gene model on read mapping, the mapping summaries in Figure
2 were not sufficient. For instance, a read could be aligned differently with and without the
assistance of a gene model in mapping, and in this scenario, the mapping summary could not
tell such a difference. Thus, we compared the mapping details for every read, including start
and end positions and splicing sites. For simplicity, in Stage #2, we focused on only uniquely
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decreased. This large difference in the mapping rates between the two modes suggests the
incompleteness of gene models: there are many reads that were mapped to the genomic regions
without annotations.

Figure 2 shows that the read mapping percentage is also sample dependent, and this holds
true for every gene model. For instance, only 52.5% of sequence reads in the heart were mapped
to the RefGene model; while in leukocytes, 84.2% of reads could be mapped to RefGene. This
mapping difference between heart and leukocyte results from, at least in part, the incomplete‐
ness of the RefGene annotation. As more expressed genes are annotated in a gene model, a
higher percentage of reads will be mapped in the “transcriptome only” mapping mode.

In the “transcriptome only” mapping mode (the right panel in Figure 2), an average of 6.9%,
1.4%, and 1.8% of reads were multiple-mapped reads in Ensembl, RefGene, and UCSC gene
models, respectively. The percentage of multiple-mapped reads in Ensembl is higher than in
RefGene or UCSC. Usually, a more comprehensive annotation generally annotates more genes
and isoforms, and thus, increases the possibility of ambiguous mappings. These ambiguous
mappings directly translate to an increase in the percentage of non-uniquely mapped reads.

Different gene identifiers are used in different annotation databases; therefore, we mapped
those database-specific identifiers into the unique HGNC gene symbols from the HUGO Gene
Nomenclature Committee when comparing their gene quantification results across the
different gene models originating from these databases. Considering that annotations are more
or less incomplete in these databases, we only focused on common genes when comparing the
results from different annotations. The Venn diagram in Figure 3 showed the overlap and
intersection of RefGene, UCSC, and Ensembl annotations. Clearly RefGene has fewest unique
genes, while more that 50% of genes in Ensembl are unique. In general, the different annota‐
tions have very high overlaps: 21,598 common genes are shared by all three gene annotations.

3.2. The impact of a gene model on RNA-seq read mapping

To evaluate the impact of a gene model on read mapping, the mapping summaries in Figure
2 were not sufficient. For instance, a read could be aligned differently with and without the
assistance of a gene model in mapping, and in this scenario, the mapping summary could not
tell such a difference. Thus, we compared the mapping details for every read, including start
and end positions and splicing sites. For simplicity, in Stage #2, we focused on only uniquely
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mapped reads in the “transcriptome only” mapping mode. A uniquely mapped read could be
classified into four categories (Figure 1C) with respect to its corresponding mapping informa‐
tion without a gene model: (1) “Identical”—remaining mapped to the same genomic region;
(2) “Alternative”—still uniquely mapped but differently; (3) “Multiple”—mapped to more
locations; and (4) “Unmapped”. The detailed evaluation results are summarized in Figure 4
(read length = 75 bp).

 

Figure 2. The read mapping summary for 16 tissue samples in the “transcriptome only” and “transcriptome+genome”
mapping modes (note: read length = 75 bp). In the “transcriptome only” mode, more reads are mapped in Ensembl
than in RefGene and UCSC (left panel), and more reads become multiple-mapped in Ensembl than in RefGene and
UCSC (right panel). Note: the gene model “none” means the RNA-Seq reads are mapped to the reference genome di‐
rectly without the use of a gene model.

 Figure 3. The overlap and intersection among RefGene, UCSC, and Ensembl annotations.
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Figure 4. The impact of a gene model on RNA-Seq read mapping (read length = 75 bp). (A) Composition of mapped
reads; (B) effect on mapping of non-junctions reads; (C) effect on mapping of junctions reads. (Note: The 16 tissue sam‐
ple names are denoted as follows: a: adipose; b: adrenal, c: brain; d: breast; e: colon; f: heart; g: kidney; h: leukocyte; i:
liver; j: lung; k: lymph node; l: ovary; m: prostate; n: skeletal muscle; o: testis; and p: thyroid.)

In Figure 4A, we divided uniquely mapped reads into two classes, i.e., non-junction reads and
junction reads, and investigated the impact of a gene model on their mapping. Accordingly to
Figure 4A, approximately 23% of mapped reads were junction reads, and the remaining 77%
were non-junction reads. For non-junction reads (see Figure 4B), 95% remained mapped to
exactly the same genomic location regardless of the use of a gene model. Without a gene model,
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3% to 9% of non-junctions reads became multiple mapped reads. However, it is very rare for
a non-junction read to become unmapped or alternatively mapped. In contrast, the mapping
of junction reads was strongly impacted by the gene models (see Figure 4C). Without using a
gene model, an average of 53% of junction reads remained mapped to the same genomic
regions, 30% failed to map to any genomic region, and 10–15% of them mapped alternatively.
Such alternative mappings are generally inferior compared to their corresponding mapping
results using a gene model [29]. Similar to non-junction reads, an average of 5% of junction
reads were mapped to more than one location without using a gene model. As shown in Figure
4C, more uniquely-mapped junction reads became multiple mapped reads in RefGene and/or
UCSC than in Ensembl when the sequence reads were aligned to the reference genome without
the use of gene models.

As we demonstrated, a gene model mainly affects the alignment of junction reads, but has little
impact on non-junction reads. On average, 23% of reads in our samples were junction reads,
and usually about one third of them failed to be mapped without the use of a gene model.
Therefore, it is expected that when the read length is 75 bp, ~6% (23% * 0.33) of the mapped
reads become unmapped without the use of a gene model. The percentage is expected to be
higher when the read length is longer since a long read is more likely to span two or more
exons.

3.3. The splicing patterns for “Identical”, “Alternative”, and “Unmapped” reads

As concluded above, a reference transcriptome mainly affects the mapping of junction reads.
One interesting question is what kind of junction reads tend to be mapped identically,
alternatively, or unmapped. In order to characterize the splicing patterns, we focus on only
two-exon junction reads that are uniquely mapped when the RefGene annotation is used. For
every junction read, we calculate the number of overlapping nucleotide bases with its left exon
(OL) and right exons (OR), respectively. Then the minimum of OL and OR is chosen for
histogram analysis (Figure 5). Only the results for lung, liver, kidney, and heart samples are
shown in Figure 5, and for the rest of 12 samples, the patterns were very similar to those in
Figure 5 (data not shown). Since the full read length is 75 bp long, the MOE (Minimum Overlap
with an Exon, MOE = min(OL,OR)) ranges from 1 to 37 for any junction read.

For “Identical” junction reads, the typical MOE ranges from 15 to 37, and the frequency drops
to nearly 0 when MOE is less than 10 (left panels in Figure 5). For “Alternative” junction reads,
the most dominant MOE is 1 (middle panels in Figure 5), representing an average of one-third
of cases. In general, those “Alternative” reads have very small MOE. For those junction reads
with MOE of 1, 2, and 3, it is virtually impossible to map them ‘correctly’ without the prior
knowledge on transcripts. The MOE for “Unmapped” reads has a much broader range with
peaks from 4 to 12 (right panels in Figure 5). In order to map a junction read without a reference
transcriptome, the read should have sufficient overlaps with exons at both ends. The majority
of “Identical” reads meet this requirement (left panels in Figure 5). However, if the overlap
with one end is too short, let’s say 1 or 2 nucleotide bases, this read will be more likely mapped
to only a single exon with the remaining couple of bases mapping to the intron region adjacent
to that exon (middle panels in Figure 5). Otherwise, such junction reads become either
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unmapped or mapped to different genomic regions as non-junction reads if the overlap is

something between (right panels in Figure 5).

Figure 5. The splicing patterns and distribution of MOE (Minimum Overlap with an Exon) for junction reads. The typi‐
cal MOE for “Identical” junction reads ranges from 15 to 37. For “Alternative” junction reads, the most dominant MOE
is 1, representing an average of one-third of cases. In contrast, the MOE for “Unmapped” reads has a much broader
range with peaks from 4 to 12. Note the scale for y-axis is not uniform.
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3.4. Comparison of the mappings of “Alternative” reads

Since “Alternative” reads remain mapped but differently, we are more interested in the
mapping difference in detail and the main reasons for alternative mapping. A typical example
of “Alternative” reads is shown in Figure 6, in which 19 unique junction reads are nearly
perfectly mapped to gene HSP90AB1 when RefGene is used in the mapping step. Without a
reference transcriptome, four junction reads indicated by the red arrow remain mapped to the
same gene HSP90AB1 but as non-junction reads with mismatches at one end. A few bases
previously mapped to another exon are now mapped to the intron region. The remaining 15
junction reads are aligned to pseudogene gene HSP90AP3P as non-junction reads instead. The
comparison reveals that the original mappings to HSP90AB1 for those 15 reads are nearly
perfect, while they all have more mismatches when mapped to HSP90AP3P. Clearly, the
alternative mapping for those junction reads in Figure 6 is getting worse without a reference
transcriptome. In a sense, those 15 junction reads indicated by the blue arrow in Figure 6A are
“forced” to be mapped to a different genomic region without the help of reference transcrip‐
tome.

“Alternative” junction reads are also likely to remain mapped to the same start and end
positions but spliced differently. Two cases in point are shown in Figure 7. For those junction
reads mapped to gene TCEA3 with and without RefGene model, both mappings are equally
well in terms of alignment scores and gaps between exons. So there is no way to tell which one
is right without the assistance of reference transcriptome. Likewise, the mappings of junction
reads in gene FBXL3 are also equally well regardless of the usage of RefGene model. Despite
the minor difference in splicing sites, the read mapped with RefGene model is considered as
fully compatible to a known gene, and thus is counted in gene quantification. Collectively, the
examples in Figure 6 and 7 illustrate the important role of a gene annotation in proper
alignment of junction reads.

3.5. The impact of gene model choice on gene quantification

To investigate the impact of different gene models on gene quantification results, we focused
on the set of 21,598 common genes (Figure 3). The overall correlation between RefGene and
Ensembl was shown in Figure 8. Both x and y-axes represented log2(count+1). For all genes, 1
was added to the counts to avoid a logarithmic error for those genes with zero counts. Ideally,
we should get identical counts of mapped reads for all common genes, regardless of the choice
of a gene model; however, this was clearly not the case. Although the majority of genes had
highly consistent or nearly identical expression levels, there were a significant number of genes
whose quantification results were dramatically affected by the choice of a gene model. As
shown in Figure 8, there were many genes for which the number of reads mapped to them
was 0 in one gene model, but many in others.

To quantify the concordance between RefGene and Ensembl annotations, we first calculated
the ratio of mapped read for each gene. For a given gene, we defined the raw read counts in
RefGene and Ensembl annotations as #C1 and #C2, respectively. To prevent division by 0, 1
was added to all raw read counts before the ratios were calculated. The adjusted counts were
denoted as #C1’ (=#C1+1) and #C2’ (=#C2+1), respectively. The ratio was calculated as
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Max(#C1’,#C2’)/Min(#C1’,#C2’). Therefore the calculated ratio was always equal or greater
than 1. The distribution of ratios was summarized in Table 1 (read length = 75 bp). Among the
21,958 common genes, about 20% of genes had no expression at all in both annotations.
Identical counts were obtained for only 16.3% of genes. Approximately 28.1% of genes’
expression levels differed by 5% or higher, and among them, 9.3% of genes (equivalent to 2,038)
differed by 50% or greater. As shown in Table 1 and Figure 8, the choice of a gene model had
a large impact on gene quantification. Compared with Ensembl, UCSC had a much better

Figure 6. The impact of a reference transcripotome on the mapping of junction reads in gene HSP90AB1. (A) When
RefGene is used, 19 unique junction reads are mapped to gene HSP90AB1 nearly perfectly. Four junction reads become
non-junction ones with a few bases mapped to the intron region with mismatches without the usage of the RefGene
model; (B) The remaining 15 reads (indicated by the blue arrow) are alternatively aligned to gene HSP90AP3P as non-
junction reads without the assistance of RefGene annotation. Note the reads colored in blue are mapped to “+” strand,
and colored in green when mapped to “-” strand. The mismatched nucleotide bases are colored in red.
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concordance with RefGene, in terms of the gene quantification results [30]. 38.3% of genes had
identical read counts, much higher than the 16.3% between Ensembl and RefGene. The
percentage of genes with expression levels differing by 5% or more was only 11.3%, which was
much less than the corresponding 28% between Ensembl and RefGene. Furthermore, only
3.24% of genes differed by 50% or greater, which was lower than the 9.3% between Ensembl
and RefGene.

Why does the choice of a gene model have so dramatic an effect on gene quantification? If the
gene definition is the same among different annotations, we expect the identical number of
reads mapped to a given gene. Unfortunately, the gene definition varies from annotation to
annotationm and can differ singnificantly for some genes. PIK3CA is a good example. The
PIK3CA gene definition in both Ensembl and RefGene, and the mapping profile of RNA-seq
reads were shown in Figure 9. In the liver sample, there were 1,094 reads mapped to PIK3CA
in Ensembl annotation, while only 492 reads were mapped in RefGene. Clearly, the big
difference in gene definition gives rise to the observed discrepancy in quantification. In
Ensembl, there are three isoforms for PIK3CA, and the longest isoform is ENST00000263967.
The total length of this transcript is 9,653 bp, comprising 21 exons, with a very long exon #21
(6,000 bp, chr3: 178,951,882-178,957,881). In RefGene, PIK3CA has only one transcript named
NM_006218. This transcript is 3,909 bp long with a very short exon #21 (only 616 bp, located
at chr 3:178,951,882-178,952,497). The definition of the PIK3CA gene in Ensembl seems more
accurate than the one in RefGene, based upon the mapping profile of the sequence reads.

Figure 7. Alternative splicing with and without the use of RefGene annotation. All junction reads are still mapped to
the same gene with the same start/end positions and intron size regardless of gene model, but are spliced differently.
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3.6. The effect of gene models on differential analysis

Generally, RNA-seq differential analysis requires biological replicates. However, we analyzed
16 different single tissue samples. To demonstrate the effect of gene models on differential
analysis, the fold changes between heart and liver samples were calculated using RefGene and
Ensembl annotations. The correlation of the calculated Log2Ratio (liver/heart) was depicted
in Figure 10. The graph should show a perfect diagonal line if the choice of a gene model has
no effect on differential analysis. Although the majority of genes have highly consistent or

 

Figure 8. The correlation of gene quantification results between RefGene and Ensembl. Note both x and y-axes repre‐
sent Log2(count + 1).
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comparable expression changes, there are a number of genes whose ratios are dramatically
affected by the choice of a gene model. Interestingly, some genes have a very high fold change
in one gene model, but no change at all in another gene model. Evidently, the choice of a gene
model has an effect on the downstream differential expression analysis, in addition to gene
quantification.

4. Discussions

4.1. The effect of a gene model on read mapping is read length dependent

We performed the same analyses of the dataset with a 50-bp read length, and the results were
detailed in [30]. Intuitively, the shorter a read, the more likely it is to map to multiple locations.
As a result, the percentage of uniquely mapped reads decreases, and the percentage of

Sample No Expr Same 1.05 1.10 1.20 1.50 2 5 10 100

adipose 19.97 16.53 26.16 19.64 14.51 8.81 5.65 1.96 0.94 0.16

adrenal 16.92 14.04 36.18 27.09 19.07 11.28 7.14 2.45 1.24 0.24

brain 16.79 15.22 32.94 24.91 17.95 10.78 6.73 2.29 1.08 0.20

breast 18.04 15.22 29.63 22.21 16.06 9.80 6.52 2.38 1.19 0.20

colon 20.50 17.41 25.85 19.43 14.30 8.95 6.10 2.30 1.17 0.19

heart 21.23 16.43 26.39 20.10 14.39 8.88 5.47 1.73 0.82 0.19

kidney 18.86 16.08 28.88 21.50 15.51 9.55 6.40 2.55 1.30 0.26

leukocyte 29.53 17.37 20.03 15.29 11.62 7.58 5.37 2.47 1.33 0.26

liver 24.60 19.16 23.20 17.43 12.84 8.24 5.42 2.00 1.02 0.15

lung 19.65 16.46 29.22 21.35 15.07 9.09 6.15 2.61 1.43 0.24

lymph node 20.94 16.79 31.74 24.16 17.21 10.26 6.65 2.69 1.44 0.24

ovary 16.90 13.42 31.46 23.30 16.72 10.23 6.63 2.31 1.13 0.20

prostate 18.21 16.29 28.33 21.14 15.17 9.43 6.51 2.49 1.27 0.23

skeletal muscle 29.60 23.48 18.65 14.40 10.73 6.88 4.81 2.34 1.39 0.21

testis 10.15 13.35 31.35 22.57 15.84 9.35 5.92 2.08 1.05 0.28

thyroid 17.41 14.25 30.08 22.23 15.88 9.39 5.88 1.97 1.03 0.24

Average 19.96 16.34 28.13 21.05 15.18 9.28 6.09 2.29 1.18 0.22

Note: Column “No Expr” represents the percentage of genes that do not express at all in both annotations. Column “Same”
denotes the percentage of genes that have the same number of reads mapped to them in both gene models. The number
in each cell after the column “Same” corresponds to the percentage of genes whose ratio is equal or greater than the
threshold represented by the number.

Table 1. The distribution of the ratio of read counts between RefGene and Ensembl annotations (read length = 75 bp).
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Figure 9. The different gene definitions for PIK3CA give rise to differences in gene quantification. PIK3CA in the En‐
sembl annotation is much longer than its definition in RefGene, explaining why there are 1,094 reads mapped to
PIK3CA in Ensembl, while only 492 reads are mapped in RefGene.

 
Figure 10. The correlation of the calculated Log2Ratio (heart/liver) between RefGene and Ensembl. The green, blue,
and red points indicate corresponding absolute difference between the two Log2Ratios that were greater than 1, 2, or 5,
respectively. Although the majority of genes have highly consistent expression changes, there are many genes that are
remarkably affected by the choice of different gene models.
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multiple-mapping reads increases. No matter which gene model was used in the mapping
step, this observation held true. Thus, the mapping fidelity for a sequence read increases with
its length, and this is especially true for junction reads. As demonstrated in Figure 4, when the
read length was 75 bp, an average of 53% of junction reads remained mapped to the same
genomic regions no matter whether a gene annotation was used. However, this percentage
dropped to 42% when the read length was 50 bp long [30]. Thus, the effect of a gene model on
the mapping of junction reads is significantly influenced by read length.

In the meantime, the relative abundance of junction reads is heavily determined by read length
as well. According to Figure 4, on average, roughly 23% of sequence reads were junction reads
when the read length was 75 bp. This percentage dropped to 16% when the read length was
50 bp [30]. This is explained by the fact that the longer the read, the more likely that it spans
more than one exon. As sequencing technology evolves, the read length will become longer
and longer. Consequently, more junction reads will be generated by short-gun sequencing
technologies. Therefore, the need to incorporate genome annotation in the read mapping
process will greatly increase.

4.2. The incompleteness and inaccuracy in gene annotation

Pyrkosz et al. [31] have explored the issue of “RNA-Seq mapping errors when using incomplete
reference transcriptome” in detail. They used simulated reads generated from real transcrip‐
tomes to determine the accuracy of read mapping, and measured the error resulting from using
an incomplete transcriptome. When 10% increments of the chicken reference transcriptome
are missing, the true positive rate decreases by approximately 6–8%, while the false positive
rate remains relatively constant until the reference is more than 50% incomplete. The number
of false positives grows as the reference becomes increasingly incomplete. For model organ‐
isms such as human and mouse, their transcriptome models are relatively more complete
compared to non-model organisms. Admittedly, RefGene, UCSC, and Ensembl are all not
100% complete and accurate, though the qualities in their annotations are constantly improv‐
ing. For transcriptome-guided mapping of RNA-Seq reads, the more complete and accurate
the transcriptome, the better. In addition, Seok et al. [32] have demonstrated that incorporating
transcript annotations from reference transcriptome significantly improved the de novo
reconstruction of novel transcripts from short sequencing reads for transcriptome research.
The prior knowledge helped to define exon boundaries and fill in the transcript regions not
covered by sequencing data. As a result, the reconstructed transcripts were much longer than
those from de novo approaches that assume no prior knowledge.

4.3. The impact of gene annotation on variant effect prediction

The choice of a gene annotation has a big impact not only on RNA-seq data analysis, but also
on variant effect prediction [33–34]. Variant annotation is a crucial step in the analysis of
genome sequencing data. Functional annotation results can have a strong influence on the
ultimate conclusions of disease studies. Incorrect or incomplete annotations can cause
researchers both to overlook potentially disease-relevant DNA variants and to dilute interest‐
ing variants in a pool of false positives.
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McCarthy et al. [33] recently used the software ANNOVAR [35] to quantify the extent of
differences in annotation of 80 million variants from a whole-genome sequencing study with
the RefSeq and Ensembl transcript sets as the basis for variant annotation. They demonstrated
the large differences in prediction of loss-of-function (LoF) variation when RefSeq and Ensembl
transcripts are used for annotation, highlighting the importance of the reference transcripts on
which variant functional annotation is based. Choice of transcript set can have a large effect
on the ultimate variant annotations obtained in a whole-genome sequencing study.

Frankish et al. [34] performed a detailed analysis of the similarities and differences between
the gene and transcript annotation in the Gencode (v21) and RefSeq (Release 67) genesets in
order to identify the similarities and differences between the transcripts, exons and the CDSs
they encode. They demonstrated that the Gencode Comprehensive set is richer in alternative
splicing, novel CDSs, and novel exons and has higher genomic coverage than RefSeq, while
the Gencode Basic set is very similar to RefSeq. They presented evidence that the reference
transcripts selected for variant functional annotation do have a large effect on variant anno‐
tation.

4.4. Which genome annotation to choose for gene quantification?

In practice, there is no simple answer to this question, and it depends on the purpose of the
analysis. In this chapter, we compared the gene quantification results when RefGene and
Ensembl annotations were used. Among 21,958 common genes, the expressions of 2,038 genes
(i.e., 9.3%) differed by 50% or more when choosing one annotation over the other. Such a large
difference frequently results from the gene definition differences in the annotations. Some
genes with the same HUGO symbol in different gene models can be defined as completely
different genomic regions. When choosing an annotation database, researchers should keep
in mind that no annotation is perfect and some gene annotations might be inaccurate or entirely
wrong.

Wu et al. [27] suggested that when conducting research that emphasizes reproducible and
robust gene expression estimates, a less complex genome annotation, such as RefGene, might
be preferred. When conducting more exploratory research, a more complex genome annota‐
tion, such as Ensembl, should be chosen. Based upon our experience of RNA-seq data analysis,
we recommend using RefGene annotation if RNA-seq is used as a replacement for a microarray
in transcriptome profiling. For human samples, Affymetrix GeneChip HT HG-U133+ PM
arrays are one of the most popular microarray platforms for transcriptome profiling, and the
genes covered by this chip overlap with RefGene very well, according to Zhao et al. [7]. Despite
the fact that Ensembl R74 contains 63,677 annotated gene entries, only 22,810 entries (roughly
one-third) correspond to protein coding genes. There are 17,057 entries representing various
types of RNAs, including rRNA (566), snoRNA (1,549), snRNA (2,067), miRNA (3,361),
misc_RNA (2,174), and lincRNA (7,340). There are 15,583 pseudogenes in Ensembl R74. For
most RNA-seq sequencing projects, only mRNAs are presumably enriched and sequenced,
and there is no point in mapping sequence reads to RNAs such as miRNAs or lincRNAs.
Ensembl R74 contains 819 processed transcripts that were generated by reverse transcription
of an mRNA transcript with subsequent reintegration of the cDNA into the genome, and are
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the gene and transcript annotation in the Gencode (v21) and RefSeq (Release 67) genesets in
order to identify the similarities and differences between the transcripts, exons and the CDSs
they encode. They demonstrated that the Gencode Comprehensive set is richer in alternative
splicing, novel CDSs, and novel exons and has higher genomic coverage than RefSeq, while
the Gencode Basic set is very similar to RefSeq. They presented evidence that the reference
transcripts selected for variant functional annotation do have a large effect on variant anno‐
tation.

4.4. Which genome annotation to choose for gene quantification?

In practice, there is no simple answer to this question, and it depends on the purpose of the
analysis. In this chapter, we compared the gene quantification results when RefGene and
Ensembl annotations were used. Among 21,958 common genes, the expressions of 2,038 genes
(i.e., 9.3%) differed by 50% or more when choosing one annotation over the other. Such a large
difference frequently results from the gene definition differences in the annotations. Some
genes with the same HUGO symbol in different gene models can be defined as completely
different genomic regions. When choosing an annotation database, researchers should keep
in mind that no annotation is perfect and some gene annotations might be inaccurate or entirely
wrong.

Wu et al. [27] suggested that when conducting research that emphasizes reproducible and
robust gene expression estimates, a less complex genome annotation, such as RefGene, might
be preferred. When conducting more exploratory research, a more complex genome annota‐
tion, such as Ensembl, should be chosen. Based upon our experience of RNA-seq data analysis,
we recommend using RefGene annotation if RNA-seq is used as a replacement for a microarray
in transcriptome profiling. For human samples, Affymetrix GeneChip HT HG-U133+ PM
arrays are one of the most popular microarray platforms for transcriptome profiling, and the
genes covered by this chip overlap with RefGene very well, according to Zhao et al. [7]. Despite
the fact that Ensembl R74 contains 63,677 annotated gene entries, only 22,810 entries (roughly
one-third) correspond to protein coding genes. There are 17,057 entries representing various
types of RNAs, including rRNA (566), snoRNA (1,549), snRNA (2,067), miRNA (3,361),
misc_RNA (2,174), and lincRNA (7,340). There are 15,583 pseudogenes in Ensembl R74. For
most RNA-seq sequencing projects, only mRNAs are presumably enriched and sequenced,
and there is no point in mapping sequence reads to RNAs such as miRNAs or lincRNAs.
Ensembl R74 contains 819 processed transcripts that were generated by reverse transcription
of an mRNA transcript with subsequent reintegration of the cDNA into the genome, and are
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usually not actively expressed. In this scenario, a read truly originating from an active mRNA
can be mapped to a processed transcript equally well or mapped to the processed transcript
only, which is especially true for junction reads. Consequently, the true expression for the
corresponding mRNA may be underestimated. Another downside of using a larger annotation
database is calculation of adjusted P values, because the adjustment of the raw P value to allow
for multiple testing is mainly determined by the number of genes in the model. If genes of
interest are defined inconsistently across different annotations, it is recommended that an
RNA-seq dataset is analyzed using different gene models.

5. Conclusions

RNA-seq has become increasingly popular in transcriptome profiling. Acquiring transcrip‐
tome expression profiles requires researchers to choose a genome annotation for RNA-seq data
analysis. In this chapter, we assessed the impact of gene models on the mapping of junction
and non-junction reads, characterized the splicing patterns for junction reads, and compared
the impact of genome annotation choice on gene quantification and differential analysis. To
fairly assess the impact of a gene model on RNA-seq read mapping, we devised a two-stage
mapping protocol, in which sequence reads that could not be mapped to a reference tran‐
scriptome were filtered out, and the remaining reads were mapped to the reference genome
with and without the use of a gene model in the mapping step. Our protocol ensured that only
those reads compatible with a gene model were used to evaluate the role of a genome anno‐
tation in RNA-seq data analysis.

Ensembl annotates more genes than RefGene and UCSC. On average, 95% of non-junction
reads were mapped to exactly the same genomic location without the use of a gene model.
However, only an average of 53% junction reads remained mapped to the same genomic
regions. About 30% of junction reads failed to be mapped without the assistance of a gene
model, while 10–15% mapped alternatively. It is also demonstrated that the effect of a gene
model on the mapping of sequence reads is significantly influenced by read length. The
mapping fidelity for a sequence read increases with its length. When the read length was
reduced from 75 bp to 50 bp, the percentage of junction reads that remained mapped to the
same genomic regions dropped from 53% to 42% without the assistance of gene annotation.

There are 21,958 common genes among RefGene, Ensembl, and UCSC annotations. Using the
dataset with the read length of 75 bp, we compared the gene quantification results in RefGene
and Ensembl annotations, and obtained identical counts for an average of 16.3% (about one-
sixth) of genes. Twenty percent of genes are not expressed, and thus have zero counts in both
annotations. About 28.1% of genes showed expression levels that differed by 5% or higher; of
these, the relative expression levels for 9.3% of genes (equivalent to 2,038) differed by 50% or
greater. The case studies revealed that the difference in gene definitions caused the observed
inconsistency in gene quantification.

In this chapter, we demonstrate that the choice of a gene model not only has a dramatic effect
on both gene quantification and differential analysis, but also has a strong influence on variant
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effect prediction and functional annotation. Our research will help RNA-seq data analysts to
make an informed choice of gene model in practical RNA-seq data analysis.
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