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As a baby, one of our earliest stimuli is that of human faces. We rapidly learn to 
identify, characterize and eventually distinguish those who are near and dear to us. 

We accept face recognition later as an everyday ability. We realize the complexity of 
the underlying problem only when we attempt to duplicate this skill in a computer 

vision system. This book is arranged around a number of clustered themes covering 
different aspects of face recognition. The first section presents an architecture for face 

recognition based on Hidden Markov Models; it is followed by an article on coding 
methods. The next section is devoted to 3D methods of face recognition and is followed 

by a section covering various aspects and techniques in video. Next short section is 
devoted to the characterization and detection of features in faces. Finally, you can 
find an article on the human perception of faces and how different neurological or 

psychological disorders can affect this.
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Preface 

As a baby one of our earliest stimuli is that of human faces. We rapidly learn to identi-
fy, characterize and eventually distinguish those who are near and dear to us. This 
skill stays with us throughout our lives. 

As humans, face recognition is an ability we accept as commonplace. It is only when 
we attempt to duplicate this skill in a computing system that we begin to realize the 
complexity of the underlying problem. Understandably, there are a multitude of dif-
fering approaches to solving this complex problem. And while much progress has 
been made many challenges remain. 

This book is arranged around a number of clustered themes covering different aspects 
of face recognition. The first section presents an architecture for face recognition based 
on Hidden Markov Models and is followed by an article on coding methods for image 
retrieval in large databases. The second section of this book is devoted to 3 articles on 
3D methods of face recognition and is followed by a section with 5 articles covering 
various aspects and techniques of face recognition in video sequences and in real-time. 
This is followed by a section devoted to characterization and the detection of features 
in faces. The complexity of facial features and expressions is often simplified or disre-
garded by face recognition methodologies. Finally an article on the human perception 
of faces and how different neurological or psychological disorders can affect this.   

I hope that you find these articles interesting, and that you learn from them and per-
haps even adopt some of these methods for use in your own research activities. 

Sincerely, 

Peter M. Corcoran 
Vice-Dean, 

College of Engineering & Informatics, 
National University of Ireland Galway (NUIG), 

Galway, 
Ireland 
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Automatic Face Recognition System 
for Hidden Markov Model Techniques 

Peter M. Corcoran and Claudia Iancu 
College of Engineering & Informatics, 

National University of Ireland Galway, 
Ireland 

1. Introduction 
Hidden Markov Models (HMMs) are a class of statistical models used to characterize the 
observable properties of a signal. HMMs consist of two interrelated processes: (i) an 
underlying, unobservable Markov chain with a finite number of states governed by a state 
transition probability matrix and an initial state probability distribution, and (ii) a set of 
observations, defined by the observation density functions associated with each state. 
In this chapter we begin by describing the generalized architecture of an automatic face 
recognition (AFR) system. Then the role of each functional block within this architecture is 
discussed. A detailed description of the methods we used to solve the role of each block is 
given with particular emphasis on how our HMM functions. A core element of this chapter 
is the practical realization of our face recognition algorithm, derived from EHMM 
techniques. Experimental results are provided illustrating optimal data and model 
configurations. This background information should prove helpful to other researchers who 
wish to explore the potential of HMM based approaches to 2D face and object recognition.  

2. Face recognition systems 
In this section we outline the basic architecture of a face recognition system based on 
Gonzalez’s image analysis system [Gonzalez & Woods 1992] and Costache’s face recognition 
system [Costache 2007]. At a top-level this is represented by the functional blocks shown in 
Figure 1. 
 

 
Fig. 1. The architecture of a face recognition system 
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1. Face detection and cropping block: this is the first stage of any face recognition system and 
the key difference between a semi-automatic and a fully automatic face recognizer. In order to 
make the recognition system fully automatic, the detection and extraction of faces from an 
image should also be automatic. Face detection also represents a very important step before 
face recognition, because the accuracy of the recognition process is a direct function of the 
accuracy of the detection process [Rentzeperis et. al. 2006, Corcoran et. al. 2006]. 
2. Pre-processing block: the face image can be treated with a series of pre-processing 
techniques to minimize the effect of factors that can adversely influence the face recognition 
algorithm. The most critical of these are facial pose and illumination. A discussion on these 
factors and their significance w.r.t. HMM techniques is given in Section 3. 
3. Feature extraction block: in this step the features used in the recognition phase are 
computed. These features vary depending on the automatic face recognition system used. 
For example, the first and most simplistic features used in face recognition were the 
geometrical relations and distances between important points in a face, and the recognition 
’algorithm’ matched these distances [Chellappa et. al. 1992]; the most widely used features in 
face recognition are KL or eigenfaces, and the standard recognition ’algorithm’ uses either 
the Euclidian or Mahalanobis distance [Chellappa et. al. 1992, 1995] to match features. Our 
features and the extraction method used are described in Section 4. 
4. Face recognition block: this consists of 2 separate stages: a training process, where the 
algorithm is fed samples of the subjects to be learned and a distinct model for each subject is 
determined; and an evaluation process where a model of a newly acquired test subject is 
compared against all exisiting models in the database and the most closely corresponding 
model is determined. If these are sufficiently close a recognition event is triggered.  

3. Face detection and cropping 
As mentioned in the previous section, face detection is one of the most important steps in a 
face recognition system and differentiates between semi-automatic and fully automatic face 
recognizer. The goal of an automatic face detector is to search for human faces in a still 
image and, if found, to accurately return their locations. In order to make the detection fully 
automatic the system has to work without input from the user. Many attempts to solve the 
problem of face detection exist in the literature beginning with the basic approach of 
[Kanade 1977] and culminating with the method of [Viola & Jones 2000, 2001]. 
Comprehensive surveys of face detection techniques can be found in [Yang et. al. 2002] and 
[Costache 2007]. In this section we underline the main challenges an automatic face detector 
has to tackle, and we briefly describe the face detector used in our experiments.  
Face detection methods were classified by [Yang et. al. 2002] into four principle categories: 
(i) knowledge-based, (ii) feature invariant, (iii) template matching and (iv) appearance-
based methods. According to [Gonzalez & Woods 1992], the main disadvantage presented 
by the majority of these methods is the time required to detect all the faces in an image. 
State-of-the-art face detection methods provide real-time solutions. The best known of these 
methods, and the gold standard for face detection was originally proposed by  [Viola & 
Jones 2001]. The original algorithm was, according to its authors, 15 times faster than any 
previous approach. The algorithm has been well proved in recent years as being one of the 
fastest and most accurate face detection algorithms reported and is presently the gold 
standard against which other face detection techniques are benchmarked. For these reasons 
we adopted it to implement our face detection subsystem.  
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Our implementation of the Viola & Jones detection algorithm is provided in the Intel digital 
image processing C++ library [OpenCV 2006]. This can be used both for face detection and 
subsequent cropping of confirmed facial images. The OpenCV face detector has been pre-
trained using a very comprehensive database of face/non-face examples and is widely used 
in the literature.  

4. Pre-processing techniques 
Automatic face detection is influenced by a number of key factors [Costache 2007]: facial 
orientation or pose: the appearance of the face varies due to relative camera-face pose, 
between full frontal images and side-profile images; in-situ occlusions such as facial hair (e.g. 
beard, moustache), eye-glasses and make-up; facial expressions can significantly influence the 
appearance of a face image; overlapping occlusions where faces are partially occluded by other 
faces present in the picture or by objects such as hats, or fans; conditions of image acquisition 
where the quality of the picture, camera characteristics and in particular the illumination 
conditions can strongly influence the appearance of a face. 
For our system to perform better in the recognition stage, we apply a set of pre-processing 
techniques: the rst step in pre-processing is to bring all images into the same color space 
and to normalize the size of face regions. This normalization process is critical to improving 
the final face recognition rate and we will later present some experimental results for our 
HMM-specific AFR.  

4.1 Color to grayscale conversion 
In most face recognition applications the images are single or multiple views of 2D 
intensity data [Zhao et. al. 2003], and many  databases built for face recognition 
applications  are available as grayscale images. From the four databases used in our 
experiments, 3 contained grayscale images (BioID, Achermann, UMIST) and one 
contained RGB images (FERET). Practical images will, naturally, be acquired in color as 
modern image acquisition systems are practically all color and so we need to convert from 
color to grayscale, or intensity images of the selected face regions. In practice the intensity 
data may be available from the imaging system – many camera system employ YCC data 
internally and the Y component can be utilized directly. In other cases we may need to 
perform an explicit conversion of RGB data. Here a set of red, green and blue integer 
values characterize an image pixel. The effective luminance, Y of each pixel is calculated 
with the following formula [Pratt 1991]: 

 Y  = 0.3 × Red + 0.59 × Green + 0.11 × Blue  (1) 

4.2 Image resizing 
For a HMM-based face recognition system having a consistently sized face region is 
particularly important because the HMM requires regional analysis of the face with a 
scanning window of xed size. A straightforward approach is to resize all determined face 
regions to a common size. To facilitate more efficient computation we seek the smallest 
sized face region possible without impacting the overall system recogntion rate. Some 
empirical data will be presented later to illustrate how different factors, including the size of 
normalized face regions, affect recognition rate.  
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There are many techniques that can be used to enlarge or reduce the size of an image. These 
methods generally realize a trade-off between speed and the degree to which they reduce 
the occurrence of visual artifacts in the resulting image. The most commonly used resize 
method is called bicubic interpolation and has the advantage that the interpolated image is 
smoother than images obtained using simpler interpolation  techniques and has fewer 
artifacts [Lehmann et. al. 1999]. In our work we have used bicubic spline interpolation using 
bicubic polynomials. More details of how to calculate bicubic spline interpolation  functions 
can be found in [Hummel 1977]. 

4.3 Illumination normalization 
One of the most important factors that inuence the recognition rate of a system is 
illumination variation. In was shown in [Adini et al. 1997, Gokemen et al. 2007] that 
variations in illumination can be more relevant than variations between individual 
characteristics. Such variations can induce an AFR system to decide that two different 
individuals with the same illumination  characteristics are more similar than two instances 
of the same individual  taken in different lighting conditions. Thus normalizing illumination 
conditions across detected face regions is crucial to obtaining accurate, reliable and 
repeatable results from an AFR. One approach suitable for face models which combine both 
facial geometry and facial texture such as active appearance models (AAM) is described by 
[Ionita 2008]. However as HMM techniques do not explicitly rely on facial geometry or 
textures it is not possible to integrate the illumination normalization within the structure of 
the model itself. Instead we must rely on a discrete illumination normalization process. 
Fortunately most AFR systems employ a similar prefiltering stage and we can draw on a 
wide range of techniques from the literature.  
 
 

 
Fig. 2. Block scheme of logDCT algorithm 

Algorithms used for performing the normalization vary from a simple histogram 
equalization (HE) to more complex techniques such as albedo maps [Smith & Hancock 2005] 
and contrast limited adaptive histogram equalization (CLAHE) [Zuiderveld 1994, Pizer et al 
2006, Corcoran et al 2006]. These algorithms perform well when the variations in 
illumination are small but there is no commonly adopted method for illumination 
normalization in images which  performs well for every type of illumination. Some tests 
have been conducted to determine the robustness of face recognition algorithms to changes 
in lighting [Phillips et al 2000, O’Toole et al 2007]. Also, numerous illumination 
normalization techniques have been developed. Some of the more widely used of these - 
histogram equalization, histogram specication and logarithm transformation - have been 
compared in [Du et al 2005] with more recently proposed methods, gamma intensity 
correction and self-quotient image. The results are interesting: both HE and logarithmic 
transform improved recognition rates over face regions that were not normalized, compared 
favorably to the other techniques. 
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Fig. 3. Examples of illumination normalization techniques – details in the text. 
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To tackle the problem of illumination variations we implemented the following three 
illumination normalization algorithms: (i) histogram equalization  (HE) based on [Gonzalez & 
Woods 1992], (ii) contrast limited adaptive histogram equalization (CLAHE) based on 
[Zuiderveld 1994], and (iii) the relative new method of DCT in the logarithm domain - 
logDCT based on [Chen et al 2006]. In figure 3 above we show some examples of a face 
image processed by different normalization algorithms: (a) shows the unprocessed image 
with (b) the original luminance histrogram; (c) is the same image normalized with simple 
HE and (d) the effect of HE on the image histogram; (e) is the image with adaptive HE 
applied and (f) the effect of AHE on the histogram, in particular note the high frequency 
blow-up of the histogram; finally (g) shows how CLAHE eliminates the high-frequency 
artifacts of AHE and (h) reduces the high-frequency blow-up when compared with (f).     

5. Feature extraction 
Feature extraction for both 1D and 2D HMMs was originally described by [Samaria 1994]. 
His method was subsequently adopted in the majority of HMM-based face recognition 
papers. This feature extraction technique is based on scanning the image with a fixed-size 
window from left-to-right and top-to-bottom. A window of dimensions h × w pixels begins 
scanning each extracted face region from the left top corner sub-dividing the image into a 
set number of h × w sized blocks.  
On each of these blocks a transformation is applied to extract the characterizing features 
which represent the observation vector for that particular region. Then the scanning 
window moves towards right with a step-size of n pixels allowing an overlap of o pixels, 
where o = w − n. Again features are extracted from the new block. The process continues 
until the scanning window reaches the right margin of the image. When the scanning 
window reaches the right margin for the rst row of scanned blocks, it moves back to the 
left margin and down with m pixels allowing an overlap of v pixels vertically. The 
horizontal scanning process is resumed and a second row of blocks results, and from each of 
these blocks an observation vector is extracted. The scanning process and extraction of 
blocks is depicted in Figure 4. 
 

 
Fig. 4. Blocks extraction from a face image 

In our work we have used two types of features to describe the images: 2D DCT coefficients 
and Daubechies wavelets.  
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5.1 Overview of features used with HMM in face recognition 
The rst features used in face recognition performed with HMM were pixel intensities  
[Samaria & Fallside 1993, Samaria 1994, Samaria & Harter 1994]. The recognition rates 
obtained by Samaria using pixel intensities with a P2D-HMM were up to 94.5% on the ORL 
database. However the use of pixel intensities as features has some disadvantages [Nefian & 
Hayes 1999]: firstly they cannot be regarded as robust features since: (i) the intensity  of a 
pixel is very sensitive to the presence of noise in the image or to illumination changes;  (ii) 
the use of all the pixels in the image is computationally complex and time consuming; and 
(iii) using all image pixels does not eliminate any redundant information and is thus a very 
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recognition are KLT features used by [Nefian & Hayes 1998, Nefian & Hayes 2000] with 
recognition rates of up to 98% on ORL database. The main advantage of using KLT features 
instead of pixel intensities is their capacity to reduce redundant information in an image. 
The disadvantage is their dependence of the database of training images from which they 
are derived [Costache 2009].  
The most widely used features for HMM in face recognition are 2D-DCT coefficients. These 
DCT coefficients combine excellent decorrelation properties with energy compaction. 
Indeed, the more correlated the image is, the more energy compaction increases. Thus a 
relatively small number of DCT coefficients contain the majority of information 
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widely used in speech recognition applications. In this eld of application very high 
recognition rates are obtained due to the specic capacity of HMM to cope with variations in 
the timing and duration human speech patterns [Juang and Rabiner 2005]. HMMs have also 
been used successfully in other applications such as OCR and handwriting recognition. 
Thus it was no surprise that researchers began to consider their use for problems such as 
face recognition where adaptability of HMMs might offer solutions to some of the 
underlying problems of accurately recognizing a 2D face region.  
Note that the application of HMM techniques to the face recognition problem implies the 
use of an inherently 1D method of pattern matching to solve an inherently 2D problem. So 
why did researchers think this might work? Well, as the most signicant facial features of a 
frontal face image occur in a natural order, from top to bottom, and this sequence is 
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immutable, even if the face is moderately rotated. The rst attempts to use HMMs for face 
recognition and detection were made by [Samaria & Fallside 1993, Samaria & Harter 1994] 
who used a left-to-right HMM and divided the face in a xed succession of regions 
(observantion states) such as eyes, nose, & mouth. This early work by Samaria was 
essentially 1D in scope and  the first attempt to implement a more appropriate 2D models 
was Pseudo 2D HMM, introduced  by [Kuo & Agazzi 1994] for character recognition, 
subsequently adapted by [Samaria 1994] for the face recognition problem. The idea was later 
taken forward and improved by [Nean & Hayes 1999, 2000]. These researchers changed the 
name to Embedded HMM (EHMM).  
There have been several alternative 2D versions of HMM used for face recognition in the 
literature. However EHMM has become the standard method employed by researchers 
working in the eld of HMM face recognition. As a result this algorithm has been 
implemented  in the Intel digital image processing C++ library [OpenCV 2006] which was 
also employed to implement our face detector, described in section 2 above.  

6.2 An overview of EHMMs 
The embedded HMM is a generalization of the classic HMM, where each state in the one 
dimensional HMM is itself an HMM. This enables a generalization of the 1D HMM 
techniques to a second dimension while simplifying the dependencies and transitions 
between states. Thus, an embedded HMM consists of a set of super states each of which 
envelopes a set of embedded states. The super states model the two dimensional data in a 
rst dimension, while the embedded HMMs model the data in the other dimension.  
The structure of an EHMM with 3 superstates  and 4 embedded states is shown in Figure  
5(a). This EHMM is unrestricted, meaning that transitions between all the states in the 
embedded HMMs and between all the superstates are allowed. 
 

 
 

(a): An unrestricted EHMM (b): Restricted EHMM for face recognition 

Fig. 5. EHMM for face recognition 

The elements of an embedded HMM are: 
 A set of 0N superstates 0 0,1S S , 01 i N   



 
New Approaches to Characterization and Recognition of Faces 

 

10

immutable, even if the face is moderately rotated. The rst attempts to use HMMs for face 
recognition and detection were made by [Samaria & Fallside 1993, Samaria & Harter 1994] 
who used a left-to-right HMM and divided the face in a xed succession of regions 
(observantion states) such as eyes, nose, & mouth. This early work by Samaria was 
essentially 1D in scope and  the first attempt to implement a more appropriate 2D models 
was Pseudo 2D HMM, introduced  by [Kuo & Agazzi 1994] for character recognition, 
subsequently adapted by [Samaria 1994] for the face recognition problem. The idea was later 
taken forward and improved by [Nean & Hayes 1999, 2000]. These researchers changed the 
name to Embedded HMM (EHMM).  
There have been several alternative 2D versions of HMM used for face recognition in the 
literature. However EHMM has become the standard method employed by researchers 
working in the eld of HMM face recognition. As a result this algorithm has been 
implemented  in the Intel digital image processing C++ library [OpenCV 2006] which was 
also employed to implement our face detector, described in section 2 above.  

6.2 An overview of EHMMs 
The embedded HMM is a generalization of the classic HMM, where each state in the one 
dimensional HMM is itself an HMM. This enables a generalization of the 1D HMM 
techniques to a second dimension while simplifying the dependencies and transitions 
between states. Thus, an embedded HMM consists of a set of super states each of which 
envelopes a set of embedded states. The super states model the two dimensional data in a 
rst dimension, while the embedded HMMs model the data in the other dimension.  
The structure of an EHMM with 3 superstates  and 4 embedded states is shown in Figure  
5(a). This EHMM is unrestricted, meaning that transitions between all the states in the 
embedded HMMs and between all the superstates are allowed. 
 

 
 

(a): An unrestricted EHMM (b): Restricted EHMM for face recognition 

Fig. 5. EHMM for face recognition 

The elements of an embedded HMM are: 
 A set of 0N superstates 0 0,1S S , 01 i N   

 
Automatic Face Recognition System for Hidden Markov Model Techniques 

 

11 

 The initial probabilities of the super states 0 0, i   where 0,i  is the probability of 
being in superstate i at time zero. 

 The transition probability matrix A0 = a0,ij , where a0,ij is the probability of transitioning 
from super state i to superstate j. 

 The parameters of the embedded HMM for the superstate k, 01 k N   and where 
1 1( , , )k k k kA B    which includes: (i) the number of embedded states in the kth super 

state, 1
kN , and the set of embedded states, 1 1,

k k
iS S  with 11 ki N  ; (ii) the initial state 

distribution, 1 1,
k k

i  , where 1,
k

i  is the probability of being in state i of the superstate 
k at time zero; (iii) the state transition probability matrix 1 1,

k k
ijA a , where 1,

k
ija  is the 

transition probability from state i to state j; (iv) the probability distribution matrix of the 
observations, kB ; these observations are characterized by a set of continuous 
probability density functions, considered finite Gaussian mixtures of the form: 

 0, 1 0, 1
1

( ) ( , , )
k
iM

k k k k
i t t im t t im im

m
b O c N O U


   (2) 

where k
imc  is the mixture coefficient for the thm  mixture in state i of super state k, and 

0, 1( , , )k k
t t im imN O U  is a Gaussian density with a mean vector k

im  and covariance 
matrix k

imU . 
In shorthand notation, an embedded HMM is defined as the triplet 0 0( , , )A     where 

01 2, ,..., N     . This model is appropriate for facial images since it exploits an important 
characteristic of these: frontal faces preserve the structure of “superstates” from top to 
bottom, and also the left-to-right structure of ’embedded states’ within each “superstate” 
[Nean & Hayes 1999, 2000]. An example of the state structure of the face model and the 
non-zero transition probabilities of the embedded HMM are shown in Figure 5(b). The 
configuration presented is 5 super states, each with 3, 6, 6, 6, 3 states respectively. Each state 
in the overall top-to-bottom HMM is assigned to a left-to-right 1D HMM. In this case 
transitions are allowed only from left-to-right or self-transitions and only between 
consecutive states both for the embedded HMMs within each superstate, and for the main 
superstates of the top-level HMM as well. 

6.3 The training process for an EHMMs 
The training of HMM, as shown by [Rabiner 1989] is accomplished using the Baum-Welch 
algorithm. While EHMM exhibits a more complex structure than the simple 1D HMM, the 
training algorithm follows the same steps. The main difference in training is the use of a 
doubly embedded Viterbi for segmentation. The training structure is depicted in Figure 6, 
and the role of each block is described next: 
Step 1. PrototypeHMM: the rst step is dening the prototype EHMM: parameters: k

iN  the 
numbers of states, 0N  the number of superstates , K the number of Gaussians used 
to model the probability  density for the observation vectors in each state of an 
embedded HMM; conditions: which transitions are allowed ( 1,

k
ija  > 0) and which are 

not ( 1,
k

ija =0); in our left-to-right HMM the only transitions allowed are self-
transitions and transitions  to the next state, so the probability of transition to 
previous states is 0. For a numerical example we choose 0 5N  , 1 3,6,6,6,3kN   
where k = 1, 2, ..., 5, and K = 3. 
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Step 2. Uniform segmentation: the image is uniformly segmented. Firstly the observation 
vectors extracted from the entire image are uniformly divided into 0 5N   vertical 
super states, or image strips, for the overall top-to-bottom HMM. Next the data 
corresponding to each of these vertical super states is now horizontally  segmented 
from left to right into k

iN  uniform states. For a 128 × 128 pixel facial region with 
scanning window 12 × 12 with 8 pixels  overlap  we obtain 30 observation  vectors 
per scanning row both horizontally and vertically, thus 900 observation vectors in 
total. In a uniform segmentation, the observation  vectors are rst divided between 

0 5N   superstates: 30 observation  vectors per row/5  superstates, so 6 
observation  vectors per row in each superstate  6 × 30 = 180 observation vectors 
per superstate. Then horizontally these 180 observation vectors are uniformly 
divided in states as follows: for the superstates 1 and 5 with only 3 states: there will 
be 60 observation vectors per state; for superstates 2, 3, 4 with 6 states each: there 
will be 30 observation vectors per state. 

Step 3. Parameter initialization: after segmentation, the initial estimates of the model 
parameters are obtained using the concept of counting event occurrences for the 
initial probabilities of the states and the transition probabilities. In order to compute 
the observation probabilities, for each state of the embedded HMMs a K-means 
clustering algorithm, where K is the number of Gaussians per state, is applied. All 
the observation vectors extracted from each state are used to obtain a 
corresponding mixture of Gaussians describing the observation probability  density 
function. From these initial values we then begin to iterate. In the example given 
above the initial probabilities of the states in each superstate  are determined from 
the system constraints as follows: rst state in each embedded HMM has initial 
probability equal to 1.0, all the other states have initial probability of zero. 
Transition probabilities are then obtained by counting transition occurrences. For 
example in the rst state of the rst superstate: there are 60 observation vectors 
distributed across 6 horizontal rows of scanning implying 6 possibilities of 
transition from state 1 into state 2: probability of transition from state 1 into state 1 
is 1,1 54 60P  ; probability of transition from state 1 into state 2 is 1,2 6 60P  ; 
transition probabilities for the other states can be calculated in the same way. 

Step 4. Embedded Viterbi segmentation: in the rst step of the iteration, a doubly embedded 
Viterbi algorithm replaces the uniform segmentation. With the new segmentation and 
again counting event occurrences, a set of new values for initial and transition 
probabilities are found. This process is described in detail in section 5.4 below. 

Step 5. Segmental K-means: according to the new segmentation  performed at step 4, 
another K-means is applied to the current set of observation vectors corresponding 
to each new state, and new observation probability density functions are computed. 
On the next iteration, these new values are introduced into the doubly embedded 
Viterbi and a new segmentation is initiated.  

Step 6. Convergence: Steps 4 and 5 are repeated until the difference on consecutive 
iterations is below a set threshold. If convergence is not achieved after a certain 
number of iterations the training is considered to have failed for the current input 
face region. Typically we have set the convergence threshold at 0.01 and the 
maximum number of iterations at 40. Once convergence is achieved, further 
iterations are stopped and the EHMM is output and stored in a reference database. 



 
New Approaches to Characterization and Recognition of Faces 

 

12

Step 2. Uniform segmentation: the image is uniformly segmented. Firstly the observation 
vectors extracted from the entire image are uniformly divided into 0 5N   vertical 
super states, or image strips, for the overall top-to-bottom HMM. Next the data 
corresponding to each of these vertical super states is now horizontally  segmented 
from left to right into k

iN  uniform states. For a 128 × 128 pixel facial region with 
scanning window 12 × 12 with 8 pixels  overlap  we obtain 30 observation  vectors 
per scanning row both horizontally and vertically, thus 900 observation vectors in 
total. In a uniform segmentation, the observation  vectors are rst divided between 

0 5N   superstates: 30 observation  vectors per row/5  superstates, so 6 
observation  vectors per row in each superstate  6 × 30 = 180 observation vectors 
per superstate. Then horizontally these 180 observation vectors are uniformly 
divided in states as follows: for the superstates 1 and 5 with only 3 states: there will 
be 60 observation vectors per state; for superstates 2, 3, 4 with 6 states each: there 
will be 30 observation vectors per state. 

Step 3. Parameter initialization: after segmentation, the initial estimates of the model 
parameters are obtained using the concept of counting event occurrences for the 
initial probabilities of the states and the transition probabilities. In order to compute 
the observation probabilities, for each state of the embedded HMMs a K-means 
clustering algorithm, where K is the number of Gaussians per state, is applied. All 
the observation vectors extracted from each state are used to obtain a 
corresponding mixture of Gaussians describing the observation probability  density 
function. From these initial values we then begin to iterate. In the example given 
above the initial probabilities of the states in each superstate  are determined from 
the system constraints as follows: rst state in each embedded HMM has initial 
probability equal to 1.0, all the other states have initial probability of zero. 
Transition probabilities are then obtained by counting transition occurrences. For 
example in the rst state of the rst superstate: there are 60 observation vectors 
distributed across 6 horizontal rows of scanning implying 6 possibilities of 
transition from state 1 into state 2: probability of transition from state 1 into state 1 
is 1,1 54 60P  ; probability of transition from state 1 into state 2 is 1,2 6 60P  ; 
transition probabilities for the other states can be calculated in the same way. 

Step 4. Embedded Viterbi segmentation: in the rst step of the iteration, a doubly embedded 
Viterbi algorithm replaces the uniform segmentation. With the new segmentation and 
again counting event occurrences, a set of new values for initial and transition 
probabilities are found. This process is described in detail in section 5.4 below. 

Step 5. Segmental K-means: according to the new segmentation  performed at step 4, 
another K-means is applied to the current set of observation vectors corresponding 
to each new state, and new observation probability density functions are computed. 
On the next iteration, these new values are introduced into the doubly embedded 
Viterbi and a new segmentation is initiated.  

Step 6. Convergence: Steps 4 and 5 are repeated until the difference on consecutive 
iterations is below a set threshold. If convergence is not achieved after a certain 
number of iterations the training is considered to have failed for the current input 
face region. Typically we have set the convergence threshold at 0.01 and the 
maximum number of iterations at 40. Once convergence is achieved, further 
iterations are stopped and the EHMM is output and stored in a reference database. 

 
Automatic Face Recognition System for Hidden Markov Model Techniques 

 

13 

6.4 The decoding process for an EHMM (Doubly embedded Viterbi) 
In the description  of the training  process above we have seen that step 4 consists in the re-
segmentation of the states in the 1D HMMs and of the superstates in the overall HMM. Re-
segmentation means nding the most probable sequence of states given a certain sequence 
of observation  vectors and we can solve this problem by applying the Viterbi algorithm. We 
can easily apply Viterbi algorithm in the embedded 1D HMMs for which we have 
determined all the probabilities at step 3 above. However for the overall HMM after step 3 
we only have the initial and transition probabilities, without the observations probabilities.  
In order to solve this problem a method based on the Viterbi algorithm known as double 
embedded Viterbi was developed [Kuo & Agazzi  1994]. It involves applying the Viterbi 
algorithm to both the embedded HMMs and to the global, or top-level HMM, hence the 
name. A detailed description may be found in [Nefian 1999]. As the algorithm is 
mathematically  complex and the formulas are challenging to understand and even more so 
to implement. For this reason we will next provide a detailed practical (as opposed to 
theoretical) description of our step by step implementation of the algorithm. The underlying 
concept is illustrated in Figure 6  and comprises the following steps: 
Step 1. After the parameters initialization step No. 3 of the previous section we have: initial 

probabilities, transition probabilities and observation probabilities for each 
embedded HMM, and initial and transition probabilities for the top-level HMM. In 
the rst step of the double Viterbi, each scanned row of observation vectors 0

i i
jO v  

with 1 ( ) ( )i H v h v     and 1 ( ) ( )j W o w o     within each of the embedded 
1D HMMs has the conventional Viterbi algorithm applied. After this step the 
optimal state distribution is obtained for each row of observation vectors based on 
the relevant 1D HMM 0( , )i i

kQ Q   and also the probability of each row of 
observation for the top-level HMM, or superstate 0( , )i i kP O Q  , where 
1 ( ) ( )i H v h v     and 01 k N  . 

Step 2. After the rst application of the Viterbi algorithm we have: initial and transition 
probabilities for the superstates as determined at step 1 of the training algorithm 
described above, and the observations probability distributions for the top-level 
HMM, that is: the probabilities of each horizontal row of observations given each 
 

 
Fig. 6. Doubly embedded Viterbi 



 
New Approaches to Characterization and Recognition of Faces 

 

14

superstate. Now Viterbi is applied on the top-level HMM and the optimal  sequence 
of superstates is obtained given the sequence of rows of observation vectors 
(vertical re-segmentation) and the probability of the entire sequence of observations 
(which characterizes the entire image) given the EHMM model created. This 
probability is compared at each iteration with the same probability obtained on the 
previous iteration (step 6 in Section 5.3). 

Step 3. Vertical re-segmentation means reassignment of each row of observation vectors to 
the corresponding superstate (embedded 1D HMM). After we determine to which 
embedded 1D HMM each row of observation vectors appertains. Then using the 
ndings at the rst step of the double embedded Viterbi algorithm horizontal re-
segmentation can be achieved.  

In Figure 7 below we give an example of states and superstates segmentation for a given 
face image. Each color represents a different state in the superstates. As one can see, the 5 
superstates  found in this image are: forehead region, ends right above the eyebrows and is 
divided into 3 states, eye region, starts just above eyebrows and ends just after the pupil, is 
divided into 6 states, the nose region, starts just after the pupil and ends just before the 
nostrils, is divided into 6 states, the nostrils region, starts just under the nose region and 
ends at the middle between mouth and tip of the nose, is divided into 6 states,  and nally 
the mouth region starts after the nostrils region and ends at the bottom of the image, is 
divided into 3 states. Also from the image we can see that the rows of observation vectors 
inside one superstate are distributed unevenly between states. 
 

 
Fig. 7. State distribution after applying doubly embedded Viterbi 

6.5 The evaluation process for an EHMM 
In the training  process described previously we have shown  how an EHMM model is built 
for a subject in the database. After building separate EHMMs for all subjects in the database 
we can move to the recognition step where the likelihood  of a face test image is evaluated 
against all models. The evaluation process comprises of the following steps: 
Step 1. rst the face image is scanned with a rectangular window from left-to-right and 

top-to-bottom and the observation  vectors are extracted.  
Step 2. then the sequence of observation  vectors is introduced in each EHMM model and 

its corresponding likelihood is computed. Theoretically the probability of a 
sequence of observation vectors, given a model, is found using the forward-
backward evaluation algorithm. However, in practice it was argued  [Raibner 1989, 
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Kuo & Agazzi 1994] that  the Viterbi algorithm can successfully replace the 
evaluation algorithm. For our EHMM we use a doubly embedded Viterbi 
algorithm. At the end of this step we have the probabilities of the test image to 
match each of the EHMM models in the recognition database. 

 

 
Fig. 8. HMM recognition scheme (N is the number of subjects in the database) 

Step 3. the nal step consists in comparing all the probabilities  computed at the previous 
step and choosing as winner the model which returns the highest probability. The 
evaluation process is depicted graphically in Figure 8. 

7. Implementation details 
In order to implement our AFR system two different software programs were designed: one 
for the face detection and normalization processes and one to support the HMM based face 
recognition process. Many functions for face detection and recognition were based on a well 
known open source image processing library [OpenCV 2006]. Some details on each of these 
software workflows are given to facilitate other researchers.  

7.1 Face detection 
For the detection and cropping of all faces in the test databases  we employed a well-known 
face detection algorithm [Viola & Jones 2000, 2001], described in section 2 above. In order to 
implement detection and cropping of all faces in all images in a single step, a tool was 
required to operate batch processes. This is implemented using Matlab. Such an approach 
allows additional high-level lters and other image processing techniques, also 
implemented  in Matlab, to be easily linked with the OpenCV based face detection process. 
Thus the speed and efficiency of the OpenCV routines are coupled with the exibility  to 
incorporate supplemental Matlab lters into our test and evaluation process.  
The Matlab  program takes as input a folder of images, automatically loading each image, 
calling the face detection function from OpenCV and returning all face rectangles detected 
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in the given images. These are then cropped and saved on disk as new JPG image les. Note 
that this process facilitates a manual inspection or supplemental testing of a set of images to 
determine if they are correctly and uniformly cropped. To achieve the functionality of this 
program, there are two principal  stages: 
i. the declaration of the face detection function in OpenCV has to be modied in order to 

provide Matlab access to the detection function from the detection library using the 
standard mex (Matlab-C)  interface1;   

ii. the OpenCV library is compiled with the Matlab-C compiler. The mex command was 
used to build the detection function adding all OpenCV dependencies.  

At the end of this stage all detected faces were manually separated by subject in different 
folders. Throughout  our tests we used different numbers of pictures per person in the 
training stage, and a xed number of pictures in the testing stage. More exactly,  we trained 
the system successively with 1 and up to 5 pictures per person, and we tested with the 
remaining  5 pictures  that were not used in any training. In future tests we  will  denote the 
number of faces used for  training as  Nvs5:  1vs5, 2vs5, etc.  

7.2 Face recognition 
The second step in implementing the face recognition system was to build a program that 
would perform the main face recognition processes. The face recognition implementation  
was done in the C language using Microsoft Visual Studio. The implementation consists of 
three main components: 
1. Top-level component  is the rst component and has the purpose of (i) reading multiple 

images from the disc, (ii) saving the output of the training stage (which is represented 
by the models) and (iii) analyzing the output of the testing stage. A detailed description 
of the training and testing stages can be found in Chap. 4; 

2. Mid-level component: the second component which processes (pre-processing: 
illumination normalization, resize, ltering etc) the faces, computes observation vectors, 
builds and stores HMM models and computes likelihoods between  faces and models. 
Please  see Chapter  4 for a description of the HMM stages; 

3. Low-level component is the third component which contains the basic routines of the 
EHMM algorithm (feature extraction, segmentation, Viterbi, state probability 
distribution etc) and uses functions  implemented  in the OpenCV library. 

A detailed description of the processes taking place in each of these components and how 
they are interfaced is given in [Iancu 2010]. Figure 9 presents a visual explanation. 

7.3 Databases and training datasets 
For the experiments presented in the next sections of this chapter we used a mix of subjects 
from 3 standard databases: BioID, Achermann and UMIST. Each database provides  some of 
our desired variations: BioID exhibits high variations in illumination,  some expression 
variations and slight pose variations; Achermann  presents some head rotations  and slight 
illumination variations; UMIST covers a range of poses from frontal  to semi-prole. A short 
description of each of these databases is given next. 
BioID database: BioID2 is a dataset consisting of 1521 gray level images with a resolution of 
384 × 286 pixels, containing 23 different test persons with frontal views with variations in 
 

                                                 
1http://www.mathworks.com/support/compilers/interface.html 
2http://www.bioid.com/support/downloads/software/bioid-face- database.html 
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in the given images. These are then cropped and saved on disk as new JPG image les. Note 
that this process facilitates a manual inspection or supplemental testing of a set of images to 
determine if they are correctly and uniformly cropped. To achieve the functionality of this 
program, there are two principal  stages: 
i. the declaration of the face detection function in OpenCV has to be modied in order to 

provide Matlab access to the detection function from the detection library using the 
standard mex (Matlab-C)  interface1;   

ii. the OpenCV library is compiled with the Matlab-C compiler. The mex command was 
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remaining  5 pictures  that were not used in any training. In future tests we  will  denote the 
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1http://www.mathworks.com/support/compilers/interface.html 
2http://www.bioid.com/support/downloads/software/bioid-face- database.html 

 
Automatic Face Recognition System for Hidden Markov Model Techniques 

 

17 

 
Fig. 9. Main program workow 

facial expression and illumination. The actual size of the face inside the picture is on average 
128 × 128. From the entire database 200 pictures of 20 different persons were selected. Faces 
were selected to maximize pose and illumination variations as far as possible in the selected 
picture. 
Achermann database: The Achermann database3 contains 260 images of 26 people, each 
with 10 images, with 143×143 pixel in size. Unlike many other databases which contain only 
frontal views, the faces in this database span a range of pose angles.  
UMIST database: UMIST database4 consists of 564 images of 20 people, each covering a 
range of poses from profile to frontal views. Subjects cover a range of race/- 
sex/appearance. The files are all in PGM format, approximately 220 × 220 pixels in 256 
shades of grey. From this database we extracted 100 pictures of 10 subjects, with pictures 
ranging from frontal up to 30 degrees right and left turn.  
Tests were performed using the software tools described in section previously in Section 6.2 
on a database formed by combining the 3 databases described above. This comvined 
database consisted of 560 pictures of 56 subjects, for each subject 10 pictures being selected. 
Unless stated otherwise, pictures were resized to 128 × 128 grayscale pixels then each face 
was scanned using a 12 × 12 window from left to right and top to bottom, with an overlap of 
8 pixel both vertically and horizontally, in order to extract the observation vectors. The first 
3×3 2D DCT coefficients corresponding to the low frequencies are retained. The EHMM 
depicted in Figure 5(b) is used, with 5 super states and 3-6-6-6-3 embedded states 
respectively, representing forehead-eyes-nose-mouth-chin areas. A standard number of 3 
Gaussians were used in each state to model the feature vectors for most of the following 
experiments. In the training step, 1 to 5 pictures for each subject are used for building the 
corresponding EHMM model. After training, in order to check the algorithm, verification is 
performed, where the images used for training are also used for testing. If the algorithm is 
correct than the recognition rate should be 100%. In the recognition phase, the 5 images per 
person not used for training are utilized.  
                                                 
3http://iamwww.unibe.ch/ fkiwww/staff/achermann.html 
4http://www.sheffield.ac.uk/eee/research/iel/research/face.html 
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8. Experimental results 
As structure for the EHMM we used Samaria’s thesis as starting point. According to 
Samaria’s experiments presented in his PhD thesis [Samaria 1994], the most efficient 
structure allowing the smallest error rate (5.5%) consists in 5 super states with 3-6-6-6-3 
embedded states respectively and was tested employing as observation vectors the pixel 
intensities of a face region and the dataset of face regions was drawn from the ORL 
database. The same EHMM structure was used by [Nefian 1999] 2D DCT coefficients as 
observa- tion vectors and the dataset of face regions was drawn from the ORL database. 
Nefian obtained an improved error rate of 2%.  

8.1 Test data 1 – different sizes of face region 
A first set of experiments is directed towards determining an optimal size of the detected 
and cropped face regions used for recognition. The sizes of the faces available in research 
databases can vary significantly. As examples, it varies between 128 × 128 for BioID, 143 × 
143 for Achermann and 220 × 220 for UMIST. As our experiments draw images from these, 
and other data sources, a consistent normalization between face regions is important. 
Downscaling will result in information loss, but this is still preferable to upscaling which 
can introduce artifacts and create false information. There is also a reduction in 
computational demands for smaller pictures – another reason to favour downscaling. For 
example it takes 75% less time to process a 64×64 image region than for 128 × 128 sized 
regons. Thus processing smaller pictures is clearly desirable for algorithms to run efficiently 
in handheld devices such as digital cameras. In this set of experiments we tested sizes 
between 64 × 64 and 196 × 196. The bicubic spline interpolation technique was used for 
image downscaling where required. The results are given in the Table 2 and depicted in 
Figure 10. 
 

Picture size 1vs5 2vs5 3vs5 4vs5 5vs5 

64 × 64 42.86 56.79 73.57 83.57 89.64 

96 × 96 52.14 64.64 76.43 86.07 87.86 

128 × 128 66.43 71.07 81.07 83.57 86.07 

192 × 192 61.79 69.29 77.86 83.93 83.57 

Table 2. Recognition  rates (%) for different  picture  sizes 

8.2 Test data 2 – different numbers of gaussians 
One of the underlying assumptions of our HMM model is that a random signal can be 
modeled by one or more Gaussian probability functions. If the signal is simple, it clusters 
around one mean value and it can be modeled by a single Gaussian. For more complex 
signals there may be more than one clustering center, and a more accurate model will match 
the number of Gaussians to the number of primary clusters. The objective of this experiment 
is to test how a varying number of Gaussians will inuence the underlying recognition 
rates. We used face regions of size 128 × 128 pixels. This size of images should provide  close 
to an optimal recognition rate as detailed in section 8.1.  
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Fig. 10. Recognition  rates for different  picture  sizes 
 

No. of Gaussians 1vs5 2vs5 3vs5 4vs5 5vs5 
1 58.93 65.71 72.14 81.07 82.14 
2 58.21 67.86 79.29 82.86 86.07 
3 66.43 71.07 81.07 83.57 86.07 
4 55.00 67.14 78.21 84.29 88.21 

Table 3. Recognition  rates (%) for different numbers of Gaussians 
 

 
Fig. 11. Recognition rates for different numbers of Gaussian functions 
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The best results are obtained for mixtures of 3 Gaussians per HMM. For 2 or 4 Gaussians per 
HMM good results are also obtained, particularly when more training images per person 
are available. Note, however, that 4 Gaussians per HMM requires signicantly more 
computation time and the benets are marginal. Because the difference in processing time 
between modeling with 2 and 3 Gaussians is not significant (the recognition process with 2 
Gaussians is in average 15% faster than for 3 Gaussians), it was decided to use a mixture of 3 
Gaussians for our later experiments. 
Note that for more complex or unusual model characteristics it is expected that the 
improvement in general recognition rates for 3 Gaussians could be more significant than is 
shown here. For now we can state that increased computation from using 3 Gaussians is 
likely to be balanced by the adaptability that is available to the model to handle more 
extreme variations in facial characteristics. No investigation of varying the underlying 
number of Gaussians for each superstate was undertaken. However it seems likely that 
superstates which cover complex features, such as the eye, nose and mouth regions are 
likely to benefit from increasing the underlying number of Gaussians in the more complex 
face regions.  

8.3 Experimental results for different numbers of DCT coefficients 
Again, the idea behind using fewer features to represent a signal is to speed up the 
recognition process, without adversely affecting the recognition rates. The number of 2D 
DCT coefficients we used previously was 3 × 3. In Figure 12 we show the results for 2×2, 
3×3 and 5×5 DCT coefficients used. The results are more clearly presented in Table 4. We 
can see that on average 3×3 coefficients perform marginally better than 5 × 5 when up to 3 
training pictures are used. However as more pictures are used in training, 5×5 coefficients 
seem to characterize the image better although in many applications this improvement is 
may not be sufficient to justify the additional computational effort for handheld imaging 
devices. 
 

DCT 1vs5 2vs5 3vs5 4vs5 5vs5 

2×2 51.79 63.57 75.71 82.86 83.21 

3×3 66.43 71.07 81.07 83.57 86.07 

5×5 62.14 70.36 79.64 86.07 90 

Table 4. Recognition rates (%) for different numbers of DCT features 

8.4 Experimental results for simplified topologies 
The final tests of this section involve using a different topology for the EHMM. The core 
model was drawn from the work of Samaria and Nefian employs 5 superstates with an 
internal organization of 3-6-6-6-3 embedded states respectively, on images resized at 128 × 
128. Here a simplified version of the classic EHMM is tested: the face is segmented into 4 
superstates and 2-4-4-2 embedded states. Smaller face regions are used to further reduce the 
memory and computation required. Face regions were resized to 32 × 32 and 64 × 64. Details 
of the tests and results are presented in Figures 13 & 14. The numerical results can be found 
in Tables 5 and 6. 
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Fig. 12. Recognition rates for different numbers of features 

 
Window size / No 

Gaussian 1vs5 2vs5 3vs5 4vs5 5vs5 

8 × 8/1 Gauss 57.86 67.50 72.86 80.00 82.14 
12 × 12/1 Gauss 51.43 51.79 64.29 76.43 83.21 
8 × 8/2 Gauss 58.57 64.64 76.43 84.29 86.43 

12 × 12/2 Gauss 55.36 49.64 61.07 74.64 82.14 

Table 5. Recognition  rates (%) for picture size 32 × 32 
 

 
Fig. 13. Recognition rates for 32 × 32 picture size 
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There were other parameters we had to change in the tests in order to increase the 
recognition rates. Originally we started the tests on 32 × 32 pixels images scanned with a 12 
× 12 pixels window with 8 pixels overlap (75% of the size of the scanning window). 
However a simple calculation shows that in this case we only have 6 scanning steps both 
vertically and horizontally so there will be superstates with only 6 observation vectors, that 
meaning that some states will have only 1 or 2 observation vectors to be modeled with 
Gaussian mixtures. Obviously modeling with 2 Gaussian mixtures a single observation 
vector does not make sense. Furthermore having a single observation vector per state cannot 
offer a detailed description of that state. 
 
Window size/No. of 

Gaussians 
1vs5 2vs5 3vs5 4vs5 5vs5 

8 × 8/1 Gauss 55.71 61.79 69.64 75.36 76.43

12 × 12/1 Gauss 60.71 65.36 72.50 78.57 82.50

8 × 8/2 Gauss 59.64 63.93 71.79 79.64 82.86

12 × 12/2 Gauss 57.14 65.71 70.36 81.07 85.00

Table 6. Recognition  rates (%) for picture size 64 × 64 

Because of this, low recognition rates were obtained for 32 × 32 pixels images scanned with 
12×12 pixels windows. However, for images sized 64 × 64 pixels, scanning with an 8 × 8 
pixels window could mean taking too much detail and missing larger facial features. This 
may explain why the best results for 64 × 64 size images are obtained when scanning with 
12 × 12 pixels window.  
 
 
 

 
Fig. 14. Recognition rates for 64 × 64 picture size 
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8.5 Experiments using different illumination normalization techniques 
For our experiments to tackle the problem of illumination variations a study was 
undertaken of the effectiveness of the following three illumination normalization 
algorithms: (i) histogram equalization  (HE) based on [Gonzalez & Woods 1992], (ii) contrast 
limited adaptive histogram equalization (CLAHE) based on [Zuiderveld 1994], and (iii) the 
relative new method of DCT in the logarithm domain - logDCT based on [Chen et al 2006]. In 
addition paired combinations of several of these techniques were also evaluated. To the best 
of our knowledge this is the first attempt in the literature to compare different illumination 
normalization techniques in the context of EHMM. 
 

Illum Norm Tech 1vs5 2vs5 3vs5 4vs5 5vs5 

No normalization 66.43 71.07 81.07 83.57 86.07 

HE 65.00 74.64 85.71 90.71 92.50 

CLAHE 68.21 75.71 82.86 88.21 90.57 

LogDCT 52.50 58.21 70.71 76.43 77.86 

LogDCT+CLAHE 60.00 70.36 75.00 82.14 84.64 

CLAHE+LogDCT 68.21 77.50 84.64 90.00 92.86 

LogDCT+HE 66.43 72.86 81.43 86.79 90.00 

HE+LogDCT 53.57 64.29 76.79 85.00 88.57 

HE+CLAHE 68.57 78.21 86.07 92.14 95.36 

CLAHE+HE 71.07 79.29 87.14 92.86 95.71 

Table 7. Recognition rates(%) for illumination normalization techniques 

We tested these three illumination normalization techniques, viz, HE, CLAHE, LogDCT and 
compared the recognition results with the results obtained when no illumination 
normalization was performed. After visually observing the results of illumination 
normalization on each image in the database we concluded that LogDCT flattens the facial 
features excessively whereas CLAHE enhances them. Thus the idea of combining these two 
normalization methods, was mooted. It was then decided to investigate a number of other 
combinations of these techniques and the results are presented below. The number of DCT 
components that are canceled for logDCT depends on the size of the image and the level of 
the illumination variation present in the image. For our tests we used the first 4 DCT 
coefficients for 128 × 128 images. The recognition rates for each illumination normalization 
technique and the combinations we tested are given in Table 7. 
In Figure 15 a set of face images affected by various degrees of illumination are shown 
together with the results of applying each illumination normalization technique or 
combinations thereof to the original images. Making a parallel between the recognition rates 
given in Table 7 and the visual results shown in Figure 15, a few observations can be provided: 
- the best recognition rates are obtained when combining  HE and CLAHE regardless of 

the order. 
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- Better  recognition  rates are achieved using the simple HE technique when compared 
to the more sophisticated CLAHE and LogDCT techniques.  

- LogDCT returns very poor results even when compared to the rates obtained when no 
illumination normalization technique is used.  

- From a human’s perceptual point of view, the most efficient visually illumina- tion 
normalization technique appears to be LogDCT+CLAHE but this gives recognition 
rates poorer than the original pictures 

 

 
Fig. 15. Illustrative examples of various illumination normalization techniques applied to a 
representative subset of face data. 

- The best recognition rates are obtained for illumination normalization which enhances 
the facial features: HE, CLAHE and combinations of these two.  

There are two exceptions that contradict this last rule: (i) LogDCT+HE: despite the fact that 
from Figure 15 this combination appears to enhance facial features, it also appears to be 
unable to eliminate the influence of illumination; (ii) The second exception is 
CLAHE+LogDCT which gives quite good results despite looking somewhat flatter than the 
other techniques. 

9. Discussion of our experiments 
Throughout this chapter we described a series of tests performed with the purpose of 
finding the optimal combination of factors that influence the recognition process: size of face 
image, topology of the model, that is number of superstates, number of states for each super 
state and number of Gaussians to model the observation vectors, illumination normalization 
technique to diminish the differences in illuminations, and coefficients to describe the 
information contained in the image. 
In order to make things more difficult for our recognizer, we tried to emulate as best 
possible the less that ideal appearance and diversity of a consumer collection by combining 
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three different standard databases in one big collection of images. The databases used were 
described briefly in Section 7.3. Also, throughout the tests we used different numbers of 
faces of the subjects for tests and training: from 1 to 5 faces for training and the remaining 5 
faces for testing. From the results presented in Section 8 the following conclusions can be 
reached: 
i. An optimal size for face image when using HMM is 128 × 128 pixels, although the 

recognition rates obtained for the smaller size of 96 × 96 pixels are quite close and may 
offer a better choice for applications where memory and computational efficiency are 
important, e.g. in handheld imaging devices; 

ii. From experiments performed in section 8.2 the optimal number of Gaussian functions is 
3, representing a trade-off between best precision and computational burden; but we 
remark that with 2 Gaussians a faster computation is achieved with almost the same 
recognition performance; the effects of varying the number of Gaussians across super-
stages was not considered in this research; 

iii. The optimal performance with 2D DCT is achieved by employing the rst 9 coefficients,   
but we noted  in section 8.3 that using the rst 4 coefficients  gives an acceptable result 
as well and may be preferable where speed of computation and memory efficiency are 
important; no significant improvement was noted when we used Daubechies wavelets 
in place of DCT; 

iv. In section 8.4, very good results were obtained for a reduced 2-4-4-2 EHMM topology 
applied on very small images: these results improve when increasing the number of 
training images per person, and recognition rates as high as 86.43% were achieved in 
our experiments. As no illumination  normalization was used and these tests were 
performed on a combined database rather than a single standard database, the results 
which were obtained may be regarded as highly promising for real-world applications. 

v. Finally, in Section 8.5 three different illumination normalization techniques are used in 
the pre-processing phase of our recognizer. We also investigated some non-standard 
combinations  of these techniques to determine their suitability for pre-processing data 
for a HMM face recognition algorithm. The best results were obtained for CLAHE and 
HE with over 95% recognition rates. Very good performances were obtained when 
using a combination of CLAHE and logDCT, with 92.87% recognition  rate, but also 
when using the more basic HE, with up to 92.5%. This analysis of various image 
normalization lters should pro- vide a useful baseline for future researchers in face 
recognition. One aspect we would have liked to investigate was the potential of such 
combining of illumination normalization lters to improve the performance of other 
well-known face recognition techniques such as PCA, ICA and AAM methods. 
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1. Introduction

Great progress in face recognition technology has been made recently. Since the first face
recognition vendor test (FRVT)Phillips et al. (2007) in 1993, face recognition performance has
been improved by two orders of magnitude in thirteen years. Notably, in the FRVT 2006
it is the first time that algorithms are capable of human performance levels, and at false
acceptance rates in the range of 0.05, machines can outperform humans Phillips et al. (2007).
The advances are promising for face verification applications where a typical one-to-one
match is performed. It is still a grand challenge to power large-scale face image retrieval.
Large-scale face image retrieval is the enabling technology behind the next generation search
engines (search beyond words), by which web users can do social search with personal photos.
High performance face identification algorithms are needed to support large scale face image
retrieval. Compared with face verification, face identification is believed N times harder
than face verification due to its nature of 1:N problems. The number of individuals N in
the database has a great impact on both the effectiveness and efficiency of face identification
algorithms.
With the state of the art face identification algorithms, the identification rate is only around
70% (rank = 1) for the FERET database, a gallery of ten thousands individuals. When to serve
for large-scale face image retrieval applications, the identification rate will further decrease
as the gallery size increase (fortunately not linearly but logarithmically).The computing
complexity of face identification is linearly related to the number of individuals N. For large-
scale face image retrieval the efficiency of face identification is a key issue. In this paper we
focus on the efficiency aspects of face identification.
Technically, it is very challenging to find a person from a very large or extremely large
database which might hold face images of millions or hundred millions people. A highly
efficient image retrieval technology is needed. Indexing technology based on tree structures
has been widely used in commercial search engines. These structures are quite efficient for
small dimensions (of the order of 1-10). However, as the data dimensionality increases, the
query performance of these structures degrades rapidly. For instance, White and Jain report
that as the dimensionality increases from 5 to 10, the performance of a nearest-neighbor query
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in multi-dimensional structures such as the SS-tree and the R-tree, degrades by a factor of 12.
This phenomenon, known as the dimensionality curse is a common characteristic of all multi-
dimensional index structures. In spite of the progress in the design and analysis of multi-
dimensional structures such as the TV-trees, the X-trees, and the SR-trees, the dimensionality
curse persists.
A very efficient approach to large-scale image retrieval is to use an approximate similarity
searching strategy Tuncel et al. (2004). Without building an indexing mechanism, the search
engine simply accesses partial information about all the feature vectors. Popular examples
of this approach are the VA-file algorithm Weber & Blott (1997), and the dimensionality
reduction techniques. Feature vectors are approximated using the accessed partial
information. In the state of the art face recognition techniques, all face images in a gallery
are transferred into lower resolution used for feature vectors (called face signatures). Two
examples are face signatures (images) of 21-by-12 pixels used in the statistical subspace
methodShakhnarovich & Moghaddam (2004) and face signatures of 28-by-23 pixels used in
our 1D HMM methodLe (2008). The problem is that due to huge number of individuals in
a larger gallery all signatures are too big to fit into a single server’s memory. The signatures
have to be stored in hard disks. The number of disk I/O operations will be the bottleneck
for query processing. The processing time is approximately proportional to the size of a
signature image. Therefore, compression of face signatures will play a central role in large-
scale face image retrieval. High compression will lead to a fast retrieval but the distortion due
to compression will affect the retrieval quality. Therefore, two types of scientific challenges
are:

• How to characterize the trade-off between retrieval quality and speed.

• How to efficiently compress face signatures under the fixed distortion.

This chapter brings together our earlier works in a more detailed and coherent whole. A
shorter version can be found in Kouma & Li (2009). Our contributions are:

1. To treat the image retrieval problem as a source coding problem and the rate-distortion theory R(D)
is used to characterize retrieval quality (D: distortion of coding) and retrieval speed (R: rate of
coding)

2. To view compression of signature images it as a typical "Wyner-Ziv Coding" problem, which
circumvents the problem that the query images are not available until we decompress the signature
image

3. To develop a distributed coding scheme based on LDPC codes to compress face signature images

2. Image retrieval as a Wyner-Ziv coding problem

In the 1970s Slepian and Wolf had already proved that efficient compression can also be
achieved by exploring source statistics partially or wholly at the decoder only. This was
known as distributed lossless coding Slepian & Wolf (1973). This is illustrated in Figure 1
by an example of compressing an information source X in the presence of side information
Y when X and Y are two correlated sources. For the simplest case when Y is not known at
all, X can be compressed at the rate larger than or equal to H(X). When Y is known at both
the encoder and decoder, the problem of compressing X is also well understood: one can
compress X at the theoretical rate of its conditional entropy H(X|Y). But what if Y is known
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only at the decoder for X and not at the encoder? The surprising answer from the Slepian-Wolf
coding theorem Slepian & Wolf (1973) is that one can still compress X using only H(X|Y ) bits,
the same bits as the case where the encoder does know Y! This was extended to the lossy
encoding by Wyner and Ziv Wyner & Ziv (1976) and yielded a similar result: Under certain
conditions, as when X and Y are jointly Gaussian with the MSE measure, when the decoder knows Y,
then whether or not the encoder knows Y, the rate-distortion performance for coding X is identical.
In face retrieval applications, for a given signature X, R ≥ H(X) bits are needed to represent
it. If the query image Y is from the same individual, then Y will be highly related to X. If we
know Y in advance then we don’t need to store the whole information of X, instead just the
conditional information, R ≥ H(X|Y). Obviously, H(X|Y) ≤ H(X). As mentioned, retrieval
speed is determined by (linearly proportional to) the rate R, so it makes large sense to reduce
the rate from H(X) to H(X|Y). The challenge is that in practice, Y is not known in advance
and we can’t directly make use of the knowledge of Y to help the compression of X. The
solution is to treat it as the Wyner-Ziv coding problem: take the query image Y as the side
information. There will be no rate loss as long as X and Y are jointly Gaussian. In fact, in
the state of art face recognition techniques Gaussian modeling of human faces are commonly
used. For example, in statistical subspace methods Shakhnarovich & Moghaddam (2004), it is
assumed that Δ=X-Y is a Gaussian distribution if X and Y are from the same individual. The
Gaussian distribution is used to characterize intra-personal variations Ω, caused by different
facial expressions, lighting, and poses of the same individual. According to Wyner-Ziv coding
theory there is no rate loss when Y is available only at the decoder since it is the quadratic
Gaussian case. The rate will be:

RWZ(D) = RX|Y(D) =
1
2∑

i
log

(
œZi

Di

)
(1)

where

D = ∑
i

Di (2)

Note that Ycan be arbitrarily distributed. The rate-distortion RWZ(D), put it in the image
retrieval language, says the minimum time complexity (R) achieving retrieval distortion D. It
governs the tradeoff between the retrieval quality (D) and retrieval speed R in practice.
Just as the information theory, the Wyner-Ziv theorem only tells us a theoretical bound on
information rate but not how to reach the bound in practice. The image coding community
has high interest in exploring how to design practical Slepian-Wolf and Wyner-Ziv codecs.
With Low-density parity-check codes, when the code performance approaches the capacity

31Large-Scale Face Image Retrieval: A Wyner-Ziv Coding Approach



4 Will-be-set-by-IN-TECH

Fig. 2

of the correlation channel, the compression performance approaches the Slepian-Wolf bound
(see referenced listed in Varodayan et al. (2005)). In contrast, efforts toward practical Wyner-
Ziv coding have been undertaken only recently. Zamir and Shamai proved that linear codes
and nested lattices might approach the Wyner-Ziv rate-distortion function if the source data
and side information are jointly Gaussian Zamir et al. (n.d.). Xiong et al implemented a
Wyner-Ziv encoder as a nested lattice quantizer followed by a Slepian-Wolf coder Xiong et al.
(2003). In general, a practical Wyner-Ziv coder can be thought to consist of a quantizer
followed by a Slepian-Wolf encoder, as illustrated in figure 2. This makes it possible for
us to focus on two basic components: quantization and reconstruction. As an example of
practical codec a Wyner-Ziv video coding system is reported to perform 10-12 dB better than
H.263+ intra-fame codingVarodayan et al. (2005). In the face image retrieval, compression of
face signature images are much more challenging than distributed video coding due to rather
large variations between face images of the same person, which may be taken at different time,
by using different cameras. In this paper we focus on using Slepian-Wolf coding to compress
face signature images.

3. Low Density Parity-Check (LDPC) codes as Slepian-Wolf coder

Low Density Parity-Check Codes are intensively studied in other literatures, But for the sake
of completeness we briefly review it here.
LDPC codes are a class of linear block codes. They were invented by Gallager in the early 60’s.
But due the computational complexity (at that time), LDPC codes were largely forgotten until
the early 90’s.
LDPC codes are specified by a sparse parity-check matrix , as well as a bipartite graph,
introduced by Tanner Tanner (1981). Equation 3 and figure 3 show a parity-check matrix and
its graphical representation, respectively. an LDPC code consists of N variable nodes (number
of bits in a codeword) and M check nodes (number of parity bits). A check node cm is connected
to a variable node vn if the element hij in is 1.

A =

⎡
⎢⎢⎣

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

⎤
⎥⎥⎦ (3)

Typically a parity-check matrix is very big - of size over 2000 entries - and very sparse.
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Fig. 3. Equivalent Tanner graph of parity-check matrix in equation (3)

An LDPC code is called (ir)regular if the total number of 1’s in every column of the matrix is
(not) the same as well as the total number of 1’s in every row. Equivalently if all the check
nodes have (not) the same number of connections to the variable nodes as well as the variable
nodes to the check nodes.
LDPC codes are randomly constructed subject to these (ir)regularity constraints Gallager
(1962).

3.0.1 Encoding

Given a binary source X ∈ {0, 1}1×n and an LDPC code ∈ {0, 1}k×n - k < n - we multiply X
with and find the corresponding syndrome1 Z = T X, Z ∈ {0, 1}1×n. Equivalently in the
tanner graph we add all the variable nodes connected to the same check node. All operations
are performed in modulo 2. The corresponding syndrome Z will be the compressed version
of X.

3.0.2 Decoding

The decoder must estimate X, say X̂, from Z, given and Y ∈ {0, 1}1,n, known to be
correlated to X. That is Pr(Xi �= Yi) < 0.5, i = 1, 2, ..., n.
As in Liveris et al. (2002), the conventional message passing2 the LDPC decoder Casado et al.
(2007); Leiner (2005); Shokrollahi (2003) is modified for the syndrome information to be taken
into account. This yields to the following syndrome decoding algorithm:

• {xi, yi} ∈ {0, 1}, i = 1, 2, ..., n are the values in X and Y, respectively

• si ∈ {0, 1}, i = 1, 2, ..., k are the values in Z

• qij is the message passed variable node vi to a check node cj

• rji is the message passed from a check node cj to a variable node vi

1 Actually the concept of compressing a binary source to its syndrome was first introduced by S. Pradhan
et al. Pradhan & Ramch (1999). But that concept was rather an inspiration to constructive frameworks

2 The message passing algorithm itself, even called Belief propagation in some literatures, is intensively
studied in Bishop (2006); Kschischang et al. (2001)

33Large-Scale Face Image Retrieval: A Wyner-Ziv Coding Approach



6 Will-be-set-by-IN-TECH

• Qi is the set of connected check nodes to the i : th variable node.

• Qi\j is the set of connected check nodes, excluding the i : th check node, to the j : th
variable node.

• Rj is the set of connected variable nodes to the j : th check node.

• Rj\i is the set of connected variable nodes, excluding the i : th variable node, to the j : th
check node.

1. initialize; Prior Log Likelihood Ratios (LLR)s of xi :

q0
i = log

Pr[xi = 0|yi]

Pr[xi = 1|yi]
= (1 − 2yi) log

1 − p
p

(4)

2. Message (or LLR) sent from i : th variable node to j : th check node:

rji = 2 arctanh

⎛
⎝(1 − 2sj) ∏

i�∈Rj\i

tanh
� qi� j

2

�⎞
⎠ (5)

3. Message sent from j : th check node to i : th variable node:

qij = q0
i + ∑

j�∈Qi\j

rj� i (6)

4. Hard decision:

x̂i =

⎧⎪⎪⎨
⎪⎪⎩

0, if q0
i +

k

∑
j=1

qij ≥ 0

1, otherwise

(7)

5. If T X̂ .
= Z, stop. Else goto 3

3.1 Potentials and limitations of LDPC codes
We carried out approximatively the same simulations as in Liveris et al. (2002). We
compressed a (randomly generated) binary source X with codeword length n = 16384 bits
to different compression ratios. The side information was generated with different crossover
probabilities. The rates were increased until lossless compression was achieved. The results
are presented in table 1
Although experimental results showed that LDPC-based compression of binary sources
provides rates very close to Slepian-Wolf bound, it is important to mention a few caveats:

• No convergence at all is observed. Probable causes:
– The real crossover probability is higher than required
– The source signals are "far"3 4 from random

3 Experimentally, source signals do not need to be strictly random for the decoder to work
4 There are ongoing research especially dealing with non-random sources Garcia-Frias & Zhong (2003)
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• The maximum number of iterations is reached5, but convergence is not.

• Convergence is reached but the decoded codeword is the wrong one.

To generate parity-check matrix we used the implementation from Avudainayagam (2002).
Additionally Liveris et al. showed that the performance achieved by LDPC codes is seen to
be better than recently published results using Turbo codes. LDPC codes seem therefore to be
more attractive solution to our "Wyner-Ziv Coding of Face Images" problem.

Crossover probabilities 0.01 0.05 0.1 0.2
Theoretical conditional entropies 0.169 0.286 0.469 0.722
Experimental conditional entropies 0.300 0.420 0.600 0.880
Experimental conditional entropies in Liveris et al. (2002) 0.310 0.435 0.630 0.890

Table 1. Lossless compression results using LDPC

4. Compression of face signature images
using LDPC codes

Since the query images are not available when face signature images are compressed, a direct
solution is to treat face signature images as binary sources X. Since Xi and Xj are two views
from the same person and they are highly correlated with Pr[Xi �= Xj] = p < 0.5. To
allow the use of distributed coding to compress X the correlation between Xi and Xj can
be modeled with a binary symmetric channel (BSC) with crossover probability p as shown
in Fig 4 Following Liveris et al. (2002), LDPC codes will be used to compress the binary
sources with the query image as side information. That is, given a binary source X and a
LDPC code , which is a k × n parity-check matrix, we multiply X with and find the
corresponding syndrome Z = X with the length (n − k). The LDPC decoder estimates the
n-length sequence X from its (n-k) length syndrome X and the side information, query image
Y (length n). The system is shown in Fig 5. The compression ratio achieved with this scheme
is n

n−k . Figure 12 illustrates faces images and their respective syndrome face (signatures).

4.1 Binary coding of face signature images
The simplest way to transfer a grayscale face image into binary sequences is to employ the bit-
plane coding to convert each gray level to its binary representation with prefixed resolution
and then encode each bit-plane separately. Figure 6 shows the probability distributions for
inter-face and intra-face variations over a small-scale face database (containing 40 subjects
with 10 photos each). The low correlation is caused by the fact that the bit-plane coding is
very sensitive to luminance changes, small changes in gray level can have a significant impact
on the complexity of the bit planes. Obviously, it is inadequate to use LDPC to compress
bit-planes, directly.
Since our preliminary goal is to investigate how to use LDPC to compress face signature
images, here we just select a working binary coding scheme for our experiments. Our choice
goes to Expectation Maximization (EM) Dempster et al. (1977) for segmentation Weiss (1997).

5 For the sake of simplicity, we designed a decoding scheme that runs a predefined number of iterations.
Intense studies for convergence rules are carried out in Casado et al. (2007); Daneshgaran et al. (2007);
Hou et al. (2001); Matache et al. (2000)
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Fig. 4. Intra-face variation example

Fig. 5. Overview of system

EM attempts to assign objects a class but in a unsupervised way, tending to maximize the
inter-class variation, while keeping the within-class semantic. Figure 7 shows segmentation
results using EM. The results in figure 8 show that intra-face and inter-face variations are
approximately pintra ∼ N(0.21, 1.4310.10−2) and pinter ∼ N(0.35, 1.3510.10−2), respectively.
A certain improvement in correlation over intra-person faces is noticed (as shown in figure
6, yet not sufficient, because to employ LDPC the crossover probability has to be less than
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Fig. 6. Distribution of facial variation in grayscale

Fig. 7. Segmentation using EM

0.2 Liveris et al. (2002). We have to go for further processing. After carefully examining all
face signatures one will see that intra face variations are mainly caused by the following
factors: facial expressions, face poses, illuminance changes, camera factors etc. We have to
do alignment between face signatures images.
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Fig. 8. Distribution of facial variation in binary before alignment

Fig. 9. Alignment result on some input images. First row: reference image, second row: input
images, last row: result from alignment

4.2 Motion compensated alignment
To take away the displacement between two face signature images, a motion-compensated
alignment technique is employed Li & Forchheimer (1995). The idea is first to select a natural
face from the database as the reference face. To align a face signature image with respect to
the reference image, the reference image has to be divided into blocks, {Dk}. Given a block
Dk in the reference image, the aim is to find the corresponding block Bi in the face image by
minimizing the distance d(Dk , Bi). The distance is given by:

d(Dk , Bi) = |Dk − (a0 + a1Bi)| (8)
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Fig. 10. Face distributions in binary vs. crossover probabilities, after alignment. dash-star
line: intra-face. dash-point line: inter-face.

Coefficients a0 and a1 are defined by

a0 = ud − σd
σb

ub (9)

a1 =
σd
σb

(10)

where ub and σb are the mean value and variance of the block Bi and ud and σd are the mean
value and variance of the block Dk. The effect of the employed motion compensated alignment
on face signature images is shown in figure 9. It is noted here that motion compensated
alignment is performed before binary coding via the EM segmentation approach.
We carry out experiments over the face database and computed inter-face and intra-face
variations as shown in figure 10. pinter and pintra can be modeled as normal distributions,
pinter ∼ N(0.035, 7.04.10−5) and pintra ∼ N(0.029, 7.17.10−5). The small intra face variations
make it perfect to use LDPC for compression of face signature images. More important, we
know the compression bound: the theoretical limit for lossless compression of face signature
images X is

nR ≥ nH(X|Y) = nH(p) (11)

H(p) = −plog2(p)− (1 − p)log2(1 − p) (12)

Here p = 0.0298 corresponding to H(X|Y) = 0.1934, that is, a compression ratio of 5 can be
achieved.
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Fig. 11. Facial variation distributions in grayscale after alignment. Solid line: inter-face.
dash-plus line: intra-face.

5. Retrieval metric

We introduce a similarity measure where the key is using syndrome decoding Liveris et al.
(2002) and normalized Hamming distance.
At the retrieval phase, Given a query Y, we will process Y in the same manner as in the
enrollment phase, first motion compensated alignment followed by binary coding. For each
syndrome Zi, X̂i is estimated with respect to . This is equivalent to the Slepian-Wolf’s insight
of sources coding with side information available only at the decoder Slepian & Wolf (1973), where
Y represents the side information and Zi, the compressed correlated source. See figures 2 and
5. Normalized Hamming distance is performed between every (Y, X̂i) pair. The normalized
Hamming Distance is given by:

Di =
1
n

n

∑
j=1

Yj ⊕ X̂ij (13)

The templates are then ranked according to their distance to the query.

6. Preliminary results

In our experiment we use the ORL Database of Faces. In the database there are 10 different
images of each of 40 distinct subjects, taken at different times, varying light conditions and
facial expressions. For our purpose 5 randomly chosen images out 10 of each 40 subjects
are used as training set and 5 for validation and test. It is also important to mention that
the images were resized to 28 × 24 before further processing. The resizing parameters are
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mainly motivated by the psychological assumption made in Torralba et al. (2008) and our own
research on face recognition Le (2008).
Three LDPC codes are employed corresponding to different compression ratios, R = 0.31,
R = 0.50 and R = 0.76. Recall that we found experimentally that pinter ∼ N(0.035, 7.04.10−5)
and pintra ∼ N(0.029, 7.17.10−5). Theoretically a compression rate R = 0.1934 is thus
expected Slepian & Wolf (1973). This makes great sense since a 28× 24 grayscale image, when
transformed to binary, requires 672 bits to be stored. With The theoretical compression rate 537
bits saved. Using an LDPC code with rate R = 0.31, we were able to save 464 bits per template,
while achieving comparable results the with the scheme with no compression. Thus for 200
templates, we save 92800 bits! Figure 13 reports performance results, where the retrieval
efficiency is plotted against the number of outputs. the line specifications in figure 13 are
denoted as follow:

• Solid-asterisk: Alignment followed by bit-plane-wise binary representation

• Solid: Alignment followed by binarization. No compression

• Dash-dot: proposed scheme with rate 0.3

• Solid-upward triangle: proposed scheme with rate 0.5

• Solid-downward triangle: proposed scheme with rate 0.7

Fig. 12. Face images and respective resulting syndrome
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Fig. 13. Recognition Rate vs. Rank

7. Concluding remarks

Wyner-Ziv coding is radically different from conventional image coding. It gives a totally new
coding paradigm. Most research efforts are devoted to how image and video compression can
be done under the new paradigm. This paper is the debut of our effort to investigate how
Wyner-Ziv coding can be used for large-scale image retrieval problem.
Image coding and image retrieval have been conventionally two different disciplines. In this
paper image retrieval is considered as an image-coding problem. The powerful rate-distortion
theory can be directly used to characterize the tradeoff between retrieval quality and retrieval
speed through the crossover probability p.
Wyner-Ziv coding has a great potential to improve the efficiency of large-scale image retrieval.
Under the Wyner-Ziv coding framework the query information provided by a huge number of
web users can be utilized to reduce the storage and transmission of face images. Considering
that Google receives hundreds of millions of queries per day and they use a million servers to
run their search service, it is a big impact to our environment if consumption of storage and
transmission can be reduced 90% by adopting Wyner-Ziv coding.
The results we reported here are very preliminary. We focus ourselves on how to use LDPC
codes to compress binary coding of face signature images X to reach the Slepian-Wolf bound
H(X|Y). We haven’t addressed at all how to quantize X to achieve Wyner-Ziv coding,
H(Q(X)|Y). To focus on LDPC coding of X, we just use an EM-strategy to do binary coding
of face signature images and use it for our benchmark. We already see that the binary coding
results in a significant loss in the quality of image retrieval. To build an efficient whole system,
the study of Q(X) has to be carried out. In addition, motion compensated alignment plays a
very important role and has a big impact on both compression efficiency and retrieval quality.
How to achieve an optimal alignment is an important topic for future research.
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1. Introduction 
Biometric systems for human recognition are an ongoing demand. Among all biometric 
technologies which are employed so far, face recognition is one of the most widely 
outspread biometrics. Its daily use by nearly everyone as the primary mean for recognizing 
other humans and its naturalness have turned face recognition into a well-accepted method. 
Furthermore, this image procurement is not considered as intrusive as the other mentioned 
alternatives. 
Nonetheless, in spite of the various facial recognition systems which already exist, many of 
them have been unsuccessful in matching up to expectations. 2D facial recognition systems 
are constrained by limitations such as physical appearance changes, aging factor, pose and 
changes in lighting intensity. Recently, to overcome these challenges 3D facial recognition 
systems have been issued as the newly emerged biometric technique, showing a high level 
of accuracy and reliability, being more robust to face variation due to the different factors. 
A face-based biometric system consists of acquisition devices, preprocessing, feature 
extraction, data storage and a comparator. An acquisition device may be a 2D-, 3D- or an 
infra-red- camera that can record the facial information. The preprocessing can detect facial 
landmarks, align facial data and crop facial area. It can filter irrelevant information such as 
hair, background and reduce facial variation due to pose change. In 2D images, landmarks 
such as eye, eyebrow, mouths etc, can be reliably detected, in contrast, nose is the most 
important landmark in 3D face recognition.  
The 3D information (depth and texture maps) corresponding to the surface of the face may 
be acquired using different alternatives: A multi camera system (stereoscopy), range 
cameras or 3D laser and scanner devices. Different approaches have been presented from 
the 3D perspective. The first approach would correspond to all 3D approaches that require 
the same data format in the training and in the testing stage. The second philosophy would 
enclose all approaches that take advantage of the 3D data during the training stage but then 
use 2D data in the recognition stage. Approaches of the first category report better results 
than of the second group; however, the main drawback of this category is that the 
acquisition conditions and elements of the test scenario should be well synchronized and 
controlled in order to acquire accurate 3D data. Thus, they are not suitable for surveillance 
applications or control access points where only one “normal” 2D texture image (from any 
view) acquired from a single camera is available. The second category encloses model-based 
approaches. Nevertheless, model-based face recognition approaches present the main 
drawback of a high computational burden required to fit the images to the 3D models. 
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In this chapter, we study 3D face recognition where we provide a description of the most 
recent 3D based face recognition techniques and try to coarsely classify them into categories, 
as explained in the following subsequent sections.  

2. Iterative closest point 
(Maurer et al., 2005) presented a multimodal algorithm that uses Iterative Closest Point 
(ICP) to extract distance map, which is the distance between mesh of reference and probe. 
This method includes, face finding, landmark finding, and template computation. They used 
weighted sum rule to fuse shape and texture scores. If 3D score is high, algorithm uses only 
shape for evaluation. In experimental tests by using 4007 faces in the FRGC v2 database, a 
verification rate of 87.0% was achieved at %0.1 false accept rate (FAR). (Kakadiaris et al., 
2007) performed face recognition with an annotated model that is non-rigidly registered to 
face meshes through a combination of ICP, simulated annealing and elastically adapted 
deformable model fitting. A limitation of this approach is the imposed constraints on the 
initial orientation of the face. 
Performance of 3D methods highly depends on registration performance, where ICP is 
commonly used. ICP registration performance is highly dependent on initial alignment 
and it performs solid registration. However, expression variations degrade registration 
success. To overcome this problem, (Faltemier et al., 2008) divided the face into different 
overlapping regions where each face region was registered independently. Distance 
between regions was used as a similarity measure and results were fused using modified 
Borda count. They achieved 97.2% rate on FRGC v2 database. Other approaches to discard 
the effect of expressions were also studied by dividing the face into separate parts and 
extracting features from each part in 2D and range images (Cook et al., 2006; McCool et 
al., 2008).  

3. Geometric approach 
The early work of applying invariant functions on 3-D face recognition was done over a 
decade ago. At that time, people began with the geometrical properties introduced in 
differential geometry, such as principal curvatures, Gaussian curvature, etc. Basically, these 
approaches use the invariant functions, e.g., Gaussian curvature which is invariant under 
Euclidean transformations, to extract information from the face surface and, then, perform a 
classification that is based on the extracted information. (Riccio & Dugelay, 2007) proposed a 
particular 2D-3D face recognition method based on 16 geometric invariants, which were 
calculated from a number of “control points”. The 2D face images and 3D face data are 
related through those geometric invariants. The method is invariant to pose and 
illumination, but the performance of the method closely depend on the accuracy of “control 
points” localization.  
In the approach proposed by (Elyan & Ugail, 2009), the first goal was to automatically 
determine the symmetry profile along the face. This was undertaken by means of computing 
the intersection between the symmetry plane and the facial mesh, resulting in a planner 
curve that accurately represents the symmetry profile. Once the symmetry profile is 
successfully determined, a few feature points along the symmetry profile are computed. 
These feature points are essential to compute other facial features, which can then be 
utilized to allocate the central region of the face and extract a set of profiles from that region 
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(Fig. 1). In order to allocate the symmetry profile, it was assumed that it passes through the 
tip of the nose. This was considered as the easiest feature point to recover and to allocate 
using a bilinear blended Coon’s surface patch. Coon’s patch is a parametric surface defined 
by a given four-boundary curves. In (Elyan & Ugail, 2009), the four boundaries of the coon’s 
patch were determined based on a boundary curve that encloses an approximated central 
region of interest, which is simply the region of the face that contains or likely to contain the 
nose area. This region was approximated based on the centre of the mass that represents the 
3D facial image. They have computed the Fourier coefficients of the designated profiles and 
stored it in a database, other than storing the actual points of the profile. Thus, having a 
database of images representing different individuals where each person was represented 
by two profiles stored by means of their Fourier coefficients. 
 

 
      (a)             (b) 

Fig. 1. Facial features identification (a) Symmetry profile identification and analysis based 
on depth value to the reference depth plane (b) Eyes profile shown as the profile that passes 
through the nose bridge (Elyan & Ugail, 2009) 

Moreover, several works in the literature propose to map 3D face models into some low-
dimensional space, including the local isometric facial representation (Bronstein et al., 2007), 
or conformal mapping (Wang et al., 2006). Some works, for simplification, try also to 
investigate partial human biometry, meaning recognition based only on part of a face, as for 
example in (Drira et al., 2009), where authors used the nose region for identification 
purposes.  (Szeptycki et al., 2010) explored how conformal mapping to 2D space (Wang et 
al., 2006) can be applied to partial face recognition. To deal with the computational cost of 
3D face recognition they have utilized conformal maps of 3D surface to a 2D domain, thus 
simplifying the 3D mapping to a 2D one. The principal issue addressed in (Szeptycki et al., 
2010) was to create facial feature maps which can be used for recognition by applying 
previously developed 2D recognition techniques. Creation of 2D maps from 3D face surfaces 
can handle model rotation and translation. However, their technique can be applied only to 
images with variation in pose and lighting. The expression changes were avoided. To create 
face maps which are later used for recognition, they started with models preprocessing 
(hole, spike removal). Next step was to segment the rigid part of a face that has less 
potential to change during expression. Finally, they performed UV conformal 
parameterization as well as shape index calculation for every vertex; the process is shown in 
Fig. 2. 
(Song et al., 2009) detected the characteristics of the three regions eyes, nose and mouth in 
the human face, and then calculated the geometric characteristics of these regions by finding 
the straight-line Euclidean distance, curvature distance, area, angle and volume. Another 
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Fig. 2. Face maps creation flow chart (Szeptycki et al., 2010) 

face recognition system that is based on 3D geometric features was developed by (Tin & 
Sein, 2009). It is based on the perspective projection of a triangle constructed from three 
nodal points extracted from the two eyes and lips corners (Fig. 3). The set of non-linear 
equations was established using the nodal points of a triangle built by any three points in a 
2D scene. 
 

 
Fig. 3. Illustration of Perspective Projection of a 3D Triangle (Tin & Sein, 2009) 

An automatic 3D face recognition system using geometric invariant feature was proposed 
by (Guo et al., 2009). They utilized two kinds of features, one is the angle between 
neighboured facets, they made it as the spatial geometric feature; the other is the local shape 
representation vector, and they made it as the local variation feature. They combined these 
two kinds of features together, and obtained the geometric invariant feature. Before feature 
extraction, they have presented a regularization method to build the regular mesh models. 
The angle between neighboured facets is invariant to scale and pose; meanwhile, local shape 
feature represents the exclusive individual shape. 
(Passalis et al., 2007) focused on intra-class object retrieval problems, specifically, on face 
recognition. By considering the human face as a class of objects, the task of verifying a 
person’s identity can be expressed as an intra-class retrieval operation. The fundamental 
idea behind their method is to convert raw polygons in R3 space into a compact 2D 
description that retains the geometry information, and then perform the retrieval operation 
in R2 space. This offers two advantages: 1) working in R2 space is easier, and 2) the system 
can apply the existing 2D techniques. A 3D model is first created to describe the selected 
class. Apart from the geometry, the model also includes any additional features that 
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characterise the class (e.g., area annotation, landmarks). Additionally, the model has a 
regularly sampled mapping from R3 to R2 (UV parameterization) that can be used to 
construct the equivalent 2D description, the geometry image. Subsequently, a subdivision-
based model is fitted onto all the objects of the class using a deformable model framework. 
The result is converted to a geometry image and wavelet decomposition is applied. The 
wavelet coefficients are stored for matching and retrieval purposes (Fig. 4). 
 

 
Fig. 4. (a) Anthropometric landmarks used, (b) segmentation into annotated areas, and (c) 
checkerboard texture to demonstrate parameterization (Passalis et al., 2007) 

(Zaeri, 2011) investigated a new 3D face image acquisition and capturing system, where a 
test-bed for 3D face image feature characteristic and extraction was demonstrated. (Wong et 
al., 2007) proposed a multi-region face recognition algorithm for 3D face recognition. They 
identified the multiple sub-regions over a given range facial image and extracted 
summation invariant features from each sub-region. For each sub-region and the 
corresponding summation invariant feature, a matching score was calculated. Then, a linear 
fusion method was developed to combine the matching scores of individual regions to 
arrive at a final matching score. (Samir et al., 2006) described the face surface using contour 
lines or iso-contours of the depth function while using the nose tip as a reference point for 
alignment. The face surface is represented as a 2D image (e.g., depth-map), and then a 2D 
image classification techniques are applied. This approach requires that the surfaces are 
aligned by the iterative closest point algorithm or by feature-based techniques. Then, the 
deformable parts of the face are detected and excluded from the matching stage or 
downgrade their contribution during matching. This, however, may lead to loss of 
information (e.g., excluding the lower part of the face) which is important for classification. 
A different approach is to use an active appearance model or in the general case, a 3D 
deformable model which may be fitted to the face surface. The difficulty in this case is in 
building a (usually linear) model that can capture all possible degrees of freedom hidden in 
facial expressions and fitting the model to the surface in hand. 
The approach of (Mpiperis et al., 2007) relies on the assumption that the face is approximately 
isometric, which means that geodesic distances among points on the surface are preserved, 
and tries to establish an expression-invariant representation of the face. This technique does 
not have the disadvantages outlined in some other methods (loss of information and dealing 
with face variability). (Mpiperis et al., 2007) have considered the face surface as a 2D manifold 
embedded in the 3D Euclidean space, characterized by a Riemannian metric and described by 
intrinsic properties, namely geodesics (Figures 5 and 6). 
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Fig. 5. Definition of geodesic distance r and polar angle φ of an arbitrary point Q. Geodesic 
path g is the minimum length curve connecting point Q and geodesic pole P. r is the length 
of g, while φ is the angle between g and a reference geodesic path g0 (Mpiperis et al., 2007) 

 

 
Fig. 6. Geodesic paths and circles defined over a face surface. The tip of the nose was 
selected as the geodesic pole (Mpiperis et al., 2007) 

(Li et al., 2009) proposed a 3D face recognition approach using Harmonic Mapping and 
ABF++ as the mesh parameterization techniques. This approach represents the face surface 
in both local and global manners, which encodes the intrinsic attributes of surface in planar 
regions. Therefore, surface coarse registration and matching can be dealt with in a low 
dimensional space. The basic idea is to map 3D surface patches to a 2D parameterization 
domain and encode the shape and texture information of a 3D surface into a 2D image. 
Therefore, complex geometric processing can be analyzed and calculated in a low-
dimensional space. The mean curvature to characterize the points of surface is employed. 
Then, both local shape description and global shape description with curvature texture are 
constructed to represent the surface. With the selected surface patches in local regions, 
Harmonic Mapping is used to construct the local shape description. Harmonic Mappings 
are the solutions to partial differential equations from the Dirichlet energy defined in 
Riemann manifolds. An example of the constructed local shape description at a feature point 
on a facial surface is shown in Fig. 7, while the global shape description is shown in Fig. 8. 
For the overall meshes of probe or gallery images, nonlinear parameterization ABF++ with 
free boundary, proposed by (Sheffer et al., 2005), is used to create global shape description. 
The method presented by (Guo et al., 2010) is based on conformal geometric maps which 
does not need 3D models registration, and also maps 3D facial shape to a 2D domain which 
is a diffeomorphism through a global optimization. The 2D maps integrate geometric and 
appearance information and have the ability to describe the intrinsic shape of the 3D facial 
model, called Intrinsic Shape Description Maps (Fig. 9).  
(Harguess & Aggarwal, 2009) presented a comparison of the use of the average-half-face to 
the use of the original full face with 6 different algorithms applied to two- and three- 
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Fig. 7. Local shape description at point 1 for the face model A: (a) Original range image; (b) 
Triangle meshes in 3D space; (c) Planar meshes after Harmonic Mapping; (d)  LSD with 
mean curvature texture (Li et al., 2009) 

 

 
Fig. 8. Global shape description for the face model B: (a) Original range image; (b) Triangle 
meshes in 3D space; (c) Planar meshes after ABF++; (d) GSD with mean curvature texture 
(Li et al., 2009) 

 

 
Fig. 9. Constrained conformal mapping result (a) original 3D model (b) the mapping result 
of (a) (Guo et al., 2010) 

dimensional (2D and 3D) databases. The average-half-face is constructed from the full 
frontal face image in two steps; first the face image is centred and divided in half and then 
the two halves are averaged together (reversing the columns of one of the halves). The 
resulting average-half-face is then used as the input for face recognition algorithms. 
(Harguess & Aggarwal, 2009) compared the results using the following algorithms: 
eigenfaces, multi-linear principal components analysis (MPCA), MPCA with linear 
discriminant analysis (MPCALDA), Fisherfaces (LDA), independent component analysis 
(ICA), and support vector machines (SVM). 

4. Active appearance model approach 
Many researchers have used the active appearance model (AAM) (Cootes et al., 2001) in 
modelling 3D face images. The AAM is a generative and parametric model that allows 
representation of a variety of shapes and appearances of human faces. It uses the basis 
vectors that are obtained by applying principal component analysis (PCA) to the input 
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images and tries to find the maximum amount of variance. Although AAM is simple and 
fast, fitting it to an input image is not an easy task because it requires nonlinear optimization 
that finds a set of suitable parameters simultaneously, and its computation is basically 
conducted in an iterative manner. Usually, the fitting is performed by a variety of standard 
nonlinear optimization methods. 
(Abboud et al., 2004) proposed the facial expression synthesis and recognition system by 
face model with AAM. After extracting appearance parameters of AAM for recognition, 
they recognized facial expression in Euclidian and Mahalanobis space of these parameters. 
Also, (Abboud & Davoine, 2004) proposed a bilinear factorization expression classifier for 
the recognition and compared it to linear discriminant analysis (LDA). Their results showed 
that the bilinear factorization is useful when only a few number of training samples are 
available. (Ishikawa et al., 2004) used AAM for tracking around the eye region and 
recognized the direction of gaze. 
(Matthews et al., 2004)  suggested that the performance of an AAM built with single-person 
data is better than that of AAM built with multiple person data for the pose and 
illumination problems. (Xiao et al., 2004) employed 3D shapes in the AAM in order to solve 
the pose problem and used a nonrigid structure-from-motion algorithm for computing this 
3D shape from 2D images. The 3D shape provides the constraints on the 2D shape, which 
can be more deformable, and these constraints make fitting more reliable. (Hu et al., 2004) 
proposed another extension of a 2D + 3D AAM fitting algorithm, called the multiview AAM 
fitting algorithm. It fits a single 2D + 3D AAM to multiple view images obtained 
simultaneously from multiple affine cameras. (Mittrapiyanuruk et al., 2004) proposed the 
use of stereo vision to construct a 3D shape and estimate the 3D pose of a rigid object using 
AAM. (Cootes et al., 2002) proposed using several face models to fit an input image. They 
estimated the pose of an input face image by a regression technique and then fitted the input 
face image to the face model closest to the estimated pose. However, their approach requires 
pose estimation, which is another difficult problem, since the pose estimation might cause 
an incorrect result when the appearance of the test face image is slightly different from the 
training images due to different lighting conditions or different facial expressions. (Sung & 
Kim, 2008) proposed an extension of the 2D + 3D AAM to a viewbased approach for pose-
robust face tracking and facial expressions. They used the PCA with missing data (PCAMD) 
technique to obtain the 2-D and 3-D shape basis vectors since some face models have 
missing data. Then, they developed an appropriate model selection for the input face image. 
This model selection method uses the pose angle that is estimated from the 2D + 3D AAM 
directly. 
(Park et al., 2010) proposed a method for aging modelling in the 3D domain. Facial aging is 
a complex process that affects both the shape and texture (e.g., skin tone or wrinkles) of a 
face. This aging process also appears in different manifestations in different age groups. 
While facial aging is mostly represented by facial growth in younger age groups (e.g., ≤ 18 
years old), it is mostly represented by relatively large texture changes and minor shape 
changes (e.g., due to change of weight or stiffness of skin) in older age groups (e.g., >18). 
Therefore, an age correction scheme needs to be able to compensate for both types of aging 
processes. (Park et al., 2010) have shown how to build a 3D aging model given a 2D face 
aging database. Further, they have compared three different modelling methods, namely, 
shape modelling only, separate shape and texture modelling, and combined shape and 
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images and tries to find the maximum amount of variance. Although AAM is simple and 
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the pose problem and used a nonrigid structure-from-motion algorithm for computing this 
3D shape from 2D images. The 3D shape provides the constraints on the 2D shape, which 
can be more deformable, and these constraints make fitting more reliable. (Hu et al., 2004) 
proposed another extension of a 2D + 3D AAM fitting algorithm, called the multiview AAM 
fitting algorithm. It fits a single 2D + 3D AAM to multiple view images obtained 
simultaneously from multiple affine cameras. (Mittrapiyanuruk et al., 2004) proposed the 
use of stereo vision to construct a 3D shape and estimate the 3D pose of a rigid object using 
AAM. (Cootes et al., 2002) proposed using several face models to fit an input image. They 
estimated the pose of an input face image by a regression technique and then fitted the input 
face image to the face model closest to the estimated pose. However, their approach requires 
pose estimation, which is another difficult problem, since the pose estimation might cause 
an incorrect result when the appearance of the test face image is slightly different from the 
training images due to different lighting conditions or different facial expressions. (Sung & 
Kim, 2008) proposed an extension of the 2D + 3D AAM to a viewbased approach for pose-
robust face tracking and facial expressions. They used the PCA with missing data (PCAMD) 
technique to obtain the 2-D and 3-D shape basis vectors since some face models have 
missing data. Then, they developed an appropriate model selection for the input face image. 
This model selection method uses the pose angle that is estimated from the 2D + 3D AAM 
directly. 
(Park et al., 2010) proposed a method for aging modelling in the 3D domain. Facial aging is 
a complex process that affects both the shape and texture (e.g., skin tone or wrinkles) of a 
face. This aging process also appears in different manifestations in different age groups. 
While facial aging is mostly represented by facial growth in younger age groups (e.g., ≤ 18 
years old), it is mostly represented by relatively large texture changes and minor shape 
changes (e.g., due to change of weight or stiffness of skin) in older age groups (e.g., >18). 
Therefore, an age correction scheme needs to be able to compensate for both types of aging 
processes. (Park et al., 2010) have shown how to build a 3D aging model given a 2D face 
aging database. Further, they have compared three different modelling methods, namely, 
shape modelling only, separate shape and texture modelling, and combined shape and 
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texture modelling (e.g., applying second level PCA to remove the correlation between shape 
and texture after concatenating the two types of feature vectors). 

5. Filtering based approach 
(Yang et al., 2008) applied the canonical correlation analysis (CCA) to learn the mapping 
between the 2D face image and 3D face data. The proposed method consists of two phases. 
In the learning phase, given the 2D-3D face data pairs of the subjects for training, PCA is 
first applied on both 2D face image and 3D face data to avoid the curse of dimensionality 
and reduce noise. Then the CCA regression is performed between the features of 2D-3D in 
the previous PCA subspaces. In the recognition phase, given an input 2D face image as a 
probe, the correlation between the probe and the gallery is computed as matching score 
using the learnt regression. Furthermore, to simplify the mapping between 2D face image 
and 3D face data, a patch based strategy is proposed to boost the accuracy of matching. 
(Huang et al., 2010) presented an asymmetric 3D-2D face recognition method, that uses 
textured 3D face image for enrolment while performs automatic identification using only 2D 
facial images. The goal is to limit the use of 3D data to where it really helps to improve face 
recognition accuracy. The proposed method contains two separate matching steps: Sparse 
Representation Classifier (SRC) which is applied to 2D-2D matching, and CCA which is 
exploited to learn the mapping between range local binary pattern (LBP) faces (3D) and 
texture LBP faces (2D). Both matching scores are combined for the final decision. 
(Günlü & Bilge, 2010) divided 3D faces into smaller voxel regions and applied 3D 
transformation to extract features from these voxel regions, as shown in Fig. 10. The number of 
features selected from each voxel region is not constant and depends on their discrimination.  
 

 
Fig. 10. Proposed method by (Günlü & Bilge, 2010)  

(Dahm & Gao, 2010) presented a novel face recognition approach that implements cross-
dimensional comparison to solve the issue of pose invariance. The approach implements a 
Gabor representation during comparison to allow for variations in texture, illumination, 
expression and pose. Kernel scaling is used to reduce comparison time during the branching 
search, which determines the facial pose of input images. This approach creates 2D rendered 
views of the 3D model from different angles, which are then compared against the 2D 
probe. Each rendered view is created by deforming the 3D model’s texture with the 3D 
shape information, as shown in Fig. 11. 
(Wang et al., 2010) proposed another scheme for 3D face recognition that passes through 
different stages. They used iterative closet point to align all 3D face images with the first 
person. Then a region defined by a sphere of radius 100 mm centred at the nose tip was 
cropped to construct the depth image. The Gabor filter was used to capture the useful local 
structure of the depth images.  
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Fig. 11. Comparison of 3D and 2D representation. Contrast and Brightness have been 
increased on texture and render for viewing (Dahm & Gao, 2010) 

Another approach that deals with 3D face recognition was presented by (Cook et al., 2007), 
where they used multi-scale techniques to partition the information contained in the 
frequency domain prior to dimensionality reduction. In this manner, it is possible to 
increase the information available for classification and, hence, increase the discriminative 
performance of both Eigenfaces and Fisherfaces techniques, which were used for 
dimensionality reduction. They have used the Gabor filters as a partitioning scheme, and 
compared their results against the discrete cosine transform and the discrete wavelet 
transform. 

6. Statistical approach  
(Rama & Tarrés, 2005) have presented Partial Principal Component Analysis (P2CA) for 3D 
face recognition. The main advantage in comparison with the model-based approaches is its 
low computational complexity since P2CA does not require any fitting process. However, 
one of the main problems of their work is the enrolment of new persons in the database 
(gallery set) since a total of five different images are needed for getting the 180º texture map. 
Recently, they presented a work that automatically creates 180º texture maps from only two 
images (frontal and profile views) (Rama & Tarrés, 2007). Nevertheless, this work has also 
another constraint; it needs a normalization (registration) process for both eyes where they 
should be perfectly aligned at a fixed distance. Thus, errors in the registration of the profile 
view lead to noisy areas of the reconstructed 180º images (Fig. 12).  
(Gupta et al., 2007) presented a systematic procedure for selecting facial fiducial points 
associated with diverse structural characteristics of a human face. They have identified such 
characteristics from the existing literature on anthropometric facial proportions. Also, they 
have presented effective face recognition algorithms, which employ Euclidean/geodesic 
distances between these anthropometric fiducial points as features along with linear 
discriminant analysis (LDA) classifiers. They have demonstrated how the choice of facial 
fiducial points critically affects the performance of 3D face recognition algorithms that 
employ distances between them as features. Anthropometry is the branch of science that  
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Fig. 12. (a) Set of images used for the creation of the training data; (b) Example of a 180º 
texture training image (Rama & Tarrés, 2007) 

deals with the quantitative description of physical characteristics of the human body. 
Anthropometric cranio-facial proportions are ratios of pairs of straight-line and/or along-
the-surface distances between specific cranial and facial fiducial points (Fig. 13).  
 

 
Fig. 13. The figure depicts (a) 25 anthropometric fiducial points on a texture image; (b) 25 
anthropometric fiducial points on a range image; (c) 25 arbitrary equally spaced points 
overlaid on the main facial features (Gupta et al., 2007) 

(Ming et al., 2010) proposed algorithm for 3D-based face recognition by representing the 
facial surface, by what is called a Bending Invariant (BI), invariant to isometric deformations 
resulting from expressions and postures. In order to encode relationships in neighbouring 
mesh nodes, Gaussian-Hermite moments are used for the obtained geometric invariant, 
which provide rich representation, due to their mathematical orthogonality and 
effectiveness in characterizing local details of the signal. Then, the signature images are 
decomposed into their principle components based on Spectral Regression Kernel 
Discriminate Analysis (SRKDA) resulting in a huge time saving. 

7. Local binary patterns  
In (Zhou et al., 2010), Local Binary Patterns (LBP) method was used to represent 3D face 
images. The Local Binary Pattern (LBP) method describes the local texture pattern with a 
binary code. It is built by thresholding a neighbourhood P with radius R (typically denoting 
the 8 surrounding pixels) by the gray value g of its centre c . Also, (Ming et al., 2010) 
proposed a framework for 3D face recognition that is based on the 3D Local Binary Patterns 
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(3D LBP). In the feature extraction stage, 3D LBP is adopted to describe the intrinsic 
geometric information, negating the effect of expression variations effectively. 3D LBP 
encodes relationships in neighbouring mesh nodes and own more potential power to 
describe the structure of faces than individual points. In learning stage,  Spectral Regression 
is adopted to learn principle components from each 3D facial image. With dimensional 
reduction based on Spectral Regression, more useful and significant features can be 
produced for a face, resulting in a huge saving in computational cost. Finally, face 
recognition is achieved using Nearest Neighbour Classifiers.  

8. Other 3D face recognition approaches 
In order to enhance robustness to expression variations, a procedure for 3D face recognition 
based on the depth image and Speeded-Up Robust Features (SURF) Operator was proposed 
by (Yunqi et al., 2010). First, they have applied the Fisher Linear Discriminant (FLD) method 
on the depth image to perform coarse recognition to catch the highly ranked 3D faces. On 
the basis of this step, they extracted the SURF features of the 2D gray images that are 
corresponding only to those highly ranked 3D faces, to carry out the refined recognition. 
SURF algorithm was first proposed by (Bay et al., 2008). At present, SURF has been applied 
to image registration, camera calibration and object recognition. Furthermore, (Kim & 
Dahyot, 2008) presented another approach for 3D face recognition using SVM and SURF 
Descriptor.  
On the other hand, (Wang et al., 2009) used a spherical harmonic representation with the 
morphable model for 2D face recognition. The method uses a 2D image to build a 3D 
model for the gallery, based on a 3D statistical morphable model. Also, (Biswas et al., 
2009) proposed a method for albedo estimation for face recognition using two-
dimensional images. However, they assumed that the image did not contain shadows.  
(Zhou et al., 2008) used nearest-subspace patch matching to warp near frontal face images 
to frontal and project this face image into a pre-trained low-dimensional illumination 
subspace. Their method requires training of patches in many different illumination 
conditions. 

9. 3D face fitting 
A 3D Morphable Model (3DMM) consists of a parameterized generative 3D shape, and a 
parameterized albedo model together with an associated probability density on the model 
coefficients. Together with projection and illumination parameters, a rendering of the face 
can be generated. Given a face image, one can also solve the inverse problem of finding the 
coefficients which most likely generated the image. Identification and manipulation tasks in 
coefficient space are trivial, because the generating factors (light, pose, camera, and identity) 
have been separated. Solving this inverse problem is termed “model fitting”, and was 
introduced for faces by (Blanz & Vetter, 1999). A similar method has also been applied to 
stereo data (Amberg et al., 2007)  and 3D scans (Amberg et al., 2008). 
A 3D deformation modelling scheme was proposed by (Lu & Jain, 2008) to handle the 
expression variations. They proposed a facial surface modelling and matching scheme to 
match 2.5D facial scans in the presence of both nonrigid deformations and pose changes 
(multiview) to a stored 3D face model with neutral expression.  
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They collected data for learning 3D facial deformations from only a small group of subjects, 
called the control group. Each subject in the control group provides a scan with neutral 
expression and several scans with nonneutral expressions. The deformations (between 
neutral scan and  nonneutral scans) learned from the control group are transferred to and 
synthesized for all the 3D neutral face models in the gallery, yielding deformed templates 
with synthesized expressions (Fig. 14). For each subject in the gallery, deformable models 
are built based on the deformed templates. In order to learn deformation from the control 
group, a set of fiducial landmarks is needed. Besides the fiducial facial landmarks such as 
eye and mouth corners, landmarks in the facial area with little texture, for example, cheeks 
are extracted in order to model the 3D surface movement due to expression changes. A 
hierarchical geodesic-based resampling scheme constrained by fiducial landmarks is 
designed to derive a new landmark-based surface representation for establishing 
correspondence across expressions and subjects.  
 

 
Fig. 14. Deformation transfer and synthesis (Lu & Jain, 2008) 

(Wang et al., 2009) proposed an improved algorithm aiming at recognizing faces of different 
poses when each face class has only one frontal training sample. For each sample, a 3D face 
is constructed by using 3DMM. The shape and texture parameters of 3DMM are recovered 
by fitting the model to the 2D face sample which is a non-linear optimization problem. The 
virtual faces of different views are generated from the 3DMM to assist face recognition. 
They have located 88 sparse points from the 2D face sample by automatic face fitting and 
used their correspondence in the 3D face as shape constraint (Fig. 15).  
(Daniyal et al., 2009) proposed a compact face signature for 3D face recognition that is 
extracted without prior knowledge of scale, pose, orientation or texture. The automatic 
extraction of the face signature is based on fitting a trained Point Distribution Model (PDM) 
(Nair & Cavallaro, 2007).  First,  a facial representation based on testing extensive sets of 
manually selected landmarks is chosen. Next, a PDM is trained to identify the selected set of 
landmarks (Fig. 16). The recognition algorithm represents the geometry of the face by a set 
of Inter-Landmark Distances (ILDs) between the selected landmarks. These distances are 
then compressed using PCA and projected onto the classification space using LDA. The 
classification of a probe face is finally achieved by projecting the probe onto the LDA-
subspace and using the nearest mean classifier. 
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Fig. 15. Algorithm overview (Wang et al., 2009) 
 

 
Fig. 16. Sample face scan showing the annotated landmarks and the scaling distance dS 
(dotted line) used in (Daniyal et al., 2009) 

(Paysan et al., 2009) proposed a generative 3D shape and texture model, the Basel Face 
Model (BFM). The model construction passes through four steps: 3D face scanning, 
Registration, Texture Extraction and Inpainting, and Model. The model is based on 
parameterizing the faces using triangular meshes. A face is then represented by two 
dimensional vectors: shape and texture, constructing two independent Linear Models. 
Finally, a Gaussian distribution is fit to the data using PCA (Fig. 17). 
 

 
Fig. 17. The mean together with the first three principle components of the shape (left) and 
texture (right) PCA model (Paysan et al., 2009) 
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(Toderici et al., 2010)  proposed a face recognition method which utilizes 3D face data for 
enrolment, while it requires only 2D data for authentication. During enrolment, 2D+3D data 
(2D texture plus 3D shape) is used to build subject-specific annotated 3D models.  First, an 
Annotated Face Model (AFM) is fitted to the raw 2D+3D data using a subdivision based 
deformable framework. Then, a geometry image representation is extracted using the UV 
parameterization of the model. In the authentication phase, a single 2D image is used as the 
input to map the subject-specific 3D AFM. After that, an Analytical Skin Reflectance Model 
(ASRM) is applied to the gallery AFM in order to transfer the lighting from the probe to the 
texture in the gallery.  

10. Face recognition in video 
Face recognition in video has gained wide attention as a covert method for surveillance to 
enhance security in a variety of application domains (e.g., airports). A video contains 
temporal information (e.g., movements of facial features) as well as multiple instances of a 
face, so it is expected to lead to a better face recognition performance compared to still face 
images. However, faces appearing in a video have substantial variations in pose and 
lighting. These pose and lighting variations can be effectively modelled using 3D face 
models (Yin et al., 2006).  Given the trajectories of facial feature movement, face recognition 
is performed based on the similarities of the trajectories. The trajectories can also be 
captured as nonlinear manifolds and the distance between clusters of faces in the feature 
space establishes the identity associated with the face. Production of 3D faces from video 
can be performed using morphable models, stereography, or structure from motion (SFM).  
(Park et al., 2005) proposed a face recognition system that identifies faces in a video using 
3D face model. Ten video files were recorded for ten subjects under four different lighting 
conditions at various poses with yaw and pitch motion. Recognition using multiple images 
and temporal cue was explored and majority voting and score sum were used to fuse the 
recognition result from multiple frames. To use temporal cues for the recognition, a LDA 
based classifier was used. After the face pose in a video was estimated, frames of different 
poses under specific lighting condition and specific order were extracted to form a probe 
sequence.  
(Von Duhn et al., 2007) designed a 3D face analyzer using regular CCTV videos. They used 
a three view tracking approach to build 3D face models over time. The proposed system 
detects, tracks and estimates the facial features. For the tracking, an Active Appearance 
Model approach is adapted to decrease the amount of manual work that must be done. 
After the tracking stage, a generic model is adapted to the different views of the face using a 
face adaptation algorithm, which includes two steps: feature point adaptation and non-
feature point interpolation. Finally, the multiple views of models are combined to create an 
individualized face model. To track the facial motion under three different views, i.e., front 
view , side view, and angle view, predefined fiducial points are used.  
Also, (Roy-Chowdhury & Xu, 2006) estimated the pose and lighting of face images 
contained in video frames and compared them against synthetic 3D face models exhibiting 
similar pose and lighting. However, the 3D face models were registered manually with the 
face image in the video. (Lee et al., 2003) proposed an appearance manifold based approach 
where each database or gallery image was matched against the appearance manifold 
obtained from the video. The manifolds were obtained from each sequence of pose 
variations. (Zhou et al., 2003) proposed to obtain statistical models from video using low 
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level features (e.g., by PCA) contained in sample images. The matching was performed 
between a single frame and the video or between two video streams using the statistical 
models.  
(Park et al., 2007) explored the adaptive use of multiple face matchers in order to enhance 
the performance of face recognition in video. To extract the dynamic information in video, 
the facial poses in various frames are explicitly estimated using Active Appearance Model 
and a Factorization based 3D face reconstruction technique. The motion blur is estimated 
using Discrete Cosine Transformation (DCT). The performance of the proposed system 
could be improved by dynamically fusing the matching results from multiple frames and 
multiple matchers.  
Further, (Wang et al., 2004) have successfully developed a hierarchical framework for 
tracking high density 3D facial expression sequences captured from a structure-lighting 
imaging system. The work in (Chang et al., 2005), utilized six 3D model sequences for facial 
analysis and editing. The work was mainly for facial expression analysis. (Papatheodorou & 
Rueckert, 2004) evaluated a so-called 4D face recognition approach, which was, however, 
just the 3D static data plus texture, no temporal information was explored. (Li et al., 2003) 
reported a model fitting approach to generate facial identity surfaces through video 
sequences. The application of this model to face recognition relies on the quality of the 
tracked low resolution face model. 
(Sun & Yin, 2008)  proposed to use a Spatio-Temporal Hidden Markov Model (HMM) which 
incorporates 3D surface feature characterization to learn the spatial and temporal 
information of faces. They have created a face database including 606 3D model sequences 
with six prototypic expressions. To evaluate the usability of such data for face recognition, 
they applied a generic model to track the range model sequences and establish the 
correspondence of range model frames over time. After the tracking model labelling and 
LDA transformation, they trained two HMM models (S-HMM and T-HMM) for each subject 
to learn the spatial and temporal information of the 3D model sequence. The query sequence 
was classified based on the results of the two HMMs.  
(Medioni et al., 2007) utilized synthetic stereo to model faces in a 3048 x 4560 video stream. 
By tracking the pose and location of the face, a synthetic stereo rig based upon the different 
poses between two frames is initialized. Multiple point clouds from different stereo pairs are 
created and integrated into a single model. (Russ et al., 2006) utilized a 3D PCA based 
approach for face recognition. The approach determines a correspondence that utilizes a 
reference face aligned via ICP to determine a unique vector input into PCA. The coefficients 
from PCA are used to determine the identity as in 2D PCA face recognition. (Kakadiaris et 
al., 2006) converted the 3D model into a depth map image for wavelet analysis. This 
approach performs well and does not utilize ICP as the basis for each match score 
computation, but does for the depth map production.  
Moreover, (Boehnen & Flynn, 2008) presented an approach to combine multiple noisy low 
density 3D face models obtained from uncalibrated video into a higher resolution 3D model 
using SFM method. SFM is a method for producing 3D models from a calibrated or 
uncalibrated video stream utilizing equipment that is inexpensive and widely available. The 
approach first generates ten 3D face models (containing a few hundred vertices each) of 
each subject using 136 frames of video data in which the subject face moves in a range of 
approximately 15 degrees from frontal. By aligning, resampling, and merging these models, 
a new 3D face model containing over 50,000 points is produced. An ICP face matcher 
employing the entire face achieved a 75% rank one recognition rate.  
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al., 2006) converted the 3D model into a depth map image for wavelet analysis. This 
approach performs well and does not utilize ICP as the basis for each match score 
computation, but does for the depth map production.  
Moreover, (Boehnen & Flynn, 2008) presented an approach to combine multiple noisy low 
density 3D face models obtained from uncalibrated video into a higher resolution 3D model 
using SFM method. SFM is a method for producing 3D models from a calibrated or 
uncalibrated video stream utilizing equipment that is inexpensive and widely available. The 
approach first generates ten 3D face models (containing a few hundred vertices each) of 
each subject using 136 frames of video data in which the subject face moves in a range of 
approximately 15 degrees from frontal. By aligning, resampling, and merging these models, 
a new 3D face model containing over 50,000 points is produced. An ICP face matcher 
employing the entire face achieved a 75% rank one recognition rate.  
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Using a data set of varying facial expressions and lighting conditions, (Bowyer et al., 2006) 
reported an improvement in rank one recognition rate from 96.11% with two frames per 
subject to 100% with four frames per subject. In another study, (Thomas et al., 2007) 
observed that the recognition rate generally increases as the number of frames per subject 
increases, regardless of the type of camera being used. They also found that the optimal 
number of frames per subject is between 12 and 18, given the particular data sets used. 
(Canavan et al., 2007) discussed that the 3D geometry of a rotating face can be embedded in 
the continuous intensity changes of an image stream, and therefore the recognition 
algorithm does not require an explicit 3D face model. Further, multiple video frames that 
capture the face at different pose angles can be combined to provide a more reliable and 
comprehensive 3D representation of the face than any single view image. Also, they have 
discussed that a video sequence of a face with different poses might help alleviate the 
adverse effect of lighting changes on recognition accuracy. For instance, a light source can 
cast shadows on a face, but at the same time, it also reveals the 3D curvatures of the face by 
creating sharp intensity contrasts (such as silhouette).  
(Dornaika & Davoine, 2006) introduced a view- and texture-independent approach that 
exploits the temporal facial action parameters estimated by an appearance-based 3D face 
tracker. The facial expression recognition is carried out using learned dynamical models 
based on auto-regressive processes. These learned models can also be utilized for the 
synthesis and prediction tasks. In their study, they used the 3D face model Candide (Ahlberg, 
2001). This 3D deformable wireframe model is given by the 3D coordinates of the vertices Pi 

, i = 1, . . . , n  where n is the number of vertices. Thus, the shape up to a global scale can be 
fully described by the 3n-vector g, the concatenation of the 3D coordinates of all vertices Pi . 
The vector g can be written as: 

 s a   g g S A  (1) 

where g  is the standard shape of the model, and the columns of S and A are the shape and 
action units, respectively. Thus, the term S τs accounts for shape variability (inter-person 
variability) while the term A τa  accounts for the facial action (intra-person variability).  

11. Conclusion  
In this chapter, we have presented a study on the most recent advancements in 3D face 
recognition field. Despite the huge developments made in this field, there are still some 
problems and issues which need to be resolved.  
Due to the computational complexity, fussy pre-treatment, and expensive equipment, 3D 
technology is still not used widely in practical applications. To acquire an accurate 3D face 
data, some very costly equipment must be used, such as 3D laser scan or stereo camera 
system. Also, they are still not as stable and efficient as 2D cameras, and for some cases like 
the stereo camera system, calibration is needed before use. Moreover, they take a longer 
time to acquire (or reconstruct) when compared to the 2D camera. Further, 3D data require 
much more storage space. Other challenges include feature points allocation (this is still a 
debatable topic) that is also sensitive to the quality of data. Sampling density of the facial 
surface and accuracy of the depth, are among the issues that require more investigations. 
Furthermore, no standard testing protocol is available to compare between different 3D face 
recognition systems.  
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On the other hand, in video-based face recognition, experiments have shown that multi-
frame fusion is an effective method to improve the recognition rate. The performance gain is 
probably related to the use of 3D face geometry embedded in video sequences. However, it 
is not clear how the inter-frame variation has contributed to the observed performance 
increase. Will the multi-frame fusion work for videos of strong shadows? How many frames 
are necessary for maximizing the recognition rate without incurring a heavy computational 
cost? To address these issues, more exploration is needed from the research community. 

12. Acknowledgments 
The author would like to acknowledge and thank Kuwait Foundation for the Advancement 
of Sciences (KFAS) for financially supporting this work. 

13. References 
Abboud, B. & Davoine, F. (2004). Appearance factorization for facial expression recognition 

and synthesis, Proceedings of  Int. Conf. Pattern Recog., pp. 163–166, 2004 
Abboud, B.; Davoine, F. & Dang, M. (2004). Facial expression recognition and synthesis 

based on an appearance model. Signal Process. Image Commun., Vol. 19, No. 8, 2004, 
pp. 723–740 

Ahlberg, J. (2001). CANDIDE-3 - an updated parametrized face, Tech. Rep. LiTH-ISY-R-2326, 
Dept of Electrical Engineering, Link¨oping University, Sweden 

Amberg, B.; Knothe, R. & Vetter, T. (2008). Expression invariant 3D face recognition with a 
morphable model, Proceedings of FG’08, 2008 

Amberg, B.; Romdhani, S.; Fitzgibbon, A.; Blake, A. & Vetter, T. (2007). Accurate surface 
extraction using model based stereo, Proceedings of ICCV, 2007 

Bay, H.; Tuytelaars, T. & Van Gool. I. (2008). Speeded-Up Robust Features (SURF). Computer 
Vision and Image Understanding, 2008, 110346-359  

Biswas, S.; Aggarwal, G. & Chellappa, R. (2009). Robust estimation of albedo for 
illumination-invariant matching and shape recovery. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 31, 2009, pp. 884–899   

Blanz, V. & Vetter, T. (1999). A morphable model for the synthesis of 3D faces, Proceedings of 
SIGGRAPH, 1999 

Boehnen, C. & Flynn, P. J. (2008). Increased Resolution 3D Face Modeling and Recognition 
From Multiple Low Resolution Structure From Motion Models, Proceedings of IEEE, 
2008 

Bowyer, K. W.; Chang, K.; Flynn, P. J. & Chen, X. (2006). Face recognition using 2-D, 3-D and 
Infrared: Is multimodal better than multisample?, Proceedings of IEEE, Vol. 94, No. 
11, pp. 2000-2012, 2006 

Bronstein, A. M.; Bronstein, M. M. & Kimmel, R. (2007). Expression-invariant 
representations of faces. IEEE Trans. on PAMI, 2007, pp. 1042–1053 

Canavan, S. J.; Kozak, M. P.; Zhang, Y.; Sullins, J. R.; Shreve, M. A. & Goldgof, D. B. (2007). 
Face Recognition by Multi-Frame Fusion of Rotating Heads in Videos, Proceedings 
of IEEE, 2007 

Chang, Y.; Vieira, M.; Turk, M. & Velho, L. (2005). Automatic 3d facial expression analysis in 
videos, Proceedings of ICCV Workshop on Analysis and Modeling of Faces and Gestures, 
2005 



 
New Approaches to Characterization and Recognition of Faces 64

On the other hand, in video-based face recognition, experiments have shown that multi-
frame fusion is an effective method to improve the recognition rate. The performance gain is 
probably related to the use of 3D face geometry embedded in video sequences. However, it 
is not clear how the inter-frame variation has contributed to the observed performance 
increase. Will the multi-frame fusion work for videos of strong shadows? How many frames 
are necessary for maximizing the recognition rate without incurring a heavy computational 
cost? To address these issues, more exploration is needed from the research community. 

12. Acknowledgments 
The author would like to acknowledge and thank Kuwait Foundation for the Advancement 
of Sciences (KFAS) for financially supporting this work. 

13. References 
Abboud, B. & Davoine, F. (2004). Appearance factorization for facial expression recognition 

and synthesis, Proceedings of  Int. Conf. Pattern Recog., pp. 163–166, 2004 
Abboud, B.; Davoine, F. & Dang, M. (2004). Facial expression recognition and synthesis 

based on an appearance model. Signal Process. Image Commun., Vol. 19, No. 8, 2004, 
pp. 723–740 

Ahlberg, J. (2001). CANDIDE-3 - an updated parametrized face, Tech. Rep. LiTH-ISY-R-2326, 
Dept of Electrical Engineering, Link¨oping University, Sweden 

Amberg, B.; Knothe, R. & Vetter, T. (2008). Expression invariant 3D face recognition with a 
morphable model, Proceedings of FG’08, 2008 

Amberg, B.; Romdhani, S.; Fitzgibbon, A.; Blake, A. & Vetter, T. (2007). Accurate surface 
extraction using model based stereo, Proceedings of ICCV, 2007 

Bay, H.; Tuytelaars, T. & Van Gool. I. (2008). Speeded-Up Robust Features (SURF). Computer 
Vision and Image Understanding, 2008, 110346-359  

Biswas, S.; Aggarwal, G. & Chellappa, R. (2009). Robust estimation of albedo for 
illumination-invariant matching and shape recovery. IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 31, 2009, pp. 884–899   

Blanz, V. & Vetter, T. (1999). A morphable model for the synthesis of 3D faces, Proceedings of 
SIGGRAPH, 1999 

Boehnen, C. & Flynn, P. J. (2008). Increased Resolution 3D Face Modeling and Recognition 
From Multiple Low Resolution Structure From Motion Models, Proceedings of IEEE, 
2008 

Bowyer, K. W.; Chang, K.; Flynn, P. J. & Chen, X. (2006). Face recognition using 2-D, 3-D and 
Infrared: Is multimodal better than multisample?, Proceedings of IEEE, Vol. 94, No. 
11, pp. 2000-2012, 2006 

Bronstein, A. M.; Bronstein, M. M. & Kimmel, R. (2007). Expression-invariant 
representations of faces. IEEE Trans. on PAMI, 2007, pp. 1042–1053 

Canavan, S. J.; Kozak, M. P.; Zhang, Y.; Sullins, J. R.; Shreve, M. A. & Goldgof, D. B. (2007). 
Face Recognition by Multi-Frame Fusion of Rotating Heads in Videos, Proceedings 
of IEEE, 2007 

Chang, Y.; Vieira, M.; Turk, M. & Velho, L. (2005). Automatic 3d facial expression analysis in 
videos, Proceedings of ICCV Workshop on Analysis and Modeling of Faces and Gestures, 
2005 

 
3D Face Recognition 65 

Cook, J.; Chandran, V. & Fookes, C. (2006). 3D face recognition using log-gabor templates,  
Proceedings of the 17th British Machine Vision Conference, 2006 

Cook, J.; Chandran, V. & Sridharan, S. (2007). Multiscale Representation For 3-D Face 
Recognition. IEEE Transactions on Information Forensics and Security, Vol. 2, No. 3, 
September 2007  

Cootes, T. F.; Edwards,  G. J. & Taylor, C. J. (2001). Active appearance models, IEEE Trans. 
Pattern Anal. Mach. Intell., Vol. 23, No. 6, Jun. 2001, pp. 681–685 

Cootes, T. F.; Wheeler, G. V.; Walker, K. N. & Taylor, C. J. (2002). Viewbased active 
appearance models. Image Vis. Comput., Vol. 20, No. 9, Aug. 2002, pp. 657–664 

Dahm, N. & Gao, Y. (2010). A Novel Pose Invariant Face Recognition Approach Using A 2D-
3D Searching Strategy, Proceedings of Int'l Conf. on Pattern Recognition, 2010 

Daniyal, F.; Nair, P. & Cavallaro, A. (2009). Compact signatures for 3D face recognition 
under varying expressions, Proceedings of Advanced Video and Signal Based 
Surveillance, 2009 

Dornaika, F. & Davoine, F. (2006). Facial Expression Recognition using Auto-regressive 
Models, Proceedings of 18th International Conf. on Pattern Recognition, 2006 

Drira, H.; Amor, B. B.; Daoudi, M. & Srivastava, A. (2009). A riemannian analysis of 3d nose 
shapes for partial human biometrics, Proceedings of  ICCV, Vol. 1, No. 1, pp. 1–8, 
2009 

Duhn, S. V.; Yin, L.; Ko, M. J. & Hung, T. (2007). Multiple-View Face Tracking For Modeling 
and Analysis Based On Non-Cooperative Video Imagery, Proceedings of IEEE, 2007 

Elyan, E. & Ugail, H. (2009). Automatic 3D Face Recognition Using Fourier Descriptors, 
International Conference on CyberWorlds, 2009 

Faltemier, T.; Bowyer, K.W. & Flynn, P.J. (2008). A region ensemble for 3D face recognition. 
IEEE Trans. on Information Forensics and Security, Vol. 3, No. 1, 2008, pp. 62-73 

Guo, Z.; Zhang, Y.;  Lin, Z.  & Feng, D. (2009). A Method Based on Geometric Invariant 
Feature for 3D Face Recognition, Proceedings of Fifth International Conference on Image 
and Graphics, 2009 

Guo, Z.; Zhang, Y.; Xia, Y.; Lin, Z. & Feng, D. (2010). 3D Face Representation And 
Recognition By Intrinsic Shape Description Maps, Proceedings of ICASSP, 2010 

Gupta, S.; Aggarwal, J. K.; Markey, M. K. & Bovik, A. C. (2007). 3D Face Recognition 
Founded on the Structural Diversity of Human Faces, Proceedings of IEEE, 2007 

Günlü, G. & Bilge, H. S. (2010). 3D Face Decomposition and Region Selection against 
Expression Variations, Proceedings of  Int'l Conference on Pattern Recognition, 2010 

Harguess, J. & Aggarwal, J. K. (2009).  A Case for the Average-Half-Face in 2D and 3D for 
Face Recognition, Proceedings of IEEE, 2009 

Hu, C.; Xiao, J.; Matthews, I.;  Baker, S.; Cohn, J. & Kanade, T. (2004). Fitting a single active 
appearance model simultaneously to multiple images, Proceedings of Brit. Mach. Vis. 
Conf., 2004 

Huang, D.; Ardabilian, M.; Wang,  Y. & Chen, L. (2010). Automatic Asymmetric 3D-2D Face 
Recognition,  International Conference on Pattern Recognition, 2010 

Ishikawa, T.; Baker, S.; Matthews, I. & Kanade, T. (2004). Passive driver gaze tracking with 
active appearance models, Robot. Inst., Carnegie Mellon Univ., Pittsburgh, PA, Tech. 
Rep. CMU-RI-TR-04-08, Feb. 2004 

Kakadiaris, I. A.; Passalis, G.; Toderici, G.; Murtuza, N.; Lu, Y.; Karampatziakis, N.  & 
Theoharis. T. (2007). Three-dimensional face recognition in the presence of facial 



 
New Approaches to Characterization and Recognition of Faces 66

expressions: An annotated deformable model approach. IEEE Trans. on PAMI, Vol. 
29, No. 4, 2007, pp. 640–649 

Kakadiaris, I.; Passalis, G.; Toderici, G.; Murtuza, N. & Theoharis, T. (2006). 3D face 
recognition, Proceedings of the British Machine Vision Conference, pp. 200-208, 2006 

Kim, D. & Dahyot, R. (2008). Face components detection using SURF descriptors and SVMs. 
Proceedings of Int'l Machine Vision and Image Processing Conf., pp.51-56, 2008 

Lee, K. C.; Ho, J.; Yang, M. H. & Kriegman, D. (2003). Video- Based Face Recognition using 
probabilistic appearance manifolds, Proceedings of  Intl. Conf. on Computer Vision and 
Pattern Recognition, 2003 

Li, W.; Yin, Z.;  Wu, J. & Xiong, Y. (2009). 3D Face Recognition Based on Local/Global Shape 
Description, Proceedings of Int'l Conf. on Information Technology and Computer Science, 
2009 

Li, Y.; Gong, S. & Liddell, H. (2003). Constructing facial identity surfaces for recognition. 
Int'l Journal of Comp. Vision, Vol. 53, No. 1, 2003, pp. 71–92 

Lu, X. & Jain, A. K. (2008). Deformation Modeling For Robust 3D Face Matching. IEEE 
Transactions On Pattern Analysis And Machine Intelligence, Vol. 30, No. 8, August 
2008, pp. 1346-1356 

Matthews, I.; Baker, S. & Gross, R. (2004). Generic vs. person specific active appearance 
models, Proceedings of  Brit. Mach. Vis. Conf., pp. 1080–1093, Sep. 2004 

Maurer, T.; Guigonis, D.; Maslov, I.; Pesenti, B.; Tsaregorodtsev, A.; West, D.; Medioni, G. & 
Geometrix, I. (2005). Performance of Geometrix Active ID 3D Face Recognition 
Engine on the FRGC Data, Proceedings of  IEEE CVPR, pp.154-154, 2005 

McCool, C.; Chandran, V.; Sridharan, S. & Fookes, C. (2008). 3D face verification using a 
free-parts approach. Pattern Recogn. Lett., Vol. 29, No. 9, 2008 

Medioni, G.; Fidaleo, D.; Choi, J.; Zhang, L.; Kuo, C.-H.  & Kim, K. (2007). Recognition of 
Non-Cooperative Individuals at a Distance with 3D Face Modeling, Proceedings of 
IEEE Workshop on Automatic Identification Advanced Technologies, 2007 

Ming, Y.; Ruan, Q. & Ni, R. (2010). Learning Effective Features For 3D Face Recognition, 
Proceedings of 17th International Conference On Image Processing, September 26-29, 
2010 

Ming, Y.; Ruan, Q.; Wang, X.  & Mu, M. (2010). Robust 3D Face Recognition using Learn 
Correlative Features, Proceedings of  ICSP, 2010 

Mittrapiyanuruk, P.; DeSouza, G. N. &  Kak, A. C. (2004). Calculating the 3D-pose of rigid 
objects using active appearance models, Proceedings of IEEE Int. Conf. Robot. Autom., 
Vol. 5, pp. 5147–5152, 2004 

Mpiperis, I.; Malassiotis, S. & Strintzis, M. G. (2007). 3-D Face Recognition With the Geodesic 
Polar Representation. IEEE Transactions on Information Forensics and Security, Vol. 2, 
No. 3, Sept 2007 

Nair, P. & Cavallaro, A. (2007). Region segmentation and feature point extraction on 3D 
faces using a point distribution model, Proceedings of IEEE Intl. Conf. on Image 
Processing, Vol. 3, pp. 85–88, Texas, USA, Sept, 2007 

Papatheodorou, T.  & Rueckert, D. (2004). Evaluation of automatic 4d face recognition using 
surface and texture registration, Proceedings of the International Conference on 
Automatic Face and Gesture Recognition, 2004 

Park, U.; Chen, H. & Jain, A. K. (2005). 3D Model-Assisted Face Recognition in Video, 
Proceedings of the Second Canadian Conference on Computer and Robot Vision , 2005 



 
New Approaches to Characterization and Recognition of Faces 66

expressions: An annotated deformable model approach. IEEE Trans. on PAMI, Vol. 
29, No. 4, 2007, pp. 640–649 

Kakadiaris, I.; Passalis, G.; Toderici, G.; Murtuza, N. & Theoharis, T. (2006). 3D face 
recognition, Proceedings of the British Machine Vision Conference, pp. 200-208, 2006 

Kim, D. & Dahyot, R. (2008). Face components detection using SURF descriptors and SVMs. 
Proceedings of Int'l Machine Vision and Image Processing Conf., pp.51-56, 2008 

Lee, K. C.; Ho, J.; Yang, M. H. & Kriegman, D. (2003). Video- Based Face Recognition using 
probabilistic appearance manifolds, Proceedings of  Intl. Conf. on Computer Vision and 
Pattern Recognition, 2003 

Li, W.; Yin, Z.;  Wu, J. & Xiong, Y. (2009). 3D Face Recognition Based on Local/Global Shape 
Description, Proceedings of Int'l Conf. on Information Technology and Computer Science, 
2009 

Li, Y.; Gong, S. & Liddell, H. (2003). Constructing facial identity surfaces for recognition. 
Int'l Journal of Comp. Vision, Vol. 53, No. 1, 2003, pp. 71–92 

Lu, X. & Jain, A. K. (2008). Deformation Modeling For Robust 3D Face Matching. IEEE 
Transactions On Pattern Analysis And Machine Intelligence, Vol. 30, No. 8, August 
2008, pp. 1346-1356 

Matthews, I.; Baker, S. & Gross, R. (2004). Generic vs. person specific active appearance 
models, Proceedings of  Brit. Mach. Vis. Conf., pp. 1080–1093, Sep. 2004 

Maurer, T.; Guigonis, D.; Maslov, I.; Pesenti, B.; Tsaregorodtsev, A.; West, D.; Medioni, G. & 
Geometrix, I. (2005). Performance of Geometrix Active ID 3D Face Recognition 
Engine on the FRGC Data, Proceedings of  IEEE CVPR, pp.154-154, 2005 

McCool, C.; Chandran, V.; Sridharan, S. & Fookes, C. (2008). 3D face verification using a 
free-parts approach. Pattern Recogn. Lett., Vol. 29, No. 9, 2008 

Medioni, G.; Fidaleo, D.; Choi, J.; Zhang, L.; Kuo, C.-H.  & Kim, K. (2007). Recognition of 
Non-Cooperative Individuals at a Distance with 3D Face Modeling, Proceedings of 
IEEE Workshop on Automatic Identification Advanced Technologies, 2007 

Ming, Y.; Ruan, Q. & Ni, R. (2010). Learning Effective Features For 3D Face Recognition, 
Proceedings of 17th International Conference On Image Processing, September 26-29, 
2010 

Ming, Y.; Ruan, Q.; Wang, X.  & Mu, M. (2010). Robust 3D Face Recognition using Learn 
Correlative Features, Proceedings of  ICSP, 2010 

Mittrapiyanuruk, P.; DeSouza, G. N. &  Kak, A. C. (2004). Calculating the 3D-pose of rigid 
objects using active appearance models, Proceedings of IEEE Int. Conf. Robot. Autom., 
Vol. 5, pp. 5147–5152, 2004 

Mpiperis, I.; Malassiotis, S. & Strintzis, M. G. (2007). 3-D Face Recognition With the Geodesic 
Polar Representation. IEEE Transactions on Information Forensics and Security, Vol. 2, 
No. 3, Sept 2007 

Nair, P. & Cavallaro, A. (2007). Region segmentation and feature point extraction on 3D 
faces using a point distribution model, Proceedings of IEEE Intl. Conf. on Image 
Processing, Vol. 3, pp. 85–88, Texas, USA, Sept, 2007 

Papatheodorou, T.  & Rueckert, D. (2004). Evaluation of automatic 4d face recognition using 
surface and texture registration, Proceedings of the International Conference on 
Automatic Face and Gesture Recognition, 2004 

Park, U.; Chen, H. & Jain, A. K. (2005). 3D Model-Assisted Face Recognition in Video, 
Proceedings of the Second Canadian Conference on Computer and Robot Vision , 2005 

 
3D Face Recognition 67 

Park, U.; Jain, A. K. & Ross, A. (2007). Face Recognition in Video: Adaptive Fusion of 
Multiple Matchers,  Proceedings of IEEE, 2007 

Park, U.; Tong, Y. & Jain, A. K. (2010). Age-Invariant Face Recognition. IEEE Trans. Pattern 
Analysis and Machine Intelligence, Vol. 32, No. 5, May 2010, pp. 947-954  

Passalis, G.; Kakadiaris, I. A. & Theoharis, T. (2007). Intraclass Retrieval of Nonrigid 3D 
Objects: Application To Face Recognition. IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. 29, No. 2, February 2007 

Paysan, P.; Knothe, R.; Amberg, B.; Romdhani, S. & Vetter, T. (2009). A 3D Face Model for 
Pose and Illumination Invariant Face Recognition, Proceedings of Advanced Video and 
Signal Based Surveillance, 2009 

Rama, A. & Tarrés, F. (2005). P2CA: A new face recognition scheme combining 2D and 3D 
information, Proceedings of IEEE International Conference on Image Processing, Genoa, 
Italy, Sept 2005  

Rama, A. & Tarrés, F. (2007). Face Recognition Using A Fast Model Synthesis From A Profile 
And A Frontal View, Proceedings of IEEE, ICIP, 2007 

Riccio, D. & Dugelay, J. L. (2007). Geometric invariants for 2d/3d face recognition. Pattern 
Recognition Letters, Vol. 28, pp. 1907– 1914 

Roy-Chowdhury, A. & Xu, Y. (2006). Pose and Illumination Invariant Face Recognition 
Using Video Sequences. Face Biometrics for Personal Identification: Multi-Sensory 
Multi-Modal Systems, Springer-Verlag, 2006, pp. 9-25 

Russ, T.; Boehnen, C. & Peters, T. (2006). 3D Face Recognition Using 3D Alignment for PCA, 
Computer Vision and Pattern Recognition, New York, 2006, pp. 1391-1398  

Samir, C.; Srivastava, A. & Daoudi, M. (2006). Three-dimensional face recognition using 
shapes of facial curves. IEEE Trans. Pattern Anal. Mach. Intell., Vol. 28, No. 11, Nov. 
2006, pp. 1858–1863 

Sheffer, A.; et al. (2005). ABF++: fast and robust angle based flattening. ACM Transactions on 
Graphics, Vol. 24, No. 2, Apr 2005, pp. 311-330 

Song, Y.; Wang, W. & Chen, Y. (2009). Research on 3D Face Recognition Algorithm, First 
International Workshop on Education Technology and Computer Science, 2009 

Sun, Y.  & Yin, L. (2008). 3D Spatio-Temporal Face Recognition Using Dynamic Range 
Model Sequences, Proceedings of IEEE, 2008 

Sung, J. & Kim , D. (2008). Pose-Robust Facial Expression Recognition Using View-Based 2d 
+ 3d AAM. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and 
Humans, Vol. 38, No. 4, July 2008, pp.852- 866 

Szeptycki, P.; Ardabilian, M.; Chen, L.;  Zeng, W.; Gu, D. & Samaras, D. (2010). Partial face 
biometry using shape decomposition on 2D conformal maps of faces,  Proceedings of  
International Conference on Pattern Recognition, 2010 

Thomas, D.; Bowyer, K. W. & Flynn, P. J. (2007). Multi-frame approaches to improve face 
recognition, Proceedings of IEEE Workshop on Motion and Video Computing, pp. 19-19, 
Austin, Texas, 2007 

Tin, M. M. M. & Sein, M. M. (2009). Multi Triangle Based Automatic Face Recognition 
System By Using 3d Geometric Face Feature, International Instrumentation And 
Measurement Technology Conference, Singapore, May 5-7, 2009 

Toderici, G.; Passalis, G.; Zafeiriou, S.; Tzimiropoulos, G.; Petrou, M.; Theoharis, T. & 
Kakadiaris, I.A. (2010). Bidirectional relighting for 3D-aided 2D Face Recognition, 
Proceedings of IEEE, 2010  



 
New Approaches to Characterization and Recognition of Faces 68

Wang, L.; Ding, L.; Ding, X.  & Fang, C. (2009). Improved 3d Assisted Pose-Invariant Face 
Recognition, Proceedings of  IEEE ICASSP, 2009 

Wang, S.; Wang, Y.; Jin, M.; Gu, X. & Samaras, D. (2006). 3d surface matching and 
recognition using conformal geometry, Proceedings of  IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 2453– 2460, 2006 

Wang, X.; Ruan, Q. & Ming, Y. (2010). A New Scheme for 3D Face Recognition, Proceedings of 
ICSP, 2010 

Wang, Y.; Huang, X.; Lee, C.; Zhang, S.; Li, Z.; Samaras, D.; Metaxas, D.; Elgammal, A. & 
Huang, P. (2004). High resolution acquisition, learning and transfer of dynamic 3d 
facial expressions, Proceedings of EUROGRAPHICS, 2004 

Wang, Y.; Zhang, L.; Liu, Z.; Hua, G.; Wen, Z.; Zhang, Z. & Samaras, D. (2009). Face 
relighting from a single image under arbitrary unknown lighting conditions. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 11, Nov. 2009, 
pp. 1968– 1984 

Wong, K.-C.; Lin, W.-Y.; Hu, Y. H.; Boston, N. & Zhang, X. (2007). Optimal Linear 
Combination Of Facial Regions For Improving Identification Performance. IEEE 
Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics, Vol. 37, No. 5, 
October 2007, pp.  

Xiao, J.; Baker, S.; Matthews, I. & Kanade, T. (2004). Real-time combined 2D + 3D active 
appearance models, Proceedings of  Conf. Comp. Vis. Pattern Recog., pp. 535–542, 2004 

Yang, W.; Yi, D.; Lei, Z.; Sang, J. & Li, S. Z.  (2008).  2D-3D Face Matching using CCA, 
Proceedings of IEEE, 2008 

Yin, L.; Wei, X.; Sun, Y.; Wang, J. & Rosato, M. J. (2006).  A 3D Facial Expression Database 
For Facial Behavior Research, Proceedings of the 7th International Conference on 
Automatic Face and Gesture Recognition , 2006 

Yunqi, L.; Haibin, L. & Xutuan, J. (2010). 3D Face Recognition by SURF Operator Based on 
Depth Image, Proceedings of IEEE, 2010 

Zaeri, N. (2011). Feature extraction for 3D face recognition system, Proceedings of IEEE, 2011 
Zhou, S.; Krueger, V. & Chellappa, R. (2003). Probabilistic recognition of human faces from 

video. Computer Vision and Image Understanding, Vol. 91, 2003, pp. 214-245 
Zhou, X.; S´anchez, S. A. & Kuijper, A. (2010). 3D Face Recognition with Local Binary 

Patterns, Proceedings of Sixth International Conference on Intelligent Information Hiding 
and Multimedia Signal Processing, 2010 

Zhou, Z.; Ganesh, A.; Wright, J.; Tsai, S. F. & Ma, Y. (2008). Nearest-subspace patch 
matching for face recognition under varying pose and illumination, Proceedings of 
8th IEEE International Conference on Automatic Face Gesture Recognition, pages 1–8, 
Amsterdam, The Netherlands, Sept. 2008 



 
New Approaches to Characterization and Recognition of Faces 68

Wang, L.; Ding, L.; Ding, X.  & Fang, C. (2009). Improved 3d Assisted Pose-Invariant Face 
Recognition, Proceedings of  IEEE ICASSP, 2009 

Wang, S.; Wang, Y.; Jin, M.; Gu, X. & Samaras, D. (2006). 3d surface matching and 
recognition using conformal geometry, Proceedings of  IEEE Conference on Computer 
Vision and Pattern Recognition, pp. 2453– 2460, 2006 

Wang, X.; Ruan, Q. & Ming, Y. (2010). A New Scheme for 3D Face Recognition, Proceedings of 
ICSP, 2010 

Wang, Y.; Huang, X.; Lee, C.; Zhang, S.; Li, Z.; Samaras, D.; Metaxas, D.; Elgammal, A. & 
Huang, P. (2004). High resolution acquisition, learning and transfer of dynamic 3d 
facial expressions, Proceedings of EUROGRAPHICS, 2004 

Wang, Y.; Zhang, L.; Liu, Z.; Hua, G.; Wen, Z.; Zhang, Z. & Samaras, D. (2009). Face 
relighting from a single image under arbitrary unknown lighting conditions. IEEE 
Transactions on Pattern Analysis and Machine Intelligence, Vol. 31, No. 11, Nov. 2009, 
pp. 1968– 1984 

Wong, K.-C.; Lin, W.-Y.; Hu, Y. H.; Boston, N. & Zhang, X. (2007). Optimal Linear 
Combination Of Facial Regions For Improving Identification Performance. IEEE 
Transactions On Systems, Man, And Cybernetics—Part B: Cybernetics, Vol. 37, No. 5, 
October 2007, pp.  

Xiao, J.; Baker, S.; Matthews, I. & Kanade, T. (2004). Real-time combined 2D + 3D active 
appearance models, Proceedings of  Conf. Comp. Vis. Pattern Recog., pp. 535–542, 2004 

Yang, W.; Yi, D.; Lei, Z.; Sang, J. & Li, S. Z.  (2008).  2D-3D Face Matching using CCA, 
Proceedings of IEEE, 2008 

Yin, L.; Wei, X.; Sun, Y.; Wang, J. & Rosato, M. J. (2006).  A 3D Facial Expression Database 
For Facial Behavior Research, Proceedings of the 7th International Conference on 
Automatic Face and Gesture Recognition , 2006 

Yunqi, L.; Haibin, L. & Xutuan, J. (2010). 3D Face Recognition by SURF Operator Based on 
Depth Image, Proceedings of IEEE, 2010 

Zaeri, N. (2011). Feature extraction for 3D face recognition system, Proceedings of IEEE, 2011 
Zhou, S.; Krueger, V. & Chellappa, R. (2003). Probabilistic recognition of human faces from 

video. Computer Vision and Image Understanding, Vol. 91, 2003, pp. 214-245 
Zhou, X.; S´anchez, S. A. & Kuijper, A. (2010). 3D Face Recognition with Local Binary 

Patterns, Proceedings of Sixth International Conference on Intelligent Information Hiding 
and Multimedia Signal Processing, 2010 

Zhou, Z.; Ganesh, A.; Wright, J.; Tsai, S. F. & Ma, Y. (2008). Nearest-subspace patch 
matching for face recognition under varying pose and illumination, Proceedings of 
8th IEEE International Conference on Automatic Face Gesture Recognition, pages 1–8, 
Amsterdam, The Netherlands, Sept. 2008 

0

Face Image Synthesis and Interpretation Using
3D Illumination-Based AAM Models

Salvador E. Ayala-Raggi, Leopoldo Altamirano-Robles
and Janeth Cruz-Enriquez

Instituto Nacional de Astrofísica Óptica y Electrónica
México

1. Introduction

One of the more exciting and unsolved problems in computer vision nowadays is automatic,
fast and full interpretation of face images under variable conditions of lighting and pose.
Interpretation is the inference of knowledge from an image. This knowledge covers
relevant information, such as 3D shape and albedo, both related to the identity, but also
information about physical factors which affect appearance of faces, such as pose and lighting.
Interpretation of faces not only should be limited to retrieve the aforementioned pieces of
information, but also, it should be capable of synthesizing novel facial images in which
some of these pieces of information have been modified. This kind of interpretation can
be achieved by using the paradigm known as analysis by synthesis, see Figure 1. Ideally,
an approach based on analysis by synthesis, should consist of a generative facial parametric
model that codes all the sources of appearance variation separately and independently, and an
optimization algorithm which systematically varies the model parameters until the synthetic
image produced by the model is as similar as possible to the test image, also called input image.
A full interpretation approach should include the recovery of 3D shape, 3D pose, albedo and
lighting from a single face image which exhibits any possible combination of these sources of
variation.
Active appearance models, or simply AAMs (Cootes et al. (2001); Edwards et al. (1998);
Matthews & Baker (2004)), with respect to other approaches, represent a fast alternative to
perform face interpretation using the analysis by synthesis paradigm. Texture and shape, are
attributes modeled by AAMs by using statistic tools such as principal components analysis or
shortly PCA. However, the apparent texture of a face is an implicit combination of lighting
and albedo. The separation process of these two attributes is not an easy task within the
context of sparse models, like AAMs. AAMs use a sparse set of vertices which outline the
shape. Texture is interpolated over that shape. In fact, a detailed dense set of surface normals,
which is not available in AAMs, is required to perform the separation of lighting and albedo.
On the other hand, texture and shape variation among human faces is relatively small when
uniform lighting is considered. AAMs take advantage of this fact by supposing a constant
relationship between changes of appearance and the variation of the model parameters
producing those changes. This approximately constant relationship is a constant gradient
which is used for performing fast fitting to input images. However, for most purposes,
lighting is not uniform, and a proper separation of albedo and lighting becomes necessary.
In a similar way as is texture variation in uniform lighting, albedo variation among human
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faces is small. In contrast to albedo, lighting is not necessarily constrained to a small variation
interval. In fact, lighting affects appearance more than identity and pose, and presents many
degrees of freedom (see Ramamoorthi & Hanrahan (2001) and Basri et al. (2003)). During a
fitting process, an initial model is gradually modified in each iteration until it match the input
image. Therefore, if the illumination of the input image is too different from the illumination
of the initial model, the ratio of appearance variation with respect to the parameters variation
can not be the same during all the iterations of the fitting process. For instance, if we have
a model with a pronounced left illumination, and a model with uniform illumination, the
change of appearance caused by an increase on one of the model parameters, for example
the parameter of scale, is not the same in both cases. This ratio of appearance variation with
respect to the model parameters is in fact a Jacobian whose value changes in each iteration.
Therefore, if we want to fit an AAM to a face with any kind of lighting, a constant Jacobian is
not the solution. On the other hand, recomputing the Jacobian in each iteration is an expensive
computational task Cootes et al. (2001),Matthews & Baker (2004).
In this chapter, we introduce an innovative 3D extension of AAMs based on an illumination
model. By using interpolation, we incorporate a dense set of surface normals to our sparse
3D AAM model. In this way, we can model lighting within the process of synthesizing
faces, and also within the optimization process used for fitting the face model to an input
image. We propose a fitting method based on an inexpensive way for updating the Jacobian
in accordance to the illumination parameters recalculated in each iteration. Our method is
able to encode separately four of the more relevant sources of appearance variation: 3D
shape, albedo, 3D pose and lighting. This approach estimates 3D shape, 3D pose, albedo,
and illumination simultaneously during each iteration. Since our model uses analysis by
synthesis, it has an inherent ability of adaptation to the input image. Adaptation is a
desirable characteristic because it provides the possibility of designing person-independent
face interpretation systems. Experimental results show that the proposed approach not only
can be extended to face recognition, but also demonstrate its ability for fitting to novel faces
and performing interpretation. We implement a novel way to cope with an important source
of appearance variation which affects significatively face images: lighting. We anticipate that
this approach can be extended to face recognition under difficult conditions of lighting and can
be generalized to the analysis and recovery of other types of sources of appearance variation
such as age, gender, expression, etc., where lighting interferes seriously in the analysis process.

Fig. 1. Schematized flow of the analysis by synthesis approach.

Particularly, face interpretation has been faced through two paradigms: 3DMMs Blanz et al.
(1999; 2003); Romdhani et al. (2005; 2006) and AAMs Cootes et al. (1998; 2001); Dornaika et
al. (2003); Edwards et al. (1998); Kahraman et al. (2007); Legallou et al. (2006); Matthews &
Baker (2004); Sattar et al. (2007); Xiao et al. (2004). 3DMMs cover a wide range of information
recovery but are slow and cannot model properly every type of lighting. On the other hand,
AAMs are fast but cannot model lighting and 3D information simultaneously. AAM models
have been used for fast 2D face alignment under variable conditions of lighting Huang et
al. (2004); Kahraman et al. (2007); Legallou et al. (2006), but not for estimation of 3D pose,
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3D shape, albedo and illumination under non-uniform lighting conditions, which is still a
challenging problem. In contrast, some authors Dornaika et al. (2003); Sattar et al. (2007); Xiao
et al. (2004) have proposed 3D AAMs for estimating 3D pose and shape but do not include
illumination. Finally, authors who reported lighting modeling for face recognition, do not
propose methods for estimation of pose, shape, albedo and lighting simultaneously. This
chapter describes a proposal for a complete 3D approach for an automatic and fast recovery
of 3D shape, 3D pose, albedo and lighting of a face under non-uniform lighting and variable
pose. This recovery is performed by fitting a parametric 3D Active Appearance Model based
on the 9D subspace illumination model. Once we have finished the fitting process of the
model to an input image, we obtain a compact set of parameters of shape, albedo, pose and
lighting which describe the appearance of the original image. Because lighting parameters are
not in a limited range, for faces with a pronounced non-uniform illumination, it is not possible
to successfully use a constant Jacobian during all the fitting process as is done in original 2D
AAM models Cootes et al. (2001). Instead of that, during the fitting stage, our algorithm
uses the estimated lighting parameters, obtained in preceding iterations, for updating the
Jacobian and the reference mean model on each iteration. The proposed method is called 3D
Illumination-Based Active Appearance Models Ayala-Raggi et al. (2008), Ayala-Raggi et al.
(2009) and is suitable for face alignment, pose estimation and synthesis of novel views (novel
poses and lighting) of aligned faces. In this chapter, we explain the method, measuring its
capability to recover 3D shape and albedo, and showing its capability to fit faces not included
within the training set. Our experimental results, performed with real face images, show that
the method could be extended to lighting-pose invariant face recognition.

2. Modeling lighting

Human face can be considered approximately as a convex surface with Lambertian reflectance
Basri et al. (2003),Ramamoorthi & Hanrahan (2001). In Basri et al. (2003), Basri et al.,
propose using spherical harmonic functions to model lighting for face recognition. Spherical
Harmonics are a set of functions which form an orthonormal basis which is able to represent
all possible continuous functions defined in the sphere. The image of a face, illuminated by
any lighting function can be expressed as a linear combination of harmonic reflectances (face
images illuminated by harmonic lights),

Ii =
∞

∑
n=0

n

∑
m=−n

In,mbn,m(xi) (1)

where bn,m are the set of harmonic reflectances and xi is the i-th pixel of the object, in this case
the face surface. In Basri et al. (2003), Basri et al. showed that the precision to approximate
any function of light if we take a second order approximation (n = 0, 1, 2) is at least 97.96%.
From Equation (1) we see that this precision is achieved with only 9 harmonic images, and
Equation (1) can be expressed in matrix notation as

I = BL (2)

where B is a matrix with 9 columns. Each column is a harmonic image, and L is a column
vector containing 9 arbitrary parameters.

2.1 Forcing the lighting model to be positive
By using Equation (2), we could obtain not physically realizable images if we take arbitrary
linear combinations of the harmonic images. In fact, any arbitrary combination could produce
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an image with negative values. The harmonic images themselves have negative values, and
as we know, light intensity is always positive. Therefore, different combinations of lightings
must produce positive intensity values too. In Basri et al. (2003), the authors showed that the
soft harmonic space spanned by the harmonic images can be discretized by using a sufficiently
populated set of point light sources (delta functions) uniformly distributed around the sphere.
Thus, Equation (2) can be modified as

I = BHTL (3)

where L is a column vector of arbitrary lighting parameters and B is a matrix with columns
formed by the nine harmonic images. H is a matrix whose columns contain samples
of the harmonic functions, whereas its rows contain the transform of the delta functions
corresponding to the discrete number of point light sources.
This is a mathematical way of making discrete the smooth harmonic subspace by sampling
the harmonic reflectance images. The more densely populated with deltas is H, the better is
the approach to the original space of the 9 harmonics. In order to obtain a good approximation
to the original harmonic space, we should use a large set of point lights uniformly distributed
around the sphere. However, in Lee et al. (2001), Lee et al., found an important result about
how to approximate the illumination cone of lighting (see Georghiades et al. (1998)) with a
small number of deltas. Only nine light point sources strategically distributed are necessary
for approximating any reflectance on a face. Thus, H will be a constant 9 × 9 matrix.
In fact, the basis images can be obtained from two possible ways, the first one is the explained
here, by using the compact notation through the spherical harmonics reflectances, and the
second one is to explicitly render each one of the basis images, obtained from computing the
intensity of each point by using the Lambert’s law. This intensity can be computed if we know
the surface normal, the albedo and the corresponding vector of the point light source.

3. Face synthesis using a 3D illumination-based active appearance model
(3D-IAAM)

In this section, we describe an original method for face image synthesis based on the 3D −
IAAM model proposed in this chapter. Our face synthesizer is capable of creating face images
with arbitrary 3D pose, identity and illumination.

3.1 Construction of a bootstrap set of surfaces and albedo maps
In order to construct parametric models of shape and albedo, we need a bootstrap set of
3D face surfaces of different individuals, and their corresponding 2D albedo maps. This
set of surfaces and albedo maps will be used to train models of 3D shape and 2D albedo,
respectively.

3.1.1 Recovery of the face surface for each training identity
A bootstrap set of face surfaces can be obtained under well controlled laboratory conditions
by using a set of distant directional lights which illuminate the face one at the time but all
working during a short period of time, in such a way that there is not movement from one
image to the next.
Surfaces can be recovered by using a technique known as photometric stereo Forsyth & Ponce
(2002); Horn et al. (1978); Silver (1980); Woodham (1989). By using M (M > 3) different
images per individual, each one illuminated by a different point light source, it is possible
to simultaneously estimate the surface normals map and the albedo map of a face. This is
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accomplished by using minimum squares for solving a linear system of M equations, each
one expressing the pixel intensity as a function of the direction of the incident light (Lambert’s
cosine law) for each pixel. From surface normals maps, it is possible to reconstruct the surface
of each face by using shapelets Kovesi (2005). This is done by correlating the surface normals
with those of a bank of shapelet basis functions. The correlation results are summed to
produce the reconstruction. The summation of shapelet basis functions results in an implicit
integration of the surface while enforcing surface continuity.
On the other hand, a mean surface normals map, computed from the set of surface normals
maps, is used as a deformable template for building basis reflectance images during the fitting
stage.

3.2 Constructing the models of shape and albedo
In order to obtain a parametric 3D shape model, first of all, we have to capture the more
significative modes of shape variation. This can be accomplished by using a statistical method
such as PCA (principal component analysis) applied to a set of training faces with different
identity. We can place 3D landmarks over the surface of N training faces. To be sure that
we are only modeling variations in shape and not in pose, we have to align the 3D shape
models first, by using an iterative algorithm based on Procrustes analysis (see Figure 2).

Fig. 2. The shape models (each one defined as the set of landmarks over a particular face
surface) (a) must be aligned by using Procrustes Analysis (Ross (2004)) (b) before performing
the statistical study of shape variation.

Then we apply PCA to the set in order to obtain the principal modes of variation of 3D shape.
We can generate an arbitrary model using the following expression

s = s̄ + Qsc (4)

where s̄ is the mean shape model and Qs is a matrix which contains the basis shapes (also
known as eigenshapes) and c is a vector with arbitrary shape parameters. Similarly, we apply
PCA to the set of shape-normalized 2D albedos maps. Before applying PCA, the albedos map
of each training face must be shape-normalized (using the bidimensional projection of the
mean shape frame) as is shown in Figure 3.
A triangulation is designed to warp original images into the mean shape frame. Finally, any
shape-normalized albedo image can be generated with

λ = λ̄ + Qλa (5)
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Fig. 3. Normalizing in shape the albedo images by warping the original albedo images into
the 2D projection of the mean shape. Top: Original albedo images. Bottom:
shape-normalized albedo images.

where λ̄ is the mean albedo image, Qλ is a matrix which contains principal albedo variation
modes and a is a vector of arbitrary parameters.

3.3 Synthesizing faces with novel appearances
By using Equation (5), it is possible to synthesize an arbitrary albedo image λ and then warp
it to the 2D projection of an arbitrary frontal shape generated with Equation (4). This new face
is not illuminated yet. In the same process of warping the albedo image to the new shape, it is
also possible to carry out a 2D warping from the 2D mean map of surface normals (calculated
during the training stage) to the same new shape s. So far, we have a new albedo image and
a new map of surface normals, both of them shaped according to the new generated shape.
With these two maps (albedos and normals), we can construct 9 basis reflectance images as
is described in Section 2 by using Equation 3. Any illumination can be generated by a linear
combination of these basis images. In order to give a 3D pose to the model, we use the 3D
landmarks of the new generated 3D shape. By applying a rigid body transformation (T, R, s)
to these landmarks we give any pose and size to the created face.
If we suppose that the distance from the camera to the face is considerably greater than the
depth of the face itself, then it is reasonable to use a simple orthographic projection model.
Orthographic projection is the projection of a 3D object onto a plane by a set of parallel rays
orthogonal to the image plane.
Finally, we warp the frontal face to the 2D orthographic projection of the transformed 3D
shape. Figure 4 illustrates the synthesis process.

Fig. 4. Face synthesis process.

74 New Approaches to Characterization and Recognition of Faces



6 Will-be-set-by-IN-TECH

Fig. 3. Normalizing in shape the albedo images by warping the original albedo images into
the 2D projection of the mean shape. Top: Original albedo images. Bottom:
shape-normalized albedo images.

where λ̄ is the mean albedo image, Qλ is a matrix which contains principal albedo variation
modes and a is a vector of arbitrary parameters.

3.3 Synthesizing faces with novel appearances
By using Equation (5), it is possible to synthesize an arbitrary albedo image λ and then warp
it to the 2D projection of an arbitrary frontal shape generated with Equation (4). This new face
is not illuminated yet. In the same process of warping the albedo image to the new shape, it is
also possible to carry out a 2D warping from the 2D mean map of surface normals (calculated
during the training stage) to the same new shape s. So far, we have a new albedo image and
a new map of surface normals, both of them shaped according to the new generated shape.
With these two maps (albedos and normals), we can construct 9 basis reflectance images as
is described in Section 2 by using Equation 3. Any illumination can be generated by a linear
combination of these basis images. In order to give a 3D pose to the model, we use the 3D
landmarks of the new generated 3D shape. By applying a rigid body transformation (T, R, s)
to these landmarks we give any pose and size to the created face.
If we suppose that the distance from the camera to the face is considerably greater than the
depth of the face itself, then it is reasonable to use a simple orthographic projection model.
Orthographic projection is the projection of a 3D object onto a plane by a set of parallel rays
orthogonal to the image plane.
Finally, we warp the frontal face to the 2D orthographic projection of the transformed 3D
shape. Figure 4 illustrates the synthesis process.

Fig. 4. Face synthesis process.

74 New Approaches to Characterization and Recognition of Faces Face Image Synthesis and Interpretation Using 3D Illumination-Based AAM Models 7

4. Face alignment using the 3D-IAAM model

The original 2D AAM approach for face alignment presented in Cootes et al. (2001),
consists of an iterative algorithm which minimizes the residual obtained by comparing a
shape-normalized region (taken from the target image) with a reference mean-shape model
which evolves in texture in each iteration. This method supposes a constant relationship
between residuals and the additive increments to the model parameters. This approximation
uses a constant Jacobian during all the fitting process, and works well when lighting is
uniform because texture variation is small and residuals are always computed in the same
reference frame, see Cootes et al. (2001). Since we know, in contrast to texture in human
faces, lighting variation is not limited. Therefore, if the initial reference model is substantially
different in lighting to that in the input image, it is not possible to consider a constant Jacobian
for all the fitting process. Here, we propose an iterative fitting algorithm capable of correcting
the Jacobian in each iteration by using the current estimation of lighting, which in turn, is used
to update the reference model too.

4.1 Overview of the iterative fitting process
Once we have created the models of shape and albedo, we can use them in the face alignment
process. The alignment process consists of an iterative algorithm which captures a region
within the input image, performs a normalization of this region according to the current
set of model parameters and compares this normalized image with a reference model. The
comparison is always performed into a fixed reference shape. The reference model evolves
only in lighting in each iteration. The resulting residual from that comparison is used in
conjunction with a Jacobian for calculating suitable increments to be added to the current
model parameters. During the following iteration the new set of model parameters are
used again to capture and normalize a new region within the input image, and so on. At
the beginning of the alignment process, a set of initial model parameters is defined by the
user. Commonly, shape, albedo and rotation parameters are initialized with zero, illumination
parameters are initialized to a medium illumination, and translation and scale parameters are
initialized to a rough value near to the real 2D position and size of the face. In other words,
initial parameters are initialized in such a way that they would produce a frontal mean face
placed over the face in the input image.
On the other hand, at the end of the alignment process, the final set of model parameters
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4.2 Pose and shape normalization
In each iteration the model parameters of 3D shape and 3D pose determine a 3D structure
whose orthographic 2D projection is used to define a region within the input image. This
region can be mapped to a reference shape-normalized frame.
By using the rigid body transformation parameters (T, R, s) and the shape parameters c,
a region in the image is sampled and warped to the 2D mean shape frame. This new
shape-normalized image is denoted as Ishape aligned.

4.3 Albedo normalization
A novel contribution of this work is a method for normalizing albedo when we have an
estimate of lighting and albedo parameters. In fact, at the beginning of the fitting process,
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albedo parameters have a zero value, then the normalization will produce the same image
before normalization, see Equation 13. In contrast, as the albedo and illumination parameters
get closer to the ideal values for synthesizing a face equal to the original, then normalization
will produce an image more similar to a face with mean albedo illuminated by the actual
lighting present in the original image. The image normalized in pose, shape and albedo, can
be compared with a reference mean-shape mean-albedo face which evolves in lighting each
iteration. The residual obtained from this comparison will give us the possibility to use a
gradient matrix, or simply a Jacobian which is almost constant and is easily updated by using
the estimated illumination parameters.

4.3.1 Albedo normalization by using a current estimation of parameters of albedo and
illumination

In Section 2 we have showed that every illumination over a face can be synthesized by using
the following expression

I = BHT
9PLL (6)

as explained before, BHT
9PL represents a matrix with nine columns each one being a real and

positive basis reflectance image. In order to compact the notation, we can denote that matrix
as

β9PL = BHT
9PL (7)

then Equation 6 can be rewritten as

Iilluminated f ace = β9PLL = ([λ..λ] · Φ)L (8)

where λ is the albedos map represented as a column vector repeated in order to form a matrix
with the same dimensions as the basis reflectances matrix without albedo, represented by Φ.
These two matrices are multiplied in an element-wise fashion (Hadamard product). Then,
Iilluminated f ace can be rewritten as

Iilluminated f ace = λ · (ΦL) (9)

Now, suppose that the fitting algorithm has successfully recovered the shape and pose
parameters corresponding to the input image. In that situation, the process of pose and shape
normalization explained in the preceding section would produce a frontal shape-normalized
face.
On the other hand, if we would know the correct illumination parameters L of that face,
we could solve for the albedo by manipulating Equation 9 and using Ishape aligned instead of
Iilluminated f ace,

λ̂ =
(Ishape aligned)

(ΦL̂)
(10)

where the division denotes an element-wise division.
Suppose now, that we have a correct estimation of the albedo parameters (a). Then, by using λ̂
and the albedo parameters (a) we can derive an approximated mean albedo by using Equation
5,

λ̃ ≈ λ̂ − Qλa (11)
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Finally, we can normalize the image in albedo by using λ̃,

Ialigned = (λ̃) · (ΦL̂) (12)

where L̂ is a vector containing the current estimated illumination parameters. We can rewrite
Equation 12 as

Ialigned = [Ishape aligned./(ΦL̂)− Qλa] · (ΦL̂) (13)

The residuals vector can be calculated as

r = Ialigned − λ̄ · (ΦL̂) (14)

The energy of this residual image is a quantity to minimize by the iterative optimization
algorithm

�r�2 = �Ialigned − λ̄ · (ΦL̂)�2 (15)

where [λ̄ · (ΦL̂)] represents the reference model with mean shape, mean pose, mean albedo,
but illumination determined by the last estimated lighting parameters L̂. The process for
obtaining residuals in each iteration is shown in Figure 5, where the reference model [λ̄ · (ΦL̂)]
is denoted by f.

Fig. 5. Estimation of residuals during a step of the fitting process. The mean shape is
deformed by using the current parameters c and ø (top). Then, the region within the 2D
projection of this new structure is warped from the test image to the reference mean shape
frame (in the bottom and in the middle) in order to apply the process of albedo
normalization. The resulting image called IAligned is compared with a reference model in
order to obtain a residual image.

In order to work with a more compact notation, we can view the pose-shape and albedo
normalization as an inverse transformation to the 3D-IAAM synthesis process. Therefore, we
can denote that process as

Ialigned = T−1
p (Iinput) (16)

where Iinput represents the input image and p is a vector containing the model parameters
p = (TT , RT , s, cT , LT , aT)T . The initial parameters for the start of a fitting process are denoted
as
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p0 = (TT
0 , RT

0 , s0, cT
0 , LT

0 , aT
0 )

T (17)

where TT
0 is the initial position vector (x0, y0) given by the user. RT

0 = (0, 0, 0) is the initial
rotation vector, and s0 the initial scale factor (commonly equal with 1). cT

0 = (0, 0, 0, 0, ...) is the
initial shape parameters vector. LT

0 = (L01, L02, L03, L04, L05, L06, L07, L08, L09) is the initial
illumination parameters vector. Finally, aT

0 = (0, 0, 0, 0, ...) is the initial albedo parameters
vector.

4.4 Modeling the residuals
During the fit, according to the last estimated parameters, the pixels inside of a region in the
image are sampled and transformed. So, the residuals image computed with (14) is a function
of the model parameters p, that is r = r(p). The first order Taylor expansion of (14) gives
r(p+ δp) = r(p) + δr

δp δp, here, pT = (TT |RT |s|cT |aT |LT), and the ij− th element of the matrix
δr
δp is ∂ri

∂pj
. We desire to choose δp such that it minimize ||r(p + δp)||2. Equating r(p + δp) to

zero leads to the solution

δp = −J−1r(p) (18)

and J−1 can be calculated by pseudo-inverting the Jacobian matrix (Moore-Penrose
pseudo-inverse), or by using the normal equations:

J−1 = (
δrT

δp
δr
δp

)−1 δrT

δp
(19)

where δr
δp is actually a gradient matrix or Jacobian changing in each iteration. Recalculating

it at every step is expensive. Cootes et al. in Cootes et al. (2001), assume it to be constant
since it is being computed in a normalized reference frame. This assumption is valid when
we are only considering variations of texture, and lighting is ignored because it is uniform.
Since texture parameters do not present a large variation between training faces, then, it is
possible to compute a weighted average of the residuals images for each displaced parameter
in order to obtain an average constant Jacobian. In our case, we are dealing with non-uniform
illumination, therefore we propose to construct an adaptive Jacobian as is explained later.

4.5 Iterative fitting algorithm
In Cootes et al. (2001), authors propose to utilize a precalculated constant Jacobian matrix
which is used during all the fitting process. Each iteration, a sampled region of the
image is compared with a reference face image normalized in shape which is updated
only in texture according to the current estimated parameters. Ideally, this reference image
constitutes a reference model evolving in texture which should be associated to a Jacobian
evolving in texture too. However, in practice, a mean constant Jacobian, computed from
the different textures found in the training set, is used. This constant Jacobian works well
in uniform lighting conditions, because texture variation between training faces is relatively
small. Nevertheless, using a constant Jacobian would produce bad alignments in both, the
approach described in Cootes et al. (2001) and in our 3D approach Ayala-Raggi et al. (2008)
when the lighting of the input face is considerably different from the lighting used during
the training stage. In our 3D approach, an ideal procedure to achieve good convergence
results, at a high computational cost, would be to recalculate completely the Jacobian each
iteration. This operation could be performed each iteration by displacing the parameters of
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the reference model. The parameters of albedo and illumination would be displaced from
their current estimated values, and the 3D shape and pose parameters from their mean
state values. All these parameter displacements would be used to synthesize displaced face
images which, in turn, would be used for computing residuals by subtracting the images
without displacement from the displaced images. Finally, residual images and their respective
parameter displacements would be used to calculate the Jacobian. This process of synthesis
of multiple images should be performed on-line during the fitting stage and certainly would
be an extremely expensive operation.
In contrast, we propose a computationally inexpensive way to update the Jacobian by using
the current illumination parameters. Each iteration, our optimization algorithm samples a
region of the image and normalizes it in pose, shape and albedo. Albedo normalization
is performed by using the current estimated illumination parameters. Thus, a comparison
should be computed between this normalized image and the reference mean model (a
model with mean shape and albedo) illuminated by using the same current illumination
parameters. The estimated residuals and an updated Jacobian (re-illuminated by using the
current estimated lighting) can be used to compute the new parameters displacements.
Updating the Jacobian with the current estimated illumination parameters is an easy and
computationally inexpensive step, because we use the fact that lighting and albedo are
separated vectors and they are independent of basis reflectance images, see Equation 9. In
training time, we construct a set of displaced images that will be used during the fitting
stage to update the Jacobian. We know that basis reflectances Φ (without albedo) are not
affected by albedo displacements, but they can be modified by pose and shape increments.
Our model uses 33 parameters: 6 for pose, 9 for 3D shape, 9 for illumination, and 9 for albedo.
We construct 15 (6 + 9 = 15) basis reflectance matrices Φpi+Δpi by displacing, in a suitable
quantity, each one of the 15 parameters of pose and shape. That is, by using face synthesis
(through our model), we synthesize each reflectance image represented as a column within
the matrix Φpi+Δpi by giving the following synthesis parameters:

p = (p1, p2, ..., pi + Δpi, ..., p15)
T (20)

For instance, if i = 8, i.e. we are constructing the matrix for the second shape parameter, then
the generating parameters p will be:

p = (TT
0 , RT

0 , s0, [0 (0 + Δp8) 0 0 0 0 0 0 0])T (21)

In practice, we construct 30 basis reflectance matrices because we consider 15 positive
displacements and 15 negative displacements. In a similar way, by displacing each parameter
with a suitable increment pi + Δpi (positive and negative), we obtain 30 albedo images for
positive and negative increments in pose and shape parameters, and 18 albedo images for
positive and negative increments in albedo parameters. These albedo images do not have
information about lighting.
These 30 reflectance matrices and 48 albedo images are created during training time (off-line).
During the alignment stage, we can create a Jacobian on-line according to the current
parameters of illumination L:

δr
δp

= [
∂r1
∂p1

. . .
∂r33
∂p33

] (22)
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where each column can be calculated as:

∂ri
∂pi

= [
∂ri
∂pi (Δ+)

+
∂ri
∂pi (Δ−)

]× 1
2

(23)

with i = 1, 2, ..., 33. Here, ∂ri
∂pi (Δ+)

and ∂ri
∂pi (Δ−)

can be computed as:

∂ri
∂pi (Δ+)

=
λpi+Δpi · [Φpi+Δpi L]− λ0 · [Φ0L]

Δpi
(24)

∂ri
∂pi (Δ−)

=
λpi−Δpi · [Φpi−Δpi L]− λ0 · [Φ0L]

−Δpi
(25)

where λ0 is the mean albedo, and Φ0 is the matrix which columns are the mean basis
reflectances (without albedo information). When pi corresponds to an albedo parameter, then
we use Φpi+Δpi = Φ0, since the reflectance matrices are not affected by albedo variations.
Because the Jacobian is constructed using the last estimated lighting parameters, we denote it
as J(L̂),

J(L̂) =
δr
δp

(26)

The iterative fitting algorithm is outlined in Figure 6.
Basically, the algorithm can be summarized as follows: When the fitting process begins, Ialigned
is an unprocessed region of the test image delimited only by the position of the initial model
over the image. There is not shape or albedo normalization at this moment, so that the residual
(step 2) will be computed between the region (without transformation) and the model in a
similar way such as it is done in the 2D AAM algorithm Cootes et al. (2001). This first residual
in combination with the Jacobian (which is a precalculated constant the first time) produces
(such as it happens in Cootes et al. (2001)) an additive increment vector δp to be added to the
initial parameters. δp is iteratively reduced by re-scaling it (step 15) until the energy of the
residual is lower than its initial estimate. If this value does not decrease after a fixed number
of reductions, the algorithm claims that convergence was not reached and stops. Otherwise,
if the value is lower than the initial, then the new set of model parameters is used again to
normalize a new region within the test image. The new residual in combination with a new
Jacobian is used to compute a new set of increments to the parameters, and so on. Figure 7
illustrates two consecutive iterations of the fitting process.
On the other hand, Figure 8 shows the evolution of the model during the fitting process.
Figure 8 is illustrative and shows only five representative iterations in both alignments.
Actually, the algorithm takes an average of 14 iterations to reach convergence.
In practice, we have implemented this algorithm using a pyramid of two resolution levels.
A multi-resolution approach overcomes to the single resolution method and improves the
convergence of the algorithm, even if we place the initial model farther from the actual face.
On the other hand, the columns within the Jacobian matrix which correspond to illumination
parameters, are maintained fixed during the fitting process and they are precalculated from a
mean state of uniform lighting.
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1. Project the sampled region from the input image Iinput to the mean-shape model frame by applying
pose-shape-albedo normalization Ialigned = T−1

p0
(Iinput) with parameters p = p0.

2. Compute the residual, r = Ialigned − λ̄ · (ΦL0)

3. Compute the predicted displacements, δp = −[J0]
−1r(p). Where J0 is a Jacobian computed in the

training stage by taking little displacements of the parameters from their initial values p0. [J0]
−1 is the

Moore-Penrose pseudoinverse matrix of the Jacobian.

4. Take only the new estimate of illumination parameters and put the other parameters in their initial
values ignoring the estimates, p0 = (T0, R0, s0, c0, L̂, a0)

5. Set p = p0.

6. Project the sampled region from the input image Iinput to the mean-shape model frame by applying
pose-shape-albedo normalization Ialigned = T−1

p (Iinput)

7. Compute the residual, r = Ialigned − λ̄ · (ΦL̂)

8. Compute the current error, E = ||r||2
9. Compute the predicted displacements, δp = −J−1r(p). Here J−1 = [J(L̂)]−1. Jacobian J(L̂) is

assembled by using the precomputed images of basis reflectance and albedo in combination with
the estimated parameters L̂ computed in last iteration, see Equations 24 and 25.

10. Update the model parameters p −→ p + kδp, where initially k = 1.

11. Using the new parameters, calculate the new face structure X and the new mean-shape reference
model λ̄ · (ΦL̂).

12. Compute Ialigned = T−1
p (Iinput)

13. Calculate a new residual r = Ialigned − λ̄ · (ΦL̂)

14. If ||r||2 < Threshold then terminate else go to the next step

15. If ||r||2 < E, then accept the new estimate, make k = 1 and go to step 8; otherwise go to step 10 and
try at k = 0.5, k = 0.25, etc.. (In practice, after 7 attempts of reducing k, if ||r||2 ≥ E then the fitting
process is finished.)

Fig. 6. Fitting algorithm.

5. Experimental results

5.1 Individuals used
We evaluated our approach on two different datasets. The first one was called set A and is
composed by the 10 identities contained in the Yale B Database. Each subject in the database is
photographed in six different poses. For each pose many different illuminations are available.
A second dataset, that we call set B is composed by 20 individuals. This second dataset is
composed by the 10 identities from Yale B Database plus other 10 identities randomly selected
from the extended Yale B database (which contains 28 identities from different ethnicity).

5.2 Setup for experiments
The test set for this experiments was composed by 60 real images (with a size of 320 × 240
pixels) taken from Yale database B in the following manner: all images have the pose number
6 which presents a similar angle in azimuth to the left and elevation up. This pose has an
angle of 24 degrees from the camera axis. We choose 6 different illuminations for using with
each one of the identities. Each illumination is generated by a single point light source, and its
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Fig. 7. Two consecutive iterations of the fitting process. During the iteration Iti a region in
the test image is captured and normalized according to the current parameters p producing
the image Ialigned. A residual r is calculated by comparing Ialigned with a reference
shape-normalized model illuminated by the current parameter L̂. An additive increment
vector δp is computed. δp is iteratively reduced by re-scaling it (step 15) until the energy of
the residual is lower than its initial estimate. When this event occurs, the new set of model
parameters p� is used again to normalize a new region within the test image. The new
residual r� in combination with a new Jacobian J(L̂�) is used to compute a new set of
increments to the parameters, and so on.

Fig. 8. Evolution of the synthetic face produced by the model during the fitting process, from
initialization to convergence.

direction is specified with an azimuth angle and an elevation angle with respect to the camera
axis, see table 1.

L1 L2 L3 L4 L5 L6
A + 50E + 00 A + 35E + 15 A + 10E + 00 A − 10E + 00 A − 35E + 15 A − 50E + 00

Table 1. Illuminations used for experiments.

The initial conditions of the model at the beginning of the fitting process were manually setup
only in translation and scale. The rest of the parameters: rotation, 3D shape, illumination
and albedo were always initialized in their mean state for all the alignments, i.e., rotation:
RT

0 = [0, 0, 0], 3D shape: cT
0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], albedo: aT

0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], and
illumination: LT

0 = [0.6, 0.6, 0.6, 0.4, 0.4, 0.9, 0.9, 0.4, 0.4] (this configuration of the intensity of
the light sources produces a mean lighting which illuminates uniformly the face).
In all the alignments, the translation and scale parameters were initialized with the output
values of a manual pose estimator which uses three landmarks manually placed on the two
external eye corners and on the tip of the nose. The output of this manual estimator are rigid
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shape-normalized model illuminated by the current parameter L̂. An additive increment
vector δp is computed. δp is iteratively reduced by re-scaling it (step 15) until the energy of
the residual is lower than its initial estimate. When this event occurs, the new set of model
parameters p� is used again to normalize a new region within the test image. The new
residual r� in combination with a new Jacobian J(L̂�) is used to compute a new set of
increments to the parameters, and so on.

Fig. 8. Evolution of the synthetic face produced by the model during the fitting process, from
initialization to convergence.

direction is specified with an azimuth angle and an elevation angle with respect to the camera
axis, see table 1.

L1 L2 L3 L4 L5 L6
A + 50E + 00 A + 35E + 15 A + 10E + 00 A − 10E + 00 A − 35E + 15 A − 50E + 00

Table 1. Illuminations used for experiments.

The initial conditions of the model at the beginning of the fitting process were manually setup
only in translation and scale. The rest of the parameters: rotation, 3D shape, illumination
and albedo were always initialized in their mean state for all the alignments, i.e., rotation:
RT

0 = [0, 0, 0], 3D shape: cT
0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], albedo: aT

0 = [0, 0, 0, 0, 0, 0, 0, 0, 0], and
illumination: LT

0 = [0.6, 0.6, 0.6, 0.4, 0.4, 0.9, 0.9, 0.4, 0.4] (this configuration of the intensity of
the light sources produces a mean lighting which illuminates uniformly the face).
In all the alignments, the translation and scale parameters were initialized with the output
values of a manual pose estimator which uses three landmarks manually placed on the two
external eye corners and on the tip of the nose. The output of this manual estimator are rigid
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body parameters (T, R, s) computed by using 3D geometry. From those parameters, we only
used the translation and scale values in order to initialize the fitting process.
Our fitting algorithm is a local optimization and can fall into local minima, particularly if the
initial model is placed far from the face to fit. We observed that the algorithm converges if we
give an initial translation value with a maximum difference of ±10 pixels far from the ideal
initial position. Therefore, the algorithm tolerates up to certain degree of imprecision in the
initial position of the model over the test image.
Over the test set (the 60 images) we performed 180 alignments distributed within the
following groups:

1. Group 1: 60 alignments using the fitting algorithm programmed with 4 computations of
the adaptive Jacobian. That is, the algorithm has been allowed to recompute the Jacobian
only during the first 4 consecutive iterations.

2. Group 2: 60 alignments using the fitting algorithm programmed with 2 computations of
the adaptive Jacobian. That is, the algorithm has been allowed to recompute the Jacobian
only during the first 2 consecutive iterations.

3. Group 3: 60 alignments using the fitting algorithm programmed with a constant Jacobian.

Figure 9 shows the alignments belonging to Group 1 (4 computations of the Jacobian) for each
one of the 6 illuminations for identity 7.

Fig. 9. Alignments for identity 7 with each one of the 6 different illuminations.

5.3 Recovery of 3D shape and Albedo and measuring its quality through identification
In order to measure the quality of the recovered 3D shape and albedo, we have considered
that this quality is encoded into the recovered shape and albedo parameters. These estimated
shape and albedo parameters are directly related to identity. Therefore, it is reasonable to
compare them with those stored within a gallery containing parameters of all the training
identities. In fact, PCA allows the computation of the generative parameters for each training
identity when the models of shape and albedo are created (see Section 3.2).
As a previous step before performing the comparison between estimated and stored
parameters, they have to be re-scaled by dividing them by their respective standard
deviations. Then, we measure the distance between the recovered parameters and the original
parameters from the gallery. An appropriate distance measure in this case is the cosine of the
angle between both vectors. This metric has the advantage of being insensitive to the norm of
both vectors. In fact, that norm does not modify the perceived identity (see Romdhani (2005)).
This operation was performed separately for vectors of albedo and for vectors of shape.
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If we denote as �(â, ai) the angle between the vector â (estimated albedo parameters) and the
vector ai (stored albedo parameters for identity i), then the cosine can be computed with the
following expression for albedo:

Ωa
i = cos(�(â, ai)) =

âTai√
(âT â)(aT

i ai)
(27)

and the following expression for 3D shape parameters:

Ωs
i = cos(�(ĉ, ci)) =

ĉTci√
(ĉT ĉ)(cT

i ci)
(28)

where ĉ are the estimated shape parameters vector, and i is an index which indicates the
identity of the parameters vector stored in the gallery. Because the cosine function might be
negative, Ωs

i and Ωa
i are equated to zero in such a case. This positive cosine function works

fine because we are interested on detecting only small angles related with the presence of high
similarity between faces.
In order to perform the identification, we have to combine these two results (cosines for shape
and cosines for albedo) to obtain a single identification result. An appropriate approach to
combine both cosines is to convert them in likelihood values.
Using the known probability property which states that the sum of all likelihoods must be 1,
we can normalize the computed cosines for albedo:

ILa
i =

Ωa
i

(Ωa
1 + Ωa

2 + Ωa
3 + · · ·+ Ωa

10)
(29)

and normalize the computed cosines for shape:

ILs
i =

Ωs
i

(Ωs
1 + Ωs

2 + Ωs
3 + · · ·+ Ωs

10)
(30)

where ILa
i (with i = 1, 2, ..., 10) represents the identity likelihood of the estimated albedo for

each one of the ten identities stored in the gallery. Similarly, ILs
i (with i = 1, 2, ..., 10) represents

the identity likelihood of the estimated shape for each one of the ten identities stored in the
gallery.
Now, we can combine both likelihoods using a weighted sum. By experimentation, we
found that weights with better identification rates are 0.6 for albedo, and 0.4 for shape. This
experimental result can be explained by the following fact: 3D shape information of the
original face is lost when the 2D image is formed. In fact, our fitting approach has to infer
a probable shape. On the other hand, albedo which can be considered as 2D is recovered with
more accuracy. In our experimental results we saw, that in some cases, the values of the cosine
measured between the estimated shape vector and the shape vectors from the gallery, were
very similar. These similar values of the cosine can produce confusion in the decision of the
identity based only on the shape. Therefore, we considered that using probability functions
instead of the cosine values is a more appropriate way to obtain a correct decision of the
identity.
The conditional likelihoods ILa

i and ILs
i , for albedo and shape respectively, can be combined

to obtain a single likelihood ILi:

ILi = 0.6(ILa
i ) + 0.4(ILs

i ) (31)
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For instance, if the face of the test image corresponds to the identity i = 2, then, we would
expect a higher value for IL2 (theoretically IL2 = 1) with respect to the values for ILi with
i = 1, 3, 4, 5, 6, 7, 8, 9, 10 (theoretically 0).
In order to show the probability of the algorithm to select the correct identity under a specific
illumination, we have used (from Group 1) ten alignments for test images of individuals
i = 1, 2, 3, ..., 10 under the same illumination. Then, for each alignment a single value ILi
(with i being the test identity) was computed. For each illumination an average of the ILi
values was computed and plotted in Figure 10 (b). The little vertical segments represent the
associated standard deviation. We see that the mean IL is greater when lighting is frontal
to the face (illumination 5). Figure 10 (c) shows the identification rate for each illumination.
The identification rate for each illumination is computed by summing the number of correct
identifications and dividing this result by the total number of alignments for that specific
illumination. In this graph we have plotted the identification rate computed for Group 1,
Group 2, and Group 3 of alignments.

Fig. 10. a) Evolution of RMS error in intensity difference. b) Average (over the 10 identities)
of the identity likelihood measured between estimated and ideal parameters. c)
Identification rates for each one of the six illuminations.

In the case of fitting with four computations of an adaptive Jacobian we see the worst
identification rate (50%) with the illumination number 1, and the best identification rate
(100%) using the illumination number 5 which is nearly frontal to the face. A similar relation
among identification rates for all the six lightings is conserved for the case of fitting with two
computations of the adaptive Jacobian (plot in the middle). The phenomenon is repeated
again for the case of fitting with a constant Jacobian (plot in the bottom). Anyway, we can see
an important improvement on the quality of the reconstructions when the adaptive Jacobian
is computed more times.
In a similar way, we have evaluated the fitting algorithm now trained with the 20 identities
from set B.
For this test we used 6 images (with a size of 320× 240 pixels) with the same pose and different
lighting for each one of the 20 individuals from the set B. Hence, our test set is composed by
120 real images. Again, all images have the pose number 6 which presents a similar angle in
azimuth to the left and elevation up. This pose has an angle of 24 degrees from the camera
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axis. We choose the same 6 different illuminations for using with each one of the identities.
See table 1.
Over the test set (the 120 images) we performed 360 alignments distributed within the
following groups:

1. Group 1B: 120 alignments using the fitting algorithm programmed with 4 computations of
the adaptive Jacobian.

2. Group 2B: 120 alignments using the fitting algorithm programmed with 2 computations of
the adaptive Jacobian.

3. Group 3B: 120 alignments using the fitting algorithm programmed with a constant
Jacobian.

Figure 11 shows the identification rate for each illumination. In this graph we have plotted
the identification rate computed for Group 1B, Group 2B, and Group 3B of alignments.

Fig. 11. Identification rates for each one of the six illuminations

In the case of fitting with four computations of an adaptive Jacobian we see the worst
identification rate (25%) with the illumination number 1, and the best identification rate (60%)
with the illumination number 5 and 6 which are nearly frontal to the face. In a similar way
as in the case of experiments for set A, a similar relation among identification rates for all
the six lightings is conserved for the case of fitting with two computations of the adaptive
Jacobian (plot in the middle). Again, we can see an important improvement on the quality of
the reconstructions when the adaptive Jacobian is computed more times.
In this test we used a training set of 20 individuals. In a similar way as in all experiments,
model parameters have been limited to 9 shape parameters and 9 albedo parameters.
We used Principal Component Analysis for reducing the dimensionality of shape and albedo
variation. Model parameters of shape and albedo are weights of a weighted sum of
eigenvectors, see 4 and 5. Eigenvectors of shape or albedo represent variation modes (20
modes) and they are sorted according to their associated variances, from the higher to the
lower value of these variances. Each variance associated to each eigenvector represents the
relevance of the eigenvector into the weighted sum. The greater the variance, the more
relevant the eigenvector (variation mode).
In order to reduce the dimensionality of the training set and using the same number of
parameters, we have taking into account only the first 9 relevant eigenvectors of shape and
albedo. We can compute the percentage of total variance that can be represented by the model
using only 9 parameters of shape as

Ξσ2 =
∑9

i=1 σ2
i

∑20
i=1 σ2

i
× (100) = 83.5% (32)
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where Ξσ2 is the shape representation capability of the model relative to the training set. In
a similar way, since we only used the first 9 eigenvectors of albedo, we can compute the
percentage of total variance that can be represented by the model using only 9 parameters of
albedo as

Ξη2 =
∑9

i=1 ηi

∑20
i=1 ηi

× (100) = 87.1% (33)

where Ξη2 is the albedo representation capability of the model relative to the training set.
These percentages are lower than those corresponding to the experiments using 10 training
individuals where the number of model parameters of shape and albedo is also 9 and 9
respectively, where model parameters cover 100% of the total variance. Therefore, we can
conclude that using a bigger set of training faces while keeping a fixed number of model
parameters decrements the ability of representing the 100% of shape and albedo variation
contained into the training set. In turn, that conclusion explains the lower identification rates
observed on Figure 11 with respect to those observed on Figure 10 (c).
Figure 12 illustrates the difference in fitting with a constant Jacobian in contrast to fit with an
adaptive one. Here we show reconstructions for two different lightings.

Fig. 12. Reconstructions of two individuals from set B under two different lightings. The
reconstructions obtained with the fitting algorithm which uses an adaptive Jacobian are
visually better than those obtained from using a fitting algorithm which uses a constant
Jacobian.

5.4 Face alignment of faces not included into the training set: Fitting novel faces
The 3D − IAAM model trained with the set of 20 individuals has been tested for fitting to
novel faces not contained within the training set. Again, we used 33 model parameters: 6 for
3D pose, 9 for 3D shape, 9 for illumination, and 9 for albedo.
We selected 5 individuals not contained within the training set and captured in 3 poses each
one (-24ž, 0, and +24ž with respect to the camera axis). For all the images, the 3D pose only
varies in azimuth: -25, 0, and 25 degrees with respect to the camera axis. Figures 13, 14, 15, 16,
and 17 show alignments for novel faces take from the extended Yale B database and originally
numbered as 18,25,35,36. The fifth face belongs to the author of this work.
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Fig. 13. Alignments for the face number 18 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 14. Alignments for the face number 25 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 15. Alignments for the face number 35 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees
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Fig. 16. Alignments for the face number 36 from the extended Yale B database. This face is
not included in the training set. The recovered 3D pose angles are specified in degrees

Fig. 17. Alignments for the author’s face. This face is not included in the training set. The
recovered 3D pose angles are specified in degrees

The experiments performed over faces not included within the training set give us with signs
about the ability of the method for adapting to novel faces, and also demonstrate that it is
possible to estimate relevant information about a new face. That information is provided at the
end of the fitting process, and is delivered to us through the model parameters. We think that
a possible generalization of the method consisting on the capability of fitting any human face
may be feasible. The solution will be based on making a careful and systematic selection of the
training faces according to desired characteristics. That could be another research problem.

6. Conclusions

Shape and albedo are estimated more accurately when an adaptive Jacobian is used. The
adaptive Jacobian is a way to express the appearance variation produced by parameters
variation as a function of the lighting parameters computed in each iteration. Hence, the
adaptive Jacobian works better than the constant one when the initial model is different (in
lighting) from the test image, as it actually happens in the most of cases. The improvement
provided by the use of an adaptive Jacobian was confirmed when we obtained better
estimations of shape and albedo whenever we were increasing the times that this Jacobian was
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computed. On the other hand, we determined that the computational time used in calculating
the Jacobian is linear with respect to the number of times that this Jacobian is computed. In
contrast, the improvement in the recovery of the parameters was not significative when the
Jacobian was computed more than two times. Therefore, we conclude that four computations
of the Jacobian is sufficient to obtain acceptable reconstructions. On the other hand, the
capability of the fitting algorithm to reconstruct novel faces not contained within the training
set was demonstrated in this chapter. Finally, our proposed interpretation approach not only
provides information from a face image, also it is capable of creating new information by
reconstructing unseen novel views of a recovered face. This work has addressed the problem
of automatic and fast interpretation of a face which exhibits any pose and any lighting.
Modern approaches have important limitations regarding processing speed, fully automatic
operation, 3D, lighting invariant and simultaneous handling of multiple appearance variation
sources. We introduced a novel and fast method for automatic interpretation of face images
from a single image. Pose, shape, albedo, and lighting are sources of appearance variation
which modify the face image simultaneously. For that reason, trying to estimate only one of
these factors without considering the others would produce inaccurate estimates. In order
to avoid an inaccurate estimation of each one of these sources of appearance variation, our
fitting method estimates simultaneously, in each iteration, the appropriate increments for
parameters of 3D shape, 3D pose, albedo and lighting. At the end of the fitting process our
proposed algorithm provides us with a compact set of parameters of 3D pose, 3D shape,
albedo and lighting which describe the test image. The fitting algorithm is based on a
priori knowledge of the relationship between the appearance variation (of the model) and
the parameters. The appearance variation of the model is produced by changes in pose,
shape, albedo and lighting. This appearance variation maintains a non-linear relationship
with respect to the model parameters. However, in the case of pose, shape, and albedo, the
appearance variation range is sufficiently small so that we can approximate this non-linear
relationship with a linear relationship which can be easily learned. On the other hand, the
range of appearance variation produced by changes in lighting is unlimited. Then, it is not
possible to approximate the appearance variation with respect to the lighting parameters with
a simple linear relationship. Fortunately, we found a way to separate lighting from the other
sources of appearance variation, in such a way that we can learn a linear relationship between
a set of parameters (pose, shape, and albedo) and the appearance variation caused by these
parameters. This learned linear relationship is completely independent from lighting. By
incorporating a particular lighting to this linear relationship in each iteration of the fitting
process, it is possible to reconstruct a new relationship between the full appearance variation
and the changes of all the model parameters, i.e. pose, shape, albedo and lighting. This
new relationship is represented in our fitting algorithm by the adaptive Jacobian which
is reconstructed in each iteration according to the current estimated lighting parameters.
Our results, both quantitative and qualitative, show that the method is able to align a 3D
deformable model not only in shape but also in albedo, pose and lighting simultaneously.
The identification results lead us to think that our approach could be extended to automatic
face recognition under arbitrary pose and non-uniform illumination. Besides, the model can
synthesize unseen face images of people not used to train the model

7. Future work

In our approach, the process of creating synthetic faces is used during the synthesis of the basis
reflectance images created during the training time. This set of resulting images is utilized
later for the on-line construction of the Jacobian during the test stage. We could improve
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the accuracy in the synthesis of lighting by refining the mapping of the normals from the
mean model to the new deformed model. Presently, this mapping is purely 2D, but because
our shape model is 3D, normals can be reoriented according to the new 3D position of each
triangular facet. A more accurate representation of lighting should improve the recovery
of 3D shape and albedo, and therefore the identification rate. We think that our method
can also be optimized in fitting speed by reducing the times that the Jacobian is updated.
According to the initial estimated lighting it would be possible to establish a criterium
to determine the minimum necessary number of Jacobian updates, while is preserved an
acceptable alignment. Also, a robust face recognition scheme can be implemented if we
increase the number of identities for training, in such a way, that they have the enough kinds of
extreme variations in shape and albedo for modeling all intermediate possibilities. There are
many interesting avenues of feature work. With a careful and systematic selection of the faces
for the training set, our method can be extended to a generic person-independent automatic
3D face interpretation system, useful for face recognition in difficult conditions of lighting and
pose. Combined with other methods for identification, this kind of generic approach could be
a suitable part of a complete biometric system for identity recognition.
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1. Introduction

Face recognition is one of the most active research areas in computer vision, statistical analysis,
pattern recognition and machine learning (Huq et al., 2007). Significant progress has been
made in the last decade, in particular after the FRVT 2002 (Phillips et al., 2003). For example
(O’Toole et al., 2007) showed that face recognition systems surpassed human performance
in recognizing faces under different illumination conditions. In spite of recent progress the
problem of detecting and recognizing faces in un-controlled biometric environments is still
largely unsolved.
The use of other biometric techniques, such as fingerprinting and iris technology appear to
be more accurate and popular from a commercial point of view than face recognition (Abate
et al., 2007). This is due to the inherent problems with 2D-image based FR systems. These
include the viewing point of the face, illumination and variations in facial expression. These
problems exhibit a great challenge for such systems and significantly affect performance and
accuracy of algorithms.
In an overview of the Face Recognition Grand Challenge (FRGC) Phillips et al. (2006), the
authors pointed out some of the new techniques used in Face Recognition that essentially
hold the potential to improve performance of automatic face recognition significantly over
the results in FRVT 2002. Among these techniques the use of 3D information to improve the
recognition rates and overcome the inherent problems of 2D image based face recognition has
become a current research trend.
In this chapter we present a novel technique for 3D face recognition using a set of parameters
representing the central region of the face. These parameters are essentially vertical and cross
sectional profiles and are extracted automatically without any prior knowledge or assumption
about the image pose or orientation. In addition, these profiles are stored in terms of their
Fourier Coefficients in order to minimize the size of the input data. The algorithm accuracy is
validated and verified against two different datasets of 3D images covers a sufficient variety
of expression and pose variation. Our computational framework is based on concepts of
computational geometry which yield fast and accurate results. Here, our first goal is to
automatically allocate the symmetry profile along the face. This is undertaken by means
of computing the intersection between the symmetry plane and the facial mesh, results in
a planner curve that accurately represents the symmetry profile.
Once the symmetry profile and few features points are allocated, then it is used to align the
scanned images within the Cartesian coordinates with the tip of the nose residing at the origin.
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Aligning the 3D images within the same Cartesian coordinates makes it possible to compare
images against each other. Finally, profile-based comparisons are carried out, where profiles
(space curves) of different faces are compared. Here, only part of these profiles are considered
for the comparisons. These parts are assumed to be less sensitive to facial expression variation.
This chapter is organised as follows: section 2 examines the current state of face recognition
research. In section 3 the algorithm for processing 3D facial data and extracting facial features
will be presented. Following on from this in section 4 profile-based comparisons will be
briefly introduced. Experiments and results will be shown and discussed in the second last
section. Finally the conclusions and limitations of our method and direction for future work
are presented.

2. Previous work

Formally, face recognition maybe defined as: “given a still or video images of a scene, identify
or verify one or more persons in the scene using a stored database of faces” (Zhao et al.,
2003). In other words, for any facial recognition system, it is usually initialized with a set
or a database of images of known persons. This image repository is usually termed as
the “gallery”. In a recognition scenario an incoming image of a certain person termed as
“probe” is matched against the gallery for recognition purposes. This matching scenario is a
one-to-many relation where the probe is matched against the entire set of images in the gallery
to find out the best match based on some criterion or threshold.
The very initial step in an automated face recognition system is to detect the face in an image.
Although it is very likely that more than one face might exist per image, usually it is assumed
that only one face exists per image. Detecting the face, and identifying the region of interest on
that face (the region which contains main facial characterises such as eyes, nose, and mouth)
is essentially a critical step in order to align the face image with a certain coordinate system
(often called image registration), and thereby make comparisons between faces feasible, and
more likely to produce accurate results. This step is also important to allow the extraction of
some facial features that will be used for comparisons purposes.

2.1 Types of face recognition systems
The vast majority of work that has been done in the area of FR has been based on 2D intensity
images. In other words face recognition techniques that are solely based on 2D intensity
images, usually acquired by 2D digital cameras. Such systems have several advantages,
including the availability of cheap over the counter equipment and wide range of algorithms
and existing solutions. Although it is difficult to categorize face recognition systems, it is
often found in the literature that they are sometimes categorized based on the type of images
used, for example 2D or 3D image-based FR systems. Following (Zhao et al., 2003) 2D-image
based FR systems can be broadly categorized as holistic, feature-based or hybrid approach
approaches. This categorization of 2D-image based FR system could also be generalized on
systems that utilize 3D images.
Holistic approaches use the whole face region as an input to recognition. The work proposed
early by Turk & Pentland (1991) serve as a corner stone for holistic-based face recognition
approaches which is based on Principal Component Analysis (PCA). This in turn, is a
dimensionality reduction technique, which treats the image as a point or a vector in a high
dimensional space.
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Other methods include the use of spatial-frequency techniques, such as Fourier
transformations. In these methods, face images are transformed to the frequency domain,
and only the coefficient in the low frequency band are preserved for recognition purposes.
These approaches have been successfully applied to face recognition, however, the accuracy
of such algorithms drops significantly under pose or light variation. In addition, for real-life
applications with large databases, holistic methods may not provide sufficient discriminant
information.
Unlike holistic-based methods, feature-based approaches utilize facial features such as eyes,
nose, and mouth as an input for recognizing faces. In feature-based approach, the recognition
rate is highly dependent on the accuracy of the face and facial feature localizations techniques.
An example of such work is demonstrated by (Asteriadis et al., 2009) who used geometrical
information to localize faces in images and several facial features, such as eyes, nose and
mouth. First the face in an image was detected using the Boosted Cascade Method, then
a Distance Vector Field was used to detect facial features such as eyes and mouth were
geometric information about each pixel are encoded in the feature space.
Hybrid approaches utilize both holistic and local feature representation of the face images (Su
et al., 2009). This technique is inspired by psychophysics and neuroscience literature which
shows that human beings perceive faces based on both global and local features (Sinha et al.,
2006). An example of such an approach is presented by (Su et al., 2009). In this work, the face
image has been globally represented by means of Fourier transform defined by the authors as
Global Fourier Feature Vector (GFFV).Gabor wavelets were used to extract local features from
faces to form a vector space called Local Gabor Feature Vector (LGFV). Thus, representing
each face image by one GFFV and multiple LGFVs. With such form of hybrid representation
of the facial data, more diverse discriminatory information was encoded in the feature space.

2.2 Challenges
The accuracy of face recognition systems are significantly affected by various challenges.
Although the revision of each of these challenges is beyond the scope of this chapter, it is
worth highlighting some of these:

• Illumination is considered as one of the challenges that may hinder the robustness of 2D
FR in an unconstrained environment.

• Pose variation is another important issue that has been the subject of extensive research.
In spite of the major advances that took place in the past decade, handling varying head
poses is still considered as one of the major challenges encountered by face recognition
techniques. (See for a good review of various techniques that address this issue (Zhang
& Gao, 2009)). Various solutions have been proposed to address this problem. One of
the simplest solutions is to enrol the gallery with different images per individual that
correspond to various poses. Several experiments show that enrolling more than one
image, increases recognition rates. Eigenfaces, self organizing map and convolution
network approaches both performed better when five gallery images per person were
available rather than just one (Zhang & Gao, 2009). However, such an approach is not
always possible due to the difficulties in obtaining suitable image data. In addition, it is
quite impossible to represent all face poses in a database. Moreover, enrolling the gallery
with multiple images per individual would add computational and storage costs, thereby
impacting the overall performance of the system.
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• Facial expression variation is still considered as one of the challenging problems for FR
it has been estimated that the face could generate up to 55,000 different actions (Zhiliang
et al., 2008). Addressing this problem will not only improve recognition rates, but will also
have a positive impact on other domains, such as facial modelling, animation, and speech
synthesis.

• Occlusions due to other objects such as sunglasses and hats.

• Aging, is considered as one of the main challenges to Face Recognition, as it causes
significant alteration to the appearance of faces (Lanitis et al., 2002).

Due to the above challenges, the trend has shifted toward using 3D images in FR systems.
It is strongly believed in the research community that using 3D information will improve
recognition rates and overcome some of these challenges.

2.3 3D face recognition
(Phillips et al., 2006) point out to some of the new techniques used in face recognition.
These include recognition from 3D images, high resolution still images, multiple still images
and multi-modal techniques. Such techniques essentially hold the potential to improve
performance of automatic face recognition significantly over the results in FRVT 2002. Among
these techniques, possibly due to the recent development in 3D capturing devices and in
order to overcome inherent problems of 2D-based face recognition systems, the trend is
shifting toward utilizing 3D information to improve recognition rates. Here, the recognition
is performed by matching the 3D models representing the shape of the faces. It is believed
that the 3D representations of facial data will essentially overcome problems such as pose and
illumination variations.
3D face recognition is attracting more attention in the recent years due to two important
factors. Firstly because of the inherent problems with 2D face recognitions systems that
appear to be very sensitive to facial pose variations, variant facial expressions, lighting and
illumination. Xu et al (Chenghua et al., 2004) compared 2D intensity images against depth
images and from their experiments they concluded that depth maps give a more robust face
representation, because intensity images are significantly affected by changes in illumination.
Secondly, due to the recent development in 3D acquisition techniques such as 3D scanners,
infrared, and other technologies that makes obtaining 3D data acquisition relatively easy and
accurate (Bowyer et al., 2006).
Although the utilization of 3D data in the area of face recognition started early (Y. et al., 1989),
in comparison with image-based face recognition, the use of 3D information is relatively
new in terms of literature, algorithms, commercial applications, and datasets used for
experimentations (Bowyer et al., 2004). The number of persons represented in datasets for
3D face recognition experiments didn’t reach 100 until 2003 (Bowyer et al., 2006), with little
experimentation explicitly incorporating pose and expression variations. In this review paper
(Bowyer et al., 2006) the authors surveyed some techniques which reported 100% recognition
rates. However, the authors pointed out that this is due the limited size of the databases
used. In addition, it was clear from the review that in early work only few published results
have dealt with datasets that explicitly incorporate pose and/ or expression variation. In the
past few years, this has changed, data sets have become larger and algorithms become more
sophisticated. Therefore, it is not surprising to see that recent reported recognition rates are
not as high as early work.
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Several approaches are used in the literature for 3D face recognition. Some of these are
based on the segmentation of the face into meaningful points, lines and regions. Others are
considered as model based approaches using information about texture, edges, and colours.
Profile-based techniques where multiple profile comparisons are carried out, by which a set of
profiles are compared against each other. Such profiles might be symmetry ones, transverse,
vertical or even cross-sectional.
Among the existing approaches for addressing 3D face recognition systems is the use of
Extended Gaussian Image (EGI). Early work by (Lee, 1990) segment convex regions in a
range image based on the sign of the mean and Gaussian curvature, and creates an extended
Gaussian image. The matching algorithm is done by correlating the EGIs between the probe
and an image in the gallery. The EGI in turn, describes the shape of an object by distribution
of surface normal over the object structure.
A 2005 article (Gökberk et al., 2005) compared five approaches to 3D face recognition. They
compared methods based on EGI, ICP matching, Range Profile, PCA, and Linear Discriminate
Analysis (LDA). They used a database of 160 people consisting of 571 images. They found out
that ICP and LDA approaches offer the best performance, although performance is relatively
similar among all approaches but PCA.
One of the earliest attempts to utilized depth information was possibly proposed by Gordon
(Gordon, 1992) who segmented the face based on curvature description, he then extracted a
set of features that describes both the curvature and metric size properties of the face. Thus,
each face becomes a point in the feature space and the comparisons were carried out using the
nearest neighbouring algorithm.
Nagamine (Nagamine et al., 1992) extracted five feature points and used it to standardize face
pose, matching various curves or profiles though the face data. According to this experiment
the best recognition rates were achieved using vertical profiles that pass through the central
region of the face.
Achermann (Achermann & Bunke, 2000) approached 3D face recognition based on an
extension of Hausdorff distance matching. A database of 240 images were used, and 100%
recognition rate was reported.
Lee et al. (Lee et al., 2005) Approached the problem based on the curvature values at eight
feature points on the face. Using support vector machine for classifications they reported a
rank-one recognition rate 96% for a data set representing 100 persons. The feature points were
manually allocated.
Mahoor et al. (Mahoor & Abdel-Mottaleb, 2009) presented an approach for 3D face recognition
from frontal range data. In this work each image was represented by ridge lines. These are
points around the eyes, the nose and the mouth. The lines were defined based on the mean
and Gaussian curvature computation, and used for representing the face images. Then for
matching ridge images, robust Hausdorff Distance (HD) and ICP were used. It was reported
by the authors that ICP outperformed HD in experiments carried out using GavabDB and
FRGC 2.0 databases (third experiment) where neutral 3D face images of the FRGC2.0 were
used, 58.9% rank-one identification using HD was reported while 91.8% using the ICP. Note
that the authors here only used frontal images from GavaDB and FRGC 2.0 databases. In
other words, results presented here may change by incorporating more pose and expression
variation in the experiments.
Facial profile (vertical, cross-sectional, etc.) were also explored in 3D face recognition. Zhang
et al. (Zhang et al., 2006) approached face recognition by utilizing 3D triangulated polygonal
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meshes. Their approach starts by first identifying the symmetry plane (assuming that the
facial data is symmetric), and then by computing the symmetry profile. Based on the mean
curvature plot of the facial surface, and symmetry profile, they recovered 3 feature points on
the nose area to define what they called facial intrinsic system (namely, the nose tip, nose
bridge, and nose point at the lower nose edge), which were used to standardize the faces.
For detection purposes the symmetry profile with another two transverse profiles provide
a compact representation of the face and were used for comparison purposes. A database
of 382 different scans was used consisting of 166 individuals of which 32 individuals have
multiple scans, and others have just a single. EER for face authentication with variant facial
expression reported was 10.8%. For scans with normal expressions 0.8% EER was reported.
The symmetry profiles of two models to be compared are fist registered by mean of ICP
algorithm. Then translation is done to make the cheek, forehead, and symmetry profiles
coincide in the two models. The comparison is done by a set of sampling points on the
corresponding profiles. A semiautomatic pre-processing procedure is used to trim of the
non-facial regions in the raw mesh.

3. Automatic feature extraction

One of the main challenges in processing and determining certain facial features for a
given raw 3D facial mesh is due to the resulting scanned image, which usually contains
unwanted geometry that need to be identified and discarded at a pre-processing stage as
shown in Figure 1. In certain applications semi-automatic approaches have been introduced
to overcome this problem. For example (BenAbdelkader & Griffin, 2005) used seven manually
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A key component within facial data is the symmetry characteristic that is defined by a
symmetry plane which divides the face into two similar halves. Wide range of methods are
available in the literature that deals with symmetry detection, in particular for 3D face shapes
(Zhang et al., 2006), (Colbry & Stockman, 2007), (Pan et al., 2006)-(Gökberk et al., 2006).
Sun et. al. (Sun & Sherrah, 1997), for example, assume that the symmetry plane passes
through the center of mass of a given object and uses Extended Gaussian Image (EGI) based
technique to detect reflection, and rotational symmetry of objects. For facial data such an
assumption might not hold, especially that 3D facial data acquired by laser scanners might
be highly asymmetric since it would contain noise, and undesired geometry such as neck and
the shoulder.
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Zhang et al. (Zhang et al., 2006) detected the pose of a raw mesh by means of PCA, and then
detected the symmetry plane by determining certain facial features (e.g. nose ridge points).
They reported that out of 120 images, 117 model were correctly characterized by its symmetry
profiles and few feature points along the nose area, with an average processing time of 10
seconds.
Colbry and Stockman (Colbry & Stockman, 2007) identified the symmetry plane of a facial
scan by matching that scan with a mirror image of itself using face surface alignment
algorithm assuming that pose variation is up to 10 degree in roll and pitch and up to 30 degree
in yaw.

3.1 Main Method
In this section we will describe our technique to automatically extract the main facial features.
First, we will give some definitions and terminologies that are used from this point on.

3.1.1 Definitions
3D images are either produced as point clouds or polygonal meshes (usually triangular). A
point cloud is simply a set of n vertices V = {pi | pi ∈ R3, 1 ≤ i ≤ n}. A triangular mesh
S on the other hand, includes the set of vertices and adjacency information and is defined
as S = {V, E, F}, where E is a set of edges defined as E = {(pi, pj)|pi, pj ∈ V} and F is
a set of facets defined as F = {(pi, pj, pk)|pi, pj, pk ∈ V}. The Euclidean distance between
two points v1, v2 denoted by v1 = (x1, y1, z1), and v2 = (x2, y2, z2) is defined as d(v1, v2) =
||v1 − v2 =

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. If we Let fi ∈ F be a facet on the surface

mesh defined by the triplets fi = {v0, v1, v2} then the circumference of the fi is defined as
d( fi) = d(v0, v1) + d(v1, v2) + d(v2, v3) . Based on this arrangement we could approximate
the tolerance value of the surface mesh as,

St =
1
C

n f

∑
i=1

d( fi) (1)

where n f represents the number of facets in the triangular mesh, and d( fi) is the circumference
of the ith facet and C is a constant computed based on an average estimation of the number
of common edges between adjacent facets on the surface mesh. A normalized and registered
raw mesh means that all values of the vertices are scaled to be in the range between 0.0 and
1.0. In addition, the facial data is aligned with the Cartesian coordinate system, such that the
nose tip is located at the origin and the face is looking towards the positive z-axis.
A plane is defined by a point and its normal vector, hence a plane will be denoted in the form
of ∏(p0, n) where p0 is a point on the plane, and n is its unit normal vector. A reference depth
plane is used as the reference for measuring the depth of a given surface point on the mesh.
The depth of any point denoted by p0 = (x0, y0, z0) on the surface mesh is measured as the
distance between that point and its projection on the depth plane ∏ which is defined as

d(p0, ∏) =
nxx0 + nyy0 + nzz0√

n2
x + n2

y + n2
z

(2)

where the normal vector of the plane is defined as n = (nx, ny, nz). A planner curve is defined
as a set of points in the 3D space that belongs to the mesh, and intersects a certain plane. The
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length of a planner curve is defined as ∑m
i=1 di(vi + vi+1), where di(vi + vi+1) is the Euclidean

distance between the two position points vi + vi+1 where vi + vi+1, are point positions on the
planner curve, and vi, vm are the first and last point respectively on the curve.
The 3D face is said to be symmetric, if there is a plane, such that the face is invariant under
reflection about it. Essentially a symmetry plane will pass through the tip of the nose. Thus,
if the tip of the nose and another two position points are identified on the face then one could
define the symmetry plane.
The centroid position of a facial surface mesh with vertices is denoted by c = (cx, cy, cz) where
cx = 1

n ∑n
i=1 xi, cy = 1

n ∑n
i=1 yi, cz = 1

n ∑n
i=1 zi. For a well characterized facial data set, the

centroid point of a mesh usually lies within the region of interest which includes the nose, eyes
and mouth features. Thus, it is highly unlikely that such a point would lie outside this region,
for example near the neck area or the hair. Figure 1 shows various 3D facial scans (Moreno &
Sánchez, 2004) with irregular outliers where the above assumption about the centroid position
is still true.

3.1.2 Method outline
The tip of the nose is considered as one of the easiest feature points to recover from a facial
image. In addition, we assume that the symmetry plane of the face passes through the tip of
the nose. For human faces this is a very reasonable assumption which is widely accepted in the
research community (Zhang et al., 2006), (Colbry & Stockman, 2007), (Sun & Sherrah, 1997).
Our methodology is focused on identifying the symmetry plane based on the determination
of the tip of the nose. The basic structure of the proposed algorithm is as follows,

• The central region of a 3D scan is initially approximated based on the center of mass and
some extreme points.

• The tip of the nose is determined as the point on the facial surface with maximum
perpendicular distance from a certain depth plane.

• The symmetry plane that passes through the pre-determined nose tip is then determined.

• A planner curve that accurately represents the symmetry profile is then extracted.

• Some feature points are then automatically determined on the symmetry profile. These
feature points include the nose bridge and lower part of the nose.

• The central region is then extracted, based on approximating the positions of the outer
corners of the eyes.

3.1.3 Nose tip identification
The first step in this process is to identify the tip of the nose. This is considered as the easiest
point to recover on a facial scan. In order to determine this point, we fit a bilinear blended
Coon’s surface patch. Coon’s patch is simply a parametric surface defined by four boundary
curves(Farin & Hansford, 1999). The four boundaries of the Coon’s patch are determined
based on the boundary curves that enclose an approximated central region of the face.
In order to approximate the region of interest we take the centroid and all points that lie
within a pre-determined distance from that point. It is important to highlight that the central
region identified here is not an accurate representation of central region of the face. Rather
it is an approximation which can be used to identify a “minimum” region of the face which
can provide a smooth boundary on which it includes certain facial features, in particular the
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nose region. Once this region is approximated, its boundary is sorted and organized so that
it represents the four boundary curves of a Coon’s patch. Finally, a surface patch within the
boundary curves is interpolated based on Coon’s patch definition (see (Farin & Hansford,
1999) for more information).
Having the Coon’s surface generated as a reference to the facial points on an approximated
central region, it becomes straightforward to recover an initial estimation of the nose tip as the
one with the maximum depth from the patch. If we let

�
to denote the set of all vertices within

the approximated region of interest of the facial data and let C denote the set of vertices of
the Coon’s surface patch, then the initial approximation of the nose tip could be formulated
as follows,

NTIPinit = max{d(pi, ej) : ∀pi ∈ ∀�
, ej ∈ C} (3)

Provided that, ej = min{d(pi, ej) : ∀ej ∈ C}. Since the Coon’s surface is composed of relatively
small number of vertices in order to keep computation to a minimum, the above formulation
only gives an approximation of the nose tip position. To improve our approximation we fit
a plane using the points ej recovered in Equation 3 and its neighbors ej0, ej1 and compute the
nose tip position as the point with maximum depth from the constructed plane. Figure 2(b)
illustrates this concept. Assuming that the nose tip is denoted by NTIP , the constructed depth
plane fitted is defined as ∏depth and n is the normal unit vector to the plane, then the tip of
nose is formulated as follows,

NTIP = max{d(vi, ∏depth) : ∀vi ∈ ∀�} (4)

where d(vi, ∏depth) is the Euclidean distance between a point vi on the surface of the face and
the constructed depth plane ∏depth.

(a) (b)

Fig. 2. Nose tip identification. (a) Initial estimation of nose tip based on depth measured
relative to the Coon’s patch. (b) Improving accuracy of nose tip positing based on fitting a
plane

This procedure enables us to neutralize the facial data with the tip of the nose residing at the
origin of a right hand coordinate system. In addition, the facial data can now be transformed
in the Cartesian coordinate system with a rotation vector r defined by two points NTIP, Nproju
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that respectively represents the nose tip and its projection on the depth plane with normal unit
vector u. Thus, once we identify the nose tip correctly, we then rotate the facial data such that
r becomes aligned with the z-axis of the Cartesian coordinate system.

3.1.4 Symmetry plane detection
To identify the symmetry plane, we assume that NTIP point lies on the symmetry plane.
In addition, we let a point ps1 be any arbitrary point that lies on the depth plane such that
ns = (NTIP − ps1)× (NTIP − Nproju)) where (NTIP − ps1), (NTIP − Nproju)) are two vectors
such that Nproju is the projection of NTIP into the depth plane and ns is the normal unit
vector resulting from their cross-product. Figure 3 illustrates this arrangement. Clearly both
depth plane and the initial symmetry plane with normal ns are perpendicular to each other.
Assuming that the initial symmetry plane defined by the point ps1 and its normal unit vector
ns denoted as ∏(ps1, ns) and recalling that ps1 is one of the points lying on the depth plane
then we make the following observations:

1. For a human face, the height dimension of the face is greater than its width.

2. It is clear that if the upper part of the face was considered, and the initial symmetry plane
was rotated around the z-axis, then the planner curve that is identified as the intersection
between the facial points and the initial symmetry plane with the minimum length will be
the symmetry profile.

(a) (b)

Fig. 3. Symmetry plane identification. (a) Facial surface with depth plane, and initial
symmetry plane. (b) Initial symmetry plane results from the nose tip, its projection into
depth plane, and an arbitrary point on the depth plane

Based on this arrangement, the initial symmetry plane is rotated by 2π around the z-axis and
computation is performed to verify the correct allocation of the symmetry plane. In order to
perform the rotation, we compute an angle θ where θ is the angle by which the symmetry
plane should be rotated each time. Recall that, the facial data is already aligned within the
Cartesian coordinate system with the nose tip residing at the origin. Therefore, if we assume
that the initial symmetry plane is defined by the three points NTIP, ps1, Nproju and recalling
that ps1 is one point on the depth plane then θ could be defined as θ = cos−1( d2

S2
t +d2 ) , where

d = d(ps1, NTIP) , and St is the tolerance value of the mesh. Defining θ to be dependent on
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the tolerance value of the mesh makes it more accurate regardless of how the meshes vary
in terms of their density. In addition, rotation of the initial symmetry plane based on a very
small value for θ minimizes the error value of the detected symmetry plane. Based on θ, the
number of rotations that need to be performed is then approximated as n = 2π

θ , Working
out the degree of rotations and the number of rations to validate the symmetry plane, the
algorithm proceeds as shown in Algorithm 1. Figure 4, provides an illustration for symmetry
plane detection algorithm.

Algorithm 1: Approximating Symmetry Plane

Let height = −100.0, length = 100.0 Let V
�

be a subset of the facial data that represents an
approximated central region of the face. ;
while Number of rotations ≤ n do

Find v0, v1 ∈ V
�

such that they both intersect initial symmetry plane at both ends of the
central region.;
Let v0p, v1p be the projected point of v0, v1 respectively into the depth plane, and
construct an initial symmetry plane based on the three points v0p, NTIP, v1p. ;
Find the planner curve p(l) that is resulting from the intersection of the Facial points of
the central region with the initial symmetry plane, and let plenght be the length of its
upper part. ;
if d(v0p, v1p > height and Plength) then

set height = d(v0p, v1p), length = Plength and store v0, v1 , as possible candidate for
symmetry plane points.;

end
rotate the initial symmetry plane by θ.;

end

(a) (b) (c)

Fig. 4. Improving symmetry plane identification. (a) initial symmetry plane, (b) rotating
symmetry plane and computing length of the curve. (c) the final symmetry profile

In order to analyze the symmetry profile extracted from the facial data, we fit a spline of the
form Pi = ∑ CiBi where B − i is a cubic polynomial and Ci are the corresponding control
points. This process of curve fitting to the extracted discrete symmetry profile data enables us
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to have a smooth curve passing through the discrete data. Once we have a smooth symmetry
profile, we analyze the profile by identifying local extreme points that corresponds to the nose
bridge and the lower point of the nose Figure 5.
Based on the symmetry profile, a profile that passes through the nose bridge and through the
eyes area can be extracted. Figure 5 shows the relation between the cross-sectional eyes profile
which passes through the point NB (nose bridge), and the symmetry profile.

Fig. 5. Symmetry profile analysis

An initial testing of the accuracy of the algorithm for detecting symmetry profile was carried
out based on reflective symmetry. Figure 6 illustrates this approach, which is similar to the
one used in (Gökberk et al., 2005) to detect a symmetry plane. As shown in Figure 6, it is
assumed that n = (nx, ny, nz) is the unit normal vector of the detected symmetry plane. If we
define a set of points P = {pi} to be the set of vertices that exist at one side of the symmetry
profile, and reflect these points around the symmetry plane, another set of Points Q, will be
obtained. Assuming the facial data is perfectly symmetric and the identified symmetry plane
is the correct one, then the average mid points of each point and its image {pi, qi} which is
denoted by mi could be computed using the parametric equation of line m = pi + α(qi − pi)
where α = 0.5 and the average error value is computed as Err = 1

n ∑n
1 d(∏, mi) , where

d(∏, mi) is the distance between the ith mid point and the detected symmetry plane ∏ in the
Euclidean space.
Figure 7 shows some extreme examples of the results of our algorithm on a set of images taken
from (Moreno & Sánchez, 2004). In the following section this technique will be further tested
by using the resulting features in comparing face images.

4. Profile-based face recognition

Scanned images can be of different poses within the coordinate system. Thus, in order to
carry out comparisons between these different scans, the scanned images have to be properly
aligned within the Cartesian coordinate. This process is carried out automatically by relying
in the proposed algorithm discussed in the previous section. Three feature points namely the
nose tip, Nose Bridge, and the lower edge of the nose are used to align the scanned image
within the Cartesian product. It is important to stress that the identification of these feature
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Fig. 6. Symmetry accuracy by calculating the midpoint between a surface point and its image
around the symmetry plane

Fig. 7. Visualizing correct identification of symmetry profile in different sample images

points on the symmetry profile is an approximation, in other words the allocated points may
not be very precise. However they are good enough for matching and registration purposes
as will be discussed and validated in the following section. The alignment of the images is
done by carrying out a rigid transformation of the dataset of the 3D points that make the
image. The transformation is carried out based on the symmetry profile and the nose tip and
is composed of a series of simple translations and rotations to end up with an image aligned
within the Cartesian coordinate with the nose tip residing at the origin and facing the positive
Z-direction as shown in Figure 8.
For comparisons purposes, it is important to point out that some facial regions are considered
more rigid and less sensitive to facial expression variation than others. Nose region for
instance, is considered relatively rigid compared with other regions such as the mouth. For
profile-based face recognition, the sensitivity of facial regions is even increasing and hence
seriously affecting the recognition accuracy, because regions are represented by space profiles.
The lower part of the symmetry profile for example is highly sensitive to facial expression
variations, while it is more rigid within the area bounded by NL and NB as shown in Figure 9.

105Processing and Recognising Faces in 3D Images



14 Will-be-set-by-IN-TECH

(a) (b) (c)

Fig. 8. Processing and registering 3D images (a) loaded face in arbitrary pose and orientation
(b) face is automatically processed and aligned with the nose tip residing at the origin (c) the
symmetry plane of the face

Fig. 9. Central part of the Symmetry profile

Similarly, cross-sectional profles that pass through the eyes area are highly sensitive to facial
variations. Thus, it is not reliable to use it for recognition purposes. So for our recognition
algorithm we use the central part of the symmetry profile which lies on the nose region
(Figure 9) and central part of the cheeks profile. The cheeks profile is simply the profile that
crosses the nose area at the mid distance between the points NB and NL. In order to minimize
the input data, we compute the Fourier coefficients of the designated profiles and store it in a
database, other than storing the actual points of the profile. Thus, having a database of images
representing different individuals where each person is represented by two profiles stored by
means of their Fourier’s. In real time the database file would be loaded into memory and
the profiles would be reconstructed according to the general form of Fourier series expansion
Equation 5.

f (t) =
1
2

a0 +
M

∑
n=1

an cos(nt) + bn sin(nt) (5)
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f (t) =
1
2

a0 +
M

∑
n=1

an cos(nt) + bn sin(nt) (5)
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M is chosen to be relatively small, such that the number of coefficients required to reconstruct
the curve is relatively much smaller than the number of 3D points that represent the profile.
Matching faces against each other is carried out by a profile-by-profile comparisons with
closest match selected. The comparison of the profiles is done point-by-point in the 3D space
similar to (Zhang et al., 2006). If we let Lp and Lg be two profiles representing the central
part of the symmetry profile of a probe and an image in the gallery respectively as shown in
Figure 10.

Fig. 10. Profile comparisons

Clearly the distance between the two polylines is directional, in other words the mean distance
between the two profiles Lp to Lg is not necessarily the same as the distance from Lg to Lp.
These distances are defined as

dpg =
1
n ∑

p1∈Lp

minp2∈Lg d(p1, p2) (6)

dpg =
1
m ∑

p2∈Lp

minp1∈Lp d(p2, p1) (7)

where n, and m represent the number of positions points on the profiles Lp and Lg , and
d(p1, p2) is the Euclidean distance between p1, p2. Thus, the similarity measure between the
two profiles can be formulated as

E =
1
2
(dpg + dgp) (8)

Based on Equation 8 the measure between two images is computed as

Etotal = Ecs + Ecc (9)
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where Ecs represents the similarity measure between the central part of the symmetry profiles
of the two images, and Ecc represents the similarity between the central part of the cheeks
profiles of the two images, and both measures are computed as in Equation 8.

5. Experiments and results

For experimental purposes a 3D platform has been developed using Microsoft Foundation
Classes (MFC), c++ and openGL. The platform is used to load 3D images, carry out the
features extraction and conduct the matching algorithm to search for the best match in
Database (Figure 11). In testing our processing and matching algorithm two experiments
were carried out using two different databases.

Fig. 11. Software for loading, processing and recognizing 3D Face images

5.1 Experiment 1
In the first experiment a database representing 22 different individuals was used. Each
individual in the database is represented by 5 images, each represent a different pose
(Figure 12). Only one profile was used to for comparing images, namely the central part
of the symmetry profile.

Fig. 12. Facial scans with different poses, (a) pose rotated by degree around the y-axis, (b)
rotated by degree around the z-axis, (c) rotated by degree around the y-axis, (d) rotated by
degree around the x-axis, and (e) aligned with the Cartesian coordinate.

Figure 13 shows a screen shot for the database file that we used in our experimentation. In this
experiment the first line in the file represents the number of images in the database. Individual
images are numbered consecutively and each number is followed by the Fourier coefficients
representing the central profiles of that person. Hence, in a recognition transaction, an image
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is loaded into our system, its features are extracted, the pose is aligned within the Cartesian
coordinate and finally the database file is loaded into memory and profiles are constructed
and compared against the image. In this particular experiment a 100% recognition rate was
achieved. This result was expected as the main face variation is due to the pose not to the
facial expression variation.

Fig. 13. Typical database file for 3D images used in the experiments

5.2 Experiment 2
In the second experiment we used gavabDB (Moreno & Sánchez, 2004) which is a public 3D
database of human faces. The database covers enough systematic variation in terms of facial
poses and facial expressions. Total number of individuals represented in the database is 60,
out of these, 45 are male with the remainder being female. Each individual in the database is
represented by 9 different images. In our experiment we only consider 7 images per person
and discarded two images/person from the database as only part of the face is available in
the image such as the left side or right side or the face.
Both profiles (central parts of cheeks and symmetry) are used in this experiment as shown in
Figure 14. In total 365 images were tested using our algorithm and were correctly identified,
which corresponds to an accuracy recognition rate equal to 86.90%. Inaccurate results were
due to the failure of the feature extractions algorithm to standardize the pose and hence
extracting the required profiles for comparing the images. In other words 55 different images
that were incorrectly identified were actually falsely rejected by the matching algorithm.
This raises the False Rejection Rate (FRR) of this experiment to 13.0% which is due to the
inaccurately identified features which result in relatively large error value between the profiles
of the compared images and result in rejecting the image.

Fig. 14. Two profiles used to compute similarity measure between two face images
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6. Conclusions and future work

In this chapter we introduced a new technique for processing 3D images of human faces
and extract certain features to be used for recognition purposes. In addition, we have
successfully demonstrated that utilizing rigid regions of a human face is very useful in terms
of improving recognition rates and minimizing the search space. The average processing
time for recognition was 10 seconds. This time includes, loading an image, processing it,
extract facial features, standardize the pose, load the database file and conduct the profile
comparisons.
Possible improvements to the current recognition system would include improving the
features extraction algorithm so that more features points are extracted automatically. In
addition, the algorithm should be improved to deal with low quality images. In our
experiments the algorithm failed when the images contains holes or spikes, simply because
this would lead to false identification of the tip of the nose and would essentially lead to false
identification of the rest of the features required.
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1. Introduction  
This chapter will address the challenges of real-time video face recognition systems 
implemented in embedded devices. Topics to be covered include: the importance and 
challenges of video face recognition in real life scenarios, describing a general architecture of 
a generic video face recognition system and a working solution suitable for recognizing 
faces in real-time using low complexity devices. Each component of the system will be 
described together with the system’s performance on a database of video samples that 
resembles real life conditions. 

2. Video face recognition 
Face recognition remains a very active topic in computer vision and receives attention from 
a large community of researchers in that discipline. Many reasons feed this interest; the 
main being  the wide range of commercial, law enforcement and security applications that 
require authentication. The progress made in recent years on the methods and algorithms 
for data processing as well as the availability of new technologies makes it easier to study 
these algorithms and turn them into commercially viable product. Biometric based security 
systems are becoming more popular due to their non-invasive nature and their increasing 
reliability. Surveillance applications based on face recognition are gaining increasing 
attention after the United States’ 9/11 events and with the ongoing security threats. The 
Face Recognition Vendor Test (FRVT) (Phillips et al., 2003) includes video face recognition 
testing starting with the 2002 series of tests.  
Recently, face recognition technology was deployed in consumer applications such as 
organizing a collection of images using the faces present in the images (Picassa; Corcoran & 
Costache, 2005), prioritizing family members for best capturing conditions when taking 
pictures, or directly annotating the images as they are captured (Costache et al., 2006). 
Video face recognition, compared with more traditional still face recognition, has the main 
advantage of using multiple instances of the same individual in sequential frames for 
recognition to occur. In still recognition case, the system has only one input image to make 
the decision if the person is or is not in the database. If the image is not suitable for 
recognition (due to face orientation, expression, quality or facial occlusions) the recognition 
result will most likely be incorrect.  In the video image there are multiple frames which can 
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be analyzed in order to have greater recognition accuracy. Even if some frames are not 
suitable for recognition there is a high probability that some of them will work and the 
decision made will have a high degree of confidence. Once a face is recognized, it remains 
recognized in the scene by tracking techniques. 
The disadvantage in the video imaging technique is in most cases the quality and size of the 
input frames are inferior compared to the still images. 

2.1 General architecture of a VFR system 
Most face recognition systems for still and video image technology follow the same classical 
workflow: 
1. The faces have to be detected in the images.  
2. The faces are normalized to the same size and usually same in-plane orientation. 

a. Before or after (2), a pre-processing step tries to minimize the effect of illumination 
over the face.  

3. Features are extracted from the facial region. 
4. Test faces are compared with a database of people.  
The first difference between the video and still image technology is that video scenarios can 
use a tracking algorithm together with a detection algorithm in order to keep track of all the 
faces in the video sequence.  Using face tracking combined with face detection has three 
main advantages: 
1. It allows the system to follow the faces across a wide range of variations in pose and 

lighting where tracking can be done easier than detection. 
2. The time and memory requirements of a face tracking algorithm are lower than those of 

a face detection algorithm. Freed resources can be accessed once a face is detected in a 
frame. Tracking from that moment forward is a very important aspect when achieving 
real-time functionality. 

3. Once a face in a particular frame is recognized with a high degree of confidence, that 
particular face does not need to be processed for the next frames. Only track the face 
and keep the association between the recognized person and the tracked face. 

In the classification stage of the video imagery, a history of the recognized face offers greater 
accuracy than that of a still image.  
Figure 1 shows a typical architecture of a video face recognition system. 
Below are brief descriptions of each component together with the requirements that need to 
be satisfied in order to have a robust real-time face recognition system which can be 
integrated into an embedded device. 

2.1.1 Face detection & tracking 
The face detection and tracking component is very important in designing the recognition 
system. The properties of the detection algorithm (detection rate, robustness to variations, 
speed and memory requirements, etc.) will directly affect the properties of the overall 
recognition system. It is clear that undetected faces will not be recognized. Also considering 
the goal of real-time functionality on embedded devices where limited resources are 
available, spending most of that early on will reduce the application of the other blocks in 
the diagram in real time. 
The main challenges associated with the detection and tracking algorithm are determined by 
the following factors:  
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Fig. 1. Architecture of a VFR system 

- Face orientation (pose). The appearance of the face may differ in many ways when the 
orientation of the face changes from frontal to profile or extreme view angles, where 
face components like the eyes, the nose or the ear may be occluded. It is difficult to 
detect a face at these extreme angles although face tracking is achievable. 

- Changes in facial appearance. Examples include beards, moustaches or glasses. Women 
may use make-up which can significantly alter the face color and texture. These factors 
together with the potential for variability in shape, size or color of the face makes face 
detection challenging. 

- Facial expression. The appearance of the face is directly affected by the person's facial 
expression. Tracking has to be robust to these variations as it is likely to be encountered 
in normal consumer videos. 
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- Occlusions. Different components from the face may be occluded in the image by other 
objects or faces. These have to be addressed by the tracking algorithm. 

- Capture conditions. Factors that are involved in capturing the image such as lighting 
conditions, camera characteristics or quality of the captured image may have a big 
influence in the detection process. 

- Face size or distance to subject. For video face detection and tracking consider the 
capture resolution and the distance from the capture equipment to the subject. For 
normal working resolution (qVGA, VGA) the faces can be very small even for relatively 
short distances. 

The detection algorithm should have a high detection rate and robustness to variations such 
as changes in appearance, capture conditions and face size. The tracking algorithm should 
improve the robustness to face orientation, expressions and occlusions. 
All the above requirements are difficult to fulfil especially for real-time scenarios in embedded 
devices. In the last few years there has been much progress in this area and now face detection 
and tracking is a common feature in most consumer cameras and mobile phones. 
Tessera’s OptiML™ Face Tools Face Tracking and Face Recognition technologies represent a 
perfect example of state-of-the-art technology in this area. 
Some of the relevant parameters of Tessera’s Face Tools technology that affect the 
performance of the overall recognition system include: 
- Face tracking for up to 10 faces per frame, with less than 0.1 seconds lock time  
- Minimum face size: 14x14 pixels 
- Real-time face tracking up to 30 frames per second  
- Faces detected in a wide range of orientations including rotation-in-plane and out-of-

plane 
Together with the detection rate, another metric used to describe the performance of a face 
detection algorithm is the false positive rate which represents the number of regions falsely 
reported as faces by the algorithm.  
The false positive rate is not as important as the detection rate because the recognition 
algorithm should be able to differentiate between faces and non-faces when trying to 
classify the false positive candidates. 

2.1.2 Geometric normalization 
It is very important to detect and track the faces in all conditions and variations. When 
comparing local regions between faces, an image registration step must be performed so 
corresponding facial features are synchronised.  
Simple geometric normalization usually involves bringing the faces to a standard size and 
rotating them in-plane in order to bring the eyes on the same horizontal line. Figure 2 shows 
some face samples before and after applying the geometric normalization. 
More complex normalization scenarios (Corcoran et al., 2006b) can use 3D face models to 
rotate the face in the out-of-plane space to have identical orientation (i.e only frontal faces). 
This will have a higher computational requirement and could only be used when there is 
enough processing power. Figure 3 shows an example of the output of this complex 
normalization which can help recognition for large pose variations. 
All other processing steps applied after geometric normalization should have the same 
affect on each face. 
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perfect example of state-of-the-art technology in this area. 
Some of the relevant parameters of Tessera’s Face Tools technology that affect the 
performance of the overall recognition system include: 
- Face tracking for up to 10 faces per frame, with less than 0.1 seconds lock time  
- Minimum face size: 14x14 pixels 
- Real-time face tracking up to 30 frames per second  
- Faces detected in a wide range of orientations including rotation-in-plane and out-of-

plane 
Together with the detection rate, another metric used to describe the performance of a face 
detection algorithm is the false positive rate which represents the number of regions falsely 
reported as faces by the algorithm.  
The false positive rate is not as important as the detection rate because the recognition 
algorithm should be able to differentiate between faces and non-faces when trying to 
classify the false positive candidates. 

2.1.2 Geometric normalization 
It is very important to detect and track the faces in all conditions and variations. When 
comparing local regions between faces, an image registration step must be performed so 
corresponding facial features are synchronised.  
Simple geometric normalization usually involves bringing the faces to a standard size and 
rotating them in-plane in order to bring the eyes on the same horizontal line. Figure 2 shows 
some face samples before and after applying the geometric normalization. 
More complex normalization scenarios (Corcoran et al., 2006b) can use 3D face models to 
rotate the face in the out-of-plane space to have identical orientation (i.e only frontal faces). 
This will have a higher computational requirement and could only be used when there is 
enough processing power. Figure 3 shows an example of the output of this complex 
normalization which can help recognition for large pose variations. 
All other processing steps applied after geometric normalization should have the same 
affect on each face. 
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Fig. 2. Geometric normalization (Before (top), After (bottom)) 
 

 
Fig. 3. Complex geometric normalization 

2.1.3 Illumination normalization 
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than those used in video imagery. A pre-processing algorithm should be used to minimize the 
effect of the lighting conditions when capturing the video images.  
Depending on the resources available and capturing conditions, the illumination 
normalization algorithm can vary from simple algorithms such as: histogram equalization 
(HE), contrast limited adaptive histogram equalization (CLAHE) (Pizer et al., 1987; Corcoran 
et al., 2006a), logarithm transformed combined with suppressing DCT coefficients (LogDCT) 
or retinex (Land, 1986) based approaches, to more complex algorithms that can model the 
effects of lighting over facial regions (Lee et al., 2001; Smith & Hancock, 2005). 
For embedded devices the simple normalization is a good compromise between execution 
speed and robustness to lighting variations. 
Figure 4 displays the output of simple normalization techniques for two images affected by 
extreme side illumination. 
An important issue to be considered when designing an illumination normalization 
algorithm is the balance between minimizing the effect of illumination and the inherent loss 
of information; information which is useful for classification. For instance, a face may 
appear dark because of dark lighting conditions or because the person has dark skin. 
Usually after normalization this information may not be recovered. 
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Fig. 4. Simple illumination normalization examples 

The validation sets for most of the algorithms that try to minimize the effect of lighting (i.e. 
Yale database (Georghiades et al.,2001) ) consists of faces captured in very different lighting 
conditions where the normalization algorithms have better results compared with using the 
original faces without illumination normalization. In real life conditions, the faces can be 
compared to similar lighting conditions where applying the illumination normalization 
should not have a negative impact over the recognition results. 
It is very important to have a validation set that has a variation distribution close to those 
most likely to be encountered in the scenarios that the recognition system is designed for. 

2.1.4 Feature extraction 
Together with the useful information that can be used to differentiate between individuals, 
the face images described by the pixel values contain redundant information and 
information that can be ignored in the classification stage. By extracting only the useful 
information in this step we improve the accuracy of the recognition and also lower the 
storage requirement for each face. 
Below are the main requirements for the feature selection algorithm: 
- Good discriminative property. The features need to be able to differentiate between 

people. This translates into large variations between the value distributions for each 
person. 

- Consistency. Features should not be modified between different images of the same 
person. This allows for recognition accuracy across large variations. Quantitatively this 
translates into small variation in the feature distribution for multiple faces of the same 
person. 

- Small size. These features need to be stored and compared. Small size will allow fast 
comparison and low storage requirement.  

- Fast computation. In order to achieve real-time recognition in video images, the faces 
need to be processed quickly. 

The first two requirements will improve the accuracy of the recognition system and the last 
two requirements will ensure real-time recognition  in embedded devices.  
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Classical approaches for still image recognition were also applied to the video image 
scenario with good results. These include: Principal Component Analysis (PCA) (Turk & 
Pentland, 1991), Linear Discriminate Analysis (LDA) (Belhumeur et al., 1996) and Discrete 
Cosine Transform (DCT) (Podilchuk & Zhang, 1996). 
The DCT approach is of particular interest because of the speed of DCT transformation. 
Most of the capturing devices have DCT already implemented as part of JPEG compression 
module for storing captured images. More recent approaches like Local Binary Patterns 
(LBP) (Ojala et al., 2001) and Histogram of Oriented Gradients (HOG) (Lowe, 2004) have 
been used for face recognition.  

2.1.5 Classification 
In the case of still image recognition, the system makes a decision if the test face belongs to 
one of the people in the database and if so, which one (based on comparing the features 
computed in the previous step for test faces and a database of people).  
In the case of video image recognition, the system compares the series of test faces with 
those in the sample database. Most commonly this is implemented as a series of still images 
derived comparisons and at each frame the confidence of our decision is modified based on 
the history of previous comparisons. 
Simple classification algorithms like distance between feature vectors are preferred because 
of their simplicity and speed. More complex learning algorithms can be used if there are 
enough computation resources.  
The classification algorithm is divided into two stages: 
1. Training. Prototypes are constructed for each person in the database. The prototypes 

can be built from single or multiple face samples. Using multiple samples improves the 
quality of the prototype. The prototype can be represented by a series of feature vectors 
(such as distance-based classification) or can be represented by statistical models 
trained with multiple samples (such as learning-based classification algorithms). 

2. Testing. Test samples are compared with each person prototype and similarity scores 
are computed. A decision is made using these similarity scores and the history of 
previous scores.  

If, for a specific scenario, there is a fixed database that does not modify or update on the 
same platform where recognition is executed, a more complex algorithm for training can be 
used (i.e. training a learning algorithm) and performed offline. The result of this training 
algorithm is used during the recognition phase. When the database needs to be updated on-
line at any time, the training algorithm needs to be less complex to be run on the embedded 
device. The result of the training algorithm, either the feature vectors or the person model, 
needs to be stored in the training database. This will influence the storage requirement of 
the recognition system. 
An interesting algorithm that can be used for video face recognition is to model not only the 
appearance of the person at each frame but also the transition from frame to frame. A multi-
dimensional Hidden Markov Model (HMM) (Nefian & Hayes, 1998) is used in order to 
model this type of transition. At the moment the complexity of HMMs makes it less 
favourable for embedded implementation. 

2.2 Performance testing 
Comparing two face recognition systems is a difficult task because there are many 
parameters that can describe the performance of a particular recognition system. Usually 
one system or the other is superior using different sets of parameters.  



 
New Approaches to Characterization and Recognition of Faces 

 

122 

Depending on the specific application where the recognition system is deployed, some 
specific performance metrics are more important than others. For example, a security system 
based on face recognition will have, as a main priority, a very low false acceptance rate, 
whereas a photo sorting application implemented on an embedded platform based on face 
recognition, will have its priorities of high recognition rates and low complexity. 
The performance of a recognition system can be described by two types of parameters: 
accuracy parameters that describe how accurate the system is in recognizing faces and 
technical parameters that represent characteristics such as how fast the system will process a 
face, etc. 
Some of the accuracy parameters that can be used to describe a video face recognition 
system include: 
- Recognition rate. This is the main measurement to describe the accuracy of a 

recognition system. It represents how many faces are correctly recognized from the total 
number of faces. For video recognition this is a little more complex as it can be 
computed as the total number of frames where the faces are recognized.  

- False positive rate. For specific applications this parameter can be more important than 
the recognition rate. This is usually computed as the number of mistakes made by the 
system.  It can be further classified as a false acceptance rate in verification applications 
where an unknown individual is classified as one person from the database and as a 
false rejection rate where a person from the database is classified as unknown. 

- Receiver Operating Characteristic (ROC) curve. In most cases there is a trade-off 
between the recognition rate and a false positive rate. For a high recognition rate, tune 
the recognition system to increase the recognition rate.  This will inevitably increase the 
false positive rate as well and the other way around. The ROC curve represents the 
recognition rate for each possible false positive rate and only by displaying the ROC 
curves can a comparison of the two recognition algorithms be made. 

- Minimum face size to be detected and recognized. When working with normal video 
resolution the faces can be very small, even at short distances from the capture 
equipment. Imposing a high minimum size for the face in order to be recognized can 
lead to a high rate of faces that are ignored or not recognized in the video images. 

- Range of pose variations to recognize a face. Depending on the application to apply the 
recognition, a higher or lower range of pose variations is needed to recognize the faces. 

There are many technical parameters that can be used to describe a video face recognition 
system including: 
- Processing time. This represents the time required to detect, process and classify all faces 

in a frame. This parameter depends on the platform where the recognition is implemented 
and will dictate if real-time functionality is available or not. For video frames, the time 
available for real-time recognition is the time between consecutive frames. 

- Memory requirements. This represents the storage requirement for the system and 
includes the size of the feature vectors, person prototypes and other constants used in 
the algorithm. 

- Number of faces recognized in each frame. The time required for detecting all faces in a 
frame is constant. This parameter will be influenced by the time required to process and 
recognize one face after it is detected.  

The accuracy parameters depend on the database used for testing and the technical 
parameters depend on the specific platform where the recognition system is implemented. 
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Without using the same database and same platform, two recognition systems cannot be 
compared only by the performance parameters. 

3. Proposed recognition system 
The goal is to build a video face recognition system running in real-time on low 
computational power embedded platforms capable of recognizing multiple faces in video 
sequences. The main use case scenario intended for this system is tagging faces in consumer 
images as they are captured by digital cameras and mobile phones. The main requirements 
for the recognition system are high recognition rate, high robustness to variation types and 
low computational complexity for the algorithms used in the system. For this scenario, the 
input video stream can vary in size from small (qVGA) to high (full HD). Faces can also vary 
in size from tens of pixels in width to hundreds of pixels. Large variations in face pose, 
expression and illumination are also likely to be present. 
Tessera’s Face Tracking and Detecting technology is used in this experiment (Tessera, 2010). 
For geometric normalization, a computationally attractive approach is used, which involves: 
gray-scale transformation of the image, rotation of the face image to align the eyes on 
horizontal direction and resizing the face image to a small fixed size (i.e. 32x32 pixels). This 
size will allow for recognition of faces at a range of distances from the camera. 
To minimize the effect of lighting variations, use a variant of the retinex (Land, 1986) 
illumination normalization algorithm. This is done by using a fixed variance matrix computed 
offline from a large database of images. This approach is very fast to apply and insures that the 
features computed in the next stage are  more robust to large variations in illumination. 
The features used for classification, in this chapter, are a variant of the Local Binary Pattern 
(LBPs) (Ojala et al., 2001) features which have been recently employed, with good results, 
for face recognition (Ahonen et al., 2006).  
The classic approach of using LBP features in face recognition involves computing these 
features for each pixel in the face image, dividing the face image into small regions 
(separated or overlapped), and for each region computing the distribution of the LBP 
values. Often, only a small subset of all the features is used (uniform LBPs) in order to 
compute the region distribution. The classification involves comparing these distributions 
between corresponding regions from the test faces and the face samples used to build the 
prototypes in the training stage. 
One approach is completely different. It is based on selecting from all possible features, 
those features that maximize the two properties defined in Section 2.1.4, namely: consistency 
and discriminancy. The training stage is split into two stages: 1) Off-line training, using a 
very large database of faces, in order to determine and select the most consistent features. 2) 
On-line training, using the face samples in the database that need to be recognized.  
The weights for each selected feature are computed in the off-line stage, each weight 
representing how discriminating the respective features are for the people in the database. 
Look for the best features that are globally consistent for a very large database (off-line) of 
people and weight them according to how well they can discriminate for a given database 
(on-line). Both training stages are presented in the next sections. 
For classification a similarity measure between two faces is computed by looking for 
identical corresponding features in the off-line training stage. For each identical feature 
value add the similarity between the energy of the features multiplied by the weights 
computed in the on-line training stage. 
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3.1 Feature extraction – LBP features 
The Local Binary Patterns (LBP) (Ojala et al., 2001) features have been used in the system. 
These features are computed based on comparing the central pixel with its neighbours, 
concatenating the binary comparison results and computing the decimal number from the 
binary string. 
Figure 5 shows how the feature is computed from an image. 
 

 
Fig. 5. LBP feature. 

The LBP features extract local information from the face region and due to the binary 
comparisons are robust to changes in illumination. 

3.1.1 Multi-scale LBPs and extended LBPs 
In order to capture more information from the face region, features are computed at different 
face resolutions beginning with the standard size used for geometrical normalization, down to 
smaller scales by downsampling the face image with different factors (i.e. 2, 4 etc). The LBP 
feature are extracted at each resolution using their 8 closest neighbours together with their 
extended variants using 8 more distant neighbours. Figure 6 illustrates an example of the 
normal LBP feature together with its first order extended LBP feature. 
 

 
Fig. 6. LBP and Extended LBP 

For each pixel in the normalized face image, compute multiple feature values. Do the same 
for the other scales. 

3.1.2 LBP energy 
The binary comparisons used for computing the features make them very robust to 
illumination variations. They also cause loss of information about the similarity of the local 
regions. For example, a very strong feature will have same value as a very faded feature. For 
this, calculate the normalized energy of the feature that will be used when comparing 
identical features for similarity between faces. The energy is computed using the formula: 

 e = ∑Ii2/max(I i2) (1) 

11111010 
Decimal: 250 

LBP

Extended LBP
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where Ii represents the value of the neighbour pixel i used when computing the feature. 
The energy is computed for both normal LBP and extended LBP.  
Because small size face images are used, the features are not grouped  in the face image by 
dividing the face into regions, but the corresponding features are compared for 
classification. The features are corresponding if they are computed at the same location, 
same scale and if they are normal or extended.  
The feature vector after this analysis consists of the normal and extended LBPs computed at 
each location and at each scale together with their energies.   

3.2 Off-line training – consistency analysis 
Good features are those that do not change between images of the same person. This 
increases the accuracy of the recognition for different variations of the facial image. 
This algorithm ranks a set of features given a large database of facial images. The order of 
the features is given considering their intra-class variation from low to high. The first 
features will be the most consistent between faces of same individuals. For recognition these 
features are more robust to variations. 
Assume there is a collection of m people (P1, P2, ...Pm), each with multiple facial images. For 
each face compute all N possible features described in the previous section (normal and 
extended LBPs at all resolutions). Note the feature vector for person Pi image j as: 

 Fij = (Fij1, Fij2... FijN) (2) 

The features in the system are the LBP features. This algorithm can be extended to any other 
type of feature or combinations between features. Below is the general form of the 
algorithm. 
For each feature, define a measure of intra-class consistency S=(S1,S2,…,SN) 
The steps of the algorithm are:  
- Reset all scores. 

 S = (0) (3) 

- Update scores.  For every feature k, for every person i, for every m image of person i: 
 Compare the feature Fimk with the same feature k of the remaining j images of 

person i (Fijk with j=1:Ni) where Ni is the number of images for person i.  
 If |Fimk - Fijk| < thr then increment Sk 

 Sk = Sk+1 (4) 

At the end of this process order all features according to their score. Depending on the 
constraints, either keep a fixed number of features for classification in the latter stage or 
impose a threshold over the consistency measure. 
The |Fimk - Fijk| term represents the distance between the feature values. In this case, search 
for identical features so thr = 0. For other types of features, a distance measure needs to be 
defined and a suitable thr needs to be chosen. 
For best results, meaning best globally consistent features, the input database should be very 
large with all types of variation. Because it is executed off-line it does not affect the speed 
performance of the overall system.  
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3.3 On-line training – discriminative analysis 
Together with consistency, the features also need to be able to discriminate between the 
people in the database. The same value for one feature across a database means both perfect 
consistency and no discriminative power. This algorithm assigns weights to each previously 
selected feature. The weights determine how well the feature can discriminate between the 
person in the database and which can be used in the classification stage. 
Apply this algorithm to any type of feature using a suitable distance measure. The algorithm 
description is generic. 
Assume m people in the database (P1, P2, ...Pm),  each with at least one representative facial 
image.  For each face, N representative features selected by the off-line training procedure 
and their corresponding discriminative scores. For example, for person Pi we have: 
- feature vector Fi=(Fi1,Fi2,…,FiN)  
- score vector Si=(Si1,Si2,…,SiN) 
The steps of the algorithm are:  
- Reset all scores. 

 Si = (0), i = 0...m (5) 

- Update scores. For every feature k, for every person i,  
 Compare the feature Fik with the same feature k of the remaining people (Fjk with 

j=1:N) 
 If |Fik - Fjk| > thr then increment Ski 

 Ski = Ski+1 or or Ski = Ski + |Fik - Fjk|  (6) 

In order to make these scores independent of the number of people and faces in the database, 
normalize them using the maximum sum of scores for a person using the next equation where 
N represents the number of features and m the number of people in the database: 

 Ski = Ski/max(sum(Sln)n=1:N)l=1:M (7) 

The same observations from the previous section for the terms: |Fik - Fjk| and thr are valid. 
In the case of searching for identical LBPs, the parameter thr = 0. 

3.4 Classification 
Having computed the features described in Section 3.1 and the discriminative scores of all 
features selected in Section 3.2, using the algorithm described in the previous section,  
compute a similarity (Sij) between two faces (trained face fi and test face fj) by counting how 
many identical corresponding features there are between the two faces using this formula: 

 Sij = ∑wk*|eik – ejk|*gij,, k=1:N (8) 

where: 
- gijk is equal to 1 if feature k is identical between faces i and j, and 0 otherwise. 
- eik, ejk represent the energy of the feature k from image i and j respectively computed 

using eq. (1). 
- wk represents the discriminative score for features k of trained face i.  
Comparing the test face with all face samples from the trained database, return the most 
similar person with the test face. By imposing a decision threshold, control the recognition 
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similar person with the test face. By imposing a decision threshold, control the recognition 
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rate versus the false positive rate, depending on the application mentioned in Section 2.2. 
Once the similarity measure between the test face and the most similar person from the 
database is higher than the decision threshold, decide that the face is recognized and 
continue or not the recognition process over the next frames. 

4. Results 
In order to assess the performance of the recognition system a large database of videos with 
systematic variations was used, including: pose, illumination, face size/distance to subject, 
and facial expressions. 
In the training stage, a single image was used to train each person. The training face is 
frontal, good size, normal illumination and good quality. Tests were run for different 
numbers of people in the database from low (3) to high (100).  
For each test, the recognition rate (RR) was measured, as the number of correct 
classifications, false positive rate (FP2) as wrong classifications and undecided rate (MD) as 
number of test faces which were not classified. 
Figure 7 shows the recognition and error rates as a function of head yaw angle. As specified 
above, training was conducted at head yaw angles of zero degrees and testing was done 
with 0, 10, 20 and 30 yaw angles. 
 

 
Fig. 7. Recognition performance for different yaw angles 

Figure 8 shows the recognition and error rates as a function of head pitch angle. Training 
was conducted at head pitch angles of zero degrees. 
Figure 9 shows the recognition and error rates as a function of different facial expressions. 
The training faces had no facial expression. 
Figure 10 shows the recognition and error rates as a function of different illumination 
conditions. The approximate EV values for the given conditions are: LowLight (2.4EV) and 
StrongLight (9EV), which can be considered extreme lighting conditions. Training was 
conducted using normal indoors ambient lighting. 
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Fig. 8. Recognition performance for different pitch angles 

 
 

 
 

Fig. 9. Recognition performance for different face expressions 

The main technical parameters for the system were implemented on an ARM9 platform (266 
MHz CPU), the processing time for a face depending on the size of the input frame varied 
between 8 and 15 milliseconds for qVGA and VGA input frame size which is well within 
real-time requirements. The size of the features vector for each analyzed face is about 2Kb 
which is very small.  
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Fig. 10. Recognition performance for illumination conditions 

5. Conclusion  
This chapter presented the challenges of implementing a real-time video face recognition 
system on an embedded platform. The first section presented the main issues that need to be 
addressed when designing such a system and possible solutions. The second part described 
a working solution based on using LBP features which are fast to compute, robust to 
variations and able to extract useful information from the face region. In order to obtain a 
robust recognition system, only the features which have the same value across multiple 
variations of the same person were extracted.  In order to increase the accuracy of the 
system, weights were associated to the selected features based on their discriminative power 
between the people from the database. 
Results for this system were tested and implemented on an embedded platform, which 
shows good accuracy across large variations of the input data and technical parameters 
which satisfy the condition for real-time processing.   
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1. Introduction 
This chapter addresses an improved approach to video face recognition (VFR). Techniques 
to recognize faces in video streams have been described in the literature for more than 20 
years (Wang et al., 2009). Early methods were based on the still-to-still techniques which 
aimed at selecting good frame and did some relative processing. Recently researchers began 
to truly solve such problems by spatio-temporal representations. Most of the existing 
systems address video-based face recognition problems as follows: First, detect face and 
track it over time. Sometimes selecting good frames which contain frontal faces or valued 
cues is necessary. Next, when a frame satisfying certain criteria (size, pose, illumination and 
etc.) is acquired, recognition is performed, sometimes, by using still-to-still recognition 
technique. Figure 1 shows the whole process. In addition, some methods also utilize 
combination cues, such as audio, gait and so on, to make a comprehensive analysis and take 
decision (Yang & Waibel, 1996). 
 

 
Fig. 1. Video based Face recognition system 

The system proposed in this chapter employs the neural network techniques for both face 
detection and recognition. The face detector uses the frame color information while a 
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grayscale frame is required for the recognition process. The two essential processes are 
implemented in real time using FPGA to achieve the requirement of video processing. A 
short description of the proposed system is described in the following sections. Section 2 
includes a short introduction on face detection and tracking. After that, a concentration on 
the recognition process which is based on using the Convolutional Neural Network (CNN) 
is presented in the rest of this chapter. 

2. Face detection and tracking 
Real-time face detection is important in the video-based face detection. A real-time face 
detection methods can uses color information to detect and validate human face (Dawwd et 
al., 2008; Dawwd, 2009). A hybrid adaptive face detection system which combined the 
advantages of knowledge based and neural methods is presented in face detection process. 
This system is a special-purpose object detector that can segment arbitrary objects in real 
images with a complex distribution in the feature space in real time. This is achieved after 
training with one or several previously labeled image(s). The adaptive segmentation system 
uses local color information to estimate the membership probability in the object, 
respectively, background class. The system can be applied to detect and to localize the 
human face in colored images in real time. To increase the detection speed, the system is 
implemented primarily in hardware using FPGA techniques (see Fig. 2). 
 

 
Fig. 2. Face Detector 

Here, a method to detect skin color is presented. The skin detector uses a multi layered 
perceptron (MLP) with three inputs, one hidden layer and two output neurons (see Fig. 3). 
Each pixel is represented by either RGB (red, green and blue) or Yuv color components. 
These three color components are used as inputs by the neural network. The network output 
is given by: 
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where φj(X) is the output of the j-th hidden neuron, and cj is the synaptic weight of the output 
neuron. To estimate the neural network parameters (i.e. synaptic weights and biases), a 
training set containing thousands skin and non-skin pixels was extracted from set of images. 
The network was trained using backpropagation algorithm. The generalization ability of the 
trained network is tested using a set containing several thousands of skin and nonskin pixels. 
The training and test sets were extracted from images containing skin colors of people from 
different races and under different lighting conditions. The final block of Fig.2 focus on the 
geometric face shapes of the segmented skin regions to distinguish them from the regions 
other than faces. Once the face is detected, then it can be traced afterward. Color and shape are 
important cues for tracking, based on which many methods are proposed, in (Yang & Waibel, 
1996) a review of different robust face detectors and trackers are introduced. 
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Fig. 3. Neural Network structure for pixel skin detection 

3. Convolutional neural network 
Convolutional neural networks (CNN) with local weight sharing topology gained 
considerable interest both in the field of speech and image analysis. Their topology is more 
similar to biological networks based on receptive fields and improves tolerance to local 
distortions. Additionally, the model complexity and the number of the weights are 
efficiently reduced by weight sharing. This is an advantage when images with high-
dimensional input vectors are to be presented directly to the network instead of explicit 
feature extraction that results in reduction which is usually applied before classification. 
Weight sharing can also be considered as alternative to weight elimination in order to 
reduce the number of the weights. Moreover, networks with local topology can more 
effectively be migrated to a locally connected parallel computer than fully connected 
feedforwared network (Neubauer, 1998). 
The term CNN is used to describe an architecture for applying neural networks to two-
dimensional arrays (usually images), based on spatially localized neural input. This 
architecture has also been described as the technique of shared weights or local receptive 
fields (Browne & Ghidary, 2003).The concept of sharing weights is that, a set of neurons in 
one layer using the same incoming weight. The use of shared weights leads to all these 
neurons detecting the same feature, though at different positions in the input image 
(receptive fields); i.e. the image is convolved with a kernel defined by the weights. The 
weight sharing technique has the interesting side effect of reducing the number of free 
parameters, thereby reducing the capacity" of the machine. Weight sharing also reduces the 
gap between test error and training error. This advantage is significant in the field of image 
processing, since without the use of appropriate constraints, the high dimensionality of the 
input data generally leads to ill-posed problems. Processing units with identical weight 
vectors and local receptive fields are arranged in a spatial array, creating architecture 
parallels to models of biological vision systems (Fukushima & Miyake,1982). 

4. Neocognitron neural network 
Fukushima (Fukushima & Miyake, 1982) were amongst the first to experiment with 
convolutional neural networks and obtained good results for character recognition by 
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applying convolutional neural networks within an image pyramid architecture: processing 
layers alternate between convolution and sub-sampling. This architecture is called 
Neocognitron. This multi-scale architecture has been now widely adopted and appears to 
provide a robust representation in many object recognition problems. A practical 
architecture of the Neocognitron is shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Neocognitron main layers and  receptive fields 

Each layer extracts certain shape-features, as for example edge orientation, from a localized 
region of the preceding layer and projects the extracted information to the next higher layer. 
The complexity and abstractness of the detected features grow with the layer height, until 
complicated objects can be recognized. A layer consists of a number of feature planes, each 
of which is assigned to recognize one specific image feature. 
Neurons belonging to the same plane are identical in the sense that they share the same 
synaptic weights. This architecture, showing a high degree of self-similarity, seems 
particularly dedicated to be implemented on a parallel hardware platform. 
For simplicity, another illustration of the Neocognitron when the feature planes are 
arranged serially and the receptive fields are represented as circles is shown in Fig.5. Note 
that the modified Neocognitron (MNEO) is proposed and implemented in this chapter. 
The Neocognitron consists of a cascade connection of a number of modular structures 
preceded by an input layer Uo. Each of the modular structures is composed of two sub-layers 
of cells, namely a sub-layer Us consisting of S-cells, and a sub-layer Uc consisting of C-cell (S-
cells and C-cells are named after simple cells and complex cells in physiological terms, 
respectively). Regard to CNN cells and layers names, S-cells refer to cells in convolution layers 
whereas C-cells refer to cells in down-sampling layers. In the Neocognitron, only the input 
interconnections to S-cells are variable and modifiable and in contrast to the down-sampling 
layers in CNN, the input interconnections to C-cells are fixed and unmodifiable. 
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Fig. 5. Schematic diagram illustrating the structure of the Neocognitron 

4.1 Cells employed in the neocognitron 

All the cells employed in the Neocognitron are of analogue type: i.e., the input and output 
signals of the cells have non-negative analogue values. Each cell has characteristics 
analogous to a biological neuron. In the Neocognitron, four different types of cell are used, 
i.e., S-cells, C-cells, Vs-cells and Vc-cells. 
An S-cell has a lot of input terminals, either excitatory or inhibitory. If the cell receives signals 
from excitatory input terminals, the output of the cell will increase. On the other hand, a signal 
from an inhibitory input terminal will suppress the output. Each input terminal has its own 
interconnecting coefficient whose value is positive. Although the cell has only one output 
terminal, it can send signals to a number of input terminals of other cells. 
An S-cell has an inhibitory input which causes a shunting effect. Let u(1), u(2),…….u(N) be 
the excitatory inputs and v be the inhibitory input. The output w of this S-cell is defined by 
(Fukushima & Miyake, 1982): 
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where a(v) and b represent the excitatory and inhibitory interconnecting coefficients, 
respectively 
The cells other than S-cells also have characteristics similar to those of S-cells. The input-to-
output characteristics of a C-cell are obtained from the last equation if we replace φ[ ]  by   
ψ[ ], where ψ[ ] is a saturation function defined by: 
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The parameter  is a positive constant which determines the degree of saturation of the 
output. In the computer simulation and in hardware implementation, the parameter  is 
chosen to be equal to zero. S-cells and C-cells are excitatory cells, i.e., the output terminals of 
these cells are connected only to excitatory input terminals of other cells. On the other hand, 
Vs-cells and Vc-cells are inhibitory cells, whose output terminals are connected only to 
inhibitory input terminals of the other cells. A Vs-cell has only excitatory input terminals 
and the output of the cell is proportional to the sum of all the inputs weighted with the 
interconnecting coefficients. That is a Vs-cell yields an output proportional to the (weighted) 
arithmetic mean of its inputs. A Vc-cell also has only excitatory input terminals, but its 
output is proportional to the (weighted) root-mean-square of its input. Let u(1), 
u(2),…….u(N) be the inputs to a Vc-cell and c(1),c(2),…….c(N) be the interconnecting 
coefficients of its input terminals. The output w of this Vc-cell is defined by: 

 2

1
 ( ). ( )

N

v
w c v u v


   (4) 

4.2 Formulae governing the network 

S-cells have inhibitory inputs with a shunting mechanism. The output of an S-cell of the kl-th 
S-plane in the l-th module is given by (Fukushima & Miyake, 1982) 
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inhibitory input terminals of the other cells. A Vs-cell has only excitatory input terminals 
and the output of the cell is proportional to the sum of all the inputs weighted with the 
interconnecting coefficients. That is a Vs-cell yields an output proportional to the (weighted) 
arithmetic mean of its inputs. A Vc-cell also has only excitatory input terminals, but its 
output is proportional to the (weighted) root-mean-square of its input. Let u(1), 
u(2),…….u(N) be the inputs to a Vc-cell and c(1),c(2),…….c(N) be the interconnecting 
coefficients of its input terminals. The output w of this Vc-cell is defined by: 
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4.2 Formulae governing the network 
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φ[ ]:  a function defined by equation 2    
vcl-1(n):  Vc-cell,layer l-1, position n 
al( ),bl( ):  modifiable weights 
cl-1 ( ):  positive fixed weights  
rol:  selectivity parameter 
Sl:  receptive field 
The selectivity parameter rol  in the above equation controls the intensity of the inhibition. 
The larger the value of rol  is, the more selective becomes the cell's response to its specific 
feature. rol  is believed that it is a key factor to control the ability of the Neocognitron to 
recognize deformed patterns. If the selectivity is too high, the Neocognitron loses the ability 
to generalize and cannot recognize deformed patterns robustly. If the selectivity is too low, 
the Neocognitron loses the ability to differentiate between similar patterns of different 
categories. The values of fixed interconnections cl-1 ( ) are determined so as to decrease 
monotonically with respect to |v|. The size of the connecting area Sl of these cells is set to be 
small in the first module and to increase with respect to depth l. 
The interconnections from S-cell to C-cell are fixed and unmodifiable as mentioned. Each C-
cell has input interconnection leading from a group of S-cells in the S-plane preceding it (i.e., 
in the S-plane with the same kl–number as that of the C-cell). This means that all of the S-
cells in the C-cell's connecting area extract the same stimulus features but from slightly 
different positions on the input layer. The values of the interconnections are determined in 
such a way that the C-cell will be activated whenever at least one of these S-cells is active, 
Hence, even if a stimulus pattern which has elicited a large response from the C-cell is 
shifted a little in position, the C-cell will still keep responding as before, because another 
neighboring S-cell in its connecting area will become active instead of the first. In other 
words, a C-cell responds to the same stimulus feature as the S-cell preceding it, but is less 
sensitive to a shift in position of the stimulus feature 
Quantitatively, the output of a C-cell of the kl-th C-plane in the l-th module is given by: 
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ψ[]: a function defined by equation 3 
vsl(n): Vs-cell,layer l, position n  
dl(v): fixed interconnection which determined so as to decrease monotonically  
 with respect to |v| 
Dl: receptive field, the size of Dl is set to be small in the first module and to  
 increase with the depth of l 

4.3 Learning rules 
The Neocognitron is trained layer by layer starting from the first hidden layer. After training 
of the first hidden layer with images containing only simple features, the training set for the 
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next layer, containing more complex patterns, is propagated through the first layer is 
reached. This procedure is repeated until the output layer is reached. Thus higher layers 
represent features of increasing complexity. One advantage of this approach is that the first 
hidden layer does not have to be retrained for each classification problem since, for typical 
visual recognition tasks, edge usually have to be extracted at the first level. The 
reinforcement learning rule proposed by Fukushima is used here both for supervised and 
unsupervised training of the Neocognitron (Fukushima & Miyake, 1982): 
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where ql is a positive constant which determines the speed of increment. 

4.4 Recognition by the neocognitron 
In order to help with the understanding of the principles by which the Neocognitron 
performs pattern recognition, Fig. 6 shows a rough sketch of the working of the network in 
the state after completion of self-organization.  
The network is assumed to be self-organized on repeated presentations of a set of stimulus 
patterns such as "A", "B", "C" and so on. In the state when self-organization has been 
completed, various feature-extracting cells are formed in the network, as shown in Fig. 6.  
If pattern "A" is presented to the input layer Uo, the cells in the network yield outputs as 
shown in Fig 4. For instance, the S-plane with k1=1 in sub-layer Us1 consists of a two-
dimensional array of S-cells which extract     -shaped features.  Since    the stimulus   pattern 
"A" contains a     -shaped feature at the top of this S-plane, it yields a large output as shown 
in the enlarged illustration in the lower part of Fig 6. 
A C-cell in the succeeding C-plane (i.e., the C-plane in sub-layer Uc1 with k1=1) has 
interconnections from a group of S-cells in this S-plane. For example, the C-cell shown in Fig 
6 has interconnections from the S-cells whenever at least one of these S-cells yields a large 
output. Hence, the C-cell responds to a    -shaped feature situated in a certain area in the 
input layer and its response is less affected by the shift in position of the stimulus pattern 
than that of the preceding S-cells. Since this C-plane consists of an array of such C-cells, 
several C-cells which are situated near the top of this C-plane respond to the   - shaped 
feature of the stimulus pattern "A". In sub-layer Uc1, besides this C-plane, other C-planes 
extract features with shapes like     , and so on. 
In the next module, each S-cell receives signals from all the C-planes of sub-layers Uc1 . For 
example, the S-cell of sub-layer Us2 shown in Fig.6 receives signals from C-cells within the 
thin-lined circles in sub-layer Uc1 Its input interconnections have been reinforced in such a 
way that this S-cell responds only when     -shaped,     -shaped, and     -shaped features are 
presented in its receptive field with configuration like 
 Hence, pattern "A" elicits a large response from this S-cell, which is situated a little above 
the center of this S-plane. Even if the positional relation of these three features is changed a 
little, this cell will still keep responding, because the preceding C-cells are not so sensitive to 
the positional error of these features. However, if the positional relation of these three 
features is changed beyond some allowance, this S-cell stops responding.  
Same approach can be followed if face features is required to be detected. For example, in 
Fig. 7, the eye features (F1 to F4) are composed to form the eye pattern. 
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reached. This procedure is repeated until the output layer is reached. Thus higher layers 
represent features of increasing complexity. One advantage of this approach is that the first 
hidden layer does not have to be retrained for each classification problem since, for typical 
visual recognition tasks, edge usually have to be extracted at the first level. The 
reinforcement learning rule proposed by Fukushima is used here both for supervised and 
unsupervised training of the Neocognitron (Fukushima & Miyake, 1982): 

 1 1 1 1

l 1

( , , ) . ( ). ( , )

 b ( ) . ( ),

ll l l l cl l

l l cl

a k v k q c v u k n v

k q v n

 

   
 



  

 
 (7) 

where ql is a positive constant which determines the speed of increment. 

4.4 Recognition by the neocognitron 
In order to help with the understanding of the principles by which the Neocognitron 
performs pattern recognition, Fig. 6 shows a rough sketch of the working of the network in 
the state after completion of self-organization.  
The network is assumed to be self-organized on repeated presentations of a set of stimulus 
patterns such as "A", "B", "C" and so on. In the state when self-organization has been 
completed, various feature-extracting cells are formed in the network, as shown in Fig. 6.  
If pattern "A" is presented to the input layer Uo, the cells in the network yield outputs as 
shown in Fig 4. For instance, the S-plane with k1=1 in sub-layer Us1 consists of a two-
dimensional array of S-cells which extract     -shaped features.  Since    the stimulus   pattern 
"A" contains a     -shaped feature at the top of this S-plane, it yields a large output as shown 
in the enlarged illustration in the lower part of Fig 6. 
A C-cell in the succeeding C-plane (i.e., the C-plane in sub-layer Uc1 with k1=1) has 
interconnections from a group of S-cells in this S-plane. For example, the C-cell shown in Fig 
6 has interconnections from the S-cells whenever at least one of these S-cells yields a large 
output. Hence, the C-cell responds to a    -shaped feature situated in a certain area in the 
input layer and its response is less affected by the shift in position of the stimulus pattern 
than that of the preceding S-cells. Since this C-plane consists of an array of such C-cells, 
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way that this S-cell responds only when     -shaped,     -shaped, and     -shaped features are 
presented in its receptive field with configuration like 
 Hence, pattern "A" elicits a large response from this S-cell, which is situated a little above 
the center of this S-plane. Even if the positional relation of these three features is changed a 
little, this cell will still keep responding, because the preceding C-cells are not so sensitive to 
the positional error of these features. However, if the positional relation of these three 
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Same approach can be followed if face features is required to be detected. For example, in 
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Fig. 6. (Fukushima & Miyake, 1982): An example of the interconnections between cells and 
the response of the cells after completion of the self-organization 
 

 
Fig. 7. Eye composition from its simple eye features 
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4.5 The proposed image recognition neural network system 
The image recognition system described in this chapter consists of a hierarchy of several 
layers of artificial neurons, arranged in planes to form layers. The system consists of two 
parts: feature extractor and classifier. The feature extractor operates on an input image, 
which are then processed by the classifier (see Fig. 5). The Neocognitron is used as a feature 
extractor. An image is divided by the feature extractor into sub-images. The extraction of 
local features is based on the similarity among sub-images. The feature extractor is usually 
trained by unsupervised training algorithm. The training is achieved sequentially layer by 
layer, and the output of each layer will be considered as the input of the next layer. 
The main role of the classifier is to relate the global features generated by the feature 
extractor (Neocognitron) to the desired recognition code. The classifier is usually 
feedforward and fully connected. The classifier is usually trained by supervised training 
algorithm. If two images belonging to the same category of a training set have different 
global features that result from the output of highest Ucl sub-layer of the Neocognitron, then, 
the classifier will associate these two different global features to the same recognition code. 
This is considered as the advantage of the classifier. It can be said that the Convolutional 
Image recognition system used in this chapter is based on the original Neocognitron but 
with some modifications and additional parts. This new structure is called MNEO to 
differentiate it from the original Neocognitron (see Fig. 5). 

4.6 Modification of the Neocognitron(MNEO) 
Since the layers of the Neocognitron in this work are independently trained, therefore, there 
are several possibilities for combining different kinds of neurons and learning rules. One 
method is proposed in his work which uses Mc Culloch-Pitts neurons in S-
sublayers(Neubauer, 1998) instead of using complicated neurons based on the original 
Neocognitron. Also kohonen's topology preserving mapping algorithm is used for parameter 
adaptation (Dawwd, 2000). In order to reduce the training time, only one representation map 
is trained and then copy its representations to create the layer’s planes. While the classifier 
discussed above is considered as an additional part for the original Neocognitron. 

4.6.1 Simple model of neurons 
In contrast to the Neocognitron, the MNEO uses S-neuron based on the Mc Culloch-Pitts 
model. Inhibitory cells are not used and consequently S-sublayers can be easily trained by 
any training algorithm. Therefore, the output of an S-cell of the kl-th S-plane in the l-th 
module will be 
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4.6.2 Learning algorithm of the MNEO 
As mentioned earlier, since the Neocognitron is used for feature extraction, the 
unsupervised self-organizing learning algorithm (SOM) (Dawwd, 2000) can be used to 
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develop the representations in the S-sublayer(s). The SOM algorithm requires initializing the 
map size before starting of the training. Learning occurs only in S-sublayers. Essentially the 
algorithm modifies an unsupervised learning rule to cope with competition in a weight 
shared layer as follows: 
First after an input has been presented to the network, the most active node (i.e. the winning 
neuron) is determined, second, the S-neuron connections are updated by using kohonen’s 
rule. After learning has been completed, weight sharing is performed along the spatial to 
create the S-planes that represent the S-sublayer. 
After learning has been completed and S-planes have been created, the input image is 
projected through S-sublayer. For each overlapped spatial window (each sub-image), the 
input vector is projected to each neuron in each S-plane at the same spatial coordinate, then 
the most active neuron among these planes is selected .The later operation determines 
which feature is included in that sub-image. Then the other neurons are set to zeros. 

4.6.3 Complex model of neurons 
For the designed network we do not care about the values and type of connections of C-cells 
to the input vector represented by the receptive field of the corresponding S-plane. As 
mentioned earlier to simplify the implementation of Ucl sub-layers, α is chosen to be zero. 
Since the inhibitory cells in the complex sublayer of the modified S-layer are not of use, 
therefore, the output of a C-cell of the kl-th C-plane in the l-th module will be: 

 ( , ) ( ). ( , )
l

cl l l Sl l
v D

u k n d v u k n v


 
  

  
  (9) 

and ψ[ ] is defined as: 

 
1               x 0

[ ]
0              x 0

x


  
 (10) 

5. Mapping neural networks on parallel computers 
How can we map a specific neural network on a parallel computer to achieve maximum 
performance? (Schoenauer et al., 1998). The key concepts of an efficient mapping are load 
balancing over an array of processing elements, minimizing inter processing element 
communication and minimizing synchronization between the processing elements (PEs). 
Hence that each PE performs the computations required for a single neuron of the network.  
Furthermore, the mapping should be scalable both for different network sizes, and for 
different number of processing elements. In Fig. 8, the weight matrix presentation of a 
simple neural network (four neurons with four synapses each) is shown in the middle, while 
the left side shows the conventional presentation of the same network. The rectangle N in 
the mid part of Fig.8 denotes the activation function of the neuron. The circle wij represents 
the computation of the synapse: yi = wij*xj +yi-1 where yi-1 is the result from the 
proceeding synapse. 
Direct implementation for non-linear sigmoid activation functions is very expensive. There 
are two practical approaches to approximate sigmoid functions with simple FPGA designs 
(Zhu & Sutton, 2003). Piecewise linear approximation describes a combination of lines in the 
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form of y=ax + b which is used to approximate the sigmoid function. Note that if the 
coefficients for the lines are chosen to be powers of two, the sigmoid functions can be 
realized by a series of shift and add operations. Many implementations of neuron activation 
functions use such piecewise linear approximations one of them is. The second method is 
lookup tables, in which uniform samples taken from the center of sigmoid function can be 
stored in a table for look up. The regions outside the center of the sigmoid function are still 
approximated in a piece-wise linear fashion. 

6. MNEO design and implementation 
As mentioned previosly, the MNEO convolutional neural network model is to be 
implemented. This model is formed by an even number of layers, the odd ones which are 
simple layers have adaptable input connections and the even ones which are complex layers 
have fixed input connections. Each pair of layers has an equal number of planes. The 
number of planes is increased in a consequent manner from input to output layer in order to 
detect more specific features of higher complexity while the spatial resolution is decreasing. 
According to these properties, a special strategy is to be followed to implement the 
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Fig. 8. Presentation of a neural network: conventional (left), weight matrix (middle), mapped 
N-parallel (right) 
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architecture of the MNEO in hardware. In this chapter, a parallel digital hardware 
implementation of the MNEO in FPGA platform is presented in details. 

6.1 Network parameters 
The size and parameters of the MNEO neural network is dependent on the application. 
Therefore, a specified application should be determined beforehand. As they contain a great 
deal of information and many complex features which can vary significantly depending on 
the acquisition conditions, faces are considered one of the more challenging problems in 
image analysis and object recognition. 

6.1.1 Still-to-Still image database 
A resolution of 32x32 pixels can be considered for the task of face recognition since a face is 
primarily characterized by existence of eyes, nose and mouth together with their 
geometrical relationship all of which can be recognized at low spatial resolution (Neubauer, 
1998). The Oracle Research Labs database (see Fig. 9, available in 
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html), which has 10 
different images of 40 distinct subjects is used in this work. The images are grayscaled with 
a resolution of 92x112, but the resolution is reduced to 32x32. The influence of the resolution 
reduction in hardware field is to reduce the probability of FPGA over-fitting, and to lower 
the information content that has to be learned by the networks and consequently reduce the 
required hardware resources. The designed network can classify 12 out of the 40 subjects. 
The experiments were performed on five training images and five testing images per 
person. A total of 60 training images and 60 testing images are used to adjust the parameters 
which presented in the next section. The training is wholly implemented in software.  

6.1.2 Parameters setting of the MNEO 
Parameters setting of the MNEO such as the choice of the number of layers, neurons, cell 
planes, and so on, is a complex process. In fact, this process requires a lot of ‘fine-tuning’ 
effort and can be obtained by multiple simulation run of networks with different 
parameters. Then the most precise network is selected and its parameters are adapted. This 
selection is based on the evaluation of the network with respect to the recognition rate. The 
parameters selection strategy used in MNEO can simulate the selection of good selectivity 
parameter in the original Neocognitron. The network which to be implemented in this 
chapter is depicted in Fig. 10. The network structure consists of five layers, first hidden layer 
is a simple layer of four convolutional planes. The second hidden layer is a complex layer of 
also four convolutional planes. The third and fourth hidden layers are simple and complex 
layers respectively, each is of 16 convolutional planes. There are 12 output neurons in the 
last layer (fully connected feedforward layer), according to 12 different subjects (faces). 
Receptive fields sizes are chosen as 5x5, with 4 overlapped pixels(each field is overlapped 
over another by four pixels in both horizontal and vertical directions). The features in the 
hidden layers are organized as (4x4)x4, with 2 overlapped pixels,(4x4)x4, with 3 overlapped 
pixels,(4x4)x16, with 2 overlapped pixels, and (4x4)x16. 
6.1.2.1 Hardware implementation of the S-cell 

In return to equation(8), the response of S-cell is simply a function of input vector 
x̂ (receptive field) and weight vector ŵ  which can be written as (Cios & Shin, 1995): 
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Fig. 9. Three subjects of the ORL face database (There are 10 images for each subject). 
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where  
2 2 22 ˆ ˆ ˆ ˆ ˆ ˆ2 .d x w x w x w       

It can be seen from the above equation that the neuron response depends on the distance 
between x̂  and ŵ .Thus the smaller the distance between them, the greater the response of 
the neuron. Now considering that of one specific feature each receptive field has to be 
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Fig. 9. Three subjects of the ORL face database (There are 10 images for each subject). 
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detected by a number of S-cells distributed over different plans. This means, the sigmoid 
activation functions defined in equation (8) for those S-cells (spatially localized cells) can be 
replaced by a competitive function. This function sets the cell that has a minimum distance 
for that receptive field and resets the other cells.  
The above calculation for the S-cell responses is implemented primarily in software during 
the MNEO training phase. For the MNEO propagation phase, the same approach is used but 
achieved in hardware. This ensures that the cell itself that is stimulated during the learning 
phase will also be stimulated during the propagation phase when the same input is applied. 
In this approach, since the value of the output cell is either '0' or '1', then only one storage 
element is required which simplifies the successive operations and their hardware. This is 
because there is no need to deal with real numbers that are usually produced from the 
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sigmoid function. This simplification also plays a positive role when implementing the 
down-sampling operation done by complex layers. 
The selection of the similarity measure is another factor that influences on the hardware 
implementation of the S-cell. Manhattan distance is used as a measure of similarity between 
x̂  and ŵ (Dawwd Sh., Mahmood B., 2009). It measures the features that are detected by the 
S-cell either in training or in propagation phase. In particular, the Manhattan distance is 
used to avoid multiplications that are required in the calculation of Euclidean distance (the 
most critical operation in hardware). Also dot product between x̂  and ŵ  is avoided when 
using Manhattan distance. Manhattan distance is defined as: 
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It can be seen from the above equation that the implementation of Manhattan distance in 
hardware requires computational units for integer subtraction, accumulation and the 
determination of absolute unsigned values. 

6.1.2.2 Hardware implementation of the C-cell   
As it is done in simplifying the hardware implementation of the S-cell by representing its 
output by only one bit, the same is done with the C-cell. From equation(3) it can be seen that 
if the parameter α is chosen equal to 0, the output of the C-cell will be either one or zero as 
shown in (9). Here, also reduction of storage elements and simplification of the hardware 
connected to the output of the C-cell are achieved. Depending on the representation of the S- 
cell and the C-cell activation functions, the C-cell can be built by only using OR function. 
The benefits from these representations not only influence on the implementation of simple 
and complex layers, but also they play an important and essential role for implementing the 
final layer of the MNEO(the fully connected feedforwared layer). 

6.1.2.3 Hardware implementation of the Feedforward-cell 
In feedforward layer, the dot product calculations among the weight vectors and the 
receptive field vectors of the last complex layer in the MNEO require multiplications. But 
the mentioned modification of the MNEO network does not need this multiplication 
operation. Feedforward layer only needs accumulation operation and the number of 
required accumulators equals to the number of the feedforward cells. Each accumulator 
accumulates the scalar weight of a cell if its input is '1'. The equation for feedforward cell is: 
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θ is the sigmoid transfer function, P is the cell output , xi and wi are the input and weight 
vectors respectively. For example assume the feedforward cell receives 3 weighted inputs as 
x̂ =(1,0,1) and its trained weights are ŵ =(0.98,0.13,0.22), then the accumulator produces 
(0.98+0.22) which equal to 1.2. Along with the accumulator, conditioning circuitry (mainly 
AND gates) is used to select which value of ŵ  vector is to be accumulated. To produce 
cell's output, activation function (θ) (sigmoid usually used in feedforward) should be 
implemented and as will be shown in section 6.2, its implementation will require only one 
multiplication operation.  
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6.2 Implementation of the processing flow 
Some transfer functions like sigmoid function need some modifications to simplify the 
hardware of the function. In this case, the sigmoid function has been substituted by a 
piecewise linear function like satlin function (Chapman, 1997). The substitution is based on 
the selection of a linear satlin equation that has a minimum least square error with the 
original sigmoid function. Only one multiplier and one adder are required to implement the 
approximated linear transfer function. Using one multiplier and one adder for each 
feedforward node may be also perceived as a critical problem if the number of output nodes 
exceeds the number of embedded multipliers in the FPGA chip. To solve this problem, only 
one satlin computational unit is built and made common to all feedforward nodes, such that 
the output nodes use this unit sequentially in a pipelined manner. 
As it is not worthwhile to use pipelining for the successive layers of the convolutional 
network, then the processing units required and used for one layer can be used for the other 
layers. Thus, hardware is minimized and fully time utilized. Layers hardware 
implementation cycle is shown in Fig. 11. All receptive fields of view are processed in 
parallel. The reconfigurable processing elements are those responsible to generate the node's 
outputs for each layer. The PEs are built with adders for Manhatan distance calculations, 
buffers, comparators accumulators and activation function emulators which contain 
multipliers. All these components are fully pipelined. Each layer begins its calculation 
according to a control mechanism (Dawwd Sh., Mahmood B., 2009). 

7. Video face recognition 
Real time frame processing of video image should be implemented in the period of 1/30 
second (30 frame/sec) or less than this period. To achieve this goal, detection and 
recognition should be achieved in fastest possible time. Therefore the original Neocognitron 
is modified and the MNEO is presented in this work to deal with this challenge. 
Face recognition is challenging visual classification task. Reasonable deviations from a three-
dimensional face shape have to be detected, also it is necessary to normalize the face with 
respect to the size and position and orientation. Using the Neocognitron simplifies this task 
very much, because the Neocognitron can recognize stimulus pattern correctly without 
being affected by shifts in position or by affine scaling and rotation. In this work, the MNEO  
is trained by using images that extracted from different positions, scales, rotations and 
orientations. If a trained image is applied to the system in recognition cycle, then the system 
should recognize it. If an image for the same class is applied but in variant pose, the system 
can also recognize it according to the mentioned properties of Neocognitron( or MNEO). If 
more training samples are used, then more generalization is achieved.  
The recognition is performed in the region of interest (the segmented area). The MNEO 
consider the problem of face recognition under pose variations. Once the segmentation 
process of the colored frame is complete in the detection stage, the recognition process 
begins. The face detection block in Fig. 2 can be removed in our proposed system. This is 
achieved by increasing the training samples with variant poses for each face class as 
mentioned in the last paragraph. If different consequent face index frames (see Fig. 1) are 
recognized according to predefined statistic criteria, then the recognized face can be 
considered as a valid class. If the threshold value is less than the acceptable, then the 
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Fig. 11. MNEO layers hardware implementation cycle. All n feature neurons are executed in 
parallel, each tuned to a specific feature. Between adjacent layers, many memories act as data 
buffers. A special stage is necessary to re-arrange the layer output into field of views serving as 
input for the next layer. After implementation of all simple and complex layers, feedforward 
layer also uses the same processing element units to generate the final recognition code. 
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recognized face is not a valid class. The latter may be happened when the region of interest 
(the segmented region) belongs to parts other than face regions (may be hand or other color 
close to the color of the human skin). 

8. Result 
In this chapter, Xilinx Spartan-3E FPGAs are used for implementations because these 
devices come with large internal SRAM blocks. Each block can be used for internal weight 
storage and for buffering the data vectors of the segmented image.  

8.1 CNN performance evaluation 
In the CNN_SIMD_FPGA system, since the system does not support learning, the 
Connection Per Second (CPS) and Connection-bytes-per-second (CBS) are considered to 
evaluate the system speed performance. The most common performance rating is 
Connection Per Second (CPS) (Lindsey &  Lindblad, 1994) which is defined as the number of 
multiply and accumulate operations per second during the recall or execution phase. The 
speed performance of the FPGA based system among other FPGA systems depends on the 
operation frequency of the FPGA model used. The operation frequency of the FPGA model 
is 50 MHz, the number of input vectors that processed in parallel are five, in each  clock 
cycle, 5 input connections of (9bits≈1byte) are evaluated by 4 weight connections of the same 
bit precision, then the maximum CPS and CBS(= bytes(weight). bytes( input). CPS) achieved 
from the designed system are: 

CPS=5×4×50×106=1GCPS 

CBS=1×1×CPS    =1GCBS 

The above performance seems reasonable and comparable with the available neural 
network hardware (Dias et al., 2003).  

8.2 CNN system and face recognition 
The goal of the CNN system is to identify particular person in real-time or to allow access to 
a group of people and deny access to all. Multiple images per person are often available for 
training and real-time recognition is required. 
The CNN hardware system can recognize face's image with the same recognition accuracy 
that achieved when using the software version. This is due to the use of efficient model, its 
parameters setting, functions approximations and the hardware implementation such as 
convolution node that is based on the realization of a competition unit. The system is trained 
to recognize 12 different classes. The recognition rate achieved from both software and 
hardware versions were equal to 93% when 60(12x5) training image and 60(12x5) testing 
images were used. Further recognition rate improvements can be obtained by performing 
more fine tuning to the CNN parameters during learning which is implemented in software. 
Some techniques for fine tuning improvements can be found in (Chapman ,1997). 

8.3 Speedup achieved in H/W CNN 
From Fig. 12, one can see that the overall  time required for processing one complete image 
on Xilinx Spartan-3 200,000 / Spartan 3E 500,000-gates Platform FPGAs of 50MHz is  equal 
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Fig. 12. An image processing time of parallel and sequential processors 

to (3.17)ms, while the same model needs (280) ms when implemented primarily in software, 
resulting a speedup of (88).  

8.4 Area consumption in H/W CNN 
When the word length of the calculation unit (the input and weight value) is set to 9 bits 
and the word length of the accumulator is set to 13 bits, the CNN hardware required 1488 
slices. This number utilizes 77% of the total number of slices in the Spartan-3 200,000 
FPGA and 30% of the total number of slices in the Spartan-3E 500,000 FPGA. This means 
that the CNN system can be synthesized in a cheap FPGA chip. If larger system of large 
input image is required, the CNN system can be also synthesized in a chip of a reasonable 
cost.  

9. Conclusion 
In this work we have succeeded in mapping one of the most complex neural networks (the 
Neocognitron) on an FPGA SIMD architecture. The modifications of the Neocognitron to 
reduce its complexity give it the possibility of realizing and processing in real-time, then a 
high speed frame processing is achieved. Using the binary representation of cells outputs in 
all the network layers highly reduced the hardware resources required to implement the 
network. Consequently a relatively small FPGA model of 200,000 gates can implement the 
complex design of the MNEO system.  
In the MNEO architecture, the ’sharing’ of weights over processing units reduces the 
number of free variables, increasing the generalization performance of the network. Sharing 
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the weights over the spatial array, leading to intrinsic insensitivity to translations, rotation 
and scaling of the input which is considered as attractive feature for video processing where 
more number of valid faces are detected, afterward, speeding up the video recognition 
process.  
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1. Introduction 
In the last two decades face recognition has emerged as an important research area with 
many potential applications that surely ease and help safeguard our everyday lives in many 
aspects (Zhao et al., 2003; Kirby & Sirovich, 1990; Turk & Pentland, 1991; Martinez & Kak, 
2001; Belhumeur et al., 1997; Philipps et al., 2000; Eleyan & Demirel, 2007, 2011; Brunelli & 
Poggi, 1993; Wiskott et al., 1997). The face recognition problem from still images has been 
extensively studied (Sinha et al., 2006; Eleyan et al., 2008). Face recognition from video has 
recently attracted the attention of many researchers (Zhou et al., 2003; Li & Chellappa, 2002; 
Wechsler et al., 1997; Steffens et al., 1998; Eleyan et al., 2009). Video is inherently richer in 
information content when compared with still images. It has important properties that are 
absent in still images. Some of these important properties are the temporal continuity, 
dynamics and the possibility of constructing 3D models from faces. On the other hand, it 
should also be noted that video acquired facial data are normally of very low quality and 
low resolution, which make recognition algorithms very inefficient. The temporal continuity 
and dynamics of a person captured by a video makes it easier for humans to recognize 
people. Humans are usually able to recognize faces in very low resolution images. This is 
not the case for the computer based techniques which have been shown to be quite capable 
in recognizing faces from still images. Utilization of these properties for more efficient and 
high performance face recognition algorithms requires approaches that are different than 
the traditional approaches.  
There are many reasons why humans are so successful in recognition of faces in video while 
computers are not. Some of these are: 1) Humans use a collection (flow) of data over time 
rather than an individual video image during both training and testing. 2) Humans are 
superbly capable of tracking objects. And in so doing can make excellent use of flow of data 
In the training stage, when a new person is to be “memorized” many features such as 
appearance, gestures, gait etc. are encoded. Each person in the human memory (gallery) is 
encoded differently and there are quite a number of people memorized by humans. In the 
testing (recognition) stage human beings compare these features and make a decision on the 
identity of a person. This process however is not a “one shot” comparison, but it is 
continually made based on the flow of data. When the person is far a way for example, it is 
difficult to discern the facial features. However from the gait and gestures the human brain 
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is able to extract important information to identify an approaching person. Based on this 
information the human brain automatically deems some of the people in the memory as 
unlikely candidates to match the approaching person and thus those candidates are not 
considered in further comparisons/associations. As the person approaches closer, the 
human brain restricts the comparison to reduced set of likely candidates in the memory.  
Inspired by this biological process of making comparisons and making decisions based on a 
reduced set of candidates at testing stage, we propose in this chapter to design an analogues 
structure for computer based face recognition from video whereby the gallery is continually 
updated as the frames of the probe video is processed. In order to demonstrate the 
effectiveness of the proposed approach we employ features derived from PCA or LBP. After 
every probe frame, the feature vector is compared with the feature vectors of the gallery 
images, the unlikely images in the gallery are discarded based on the accumulated fitness of 
the gallery images. An update set of features are derived using remaining image in the 
gallery. The update set of features are used to test the next frame in the probe video. The 
results obtained using the idea of updated galley set indicates that significant improvement 
in recognition performance can be achieved. The adaptive fitness approach (AFA) is also 
tested without updating the gallery set. Again, this scheme with fixed gallery set gives 
comparable performance results as the scheme with updated gallery set.  
The rest of the chapter is organized as follows. Section 2 briefly reviews feature extraction. 
Section 3 presents the face video database. Section 4 introduces the adaptive fitness update 
approach. Section 5 reports our experimental results and discussions, and Section 6 
concludes this chapter.    

2. Feature extraction 
Feature extraction is a very crucial stage of data preparation for later on future processing 
such as detection, estimation and recognition. It is one of the main reasons for determining 
the robustness and the performance of the system that will utilize those features. It’s 
important to choose the feature extractors carefully depending on the desired application. 
As the pattern often contains redundant information, mapping it to a feature vector can get 
rid of this redundancy and preserve most of the intrinsic information content of the pattern. 
The extracted features have great role in distinguishing input patterns. 
In this work, instead of using more biologically oriented features, for the reasons of 
simplicity we employ features derived from principal component analysis (PCA) (Kirby & 
Sirovich, 1990; Turk & Pentland, 1991) and local binary patterns (LBP) (Ahonen et al., 2004; 
Ojala et al., 2002). However the recognition framework does allow the incorporation of other 
features.  In PCA case, one needs to prepare a projection space using the training set and use 
it to preparing the feature vectors of both training and tested sets. In LBP every image is 
processed independently to form its feature vectors. So if the size of the training set changed 
as it does in AFA, new space has to be prepared if PCA is used to form the feature vectors 
while feature vectors will stay same if LBP is used.   

3. Video face database 
In this study we used the BANCA database (Popovici et al., 2003), which is a multimodal 
database designed with various acquisition devices (2 cameras and 2 microphones), and 
under several scenarios (controlled, degraded and adverse). The videos were collected for 52 
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Section 3 presents the face video database. Section 4 introduces the adaptive fitness update 
approach. Section 5 reports our experimental results and discussions, and Section 6 
concludes this chapter.    

2. Feature extraction 
Feature extraction is a very crucial stage of data preparation for later on future processing 
such as detection, estimation and recognition. It is one of the main reasons for determining 
the robustness and the performance of the system that will utilize those features. It’s 
important to choose the feature extractors carefully depending on the desired application. 
As the pattern often contains redundant information, mapping it to a feature vector can get 
rid of this redundancy and preserve most of the intrinsic information content of the pattern. 
The extracted features have great role in distinguishing input patterns. 
In this work, instead of using more biologically oriented features, for the reasons of 
simplicity we employ features derived from principal component analysis (PCA) (Kirby & 
Sirovich, 1990; Turk & Pentland, 1991) and local binary patterns (LBP) (Ahonen et al., 2004; 
Ojala et al., 2002). However the recognition framework does allow the incorporation of other 
features.  In PCA case, one needs to prepare a projection space using the training set and use 
it to preparing the feature vectors of both training and tested sets. In LBP every image is 
processed independently to form its feature vectors. So if the size of the training set changed 
as it does in AFA, new space has to be prepared if PCA is used to form the feature vectors 
while feature vectors will stay same if LBP is used.   

3. Video face database 
In this study we used the BANCA database (Popovici et al., 2003), which is a multimodal 
database designed with various acquisition devices (2 cameras and 2 microphones), and 
under several scenarios (controlled, degraded and adverse). The videos were collected for 52 
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individual (26 male and 26 female) on 12 different occasions (4 recordings for each scenario). 
In our work we will be using the video sequences for the 52 individual with the three 
different scenarios.  In the degraded scenario a web cam was used, while higher quality 
camera was used in the controlled and adverse scenarios. Figure 1 shows samples from the 
database for the three scenarios. 
 

 
Fig. 1. Samples of the BANCA database images Left: Controlled, Middle: Degraded, Right: 
Adverse scenarios.  

 

 
Fig. 2. Example of using face detection algorithm to crop the face region from the whole 
frame. 

As it was computationally expensive to use all the frames in each individual’s video 
sequence, we selected 60 frames which correspond to every other frame in the video 
sequence. The face images from the first n frames (n={1,2,…,10}) of each video sequence 
were used to form the gallery set to train the system, while the rest were used for testing. 
It was essential to run face detection in the pre-processing stage on the extracted frames in 
order to prepare them for the face recognition process. For this reason, the local Successive 
Mean Quantization Transform (SMQT) (Nilsson et al., 2007) has been adopted for face 
detection and cropping due to its robustness to illumination changes. Cropped faces were 
converted to grayscale and histogram equalized to minimize the illumination problems. 
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Bicubic interpolation was used to resize the resulting face images to the same size of the 
reference resolution (size of gallery images 128 ×128). Figure 2 shows an example of the face 
detection cropping and resizing preprocess for one of the image in BANCA database. 

4. Adaptive fitness based updating 
4.1 Adaptive Fitness Approach (AFA) 
The features of each subject in the gallery are derived from the first n frames (n={1,2,…,10}) 
of each subject’s video sequences using PCA and LBP. Each frame in the test/probe video is 
treated as a single still image. Feature vectors of each test frame are formed using PCA or 
LBP techniques. Each feature vector encodes the similarity of the test frame to each of the 
gallery images. It is natural to expect that some of the gallery images will have high 
similarity with the frame under the test while others will have low similarity. One can thus 
establish with some confidence that those gallery images with very low similarity measures 
will very likely not be the match for the probe frame. Thus when processing the next frame 
in the test video, one can reduce the size of the gallery by discarding those unlikely 
candidates. This enables one to make the gallery set smaller after each tested frame. It is a 
well known fact that the discriminating power of algorithms such as PCA improves when 
the gallery set that is reduced. The algorithm of discarding images from the gallery set 
enables in a way the mechanism employed by human brain in recognizing an approaching 
person. When the person is far away (low resolution) the human brain uses global features 
to identify for example the approaching person and it does so by eliminating people in its 
gallery who are unlikely to form a match. When the person gets closer there is an automatic 
update of the gallery and the approaching person is compared against smaller number of 
people in gallery. Eventually when the person is very close, the gallery images are reduced 
to just a few.   
Inspired by this biological process which is employed by human brain in recognition tasks, 
we propose a simple approach to adaptively shrink the size of the gallery set after each 
frame of the test video is processed. A fitness measure i,k is defined using the Euclidean 
distance as  
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where δi,k is a vector denoting the Euclidean distance between the ith gallery image and the 

kth test frame. ,i k


 is the mean distance value of the vector δi,k, and i,k denotes the 
accumulated fitness between the ith gallery image and the kth test frame. At the first frame of 
the test video the fitness is set to be just the normalized distance as the first line in equation 

(1) indicates. The normalization is achieved by subtracting δi,k from the mean distance ,i k


 
and dividing  by the corresponding element δi,k. in order to reduce the effect of outliers.  
The accumulated fitness measure forms the basis for shrinking the size of the gallery by 
discarding the candidates in the gallery that are unlikely to form a match with the probe 
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video frame. After eliminating unlikely candidates from the gallery, a new set of features is 
formed from the remaining more fit candidates. For example, if PCA is used for feature 
extraction, after eliminating images from the gallery the existing eigenspace is updated and 
new feature vectors is formed for the remaining images. On the other hand if LBP is used, 
throwing out an image accounts to throwing out the corresponding feature vector; thus 
there is no need to recalculate a new set of feature vectors. Eventually the continuous 
updating of the gallery promises to leave behind few candidates that are very likely to form 
a match with the person under test. 
This approach has several advantages. Its resemblance to the recognition by human beings 
is the first to note. Second, it promises to speed up the recognition process due to the 
discarding of the unfit images from the gallery. However it should be pointed out that due 
to the discarding of images from the galley this approach may lead to, even though very 
unlikely, throwing out some of the correct images in the gallery. 
The number of discarded images from the gallery set at each processed frame depends on 
the standard deviation of the accumulated fitness values at that particular frame. The 
standard deviation of this distribution is used to establish a fitness threshold c for 
discarding gallery images. The critical fitness value c is picked conservatively to ensure 
with almost 100% confidence that the correct gallery images are not eliminated. This forces 
one to process almost all the frames in order to come up with a decision since with a low c 
one discards few images from the gallery. This also leads to higher computational burden. 
This undesirable situation can be avoided by picking a higher threshold c. 
The adaptive fitness approach can also be used without updating the gallery. In this scheme 
one simply process all the frames in the probe video and accumulates the fitness measure 
with the originally prepared feature vectors. This approach where the gallery is fixed and no 
updating is required is computationally more efficient compared with the scheme where 
one updates the gallery and the feature vectors. However, this advantage is not significant 
since the updating of feature vectors after the gallery is reduced in size can be done 
incrementally without much computational burden. Furthermore, in the scheme with 
gallery updating one does not need to process all the video frames to come up with a 
decision. Figures 3 and 4 give step by step the algorithms of these two schemes.  
 

 
Fig. 3. Pseudo code for Adaptive Fitness Approach (AFA) with updated gallery set, N = 50.  

Initialize gallery set 
For frame= 1, 2, … N 

Compute feature vectors 
Project probe image  
Compute fitness measure 
Accumulate fitness measure 
Discard gallery images with lowest 
fitness values 
Update gallery set 

End 
Identify using highest accumulated fitness value 
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Fig. 4. Pseudo code for Adaptive Fitness Approach (AFA) with fixed gallery set, N= 50. 

An example of how the accumulated fitness measure is employed in the video recognition 
process with updating of the gallery is depicted in Figures 5 and 6. The feature vectors in 
Figure 5 are derived from PCA where in Figure 6 feature vectors come from LBP. In this 
example the probe video belongs to person # 1. The accumulated fitness measure in both 
figures show clearly that the accumulated fitness corresponding to person # 1 increases 
while for all other people it is insignificant. Number of training images for each person in 
this example was n=1 using the controlled scenario (see first row in table 1).  
 

 
Fig. 5. Example of fitness accumulation through the frames for 1st video sequence of person 
number 1 using AFA with PCA. 

4.2 Adaptive Fitness Fusion Approach (AFFA) 
To recognize an individual human beings use more than one feature such gait, face, body 
shape and even wearing. A simple fusing technique is employed. The individual fitness 
 

Initialize gallery set 
Compute feature vectors 
For frame= 1, 2, … N 

Project probe image  
Compute fitness measure 
Accumulate fitness measure 

End 
Identify using highest accumulated fitness value
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Initialize gallery set 
Compute feature vectors 
For frame= 1, 2, … N 

Project probe image  
Compute fitness measure 
Accumulate fitness measure 

End 
Identify using highest accumulated fitness value

 
Adaptive Fitness Approach - an Application for Video-Based Face Recognition 

 

159 

 
Fig. 6. Example of fitness accumulation through the frames for 1st video sequence of person 
number 1 using AFA with LBP. 

measures coming from PCA and LBA are simply added. The recognition system based on 
feature vector fusion is the same as before. In the same manner, at the end of processing all 
the frames the individual with the highest fitness value is declared to be the correct subject.  
Figure 7 and 8 show the pseudo codes for the proposed fitness fusion idea with fixed and 
updated gallery set respectively.  
 

 
Fig. 7. Pseudo code for AFFA approach with fixed gallery set, N= 50. 

Initialize gallery set 
Compute feature vectors using PCA 
Compute feature vectors using LBP 
For frame= 1,2,…N 

Project probe image using PCA 
Project probe image using LBP 
Compute fitness measure ΦPCA 

Compute fitness measure ΦLBP 
Sum Φtotal = ΦPCA + ΦLBP 
Accumulate fitness measure Φtotal 

End 
Identify using highest accumulated total fitness 
value 
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Fig. 8. Pseudo code for AFFA Approach with updated gallery set, N= 50. 

5. Simulation results and discussions 
Figures 9 to 14 show the performance of the proposed AFA with updated and fixed gallery. 
AFA used both LBP and PCA for feature extraction and the results were compared against 
single frame based PCA and LBP methods, respectively. The three scenarios were shown in 
these figures with 1 and 5 training images in the gallery set. Both updated and fixed 
galleries show high competitive results. 
The performance of the system is tested using BANCA database under 3 scenarios: 
controlled, degraded and adverse. For each scenario there are 52 people. For each 
individual there are 4 videos. The initial gallery is formed from varying number of 
training images per individual. For this study the numbers ranged from 1 to 10 as 2nd 
column of table1 depicts.  
Usually human beings recognize people by fusing more than one feature. Here we show 
how the simple approach can be extended to benefit from different feature vectors. This 
fusion further improves the performance significantly. Again we employ features derived 
from PCA and LBP for simplicity and convenience.  
Due to the fact that the performance of the AFA without fusion was very high (almost 100%) 
in order to faithfully see the improvement of fusion we increased the video database. As 
explained in section 3, the Banca database consists of 52 people with 3 scenarios and 4 
recordings for each scenario. We treated the 4 recordings of each individual in each scenario 
as a different individual. This modification accounts to using 208 subjects with 3 different 
 

Initialize gallery set 
For frame= 1,2,…N 
               Compute feature vectors using PCA  
               Compute feature vectors using LBP 

Project probe image using PCA 
Project probe image using LBP 
Compute fitness measure ΦPCA 

Compute fitness measure ΦLBP 
Sum Φtotal = ΦPCA + ΦLBP 
Accumulate fitness measure Φtotal 

Discard gallery images with lowest 
fitness values 
Update gallery set 

End 
Identify using highest accumulated total fitness 
value
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Fig. 8. Pseudo code for AFFA Approach with updated gallery set, N= 50. 
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Fig. 9. Performance in controlled scenario with 1 training image per video with updated and 
fixed gallery set using PCA. 

 
 

 
 

Fig. 10. Performance in controlled scenario with 1 training image per video with updated 
and fixed gallery set using LBP. 
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Fig. 11. Performance in adverse scenario with 1 training image per video with updated and 
fixed gallery set using PCA. 

 
 

 
 

Fig. 12. Performance in adverse scenario with 1 training image per video with updated and 
fixed gallery set using LBP. 
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Fig. 11. Performance in adverse scenario with 1 training image per video with updated and 
fixed gallery set using PCA. 

 
 

 
 

Fig. 12. Performance in adverse scenario with 1 training image per video with updated and 
fixed gallery set using LBP. 
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Fig. 13. Performance in degraded scenario with 1 training image per video with updated 
and fixed gallery set using PCA. 
 
 

 
 

Fig. 14. Performance in degraded scenario with 1 training image per video with updated 
and fixed gallery set using LBP. 
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Scenario 

# of gallery
images per 
individual 

(n) 

Recognition Performance (%)

AFA 
updated gallery set 

AFA 
fixed gallery set 

 
PCA/LBP 

Controlled 

1 95.67 / 97.12 97.60 / 100 66.25 / 85.62 
2 97.60 / 98.56 98.56 / 100 77.17 / 90.51 
3 98.08 / 99.04 99.04 / 100 82.13 / 93.28 
5 99.04 / 100 99.52 / 100 89.14 / 96.58 

10 100 / 100 100 / 100 96.16 / 98.38 

Degraded 

1 90.39 / 94.23 89.90 / 97.60 63.06 / 84.09 
2 95.67 / 95.67 96.15 / 98.08 73.48 / 88.30 
3 96.63 / 98.56 96.63 / 98.56 78.25 / 91.30 
5 98.08 / 99.52 97.12 / 99.04 84.76 / 94.43 

10 100 / 100 100 / 100 97.15 / 97.63 

Adverse 

1 91.83 / 96.63 92.31 / 97.60 68.17 / 87.24 
2 95.19 / 99.52 96.63 / 98.56 78.65 / 92.76 
3 98.56 / 100 98.08 / 99.56 84.25 / 95.41 
5 99.52 / 100 99.04 / 100 90.35 / 97.39 

10 100 / 100 100 / 100 99.04 / 98.89 

Table 1. Performance of the adaptive fitness approach (AFA) using different number of 
training images from BANCA database with fixed and updated gallery set. 

 

 
Scenario 

# of gallery
images per 
individual 

(n) 

Recognition Performance (%)
updated gallery set fixed gallery set 

AFAPCA AFALBP AFFA AFAPCA AFALBP AFFA 

Controlled 

1 68.27 80.77 83.77 68.75 80.77 84.25 
2 79.33 88.94 89.90 78.85 88.94 89.90 
3 83.66 90.87 92.79 83.17 90.87 92.79 
5 89.90 93.27 95.67 90.38 93.27 96.15 

10 95.67 97.60 100 94.23 97.60 100 

Degraded 

1 70.67 75.85 78.85 71.15 75.85 79.33 
2 80.29 84.62 87.50 78.85 84.62 87.02 
3 83.17 89.90 90.38 83.65 89.90 90.87 
5 89.90 92.79 94.71 88.46 92.79 94.23 

10 91.83 95.19 100 92.31 95.19 99.52 

Adverse 

1 68.75 74.04 78.85 69.23 74.04 79.33 
2 73.08 77.88 83.25 73.56 77.88 83.73 
3 80.29 85.10 89.54 79.81 85.10 89.54 
5 86.06 90.87 95.67 84.62 90.87 95.19 

10 93.27 96.63 100 92.79 96.63 100 

Table 2. Performance of the adaptive fitness Fusion approach (AFFA) using different 
number of training images from BANCA database with fixed and updated gallery set. 
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scenarios. This is far more challenging since the 4 recordings of each individual are quit 
similar in terms of feature vectors. The results of this modification in the database size 
together with the adaptive fitness fusion approach (AFFA) results between LBP and PCA 
with updated and fixed gallery sets are shown in table 2.  
The graphs in figure 15 to figure 20 show examples of the performance results of the 
proposed fitness fusion in the three different database scenarios (controlled, degraded, 
adverse) with 1 and 5 training images. The results shown in these figures are obtained using 
the scheme with fixed gallery set. It is clear in all figures that the fusing of separately 
obtained the fitness values PCA and LBP using the PCA and LBP feature vectors helped to 
improve the performance of the system. For example, in figure 15 the performance of AFA 
approach in the degraded scenario with 1 training image was 71.16 % and 75.85% using 
PCA and LBP, respectively. When fusion technique AFFA was applied the performance 
increased to 79.33 %. In figure 16, the training images were increased from 1 to 5 images in 
the same scenario. With AFA the performance was 88.46 % and 92.79% using PCA and LBP, 
respectively, and with AFFA it reached 94.23%.  Same observation can be made for the other 
two database scenarios with different training images in figures 17 to 20. 
 
 
 
 
 
 

 
 
 
 
 

Fig. 15. Performance in degraded scenario with 1 training image per video with fixed gallery 
set.   
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Fig. 16. Performance in degraded scenario with 5 training image per video with fixed gallery 
set.  
 

 
 

 
 

Fig. 17. Performance in controlled scenario with 1 training image per video with fixed 
gallery set.   
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Fig. 16. Performance in degraded scenario with 5 training image per video with fixed gallery 
set.  
 

 
 

 
 

Fig. 17. Performance in controlled scenario with 1 training image per video with fixed 
gallery set.   

 
Adaptive Fitness Approach - an Application for Video-Based Face Recognition 

 

167 

 

 
 

Fig. 18. Performance in controlled scenario with 5 training image per video with fixed 
gallery set.   

 
 

 

 
 

Fig. 19. Performance in adverse scenario with 1 training image per video with fixed gallery 
set.   
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Fig. 20. Performance in adverse scenario with 5 training image per video with fixed gallery 
set.   

6. Conclusion 
In this chapter a new biologically inspired approach called Adaptive Fitness Approach 
(AFA) for identifying faces form video sequences is proposed. The fitness value of each 
image in the gallery set is calculated and accumulated as the probe video frames are 
processed. To schemes are used with the AFA approach. First scheme employs discarding of 
unfit images from gallery followed by an update of the feature vectors. In the second 
scheme gallery and thus the feature vectors are kept fixed. 
In order to demonstrate the proposed AFA approach with updated and fixed gallery 
schemes, PCA and LBP derived features are employed for convenience. Performance of both 
schemes is far superior to single frame based PCA or LBP approaches. Even for very small 
number of training images. The adaptive fitness framework is also shown to conveniently 
accommodate fusing of different feature vectors with further and significant improvement 
in recognition performance over the AFA with single feature.  
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Fig. 20. Performance in adverse scenario with 5 training image per video with fixed gallery 
set.   
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1. Introduction  
Face detection is a fundamental prerequisite step in the process of face recognition. It 
consists of automatically finding all the faces in an image despite the considerable variations 
of lighting, background, appearance of people, position/orientation of faces, and their sizes. 
This type of object detection has the distinction of having a very large intra-class, making it a 
particularly difficult problem to solve, especially when one wishes to achieve real time 
processing. 
A human being has a great ability to analyze images. He can extract the information about it 
and focus only on areas of interest (the phenomenon of attention). Thereafter he can detect 
faces in an extremely reliable way. Indeed, a human being is able to easily locate faces in its 
environment despite difficult conditions such as occlusions of parts of a face and bad 
lightening. Many studies have been conducted to try to replicate this process, automatically 
using machines, because face detection is considered as a prerequisite for many computer 
vision application areas such as security, surveillance, and content based image retrieval.  
Over the last two decades multiple robust algorithmic solutions were proposed. However, 
researches in the field of computer vision and pattern recognition in particular tend to focus 
on the algorithmic and functional parts. This generally leads to implementations with little 
constraints of time, computing power and memory. Most of these techniques, even if they 
achieve good performance in terms of detection, are not suited for real time application 
systems. Nonetheless, Boosting–based methods, firstly introduced by Viola and Jones in 
(Viola & Jones, 2001; 2002), has led the state-of-the-art in face detection systems. These 
methods present the first near real time robust solution and by far the best speed / detection 
compromise in the state-of-the-art (up to 15 frames/s and 90% detection on 320x240 
images). This family of detectors relies upon a cascade of several classification stages of 
progressive complexity (around 20-40 stages for face detection). Depending on its 
complexity, each stage contains several classifiers trained by a boosting algorithm (Freund & 
Schapire, 1995; Lienhart, Kuranov, & Pisarevsky, 2003; Viola & Jones, 2002) 
These algorithms help achieving a linear combination of weak classifiers (often a single 
threshold), capable of real time face detection with high detection rates. Such a technique 
can be divided into two phases: Training and detection (through the cascade). While the 
training phase can be done offline and might take several days of processing, the final 
cascade detector should enable real-time processing. The goal is to run through a given 
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image in order to find all the faces regardless of their scales and locations.  Therefore, the 
image can be seen as a set of sub-windows that have to be evaluated by the detector which 
selects those containing faces. This approach is optimized for a sequential implementation 
but this implementation has two major drawbacks: high dependency between the different 
stages of the detector and irregularity in time processing. 
Most of the Boosting–based face detection solutions deployed today are general purpose 
processors software. But with the development of faster camera sensors which allows higher 
image resolution at higher frame-rates, these software solutions are not always working in 
real time.  Even more the current technology of multi-core processor cannot be exploited to 
its full limits because of the dependency between the different stages. Seeking some 
improvement over the software, several attempts  were made trying to implement face 
detection on multi-FPGA boards and multiprocessor platforms using programmable 
hardware , however in almost all the cases the resulting implementation are capable to 
accelerate the detection but degrade the detection accuracy. 
 The major difficulties in a parallel implementation of the cascade detector (boosted based 
methods) are the full dependency between the consecutive stages and classifier repartition 
which is optimized for sequential implementation. Based on this observation and our belief 
that a useful acceleration of the face detection should not compromise the detection 
performances, our main contribution is a new structure that exploits intrinsic parallelism of 
a boosting-based object detection algorithm without compromising its accuracy. At first we 
present a new stage grouping capable of equally partition the computation complexity of 
the algorithm. Based on this partitioning, a new parallel model is proposed. This model is 
capable of exploiting the parallelism and the pipelining in these algorithms, and provides 
regularity in time processing. It can also be customizable according to the cascade in use. 
This chapter also shows that a hardware implementation is possible using high-level 
SystemC description models. SystemC enables PC simulation that allows simple and fast 
testing and leaves our structure open to any kind of hardware or software implementation 
since SystemC is independent from all platforms. The processing blocs are modeled using 
SystemC. We show that, using a SystemC description model paired with a mainstream 
automatic synthesis tool, can lead to an efficient embedded implementation. We also display 
some of the tradeoffs and considerations, for this implementation to be effective.  
Finally, using the results of the processing blocks’ implantations, we define a new architectural 
structure of the implementation including the interconnectivity of the memory blocks and the 
number and the type of the used memories. This final system proves capable of achieving 47 
frames per second for 320x240 images as well as keeping the same detection accuracy as the 
original method. In the end, we show a detailed comparison between our system and the other 
state-of-the-art embedded implementation for boosting based face detection. 
This chapter can be considered as a continuation of previously published work (Khattab, 
Dubois & Miteran 2009) in which we proposed a new architecture for an embedded real-
time face detector based on a fast and robust family of methods, initiated by Viola and 
Jones. However only parts of the processing blocks were implemented, memories types and 
interconnection wasn’t optimized and the system validation was made in simulation 

2. Review of Boosting based object detectors  
Object detection is defined as the identification and the localization of all image regions that 
contain a specific object regardless of the object’s position and size, in an uncontrolled 
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background and lightning. It is more difficult than object localization where the number of 
objects as well as their size are already known. The object can be anything from a vehicle, 
human face (Figure 1), human hand, pedestrian (Viola, Jones, & Snow, 2003), etc. The 
majority of the boosting based object detectors work-to-date has primarily focused on 
developing novel face detection since it is very useful for a large array of applications.  
Moreover, this task is much trickier than other object detection tasks, due to the typical 
variations of hair style, facial hair, glasses and other adornments.  
 

 
Fig. 1. Example of face detection 

2.1 Theory of Boosting Based object detectors 
2.1.1 Cascade detection 
The structure of the cascade detector (introduced by Viola and Jones) is that of a 
degenerated decision tree. It is constituted of successively more complex stages of classifiers 
(Figure 2). The objective is to increase the speed of the detector by focusing on the promising 
zones of the image. The first stage of the cascade will look over for these promising zones 
and indicates which sub-windows should be evaluated by the next stage. If a sub-window is 
labeled at the current classifier as non-face then it will be rejected and the decision upon it is 
terminated. Otherwise it has to be evaluated by the next classifier. When a sub-window 
survives all the stages of the cascade, it will be labeled as a face. Therefore the complexity 
increases dramatically with each stage, but the number of sub-windows to be evaluated will 
decrease more tremendously. Over the cascade the overall detection rate should remain 
high while the false positive rate should decrease aggressively.  
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Fig. 2. Cascade detector 
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2.1.2 Features 
To achieve a fast and robust implementation, Boosting based faces detection algorithms use 
some rectangle Haar-like features (shown in Figure 3) introduced by (Papageorgiou, Oren, 
& Poggio, 1998): Two-rectangle features (A and B), Three-rectangle features (C) and Four-
rectangle features (D). They operate on grayscale images and their decisions depend on the 
threshold difference between the sum of the luminance of the white region(s) and the sum of 
the luminance of the gray region(s). 
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Fig. 3. Rectangle Features 

Using a particular representation of the image so-called the Integral Image (II), it is possible 
to compute very rapidly the features. The II is constructed of the initial image by simply 
taking the sum of luminance value above and to the left of each pixel in the image: 
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 Where ii(x,y) is the integral image and i(x,y) is the original image pixel’s value. Using the 
Integral Image, any sum of luminance within a rectangle can be calculated from II using 
four array references (Figure 4). After the II computation, the evaluation of each feature 
requires 6, 8 or 9 array references depending on its type. 
However, assuming a 24x24 pixels sub-window size, the over-complete feature set of all 
possible features computed in this window is 45,396: it is clear that a feature selection is 
necessary in order to keep real-time computation time compatibility. This is one of the roles 
of the Boosting training step.  
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P3 P4  
Fig. 4. The sum of pixels within Rectangle D can be calculated by using 4 array references; 
SD= II [P4] – (II [P3] + II [P2] – II [P1]) 

2.1.3 Weak classifiers and Boosting training 
A weak classifier hj(x) consists of a feature fj, a threshold θj and a parity pj indicating the 
direction of the inequality sign:  
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Boosting algorithms (Adaboost and variants) are able to construct a strong classifier as a 
linear combination of weak classifiers (here a single threshold) chosen from a given, finite or 
infinite, set, as shown in Equation 3.  
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Where θ is the stage threshold, αt is the weak classifier’s weight and T the total number of 
weak classifiers (features). This linear combination is trained in cascade in order to have 
better results. 
There, a variant of Adaboost is used for learning object detection; it performs two important 
tasks: feature selection from the features defined above; and constructing classifiers using 
selected features. The result of the training step is a set of parameters (array references for 
features, constant coefficients of the linear combination of classifiers, and thresholds values 
selected by Adaboost). This set of features parameters can be stored easily in a small local 
memory. 

2.2 Previous implementations  
The state-of-the-art initial prototype of this method, also known as Viola-Jones algorithm, 
was a software implementation based on trained classifiers using Adaboost. The first 
implementation shows some good potential by achieving good results in terms of speed and 
accuracy; the prototype can achieve 15 frames per second on a desktop computer for 
320x240 images. Such an implementation on general purpose processors offers a great deal 
of flexibility, and it can be optimized with little time and cost, thanks for the wide variety of 
the well-established design tools for software development. However, such implementation 
can occupy all CPU computational power for this task alone; nevertheless, face/object 
detection are considered as prerequisite step for some of the main application such as 
biometric, content-based image retrieval systems, surveillance, auto-navigation, etc. 
Therefore, there is more and more interest in exploring an implementation of accurate and 
efficient object detection on low cost embedded technologies. The most common target 
technologies are embedded microprocessors such as DSPs, pure hardware systems such as 
ASIC and configurable hardware such as FPGAs. 
Lot of tradeoffs can be mentioned when trying to compare these technologies. For instance, 
the use of embedded processor can increase the level of parallelism of the application, but it 
costs high power consumption,  all while limiting the solution to run under a dedicated 
processor. 
Using ASIC can result better frequency performance coupled with high level of parallelism 
and low power consumption. Yet, in addition to the loss of flexibility, using this technology 
requires a large amount of development, optimization and implementation time, which 
elevates the cost and risk of the implementation. 
FPGAs can have a slightly better performance/cost trade-offs then previous two, since it 
permits high level of parallelism coupled with some design flexibility. However some 
restriction in design space, costly rams connections as well as lower frequency comparing to 
ASIC, can rule-out it use for some memory heavy applications. 
For our knowledge, few attempts were made trying to implement Boosting based face 
detection on embedded platforms. Nevertheless, these proposed architectures were 
configurable hardware based implementations and most of them couldn’t achieve high 
detection frame rate speed while keeping the detection rate close of that’s of the original 
implementation. For instance, in order to achieve 15 frames per second for 120x120 images, 
Wei et al. (Wei, Bing, & Chareonsak, 2004) choose to skip the enlargement scale factor from 
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1.25 to 2. However such a maneuver would lower the detection rate dramatically. 
Theocharideset al. (Theocharides, Vijaykrishnan, & Irwin, 2006) has proposed a parallel 
architecture taking advantage of a grid array processor. This array processor is used as 
memory to store the computation data and as data transfer unit, to aid in accessing the integral 
image in parallel. This implementation can achieve 52 frames per second at a 500 MHz 
frequency. However, details about the image resolution were not mentioned. Another 
complex control scheme to meet hard real-time deadlines is proposed in (M Yang, Wu, 
Crenshaw, Augustine, and Mareachen 2006). It introduces a new hardware pipeline design for 
Haar-like feature calculation, and a system design exploiting several levels of parallelism. But 
it sacrifices the detection rate and it is better fitted for portrait pictures.  And more recently, an 
implementation with NoC (Network-on-Chip) architecture is proposed in (Lai, Marculescu, 
Savvides, & Chen, 2008) using some of the same element as (Theocharides, Vijaykrishnan, & 
Irwin, 2006), this implementation achieves 40 frames per second for 320x240 images. However 
detection rate of 70% was well below the software implementation (82% to 92%), due to the 
use of only 44 features (instead of about thousands). 

3. Global parallelism 
In this section we provide a detailed analysis of the boosting based face detection algorithm, 
in order to extract as much useful information for designing an efficient parallel 
architecture. For this, we first present an analysis of the sequential implementation. We then 
analyze the different stages of the cascade, and the computational complexity of each one of 
them. Finally, we propose a parallel structure to accelerate this algorithm. 

3.1 Sequential implementation  
The strategy used in software implementation consists of processing each sub-window at a 
time. The processing on the next sub-window will not trigger until a final decision is taken 
upon the previous one i.e. going through a set of features as a programmable list of 
coordinate rectangles. The processing time of an image depends on two factors: the 
processing time of each sub-window and the number of sub-windows to process. 
The processing time of a sub-window can vary dramatically depending on the complexity of 
its content. For example, an image of uniform color will definitely take less time to process 
than an image containing several faces. For this reason, the cascade-like detection algorithms 
are irregular and not predictable.  In fact, Viola and Jones have already indicated that the 
speed of the cascade detector depends on the image content and accordingly the average 
number of weak classifiers evaluated per sub-window on an image sequence. Moreover, their 
tests showed that, on average, 10 weak classifiers are evaluated per sub-window. These tests 
were done using CMU image database (Rowley, Baluja, & Kanade, 1998). 

3.1.1 OpenCV implementation 
Several variants of Boosting based face detection can be found in today’s literature. However 
the principal of cascade detection remain the same in almost all of these variants. As for the 
cascade /classifiers, we chose to use the database found on Open Computer Vision Library 
(OpenCv1). OpenCV provides the most used trained cascade/classifiers datasets and face-
                                                 
1OpenCv. (2009). Open source computer vision library. http://sourceforge.net/projects/opencvlibrary/ 
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time. The processing on the next sub-window will not trigger until a final decision is taken 
upon the previous one i.e. going through a set of features as a programmable list of 
coordinate rectangles. The processing time of an image depends on two factors: the 
processing time of each sub-window and the number of sub-windows to process. 
The processing time of a sub-window can vary dramatically depending on the complexity of 
its content. For example, an image of uniform color will definitely take less time to process 
than an image containing several faces. For this reason, the cascade-like detection algorithms 
are irregular and not predictable.  In fact, Viola and Jones have already indicated that the 
speed of the cascade detector depends on the image content and accordingly the average 
number of weak classifiers evaluated per sub-window on an image sequence. Moreover, their 
tests showed that, on average, 10 weak classifiers are evaluated per sub-window. These tests 
were done using CMU image database (Rowley, Baluja, & Kanade, 1998). 

3.1.1 OpenCV implementation 
Several variants of Boosting based face detection can be found in today’s literature. However 
the principal of cascade detection remain the same in almost all of these variants. As for the 
cascade /classifiers, we chose to use the database found on Open Computer Vision Library 
(OpenCv1). OpenCV provides the most used trained cascade/classifiers datasets and face-
                                                 
1OpenCv. (2009). Open source computer vision library. http://sourceforge.net/projects/opencvlibrary/ 
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detection software today. The particular classifiers, used on this library, are those trained with 
a base detection window of 24x24 pixels, using Adaboost. These classifiers are created and 
trained, by Lienhart et al (Lienhart & Maydt, 2002) , for the detection of upright front face 
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Using this sequential implementation, we decided to investigate each stage. For instance, the 
first stage classifier should be separated from the rest since it requires processing all the 
possible sub windows in an image, while each of the other relies on the results of previous 
stage and evaluates only the sub windows that passed through. 

3.1.2 Classification stages 
As mentioned earlier the first stage of the cascade must run all over the image and rejects 
the sub-windows that do not fit the criteria (no face in the window). The detector is scanned 
across locations and scales, and subsequent locations are obtained by shifting the window 
some number of pixels k. Only positive results trigger in the next classifier. 
The addresses of the positive sub-windows are stored in a memory, so that next classifier 
could evaluate them and only them in the next stage. Figure 5 shows the structure of such 
classifier. The processing time of this first stage is stable and independent from the image 
content; the algorithm here is regular.  
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Fig. 5. First cascade stage 

The other classification stages, shown in Figure 6, do not need to evaluate the whole image. 
Each classifier should examine only the positive results, given by the previous stage, by 
reading their addresses in the memory, and then takes a decision upon each one (reject or 
pass to the next classifier stage). 
Each remaining stage is expected to reject the majority of sub-windows and keep the rest to 
be evaluated later in the cascade. As a result, the processing time depends largely on the 
number of positive sub-windows resulted from the previous stage. Moreover the classifier 
complexity increases with the stage level.   

3.1.3 Full sequential implementation analysis 
For a 320x240 image, scanned on 11 scales with a scaling factor of 1.25 and a step of 1.5, the 
number of total sub-windows to be investigated is 105,963. Based on tests done in (Viola & 
Jones, 2001), an average of 10 features are evaluated per sub-window. As a result, the 
estimated number of decision made over the cascade, for a 320x240 image, is 1.3 million as 
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Fig. 6. nth Stage classifier 

on average. Thereafter around 10 million memory access (since each decision needs 6, 8 or 9 
array references to calculate the feature in play). Note that the computation time of the 
decision (linear combination of constants) as well as the time needed to build the integral 
image, are negligible comparing to the overall memory access time. 
Considering the speed of the memory is 10 ns per access (100 MHz), the time needed to 
process a full image is around 100 ms (about 10 images per second). However, this rate can 
vary with the image’s content.  

3.2 Possible parallelism 
We applied the frontal face detector, "Discrete AdaBoost" of OpenCV,  on the CMU image 
database in order to analyze the number of sub-windows rejected per stage and 
subsequently the number weak classifiers (features) evaluated per sub-window. Indeed, 75 
081 800 sub-windows have triggered a total of 668 659 962 evaluations of weak classifiers. 
Hence, only 9 weak classifiers are evaluated per sub-window on average. 
Even more, these analysis revealed another major characteristic of the cascade 
implementation: The unbalance in processing loads between the different stages. This is 
caused by the fact that the boosting based face detection is optimized for sequential 
implementation. The training phase of the boosting methods is configured to reject as much 
sub-windows as early as possible.  
On average, about 35% of the total memory access (and processing) load takes place in each 
of the first two stages while less than 32% take place in all of the remaining stages combined 
In the rest of this section, we show how to take advantage of such unbalance in memory 
access in order to propose a feasible parallel model 

3.2.1 Pipeline solution 
The previous analysis of the OpenCV cascade revealed that more than a third of the 
memory access take place on each of the first two cascade stages while less than third in all 
remaining stages. This analysis leads us to suggest a new pipelined solution (shown in 
Figure 7) of 3 parallel blocks that work simultaneously: In the first two blocks we intend to 
implement respectively the first and second stage classifier, then a final block assigned to 
run over all remaining stages sequentially. 
Unlike the state-of-the-art software implementation, the proposed structure tends to run 
each stage as a standalone block. Nevertheless, some intermediate memories between the 
stages must be added in order to stock the positively-labeled windows addresses. 
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The new structure proposed above can upsurge the speed of the detector in one condition: 
since that the computation complexity is relatively small and the time processing depends 
heavily on the memory access, an integral image memory should be available for each block 
in order to gain benefit of three simultaneous memory accesses. Figure 7 shows the 
proposed parallel structure. At the end of every full image processing cycle, the positive 
results from Block1 trigger the evaluation of Block2. The positive results from Block2 trigger 
the evaluation of Block3. And the positive results from Block3 are labeled as faces. It should 
be noted that blocks cannot process simultaneously on the same image i.e. if at a given 
moment Block1 is working on the current image In, then Block2 should be working on the 
previous image In-1 and Block3 should be working on the one before In-2. 
This structure requires data dependency between the parallel blocks. The addresses of the 
sub-windows classified positively by Block 1 shall be transmitted to Block 2. Similarly, the 
addresses of sub-windows classified positively by Block 1 and 2 respectively, must be 
transmitted to the Block 3. 
The large numbers of sub-windows addresses require the use of intermediate memories, 
which will manage the communication between the different blocks. At any given time, 
Block 1 processes on image In and stores the addresses of its positively labeled sub-windows 
in a memory (mem.1). At the same time Block 2 processes an image In-1 but only the sub-
windows positively labeled by the first and whose addresses are stored in memory mem.2. 
The addresses of sub-windows positively labeled by Block 2 are stored in a memory (mem.3). 
Respectively, Block 3 processes an image In-2 , but only its sub-windows positively labeled 
by Block 2 and whose addresses are read from a memory mem.4. Block 3 works the same 
way as in the sequential implementation: the block run back and forth through all remaining 
stages, to finally give the addresses of the detected faces.  
After each image cycle, and the memories mem.1 and mem.2 are swapped, same goes for 
mem.3 and mem.4 
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This can be translated into the model shown in Figure 8. A copy of the integral image is 
available to each block, as well as, three pairs of logical memory are working in ping pong to 
accelerate the processing. 
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The given parallel model ought to run at the same speed rate as its slower block. As 
mentioned earlier, the first stage of the cascade requires more access memory and therefore 
more time processing than the second stage alone or all the remaining stages together. In the 
first classifier stage, all 105,963 sub-windows should be inspected using three features with 
eight array references each. Therefore, it requires about 3.4 million of memory access per 
image. Using the same type of memory as in section 3.1.4, an image needs roughly 34 ms (29 
images per second) of time processing. 

3.2.2 Parallel model discussion  
Normally the proposed structure should stay the same, even if the cascade structure 
changes, since most of the boosting cascade structures have the same properties as long as 
the first two cascade stages. 
One of the major issues surrounding boosting based detection algorithms (especially when 
applied on to face detection in a non-constraint scene) is the inconsistency and the 
unpredictable processing time e.g. a white image will always takes a little processing time 
since no sub-window should be capable of passing the first stage of the cascade. As 
opposite, an image of thumbnails gallery will take much more time. 
The proposed structure not only gives a gain in speed; this first stage happens to be the only 
regular one in the cascade, with fixed time processing per image.  This means that we can 
mask the irregular part of the algorithm by fixing the detector overall time processing. 
As a result, the whole system will not work at 3 times the speed of the average sequential 
implementation; but a little bit less. Further work in section 5 will show that the embedded 
implementation can benefit from some system teaks (pipelining and parallelism) within the 
computation that will make the architecture even faster. 
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Due to the masking phenomena in the parallel implementation, decreasing the number of 
weak classifiers can accelerate the implementation; but only if the first stage of the cascade is 
accelerated.  
For this structure to be implemented effectively, its constraints must be taken into 
consideration. The memory, for instance, can be the most greedy and critical part; the model 
requires multiple memory accesses to be done simultaneously. The definition of an 
architectural structure of this representation depends on two factors: the nature of memory 
access and the desired performance of the system. For instance, the memory blocks of the 
integral images are used in the computation of the Haar-features rectangles. The integral 
images are stored in a linear fashion; however the reading access depends on the position, 
the size and the parameters of the weak classifier to be evaluated. It is for this reason that 
access to these memories are made randomly.  On the other hand, the blocks of intermediate 
memories are used to store and read the addresses of the sub-windows. Both the write and 
the read of these addresses are done sequentially. To optimize performance of architecture, 
it is imperative to use memories appropriate to the nature of each of the different access 
types. Thus, as we shall see in the implantation section 4, we recommend using two 
different types of memory. 
It is obvious that a generic architecture (a processor, a global memory and cache) will not be 
enough to manage up to seven simultaneous memory accesses on top of the processing, 
without crashing it performances. 

4. Architecture definition and implementation 
Flexibility and target architecture are two major criteria for any implementation. First, a 
decision has been taken upon building our implementation using a high level description 
model/language. Modelling at a high level of description would lead to quicker simulation, 
better bandwidth estimation, better functional validation, and more importantly it can help 
delaying the system orientation and thereafter delaying the hardware target.  

4.1 SystemC description 
C++ implements Object-Orientation on the C language. Many Hardware Engineers may 
consider that the principles of Object-Orientation are fairly remote from the creation of 
Hardware components. Nevertheless, Object-Orientation was created from design techniques 
used in Hardware designs. Data abstraction is the central aspect of Object-Orientation which 
can be found in everyday hardware designs with the use of publicly visible “ports” and 
private “internal signals”. Moreover, component instantiation found in hardware designs is 
almost identical to the principle of “composition” used in C++ for creating hierarchical design. 
Hardware components can be modelled in C++, and to some extent, the mechanisms used are 
similar to those used in HDLs. Additionally C++ provides inheritance as a way to complement 
the composition mechanism and promotes design reuse.  
Nonetheless, C++ does not support concurrency which is an essential aspect of systems 
modelling. Furthermore, timing and propagation delays cannot easily expressed in C++.  
SystemC2  is a relatively new modeling language based on C++ for system level design.  It 
has been developed as standardized modeling language for system containing both 
hardware and software components.  
                                                 
2SystemC, Initiative Open. Initiative Open SystemC, (OSCI) http://www.systemc.org. 
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SystemC class library provides necessary constructs to model system architecture from 
reactive behaviour, scheduling policy and hardware-like timing. All of which are not 
available using C/C++ standalone languages.  
There is multiple advantages of using SystemC, over a classic hardware description 
languages, such as VHDL and Verilog; flexibility, simplicity, simulation time velocity, and 
for most the portability. 

4.1.1 SystemC implementation for Functional validation and verification 
The SystemC approach consists of a progressive refinement of specifications. Therefore, a 
first initial implementation was done using an abstract high-level timed functional 
representation. 
In this implementation, we used the proposed parallel structure discussed in section 3. 
This modeling consists of high level SystemC modules (TLM) communicating with each 
other using channels, signals or even memory-blocks modules written in SystemC. 
Scheduling and timing were used but have not been explored for hardware-like purposes. 
Data types, used in this modelling, are strictly C++ data types. 
Functional validation of our model SystemC is performed using a simulation phase (Figure 
9). We simulate the behavior of a SystemC model by executing its processes in a pseudo 
concurrent way. The simulation stops when there is no eligible process and event 
notification. To manage the progress of simulation time, the SystemC simulator has a timed 
notifications schedule to be triggered. This schedule is a list of notifications of timed event 
that is sorted according to the time of such notification triggers. 
Functional validation of the system was performed by comparing the results of the SystemC 
written structure with the results of OpenCV’s software implementation, using 25 random 
images from the CMU image database.  
 

SystemC Model

Simulation 

Validation 

 
Fig. 9. SystemC functional validation flow 

4.1.2 Modelling for Embedded implementation 
While the previous SystemC modelling is very useful for functional validation, more 
optimization should be carried out in order to achieve a hardware implementation. Indeed, 
SystemC standard is a system-level modelling environment which allows the design of 
various abstraction levels of systems. The design cycle starts with an abstract high-level 
untimed or timed functional representation that is refined to a bus-cycle accurate and then 
an RTL (Register Transfer Level) hardware model. SystemC provides several data types, in 
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addition to those of C++. However these data types are mostly adapted for hardware 
specification. 
Besides, SystemC hardware model can be synthesizable for various target technologies. 
Numerous behavioural synthesis tools are available on the market for SystemC (e.g. 
Synopsys Cocentric compiler, Mentor Catapult, SystemCrafter, and AutoESL). It should be 
noted, that for all those available tools, it is necessary to refine the initial simulation-like 
SystemC description in order to synthesize into hardware. The reason behind is the fact that 
SystemC language is a superset of the C++ designed for simulation. Therefore, a new 
improved and foremost a more refined “cycle accurate RTL model” version of the design 
implementation was created. 
Our design is split into compilation units, each of which can be compiled separately. 
Alternatively, it is possible to use several tools for different parts of your design, or even 
using the partition in order to explore most of the possible parallelism and pipelining for 
more efficient hardware implementation. Eventually, the main block modules of the design 
were split into a group of small modules that work in parallel and/or in pipelining. For 
instance, the module Block1 contains three compilation units (modules): a “Decision” 
Module which contains the first stage’s classifiers. This module is used for computation and 
decision on each sub-window. The second module is “Shift-and-Scale” used for shifting and 
scaling the window in order to obtain all subsequent locations. Finally, a “Memory-Ctrl” 
module manages the intermediate memory access. 
As result, a SystemC model composed of 12 modules: three for Block1, two for Block2, three 
for Block3, one for the Integral image transformation, 3 for the memories.  
Other major refinements were done: Divisions were simplified in order to be power of two 
divisions, dataflow model was further refined to a SystemC/C++ of combined finite state-
machines and data paths, loops were exploited and timing/scheduling were taken into 
consideration. Note that in most cases, parallelism and pipelining were forced manually. 
However, this level of description can vary depending on the needs of the high-level 
synthesis tool used for the hardware implementation. For example tools like Mentor 
Graphics CatapultC can propose and test different alternatives of parallel and pipeline 
implementations for high level of description C/SystemC. Other tools like SystemCrafter 
require manual coding of parallelism and pipeline operations.  
On the other hand, not all the modules were heavily refined, for example the three memory 
modules were used in order simulate physical memories, which will never be synthesized 
no matter what the target platform is. 

4.2 High level synthesis 
SystemC hardware model can be synthesizable for various target technologies. However, no 
synthesizer is capable of producing efficient hardware from a SystemC program written for 
simulation. Automatic synthesis tool can produce fast and efficient hardware only if the 
entry code accommodates certain difficult requirements such as using hardware-like 
development methods. Therefore, the results of the synthesis design implementation 
depend heavily and the tool itself, and the different level of refinements done on the entry 
code. Figure 10 shows the two different kinds of refinements needed to achieve a successful 
fast implementation, using a high level description language. The first type of refinements is 
the one set by the tool itself. Without it, the tool is not capable of compiling the SystemC 
code to RTL level. Even so, those refinements don’t lead directly to a good proven 
implementation. Another type of refinements should take place in order to optimize the 
size, the speed and sometimes (depending on the used tool) power consumption.  
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For our design, several refinements have been done on different modules depending on 
their initial speed and usability. 
The SystemC scheduler uses the same behavior for software simulation as for hardware 
simulation. This works to our advantage since it gives the possibility of choosing which of 
the modules to be synthesized, while the rest works as SystemC test bench for the design. 
Our synthesis phase was performed using an automatic tool, named SystemCrafter, which is 
a SystemC synthesis tool that targets Xilinx FPGAs. 
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Fig. 10. SystemC to hardware implementation development flow  

It should be noted that the used SystemC entry code can be described as VHDL-like 
synchronous and pipelined C-code (bit accurate): Most parallelism and pipelining within 
the design were made manually using different processes, threads, and state-machines. 
SystemC data types were used in order to minimize the implementation size. Loops were 
exploited, and timing as well as variables lengths were always a big factor. 
Using the SystemCrafter, multiple VHDL components are generated and can be easily 
added or merged into/with other VHDL components (notably the FIFO’s modules). As for 
the testbench set, the description was kept in high level abstraction SystemC for faster 
prototyping and simulation. 
Basically, our implementation brings together four major components: the Integral Image 
module, the first stage decision module, the second stage decision module and Block 3 
which runs sequentially the rest of the cascade stages. Each of these components was 
implemented separately in order to analyze their performances. In each case, multiple 
graphic simulations were carried out to verify that the output of both descriptions 
(SystemC’s and VHDL’s) are identical.  
The reduced number of weak classifiers in the first two stages (three and nine respectively) 
allows us to store their settings in internal memory (LUT type). In the case of Block3, the 
number of weak classifiers is about 2500. Knowing that every weak classifier has 13 
parameters (addresses rectangles, weight, threshold...) and each of these parameters is 
defined with an integer data type of size 24 bits. The size of memory needed to store these 
parameters is therefore: 2500 x 13 x 24 = 780 000 = 780Kbits. It is therefore clear that the 
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number of weak classifiers is about 2500. Knowing that every weak classifier has 13 
parameters (addresses rectangles, weight, threshold...) and each of these parameters is 
defined with an integer data type of size 24 bits. The size of memory needed to store these 
parameters is therefore: 2500 x 13 x 24 = 780 000 = 780Kbits. It is therefore clear that the 
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storage of these parameters in internal LUT type memory can occupy a large number of 
logical blocks (slices) within the FPGA. We chose to store these parameters in the blocks 
RAM (BRAM). Indeed the use of SystemCrafter facilitates this task by using the type 
ram_block. This structure can be used in the same way as type "ram" plus it handles the 
storage and the control of the FPGA’s BRAMS. 

4.3 Performances 
The Xilinx Virtex-4 XC4VL25 was selected as a target FPGA. The VHDL model was back 
annotated using the Xilinx ISE.  

4.3.1 Non-optimized implementation 
The synthesis results of the design implementation for each of the components are given on 
Table1. 
 

 Logic Utilization Used Available Utilization 
Integral Number of occupied Slices: 913 10752 8% 

Image Number of Slice Flip Flops: 300 21504 1% 

 Number of 4 input LUTs: 1761 21504 8% 

 Maximum frequency 129 MHz 

BLOCK1 

Number of occupied Slices: 1281 10752 12% 
Number of Slice Flip Flops: 626 21504 3% 
Number of 4 input LUTs: 2360 21504 11% 

Maximum frequency 47 MHz 

BLOCK2 

Number of occupied Slices: 3624 10752 34% 
Number of Slice Flip Flops: 801 21504 4% 
Number of 4 input LUTs: 7042 21504 33% 

Maximum frequency 42 MHz 

BLOCK3 

Number of occupied Slices: 3178 10752 29% 
Number of Slice Flip Flops: 722 21504 3% 
Number of 4 input LUTs: 3014 21504 14% 

Maximum frequency 43 MHz 

Table 1. The synthesis results of the components implementations 

The clock rate of the design did not exceed the rate of its slowest component. Therefore it is 
necessary to simulate and estimate the average speed of each block. Another big advantage 
of SystemC is the possibility of using C++/SystemC testbenches with VHDL models.  And 
using simulation tools such as ModelSim, we can determine exactly the number of cycles 
needed to process a sub-window and thereafter the speed of each block. For instance Block1 
can operate with a maximum frequency of 47 MHz and can process a sub-window in 42 
clock cycles. Table 2 shows the average speed of each hardware Block using the CMU image 
database.  
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This actual implementation is capable of achieving only up to 11 frames per second on 
320x240 images. Accelerating Block 1, Block 2 and Block3 is essential in order to achieve 
higher detection speed. 
 

 Maximum 
Frequency (MHz)

Number of Cycle per 
Sub-windows 

Average speed (frame 
per second) 

Block1 47 42 11 
Block2 42 112 11,3 
Block3 43 192 to 2400 16 

Table 2. speed of processing blocks before optimization 

4.3.2 Optimized implementation 
Analyzing the automatically generated VHDL code shows that despite all the refinement 
already done, the SystemCrafter synthesis tool still produces a much complex RTL code 
than essentially needed. Particularly, when using arrays in loops, the tool creates a register 
for each value, and then wired it into all possible outputs. Things get worse when trying to 
update all the array elements within one clock cycle. A scenario that occurs regularly in our 
design e.g. updating classifiers parameters. Simulation tests proved that these last 
manipulations can widely slowdown the design frequency. Therefore more refinements 
have been made for the “Decision” SystemC modules. For instance, the arrays updating 
were split between the clock cycles, in a way that no additional clock cycles are lost while 
updating a single array element per cycle. 
The synthesis results for the new improve and more refined decision modules are shown in 
Table 3. The refinements made allow faster, lighter, and more efficient implementation for all 3 
modules. Even more, the ModelSim simulation of our design shows that the refinements also 
allow achieving less cycles per decision (sub-windows processing) in all 3 blocks. Table 4 
shows the new average speed of each VHDL Block using the CMU image database.  
 

 Logic Utilization Used Available Utilization 

BLOCK1 

Number of occupied Slices: 713 10752 7% 
Number of Slice Flip Flops: 293 21504 1% 
Number of 4 input LUTs: 1091 21504 5% 
Maximum frequency 127 MHz 

BLOCK2  

Number of occupied Slices: 2582 10752 24% 
Number of Slice Flip Flops: 411 21504 2% 
Number of 4 input LUTs: 5082 21504 24% 
Maximum frequency 127 MHz 

BLOCK3 

Number of occupied Slices: 1703 10752 16% 
Number of Slice Flip Flops: 405 21504 2% 
Number of 4 input LUTs: 2616 21504 12% 
Maximum frequency 127 MHz 

Table 3. The synthesis results for the new improved decision modules 
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The FPGA can operate with a frequency of 127 MHz. Using the same logic as before, a 
system is as fast as its slowest blocks, therefore the  new design can achieve up to 47 frames 
per second on 320x240 images. 
The design can run on even faster pace, if more refinements and hardware considerations 
are taken. However, it should be noted that using different SystemC synthesis tools can 
yield different results. After all, the amount and effectiveness of the refinements depend 
largely on the tool itself. 
Other optimizations can be done by replacing some of the auto-generated VHDL codes from 
the crafter with manually optimized ones.  
 

 Maximum 
Frequency (MHz) 

Number of Cycle per 
Sub-windows 

Average speed 
(Image per second) 

Block1 127 28 47 
Block2 127 76 47,7 
Block3 127 132 to 22890 50 

Table 4. Speed of processing blocks after optimization 

4.4 Architectural structure and memory blocks connectivity 
The synthesis results from the previous paragraph helps showing the limitation in 
processing speed. However the performance of design also depends on the architectural 
structure of the implementation including the interconnectivity of the memory blocks and 
the number of physical memory used. 
A first possible solution is to use a system with separated memory blocks (Figure 11.a.). At 
the end of each image cycle, a “switch” module is in charge of swapping memory blocks at a 
physical level. This solution can maximize processing performances, but it is too costly in 
terms of physical memory and resultant physical interconnections. 
Reducing the number of physical memory can be explored in other solutions that integrate 
timesharing systems. Figure 11.b. shows a solution with a single physical memory for 
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Integral Images (same can be done for the intermediate memory blocks). The physical 
memory is logically divided into four memory banks that work in queues. The swapping of 
the memory access is also done by "Switch". But unlike the previous solution, where the 
swapping is made at a physical level, they are calculated at a logic level. This solution is 
optimal when the number of memory accesses is small. However in cases where memory 
accesses are the limiting factor of the system, this solution is less efficient than the using 
separated memories. 

4.4.1 Intermediate memory 
One of the drawbacks of the proposed parallel structure (given in section 4) is the use of 
additional intermediate memories (unnecessary in the software implementation). Logically, 
an inter-blocks memory unit is formed out of two memories working in ping-pong. 
A stored address should hold the position of a particular sub-window and its scale; there is 
no need for two-dimensional positioning, since the Integral Image is created as a 
monodimensional table for a better RAM storage. 
For a 320x240 image and a base sub-window size of 24x24, a word of 32 bits would be 
enough to store the concatenation of the position and the scale of each sub-window. 
As for the capacity of the memories, a worst case scenario occurs when half of the possible 
sub-windows manage to pass through first block. That leads to around 2 x 53,000 (50% of 
the sub-windows) addresses to store. Using the same logic on the next block, the total 
number of addresses to store should not exceed the 168 000. Eventually, a combined 
memory capacity of less than 1 Mbytes is needed. The simulation of our SystemC model 
shows that, even when facing a case of consecutive positive decisions for a series of sub-
windows, access onto those memories will not occur more than once every each 28 cycles 
(case of  mem.1 and mem.2 ), or once each 76 cycles (case of mem.3 and mem.4). The access 
on these memories is regular since the writing and the reading are always done sequentially. 
Due to these facts, we propose a timesharing system (shown in Figure 12) using four 
memory banks, working as a FIFO block, with only one physical memory.  In order to 
determine the exact characteristics of the needed memory, several testbenchs were created 
to compute the maximal bandwidth needed as well as the optimal FIFO queue size in worst 
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case scenario. The results of these simulation shows that a frequency of 17 MHz and a buffer 
size (each FIFO block) of 10 are enough for our configuration. 
Typical hardware implementation of a 1 Mbytes SDRAM memory, running on a frequency 
of anything higher than 17 MHz, is enough to replace the four logical memories. Moreover, 
the required buffer size is very small. They FIFO are easily implemented with a limited 
number of block RAM (BRAM). We can use two BRAMS in dual-port mode or four BRAMS 
single port mode. 

4.4.2 Integral image memory 
The set of processing blocks (Integral Image, Block 1, Block2  and Block3) need to access 4 
different Integral Images simultaneously. To achieve a detection of 47fps on 320x240 images, 
each of block must operate at their maximum frequency. In the worst case scenario the total 
bandwidth needed to access all Integral images is about 10,7 Gigabits/s. 
However unlike the intermediate memory, the access to the integral images is never 
sequential or regular. The memory usage of SDRAM is not suited. In fact, the non-
consecutive data transfer will drop dramatically the SDRAM bandwidth. Typically, for a 
latency of two cycles, the available bandwidth is divided by 3.The use of SRAMs appears to 
be more appropriate. For these reasons, we propose a solution with four SRAM memory 
units (Figure 13). Though, a solution with less memory units can be considered, the use of 
four minimizes the complexity of the switching module “SWITCH_II”. At the end of each 
image cycle, a circular swapping logic is performed between memory units. 
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4.4.3 Final architecture structure 
After establishing the interconnectivity of our architectural structure, we synthesize the 
whole system which includes Block 1 to 3, the Integral image module, and the switching 
modules. The results and the performances are shown in Table 5.  The FPGA can operate at 
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a clock speed of 127 MHz. Figure 14 Shows the final proposed architecture which is capable 
of 47 images per second. 
The simulation tests, used in section 4.1 for the functional validation of the SystemC code, 
were carried out on the VHDL code mixed with a high level test bench (the same SystemC 
test bench used for the SystemC validation model). The outputs of the VHDL code were 
compared to the outputs of the OpenCV’s implementation. These tests prove that we were 
able to achieve the same detection results as in using the software provided by OpenCV. 
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Fig. 14. Proposed architecture  

 
Logic Utilization Used Available Utilization 

Number of occupied Slices: 6075 10752 57% 
Number of Slice Flip Flops: 1729 21504 8% 
Number of 4 input LUTs: 10711 21504 50% 

Number of DSPs: 9 48 19% 
Maximum frequency 127 MHz 

Table 5. The synthesis results of the refined implementation for the entire design 

4.5 State-of-the-art comparision 
We compare in this section, the performance of our embedded implementation with other 
known embedded implementations for the boosting based face detection in the literature. 
Comparisons are made in terms of speed (frame per second) and detection rates.The results 
of these comparisions are shown in Table 6. 
One of the major challenges when trying to implement a real time embedded solution for 
this type of  algorithms is the large number of features to be implemented in a cascade. In 
fact, the number of used features is usually betwen 2000 and 6000, depending on the 
training phase. Furthermore, the cascade implementation and the irregular nature of the 
stages of the cascade, make it extremely difficult to proposed a parallel structure capable of 
accelerating the detection without degrading the performances. 
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Implementation Image 
size 

smallest 
sub-

window 
size 

Frames 
per 

second 

Test 
database

Feature
s used 

Detection 
rate 

Wei & al. (Wei, Bing, & 
Chareonsak, 2004) 120x120 24x24 15 CMU NA 50% 

Yang et al. 320x240 24x24 13 P I DB3 140 75% 
Theocharides 
(Theocharides, 
Vijaykrishnan, & Irwin, 
2006) 

NA NA 52 P I DB 
Less 
than 
150 

NA 

Lai & al. (Lai, Marculescu, 
Savvides, & Chen, 2008) 320x240 20x20 40 P I DB 42 75% 

Author’s implementation 320x240 24x24 47 CMU 2500 88% 

Table 6. Comparison of embedded implementation of Boosting based face detection 

In the literature we can find a lot of attempts to accelerate the boosting based face detection. 
However the authors in these works have sought to reduce the overall computation burden, 
without taking into consideration the local burden of computation at each stage of 
classification. By consequence,  they have abandoned the cascaded architecture in favor of a 
single complex stage of classification(e.g.only 42 features in the implementation of Lai & al.). 
Indeed, it is easier to exploit the parallelism of a single stage with several features than the 
parallelism of a complex cascade with very high data dependencies. However, this approach 
has two major drawbacks: 
- Each sub-window must be evaluated by a large number of features (42 to 150) , when  

the average number of evaluated  features per sub-windows in a cascade is generally 
less than 10. 

- The evaluation of these features must be done in parallel to speed up the detection time. 
The amount of necessary resources for these computations is thereby increased, which 
explains the limited number of features used in the hardware implementations. And 
therefore the detection rates of these implementations are well under the ones set by the 
software implementations.  

However, unlike the listed embedded implementations, our architecture is capable of 
supporting a large number of features. Indeed, we were able to implement the same full 
cascade (more than 2500 features) as the “default” one found in OpenCV.  Hence the 
detection rates are the same as the software implementation.  Our implementation can 
achieve up to 47 fps on the CMU image database, while processing about 106 000 sub-
windows. The implementation proposed by Theocharides can achieve slightly higher  of 
number of frames per second, but the authors did not provide sufficient details on 
important factors, such as images size  and the smallest sub-window size. These 
configurations are essential in determining the speed of the detection (and the detection 
rates), for exemple taking changing the smallest sub-window size from 24x24 to 32x32 can 
divide the computation burden by 2 and therefore accelerate the detection by a factor of 2. 
                                                 
3proprietary image databases 
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5. Conclusion 
This chapter can be considered as a continuation of previously published work (Khattab, 
Dubois & Miteran 2009) in which we proposed a new architecture for an embedded real-
time face detector based on a fast and robust family of methods, initiated by Viola and 
Jones. The most notable differences between the 2 articles are: The implementation of the 
third processing block (Block3), the new architecture structure including memories types 
and interconnection, and finally a full system validation and tests. 
First we analyse the sequential structure model which reveals to be irregular in time 
processing and in load partitioning. Then a new parallel structure model is introduced. This 
structure proves to be at least 3.4 times faster than the sequential, and provides regularity in 
time processing.  
The design was validated using SystemC. Simulation and hardware synthesis were done, 
showing that such an algorithm can be fitted easily into a FPGA chip, while having the 
ability to achieve the state-of-the-art performances in both frame rate and accuracy.  
The hardware target, used for the validation, is a FPGA based board, connected to the PC 
using an USB 2.0 Port. The use of SystemC description enables the design to be easily 
retargeted for different technologies. The implementation of our SystemC model onto a 
Xilinx Virtex-4 can achieve a theoretical 47 frames per second detection rate for 320x240 
images. And Unlike the state-of-the-art embedded implementation, we were able to 
implement the whole cascade detector (with all the features) as the one use in the software 
implementation. This has led to achieve practically the same result in detection rates as in 
the software implementation.  
On the other hand, we proved that SystemC description is not only interesting to explore 
and validate a complex architecture. It can also be very useful to detect bottlenecks in the 
dataflow and to accelerate the architecture by exploiting parallelism and pipelining. Then 
eventually, it can lead to an embedded implementation that achieves state-of-the-art 
performances, thanks to some synthesis tools. More importantly, it helps developing a 
flexible design that can be migrated to a wide variety of technologies. 
However, experiments have shown that refinements made to the entry SystemC code 
add up to substantial reductions in size and total execution time. Even though, the extent 
and effectiveness of these optimizations is largely attributed to the SystemC synthesis 
tool itself and designer’s hardware knowledge and experience. Therefore, one very 
intriguing perspective is the exploration of this design using other tools for comparison 
purposes. 
Accelerating the first stage can lead directly to a whole system acceleration. In the future, 
our description could be used as a part of a more complex process integrated in a SoC. We 
are currently exploring the possibility of a hardware/software solution; by prototyping a 
platform based on a Wildcard. Recently, we had successful experiences, implementing a 
similar type of solutions in order to accelerate a “Fourier Descriptors for Object 
Recognition using SVM”(Smach, Miteran, Atri, Dubois, & Gauthier, 2007)  and motion 
estimation for MPEG-4 coding(Dubois, Mattavelli, Pierrefeu, & Mitéran, 2005) . For 
example the Integral Image block as well as the first and second stages can be executed in 
hardware on the wildcard, while the rest can be implemented in software on a Dual core 
processor.  
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Spreading Associative Neural Network
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1. Introduction

With the rapid progress of the information society, biometrics identification technology has
been developed for security applications. Biometrics is person authentication using physical
features such as the face, fingerprints, irises, etc. It is advantageous for psychological
resistance to be minimized; verification using the face is uninvasive compared with
fingerprints. Such security systems using remote monitoring are in demand in customs house
and airports, etc.
Recently, face recognition by the on-line processing of facial images has been widely applied
in various fields and evaluated the face recognition performance using large scale database
(Phillips et al., 2007). The representative face recognition method is classified into two
categories. The first is a feature-based approach which uses feature vectors created with
complex Gabor wavelet coefficients at each node (Wiskott et al., 1997). The second is the
holistic or pattern (template) matching approach. The well-known example for the latter is
the approach using eigenfaces which are obtained from principal component analysis of a
large number of either full face images (Turk & Pentland, 1991) or local feature images of the
face, e.g. eyebrow, eye, nose, cheek, mouth, etc (Penev & Atick, 1996). In both approaches, the
conventional nearest neighbor algorithm or neural network is used for face classification.
In personal authentication using facial images, it is a common problem to realize robust
recognition independent of variations of illumination, orientation, size, pose, and expression,
etc. The various methods of orientation recognition for facial image were proposed
(Wong et al., 2001; Wu et al., 2006; Su, 2000). The orientation of facial image obtained by these
methods is used for the orientation correction before the face (shape) recognition process.
On the other hand, the face size is usually normalized by using the information of distance
between eyes or face width. Recently, a rotation and size spreading associative neural network
(RS-SAN net) was developed based on space and 3-D shape recognition systems in the brain
(Nakamura & Miyamoto, 2001). Using RS-SAN net, a personal authentication method, which
was not influenced by the orientation and size changes was proposed. The RS-SAN net
correctly recognized face shape, orientation and size, regardless of the input orientation and
size, once facial images were learned (Nakamura & Miyamoto, 2001; Nakamura & Takano,
2006). However, the face shape recognition performance of the RS-SAN net was slightly low
compared with other face recognition methods.
In this chapter, we introduce a novel face recognition method using the characteristics of
orientation and size recognition for decreasing false acceptance. Section 2 and 3 describe
the outline of the rotation and size spreading associative neural network (RS-SAN net).
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Recognition performances of the orientation, size and shape of faces are evaluated in Section
4. Section 5 details the novel face recognition method which introduces the unlearned face
rejection with the orientation and size recognition characteristics. Section 6 concludes this
chapter.

2. Rotation and size spreading associative neural network

2.1 Structure of the RS-SAN net
The RS-SAN net consists of orientation, size and shape recognition systems shown in Fig.1.
The learning and recognition processes of the RS-SAN net are as follows.
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Fig. 1. Structure of the RS-SAN net.

1. The input face pattern X (480 × 480 pixels) is transformed into a transformed pattern Tr,θ
(360 × 360 pixels) on log-polar coordinates.

2. The transformed pattern is passed through 25 masking layers to produce masked patterns.

3. The double spreading layers spread the 25 masked patterns by weighted orientation and
size spreading functions to produce the double spread pattern (900 dimensions).

4. In learning, an orientation memory matrix MO and size memory matrix MS are obtained

from the spread patterns W (P)
L calculated from learning patterns X(P) (P = 1, · · · , Pmax)

and orientation teaching signals TO(P) and size teaching signals TS(P), respectively. The
learning was performed in 6 orientations (0◦ ∼ 300◦ in increments of 60◦) × 6 sizes (same
interval in logarithmic scale:1.00, 1.43, 2.04, 2.93, 4.19, 6.00) for respective faces. The spread

pattern W (P)
L is also stored in face recognition system for shape recognition.

5. In recognition, the system recognizes the orientation and size at the same time by using
the population vectors calculated from the outputs of 30 orientation and size recognition
neurons (Georgopoulus et al., 1982). The outputs of orientation and size reecognition
neurons are obtained by multiplying the spread patterns WR calculated from the input
pattern X and orientation memory matrix MO and size memory matrix MS, respectively.
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Recognition performances of the orientation, size and shape of faces are evaluated in Section
4. Section 5 details the novel face recognition method which introduces the unlearned face
rejection with the orientation and size recognition characteristics. Section 6 concludes this
chapter.

2. Rotation and size spreading associative neural network

2.1 Structure of the RS-SAN net
The RS-SAN net consists of orientation, size and shape recognition systems shown in Fig.1.
The learning and recognition processes of the RS-SAN net are as follows.
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1. The input face pattern X (480 × 480 pixels) is transformed into a transformed pattern Tr,θ
(360 × 360 pixels) on log-polar coordinates.

2. The transformed pattern is passed through 25 masking layers to produce masked patterns.

3. The double spreading layers spread the 25 masked patterns by weighted orientation and
size spreading functions to produce the double spread pattern (900 dimensions).

4. In learning, an orientation memory matrix MO and size memory matrix MS are obtained

from the spread patterns W (P)
L calculated from learning patterns X(P) (P = 1, · · · , Pmax)

and orientation teaching signals TO(P) and size teaching signals TS(P), respectively. The
learning was performed in 6 orientations (0◦ ∼ 300◦ in increments of 60◦) × 6 sizes (same
interval in logarithmic scale:1.00, 1.43, 2.04, 2.93, 4.19, 6.00) for respective faces. The spread

pattern W (P)
L is also stored in face recognition system for shape recognition.

5. In recognition, the system recognizes the orientation and size at the same time by using
the population vectors calculated from the outputs of 30 orientation and size recognition
neurons (Georgopoulus et al., 1982). The outputs of orientation and size reecognition
neurons are obtained by multiplying the spread patterns WR calculated from the input
pattern X and orientation memory matrix MO and size memory matrix MS, respectively.
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The shape is discriminated by the Euclidean distance between the double spread patterns
obtained in learning and recognition processes.

2.2 Feature vector calculation
The input face pattern X (480 × 480 pixels) is converted to a transformed pattern Tr,θ (360 ×
360 pixels) on the log-polar coordinate system by Eq.(1).

Tr,θ =
3

∑
i=1

3

∑
j=1

Ixij ,yij (1)

(xij = R cos Θ, yij = R sin Θ)

⎧⎨
⎩

R = 10LI·r +
�

10LI·r − 10LI(r−1)
�
× i

3
Θ = (θ − 1) + j

3

r, θ = 1, 2, · · · , 360, LI =
log(SR)

360
where Ixij ,yij is the pixel value of the input facial image X at (xij, yij) on the Cartesian
coordinates and SR = 240 is the sampling radius on the input facial image.
The transformed pattern Tr,θ is passed through 25 masking layers to produce 25 masked

patterns MT(m)
r,θ , (m = 1, 2, · · · , 25). The masking layers are various spatial filters to extract

characteristic features from the transformed image. The various masks M(m) are called spatial

filters, and the masked images generated, MT(m)
r,θ , are shown in Fig.2. Here, m is a mask

number (m = 1, 2, · · · , 25). A masked image MT(m)
r,θ is calculated by the convolution of the

transformed image Tr,θ and a mask M(m). If any pixel value of the masked image is negative

(MT(m)
r,θ < 0), the value is set to 0. The masks used in this study extract the edge components

of the transformed image. For example, mask M(2) extracts the vertical edge component of
a transformed image. The structure of the double spreading layers is shown in Fig.3. The

orientation spreading weight GO(dθ)
θ (dθ = 1, 2, · · · , 6) in the θ direction has a functional value

like that of the Gaussian curve in Eq.(2), and is maximum (1.0) in orientation dθ as shown in

Eq.(3). Similarly, the size spreading weight GS(dr)
r (dr = 1, 2, · · · , 6) in the r direction has a

functional value like that of the Gaussian curve that is maximum (1.0) in direction dr as shown
in Eqs.(4) and (5). The extent of spreading of the orientation and size information are decided
by the spreading coefficients βθ , βr in Eqs.(2) and (4), becoming small when these spreading
coefficients become larger.

FSθ(x) = exp{−βθ(x − 360n)2} (2)

(−180 + 360n < x ≤ 180 + 360n, n = 0,±1, . . .)

GO(dθ)
θ = FSθ {60(dθ − 1)− (θ − 1)} (3)

(dθ = 1, 2, · · · , 6 , θ = 1, 2, · · · , 360)
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Fig. 2. Masks M(m) and masked images MT(m)
r,θ .

Fig. 3. Structure of the double spreading layers.
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Fig. 2. Masks M(m) and masked images MT(m)
r,θ .

Fig. 3. Structure of the double spreading layers.
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FSr(x) = exp{−βr(x − 360n)2} (4)
(−180 + 360n < x ≤ 180 + 360n, n = 0,±1, . . .)

GS(dr)
r = FSr {60(dr − 1)− (r − 1)} (5)
(dr = 1, 2, · · · , 6 , r = 1, 2, · · · , 360)

We obtain the spread image SO(m,dθ)
r,θ in the θ direction by multiplying the masked image

MT(m)
r,θ and GO(dθ)

θ in Eq.(6), and the spread vector V(m,dθ)
r by the summation of SO(m,dθ)

r,θ

concerning θ by Eq.(7). Then, we obtain the spread image SS(m,dr)
dθ ,r in the r direction by

multiplying V(m,dθ)
r and GS(dr)

r in Eq.(8). Finally, the double spread vector W∗(P) is obtained

by summation of SS(m,dr)
dθ,r concerning r by Eq.(9). The dimension of W∗(P) is decided by dr, dθ

and m. This reaches 900 dimensions by multiplying 6(dθ)× 6(dr)× 25(m) in Eq.(10).

SO(m,dθ)
r,θ = MT(m)

r,θ × GO(dθ)
θ (6)

V(m,dθ)
r =

360

∑
θ=1

SO(m,dθ)
r,θ (7)

SS(m,dr)
dθ,r = V(m,dθ)

r × GS(dr)
r (8)

W∗
i =

360

∑
r=1

SS(m,dr)
dθ,r (9)

(i = 36 · (m − 1) + 6 · (dθ − 1) + dr)

W∗(P) = [W∗
1 , · · · , W∗

900]
T (10)

To remove the bias of W∗ which degrades the recognition performance, the normalized
double spread vector W is obtained by Eqs.(11) and (12). As a feature vector of the face
pattern X, the normalized double spread pattern W is used for both learning (registration)
and recollection (recognition).

||W∗|| =
√√√√900

∑
i=1

W∗2
i (11)

W =
W∗

||W∗|| (12)

2.3 Recognition neuron
2.3.1 Orientation recognition neuron
The orientation angle of a facial image is indicated by the orientation of a population vector
φo. The φo is defined as an ensemble of vectors of the orientation recognition neurons
YO = [YO1, · · · , YO30]

T where each vector points to the neuron’s optimally tuned orientation
and has a length in proportion to the neuron’s output (Georgopoulus et al., 1982). The
arrangement of orientation neurons and the orientation population vector are shown in
Fig.4. This assumes that the neurons in the parietal cortex (PG) of the brain recognize the
axis orientation of an object by population coding, as seen in neurophysiological studies.
Each orientation recognition neuron YOi has a respective representative orientation ψi that
characterizes the best orientation for the optimal response in Eq.(13). The population
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Fig. 4. Arrangement of orientation recognition neurons and population vector.

vector orientation φo is calculated by the vectorial summation of 30 orientation neurons
(YO1, · · · , YO30) by Eq.(14).

ψi =
2π

30
× (i − 1) (i = 1, 2, · · · , 30) (13)

φo = tan−1

�
30

∑
i=1

YOi sin ψi/
30

∑
i=1

YOi cos ψi

�
(14)

2.3.2 Size recognition neuron
The size of a facial image is also indicated as a direction of a population vector φS. The
arrangement of size recognition neurons and size population vector are shown in Fig.5. This
assumes that the neurons in the PG of the brain recognize the size of an object by population
coding. Each size recognition neuron has a respective representative size that characterizes
the best size for the optimal response. For example, the size neuron YS10 has a optimal
response for the size of the facial image S4 (2.93) and the neurons around YS10 also have
moderate responses to the same size. The population vector size φS is calculated by the
vectorial summation of 30 size recognition neurons (YS1, · · · , YS30) by Eq.(15). Between sizes
S1 and S6, there are undefined size ranges, because the sizes S1 to S6 are not continuous. If
the size population vector indicates an undefined range, the size of the facial image will not
be obtained in Eq.(16).

φs = tan−1

⎛
⎝ 30

∑
i=1

YSi sin ψi/ 30

∑
i=1

YSi cos ψi

⎞
⎠ (15)

η =

�
10

log 6
π ·φs (− π

5 ≤ φs ≤ 6
5 π)

unde f ine (− 4
5 π ≤ φs ≤ − π

5 )
(16)
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Fig. 4. Arrangement of orientation recognition neurons and population vector.

vector orientation φo is calculated by the vectorial summation of 30 orientation neurons
(YO1, · · · , YO30) by Eq.(14).
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2.3.2 Size recognition neuron
The size of a facial image is also indicated as a direction of a population vector φS. The
arrangement of size recognition neurons and size population vector are shown in Fig.5. This
assumes that the neurons in the PG of the brain recognize the size of an object by population
coding. Each size recognition neuron has a respective representative size that characterizes
the best size for the optimal response. For example, the size neuron YS10 has a optimal
response for the size of the facial image S4 (2.93) and the neurons around YS10 also have
moderate responses to the same size. The population vector size φS is calculated by the
vectorial summation of 30 size recognition neurons (YS1, · · · , YS30) by Eq.(15). Between sizes
S1 and S6, there are undefined size ranges, because the sizes S1 to S6 are not continuous. If
the size population vector indicates an undefined range, the size of the facial image will not
be obtained in Eq.(16).
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Fig. 5. Arrangement of size recognition neurons and population vector.

3. Learning (registration) and recognition

In the learning process of orientation and size, the RS-SAN net uses generalized inverse
learning (Nakano, 1990; Amari, 1978), developed in 6 orientations (0◦ ∼ 300◦ in increments
of 60◦) × 6 sizes (same interval in logarithmic scale:1.00, 1.43, 2.04, 2.93, 4.19, 6.00) for
respective faces. In the typical case of learning 10 human faces, the 360 patterns (=10 faces

× 6 orientations × 6 sizes) normalized double spread patterns W (P)
L (P = 1, · · · , 360) are

memorized. In the learning process of the face shape, the specified normalized double spread

patterns W (P)
L corresponding to specified orientation and size (typically, orientation = 0◦ and

size = 6.0) of the respective faces are registered.

3.1 Teaching signal
3.1.1 Orientation recognition neuron

The teaching signal for orientation recognition TO(P) is shown in Fig.6. There were six
training signals KO(do) corresponding to the six orientations do to be memorized. The desired
outputs of the orientation recognition neurons were broadly tuned to the orientation of the
facial image and adjusted to the function in Eq.(17). The desired outputs of orientation

Fig. 6. Teaching signal for orientation recognition.
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recognition neurons TO(P) in Eq.(20) are fitted to KO(do) which is the Gaussian curve function
defined by Eqs.(17) and (18). For example, when the RS-SAN net memorizes orientation
O4(180◦), the maximum value of the Gaussian curve function in Eq.(17) fits the orientation
recognition neuron YO16. This training signal is the same irrespective of the size and shape of
the facial image when the orientation of other learned facial image is the same.

FTO(x) = exp
{
−αo(x − 30n)2

}
(17)

(−15 + 30n < x ≤ 15 + 30n, n = 0,±1, . . .)

KO(do)
i = FTO {5(do − 1)− (i − 1)} (18)

(do = 1, 2, · · · , 6 , i = 1, 2, · · · , 30)

KO(do) = [KO(do)
1 , KO(do)

2 , · · · , KO(do)
30 ]T (19)

TO(P) = KO(do) (20)

Here, P (= 1, · · · , 360) is the training pattern number, do (= 1, · · · , 6) is the training
orientation of the P-th training pattern, i (= 1, · · · , 30) is the number of the orientation
recognition neuron, and αo is the coefficient that defines the tuning width of the teaching
signal for orientation recognition neurons.

3.1.2 Size recognition neuron

The teaching signal for orientation recognition TS(P) is shown in Fig.7. There were six size
training signals KS(ds) corresponding to the six sizes ds to be memorized. The desired outputs
of the size memory neurons were broadly tuned to the size of the facial image and adjusted to
the function in Eq.(21). The desired outputs of the size recognition neurons TS(P) in Eq.(24)
were fitted to KS(ds), which is the Gaussian curve function defined by Eqs.(21) and (22). For
example, when RS-SAN net memorizes size S2 (1.43), the maximum value of the Gaussian
curve function in Eq.(21) fits the size memory neuron YS4. This training signal is the same
irrespective of the orientation and shape of the facial image when the size of other learned
facial image is the same.

Fig. 7. Teaching signal for size recognition.
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recognition neurons TO(P) in Eq.(20) are fitted to KO(do) which is the Gaussian curve function
defined by Eqs.(17) and (18). For example, when the RS-SAN net memorizes orientation
O4(180◦), the maximum value of the Gaussian curve function in Eq.(17) fits the orientation
recognition neuron YO16. This training signal is the same irrespective of the size and shape of
the facial image when the orientation of other learned facial image is the same.

FTO(x) = exp
{
−αo(x − 30n)2

}
(17)

(−15 + 30n < x ≤ 15 + 30n, n = 0,±1, . . .)

KO(do)
i = FTO {5(do − 1)− (i − 1)} (18)

(do = 1, 2, · · · , 6 , i = 1, 2, · · · , 30)

KO(do) = [KO(do)
1 , KO(do)

2 , · · · , KO(do)
30 ]T (19)

TO(P) = KO(do) (20)

Here, P (= 1, · · · , 360) is the training pattern number, do (= 1, · · · , 6) is the training
orientation of the P-th training pattern, i (= 1, · · · , 30) is the number of the orientation
recognition neuron, and αo is the coefficient that defines the tuning width of the teaching
signal for orientation recognition neurons.

3.1.2 Size recognition neuron

The teaching signal for orientation recognition TS(P) is shown in Fig.7. There were six size
training signals KS(ds) corresponding to the six sizes ds to be memorized. The desired outputs
of the size memory neurons were broadly tuned to the size of the facial image and adjusted to
the function in Eq.(21). The desired outputs of the size recognition neurons TS(P) in Eq.(24)
were fitted to KS(ds), which is the Gaussian curve function defined by Eqs.(21) and (22). For
example, when RS-SAN net memorizes size S2 (1.43), the maximum value of the Gaussian
curve function in Eq.(21) fits the size memory neuron YS4. This training signal is the same
irrespective of the orientation and shape of the facial image when the size of other learned
facial image is the same.

Fig. 7. Teaching signal for size recognition.

204 New Approaches to Characterization and Recognition of Faces Face Discrimination Using the Orientation and Size Recognition Characteristics of the Spreading Associative Neural Network 9

FTS(x) = exp
{
−αs(x − 30n)2

}
(21)

(−15 + 30n < x ≤ 15 + 30n, n = 0,±1, . . .)

KS(ds)
j = FTS {3(ds − 1)− (j − 1)} (22)

(ds = 1, 2, · · · , 6 , j = 1, 2, · · · , 30)

KS(ds) = [KS(ds)
1 , KS(ds)

2 , · · · , KS(ds)
30 ]T (23)

TS(P) = KS(ds) (24)

Here, P (= 1 ∼ 360) is the training pattern number, ds (= 1 ∼ 6) is the learning size number
of the P-th training pattern, j is the size memory neuron number, and αs is the coefficient that
decides the tuning width of teaching signal for size recognition neurons in Eq.(21).

3.2 Learning (registration) process
The RS-SAN net uses generalized inverse learning for orientation and size recognition. The

double spread pattern W (P)
L is obtained from the P-th training input pattern in the double

spreading layers. The orientation memory matrix MO is obtained by associating W (P)
L with

the desired outputs of orientation recognition neurons TO(P) by Eq.(27). The size memory

matrix MS is obtained by associating W (P)
L with the desired outputs of size recognition

neurons TS(P) (P = 1, · · · , 360) by Eq.(28). For the shape learning of the faces, the double

spread patterns W (P)
L of specified orientation (= 0◦) and size (= 6.0) for the respective faces are

registered in the face recognition system.

X = [W (1)
L , W (2)

L , · · · , W (360)
L ] (25)

X+ = (X TX )−1X T (26)
MO = TOX+ (27)

TO = [TO(1), TO(2), · · · , TO(360)]

MS = TSX+ (28)

TS = [TS(1), TS(2), · · · , TS(360)]

3.3 Recognition process
In the recognition process, the system simultaneously recognizes the orientation and size
of the facial image. First, the double spread pattern WR used for recognition is generated
with the input facial image. For face orientation recognition, the orientation memory matrix
MO is multiplied by WR in Eq.(29), and the output of orientation recognition neurons YO
is obtained. For face size recognition, the size memory matrix MS is multiplied by WR in
Eq.(30), and the output of size recognition neurons YS is obtained.

YO = MOWR (29)
YS = MSWR (30)

The orientation is recognized by the population vector calculated from the outputs of 30
orientation recognition neurons. The size is also recognized by the population vector
calculated from the outputs of 30 size recognition neurons.
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The shape is discriminated by the Euclidean distance between the double spread patterns
obtained in learning and recognition processes. The value of Euclidean distance (d) in Eq.(31)
has the range of 0 ≤ d ≤ 2, because the norm of spread pattern is normalized as 1. When
it has the minimum value of “0”, resemblance is the highest. The double spread pattern
W �

R used for the shape recognition is generated by correcting the orientation and size of the
input facial image to the pre-determined specified ones (typically, orientation = 0◦ and size =
6.0). The orientation and size of the corrected facial image correspond to those of the learned
face. The orientation and size correction prevents the deterioration of the shape recognition
performance.

d = ||WL − W �
R|| (31)

4. Face recognition experiment

The characteristics of orientation, size and shape recognition for learned and unlearned faces
were investigated with face database collected at The University of Essex (Spacek, 2008).
The 70 facial images of 35 subjects (2 images for each subject) were used for recognition
experiments. In preprocessing, the background and clothing areas were excluded. The image
size and format were converted to 480 × 480 [pixels] and gray scaled (256 steps), respectively.
The facial images in the learning and recognition tests were at size 6.0 and orientation 0◦ .
For the convenience sake, one facial image obtained from 35 subjects was used for training
in 6 x 6 orientations and sizes. The orientation and size recognition tests were examined
using 6 facial images (another learned facial image and five unlearned faces). We tried 35
sets of recognition tests by changing the learning and recognition facial images one by one.
Recognition results were thus obtained for 210 trials consisting of 35 trials for learned faces
and 175 for unlearned faces. In shape recognition test, 10 facial images (another learned facial
image and 9 unlearned facial images) among 35 subjects were recollected for each learned
face. Thus, 350 recognition trials consisting of 35 trials for learned faces and 315 trials for
unlearned faces were examined. The shape recognition was evaluated using the false rejection
rate (FRR) and false acceptance rate (FAR). When the output of Euclidean distance calculated
for learned face is higher than the decision threshold, we considered that the registered face
was erroneously rejected and calculated the false rejection rate by counting the trials of false
rejection. On the other hand, when the output of Euclidean distance calculated for unlearned
face was lower than the decision threshold, we considered that the imposters were accepted
incorrectly. We calculated the false acceptance rate by counting the trials of false acceptance.

4.1 Orientation recognition performance
The orientation recognition result for learned and unlearned faces was shown in Fig.8. The
horizontal axis is the input face number, and the vertical axis is the recognized orientation
angle. The average ± standard deviation of recognized orientation for learned and unlearned
faces were 0.47 ± 1.89[◦] and 3.74 ± 43.69[◦], respectively. As shown in Fig.8, the recognized
orientation of learned faces distributed around 0 degree; however, the recognized orientation
of unlearned faces was heavily dispersed (SD was very large). The histogram of absolute
error of recognized orientation angle for learned and unlearned faces was shown in Fig.9.
The horizontal axis is the absolute error of recognized orientation angle, and the vertical axis
is the percentage of facial image included in each bin. The white and black bars show the
distribution of the absolute error of recognized orientation for learned and unlearned faces,
respectively. The absolute error of recognized orientation for learned faces was less than 4
degrees; however, the absolute error of recognized orientation for most of unlearned faces
distributed more than 5 degrees.
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Fig. 8. Orientation recognition result for (a) learned and (b) unlearned faces.

Fig. 9. Histogram of absolute error of recognized orientations for learned and unlearned
faces.

4.2 Size recognition performance
The size recognition result for learned and unlearned faces was shown in Fig.10. The
horizontal axis is the input face number, and the vertical axis is the recognized size. The
average ± standard deviation of recognized size for learned and unlearned faces were
6.03 ± 0.26 and 5.51 ± 2.78, respectively. As shown in Fig.10, the recognized size of learned
faces distributed around 6, which means the registered face size; however, the recognized
size of unlearned faces was heavily dispersed (SD was very large). The histogram of absolute
error of recognized size for learned and unlearned faces was shown in Fig.11. The horizontal
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Fig. 10. Size recognition result for (a) learned and (b) unlearned faces.

Fig. 11. Histogram of absolute error of recognized size for learned and unlearned faces.

axis is the absolute error of recognized size, and the vertical axis is the percentage of facial
image included in each bin. The white and black bars show the distribution of the absolute
error of recognized size for learned and unlearned faces, respectively. The absolute error of
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recognized size for learned faces was less than 1; however, 64 % absolute error of recognized
size for unlearned faces distributed more than 1.

4.3 Shape recognition performance
Shape recognition performance was evaluated using equal error rate (EER) determined by
finding the point where false acceptance rate intersects the false rejection rate. The result
of shape recognition is shown in Fig.12. The horizontal axis is the decision threshold for
discriminating between registered faces and imposters. The vertical axis is the FRR and FAR.
Circle and solid line show the FAR. Square and dashed line show the FRR. The equal error
rate was 2.86 % when the decision threshold of Euclidean distance was 0.13. At and below the
decision threshold criterion of 0.06, the FAR was 0 %, even if the FRR was 34 %.

Fig. 12. False acceptance and rejection rates obtained with Euclidean distance.

5. Unlearned face rejection with recognized orientation and size

The orientation and size recognition performances indicated the RS-SAN net had fairly good
orientation and size recognition characteristics for learned faces. On the other hand, the
orientation angle and size of unlearned faces were hardly recognized because the distributions
of recognized orientation angle and size were widely dispersive. Thus, the RS-SAN net can
recognize simultaneously both orientation and size of only learned faces. Using the difference
of orientation and size recognition characteristics between learned and unlearned faces,
the unlearned face would be removed before face discrimination with Euclidean distance.
The flowchart of new face (shape) recognition processes is shown in Fig.13. Before shape
recognition using Euclidean distance calculated with double spread patterns, the unregistered
faces are rejected using the averages and standard deviations of recognized orientation angle
(θav, σo) and size (Sav, σs) for learned faces obtained by the RS-SAN net. The input face is
determined as imposter if the recognized orientation is out of θav ± 3σo . If the recognized size
is greater than Sav + 3.2σs or less than Sav − 3.2σs, the input face is also rejected as imposter.
Note that all of learned faces are not rejected with the orientation and size discrimination
because the recognized orientation and size for learned faces were within θav ± 3σo and
Sav ± 3.2σs.
The shape recognition performance obtained by new recognition method was shown in Fig.14.
The horizontal axis is the decision threshold for discriminating between registered faces and
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Fig. 13. Flowchart of new shape recognition process using the characteristics of orientation
and size recognition.

Fig. 14. False acceptance and rejection rates obtained by new face discrimination method
with the characteristics of orientation and size recognition.

imposters. The vertical axis is the FRR and FAR. Circle and solid line show the FAR. Square
and dashed line show the FRR. The facial images used for learning and recognition are the
same as Section 4. This result indicated the FAR drastically decreased. The equal error rate
was 1.56 % at the decision threshold of 0.19. When the false acceptance rate was 0 %, the false
rejection rate decreased from 34 % to 8.6 %. The criteria of imposter rejection are empirically
determined using the experimental results of the orientation and size recognition. To raise
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reliability of these decision criteria, the orientation and size recognition characteristics of the
learned and unlearned faces would be investigated with large-scale database; however, the
experimental result indicates that the unregistered face rejection by the recognized orientation
and size is very effective to improve the shape recognition performance.

6. Conclusions

In this chapter, we showed the recognition characteristics of the RS-SAN net for the learned
and unlearned faces. The RS-SAN net can recognize both orientation angle and size for
learned faces. On the other hand, both orientation and size for unlearned faces were
not obtained by the RS-SAN net because the recognized orientation and size were heavily
dispersed from the orientation and size of input face. In the shape recognition, the equal error
rate was 2.86 % at decision threshold of 0.13.
The RS-SAN net has the unique characteristics of the orientation and size recognition. The
orientation and size of only learned face were recognized correctly. However, the recognized
orientation and size of unlearned faces were heavily scattered. By introducing the unlearned
face discrimination with the recognized orientation and size, new shape recognition method
was developed. The experimental result of new shape recognition method showed that the
false acceptance rate decreased drastically, even in very high decision threshold. The false
acceptance rates were almost constant (about 2 ∼ 3 %) across the decision threshold ranging
from 0.2 to 0.4. The imposter rejection method using recognized orientation and size provided
the effective improvement of the face recognition performance. The equal error rate decreased
to 1.56 % at the decision threshold of 0.19, and the false rejection rate also decreased to
8.6 % at a false acceptance rate of 0 %. Though the scale of the face database used in the
present study was small, the face recognition performance in the present study was almost
comparable with those reported in FRVT 2006 using large scale database (Phillips et al., 2007).
The characteristics of recognition algorithm in the present stuty is that the false acceptance
rates can be reduced dramatically even in the condition of very high decision threshold. This
characteristics will not be concerned with the scale of the database.
In future studies, we will automatically detect the facial area using skin color information or
appearance-based method, e.g. Haar-like features (Viola & Jones, 1996), and correct the facial
center using positional information of both eyes. In addition, the recognition experiment will
be examined with many more samples of facial images to obtain the decision criteria of the
imposter rejection combined with the orientation and size recognition.
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The Methodology for Facial Features Detection

Jacek Naruniec
Warsaw University of Technology, Institute of Radioelectronics

Poland

1. Introduction

Face detection is an important preprocessing task in biometric systems based on facial images.
The result of the detection derives the localisation parameters and it could be required in
various forms (Figure 1), for instance:

• a rectangle covering the central part of face,

• a larger rectangle including forehead and chin,

• irregular mask of the face area,

face graph Wiskott et al.
(1997)

set of the face
fiducial points
Vukadinovic & Pantic
(2005)

set of face fiducial
points placed on
face parts contours
Cootes et al. (1998)

rectangles covering
face parts and the face
itself Erukhimov & Lee
(2008)

Fig. 1. Different methods of representing face fiducial points and face parts.
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• eyes centers,

• multiple face fiducial points,

• contours of the face parts,

• a set of rectangles covering individual parts of the face.

While from human point of view the area parameters are more convincing, for face
recognition system, fiducial points are more important since they allow to perform facial
image normalization – the crucial task before facial features extraction and face matching.
Facial features localization algorithms are commonly divided into four groups
(Ben Jemaa & Khanfir (2009); Celiktutan et al. (2008); Naruniec (2010)):

• appearance-based,

• geometry-based,

• knowledge-based,

• 3D vision-based.

This chapter aims at defining more general scheme for facial features localization, since all
of the defined groups have common methodology. Moreover most of the efficient schemes
doesn’t rely on one of the methods, rather combining few different approaches. The goal of
this work isn’t concerned about giving the detailed information about each algorithm, but
rather to develop the intuition of the approach to the described subject. Review of the given
steps is presented in the following sections.

2. General facial features detection scheme

Typical image analysis and in particular facial features detection usually consists of several
steps:

1. Preprocessing.

2. Defining regions of interest.

3. Features extraction.

4. Classification.

5. Postprocessing.

In many cases not all parts of the process are used, but their subset is always present. Example
of the system consisting of all of the proposed steps may be observed in the face detection
algorithm by Discrete Gabor Jets (Naruniec & Skarbek (2007)). Within this approach image
is preprocessed by the Gaussian blurring to reduce the influence of the noise. Since all of
the detected fiducial points are placed on the edges, the regions of interest are obtained by
thresholding the magnitude of the Sobel filters response. Extraction is performed in the
circular neighborhood of each edge pixel using FFT, integral image and simple min/max
normalization. Classification is based on the modification of linear discriminant analysis
adjusted for the two-class (fiducial point/non-fiducial point) problem. In the final steps all
of the edges are assigned to one of the five categories: left eye corner, right eye corner, left
nose corner, right nose corner or non-face point. Verification of the points - postprocessing
step, is performed by fitting the defined points to the face graph.
Subsequent section describe each of the processing steps in more detail.
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Fig. 2. Histogram equalization examples. On the left - original images, on the right -
processed images. On the first image equalization significantly improves the quality of the
face image, while on the latter the effect is opposite.

2.1 Preprocessing and defining ROI
Since facial features are placed on the specific regions, a procedure for removing most of the
background can be defined. This stage has to be proceeded very carefully, because removing
proper regions at this moment will result in a failure of the whole algorithm. Region of interest
(ROI) is defined here as a facial feature candidate point or region.
Depending on the representation of the facial features, methods can be divided to region based
and point based. Contour based ROI definition could be also defined, but these methods aren’t
usually used within this problem and thus will not be discussed here.
In some applications preprocessing may increase the accuracy of the localization. This applies
mostly to the cases where the acquisition parameters are insufficient, for example poor
lighting, noise or inadequate camera properties. Typical operations performed on the data
includes:

• noise removal - Gaussian blurring, median, mean filters;

• lighting normalization - min/max normalization, histogram equalization, removing
low-pass frequencies;

• removing camera distortion

However it must be noticed, that sometimes preprocessing can decrease efficiency of the
detector. For example blurring could remove edges, that are crucial in many contour based
methods. In good lighting conditions histogram equalization could decrease the contrast of
the face (Figure 2).
Point based ROI detection can be performed in various ways. Most of the facial features, for
example eye corners, mouth corners, nostrils, are placed on the edges. Therefore thresholding
the responses of edge filters based for example on Prewitt, Sobel or Roberts operators can
significantly reduce the number of analyzed pixels (Figure 3). Further reduction of the
number of pixels can be achieved by using corner detectors. There are several methods for
accomplishing this task. One of the simplest methods - Moravec corner detector (Moravec
(1980)) in based on the assumption, that the sum of absolute differences (SAD) between
intensity values of the window anchored in the corner position and windows anchored in
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Fig. 3. Popular binarized edge filters responses for the face image.

the closest neighborhood of the analyzed point are high. Unfortunately algorithm doesn’t
consider directionality. Particularly the SAD can be low for the regions, that highly differ
in the directionality of the edges and thus should be marked as corners. This disadvantage
has been removed by the Harris corner detector (Harris & Stephens (1996)). Instead of taking
intensities of the pixels directly, algorithm analyses following matrix of partial derivatives:

M =

[
I2
x Ix Iy

Ix Iy I2
y

]
, (1)

where Ix and Iy defines gradients in x and y axes. Value of the eigenvalues of M define the
variation in the edge direction. High value of both eigenvalues define corner.
Another interesting method for detecting corners is Features from Accelerated Segment Test
(FAST) (Rosten & Drummond (2006)). Simple algorithm relies on the absolute difference of
the analyzed pixel to the neighboring 16 pixels placed on defined circular vicinity. Advantage
of such an approach is a very high speed of analysis, while achieving good results in particular
applications.
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Fig. 4. Results of different corner detectors.

One of the most advanced interest point detection algorithm is Scale-Invariant Feature
Transform (SIFT) Lowe (1999). Candidate points (keypoints) are detected using Differences
of Gaussians (DoG) thresholding. In the second step non-maximum supression is applied in
the 26 elements neighborhood - namely 8 pixels in the vicinity of the pixels and 18 points
neighboring analyzed pixel in adjacent scales. In the end the edges are removed from the
image by analyzing eigenvalues of the Hessian matrix. This step is explained by the fact, that
in the common application of the SIFT algorithm - merging 3D clouds of points, position of
the edges may differ at different viewpoints.
The choice of these methods should be adjusted to the particular detected set of points. For
example if the goal of the algorithm is to detect corners of the eyes, the SIFT algorithm
wouldn’t be a good choice, in opposite to the Harris corner detector. Some results of the
interest point detection are presented in Figure 4.
If the ROI is specified by the region, there are two most common approaches to this problem.
The first one is color segmentation. Because the color of the skin is cumulated in the compact
cluster of the RGB color space, skin and non-skin pixels can be distinguished from the
image. On the other hand, general skin model, covering all the nationalities and races, is
difficult to achieve. Another method for the ROI extraction is face detection. This topic is
broadly described (for example in Hjelms & Low (2001); Naruniec (2010)), and thus it won’t
be analyzed here.
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a) b) c)
Fig. 5. Example of defining Gabor filter mask. Real part of a) Gabor sinusoidal carrier, b)
gaussian envelope, c) resulting filter by multiplication a) and b).

Fig. 6. Regions used in the Viola Jones AdaBoost detector.

2.2 Extraction
After defining initial regions or points of interest, a method for features extraction has to be
given. The algorithms differ in the shape of the neighborhood and type of analysis.
One of the most known texture descriptors and facial features descriptor consists of the set of
40 Gabor filter responses (Wiskott et al. (1997)) and this set is called a "jet". Shape of the filter
is defined by the two components: sinusoidal carrier and gaussian envelope (Figure 5). Set of
functions with 8 orientations and 5 wavelengths form the Gabor jet.
Similarly descriptors formed by the Angular Radial Transform (ART) are computed by
convolving the image with created base functions. The transformation is defined in the
polar coordinates. Function consists of two components: modulation in angular direction
(complex numbers) and sinusoidal function in radial direction (real numbers). In order to
gain invariance to rotation, the absolute value of the complex function is taken into further
consideration. Usually a set of 33 art coefficients are computed (3 wavelengths in radial
direction and 11 in angular direction).
Gabor and ART coefficients are computationaly expensive and therefore inadequate for many
real-time applications. Simple alternative to these methods are contrast features used in
AdaBoost face detector (Viola & Jones (2001b), Figure 6). Set of such region contrasting
filters is used for further AdaBoost classification. Integral image computed to speed up
the algorithm provides result of summing any window in the image, in only 4 addition
operations.
Another important issue in features extraction is reduction of dimensionality of the data.
Simple projection of the data covariance matrix to the eigenvectors in many cases allow to
represent vector in more compact form, while preserving most of the signal energy. Result
of such principal components analysis (PCA) can be also achieved in a simpler way - by
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performing SVD decomposition on the zero-mean data and choosing first left singular vectors
corresponding to the largest singular values. Another decorrelation technique used for this
task is independent components analysis (ICA) (Duda et al. (2000)). It’s goal is usually
interpeted in audio processing. Assuming, that a sound is produced from many source
signals, ICA provides methods for the blind separation of these inputs.
Facial features extraction can be also performed by fitting actual face to the predefined
model. One of the most commonly used method in this scenario is active shape proposed
by Cootes et al. (1995). Because of the fact, that the points placed on the facial features are
highly correlated, authors apply PCA to define parameters that control the shape of the whole
face model. In this way changing one parameter results in the deformation of all points
present in the grid. Matching is performed by deforming the model in such way, that it fits
the edges present in the image. Extension of this work is called active apperance models
(Cootes et al. (1998)). Within this approach, the texture information is given in addition to the
shape parameters.
It is also worth mentioning, that extraction of the pixel intensities is often followed by
transformations such as discrete cosinus transform (DCT), fast fourier transform (FFT) or the
wavelets.

2.3 Classification
Classification of the facial features can be defined in several ways. In the simplest case,
classification is based solely on the euclidean distance of the descriptor to the predefined
models. Such approach is efficient only for the obvious cases, but in most of the algorithms,
more advanced techniques are used.
Another basic classification algorithm is based on the Bayes theory for the conditional
probability:

P(yi|x) = P(x|yi)P(yi)

P(x)
(2)

where yi denotes the class of the analysed object and x is a descriptor. The probability P(x|yi)
is usually modeled in the training step by the mean and the covariance. The value of P(x) is
abbreviated at the step of descriptor matching and therefore doesn’t have any influence for
the classification result.
Better solution for the class separation can be achieved by discrimination methods such as
linear discriminant analysis (LDA) Fisher (1936). This method takes in consideration the
within class variance Rw and between class variance Rb (see figure 7). Minimalization term is
defined as follows:

JLDA(w) =
wtRbw
wtRww

(3)

Function can be minimized by finding the eigenvalues of the (Rw)−1Rb matrix. Other
solutions of this problem are based on SVD decomposition. In this case data are projected
firstly on the Rw matrix, and the eigenvectors corresponding to the lowest eigenvalues are
taken. In the second step, projected data are maximized in the terms of the Rb matrix by
choosing eigenvectors corresponding to the largest eigenvalues.It appears, that for some
particular problems dual LDA (DLDA) problem formulation (Leszczynski & Skarbek (2007))
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Fig. 7. Graphical illustration of between class (left side) and within class (right side) scatter.
Different color correspond to different classes.

Fig. 8. Graphical illustration of between class variance in modified linear discriminant
analysis. Red points correspond to the facial features, while the blue ones - the background.

can give better results. The maximalization function is defined as:

JDLDA(w) =
wtRww
wtRbw

(4)

The differences in the approaches arise from orthogonality of the vectors minimizing Rw and
maximizing Rb. To cope with the problem more generally, SDA analysis can be applied. The
initial data is clustered to the moment, in which the angle between two optimization vectors
exceeds specified threshold.
In the case of facial features/background two-class classification problem, other solution can
give better results. Becouse it is very hard to define mean and variance of the background
objects, therefore only facial feature within-class variance can be optimized. Moreover
becouse the background class is very differentiated, treating every background example a
separate class yields to better results. This assumptions are formulated in the modified linear
discriminant analysis (MLDA) - (Naruniec & Skarbek (2007), see figure 8).
Another technique yelding very good separation results is support vector machine (SVM).
Algorithm tends to separate two classes by providing two parallel linear hyperspaces leaning
on some vectors of the data (support vectors) while retaining large margin between these
hyperspaces (figure 9). Extension of this method introduces the error measure, that allow
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Fig. 9. SVM in two dimensional space. Crosses and circles are the two separated classes. Two
lines form hyperplane diving these two distributions. (Cortes & Vapnik (1995)).

some vectors to be misclassified. Also kernel methods performing non-linear classification
have been introduced. More informations about this subject can be found in the work of
Cortes & Vapnik (1995).
AdaBoost is a method for combining many "weak classifiers" - having poor accuracy results
to the very efficient "strong classifiers" Freund & Schapire (1995). In every iteration of the
algorithm classifier with the lowest error according to the actual training examples weights,
is added to the final classifier. Classification error is defined as:

�(ω, θ) =
1
2

L

∑
i=1

wi|δw(oi)− vi| (5)

where ω denotes weak classifier, θ is the detection threshold, L - number of the training
examples, wi is the weight of the i-th training example and vi denotes the label of i-th example
("1" for the facial feature, "-1" for the background).
At every iteration weights are updated using following formula:

wi,t+1 =
wi,te−γi(oi)vi

∑L
i−1 wi,te−γi(oi)vi

(6)

Costs of the positive or negative decision γ are computed using algorithm heuristics.
AdaBoost method have prooven to give fast and accurate results in the face detection
(Viola & Jones (2001a;b)) and region based facial features detection scheme (Goldmann et al.
(2006)).

2.4 Postprocessing
After classifying regions or points to the specific class, validation and refining of the selected
facial features can be applied.
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Fig. 10. Mixture coefficients of the model for face image patches. Bright pixels indicate a high
probability for skin, dark pixels indicate a low probability for skin (Hoffmann et al. (2009)).

First remark concerns merging close results. Some detection algorithms may provide many
results of the single facial features. In order to combine close fiducial points, simple clustering
can be applied. In the case of regions, overlapping windows are merged in order to get single
response.
Simplest approach for facial features validation is a geometrical matching. Relations between
eyes, nose or mouth can be defined manually by the knowledge, or automatically by analysing
specified data set.
Graph based methods convert each of the classified point to the graph node with assigned
value, computed for example by the confidence of classification. In the next step possible
graph values are compared to the trained mean face model. All the points that fits the model
are marked as true faces, while the rest of the points are eliminated as false acceptances.
Validation can be also applied using color information, for example by convolving the face
image with the color face patch (see Figure 10 - Hoffmann et al. (2009)).
Accuracy refinement is usually performed by moving facial features contours to the edges or
by fitting to the specified model (for example created by the active shapes).

3. Conclusion

In this chapter a methodology for the facial features detection has been given. It describes
all the basic semantic analyse stages - preprocessing, defining regions of interest, features
extraction, classification and postprocessing.
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1. Introduction  

Face recognition has motivated several research studies in the last years owing not only to 
its applicability and multidisciplinary inherent characteristics, but also to its important role 
in human relationship.  Despite extensive studies on face recognition, a number of related 
problems has still remained challenging in this research topic.  It is well known that humans 
can overcome any computer program in the task of face recognition when artefacts are 
present such as changes in pose, illumination, occlusion, aging and etc.  For instance, young 
children can robustly identify their parents, friends and common social groups without any 
previous explicit teaching or learning. 
Some recent research in Neuroscience (Kandel et al., 2000; Bakker et al., 2008) has shown 
that there is some new information about how humans deal with such high dimensional and 
sparse visual recognition task, indicating that the brain does not memorize all details of the 
visual stimuli (images) to perform face recognition (Brady et al., 2008).  Instead, our 
associative memory tends to work essentially on the most expressive information (Bakker et 
al., 2008; Oja, 1982). In fact, theoretical models (Treves and Rolls, 1994; O’Reilly and Rudy, 
2001; Norman and O’Reilly, 2003) have indicated that the ability of our memory relies on the 
capability of orthogonalizing (pattern separation) and completing (pattern prototyping) 
partial patterns in order to encode, store and recall information (O’Reily and McClelland, 
1994; Kuhl et al., 2010).  Therefore, subspace learning techniques have a close biological 
inspiration and reasonability in terms of computational methods to possibly exploring and 
understanding the human behaviour of recognizing faces. 
The aim of this chapter is to study the non-supervised subspace learning called Self-
Organizing Map (SOM) (Kohonen, 1982; Kohonen, 1990) based on the principle of 
prototyping face image observations.  Our idea with this study is not only to seek a low 
dimensional Euclidean embedding subspace of a set of face samples that describes the 
intrinsic similarities of the data (Kitani et al., 2006; Giraldi et al., 2008; Thomaz et al., 2009; 
Kitani et al., 2010), but also to explore an alternative mapping representation based on 
manifold models topologically constrained. 
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More specifically, the purpose of this work is to navigate on the locally optimal pathways 
composed of the SOM neurons to minimize inappropriate mappings where the standard 
SOM might show significant discontinuities and compare such visualization procedures on 
the original image space to understand the most important information captured by the 
non-supervised model.  To minimize image variations that are not necessarily related to 
differences between the faces, we will carry out experiments on frontal face images available 
from two distinct public face databases that have been previously aligned using affine 
transformations and the directions of the eyes as a measure of reference.  In this way, the 
pixel-wise features extracted from the images correspond roughly to the same location 
across all subjects. In addition, in order to reduce the surrounding illumination and some 
image artefacts due to distinct hairstyle and adornments, all the frontal images have been 
cropped to the size of 193x162 pixels, had their histograms equalized and have been 
converted to 8-bit gray scale.  Our experimental results on the two distinct face image sets 
show that although the standard SOM can explain the general information extracted by its 
neurons, its intrinsic self-organized manifolds can be better described by an algorithm based 
on the principle of the locally optimal pathways and the idea of navigating on the graphs 
composed of the standard SOM neurons. 
The remaining of this chapter is organized as follows.  In the next section, we briefly review 
some literature about perceptual and cognitive processes related to human memory and the 
mechanisms of pattern completion and pattern separation.  Next, in the third section, we 
provide some background definition of SOM and highlight shortly its biological principle of 
organization that inspired Kohonen in the early eighty’s.  Also, in the same section, we 
introduce the standard SOM algorithm based on the competitive learning rule.  The main 
contribution of the chapter is then presented in the subsequent subsection entitled A Self-
Organized Manifold Mapping (SOMM) Algorithm.  In this subsection, we describe a new 
algorithm that is able to understand the information extracted from the data, identifying and 
explaining the nature of the groups or clusters defined by the SOM manifolds.  The two 
distinct public face databases used to carry out the experiments are described in the fourth 
section.  Next, in the fifth section, we show several experimental results to demonstrate the 
effectiveness of the SOMM algorithm on providing an intuitive explanation of the 
topologically constrained manifolds modelled by SOM in well-framed face image analysis.  
Finally, in the last section of the chapter, we conclude this work, summarizing its main 
points. 

2. Neurological and psychological aspects 
Several perceptual and cognitive processes guide the task of face recognition in humans.  
However, one of the most important processes is the memory.  Humans do not memorize all 
the details and features received by the sensory system (Purves et al., 2001).  In fact, the 
human brain has an outstanding capability of forgetting useless information (Brady et al., 
2008, Purves et al., 2001).  
Basically, human memory can be divided into two groups: declarative and non-declarative 
memory (Purves et al., 2001).  Declarative memory is related to memorizing facts and events 
and can be accessed for conscious recollection.  Facts are information learned during a high 
level cognition process, such as studying some specific subject.  Events are information that 
one has had as a life experience, for example: birthday, wedding, etc.  Episodes at non-
declarative memories, on the other hand, are information that cannot be accessed formally.  
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mechanisms of pattern completion and pattern separation.  Next, in the third section, we 
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organization that inspired Kohonen in the early eighty’s.  Also, in the same section, we 
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2. Neurological and psychological aspects 
Several perceptual and cognitive processes guide the task of face recognition in humans.  
However, one of the most important processes is the memory.  Humans do not memorize all 
the details and features received by the sensory system (Purves et al., 2001).  In fact, the 
human brain has an outstanding capability of forgetting useless information (Brady et al., 
2008, Purves et al., 2001).  
Basically, human memory can be divided into two groups: declarative and non-declarative 
memory (Purves et al., 2001).  Declarative memory is related to memorizing facts and events 
and can be accessed for conscious recollection.  Facts are information learned during a high 
level cognition process, such as studying some specific subject.  Events are information that 
one has had as a life experience, for example: birthday, wedding, etc.  Episodes at non-
declarative memories, on the other hand, are information that cannot be accessed formally.  
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In other words, it cannot be explained explicitly by words and neither how it occurs nor 
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(Kandel et al., 2000). 
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Lobe (MTL) (Bear, Connors, Paradiso; 2007).  The MTL is a complex interconnected systems 
of the brain and one of its most important structures is the hippocampus.  Recent 
experiments carried out on rats have showed that lesions at the hippocampus might affect 
our capability of learning and retaining information (Bear, Connors, Paradiso; 2007).  Yet, in 
the past, a computational model presented by Treves & Rolls (Treves and Rolls, 1994) had 
already indicated that some parts of the hippocampus seem to create a sparse and 
orthogonalized representation of our sensory input and episodic memories.  Currently, 
there is no doubt that the hippocampus plays an important role to encode new episodic 
memories and, additionally, to prevent the risk of forgetting past memories (Kandel et al., 
2000, Kuhl et al., 2010). 
Using high-resolution (1.5 millimeters isotropic voxels) functional Magnetic Resonance 
Imaging (fMRI), Bakker et al. (Bakker et al., 2008) have studied the activity in the human 
brain MTL area on a set of pattern visualization experiments.  The experiments consisted of 
presenting to each one of a total of eighteen volunteers a sequence of pictures of common 
objects, such as apples, toys duck, thread balls, wall outlet and etc.  The set of pictures used 
is composed of 144 subsets of slightly different images of the same object, with essentially 
variation in pose and rotation. The authors have noticed that several brain structures of the 
MTL area, especially a specific area of hippocampus named CA1, have been activated when 
pictures of the same object have been presented repetitively and in a interleaved way. 
In fact, our brain process of retrieving information can be further described by two main 
mechanisms: pattern completion and pattern separation (Kuhl et al., 2010).  The mechanism 
of pattern completion is essentially related to the problem where the incoming pattern of 
some sensory input and the pattern stored in the memory are not exactly the same, but share 
some similarities.  In the mechanism of pattern separation, the similarities between the 
incoming and stored patterns, if do exist, are minimal and both patterns have, in contrast, a 
strong degree of dissimilarities that can be mathematically considered as non-correlated or 
orthogonal. 
This work focuses on the mechanism of pattern completion and the role of the human brain 
hippocampus as an associative memory to propose a new algorithm for the SOM 
competitive neural network proposed by Kohonen (Kohonen; 1982).   Since this pioneering 
work, it has been argued that SOM is not only a computational approach for data mining 
and clustering, but also a credible framework at the functional and neural levels to create a 
self-organization of the input space (Rolls; 2007) and model the human memory activities of 
encoding and retrieving information. 
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3. Self-Organizing Map (SOM) 
A formal definition of organization is quite complex because it depends on the context. 
Some crystal structures are considered highly organized due to their symmetry and 
structural repetition. Functions and hierarchy organize all biological structures, such as the 
nervous system, digestive system, circulatory system, etc (Kandel et al., 2000).  However, in 
both cases, the definitions of “organization” are ambiguous. 
For crystal structures, one finds symmetries and redundancy; on the other hand, a biological 
system is organized by functions. However, both definitions have in common the sense of 
similarity that allows us to cluster and hierarchize input patterns. In other words, 
organization is an association and composition of parts to explore a whole structure or 
behavior (Asby, 1962; Atlan, 1974). 
According to the definition above, clustering is quite related with similarities or even 
dissimilarities.  SOM is an unsupervised neural network developed by Kohonen (Kohonen, 
1982; Kohonen, 1990) based on the biological principle of somatosensory organization. 
According to Kandel et al. (Kandel et al., 2000), there is a functional organization of 
perception and movement in human and mammals brain.  There is also a specialized area in 
the brain cortex that organizes information coming from sensory pathways or going to 
motor control.  Somatosensory cortex is the area accounting for organizing stimulus coming 
from different sensory systems, grouping them according to their similarities.  In a similar 
fashion, motor cortex has surfaces dedicated to controlling parts of the body related to 
movement.  This organization in substructures by functions is well-known by 
neuroscientists, however, why the brain creates this organization remains unclear (Purves et 
al., 2001). 
Based on the biological principle of organization, Kohonen postulates that there are some 
reasons to have this organization:  a) grouping similar stimulus minimizes neural wiring; b) 
creates a robust and logical structure in the brain, avoiding “crosstalk”; c) from information 
organized by attributes a natural manifold structure from input patterns can emerge; and d) 
reduces dimensionality by creating representations (codebooks vectors) that preserves 
neighborhood relationship between input patterns.  Each codebook, also known as BMU 
(Best Match Unit), retains the most important invariant features that represent a group of 
input patterns, characterizing an arguable but intuitively analogous behaviour to the pattern 
completion mechanism of the human brain. 

3.1 The Standard SOM algorithm 
SOM can be defined as an unsupervised artificial neural network that maps a nonlinear 
relationship between input patterns in high dimensional space and makes this relationship 
an ordered and smoothed mapping of input data manifold.  SOM has a competitive learning 
rule, but does not have a rule of convergence or function to minimize. Instead, the algorithm 
of SOM works with a number of interactions during weight adaptation. 
Figure 1 illustrates a Kohonen network of 3 3  output neurons fully connected to the 
input layer composed by only two neurons.  The network is created from a 2D lattice of 
‘nodes’ composed of the output neurons and the input layer.  Each output neuron has a 
specific position   2,x y   and contains a vector of weights of the same dimension as the 
input vector.  That is, if the network has m  output neurons and the training set consists of 
vectors         0 1 2 1, , ,..., n

nx t x t x t x t   , then we have m n  weights  ijw t  , 
0 1 0 1,  i M j m      to set.  
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Fig. 1. An illustration of Kohonen network. Note that all input neurons are connected to all 
output nodes. 

The algorithm can be described as follows: 
1. Initialize network, 

1.1) Define the number m  of output neurons that will compose the map and their 
lattice position (nodes): 2

0 1 2 1, , ,..., mr r r r   , 
1.2) Define  ijw t , 0 1 0 1,  i M j m      , to be the weight from input neuron i  

to output neuron j at time t , where M is the size of the set of input training 
patterns.  Initialize weights to small random values. Set the initial radius of 
neighbourhood around node j , denoted by  0j  to be large, 

1.3) Define the number of iteration T M ,  
2. Present the input vector         0 1 2 1, , ,..., n

nx t x t x t x t  , where  ix t  is sent to the 
input node i  at the time t , where n  is the dimensionality of input space, 

3. Compute the distance jd  between the input vector  ix t  and each output neuron j , 

given by    
0 1

minj i iji M
d x t w t

  
  , 0 1j m   , 

4. Designate the BMU neuron cr  to be one  with minimum jd , 
Update the weights for node cr  and its neighbors, defined by the neighborhood 
size  c t .  New weights will be: 

            1ij ij ci i ijw t w t t h t x t w t    ,  
where  t  is the learning factor:  

0 1( ) tt
T

     
 

,  

 cih t  gives the amount of influence that a neuron ir  has on its learning as a function of 
its distance from the BMU neuron cr  :  

2
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Finally,  c t  define the radius of influence of the BMU, which can be computed by: 

  0 expc
c

tt 


 
  

 
, and c  is an integer number related to the time of influence of the 

neighbor radius, 
5. Return to step 2 until t T . 
From an initial distribution of random weights, the SOM eventually settles into a map of 
stable zones after some iterations. The term  t  is a gain term that decreases in time so 
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slowing the learning process.  Besides, the neighbourhood size  c t  decreases in size as 
time goes on, thus localizing the area of maximum activity. 

3.2 A Self-organized manifold mapping algorithm 
Several studies have provided us with some insight about how to interpret the output of 
SOMs (Brugger et al., 2008; Bauer & Pawelzik, 1992; Kiviluoto, 1995).  One of the best-
known tools in this regard is the U-Matrix (Ultsch, 2003) that gives us a quantitative 
summary of the topological relationships between similar data samples.  The result of the U-
Matrix map is a complex image (coloured or monochromatic) indicating peaks and valleys 
that represent Euclidean distances between neighboured neurons. 
Essentially, the resulting map preserves the topological distribution at the input space of the 
entire sample data considered.  Figure 2 illustrates an example of a coloured U-Matrix map 
and its hexagonal 5 4  SOM, where each neuron ijw , 0 0 1,  i M j m     , has been 
arbitrary identified by a number.  It is possible to see at least two groups of patterns in blue 
separated by a central chain in red.  The chain of high values in the U-matrix indicated by 
the reddish colours is a representation of some prototypes that are far from both groups and 
probably describe some data outliers with distinct information about the dataset considered. 
 

 

 
Fig. 2. An illustration of a coloured U-Matrix map and its corresponding SOM where each 
neuron has been arbitrary identified by a number. 

However, to understand the relationship between the information captured in the U-Matrix 
and the samples, as well as to identify and explain the nature of the groups or clusters 
defined by the manifolds, it would be helpful to represent all the SOM neurons and their 
corresponding similarities and dissimilarities on the original data space. 
Based on the principle of the locally optimal pathway and the idea of navigating on the 
neurons that compose the SOM, we propose an algorithm named Self-Organized Manifold 
Mapping (SOMM) that seeks the pathways or manifolds described by the standard SOM.  
The SOMM algorithm can be described as follows: 
a. Calculate the SOM composed of k neurons using the standard Kohonen´s algorithm. 

Create the list  0 1 2 1, , ,...,A k  ; 
b. Calculate pairwisely the Euclidean distance ijd of all k neurons; 
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c. Create a (k x k) matrix with all pairwise distance between all k neurons; 
d.  Create the list V NULL . Set 1r A , mind   , 0i  ;  

d.1) Insert  V r , 
d.1.a) 1i i  .  
d.2) If A V    go to (e). 
d.3) Find   1min , ,sr i id d s A V V   . Let s   such that s rd d  . 
d.4) If  *s V   go to (e) Else set r s  and  V r . Go to step (d.1a). 

e. LOOP: 
e.1) If iV LOOP go to (f)  
e.2) Find  1min( , , )sr i id d s V V V   . Let s   such that s rd d  . 
e.3) Insert  V s , 1i i  . 

f. f) Group BMUs according the order: 1 2, ,...,V V  
g. If A V    then 

g.1)    A A V V   , 
g.2) k = number of elements in A, 
g.3) go to (b). 

A simple way to explain this algorithm is to understand the output neurons, represented by 
the weights ijw  computed in the SOM algorithm, as a set of nodes of a fully connected 
graph (Cormen et al. 2001; Pölzlbauer, Rauber, Dittenbach, 2005; Mayer, Rauber, 2010 ) in 
the parameter space.  Each edge in this graph has a cost given by the Euclidean distance 
between its ends. Therefore, the k k  matrix calculated in steps (b)-(c) is a symmetric one 
holding the edge costs in the graph. 
More specifically, in step (d) it is created a list V and in step (d.1) the algorithm inserts in 
V each visited node. Given a node r , the step (d.3) seeks for the closest neuron s   such 
that  1 ,i is V V V

  ; that means, s   does not belong to the last visited edge of the 
graph.This step implements a greedy algorithm that makes the locally optimal choice at 
each stage generating a locally optimal pathway that connects a subset of SOM neurons. This is 
necessary because the idea is to generate a pathway that crosses different clusters but 
without losing the notion of similarity in the parameter space.  If  *s V  then we have a 
loop, like the one exemplified in Figure 3.  In this case, the pathway that starts at node 1 
ends in the loop        11 3 4 11   .  The step (e) completes the pathway, which in this 
figure is composed by the sequence:            1 2 11 3 4 11V       . 
 

 
Fig. 3. Two connected pathways with a common loop. The first one starts at node 1 and 
finally enters in the loop         11 3 4 11   , whereas the second path starts in the node 
13 and ends in the same loop.  
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Additionally, the step (g) identifies that there are nodes still not visited by the algorithm.  
Following the idea of crossing different clusters we must allow that a node r A V  might 
be connected with a node s V , like node 12r   shown in Figure 3.  In terms of the 
algorithm, it is equivalent to consider V as a node in a new graph (steps (g.1)-(g.2)), 
compute the new distances in step (b) and seek for another pathway as before.  Therefore, 
this novel algorithm brings the possibility of uncovering clusters not visible by U-Matrix 
technique or the standard SOM approach. 

4. Face databases 

We have used frontal images of two distinct face databases publicly available to carry out 
the experiments. The first database is maintained by the Department of Electrical 
Engineering of FEI, São Paulo, Brazil (Thomaz and Giraldi, 2010).  In this dataset, the 
number of subjects is equal to 200 (100 men and 100 women) and each subject has two 
frontal images (one with a neutral or non-smiling expression and the other with a smiling 
facial expression), so there is a total of 400 images with no significant differences in skin 
colour to perform the high dimensional and sparse image face analysis.  The second dataset 
is the well-known FERET (Philips et al., 1998) database.  In the FERET database, we have 
considered only 200 subjects (107 men and 93 women) and each subject has two frontal 
images (one with a neutral or non-smiling expression and the other with a smiling facial 
expression), providing a total of 400 images with significant differences in skin colour to 
perform as well the experiments. 
To minimize image variations that are not necessarily related to differences between the 
faces, we previously aligned all the frontal face images using affine transformations and the 
directions of the eyes as a measure of reference so that the pixel-wise features extracted from 
the images correspond roughly to the same location across all subjects. Also, in order to 
reduce the surrounding illumination and some image artefacts owing to distinct hairstyle  
and adornments, all the frontal images were cropped to the size of 193x162 pixels, had their 
histograms equalized and were then converted to 8-bit gray scale.  Figure 4 illustrates some 
samples of the FEI (top row) and FERET (bottom row) datasets, highlighting samples of 
distinct gender, age, facial expression and ethnicity. 
 

 
Fig. 4. Some samples of the FEI (top row) and FERET (bottom row) frontal images used in 
the experiments after the pre-processing procedure that aligned, cropped and equalized all 
the original images to the size of 193x162 pixels. 
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5. Experimental results 
All the experiments have been carried out using the well-known SOM-Toolbox for Matlab 
created and released by CIS-Helsinki University of Technology (Vesanto, 1999).  To address 
the memory issues related to computing the SOM on high-dimensional datasets, instead of 
analysing the SOMM algorithm directly on the pre-processed FEI and FERET face images, 
Principal Component Analysis (PCA) (Fukunaga, 1990) has been applied first to provide 
dimensionality reduction.  However, in order to reproduce the total variability of the sample 
data, we have composed the PCA transformation matrix by selecting all the principal 
components with non-zero eigenvalues.  Although some of these principal components 
might represent non-relevant information to understand the differences between the data 
samples, we are able to represent and further reconstruct the original images without 
adding any dimensionality reduction artefacts (Kitani et al., 2010).  
We have divided our experimental results into two parts. Firstly, we have carried out some 
face image analyses to understand and visualize the pathways found by the SOMM 
algorithm where there are subtle differences between the data samples.  Thus, we have used 
a subset of the FEI database composed of non-smiling and smiling face images of females 
only.  Then, in the second part, we have investigated the usefulness of the SOMM algorithm 
on exploring and understanding the high dimensional and sparse image face space where 
the differences between the samples are not only related to facial expression but also to 
gender, ethnicity and age.  The goal of the second experiment is to pose an alternative 
analysis where the differences between the samples are evident, using the whole two FEI 
and FERET datasets described in the previous section. 
Figure 5 illustrates the standard SOM (top left), the pathways described by the SOMM 
algorithm (bottom left) and their corresponding visualization (top and bottom right) on the 
original face space using a subset of the FEI database composed of non-smiling and smiling 
face images of females only.  It is important to highlight that since the SOMM navigation is 
based on the principle of the locally optimal path, it is only possible to visit a new neuron 
when its distance is minimal regarding all the other neurons previously visited.  Therefore, 
the algorithm explicitly describes the discontinuities present at the high dimensional face 
image space due to the limited number of input samples.  In other words, it is possible to see 
that SOMM could not find a unique graph that defines a single locally optimal path from 
non-smiling to smiling female face images.  In fact, as shown on the bottom right part of 
Figure 5, we can see three feasible pathways or clusters: (1) samples that describe a definite 
smiling facial expression; (2) samples that describe the visual differences from non-
convincing to convincing smiling facial expressions; (3) samples that describe the visual 
differences from non-convincing to convincing non-smiling facial expressions. 
In the next two figures, we show the behaviour of the SOMM algorithm on navigating at 
high dimensional and sparse image face spaces where the differences between the samples 
are not only related to facial expression but also to gender, ethnicity and age.  Figure 6 
illustrates the standard SOM (top left), the pathways described by the SOMM algorithm 
(bottom left) and their corresponding visualization (top and bottom right) on the original 
face space using the whole set of frontal face images of the FEI database with both gender 
and facial expression differences. 
Analogously to the previous results, three clusters have been found by the SOMM 
algorithm.  Despite the gender differences available on this dataset, SOM has not clearly 
extracted this information on its standard mapping and neither SOMM has described it in a 
separated pathway or cluster.  The smallest SOMM cluster, composed of 6 neurons, shows 
samples that describe a definite smiling facial expression with slightly more male facial 
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Fig. 5. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of smiling and non-smiling female face images only of FEI database: 
standard SOM of size 8x5 (top left); visualization of the SOM neurons (top right); SOMM 
algorithm navigation (bottom left); visualization of the SOMM clustering (bottom right). 

traits than female ones.  A similar description is valid for the second smallest SOMM cluster, 
composed of 8 neurons, but rather with more female facial traits.  However, the largest 
cluster clearly shows that the most expressive information captured by SOMM has been 
related to changes in facial expression, no matter the gender of the subjects analysed. 
The last experimental results using the FERET dataset are presented in Figure 7.  It can be 
seen that the main expressive information captured by SOM have been based on ethnicity 
and facial expression changes.  The visualization of the standard SOM, illustrated on the top 
right part of Figure 7, shows clearly how the data set has been generally spread along the 
high dimensional face image space.  It is possible to see that when we move from top to 
bottom we are able to see differences related mainly to ethnicity, no matter the facial 
expression or gender of the subjects.  Besides, navigation on the SOM neurons from left to 
right highlights essentially information about changes on facial expression with minor 
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and facial expression changes.  The visualization of the standard SOM, illustrated on the top 
right part of Figure 7, shows clearly how the data set has been generally spread along the 
high dimensional face image space.  It is possible to see that when we move from top to 
bottom we are able to see differences related mainly to ethnicity, no matter the facial 
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Fig. 6. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of the whole set of frontal face images of the FEI database: standard SOM of 
size 8x5 (top left); visualization of the SOM neurons (top right); SOMM algorithm 
navigation (bottom left); visualization of the SOMM clustering (bottom right). 

differences related to gender and ethnicity features.  However, not all these pathways are 
feasible due to the discontinuities of the high dimensional and sparse image face space.  In 
fact, as described by the SOMM algorithm, there are only five clusters possible to move 
along based on the principle of the locally optimal path.  Therefore, although the standard 
SOM can explain the general information extracted by its neurons, its intrinsic self-
organized manifolds have been only explicitly explained by the SOMM algorithm.  
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Fig. 7. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of some frontal face images of the FERET database: standard SOM of size 
7x6 (top left); visualization of the SOM neurons (top right); SOMM algorithm navigation 
(bottom left); visualization of the SOMM clustering (bottom right). 

6. Conclusion 
In this chapter, we proposed and implemented a self-organized manifold mapping 
algorithm that allows a better understanding of the information captured by the standard 
SOM neurons.  The method is able not only to identify and explain the nature of the clusters 
defined by the SOM manifolds, but also to represent all the SOM neurons and their 
corresponding similarities and dissimilarities on the original data space.  To describe the 
possible self-organized pathways to navigate on the high dimensional and sparse image face 
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Fig. 7. Exploring the similarities and discontinuities of the high dimensional image face 
space composed of some frontal face images of the FERET database: standard SOM of size 
7x6 (top left); visualization of the SOM neurons (top right); SOMM algorithm navigation 
(bottom left); visualization of the SOMM clustering (bottom right). 

6. Conclusion 
In this chapter, we proposed and implemented a self-organized manifold mapping 
algorithm that allows a better understanding of the information captured by the standard 
SOM neurons.  The method is able not only to identify and explain the nature of the clusters 
defined by the SOM manifolds, but also to represent all the SOM neurons and their 
corresponding similarities and dissimilarities on the original data space.  To describe the 
possible self-organized pathways to navigate on the high dimensional and sparse image face 

Exploring and Understanding the High Dimensional and 
Sparse Image Face Space: a Self-Organized Manifold Mapping 

 

237 

space, we constructed a neighbourhood graph on the SOM neurons based on the principle 
of the locally optimal path.  Such graph visualization method explicitly provides 
information about the number of clusters that describes the sample data under 
investigation, as well as the specific features extracted and explained by them.  We believe 
that the algorithm proposed might be a powerful tool in SOM analysis, providing an 
intuitive explanation of the topologically constrained manifolds modelled by SOM and 
highlighting some perceptual properties commonly present in well-framed face image 
analysis such as facial expression, ethnicity and gender. 
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1. Introduction 
Recognition of familiar people can be based on three main sources of information: the face, 
the voice and the name, but the face has usually the greatest impact on this important social 
skill. 
For this reason the study of ‘prosopagnosia’, considered as a form of visual agnosia, 
specifically concerning the recognition of familiar people through their face, has 
represented, since the proposal of this term by Bodamer (1947), the dominant and almost 
exclusive line of research in this field of inquiry. For the same reason, the first cognitive 
model that has tried to analyse the cognitive and subjective/behavioural stages involved in 
recognition and identification of familiar people is the Bruce et Young’s (1986) model of 
familiar faces recognition. The first cognitive step of this model is the formation of a view 
independent structural description of a seen face, which can be compared with all the 
known faces stored in the Face Recognition Units (FRUs). A similar process was afterwards 
hypothesized for other sources of person recognition, such as voices and names, by several 
authors (Brédart et al., 1995; Burton et al., 1990; Burton et al., 1999; Valentine et al., 1996; 
Young & Burton, 1999), who assumed that the outcome of the corresponding perceptual 
processing could be matched with information stored in correlative Voice (VRUs) or Name 
Recognition Units (NRUs). According to all these models, the second step of the people 
identification process requires the convergence of information stored in these modality-
specific units into person-identity nodes (PINs), allowing identification of a particular 
person and retrieval of the corresponding semantic (biographical) information. The PINs (or 
the accessed person-specific knowledge) could, in turn, activate the phonological codes 
underlying the production of the person's proper name. 
In spite of the general similarities existing among the model proposed by Bruce and Young 
(1986) and those offered by following authors, there are also important differences among 
these models, which concern the locus in which familiarity feelings for the addressed person 
are generated and in which person-specific information is stored. As for the first point, the 
Bruce and Young (1986) model assumed that familiarity feelings are generated in the 
modality-specific recognition units where (for instance) the structural description of a seen 
face is compared to the familiar faces stored in the FRUs. On the contrary, in the Burton et 
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al. (1990, 1999), Brédart et al. (1995) and Valentine et al. (1996) models, decisions about 
familiarity are taken at a supra-modal level, namely the PINs, where information from 
different modalities is combined in person identity nodes. Furthermore, the Bruce and 
Young's (1986) model assumes that PINs store semantic information, whereas Burton et al. 
(1990, 1999), Brédart et al. (1995) and Valentine et al. (1996) maintain that PINs do not store 
semantic information, but provide a modality-free gateway to a single semantic system, 
where information about people is stored in an amodal format.  
 

 
Fig. 1. Main differences between the original Bruce & Young (1986) model and the 
subsequent, more complex models of familiar people recognition. 

Figure 1 reports in a schematic manner the main differences existing between the Bruce and 
Young (1986) model and the following models (e.g. Burton et al., 1990) with respect to the 
locus of generation of familiarity feelings and to the relations between PINs and person-
specific semantic information. 
But even the Burton et al.’s (1990, 1999), Brédart et al.’s (1995) and Valentine et al.’s (1996) 
statement that information about people is stored in an amodal format in the person-specific 
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semantic system is open to controversies, because some authors (e.g. Snowden et al., 2004; 
Gainotti et al., 2003 and 2010; Gainotti, 2007a and 2011) maintain that this information is 
stored in a different format at the hemispheric level, i.e. in a multisensory/pictorial format 
in the right hemisphere  and in a verbally-coded format in the left hemisphere. 
Coming back from these general models and controversies to the dominance of face 
recognition in the identification of famous (or personally familiar) people, it is necessary to 
clearly distinguish ‘prosopagnosia’ (a defect of face/people recognition, restricted to the 
visual modality) from multimodal disorders in familiar people recognition, but this 
distinction has not been systematically made in the literature, because many patients who 
showed a multimodal disorder in familiar people recognition have been described as 
affected by prosopagnosia. This failure to distinguish prosopagnosia from multimodal 
familiar people recognition disorders is probably due to the dominance of faces in the 
recognition of known people and can be observed both in anatomo-clinical observations and 
in group studies. To stress the frequency with which patients affected by a multimodal 
people recognition defect have been considered as instances of prosopagnosia, and to 
underline the anatomical locus of lesion that subsume the multimodal forms of familiar 
people recognition disorders, we will limit ourselves to quote two classical anatomo-clinical 
observations, and two recent group studies of patients affected by right temporal variant of 
fronto-temporal degeneration (Hodges, 2000; Snowden et al., 1996; Tyrrel et al., 1990). The 
first anatomo-clinical observation, originally reported by Bouduresque et al. (1979) and 
afterwards studied in more details by Sergent & Poncet (1990), concerned a patient (M.me 
V.) who, after a Herpes Simples Encephalitis (HSE), complained of severe difficulties to 
recognize familiar people by face, in the absence of intellectual, memory, linguistic or visual 
defects.  
The claim that M.me V’s defective recognition of familiar people was not due to a subtle 
disorder of visual perception was documented by the fact that she showed no problems in 
the treatment of unknown faces during administration of a test similar to the Benton and 
Van Allen (1968) face matching test. Bouduresque et al. (1979) also noted that their patient 
repeatedly claimed being able to identify her family members, by hearing their voice, but 
that her performance was very poor when voice identification was investigated with an 
objective procedure. As for the lesion location, she showed on CT scan, a massive damage of 
the anterior parts of the right temporal lobe  (RTL), in keeping with the usual localization of 
lesions caused by HSE (Gitelman et al., 2001). 
The second anatomo-clinical observation concerned a man (LP) reported by De Renzi (1986) 
and De Renzi et al. (1987), who had also suffered from a previous HSE. This patient showed 
a widespread semantic disorder, but was unimpaired from the attentional, linguistic and 
visual point of view (including tests performed with unknown faces) and was considered as 
a case of ‘associative prosopagnosia’ (De Renzi et al.,1991), even if  he also showed a 
multimodal defect of familiar people identification. As in the Bouduresque et al.’s (1979) 
patient, the anatomical lesion involved the antero-mesial parts of the temporal lobes, but 
this time with a left-sided prevalence. The two group studies relevant to the distinction 
between prosopagnosia and multimodal familiar people recognition disorders have been 
reported by Josephs et al. (2008) and by Chan et al. (2009). The first authors, starting from 
the description of a ‘progressive prosopagnosia’ in two SD patients (Evans et al., 1995; 
Joubert et al., 2003),  tried to assess with the ‘voxel-based morphometry’ (VBM) the patterns 
of gray matter atrophy in SD patients with and without prosopagnosia. Results of this study 
showed that in SD patients with prosopagnosia atrophy mainly affects the antero-mesial 
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parts of the RTL, whereas in those without prosopagnosia the lesion mainly involves the left 
temporal lobe. Chan et al. (2009), on the other hand, tried to identify the clinical profile 
associated with predominantly RTL atrophy and observed that prosopagnosia was reported 
by 60% of these patients. Note that, just as Bouduresque et al. (1979) and De Renzi (1986), 
also Josephs et al. (2008) were aware of having made an inappropriate use of the term 
‘prosopagnosia’, because, contrary to what happens in real prosopagnosia, in their patients 
the person recognition defect was not confined to the visual (face) modality, but also 
concerned the voice and the name of the known person.  
In any case, the just mentioned anatomo-clinical observations and the results of the group 
studies show that in patients with multimodal familiar people recognition disorders, the 
lesion lies outside the posterior temporo-occipital network involved in face processing. This 
network spans, indeed, from the inferior occipital areas (‘Occipital Face Area/OFA of 
Gauthier et al., 2000) to the lateral portion of the mid-fusiform gyrus where is located the 
Face Fusiform Area (FFA/Kanwisher et al., 1997), whereas in patients showing a 
multimodal familiar people recognition disorder the lesion mainly involves the anterior 
parts of the TL. 

2. Patterns of familiar people recognition disorders observed in patients with 
right and left anterior temporal lesions 
Since in patients with multimodal familiar people recognition disorders  the lesion can 
involve both the right (as in the Bouduresque et al.’s, 1979 patient) and the left anterior TL 
(as in the case reported by De Renzi, 1986), it became necessary to assess if familiar people 
recognition disorders  are similar or different in patients with right and left TL lesions and 
to evaluate if these differences are relevant with respect to the controversies among 
theoretical models that we have summarized in the first part of the introduction. The first 
important contribution in this direction has been provided by Snowden et al. (2004), who 
have argued that a fine-grained investigation of the person-specific semantic impairment 
obtainable from visual (face) and verbal (name) stimuli in patients with degenerative lesions 
of the right and left TL could contribute: (a) to evaluate if different patterns of familiar 
people recognition disorders  can be observed in patients with right and left TL lesions and 
(b) to clarify the debate concerning the ‘unitary’(abstract-amodal) or ‘non-unitary’ (concrete-
multisensory vs verbally-coded) format of semantic representations.  
One of the cornerstones of this debate turns, in fact, around the hypothesis that dissociations 
in access to the semantic representation through the visual and the verbal modalities may be 
due to the ‘perceptual affordances’ of objects, namely to the perceptual features that could 
"suggest" which actions can be performed with those objects (Norman, 1988), allowing 
‘privileged accessibility’ from vision to part of the semantic representation (Caramazza et 
al., 1990). Snowden et al. (2004) reasoned that, since people’s faces and names are arbitrary, 
the study of person-specific semantic information obtainable from visual (face) and verbal 
(name) stimuli in patients with degenerative lesions of the right and left TL could represent 
a potentially valuable means of addressing the unitary vs non-unitary semantic systems 
controversy, ruling out the possible influence of the perceptual affordances of objects. 
Results of their study showed that semantic information accessed through face and name 
are different according to the prevalent side of atrophy. Semantic dementia patients with 
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Trees’ test  (Howard & Patterson, 1992), whereas patients with right temporal lobe atrophy 
showed the opposite pattern of performance. These data were considered as incompatible 
with a unitary abstract model of semantic memory. A problem with this study consisted of 
the fact that, due to the rarity of this disease, the number of patients reported by Snowden et 
al. (2004) was relatively small and that paired comparisons between patients with right and 
left TL atrophy did, therefore, seldom reach significance. Since studies of semantic dementia 
patients typically involve single case studies, we thought that a strategy allowing to further 
check the Snowden et al.’s (2004) hypothesis could consist in systematically reviewing all 
the published individual cases of patients with a prevalent damage to the anterior parts of 
the right or left TL, in whom disorders of person recognition were on the foreground. 
Results of our review (Gainotti, 2007a) confirmed the findings of Snowden et al. (2004) and 
offered data provided of theoretical significance, since they were consistent with the Bruce 
and Young (1986) model, and inconsistent with the alternative models of Burton et al. (1990 
and 1999), Bredart et al. (1995) and Valentine et al. (1996), with respect both to the locus of 
generation of familiarity feelings and to the functions of the PINs.  
As for the first point, two main  findings suggested that familiarity judgements were 
generated at the level of the modality-specific recognition units rather than at the PINs level. 
The first was that familiarity judgements were much more impaired in right than in left TL 
patients and the second that in patients with RTL lesions familiarity defects were modality-
specific, concerning more famous faces than famous names. These findings suggested that 
familiarity feelings, being modality-specific, should be generated at the level of recognition 
units and in particular of the FRUs, that could be more represented in the RTL due to the 
major role played by the right hemisphere in face processing (De Renzi, 1986; De Renzi et 
al., 1994; Michel et al., 1989).  
As for the second point, results of our review were inconsistent for two main reasons with the 
hypothesis assuming that PINs provide a modality-free gateway to a single system, where 
semantic information about people is stored in an amodal format. The first was that in patients 
with a RT damage the loss of person-specific semantic information, was clearly greater from 
face than from name. The second was that an important imbalance between the amount of 
person-specific information available from faces and names was also found in right and left TL  
patients who, showing intact or mildly impaired familiarity judgments, should have 
(according to the previously mentioned cognitive models) no defect at the PINs level. 
A factor that could weaken the relevance of results obtained in our review, with respect to 
the models of familiar people recognition, was the Haslam et al.’s (2004) observation that in 
normal subjects both familiarity judgements and access to biographical information are 
more accurate in response to names than to faces. Now, since in studies considered in our 
review there were often no normative data, that considered separately familiarity judgement 
and biographical information obtainable from faces and from names, it was possible that the 
greater loss of familiarity feelings and of biographical information obtained from faces by 
RTL patients was in part due to this methodological pitfall. To check if differences observed 
in our review between patients with right and left anterior TL atrophy were due to the 
‘normal’ differences about familiarity judgements and access to biographical information in 
response to names and faces reported by Haslam et al. (2004), we conducted a new research 
(Gainotti et al., 2010) in which we made use of two very well controlled normative studies, 
recently conducted by Bizzozero et al. (2005) and by Bizzozero, et al.  (2007) on Italian 
participants. In the Bizzozero et al. (2005 and 2007) norms, the influence of age, education 
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and gender on familiarity recognition and on person identification from faces and names 
had been controlled by means of covariate linear models, removing the effect of each 
variable and calculating from each subject’s raw score the corresponding adjusted score. In a 
second step, the adjusted scores had been classified into five equivalent scores categories, 
ranging  from 0 (= scores lower than the outer 5% inferential tolerance limits) to 4 (= scores 
higher than the median value of the sample). Furthermore, in the Bizzozero et al.’s (2005 and 
2007) data, the semantic interviews aiming to assess the person identification were restricted 
to the faces and names correctly judged as familiar by the patient and therefore to people 
whose PINs should be unimpaired. Possible discrepancies between results obtained from 
faces and names with this procedure should, therefore, point to a different format of the 
semantic representation accessed through these different channels and could not be 
explained on the basis of methodological inconsistencies. The Bizzozero et al. (2005 and 
2007) tests of face and name recognition and identification were administered to two 
patients, showing a selective mild difficulty of familiar people identification and naming 
due to a predominantly right and left TL atrophy, to see if the conclusions of our previous 
review were confirmed even with this highly controlled material. If the conclusions of our 
previous review were correct, the right TL patient should again show a greater impairment 
of familiarity feelings and of access to person-specific semantic information from faces, 
whereas, if results of our previous review were biased by a ‘normal’ advantage of names 
over faces we should observe in this patient no name advantage in familiarity judgment or 
access to person-specific semantic information. Data obtained in the right TL patient by 
Gainotti et al. (2010) confirmed the results of the previous review, since this patient showed: 
(1) a very impaired familiarity for faces, contrasting with a spared familiarity for names, 
indicating that familiarity judgments are generated at the level of modality-specific 
recognition units and not of a supramodal PIN; (2) a prevalent impairment of person-
specific information available from faces rather than from names also for people that (being 
recognized as familiar from their face and name), should be  normally represented at the 
PINs level.  

3. The format of person-specific semantic information 
Results of our previous review (Gainotti, 2007a) and behavioural data (Gainotti et al., 2010) 
obtained  in a right TL patient, affected by a selective defect of familiar people identification, 
had a third implication, besides the fact of showing: (a) that familiarity feelings are 
generated at the level of modality-specific recognition units and (b) that PINs cannot be 
simply considered as a modality-free gateway to the person-specific semantic system, 
because they also suggested (c) that semantic information about people is stored in a 
different format at the level of the right and left temporal lobes. These data, therefore, 
confirmed the previous results of Snowden et al. (2004) who had shown that semantic 
dementia patients with predominantly right temporal lobe atrophy are more impaired with 
faces than with names, whereas patients with left TL atrophy show the opposite pattern of 
performance. Taken together, data obtained by Snowden et al. (2004) and our results 
strongly suggested that semantic representations of famous people are not represented in an 
‘amodal format’ in both temporal lobes, but in a pictorial format in the right and in a verbal 
format in the left temporal lobe. Furthermore the Snowden et al.’s (2004) observations that 
semantic dementia patients with predominantly right temporal lobe atrophy  perform worse 
on the picture than on the word version of the semantic memory ‘Pyramids and Palm Trees’ 
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test  (Howard & Patterson, 1992), suggest that this different format is not limited the 
semantic representation of famous people, but also extends to other conceptual domains. 
This suggestion is supported by both behavioural and neuroimaging data.  
Behavioural data in line with the assumption of a prevalent involvement of the left TL in 
verbal and of the right TL in pictorial aspects of conceptual knowledge, have been obtained 
by Damasio et al. (1996 and 2004) and Tranel et al.  (1997) in patients with focal lesions of the 
left and right temporal lobes. Damasio et al. (1996 and 2004) showed that defective retrieval 
of words denoting entities from various conceptual domains (such as famous people, 
animals or artefacts) was associated with lesions encroaching upon different parts of the left 
temporal lobe, whereas Tranel et al. (1997) demonstrated that impaired recognition of 
pictures representing persons, animals or tools was associated with lesions of the 
homologous areas of the right temporal lobe. According to these authors, both the left and 
the right temporal lobes play a mediational role in concept retrieval, but in the left 
hemisphere the activation of the “word” intermediary region promotes the retrieval of 
lexical knowledge required for word production, whereas in the right hemisphere the 
recollection of the perceptual properties of a given stimulus promotes the concrete 
sensorimotor representation of knowledge pertaining to that object.  
Other behavioural data consistent with the hypothesis of a different involvement of the left 
and right temporal lobes in verbal and pictorial aspects of conceptual knowledge have been 
obtained in SD patients by Ikeda et al. (2006). These authors tested 10 SD patients and 10 
matched controls on an object recognition task in which they were invited to choose (from a 
four-item array) the picture representing “the same thing” as an object picture that they had 
just inspected and attempted to name. The target in the response array was never physically 
identical to the studied picture but differed from it for various aspects. The patients whose 
structural brain imaging revealed major right-temporal atrophy were more impaired than 
those with an asymmetric pattern characterised by predominant left-sided atrophy, showing 
that they had a selective defect in the retrieval of the pictorial properties of objects. 

3.1 Correlations between cognitive and  neuroimaging data, studying person related 
and conceptual knowledge with verbal and pictorial material 
A different role of the right and left ATL has been documented by functional neuroimaging 
investigations that have taken into account different aspects of familiar people recognition 
or of conceptual knowledge. Thus, several authors have documented a prevalent activation 
of the right temporal lobe for famous faces (Ishai et al., 2005), for famous - contrasted with 
newly learned - faces (Leveroni et al., 2000), during association between faces and person-
specific semantic information (Tsukiura et al., 2008) or during a semantic categorization task 
of famous faces (Brambati et al., 2010). On the other hand, Tsukiura et al. (2008) have shown  
that the left ATL may mediate associations between names and person-related semantic 
information and similar results have been obtained by Brambati et al. (2010), who have 
shown an increased activation of the left anterior TL when subjects were asked to determine 
whether a stimulus photograph matched with the label of a profession category. Consistent 
with these results obtained studying different aspects of familiar people recognition are 
results of investigations which have assessed the correlations between neuroimaging data 
and conceptual impairment in the verbal and pictorial modality.   
Thus, Acres et al. (2009) and Butler et al.  (2009), evaluating conceptual knowledge with 
verbal and pictorial material, and the severity of temporal lobe atrophy with voxel-based 
measures, have shown that verbal semantic defects are on the foreground when the atrophy 
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mainly affects the left temporal lobe, whereas non-verbal conceptual disorders tend to 
prevail when the  right inferior temporal structures are preferentially disrupted. Similar 
data have been recently obtained by Mion et al. (2010), who examined with FDG-PET the 
neural correlates of verbal and non-verbal semantic measures in SD. The semantic verbal 
task was a picture naming task, whereas the non-verbal semantic task was the ‘Camel and 
Cactus test’ (Bozeat et al., 2000), similar to the pictorial version of the semantic memory 
‘Pyramids and Palm Trees’ test  (Howard & Patterson, 1992). Regions of interest (ROIs) were 
the left and right anterior fusiform gyri and the temporal poles. The left anterior fusiform 
activity predicted performance on the verbal semantic tasks, whereas the right anterior 
fusiform metabolism predicted performance on the non-verbal semantic task. Furthermore, 
an additional behavioural study, performed on a wider cohort of SD patients, confirmed 
that patients with more extensive right TL atrophy are significantly more impaired on tests 
of non-verbal semantics. 

4. Concluding remarks on the implications of these data for models of 
familiar people recognition  
We will conclude this chapter by reporting in a schematic manner in Figure 2 the 
implications that data concerning: (a) the patterns of familiar people recognition shown by 
right and left TL patients and (b) the different format of (person-specific or conceptual) 
knowledge represented in the right and left temporal lobes could have for models of 
familiar people recognition. 
Two main conclusions are suggested by results of investigations surveyed in the previous 
sections of this chapter and summarized in Figure 2. The first is that results concerning (a) 
the locus of generation of familiarity feelings, (b) the relationships between PINs and 
person-specific semantic knowledge and (c) the format of this kind of knowledge are much 
more consistent with the simpler and older model of Bruce and Young’s (1986) than with the 
more recent and complex models of familiar people recognition proposed by Burton et al. 
(1990, 1999), Brédart et al. (1995) and Valentine et al. (1996). The second is that, to give a 
plausible account of data obtained in brain-damaged patients, these models cannot ignore 
some basic inter-hemispheric differences, such as the critical role of the right hemisphere in 
the generation of face familiarity feelings and the different format of person-specific 
semantic knowledge at the level of the right and left hemisphere. 
Both these issues have been thoroughly discussed in previous reviews (Gainotti, 2007b and 
2011) and will be only shortly considered here as two sides of a unitary phenomenon, 
namely the more primitive (sensori-motor) organization of the right hemisphere and the 
more complex, language-mediated organization of the left hemisphere. 
Within this context, it is possible to assume that the early familiarity feelings may be 
automatically elicited through a right-hemisphere subcortical route, allowing a first, 
unconscious, global recognition of familiar faces  and fostering the subsequent distinction of  
known faces (unconsciously detected) from unfamiliar faces. 
From the theoretical point of view, this possibility has been suggested by De Haan et al. 
(1991) with the following expression: ‘When a FRU is activated it will signal that the face is 
familiar and instigate the retrieval of semantic knowledge concerning the bearer of the face’. 
Within the same framework, it seems logical to assume that, far from being represented in 
an abstract amodal format, every kind of person-specific and conceptual knowledge may 
consist of a more primitive perceptual-motor knowledge (more represented in the right 
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hemisphere) and of a more complex language-mediated and language-structured 
knowledge, more represented in the left hemisphere. From this point of view, the prevalent 
impairment of person-specific information available from faces, that we have documented 
in patients with a right TL atrophy, could be considered as the most impressive 
manifestation of the disruption of the multi-sensory/pictorial knowledge that seems typical 
of the right hemisphere.  
 

 
Fig. 2. Main differences between the familiar people recognition disorders shown by 
patients with right and left anterior temporal lesions. In bold are reported the modalities of 
people recognition and the corresponding familiarity feelings that are more represented at 
the level of the right and left hemisphere.  
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