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Preface 
 

Computer vision has gained enormous research interest over the last two decades with 
exponentially growing focus on stereo vision. Stereo vision has long been studied and lot of 
research involving new discoveries, techniques and applications has been reported and 
published over the years. Although, these published texts serve as fine introductions and 
references to the core mathematical ideas, however, cannot hope to keep pace with the vast 
and diverse outpouring of new research activities. In contrast, this volume has accumulated 
the most recent advances and trends of stereo vision research from around the globe. The 
goal of this book is to provide an insight of the current research trends and advances in the 
field of stereo vision. Furthermore, to provide a particularly good way for experts in one 
aspect of the field to learn about advances made by their colleagues with different research 
interests.  

It is quite understandable that visual information in 3D view possesses more 
information about the objects in the scene than its counterpart 2D view. During the image 
formation process of the cameras, explicit depth information about the scenes is lost.  In 
many applications, such as industrial assembly and inspection, robot obstacle detection and path 
planning, autonomous vehicle navigation of unfamiliar environments, image based object modelling, 
surveillance and security, medical image analysis, and human-computer interaction, one of the 
most critical tasks is the recovery and estimation of depth information. Therefore, depth 
information has to be inferred implicitly from the 2D views of the scenes. There are a 
number of techniques available in the literature for depth estimation; however the most 
widely used techniques are based on stereo vision. Stereo vision techniques are mainly 
inspired by the human visual system, where two perspective views of eyes lead to slight 
offset of objects (disparities) in the two monocular views, leading to the phenomenon of 
depth perception. In spite of the fact that research on stereo vision spans over almost two 
decades; the performance of the stereo vision systems could not be compared with the 
human visual system. Stereo vision has long been studied and a number of techniques have 
been reported. Depth by stereo is achieved by estimating the pixel correspondences of 
similar features in the stereo perspective views originated from the same 3D scene. 
However, finding correct corresponding points is still an ill posed problem. Some of the 
factors that make the correspondence problem difficult are its inherent ambiguity, 
occlusions, photometric, radial and geometric distortions. A number of algorithms have 
been proposed to address some of the aforementioned problems in stereo vision however it, 
relatively, is still an open problem. 

To address aforementioned issues, the presented book consists of topics from 
theoretical aspects to the applications of stereo vision. The book consists of 20 chapters, each 
highlighting different aspects of the research in stereo vision. The book can be categorized 
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into the spectrum of three broad interests that includes the theoretical aspects of the stereo 
vision, algorithm development for robust disparity (consequently depth) estimation and the 
applications of stereo vision in different domain. Generally, understanding theoretical 
aspects and the algorithm development in solving for the robust solutions goes hand in 
hand. Similarly, the algorithm development and the relevant applications are also tightly 
coupled as generally algorithms are customized to achieve optimum performance for 
specific applications which is hard to achieve, otherwise. For instance; chapters 18, 9, 20, 15, 
19, 2, 17, 1 and 7 fall into the category of first two interests that involves the discussion of 
theoretical aspects as well as the development of algorithms in reference to stereo vision. 
Particularly, chapter 20 describes Graph Cut whereas chapter 2 describes multiresolution 
analysis based algorithms that fall into two famous classes of stereo vision algorithms, i.e. 
global optimization algorithm and multi-resolution based hierarchical algorithms, 
respectively. Furthermore, chapters 6, 8, 10, 11-14 and 16 present applications of stereo 
vision and current trends. The applications that have been covered in this book includes 
driver assistance system, robotic bin-picking, human computer interaction (HMI), head 
detection and tracking, 3D underwater mosaicking, moving target tracking, robot 
navigation, pose estimation, smart homes and 3D avatar communication. Chapters 5 and 14 
present hardware based approaches regarding the development of stereo vision systems 
that has direct commercial applications.  

In summary this book comprehensively covers almost all aspects of stereo vision and 
highlights the current knowledge trends as well as corresponding solutions. In addition 
reader can find topics from defining knowledge gaps to the state of the art algorithms as 
well as current application trends of stereo vision to the development of intelligent 
hardware modules and smart cameras. It would not be an exaggeration if this book is 
considered to be one of the most comprehensive books published in reference to the current 
research in the field of stereo vision. Research topics covered in this book makes it equally 
essential and important for students and early career researchers as well as senior academics 
linked with computer vision. 

Editor 

Dr. Asim Bhatti 
Centre for Intelligent Systems Research 

Deakin University 
Vic 3217, Australia 
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Calibration and Sensitivity Analysis of a Stereo 
Vision-Based Driver Assistance System 

András Bódis-Szomorú, Tamás Dabóczi and Zoltán Fazekas 
Computer and Automation Research Institute &

Budapest University of Technology and Economics 
Hungary 

1. Introduction  
As safety and efficiency issues of transportation - hand-in-hand with the intelligent vehicle
concept – have gathered ground in the last few years in the automotive research community 
and have penetrated into the automotive industry, vision-based applications have become
increasingly important in driver assistance systems (Kastrinaki et al., 2003; Bertozzi et al., 
2002). The primary targets of the safety and efficiency improvements are intelligent cruise
control (e.g. vehicle following), lane keeping and lane departure warning systems, 
assistance in lane changing, avoidance of collision against vehicles, obstacles and 
pedestrians, vision enhancement and traffic sign recognition and signalling. Our focus of
interest here is stereo machine vision used in the context of lane departure warning and lane
keeping assistance. The primary purposes of our vision system are to determine the vehicle's
position and orientation within the current lane, and the shape of the visible portion of the
actual lane on structured roads and highways. That is, we face a somewhat simplified
simultaneous localization and mapping (SLAM) problem here, with the assumption of a
structured man-built environment and a limited mapping requirement. The localization is
achieved through the 3D reconstruction of the lane's geometry from the acquired images. 

Fig. 1. Images acquired with our wide-baseline stereo vision system in a typical highway
scene. The overlaid epipolar lines in the left image correspond to the marked points in the 
right image. 
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In monocular lane detection systems, reconstruction usually relies on a number of 
assumptions concerning the scene geometry and the vehicle motion, such as flat road and 
constant pitch and roll angles, which are not always valid (as also stated in Kastrinaki et al., 
2003; Marita et al., 2006). Stereo vision provides an effective and reliable means to extract 
correct range information without the need of relying on doubtful assumptions (Hartley & 
Zisserman, 2006). Nevertheless, there are some stereo systems that still make use of such 
assumptions while providing a higher level of robustness compared to monocular systems. 
For example, certain systems use inverse perspective mapping (IPM) to remap both the left 
and the right images to the road's plane, i.e. to  generate a "bird's view", where lane 
detection is performed while stereo disparity can be exploited in vehicle detection by 
analysing the difference between the remapped images (Bertozzi & Broggi, 1998). Another 
solution is to use a stereo pair in standard configuration (parallel optical axes and image 
coordinate axes) and the Helmholtz shear equation to relate the precomputed sparse stereo 
disparity to the distances measured in the road's plane and also to classify the detected 3D 
points to "near-road" and "off-road" points (Weber et al., 1995). Some algorithms perform a 
sparse stereo reconstruction of the 3D scene through the classical stereo processing steps of 
feature detection, correlation-based matching to solve the correspondence problem and 
triangulation (Nedevschi et al., 2005). Stereo matching is performed by making use of the 
constraints arising from the epipolar geometry, that is, the search regions are simplifed to 
epipolar lines (Hartley & Zisserman, 2006), as shown in Figure 1. In the standard 
arrangement, the correspondence problem simplifies to a search along corresponding 
scanlines, thus, such a setup is more suitable for real-time applications (Weber et al., 1995). 
Even if the cameras are in general configuration it is possible to virtually rotate the cameras 
and rectify the images with a suitable homography (Hartley & Zisserman, 2006). However, 
this transformation is time-consuming and when sub-pixel accuracy can be achieved in 
feature extraction, image warping can jeopardize the overall accuracy (Nedevschi et al., 
2006). This consideration is increasingly valid for lane detection systems where the scene's 
depth can easily reach 60 to 100 meters. 
Even if up-to-date tracking methods (involving dynamical scene and ego-motion models) 
are used to make the reconstruction more robust, the precision and even the feasibility of the 
reconstruction using any of the techniques mentioned above is seriously affected by the 
precision of the camera parameters that are typically determined prelimarily with camera 
calibration. IPM techiques (and also the one based on the Helmholtz shear equation) may 
fail when the relative orientations of cameras with respect to the road's plane are not 
precisely determined (Weber et al., 1995; Broggi et al., 2001). Since epipolar lines and the 
rays at the triangulation step are highly dependent on the camera parameters, both stereo 
matching and 3D reconstruction may prove unsatisfactory (Marita et al., 2006). These facts 
highlight the importance of an accurate calibration and motivate a thorough sensitivity 
analysis in the design of such safety-critical systems. 
In this chapter, we investigate the effects of parameter uncertainties on the quality of 3D 
geometrical reconstruction. We propose an off-line and far-range camera calibration method 
for stereo vision systems in a general confguration. Due to the high depth range, we restrict 
our analysis to perspective cameras. The cameras are calibrated individually by using fairly 
common planar patterns, and camera poses with respect to the road are computed from a 
specifc quasi-planar marker arrangement. Since a precise far-range arrangement might be 
difficult and costly to set up, we put up with an inexpensive and less precise arrangement, 
and formulate the maximum likelihood estimate of the camera parameters for it. We 
demonstrate how our method overperforms the widely used reprojection error 
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minimization method when significant errors are present in the marker arrangement. By 
applying the presented methods to real images, we give an estimate on the precision of 3D 
lane boundary reconstruction. 
The chapter is organized as follows. We outline our preliminary lane detection algorithm for 
stereovision in Section 2. Next, a brief overview is given of existing calibration methods and 
their applicability in the field in Section 3. Then, in Section 4, we present an intrinsic camera 
calibration and a single-view pose estimation method. The proposed stereo calibration 
method and the overall sensitivity analysis, including epipolar line uncertainty are derived 
in Section 5. In Section 6, evaluation of the methods based on real data is presented. Finally, 
Section 7 concludes the chapter. 

2. The lane detection algorithm 
In the current section, we suppose that our wide-baseline system with two forward-looking 
grayscale cameras fixed to the side mirrors of a host vehicle (we refer to Figure 1) is already 
calibrated and the camera poses are known. Then we return to the problem of calibration in 
details in Section 3. The outline of the algorithm is depicted in Figure 2. 
 

 
Fig. 2. Outline of a lane keeping assistant system based on the lane boundary detection and 
a stereo lane reconstruction algorithm. The algorithm highly depends on the camera 
parameters. ROI stands for Regions-of-Interest. 

In order to minimize the resource requirements of the algorithm, we avoid using dense 
stereo reconstruction and image rectification. In sparse methods, interesting features are 
defined and extracted from the images by a feature detector.  

2.1 Lane marking extraction 
The presented algorithm currently relies on the presence of lane markings. We have 
developed a lane marking detector that is capable of extracting perspectively distorted 
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in Section 5. In Section 6, evaluation of the methods based on real data is presented. Finally, 
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2. The lane detection algorithm 
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grayscale cameras fixed to the side mirrors of a host vehicle (we refer to Figure 1) is already 
calibrated and the camera poses are known. Then we return to the problem of calibration in 
details in Section 3. The outline of the algorithm is depicted in Figure 2. 
 

 
Fig. 2. Outline of a lane keeping assistant system based on the lane boundary detection and 
a stereo lane reconstruction algorithm. The algorithm highly depends on the camera 
parameters. ROI stands for Regions-of-Interest. 

In order to minimize the resource requirements of the algorithm, we avoid using dense 
stereo reconstruction and image rectification. In sparse methods, interesting features are 
defined and extracted from the images by a feature detector.  

2.1 Lane marking extraction 
The presented algorithm currently relies on the presence of lane markings. We have 
developed a lane marking detector that is capable of extracting perspectively distorted 
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bright stripes of approximately known metrical width over a darker background. The lane 
marking extraction is performed with 1-dimensional templates of precomputed width per 
scanline within precomputed regions-of-interest (ROI). The ROI computation requires the a 
priori knowledge of the camera parameters as the ROI boxes in the images are determined 
from rectangular regions specified metrically in the ground plane (which does not exactly 
match the road’s surface). In the current study, we focus on the pure lane extraction 
algorithm working on independent successive frames without considering temporal 
relations and only using the known camera parameters as a priori information. Tracking of 
the lane boundary curves over time (e.g. with a Kalman filter) can be added easily to this 
framework. It gives more robustness and stability to the estimated parameters. Solutions for 
an elaborate dynamical modeling of the problem exist in the literature (Eidehall & 
Gustafsson, 2004; Bertozzi et al., 2002). Thus, the presented algorithm can be considered as 
an initialization stage for lane (and object) tracking (see Figure 2).  
 

 

 
Fig. 3. Intermediate results of automatic lane marking extraction for the image of the left 
camera. The ROI and expected stripe width computation (top-left), ROI boxes over the input 
image (top-right), segmentation results (bottom-left), patch analysis results (bottom-right). 

The first part of the algorithm is performed independently and simultaneously in the two 
images. Intermediate results are shown in Figure 3. Lane marking segmentation consists of a 
lane marking enhancement step and a binarization step. Binarization uses automatic 
threshold computation. This is followed by a patch analysis stage where several properties 
of the identified patches are determined, for example, patch area and eccentricity of the 
ellipse with equivalent second central moments (the ellipse is only a means to measure 
elongatedness of the patches). These properties are then used to filter the detected patches: 
small and more or less circular patches are removed. Next, the ridge of each patch is 
determined along scanlines. After this step, the identified lane markings are represented as 
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chains of points (primitives). If two primitives overlap in the horizontal direction, the 
external one is removed in order to avoid ambiguities at feature matching and to avoid the 
detection of the boundary of a potential exit lane (slip road)  next to the current lane. The 
points grouped into these chains are radially undistorted before proceeding. 

2.2 Lane reconstruction 
The second part of the algorithm uses stereo information. The primitives are matched by 
cycling through the points of each primitive belonging to either boundary of the lane in the 
left image and then by computing the intersection of the corresponding epipolar lines with 
the primitives belonging to the same boundary in the right image. Presently, we describe the 
primitives as polylines. An alternative solution is to fit low-order models (e.g. line or 
polynomial curve segments) to the ridge points for each lane marking, and compute the 
intersection of the epipolar lines with these models. The matched points identifying lane 
boundary sections detected in both images are then triangulated into 3-space. The 
reconstructed 3D points belonging to the lane’s boundary are used to find the road’s surface. 
The road surface model used is a second-order polynomial in z , which is the longitudinal 
coordinate of the vehicle reference frame and linear in the lateral coordinate x . The x -axis 
of the vehicle reference frame is defined to point from the right to the left. As we use right-
handed reference frames, the remaining axis y  points upwards. The road surface model 
explicitely contains the vehicle’s roll angle ϕ  and pitch angle ϑ  measured with respect to 
the road, the vertical road curvature vc  and the vertical distance h  between the road’s 
surface and the origin of the vehicle’s reference frame (the height coordinate): 

 2v z
2
czxh)z,x(y +ϑ+ϕ+= . (1) 

This model is currently fitted to the triangulated 3D boundary-points in the least-squares 
(LS) sense.  An alternative method would be to use a robust fitting method, e.g. RANSAC 
(Fischler & Bolles, 1981). 
Mono systems usually rely on the assumption 0)z,x(y = , i.e. the vehicle motion is 
simplified to a planar motion, the road’s surface is modeled as a constant plane in the 
vehicle’s reference frame or equivalently, vehicle pitch and roll angle, as well as, the vertical 
curvature of the road is neglected. This may cause instabilities in the next step, when a lane 
model is fitted to the back-projected feature points as depicted in Figure 4. 
 

 
Fig. 4. An example of divergence present at lane model fitting when the left and right 
cameras are not interpreted as a stereo pair and instead the 0)z,x(y = assumption is used. 



 Stereo Vision 

 

4 

bright stripes of approximately known metrical width over a darker background. The lane 
marking extraction is performed with 1-dimensional templates of precomputed width per 
scanline within precomputed regions-of-interest (ROI). The ROI computation requires the a 
priori knowledge of the camera parameters as the ROI boxes in the images are determined 
from rectangular regions specified metrically in the ground plane (which does not exactly 
match the road’s surface). In the current study, we focus on the pure lane extraction 
algorithm working on independent successive frames without considering temporal 
relations and only using the known camera parameters as a priori information. Tracking of 
the lane boundary curves over time (e.g. with a Kalman filter) can be added easily to this 
framework. It gives more robustness and stability to the estimated parameters. Solutions for 
an elaborate dynamical modeling of the problem exist in the literature (Eidehall & 
Gustafsson, 2004; Bertozzi et al., 2002). Thus, the presented algorithm can be considered as 
an initialization stage for lane (and object) tracking (see Figure 2).  
 

 

 
Fig. 3. Intermediate results of automatic lane marking extraction for the image of the left 
camera. The ROI and expected stripe width computation (top-left), ROI boxes over the input 
image (top-right), segmentation results (bottom-left), patch analysis results (bottom-right). 

The first part of the algorithm is performed independently and simultaneously in the two 
images. Intermediate results are shown in Figure 3. Lane marking segmentation consists of a 
lane marking enhancement step and a binarization step. Binarization uses automatic 
threshold computation. This is followed by a patch analysis stage where several properties 
of the identified patches are determined, for example, patch area and eccentricity of the 
ellipse with equivalent second central moments (the ellipse is only a means to measure 
elongatedness of the patches). These properties are then used to filter the detected patches: 
small and more or less circular patches are removed. Next, the ridge of each patch is 
determined along scanlines. After this step, the identified lane markings are represented as 

Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System 

 

5 

chains of points (primitives). If two primitives overlap in the horizontal direction, the 
external one is removed in order to avoid ambiguities at feature matching and to avoid the 
detection of the boundary of a potential exit lane (slip road)  next to the current lane. The 
points grouped into these chains are radially undistorted before proceeding. 

2.2 Lane reconstruction 
The second part of the algorithm uses stereo information. The primitives are matched by 
cycling through the points of each primitive belonging to either boundary of the lane in the 
left image and then by computing the intersection of the corresponding epipolar lines with 
the primitives belonging to the same boundary in the right image. Presently, we describe the 
primitives as polylines. An alternative solution is to fit low-order models (e.g. line or 
polynomial curve segments) to the ridge points for each lane marking, and compute the 
intersection of the epipolar lines with these models. The matched points identifying lane 
boundary sections detected in both images are then triangulated into 3-space. The 
reconstructed 3D points belonging to the lane’s boundary are used to find the road’s surface. 
The road surface model used is a second-order polynomial in z , which is the longitudinal 
coordinate of the vehicle reference frame and linear in the lateral coordinate x . The x -axis 
of the vehicle reference frame is defined to point from the right to the left. As we use right-
handed reference frames, the remaining axis y  points upwards. The road surface model 
explicitely contains the vehicle’s roll angle ϕ  and pitch angle ϑ  measured with respect to 
the road, the vertical road curvature vc  and the vertical distance h  between the road’s 
surface and the origin of the vehicle’s reference frame (the height coordinate): 

 2v z
2
czxh)z,x(y +ϑ+ϕ+= . (1) 

This model is currently fitted to the triangulated 3D boundary-points in the least-squares 
(LS) sense.  An alternative method would be to use a robust fitting method, e.g. RANSAC 
(Fischler & Bolles, 1981). 
Mono systems usually rely on the assumption 0)z,x(y = , i.e. the vehicle motion is 
simplified to a planar motion, the road’s surface is modeled as a constant plane in the 
vehicle’s reference frame or equivalently, vehicle pitch and roll angle, as well as, the vertical 
curvature of the road is neglected. This may cause instabilities in the next step, when a lane 
model is fitted to the back-projected feature points as depicted in Figure 4. 
 

 
Fig. 4. An example of divergence present at lane model fitting when the left and right 
cameras are not interpreted as a stereo pair and instead the 0)z,x(y = assumption is used. 



 Stereo Vision 

 

6 

In Figure 4, the point chains – shown as connected squares - represent the identified and 
reprojected lane markings while the continous double-curves represent the fitted 
polynomial lane model. The left and right-side chains converge due to an unmodeled 
pitching. It should be noted that some mono systems are able to estimate vehicle pitching by 
optimizing the pitch angle until the reprojected primitives become parallel. In Figure 4, at 
the left-side boundary, an outlier segment is present that is resulted from an imperfect 
segmentation. 
In our stereo approach, as soon as the road’s surface is found, all the detected points are 
projected onto it, including those that were ruled out at stereo matching. Then a double-
polynomial lane boundary model is fitted to the 3D data as shown in Figure 5. Some of the 
roads are designed using constantly varying curvature (e.g. in Europe) while others include 
straight and circular segments (e.g. in the United States). Corresponding to a constantly 
varying curvature, clothoid lane models may be used (Nedevschi et al., 2005, Kastrinaki et 
al., 2003) (European case), but we experienced that the LS-fitting is relatively unstable when 
the polynomial order is higher than two. Again, a robust model fitting method such as the 
RANSAC could be used to account for some outliers and make the detection more stable. 
Figure 6 shows some outputs of the discussed lane geometry reconstruction algorithm. 

 

 
Fig. 5. Example of polynomial lane model fitting that followed the road surface detection 
based on stereo data. The image shown in Figure 3 and its right pair were used as input. 
There is a slight vehicle pitching (note the different scales on the axes) as shown in the side 
view of the road surface (bottom) but the lane profile (top) shows that the reprojected 
primitives are parallel, just like the true lane boundaries. 

2.3 On reconstruction errors 
Reconstruction errors can have multiple sources. An imperfect segmentation causing 
outliers can disturb stereo feature matching, road surface model fitting and horizontal lane 
profile model fitting, the effect on the latter two being more severe. In most of the cases, the 
effects caused by outliers can be moderated or even eliminated by using robust algorithms 
at the model fitting stage. Ambiguities at feature matching are rare in the discussed lane 
boundary detection algorithm since horizontally overlapping boundary segments are 
removed as a prevention (the epipolar lines are almost horizontal). However, feature 
matching becomes a difficult problem when the lane detection algorithm is extended by 
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vehicle, obstacle or guard rail detection. In such cases, area-based matching techinques are 
popular and ambiguities may occur at repeating patterns. Also, imprecisions in feature 
matching cause errors in 3D reconstruction, especially if the 3D point is far from the vehicle. 
As mentioned earlier, the ROI computation, feature matching and 3D reconstruction require 
the knowledge of the camera parameters (see Figure 2) that are determined by calibration. 
Any imprecision in the camera parameters may jeopardize the whole procedure. In such a 
case, the computed epipolar lines do not exactly pass through the corresponding points at 
point feature matching. Therefore, in case of area-based matching, the correlation threshold 
may not be reached along an epipolar line and the point pair to match may be rejected. 
Globally, this results a decreased number of reconstructed feature points per snapshot. This 
may cause, e.g. missed obstacles if obstacles are searched based on a vicinity criterion of the 
reconstructed points. In the meantime, the mentioned threshold should be kept as high as 
possible to avoid false matches. Even if matches are accepted, their localization may be 
imprecise which, together with the imprecisely known camera parameters can cause 
signficant errors in the reconstruction by triangulation. Considering further processing 
stages, high reconstruction errors can affect the model fitting stage seriously (similarily to 
the case shown in Figure 4). Therefore, extra care is required at camera calibration. 
 

  

  
Fig. 6. Some results of the discussed stereo reconstruction algorithm. The reconstructed 3D 
lane geometry is reprojected to the source images. 
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3. Camera calibration preliminaries 
There are several common ways to calibrate a stereo rig. For example, it is possible to  
compute the fundamental matrix F  from point correspondences (e.g. by using the well 
known normalized 8-point algorithm or the 7-point algorithm) without any knowledge of 
the scene or motion. It has been shown that the reconstruction based on this information 
only is possible up to a projective transformation (Hartley & Zisserman, 2006). The camera 
matrices determine F  up to scale, but not vice-versa. If additional knowledge either of the 
motion or of the scene’s geometry (e.g. parallel scene lines or planes) an affine or a metric 
reconstruction may be reached. This is still not enough to achieve a "ground truth" (true 
Euclidean) lane reconstruction. The reconstruction algorithm should not rely on such scene 
constraints as these might not always be available in a road scene. We can state that exact 
information on the vehicle's reference frame is required in such applications. F  does not 
provide information on the 3D Euclidean reference frame but camera models do (Hartley & 
Zisserman, 2006). Consequently, we need to determine the two camera models first, only 
then can we proceed with computing F  and the epipolar lines for stereo matching. In 
general form, the model of a single camera relating a 3D world point 3R∈W  (given in 
metrical coordinates) to its 2D image denoted by 2R∈I  is as follows: 

 in exΦ ( , , )=I p p W , (2) 

where inp is a vector formed of the intrinsic camera parameters and exp  is the 6-vector of the 
extrinsic camera parameters, the latter representing the 6-Degrees-of-Freedom (DoF) 
Euclidean transformation (i.e., a 3D rotation and a 3D translation) between camera and 
world reference frame. The mapping Φ  may model certain non-linear effects (e.g., radial 
and tangential lens distortions), as well. These distortions can be - in certain cases - 
neglected, or can be removed from Φ  by an adequate non-linear image warping step. The 
remaining linΦ , representing the pinhole camera model, is linear in a homogeneous 
representation: 

 3x3[ | ]= −I KR E t W      
0

0

u
0 v
0 0 1

α γ⎡ ⎤
⎢ ⎥= β⎢ ⎥
⎢ ⎥⎣ ⎦

K  (3) 

where 3x3E  is the identity matrix, 2P∈I  and 3P∈W  are homogeneous representations of the 
points and K  is the camera calibration matrix incorporating the relative focal lengths α  
and β , the skew γ  and the principal point T

0 0(u ,v ) . These are all intrinsic parameters 
contained in inp . R  is the 3-DoF rotation matrix, and t  is the camera position. R  and t  
correspond to exp . 
Calibration of a monocular camera consists of determining the camera parameters inp  and 

exp  from properly measured i iW I  point correspondences. We note here that for the 
intrinsic parameters, novel methods tend to use planar calibration patterns instead of 3D 
calibration objects (Malm & Heyden, 2003; Zhang, 2000; Sturm & Maybank 1999). A single 
planar arrangement does not provide enough information for estimating all the intrinsic 
paremeters, however, a solution for 0γ =  and known aspect ratio /β α  exists (Tsai, 1987). 
Algorithms for calibrating from planar patterns are developed for the stereo case, as well 
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(Malm & Heyden, 2001), but those determine the relative pose between the cameras while 
the absolute poses are required in our application. 
As to lane-related applications, Bellino et al. have used a single planar pattern and the 
aforementioned method for calibrating a monocular system used in heavy vehicles (Bellino 
et al, 2005). The authors used a fixed principal point and did not involve γ . They have 
investigated the reconstruction errors of two target points on the ground plane vs. the tilt 
angle of a calibration plane given with respect to the vertical position. The target points 
were placed up to 11.5 m from the camera and their positions were measured with a laser-
based meter for validation. They found that the inclination of the plane had considerable 
effect on the quality of the result. 
A more general intrinsic parameter estimation is given in (Hartley & Zisserman, 2006) for 
multiple planes with unknown orientations. Homographies (i.e., perspective 2D-to-2D 
mappings) jH  between the planes and the image are estimated first. Each jH  gives rise to 

two constraints on the image of the absolute conic (IAC) ω . The IAC is formulated as 
T 1( )−=ω KK . The constraints are linear in the elements of ω , namely T

1 2 0=h ωh  and 
T T
1 1 2 2=h ωh h ωh , where ih  is the i-th column of jH . Since ω  is the homogeneous 

representation of a conic, it has 5 DoF, so 3 planes suffice to estimate ω . K  can be 
computed from 1−ω  by Cholesky-factorization (Hartley & Zisserman, 2006), or by using 
direct non-linear formulas (Zhang, 2000). In the literature, some comparisons can be found 
between the method of Tsai and the method of Zhang (Sun & Cooperstock, 2005; Zollner & 
Sablatnig, 2004). It turns out, that Zhang's model and his method overperforms the others 
with respect to residual errors and convergence. The price payed is the relatively high 
number of iterations, which is not a serious problem in case of off-line applications. 
Having determined the intrinsic camera parameters, the rotation matrix R and the 
translation vector t need to be recovered. This is called pose estimation and a single general 
planar arrangement with at least 4 points suffices for a unique solution (Lepetit & Fua, 
2005). A rough pose estimation can be performed by first estimating the homography 
between the world plane and the image and then by re-using the orthogonality constraints 
with known  camera calibration matrix K (Malm & Heyden, 2003; Lepetit & Fua, 2005). 
The planar pattern used in intrinsic calibration is unsuitable for far-range systems, because it 
minimizes errors for close-range (as also stated in Marita et al., 2006; Bellino et al., 2005). For 
this purpose, Broggi et al. used a medium-range grid painted on the ground (Broggi et al., 
2005) while Marita et al. used vertical X-shaped markers placed on the ground in front of the 
vehicle in a distance up to 45 m (Marita et al., 2006). In the latter work, the intrinsic and the 
extrinsic parameters of each camera are computed separately. Extrinsic parameters are 
computed by minimizing the reprojection error in the image for the available control points. 
A constrainted Gauss-Newton minimization is used with the constraints T =R R Ι . The 
calibration is validated by comparing the 3D reconstruction errors of the control points to 
the actual 3D measurements. However, there is no information available about the accuracy 
of the control point setup. Alternatively, line features can also be used for pose estimation 
(Kumar & Hanson, 1994).  
With the road/lane following application in mind, and making use of the calibration 
methods used in computer vision, we present here a calibration scheme and method that is 
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optimal under some reasonable assumptions. It should be emphasized that the proposed 
method takes into consideration the errors present in the 3D setup. 

4. Calibration of a single camera 
4.1 Camera model 
We use a pinhole camera - extended with a fifth-order radial distortion model and a tunable 
distortion centre (Hartley & Zisserman, 2006) - as our camera model: 

 P x xD 2 4
1 2

P y yD

x c cx
(1 d r d r )

y c cy
−⎛ ⎞ ⎛ ⎞⎛ ⎞

= = + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠
D , (4) 

where T
x y(c ,c )  is the distortion center, 1d  and 2d  are the distortion coefficients, while 

T
P P(x , y )  is the point perspectively projected to the normalized image plane and D  is the 

corresponding distorted point on this plane. Thus, the distortion model is applied between 
the projection step and the rasterization step, the latter being modeled with the homogenous 
transformation represented by the camera calibration matrix K , like in equation (3). Lens 
distortion models involving tangential distortion are also available in the literature (Heikkila 
& Silvén, 1997). An explicit tangential distortion model is not required in our case, as the 
distortion center, with its two additional parameters, models imperfect alignment of the 
lenses and of the sensor. Therefore, we have, in total, the nine intrinsic parameters  

T
in 0 0 1 2 x y( , , ,u ,v ,d ,d ,c ,c )= α β γp  for each camera. 

4.2 Intrinsic calibration 
Intrinsic calibration is performed separately for the two cameras. We used a hand-held 
checkerboard pattern shown in m  different orientations to the camera. Alternatively, a pattern 
with circular patches could have been used (Heikkila & Silvén, 1997, Zollner & Sablatnig, 
2004). Corners in the checkerboard pattern can be localized with sub-pixel accuracy with our 
corner detector based on a robust saddle-point search in small regions around the corners. 
For an initial guess of inp , we used the method of Zhang, however we extended it with 
some optional constraints: 12 21ω = ω (for 0γ = ), 2 2

11 22
−ω = ω β α  (for a fixed aspect ratio, e.g. 

square pixels), and finally 13 0 11uω = − ω  and 23 0 22vω = − ω  (for a  fixed principal point). The 
problem is usually overdetermined because of the great number of the control points 
available. Having carried out a homography estimation for each image, the solution for ω  is 
obtained with a simple SVD-based method that gives a least-squares solution while exactly 
fulfilling the constraints. K  is determined using the formulae arising from 1 T− =ω KK . 
Next, for each of the m  views, the 6 extrinsic parameters *

ex, jp  ( j 1,2...m= ) are determined, 
that is, the planar pose estimation problem is solved for each view. For this, we used the 
orthogonality constraints satisfied by 1

j
−K H , where jH  denote the homography matrix 

estimated for the j-th view. Since measurements are noisy and orthogonality is not exactly 
satisfied in practice, some tolerances were used in the orthogonality test. In the 
representation of the rotation, we used the Rodrigues-vectors j j j= ϕr a , where ja  represents 
the rotation axis and j j|| ||ϕ = r  is the rotation angle. This has several advantages over the 
rotation matrix-based representation (Lepetit & Fua, 2005). 

Calibration and Sensitivity Analysis of a Stereo Vision-Based Driver Assistance System 

 

11 

As the set of parameters 9
inˆ R∈p  and * *T *T T 6m

ex ex,1 ex,mˆ ˆ ˆ( ,..., ) R= ∈p p p  determined earlier minimize 
an algebraic error, a refinement of the parameters is preferable by minimizing a 
geometrically meaningful error. A reasonable choice is to minimize the sum of the 
reprojection errors in all the m  images for all the n  feature points: 

 * 2 * * * * 2 * * 2
in ex ij ij ij ij 2 2

i, j i, j

ˆ ˆ ˆf ( , ) d ( , ) || || || ||= = − = −∑ ∑p p I I I I I I , (5) 

where *
ijI  is the measured location of the i-th corner in the j-th image and *

ijÎ  is the 

reprojection of the world point *
ijW  using the parametrized camera model (2). *I  is the 

measurement vector containing all the *
ijI 's and *Î  contains all the *

ijÎ 's. d  denotes 
Euclidean distance in the pixel reference frame. The cost function (5) can be minimized 
using a gradient-based iterative method. It can be shown, that (5) is a Maximum Likelihood 
(ML) cost function, provided the checkerboard pattern is precise, significant errors are due 
to the corner localization, and the errors have uniform Gaussian distribution all over the 
images. These assumptions make it possible to estimate the deviation σ  of the detection 
noise in the image simply as the standard deviation of the residual errors * *

ij ij
ˆ( )−I I  evaluated 

at the optimum. In order to determine the quality of the calibration, the estimated noise 
deviation σ̂  is then back-propagated to the camera parameters through a linearized variant 
of the camera model (2). 

4.3 Optimal pose estimation per view 
The relative orientations of the views with respect to the imaged checkerboards 
(incorporated in *

exp̂ ) are of no interest for us from the point of view of our application. 
Instead, for both cameras, we need an estimate of the pose exp̂  with respect to the vehicle's 
reference frame. To determine the poses, the vehicle with the mounted cameras is stopped 
over an open flat area and marker plates - with an X-shape on each - are placed in front of 
the vehicle (see Figure 7). Similar arrangements has already been used (Marita et al., 2006). 
 

  
Fig. 7. An image pair of the calibration scene with overlayed marker detection and 
calibration results. The dashed boxes are the search regions for template matching, while the 
solid boxes correspond to the detected markers. The solid lines represent the vanishing lines 
of the world reference planes. 
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Fig. 7. An image pair of the calibration scene with overlayed marker detection and 
calibration results. The dashed boxes are the search regions for template matching, while the 
solid boxes correspond to the detected markers. The solid lines represent the vanishing lines 
of the world reference planes. 
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The feature points are the centres-of-gravity (CoG's) of the individual X-shapes. The 3D 
marker locations iW  were measured by a laser-based distance meter from two reference 
points. The locations of the reference points are measured with respect to the vehicle. iI 's 
are extracted from the images using normalized cross-correlation with an ideal X-shaped 
template. We derive the pose estimation formula for one camera first and based on that we 
derive it for the stereo case. The initialization of the algorithm is done with the pose 
estimation method based on the orthogonality criteria discussed in Section 4.2. Therefore, an 
initial guess is available for exp , and this is to be fine-tuned by using a geometrically 
meaningful expression. The measurement of the 3D point locations and the detection of 
their image are two independent measurements modeled with two independent Gaussian 
distributions. If we have N  markers and we introduce the vector of all the measured 3D 
coordinates T T T

1 N: ( ,..., )=W W W , and the vector of all the measured pixel coordinates 
T T T
1 N: ( ,..., )=I I I  , then the likelihood functions for W  and I  are: 

 
( )

2
3N W

W

1 1L( | ) exp || ||
22 det( )

⎧ ⎫= − −⎨ ⎬
⎩ ⎭π

CW W W W
C

, (6) 

 
( )

2
2N I

I

1 1L( | ) exp || ||
22 det( )

⎧ ⎫= − −⎨ ⎬
⎩ ⎭π

CI I I I
C

. (7) 

Here, 2 T 1|| || ( ) ( )−− = − −Ca b a b C a b  denotes the squared Mahalanobis distance between the 
vectors a  and b  with respect to the covariance matrix C . IC  and WC  denote the 
covariance matrices of the measurement vectors I  and W , respectively. The likelihood 
function of all the measurements is the product of L( | )I I  and L( | )W W  because of the 
independence. Therefore, the Maximum Likelihood Estimate (MLE) for the expected 2D and 
3D locations I  and W  of the feature points can be found by minimizing the function 

 2 2
I W

g( , ) || || || ||= − + −C CI W I I W W . (8) 

I  and W  are related by the camera model (2), so in exΦ ( , , )=I p p W . Both IC  and WC  are 
block-diagonal provided the measurement of the control points are independent from each 
other. The blocks in the diagonals are IiC  (the 2x2 covariance matrices of each markers' 
localization errors in the image) and WiC  (the 3x3 covariance matrices of the markers' 
localization errors in 3-space), respectively. Thus, (8) can be rewritten as 

 { }
N

2 2
ex i in ex i i iIi Wi

i 1

g( , ) || ( , , ) || || ||
=

= −Φ + −∑ C Cp W I p p W W W . (9) 

Several important conclusions can be drawn from equation (9). The first is that the 
covariance matrices of the measurements are involved, so this ML cost function can not be 
used when no uncertainty information is available of the measurements. In such cases the 
cost function (5) could be used for pose estimation, as well. The second one is that the 
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expected 3D locations represented by iW  are involved, therefore not only the searched 6 
extrinsic parameters in exp  are to be optimized, but the marker locations of the 3D 
calibration arrangement, as well. This adds extra 3N dimensions to the parameter space. 
Optionally, the 3N extra dimensions can be eliminated by approximating iW  with the 
closest point to the measured 3D point iW  on the ray through the radially corrected image 
point iI . 

5. Optimal stereo calibration and sensitivity analysis 
5.1 Optimal two-view calibration and pose estimation 
Up to this point we considered the two cameras independently. Clearly, it is possible to 
determine the extrinsic parameters of the left ( exLp ) and right cameras ( exRp ) independently 
(Marita et al., 2006). However, this model does not take into consideration that the 3D 
control point setup is common for the two views. Also, equation (9) requires the knowledge 
of the exact intrinsic parameters inp , however, only its estimation inp̂  is available from 
intrinsic calibration. These problems can be solved by formulating the MLE for the overall 
problem that involves all the measurements including those available from checkerboard-
based calibration and for both cameras. As a result, the cost function to minimize becomes 
slightly more complex: 

 
* * * * * 2 * * * 2

inL exL inR exR exL exR L L inL exL 2 R R inR exR 22 2
L R

2 2 2
L L inL exL R R inR exRW IL IR

1 1h( , , , , , , ) || ( , ) || || ( , ) ||

|| || || ( , , ) || || ( , , ) ||

= − + − +
σ σ

+ − + − + −C C C

p p p p p p W I I p p I I p p

W W I I p p W I I p p W
, (10) 

where the first two terms come from the intrinsic calibration performed independently for 
the left and right camera (see the right side of equation (5)), the last two terms represent the 
localization errors in the images in the X-marker-based calibration and the third term 
represents the errors in the world point locations in the X-marker-based pose estimation. 
Each measurement influences the solution weighted with the inverse of its uncertainty. The 
outline of the proposed algorithm is as follows. 
1. Perform an intrinsic calibration independently for the two views by using planar 

patterns and by minimizing the cost function (5). Compute Lσ̂  and Rσ̂ . 
2. Set up a far-range planar arrangement of visible control points for stereo pose  

estimation (as suggested by Figure 7). Locate the markers and estimate the 
measurement covariances both for the images and for the 3D arrangement. 

3. Initialize the yet unknown extrinsic parameters exLp  and exRp  with respect to the road 
by solving the pose estimation problem based on the orthogonality criteria 
independently for the two views. Initialize W  with the measured 3D locations and 
minimize cost function (10). 

5.2 Sensitivity of the camera parameters 
Supposing that the optimal solution of (10) has been found (this can be checked with a 
residual analysis together with a linearity test of the cost function h ), the overall quality of 
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the calibration can be characterized by performing a sensitivity analysis. First of all, the cost 
function (10) can be approximated as 

 2 2
mm m

ˆh( ) || ( ) ( ) || || ( ) ( ) ||= − − − ≈ − − −C Cq m m m m m m J q q , (11) 

where q  is the vector of all the parameters to optimize, m  is the vector of all the 
measurements * *

L R L R, , ,I I I I  and W . mC  is the block-diagonal covariance matrix of all these 

measurements. m̂  contains, on the one hand, the image points * *
L R L R

ˆ ˆ ˆ ˆ, , ,I I I I  reprojected 

using the camera model, on the other hand, the optimized world point coordinates Ŵ .  m  
represents the “ground thruth” values of the parameters that are always unknown and mJ  
is the analytically computed Jacobian matrix of the mapping ˆq m  evaluated at the 
optimal parameter vector ˆ ≈q q . 
The measurement uncertainty incorporated in mC  can be back-propagated to the 
parameters, as T 1 1

q m m m( )− −=C J C J . Since we are primarily interested in the uncertainty of the 
intrinsic parameters inLp  and inRp  and of the poses exLp  and exRp , the corresponding two 
30x30 sub-matrix should be extracted from qC . It is important that nothing prevents the 
parameters of the two cameras to cross-correlate. Therefore, at the uncertainty estimation of 
any computation involving the parameters of both cameras, the 30x30 covariance matrix has 
to be considered instead of the two 15x15 blocks corresponding to the two cameras, 
independently.  

5.3 Uncertainty of the epipolar lines 
In the feature matching stage of the lane detection algorithm, we compute the intersection of 
epipolar lines and 2D primitives (polylines or curves). It is well known that the fundamental 
matrix required for epipolar line computation can be derived from the camera parameters 
(Hartley & Zisserman, 2006). We use the formulation 

 T T 1
R R L L R L L[ ( - )]− −

×=F K R R R t t K , (12) 

where the indices L and R refer to the left camera and right camera, respectively. [ ]×⋅  
denotes the 3x3 matrix of rank 2 corresponding to the cross product operator, so that 

=[ ]××a b a b . Then the epipolar line Rl  in the right image corresponding to a point LI  in the 

left image can be computed as R L=l FI , where both Rl  and  LI  are homogeneous 3-vectors. 

The epipolar constraint T
R R 0=l I  assures that the line Rl  passes through the point RI , which 

is the right image of the same world point, as shown in the left side of Figure 8. 
Uncertainty in the camera parameters propagates to the derived fundamental matrix and to 
the epipolar lines. If the vector of the involved camera parameters is denoted by p , then the 
formula (12) can be interpreted as a mapping p f  where f  is a vector formed from the 
elements of F . If this mapping can be approximated by a linear mapping in the range of the 
noise, and Gaussian distributions are supposed just like in earlier derivations, then the 
forward propagation of covariance can be given as 
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where pC  is the covariance matrix of p , fC  is a covariance matrix associated to F  and fJ  

is the Jacobian matrix of the mapping p f  evaluated at the mean values ˆ ≈p p  and ˆ ≈f f  
(hat over the letter denotes estimated values and bar denotes the unknown ground thruth). 

fJ  is either available analytically as the partial derivatives of (12) with respect to the camera 
parameters or it can be approximated numerically. To avoid ambiguities, F is always 
normalized so that || || 1=F . 
 

 
Fig. 8. Epipolar geometry of cameras in general configuration (left). The 3D point iW  given 
in the vehicle reference frame is "seen" as LiI  and RiI  in the pixel reference frames. The 
nature of epipolar line uncertainty (right). 

Next, the uncertainty present in the fundamental matrix can be forward-propagated to the 
epipolar lines very similarily, by linearizing the mapping R R/ || ||f l l . It is known that the 
set of epipolar line samples corresponding to a given confidence level form a line conic that 
is bounded by a point conic envelope of 5 DoF (Hartley & Zisserman, 2006). This is 
illustrated in the right side of Figure 8. The point conic can be analytically derived if the 
covariance matrix lRC  of the epipolar line Rl  is known. The envelope conic for a given 
confidence level λ  (99% for example) characterises very well the sensitivity of an epipolar 
line. However, it is more practical to use the distribution of the angle between the epipolar 
line and the u-axis of the image reference frame to characterize uncertainty. If T

R (a,b,c)=l , 
this angle can be expressed as 

 arctan( a / b)Θ = − . (13) 

Moreover, the mapping R Θl  should also be linearized in order to propagate the 
covariance of the epipolar lines to Θ . As a result, the complete chain of the uncertainty 
propagation from the camera parameters to the angle Θ  is R Θp F l .  
A practical verification of the uncertainty computations is done by Monte-Carlo simulations. 
A high number of samples { }kp  were generated of p  with mean the estimated camera 

parameters p̂  and covariance matrix pC  that is extracted from  the computed qC  matrix as 
described in Section 5.2. Then by selecting a point LI  in the left image, the corresponding 
epipolar line and kΘ  are computed for each sample kp . Finally, the standard deviation of 
the set { }kΘ  is calculated. This way, to any point LI  in the left image, a single value is 
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the calibration can be characterized by performing a sensitivity analysis. First of all, the cost 
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associated that characterizes the uncertainty of the corresponding epipolar line. If the output 
of the computationally expensive Monte-Carlo approach coincides with the results received 
from the discussed cheaper linear approximation method, then the non-linear 

R Θp F l  mapping is nearly linear in the range of the uncertainities around p̂ . 

5.4 Uncertainty in the reconstruction 
The main reason why camera parameter uncertainties are studied is to predict 
reconstruction errors due to an imprecise knowledge of the camera parameters. The errors 
in stereo point reconstruction can be simulated with a Monte-Carlo method that is very 
similar to the one discussed in Section 5.3. The estimated camera parameters are perturbed 
corresponding to the estimated parameter covariance matrix and for each parameter set, 
several 3D points are reconstructed. As a result, point clouds are formed in 3-space that 
correspond to reconstruction errors. Similarily, one can go further, and apply further steps 
of those detailed in Section 2, e.g. road surface model fitting and lane model fitting for each 
generated set of parameters. Some results based on real data are presented in Section 6. 

6. Evaluation on real images 
6.1 Numerical results of the two-step camera calibration method 
A setup with two analog 1/3" b&w CCD cameras with a resolution of 720x576 pixels and 
8 mm lenses with 34° horizontal field-of-view were mounted on the side mirrors of a test 
vehicle. For various reasons, the acquired images were resized to a size of 480x384 pixels 
when the recorded videos were post-processed in order to remove interlacing effects. For 
intrinsic calibration, we used a checkerboard pattern with 11x7 control points and a square 
size of 3 cm. Images were taken in 16 different views (which is much more than required) 
and a constrainted minimization with 0γ =  has been carried out by using the Levenberg-
Marquardt method. As a result, the estimated focal lengths are (777.6, 849.8) ± (3.3, 4.1) 
pixels for the left camera, and (776.1, 847.2) ± (3.0, 3.5) pixels for the right, the principal point 
is located at (215.7, 201.9) ± (10.4, 7.6) pixels in the image of the left camera and at (236.0, 
168.7) ± (8.8, 6.9) pixels in that of the right one.  The uncertainties given here correspond to 
the 99% confidence interval of the uncertainty in the parameter space that is calculated by 
back-propagating the standard deviation of the residual reprojection errors given in the 
image to the parameters, as mentoned in Section 4.2. The above uncertainties are only given 
for reference; clearly they do not completely characterise the uncertainty (cross-covariance 
information is also required). The standard deviations of the residual errors were 0.26 and 
0.23 pixels for the left and right cameras, respectively. The distortion centers are located 
approximately at the principal points while the estimated radial distortion coefficients are  
(-0.505, 0.878) ± (0.044, 0.540) for the left camera and (-0.516, 0.957) ± (0.041, 0.540) for the 
right one. Note that the second coefficient is estimated with a relatively high uncertainty 
(alternatively, it could be forced to zero). 
In the second step, 24 X-markers of size 50x50 cm were placed in front of the vehicle along 
four lines at a distance of 3 meters laterally and in a depth range from 10 to 40 meters. Single 
rows of markers were placed at a time to have a clear view on each, that is, to avoid masking 
due to the perspective effect (see Figure 7). Marker distances from two reference points were 
measured with a laser-based distance meter and the 3D locations were computed by 
triangulation. Also, errors in the reference point locations, distance measurements, non-ideal 
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marker-placing and deviations with respect to the planar ground assumption were 
estimated and forward-propagated to the computed 3D locations resulting in an estimate of 
each Wi (i 1,2...N)=C  (see Bodis et al., 2007, for more details). The resulted 99% covariance 
ellipsoids of the 3D measurements are plotted in Figure 9C for some markers. Using a quasi-
Newton optimization with a termination criterion of 10-5 on the relative change in the 
parameter values, the minimization of (10) converged in 116 iterations. For comparison, we 
also minimized (5), like if there would be no covariance information. A comparison of the 
results provided by the two approaches is shown in Fig. 9A-B. 
It is clear from the results (Figure 9A-B) that inappropriate modeling of the problem or the 
lack of covariance information misleads the optimization when the 3D marker locations are 
not known precisely. Naturally, the high reprojection errors shown in Figure 9A is 
undesirable because it is directly related to the corresponding 3D reconstruction errors. 
Because camera skews were forced to be zero, we had 2x8 intrinsic parameters, 2x16x6 
extrinsic parameters with respect to the checkerboards and 2x6 extrinsic parameters with 
respect to the road (or stopped vehicle). As to the measurements, we had 2x2x16x11x7 
coordinates from the checkerboard corners, while 2x2x24 image coordinates and 3x24 world 
coordinates were available from the X-marker based measurement. In total, there were 220 
parameters and 5096 measured values. In Figure 9C, we can see that the covariance 
ellipsoids of the estimated 3D locations are much smaller than those of the measured 
locations. This is what we expected from a regression-like problem. 
 

 
Fig. 9. A-B) Markers reprojected to one of the source images of the right camera using the 
camera parameters that resulted from the minimization of A) the cost function given in (5), 
B) the proposed cost function (10). C) 99% condence levels of the 3D location measurements 
for three 50x50 cm marker plates placed at 20, 25 and 35 m (outer ellipsoids) and 99% 
confidence level of the position estimate after optimization, from qC  (inner ellipsoids). 

6.2 The sensitivity of point reconstruction 
The evaluation of the calibration is performed by simulating the effects of parameter 
uncertainties represented by pC  on 3D point recunstruction by triangulation. 

The reference points to reconstruct by Monte-Carlo simulations were chosen from the 
calibration scene: the estimated marker centers were shifted by 25 cm vertically to lie on the 
ground surface. The left and right images of these 3D points were computed by using the set 
of the optimal camera parameter estimates (see the top of Figure 10). Then, 1000 perturbed 
parameter sets were generated around the estimated parameters corresponding to Cp. There 
are 2x14 estimated camera parameters that are to be considered here, zero skew being fixed, 
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associated that characterizes the uncertainty of the corresponding epipolar line. If the output 
of the computationally expensive Monte-Carlo approach coincides with the results received 
from the discussed cheaper linear approximation method, then the non-linear 
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6.2 The sensitivity of point reconstruction 
The evaluation of the calibration is performed by simulating the effects of parameter 
uncertainties represented by pC  on 3D point recunstruction by triangulation. 

The reference points to reconstruct by Monte-Carlo simulations were chosen from the 
calibration scene: the estimated marker centers were shifted by 25 cm vertically to lie on the 
ground surface. The left and right images of these 3D points were computed by using the set 
of the optimal camera parameter estimates (see the top of Figure 10). Then, 1000 perturbed 
parameter sets were generated around the estimated parameters corresponding to Cp. There 
are 2x14 estimated camera parameters that are to be considered here, zero skew being fixed, 



 Stereo Vision 

 

18 

so pC  is a 28x28 matrix. A 3D subspace of the generated distribution  is shown at the bottom 
of Figure 10. This corresponds to the 99% confidence level of the 3D location of the left 
camera given in the vehicle’s reference frame. The sizes of this ellipsoid are ±14 laterally (X),  
±35 cm in depth (Z) and ±10 cm in the direction perpendicular to the ground (Y). The 
ellipsoid is elongated in the longitudinal (Z) direction because the estimation of the camera 
positions in this direction is more sensitive to the uncertainty in 3D marker locations of the 
planar and far-range calibration scene. Interestingly, this does not mean that any 3D point 
can be reconstructed with a maximum precision of ±35 cm, because reconstruction quality is 
affected by the covariances between all the 28 parameters, as well. 
After that the points were radially corrected in both images by using the perturbed radial 
distortion parameters in each experiment, they were reconstructed by using the simple mid-
point triangulation method. The resulted 3D point clouds are shown in Figure 11 and their 
measured extent are plotted in Figure 12. 
 

 
 

 
Fig. 10. The points to be reconstructed (triangulated) by Monte-Carlo simulations are the 
marker centers shifted vertically to the ground surface (top). 99% covariance ellipsoid of the 
left camera’s position and verification of the generated noise in parameter space, 1000 
experiments (bottom). 99.4% of the points fell inside the ellipsoid in this realization. 
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Fig. 11. Different views of the reconstructed 3D point clouds resulted from the Monte-Carlo 
simulations. YZ (top-left), XY (top-right) and XZ (bottom) view, where X is the lateral, Y is 
the height and Z is the longitudinal (depth) coordinate in meters. 1000 experiments were 
carried out. 
 

  
Fig. 12. Standard deviation (in meters) of the point clouds’ sizes for each of the 24 reference 
points when only the optimal camera parameters are perturbed. 

The largest deviation is 25 cm in the longitudinal (Z) direction at a distance of 40 meters 
from the car. This means that the "extent" (the 99% confidence interval) of the corresponding 
3D point cloud is ±64 cm. In the direction perpendicular to the ground, the 99% confidence 
interval is ±5 cm and in the lateral direction, it is ±10 cm. We should emphasize that this 
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only characterizes reconstruction errors due to uncertainty present in the camera parameters 
and not due to errors in stereo matching. 
In order to simulate the effects of a random error (but not outliers) present at the stereo 
matching of point features, as well, random 2D Gaussian noise has been added to the image 
point locations in each experiment. We repeated the whole experiment with different 
standard deviations that ranged from 0 to 0.66 pixels in 0.11 pixels steps. In the case of a 2D 
Gaussian distribution, 0.33 pixels correspond to a 99% confidence interval of ±1 pixels while 
0.66 corresponds to ±2 pixels. This is the simulated precision of the feature localization and 
stereo matching solution. The resulted point reconstruction errors are shown in Figure 13. 
 

 
 

 
Fig. 13. Maximum reconstruction errors in the X and Y (top) and Z (bottom) directions vs. 
the simulated point feature localization and stereo matching errors in the image while the 
optimal camera parameters are perturbed corresponding to pC .  
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In Figure 13, both 3D and 2D errors are given as the 99% confidence interval of the 
corresponding distribution. It can be seen that the effects of the localization and feature 
matching noise in the image starts to dominate the uncertainty present in the camera 
parameters from ±0.5 pixels (Z plot). As we expected, the depth coordinate is the most 
sensitive one. 
It should be noted that although parameter uncertainty is simulated as a random noise in 
order to measure the uncertainty of the parameter estimates with respect to the true 
parameters, the error of a single realized calibration remains constant when the calibrated 
system is on-line. In contrast, feature localization is realized in every acquired frame. 
However, the random perturbation is still valid, since we are interested in the deviation of 
the reconstructed features from the true ones. 

6.3 Uncertainty of the epipolar lines 
Next, the sensitivity of the epipolar lines was analysed as described in Section 5.3. The 
epipolar line uncertainty was characterized by the deviation of the line’s angle with respect 
to its mean value. To every pixel center in the left image, the angle deviation of the 
corresponding epipolar line in the right image is associated. The resulting surface is shown 
in Figure 14. 

 
Fig. 14. Epipolar line uncertainties. Every pixel in the left image has an associated epipolar 
line uncertainty. The uncertainty is encoded in gray level values over the pixels of the left 
image (left side), while the side view of the resulting surface is compared with that of the 
eight-point algorithm (right side). 

The angle deviation was not only computed by Monte-Carlo simulations but also with the 
linear covariance-propagation method detailed in Section 5.3. The difference between the 
two resulted surfaces is the linearity error surface that is also shown in the right side of 
Figure 14 (the side view of this error surface is a curve around zero degrees). 
As a reference, we plotted the surface received from the eight-point algorithm used to 
determine the fundamental matrix. Since this method breaks down in the case of flat 
arrangements, we used the center and all the four corners of the markers in both images (five 
times more reference points than those used in the second step of the calibration procedure). 
We should also mention that the eight-point algorithm, or more generally the fundamental 
matrix, in itself does not suffice for the specific purpose because – as discussed in Section 3 - it 
does not provide Euclidean information about the camera poses with respect to the scene. 
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matching noise in the image starts to dominate the uncertainty present in the camera 
parameters from ±0.5 pixels (Z plot). As we expected, the depth coordinate is the most 
sensitive one. 
It should be noted that although parameter uncertainty is simulated as a random noise in 
order to measure the uncertainty of the parameter estimates with respect to the true 
parameters, the error of a single realized calibration remains constant when the calibrated 
system is on-line. In contrast, feature localization is realized in every acquired frame. 
However, the random perturbation is still valid, since we are interested in the deviation of 
the reconstructed features from the true ones. 

6.3 Uncertainty of the epipolar lines 
Next, the sensitivity of the epipolar lines was analysed as described in Section 5.3. The 
epipolar line uncertainty was characterized by the deviation of the line’s angle with respect 
to its mean value. To every pixel center in the left image, the angle deviation of the 
corresponding epipolar line in the right image is associated. The resulting surface is shown 
in Figure 14. 

 
Fig. 14. Epipolar line uncertainties. Every pixel in the left image has an associated epipolar 
line uncertainty. The uncertainty is encoded in gray level values over the pixels of the left 
image (left side), while the side view of the resulting surface is compared with that of the 
eight-point algorithm (right side). 

The angle deviation was not only computed by Monte-Carlo simulations but also with the 
linear covariance-propagation method detailed in Section 5.3. The difference between the 
two resulted surfaces is the linearity error surface that is also shown in the right side of 
Figure 14 (the side view of this error surface is a curve around zero degrees). 
As a reference, we plotted the surface received from the eight-point algorithm used to 
determine the fundamental matrix. Since this method breaks down in the case of flat 
arrangements, we used the center and all the four corners of the markers in both images (five 
times more reference points than those used in the second step of the calibration procedure). 
We should also mention that the eight-point algorithm, or more generally the fundamental 
matrix, in itself does not suffice for the specific purpose because – as discussed in Section 3 - it 
does not provide Euclidean information about the camera poses with respect to the scene. 
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The uncertainty in the angle of epipolar lines does not significantly depend on the horizontal 
coordinate of the corresponding point (the epipolar lines are almost all horizontal). Although 
the objective function during optimization was not the uncertainty in the epipolar lines itself, it 
is clear from Figure 14 that this is minimal in the interesting zone. This is due to the specific 
arrangement (the marker locations and the horizon are overlayed for this purpose). The 
minimum of the angle deviation is around 0.2° and the maximum is 0.5°. 

6.4 The sensitivity of road surface detection and lane model fitting 
In order to see how the uncertainty in the camera parameters affect the quality of road 
surface reconstruction, we have used the Monte-Carlo technique, once again. In each of the 
100 experiments, the feature (primitive or point chain) matching, the stereo point 
reconstruction and the road surface model were recomputed. The computations were 
performed for each frame over a 50 frames sequence, which corresponds to 2 seconds in 
real-time. The computed optimal camera parameters were perturbed corresponding to the 
estimated parameter covariance pC . The pitch angle, roll angle and height parameters 
resulted from the road surface model fitting are shown in Figure 15. Although there are 
some outliers (e.g. at frame indices 4, 10 and 49, that may correspond to surfaces with 
relatively high residual errors), the sensitivity of the estimation remains constant. In other 
words, the LS-fitting, in itself, is not very reliable in all circumstances, but the sensitivity 
estimation still remains stable over time. The standard deviations are around 0.11°, 0.36° 
and 5.4 cm, for the pitch, roll and height parameters respectively. The stability of fitting 
could be increased by using a robust fitting method or a weighted least-squares (WLS) 
method by giving more weight to the farther reconstructed points or primitives. This is 
because much more points constitue closer primitives than the farther ones so that farther 
points are not really involved in model shaping (we refer to Figure 5). 
 

 
Fig. 15. Uncertainties in road surface model fitting due to uncertainties present in the 
camera parameters. 100 experiments in each of the 50 successive frames are evaluated. The 
curves represent mean values and the bars represent the standard deviations. There are 
outiers in model fitting but the computed sensitivities remain stable over time. 

Finally, Figure 16 shows the effects of the computed camera parameter uncertainties on lane 
geometry reconstruction demonstrated on the frames already shown in Figure 6.  Figure 16 
demonstrates that the proposed off-line calibration method together with the discussed 
stereo lane reconstruction method gives acceptable lane reconstruction accuracy, but in the 
meantime, the derived errors are not insignificant, and thus, they can not be neglected, even 
if special care has been taken at calibration. 
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7. Conlusions 
A novel off-line static method has been proposed for calibrating the cameras of a stereo 
vision-based driver assistance system. We formulated the maximum likelihood cost function 
for the stereo calibration problem. The resulting method involves the optimization of the 3D 
marker locations and covariance information of the measurements. Therefore, the method is 
only applicable, when an appropriate preliminary estimation of the uncertainties of the 
calibration measurements can be given. Moreover, a method for estimating the sensitivity of 
the parameters has been presented. It has been shown on real data, that when measurement 
uncertainties are available, our approach co-minimizing errors in the image together with 
errors in 3-space gives significantly better results than one can achieve by using the common 
reprojection error minimization. Thus, we have put extra effort in estimating measurement 
uncertainties at calibration. A stereo lane reconstruction algorithm has also been presented 
and by Monte-Carlo simulations of a triangulation method, we have demonstrated how the 
computed parameter uncertainties affect the precision of 3D reconstruction. The estimated 
reconstruction errors can be used when defining the safety margins in a decision algorithm 
that may trigger an actuation in a critical situation (e.g. unexpected lane departure or 
collision). The study should draw attention to the reconstruction errors arising from the non-
ideal nature of camera calibration which is increasingly important in safety-critical systems. 
Covariance information is also required when using a Kalman-filter for lane tracking. 
 

  

  
Fig. 16. Uncertainties in lane reconstruction due to uncertainties present in the camera 
parameters. 100 experiments are overlayed. 
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The procedure followed in the estimation of 3D point reconstruction uncertainties can be 
applied to estimate the output quality of a vehicle or obstacle detection algorithm. This is 
meant without a tracking algorithm that should decrease the errors by involving temporal 
information. It should be noted that, in general, tracking increases robustness, but the vision 
algorithm without tracking should still be reliable in itself, as well. 
The proposed optimization method and far-range calibration arrangement of “ground 
thruth” control points is relatively elaborate compared to markerless on-line methods, while 
it is indispensable to integrate some kind of on-line parameter estimation - or at least 
parameter checking – in such systems. This is critical because the cameras are subject to 
shocks and vibrations and  the parameters (mostly the extrinsic parameters) may change 
over time. Thus, the presented methods and results will serve as a reference to evaluate 
some on-line calibration methods that are presently developed. 
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1. Introduction 
Stereo vision has long been studied and a number of techniques have been proposed to 
estimate the disparities and 3D depth of the objects in the scene. This is done by estimating 
the pixel correspondences of similar features in the stereo perspective views originated from 
the same 3D scene (O. Faugeras 2001; R. Hartley 2003). However, finding correct 
corresponding points is subject to a number of potential problems like occlusion, ambiguity, 
illuminative variations and radial distortions (D. Scharstein 2002). A number of algorithms 
have been proposed to address some of the aforementioned issues in stereo vision however 
it is still relatively an open problem. 
Current research in stereo vision has attracted a lot of focus on multiresolution techniques, 
based on wavelets/multiwavelets scale-space representation and analysis, for 
correspondence estimation (S. Mallat 1993; He-Ping Pan 1996). However, very little work 
has been reported in this regard. The main advantage of these algorithms is their 
hierarchical nature that exhibit behaviour similar to iterative optimization algorithms. These 
algorithms generally operate on an image pyramid where results from coarser levels are 
used to constrain regional search at finer levels. The coarse-to-fine techniques adopted in 
these algorithms are considered to be a middle approach unlike other existing algorithms 
where correspondences are established based either purely on local search (L. Di Stefano 
2004; Q`ngxiong Yang 2006) or as a global cost-function optimization problem (D. 
Scharstein 1998; M. Lin 2003) with their respective shortcomings. 
In this work, earlier contributions regarding the application of wavelet/multiwavelets in 
stereo vision is presented highlighting shortcomings, involved in those techniques such as 
translation and rotational variance (R. R. Coifman 1995; S. Mallat 1999) inherited in the 
discrete wavelet/multiwavelet transformation. Furthermore, correspondence estimation, 
directly using wavelet coefficients for aggregation costs, is very sensitive to noise and 
illuminative variation that generally exists in between the stereo perspective views. 
In addition, a new novel and robust algorithm is presented (Asim Bhatti 2008) using the 
hierarchical correspondence estimation approach where wavelets/multiwavelets transform 
modulus maxima (WTMM) are considered as corresponding features, addressing the issue 
of translation invariance. WTMM defines translation invariant features with phases pointing 
normal to the surface. The proposed algorithm introduced a new comprehensive selection 
criterion called strength of the candidate (SC) unlike many existing algorithms where selection 
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directly using wavelet coefficients for aggregation costs, is very sensitive to noise and 
illuminative variation that generally exists in between the stereo perspective views. 
In addition, a new novel and robust algorithm is presented (Asim Bhatti 2008) using the 
hierarchical correspondence estimation approach where wavelets/multiwavelets transform 
modulus maxima (WTMM) are considered as corresponding features, addressing the issue 
of translation invariance. WTMM defines translation invariant features with phases pointing 
normal to the surface. The proposed algorithm introduced a new comprehensive selection 
criterion called strength of the candidate (SC) unlike many existing algorithms where selection 
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is solely based on different aggregation costs. The SC involves the contribution of 
probabilistic weighted normalized correlation, symbolic tagging and geometric topological 
refinement. Probabilistic weighting involves the contribution of more than one search spaces 
especially in the case of multi-wavelet based multi-resolution analysis. Symbolic tagging 
procedure helps to keep the track of different candidates to be an optimal candidate. 
Furthermore, geometric topological refinement addresses the problem of ambiguity due to 
geometric transformations and distortions that could exist between the perspective views. 
The geometric features used in the geometric refinement procedure are carefully chosen to 
be invariant through many geometric transformations such as affine, metric and projective 
(M. Pollefeys 2000). 
The developed vision system based on the proposed algorithm is very simple and cost 
effective as it consists of only a stereo cameras pair and a simple fluorescent light. The 
developed system is capable of estimating surface depths within the tolerance of 0.5 mm. 
Moreover, the system is invariant to illuminative variations and orientation of the objects in 
the input image space, which makes the developed system highly robust. Due to its 
hardware simplicity and robustness, it can be implemented in different factory 
environments without a significant change in the setup. 

2. Wavelets analysis in stereo vision: a background 
Wavelet theory has been explored very little up to now in the context of stereo vision. Some 
work has been reported in applying wavelet theory for addressing correspondence problem. 
To the best of author's knowledge, Mallat (S. Mallat 1991; S. Mallat 1993) was the first who 
used wavelet theory concept for image matching by using the zero-crossings of the wavelet 
transform to seek correspondence in image pairs. In (S. Mallat 1993) Mallat also explored the 
signal decomposition into linear waveforms and signal energy distribution in time-
frequency plane. Afterwards, Unser (M. Unser 1993) used the concept of multi-resolution 
(coarse to fine) for image pattern registration using orthogonal wavelet pyramids with spline 
bases. Olive-Deubler-Boulin (J. C. Olive 1994) introduced a block matching method using 
orthogonal wavelet transform whereas (X. Zhou 1994) performed image matching using 
orthogonal Haar wavelet bases. Haar wavelet bases are one of the first and simplest wavelet 
basis and posses very basic properties in terms of smoothness, approximation order (A. 
Haar 1910), therefore are not well adapted for most of the imaging applications, especially 
correspondence estimation problem. 
A more comprehensive use of wavelet theory based multi-resolution analysis for image 
matching was done by He-Pan in 1996 (He-Ping Pan 1996; He-Ping Pan 1996). He took the 
application of wavelet theory a bit further by introducing a complete stereo image matching 
algorithm using complex wavelet basis. In (He-Ping Pan 1996) he explored many different 
properties of wavelet basis that can be well suited and adaptive to the stereo matching 
problem. A number of real and complex wavelet bases were used and transform is 
performed using wavelet pyramid, commonly known by the name Mallat's dyadic wavelet 
filter tree (MDWFT) (S. Mallat 1999). The common problem with MDWFT is the lack of 
translation and rotation variance (R. R. Coifman 1995; I. Cohen 1998) especially in real 
valued wavelet basis. Furthermore similarity measures were applied on individual wavelet 
coefficients which are very sensitive to noise. Similarly, Magarey (J. Magarey 1998; J. 
Margary 1998) introduced algorithms for motion estimation and image matching, 
respectively, using complex discrete Gabor-like quadrature mirror filters. Afterwards, Shi 
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(Fangmin Shi 2001) applied sum of squared difference (SSD) technique on wavelet coefficients. 
He uses translation invariant wavelet transformation for matching purposes, which is a step 
forward in the context of stereo vision and applications of wavelet. 
More to the wavelet theory, multi-wavelet theory evolved (G. Plonka 1998) in early 1990s 
from wavelet theory and enhanced for more than a decade. Their success, over scalar 
wavelet bases, stems from the fact that they can simultaneously posses the good properties 
of orthogonality, symmetry, high approximation order and short support, which is not 
possible in the scalar case (Özkaramanli H. 2001; A. Bhatti 2002). Being a new theoretical 
evolution, multi-wavelets are still new and are not yet applied in many applications. In this 
work we will devise a new and generalized correspondence estimation technique based 
wavelets and multiwavelets analysis to provide a framework for further research in this 
particular context. 

3. Wavelet and multiwavelets fundamentals 
Before proceeding to the correspondence estimation algorithms it seems wise to provide 
brief background of wavelets and multiwavelets theory as the algorithm presented is based 
heavily on this theory. Furthermore this background will assist the user to understand the 
features that are used to establish correspondences between the stereo pair of images. 
Classical wavelet theory is based on the dilation equations as 

 (1)

 (2)

where ch and wh represents the scaling and wavelet coefficients whereas M represents the 
band of filter bank (A. Bhatti 2002). In addition, multiresolution can be generated not just in 
the scalar context, i.e. with just one scaling function and one wavelet, but also in the vector 
case where there is more than one scaling function and wavelet are involved. The latter case 
leads to the notion of multiwavelets. Multiwavelets bases are characterized by r scaling 
functions and r wavelets in contrast with one scaling function and one wavelet, i.e. r =1. 
Here r denotes the multiplicity in the vector setting with r > 1. 
In the case of multiwavelets, scaling functions satisfy the matrix dilation equation as 

 (3)

Similarly for the multiwavelets the matrix dilation equation can be expressed as 

 (4)

In equations (3) and (4), ch and wh are real matrices of multi-filter coefficients whereas Φ(t) 
and Ψ(t) can be expresses in terms of r scaling functions and r wavelets as 

 

(5)
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(6)

Generally only two band multiwavelets, i.e. M = 2, defining equal number of wavelets as 
scaling functions are used for simplicity. For further information about the generation and 
applications of multiwavelets, with desired approximation order and orthogonality, 
interested readers are referred to (S. Mallat 1999; A. Bhatti 2002). 

3.1 Wavelet filter banks 
Wavelet transformation produces scale-space representation of the input signal by 
generating scaled version of the approximation space and the detail space possessing the 
property 

 
(7)

where As and Ds represents approximation and detail space at lower resolution/scale and by 
direct sum constitutes the higher scale space As-1. In other words As and Ds are the subspaces 
of As-1. Expression (7) can be better visualized by Figure 1. 
 

 
Fig. 1. wavelet theory based Multiresolution analysis 

The use of Mallat's dyadic filter-bank (S. Mallat 1999) results in three different detail space 
components that are the horizontal, vertical and diagonal. Figure 2 can best visualize the 
graphical representation of the used filter-bank, where and W represents the low-pass and 
high-pass filters consisting of the scaling functions and wavelets coefficients, respectively. 
 

 
Fig. 2. Mallat's dyadic wavelet filter bank 
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3.2 Wavelet transform modulus 
The Wavelet Transform Modulus (WTM), in general vector representation, can be expressed as 

 (8)

Where Ws,k is 

 
(9)

where Dh,s,k and Dv,s,k are the kth horizontal and vertical detail components at scale s. 
Furthermore  can be expressed as  

 
(10)

 
Fig. 3. Top Left: Original image, Top Right: Wavelet Transform Modulus, Bottom Left: 
wavelet transform modulus phase, Bottom Right: Wavelet Transform Modulus Maxima 
with Phase vectors 

Where 

 

(11)

The vector  points to the direction normal to the edge surface as   
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3.2 Wavelet transform modulus 
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wavelet transform modulus phase, Bottom Right: Wavelet Transform Modulus Maxima 
with Phase vectors 
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 (12)

An edge point is the point p at some scale s such that WTs,k is locally maxima at k = p and 
 for  small enough. These points are known as wavelet transform modulus 

maxima (WTMM), and are shift invariant through the wavelet transform. For further details 
in reference to wavelet modulus maxima and its translation invariance, reader is kindly 
referred to (S. Mallat 1999). 

4. Correspondence estimation 
The matching process of the proposed algorithm is categorized into two major parts. The first 
part of the algorithm defines the correspondence estimation process only at the coarsest scale 
level, whereas the second part defines the iterative matching process from finer up to the finest 
scale level. Correspondence estimation at the coarsest scale is the most important part of the 
proposed algorithm as the algorithm uses the hierarchical approach for correspondence 
estimation. Therefore, the part of the algorithm related to the correspondence estimation at 
finer scale levels is very much dependent on the outcomes of coarsest level matching. Finer 
level matching involves the local search at the locations where any predecessor candidates 
have already been selected, in the coarsest level. A block diagram, as shown in Figure 4, 
presents a detailed visual representation of the correspondence estimation algorithm. 
 

 
Fig. 4. Block diagram of the correspondence estimation algorithm 
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4.1 Coarsest-level correspondence estimation 
Coarsest level matching (CLM) is very important and crucial step of the whole matching 
process as correspondence estimation at finer levels are very much dependent on the 
outcome of CLM. All matching candidates at finer levels are arranged according to the 
matched locations found at the coarsest level. Considering the significance of (CLM) in the 
overall matching process there is a great need of keeping this process error free as much as 
possible. For this purpose, a comprehensive check is performed to exploit the likelihood of 
each candidate to be a credible match, before accepting or discarding it. 
The matching process starts with wavelet decomposition up to level N, usually taken within 
the range of [4-5] depending on the size of the image. Before proceeding to the similarity 
measure block, wavelet scale normalization (WSN) is performed along with normalized 
correlation measure that helps to minimize the effect of illuminative variation that could 
exist in between the perspective views. The reason this comprehensiveness normalization is 
the nature of the application that we are trying to address in this work. The objects that we 
are concerned with, for the depth estimation, are aluminium die-castings with highly shiny 
and reflective surfaces. Therefore, there is a great need for the illuminative variation 
compensation before proceeding to the main correspondence estimation block. 
The WSN is performed on each level of wavelet transform decomposition. It is done by 
dividing the details space with the approximation space and can be defined as 

 
(13)

Where {h,v,d} represents horizontal, vertical and diagonal detail components, respectively, s 
represents the scale of decomposition and A represents the approximation space. 

4.1.1 Similarity measure 
After the extraction of wavelet transform modulus maxima (WTMM) correlation based 
similarity measure is performed to obtain an initial estimation of the disparity map. A 
multiwindow approach (A. Fusiello 2000) is used to enhance the performance of correlation 
based similarity measure. The details about the improvements from single window to 
multiwindow approach can be found in (A. Fusiello 2000). The multi-window correlation 
score can be defined as 

 
(14)

where  represents the normalized correlation (NC) with respect to the central window 
whereas  defines the NC respect to jth surrounding windows with nW number of 
surrounding windows. In (14), the second term represents the summation of the best  
windows out of nW. An average of the correlation scores from these windows is considered 
to keep the score normalized within the range of [0-1]. 

4.1.2 Probabilistic weighting 
To make the correlation based selection criteria more comprehensive, a probabilistic 
weighting for the correlation measure in (14), is introduced. It is the probability of selection 
of a point, let say ith point, from within each search space, as a candidate Ci and out of r2 
search spaces as 
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 (15)

where  is the number of times a candidate Ci is selected and r is the multiplicity of 
multifilter coefficients. As all matching candidates have equal probability of being selected, 
the probability of occurrence of any candidate through one search space is  It is 

obvious from expression (15) that the Pc(Ci) lies between the range of . We would 
like to call that probability term, probability of occurrence (POC) as it is the probability of any 
candidates Ci to appear   times in the selection out of r2 search spaces. More specifically, if 
jth candidate Cj is selected  times out of r2 search spaces then POC of jth candidate is 
0.5, i.e. Pc(Cj)=1/2. The correlation score in expression (15) is then weighted with POC as 

 (16)

The probabilistic weighted correlation score  in (16), can be defined as candidate strength 
(CS). It represents the potential of the candidate to be considered for further processing and 
the involvement of the specific candidate in the selection of other potential candidates. 

4.1.3 Symbolic tagging 
Filtration of candidates, based on the CS, is followed by symbolic tagging procedure, which 
divides the candidates into three different pools based on three thresholds Tc, Tc1 and Tc2 
possessing the criterion Tc2 > Tc1> Tc. The threshold Tc acts as a rejection filter which filters 
out any candidate possessing lower CS than Tc. The rest of the candidates are divided into 
three pools as 

 

(17)

It can be seen from the first expression in (17), there is no ambiguity for the matches with tag 
Op as the POC is 1, whereas ambiguity does exist for the matches with tags Cd and Cr. 
Ambiguity is the phenomenon where there exists more than one correspondences for a 
single point in the reference image (R. Hartley 2003). 

4.1.4 Geometric refinement 
To address the issue of ambiguity, a simple geometric topological refinement is introduced 
in order to extract the optimal candidate matches out of the pool of ambiguous candidate 
matches. For that purpose, the geometric orientation of the ambiguous points with reference 
to Op from (17) is checked and the pairs having the closest geometric topology with respect 
to the Op are selected as optimal candidates. Three geometric features that are relative 
distance difference (RDD), absolute distance difference (ADD) and relative slope difference (RSD), 
are calculated to check the geometric orientation similarity. These geometric features are 
invariant through many geometric transformations, such as Projective, Affine, Metric and 
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Euclidean (M. Pollefeys 2000). The geometric measurement is then weighted with the CS of 
the candidates to keep the previous achievements of the candidates in consideration. 
In order to calculate the geometric statistics a number of candidate pairs with tag Op are 
randomly selected. Let say nr is the number of randomly selected pairs from nOp candidate 
pairs possessing tag Op. Before proceeding to the calculation of ADD between the ambiguous 
pair of points we calculate average absolute distance AAD between selected pairs as 

 
(18)

Where –  defines the Euclidean distance between the pair of points with tags Op referring 
to image 1 and 2, respectively. The process in (18) is repeated n times to obtain n values of 
AAD in order to minimize the involvement of any wrong candidate pair that could have 
assigned the tag Op. Similarly for ambiguous candidate pairs with tag Cd the absolute 
distance can be calculated as 

 
(19)

Where m is the number of candidates  selected from second image with potential to 
make a pair with  in the first image. From (18) and (19) we can define ADD as 

 
(20)

Where  is the ADD for ith candidate in the second image related to  in the first 
image. Obviously we are interested in the candidate with minimum ADD. It is worth 
mentioning that absolute distances are invariant through Euclidean Transformation (R. 
Hartley 2003). 
 

 
Fig. 5. Geometric refinement procedure 
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mentioning that absolute distances are invariant through Euclidean Transformation (R. 
Hartley 2003). 
 

 
Fig. 5. Geometric refinement procedure 
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Before proceeding to the definition of RDD it is worthwhile to visualize the geometri 
refinement procedure as in Figure 5. There the candidate C1 in the first image pairs with 
three potential candidates C2i in the second image. The pairs with tag Op, shown by the gray 
colour, are spread all over the image and act as reference points in addressing the problem 
of ambiguity. The points with green colour are randomly selected points out of the pool of 
reference points with tag Op. Similarly, RDD can be defined by the following expression 

 
(21)

Where 

 (22)

And 

 
(23)

Similar to ADD, RDD is also calculated n times to minimize the effect of any wrongly chosen 
point with Op tag. Finally to calculate the relative slope difference we need to define relative 
slope for both images and between candidate points and the reference points. Thus, RSD 
can be defined as 

 
(24)

The term ( – )n defines the average over n repetitions, where n is usually taken within the 
range of [3-5]. Using (20), (21) and (24) a general and common term, as a final measure, to 
select the optimal candidate out of m potential candidates, is defined. The final term is 
weighted with the correlation score of the candidates from (16) to make the geometric 
measure more comprehensive as 

 
(25)

The expression in (25) could be defined as geometric refinement score (GRS). The candidate 
with the maximum GRS is then selected as optimal match and will be promoted to the 
symbolic tag of Op. 

4.1.4 Scale interpolation 
The disparity from coarser disparity dc to finer disparity dF  is updated according to 

 (26)

Where dL is the local disparity obtained within the current scale level. This process is 
repeated until the finest resolution is achieved which is the resolution of input image. An 
example of the outcome of coarsest level correspondence estimation can be seen in Figure 6. 
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Fig. 6. An outcome of coarsest level matching 

4.2 Finer-level correspondence estimation 
Correspondence estimation at the finer level constitutes an iterative local search, based on 
the information extracted from the coarsest level. Due to the simpler nature of this search no 
geometric optimization is performed to deal with ambiguity but rather simpler approach is 
used, generally known as left-right consistency (LRC) check and can be defined as 

 (27)

Where dk,i is the estimated discrete disparity of kth coefficient in ith image, whereas kx and ky 
are the x and y coordinates of the kth coefficient at scale s. 
Similar to coarsest level search, interpolated coefficients are assigned candidate strength 
based on correlation scores and probability of occurrence as in (16), however the search is 
only defined over the relevant interpolated areas. Before proceeding further to the symbolic 
tagging procedure and LRC check, any coefficient with insignificant CS is discarded. 
Symbolic tagging procedure is very similar to the one presented in section 4.1.3 however 
new assignation of tags depends on their ancestors' tags. In other words the coefficients that 
are interpolated from the coefficient, at the coarsest level, with tag Op will be dealt with 
different conditions than the one with tag Cd. The coefficients interpolated from Op are 
assigned tags as 

 
(28)

Whereas the coefficients having predecessor with tag Cd, we have 
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(29)

Where  is usually chosen within the range of [0.4 - 0.5]. Similar to the coarsest level 
matching, the coefficients with Op are considered as the reference locations that will assist 
in rearranging the Cd coefficients using the expression in (28). 
After this step, some gaps still left in the disparity map which is required to be filled to 
achieve dense depth map. These gaps are due to coefficients that were not taken into 
account before due to the unavailability of linked ancestors and have just appeared in the 
current scale. These coefficients are assigned Cd if and only if their strength i.e. CS from (16), 
is greater than Tc1 and perform best in LRC check provided in (27). 
 

 
Fig. 7. Local search constellation relation between the images after symbolic tagging 

The process of finer level correspondence estimation is repeated until the finest resolution is 
achieved, i.e. the resolution of the input image. Using a number of thresholds and symbols 
makes the appearance of the algorithm a little bit complicated and computationally 
expansive however comparing to existing algorithms it is not much different. Currently no 
explicit comparative information is extracted to support our claim but is intended for future 
works. No argument, there are many correlation based algorithms that are very fast due to 
low computational cost but dose not provide very promising qualitative performance. In 
addition, most of the algorithms, existing in the literature, perform post processing to 
coverup the deficiencies occurred during the correspondence estimation process which is 
itself is very computationally expansive. On the other hand proposed algorithm, due to the 
comprehensive criteria of selection/rejection, dose not require any post processing. 
Furthermore, due to hierarchical nature, the disparity search is only 2level-1 of the original 
disparity search required at the input image level, that is, for a required search of 32 the 
proposed algorithm only required to search 4 disparities with decomposition of level 4. 

5. Disparity estimation 
The algorithm presented is exploited to its maximum capacity in terms of the stereo 
correspondence estimation performance. Four popular synthetic images are chosen from the 
database of the University of Middlebury. The relevant disparity maps are shown in Figure 
8 to 9. In addition, error images are also calculated for each of the estimated disparity maps 
that simply are the absolute difference, defined in (30), between the ground truth and 
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estimated disparity maps in terms of gray scale intensity values, as shown in subfigures 
8(D) and 9(D). The absolute error can be expressed as 

 (30)

Where dG(x,y) is the discrete ground truth disparity map, whereas dE(x,y) is the estimated 
one. 
In order to find the statistical deviation of the estimated disparity maps from the provided 
ground truth disparity, two statistics are calculated as 

 
(31)

and  
 

 
Fig. 8. A) Right images of the Sawtooth (left) and Venus (right) stereo pair, B) Ground truth 
disparity maps, C) Estimated disparity maps, D) Disparity error 
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Fig. 9. A) Right images of the Cones (left) and Teddy (right) stereo pair, B) Ground truth 
disparity maps, C) Estimated disparity maps, D) Disparity error 

 (32)

Where R and B represent the Root Mean Squared Error (RMSE) and Percentage of Bad 
Disparities (PBD), respectively. N represents the total number of pixels in the input image 
whereas ξ represents the acceptable deviation of the estimated disparity value from the 
ground truth and is fixed to 1 in this particular work. 
The images are taken into consideration with different complexities, in terms of pixel 
intensity variation and surface boundaries. First pair of stereo images is shown in Figure 8 
with related ground truth disparity maps, estimated disparity maps and the error between 
the ground truth and estimated disparity maps. As it can be seen in Figure 8 the edges of the 
discontinuities are extracted to high accuracy and estimated disparity is very much similar 
to the ground truth disparity, visually. The RMSE and PBD score for Sawtooth and Venus are 
R = 1.9885, B = 0.0262 and R = 0.1099, B = 0.0381, respectively. 
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Similarly, another pair of disparity maps are shown for images Cones and Teddy and related 
RMSE and PBD scores are R = 3.3798, B = 0.1270 and R = 2.7629, B = 0.1115, respectively, as 
shown in Figure 9. 

6. Disparity estimation 
To further validate the claims about the performance of the proposed algorithm a 
comparison is performed between the proposed algorithm and a number of selected 
algorithms from the literature. Eight algorithms are chosen, known for their performance, 
within the computer vision research community. These estimated disparity maps are related 
to the images Cones, Venus and Teddy. The chosen algorithms for comparison purpose are 
Double-bp (Q`ngxiong Yang 2006), Graph Cuts (D. Scharstein 2002), Infection (G. Olague 2005), 
Layered (L. Zitnick 2004), Scanline Optimization (D. Scharstein 1998), SSD min. Filter (D. 
Scharstein 2002) and Symmetric-Occlusion (J. Sun 2005). 
The estimated disparity map selected for comparison against the aforementioned algorithms 
from the literature is generated using MW2 (Özkaramanli H. Bhatti A. and 2002). These 
calculated statistics, i.e. R and B, for the analysis of comparative performance with respect to 
the estimated results are shown in Table 1 and Figures 10 to 12. It is obvious from Table 1 
and Figures 10 to 12, the proposed algorithm has performed best in the case of Venus image. 
However, in case of Cones and Teddy images the proposed algorithm has ranked 3rd, though 
very competitive to the algorithm ranked 1. Specifically in case of B, the proposed algorithm 
has outperformed all other algorithms. This reflects the true consistency and robustness of 
the proposed algorithm as number of bad disparity values estimated are lowest in all cases. 
It also reflects the comprehensiveness of the selection criteria defined by consistency 
measure from expressions (16) and (25). 
 

 
Fig. 10. Comparison of estimated disparity map with existing algorithms for image Venus 
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Fig. 11. Comparison of estimated disparity map with existing algorithms for image Cones 
 

 
 

Fig. 12. Comparison of estimated disparity map with existing algorithms for image Teddy 
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Table 1. A comparison of the estimated disparity with a number of existing well known 
algorithms 

 
Fig. 13. comparison of the estimated disparity with a number of existing well known 
algorithms 

7. Depth estimation 
The main objective of the presented work is to obtain accurate depth estimations for quality 
inspection of the metallic parts in automotive industry. Consequently, it is important to 
keep the system simple with minimal hardware involvement, as the cost is an important 
factor for industry acceptance of the technology. While there are some existing techniques, 
such as (D. Scharstein 2003), capable of producing accurate disparity maps by using light or 
laser projectors however are both difficult and expensive to use in a typical production 
environment. In the presented work, only a basic hardware setup is used namely stereo 
cameras and circular florescent light. The simplicity of the hardware helps in keeping the 
implementation costs down and to make the automated fault detection in the automotive 
manufacturing industry as flexible as possible. Furthermore, hardware simplicity helps in 
deploying the system in different factory environments without a significant change in the 
setup. 
For performance estimation of the proposed algorithm, two different metallic parts are used. 
In this section of the work, the main concern is to estimate accurate depth of the object, i.e. z 
dimension, and not the x, y as these dimensions can be estimated using a single 2D view. 
For the validation of the estimated depth map, one-dimensional cross-section of the depth 
difference between the estimated and the real depth maps are shown in Figures 14 and 15. 
One-dimensional cross-section of the depth difference is also shown for each of the two 
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Fig. 12. Comparison of estimated disparity map with existing algorithms for image Teddy 
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parts to give an idea about the quality of the estimated depth maps and their accuracy. As 
can be seen from the estimated depth maps the part defects can be accurately detected. 
 

 
Fig. 14. A: Original image of Part-1 (Bad sample) B: Estimated Disparity Map of Part-1 C: 
Estimated 3D Depth of Part-1 in (mm) D: Estimated 3D Depth of Part-1 in (mm) (difference 
view) E: Different view of the Estimated Depth map (mm) 
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Fig. 15. A: Original image of Part-2 (Bad sample) B: Estimated Disparity Map of Part-2 C: 
Estimated 3D Depth of Part-2 in (mm) D: Estimated 3D Depth of Part-1 in (mm) (difference 
view) E: Different view of the Estimated Depth map (mm) 

Referring to Figure 14 and 15, the difference between the real and estimated depth is very 
small across the area with no defect. For Part 1, the difference between the estimated and 
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real depth lies within the range of [0.80-1.49mm] whereas for Part 2 the difference is [0.018-
1.42 mm]. Therefore, the maximum depth difference regarding Part 1 and Part 2 is 1.49mm 
and 1.42mm, respectively. From the upper value of depth difference, an error tolerance can 
be set for differentiating between good and defective parts in an inspection system. 
Moreover, in Figure 14(E) and Figure 15(E) the sharp peaks are in fact due to the difference 
in x and y dimensions rather than the difference in depth. 

8. Conclusion 
The developed vision system consists of a novel robust algorithm. The proposed algorithm 
uses the stereo vision capabilities and multi-resolution analysis to estimate disparity maps 
and the concerned 3D depths. Furthermore, it uses multiwavelets theory that is a newer way 
of scale space representation of the signals and considered as fundamental as Fourier and a 
better alternative. The proposed algorithm uses the well-known technique of coarse-to-fine 
matching to address the problem of stereo correspondence. The translation invariant 
wavelets transform modulus maxima (WTMM) are used as corresponding features. To keep the 
whole correspondence estimation process consistent and resistant to errors, optimized 
selection criterion strength of the candidate is developed. The strength of the candidate 
involves the contribution of probabilistic weighted normalized correlation, symbolic tagging 
and geometric refinement. Probabilistic weighting involves the contribution of more than 
one search spaces, whereas symbolic tagging helps to keep the track of the most significant 
and consistent candidates throughout the process. Furthermore, geometric refinement 
addresses the problem of geometric distortion between the perspective views. The 
geometric features used in the geometric refinement procedure are carefully chosen to be 
invariant through many geometric transformations, such as affine, metric, Euclidean and 
projective. Moreover, beside that comprehensive selection criterion the whole 
correspondence estimation process is constrained to uniqueness, continuity and 
smoothness. 
A novel and robust stereo vision system is developed that is capable of estimating 3D 
depths of objects to high accuracy. The maximum error deviation of the estimated depth 
along the surfaces is less than 0.5mm and along the discontinuities is less than 1.5mm. 
Similarly the time taken by the algorithm is with in the range of [12-15] seconds for the 
images of size [640-480]. The proposed system is very simple and consists of only a stereo 
cameras pair and a simple fluorescent light. The developed system is invariant to 
illuminative variations, and orientation, location and scaling of the objects, which makes the 
system highly robust. Due to its hardware simplicity and robustness, it can be implemented 
in different factory environments with out a significant change in the setup of the system. 
Due to its accurate depth estimation any physical damage, regarding the object under 
consideration, can be detected which is a major contribution towards an automated quality 
inspection system. 
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1. Introduction 
Since the advent of the electronic computer there have been constant developments in 
human-computer interaction. Researchers strive towards creating an input method that is 
natural, compelling and most of all effective. 
The ideal computer interface would interpret natural human interactions in much the same 
way another human would. As humans we are used to giving instructions with our voice, 
body language and gestures: i.e. pointing at objects of interest, looking at things we interact 
with and using our hands to move objects. The ideal visual input device, the “holy grail” of 
human computer interfaces would be capable of accepting visual cues and gestures much as 
another human being would. Although this theoretical ideal is not feasible with current 
technologies it serves to guide research in the field. 
Stereo vision has been researched for the purpose of studying human motion for many years 
(Aggarwal & Cai 1997; Cappozzo et al. 2005). Much effort has gone into achieving full body 
motion capture with multiple cameras, in order to overcome the need for artificial markers. 
This allows for unrestricted movement for the user, improves flexibility and overcomes 
occlusion problems with marker based approaches. However the processor time required to 
locate and track arbitrary objects in 3D has until recently been prohibitive for use in 
interactive scenarios. 
Faster processors, memory, bus/interface speeds are helping overcome a significant 
constraint in using stereo vision for human-computer interaction (HCI), that of: producing 
real-time refresh rates and low latency response. 
Now that interactive 3D human motion capture is becoming a reality, it's necessary to take 
stock of what can be achieved with this approach. 
This chapter will not cover the theory behind stereo vision. Nor will we be considering 
technologies such as motion capture, as these are not intended for everyday computer 
usage. We are interested in applications that allow unencumbered interactions and operate 
without requiring the user to attach special devices to their body. We will be looking the 
current state of the art and where the next could be taken. 
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2. History 
2.1 Computer input devices 
The majority of computer input methods are tactile in nature. From the humble switch to the 
joystick or touch pad, these are all based on the user physically interacting with a device, 
generally with the hand and fingers. This represents the most straightforward way for a 
computer to obtain information: The user presses a switch and the signal changes in the 
circuitry. The advantages of this method of interacting with a computer are:  
• Input is essentially digital, i.e. 'unambiguous'. 
• Low processing of input data when compared to more complex systems. 
• Standard method applies across languages, cultures and computer systems. 

 
Fig. 1. Conceptual graph illustrating general relationship between ‘ambiguity’ of input, 'user 
friendliness' and computing resource requirements. Note that although show linearly, the 
relationship is likely not linear.  

The standard input devices used with modern computers are the keyboard and mouse. 
Keyboards with physical keys that allow the input of natural language and computer 
commands, and a mouse to select and manipulate graphical user interface elements. The 
computer mouse has been available commercially since 1981, and the keyboard can be 
traced to the mechanical typewriter. Other devices are certainly used for many applications 
(e.g. touch screens, joysticks, voice input), however the core interaction with a computer is 
still via these two venerable devices. 
There is good reason for the longevity of these interaction methods. The keyboard is one 
of the simplest ways for a human to enter  information into a machine. The keyboard 
forces the human operator to enter unambiguous information in digital form which a 
computer can process with minimal effort. The even longer history of keyboard layouts 
within typewriters has meant that those  familiar with traditional typewriters can make 
the transition easily.  

Stereo Vision for Unrestricted Human-Computer Interaction 

 

51 

The Graphical User Interface (GUI) and pointing devices were a radical and significant 
milestone in making personal computers accessible to the general population. The GUI 
reduced the need for specialized command line input via the keyboard, and reduced the 
amount of computer knowledge required by average users, while maintaining a clear and 
unambiguous input structure for the personal computer.  
It should however be noted that GUI's require significant more processing power and 
hardware and software resources than its previous purely text-based interfaces. As a general 
principle: as the holy grail of human computer interfacing is approached, more and more  
computing resources are required. 

 
Fig. 2. Placing human computer interfaces into context regarding effort required by both 
sides.  

This can be broken down into two directions: 
1. Seen from the direction of human-computer interface, this principle can be understood  

in terms of degrees of 'ambiguity'. Switches and keyboards are a relative simple input 
for a machine to process, with GUI's becoming more resource demanding. As we 
approach computer vision systems the degrees of ambiguity increase and more 
resources are required to break down the input into information which can be digitally 
processed unambiguously.  

2. Moving in the direction of machine to human communication: the issue is one of relevant 
feedback for the user. Information from the machine needs to be organized and presented 
to the user in ways which are easy for the user to process and understand and modify. 

Within the past few years several new interaction technologies have gained commercial 
success, such as touch-screens which can detect multiple inputs simultaneously (Apple 
iPhone, Microsoft Surface) and wireless controls that use accelerometers to obtain free 
human movement as input (Nintendo Wii). 

2.2 Stereo vision 
The applications that have driven the development of computer stereo vision have varied 
greatly since its inception. The first major use was for mapping the topography of the land 
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by performing calculation disparity in satellite imagery (Barnard & Fischler 1982). Stereo 
vision later saw applications in human motion capture and allowed a computer to better 
animate humanoid models by capturing 3D human motion. 
A further key area was robotics, especially in autonomous mobile systems. Stereo vision 
allows the robot to calculate its distance from objects in the environment: enabling it to 
calculate the dimensions of objects and spaces in the surroundings with greater accuracy. 
More recent applications range from cameras in cars to judge distances to obstacles, to 
tracking people in open areas for surveillance (Cai & Aggarwal 1996). 

2.3 What stereo vision brings to HCI 
What does stereo vision bring to human computer interactions that can't be achieved using 
single camera approaches? Stereo vision can: 
• Create active/inactive spaces for interaction. Just as we can lift our hands off a mouse to 

stop interaction, gestures and other interactions can be disabled based on distance from  
the camera. 

• Help distinguish interactive parts of captured image (objects that are valid input) and 
background parts to be ignored. 

• More accurate and reliable 3D position data than single camera (distance 
approximation) approaches. 

• Better face tracking/matching by perceiving a disparity map of a person's face, giving 
another dimension to matching algorithms. 

3. Computer vision for unrestricted human motion tracking 
Unlike the previously mentioned types of human input, limb and joint tracking has been 
researched and used for many years before it became feasible for real-time applications. 
Early computer based human motion tracking used physical sensors and were primarily for 
bio-mechanics research. Other researchers began analyzing human movement in 
prerecorded video footage. Multiple cameras are used to track movements in 3D and to 
reduce occlusion problems, however this could not be achieved in real-time and required 
manual post-processing to correct errors (Sturman 1994). 
Once real-time analysis became feasible, optical motion capture began seeing extensive use 
in computer graphics animations. The predominating system for this requires the person to 
wear a special suit covered in markers, as this improves accuracy and reduces computation 
requirements. 
 This required specialized and expensive hardware, not possible on a consumer level 
computer until more recently (Brown et al. 2003). Goncalves researched estimating 3D arm 
position without markers using a single camera, to reduce cost and make the system more 
practical (Goncalves et al. 1995), however computation speed limited the real-time 
application of such a system.  
Within the past decade gesture, fingertip and arm tracking have reached a point where real-
time interactions are possible. Various applications have since developed. These range from 
using 3D arm tracking as input to a robotic arm, achieving an untethered and natural 
remote interface (Verma et al. 2004), to using stereo vision for rehabilitation and human 
motion analysis (Cappozzo et al. 2005). 
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4. Relevant HCI considerations 
4.1 Interaction models 
A main facet of HCI in this area is how to structure the computer interactions to suit the new 
input device. Existing modes of interaction may not be best suited to unrestricted HCI, there 
are new areas where it will excel and different limitations. Will discuss viability of using 
stereo vision input for: 
• Everyday use: Limitations of the standard WIMP (Window, Icon, Menu, Pointing 

device) model, new interaction models to achieve everyday computing tasks. 
• Gaming: Achieve more life-like interactions by having the user physically perform a 

series of motions to interact with the game. 
• Rehabilitation/training: Track limb movement in real-time for analysis and give 

immediate sense of achievement. 
• Alternative input for the disabled: e.g. Gaze direction instead of mouse movement. 

4.2 Direct input 
Most vision based input devices can still be generalized as cursor devices, as we are 
interpreting an area of interest or intention, much like mouse input.  
A major UI decision in vision based user interaction is the use of direct input. Direct input is 
any system where the interaction takes place in the same area as the response. For example, 
a touch pad (used in many portable computers) is an indirect device, as your movements 
control a virtual cursor on screen. A touch screen however is a direct input devices, as your 
finger is the cursor itself. 
One of the key advantages to a direct input system is its ease of use. We are accustomed to 
directly interacting with the environment using our hands, so a direct input device is more 
natural. However, there are some disadvantages. Direct input methods tend to be less 
precise. A person's finger is larger than average mouse cursor, so interactions with a 
touchscreen will be less precise than, for instance, mouse input. The user's finger will also 
obscure part of the  displayed image. 
Direct input devices usually require a different GUI paradigm to the standard WIMP model, 
as they are two state devices. A cursor device generally consists of the following three states: 
1. Hover 
2. Active 
3. Active and Moving 
For a mouse: State 1 is moving the mouse around. State 2 is a mouse click. State 3 is click 
and drag. A number of alternate input devices lack one of these states, or have to infer the 
state from secondary information. A touch screen only has states 2 and 3, as there isn't a way 
to move the cursor without touching the screen. The only method to determine cursor 
position (touching) is also the only method to determine click activation. 
It is often argued that this isn't relevant in direct input devices such as the touch screen, as 
your finger is the cursor and hence you don't need visual feedback to see where the cursor 
is. However there are many GUI conventions that stem from mouse usage which are 
impossible to achieve with a touch screen alone. (i.e. hovering over an area of interest to see 
a tool tip describing what the area does). 
By tracking movement when the person isn't touching the surface we can create the Hover 
state in the standard cursor model, adding another degree of freedom. This enables a more 
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For a mouse: State 1 is moving the mouse around. State 2 is a mouse click. State 3 is click 
and drag. A number of alternate input devices lack one of these states, or have to infer the 
state from secondary information. A touch screen only has states 2 and 3, as there isn't a way 
to move the cursor without touching the screen. The only method to determine cursor 
position (touching) is also the only method to determine click activation. 
It is often argued that this isn't relevant in direct input devices such as the touch screen, as 
your finger is the cursor and hence you don't need visual feedback to see where the cursor 
is. However there are many GUI conventions that stem from mouse usage which are 
impossible to achieve with a touch screen alone. (i.e. hovering over an area of interest to see 
a tool tip describing what the area does). 
By tracking movement when the person isn't touching the surface we can create the Hover 
state in the standard cursor model, adding another degree of freedom. This enables a more 
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direct interpretation of standard mouse actions, given the three state interaction, and hence 
the user can use existing GUI functionality. It also allows for a virtual cursor when not 
touching the screen. This gives the user a constant sense of where their interactions will take 
place within the GUI environment, before they commit to activating UI elements.  

5. Stereo vision for interactive surfaces 
5.1. Interactive surfaces 
An interactive surface generally consists of standard computer screen combined with some 
form of direct input. The most ubiquitous of these is the touchscreen kiosk, often used in 
shopping centers or for library catalogs.  
Another type of interactive surface is the interactive tabletop environment, also known as an 
augmented desk.  
Traditional interactive surface environments take one of three approaches. The oldest and 
most common approach is a touchscreen. These devices are usually “resistive” screens. They 
detect changes in electrical resistance across the screen to determine where the interaction 
will take place. They therefore require a conductive material (such as the human hand) for 
interaction, and output a single overall position for the cursor. 
Another approach that has seen success recently is “Multi-touch”. There are several 
technologies that can detect multiple touches on a screen surface. Jefferson Han's system 
uses infrared light that is internally reflected within the surface (Han 2005). When the user 
touches the surface this breaks the internal reflection and the IR light can be detected by a 
rear mounted camera. 
This and other rear mounted camera approaches greatly increase the space required by such 
a system when compared to conductive technologies.  SmartSkin (Rekimoto 2002) uses a 
capacitance based approach to achieve multiple input detection in a flat surface. Phillips 
Entertaible (Hollemans et al. 2006) achieves multiple finger interaction as well as basic shape 
matching with an LCD panel. It uses a proprietary method based on IR emitters and photo 
diodes. 
The touch screen interface is more traditional. Interaction takes place when the user 
physically touches the screen. Methods of interaction include clicking and dragging objects, 
similar to the standard WIMP module. These may be expanded into gesture based 
interaction, and multiple touch allows for more dynamic gestures: rotation, scaling, etc. 
Vision based tracking in these environments tend to not require physical contact. The user 
does not need to touch the screen as interaction is detected by a camera above or behind the 
screen, and clicks can be trigger by having the user 'dwell' on a particular spot or using 
gestures. The University of Tokyo have developed a natural hand tracking augmented desk 
(Oka et al. 2002) using a far-infrared camera to obtain clear hand silhouette, and user 
interaction is determined by finger gestures. 
The use of stereo vision systems can bring the benefits of a multi-touch system and vision 
based tracking approaches. In the case of the work by Wilson, A.D (Wilson 2004), a stereo 
camera rig is placed behind the transparent screen. Distance data is used to determine when 
the user is interacting with the screen (effectively a multiple-touch screen), but also to 
morph images of the user for video conferencing. This new dimension can also expand the 
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interactive surface area into an interactive box above the screen, with many possibilities for 
interaction. 

5.2 Depth and its usefulness 
The third dimension (e.g. distance from the camera/screen) is generally used to determine 
whether an object is touching the screen. As such this data is effectively thresholded and 
binary, touching or not touching.  
Researchers at the University of Sydney developed an augmented desk system using stereo 
cameras (Song & Takatsuka 2005). By thresholding the depth data of their fingertip tracking 
system just above screen level they achieved a virtual button press, which acts in much the 
same way as a touchscreen. An earlier system placed the cameras at non-aligned positions 
(above and to one side) to achieve 3D position tracking of the human arm (Leibe et al. 2000). 
This effect has also been achieved with a single camera and a touch screen interface. Dohse 
uses one camera below the table for touch (using infrared reflection), one above for above-
screen hand movement (Dohse et al. 2008). Whilst this system uses two cameras, they aren't 
able to see the same objects and hence can't determine 3D position. 
There are many possibilities to enhance user interaction by using depth data in a more 
granular way. A relevant use of this is seen in (Franco 2004), a gesture based infrared 
instrument that uses height data to control musical effects. 
Another possibility is to track a user's finger and obtain a 3D vector to determine where the 
user is pointing. Rather than reaching across a large surface to interact, the user need only 
point with a finger. Researchers have used stereo cameras to extract 3D pointing gesture 
from a dense disparity map (Jojic et al. 2000; Demirdjian & Darrell 2002). 
The 3D information may also be useful in a non-immediate sense. The paths that a user 
takes when using the interface can be analyzed after the fact to examine how people use the 
device, in order to improve the system. For example, if it is found that users only ever 
interact within a subset of the area that the system covers, the system may be altered for 
increased accuracy or speed. 

7. Challenges facing stereo vision in HCI 
Over the last few years many new human-computer interaction devices have gained 
commercial success. (e.g. Nintendo's Wii gaming console, Apple's iPhone) The concepts that 
we have covered here are making headway in mainstream computing applications, such as 
multi-touch and gesture based interaction. However the success of stereo vision based 
approaches has been limited. 
There has yet to be a 'killer app' for stereo vision computer interfaces (i.e. an application that 
would accelerate mass adoption of the technology). It has seen success in niche markets and 
with more commercial, industrial and military systems. And whilst there are low cost 
devices that can achieve stereo vision available to the home user, there isn't a major drive for 
use in the consumer market. 
The true advantage of stereo vision over other technologies in this field is the acquisition of 
real-time and reasonably accurate 3D position data for arbitrary objects in the physical 
environment. In order to achieve this, the cameras much be able to see the subject in 
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direct interpretation of standard mouse actions, given the three state interaction, and hence 
the user can use existing GUI functionality. It also allows for a virtual cursor when not 
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place within the GUI environment, before they commit to activating UI elements.  
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An interactive surface generally consists of standard computer screen combined with some 
form of direct input. The most ubiquitous of these is the touchscreen kiosk, often used in 
shopping centers or for library catalogs.  
Another type of interactive surface is the interactive tabletop environment, also known as an 
augmented desk.  
Traditional interactive surface environments take one of three approaches. The oldest and 
most common approach is a touchscreen. These devices are usually “resistive” screens. They 
detect changes in electrical resistance across the screen to determine where the interaction 
will take place. They therefore require a conductive material (such as the human hand) for 
interaction, and output a single overall position for the cursor. 
Another approach that has seen success recently is “Multi-touch”. There are several 
technologies that can detect multiple touches on a screen surface. Jefferson Han's system 
uses infrared light that is internally reflected within the surface (Han 2005). When the user 
touches the surface this breaks the internal reflection and the IR light can be detected by a 
rear mounted camera. 
This and other rear mounted camera approaches greatly increase the space required by such 
a system when compared to conductive technologies.  SmartSkin (Rekimoto 2002) uses a 
capacitance based approach to achieve multiple input detection in a flat surface. Phillips 
Entertaible (Hollemans et al. 2006) achieves multiple finger interaction as well as basic shape 
matching with an LCD panel. It uses a proprietary method based on IR emitters and photo 
diodes. 
The touch screen interface is more traditional. Interaction takes place when the user 
physically touches the screen. Methods of interaction include clicking and dragging objects, 
similar to the standard WIMP module. These may be expanded into gesture based 
interaction, and multiple touch allows for more dynamic gestures: rotation, scaling, etc. 
Vision based tracking in these environments tend to not require physical contact. The user 
does not need to touch the screen as interaction is detected by a camera above or behind the 
screen, and clicks can be trigger by having the user 'dwell' on a particular spot or using 
gestures. The University of Tokyo have developed a natural hand tracking augmented desk 
(Oka et al. 2002) using a far-infrared camera to obtain clear hand silhouette, and user 
interaction is determined by finger gestures. 
The use of stereo vision systems can bring the benefits of a multi-touch system and vision 
based tracking approaches. In the case of the work by Wilson, A.D (Wilson 2004), a stereo 
camera rig is placed behind the transparent screen. Distance data is used to determine when 
the user is interacting with the screen (effectively a multiple-touch screen), but also to 
morph images of the user for video conferencing. This new dimension can also expand the 
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interactive surface area into an interactive box above the screen, with many possibilities for 
interaction. 

5.2 Depth and its usefulness 
The third dimension (e.g. distance from the camera/screen) is generally used to determine 
whether an object is touching the screen. As such this data is effectively thresholded and 
binary, touching or not touching.  
Researchers at the University of Sydney developed an augmented desk system using stereo 
cameras (Song & Takatsuka 2005). By thresholding the depth data of their fingertip tracking 
system just above screen level they achieved a virtual button press, which acts in much the 
same way as a touchscreen. An earlier system placed the cameras at non-aligned positions 
(above and to one side) to achieve 3D position tracking of the human arm (Leibe et al. 2000). 
This effect has also been achieved with a single camera and a touch screen interface. Dohse 
uses one camera below the table for touch (using infrared reflection), one above for above-
screen hand movement (Dohse et al. 2008). Whilst this system uses two cameras, they aren't 
able to see the same objects and hence can't determine 3D position. 
There are many possibilities to enhance user interaction by using depth data in a more 
granular way. A relevant use of this is seen in (Franco 2004), a gesture based infrared 
instrument that uses height data to control musical effects. 
Another possibility is to track a user's finger and obtain a 3D vector to determine where the 
user is pointing. Rather than reaching across a large surface to interact, the user need only 
point with a finger. Researchers have used stereo cameras to extract 3D pointing gesture 
from a dense disparity map (Jojic et al. 2000; Demirdjian & Darrell 2002). 
The 3D information may also be useful in a non-immediate sense. The paths that a user 
takes when using the interface can be analyzed after the fact to examine how people use the 
device, in order to improve the system. For example, if it is found that users only ever 
interact within a subset of the area that the system covers, the system may be altered for 
increased accuracy or speed. 

7. Challenges facing stereo vision in HCI 
Over the last few years many new human-computer interaction devices have gained 
commercial success. (e.g. Nintendo's Wii gaming console, Apple's iPhone) The concepts that 
we have covered here are making headway in mainstream computing applications, such as 
multi-touch and gesture based interaction. However the success of stereo vision based 
approaches has been limited. 
There has yet to be a 'killer app' for stereo vision computer interfaces (i.e. an application that 
would accelerate mass adoption of the technology). It has seen success in niche markets and 
with more commercial, industrial and military systems. And whilst there are low cost 
devices that can achieve stereo vision available to the home user, there isn't a major drive for 
use in the consumer market. 
The true advantage of stereo vision over other technologies in this field is the acquisition of 
real-time and reasonably accurate 3D position data for arbitrary objects in the physical 
environment. In order to achieve this, the cameras much be able to see the subject in 
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question. This generally means placing the cameras in highly visible and often awkward 
positions (e.g. pointing down from above a desk). This makes it nearly impossible to 
integrate into a self-contained device. The system requires setup and some form of 
calibration. 
Another issue is privacy and comfort of the users around active video capture. In order to 
obtain 3D arm position or determine gaze direction, the computer needs to 'see' the end 
user. People may have become used to computer's seeing them through a webcam, but this 
would be an always-on approach: all interactions effectively require video 'surveillance' 
after a fashion. 
Infrared based multi-touch systems (Han 2005) use cameras to detect IR reflections, however 
these are placed behind the screen: they can't see the end user. Nintendo's Wii system has a 
camera (within the game controller), however it can only see IR hotspots and is generally 
pointed away from the user. This is a fundamental issue with the technology, and indeed 
any technology that wishes to achieve the goal of untethered and unrestricted human 
movement input. 

8. Conclusion 
Human computer interfaces have come long way in recent years, but the goal of a computer 
interpreting unrestricted human movement remains elusive. The use of stereo vision in this 
field has enabled the development of systems that begin to approach this goal. As computer 
technology advances we come ever closer to a system that can react to the ambiguities of 
human movement in real-time.  
In the foreseeable future stereo computer vision is not likely to replace the keyboard or 
mouse. There is at this point no clearly identifiable mass market for stereo vision in the 
human computer interaction field.  
However in this regards stereo vision  may be in a similar position to personal computing: 
in the late 1980's, and early 1990's. In that period personal computers were a somewhat 
specialized technology with a slowly growing application. The main driving force for 
personal computers outside research and certain business applications were video games  
for young  people.   
Similarly it is still the games industry, and the entertainment industry which drives the 
adoption of new human computer input systems in general and computer vision systems in 
particular. Thus it is quite possible that stereo vision is at this point in a similar position 
personal computers once were.  
Certainly the foundations for any expansion into computer vision are increased processing 
power and software intelligence to drive the systems. Both are proceeding at a rapid pace.  
However even as stereo vision advances it is would most likely be used in  applications 
where its strengths are required. Stereo computer vision is at this point a technology in its 
pre-teenage years, which given the advances in computing, can be expected to mature 
rapidly from here on.  
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1. Introduction     
In recent times the presence of vision and robotic systems in industry has become common 
place, but in spite of many achievements a large range of industrial tasks still remain 
unsolved due to the lack of flexibility of the vision systems when dealing with highly 
adaptive manufacturing environments. An important task found across a broad range of 
modern flexible manufacturing environments is the need to present parts to automated 
machinery from a supply bin. In order to carry out grasping and manipulation operations 
safely and efficiently, we need to know the identity, location and spatial orientation of the 
objects that lie in an unstructured heap in a bin.  
Historically, the bin picking problem was tackled using mechanical vibratory feeders where 
the vision feedback was unavailable. This solution has certain problems with parts jamming 
and more important they are highly dedicated. In this regard if a change in the 
manufacturing process is required, the changeover may include an extensive re-tooling and 
a total revision of the system control strategy (Kelley et al., 1982). Due to these 
disadvantages modern bin picking systems perform grasping and manipulation operations 
using vision feedback (Yoshimi & Allen, 1994). 
Vision based robotic bin picking has been the subject of research since the introduction of 
the automated vision controlled processes in industry and a review of existing systems 
indicates that none of the proposed solutions were able to solve this classic vision problem 
in its generality.  One of the main challenges facing such a bin picking system is its ability to 
deal with overlapping objects. The object recognition in cluttered scenes is the main 
objective of these systems and early approaches attempted to perform bin picking 
operations for similar objects that are jumbled together in an unstructured heap using no 
knowledge about the pose or geometry of the parts (Birk et al., 1981). While these 
assumptions may be acceptable for a restricted number of applications, in most practical 
cases a flexible system must deal with more than one type of object with a wide scale of 
shapes.  
A flexible bin picking system has to address three difficult problems: scene interpretation, 
object recognition and pose estimation. Initial approaches to these tasks were based on 
modeling parts using 2D surface representations. Typical 2D representations include 
invariant shape descriptors (Zisserman et al., 1994), algebraic curves (Tarel & Cooper, 2000), 
conics (Bolles & Horaud, 1986; Forsyth et al., 1991) and appearance based models (Murase & 
Nayar, 1995; Ohba & Ikeuchi, 1997). These systems are generally better suited to planar 
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object recognition and they are not able to deal with severe viewpoint distortions or objects 
with complex shapes/textures. Also the spatial orientation cannot be robustly estimated for 
objects with free-form contours. To address this limitation most bin picking systems attempt 
to recognize the scene objects and estimate their spatial orientation using the 3D information 
(Fan et al., 1989; Faugeras & Hebert, 1986). Notable approaches include the use of 3D local 
descriptors (Ansar & Daniilidis, 2003; Campbell & Flynn, 2001; Kim & Kak, 1991), polyhedra 
(Rothwell & Stern, 1996), generalized cylinders (Ponce et al., 1989; Zerroug & Nevatia, 1996), 
super-quadrics (Blane et al., 2000) and visual learning methods (Johnson & Hebert, 1999; 
Mittrapiyanuruk et al., 2004). The most difficult problem for 3D bin picking systems that are 
based on a structural description of the objects (local descriptors or 3D primitives) is the 
complex procedure required to perform the scene to model feature matching. This 
procedure is usually based on complex graph-searching techniques and is increasingly more 
difficult when dealing with object occlusions, a situation when the structural description of 
the scene objects is incomplete. Visual learning methods based on eigenimage analysis have 
been proposed as an alternative solution to address the object recognition and pose 
estimation for objects with complex appearances. In this regard, Johnson and Hebert 
(Johnson & Hebert, 1999) developed an object recognition scheme that is able to identify 
multiple 3D objects in scenes affected by clutter and occlusion. They proposed an 
eigenimage analysis approach that is applied to match surface points using the spin image 
representation. The main attraction of this approach resides in the use of spin images that 
are local surface descriptors; hence they can be easily identified in real scenes that contain 
clutter and occlusions. This approach returns accurate results but the pose estimation cannot 
be inferred, as the spin images are local descriptors and they are not robust to capture the 
object orientation. In general the pose sampling for visual learning methods is a problem 
difficult to solve as the numbers of views required to sample the full 6 degree of freedom for 
object pose is prohibitive. This issue was addressed in the paper by Edwards (Edwards, 
1996) when he applied eigenimage analysis to a one-object scene and his approach was able 
to estimate the pose only in cases where the tilt angle was limited to 30 degrees with respect 
to the optical axis of the sensor.  
In this chapter we describe the implementation of a vision sensor for robotic bin picking 
where we attempt to eliminate the main problem faced by the visual learning methods, 
namely the pose sampling problem. This chapter is organized as follows. Section 2 outlines 
the overall system. Section 3 describes the implementation of the range sensor while Section 
4 details the edge-based segmentation algorithm. Section 5 presents the viewpoint correction 
algorithm that is applied to align the detected object surfaces perpendicular to the optical 
axis of the sensor. Section 6 describes the object recognition algorithm. This is followed in 
Section 7 by an outline of the pose estimation algorithm. Section 8 presents a number of 
experimental results illustrating the benefits of the approach outlined in this chapter. 

2. System overview 
The operation of the system described in this chapter can be summarized as follows (see Fig. 
1).  The range sensor determines the depth structure using two images captured with 
different focal settings. This is followed by the image segmentation process that decomposes 
the input image into disjoint meaningful regions. The resulting scene regions from the 
image segmentation process are subjected to an orthographic projection that aligns them  to 
be perpendicular to the optical axis of the sensor. This operation will determine 2 degrees of 
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freedom (DOF) for each object (rotations about x and y axes). The recognition framework 
consists of matching the geometrical primitives derived from the segmented regions with 
those contained in a model database. The object that gives the best approximation with 
respect to the matching criteria is then referred to the pose estimation algorithm which 
constrains the object rotation around the optical axis of the range sensor (z axis) using a 
Principal Components Analysis (PCA) approach. Once the object pose is estimated, the 
grasping coordinates of the identified object are passed to the bin picking robot.  
 

 
Fig. 1.  Overall system architecture (Ghita & Whelan, 2003). 
 

3. Range sensor 
The range sensor employed by this application is based on active depth from defocus (DFD). 
This ranging technique has been initially developed as a passive ranging strategy by 
Pentland (Pentland, 1987). The principle behind DFD range sensing extends from the fact 
that the scene objects are imaged in relation to their position in space. In this fashion, the 
objects that are placed on the focal plane are sharply imaged on the sensing element of the 
camera, while the points situated on the surface of the objects shifted from the focal plane 
are refracted by the lens into a patch whose size is in direct relationship with the distance 
from the focal plane to the imaged object. It has been demonstrated in (Subbarao, 1988; 
Nayar et al., 1995) that the diameter of the defocus (blur) patch is dependent on the object 
distance u, lens aperture D, sensor distance s and focal length f. While one image is not 
sufficient to solve the uncertainty whether the scene object is placed in front or behind the 
focal plane, the depth can be uniquely estimated by measuring the blurring differences from 
two images captured with different focal settings. In our implementation the defocused 
images are captured by changing the sensor distance s  (Ghita et al., 2005).  
Since the level of blurriness in the image can be thought of as a convolution with a low pass 
filter (that is implemented by the point spread function (PSF)), to estimate the level of 
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blurriness in the image we need to convolve the image with a focus operator that extracts 
the high frequency information derived from the scene objects (Pentland, 1987). Nonetheless 
this approach returns accurate results only if the scene objects are highly textured. When 
dealing with weakly and non-textured scene objects this approach returns imprecise depth 
estimation.  To address this issue, a solution is to project a structured light onto the scene 
that forces an artificial texture on all visible surfaces of the scene. While the artificial texture 
has a known pattern, the focus operator is designed to respond strongly to the dominant 
frequency in the image that is associated with the illumination pattern (Girod & Scherock, 
1989; Nayar et al., 1995; Ghita et al., 2005).  
 

  
                                                    (a)                                              (b) 

 
(c) 

Fig. 2. Depth estimation for a scene defined by textureless, textured and mildly specular 
objects. (a) Near focused image. (b) Far focused image. (c) Depth estimation. 

In our implementation we used an illumination pattern defined by evenly spaced opaque 
and transparent stripes and the focus operator is implemented by a tuned Gabor filter (full 
details about the implementation of our range sensor are provided in Ghita et al. 2005). Fig. 
2 depicts the depth map obtained when the range sensor was applied to estimate the depth 
of a complex scene containing textureless, textured and specular objects. 
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4. Scene segmentation process 
An important decision in developing robotic systems is to decide which sensorial 
information is better suited for a particular application. Henderson (Henderson, 1983) 
suggested to approach the scene segmentation using the information about the objects that 
define the scene. In this regard, if the scene objects are highly textured and depth 
discontinuities are significant best results will be achieved if range data is analysed. 
Conversely, if the scene is defined by small textureless objects better results may be obtained 
if the segmentation process is applied on intensity images (Ghita & Whelan, 2003).  
While our application deals with the recognition of a set of textureless polyhedral objects, 
we developed an edge-based segmentation scheme to identify the visible surfaces of the 
scene objects.  Edges are associated with sharp transitions in pixel intensity distribution and 
they are extracted by calculating the partial derivatives in the input data. Edge detection is 
one of the most investigated topics in computer vision and to date there is no edge detector 
that is able to adapt to problems caused by image noise and low contrast between 
meaningful regions in the input data. Thus, the edge structure returned by the edge detector 
is either incomplete, gaps are caused by the low variation in the distribution of the input 
data, or contains false edges that are caused by image noise, shadows, etc. Thus after the 
application of edge detection, additional post-processing is applied to eliminate the spurious 
edge responses and bridge the gaps in the edge structure (this operation is referred to as 
edge linking). Approaches that have been used to bridge the gaps in the edge structure 
include morphological methods (Hajjar & Chen, 1999), Hough transform (Davies, 1992), 
probabilistic relaxation techniques (Hancock & Kittler, 1990), multi-scale edge detection 
methods (Farag & Delp, 1995) and the inclusion of additional information such as colour 
(Saber et al., 1997). From these techniques the most common are the morphological and 
multi-scale edge linking strategies.  In general, the morphological edge linking techniques 
use the local information around edge terminators while multi-scale approaches attempt to 
bridge the gaps in the edge structure by aggregating the information contained in a stack of 
images with differing spatial resolutions (Ghita & Whelan, 2002). The main disadvantage 
associated with multi-scale approaches resides in the high computational cost required to 
calculate the image stack and in our implementation we developed a morphological edge 
linking scheme that evaluates the direction of edge terminators in identifying the optimal 
linking decisions.  

4.1 Edge linking 
To extract the surfaces of the imaged scene objects we have developed a multi-step edge 
linking scheme that is used in conjunction with an edge detector that extracts the partial 
derivatives using the ISEF (Infinite Symetrical Exponential Filter) functions (Shen & Castan,  
1992). The reason to use the ISEF-based edge detector was motivated by the fact that its  
performance in detecting true edges matches that achieved by the more ubiquitous Canny 
edge detector (Canny, 1986), but the computation of the ISEF edge detector entails a lower 
computational cost than that associated with the Canny edge detector. In our 
implementation we have set the scale parameter to 0.45 and the threshold parameters 
required by the hysteretic threshold are selected using a scheme that minimise the incidence 
of small edge segments that are usually generated by image noise.  
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As mentioned earlier, the edge structure returned by the ISEF detector will be further post-
processed using a multi-step morphological edge linking strategy. The first step of the edge 
linking algorithm (Ghita & Whelan, 2002) involves the extraction of the edge terminators 
(endpoints). The edgepoint extraction requires a simple morphological analysis where the 
edge structure is convolved with a set of 3×3 masks (Vernon, 1991).  The second step of the 
algorithm determines the direction of the edge terminators by evaluating the linked edge 
points that generate the edge terminators. The application of the edge linking process for 
two iterations is illustrated in Fig. 3.  
 

 
Fig. 3. The edge linking process. The algorithm evaluates all linking decisions around each 
edge terminator and the optimal linking path minimises the cost function depicted in 
equation (1).  In this diagram the edge pixels are marked in black and the edge terminators 
are marked with black squares.  

The third  step of the edge linking scheme attempts to find the possible paths to bridge the 
gaps in the edge structure by analysing the edge pixels at the side indicated by the endpoint 
direction in an 11×11 neighbourhood. In this way, for each edge point situated in the 
endpoint’s neighbourhood a linking factor is calculated using the following cost function, 

 dired kkepetdistkepCost ++= ),()(  (1) 

where et and ep are the co-ordinates of the endpoint and the edge pixel under analysis and 
dist defines the Euclidean distance.  In equation (1) kd, kdir and ke are some pre-defined 
parameters (a detailed description of these parameters and a discussion in regard to their 
optimal selection is provided in Ghita & Whelan, 2002). The cost function is calculated for 
each edge pixel situated in the neighbourhood indicated by the endpoint direction  and the 
minimal value determines the optimal linking path. The gap in the edge structure between 
the edge terminator and the edge pixel that returns the minimum linking factor is bridged 
using the Bresenham algorithm (Bresenham, 1965). Fig. 4 illustrates the performance of the 
edge linking algorithm when applied to an image detailing a cluttered scene.  
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Fig. 4. The results of the scene segmentation process. (a) Input image. (b) Edge information. 
(c) Edge linking results. Note the removal of unconnected edge segments.  

5. Data formatting 
Our application implements a vision sensor able to determine the information required by a 
bin picking robot to perform object manipulation. Since the objects of interest are polyhedral, a 
convenient representation is to describe them in terms of their surfaces that are identified by 
the scene segmentation algorithm detailed in the previous section. Thus, the object recognition 
task can be formulated in terms of matching the objects’ visible surfaces with those stored in a 
model database. Although conceptually simple, this approach is quite difficult to be applied in 
practice since the geometrical characteristics of the object’s surfaces are viewpoint dependent. 
To address this problem, we need to align all visible surfaces resulting from the scene 
segmentation process to a planar that is perpendicular to the optical axis of the range sensor. In 
this fashion, we attempt to constrain two degrees of freedom (rotations about x and y axes) 
using the 3D information returned by the range sensor.  
The first operation of the data formatting procedure involves the calculation of the normal 
vector for each surface resulting after the application of the scene segmentation procedure. 
Since the object surfaces are planar, the normal vector can be calculated using the knowledge 
that elevation (z co-ordinate) is functionally dependent on the x and y co-ordinates. Then given 
a set of n points from range data that belong to the segmented surface, the normal vector can 
be statistically computed by a planar fitting of the 3D points as follows,  
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where ]ˆ,ˆ,ˆ[ˆ 321 aaaa = are the estimated values. Equation (2) generates a simultaneous 
system where the unknown values are â . The normal vector associated with the surface 
under analysis is represented in homogenous form as TT

zyx aannnN ]1,1,ˆ,ˆ[]1,,,[ 21 −==  

(Ghita et al., 2007).  As mentioned previously, our aim  is to calculate the rotations about x 
and y axes. The rotation angle about x axis (Ax) is calculated using the following expression: 
Ax= tan2-1(ny,nz). The rotation angle about y axis (Ay) is computed using the transform 
NRx=RxN=[nrx,nry,nrz,1]T, Ay=-tan2-1(nrx,nrz), where tan2-1 is the four quadrant inverse 
tangent. Once the angles Ax and Ay are estimated, the required transformation that is applied 
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to align the surface under analysis to the planar perpedicular to the axis of the range sensor 
can be formulated as follows, 

 oxyo TRRTH 1−=   (3) 

where T0 is the transformation that translates the 3D points that define the surface about the 
origin and Rx and Ry are the rotation matrices about x and y axes. Fig. 5 illustrates the results 
obtained after the application of the orthographic projection.  
 

   
(a)                                              (b) 
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                                                      (g)                                               (h) 

Fig. 5. Orthographic projection of the segmented scene regions. (a-b) Input image and scene 
regions resulting from the segmentation process (normal vectors relative to the range sensor 
position). (c-d) Orthographic projection of the first region (Ax= 26.790, Ay =-18.610).  (e-f) 
Orthographic projection of the second region (Ax= -36.190, Ay =-4.760). (g-h) Orthographic 
projection of the third region (Ax= 6.080, Ay =2.680). 

6. Object recognition 
As indicated in the previous section, the recognition of the scene objects is formulated as the 
recognition of their visible surfaces resulting after the application of the scene segmentation 
process using an approach that calculates features that sample the geometrical properties of 
the object surfaces.  While the geometric characteristics of the object surfaces are dependent 
on their orientation in space, in order to eliminate the viewpoint distortions the segmented 
surfaces were subjected to a 3D data formatting procedure that aligns them to a planar 
whose normal vector is aligned to the optical axis of the range sensor (z axis).  The next step 
of the algorithm deals with the extraction of geometrical primitives that are used to perform 
the scene to model recognition process. Approaches that have been used include the 
extraction of local features such as junctions, lines and partial contours (Bolles & Horaud, 
1986; Lowe, 2004) and macro features such as area, perimeter and statistical features (Ghita 
& Whelan, 2003). Local features may appear better suited when dealing with scenes affected 
by clutter and occlusions than macro features. But it is useful to note that approaches based 
on local features rely on a detailed structural description of the objects of interest and when 
dealing with complex scenes a large number of hypothesis are generated, a fact that requires 
the development of complex scene to model matching procedures. While our goal is the 
recognition of a set of polyhedral objects, macro features represent a better option since the 
segmented surfaces are planar and they can be easily indexed to describe the object 
structure. To this end, we have adopted features such as area, perimeter, shape factor and 
radii (maximum and minimum) distances calculated from the surface’s centroid to the 
surface border (Ghita & Whelan, 2003). 
The developed object recognition algorithm consists of two main stages. The training stage 
consists of building the database by extracting the aforementioned features for each surface 
of the object. Since the features involved have different ranges, to compensate for this issue 
we have applied a feature normalisation procedure where each feature is normalised to zero 
mean and unit variance (Duda et al., 2001). The matching stage consists of computing the 
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to align the surface under analysis to the planar perpedicular to the axis of the range sensor 
can be formulated as follows, 

 oxyo TRRTH 1−=   (3) 

where T0 is the transformation that translates the 3D points that define the surface about the 
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Fig. 5. Orthographic projection of the segmented scene regions. (a-b) Input image and scene 
regions resulting from the segmentation process (normal vectors relative to the range sensor 
position). (c-d) Orthographic projection of the first region (Ax= 26.790, Ay =-18.610).  (e-f) 
Orthographic projection of the second region (Ax= -36.190, Ay =-4.760). (g-h) Orthographic 
projection of the third region (Ax= 6.080, Ay =2.680). 
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Euclidean distance between the normalised features calculated for scene surfaces and object 
surfaces contained in the model database.  

 niforiYiXdist n
i jj ,..,1])[][(

1
2 =−= ∑ =

  (4)     

where Xj is the jth pattern contained in the model database and Y defines the pattern derived 
from an input region. The input scene surface is contained in the database if the minimum 
distance that gives the best approximation is smaller than a predefined threshold value.    
One problem with this approach is the fact that most scene surfaces are affected by 
occlusions. As the object recognition algorithm is included in the development of a robotic 
application, we focus the attentions only on the topmost objects since they can be easily 
manipulated and their surfaces are not affected by severe occlusions. The selection of the 
topmost object is achieved by eliminating the surfaces that are affected by occlusions based 
on the 3D information supplied by the range sensor. The scene to model verification 
procedure is applied only for surfaces that pass the 3D selection criteria (for additional 
details refer to Ghita & Whelan, 2003). 

7. 3 DOF pose estimation 
The orthographic transformation illustrated in equation (3) can constrain only two degrees 
of freedom (DOF), the rotations about x and y axes. The surfaces subjected to this 
orthographic transformation are perpendicular to the axis of the range sensor and the 
estimation of the surface rotation about z axis can be carried out using Principal 
Components Analysis (PCA). This procedure involves the calculation of an eigenspace 
representation from a set of training images that are generated by rotating the object 
surfaces in small increments. To estimate the rotation about z axis, all recognized scene 
surfaces are projected onto the eigenspace and their projections are compared to those 
stored in the model database (whose rotations about the z axis are known). The minimal 
distance between the projection of the input surface and those contained in the model 
database gives the best match.  

8. Experiments and results 
The vision sensor detailed in this chapter consists of four main components, range sensing, 
scene segmentation, object recognition and pose estimation. Our implementation employs 
an active DFD range sensor whose implementation has been outlined in Section 3. To test 
the performance of the developed range sensor we have applied it to recover the depth 
information from scenes defined by textured and textureless objects. The relative accuracy 
was estimated for successive measurements and was formulated as the maximum error 
between the real and estimated depth values. During the operation the range sensor was 
placed at a distance of 86cm above the baseline of the workspace. The relative accuracy 
attained by the developed sensor when applied to scenes containing non-specular objects 
with bright surfaces is 3.4% normalised in agreement with the distance from the sensor.  
The developed bin picking system has been applied to 5 different polyhedral objects that are 
used to create various cluttered scenes. The edge-based segmentation algorithm  detailed in 
Section 4 is applied to identify the object surfaces. The surfaces resulting after the 
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application of the scene segmentation algorithm are subjected to data formatting in order to 
constrain 2 rotational DOF (rotations about x and y axes). Since data formatting involves 3D 
analysis, the precision of this procedure is influenced by the accuracy of the depth 
estimation. The performance of the data formatting procedure is illustrated in Fig. 6.   
The third major component of the algorithm addresses the object recognition task. The 
algorithm was able to identify the topmost objects in all situations and is able to identify 
correctly the scene objects if the occlusion cover less than 20% of the object’s total surface. 
The last component of the algorithm is applied to identify the rotation about z axis. In our 
implementation we have created a PCA model database for each object of interest and the 
object rotation has been sampled uniformly by acquiring 24 training images with the object 
lying flat on a dark worktable. This generates 24 PCA projections that are able to sample the 
object rotation with a resolution of 15 degrees. To increase the resolution of the PCA 
projections we have applied a linear interpolation procedure that generate 30 interpolated 
projections between any adjacent projections generated by the 24 images contained in the 
training set (Ghita & Whelan, 2003; Ghita et al., 2007).  The performance of the pose 
estimation is affected by the accuracy of the data formatting procedure and the experiments 
indicate that the pose is more precise for low values of the tilt angles (rotations about x and 
y axes). This is motivated by the relative low resolution of the range sensor in sampling 
depth discontinuities. In our experiments the rotation about z axis was measured with an 
error of 2.1 degree under the condition that the rotations about x and y axes are smaller than 
25 degrees. 
      

 
Fig. 6. Data formatting estimation accuracy (rotation about x axis). 

9. Conclusions 
This chapter describes the development of a fully integrated vision sensor for robotic bin 
picking. The developed vision sensor is able to provide the information to a bin picking 
robot to perform scene understanding and object grasping/manipulation operations. Our 
implementation employs a range sensor based on active depth from defocus that is used in 
conjunction with a multi-stage scene understanding algorithm that is able to identify and 
estimate the 3D attitude of the scene objects. In this regard, the scene segmentation scheme 
attempts to separate the scene regions that are associated with object surfaces using an edge 
based implementation. The novel part of this scheme is the edge linking procedure that is 
able to return quality connected edge structures. The object recognition scheme performs 
scene to model verification using the global attributes extracted from the segmented scene 
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surfaces. As these features are vulnerable to viewpoint distortions we have devised a data 
formatting scheme that re-format the orientation of the scene surfaces on a planar 
perpendicular to the optical axis of the sensor. This transformation eliminates the viewpoint 
distortions and allows the application of standard PCA to sample the rotation about z axis. 
The experimental results indicate that the approach detailed in this chapter is particularly 
useful in the development of bin picking systems that are applied to the manipulation of 
polyhedral objects. 
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1. Introduction 
Stereo vision inherently comes with high computational complexity, which previously 
limited its deployment to high-performance, centralized imaging systems. But recent 
advances in embedded systems and algorithm design have paved the way for its adoption 
for and migration into smart camera networks, which notoriously suffer from limited 
processing and energy resources. Such networks consist of a collection of relatively low-cost 
smart camera motes, which—in their simplest form—integrate a microcontroller, an image 
sensor, and a radio into a single, embedded unit capable of sensing, computation, and 
wireless communication. When deployed in an in- or outdoor environment, they form ad-
hoc or mesh networks that can perform a wide range of applications. Their application areas 
range from ambient intelligence, building automation, elderly care, autonomous 
surveillance, and traffic control to smart homes. The underlying network tasks include 
object localization, target tracking, occupancy sensing, object detection and classification. 
Stereo vision can bring increased performance and robustness to several of these tasks 
possibly even at overall reductions in energy consumption and prolonged network lifetime. 
This chapter will provide a brief description of the building blocks, characteristics, 
limitations and applications of smart camera networks. We will then present a discussion of 
their requirements and constraints with respect to stereo vision paying special attention to 
differences to conventional stereo vision systems. The main issue arises from the high data 
rate, which image sensors particularly in a stereoscopic configuration generate. 
Conventional centralized computing systems can easily handle such rates. But for smart 
camera networks, their resource constraints pose a serious challenge to effective acquisition 
and processing of this high-rate data. 
Two possible approaches to address this problem have emerged in recent publications: one 
suggests the design of a custom image processor whereas the other solution proposes 
utilization of off-the-shelf, general-purpose microprocessors in conjunction with resolution-
scaled image sensors. Our discussion focuses on these two state-of-the-art stereo 
architectures. NXP's WiCa mote is the primary example deploying a dedicated image 
processor, while Stanford's MeshEye mote pioneered the idea of resolution-scaled stereo 
vision. More specifically, the WiCa mote deploys an application-specific image processor 
based on a vector single-instruction, multiple-data architecture, which is able to process the 
data streams of two VGA camera modules. In contrast, Stanford's MeshEye mote deploys a 
low-resolution stereo vision system requiring only a general-purpose 32-bit ARM7 
processor. Additionally, it hosts a VGA camera module for more detailed image acquisition. 
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vision. More specifically, the WiCa mote deploys an application-specific image processor 
based on a vector single-instruction, multiple-data architecture, which is able to process the 
data streams of two VGA camera modules. In contrast, Stanford's MeshEye mote deploys a 
low-resolution stereo vision system requiring only a general-purpose 32-bit ARM7 
processor. Additionally, it hosts a VGA camera module for more detailed image acquisition. 
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The low-resolution stereo imagers can guide the focus of attention of the higher-resolution 
camera. Hence, we refer to this novel combination of hybrid-resolution image sensors as a 
hybrid vision system, which is capable of approaching the performance of a VGA stereo 
system in the context of smart camera networks.  
The primary focus of this chapter is to describe Stanford's MeshEye mote in detail. The 
description will cover its processing algorithms, hardware architecture, and power model. 
Special attention will be given to the image processing algorithms underlying the hybrid 
vision system. Their advantages, limitations, and performance will be discussed and 
compared against those of the WiCa architecture. Finally, the chapter will outline how smart 
camera motes equipped with stereo or hybrid vision can collaborate to accomplish target 
tracking tasks in a distributed fashion. 
The remainder of this chapter is organized as follows. Section 2. provides background 
information and outlines applications for stereo vision in smart camera networks. Section 3. 
identifies requirements for embedded stereo architectures and summarizes the vision 
architectures of the WiCa and MeshEye motes. In Section 4., we discuss MeshEye's 
underlying hybrid vision algorithms that perform object detection, localization and 
acquisition as building blocks for higher-level tracking algorithms. In Section 5., we describe 
the implementation of the MeshEye mote in more detail, i.e., its hardware architecture and a 
power model that facilitates lifetime predictions for battery-powered operation. Section 6. 
presents an experimental deployment of four MeshEye motes and reports on performance 
results for indoor target tracking. Section 7. concludes with a summary of the key challenges 
and solutions presented for stereo vision in smart camera networks. It also identifies areas in 
need of further work and projects promising directions for future research. 

2. Background and applications 
Smart camera networks have received increased focus in the research community over the 
past few years. The notion of spatially distributed smart camera motes, which combine 
image sensing with embedded computation and are interconnected through radio links, 
opens up a new realm of intelligent vision-enabled applications (Liu & Das, 2006). Real-time 
image processing and distributed reasoning made possible by smart cameras can not only 
enhance existing applications but also motivate new ones. Potential application areas 
(Hengstler & Aghajan, 2006a; Rahimi et al., 2005; Hampapur et al., 2005; Maleki-Tabar et al., 
2006; Qureshi & Terzopoulos, 2007) range from assisted living, smart environments, traffic 
monitoring, and habitat observation to security and surveillance in public spaces or 
corporate buildings. Critical issues deciding upon the success of smart camera deployments 
for such applications include reliable and robust operation with as little maintenance as 
possible. 
In comparison to scalar sensors, such as temperature, pressure, humidity, velocity, and 
acceleration sensors, vision sensors generate much higher bandwidth data due to the two-
dimensional nature of their pixel array. The sheer amount of raw data generated precludes 
it from human analysis in most applications. Hence distributed information fusion 
algorithms (Nakamura et al., 2007) supported by in-node image processing are required to 
successfully operate scalable networks of smart cameras. 
The majority of smart camera applications target the presence (or absence) of objects in the 
network's observation area, their spatio-temporal movement, or—in case of humans or 
animals—their gestures. Hence, the underlying tasks performed by the vision system reduce 
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to object detection, localization, tracking, and classification (Zhao & Guibas, 2004). The 
image processing common to all these tasks consists of background subtraction and 
foreground segmentation followed by additional foreground processing steps. While 
commercial deployments and most research have focused on networks of monocular 
camera motes, there has been increasing interest in exploiting stereoscopic camera motes. A 
stereo vision mote can accomplish the same underlying tasks at increased accuracy or 
reduced camera resolution in comparison to a monocular vision mote. With respect to the 
entire network, this can result in fewer required motes or prolonged network lifetime at the 
same level of accuracy. The key challenge however lies in performing these vision tasks 
efficiently, i.e., with a minimum of required complexity, processing resources and energy 
consumption, such that it fits into low-cost, battery-operated embedded systems. 

3. Embedded stereo architectures 
Requirements and constraints for stereo vision in smart camera networks differ considerably 
from conventional stereo vision systems. This section discusses how these differences lead 
to different designs of embedded stereo architectures for smart camera motes. 
Conventional, high-performance stereo vision systems (Bramberger et al., 2006) commonly 
consist of a pair of high-resolution cameras and at least one computationally powerful 
processor to extract stereoscopic information. Processing power and energy resources can 
readily be chosen to meet application requirements. They combine general-purpose 
processors with digital signal processors (DSPs) or field-programmable gate arrays (FPGAs) 
for demanding image processing tasks. Moreover, scalability and form factor are typically 
not of concern in such standalone, centralized stereo vision systems. Their stereo vision 
tasks range from multi-target tracking, depth map generation, to visual hull reconstruction, 
which generally need to be performed in real-time, i.e., at frame rates of 15 or 30 frames per 
second (fps). The information generated oftentimes consists of raw or preprocessed stereo 
image representations intended for human analysis and interpretation. 
Smart camera networks, on the other hand, almost exclusively utilize stereo vision for object 
localization and tracking as discussed in Section 2.. The information reported to the human 
operator may consist of the number of objects present, their location, trajectory, and object 
class or may even be condensed into higher levels of representation. The smart camera 
network needs to generate this information autonomously using machine vision and 
information fusion techniques. It is these application requirements that drive the design of 
stereo vision systems in smart camera networks. To cover varying extent of deployment 
areas, the network needs to be easily deployable and scalable. This translates into smart 
camera motes that have a small form factor and are cheap in volume production. Moreover, 
outdoor deployments may require battery operation in contrast to indoor deployments, 
where wired power grids are commonly available. Delay and accuracy requirements are less 
stringent in target tracking applications for smart camera networks, in which distances 
between cameras and objects are relatively large and multiple cameras track the same 
objects. Hence, the required frame rates are more in the order of about 0.5 to 5 fps; 
localization accuracy (Rahimi et al., 2006) of the embedded vision system can be well below 
those of high-performance stereo vision systems. We deem these the two single most 
important differences between conventional stereo vision and stereo vision in smart camera 
networks. For instance, it is unnecessary and prohibitive to use multiple processors with 
high power consumption in the interest of frame rate and energy dissipation, respectively. 
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Going forward, we can identify the following list of design guidelines for embedded stereo 
architectures: 
• Usage of low-complexity algorithms: The single most important guideline is to use 

algorithms of low complexity. This is especially true for vision processing, which deals 
with large image arrays directly. The complexity of such algorithms drives hardware 
requirements as well as energy consumption. 

• Avoidance of high processing clock frequencies: Power consumption grows 
quadratically with clock frequency but processing duration only reduces linearly with 
frequency. Hence, it is advantageous to perform vision processing at clock frequencies 
slow enough to still meet frame rate requirements. 

• Utilization of intermediate memory: It is more energy costly to recompute intermediate 
results than to compute them once and store them in memory for later use. Hence, 
enough memory should be available to hold all intermediate results that are used more 
than once. 

• Reduction of component count: The number of components, especially processing 
elements, should be minimized. This improves both mote cost and energy 
consumption. Parallel computations can be transformed into sequential computations at 
the expense of frame rate but at the benefit of fewer processing elements. 

• Usage of commercial off-the-shelf components: Compared to custom-designed (semi-
conductor) components, commercial off-the-shelf (COTS) components benefit from 
mass production and pricing and hence the overall mote cost is minimized. 

• Selection of low-power components: Low-power components should be chosen 
wherever applicable. As these may be more expensive, an appropriate trade-off 
between mote cost and power consumption needs to be established. 

• Implementation of power management: To reduce power consumption further, the 
mote should make use of power saving modes, which only turn on the components 
required to carry out its current operation. For example, the cameras should only be 
active during image acquisition and be put into sleep or power-down otherwise. This 
also includes clock scaling according to the current processing load. 

Two stereo vision architectures for smart camera motes have been proposed recently, which 
strive to satisfy these design guidelines in different ways. The two vision architectures are 
embedded in NXP's WiCa and Stanford's MeshEye smart camera motes. 

3.1 Parallel processing architecture 
In 2006, NXP (formerly part of Philips Electronics) introduced WiCa (Kleihorst et al., 2006): a 
smart camera mote with a high-performance vision system. Its vision system consists of two 
VGA camera modules (640×480 pixel, 24-bit color), which feed video to IC3D, a remarkable 
dedicated parallel processor based on a vector single-instruction multiple-data (SIMD) 
architecture. IC3D alternately acquires and processes frames from the left and right VGA 
camera. It exchanges image processing results with an 8051-based Atmel AT89C51 host 
processor, which runs at 24 MHz, through a 128 Kbytes dual-port RAM. 
IC3D's parallel architecture running at 80 MHz (scalable) is capable of processing an entire 
image row in only a few clock cycles at frame rates up to 30 fps. Processing operations 
include, for example, two-dimensional filtering (with kernel sizes up to 64×64 pixel), edge 
detection, histogram generation, and template or stereo correlations. Higher level processing 
steps like object localization and tracking need to be carried out by the host processor. 
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The key advantage of WiCa's vision system (Kleihorst et al., 2007) lies in its ability to 
perform complex image processing in real time (in a conventional stereo vision sense) at 
moderate clock rates. Its reported low power consumption makes it attractive for smart 
camera networks although its performance exceeds their typical requirements. Its main 
disadvantage leading to increased mote cost is the use of a custom-designed parallel 
processor in addition to a general-purpose host processor. Furthermore, dual-port RAM 
devices have a rather large power consumption, typically in the order of 300 mW. 

3.2 Hybrid vision architecture 
In Stanford's hybrid vision architecture, introduced in 2006 (Hengstler & Aghajan, 2006b), 
two low-resolution imagers (30×30 pixel, 6-bit grayscale) in stereo configuration guide the 
focus of attention of a higher-resolution VGA camera module (640×480 pixel, 24-bit color). 
Thus, hybrid vision can utilize its low-resolution stereo vision to localize foreground objects, 
which makes it well suited for tracking tasks in smart camera networks. Most of all, hybrid 
vision enables foreground segmentation without having to process the background in high 
resolution. As we will discuss in the following, this leads to significantly simplified vision 
processing, which can be handled by a general-purpose, sequential microcontroller at 
moderate clock frequency. The main drawback of the hybrid vision architecture is that its 
low-resolution stereo system has reduced bearing and ranging resolution compared to the 
parallel processing architecture. 
The configuration of the hybrid vision system is illustrated in Fig. 1. All three pixel arrays 
are parallel facing the same direction. The camera module is centered between the two low-
resolution imagers, which—owing to their total pixel count—are referred to as kilopixel 
imagers. The three image sensors are focused to infinity and their field of view (FoV) angles 
should be approximately the same although ideally the kilopixel imagers should have a 
slightly larger FoV angle. Hence the three imagers have an overlapping FoV only offset by 
their baseline, that is, the distance separating them. 
 

 
Fig. 1. Hybrid vision system. 
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In the simplest operation of the hybrid vision system, one of the kilopixel imagers is used to 
continuously poll for moving objects entering its FoV. Once one or possibly more objects 
have been detected, position and size within a kilopixel image can be determined for each 
object. Stereo vision of the two kilopixel imagers yields bearing and distance to the object. 
This information allows us to calculate the region of interest (RoI) containing the object 
within the VGA camera's image plane. Subsequently, the microcontroller triggers the VGA 
camera module to capture a high-resolution grayscale or color RoI including only the 
detected object. After optional additional low-level processing, the object's RoI will then be 
handed over to intermediate-level processing functions. 

4. Hybrid vision algorithms 
The image processing algorithms behind the hybrid vision system, which were first 
described in (Hengstler et al., 2007), are designed to detect and localize objects entering its 
FoV. Since a generic 32-bit RISC architecture without dedicated DSP engines needs to 
execute these algorithms, they are intentionally kept at low computational complexity. 
The overall vision processing flow is shown in the flowchart of Fig. 2. Both low-resolution 
(LR) imagers continue updating their background image and estimate of temporal pixel 
noise when no objects are present. Upon detection of a moving object in the left kilopixel 
image, the vision system determines the bounding box and stores the object's RoI. This RoI 
serves as a template to locate the object's position within the FoV of the right kilopixel 
imager. If this stereo matching cannot establish a positive match to the template, the left LR 
imager will continue polling for moving objects. This case occurs for example when the 
object lies outside the overlapping FoV of the two kilopixel imagers. Knowing the object's 
position within both LR image arrays and its size, the vision system triggers the VGA 
camera module to acquire a high-resolution (HR) snapshot of the object. The left kilopixel 
imager can continue tracking the object until it leaves its FoV and initiate additional HR RoI 
acquisitions of the object as required by the application. Note that the following discussion 
is limited to one object inside the FoV, but it can be easily extended to multiple foreground 
objects. 
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To model the low-resolution stereo system observing a moving object at location x, we apply 
the planar pinhole camera observation model shown in Fig. 3. The intrinsic camera 
parameters are pixel array half-width D, camera resolution R, focal length f, half-width FoV 
angle Ψ, and baseline B. These parameters relate the quantities of interest, object bearing θ 
and range r, to the measurements of the vision system, bearing projection dleft and disparity d 
= |dleft − dright| through 
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and 
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respectively. 
 

 
Fig. 3. Planar pinhole camera observation model. 

4.1 Object detection 
Prior to any further processing, the raw image arrays from both kilopixel imagers are 
normalized to each frame's average pixel value. This mitigates changes in brightness and 
exposure time. We found this normalization especially effective in coping with oscillations 
of the digital shutter control loop inside the kilopixel imagers. 
The kilopixel imager performs object detection through background subtraction (Radke et 
al., 2005) on a frame-by-frame basis. That is, it calculates the frame difference between the 
current frame at time t,  and the latest background  
as 
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In the simplest operation of the hybrid vision system, one of the kilopixel imagers is used to 
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All pixels, whose frame difference  exceed a preset multiple k of the temporal 
noise standard deviation σn, are set in a binary motion mask  as potential 
candidates of motion, 

 
(4) 

In MeshEye's vision system, σn is estimated on background frames and it typically ranges 
around 1.75; k is set to around 6. To eliminate objects smaller than 2×2 pixel, we low-pass 
filter the binary motion mask according to 

 
(5) 

where conv2 denotes two-dimensional convolution. 
In the final processing step of object detection, a blob search algorithm identifies all regions 
as moving objects, which consist of four-connected groups of unity pixels within the binary 
mask  that contain at least one unity pixel of the filtered mask  It is 
then straightforward to determine the bounding box of each object through extraction of the 
object's difference RoI  as a subset of the current frame difference . 
The object's bearing projection  follows as the mean of the object's intensity distribution, 
which is  projected onto the horizontal axis of the pixel array. 

4.2 Stereo matching 
The objective of the stereo matching algorithm lies in locating the object's RoI within the 
right kilopixel image array. Since the pixel arrays of both LR imagers are aligned in parallel, 
the object will appear as a shifted version in the right kilopixel array if it is located within 
their joint FoV. This satisfies the requirements for template matching based on cross-
correlation. Therefore, the vision system computes the cross-correlation of the object's array 

 along the epipolar lines (for an introduction to epipolar geometry, refer to 
(Foresti et al., 2005) for example) of the right kilopixel difference array , 

 (6) 

where xcor2 denotes two-dimensional unbiased cross-correlation without boundary padding 
such that u, v = 1, 2, . . . , 30. 
Lastly, the (u, v) coordinate with the largest cross-correlation value—or the average (u, v) 
coordinate in case of multiple largest cross-correlation values—is assumed as the object's 
position within the right LR image array. However, to qualify a positive match and remove 
objects outside the joint FoV, the maximum cross-correlation value has to be sufficiently 
close to the center autocorrelation value of the object's RoI, which may be expressed as 

 (7) 

 denotes the unbiased autocorrelation of the object's difference array 
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If this condition is not met, no positive match can be established and the object is discarded. 
Otherwise, the object's bearing projection t

rightd  is computed as the horizontal value of the 
mean of the object's cross-correlation distribution  

4.3 Object acquisition 
The hybrid vision system can finally determine the object's position within the HR pixel 
array using the object's extent and positions  and  within the LR arrays. With this 
information, a high-resolution snapshot containing only the moving object can be efficiently 
acquired by using the camera's built-in windowing function. As mentioned before, the HR 
background is not analyzed and not even acquired with the hybrid vision system. The HR 
snapshot of the object is stored for further processing or exchange with neighboring smart 
cameras. Such processing can include object classification or even distributed, multi-camera 
view identification based on its shape, orientation, aspect ratio, or color histogram for 
instance. Two examples captured with Stanford's MeshEye smart camera mote are shown in 
Fig. 4. It contains an indoor (Fig. 4a) and an outdoor (Fig. 4b) snapshot of a moving person. 
Notice that the LR views have a non-ideal smaller FoV than the HR view. 
 

 
                                (a) Indoor Snapshot                          (b) Outdoor Snapshot 

Fig. 4. Hybrid vision system performing person localization: indoor (a) and outdoor (b) 
snapshots. Bounding boxes mark the person's locations in the LR and HR views. 

4.4 Computational efficiency 
To conclude this section, let us consider the computational savings that the hybrid vision 
system achieves over the WiCa smart camera mote. WiCa's dual high-resolution camera 
system combined with the IC3D SIMD dedicated image processor establishes a fair basis of 
comparison among published embedded stereo vision systems to carry out moving object 
localization and RoI extraction. 
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4.4 Computational efficiency 
To conclude this section, let us consider the computational savings that the hybrid vision 
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system combined with the IC3D SIMD dedicated image processor establishes a fair basis of 
comparison among published embedded stereo vision systems to carry out moving object 
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For simplicity, this consideration of computational efficiency is limited to one moving object 
within the vision system's FoV. The MeshEye vision system carries out the algorithms 
described in the previous subsections. For the dual-camera SIMD system, our calculation 
assumes that it performs the same computations on its two HR cameras rather than two LR 
imagers, which result in a moving object's pixel array and estimated bearing and range. 
Whenever possible, the computations utilize IC3D's line-parallel processor architecture, 
which executes an instruction across an entire line of pixel data within one instruction cycle. 
Of course, an alternative approach would be to downsize incoming frames from VGA to 
kilopixel resolution prior to object detection and extraction. This however would 
underutilize the line-parallel processor and not take full advantage of its 640-pixel wide line 
buffers. 
The computational efficiency of MeshEye's vision system relative to the WiCA vision system 
is shown in Fig. 5. More specifically, it graphs the ratio of number of computations of the 
dual-camera SIMD system over the hybrid vision system as a function of object size in high 
resolution when both systems perform object detection, localization and RoI extraction. 
Hybrid vision achieves a fivefold reduction in the number of computations for small object 
sizes, but the gains in efficiency diminish down to 0.7 as object sizes increase. Smaller objects 
require fewer computations and hence hybrid-resolution processing outperforms the 
parallel processing system. Large objects cause a heavier processing load and hence the 
SIMD processor excels over hybrid vision. 
For objects sized around 132,800 high-resolution pixel2, which amounts to rather large 
objects of for example 364×364 pixel—or about 40% of the VGA frame, both vision systems 
have equal computational efficiency. Note that it is for these significant reductions in the 
number of computations for moderately sized objects that makes hybrid vision well suited 
for smart camera embedded vision without the need for a dedicated, high-performance DSP 
engine. 
 

 
Fig. 5. Computational efficiency of the hybrid vision system over the dual-camera SIMD 
system. 
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5. Hybrid vision implementation 
This section briefly describes the architecture of Stanford's MeshEyeTM mote as a hardware 
implementation of the hybrid vision system. Its design targets the provision of sufficient 
processing power for hybrid vision while minimizing component count and power 
consumption. 

5.1 Hardware architecture 
The block-level architecture of the MeshEye smart camera mote is shown in Fig. 6. The 
architecture is centered around an Atmel AT91SAM7S family microcontroller (Atmel, 2006), 
which contains up to 256 KBytes of flash memory and 64 KBytes of SRAM. Its leading 
power-efficient ARM7TDMI architecture can be clocked up to 55 MHz. The mote features a 
USB 2.0 full-speed port and a serial interface for wired connection. Furthermore, the mote 
can host up to eight kilopixel imagers and one VGA camera module, for which we chose 
Agilent Technologies' ADNS-3060 high-performance optical mouse sensor (Agilent, 2004) 
(30×30 pixel, 6-bit grayscale) and Agilent Technologies' ADCM-2700 landscape VGA 
resolution CMOS camera module (Agilent, 2005) (640×480 pixel programmable, grayscale or 
24-bit color), respectively. An MMC/SD flash memory card provides sufficient and scalable 
non-volatile memory for temporary frame buffering or even image archival. Wireless 
connection to other motes in the network can be established through a Texas Instruments 
CC2420 2.4 GHz IEEE 802.15.4/ZigBee-ready RF transceiver (Texas, 2006), which supports 
data transmission at 250 Kbits per second according to the IEEE 802.15.4 standard with a 
maximum transmit power of 1 mW in the unlicensed 2.4 GHz ISM band. The mote can 
either be powered by a stationary power supply if available or battery-operated for mobile 
applications or ease of deployment. 
 

 
Fig. 6. Block diagram of the MeshEyeTM architecture. 

The objectives guiding the electrical design of the MeshEye architecture have been the 
integration of low-power, COTS components, use of standard interfaces, and most of all 
minimization of total component count. The main motivation in keeping the component 
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count small lies in reduced power consumption and mote cost. The use of standard 
interfaces manifests itself in that a single SPI interface connects flash memory card, kilopixel 
imagers, and radio to the microcontroller. A TWI interface controls the camera module 
while its CCIR video is read out through general-purpose I/O pins. Note that this CCIR 
read-out method is not common but avoids additional interface components at the expense 
of a reduced frame rate of about 3 frames per second. Most other solutions interface CCIR 
image sensors to microcontrollers through a combination of an FPGA or CPLD and static 
memory for frame buffering. While such solutions may enable video streaming, they 
oftentimes add significantly to mote cost and the power budget. 
Fig. 7 pictures the first prototype of the MeshEye smart camera mote. It consists of a base 
board and a sensor board. The base board hosts the voltage regulators, microcontroller, 
radio, MMC/SD flash card (not visible) and external interface connectors. Power can be 
supplied through an external source, the Mini-USB port, or pairs of AA batteries. The sensor 
board, which sits on top of the base board, contains two kilopixel imagers, the VGA camera 
module, and two white LEDs for short-range illumination. 
 

 
Fig. 7. Photograph of the first MeshEyeTM smart camera mote. 

The kilopixel imagers use plastic aspheric lenses with a 4.6 mm focal length f and have a 57 
mm baseline B. This allows for a maximum perceived depth of 8.74 m in theory, which we 
deem adequate for indoor and limited outdoor usage. At fixed resolution of the image 
sensors, one may increase the focal length to increase the depth limit at the expense of 
narrower FoV angles. 

5.2 Power model 
An important performance metric for battery-operated motes is their lifetime during 
deployment. For this reason, generating a power model for the MeshEye smart camera mote 
is a crucial step in analyzing its energy consumption and predicting its lifetime during 
object localization operation. 
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The power model assumes that the MeshEye mote is powered by two non-rechargeable AA 
batteries (capacity 2850 mAh) at a conversion efficiency of 90%. It accounts for current 
consumption of the following main mote components: Atmel AT91SAM7S64 
microcontroller running at a processor clock of 47.92 MHz, PQI 256 MB MultiMediaCard 
flash memory, two Agilent ADNS-3060 kilopixel imagers, Agilent ADCM-2700 VGA camera 
module, and Texas Instruments CC2420 IEEE 802.15.4 transceiver. Table 1 summarizes the 
components' typical current and runtime values. Estimated runtimes and current draw 
values quoted in each component's datasheet are shown in regular font style. Italicized 
values have actually been measured on the mote prototype. For the most part, the datasheet 
estimates are in good agreement with the measurements although the estimated active 
currents for the flash card and the image sensors turn out to be rather conservative. The 
power model uses measured values whenever possible. The two runtime states Poll and 
Event occur when an object is absent or present, respectively, in the mote's FoV. In the Event 
state, the mote localizes the object and captures its HR region of interest. Subsequently, the 
object's location is wirelessly exchanged with neighboring motes for localization refinement 
and object tracking purposes. 
 

 
a) Event assumes an average object region of interest size of 64×64 pixel. 

Table 1. Estimated (regular) and measured (italicized) component current and runtime values 
used in the power model. 
For the basic object localization and tracking application considered here, the power model 
predicts an asymptotic, i.e., no events occur, lifetime of 22 days at a moderately fast poll 
period of 1 second. At a 0.5 second poll period, the asymptotic lifetime shortens to 11 days. 
Of course, the lifetime gradually reduces with the frequency of events, that is, more frequent 
appearance of moving objects in the mote's FoV. 
This power model also enables us to compare the hybrid vision system with the parallel 
processing system in terms of energy consumption. In particular, the MeshEye mote 
consumes 121 mJ, while the WiCa mote only spends 106 mJ to localize and acquire an object 
of 64×64 pixel in size. Hence, compared to dual-camera parallel processing, hybrid vision is 
not as efficient with respect to energy consumption as it is in terms of computational 
efficiency. Equal energy consumption occurs at a number of computations ratio of 4.3. 

6. Experimental deployment 
To evaluate functionality and performance of the stereo system within hybrid vision, an 
indoor network of four MeshEye smart camera motes was put in place. The topology of the 
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network is shown in Fig. 8: the four motes are located on the corners of a rectangle with 
their camera axes oriented towards the rectangle's center. Each mote records the kilopixel 
images to an MMC flash memory card at 10 fps over a one minute duration. During this 
time, a person follows the ground truth path drawn in Fig. 8, which was marked on the 
room's floor as an inner and outer rectangle. More specifically, the target first walks twice 
along the inner and then twice along the outer rectangle. 
 

 
Fig. 8. Topology and observations of experimental network deployment. 

The recorded image sequences were then post-processed with the hybrid vision algorithms 
to determine each mote's target localization over time. These location observations are 
overlaid onto the network topology in Fig. 8 using different markers. The associated 
measurements of target bearing angle and range are shown in the two plots to the right. In 
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For evaluation purposes, we computed the variance of the tracking error, which is the 
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performance. For the inner rectangle, mono vision achieves an error variance of 0.16 m2 and 
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track. The outer rectangle shows this ill-posed estimation problem even more frequently. 
The stereo vision's ranging ability mitigates this problem and we would expect stereo vision 
to perform even better for the outer rectangle. Indeed, stereo vision outperforms mono 
vision by 60%; the error variances are 0.28m2 and 0.7m2, respectively. This difference in 
tracking performance is not as obvious from the figure when considering error variances. 
When comparing the bias of the tracking error, the improvement is not as considerable: 0.59 
m with mono vision versus 0.44 m under stereo vision. Finally, the estimated track under 
low-resolution stereo vision reveals its limited ranging resolution as it is not able to reliably 
dinstiguish between locations on the inner and outer rectangle. 
 

 
Fig. 9. Tracking performance of experimental network deployment: smart camera motes 
applying mono (left) and stereo vision (right). 

7. Conclusion and future work 
This chapter identified requirements and presented solutions for the adoption of stereo 
vision into resource-constraint smart camera networks. Stereo vision's main benefit lies in 
improving accuracy in target tracking applications. The two state-of-the-art embedded 
stereo vision architectures were discussed. Both architectures solve the problem of 
acquisition and processing of the high-rate image data at moderate clock frequencies. NXP's 
WiCa mote combines a custom parallel image processor with a dual camera system. 
Stanford's MeshEye mote requires only a common sequential 32-bit microcontroller to 
process the data from its hybrid vision system. Both vision systems are able to detect, 
localize, and capture high-resolution snapshots of foreground objects. Hybrid vision is 
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computationally more efficient and consumes less energy for smaller objects within its field 
of view. This makes it well suited for a variety of applications in smart camera networks 
despite its low-resolution ranging capability. The experimental network deployment of four 
MeshEye motes resulted in a 30% reduction in target tracking error over smart camera 
motes utilizing solely monocular vision. 
The availability of embedded stereo vision motes is the necessary step in their adoption for 
applications in smart camera networks. While this chapter covered their vision processing 
and hardware implementation, the challenge of vision calibration has not been addressed. 
Variations in the optical system and in alignment of the image sensors cause systematic 
errors in object localization. Calibration techniques, which can be easily and cheaply 
accomplished in volume production, need to be developed to measure and compensate 
these variations.  
In conclusion, we expect to see more research contributions in the near future that analyze 
the performance of stereo vision in distributed camera networks with more rigor. This 
includes studying their merit over mono vision for different network tasks with respect to 
tracking accuracy, network lifetime, cost of deployment, and number of required camera 
motes. (Hengstler & Aghajan, 2007), for example, presents an early study of performance 
trade-offs for target tracking between mono and stereo vision in smart camera networks. Its 
simulation results encouragingly indicate that (i) stereo vision outperforms mono vision by 
factors of 2 to 5 in tracking accuracy and (ii) doubling the camera resolution can result in one 
third the tracking error variance. 
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1. Introduction     
With the development of collision safety technology in recent years, delicate control of air 
bag deployment which adaptively deploys the airbag depending on occupants’ body shape, 
weight and position, has being intensively studied during past few years. The main purpose 
of the smart air bag system is to deal with the threat that occupants may be seriously injured 
by the deployment of an air bag at the time of crash if the occupant is too near to the airbag.  
The National Highway Traffic Safety Administration (NHTSA) (Federal Motor Vehicle 
Safety Standards, 2000) specifies different classes for the occupancy including infants in rear 
facing infant seats, children and small adults, and out-of-position zones for the human 
occupants, on which the air bag deployment has to be controlled.  
Research on detecting the type and position of occupant can be divided into 3 main 
categories based on different sensing technologies: I) Weight sensors on the seat measure the 
pressure distribution and classify the occupant into different types(Kennedy 2006, Lasten 
2006); II) Electric-magnetic or ultrasound sensors that detect the change in the electric-
magnetic field to confirm occupant type and position (Seip 1999); III) Computer vision 
sensors that directly detect occupant head and body position with 2D or 3D information, 
and classify the occupants (Trivedi, 2002-2005). Category I and II are the most popular 
sensors in the market in current stage of air bag control, which requires a reliable 
classification of adults, children and rear-faced child seats. However they are not adaptable 
for precisely detection of occupant position and posture, which is vital to the delicate control 
of air bag deployment.   
Vision sensor provides the richest information of occupant position and posture. Depending 
on the number of cameras used, these studies can be further divided into two categories: 
monocular camera based methods and stereo vision based methods. Monocular camera 
always employs edge, contour and other image features to detect ellipse-liked shapes for 
head detection. By combining with the infrared detector, single camera solution can also 
obtain satisfied result in some well-controlled environment. However, it suffers from strong 
shadows, hot weather and insufficient 3D information which is necessary for functions 
such as the out-of-position detection. Stereo vision based methods use two co-planar cameras 
to calculate the disparity data and detect occupant head position and posture. Many 
algorithms employ the general 3D model fitting method to detect the ellipsoid-like 3D shape 
from a range image obtained from the stereo rig. M. Trivedi (Trivedi 2002-2005) uses shape 
and size constraints to eliminate search regions for less computation purpose, which may 
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have serious side-effects that the head region can be also eliminated when it appears relative 
smaller than other ellipsoid-like shapes such as waving arms and shoulders. B.Alefs (Alefs, 
2004) uses depth data to recovery the occupant body surface and edge data to generate head 
candidate. Head recognition was carried out with a large trained dataset.  
To achieve real-time performance while keeping high accuracy of occupant head detection, 
this paper presents a fast 3D parametric model fitting algorithm based on grayscale 
correlation of range data. Comparing with the traditional 3D parametric model fitting 
algorithms, this method simplifies the problem of searching 3D model from depth image 
into 2D grayscale correlation problem, which simultaneously determine all parameters with 
the best fitting model. By applying the proposed algorithm into occupant head detection 
application, this paper also proposes a body centerline segmentation method as well as a 
multi-resolution disparity generation algorithm in order to deal with body occlusion and 
extra-near disparity calculation problems.  
In the remainder of this chapter we will present a brief overview of traditional 3D 
parametric model fitting and our new approach based on grayscale correlation of range 
image (Section 2), a detail implementation of our approach (Section 3), and experimental 
results in the purview of an occupant head detection system (Section 4). 

2. 3D parametric model fitting algorithm 
2.1 Problem description 
Given an image frame (e.g. range image or edge image), the 3D parametric model fitting 
problem is to find the 3D parameters (e.g. 3D position and orientation, scale factor, intrinsic 
parameters, etc.) of the model. Figure 1 shows an example of finding an ellipsoid in a range 
image. The total number of ellipsoid 3D parameters is 9 including 3 rotation and 3 
translation parameters, as well as 3 scaling factors along X, Y and Z-axis. 
 

  
Figure 1. Searching a 3D model in a range image 

Research on 3D model fitting leveraged earlier work done in (Lowe, 1991) for generic 3D 
parametric model fitting. Image formation is modeled as a mapping of a 3D model into the 
image. Although the inverse mapping is non-linear due to the trigonometric functions of 
perspective projection, the resulting image changes smoothly as the parameters are 
changed. Therefore, local linearity can be assumed and several iterative methods can be 
employed for solving non-linear equations (e.g. Newton’s method). Upon finding the 
solution for one frame, the parameters are used as the initial values for the next frame and 
the fitting procedure is repeated. The traditional approach can be extremely time consuming 
and is not adaptive to the real-time required occupant head detection application. 
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2.2 Our algorithm 
With the assumption of local linearity, we can prepare a lookup table of possible 
combination of all parameters except 3D position (X, Y, Z), which will be determined by the 
later process of grayscale correlation. Rotation and scale parameters are used to generate the 
LUT in the case of ellipsoid detection. To simplify the process, only certain combination of 
rotation and scale parameters are adopted by the constraint of occupant physical position 
and posture. Here, 3 rotation angles {0, +45°, -45°} along X and Z-axis are combined with 3 
different ellipsoid shapes. Scale factors are defined by the possible movement range of the 
head. 
Equation of 3D ellipsoid is shown as follows: 
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Perspective projection equation (2) is adapted to project 3D ellipsoid surface points to the 2D 
image coordinates. 
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where camera’s intrinsic parameters like lens focal ),( yx ff  and optical center coordinates 
),( 00 vu are obtained from some preprocessing steps like camera calibration. Rotation matrix 

elements 3311 ~ RR  are retrieved from the parameter LUT. 
To match with the disparity image, we use the following normalization equation to convert 
range data into intensity value. 

 )12(),( min −×= N
Z

ZyxI   (3) 

where minZ  is the minimum distance from ellipsoid surface points to camera. N is the bit-
value of intensity image. 
Figure 2 shows some examples of models generated from the parameter LUT.  
 

 
Fig. 2. Parametric models of range data 
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correlation of range data. Comparing with the traditional 3D parametric model fitting 
algorithms, this method simplifies the problem of searching 3D model from depth image 
into 2D grayscale correlation problem, which simultaneously determine all parameters with 
the best fitting model. By applying the proposed algorithm into occupant head detection 
application, this paper also proposes a body centerline segmentation method as well as a 
multi-resolution disparity generation algorithm in order to deal with body occlusion and 
extra-near disparity calculation problems.  
In the remainder of this chapter we will present a brief overview of traditional 3D 
parametric model fitting and our new approach based on grayscale correlation of range 
image (Section 2), a detail implementation of our approach (Section 3), and experimental 
results in the purview of an occupant head detection system (Section 4). 

2. 3D parametric model fitting algorithm 
2.1 Problem description 
Given an image frame (e.g. range image or edge image), the 3D parametric model fitting 
problem is to find the 3D parameters (e.g. 3D position and orientation, scale factor, intrinsic 
parameters, etc.) of the model. Figure 1 shows an example of finding an ellipsoid in a range 
image. The total number of ellipsoid 3D parameters is 9 including 3 rotation and 3 
translation parameters, as well as 3 scaling factors along X, Y and Z-axis. 
 

  
Figure 1. Searching a 3D model in a range image 

Research on 3D model fitting leveraged earlier work done in (Lowe, 1991) for generic 3D 
parametric model fitting. Image formation is modeled as a mapping of a 3D model into the 
image. Although the inverse mapping is non-linear due to the trigonometric functions of 
perspective projection, the resulting image changes smoothly as the parameters are 
changed. Therefore, local linearity can be assumed and several iterative methods can be 
employed for solving non-linear equations (e.g. Newton’s method). Upon finding the 
solution for one frame, the parameters are used as the initial values for the next frame and 
the fitting procedure is repeated. The traditional approach can be extremely time consuming 
and is not adaptive to the real-time required occupant head detection application. 
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2.2 Our algorithm 
With the assumption of local linearity, we can prepare a lookup table of possible 
combination of all parameters except 3D position (X, Y, Z), which will be determined by the 
later process of grayscale correlation. Rotation and scale parameters are used to generate the 
LUT in the case of ellipsoid detection. To simplify the process, only certain combination of 
rotation and scale parameters are adopted by the constraint of occupant physical position 
and posture. Here, 3 rotation angles {0, +45°, -45°} along X and Z-axis are combined with 3 
different ellipsoid shapes. Scale factors are defined by the possible movement range of the 
head. 
Equation of 3D ellipsoid is shown as follows: 
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Perspective projection equation (2) is adapted to project 3D ellipsoid surface points to the 2D 
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where camera’s intrinsic parameters like lens focal ),( yx ff  and optical center coordinates 
),( 00 vu are obtained from some preprocessing steps like camera calibration. Rotation matrix 

elements 3311 ~ RR  are retrieved from the parameter LUT. 
To match with the disparity image, we use the following normalization equation to convert 
range data into intensity value. 
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where minZ  is the minimum distance from ellipsoid surface points to camera. N is the bit-
value of intensity image. 
Figure 2 shows some examples of models generated from the parameter LUT.  
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2.3 3D model fitting 
Once the 3D parametric models are generated, we can simply adapt the traditional grayscale 
correlation algorithm to find a match between models and target range image. 
2D grayscale correlation algorithms are well studied for decades and many acceleration 
techniques like multi-level and pyramid sub-sampling technologies have been proposed. To 
add tolerance to intensity change, we use the normalized grayscale correlation (NGC) 
equation to find the best matching from multiple models.  
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where ),( yxI  and ),(' yxd  are intensity values of model image and normalized target 
image respectively. S is the effective pixel number. Matching score 1=r  refers to the perfect 
match and 0=r  means not match at all. 
The normalization process on the target image is a general histogram smoothing as 
described in equation (5). 
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where ),( yxd  is the original disparity value on pixel (x, y), maxmin ,dd  are the minimum and 
the maximum disparity value in the region. N is the bit-value of disparity map. 
Result of our grayscale correlation algorithm presents not only the position but also the best 
model, which indicates the rotation and scale parameters simultaneously. 

3. System implementation details 
The system is designed as a co-planar stereo camera with constructive infrared illumination 
light source. The stereo rig is mounted on the center roof console near the back mirror. 
Generally it should have few centimeters baseline and wide-angle lens that can overview 
the whole passenger’s cabinet.  

3.1 Constructive illumination lighting system 
A fast stereo algorithm (Konolige, 1997) is adapted to generate disparity map with two 
synchronized video source input at 30 frames per second. To overcome the uneven 
illumination and shadow problem for real outdoor environment, an infrared pulsed 
illumination lighting system is installed, combining with band-pass filtered lens to cutoff all 
un- necessary wavelength light.  
A disadvantage of block matching based dense disparity algorithm is the aperture problem. 
The aperture problem arises as a consequence of the ambiguity of one-dimensional intensity 
on left and right image through out the horizontal Epipolar line. No disparity data can be 
derived for an even intensity region like dark or over lighted regions. 
We tested different kinds of light patterns, and the cross pattern of light-dark-light with an 
angle of ±45 degree showed the best performance. Figure 3 shows an example of disparity 
map result without/with constructive light. 
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(a) Without constructive light 

      
(b) With constructive light 

Fig. 3. Disparity map result without/with constructive light 

      
(a)Original disparity map       (b)Background disparity map 

      
                              (c)Binarized subtraction result     (d) Extracted ROI 

Fig.4. Background subtraction result 

3.2 Background subtraction 
To eliminate passenger’s seat, door and other interior regions from the range image, 
background subtraction is carried out for every new frame. Background range image were 
generated as an average of 30 frames’ range image for the empty seat. Automatic 
background generation will be further implemented according to the sensors’ output of seat 
lateral position and reclining angle.  
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Post-processing includes binarizing, morphological process, and blob analysis. The biggest 
blob that satisfies the position and area constraints will be extracted as occupant body’s 
candidate region. Figure 4 shows the background subtraction results. 

3.3 Composition of multi-resolution disparity maps for near distance disparity  
Fast stereo processing algorithms (Konolige, 1997) always use a fixed maximum disparity 
value to accelerate the matching process. For example, a maximum disparity of 32 pixels 
leads to the maximum searching distance of 32 pixels. Disparities over the maximum 
disparity will be omitted. 
According to the basic equation of stereo disparity shown in (6), the maximum distance 
leads to the minimum detection distance, as the baseline b and lens focal f is unchanged. 

 
z
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Figure 5 shows an example of extra-near distance target that cannot obtain disparity data. 
To enlarge the disparity range for extra-near target detection, we propose a composition 
algorithm of multiple resolution disparity maps. A lower resolution stereo image pair will 
generate a wider detection range disparity map since its pixel size is bigger than the general 
resolution image pair. Figure 6 shows the composition result of disparity maps generated 
from 160x120 and 320x240 stereo images. 
 

 
Fig. 5. Near distance target 

     
Fig. 6. (a)disparity map generated from 160x120 stereo images, (b) from 320x240 stereo 
images, (c)Composition of above disparity maps 

3.4 Foreground segmentation with body center line 
Extracted occupant body ROI may include multiple ellipsoid-liked regions which has 
similar size with the head, such as shoulders, waving arms, and other objects. Examples are 
shown in Figure 7. In this paper, we extended Russakoff’s concept (Russakoff, 2002) of body 
center line to 3D region segmentation to eliminate the ambiguities. 
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Fig. 7. Examples of ellipsoid-liked objects extracted from body ROI 

Assuming passenger is always sitting on the seat, so that the lower part of body’s ROI is 
relatively stable and can be used as the reference part to segment the ROI. Detail steps are 
shown as follows: 
Step 1. After the preprocessing steps described in the above sections, calculate the so-called 

horizontal median points on each row of the binary ROI image based on Russakoff’s 
algorithm. 

Step 2. Detect the upper center position C1 and lower center position C2 along the body 
center line, where C1 and C2 are on the rows of 1/5 and 4/5 of the ROI height 
respectively as shown in Figure 8(a). 

 

 
(a) Body Center Line 

   
(b)  Foreground segmentation result for waving arms 

   
(c) Filtering result by disparity constraint 

Fig. 8. Foreground segmentation with body center line 
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(a) Body Center Line 

   
(b)  Foreground segmentation result for waving arms 

   
(c) Filtering result by disparity constraint 

Fig. 8. Foreground segmentation with body center line 
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Step  3. If the slope angle of line C1C2 is less than threshold k (the occupant is in the normal 
seating position), then we can simply vertically cut off the regions that are further 
than a predefined distance to C1C2’s middle point C3. An example is shown in 
Figure 8(b). 

Step  4. If the slope angle is larger than threshold k (the occupant is in the leaning position), 
the cut-off lines will be parallel to line C1C2, while keeping the predefined 
distances.  

Step  5. Segmented foreground region will be further filtered by the constraint of disparity. 
The ideal disparity data on each row i can be calculated through the following linear 
interpolation equation. 
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             This constraint will eliminate most of the outliers and other objects in front of the 
body ROI. An example is shown in Figure 8(c). 

Step 6. The result image will be further normalized for the 3D model fitting process 
described in Section II. 

4. Experimental results 
The proposed algorithm was tested under various sizes of passengers and different postures 
that occupants may behave during the normal driving situations. The stereo vision system 
was equipped with two gen-locked CCD cameras. Stereo images were captured by a Matrox 
Meteor2/MC frame grabber board and all processing was done by a Pentium IV 2.66GHz 
PC. The stereo baseline is 64 mm, and the lens focal is 2.8 mm. 320x240 disparity maps were 
generated at the speed of 25 ms/frame with the maximum disparity of 32 pixels. 
 

Tester 
(Posture) 

Correct 
Detected 

False 
Detected 

Not 
Detected 

Rate of 
Correct(%) 

1(N) 1500 0 0 100 
2(N) 1500 0 0 100 
3(N) 1500 0 0 100 
4(N) 1500 0 0 100 
5(N) 1500 0 0 100 
6(N) 1500 0 0 100 
7(N) 1500 0 0 100 
8(N) 1478 9 13 98.5 
9(A) 1500 0 0 100 
10(B) 1477 17 6 98.5 
11(C) 1416 7 77 94.4 
12(D) 1369 2 129 91.3 
13(E) 1500 0 0 100 
14(F) 1497 0 3 99.8 
15(G) 1460 0 40 97.3 
16(H) 1484 8 8 98.9 
Total 23681 43 276 98.7 

Table 1. Test results of different situations 
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Postures: N=Normal siting position, A=Reading book, B=Playing basketball, C=Moving 
body in different direction, D=Waving arms around head, E=Reading newspaper, 
F=Talking with a mobile phone, G=Drinking water, H=Wearing a cap. 
 
 

      
 

      
 

      
 

      
 

      
(a)original image     (b)detection result 

Fig. 9. Occupant Head Detection Results 



 Stereo Vision 

 

98 

Step  3. If the slope angle of line C1C2 is less than threshold k (the occupant is in the normal 
seating position), then we can simply vertically cut off the regions that are further 
than a predefined distance to C1C2’s middle point C3. An example is shown in 
Figure 8(b). 

Step  4. If the slope angle is larger than threshold k (the occupant is in the leaning position), 
the cut-off lines will be parallel to line C1C2, while keeping the predefined 
distances.  

Step  5. Segmented foreground region will be further filtered by the constraint of disparity. 
The ideal disparity data on each row i can be calculated through the following linear 
interpolation equation. 

 )( 12
12

1
1 dd

yy
iy

ddi −
−
−

−=   (7) 

             This constraint will eliminate most of the outliers and other objects in front of the 
body ROI. An example is shown in Figure 8(c). 

Step 6. The result image will be further normalized for the 3D model fitting process 
described in Section II. 

4. Experimental results 
The proposed algorithm was tested under various sizes of passengers and different postures 
that occupants may behave during the normal driving situations. The stereo vision system 
was equipped with two gen-locked CCD cameras. Stereo images were captured by a Matrox 
Meteor2/MC frame grabber board and all processing was done by a Pentium IV 2.66GHz 
PC. The stereo baseline is 64 mm, and the lens focal is 2.8 mm. 320x240 disparity maps were 
generated at the speed of 25 ms/frame with the maximum disparity of 32 pixels. 
 

Tester 
(Posture) 

Correct 
Detected 

False 
Detected 

Not 
Detected 

Rate of 
Correct(%) 

1(N) 1500 0 0 100 
2(N) 1500 0 0 100 
3(N) 1500 0 0 100 
4(N) 1500 0 0 100 
5(N) 1500 0 0 100 
6(N) 1500 0 0 100 
7(N) 1500 0 0 100 
8(N) 1478 9 13 98.5 
9(A) 1500 0 0 100 
10(B) 1477 17 6 98.5 
11(C) 1416 7 77 94.4 
12(D) 1369 2 129 91.3 
13(E) 1500 0 0 100 
14(F) 1497 0 3 99.8 
15(G) 1460 0 40 97.3 
16(H) 1484 8 8 98.9 
Total 23681 43 276 98.7 

Table 1. Test results of different situations 

Grayscale Correlation based 3D Model Fitting for Occupant Head Detection and Tracking 

 

99 

Postures: N=Normal siting position, A=Reading book, B=Playing basketball, C=Moving 
body in different direction, D=Waving arms around head, E=Reading newspaper, 
F=Talking with a mobile phone, G=Drinking water, H=Wearing a cap. 
 
 

      
 

      
 

      
 

      
 

      
(a)original image     (b)detection result 

Fig. 9. Occupant Head Detection Results 



 Stereo Vision 

 

100 

Totally 16 adults testers including 12 males and 4 females were chosen for the test. With 
their height distributed from 153cm to 183cm and weight distributed from 50kg to 80kg, the 
testers were supposed to cover the main range of adult passenger sizes. They were asked to 
perform all kinds of postures that could be happened during the real driving situations, like 
readings, waving arms, drinking, etc. Each test was continuously captured for 1500 frames. 
Table 1 shows the test results of different situations. Tester 1 to 8, who were sitting straightly 
in the normal position, showed the best performance near 100% correct detection rate. Tester 
9 to 16, who were asked to perform different kinds of movement and postures, still showed 
a very high detection rate about 97.5%. The overall correct detection rate is 98.7%. Some very 
difficult situations like partially occluded target, extra-near target and multiple ambiguities 
were also correctly detected. Figure 9 shows some examples. 
False detection (<0.2%) were happened under the situations of occlusion and head was not 
detected (<1.2%) mostly due to the situation that occupant was out of position. Figure 10 
shows some false examples. 
 

      
 

      
 

Fig. 10. Falsely Detected Examples 

False detection and miss detection generally happen within very short period of time. 
Tracking of head position in both intensity image and disparity map will largely help to 
locate the head position even for fully occlusion case. Tracking can also reduce searching 
area by predicating head position. Some preliminary tests were carried out and showed 
very satisfied results.  

5. Conclusion 
Occupant head detection is sensitive to the variation of illumination, occupant posture 
and body size. To achieve real-time performance while keeping a high accuracy of 
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occupant head detection, this paper presents a fast 3D parametric model fitting 
algorithm base on grayscale correlation of range data. Evaluation of the method shows 
over 98% correct head detection. Combining with head tracking algorithm on intensity 
image and disparity map, the proposed algorithm will perform near 100% correct 
detection. 
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1. Introduction  
The most common and well-known principle of 3D image acquisition is stereo vision (SV). 
This principle of 3D-image acquisition is already known and used for decades in the research 
community. The advantage of stereo vision to other range measuring devices such as laser 
scanners, acoustic or radar sensors is that it achieves high resolution and simultaneous 
acquisition of the entire range image without energy emission or moving parts.  
Still, the major disadvantage is the limited Field of View (FOV) and the correspondence 
problem. To enhance the FOV many techniques are researched such as rotating cameras 
(Kang et al., 1997; Benosman et al., 1996; Krishnan et al., 1996), increasing the number of the 
cameras (Kawanishi et al., 1998), and the use of a special optic (Liancheng & Feng, 2005; Lin 
& Bajcsyg, 2003). Also a combination of 1D-laser scanner and a SV system are proposed to 
overcome the FOV problem (Cheng et al., 2002). However, these systems are expensive and 
not easy too synchronize. Due to the correspondence problem algorithms need to be 
improved to give a lower percentage of false matches as well as better accuracy of depth 
estimates. Performance of algorithm needs to be evaluated over a broad range of image 
types in order to test their robustness (Dhond & Aggarwal, 1989). 
In the past years the modality of Time-of-Flight (TOF) imaging became more and more 
attractive to a growing research community (Schwarte_a et al., 1997; Schwarte_b et al., 1997). 
Because of the enormous progress in TOF-vision systems, nowadays 3D matrix cameras can 
be manufactured und be used for many application such as robotic, automotive, industrial, 
medical and multimedia applications. Due to the increasing demand of safety requirements 
in the automotive industry it can be assumed that the TOF-camera market will grow and the 
unit price of these systems in the mass production will drop down to ca. 100 € (Hussmann & 
Hess, 2006). 
For all application areas new accurate and fast algorithms for 3D object recognition and 
classification are needed. As now commercial 3D-TOF cameras are available at a reasonable 
price the number of research projects is expected to increase significantly. One early 
example of using a TOF-camera based on the Photonic-Mixer-Devices (PMD)-Technology 
for 3D object recognition in TOF data sets are presented in (Hess et al., 2003). In this paper 
the transition from a general model of the system to specific applications such as intelligent 
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airbag control and robot assistance in surgery are demonstrated. A more current example in 
using a PMD-TOF camera on a robot system, highlighting the advantages of TOF- compared 
to SV-vision systems, is reported in (Hussmann & Liepert, 2007).  
This chapter is structured as follows. In Section II we expose the issues which motivate a 
new approach for 3D image acquisition systems. In Section III we derive the equation set 
needed to design a 3D TOF vision system. In Section IV automotive applications will 
demonstrate the usability of 3D-TOF vision systems based on the PMD-technology fulfilling 
the tough target settings in the automotive industry. Concluding remarks will summarize 
the paper. 

2. Comparison of TOF- and SV vision systems 
2.1 Working principle 
 

 
                                            (a)                                                                                 (b) 

Fig. 1. Working principle of (a) SV vision systems and (b) TOF vision systems (Hussmann & 
Hess, 2006) 

Common stereo vison systems comprise two perspective cameras with limited FOV. As 
shown in Fig. 1 (a) a physical point is taken up in the observed 3D-space by two perspective 
cameras. If the corresponding pixel of this point is found in both camera images, the 
position can be computed with the help of the triangulation principle. The major problem is 
to detect the corresponding pixels as they are required to estimate the range information 
correctly (correspondence problem). High processing power and time can be consumed if those 
pixels cannot be find easily. Fig. 1 (b) shows the working principle of TOF vision systems. 
TOF is an active range system and needs an illumination source. The range information is 
measured by emitting a modulated near-infrared light signal and computing the phase of 
the received reflected light signal. Using the PMD-Technology the phase calculation is 
carried out in each individual pixel of the sensor matrix (Schwarte_a et al., 1997; Schwarte_b 
et al., 1997). Hence TOF offers a direct depth data acquisition, whereas SV involves a great 
amount of computational power for the same 3D image. However SV systems can be 
realized without active illumination. 
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2.2 Image processing chain 
 

 
                                       (a)                                                                        (b) 

Fig. 2. Functional block diagram of the image processing chain of (a) SV vision systems and 
(b) TOF vision systems (Hussmann & Hess, 2006) 

In Fig. 2 (a) the functional block diagram of the image processing chain of SV systems is 
shown. Several problems arise during the image processing of the captured object 
information. Due to the limited aperture angle of the camera optics only a certain part of the 
environment can be detected (aperture problem). The FOV is usually fixed for one application 
and cannot be changed easily (FOV problem). The optical projection of the objects on a planar 
sensor leads to a complete lost of the 3D-information (optical projection problem). Due to the 
sampling rate of the image sensor the detection of very fast objects is limited (optical 
sampling problem). The correspondence problem is already explained in the last section and will 
be described in more detail in the following section. A change in the gray level values of 
both cameras is not necessarily caused by an object movement. For example illumination 
changes could also cause gray level changes. Hence the object motion cannot be described 
by the gray level values changes (divergence problem). At last the allocation problem is stated. 
The estimated range values of the scene are not evenly distributed due to the 
correspondence problem. 
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TOF vision systems suffer fewer problems as shown in Fig. 2 (b). The FOV problem does not 
depend on the chosen hardware setup and can be changed by software easily. In the next 
section more details are provided. The object information is not lost by the optical projection 
of the objects on a planar sensor. Each pixel of the sensor calculates a range value. A 
reconstruction of range values based on gray level values does not exist. Hence no 
correspondence, divergence and allocation problem is given. Only the aperture and sampling 
problem still exists. 

2.3 Field-of-view problem 
The depth resolution of SV vision systems depends on the chosen optical arrangement of the 
two cameras which defines the triangle’s angles. TOF systems do not depend on geometrical 
parameters. They are using an active modulated light source. Two modulation techniques 
are the most common one, pulsed modulation (Moring et al., 1989) or continuous wave 
(CW) modulation (Beheim & Fritsch, 1986). In the currently available TOF cameras CW-
modulation is used as for this mode extremely high rise and fall times are not required and 
for this reason a larger variety of light sources are available. Mostly square waves are used, 
but other waveforms such as sinusoidal waves are suitable modulation signals. Using CW-
modulation the phase difference between the sent and received optical signal is measured, 
rather than directly measuring a light pulse’s turn-around time. As the modulation 
frequency fmod is known, the measured phase ϕ0 directly corresponds to the time of flight 
(Lange, 2000). Equation (1) describes how the range of TOF vision systems can be 
determined. The physical constant for the speed of light (3⋅10^8 m/s) is given by c and N 
represents the ambiguity in range estimation. 
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A very common modulation frequency of TOF vision systems is fmod = 20MHz. This leads to 
a non-ambiguity range (NAR) of 7.5 m as derived in Equation (2). There are two reasons for 
choosing this modulation frequency. One reason is that no high-power IR-LEDs are 
available with a higher modulation frequency at a low price tag and the other reason is that 
the NAR suits most of the indoor and outdoor applications. 
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The FOV of TOF vision systems depend only on the modulation frequency as derived in 
Equation (1) and (2). A high modulation frequency leads to short measuring range and vice 
versa. 

2.4 Correspondence problem 
As mentioned before the correspondence problem is a major problem as the range values 
can only be estimated in image regions with adequate gray level value changes. As a 
consequence a SV vision system will always have difficulties acquiring 3D information of 
objects with equal gray level values such as walls, roadways and so forth. Also objects with 
the same gray level value at different distances are difficult to distinguish. These problems 
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can be compensated with advanced SV algorithms using a lot of processing power 
compared to TOF vision systems.  
 

        
                                         (a)                                                                       (b) 

Fig. 3. (a) Gray level value image and (b) TOF range image of two objects with equal gray 
level values 

The images in Fig. 3 are taken with a PhotonICs® PMD 1k-S (64 x 16 Pixel) sensor chip. 
Fig. 3 (a) shows the gray level values of an object in front of a wall at different distances. 
Both objects have almost the same gray level values and are very difficult to distinguish. 
Hence a SV vision system without active lighting, generating shadows, can not estimate the 
3D information of the objects due to the correspondence problem. However, a TOF vision 
system measures the range to the object for each pixel and therefore delivers evenly 
distributed 3D information as shown in Fig. 3 (b). Hence even a TOF vision system with 
fewer pixels than a SV vision system can deliver more 3D information when the SV vision 
system has too many false range matches. This can happen when the captured scenes have 
too many areas with equal gray level values. The advantage of TOF over a SV vision system 
is that the TOF ranging technique does not produce incomplete range data (no shadow 
effects) because illumination and observation directions can be collinear. 

3. Design of PMD TOF vision systems 
3.1 Range calculation 
A PMD TOF sensor generates a range output voltage which can be described as follows 
(Schwarte & Heinol, 1999): 
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The range output voltage ΔUab(TL) is determined by the correlation result of the optical echo 
Popt(t-TL) and the modulation voltage um(t) over the integration time Tint. K is a system 
constant. State of the art is to use CW modulation with square waves. Hence the modulation 
voltages can be easily generated digitally with a high accuracy and stability using 
programmable logic devices (PLDs) such as microcontrollers, complex programmable logic 
devices (CPLD) or field programmable gate arrays (FPGA). The low-pass characteristic of 
the IR-LEDs leads to an attenuation of the square waves’ harmonics for larger frequencies. 
This results in an optical output that gradually looks sinusoidal for frequencies larger than 
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5-10 MHz. This has to be taken into account if CW modulation with square waves is used. 
The modulation voltage um(t) and the optical echo Popt(t-TL) is then given by: 
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Equation (4) shows the square wave signal of the modulation voltage um(t). Using Fourier 
series we can write an ideal square wave as an infinite series of only odd integer harmonics. 
Equation (5) shows the sinusoidal signal echo Popt(t-TL) of the IR-LEDs. It is assumed that 
only the fundamental harmonic is transmitted due to the finite bandwidth of the IR-LEDs. 
The amplitude a of the optical echo Popt(t-TL) depends on the reflectivity coefficient. In 
addition the background light is taken into account by adding a constant A. Furthermore it 
is assumed that a and A are constant during the capture of one range image. Hence ΔUab(TL) 
will be different for different amplitudes of the optical echo and will course problems in 
determining the phase difference between the optical echo Popt(t-TL) and the modulation 
signal um(t). The amplitude dependency of the output voltage ΔUab(TL) can be avoided by 
using a phase-shift algorithm. This algorithm is based on the cross correlation of two 
periodical signals which are shifted in phase to each other. The correlation function ϕsg(τ) is 
defined as follows: 
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If we deploy equation (6) to our TOF system s(t) and g(t+τ) can be written as 
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Then the correlation function ϕsg(τ) of the TOF system can be represented as follow: 
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Only the fundamental harmonic of the modulation voltage and the optical echo have the 
same frequency. Hence the multiplication of these correlated signals results in a DC 
component and a sinusoidal component with twice the frequency. All other multiplications 
result in sinusoidal components. After the integration only the DC component remains. Due 
to this feature of the PMD sensor all other uncorrelated noise sources such as sun light or 
modulated light sources are suppressed. The DC component is given by: 
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LTωϕ =0  and represents the phase difference between the sent and the received signal. If 
we now consider equation (9) for example for four different phases τ = 0°, τ = 90°, τ = 180° 
and τ = 270°, the correlation result is: 
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Now we can calculate the phase difference ϕ0 without any dependency on the received 
optical echo’s amplitude a. 
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Equation (8) is equivalent to equation (3), hence equation (11) can be rewritten as: 
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The range value R can now be calculated by taken into account the non-ambiguity range 
(NAR) at a given modulation frequency of fmod = 20MHz: 
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3.2 Range resolution 
The performance and hence the range resolution of solid-state imagers is limited by several 
different noise sources. Three major noise sources exist: (1) photon shot noise, (2) 
photocharge conversion noise and (3) quantization noise (Theuwissen, 1995). All of these 
noise sources can be reduced or eliminated by different signal processing techniques or 
cooling, except photon shot noise. Hence it is the ultimate theoretical limitation of all photo 
detectors. Since photon shot noise increases with the amount of incoming photons, it finally 
dominates all other noise sources and hence limits the effective signal-to-noise ratio for 
higher illumination levels. Shot noise describes the statistical Poisson-distributed nature of 
the arrival process of photons and the generation process of electron-hole pairs. The 
standard deviation of shot noise is equal to the square root of the number of photons 
(optical shot noise) or photogenerated charge carriers (electronic shot noise). In (Lange, 
2000) the required number of photoelectrons per sampling point and pixel to achieve a 
given range resolution using a 4-phase shift algorithm is derived. It is given by: 
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M is the (de)modulation amplitude, i.e. the number of photoelectrons per pixel and 
sampling point generated by the modulated light source. M depends on the modulation 
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5-10 MHz. This has to be taken into account if CW modulation with square waves is used. 
The modulation voltage um(t) and the optical echo Popt(t-TL) is then given by: 
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Equation (4) shows the square wave signal of the modulation voltage um(t). Using Fourier 
series we can write an ideal square wave as an infinite series of only odd integer harmonics. 
Equation (5) shows the sinusoidal signal echo Popt(t-TL) of the IR-LEDs. It is assumed that 
only the fundamental harmonic is transmitted due to the finite bandwidth of the IR-LEDs. 
The amplitude a of the optical echo Popt(t-TL) depends on the reflectivity coefficient. In 
addition the background light is taken into account by adding a constant A. Furthermore it 
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If we deploy equation (6) to our TOF system s(t) and g(t+τ) can be written as 
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Then the correlation function ϕsg(τ) of the TOF system can be represented as follow: 
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Only the fundamental harmonic of the modulation voltage and the optical echo have the 
same frequency. Hence the multiplication of these correlated signals results in a DC 
component and a sinusoidal component with twice the frequency. All other multiplications 
result in sinusoidal components. After the integration only the DC component remains. Due 
to this feature of the PMD sensor all other uncorrelated noise sources such as sun light or 
modulated light sources are suppressed. The DC component is given by: 
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LTωϕ =0  and represents the phase difference between the sent and the received signal. If 
we now consider equation (9) for example for four different phases τ = 0°, τ = 90°, τ = 180° 
and τ = 270°, the correlation result is: 
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Now we can calculate the phase difference ϕ0 without any dependency on the received 
optical echo’s amplitude a. 
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Equation (8) is equivalent to equation (3), hence equation (11) can be rewritten as: 
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The range value R can now be calculated by taken into account the non-ambiguity range 
(NAR) at a given modulation frequency of fmod = 20MHz: 
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3.2 Range resolution 
The performance and hence the range resolution of solid-state imagers is limited by several 
different noise sources. Three major noise sources exist: (1) photon shot noise, (2) 
photocharge conversion noise and (3) quantization noise (Theuwissen, 1995). All of these 
noise sources can be reduced or eliminated by different signal processing techniques or 
cooling, except photon shot noise. Hence it is the ultimate theoretical limitation of all photo 
detectors. Since photon shot noise increases with the amount of incoming photons, it finally 
dominates all other noise sources and hence limits the effective signal-to-noise ratio for 
higher illumination levels. Shot noise describes the statistical Poisson-distributed nature of 
the arrival process of photons and the generation process of electron-hole pairs. The 
standard deviation of shot noise is equal to the square root of the number of photons 
(optical shot noise) or photogenerated charge carriers (electronic shot noise). In (Lange, 
2000) the required number of photoelectrons per sampling point and pixel to achieve a 
given range resolution using a 4-phase shift algorithm is derived. It is given by: 
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M is the (de)modulation amplitude, i.e. the number of photoelectrons per pixel and 
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depth of the modulated signal and the demodulation contrast of the pixel but also on the 
optical power of the modulated light source and the target’s distance and reflectivity. B is 
the Offset or acquired optical mean value, i.e. the number of photoelectrons per pixel and 
sampling point generated by incoming light of the scene’s background and the mean value 
of the received modulated light. 
As in practise only the voltage values at the output stages can be measured, equation (14) 
has to be reformulated. The conversion process of the optically generated charge into an 
analogous output voltage is characterized using the sensitivity s. The sensitivity is 
determined by the size of the conversion capacitance Cint and the amplification of the output 
stage Aos of the solid-state imager. It is usually specified in terms of volts per electron and is 
given by Equation (15), where q is the elementary charge (1.6⋅10^-19 C). 
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Subsequently the output voltage vout of the solid-state imager can be described by 
Equation (16), where E is the total number of all electrons accumulated in the conversion 
capacitance. E is the sum of the acquired optical mean value B and the (de)modulation 
amplitude M. 
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Hence the mean value of vout is related to B and the peak-to-peak value of vout is related to M 
as given in Equation (17). 
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Now we can rewrite Equation (14) by taken into account equation (17): 
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Looking at equation (18) it can be concluded that a large background brightness, which is 
proportional to outv , not only restricts the number of available quantization levels but also 
drastically increases the quantum noise of the system. Background illumination can be 
reduced by measuring in the dark or by using spectral filters that only transmit the 
spectrum of the modulated light. Furthermore it can be concluded that an increasing active 
modulation power density, which is proportional to voutPP, leads to a better range resolution. 
As the active optical power density increases with decreasing distance to the object, the 
ranging accuracy also increases for smaller distances. This is an important fact for 
navigation applications, where a high accuracy is often only needed close to the target.  
Equation (18) can be used to determine the resolution of PMD TOF sensors. The intensity 
output voltage abUΣ  (see (Schwarte & Heinol, 1999)) of these sensors corresponds to the 
total number of all electrons accumulated in the conversion capacitance. Hence abUΣ  can 
be expressed as: 

 )( BMsEsabU +⋅=⋅=Σ  (19) 
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The modulation amplitude M is related to the absolute value of the range output voltage 
abUΔ  of the PMD TOF sensor: 

 MsabU ⋅=Δ |ˆ|  (20) 

Hence equation (18) can now be reformulated for the use of a PMD TOF sensor: 
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In (Lange, 2000) it is shown that equation (14) can be expanded to include additional noise 
scorces such as 1/f-, reset- and thermal noise by adding an additional number of pseudo-
background-electrons Npseudo to B. Theses noise sources are not correlated to the modulation 
signal and thus contribute to B rather than M. 
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The number of pseudo-electrons Npseudo can be obtained by squaring the noise equivalent 
number of noise electrons N. These can be determined by measuring vdark and dividing it by 
the sensitivity s of the sensor. 
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Equation (21) can now be modified to include the additional noise sources. As all electrons 
generated in the dark should be taken into account the dark voltage is equivalent with the 
intensity output voltage abUΣ  of the PMF TOF sensor. 
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If no background light is present and only the active illumination source is active the highest 
range resolution can be achieved. The modulation amplitude M is then equal to the optical 
mean value B. Equation (24) can be simplified to: 
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The range accuracy, which can only be improved by averaging, is the absolute limit of a 
PMD TOF sensor using a 4-phase shift algorithm. The range resolution also depends on the 
modulation frequency. The higher the modulation frequency the better is the range 
resolution. However the measuring range (FOV) will decrease with increasing modulation 
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The modulation amplitude M is related to the absolute value of the range output voltage 
abUΔ  of the PMD TOF sensor: 
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The range accuracy, which can only be improved by averaging, is the absolute limit of a 
PMD TOF sensor using a 4-phase shift algorithm. The range resolution also depends on the 
modulation frequency. The higher the modulation frequency the better is the range 
resolution. However the measuring range (FOV) will decrease with increasing modulation 
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frequency (see section 2.3). In practice it has shown that increasing the modulation 
frequency far above 20 MHz will not increase the range resolution because the power of the 
IR-LEDs will decrease at the same time. 

4. Automotive applications using PMD TOF vision systems 
4.1 Advantages of PMD TOF vision systems for automotive applications 
As mentioned in the introduction section already, TOF vision systems are found in a variety 
of applications such as industrial sensor systems, automation, robotics, user interfaces, 
virtual reality and so forth. However the technically most challenging and interesting 
application is the automotive industry. An appropriate 3D vision system should be able to 
recognize dangerous situations foresighted to support the driver in the best possible way to 
avoid accidents. In the case that an accident can not be avoided the system should at least 
minimize the injury risk for all passengers. 
Up to now application-specific sensor units are designed for each particular automotive 
application. Hence nowadays only pure range measuring systems (long or short range 
radar, lidar or ultrasonic sensors) or pure opto-electronical 2D camera systems exist in 
various car assemblies. Increasingly optimized algorithms are developed to fuse the data of 
different sensor units. This approach is understandable as no system was available to 
deliver 2D intensity images and range data at the same time. What was missing is a precise, 
economical, compact, universal sensor technology which can acquire the 3D information 
(intensity and range information) of a scene in one image capture. Such a technology would 
deliver the absolute geometrical dimensions of objects without depending on the object 
surface, - distance, -rotation and -illumination (rotation-, translation- and illumination 
invariant). SV vision systems were the first to be developed for the automotive industry 
with the listed disadvantages in section 2. Subsequently the PMD technology was 
successfully developed which is a TOF vision system with inherent suppression of 
uncorrelated light signals such as sun light or other modulated light disturbances (Moeller 
et al., 2005). More advantages of a PMD TOF vision system are the acquisition of the 
intensity and range data in each pixel without high computational cost and any moving 
components as well as the monocular setup. 
All these advantages lead to a compact and economical design of an automotive 3D TOF 
vision system. This system can immediately acquire the scene objects parameters without 
high computational power. The typical frame rate of the system is 100 Hz leading to a high 
constant 3D data flow. A reliable object plausibility check and calculation of the object 
motion vectors are possible. Hence a reliable scene interpretation for automotive 
applications is given. The high frame rate is very important for car safety applications to 
detect high dynamical changes in the traffic even at a high car speed. With such a system the 
driver can be best possible supported and the injury risk in a non avoidable collision can be 
minimized by using active safety measures.  
At the moment several automotive manufacturer are using the PMD technology for many 
different applications such as smart airbag, driver assistant systems, pre crash systems, stop 
& go systems, pedestrian safety systems, emergency break systems, gesture recognition 
systems and so force (Ringbeck et al., 2007; Ringbeck & Hagebeuker, 2007; Buxbaum & 
Hagebeuker, 2005). Fig. 4 and Fig. 5 show some of the realized systems. In the next section a 
developed PMD TOF vision system usable for pedestrian detection, stop & go and pre crash 
application is exemplary presented. 
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Fig. 4. Smart airbag application using a PMD TOF vision systems (Hussmann & Hess, 2006) 

 
Fig. 5. Gesture recognition using a PMD TOF vision systems (Hussmann & Hess, 2006) 
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4.2 PMD sensor system for automotive outdoor applications 
Fig. 6 shows a PMD sensor system for automotive outdoor applications. This ‘A-Muster’ 
camera is designed to demonstrate solutions for several front view applications such as 
Stop&Go, PreCrash and Pedestrian Safety. The non-ambiguity range (NAR) of the sensor 
system is 120 m using a modulation frequency of 6,2 and 7,5 MHz. This range is the maximum 
possible measuring range if enough illumination power is available. To achieve a measuring 
range as close as possible to the NAR, additional IR-illumination sources can be implemented 
inside the head lights to increase the transmitted power. For a typical measurement range of 
10 m an illumination source with a power rating of 1 W optical power is placed beside the 
camera system inside the car as shown in Fig. 6 (c). For a measurement range above 35 m a 
more powerful illumination source has to put into the front of the car as shown in Fig. 6 (b). 
The range resolution for both measurement ranges is ± 10 cm. 
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Fig. 6. Illustration of a PMD TOF vision systems for several automotive outdoor applications 
(a) ‘A-Muster’ PMD camera and PCB with the PhotonICs® PMD 1k-S (64 x 16 Pixel) 
(b) IR-LED Headlights (8 W) 
(c) Internal car setup (PMD camera + 1 W IR-LED illumination source) 
(d) Schematic of overall car setup options 
The PMD camera delivers an evenly distributed range image of the observed scene in front 
of the car. The field of view of the observed scene depends on the chosen optic and the 
active illumination source and has to be adapted to match the requirements for the 
implemented outdoor application (Stop&Go, PreCrash and Pedestrian Safety).  
Fig. 7 shows the processing chain of the PMD TOF vision system. The pre-processing of the 
camera’s row data is simple and does not require a powerful processing unit. Only the range 
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and intensity values are calculated as derived in section 3. Furthermore the verification and 
selection of the feasible range values and the illumination control are processed in this stage. 
A clear range image is the result of this stage. In the next stage object segmentation and 
detection algorithm determined the objects in front of the car. The implemented software 
varies depending on the chosen application. The output of this stage results in an object list. 
The dynamical objects in the observed scene are tracked in the next stage and a decision is 
made based on the dynamical objects’ position to activate or not activate the actuators. This 
decision can be confirmed by collected and fused data of other sensor systems. 
 

 
Fig. 7. Processing chain of the PMF TOF vision system 

      
  (a)                (b) 
Fig. 8. Experimental results of an observed traffic scene with the PMD TOF vision system  
(a) Range raw data and the resulting object presentations in a virtual 3D space 
(b) Conventional video image with chronological superimposed object visualization 
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Fig. 7. Processing chain of the PMF TOF vision system 
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Fig. 8. Experimental results of an observed traffic scene with the PMD TOF vision system  
(a) Range raw data and the resulting object presentations in a virtual 3D space 
(b) Conventional video image with chronological superimposed object visualization 
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In the following figures the raw data and the resulting object representations of the PMD 
TOF vision system are depicted at different traffic scenarios. The position of the objects is 
detected in the 3D space. The position changes are used to determine the motion vectors. 
Now the objects can be tracked and identified in the observed traffic scenes. This process is 
illustrated in Fig. 8. Three pedestrians are identified as relevant objects and their position are 
determined, visualized and tracked. 
 
 

    
    (a)                (b) 

    
     (c)               (d) 
Fig. 9. (a) Range raw data and the resulting object representation of a roller skater (green 
rectangle in the red circle) after he entered the field of view of the PMD TOF camera  
(b) Conventional video image with chronological superimposed object visualization of the 
roller skater (yellow rectangle in the red circle) 
(c) Range raw data and the resulting object representation of the roller skater at 30 m (green 
rectangle in the red circle) as well as the tracked way (blue line) 
(d) Conventional video image with chronological superimposed object visualization of the 
roller skater (green rectangle in the red circle) 
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Due to the computational efficient and simple processing chain of the PMD TOF vision 
system (see Fig. 7), the image processing algorithms are simple and fast. Hence a fast object 
tracking is possible. Fig. 9 shows a roller skater who is detected and tracked as a relevant 
object over a range of 30 m. The decision if the roller skater is a relevant object is made 
straight after he entered the field of view of the PMD TOF camera. This proofs the speed of 
the processing chain of the PMD system. 
The tracking of relevant objects is not only possible at low car speeds but also at high car 
speeds for example on the motorway. Fig. 10 shows the performance of the object tracking 
on the motorway of the PMD TOF vision system. It has to be noted that the tracking at 50 m 
is successful even when the objects are represented by only a few pixels as shown in 
Fig. 10 (b). This accuracy is only possible because every pixel delivers a range value besides 
its intensity value. This inherent feature of the PMD TOF vision system distinguishes the 
PMD technology from typical SV vision systems. 
 
 
 

    
 
         (a)               (b) 
 

Fig. 10. Object tracking on the motorway using the PMD TOF Vision system 
(a) Range raw data and the resulting object representation of cars on the motorway at 
different ranges (green rectangles) as well as their tracked ways (blue lines)  
(b) Conventional chronological video image 

5. Conclusion 
In this chapter we compared conventional stereo vision systems with time-of-flight vision 
system and highlighted the advantages and disadvantages of both systems. The new PMD 
technology represents a TOF vision system with many advantages in comparison to 
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needed for the design of such a system are derived and demonstrate the simplicity of the 
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extraction of the range information. A PMD camera delivers absolute geometrical 
dimensions of objects without depending on the object surface, - distance, -rotation and –
illumination. Hence PMD TOF vision systems are rotation-, translation- and illumination 
invariant.  
The major advantage of the PMD technology is the delivery of an evenly distributed range 
and intensity images because each pixel calculates a range and intensity value. Hence the 
correspondence problem of conventional stereo vision system does not exit. Another 
advantage of the PMD technology is that the field-of-view can easily extended by varying 
the modulation frequency without any special optical components. However, the range 
resolution depends on the chosen modulation frequency. The higher the modulation 
frequency the better the resolution and the smaller the measuring range. The range 
resolution depends also on the power rating of the used active illumination source. 
Furthermore it has been shown that the range data of the 3D-TOF camera is almost 
independent on the reflection coefficient of the measured objects if a phase-shift algorithm is 
used. The PMD technology has an inherent suppression of uncorrelated light signals such as 
sun light or other modulated light disturbances. However if those light sources saturate the 
sensor, the range information is lost. More advantages of a PMD technology are the 
acquisition of the intensity and range data in each pixel without high computational cost 
and any moving components as well as the monocular setup. 
All these advantages lead to a compact and economical design of an automotive 3D TOF 
vision system with a high frame rate. This vision system can be used for many different 
applications such as smart airbag, driver assistant systems, pre crash systems, stop & go 
systems, pedestrian safety systems, emergency break systems, gesture recognition systems 
and so force. In this chapter experimental results of a PMD TOF vision system for 
automotive outdoor applications such as Stop&Go, PreCrash and Pedestrian Safety are 
presented and demonstrate that the accuracy of the system is appropriate to fulfil the tough 
target settings in the automotive industry. 
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1. Introduction 
These days, computerization of our living environment is progressing, and the home 
appliances are becoming more intelligent and function-rich. On the other hand, the increase 
of their functions makes their operation complicated. For such appliances frequently used in 
everyday life, intuitive operation is desirable for users. Gestures, which we use frequently 
and intuitively in our everyday communication, can be one of such human-machine 
interfaces. Until now, many studies which recognize gestures from a sequence of images 
have been reported (V. I. Pavlovic et al., 1997). A shortage of many of the gesture 
recognition studies is that the place where gestures can be recognized is limited and thus 
they are not suitable for practical applications. There is a trend of studies to make a room or 
some space itself intelligent (A. Pentland, 2000), (M. Coen, 1999), (Brumitt, B. et al., 2000), (T. 
Mori & T. Sato, 1999), (J. H. Lee & H. Hashimoto, 2002). This approach is effective for 
realizing natural human-machine interface. Gesture recognition is one of the important 
technologies for such an intelligent room or space. We are also constructing an intelligent 
room in which an operator can control home appliances such as a TV set with intuitive 
gestures (K. Irie et al., 2004). Characteristics of our intelligent room are that, it focuses on 
operation of home appliances, it allows users to operate without restriction to the place and 
without having any instrument, and it uses pan-tilt-zoom cameras only as sensor 
information. 
In this paper, we discuss three dimensional (3D) measurement of the intelligent room using a 
distributed camera system, especially 3D measurement of hand waving and finger pointing. 

2. Outline of intelligent room to operate home appliances 
The intelligent room in this paper has some intelligent functions that are intended for a 
general house or an office. In the room, we can operate home appliances such as a television 
set and a lighting by gestures. The operator (i.e., a person with an intention to operate an 
appliance) does not need a special attachment such as a glove or a microphone and can 
make operations in a natural state. The room specifies the operator autonomously even 
when two or more persons exist. The operator can make operations wherever in the room 
without any restriction. Gestures in the room are supposed to be by a hand or fingers. 
The room carries CCD cameras with pan, tilt, and zoom functions, and detects an operator 
and recognizes his/her gestures autonomously with them. Fig.1 shows the conceptual 
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figure of the intelligent room. First, the system performs ”detection of waving hands” with 
two or more cameras to detect the operator and then acquires 3D position information. It 
carries out pan, tilt and zooming-up of the cameras with the 3D information and restricts the 
region to process. Then it extracts a hand region using the  color information. The skin color 
of the operator is registered in this stage, which improves the robustness of extracting the 
hand region to the difference of individual skin colors and the change of lighting 
environment. Then gestures are recognized for the hand region that is extracted using the 
color information. The recognized result is presented on a PC monitor and by a speaker, and 
interaction by the operator is made possible. Based on the recognized operation, a control 
signal is transmitted to the target appliance by the infrared remote controller connected to 
PC. For example, turning on/off the TV set, inputting the channel and turning up/down the 
volume using gestures are possible. 
 

 
Fig. 1. The conceptual figure of our intelligent room 

3. Field of view of Pan-Tilt-Zoom camera 
The camera’s field of view is an important parameter to use in the intelligent room. When 
watching the wide space to find an operator, it should be wide. At the same time, too wide 
field of view is not appropriate for detecting a waving hand. And when focusing on the 
detected operator to recognize his/her gestures, the field of view should be narrow enough. 
These days several kinds of pan-tilt-zoom cameras are commercially available. Pan, tilt and 
zoom of these cameras can be controlled by a PC, and these cameras are suitable for usage in 
the intelligent room. For example, Sony EVID100, which we adopted in our intelligent room, 
has 10X optical zoom and its horizontal field of view varies from 65 to 6.6[deg]. Other pan-
tilt-zoom cameras have similar zoom specifications. Suppose four cameras are set at the 
corners of a square room and the field of view is 65[deg]. Then the room is covered by the 
cameras’ field of views as shown in Fig.2. It can be seen that the room is mostly (95.8[%]) 
covered by two or more cameras, which means that 3D measurement is possible almost 
everywhere in the room. 
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And as for detecting a waving hand, suppose the horizontal number of pixels of the low-
resolution image is 25, the width of hand waving is 0.3[m], and the observed hand waving 
should be equal to or larger than 1[pixel] of the low-resolution image. Then the distance to 
the waving hand can be up to 5.9[m], which is long enough in an ordinary room. 
And when the field of view is set to the narrowest 6.6[deg], the corresponding size at the 
distance 5.9[m] becomes as small as 0.58[m], which means that a hand or other regions can 
be observed large enough. 
Fig.3 shows an example. The two images are captured with the widest and narrowest field 
of view at 5[m] respectively. We can see this kind of camera is suitable for both watching the 
whole scene and recognizing each person’s gesture. 
 

 
Fig. 2. Covering of a room by the field of view of four cameras 

   
                     (a) widest field of view                                    (b) narrowest field of view 

Fig. 3. Range of field of view of a pan-tilt-zoom camera EVI-D100 at 5[m] 

4. 3D Measurement of waving hands 
The 3D position of waving hands is measured by detecting it with two or more cameras. 
4.1 Outline of detecting waving hands 
We use hand waving to detect an operator in the intelligent room. For human-human 
interface to communicate one’s intention to other person, hand waving is often used and 
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signal is transmitted to the target appliance by the infrared remote controller connected to 
PC. For example, turning on/off the TV set, inputting the channel and turning up/down the 
volume using gestures are possible. 
 

 
Fig. 1. The conceptual figure of our intelligent room 

3. Field of view of Pan-Tilt-Zoom camera 
The camera’s field of view is an important parameter to use in the intelligent room. When 
watching the wide space to find an operator, it should be wide. At the same time, too wide 
field of view is not appropriate for detecting a waving hand. And when focusing on the 
detected operator to recognize his/her gestures, the field of view should be narrow enough. 
These days several kinds of pan-tilt-zoom cameras are commercially available. Pan, tilt and 
zoom of these cameras can be controlled by a PC, and these cameras are suitable for usage in 
the intelligent room. For example, Sony EVID100, which we adopted in our intelligent room, 
has 10X optical zoom and its horizontal field of view varies from 65 to 6.6[deg]. Other pan-
tilt-zoom cameras have similar zoom specifications. Suppose four cameras are set at the 
corners of a square room and the field of view is 65[deg]. Then the room is covered by the 
cameras’ field of views as shown in Fig.2. It can be seen that the room is mostly (95.8[%]) 
covered by two or more cameras, which means that 3D measurement is possible almost 
everywhere in the room. 
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And as for detecting a waving hand, suppose the horizontal number of pixels of the low-
resolution image is 25, the width of hand waving is 0.3[m], and the observed hand waving 
should be equal to or larger than 1[pixel] of the low-resolution image. Then the distance to 
the waving hand can be up to 5.9[m], which is long enough in an ordinary room. 
And when the field of view is set to the narrowest 6.6[deg], the corresponding size at the 
distance 5.9[m] becomes as small as 0.58[m], which means that a hand or other regions can 
be observed large enough. 
Fig.3 shows an example. The two images are captured with the widest and narrowest field 
of view at 5[m] respectively. We can see this kind of camera is suitable for both watching the 
whole scene and recognizing each person’s gesture. 
 

 
Fig. 2. Covering of a room by the field of view of four cameras 

   
                     (a) widest field of view                                    (b) narrowest field of view 

Fig. 3. Range of field of view of a pan-tilt-zoom camera EVI-D100 at 5[m] 

4. 3D Measurement of waving hands 
The 3D position of waving hands is measured by detecting it with two or more cameras. 
4.1 Outline of detecting waving hands 
We use hand waving to detect an operator in the intelligent room. For human-human 
interface to communicate one’s intention to other person, hand waving is often used and 
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thus it is thought to be appropriate to use in the intelligent room, too. The outline of the 
method to detect waving hands (K. Irie & K. Umeda, 2002) is as follows (see Fig.4). The 
images are converted to low-resolution ones, and FFT is applied to each pixel of the low-
resolution images. Pixels with high power at the frequencies of hand waving are detected as 
the pixels of hand waving. The method is robust to lighting condition and individual 
difference of skin color, because it uses intensities only. 
 

 
Fig. 4. Detection of hand waving using FFT 

4.2 Calibration of the cameras 
The intrinsic and extrinsic parameters of the cameras are obtained by the following 
calibration method that uses a known pattern (O. Faugeras, 1993). 
1. Obtain the projection matrix between the 3D points and their projected points on a 2D 

image. 
2. Obtain the intrinsic and extrinsic parameters from the projection matrix. For the point 

on the image plane Tvu ]1[~ =m and the point in 3D space TZYX ]1[~ =M , the 
projection equation for the perspective projection is expressed as 

 [ ]MtRMPm ~,~~ As ==  (1) 
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When P is obtained, the matrix A that consists of intrinsic parameters, and the rotation 
matrix R and the translation vector t that are extrinsic parameters, are calculated. 
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4.3 Stereo vision 
3D coordinates of the matched point are obtained from the projection matrices of the two 
cameras. When a 3D point is observed by camera i at mi = [ui vi]T , 

 MPm ~~
iiis =  (3) 

is satisfied. Then for 2 or more cameras, 

 BM = b (4) 

is introduced. The 3D coordinates M of the point is given by least squares method as 

 M = B+b (5) 

5. 3D measurement of finger pointing 
We often point at an object with a finger to select it. Therefore, we use finger pointing in the 
intelligent room to select an appliance. When it is observed by two cameras, 3D finger pointing 
can be obtained. Then the object that is closest to the pointing is selected and is operated. 
The 3D pointing is obtained as follows. When a finger, hand or arm region is extracted in 
each image by using skin color extraction, the 2D pointing can be obtained as the principal 
axis of the extracted region as shown in Fig.5. Here we use the extracted skin color region 
without distinguishing whether it is a finger, hand or arm. Furthermore, when a face region 
is also extracted, utilizing the vector from the face region to the hand region as the pointing 
is possible as shown in Fig.5(b). 

 
                            (a) hand only                                   (b) hand and face 
Fig. 5. Measurement of 2D pointing 

The principal axis and the origin of the camera makes a plane in 3D space. When such a 
plane is obtained by two cameras, the 3D pointing can be obtained as the intersection of the 
two planes as shown in Fig.6. 
The normal vector of the plane in Fig.5 becomes 

 [ ]Tbff −= θtanN  (6) 
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When P is obtained, the matrix A that consists of intrinsic parameters, and the rotation 
matrix R and the translation vector t that are extrinsic parameters, are calculated. 
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can be obtained. Then the object that is closest to the pointing is selected and is operated. 
The 3D pointing is obtained as follows. When a finger, hand or arm region is extracted in 
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axis of the extracted region as shown in Fig.5. Here we use the extracted skin color region 
without distinguishing whether it is a finger, hand or arm. Furthermore, when a face region 
is also extracted, utilizing the vector from the face region to the hand region as the pointing 
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Fig. 5. Measurement of 2D pointing 

The principal axis and the origin of the camera makes a plane in 3D space. When such a 
plane is obtained by two cameras, the 3D pointing can be obtained as the intersection of the 
two planes as shown in Fig.6. 
The normal vector of the plane in Fig.5 becomes 
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 Stereo Vision 

 

126 

where f is the focal length of the camera, θ represents the direction in 2D, and b is the v-
intercept. By multiplying RT, the transpose of the rotation matrix R in eq.(2), the normal 
vector in the world coordinate system is obtained. Then the 3D pointing direction is 
obtained as the outer product of the two normal vectors. 
Yamamoto et al. (Y. Yamamoto et al., 2004) realizes selection of appliances by arm pointing 
using multiple stereo cameras. Our method does not use stereo cameras but multiple 
monocular cameras to realize the 3D measurement of finger pointing. 
 

 
Fig. 6. Measurement of 3D pointing 

6. Experiments 
The experiments were performed with the constructed intelligent room illustrated in Fig.1. 
Fig.7 shows the overview of the experiments. MVTec Halcon is used for image processing 
and other calculations and controls are performed by a DELL PC (Pentium 4 2.2GHz). Three 
SONY EVI-D100 CCD cameras were set at the corners of a 6.9 × 7.8[m2] room, at 2.3[m]  
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Fig. 7. Overview of experiments for operating home appliances 
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height. The three images from the three cameras are composed by a Panasonic WJ-MS488 
picture division unit and inputted into the PC with a Leutron PicPort Color image capture 
board (640 × 480[pixel]). A Sugiyama Electron Crossam 2+USB infrared remote-controller is 
used that can be controlled by the PC to operate home appliances. 

6.1 Measurement of 3D position of hand waving 
This experiment was carried out with the two cameras of the intelligent room. Fig.8 shows 
an example of detected hand waving by two cameras. The zoom was set to the widest. 
Fig.9 shows the results of error analysis. The hand waving at every 0.5[m] positions for x 
and y directions was detected. Hand waving was carried out by one subject 5 times for each 
position with changing the height. The error bars are the standard deviations. The results 
show that the errors are about 0.1[m], which is small enough for obtaining the 3D position of 
the operator in the room. 
 

 
Fig. 8. Example of detected hand waving by two cameras 
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Fig.9. Measurement of position of hand waving 
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6.2 Measurement of finger pointing 
The experiments were performed as shown in Fig.10. The angle between the camera 3 and 
the pointing direction  was changed every 15[deg] from 0 to 180[deg]. The angle of 
elevation of the pointing direction β was fixed to 0[deg], i.e. parallel to the floor. Fig.11 
shows an example of detected pointing in the images. As can be seen, the vector from the 
face region to the hand region was used as the pointing. Fig.12 shows the results of the 
accuracy of detected pointing direction. The best result in the results by three pairs of 
cameras was selected. 
It is shown that the pointing direction was roughly acquired. The reason β has some bias is 
utilizing the vector from the face region to the hand region as the pointing. However, this 
was more robust than using the principal axis of the extracted hand region. 
 

 
Fig. 10. Experimental condition of measuring pointing direction 
 

  
                               (a) camera 3                                              (b) camera 2 
Fig. 11. Example of detected pointing using face and hand regions 
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Fig. 12. Experimental results of measuring pointing direction 

7. Conclusion 
We have discussed three dimensional (3D) measurement of the intelligent room using 
cameras with pan, tilt and zoom functions. Concretely, 3D measurement of position of 
operator’s waving hand and finger pointing to select an appliance were proposed. 
Additionally, we showed that the pan-tilt-zoom camera is appropriate to use in the 
intelligent room. Experiments verified the effectiveness of the proposed 3D measurement 
methods. Future works include more experimental evaluation, and improvement of the 
intelligent room. 
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1. Introduction    
Monolithic integration of stereovision can make a contribution in today's solutions where 
main limitations are size, power consumption and deployment. Some emergent applications 
are not equipped with 3D capabilities although the demand is increasing. 
One of these applications is 3D-endoscopy which claims good accuracy, small volume, and 
high autonomy in terms of power consumption and operation. Integrated stereovision used 
in the medical world and especially for the diagnosis of pathologies of the digestive tract 
gives an additional advantage for the gastro-enterologists in the observation of malignant 
tumors. In 3D endoscopy, integrated stereovision satisfies four essential needs: 
Firstly, precision of diagnosis is required, more exactly the accuracy in the evaluation of the 
carcinoma size. Without a real 3D representation, estimations are done roughly due to the 
lack of information (depth parameter) and are defined by the experience of the expert rather 
than by the system itself. At the present time only an invasive exploration allows an exact 
location and measurement of tumor size. 
Secondly, integrated stereovision meets a growing public need. Improvement in healthcare 
provides to the population some well-being and people live longer. The diagnosis of early 
forms of cancer of the digestive tract takes part in the well-being of aged people: the sooner 
a sick person is treated, the earlier he can recover. In the case of endoscopy, the French 
Company of Digestive Endoscopy (SFED) stresses in 2006 that the use of endoscopy is 
increasing: 2.7 million examinations were carried out, 70000 new digestive cancers were 
discovered and almost 900000 polyps colics were removed. Various types of endoscopy 
(E.O.G.D, Coloscopy, enteroscopy…) give only planar vision of the digestive tract. The 
contribution of the 3rd dimension would be an important advantage in the diagnosis of 
pathology. 
Thirdly, integrated stereovision also meets a need for freedom: freedom of movement, 
freedom to be at home and not in a hospital. The patient swallows the capsule and he can go 
back to his activities. Optimization of the dimension of the capsule, autonomous operation 
and long battery life of the sensor are essential constraints. 
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Finally, integrated stereovision meets economic needs: the number of examinations 
increases with the growing of old population. To optimize the cost, an early endoscopy 
would make it possible to improve the forecast and better cure the patient at the beginning 
of his disease, which reduces the costs of treatment. The sensor has to be low cost to be 
autonomous. 
Another emergent field in which the integrated stereovision can contribute is cartography of 
dangerous or less accessible areas such as disaster areas, caves, surface of an asteroid or 
battle fields. This cartography is an aid to navigation of rescuers, robots, drones… 
Traditional image sensors do not allow us to know the dimension of a scene or to know the 
distance to the viewed objects. The interest of an integrated stereovision is that it recovers 
extra information characterizing the scene and its objects, in a 3D world. 
For example, drones are useful in reconnaissance operations in confined surroundings, like 
industrial buildings, caves or houses. In these places, the drones are equipped with 
stereovision and can carry out photos of its surrounding area and then set up a 3D map, but 
it is helpful to use the furnished information to help itself for stabilization… 
Another way of scoping out unknown areas quickly is to scatter a great number of 
stereovision sensors and thus to create a wireless network of sensors.  These sensors can be 
easily disseminated on the location of study and supply a maximum of information for 
mapping danger zones or less accessible fields, like the zones of natural disasters or planets 
and asteroids. 
The ideal 3D integrated sensor has to show a great autonomy, a good accuracy of 
rebuilding, good performance, a reduced size and low cost. Now, let us look the state of the 
art in the following chapter. 

2. State Of Art: the integrated vision and 3D reconstruction 

 
Fig. 2.1. Wheatstone’s stereoscope in 1838 

With the time, we had more and more needs to be able to realize a 3D representation of a 
scene. The advanced in the electronic vision and the image processing domain have allowed 
the discovery of many important solutions. The first main work in the stereovision was 
managed by Marr [Marr & Poggio, 1979] in the end of the year 70. These research were fixed 
on the calculator analyse of the human brain and particularly for the vision.  
So today there are many method of rebuilding a scene in three dimensions [Song & Wang, 
2006][Szeliski, 2000][Vézien, 1995][Chen & Li, 2003]. The figure 2.2 shows a ranking of the 
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Since several years, the dynamics of research in this domain is such that many and robust 
methods to return the relief have been developed with success. For examples, the passive 
[Belhumeur, 1993][Cochran & Medioni, 1992] and active [Hyun & Gerhardt, 
1994][Valkenburg & McIvor, 1998] stereoscopic methods or methods based on time of flight 
of a light pulse (monochromatic waves)[Gokturk et al., 2004][Gruss et al., 1991][Lange & 
Seitz, 2001]. Nevertheless, these methods are costly in material and/or temporal resources 
thus limiting their application in emergent domain such sensor networks for distributed 3D 
cartography, that could be used for the characterization of an asteroid [Stooke, 1991] and in 
vivo 3D endoscopy where an important depth and shape information can be added to 2D 
vision systems as the PillCam by GivenImaging [GivenImaging, 2005]. In fact, the 
continuous evolutions in the microelectronic domain allow an augmentation of the 
integration density. This density is such that it’s possible to design integrated systems which 
realize more complex function on a silicon surface in constant decline. These Systems on 
Chip (SoC) perform the functions of a complete system. In parallel, the Vision Systems on 
Chip, or electronic retina [Pinna, 2003], were develop. The VSoC regroup all the needed 
functions for the vision. The processing capabilities and architectures that can be attached to 
such systems have been studied by A.Moini [Moini, 1999]. Unfortunately, sometime it’s 
impossible have many functions on the same chip which is implement with different 
technology in order to optimize their performances. For this case it exist another solutions to 
arrive to the same level of integration. The Multi chip Component (McM) or the System in 
Package (SiP) [Song et al., 2003] allow to regroup on the same substrate or package many 
functions which is realize in different technology. A such approach allows the cohabitation 
of digital processing units in CMOS with telecommunication or vision unit (SiGe or AsGa). 
An other form of integration was presented as the ultimate level of integration by Tummala 
[Tummala, 2005/2006] in order to join the Law of Moore. It is the System on Package, SoP. 
This approach aims to bring together the various components of technology to smaller 
dimensions that integrate new functions of communication while being as effective as 
possible (fig.2.3). 
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Finally, integrated stereovision meets economic needs: the number of examinations 
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Fig. 2.3. SOP Integration by R.Tummala 

                                             
Fig. 2.4. PillCam by GivenImaging 

A perfect example of VSiP is the endoscopic capsule. GivenImaging developed the project 
PillCam [GivenImaging, 2005] for the human body exploration. This capsule is designed for 
examinations that could not be achieved by a classic analysis such the exploration of the small 
intestine. Once ingested, the PillCam begins to take pictures from inside the digestive system 
at a rate of two frames per second. For that it combines a CMOS imager, a light source, a unit 
of telecommunications to transmit the acquire picture and a battery. Unfortunately, the 
integrated 3D reconstruction into the form of SiP or SoC know a real delay. However, there is a 
lot of work along these lines we offer systems more and more miniaturized.  
 

 
Fig. 2.5. SwissRanger SR3000 by CSEM 
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CSEM in Switzerland developed a 3D vision sensor based on the phase-measuring time-of-
fly principle. The SwissRanger SR3000 [Oggier and al., 2006] looks like an autonomous 
module (fig2.) and is composed by three blocks: an integrated 3D-TOF image sensor, a 3D-
camera electronics block with supplied power and a illumination blocks composed by 55 
LEDS with a central wavelength of 850nm. 
 

  
Fig. 2.6. Photograph of the PCB stack as implemented in the SR3000 camera 

A light source emit a wave in the near-infrared which is intensity modulated with a few tens 
of MHz. When the wave reaches the scene, it is reflected. The result of the acquisition is a 
depth map on which we can apply the texture of the scene (fig.2.). Images processing are 
apply in the system in order to determinate in real time the quality of the information and if 
it is needed to apply a first filter or dedicated algorithms. The transmission protocol is the 
USB2.0 by default but it can be easily modified in order to by adaptable to owner utilization. 
 

  
Fig. 2.7. Texture and Depth map of the SR3000 camera 

An approach of passive stereoscopy has been presented by K.Konolige [Konolige]. And 
again it is not really going on the integrated system but on miniaturization. This project, the 
SRI Small Vision Module (SVM), is based on the principle of passive stereoscopy; it means 
that the information of distance comes from analysis of the scene from two different points 
of view. In this case the system embeds an algorithm of disparity on the picture with 64 
levels (fig. 9). To realize this, the hardware consists of two CMOS 320x240 grayscale imagers 
and lenses, low-power A/D converters, a digital signal processor and a small flash memory 
for program storage. There are also a parallel port for the communication with the host 
machine and display. 
This state of arts proofs that the microelectronic progresses permit to grow considerably an 
integration density on silicon. So it is possible from now on to make up systems which 
include multiples complexes functions using in the same time reduced silicon. There exist 
the numerous applications which can have benefit of this progress such as the endoscopies 
or sensors networks. Actually the application field of existing systems was too restricted 
because of their size or consummation but the integration in form of SoC, Sip or SoP gives a 
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new solution opening the way to emergent applications. The systems of integrated vision 
are increasingly developing for all kind of using like in medical area or even for the drone 
navigation. Unfortunately, the integrated stereoscopy is rarely today but it stays a challenge. 
In fact the 3D reconstruction systems are for the moment not more than the miniaturized or 
embedded systems. This chapter will follow up with the presentation of the adapted 
methods of reconstruction to the integration and an integrated 3D vision sensor able to 
answer on the real time restriction using perfectly controlled process of fabrication based on 
the standard Si technology. 
 

 
Fig. 2.8. Implemented images processing algorithm 

3. Active vision and calibration 
In this chapter we present the mathematical background for active vision system modeling. 

3.1 System description 
The active vision system is composed of an image sensor (a CMOS camera) and a structured 
pattern projector. The patterns studied here, are simple geometrical pattern obtained with a 
laser source and an optical diffraction head. This structure generates a repetitive geometrical 
pattern from a simple geometrical primitive. The primitives used in the pattern generator 
can be as simple as lines or dots. 
The projector has to be simple in order to fit in the constrained size package of the 
embedded system. Thus complex pattern generators which can use DLP (as the ones used in 
video projectors) are excluded. The projected pattern considered hereafter is the simplest 
one, a mesh of regularly distributed points. 
A multispectral approach with an IR (Infra–Red) projector and a multispectral (IR and 
visible images) CMOS sensor allows to grab simultaneously an image of the projected 
pattern and the scene texture. This is important for real time 3D generation but not only. 
Indeed, the multispectral approach helps to get easily a filtered image of the IR pattern. 
The camera and the projector are considered rigidly fixed together fig.3.1 and the physical 
dimensions of the system do not change. This is important to allow off-line calibration of the 
vision system. 
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Fig. 3.1. Active stereoscopic system 

The 3D reconstruction is achieved through triangulation fig.3.3. Each point of the projected 
pattern on the scene is the intersection of two lines: 
• The line of sight, passing through the pattern point on the scene and its projection in the 

image plan. This line can be defined with the intrinsic and extrinsic parameters of the 
camera’s pinhole model.  

• The laser ray, starting from the projector center and passing through the chosen pattern 
point. This line can be defined by the projector parameters (position of the center and 
the angles between the rays). 

The “a priori” knowledge of the stereoscopic system characteristics and the projected 
pattern structure, allows us to recover the distance to a projected spot of the pattern on the 
scene, from its image coordinate. The pattern simplicity implies correspondence ambiguities 
[Battle et al., 1998][Salvi et al., 2004][Salvi et al., 1998]. Indeed, we can not distinguish 
between laser spots in the scene from their shape or color. To solve the correspondence 
ambiguity problem, we use the epipolar constraint: 
A laser impact can only belong, in the image, to the projection of the line supporting the 
laser ray. This projection represents the epipolar line [Faugeras, 1993]. We can thus simplify 
the correspondence search, limiting it to this line (one dimension search).  

3.2 Calibration methods: 
In this part we present two different calibration methods. Both allow us to obtain the 
correspondence between the position of the laser spots in the image and the distance to the 
object on which the laser is projected. We also obtain the epipolar lines equations to 
distinguish between the laser spots. 
The first calibration method is described in [Marzani & Voisin, 2002]. Here we take several 
pictures of the pattern projected on a plan at different distances. As this method uses a big 
number of experimental points, it gives quite accurate models. 
The second is analytic and has the advantage of only needing a unique picture shot to obtain 
the same results. We use here a calibration chart to calibrate the camera and the whole 
stereoscopic system and obtain thus a complete model describing the stereoscopic system. 
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3.2.1 1st method: Macroscopic method 
Epipolar model 
The pattern is projected on a plan surface parallel to the image plan. The projection plan is 
moved to different depth and each time a picture is taken. We thus obtain a set of points 

 where j,k Є [1;7] are the position in the pattern mesh and  references the image 
shot. These coordinates are expressed in pixel in the image. We can then obtain for each 
laser ray (j ,k), the epipolar line equations by fitting to a linear model  

  (3.1) 
so  

  
or  

  
The parameters a and b are calculated by a mean square approximation [Marzani & Voisin, 
2002], as expressed in equation 3.2.  

 
(3.2)

Depth model 
In addition to the epipolar lines, we have to express the relation between the position of a 
laser spot in the image and its distance to the stereoscopic system.  
 

  
Fig. 3.2. Spot image movement vs. depth 
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If we consider a laser ray fig.3.2 projected on two different plans π1 and π2 located 
respectively at z1 and z1 from the projector/camera plan CP then, the trajectory d of the spot 
impact in the image (this displacement is constrained to the epipolar line corresponding to 
the laser ray). Considering the two triangles CPp1 and CPp2, we can express d as:  

 
(3.3)

Where B is the stereoscopic base and f focal length of the camera and d is the shift between 
the image positions (u1, v1) and (u2, v2) on the epipolar line.  

 
Given the epipolar line equation 3.1 we can have an expression depending only on one 
coordinate:  

 (3.4)

From the lasts equations 3.3, 3.4 and by choosing the appropriate referential origins, we can 
express the depth as a hyperbolic function of the u image coordinate, equation 3.5.  

 
(3.5)

Where the  and β parameters are also calculated using a mean square method.  

 
or  

 
and so  

 
where  is the inverse depths vector. 

3.2.1 2nd method: analytic method 
We aim here to obtain a more complete characterization of the whole stereoscopic system 
from an image in a single snapshot. 
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Camera calibration  
The projective model of the camera (considered ideal), also call pinhole model, links the 
coordinates of a point in the “world” referential to the image [Faugeras, 1993][Weng et al., 
1990][Battle et al., 1998][ Horaud & Monga, 1995]. It describes the relative position between 
the “world” and the image referential and the projection process. 
 

 
Fig. 3.3. Camera and World referential 

For commodity reasons, this model is expressed in homogeneous coordinate. Thus 
translations and rotations are represented by matrix to vector multiplications.  
The model can be split into two parts:  
Extrinsic model: Represents the relation between the chosen world referential Rw and the 
camera referential Rc (see fig.3.3). It expresses all the translations and rotations between the 
two referential. 

 
are respectively these rotations and the translation matrix.  
The transformation can be expressed in homogeneous coordinates as: 

  
Intrinsic model: Describes the projective imaging transformation. 
It links a point coordinate expressed in the camera referential with the image coordinate 
expressed in pixels. Figure 3.4 shows the projection process of a point  expressed 
in the camera coordinates. To simplify the representation only x and z axis are represented. 
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Fig. 3.4. Camera projection 

Oc is the camera optical center and O’ the projection of this center on the image plan which 
image coordinates are u0, v0. ( f) the focal length and (su × sv) the pixel size. 
We can express the image coordinate of the point: 

 
Using homogeneous coordinates we can express this last equation as: 

 
Where I is the intrinsic matrix, and λ = z is the projection proportionality reduction factor.  
The intrinsic matrix I  has a null column and so is irreversible which means that we can not 
retrieve the depth from the sole image coordinate.  
The global camera model is thus a matrix to vector multiplication connecting a point 
coordinates expressed in the “world referential” to the image coordinates expressed in 
pixels. 

 

(3.6)

Where  

 
is the fundamental matrix. 
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Where  

 
is the fundamental matrix. 
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We can rearrange equation 3.6 as:  

 
(3.7)

To obtain the necessary points for the fundamental matrix parameters estimation, we have 
design a new calibration 3D pattern fig.3.5 . 
 

  
Fig. 3.5. Calibration chart referential 

An automatic corner extraction, using Harris filter, from an image of the 3D chart, gives us 
enough points (184) for a robust estimation [Battle et al., 1998].  
Using this model we can obtain the line of sight from any point in the image and especially 
for the projected pattern points. Thus, for each pattern point , we determine the line of 
sight as an intersection between two plans as:  

 
(3.8)

 
Laser projector characterization: 
To validate experimentally the method, we have used a 7x7 laser matrix pattern. Each laser 
ray can be considered as the intersection of two supporting plans fig.3.6. Thus, we can 
define the 49 laser rays by the parameters of 7 horizontal plans (Hj) and 7 vertical plans (Vk).  
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To determine the plan parameters, we use an IR image of the laser pattern projected on the 
3D calibration chart The chart shape helps us to get easily the zi coordinate of each spot. 
The xi and yi coordinates are obtained from the image coordinate zi  and the fundamental 
matrix using (3.8). Arranging the equation, we obtain thus the xi and yi world coordinate of 
each point (3.10).  
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Furthermore, we can identify 7 points verifying each plan equation. So we can write for each 
horizontal plan:  
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We can rearrange equation 3.6 as:  

 
(3.7)
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The horizontal plans parameters can be finally obtained by:  

 
The same result can be obtained for the vertical plans:  

 
The determination of the plans parameters allows us to determine the projector center in the 
world referential. 
Indeed, this point is the intersection of all the horizontal and vertical plans, and verifies the 
equation 3.11. 

  

(3.11)

Depth recovery 
Once we have characterized the whole stereoscopic system (camera perspective model and 
the projector parameters), we can recover the coordinate of a laser spot (i) projected on any 
object from its image coordinate and the laser index (jk). 
Starting from the laser ray equation 3.9 we can express the  xi and yi coordinates as:  
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Where 

 . 
By replacing 3.12 in 3.7 we obtain the image coordinate (ui, vi) versus the depth zi.  

 

 
where  

 
Hence, by eliminating zi from the last equations we obtain the epipolar line equation:  

 
We identify the epipolar line parameters as in equation 3.1: 

 
 

We can also express the zi coordinate as a function of one of the image coordinate:  

  
Particular case:  
If there is no rotation between the image and the world referential and the  axis 
translation is null (as represented in fig.3.2). then, we have:  

 
and  
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the fundamental matrix will be  

  
with m31, m32 and m34  equal to zero and so  . 
Thus, by choosing a good physical configuration a relation, between the world coordinate z 
and the image coordinate u, equivalent to what expressed in 3.5. 

4. Cyclope 

  
Fig. 4.1.  Synoptic of Cyclope 

Cyclope is an integrated 3D vision system sensor based on active vision. It is composed of 
three essential parts: 
• An instrumentation block: for image grabbing and the generation of the structured light 

pattern.  
• A processing block: for control and data processing.  
• A RF block: for the transmission of the results and the dynamic OTA (Over The Air) 

reconfiguration.  
These parts are realized in different technologies: CMOS for the image sensor and the 
processing units; GaAs for the pattern projector and RF–CMOS for the communication unit. 
The monolithic integration of those elements is not feasible, this is why the development of 
an integrated "SIP" (System In Package) is actually the best solution to overcome the 
technological constraints and realize a chip scale package. This solution is used in several 
embedded sensors as The Human++ platform [Gyselinckx et al., 2005] or Smart Dust 
[Warneke et al., 2001] where digital processing has to cohabit with optical and wireless 
communication. In Cyclope, we have chosen the realization of an integrated system based 
on active vision. This choice is the consequence of two facts. The first is the real time 
processing that we would like to obtain. In active vision, a known pattern is projected on a 
scene, this projection belong a specific line denoted as epipolar line. This property is very 
interesting in real time processing, because it could reduce the complex problem of the 
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computation on the z coordinate to a simple problem of line computation. The second fact is 
that active vision simplifies the matching between a point and is projection, because the only 
points that we want to match, is the pattern points. 

A processing block 
As we define in the last part, we have a set of parameters for the epipolar and depth models. 
Those parameters are used on run time to make the point matching (identify the original 
position of a pattern point from its image) and calculate the depth using the appropriate 
parameters. 
The architecture is divided into two principal parts:  
• Pre-processing unit for low level image processing and feature extraction from the IR 

image.  
• 3D unit for point matching and depth calculation.  
Figure 4.2 shows the global processing architecture. A dual-port memory is used for image 
storage allowing asynchronous image acquisitions. The processing implemented in the Pre-
processing unit is thresholding, segmentation and spot center calculation. A FIFO allows the 
communication between the two units and a final storage FIFO allows communication 
toward an external UART. 
 

 
Fig. 4.2. Global processing architecture 

4.1.1  The 3D unit 
In this part we present the 3D extraction method for on line processing. To achieve this 
purpose, we have designed a parallel digital processing unit fig.4.3.  
After a pre-processing step, where the laser spot center is estimated from the IR image, the 
coordinate of each point are directed to the processing unit where the (z) coordinate is 
calculated. 
Starting from the point abscissa (u) we calculate its estimated ordinate (~v) if it belongs to 
an epipolar line. We compare this estimation with the true ordinate (v). 
These operations are made for all the epipolar line simultaneously. After thresholding the 
encoder returns the index of the corresponding epipolar line. 
The next step is to calculate the z coordinate from the u coordinate and the appropriate 
depth model parameters. 
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These computation blocs are synchronous and pipelined, allowing thus, high processing 
rates. 

 
Fig. 4.3. 3D unit 

4.1.2 Estimation bloc: 
 

 
Fig. 4.4. Estimation bloc 

In this bloc the estimated ordinate is calculated ~v=a.u+b . The (a,b) parameters are loaded 
from memory. 

4.1.3  Comparison bloc: 
 

 
Fig. 4.5. Comparison bloc 
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In this bloc the absolute value of the difference between the ordinate v and its estimation v  
is calculated. This difference is then thresholded. 
The thresholding avoids a resource consuming sort stage. The threshold was a priori chosen 
as half the minimum distance between two consecutive epipolar lines. The threshold can be 
adjusted for each comparison bloc. 
This bloc returns a '1' result if the distance is underneath the threshold. 

4.1.4 Encoding bloc: 
If the comparison blocs returns a unique ’1’ result, then the encoder returns the 
corresponding epipolar line index. 
If no comparison bloc returns a ’true’ result, the point is irrelevant and considered as picture 
noise. 
If more then one comparison bloc returns ’1’ then we consider that we have a 
correspondence error and a flag is set. The selected index is then carried to the next stage 
where the z coordinate is calculated. It allows the selection of the good parameters to the 
depth model.  
We have chosen to calculate (1/z) rather than z to have a simpler computation unit. This 
computation bloc is then identical to the estimation bloc. 

4.2  The instrumentation block 
4.2.1  An energetic approach 
Having opted for a laser pattern which give out in the near infrared spectrum in order to not 
misrepresent the scene, many classic solution were possible. We must acquire in the same 
time an image of the texture therefore in the visible spectrum, and an image of the projected 
pattern: 
• the utilization of a BAYER type optic filter (VI/IR) .  
• the conception of a CMOS imager which used a semiconductor technology with a near 

infrared spectral response [Pei et al., 2003] or by changing the depth and the nature of 
the junctions [David Starikov & Bensaoula, 2004] 

• made the separation of the spectra by electronic or image processing.  
Unfortunately none of these options could not completely satisfy us. Indeed, we wanted a 
solution easily implemented by simplifying the fabrication process and thus stay in a 
standard Silicon technology without any optic filter, adaptable to already existing systems 
by providing them with a 3D information without major changes, and finally be able to 
assure a classic video rate of 25 images per second.  
It is in this context that we opted for an original acquisition approach based on the 
energetic’s gap between the scene and the pattern and not based on the wave length.  
The idea is to project a pattern much more energetic than the texture could be and to modify 
the integration time of the imager in order to only acquire the projected pattern. And if is 
needed, we can also realized an image processing like a binarization. 

4.2.2  Image acquisition processing: 
To allow real–time acquisition of both pattern and texture, we have developed a multi-
spectral 64x64 pixels CMOS imager (fig. 4.6). This sensor has programmable light 
integration and shutter time to allow dynamic change. The projector pulses periodically on 
the scene an energetic pattern. An image acquisition with a short integration time allows to 
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grab the image of the pattern without the background texture. A second image acquisition 
with a longer integration allows to grab the texture when the projector is off. The figure 4.7 
shows the sequential scheduling of the images acquisition. To reach a video frame rate of 25 
images/s this acquisition sequence must be done in less than 40 ms. The global acquisition 
time is given in equation 4.1 where Trst is the reset time, Trd is the time needed to read the 

entire image and TintVI TintIR are respectively the integration time for both visible and IR 

image. 

 Ttotal=2⋅Trst+2⋅Trd+TintVI+TintIR (4.1) 

 

 
Fig. 4.7. Acquisition sequence 

5. Conclusion 
In this chapter we saw that the issues of the integrated stereoscopy are really important. 
Many of emergent domains such as the 3D endoscopy or network sensors for the 3D 
mapping directly depend on the advance of the integrated 3D vision because the existing 
solutions is limiting by their application domain, their size or autonomy and there are not 
suitable to an integrated use. The integrated 3D vision is able to give us a solution where it 
exist heavy material constraint but we need to develop special architectures and methods in 
order to have an efficiency solution.  
In order to have a complete view of this challenge, we proposed an integrated active 
stereoscopic vision sensor design for emergent domain and the mathematical model that we 
developed in order to be used in such applications.  Based on this model we have designed 
a processing architecture allowing a high integration level.  
We also proposed an original acquisition method based on the energetic’s gap between the 
texture and the projected pattern allowing an easily spectrum discrimination.   
The next step to this work is the chip level integration of both the image sensor and the 
pattern projector. Evaluate the power consumption of the pulsed laser projector considering 
the optical efficiency of the diffraction head. 
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1. Introduction 
The requirements for autonomous physical services supporting people have become more 
important in recent years in activities such as taking care of the elderly people, doing the 
housework, and giving a comfortable living environment. For this reason, our research is 
aimed towards design and implementation of a high-performance autonomous, distributed 
vision information system, which would be able to understand human behaviours and 
living environment, as a temporary substitute for a qualified nurse and housekeeper. 
The human-centred computation is proposed in the MIT Oxygen Project, (MIT, 2008). 
Furthermore, Hashimoto presented the concept of intelligent space: Intelligent Space can be 
defined as space with functions that can provide appropriate services for human beings by capturing 
events in the space and by utilizing the information intelligently with computers and robots, 
(Hashimoto, 2003). The Intelligent Space was treated as a platform, which supported people’s 
information and physical needs. It was the interface for both the humans and robots. 
The proposed Intelligent Vision Agent System, IVAS, is a high-performance, autonomous, 
distributed vision and information processing system. Figure 1 illustrates the idea of the 
IVAS. It consists of multiple sensors and actuators for surveillance of the human activities 
space involving humans and their surrounding environment including robots and 
household appliances etc. The system not only gathers information, but also controls these 
sensors including their deployment and autonomous servo. But first of all it is able to extract 
required information from images for different applications, especially for three 
dimensional (3D) reconstruction. The 3D information from a real scene of target objects can 
be compared with a pattern in order to make decisions. Meanwhile the pattern may also be 
renewed by the inclusion of a learning phase. These features require the system to 
dynamically adjust cameras to get optimised 3D information. The intelligent agent consists 
of a knowledge database, with learning and decision making components that can be used 
to track, recognize and analyze the objects. 
Similar to the human eyes, the stereo vision observes the world from two different points of 
view. At least two images need to be fused to obtain a depth perception of the world. 
However due to the digital camera principle, the depth reconstruction accuracy is limited by 
the sensor pixel resolution. The spatial quantisation is illustrated by iso-disparity maps. The 
iso-disparity surfaces approach, when calculating the reconstruction uncertainty, has been 
discussed by Völpel and Theimer, (Völpel & Theimer, 1995). The shape of iso-disparity  
surfaces for general stereo configurations was studied by Pollefeys & Sinha (Pollefeys & 
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surfaces for general stereo configurations was studied by Pollefeys & Sinha (Pollefeys & 
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Fig. 1. Overview of an Intelligent Vision Agent System 

Sinha , 2004) and Chen et al. (Chen et al., 2007c). The proposed mathematical model of iso-
disparity map provides an efficient way of describing the shape of iso-disparity surfaces, 
and estimating the depth reconstruction uncertainty which is related to the stereo pair 
baseline length, the target distance to baseline, focal length, convergence angle and the pixel 
resolution. 
The depth spatial quantization uncertainty, caused by a discrete sensor is one of the factors 
which has the most influence on the depth reconstruction accuracy. This type of uncertainty 
cannot be decreased by the reduction of pixel size since the signal to noise ratio is also 
reduced and the sensitivity of the sensor itself is restricted. The selection of an optimal 
sensor pixel is discussed by Chen et al., (Chen et al., 2000). 
The sensor planning by re-annealing software was introduced by Mittal, (Mittal, 2006)  and 
the evaluation of the sensors’ configuration by a quality metric was presented in (Chen, 
2002). A linear programming method to optimize sensor placement based on binary 
optimization techniques has been developed, (Chakrabarty et al., 2002; Hörster & Lienhart, 
2006; Erdem & Sclaroff, 2006). This is a convenient tool for optimising the visual sensors’ 
configurations when observing target space such as human activities space. Chen at al. 
described the optimization program for the 3D reconstruction of a human activity space, 
(Chen et al., 2007a; Chen et al., 2007b). The papers introduce the method of optimizing 
stereo pair configurations under the required constraints of stereo pair baseline length, 
visibility, camera movement and depth reconstruction accuracy. 
The first part of this chapter introduces a mathematical geometry model which is used to 
analyze the iso-disparity surface. This model can be used to dynamically adjust the 
positions, poses and baseline lengths of multiple stereo pairs of cameras in 3D space in order 
to get sufficient visibility and accuracy for surveillance, tracking and 3D reconstruction. The 
depth reconstruction accuracy is quantitatively analyzed by the proposed model. The 
proposed iso-disparity mathematical model presents possibility of reliable control of the iso-
disparity curves’ shapes and intervals by applying the systems configuration and target 
properties.  
In the second part of this chapter, the key factors affecting the accuracy of 3D reconstruction 
are analysed. It shows that the convergence angle and target distance influence the depth 
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reconstruction accuracy most significantly. The depth accuracy constraints are implemented 
in the model to control the stereo pair’s baseline length, position and pose. It guarantees a 
certain accuracy in the 3D reconstruction. The reconstruction accuracy is verified by a cubic 
reconstruction method. The optimization is implemented by applying the camera, object 
and stereo pair constraints into the integer linear programming. 

2. Quantized depth reconstruction uncertainty 
Two images are needed which are fused to obtain a depth perception of the world. Any 
point in the world scene is captured in these two images as corresponding points which lie 
on the corresponding epipolar lines. There are two terms related to the depth reconstruction: 
disparity and quantized depth reconstruction uncertainty. Disparity in our approach refers 
to the displacement of corresponding points along the corresponding epipolar lines for a 
common scene point, (Pollefeys & Sinha, 2004). In the case where epipolar lines are 
horizontal, the disparity is measured directly from the difference between the co-ordinates 
of the corresponding points. The inverse projection of all possible image points with the 
same disparity will allow reconstruction of the iso-disparity surfaces in 3D space. Quantized 
depth reconstruction uncertainty is defined as the interval between discrete iso-disparity 
surfaces due to the discrete sensor. 
The iso-disparity surfaces of a stereo pair may be simulated by the use of synthetic methods. 
However for planning real-time multi sensor systems, such simulation is time consuming 
and a simple mathematical model of the iso-disparity surfaces is needed. 
There are two configurations for a stereo pair in common use. The first simple configuration 
is a parallel stereo pair in which the optical axes of the cameras are parallel. The cameras 
may have the same focal lengths, or their focal lengths may be different, e.g. to get better 
reconstruction accuracy of a target placed at the boundaries of the cameras’ field of view, 
FoV. The second common configuration is the convergence stereo pair, where the optical 
axes cross at a fixation point. The simple mathematical models of the iso-disparity map for 
these configurations are analyzed in the following subchapters. 

2.1 The iso-disparity map of a parallel stereo pair 
From the geometry of a parallel stereo pair, two cameras with parallel optical axes and 
different focal lengths, fL and fR for the left and right camera respectively, the iso-disparity 
plane for disparity nΔD can be defined as: 
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where B is the baseline length, n is an integer and ΔD is the disparity resolution. 
The planes are shown as the thin green lines in Figure 2(a) and Figure 2(c). All the iso-
disparity planes intersect with the xy-plane (the stereo pair baseline is a part of the x-axis), 
and converge on a straight line: 
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It is clear from equation (1) that when the focal lengths are equal fL=fR=f, z becomes independent 
of x and the iso-disparity planes are parallel to the xy-plane, see the green lines in Figure 2(b). 
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where B is the baseline length, n is an integer and ΔD is the disparity resolution. 
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It is clear from equation (1) that when the focal lengths are equal fL=fR=f, z becomes independent 
of x and the iso-disparity planes are parallel to the xy-plane, see the green lines in Figure 2(b). 
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(a)   (b)    (c) 

Fig. 2. Iso-disparity planes for parallel stereo pairs from the synthetic simulation (the red 
lines) and a plot of the mathematical model from equation (1) (the green lines). The lines are 
plotted with steps of 10 pixels. (a) Cameras with different focal lengths, fL=3.5 cm, fR=3.0 cm 
for left and right camera respectively. The convergence point is (-195 cm, 0) on the xz-plane. 
(b) Cameras with the same focal length of 3.25 cm. (c) Cameras with different focal lengths 
fL=3.0 cm, and fR=3.5 cm for left and right cameras respectively, the convergence point is 
(195 cm, 0) on the xz-plane. 

From the inverse projection of the image points and by applying the triangulation method, 
using the Epipolar Geometry Toolbox, (Mariottini & Prattichizzo, 2005), we can get the 
synthetic iso-disparity surfaces. Figure 2 shows the synthetic disparity surfaces (the red 
lines) and the plots from (1) (the green lines). Here the baseline length B is 30 cm and the 
disparity resolution ΔD=0.04 cm, or ten sensor pixel lengths where p=0.004 cm. Figure 2(a) 
and Figure 2(c) are plotted for the parallel stereo pair with different focal lengths. The 
parallel iso-disparity planes for parallel stereo pairs with the same focal lengths are shown 
in Figure 2(b). The synthetic simulations and the results calculated from (1) give similar 
results. 

2.2 The iso-disparity surface of a convergent stereo pair 
Let us consider two cameras with a convergence angle αc, where αcL0=αcR0=αc for the left and 
right camera respectively, with the angles rotated inwards to achieve a fixation point FP0, as 
in Figure 3. If the point TP0 lies on the baseline’s axis of symmetry, then the angles, (ψL0, ψR0), 
are the angles between the visual lines and a line perpendicular to the baseline. The zero 
disparity circle is defined by the fixation point and the left and right camera position points 
CL and CR. This circle is known as the Vieth-Müller circle, and is a projection of the horopter, 
(Ogle, 1950). 
The iso-disparity surface is a cylinder whose cross section on the xz-plane is a conic section, 
which passes through the centers of projection CL and CR, and the point M∞. The point M∞  is 
a point imagined at infinity in both images, which can be obtained from the intersection of 
the normals to the optical axes, going through the projection centres, (Pollefeys &  Sinha , 
2004). It is possible to prove that for the case when αcL0=αcR0=αc, the conic is an ellipse. To 
determine the ellipse we need to estimate its five degrees of freedom. Three of these are 
determined by the points CL, CR and M∞. One of the two remaining degrees is related to the 
point TP0 with the disparity nΔD. The relationship between disparity nΔD and focal lengths 
fL and fR for the left and right cameras respectively, is the last required degree of freedom. If 
the disparity nΔD and focal lengths fL and fR are known, the unique ellipse can be 
determined. 
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Fig. 3. An example of the iso-disparity curves for the convergence stereo pair in the plane 
defined by the cameras optical axes. z0 is the distance from the fixation point to the baseline, 
f is the focal length. 
The iso-disparity surface of quantized disparity nΔD for a convergence stereo pair (CL, CR) 
with the same focal length f and same the convergence angles αcL0,=αcR0=αc, describes a 
cylinder, and the ellipses being cross sections of this cylinder on the xz-plane with centres in 
0e(x0e(n), z0e(n)): 
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where B is the baseline length and αc is the stereo convergence angle. 
The ellipse half-axis along the z-axis, b, depends on the discrete disparity nΔD, baseline 
length B, focal length f and convergence angle αc and is described as: 
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The ellipse half-axis along the x-axis, a, can be found from the relationship: 
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length B, focal length f and convergence angle αc and is described as: 
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The ellipse half-axis along the x-axis, a, can be found from the relationship: 
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where ψc = ψL0 = ψR0. 
Figure 4 shows the iso-disparity surfaces for a stereo pair from the synthetic simulations 
(bold blue and red lines) and from theoretical model (4) (thin green and light blue lines) in 
3D space, in perspective view, Figure 4 (a), and top view, Figure 4 (b). The characteristics of 
cameras are: a baseline length B=50 cm, convergence angle, αc=4°, focal length f=2.5 cm and 
disparity resolution ΔD=0.04 cm. Both results match each other perfectly. 
 

  
                   (a)              (b) 

Fig. 4. The iso-disparity surfaces for a stereo pair from the synthetic model (bold blue and 
red lines) and from the mathematical model (thin green and light blue lines) with 
convergence angle, αc=4°, the baseline length B=40 cm, the focal lengths f=2.5 cm and 
disparity resolution ΔD=0.04 cm (a) perspective view, and (b) top view. 

2.3 Mapping of 2D uncertainty for a stereo pair configuration 
Since the gaps between iso-disparity surfaces represent the quantization uncertainty in 3D 
space, we can generate a 3D depth reconstruction uncertainty map of a particular stereo 
pair’s configuration using the iso-disparity surface geometry, equations (4))-(6). Also, it is 
possible to generate such a map in 2D on the optical axes plane. This map can be used to 
optimise the configuration of the stereo setup. Mapping of the 2D uncertainty for a stereo 
pair configuration can be done in the following three steps: 
- Firstly, the plane has to be covered by the stereo pair’s FoV, (Chen et al., 2007a). The 

area is sampled using small grids covered by the stereo pair. 
- Secondly, an iso-disparity curve on the optical axes plane should be calculated, passing 

through each grid point. Knowing that the curve will have a canonical shape then five 
points are needed. Two of these points can be the grid point and its symmetrical point, 
with respect to the symmetry axis of the baseline. The three others points are CL, CR and 
M∞. For a convergent stereo pair, the ellipse axes a and b can be found using the ellipse 
fitting algorithm, (Halif & Flusser, 1998). Then using equation (5), the two closest 
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ellipses with discrete disparity values nΔD and (n+1)ΔD respectively, can be found, 
where the disparity resolution ΔD is one sensor pixel length. 

- Finally, the depth reconstruction uncertainty can be calculated as the interval between 
the iso-disparity surfaces, with the disparity values, nΔD and (n+1)ΔD as the distance 
between the intersections of these two iso-disparity surfaces, and the line through the 
grid point and M∞. 

2.3.1 Simulation results 
The presented simulations were performed in MATLAB 7.0, and cover a rectangular area of 
(800 cm × 800 cm). This case study illustrates how depth reconstruction uncertainty in stereo 
coverage varies with the target distance z for a given stereo baseline length B, focal length f, 
and sensor pixel length p. The results are presented in Figure 5, where the cameras optical 
axes are in the xz-plane. The depth reconstruction uncertainty is specified by the positive 
y-axis of the co-ordinate. However, this uncertainty analysis shows only the area covered by 
the stereo pair’s FoV. To scale the uncertainty on the optical axes plane, a colour map is 
used. The lowest uncertainty is indicated by the blue colour and the highest uncertainty by 
the red colour. In order to increase the readability of the iso-disparity curves, the contour is 
plotted with ten pixel lengths disparity resolution. The map of the iso-disparity curves is 
 

 
Fig. 5. The depth reconstruction uncertainty map for a stereo pair’s FoV, where B=40 cm, 
f=3.5 cm and p=0.004 cm. 
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through each grid point. Knowing that the curve will have a canonical shape then five 
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ellipses with discrete disparity values nΔD and (n+1)ΔD respectively, can be found, 
where the disparity resolution ΔD is one sensor pixel length. 

- Finally, the depth reconstruction uncertainty can be calculated as the interval between 
the iso-disparity surfaces, with the disparity values, nΔD and (n+1)ΔD as the distance 
between the intersections of these two iso-disparity surfaces, and the line through the 
grid point and M∞. 

2.3.1 Simulation results 
The presented simulations were performed in MATLAB 7.0, and cover a rectangular area of 
(800 cm × 800 cm). This case study illustrates how depth reconstruction uncertainty in stereo 
coverage varies with the target distance z for a given stereo baseline length B, focal length f, 
and sensor pixel length p. The results are presented in Figure 5, where the cameras optical 
axes are in the xz-plane. The depth reconstruction uncertainty is specified by the positive 
y-axis of the co-ordinate. However, this uncertainty analysis shows only the area covered by 
the stereo pair’s FoV. To scale the uncertainty on the optical axes plane, a colour map is 
used. The lowest uncertainty is indicated by the blue colour and the highest uncertainty by 
the red colour. In order to increase the readability of the iso-disparity curves, the contour is 
plotted with ten pixel lengths disparity resolution. The map of the iso-disparity curves is 
 

 
Fig. 5. The depth reconstruction uncertainty map for a stereo pair’s FoV, where B=40 cm, 
f=3.5 cm and p=0.004 cm. 
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generated with baseline length B=40 cm, focal length f=3.5 cm and pixel length p=0.004 cm, 
stereo convergence angle, αc=4° and the FoV is approximately 54°. This case study proves 
that the quantized depth reconstruction uncertainty increases as the distance to the target 
increases. To show the quantized properties of depth reconstruction uncertainty, the map of 
the iso-disparity curves with suitable pixel length is shown in Figure 6. The figure shows 
only half of the FoV, with a cross section along the ellipses’ axes perpendicular to the 
baseline. The quantization step increases with the target distance. 
 

 
Fig. 6. The depth reconstruction uncertainty map for a stereo pair’s half FoV, where 
B=20 cm, f=3.5 cm and p=0.008 cm. 
Exact illustrations of how the depth reconstruction uncertainty varies with the baseline 
lengths, focal lengths, sensor pixel length and stereo convergence angle, are shown in Figure 
7 and Figure 8. Figure 7(a) shows that the relative depth reconstruction uncertainty, related 
to the target distance, decreases when the baseline length increases. The relative uncertainty 
decreases slowly for a baseline above about 40 cm. Its minimum value tends to be constantly 
between 0.5% and 1.5% for target distances of 200 cm and 800 cm respectively. At the same 
time, for a baseline of about 10 cm, the uncertainty varies between 10% and 2.5% for the 
respective target distances. 
The change of the relative depth reconstruction uncertainty versus the focal length is similar to 
that of the baseline length; see Figure 7(b). For a focal length of longer than 3.5 cm the increase 
of the uncertainty is relatively slow. Its minimum tends to be consistently between 1.5% and 
0.4% for target distances of 200 cm and 800 cm respectively. Meanwhile, for a focal length of 
1 cm, the uncertainty varies between about 9% and 2% for the respective target distances. 
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  (a)     (b) 

Fig. 7. The relative quantized depth uncertainty as function of the baseline length (a), focal 
length (b). The distance from the target to the camera is 800 cm, 600 cm, 400 cm and 200 cm, 
respectively. 

Furthermore, Figure 8(a) illustrates the linear relation of the relative uncertainty and the 
sensor pixel length. Within the range from 0.001 cm to 0.006 cm, the relative uncertainty 
varies from 0.2% to 3.5% and also depends on the target distance. Figure 8(b) shows that the 
stereo convergence angle has a slight influence on the uncertainty but this also depends on 
the target distance. 
 

 
(a)     (b) 

Fig. 8. The relative quantized depth uncertainty as a function of the sensor pixel length (a), 
and stereo convergence angle (b). The distance from the target to the camera is 800 cm, 
600 cm, 400 cm and 200 cm, respectively. 

Figure 9(a) and Figure 9(b) illustrate the variation of the uncertainty when both the focal 
length and the baseline length are changed for two different target distances, 200 cm and 
600 cm, respectively. The uncertainty increases significantly when the baseline length 
decreases below 40 cm, independent of the location of the target within the FoV. Also, a 
significant increase in the uncertainty is visible for a focal length below 3.5 cm. 
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(a)     (b) 

Fig. 9. The relative quantized depth uncertainty varies with both the focal length and the 
baseline length. The focal lengths are 2 cm, 3.5 cm and 5 cm, respectively, marked by 
different type of lines. The target is (a) 200 cm; (b) 600 cm far away from the camera. 

The relative accuracy is similar for a target located in different positions, but its absolute 
value is more significant for a target further from the stereo pair. In order to fulfil the 
reconstruction accuracy requirement for a distant target, the focal length or baseline has to 
be adjusted. A longer focal length can be used to compensate for a shorter baseline. And in 
general, the longer the baseline is, the more difficult the matching becomes. 

3. Arrangement of a multi stereo visual sensor system 
Human activity space, as a target space for 3D and depth reconstruction, provides 
constraints to the design and planning of the active stereo camera system. The sensor 
arrangement can be viewed as an extension to the well-known Art Galley Problem, AGP, 
(O’Rourke, 1987). The AGP describes a simple polygon, often with holes, and the task is to 
calculate the minimum number of guards necessary to cover a defined polygon. In our 
approach, a similar task is required to find the minimum number of stereo pair sensors 
needed to cover the target space. Here the human activities space as a target space is defined 
by a tetrahedron.  
This subchapter gives an overview of the theory for the multi stereo sensors arrangement in 
the intelligent vision system. In the (Chen et al., 2007a; Chen et al., 2007b), we suggested the 
camera constraints, which focused on the visibility to the target. The accuracy constraint is 
based on the estimation of quantized depth reconstruction accuracy, where a target object 
has the same target convergence angle. The iso-disparity geometry model gives a deep 
analysis of depth reconstruction accuracy. It analyzes the whole camera FoV. This can be 
used to dynamically adjust the position, poses and baselines length of multiple stereo pairs 
of cameras in order to get the desired accuracy. 
The planning algorithm proposed in the (Chen et al., 2007a; Chen et al., 2007b) works in 3D 
space. The approach dynamically adjusts the stereo pair baseline length according to the 
accuracy requirement and the target distance as a distance from the target position to stereo 
pair baseline. The minimal amount of stereo pairs to cover human activity space is solved by 
means of Integer Linear Programming, ILP, (Chakrabarty et al., 2002; Hörster & Lienhart, 
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2006; Berkelaar et al., 2005). The 3D reconstruction accuracy, which is ensured by an 
accuracy constraint, can be verified by a cubic reconstruction. 
The constraints of the stereo view optimization model can be defined from the environment, 
camera properties and human behaviour, which affect the process of identification and 
reconstruction of the target. 

3.1 Constraints for the optimization model 
The human activities space is modelled by a tetrahedron as shown in Figure 10. The normal 
of each tetrahedron’s upper triangle gives the orientation of that surface. If the visibility 
angle, θ, between the triangle normal and a line drawn from the centroid of the triangle to 
the camera position, increases then the image resolution decreases. In order to get a good 
image resolution, a visibility angle, θ, of less than the maximum visibility angle, θmax, is 
required which can be expressed as constrain: 

 maxθθ ≤  (7) 

The camera orientation should line up with the centroid of the triangle, thus bringing the 
target object to the centre of camera FoV and causing less lens distortion. The angle between 
the camera orientation and the line drawn from the camera position to the centroid of the 
triangle, ϕ, of less than the maximum angle ϕmax is required: 

 maxϕϕ ≤  (8) 

In order to follow the movement of the target object, a camera movement distance constraint 
can be applied. The next-view position for the camera should not be placed too far away from 
the previous one. This constraint, formulated as the camera maximum movement should be 
less than the maximum distance of camera movement which the system supported.  

 max),( DisStereoPairStereoPairDist currentnext ≤  (9) 

 
Fig. 10. Illustration of the human space modelled as a tetrahedron; θ - the visibility angle 
between the triangle normal c and a line from the centroid of the triangle to the camera 
position; ϕ - the angle between the camera orientation c  and a line from the camera 
position to the centroid of the triangle. 
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2006; Berkelaar et al., 2005). The 3D reconstruction accuracy, which is ensured by an 
accuracy constraint, can be verified by a cubic reconstruction. 
The constraints of the stereo view optimization model can be defined from the environment, 
camera properties and human behaviour, which affect the process of identification and 
reconstruction of the target. 

3.1 Constraints for the optimization model 
The human activities space is modelled by a tetrahedron as shown in Figure 10. The normal 
of each tetrahedron’s upper triangle gives the orientation of that surface. If the visibility 
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image resolution, a visibility angle, θ, of less than the maximum visibility angle, θmax, is 
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The camera orientation should line up with the centroid of the triangle, thus bringing the 
target object to the centre of camera FoV and causing less lens distortion. The angle between 
the camera orientation and the line drawn from the camera position to the centroid of the 
triangle, ϕ, of less than the maximum angle ϕmax is required: 
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In order to follow the movement of the target object, a camera movement distance constraint 
can be applied. The next-view position for the camera should not be placed too far away from 
the previous one. This constraint, formulated as the camera maximum movement should be 
less than the maximum distance of camera movement which the system supported.  
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Fig. 10. Illustration of the human space modelled as a tetrahedron; θ - the visibility angle 
between the triangle normal c and a line from the centroid of the triangle to the camera 
position; ϕ - the angle between the camera orientation c  and a line from the camera 
position to the centroid of the triangle. 



 Stereo Vision 

 

164 

A fewer number of potential next-view positions for the cameras restricted by (9)) can 
simplify computation. 
The camera constraints are related to the camera FoV. The camera horizontal and vertical 
viewable angles, φh, φv, and a working distance, r, can be calculated from the camera 
attributes, see the spherical co-ordinate systems shown in Figure 11. In order to cover the 
target object feature points by the camera FoV, the following constraints must be fulfilled: 

rl ≤  and 
2/2/ hcohc φααφα +≤≤−  
2/2/ vcovc φββφβ +≤≤−  

(10) 

where: l is the distance between the target position and camera’s position; αo, βo are 
respectively the azimuth and elevation of target; αc, βc are respectively the azimuth and 
elevation of the camera’s pose. 
 

 
Fig. 11. The spherical co-ordinates system and FoV of a camera where C is camera position 
and the example target point located at point T. 
Since stereo matching becomes more difficult when the baseline distance increases, the 
baseline length B has to be limited to the maximum stereo baseline length, Bmax: 

 max0 BB ≤<  (11) 

The depth reconstruction is one of major focus in this research project. The depth 
reconstruction accuracy improvement can be adjusted by the baseline length, (Mittal, 2006; 
Samson et al., 2006). This research introduces the concept of a depth accuracy factor, AF, 
which is a function of target convergence angle, ψ, and camera pose, αc. We construct the 
stereo coverage from the overlapping of two cameras’ FoVs. The overlapping FoVs are 
typically used to extract 3D information. The area of stereo coverage must cover all of the 
target objects. In the most common case, the cameras form a converging stereo pair. 
Cameras poses azimuths and baseline are shown in Figure 12. Cameras convergence angles, 
(αcl, αcr), are the angles of each camera rotated inwards from the parallel to achieve 
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convergence. The target convergence angles, (ψl, ψr), are the angles between the visual lines 
of each camera and the baseline perpendicular. From Figure 12, simplifying: ψ = ψl = ψr and 
αc =αcl =αcr, we obtain: 

 
ψtan2

BZ =  (12) 

where B is a baseline length and Z is a target distance. 

 
Fig. 12. Model of stereo pair geometry; Z0 is the depth of the fixation point, ⏐dl-dr⏐is stereo 
disparity, f is focal length. 

The equation (12) can be written as: 
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In the case of parallel stereo or with the target close to the fixation point, the αc or (αc-ψ) 
varies by a small amount, and the equation (13) can be further simplified. The resolution of 
the target convergence angle, ψ, is related to a single pixel, p, in the image, thus the  relative 
depth error can be written as: 
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where AF is the depth accuracy factor, f is a focal length, and the depth quantization error is 
assumed to be one pixel,  p.  
The depth error is proportional to the depth accuracy factor. In fact, since the depth 
accuracy factor varies more significantly with respect to the target convergence angle, ψ, 
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In the case of parallel stereo or with the target close to the fixation point, the αc or (αc-ψ) 
varies by a small amount, and the equation (13) can be further simplified. The resolution of 
the target convergence angle, ψ, is related to a single pixel, p, in the image, thus the  relative 
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where AF is the depth accuracy factor, f is a focal length, and the depth quantization error is 
assumed to be one pixel,  p.  
The depth error is proportional to the depth accuracy factor. In fact, since the depth 
accuracy factor varies more significantly with respect to the target convergence angle, ψ, 
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than to the camera’s pose, αc, the target convergence angle determines the depth accuracy 
factor. The accuracy constraint for a given p can be defined as: 

 conAFAF ≤  (15) 

where: AFcon is determined from the reconstruction accuracy requirements of the given 
application. 

3.2 Implementation of the camera arrangement 
The stereo pair arrangement consists of three stages: 
- Firstly, we find potential stereo pairs that satisfy stereo constraints by greedy algorithm 

from all potential cameras’ positions and poses.  
- Secondly, the integer linear programming is applied to minimize the total amount of 

stereo pairs subject to the visibility and baseline length constraints, depth accuracy 
constraints and camera movement constraints. The objective function minimizes the 
number of stereo pairs needed to cover all triangles in the target object model, and also 
ensures that the target object is covered by at least one stereo pair. 

- Finally, the 3D reconstruction accuracy can be verified by a cubic reconstruction 
simulated using a pair of rectified scene images. 

3.2.1 Greedy algorithm 
This algorithm gives a flexible way of organising cameras into stereo pairs, each potential 
camera to be included in a stereo pair may be chosen by an algorithm according to the stereo 
pair constraint. The first step of the algorithm is to sample the potential camera positions 
Cn(xcn,ycn,zcn) and poses ψn(αcn,βcn) of the camera state, ,,

k
C nn

Scamera ψ where k is the camera 
state index number. The target object, which must be covered, is modelled as a tetrahedron. 
In the next step, we calculate all of the potential camera positions and poses needed to cover 
each upward triangle of this model. Taking this, we combine every two camera states to be a 
potential stereo pair, Stereopairi, according to the stereo constraint (Chen et al., 2007a; Chen 
et al., 2007b). The algorithm is sufficiently flexible to add other constraints for stereo pair, 
e.g. the angle constraint between the cameras’ optical axes. Finally the algorithm removes 
the redundant potential stereo pairs. 

3.2.2 Integer linear programming 
This model assumes that one type of camera is used throughout, resulting in just one 
camera FoV being considered. The optimization of the amount of cameras with different 
FoVs can also be easily extended, by adding one more term for different FoVs. Since the 
stereo pairs have been found by the greedy algorithm, the integer linear programming can 
be applied to minimize the total stereo pairs subject to the coverage constraint (Hörster 
&Lienhart, 2006; Chakrabarty et al., 2002). 
A binary variable is calculated and stored in advance. The stereo visibility binary variable 
table Stereovisj,i  is defined by: 
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which indicates each triangle j as the row j to be covered by the stereo pair i in column i, and 
sKi ≤≤1 , where Ks is the total number of stereo pairs. 

This objective function minimizes the number of stereo pairs needed to cover all triangles in 
the target object model, and also ensures that the target object is covered by at least one 
stereo pair: 
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where the Si is the binary variable where a “1” indicates the stereo pair to be chosen. 
To ensure that only one camera is located at each position and has only one pose, the 
conflict binary variable table cp,i is also calculated in advance and defined by: 
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for i=1, 2, …, Ks, and p=1, 2, …, Ks. 
One more constraint is added into the model: 
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The information on the optimal number of stereo pairs, and which pairs to use, are returned 
as vectors by the ILP model. 

3.2.3 Cubic reconstruction 
The rectification matrix is calculated directly from the perspective projection matrix, PPM, 
(Fusiello et al., 2000), and the rectification algorithm also gives two new PPMs, Pn1 and Pn2. 
The cubic reconstruction in 3D can be performed with a triangulation method directly from 
the rectified images, using Pn1, Pn2. The 3D reconstruction error, Δrec, for a single pixel error 
along a horizontal direction in the rectified image, has same value as the depth error and is 
given by: 
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where iM̂ gives the co-ordinates of the reconstruction point i in a cube of the rectified 
images and Mi  gives the real coordinates of the target point i in the cube. 
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images and Mi  gives the real coordinates of the target point i in the cube. 
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3.3 The model validation 
The simulations were performed in MATLAB 7.0. The integer linear programs lpsove 
package, (Berkelaar et al., 2005), and the Epipolar Geometry Toolbox, (Mariottini & 
Prattichizzo, 2005), were used to minimise the number of cameras and transform the object 
position in 3D. The simulation environment consists of a rectangular room of 
8 m × 8 m × 3 m. The modelling of the human activities space as a tetrahedron requires three 
upward triangles; and each triangle must be visible to at least one pair of cameras. Each 
model is 2 m high and 1.2 m at the base edges. The cameras’ positions are restricted to the 
ceiling around the room, their potential positions sampled at 0.2 m intervals in the initial 
phase, and 0.1 m intervals for the next cameras viewing position; Dismax is taken 3 m. The 
camera’s pose is sampled at 12° intervals. The cameras have the same horizontal and vertical 
viewing angles, φh, φv, of 60° and have a working distance, r, of 7 m. The maximum visibility 
angle, θmax, (7)) and the angle, ϕmax, (8) are taken to be 70° and 10° respectively. The pixel size 
of our vision system, p, is 0.02 mm and the focal length, f, is 1.21 cm. The maximum stereo 
baseline length, Bmax,, is 1.5 m. The cubic centre is located at the centroid of the tetrahedron 
and each edge is 10 mm.  
This case study illustrates how the variable stereo baseline length, camera positions and 
poses vary according to the accuracy requirement and the target location. In order to 
illustrate the cameras’ positions and poses, the analysis considers the target model at four 
locations, 1, 2, 3 and 4, see Figure 13. The arrows indicate the optical axes of the cameras. 
 

 
Fig. 13. The stereo pair positions, poses and baselines with the depth accuracy factor AFcon = 
8, for the moving target. 
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The index numbers indicate the model locations and corresponding camera positions and 
poses calculated according to the maximum accuracy factor. The circles are the camera’s 
potential sample positions. The sample positions and intervals are changed according to the 
camera previous position with the constraint (9). In each position every upward triangular 
view is visible to at least one stereo pair. The algorithm proves that a set of two pairs is 
sufficient to cover the three triangle surfaces. The stereo baseline length changes 
dynamically according to the distance to the target. 
Figure 14 illustrates a case of four different values of AFcon applied to a target at the same 
position. The index number indicates the corresponding stereo pair according to AFcon. The 
stereo baseline lengths and reconstruction errors for the different accuracy factors are shown 
in Tabble 1. It proves that the baseline increases as AFcon becomes more restricted, and the 
reconstruction error is smaller. 
 

 
Fig. 14. The stereo pair positions and baseline lengths for the same target location vary 
according to the different accuracy. 
 

IN AFcon Ba Bb Δrec ΔZmax 

1 8 100 80 3.3 4.5 
2 11 70 60 4.5 6.2 
3 14 60 50 4.9 7.9 
4 17 50 40 5.2 9.7 

Table 1. The baseline lengths of two pairs and the reconstruction errors for different 
accuracy factors. IN: the index number; AFcon: the reconstruction accuracy requirement; Ba, 
Bb: baseline lengths for each pair, [cm]; Δrec: the maximum value reconstruction error of 
pairs, [cm]; ΔZmax: the theoretical maximum depth error, [cm]. 
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4. Conclusion 
The chapter focuses on depth reconstruction, the arrangement of multiple stereo sensors for 
human activities space, which are important issues of IVAS. The research work can be 
concluded by means of two terms: the uncertainty analysis and human factor handling for 
vision system. 
The analysis presented shows that the quantized depth reconstruction accuracy varies 
more significantly with respect to the target distance to baseline, baseline length and focal 
length than to the convergence angle. Small changes in stereo convergence angle do not 
overly affect the depth accuracy, especially when the target is placed centrally. On the 
other hand it can have a great impact on the shape of the iso-disparity curves. By using 
the systems configuration and target properties, we can get reliable control over the 
shapes and intervals of the iso-disparity curves from the proposed iso-disparity 
mathematical model. 
Modeling the target object as a tetrahedron gives a convenient way to extract the 
orientation of each surface and guarantee a good observability. Modelling the camera 
FoV using spherical co-ordinates simplifies the model and constraints, which speeds up 
computations. Formulating the stereo pairs with the greedy algorithm using stereo 
constraints is a simple way to get all possible stereo pairs and then minimize the amount 
of stereo pairs by means of the stereo view ILP model. It is possible to extend this 
algorithm to dynamic cameras for tracking humans. In order to follow target objects 
movement, the camera movement distance constraints can be applied (Chen et 
al., 2007a). 
The analysis of key factors which affect the accuracy of 3D reconstruction shows that the 
convergence angle and target distance are the most significant. The depth accuracy 
constraint may be sufficient to control the stereo pair’s baseline length, position and pose. It 
is an effective method for system decision making and is easy to implement. From the 
simulation results, it is readily noticeable that the cubic reconstruction is useful in verifying 
the reconstruction accuracy and the proposed method of baseline length control has been 
proven. The two stages sampling of the cameras position has the flexibility to adjust the 
intervals and position ranges, and speed up computation.  
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1. Introduction 
Research on automatic mosaic creation for underwater applications has been investigated in 
the last fifteen years. The reconstruction of complex 3-D structures is useful in several 
underwater applications; in particular, 3-D mosaicking constitutes an important tool for 
seabed exploration, improving visualization and navigation in the underwater medium. 
Moreover, underwater measurement systems have been used extensively in marine research 
to estimate the size of interesting objects such as organisms and structures. In addition, 
visual sensing can be an enabling technology for Autonomous Underwater Vehicles 
(AUVs), which have the critical requirement to maintain an ongoing representation of its 
relative position with respect to an environmental representation. In these contexts, a better 
perception of the underwater environment can be achieved by using image processing 
algorithms for a suitable representation of the seabed. In optic sensing field and underwater 
environment, shape acquisition concerns with sensing activity including Shape from 
Stereopsis, Shape from Photometric Stereo, Shape from Motion and Active Stereo. Main 
aspects about Shape from Stereopsis will be presented focusing the attention on 
synchronism in the acquisition at hardware/software levels. The usage of triggered 
expensive equipments in synchronized stereo sequence acquisitions could present some 
technical limitations, such as low frame rate and poor images resolution, demoting the 
quality of the 3-D mosaic. For the previous reasons, an ad-hoc algorithmic solution will be 
detailed to limit asynchronism problems due to time gap (delay) in stereo frames 
acquisition, when low-cost non-professional (non-triggered) hardware is used. To achieve a 
metric reconstruction, the presented framework requires a calibration phase whereas a new 
stereo frame-selection scheme based on the Epipolar Gap Evaluation (EGE) will be 
discussed to overcome asynchronisms. Normally, dense depth maps obtained by evaluating 
dense disparity maps allow the construction of high quality 3-D mosaics. A detailed 
discussion about methodologies for dense stereo matching will be addressed to handle the 
ill-posed stereo correspondence problem. A joined use of local (respectively global) 
matching methods and imaging enhancement algorithms will be considered to identify an 
appropriate amount of right correspondences in severe underwater conditions 
(backscattering, brightness constancy violation condition). The chapter treats an important 
aspect of the 3-D mosaic reconstruction as the registration by ego-motion and camera pose 
estimation. Classical solutions (i.e. Iterative Closest Point algorithm) and new trend in the 
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registration activity (Zhang’s Epiflow algorithm) will be discussed emphasizing application 
limits and how the computational cost grows in size with the amount of considered features. 
A new registration approach will be presented conjugating Epiflow and ICP, under a 
simplified motion model.  

2. Related works for underwater 3-D reconstruction 
In the field of 3-D reconstruction, terrestrial applications have encouraged extensive work 
over the last three decades; on the other hand a limited amount of underwater applications 
have been explored primarily for mapping and positioning. The first step of the structure 
reconstruction is the shape acquisition that can be addressed in different ways, as 
taxonomically shown in Fig.1. In underwater research the shape acquisition is mainly 
performed with expensive optical sensing methods (Negahdaripour et al., 2002; Khamene et 
al., 2001) and non-optical sensing methods, working often in conjunction (these methods are 
underlined in Fig.1). Shape from X is a generic name for techniques that extract shape from 
images. Normally, in underwater environment the optical sensing techniques include Shape 
from Stereopsis (Zhang, 2005), Shape from Photometric Stereo (Negahdaripour et al., 2002), 
Shape from Motion (Khamene et al., 2001) and Active Stereo (Narasimhan et al., 2005). In 
the field of non-optic underwater sensing, acoustic cameras are employed for 3-D mosaic 
reconstruction (Castellani et al., 2004), whereas both acoustic and optic cameras are often 
used providing scene information that cannot be recovered from each sensor alone. Three-
dimensional scene structures captured by a camera may be detected and acquired observing 
the apparent motion of brightness patterns from images. The primary visual motion cue 
useful for shape acquisition is the perceived movement of brightness patterns, known as 
optical flow (Horn, 1986) which is an approximation of the 3-D world motion field. The 3-D 
reconstruction from differential motion cues requires accurate optical flow computation. In 
 

 
Fig. 1. Short taxonomy of shape acquisition methods. 
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the last fifteen years, theoretical developments in visual motion studies have established a 
unified framework for the treatment of the Structure from Motion (SFM) and Structure form 
Stereo  (SFS)  problems  (Faugeras,  1992),  also  known  as  3-D  Reconstruction  from  Multiple 
Views.  3-D reconstruction from multiple views involves extracting target features from one 
image, matching and tracking these features across two or more images, and using 
triangulation to determine the position of the 3-D target points relative to the camera. Visual 
motion methods have been well-studied, requiring densely-sampled image sequences. 
Instead, the trade-off in stereo vision is between the stereo correspondence problem and a 
more accurate and robust 3-D reconstruction (Scharstein & Szeliski, 2002). A large amount of 
works has addressed the correspondence problem, attempting to overcome the various 
difficulties of the large-displacement correspondence problem: occlusions, large rotations 
and disparities, photometric and projective distortions (Lucas & Kanade, 1981; Tomasi & 
Kanade, 1991). The problem of outliers has been solved by the deployment of robust 
estimation methods (Zhang et al., 1995). The motion and structure may be estimate by using 
several recursive schemes. Extended Kalman Filter is the most popular approach for jointly 
estimation of motion and structure with satisfactory results. However, the computation cost 
of this approach grows cubically with the amount of features, causing a great bottleneck for 
real-time performance. Stereo matching is one of the most active research areas in computer 
vision. Stereo matching is a hard problem due to ambiguity in un-textured and occluded 
areas. Only dominant features, such as points of interest, can be matched reliably. This 
motivates the development of progressive approaches (Szeliski & Scharstein, 2002). The 
reduced local disparity in search range makes progressive approaches very efficient in 
computation and robust. However, the seed initialization remains a computational 
bottleneck, although, robustness can be improved by enforcing the left-right symmetry 
constraint. Recently, Graph Cuts and Belief Propagation furnish combinatorial optimization 
frameworks in which the performance for global stereo algorithms are considerably 
improved according to an evaluation framework applied to a standard reference stereo data 
set (Scharstein & Szeliski, 2002). However, the underlying brightness constancy assumption 
of combinatorial optimization methods severely limits the range of their applications. The 
earliest attempts for 3-D reconstruction use methods based on volume intersection, as Shape 
from Silhouette (Laurentini, 1994). Traditional methods, such as stereo, handle large 
visibility changes between images by solving the correspondence problem between images. 
The most prominent approaches in 3-D reconstruction are the Voxel Coloring (Slabaugh et 
al., 2001) and the Space Carving (Kutulakos & Seitz, 1998). These approaches use the color 
consistency to distinguish surface points from other points in a scene. Cameras with an un-
occluded view of a non-surface point see surfaces beyond the point, and hence inconsistent 
colors, in the direction of the point. Initially, the environment is represented as a discretized 
set of voxels, and then the algorithm is applied to color the voxels that are part of a surface 
in the scene. Another promising approach in 3-D reconstruction is the Marching Cubes 
algorithm for rendering iso-surfaces from volumetric scan data (Lorenson, 1987). The 
algorithm produces a triangle mesh surface representation by connecting the patches from 
all cubes on the iso-surface boundary. In underwater scenario, research is directed at 
exploring the use of vision, potentially in conjunction of other sensors, to automatically 
control unmanned submersibles, including positioning and navigation by utilizing a photo-
mosaic as a two-dimensional visual map. Recent activities combine video imagery taken 
from multiple views of a scene to derive size and depth measurements and 3-D 
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reconstructions. These activities support (semi-) autonomous or operator-supervised 
missions pertaining to automatic vision guided station keeping, location finding and 
navigation, survey and mapping, trajectory following and online reconstruction of a 
composite image, search and inspection of subsea structures. These tasks require an accurate 
estimation of camera position, together with fast, accurate correspondence determination, 
particularly for real-time registration. Common sources of error include non-planar seafloor, 
moving objects, illumination variations, transect superposition, positioning drift. A number 
of studies over the last several years have also addressed the 3-D reconstruction for various 
applications. Khamene and Negahdaripour incorporate cues from stereo, motion and 
shading flow for 3-D reconstruction in underwater (Khamene & Negahdaripour, 2003); 
Majidi and Negahdaripour suggest the use of 3-D reconstruction for global alignment of 3-D 
sensor positions (Madjidi & Negahdaripour, 2005); Nicosevici et al introduce 3-D 
reconstruction from motion video and representation of the surface topography by 
piecewise planar surfaces for the construction of orthomosaics (Nicosevici et al., 2005). 
Hogue et al have developed a stereo vision-inertial sensing device deployed to reconstruct 
complex 3-D structures in both the aquatic and terrestrial domains (Hogue et al., 2007). The 
sensor temporally combines 3D information, obtained using stereo vision algorithms with a 
3 DOF inertial sensor. The resulting point cloud model is then converted to a volumetric 
representation and a textured polygonal mesh is extracted using the Marching Cubes 
algorithm (Lorenson, 1987). 

3. Algorithmic framework 
3.1 Overview 
This section discusses about the framework for 3-D mosaic reconstruction of a seabed based 
on the optic sensing technique known as Shape from Stereopsis. In Shape from Stereopsis two 
stereo frames are acquired at the same time, so that normally triggered frame grabber (or 
other techniques that guarantee synchronism in stereo sequence) is required. However, 
synchronized stereo sequences use expensive equipments and present some technical 
limitations, such as low frame rate and poor time resolution. For the previous reasons the 
attention is focused in stereo reconstruction and 3-D structures estimation by using 
unsynchronized cameras. Svedman proposes to acquire three images sequentially from the 
left, right, and again from the left camera. A virtual image from the left camera 
synchronized with the right image is created by interpolating matching interesting points in 
the two left images (Svedman et al., 2005). Others approaches estimate the time difference 
between views, synthesizing synchronous image pairs for dense depth information 
estimation. The depth estimation is based on stereo correspondence evaluation. Depth and 
ego-motion estimation leads to the ill-posed stereo correspondence problem. Although for 
egomotion estimation a sparse set of correspondence points is sufficient, depth estimation 
requires dense correspondences. In underwater environment normalized cross-correlation is 
generally employed for the robustness to brightness gain. In dense stereo matching, the best 
performing algorithms use either the Belief Propagation (Sun et al., 2002) or Graph Cuts 
(Boykov et al., 2001). However, these algorithms are tested on standard data sets under 
restricted conditions and/or controlled environments (small disparity range, image 
sequences that satisfy the brightness constancy assumption). The brightness constancy 
model is often violated, e.g. for most images in the JISCT collection (Bolles, 1993). Zhang 
proposes a revised data cost to improve global stereo matching algorithms (Graph Cuts, 
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Belief Propagation) in underwater environment (Zhang, 2005). 3-D mosaic construction 
requires two-frames registration and then ego-motion estimation. Iterative Closest Point 
(ICP) algorithm is used for 3-D registration (Besl & McKay, 1992). The epiflow framework 
proposed by Zhang is based on the integration of motion and stereo epipolar geometries for 
ego-motion tracking (Zhang, 2005). Summarizing, an inexpensive asynchronous stereo 
framework for 3-D seabed reconstruction and orthomosaic is presented. In order to achieve 
a metric reconstruction, a calibration phase is necessary, so that the asynchronism in stereo 
sequence can be an issue for proper calibration. To overcome this problem a new stereo 
frame selection scheme based on the Epipolar Gap Evaluation (EGE) is used (Section 5). In 
order to handle the stereo correspondence problem, local and global matching methods are 
evaluated in Section 6, with adoption of a suitable similarity measure (ZNCC) and image 
enhancement technique (CLAHE). Finally, in Section 7 the registration approach is 
presented conjugating Epiflow and ICP schemes under a simplified motion model. 

3.2 Framework architecture 
The main building blocks of 3-D seabed mosaic reconstruction system are the following: (a) 
shape acquisition, (b) depth estimation and (c) mosaic registration and rendering. In Fig. 2 
the overall system architecture is shown. The block 1 deals with shape acquisition, 
asynchronous stereo sequence calibration by using the Epipolar Gap Evaluation (EGE) 
 

 
Fig. 2. Overall framework architecture. 
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scheme, lens distortion correction and histogram equalization. Depth estimation is 
accomplished in blocks 2 and 3: the former regards the disparity map estimation and the 
latter computes the subsequent depth map by using geometric triangulation. As described 
in the following, local and global methods are used in stereo disparity calculation. The block 
4 involves fusion and registration of 3-D reconstructions, through system ego-motion 
estimation, pre-alignment and ICP registration refinement. Finally, triangular Delaunay 
interpolation and rendering take place in block 5. 

4. Structure from stereopsis in underwater environment  
4.1 Overview 
Starting from two different views of the same scene, it is possible to obtain a 3-D structure 
reconstruction. For simplicity, the discussion is restricted to scenes consisting of points only; 
further information about multi-view reconstruction methods can be found in (Hartley & 
Zisserman, 2003). The input for 3-D reconstruction phase is a set of correspondences in left 
and right camera images. Let the camera matrices LP  and RP , that describe the 
correspondences R

i
L
i xx ↔  in terms of L

ii
L xX =P  and R

ii
R xX =P , where the point iX  projects 

to the two given data points L
ix  and R

ix  (see Fig. 3). Unfortunately, neither the projection 
matrices LP  and RP , nor the points iX  and R

i
L
i xx ↔  are known a priori. The camera 

matrices estimation is part of the calibration activity (Subsection 5.2), whereas the 
correspondences estimation R

i
L
i xx ↔  deals with the stereo correspondence problem 

(Subsection 6.2 and 6.3), and the estimation of point iX  is the first step for 3-D 
reconstruction by using geometric triangulation (Subsection 6.4). 
 

 
Fig. 3. Epipolar geometry: the optic rays passing through the Xi point and CL , CR optical 
centers intersect the left and right image planes in ( L

ix , R
ix ) image points, respectively.  

The main tool in 3-D reconstruction from two views is the Fundamental Matrix (Faugeras, 
1992), which represents geometrically the constraint for the projected image points ( L

ix , R
ix ) 

of the same 3-D point iX . This constraint, also called Epipolar Constraint, arises from the 
coplanarity of the camera centers, the images points ( L

ix , R
ix ) and the space point iX . Given 

the Fundamental Matrix F, each pair of matching points ( L
ix , R

ix ) must satisfy the following 
relation: 
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with F a 3×3 matrix of rank 2. Furthermore, Eq.1 can be rewritten as: 

 ( ) 0=R
i

TR
i lx  (2) 

where 

 L
i

R
i xl F=  (3) 

is the Epipolar Line associated with the left point L
ix . In other words, the Eq.2 states that the 

point R
ix  belongs to the epipolar line R

il . The discussed concepts are summarized in Fig. 3. 
Points eL and eR are the epipoles, i.e. the points of intersection of the baseline (the line joining 
the camera centers) with the image planes. A 3-D projective reconstruction can be obtained 
from the knowledge of the Fundamental Matrix alone, so that the pair of camera matrices 
can be determined up to a 3-D projective ambiguity and the Fundamental Matrix can be 
estimated directly from a set of point correspondences. Instead, if the camera matrices are 
known, by means of calibration activity, a metric reconstruction is possible. Therefore, a 
reliable calibration activity is needed since a 3-D metric reconstruction of the seabed surface 
is desired. The calibration activity can be affected by three kind of error: synchronization 
error, algorithm error and matching error. Algorithm error and marker matching error deal 
with the specific calibration procedure, whereas synchronization error relates the 
synchronism in stereo frames. The synchronization error can be minimized by computing 
calibration matrices for each stereo pair in which calibration pattern is viewed and, then, by 
evaluating the Epipolar Gap (EG). Let a pair of matching points L

ix  and R
ix , the Epipolar Gap 

is defined as the Euclidean distance between one of these points (i.e. R
ix ) and the epipolar 

line associated with the other one, as follow: 

 ( )R
i

R
i lx ,distEG i =  (4) 

If L
ix  and R

ix  matches exactly, Eq.2 is satisfied and then EGi=0; otherwise EGi provides a 

measure (the Euclidean distance) for the epipolar gap between L
ix  and R

ix . The calibration 
activity is realized by a careful selection of a stereo pair from the video sequence in which 
the calibration pattern is acquired. Since there are many stereo pairs in which the calibration 
pattern is acquired, the Epipolar Gap Evaluation (EGE) is used as selection criterion. The 
selection of calibration stereo pairs is motivated by the asynchronism of the acquisition 
system based on a non-triggered frame grabber. Aim of this step is to minimize the 
acquisition time distance between the left and the right frame in the stereo pair, selecting a 
stereo pair affected by minimum time difference. The calibration frame selection requires a 
large amount of calibration parameters (camera matrices), therefore a calibration pattern (an 
object with known metric measures) must be employed and detected in the acquired video 
sequence. In the next section, a calibration object (its marker points imprinted on pattern) 
detection from video sequence is discussed. 
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The main tool in 3-D reconstruction from two views is the Fundamental Matrix (Faugeras, 
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ix , R
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ix , R
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the Fundamental Matrix F, each pair of matching points ( L
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ix ) must satisfy the following 
relation: 
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activity is realized by a careful selection of a stereo pair from the video sequence in which 
the calibration pattern is acquired. Since there are many stereo pairs in which the calibration 
pattern is acquired, the Epipolar Gap Evaluation (EGE) is used as selection criterion. The 
selection of calibration stereo pairs is motivated by the asynchronism of the acquisition 
system based on a non-triggered frame grabber. Aim of this step is to minimize the 
acquisition time distance between the left and the right frame in the stereo pair, selecting a 
stereo pair affected by minimum time difference. The calibration frame selection requires a 
large amount of calibration parameters (camera matrices), therefore a calibration pattern (an 
object with known metric measures) must be employed and detected in the acquired video 
sequence. In the next section, a calibration object (its marker points imprinted on pattern) 
detection from video sequence is discussed. 
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4.2 Metric calibration 
4.2.1 Pattern detection 
A calibration object can be acquired to provide metric correspondences between points in 
the image coordinates and points in real world coordinates. Generally, an accurate camera 
coordinate system-based positioning of the calibration object is hard, especially in 
underwater environment. Hence, the relationship between target and camera coordinate 
systems needs to be recovered from reliable correspondence estimation. Several camera 
calibration methods employing 2-D and 3-D calibration targets were proposed in (Tsai, 1987; 
Heikkia & Solven, 1996). Calibration algorithms use an object on which a square checker 
pattern with a known size is printed. In this work a pair of still images of 3-D checkerboard 
is required, according to the method proposed in (Tsai, 1987). Normally, in underwater 
applications the checkerboard is arranged on the sea floor and the stereo acquisition system 
moves around during calibration activity (see Fig. 4.b), in contrast with the ideal calibration 
conditions in which both checkerboard and stereo acquisition system are more likely to be 
fixed (see Fig. 4.a). The corners of the checker pattern are used as control points for the  
camera calibration algorithm (see Fig. 5.a). Bakstein examines several pattern  geometries  to 
 

 
(a)                                                             (b) 

 
(c) 

Fig. 4. a) Ideal acquisition conditions for proper calibration; b) Real calibration conditions: the 
system moves with velocity v; c) Stereo acquisition timing at 25 fps. Dashed lines denote ideal 
acquisition time instants, while dots denote effective left/right acquisition time instants. 
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derive the control points for camera calibration by using an automated thresholding 
strategy, so that the checker pattern is chosen for the very low sensitivity by thresholding 
errors (Bakstein, 1999). Furthermore, a black-and-white checker pattern provides very good 
contrast and size of the squares could be customized to the object distance for better 
perception. Asynchronism in stereo acquisition is a problem in the calibration activity, since 
the epipolar geometry constraint isn’t satisfied. This aspect is further explained in Fig.4.c. A 
25 fps acquisition system acquires two calibration checkerboard images, but due to 
asynchronism the effective acquisition time instants (represented by dots in figure) lay 
around the ideal ones (represented by dashed lines). Unlike others techniques based on 
view synthesis or time estimation between views, the presented approach tries to solve this 
problem making only use of calibration parameters encoded in camera matrices. For a 
generic acquisition system, the calibration error is defined as: 

 ε  = synε + calε + matchε , (5) 

 
(a)                                      (b)                                    (c)                                    (d) 

Fig. 5. Calibration object: a) Original image; b) Segmented image; c) Pattern’s rectangles; d) 
Centroids. 

where synε  is the synchronization error, calε  is the calibration algorithm error and matchε  is 
the error affected by calibration pattern points selection. The calibration error minimization 
takes place by evaluating the epipolar gap for each stereo pairs in which calibration pattern 
is acquired. The epipolar gap estimation is more accurate as greater amount of calibration 
pattern images is available. This calibration method detects the calibration object in a 
rotation independent way  and  it  localizes checkerboard  square  corners  corresponding  to 
calibration target ones by using line-fitting and label-sorting strategies. In order to estimate 
intrinsic and extrinsic cameras parameters, checkerboard square vertexes must be detected 
in acquired images and matched with corresponding checkerboard square vertexes in real 
calibration target. Standard corner detection approaches (Harris & Stephens, 1988) does not 
give satisfactory results by detecting checkerboard square vertexes, since underwater 
images present poor quality. To overcome the problem, a projective-geometric approach is 
investigated, according to the following discussion. Preliminarily, the calibration target is 
segmented-out (see Fig.5) from undistorted image (Fig.5.a) by using well-known 
morphological operations (such as connected components for small object removing and 
thresholding binaryzation). Once  the  pattern  is  detected  in  the  image,  the  checkerboard 
square vertexes are identified through a line-fitting approach as explained in the following. 
As well-known, image plane projection preserves the intersection property. Hence in each 
image the pattern target appears to have squares aligned with the eight non-intersecting 
lines Lq (see Fig.6.a) and with four non-intersecting lines Lt for each pattern side (see Fig.6.b) 
due to prospective projection. The previous observation provides a scheme for labeling and 
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where synε  is the synchronization error, calε  is the calibration algorithm error and matchε  is 
the error affected by calibration pattern points selection. The calibration error minimization 
takes place by evaluating the epipolar gap for each stereo pairs in which calibration pattern 
is acquired. The epipolar gap estimation is more accurate as greater amount of calibration 
pattern images is available. This calibration method detects the calibration object in a 
rotation independent way  and  it  localizes checkerboard  square  corners  corresponding  to 
calibration target ones by using line-fitting and label-sorting strategies. In order to estimate 
intrinsic and extrinsic cameras parameters, checkerboard square vertexes must be detected 
in acquired images and matched with corresponding checkerboard square vertexes in real 
calibration target. Standard corner detection approaches (Harris & Stephens, 1988) does not 
give satisfactory results by detecting checkerboard square vertexes, since underwater 
images present poor quality. To overcome the problem, a projective-geometric approach is 
investigated, according to the following discussion. Preliminarily, the calibration target is 
segmented-out (see Fig.5) from undistorted image (Fig.5.a) by using well-known 
morphological operations (such as connected components for small object removing and 
thresholding binaryzation). Once  the  pattern  is  detected  in  the  image,  the  checkerboard 
square vertexes are identified through a line-fitting approach as explained in the following. 
As well-known, image plane projection preserves the intersection property. Hence in each 
image the pattern target appears to have squares aligned with the eight non-intersecting 
lines Lq (see Fig.6.a) and with four non-intersecting lines Lt for each pattern side (see Fig.6.b) 
due to prospective projection. The previous observation provides a scheme for labeling and 
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(b) 

Fig. 6. a) projection of 8 non intersecting lines on image plane; b) projection of 4 non 
intersecting lines for each side on image plane. 

sorting the centroids as shown in Fig. 7.a. At each iteration the line passing through 
centroids P1 and Pi is considered as the reference line r, where the P1 is the outer centroid 
with the lowest abscissa. Let L be a list containing ( )O

j
r
j ddj ,,  triples where j is the centroid 

label, r
jd  is the Euclidean distance of Pj from line r, and O

jd is the Euclidean distance of Pj 

from axes origin O. Firstly, centroids are sorted by distance r
jd  producing a new list L’ in 

which collinear centroids are grouped. Each group of centroids in L’ is newly sorted by 
distance from the axes origin. The loop exit test is based on the evaluation of errors Eθ and 
Ed. As shown in Fig.7.c, Eθ measures the collinearity along Lq as a maximum shifting from 
average angular coefficient: 

 
minmax32,...,1

max
θθ
θθ

θ −
−

=
=

i
i

E , (6) 

Experimentally, Eθ <0.7 guarantees a satisfactory collinarity along Lq lines. Instead, Ed 
measures the maximum distance of middle centroids from line passing through outers 
centroids. A maximum value of 2 pixel for Ed guarantees a good collinearity along Lt lines. 
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Fig. 7. a) Centroid labels mapping and sorting criterion; b) Test to evaluate centroid 
collinearity with LT and LQ lines. 

Centroid labels are sorted out by evaluating collinearity and distance from the reference 
line, according to the pseudocode provided in Tab. 1. The goal of the next step is to locate 
the four vertexes for each labelled and sorted checker square of the calibration pattern. 
Therefore, for each checkerboard square Northern, Southern, Eastern and Western points 
are located as intersection of square borders with the two estimated sets of lines Lq and Lt 
estimated in the previous step (Fig.8.a,b). 
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Fig. 7. a) Centroid labels mapping and sorting criterion; b) Test to evaluate centroid 
collinearity with LT and LQ lines. 

Centroid labels are sorted out by evaluating collinearity and distance from the reference 
line, according to the pseudocode provided in Tab. 1. The goal of the next step is to locate 
the four vertexes for each labelled and sorted checker square of the calibration pattern. 
Therefore, for each checkerboard square Northern, Southern, Eastern and Western points 
are located as intersection of square borders with the two estimated sets of lines Lq and Lt 
estimated in the previous step (Fig.8.a,b). 
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Fig. 8. a) Overall viewing of intersections; b) Single checker square intersections; c) LN, LS, LE, 
LW lines are estimated by fitting of N, S, E, W points respectively in each pattern side; d) 
Square vertexes obtained by LN, LS, LE, LW lines intersection. 

Fig. 9. The result of the calibration object detection algorithm: all square vertexes are labelled 
and ordered coherently with calibration object marker points. 
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For i = 1 to 32 (amount of checkerboard squares) 
r is the line passing through points P1 and Pi 

( ) ( )OPdistdrPdistdj j
O
jj

r
j ,,,:32,...,1 ===∀  

( ){ }O
j

r
j ddjjL ,,|32,...,1==  

L’ = Sort (L) with respect r
jd  

L’’ = Sort (L’) with respect O
jd  

if (Eθ < 0.7 and Ed < 2) exit loop 
next i 

Table 1. Pseudocode for centroids labeling algorithm. 

Once N, E, S, W points are located, the lines LN, LE, LS, LW can be estimated through line 
fitting as represented in Fig.8.c. LN, LS, LE, LW lines are estimated by fitting of N, S, E, W 
points respectively in each pattern side. Finally, for each checker square the four vertexes 
are obtained by lines intersection as LN∩LW, LN∩ LE, LS∩ LW, LS∩LE (see Fig.8.d). The result of 
the calibration object detection algorithm is shown in Fig.9, where all square vertexes are 
labelled and ordered in image coherently with the object marker points of the calibration 
pattern in real world coordinates. 

4.2.2 Epipolar gap evaluation 
The calibration activity receives a careful selection of a stereo pair from the video sequence 
in which the calibration pattern is acquired. The selection of calibration stereo pairs is 
motivated by the asynchronism of the acquisition system based on a non-triggered frame 
grabber. Since there are many stereo pairs showing the calibration pattern, the Epipolar Gap 
Evaluation (EGE) is used as a selection criterion. Aim of this step is to minimize the 
acquisition time distance between the left and the right frame in the stereo pair; the purpose 
is to select a stereo pair affected by minimum time difference (Fig. 4.c). The selection 
criterion can be schematized with two sequential activities such as: the Calibration Matrices 
Estimation and the Epipolar Gap Evaluation. The scheme is depicted in Fig.10.a. The first step 
receives as input the h-th stereo frame pair, in which the calibration pattern is acquired, 
providing the corresponding calibration matrices as output, according to Tsai’s calibration 
method. The second block receives as input the calibration matrices from the previous block 
and the stereo frame pair in which the seabed surface under reconstruction is acquired. The 
EGE provides the calibration matrices that minimize the Epipolar Gap on the overall 
reconstructing frames set. In EGE, a sparse set of stereo matches 
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where h
jk ,EG  is the epipolar gap defined in Eq.4 and here generalized as follow: 
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where h
jk ,EG  is the epipolar gap defined in Eq.4 and here generalized as follow: 
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Fig. 10. a) Block scheme for the calibration frames selection criterion based on the Epipolar 
Gap Evaluation. b) Epipolar gap evaluated in 4 points ; c) Experimental result. The MEG is 
evaluated within calibration sequence. The optimal value u in Eq.11 is achieved for frame h 
= 1504 with θ ≈ 1 pixel. 
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Thus, MEG is used as a filtering rejection stereo pairs for which the corresponding value 
exceeds a prefixed threshold. If the amount of rejected couples is given by: 

 { }θ>== khh rkN ,MEG|,,1…  (10) 

then, the chosen calibration pairs will be ( )RL , uu PP  with 

 { }h
sh

Nu
,,1

minarg
…=

= . (11) 

5. Seabed reconstruction 
5.1 Overview 
Stereo reconstruction is based on the epipolar geometry as discussed in Section 5.1 and 
illustrated in Fig. 3. Let the camera matrices PL and PR (two 4×4 projection matrices in 
homogeneous coordinates) and ( L

ix , R
ix ) two corresponding points in the left-right images, 

the epipolar constraint in Eq.1 must be satisfied. The constraint may be interpreted 
geometrically in terms of the rays in space corresponding to the two image points L

ix  and 
R
ix ; in particular each point lies on the epipolar line of the other point according to Eq.2 and 

Eq.3. Referring to Fig. 3 this means that the two rays LiCX  and RiCX  back-projected from 
image points L

ix  and R
ix  lie in a common epipolar plane passing through the two camera 

centres LC  and RC . Since the two rays lie in a plane, they will intersect in the 3-D point iX  
related to the points L

ix  and R
ix  through cameras projections. iX  can be determined as 

intersection of the two rays back-projected from corresponding points L
ix  and R

ix  by using a 
stable triangulation method (Hartley & Zisserman, 2003). Unfortunately, these 
corresponding points are not known a-priori leading to the Stereo Correspondence Problem, so 
that, given the point L

ix , the problem is to determine another point R
ix  such as these two 

points are the projections of the same 3-D point onto the left and the right image plane, 
respectively. Epipolar constraint allows to simplify the matching algorithmic complexity by 
reducing the searching area close to the epipolar lines. Further algorithmic simplifications 
are possible by means of Epipolar Rectification process, that is, the calculation of an 
appropriate projective transformation producing as output a stereo image pair in which the 
epipolar lines are transformed to lines parallel with the x-axis in the image plane. 
Rectification allows to perform stereo matching along horizontal scan lines. In this situation, 
the horizontal offset between corresponding image points R

i
L
ii xxd −=  is referred as 

disparity. Stereo correspondences are estimated by using matching algorithms that received 
rectified stereo image pairs in input and provide a dense disparity map as output. The 
disparity map is a range image in which each pixel describes the disparity value estimated 
respect to a reference image. Given a left disparity map represented with a 256 grey levels, 
each right matching point is: 

 min256
dpxx iL

i
R
i −Δ−=  (12) 

where Δ is the disparity range, mind is the minimum disparity value, and ip  is the disparity 
map value corresponding to the R

ix  point (in 256 gray levels). In this framework, for stereo 
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Fig. 10. a) Block scheme for the calibration frames selection criterion based on the Epipolar 
Gap Evaluation. b) Epipolar gap evaluated in 4 points ; c) Experimental result. The MEG is 
evaluated within calibration sequence. The optimal value u in Eq.11 is achieved for frame h 
= 1504 with θ ≈ 1 pixel. 
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Thus, MEG is used as a filtering rejection stereo pairs for which the corresponding value 
exceeds a prefixed threshold. If the amount of rejected couples is given by: 

 { }θ>== khh rkN ,MEG|,,1…  (10) 

then, the chosen calibration pairs will be ( )RL , uu PP  with 

 { }h
sh

Nu
,,1

minarg
…=

= . (11) 
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disparity maps calculation local and global methods are explored. In both cases, the major 
difficulties are related to the underlying assumption of brightness constancy in the stereo 
algorithms, systematically violated in underwater environment (Bolles et al., 1993). 

5.2 Stereo correspondences: local methods 
Local approaches are based on a search windows horizontally displaced in one view with 
respect to the other view for each allowed disparity. Matching measures generally used in 
local methods are Sum of Absolute Differences (SAD), Sum of Squared Differenced (SSD), 
Normalized Cross Correlation (NNC) and Sampling Insensitive Measurement. In this context the 
best choice is the Normalized Zero-Mean Cross-Correlation (ZNCC), that is quite insensitive at 
brightness variations typical of underwater environment. ZNCC measure is defined as: 
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from which the disparity is calculated as 

 Disparity(x, y) = ( )dyx
ddd

,,ZNCCmax
MAXMIN ≤≤

. (14) 

In Fig.11 is reported en example of ZNCC stereo matching applied on a rectified seabed 
image. 

             
(a)                                                              (b) 

Fig. 11. a) original rectified left image; b) disparity map with ZNCC obtained from (a). 

5.3 Stereo correspondences: global methods 
Unlike local approaches, in global approaches the correspondence problem is stated in term of a 
cost function subject to minimization. The most critical choice is the optimization technique, that 
essentially falls into two main categories: continuous or discrete optimization. In discrete 
minimization, the best stereo matching estimation use combinatorial optimization via Belief 
Propagation (Sun et al., 2002) or Graph Cuts (Boykov et al., 2001). Two Graph Cuts formulation 
based on the expansion moves scheme are now investigated: Voxel Coloring (Kolmogorov & 
Zabih, 2002) and Pixel Labeling (Boykov et al., 1998). Graph Cuts based methods address cost 
function optimization by an energy function that can be represented, in general, as: 
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 E(L) = D(L) + V(L), (15) 

where L is a disparity labeling (i.e. a label set in which each label represents a disparity value), 
D(⋅)penalizes the variation from observed intensities (data penalties term), and V(⋅) is the 
smoothness term that encourages spatial coherence by penalizing discontinuities between 
neighboring pixels. When cost functions involve convex smoothness term a global minimum is 
indeed reachable via Graph Cut in polynomial time. Unfortunately, convex smoothness terms 
do not represent an optimal choice for the stereo problem, in which it is preferable to use a 
non-convex smoothness function to avoid the over-penalizing of large jumps in disparity. 
One simple non-convex function commonly used in stereo vision is the Potts model (Potts, 
1952). Despite the simplicity of the Potts model, the resulting problem formulation is proven 
to be NP-hard (Kolmogorov & Zabih, 2004). However, a strong local optimum can be 
estimated for non-convex smoothness terms by application of expansion move methods 
(Boykov et al., 2001). Image enhancement with Contrast Limited Adaptive Histogram 
Equalization (CLAHE) (Pizer et al., 1987) is often employed in underwater imaging 
application to mitigate brightness variations effects. Both voxel coloring and pixel labeling 
methods suffer for underwater violation of brightness constancy assumption. However, 
CLAHE enhancement permits to mitigate brightness variation effects, as explained in Fig.12. 
 

      
(a)                                                  (c)                                               (e) 

    
(b)                                                  (d)                                               (f) 

Fig. 12. a) original rectified left image; b) CLAHE enhanced rectified left image; c) disparity 
map with voxel obtained from (a), d) voxel based disparity map obtained from enhanced 
image (b); e) pixel labeling without enhancement; f) pixel labeling with CLAHE. 

5.4 3-D Reconstruction from stereo correspondences 
As prefaced in Section 6.1, given a set of stereo correspondences it is possible to recover the 
location of the 3-D points by using geometric triangulation. Tsai’s calibration method 
furnishes the camera matrices PL and PR that relate the image correspondences ( L

ix , R
ix ) 

with the 3-D point Xi through the relations L
ii

L xX =P , R
ii

R xX =P , and the epipolar constraint 
in Eq.1. It follows that R

ix  lies on the epipolar line L
i

R
i xl F=  and the two rays back-
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Unlike local approaches, in global approaches the correspondence problem is stated in term of a 
cost function subject to minimization. The most critical choice is the optimization technique, that 
essentially falls into two main categories: continuous or discrete optimization. In discrete 
minimization, the best stereo matching estimation use combinatorial optimization via Belief 
Propagation (Sun et al., 2002) or Graph Cuts (Boykov et al., 2001). Two Graph Cuts formulation 
based on the expansion moves scheme are now investigated: Voxel Coloring (Kolmogorov & 
Zabih, 2002) and Pixel Labeling (Boykov et al., 1998). Graph Cuts based methods address cost 
function optimization by an energy function that can be represented, in general, as: 
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where L is a disparity labeling (i.e. a label set in which each label represents a disparity value), 
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application to mitigate brightness variations effects. Both voxel coloring and pixel labeling 
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(a)                                                  (c)                                               (e) 

    
(b)                                                  (d)                                               (f) 

Fig. 12. a) original rectified left image; b) CLAHE enhanced rectified left image; c) disparity 
map with voxel obtained from (a), d) voxel based disparity map obtained from enhanced 
image (b); e) pixel labeling without enhancement; f) pixel labeling with CLAHE. 

5.4 3-D Reconstruction from stereo correspondences 
As prefaced in Section 6.1, given a set of stereo correspondences it is possible to recover the 
location of the 3-D points by using geometric triangulation. Tsai’s calibration method 
furnishes the camera matrices PL and PR that relate the image correspondences ( L

ix , R
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with the 3-D point Xi through the relations L
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L xX =P , R
ii

R xX =P , and the epipolar constraint 
in Eq.1. It follows that R

ix  lies on the epipolar line L
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projected from image points L
ix  and R

ix  lie in a common epipolar plane. Since they lie in the 
same plane, they will intersect at some point. This point is the reconstructed 3-D scene point 

iX . While it is possible to recover the 3-D scene point given only the two imaged points 
( L

ix , R
ix ), the accuracy is highly dependent upon the exact matching R

i
L
i xx ↔ . Generally 

errors are involved, hence a set of points is usually used leading to an over-determined 
linear system. In particular, camera parameters and image locations are known only 
approximately. The back-projected rays therefore do not actually intersect in space. It can be 
shown that intersection equations can be solved in a least squares sense (Kanatani, 1993). 
Triangulation is addressed in more details in (Hartley & Zisserman, 2003). Fig. 13 shows the 
3-D points calculated by triangulation starting from disparity maps obtained by using 
methods explained in above sections 6.2 and 6.3. The following sections treat how can be 
obtained a whole mosaic reconstruction starting from single reconstructions like as shown 
in Fig. 13. 
 

 
Fig. 13. A reconstruction obtained from a single stereo scan. 

6. Seabed mosaic 
6.1 Overview 
To construct a 3-D mosaic multiple scans must be registered. The registration activity is 
referred to the alignment of each two-frames reconstruction with the others. A pre-
alignment phase can simplify the registration activity, since pitch and roll are not present in 
motion model (Castellani et al., 2004). For this purpose a pre-alignment activity based on 
ego-motion estimation through four-frames feature matching (i.e. two following stereo 
pairs) is used, by evaluating the displacement of left and right matches in two 
corresponding images. Dimensional effects are normalized by scaling factor according to 
(Kim & Chung, 2006). Once right correspondences are defined in the four-frame, ego-motion 
tracking is performed considering displacements through consecutive 3-D point sets. 
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6.2 Alignment 
The correspondences between adjacent frames are estimated with a reliable feature-based 
matching as explained in the next subsection, while the correspondences between stereo 
pairs are constrained by the epipolar geometry. Given four frames composed by two 
following stereo pairs ( LI1 , RI1 ) and ( LI2 , RI2 ), four-frame correspondences are determined 
according with the scheme shown in Fig. 14.a. Firstly, the correspondences q1 and q2  
 

          
(a)                                                                  (b) 

 
(c) 

Fig. 14. a) Four-frame correspondences estimation scheme; b) Estimated ego-motion 
trajectory; c) The schematic diagram of a moving stereo camera. 
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between consecutive frames LI1  and LI2  are estimated by using the SIFT feature-based 
matching (see the next subsection). Afterwards, the nearest neighbors p1 and p2 to q1 and q2 
respectively, are selected inside the epipolar constraint. As final result, four matching points 
p1, p’1 and p2, p’2 are defined. The scale factor can be determined by using only motion 
correspondence and the epipolar constrain as explained in the following discussion. Let i

xR , 
j
LR , j

RR  be rotation matrices and let i
xt , j

Lt , j
Rt  be translational not zero vectors (for i = 0, 

…, N and j = 1, …, N). Let be defined the following matrices: 
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R ttt /=  for j = 1, …, N. Under these assumptions j

LR , j
Lt  and j
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Rt  can be considered as the motion parameters obtained up to scale using motion 

correspondence for the left and right cameras respectively. Let the left/right coordinate 
systems of a moving stereo camera (Fig.14.c). The following relations are satisfied: 
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Let 1
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RRs t= , the Eq.18 can be rewritten as: 
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The Eq.19 can be rewritten in matricial form as in the following Eq.20: 
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The system in Eq.20 gives a unique solution except in a degenerate motion set as proven in 
(Kim & Chung, 2006). Given the 4-frame matching points and the scale factors estimated as 
mentioned above, two corresponding 3-D point sets, X1 and X2, are calculated between the 
two following stereo correspondences. Hence, ego-motion is estimated by evaluating 3-D 
point displacements from X1 to X2. Fig.14.b shows the estimated navigation trajectory. 

6.3 Correspondences between adjacent frames 
Scale Invariant Feature Transform (SIFT) feature (Lowe, 1999) is used as feature matching 
method, reducing the effect of outlier by using the Least Median of Square (LMedS) method 
(Zhang et al., 1995). Generally, feature detection methods, such as the Harris detector 
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(Harris & Stephens, 1988), are sensitive to the affine distortion of image. Therefore, they are 
not suitable to build feature sets in image acquired in uncontrolled environments. SIFT 
feature matching (Lowe, 1999) is widely used because it is invariant to affine transforms. 
These characteristics are suitable to be employed with imagery obtained at different camera 
angles by using ROV/AUV. SIFT feature algorithm is based upon finding locations within 
the scale space of an image. Features are identified by detecting maxima and minima in the 
Difference of Gaussian (DOG) pyramidal space. A subpixel location, scale and orientation are 
associated with each SIFT feature. In order to achieve high specificity, a local feature is 
formed by measuring the local image gradients at many orientations in coordinates relative 
to the location, scale and orientation of the feature. Although the SIFT feature matching 
algorithm has low bad matching error rate, if the outliers are presented in estimation of 
transformation matrix, the recovered camera motion is incorrect and it is impossible to 
register the model correctly. Therefore, the LMedS approach is employed and the amount of 
sample is estimated by using the following relation: 

 P = 1 - (1 - (1 - ε)p )m , (21) 

where P is the probability of a good sample for LMedS, and ε, p, m denote the ratio of false 
matched, the sample size and the number of sample required. Choosing m = 108 with ε = 0.5 
and p=4 in Eq.21, the probability of a good sample is 99.9%. 

6.4 Registration refinement 
After a pre-alignment phase based on ego-motion estimation, Iterated Closest Point (ICP) 
algorithm (Besl & McKay, 1992) is employed for 3-D registration refinement. The 
registration activity maps each single scan reconstruction into the same coordinate system, 
solving the absolute orientation problem when correspondences between each single scan 
reconstruction and the others are unknown. For each iteration ICP algorithm alternates the 
following two step: 1) calculation of the closest points between reconstructions and 
assuming this points as correspondent, 2) overlap of the reconstructions by determining the 
right transformation using absolute orientation. Given two reconstructed points set X1 and 
X2 subject to registration, the above absolute orientation referred in step (2) is resolved 
through the following minimization using the Kanatani’s method (Kanatani, 1993): 
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t Rxmin , (22) 

where (R, t) is the sought transformation (rotation and translation), and (x1i, x2i) is the closest 
point pair determined in step (1). ICP iterations proceed until the overlapping error doesn’t 
go down a given threshold. The final 3-D mosaic is obtained processing thousands of single 
scan reconstruction. The final mosaic reported in Fig.15 concerns the reconstruction of a 
wide underwater area that contains seven columns (only five are visible) in cipolin marble 
dating to the Roman age. 

8. Conclusion and future work 
A framework for seabed 3-D mosaic reconstruction has been presented. The three mainly 
troublesome aspects discussed are asynchronous stereo acquisition, depth estimation and the 
3-D mosaic registration. The use of an inexpensive asynchronous stereo sequence is explained, 
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between consecutive frames LI1  and LI2  are estimated by using the SIFT feature-based 
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Let 1
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The Eq.19 can be rewritten in matricial form as in the following Eq.20: 
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The system in Eq.20 gives a unique solution except in a degenerate motion set as proven in 
(Kim & Chung, 2006). Given the 4-frame matching points and the scale factors estimated as 
mentioned above, two corresponding 3-D point sets, X1 and X2, are calculated between the 
two following stereo correspondences. Hence, ego-motion is estimated by evaluating 3-D 
point displacements from X1 to X2. Fig.14.b shows the estimated navigation trajectory. 

6.3 Correspondences between adjacent frames 
Scale Invariant Feature Transform (SIFT) feature (Lowe, 1999) is used as feature matching 
method, reducing the effect of outlier by using the Least Median of Square (LMedS) method 
(Zhang et al., 1995). Generally, feature detection methods, such as the Harris detector 
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(Harris & Stephens, 1988), are sensitive to the affine distortion of image. Therefore, they are 
not suitable to build feature sets in image acquired in uncontrolled environments. SIFT 
feature matching (Lowe, 1999) is widely used because it is invariant to affine transforms. 
These characteristics are suitable to be employed with imagery obtained at different camera 
angles by using ROV/AUV. SIFT feature algorithm is based upon finding locations within 
the scale space of an image. Features are identified by detecting maxima and minima in the 
Difference of Gaussian (DOG) pyramidal space. A subpixel location, scale and orientation are 
associated with each SIFT feature. In order to achieve high specificity, a local feature is 
formed by measuring the local image gradients at many orientations in coordinates relative 
to the location, scale and orientation of the feature. Although the SIFT feature matching 
algorithm has low bad matching error rate, if the outliers are presented in estimation of 
transformation matrix, the recovered camera motion is incorrect and it is impossible to 
register the model correctly. Therefore, the LMedS approach is employed and the amount of 
sample is estimated by using the following relation: 

 P = 1 - (1 - (1 - ε)p )m , (21) 

where P is the probability of a good sample for LMedS, and ε, p, m denote the ratio of false 
matched, the sample size and the number of sample required. Choosing m = 108 with ε = 0.5 
and p=4 in Eq.21, the probability of a good sample is 99.9%. 

6.4 Registration refinement 
After a pre-alignment phase based on ego-motion estimation, Iterated Closest Point (ICP) 
algorithm (Besl & McKay, 1992) is employed for 3-D registration refinement. The 
registration activity maps each single scan reconstruction into the same coordinate system, 
solving the absolute orientation problem when correspondences between each single scan 
reconstruction and the others are unknown. For each iteration ICP algorithm alternates the 
following two step: 1) calculation of the closest points between reconstructions and 
assuming this points as correspondent, 2) overlap of the reconstructions by determining the 
right transformation using absolute orientation. Given two reconstructed points set X1 and 
X2 subject to registration, the above absolute orientation referred in step (2) is resolved 
through the following minimization using the Kanatani’s method (Kanatani, 1993): 
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where (R, t) is the sought transformation (rotation and translation), and (x1i, x2i) is the closest 
point pair determined in step (1). ICP iterations proceed until the overlapping error doesn’t 
go down a given threshold. The final 3-D mosaic is obtained processing thousands of single 
scan reconstruction. The final mosaic reported in Fig.15 concerns the reconstruction of a 
wide underwater area that contains seven columns (only five are visible) in cipolin marble 
dating to the Roman age. 

8. Conclusion and future work 
A framework for seabed 3-D mosaic reconstruction has been presented. The three mainly 
troublesome aspects discussed are asynchronous stereo acquisition, depth estimation and the 
3-D mosaic registration. The use of an inexpensive asynchronous stereo sequence is explained, 
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suggesting a new scheme for accurate calibration frames selection. Moreover, disparity map 
calculation in both points of view, local and global, is considered. Brightness constancy 
violation is treated adopting cross-correlation and histogram equalization. Results are 
evaluated by using ground truth data. Moreover, a four-frame features tracking scheme for 
ego-motion estimation has been suggested, combining epiflow advantages and ICP 
registration refinements. Current ongoing and future work involve improvements on ICP 
module, more accurate ground truth results evaluation and the implementation of the 
Extended Kalman Filter-based ego-motion and structure recovery for off-line 3-D mosaicking. 

 
Fig. 15. The final 3-D mosaic reconstruction. Units are expressed in millimetres. 
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1. Introduction 
The omnidirectional mobile robots have attracted great attention in last twenty years. Their 
major advantage superior to the traditional car-like mobile robots, whose motion is subject 
to the nonholonomic constraints, lies on the feature that their linear and rotational motions 
can be simultaneously and independently carried out. A typical mechanical structure of 
omnidirectional robot utilizes three universal driving wheels which can be either driven or 
slid along any direction [2]. This special motion pattern significantly simplifies the path 
planning and motion control tasks. 
For the motion control of omnidirectional mobile robots, the majority of work so far, 
however, only consider the kinematic model for motion control. This is equivalent to 
assuming that the robots are massless bodies and therefore can ideally respond to the input 
motion control commands, which indeed does not reflect the real situation especially for 
heavy and fast moving robots. Due to this reason, efforts have been made to develop precise 
dynamic model to improve robots' performance [1]-[3]. In recent years, the visual servoing 
which combines control application with vision systems has become a hot topic. However, 
only a few studies [12], [13] combined the vision system with omnidirectional robot which 
has excellent maneuverability. 
In this study we integrate the motion control with stereo vision for target tracking. Unlike 
previous work [4], [9], in which control laws were based on image space using the inverse 
image Jacobian matrix for motion estimation, our algorithm is to directly estimate the 
relative position and velocity errors in Euclidean space. By using visual feedback, a simple 
PD controller is proposed. The PD control ensures the asymptotic stability of the tracking 
error if the target is still which is equivalent to the case of docking, or of the bounded-input-
bounded-output (BIBO) stability if the target is moving with varying but bounded rotational 
and linear velocities. 
The paper is organized as follows: Section 2 presents the robot motion equation and tracking 
task. The dynamic model of the overall system is given in Section 3. The vision based relative 
motion and tracking error estimation is introduced in Section 4. The PD control law is 
proposed in Section 5. As a practical justification, the experimental tracking results obtained 
are given in Section 6. Finally, conclusions and future work are presented in Section 7. 
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1. Introduction 
The omnidirectional mobile robots have attracted great attention in last twenty years. Their 
major advantage superior to the traditional car-like mobile robots, whose motion is subject 
to the nonholonomic constraints, lies on the feature that their linear and rotational motions 
can be simultaneously and independently carried out. A typical mechanical structure of 
omnidirectional robot utilizes three universal driving wheels which can be either driven or 
slid along any direction [2]. This special motion pattern significantly simplifies the path 
planning and motion control tasks. 
For the motion control of omnidirectional mobile robots, the majority of work so far, 
however, only consider the kinematic model for motion control. This is equivalent to 
assuming that the robots are massless bodies and therefore can ideally respond to the input 
motion control commands, which indeed does not reflect the real situation especially for 
heavy and fast moving robots. Due to this reason, efforts have been made to develop precise 
dynamic model to improve robots' performance [1]-[3]. In recent years, the visual servoing 
which combines control application with vision systems has become a hot topic. However, 
only a few studies [12], [13] combined the vision system with omnidirectional robot which 
has excellent maneuverability. 
In this study we integrate the motion control with stereo vision for target tracking. Unlike 
previous work [4], [9], in which control laws were based on image space using the inverse 
image Jacobian matrix for motion estimation, our algorithm is to directly estimate the 
relative position and velocity errors in Euclidean space. By using visual feedback, a simple 
PD controller is proposed. The PD control ensures the asymptotic stability of the tracking 
error if the target is still which is equivalent to the case of docking, or of the bounded-input-
bounded-output (BIBO) stability if the target is moving with varying but bounded rotational 
and linear velocities. 
The paper is organized as follows: Section 2 presents the robot motion equation and tracking 
task. The dynamic model of the overall system is given in Section 3. The vision based relative 
motion and tracking error estimation is introduced in Section 4. The PD control law is 
proposed in Section 5. As a practical justification, the experimental tracking results obtained 
are given in Section 6. Finally, conclusions and future work are presented in Section 7. 
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2. Robot dynamics and tracking task definition 
2.1 Dynamics of the robot 
Considering an omnidirectional mobile robot [2], its configuration space is a smooth 3-
manifold and can then be locally embedded in Euclidean space R3. The robot has three 
degrees of freedom, i.e. two dimensional linear motion and one dimensional rotational 
motion. There are three universal wheels mounted along the edge of the robot chassis 120° 
apart from each other, and each wheel has a set of rollers aligned with its rim, as shown in 
Figure 1. Because of its special mechanism, the robot is able to simultaneously rotate and 
translate. Therefore, the path planning can be significantly simplified by directly defining 
the tracking task with the orientation and position errors obtained by the visual feedback. 
On the top of the robot, as indicated in Figure 2, a pair of cameras, C1 and C2, are mounted. 
Let E = {Oe, xe, ye} be the earth coordinate frame and R = {Or, xr, yr} be the coordinate frame 
fixed on the robot body whose origin is located at the mass center of the robot. The 
orientation of the coordinate frame of the left camera, C = {Oc, xc, yc}, is assumed to be 
consistent with that of the robot, i.e. the rotation matrix between those two frames is an 
identity, but a translation  between them exists, as illustrated in Figure 2. 
 

 
Fig. 1. The configuration of the wheel system 

 
Fig. 2. Top view of omnidirectional mobile robot 
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Given this geometry layout, the configuration of the robot is given by  in the 
earth frame, which can also be locally expressed as follows: 

 
(1) 

where  are the position coordinates of the robot in the earth frame and  is 
the relative rotation angle between the robot frame and the earth frame, E. 
As shown in [2], the dynamic model of the robot is given by: 

 (2) 

where M = diag{m, m, I} > 0 is the moment matrix in which m > 0 and I > 0 are the mass and 
inertia of the robot body, respectively; F = [Fx, Fy, θ]T is the force vector which includes the 
driving forces and the rotation torque applied along the directions of the axes, xe and ye, in 
the earth frame and about the mass center of the robot, respectively. Let f = [fx, fy, f ]T

 be the 
forces expressed in the coordinate frame of the robot, F in (2) is revised as follows: 
 

 
where 

 
is the rotation matrix of the robot with respect to E. Furthermore, let the forces generated 
from the three universal wheels be f = [f1, f2, f3]T , and let the clockwise rotation of the robot 
viewed from the top of the robot be the positive direction as indicated in Figure 2, the 
following relation holds 
 

 
in which 

 
is the force projection matrix, r is the radius of the chassis, and 3 /2 = cos 30° and 1/2 = 
sin 30°. Hence, robot model (2) becomes 

 (3) 

In this model, the sliding friction of the wheels has been ignored. To handle it, a controller 
with varying control gains will be applied as those will be shown late. 

2.2 Tracking task definition 
To define the motion control task, Figure 2 is extended to Figure 3 that includes a moving 
target T to be tracked by the robot. T = {Ot, xt, yt} is denoted as the coordinate frame attached 
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degrees of freedom, i.e. two dimensional linear motion and one dimensional rotational 
motion. There are three universal wheels mounted along the edge of the robot chassis 120° 
apart from each other, and each wheel has a set of rollers aligned with its rim, as shown in 
Figure 1. Because of its special mechanism, the robot is able to simultaneously rotate and 
translate. Therefore, the path planning can be significantly simplified by directly defining 
the tracking task with the orientation and position errors obtained by the visual feedback. 
On the top of the robot, as indicated in Figure 2, a pair of cameras, C1 and C2, are mounted. 
Let E = {Oe, xe, ye} be the earth coordinate frame and R = {Or, xr, yr} be the coordinate frame 
fixed on the robot body whose origin is located at the mass center of the robot. The 
orientation of the coordinate frame of the left camera, C = {Oc, xc, yc}, is assumed to be 
consistent with that of the robot, i.e. the rotation matrix between those two frames is an 
identity, but a translation  between them exists, as illustrated in Figure 2. 
 

 
Fig. 1. The configuration of the wheel system 

 
Fig. 2. Top view of omnidirectional mobile robot 
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Given this geometry layout, the configuration of the robot is given by  in the 
earth frame, which can also be locally expressed as follows: 

 
(1) 

where  are the position coordinates of the robot in the earth frame and  is 
the relative rotation angle between the robot frame and the earth frame, E. 
As shown in [2], the dynamic model of the robot is given by: 

 (2) 

where M = diag{m, m, I} > 0 is the moment matrix in which m > 0 and I > 0 are the mass and 
inertia of the robot body, respectively; F = [Fx, Fy, θ]T is the force vector which includes the 
driving forces and the rotation torque applied along the directions of the axes, xe and ye, in 
the earth frame and about the mass center of the robot, respectively. Let f = [fx, fy, f ]T

 be the 
forces expressed in the coordinate frame of the robot, F in (2) is revised as follows: 
 

 
where 

 
is the rotation matrix of the robot with respect to E. Furthermore, let the forces generated 
from the three universal wheels be f = [f1, f2, f3]T , and let the clockwise rotation of the robot 
viewed from the top of the robot be the positive direction as indicated in Figure 2, the 
following relation holds 
 

 
in which 

 
is the force projection matrix, r is the radius of the chassis, and 3 /2 = cos 30° and 1/2 = 
sin 30°. Hence, robot model (2) becomes 

 (3) 

In this model, the sliding friction of the wheels has been ignored. To handle it, a controller 
with varying control gains will be applied as those will be shown late. 

2.2 Tracking task definition 
To define the motion control task, Figure 2 is extended to Figure 3 that includes a moving 
target T to be tracked by the robot. T = {Ot, xt, yt} is denoted as the coordinate frame attached 
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to the target. Let  be the configuration of the target in the earth frame, which can 
also be locally expressed by a 3D vector 

 
(4) 

In T there are n fixed vectors pi = [pxi, pyi]T
 , for i = 1, 2, …, n, indicating the locations of a 

group of feature points on the target as shown in Figure 3. 
 

 
Fig. 3. Geometry layout of omnidirectional mobile robot, the target to be tracked and the 
destination configuration of the robot 

A destination frame also called ideal configuration D = {Od, xd, yd} is further specified and 
obtained by a constant translation  and a constant rotation angle  from the 
target frame, as shown in Figure 3. The configuration of D expressed in E is then given by 

 
(5) 

The control objective is to control the omnidirectional robot, using the feedback from the 
vision system which grabs the images, recognizes the target and features, and supplies the 
estimated tracking errors, to track the target in such a way that the motion errors between 
the robot and configuration D are driven to be as small as possible. 

3. Dynamic models of the overall system 
Since the omnidirectional robot is driven by three DC motors, their dynamics are needed to 
be taken into account for the overall system modeling. 
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3.1 Motor dynamics and gear transmissions 
Based on the mechanical and electrical characteristics of the motors, and denoting J’, B’, R’m, 
L’, Km and Ke as the inertia moment matrix, the viscous damping matrix, the resistance 
matrix, the inductance matrix, the torque and the back EMF coefficient matrices, 
respectively, the model of three identical motors is given by: 

 
(6) 

where J’ = JI, B’ = BI, L’ = LI, R’m = RmI, Km = kmI and Ke = keI are positive definite matrices 
accordingly. Wm = [w1,w2,w3]T is the 3×1 vector of the angular velocities of the motors, Ic is 
the current vector of the motors, T’ is the driven torque vector of the motor shafts and E is 
the input voltage vector. 
Since the motors employed are quite small and their rotating speeds are rather slow (due to 
the slow motion of the target), their inductances L’ and back EMF's, Eemf can be neglected. 
Thus, (6) can be simplified as: 

 
(7) 

Motion mapping from the motors to robot is via gear boxes. The relation between the driven 
torque on the motor shaft side and that of a wheel shaft side, can be illustrated in Figure 4. 
The torque relation is given by ‘i = firm = nfirw = ni where ‘i is the driven torque on a motor 
shaft, i is that on wheel shaft and n = rm /rw < 1 is the gear ratio between the two shafts. As 
three motors have the same gear boxes, the relation can be expressed in the vector form: 

 (8) 

where T = [1, 2, 3]T > 0 is the driving torque vector. 
 

 
Fig. 4. Mechanism of gearing 

Let vlx and vly be robot's linear velocities along the x and y axes of its frame, wr be its rotation 
angular velocity, and wm1, wm2 and wm3 be the angular velocities of the three motors, the 
following relationships hold 

 

(9) 
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where r’w is the radius of the wheel. (9) can be rewritten as 

 (10)

where Tv is a constant mapping matrix given by: 

 
Therefore the relationships between the linear and angular velocities of the robot and the 
angular velocities of the three motors are given by 

 (11)

or 

 (12)

According to (12), motor motion equation (7) becomes: 

 
(13)

3.2 The overall model 
As  (3) becomes: 

 (14)

where  is the wheel radius matrix. By combining (13) and (14), 
the overall dynamic model including both motors and robot body then is given by 

 
(15)

It can be rearranged as 

 
(16)

Further let 

 (17)

and 

 (18)

the combined model equation, (16), can then be simplified as 
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 (19)

In real applications, motors E is generated by PWM (Pulse-Width Modulation) motor driver 
from a motion control microprocessor. As the relationships between the PWM signal and 
voltages E are almost linear, the E can be controlled by the PWM signals outputted from 
controller by a constant gain. 

4. Relative motion estimation and tracking errors 
In this section we present the estimation of relative position and velocity between the robot 
and target using machine vision. The outcome will be used for robot to carry out tracking 
task. 

4.1 Rotation estimation 
Since the moving target tracking is performed in 2-D space, The parameters needed to be 
estimated are rotation angle  and 2-D translation vector tc between the robot 
and target, as shown in Figure 5. 
 

 
Fig. 5. The relationship between the feature vectors and the rotation angle 

To solve θe, the feature points detected in the images are first recovered from the image 
coordinates back to two dimensional coordinates {qi} expressed in the coordinate frame of 
the left camera by employing the reconstruction algorithm [14]. 
Expressed in the camera frame at the k-th step of the observation, the relative motion of the 
i-th feature point, pi, on the target is formulated by the following kinematic equation: 

 (20)

where pi is the known coordinate of the ith feature point predefined in the coordinate frame 
of the target, qi(k) is a two dimensional coordinate in the coordinate frame of the left camera, 
and  is the translation between the origins of the target and the left camera viewed 
from C. Considering another feature point, pj , and subtracting the projection equation of pj 

from (20), the rotation is decoupled from the translation, as given by the following equation: 

 (21)

(21) indicates that the feature vector, (pi-pj), on the target becomes the one, (qi(k)-qj(k)), after 
the target rotates by angle θe(k) with respect to the left camera. 



 Stereo Vision 

 

202 

where r’w is the radius of the wheel. (9) can be rewritten as 

 (10)

where Tv is a constant mapping matrix given by: 

 
Therefore the relationships between the linear and angular velocities of the robot and the 
angular velocities of the three motors are given by 

 (11)

or 

 (12)

According to (12), motor motion equation (7) becomes: 

 
(13)

3.2 The overall model 
As  (3) becomes: 

 (14)

where  is the wheel radius matrix. By combining (13) and (14), 
the overall dynamic model including both motors and robot body then is given by 

 
(15)

It can be rearranged as 

 
(16)

Further let 

 (17)

and 

 (18)

the combined model equation, (16), can then be simplified as 

Moving Target Tracking of Omnidirectional Robot with Stereo Cameras 

 

203 

 (19)
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from C. Considering another feature point, pj , and subtracting the projection equation of pj 

from (20), the rotation is decoupled from the translation, as given by the following equation: 

 (21)

(21) indicates that the feature vector, (pi-pj), on the target becomes the one, (qi(k)-qj(k)), after 
the target rotates by angle θe(k) with respect to the left camera. 
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Given observation qi(k) and qj(k) and predefined feature point pi and pj, the following 
relationship holds: 

 
 

where (·) represents the inner product. Therefore rotation angle θe(k) can be resolved as: 

 
As there are s = n(n - 1) / 2 such feature vectors. The optimal estimation of θe(k) can be 
obtained by using the following equation: 

 
(22)

In addition, the sign of the rotation angle is decided using the 2D polar frame. 

4.2 Translation estimation 
After rotation angle θe(k) is obtained, rotation matrix  can be constructed as 
follows: 

 
Consequently, the translation between the origins of the target and the left camera is 
calculated using the following equation: 

 
By defining the following estimation error: 

 
The optimal solution  that minimizes E can be obtained as the solution of dE/dt = 

 which is 

 
(23)

4.3 Relative velocity estimation 
In addition to the relative orientation and position, the relative velocity between the robot 
and target is also required by the proposed controller. Consequently, the angle velocity is 
given by 

 
(24)
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and the translation velocity is calculated by 

 
(25)

where Ti is the sampling time. 

4.4 Tracking error 
The relative orientation, position and velocity between the left camera and the target have 
been calculated by (22)-(25). In addition, tracking error er and its derivative between the 
robot and ideal configuration D at which the robot is expected to arrive are also calculated 
in this subsection. For convenience, in the sequel, step index k in (22)-(25) is removed. 

4.4.1 Relative tracking error in the frame of the robot 
As the orientation difference between the target and configuration D is a given constant 
angle, , and the orientation of the left camera is the same as that of the robot, the relative 
angle between the robot and configuration D is 

 
in which θe is given in (22). Therefore, given the predefined  which is the 

position coordinate of D in the coordinate frame of the target, the linear position error 
between the origins of the coordinate frames of the robot and D can be obtained as follows: 

 
(26)

As the robot frame has the same orientation as that of the left camera,  is obtained by the 
following equation: 

 
where  is given by (23) and  is a constant, as illustrated in Figure 2. 
Therefore the 3D position error in the coordinate frame of the robot, i.e. er, is given by 

 

(27)

Since configurations T and D have the same angular velocity, the velocity error between 
D and R is the same as that between the target and the robot. Taking the derivative of (26), 
it has that 

 

(28)
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where we is the relative angular velocity between the target and the robot given in (24). 
Consequently, the corresponding 3D velocity tracking error, , is given by 

 
(29)

where  is given in (28). 

4.5 Relative tracking error in the earth frame 
In last subsection, the relative tracking error between the robot and configuration 
D expressed in the frame of the robot has been presented. Indeed, those quantities can also 
be expressed in other frames such as the earth frame, E. Recalling the notations of the robot 
and the target configuration given in (4), ideal configuration D can be written as a 3D vector 
in E as 

 
(30)

and its velocity and acceleration are 

 
(31)

and 

 
(32)

Given these the relative motion errors can be expressed in earth frame E as follows: 

 
(33)

 
(34)

The relation between ee in E and er in R is then given by 

 
(35)

where 

 
(36)

is a generalized 3 × 3 rotation matrix. The relative velocity error in E is: 
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(37)

which indicates the relation between the relative velocity errors in the two frames, i.e. the 
earth frame and the frame of the robot. 

5. PD control 
5.1 Control law design 
To direct the robot to track the target, a motion controller is requested. For simplicity, a PD 
control law is designed for the tracking task. It will be shown that the proposed PD control 
can ensure the asymptotic stability of the tracking error if the target is still which is 
equivalent to the case of docking, or the bounded-input-bounded-output (BIBO) stability if 
the target is moving with varying but bounded rotational and linear velocities. 
As A is obviously a nonsingular matrix given in (19), it can be rearranged to be: 

 (38)

Changing the sign of (38) and then adding  to both sides of it, it has that 

 (39)

Recalling Equation (33), (39) can be revised as 

 (40)

which can be regarded as a second order linear system in terms of error states, e e and ee. We 
need to design a control law using E to make the tracking errors as small as possible as t→∞. 
Our target is to have (40) be the form of a typical second order linear system as: 

 (41)

where Kv and Kp are ideal controller parameter matrices to be determined, and u is an 
equivalent input signal of the system. Ideally, if we can have u≡0, then  as t→∞, 
that is, the asymptotic stability can be achieved. However, due to the fact that  and  are 
unmeasurable, u can not be zero unless  =  = 0. 
Let the constant parameter matrices, Kv and Kp be the diagonal matrices, i.e. Kv =diag{kv1, kv2, 
kv3} > 0 and Kp = diag{kp1, kp2, kp3} > 0 where kvi and kpi (i = 1, 2, 3) are given positive constants, 
i.e. the control gains. Thus, the model, (40), can be rewritten as: 

 (42)

As  and  on the right-hand side of (42) depend on the acceleration and the velocity of 
the target and are unmeasurable in practice, they are diffcult to be compensated, the control 
algorithm can only be applied to compensate other components, expressed as: 

 (43)
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Therefore, the control law can be determined as: 

 (44)

Substituting matrix A in (17) and matrix B in (18) back to (44), and performing 
manipulation, control law (44) can be revised as: 

 (45)

where  is a constant matrix. 
Recalling  in (35) and  in (37) and applying  

 to (45), finally it has that 

 (46)

where  are constant 
matrices and 

 
is a skew matrix of the angular velocity of the robot. 
Although the robot tracking is formulated in the earth frame as shown in (42), (46) is a 
controller based on the robot frame, in which er and  are both expressed in the frame of the 
robot obtained by on-board vision system. wr, the angular velocity of the robot, can be 
obtained by three on-board wheel encoders using (9). 

5.2 Overall system stability analysis 
Given designed control law (46) error model (42) can then be simplified as: 

 (47)

To analyze the stability of the overall system given in (47), the similar procedure mentioned 
in [15] is followed. Denote  (47) can be rewritten as the typical second 
order linear system: 

 (48)

where u is the input of the system. Certainly if  and therefore qr = qd, i.e. 
the robot catches up with ideal configuration D. This is clearly corresponding to the docking 
case of a still target. 
However, in most cases, u usually is not zero as  and  are not zero. Thus, it is necessary 
to analyze the stability of the system using BIBO stability. Since simplified error model (48) 
represents a linear second order decoupled differential equation with input u, the 
expressions will be developed for the L∞ gain of the operations   
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Consider the L∞ gain of the operator Hi : ui →eei, (i = 1, 2, 3), where ui denotes the ith 
component of the input vector u and the same definition is given to other vectors, and write 
the transfer function from input ui to output eei as: 

 
(49)

As such, consider the L∞ gain of the operator Gi : ui →  and write the transfer function 
from input ui to output  as:  

 
(50)

Then, the two transfer functions operators can be bounded as: 

 
(51)

where hi(t) and gi(t) are the impulse response of the transfer functions, (49) and (50), 
respectively. 
For simplicity the critical damping case where  is considered. Evaluating the 
responses (51) leads to the results: 

 
(52)

Then, bounds on the multi-input multi-output (MIMO) gains are given as: 

 
(53)

Therefore, for zero initial condition, the results are: 

 
(54)

From (54), if u ∈L∞, it is clear that  if assume that a 
smooth, bounded desired trajectory is specified so that qd,  and  are elements of L∞, it is 
clear that: 

 (55)

where β1 = A-1B ∞. As the matrices, A and B, only involve the constant matrices and the 
orthogonal matrix,  whose norm is 1, the following results can be obtained: 

 
(56)
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Consider the L∞ gain of the operator Hi : ui →eei, (i = 1, 2, 3), where ui denotes the ith 
component of the input vector u and the same definition is given to other vectors, and write 
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(49)
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(50)

Then, the two transfer functions operators can be bounded as: 

 
(51)

where hi(t) and gi(t) are the impulse response of the transfer functions, (49) and (50), 
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Then, bounds on the multi-input multi-output (MIMO) gains are given as: 

 
(53)

Therefore, for zero initial condition, the results are: 

 
(54)

From (54), if u ∈L∞, it is clear that  if assume that a 
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 (55)

where β1 = A-1B ∞. As the matrices, A and B, only involve the constant matrices and the 
orthogonal matrix,  whose norm is 1, the following results can be obtained: 

 
(56)
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The results given in (56) indicate that if  and  ∈ L∞, ee and e e ∈ L∞. That is, bounded 
input (  and ) results in bounded output (ee and e e). From these results, it is certain that 
the system satisfies the requirement of BIBO stability and the control law designed is 
theoretically effective. 

6. Experimental verification 
6.1 Experimental setup 
The omnidirectional robot built up for tracking experiment mainly includes three software 
modules, namely, the image processing module, the pose estimation module and the control 
module. The first two are implemented in Microsoft Visual C++ 6.0 which operates on a 
laptop with a CPU of Intel 7250 at 1.60GHz and system memory of 512 MB, while the 
control module is implemented in MPLAB v7.01 and burned into microprocessor 
PIC18F452. 
The communications between the laptop and the PIC is via a USB-based interface. The 
functions of the interface are to perform the signal conversion between the USB signals and 
three separate serial signals, to manage the interrupts and to successfully maintain the 
communications. Figure 6 shows the configuration of the real-time platform on which the 
image processing module and the pose estimation module are run. 
 

 
Fig. 6. The real-time platform of the experiment 

The hardware of the robot can be roughly categorized into the mechanical module and the 
electronic module. The mechanical module includes the body of the robot which is 
constructed by two armor plates which have a radius of 0.21 meter, a pair of web-cameras, 
Logitech Pro5000, fixed on the top of the robot, and three universal wheels mounted along 
the edge of the robot chassis, 120° apart from each other and driven by three 12V DC geared 
motors. In addition, the speeds of the three wheels are measured by quadrature wheel 
encoders. Each encoder consists of a quadrature encoder pattern segment and a photo 
interrupter, ZD1901, as presented in Figure 7. 
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Fig. 7. The wheel encoder 

The electronic module mainly involves three motor speed controllers NMIH-0050 Full H-
Bridge which drive the motors to run in bidirection and vary their speeds by adjusting the 
PWM signals, and the PCB module which integrates all the electronic components utilized 
in the robot. 

6.2 Image processing for target recognition 
The image processing is employed for target recognition after stereo images are captured in 
real time. In order to simplify the image processing, a planar pattern which involves four 
rectangles in different colors is proposed in the tracking task, as shown in Figure 8. Prior to 
other parts of image processing, the captured images are first undistorted based on the lens 
distortion coefficients obtained by the camera calibration. Furthermore, as there are a 
number of existing irrelevant objects in the experimental environment, the target interested 
is extracted by segmentation approach. A segmentation scheme based on HSI color space 
(Hue, Saturation and Intensity) is applied to decouple the grey level component from the 
ones carrying the color information. Therefore, the effect of the light intensity is reduced, 
which results in a more robust segmentation. 
 

 
Fig. 8. The proposed target for tracking 
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To extract the regions of interest which include four rectangles respectively, Region 
Growing Segmentation, which groups pixels or subregions into larger regions with 
predefined criteria, is employed based on the color information of the rectangles. 
Color information alone is not robust enough to recognize the target, as some objects which 
exclude the target may have similar colors. In order to reject the irrelevant objects which 
have the same colors as the target, shape information of the target is also introduced. As 
shown in Figure 8, the target includes four blocks which are rectangular. Based on this 
information, the objects which are not rectangular are rejected. By means of edge detector, 
the edges of the remaining objects can be directly obtained. 
The edges of the four rectangles are straight lines. Therefore, the Hough transform is 
applied to the detected edges in order to find out the straight lines, and the contour-based 
shape representation approach is employed to describe the shapes of the objects constructed 
by the detected straight lines. Consequently, the objects whose shapes are roughly rectan- 
gular can be regarded as the targets and accepted, otherwise they are rejected. 
After the four rectangles are recognized, a corner detector is applied to the interested 
regions for the detection of the feature points. The detected feature points in images will be 
recovered back to Euclidean space by using the optimal triangulation algorithm for the 
estimation of the relative orientation and position between the target and the robot. The 
Harris corner detector in OpenCV (Open Source Computer Vision Library)[16] is adopted as 
our corner detector to detect the corners of the four rectangles. To enhance the accuracy of 
the corner detection, the so called sub-pixel refinement for the corner detection is employed 
which iterates to find the sub-pixel accurate locations of the corners. 
The complete procedure of the proposed image processing for the target detection and 
recognition is summarized and illustrated in Figure 9. 
 

 
Fig. 9. The procedure of image processing 

6.3 Experimental results and analysis 
The experiment for the target docking and tracking is performed with the omnidirectional 
robot, and the experimental results are obtained by testing three docking scenarios and one 
tracking scenario. 
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The experiment is undertaken in a laboratory with a complex background. Many irrelevant 
objects are available in the laboratory. Natural light is used instead of using stable lighting. 
The planar object given in Figure 8 is employed as the target to be tracked. To record the 
trajectories of the robot for the visualization of the experiment, a colored chalk is fixed in the 
middle of the chassis during the experiment. 
In addition, the relative rotation angle also called the relative orientation error, eθ, and the 
position errors,  and , between the robot and ideal configuration D are calculated in real 
time and then saved into a separate file. Therefore, the change of the relative orientation 
error and position errors between the robot and configuration D during the experiment can 
be visualized by plotting the data from the file obtained. 
The total time of one cycle through the complete control loop is about 0.05 second. The 
weight of the robot is around 10 Kg and its moment of inertia is about 3 Kgm2. In addition, 
the relative rotation angle, , between the ideal configuration and the target is zero, and the 
linear position error between them is  = [0,-0.75]Tm. 
To avoid large overshoots or steady errors and reduce the effect of the un-modeled friction, 
the control gains, Kp and Kv, are not fixed, that is, the control gains vary according to the 
relative orientation error and position errors between the robot and configuration D. For 
instance, the large relative orientation error and position errors can produce large driven 
forces and therefore the small control gains are needed in order to avoid the large overshoot 
of the response or vice versa so as to reduce the steady errors of the tracking. 

6.3.1 Docking scenarios 
In docking scenarios, the target is still while the robot is controlled to move towards ideal 
configuration D. As mentioned in the stability analysis, if the target is still, the tracking 
errors should satisfy the asymptotic stability, that is, the robot can finally dock itself to ideal 
configuration D. 
In the first docking scenario, as shown in Figure 10, the target is represented by the green 
star. The desired docking location, i.e. ideal configuration D, is represented by a blue square 
and located at coordinate (225, 182) in the earth frame while the initial position of the robot 
is located at (169, 78) represented by a black circle, and the initial relative rotation angle 
between the robot and D is around zero. By observing the trajectory of the robot represented 
by the red line, it is clear that the position error, e , is driven to decrease while the 
movements of the robot are adjusted by the control signals. However, the position error, xe , 
increases while the robot goes through the range where y = {ye |100 ≤ ye ≤ 120}. The reason is 
that the movements of the robot are affected by the friction between the wheels and the 
ground. Finally, the robot stops at location (221, 180) represented by the red circle and fairly 
close to ideal configuration D at (225, 182). The total experimental time is about 2.25 
seconds. 
For the second docking scenario, the result is illustrated in Figure 11. From the figure, it can 
be seen that ideal configuration D is at coordinate (184, 187) and the initial position of the 
robot is located at (275, 70). The initial relative rotation angle between the robot and ideal 
configuration D is -35°, that is, the robot needs to clockwise rotate 35° in order to coincide 
with the orientation of ideal configuration D, as shown in Figure 12. 
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Fig. 10. The docking trajectory of the robot in Docking Scenario. 1 

Furthermore, as the initial position error and relative rotation angle are big, large driven 
forces of the wheels are generated and therefore an overshoot comes up. The overshoot 
makes the robot pass ideal configuration D and then arrive at location (172, 186). After 
adjustments of control signals, the robot finally stops at location (190, 186). In terms of the 
orientation error between the robot and the ideal configuration, Figure 12 shows that the 
relative rotation angle dramatically decreases within the first second, followed by its 
fluctuation amongst 0° and -5°. Finally, the residual rotation angle is about -1°. The total 
time of the docking takes 2.5 seconds. 
 

 
Fig. 11. The docking trajectory of the robot in Docking Scenario. 2 

The third scenario of the docking is similar with the second one. The main differences are 
that the initial position of the robot in the third scenario is on the left-hand side of the ideal 
configuration and initial relative rotation angle eθ = 42° while it is on the right-hand side and 
eθ = -35° in the second one, as presented in Figure 13 and Figure 14. Figure 13 shows that the 

Moving Target Tracking of Omnidirectional Robot with Stereo Cameras 

 

215 

robot starts from location (63, 176), passes through transition location (101, 286), and finally 
stops at (155, 284) which is close to D at location (151, 280) represented by the blue square. In 
addition, the relative rotation angle remarkably drops within the first 0.6 second, and the 
final one is close to 0°. The total docking time is 2.75 seconds. 
 

 
Fig. 12. The relative rotation angle between the robot and ideal configuration D in Docking 
Scenario. 2 

Based on the results of the three docking scenarios reported, it is clear that the robot can not 
completely coincide with ideal configuration D, that is, the residual errors exist. This is due 
to the influences of the un-modeled friction, the low resolution cameras employed and the 
unstable lighting. However, by using the proposed pose estimation algorithm and control 
scheme, the robot can successfully dock itself to the locations close to ideal configuration 
D at different positions and orientations. Therefore, the asymptotic stability is 
approximately satisfied in the docking scenarios. 
 

 
Fig. 13. The docking trajectory of the robot in Docking Scenario. 3 
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Fig. 14. The relative rotation angle between the robot and ideal configuration D in Docking 
Scenario. 3 

6.3.2 Tracking 
To validate the proposed robot’s capability of the target tracking, a tracking experiment is 
performed. As shown in Figure 15, instead of being still, ideal configuration D clockwise 
moves along a predefined trajectory represented by the blue line at an average rate of 
0.27m/s. The predefined trajectory is a circle with a radius of 1 meter. 
Initial location of configuration D is at coordinate (85, 201) represented by the blue circle 
while the initial position of the robot is (78, 118) represented by the red circle. Hence, the 
initial distance between them is about 0.833m and the initial relative rotation angle is about  
-58° as shown in Figure 15 and Figure 16. To make the tracking trajectory of the robot clear, 
 

 
Fig. 15. The tracking trajectory of the robot 

Moving Target Tracking of Omnidirectional Robot with Stereo Cameras 

 

217 

the first half of the robot trajectory is represented by the red line and the rest of it is 
represented by the green line. Finally, ideal configuration D arrives at coordinate (85, 201) 
again, but the robot stops at (81, 189) represented by the green circle. Thus, the residual 
position errors,  and , between the robot and the ideal configuration are 0.04m and 
0.12m, respectively, and the residual orientation error is around 0°, as shown in Figures 16-
18. 
Figure 15 shows that the tracking trajectory of the robot is basically consistent with that of 
the predefined trajectory of the ideal configuration, although some acceptable deviations 
between them exist. The factors which affect the tracking performance are summarized as 
follows: 
1. Response delay: The response delay of the robot is mainly caused by the computational 

cost of the image and control modules and the friction. The response delay has the 
feedback signals, or more precisely the visual feedback and the wheel speed feedback, 
outdated so as to impair the tracking performance. 

2. Friction: Due to the sliding motion of the wheels, there is strong friction existing 
between the wheels and ground. The friction plays an important role in affecting the 
performance of the tracking, especially the static friction which is considerably bigger 
than the dynamic one. In order to reduce the impacts of the friction on the tracking 
performance, an accurate model including friction effects should be considered and an 
advanced nonlinear control law should be applied. 

3. Lighting condition: Lighting condition mainly exerts an impact on the image processing 
and therefore the pose estimation is affected. In this experiment, natural light is used 
rather than stable lighting. To improve the tracking performance, a laboratory with the 
relatively stable lighting condition is preferred. 

4. Camera resolution: In this experiment, a pair of low resolution cameras are employed. 
Due to the limitation of the camera resolution, a small difference between the robot and 
ideal configuration D can not be detected on image planes. Therefore, the residual 
tracking errors exist. 

 

 
Fig. 16. The relative rotation angle between the robot and the ideal configuration expressed 
in the coordinate frame of the robot in the tracking scenario 



 Stereo Vision 

 

216 

 
Fig. 14. The relative rotation angle between the robot and ideal configuration D in Docking 
Scenario. 3 

6.3.2 Tracking 
To validate the proposed robot’s capability of the target tracking, a tracking experiment is 
performed. As shown in Figure 15, instead of being still, ideal configuration D clockwise 
moves along a predefined trajectory represented by the blue line at an average rate of 
0.27m/s. The predefined trajectory is a circle with a radius of 1 meter. 
Initial location of configuration D is at coordinate (85, 201) represented by the blue circle 
while the initial position of the robot is (78, 118) represented by the red circle. Hence, the 
initial distance between them is about 0.833m and the initial relative rotation angle is about  
-58° as shown in Figure 15 and Figure 16. To make the tracking trajectory of the robot clear, 
 

 
Fig. 15. The tracking trajectory of the robot 

Moving Target Tracking of Omnidirectional Robot with Stereo Cameras 

 

217 

the first half of the robot trajectory is represented by the red line and the rest of it is 
represented by the green line. Finally, ideal configuration D arrives at coordinate (85, 201) 
again, but the robot stops at (81, 189) represented by the green circle. Thus, the residual 
position errors,  and , between the robot and the ideal configuration are 0.04m and 
0.12m, respectively, and the residual orientation error is around 0°, as shown in Figures 16-
18. 
Figure 15 shows that the tracking trajectory of the robot is basically consistent with that of 
the predefined trajectory of the ideal configuration, although some acceptable deviations 
between them exist. The factors which affect the tracking performance are summarized as 
follows: 
1. Response delay: The response delay of the robot is mainly caused by the computational 

cost of the image and control modules and the friction. The response delay has the 
feedback signals, or more precisely the visual feedback and the wheel speed feedback, 
outdated so as to impair the tracking performance. 

2. Friction: Due to the sliding motion of the wheels, there is strong friction existing 
between the wheels and ground. The friction plays an important role in affecting the 
performance of the tracking, especially the static friction which is considerably bigger 
than the dynamic one. In order to reduce the impacts of the friction on the tracking 
performance, an accurate model including friction effects should be considered and an 
advanced nonlinear control law should be applied. 

3. Lighting condition: Lighting condition mainly exerts an impact on the image processing 
and therefore the pose estimation is affected. In this experiment, natural light is used 
rather than stable lighting. To improve the tracking performance, a laboratory with the 
relatively stable lighting condition is preferred. 

4. Camera resolution: In this experiment, a pair of low resolution cameras are employed. 
Due to the limitation of the camera resolution, a small difference between the robot and 
ideal configuration D can not be detected on image planes. Therefore, the residual 
tracking errors exist. 

 

 
Fig. 16. The relative rotation angle between the robot and the ideal configuration expressed 
in the coordinate frame of the robot in the tracking scenario 



 Stereo Vision 

 

218 

Furthermore, Figure 16 shows the historic trajectory of the relative rotation angle obtained 
during the tracking and the total experimental time of 23.25 seconds. From the figure, it is 
clear that the relative rotation angle is large sometimes. This mainly results from either the 
sharp turn of the target, or of the robot, or of both. However, the large relative rotation angle 
is adjusted by the modulated control signals. Consequently, the relative rotation angle is 
bounded within 20° at most time, as reported in Figure 16. In terms of the position errors, 
Figure 17 and Figure 18 show that the position errors,  and , are bounded within 0.2m 
and 0.3m at most time, respectively, although the impacts of the sudden acceleration of the 
target and the response delay of the robot exist. Therefore, the tracking satisfies the BIBO 
stability. 

 
Fig. 17. The position error,   in the tracking scenario 

 
Fig. 18. The position error,  in the tracking scenario 

The figures which include the docking and tracking trajectories of the robot are plotted with 
the sampled points on the physical trajectories chalked. The position errors shown in 
Figures 17 and 18 are expressed in the coordinate frame of the robot rather than the earth 
frame, and the relative rotation angle shown in Figures 12, 14 and 16 and the position errors 
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are not the ground truth values but the estimated values obtained by the calculation in real 
time. 

7. Conclusions and future work 
In this paper, the moving target tracking of an omnidirectional robot with stereo cameras 
has been presented. Unlike most car-like robots which are subject to the nonholonomic 
constraint, the omnidirectional robot proposed is holonomic with excellent maneuverability. 
Furthermore, this omnidirectional feature makes the path planning, which is a tough task 
for the car-like mobile robots, be a straightforward task. 
The dynamic model of the robot is obtained first. Based on the dynamics, a simple PD 
controller with visual feedback is proposed. The PD control ensures the asymptotic stability 
of the tracking error if the target is still which is equivalent to the case of docking, or the 
bounded-input-bounded-output (BIBO) stability if the target is moving with varying but 
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1. Introduction  
To promote and further encourage developments in the fields of science and technology in 
accordance with the Science and Technology Basic Law (hereinafter Basic Law), the 
Japanese Ministry of Education, Culture, Sports, Science and Technology is promoting 
various initiatives through measures that realize technological and scientific development 
according to the vision of the Basic Law. Realization of a personnel training program in 
science and technology is one of the primary targets of the Basic Law in order to maintain 
and elevate Japan’s research, development capabilities and competitiveness in the 
international market. Various plans such as the ‘Training and Development of Talented 
Individuals in Technology, Arts and Sciences plan’, the ‘I love Technology and Science 
Plan’, and the development of digital science education teaching materials are also being 
carried out to realize the vision of the Basic Law. For example, in junior and senior high 
schools, the Japanese government has formulated and is promoting the ‘Super Science High 
Schools’ plan and the ‘Science Partnership Program’. All these initiatives are aimed at 
providing personnel training in science and technology, which in turn promotes technical 
innovation and industrial competitiveness. As students are being increasingly exposed to 
advanced technologies, these programs intend to increase the educational incentive for 
students and provide them with a basic technology education (Ministry of Education, 2005).  
Furthermore, the industrial education target in a high school course requires basic 
knowledge of each industrial field, practical and technical skills acquisition and an 
understanding of the role it plays in the modern society and environment. Therefore, in 
technical high schools, practice trainings and experiments are incorporated into the course 
syllabus as an educational program that encourages student interest in technology, 
promotes the student’s practical knowledge and develops their skills positively. 
Now, we see many teaching materials using REGO for studying basic technology. This 
REGO is the teaching materials which are easy to treat for programming education. 
However, students cannot acquire practical and technical skills of manufacturing by using 
the REGO materials (Josep et al., 2005). 
On the basis of these plans and vision, the Kanagawa Comprehensive Technical and Science 
Senior High School (Kanagawa Sougou Sangyo H.S.) was founded in 2005. As this 
predecessor school was a technical high school, the learning environments are maintained 
such that the students are exposed to a wide range of technologies ranging from machine 
tools such as the NC and the milling machine to micro computer technology. 
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The students participating in this program, who are active in both class and extracurricular 
activities, study not only the individual technologies but also systematic technical synthesis 
by gaining exposure to the entire process from design stage to manufacturing using robotic  
systems. As a result, these students have participated in robot contests and have won 
several awards. 
In this chapter, we experimented our program for high school students as an educational 
subject, in order to show that this program can be used effectively for the high school 
student. We present the results of implementing a new educational program and materials 
for high school students by incorporating a small stereo vision sensor module for an 
autonomous, simple and compact robot (Fig. 1). 
 

 
Fig. 1. Compact autonomous robot with stereo vision system constructed by high school 
students 

2. Contents research purposes of the educational program 
This chapter describes a new educational program to maximise the use of a simple and 
compact stereo vision robot. The research purposes of this educational program are 
summarized as follows: 
1. Development of new educational methods and materials that differ from the 

conventional ones for application in a new technical field. 
2. Investigation of both the field of technical interest and technical knowledge of the 

students and the presentation of new education curricula and materials suitable for the 
students. 

3. Measure the educational effects of the proposed educational contents such as the 
educational method, practical training, cost, etc. 

4. Measure student responses to the program, gauge their interest levels and obtain their 
opinions regarding the teaching materials. 

3. Educational program features 
Providing the students with an opportunity to study stereo image processing technology on 
a computer and handmade robot is one of the specific features of this educational program. 
We will teach students total system integration using a new educational framework that has 
not been previously attempted in an educational program. The flow of this educational 
program is summarized as follows: 
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1. Manufacturing a robot body as a control object. 
2. Stereo image information processing exercise by using a computer. 
3. Learning of control programming and systemization of the robot system. 
4. Operating the autonomous stereo vision robot that performs feature extraction and 

distance measurement by processing images. 

4. Pre-analysis of participant students 
While developing a program, a teacher always considers the relationship between the 
contents of the educational material and the academic aptitude of the students involved. 
This also holds true for technical education. Pre-analysis performed by the participating 
students is thus an important element for developing the lesson. In the analysis method, a 
questionnaire on the related technology is administered to ten students (Table 1).  
This questionnaire is designed to check the student’s technical skill and attitudes with 
regards to robots, vision sensors, and other technical elements involved in the program, in 
order to have a record of the technical knowledge of the students. Figure 2 shows the results 
of the questionnaires. All answers were either ‘Yes’ or ‘No’. The numbers in Figure 2 denote 
the actual questions. 
Based on the results of the questionnaire, we observed that everyone had been exposed to 
all or most of the technical skills related to this program. The cause of this, as shown by the 
results, is that the target students have received technical education for one year or more, 
and have received additional mechatronics education by participating in extracurricular 
activities. The positive responses obtained in the questionnaires revealed that the students 
were capable of using various technical tools; however, their technical knowledge was still 
not very high. Thus, it was considered that the knowledge of the students participating in 
this educational program was quite high as compared to that of high school students. 
Further, the results of the attitude section indicated that none of the students wanted to use 
a vision sensor (Q1 = 0%). This shows that technical education in high schools does not 
typically include a study of vision sensors. 
This questionnaire also revealed that the present condition of the education level in 
technical high schools lags behind in the field of vision technology. On the other hand, since 
the results indicate that all the students are interested in robots (Q2 = 100%), it is considered 
that the students participating in this program show interest and are highly motivated to 
work in this field. 

5. Educational objectives 
Based on the results obtained from the questionnaire, we developed the educational 
objectives and curriculum for this program. In Japan, the educational objectives of a 
technical high school curriculum comprise teaching fundamentals of both industrial 
mechanical science and information technology, practical training related to these 
fundamentals, mechanical drafting, etc. We set up the educational objectives of this program 
by considering the objectives of a technical high school—special knowledge, technology and 
ability for functional integration; these are ingrained through the fundamental study of the 
proposed vision technology using both experiments and training. Spontaneous study 
attitude and problem solving ability are also improved by this program. Also, the 
fundamental understanding of the relationship among mechanics, hardware, software and 
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vision technology is increased, and the students gain interest in general technical fields, 
especially mechatronics. 
 

Section Question 

Mechanism 
/Hardware 

Q1. Can you use a saw well? 
Q2. Can you cut sheet metal by shirring machine?  
Q3. Can you file well?  
Q4. Can you use slide calipers and a height gage?  
Q5. Can you use a drilling machine?  
Q6. Have you used a lathe?  
Q7. Have you used a milling machine?  
Q8. Can you understand a machine design?  
Q9. Can you draw a machine design? 
Q10. Can you understand a data sheet?  
Q11. Can you look for a data sheet by yourself?  
Q12. Have you made electronic circuit? 
Q13. Have you soldered?  
Q14. Have you used cutting pliers and a nipper?  
Q15. Can you use an electronic millimeter?  
Q16. Have you used an oscilloscope?  
Q17. Can you understand a circuit schematic?  
Q18. Can you draw a circuit schematic?  
Q19. Do you know a polar semiconductor?  
Q20. Have you used a sensor?  
Q21. Have you used a microcomputer?  
Q22. Can you select parts required for an electronic circuit?  
Q23. Have you made an electrical system by using semiconductor 
          module?  

Software 

Q1. Have you used C language?  
Q2. Have you used both input and output function of data in a 
        microcomputer?  
Q3. Can you use condition branch of “IF” sentence?  
Q4. Can you use a repetition of a “For” sentence?  
Q5. Have you use interruption process?  
Q6. Do you know how to use a function?  
Q7. Can you perform of LED control?  
Q8. Have you used a Motor Driver IC?  
Q9. Can you write a program in a microcomputer?  
Q10. Have you read a book about a microcomputer?  

Attitude 
(interest) 

Q1. Have you want to use a vision sensor? 
Q2. Are you interested in a robot?  

Table 1. Technical level questionnaire for students before program (Answer is "Yes" or "No") 
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(a) Hardware category                               (b) Software category 

Fig. 2. Results of the technical skills questionnaires (Circled number denotes the technical 
question number. Radius of the circle indicates the frequency of ‘Yes’ responses.) 

6. Educational material 
6.1 Small stereo vision sensor one board module 
Figure 3 shows the small Stereo Vision One board sensor module (SVO sensor module) that 
we developed for this program. Two sets of CMOS image sensors are mounted such that the 
module can obtain a stereo pair image. We can obtain the position of the three-dimensional 
coordinates—x, y and z—or achieve color extraction, feature extraction or distance 
measurement by processing the information obtained from this stereo pair image. The 
calculated results from this module can be output using general-purpose interface ports 
such as general IO, serial communication port and A/D and D/A ports. Furthermore, a 16 
bit microprocessor installed in this module can perform basic visual processing calculations 
 

 
Fig. 3. Small Stereo Vision One Board Sensor Module 

for image processing. We have implemented functionalities for capturing images, noise 
reduction, color extraction, binarization, centroid calculation, radius calculation, shape 
recognition, stereo image based distance calculation, pattern matching and attention area 
tracking.  These functionalities enable us to use any image processing algorithm in order to 
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vision technology is increased, and the students gain interest in general technical fields, 
especially mechatronics. 
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take complete advantage of the vision sensors. In addition, when using a multiple sensor 
system, this SVO sensor module can be implemented easily in various robots because a 
general interface is employed as an output port. This module can be used as an image 
recognition module attached to a simple robot for this program (Okada et al., 2005; 
Morishita, T.& Yabuta, T., 2007). 
In related works, Konolige developed a small, self-contained stereo vision module using 
FPGA(Kurt, 1997), which is particularly useful for depth image generation. Our sensor 
module provides several visual functions for multiple purposes and can be easily 
implemented in various types of robots—it can be attached as a visual sensor as it has a 
general-purpose interface. 

6.2 Educational stereo vision robot 
The educational robot developed for this program is a simple and compact robot with a 
stereo vision system. As conventional educational targets are only concerned with exposure 
to the manufacturing process, the contents of their corresponding exercises focus only on 
this process. On the other hand, the educational target of this program is aimed at covering 
a wide spectrum of technologies ranging from mechanical manufacturing processes to 
software technology. Therefore, the time spent in manufacturing the mechanism and  
hardware is limited to about 1/3 of the entire curriculum educational time. We selected a 
robot with a simple structure in order to ensure that it is manufactured within the assigned 
time. Figure 4 shows a simple block diagram for the stereo vision robot system; the dashed 
line represents the portion of the electronic circuit to be manufactured. Students fabricated 
this portion using a few general electric parts and under the considerations of a circuit 
diagram provided as educational material. In this educational program, students can attain 
the fundamental skills of fabricating an electronic circuit and learn to read a fundamental 
circuit diagram. While integrating machine and hardware parts of the electrical circuit, a 
technical sense of system integration is cultivated. The educational curriculum developed is 
shown in Table 2.  All the parts and components selected for this educational system are low 
cost and are easily available in order to ensure that the parts can be sourced easily and are 
economically efficient and maintainable(Fig. 5). 
 

 
Fig. 4.  Block Diagram for Educational Robot System 
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Fig. 5. Main parts of the robot system  

Subject Contents 

1) Guidance 
2) Manufacturing the robot body 
3) Manufacturing the motor control circuit board Robot Manufacturing 

(1st - 2nd week) 4) Manufacturing the motor control circuit board   
5) Stereo vision module mounting 
6) Connection and operation check 

Image information  
processing basics  
and handling(3rd week) 

7) Color system, binarization, noise reduction 
8) Stereo vision module handling exercise 

Stereo vision  
basic learning  
(4th week) 

9) Image data processing using viewer 
10) Data reduction/graph (disparity - distance) 
11) Visual information processing programming exercise 

12) Viewer handling for image  processing operation 
13) Object tracking control programming 
14) Operation check and debugging 
15) Color extraction tracking robot control experiment 

Experiment of  
vision robot 
(5th - 6th week) 16) Distance recognition programming 

17) Operation check and debugging 
18) Distance recognition robot control experiment 

Table 2. An example of the educational curriculum 

6.3 Viewer for vision technology 
Figure 6 shows the screenshots of both the sampled data image from the vision sensor and 
visual image analysis results for the operation. By using the viewer shown in Figure 6(a), 
students can obtain not only a color image of an object but also a binary image, a 
representative point of the object and the disparity of the stereo image. Figure 6(b) shows 
the real time processing results of the position, distance and size of the object. Due to the 
stereo vision sensor, the resultant values are three-dimensional (in x, y and z coordinates). 
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                  (a) Visual processing view                       (b) Processing result view 
Fig. 6.  Vision system information viewer for education 

6.4 Curriculum 
One subject consists of six training classes with four hours of exercise time. For example, if a 
four-hours class is conducted once per week, it would takes six weeks to cover all the 
subjects; this implies a total of 24 hours of exercise time. Moreover, this curriculum can be 
implemented as a conventional one. In this case, one subject is equivalent to two classes of 
the conventional curriculum and the 1st, 2nd & 3rd, 4th subjects can be taught under the 
conventional curriculum as mechatronics technology, basic image information technology 
and an autonomous robot exercise with vision system. These classes are considered to be 
taught in relation with each other. Under this arrangement, a special one subject class can be 
opened and an individual teacher can be assigned for each subject. 

7. Educational practice 
7.1 Manufacturing of the educational robot 
Manufacturing the educational robot comprises the assembly of an actuator system, 
manufacturing the motor drive circuit and system integration with a vision sensor (Fig. 7(a)). 
The time allowance planned originally allotted time for the systematization and 
manufacturing of the electronic circuitry module, such as manually fabricated connections 
and soldering. A generous time distribution is important for the composition or connection 
check of circuits, although the time provided in class to perform these checks is usually not 
sufficient. We could effectively use the time for performing important checks by simplifying 
the construction of the robot (Fig. 7(b)). 

7.2 Basic Learning from image information processing 
This section outlines the basic learning from image information processing using the viewer 
shown in Figure 6. The obtained information can be summarized as follows: 1) the 
relationship between the YIQ color specification system generated by the vision sensor 
module and the RGB color specification system of the viewer, 2) the method for converting 
YIQ to RGB, 3) image binarization method for extracting image color information, 4) noise 
reduction method, 5) method for calculating the representative point of an object based on 
its image coordinates and 6) method to use this sensor module and transmit image 
information to a computer. 
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7.3 Stereo vision basic learning 
This section describes the basic learning achieved from the stereo vision. We explained that 
when a stereo pair image is obtained in parallel, the distance information Z can be acquired 
from the disparity in the image. We used two colored balls for this experiment—a yellow 
ball (table tennis ball) of 38 mm and a red ball(soft-ball) of 76 mm. These balls are placed at 
intervals of 80 to 10 cm from the vision sensor, and then the students are asked to record the 
disparity value of the representative point computed from a binary image Figure 8(b).  
 

 
(a) Hardware manufacturing process 

           
(b) Connection check and debugging 

Fig. 7.  Practice in manufacturing and an experiment 
 

                        
             (a) Graphical experimental data                    (b) Numerical experimental data 

Fig. 8. Disparity vs. distance experimental results obtained by students 
We then asked the students to plot these disparity values on a graph. We explained that the 
distance data obtained from the disparity value changes with the change in disparity. Since 
the two curves are in agreement, the distance measurement can be performed independent 
of the target size, as shown in Figure 8(a). 
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7.4 Operation experiment of a stereo vision robot 
This exercise is an autonomous control experiment of the stereo vision robot. First, the 
coordinate system was explained before the experiment; this is because it is important to 
obtain the relationship between the object position and the results obtained from the 
calculation of the vision sensor data. Next, the branch control algorithm was applied to 
motor control in order to realize a simple robot motion. The focus of this programming 
exercise is on both to set up the threshold of feature extraction for the image processing and 
to generate a motor control program. This exercise is related to both the software and 
hardware fields, which makes this an essential exercise to grasp these relationships.  
Therefore, we made the students verify normal signal transfer between the software and 
hardware before conducting the experiment. Since debugging a program is also important 
for acquiring programming skills, a considerable amount of time is assigned for the 
debugging process (Fig. 7(b)). 
After all pre-exercise conditions are fulfilled, the two experiments shown in Figure 9 were 
conducted. In the first experiment, an object was tracked by color extraction. In other words, 
the autonomous robot can detect an object by color detection and can trace it by determining 
the direction in which the object moves. The second experiment was a stop point control 
experiment of the autonomous robot. In this experiment, the robot stops at a set distance 
from the object by using the distance measurement function; this can be realized by the 
comparison between the pre-assigned distance and the distance measured by the vision 
sensor. By using the stop experiment data, the students compared the actual stop data and 
the pre-experiment data of Figure 8 (section 7.3). When the actual experiment and pre-
experiment data were observed to be in good agreement with each other, the students 
achieve a sense of surprise, admiration and technical satisfaction. 
 

 
Fig. 9. Schematic figures of the color ball tracking experiment and distance measurement 
experiment by using the robot 

(3)(1) (2)
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8. Results after exercise 
After the completion of all the exercises, we investigated both the student attitudes toward 
this program and the achievements of the program by using the questionnaire, in order to 
verify the effect of this educational program. 

8.1 Skill level investigation 
This questionnaire is divided into four groups in agreement with that of the curriculum. The 
first group comprises four questions that can be answered as either ‘Yes’ or ‘No’ (Table 3(a)). 
Figure 9 shows the questionnaire results; these results reveal that almost all students chose 
‘Yes’ as an answer for each question. This educational program is planned such that it 
provides systematic exposure to practical technologies such as software, hardware and 
mechanical manufacturing process by using the vision robot. It helps students assimilate 
vision technology fundamentals as well as practical technologies. Thus, it can be implied 
that the higher the satisfaction for each a questionnaire item, the more enthusiastically the 
students tackled the teaching materials with interest and concern.  
These results reveal that the targets of this educational program have been realized. Thus, 
an overall positive response to the questionnaire in relation to the basic technical education 
reiterates the success of this program. On the other hand, when the contents of questions 
marked as ‘No’ were investigated, it was found that they are related to either 
systematization or programming. Since these questions depend on the student’s skill in the 
technical field, the answers differ based on each student’s technical knowledge. Therefore, 
the items related to these questions must be carefully arranged from the viewpoints of 
teaching material, time distribution and improvement in the educational method. 

8.2 Attitude survey 
In order to understand student attitudes to the related technical fields of this program, we 
conducted the attitude survey, shown in Table 3(b). In this investigation, the students could 
evaluate each question by assigning one of the five grades—very satisfied, generally 
satisfied, normal, generally unsatisfied and very unsatisfied. 
The results are shown in Table 4. Based on the pre-program questionnaire, we can see that 
the students were interested in robot manufacture but did not know about either vision 
sensors or image recognition technology until this program. On comparing the results of the 
questionnaire shown in Table 3, which records both academic achievements and student’s 
attitude toward robot technology after the program, with that of the pre-program 
questionnaire, the following could be seen: (1) This curriculum motivated the students, as 
illustrated by the responses of all the students that ‘making a robot is pleasant’. (2) Although 
there were a few differences in opinion among the students, almost all of them answered 
‘We were able to enjoy programming’. (3) All students also answered ‘We have experienced 
constructing the vision robot’. This is a natural answer obtained based on the usage of these 
education materials. However, it is an important result for the students who did not have 
any prior knowledge of vision sensors, as indicated by the preliminary survey, and gained 
exposure to a new technical field through participation in this educational program. This 
result implies a significant educational result. (4) In addition, this educational program for 
fundamental vision technical education did not require detail learning of its contents. After 
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the program, the students without vision technology experience felt "This technology is an 
important technology". This is an interesting result and has an important educational value. 
 

(a) Academic achievements (answer in either  "Yes "or "No") 

Section Question 

Robot 
manufacture 

Q1. Could you use the tools? 
Q2. Did you have enough time to manufacture the robot in the class? 
Q3. Could you solder the electrical circuit? 
Q4. Could you make an electrical circuit by using the electrical  
       diagram? 

Basic image 
information 
processing  

Q5. Did you understand the relationship between YIQ  and RGB color  
        systems? 
Q6. Did you understand the binarization process? 
Q7. Did you understand the noise reduction method? 
Q8. Could you transfer the image information data into a computer? 

Stereo vision 
technology 

Q9.  Could you perform color extraction on the viewer? 
Q10. Did you understand the calculation of the representation point by 
         using binary information data on the viewer? 
Q11. Could you measure the disparity property on the viewer? 
Q12. Could you draw the graph by using the disparity data? 

Tracking 
experiment 

Q13. Could you generate a program by using the representation point? 
Q14. Could you complete the tracking program by using the  
         representation point? 
Q15. Could you verify the operation of both the software and hardware  
         systems? 
Q16. Could you realize the tracking experiment of a target by using 
          color extraction results? 

Distance 
Recognition 
Experiment 

Q17. Could you use the distance information in programming? 
Q18. Could you verify program execution? 
Q19. Could you realize the distance recognition experiment? 
Q20. Could you check the correspondence of experience data with the 
distance data estimated by the disparity data? 

(b) Attitude survey (five-grade evaluation) 

Impression 

Q21. Is manufacturing a robot a pleasant task? 
Q22. Is programming enjoyable? 
Q23. Do you have experience in vision robot systems? 
Q24. Is this technology important? 

Table 3. Questionnaires of both academic achievements and student's attitude toward robot 
technology after program 
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Fig. 9. Results of the academic achievements questionnaire (Circled number indicates the 
questionnaire number. Radius of the circle indicates the frequency of the ‘Yes’ responses.) 
 

A21  Very pleasant  80%,  pleasant  20% 

A22  Very enjoyable  60%,  Enjoyable  20%,  Normal  20% 

A23  Very realized  100% 

A24  Significant agreement  80%,  agreement  20% 
Table 4. Attitude survey result 

9. Conclusion 
We developed practical high school educational material for a stereo vision autonomous 
simple and compact robot, which has not been previously reported until now in the 
technical education field. The results of this program are summarized as follows: The 
opinions of the high school students, which can be verified from the pre-program 
questionnaire, and the final questionnaire was ‘We never had an opportunity to touch the 
vision technology until now, which is considered to become an important future 
technology’. 
This opinion is almost similar to that expressed by both the first and second grade students 
from an undergraduate engineering university; this is because both the technical knowledge 
and the educational environment are almost the same as that of the technical high school 
students. This educational program can impart practical education including vision 
technology fundamentals, which have a far-reaching impact. 
The salient features of this program can be summarized as follows: 1) As the educational 
program was formulated to encourage the pleasure of experimenting with robot technology 
in practical exercises, it motivated the students positively. 2) This program was intended to 
cultivate each basic technology and technological capability, interest and awareness among 
the students. 3) Furthermore, the educational materials also attained the educational goal as 
set in the beginning. 
As for the student’s opinion regarding the vision sensor, the application of vision 
technology in robotics is important in the field of robot research. However, the conventional 
educational materials use infrared sensors for basic technical education, which is not an 
actual vision sensor. This vision sensor module holds significant potential in education since 
the module is compact, has high usability and is very affordable. Visual information 
processing has long been researched; however, educational programs that use this 
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Fig. 9. Results of the academic achievements questionnaire (Circled number indicates the 
questionnaire number. Radius of the circle indicates the frequency of the ‘Yes’ responses.) 
 

A21  Very pleasant  80%,  pleasant  20% 

A22  Very enjoyable  60%,  Enjoyable  20%,  Normal  20% 

A23  Very realized  100% 

A24  Significant agreement  80%,  agreement  20% 
Table 4. Attitude survey result 

9. Conclusion 
We developed practical high school educational material for a stereo vision autonomous 
simple and compact robot, which has not been previously reported until now in the 
technical education field. The results of this program are summarized as follows: The 
opinions of the high school students, which can be verified from the pre-program 
questionnaire, and the final questionnaire was ‘We never had an opportunity to touch the 
vision technology until now, which is considered to become an important future 
technology’. 
This opinion is almost similar to that expressed by both the first and second grade students 
from an undergraduate engineering university; this is because both the technical knowledge 
and the educational environment are almost the same as that of the technical high school 
students. This educational program can impart practical education including vision 
technology fundamentals, which have a far-reaching impact. 
The salient features of this program can be summarized as follows: 1) As the educational 
program was formulated to encourage the pleasure of experimenting with robot technology 
in practical exercises, it motivated the students positively. 2) This program was intended to 
cultivate each basic technology and technological capability, interest and awareness among 
the students. 3) Furthermore, the educational materials also attained the educational goal as 
set in the beginning. 
As for the student’s opinion regarding the vision sensor, the application of vision 
technology in robotics is important in the field of robot research. However, the conventional 
educational materials use infrared sensors for basic technical education, which is not an 
actual vision sensor. This vision sensor module holds significant potential in education since 
the module is compact, has high usability and is very affordable. Visual information 
processing has long been researched; however, educational programs that use this 
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technology are relatively uncommon. In order to make visual information processing 
technology familiar in general use, we believe that the educational material using simple, 
compact and low cost visual processing modules is of significant value in future educational 
materials. 
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1. Introduction 
Advanced driving assistance systems (ADAS) form a complex multidisciplinary research 
field, aimed at improving traffic efficiency and safety. A realistic analysis of the 
requirements and of the possibilities of the traffic environment leads to the establishment of 
several goals for traffic assistance, to be implemented in the near future (ADASE, INVENT, 
PREVENT, INTERSAFE) including: highway, rural and urban assistance, intersection 
management, pre-crash. 
While there are approaches to driving safety and efficiency that focus on the conditions 
exterior to the vehicle (intelligent infrastructure), it is reasonable to assume that we should 
expect the best results from the in-vehicle systems. Traditionally, vehicle safety is mainly 
defined by passive safety measures. Passive safety is achieved by a highly sophisticated 
design and construction of the vehicle body. The occupant cell has become a more rigid 
structure in order to mitigate deformations. The frontal part of vehicles has been improved 
as well, e.g. it incorporates specially designed “soft” areas to reduce the impact in case of a 
collision with a pedestrian. In the recent decades a lot of improvements have been done in 
this field. 
Similarly to the passive safety systems, primitive active safety systems, such as airbags, are 
only useful when the crash is actually happening, without much assessment of the situation, 
and sometimes they are acting against the well-being of the vehicle occupants. It has become 
clear that the future of the safety systems is in the realm of the artificial intelligence, systems 
that sense, decide and act. 
Sensing implies a continuous, fast and reliable estimation of the surroundings. The decision 
component takes into account the sensorial information and assesses the situation. For 
instance, a pre-crash application must decide whether the situation is of no danger, whether 
the crash is possible or when the crash is imminent, because depending on the situation 
different actions are required: warning, emergency braking or deployment of irreversible 
measures (internal airbags for passenger protection, or inflatable hood for pedestrian 
protection). While warning may be annoying, and applying the brakes potentially 
dangerous, deploying non-reversible safety causes permanent damage to the vehicle, and 
therefore the decision is not to be taken lightly. However, in a pre-crash scenario it is even 
more damaging if the protection systems fail to act. Therefore, it is paramount that the 
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1. Introduction 
Advanced driving assistance systems (ADAS) form a complex multidisciplinary research 
field, aimed at improving traffic efficiency and safety. A realistic analysis of the 
requirements and of the possibilities of the traffic environment leads to the establishment of 
several goals for traffic assistance, to be implemented in the near future (ADASE, INVENT, 
PREVENT, INTERSAFE) including: highway, rural and urban assistance, intersection 
management, pre-crash. 
While there are approaches to driving safety and efficiency that focus on the conditions 
exterior to the vehicle (intelligent infrastructure), it is reasonable to assume that we should 
expect the best results from the in-vehicle systems. Traditionally, vehicle safety is mainly 
defined by passive safety measures. Passive safety is achieved by a highly sophisticated 
design and construction of the vehicle body. The occupant cell has become a more rigid 
structure in order to mitigate deformations. The frontal part of vehicles has been improved 
as well, e.g. it incorporates specially designed “soft” areas to reduce the impact in case of a 
collision with a pedestrian. In the recent decades a lot of improvements have been done in 
this field. 
Similarly to the passive safety systems, primitive active safety systems, such as airbags, are 
only useful when the crash is actually happening, without much assessment of the situation, 
and sometimes they are acting against the well-being of the vehicle occupants. It has become 
clear that the future of the safety systems is in the realm of the artificial intelligence, systems 
that sense, decide and act. 
Sensing implies a continuous, fast and reliable estimation of the surroundings. The decision 
component takes into account the sensorial information and assesses the situation. For 
instance, a pre-crash application must decide whether the situation is of no danger, whether 
the crash is possible or when the crash is imminent, because depending on the situation 
different actions are required: warning, emergency braking or deployment of irreversible 
measures (internal airbags for passenger protection, or inflatable hood for pedestrian 
protection). While warning may be annoying, and applying the brakes potentially 
dangerous, deploying non-reversible safety causes permanent damage to the vehicle, and 
therefore the decision is not to be taken lightly. However, in a pre-crash scenario it is even 
more damaging if the protection systems fail to act. Therefore, it is paramount that the 



 Stereo Vision 

 

236 

protection systems act when needed, and only when needed, a decision that cannot be taken 
in the absence of reliable sensor data. 
The sensorial systems for driving assistance (highway and urban) are today the focus of 
large, joint research projects, which combine active and passive sensors, GPS navigation, 
and telematics. Projects such as CARSENSE (www.carsense.org) INVENT (www.invent-
online.de), PREVENT (www.prevent-ip.org), bring together car manufacturers and research 
partners for the common goal of solving the driving assistance problem. 
In order to provide support for these applications, a sensorial system must provide an 
accurate and continuously updated model of the environment, fitted for high level 
reasoning. The environment description should include: 
- Lane detection / Lane parameters estimation 
- Navigable channel detection and channel parameters estimation in crowded 

environments 
- Vehicle detection and tracking 
- Detection of fixed (non-moving) obstacles 
- Pedestrian detection and tracking. 
There are many types of sensors that can be used for advanced driving assistance systems. 
The most known are: 
- Long range radar: with a range of 1 to 200 m, and a response time of around 40 ms, it is 

a highly accurate ranging sensor, with a narrow field of view, suitable for detection of 
radar-reflecting targets such as vehicles in highway environments. 

- Short/mid range radar: having a working range of 0-80 m, a fast response time, high 
accuracy and a medium width field of view, it is suitable for near range detection of 
vehicles in crowded urban scenarios. Both near range and far range radars have an 
increased reliability when detecting moving objects. 

- Laser scanner: a high precision ranging sensor, working in near or far distance ranges, it 
is not limited to the metallic surfaces like the radar, but has considerable difficulty with 
low albedo objects.  

- Monocular video sensors: employed in the visual or in the infrared light spectrum, the 
visual sensors can have a high field of view and can extract almost any kind of 
information relevant for driving assistance. The main problem of these sensors is that it 
cannot rely on accurate 3D information, having to infer it indirectly, usually with poor 
results. 

A stereovision sensor adds the 3D information to the visual, thus becoming the most 
complex and complete sensor for driving assistance. It is capable of detecting any type of 
obstacle that falls inside its adjustable field of view, the road and lane geometry, the free 
space ahead, and it is also capable of visual classification, for pedestrian recognition. 
The stereovision-based approaches have the advantage of directly estimating the 3D 
coordinates of an image feature, this feature being anything from a point to a complex 
structure. Stereovision involves finding correspondents from the left to the right image, and 
the search for correspondence is a difficult, time demanding task, which is not free from the 
possibility of errors. Obstacle detection techniques involving stereovision use different 
approaches in order to make some simplifications of the classic problem and achieve real-
time capabilities. For instance, [1] uses stereovision only to measure the distance of an object 
after it has been detected from monocular images, [2] detects the obstacle points from their 
stereo disparity compared to the expected disparity of a road point, [3] detects obstacle 
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features by performing two correlation processes, one under the assumption that the feature 
is part of a vertical surface and another under the assumption that it is part of a horizontal 
surface, and comparing the quality of the matching in each of the cases. A stereovision 
system that uses no correspondence search at all, but warps images instead and then 
performs subtraction is presented in [4]. 
Processing 3D data from stereo (dense or sparse) is a challenging task. A robust approach 
can prove of great value for a variety of applications in urban driving assistance. There are 
two main algorithm classes, depending on the space where processing is performed: 
disparity space-based and 3D space-based. Most of the existing algorithms try to compute 
the road/lane surface, and then use it to discriminate between road and obstacle points. 
Disparity space-based algorithms are more popular because they work directly with the 
result of stereo reconstruction: the disparity map. The “v-disparity” [5] approach is well 
known and used to detect the road surface and the obstacles in a variety of applications. It 
has some drawbacks: it is not a natural way to represent 3D (Euclidian) data, it assumes the 
road is dominant along the image rows, and it can be sensitive to roll angle changes. 
The 3D space algorithms have also become popular among the researchers in recent years. 
Obstacle detection and 3D lane estimation algorithms using stereo information in 3D space 
are presented in [6], [7], [8] and [9], ego pose estimation algorithms are presented in [10] and 
[11], and unstructured environment estimation algorithms are presented in [12], [13] and 
[14]. 

2. Stereo sensing solution for driving urban assistance 
The research team of the Technical University of Cluj-Napoca has already implemented a 
stereovision-based sensor for the highway environment [6], [7] and [8]. This sensor was able 
to detect the road geometry and the obstacle position, size and speed from a pair of 
synchronized grayscale image pairs, using edge-based, general geometry, software stereo 
reconstruction.  
The urban scenario required important changes in the detection algorithms, which in turn 
required more stereo information. Thus, the edge-based stereo engine was discarded, and 
replaced with a dense stereo system. A software dense stereo system being time consuming, 
a hybrid solution was chosen: software rectification and down sampling, followed by 
hardware correspondence search. The time gained by the use of a hardware board 
compensated the increase in complexity of the new algorithms. 
The dense stereo information is vital for the new obstacle reconstruction module, which 
extracts oriented objects even in serious clutter, and also allows better shape segmentation 
for recognition of pedestrians. Dense stereo information allows us to compute and track an 
unstructured elevation map, which provides drivable areas in the case when no lane 
markings or other road delimiting features are present or visible. 
Lane detection requires edges, but the vertical profile is better computed from dense stereo 
information. The edge based lane detection algorithms are completely changed, adapted to the 
limited and variable viewing distance of the urban environment. A freeform lane detection 
module was added, in order to solve the problem of the non-standard geometry roads. 
The dense stereovision based sensor presented in this paper provides complex and accurate 
functionality on a conventional PC architecture, covering many of the problems presented 
by the urban traffic environment, and promising to be a valuable addition to a driving 
assistance system. 
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visual sensors can have a high field of view and can extract almost any kind of 
information relevant for driving assistance. The main problem of these sensors is that it 
cannot rely on accurate 3D information, having to infer it indirectly, usually with poor 
results. 

A stereovision sensor adds the 3D information to the visual, thus becoming the most 
complex and complete sensor for driving assistance. It is capable of detecting any type of 
obstacle that falls inside its adjustable field of view, the road and lane geometry, the free 
space ahead, and it is also capable of visual classification, for pedestrian recognition. 
The stereovision-based approaches have the advantage of directly estimating the 3D 
coordinates of an image feature, this feature being anything from a point to a complex 
structure. Stereovision involves finding correspondents from the left to the right image, and 
the search for correspondence is a difficult, time demanding task, which is not free from the 
possibility of errors. Obstacle detection techniques involving stereovision use different 
approaches in order to make some simplifications of the classic problem and achieve real-
time capabilities. For instance, [1] uses stereovision only to measure the distance of an object 
after it has been detected from monocular images, [2] detects the obstacle points from their 
stereo disparity compared to the expected disparity of a road point, [3] detects obstacle 
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features by performing two correlation processes, one under the assumption that the feature 
is part of a vertical surface and another under the assumption that it is part of a horizontal 
surface, and comparing the quality of the matching in each of the cases. A stereovision 
system that uses no correspondence search at all, but warps images instead and then 
performs subtraction is presented in [4]. 
Processing 3D data from stereo (dense or sparse) is a challenging task. A robust approach 
can prove of great value for a variety of applications in urban driving assistance. There are 
two main algorithm classes, depending on the space where processing is performed: 
disparity space-based and 3D space-based. Most of the existing algorithms try to compute 
the road/lane surface, and then use it to discriminate between road and obstacle points. 
Disparity space-based algorithms are more popular because they work directly with the 
result of stereo reconstruction: the disparity map. The “v-disparity” [5] approach is well 
known and used to detect the road surface and the obstacles in a variety of applications. It 
has some drawbacks: it is not a natural way to represent 3D (Euclidian) data, it assumes the 
road is dominant along the image rows, and it can be sensitive to roll angle changes. 
The 3D space algorithms have also become popular among the researchers in recent years. 
Obstacle detection and 3D lane estimation algorithms using stereo information in 3D space 
are presented in [6], [7], [8] and [9], ego pose estimation algorithms are presented in [10] and 
[11], and unstructured environment estimation algorithms are presented in [12], [13] and 
[14]. 

2. Stereo sensing solution for driving urban assistance 
The research team of the Technical University of Cluj-Napoca has already implemented a 
stereovision-based sensor for the highway environment [6], [7] and [8]. This sensor was able 
to detect the road geometry and the obstacle position, size and speed from a pair of 
synchronized grayscale image pairs, using edge-based, general geometry, software stereo 
reconstruction.  
The urban scenario required important changes in the detection algorithms, which in turn 
required more stereo information. Thus, the edge-based stereo engine was discarded, and 
replaced with a dense stereo system. A software dense stereo system being time consuming, 
a hybrid solution was chosen: software rectification and down sampling, followed by 
hardware correspondence search. The time gained by the use of a hardware board 
compensated the increase in complexity of the new algorithms. 
The dense stereo information is vital for the new obstacle reconstruction module, which 
extracts oriented objects even in serious clutter, and also allows better shape segmentation 
for recognition of pedestrians. Dense stereo information allows us to compute and track an 
unstructured elevation map, which provides drivable areas in the case when no lane 
markings or other road delimiting features are present or visible. 
Lane detection requires edges, but the vertical profile is better computed from dense stereo 
information. The edge based lane detection algorithms are completely changed, adapted to the 
limited and variable viewing distance of the urban environment. A freeform lane detection 
module was added, in order to solve the problem of the non-standard geometry roads. 
The dense stereovision based sensor presented in this paper provides complex and accurate 
functionality on a conventional PC architecture, covering many of the problems presented 
by the urban traffic environment, and promising to be a valuable addition to a driving 
assistance system. 
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The hardware acquisition system (fig. 1) includes two grayscale digital cameras with 2/3” 
(1380x1030) CCD sensors and 6.5 mm fixed focal length lenses, allowing a horizontal field of 
view (HFOV) of 72 [deg]. The cameras are mounted on a rigid rig with a baseline of 320 
[mm] (fig. 2). The images are acquired at full resolution with a digital acquisition board at a 
maximum frame rate of 24 fps. 
 

 
Fig. 1. The stereovision system architecture. 

The camera parameters are calibrated using a dedicated method optimized for high 
accuracy stereovision [15],[16] and [17] using the full resolution images. 
The images are further enhanced by lens distortion correction and rectified in order to fulfill 
the dense stereo reconstruction requirements (canonical images). A down-sampling step is 
used to adapt the image size to the dedicated hardware reconstruction board (512 pixels 
width) and to minimize the noise introduced by the digital rectification and image 
correction. The whole process is reduced to an image warping approach performed in a 
single step (fig. 1) using reverse mapping and bilinear interpolation [18]. An optimized 
implementation using MMX instructions and lookup tables was used in order to minimize 
the processing time. 
The 3D reconstruction of the scene is performed using a dedicated hardware board. The 
input of the board consists in two rectified images and the output can be either a disparity 
or a Z map (left camera coordinate system). Our system uses 3D points set for scene 
representation; therefore the preferred output is the Z map. Using the Z coordinate value, 
the X and Y coordinate can be computed and then transformed into the car coordinate 
system. 
With the current system setup a detection range optimally suited for the urban 
environments is obtained (fig. 2): 
- minimum distance:  0.5 m in front of the ego car; 
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- delimiters of the current lane are visible at 1.0 m; 
- reliable detection range: 0.5 … 35 m; 
 

 
Fig. 2. Detection range of the current stereo system setup. 

3. Stereovision-based lane detection 
The urban lane detection system is organized as an integrator of multiple sensors, using a 
Kalman filter framework. Instead of having multiple physical sensors, we have multiple 
detection stages, which all deliver results that will be used to update the lane model state 
parameters. The cycle begins with the prediction, and continues with all the detection 
algorithms, until the final update. When one algorithm updates the lane state, the resulted 
estimation becomes the prediction for the next stage. In this way, we can insert any number 
of algorithms into the processing chain, or we can temporary disable some of them, for 
testing or speedup purposes. 
Figure 3 shows the organization of the lane detection system, the main processing modules 
and the relationships between them. In what follows, we’ll give a brief description for each 
module. A detailed description of the lane detection system is given in [19]. 
One of the most important advantages of stereovision-based lane detection is the possibility 
of direct detection of the vertical profile (pitch angle and vertical curvature). The projection 
of the 3D point set in the (YOZ) plane (height and distance) is analyzed by means of 
histograms. The pitch and the curvature range of values is divided into discrete hypotheses. 
First, a polar histogram counting the near range points along the lines described by each 
pitch angle hypothesis is built, and the lowest line having a significant number of points is 
selected. The vertical curvature histogram is built by taking into consideration the already 
detected pitch angle, and the curvature hypotheses, and counts the points in the far range. 
The method is somewhat similar to the Hough transform, and is described in detail in [7]. 
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3. Stereovision-based lane detection 
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of the 3D point set in the (YOZ) plane (height and distance) is analyzed by means of 
histograms. The pitch and the curvature range of values is divided into discrete hypotheses. 
First, a polar histogram counting the near range points along the lines described by each 
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selected. The vertical curvature histogram is built by taking into consideration the already 
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The method is somewhat similar to the Hough transform, and is described in detail in [7]. 
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Fig. 3. Lane detection system architecture 

After the vertical profile is detected, the 3D points can be labeled as belonging to the road or 
belonging to obstacle structures. The points belonging to the road are the main features used 
for lane geometry estimation. The next step is to extract, from the road surface point set, the 
points that have a higher relevance for lane delimitation, namely the lane markings. The 
highway lane detection approach required little information about lane markings, because it 
could rely greatly on the lane model. For the urban environment, however, we require a fast 
and robust lane marking extraction algorithm. 
The lane marking extraction method relies on the well-known dark-light-dark transition 
detection [20]. We have to search for pairs of gradients of opposing sign and equal 
magnitude. We have improved the method by using a variable filter for computing the 
horizontal gradient. The size of the filter is the size of a standard width lane marking 
projected in the image space, and varies because of the perspective effect. The following 
equation shows the differentiation filter that is used: 
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Applying the variable width filter we preserve the level of detail in the distance while 
filtering the noise in the near areas. The gradient maxima and minima are paired and the 
DLD pairs are extracted as lane markings. The complete technique is described in [21]. 
Although the clothoid model is not always accurate for the urban scenario, it has several 
benefits, such as good results when the lane is delimited by simple edges (unmarked roads). 
Due to the short visibility range, we have decided to avoid matching the whole clothoid model 
on the image data, but to match pairs of line segments instead, in two zones: near and far. 

A Sensor for Urban Driving Assistance Systems Based on Dense Stereovision 

 

241 

 

 
Fig. 4. Lane marking detection – top left, original image; top right, results of the adaptive 
gradient filter; bottom, lane marking results 

First, we make an attempt for the near zone (2m to 5 m). Hough transform is performed on 
the image edges corresponding to the road points, and line segments are extracted. Lane 
markings will have a higher weight in the Hough bins, and therefore they will have a higher 
priority. We divide then the line segments in two sets – left and right. The segments on the 
left are paired with the segments on the right, and the best pair is selected as our lane 
measurement. The linear measurement will update the clothoidal model parameters using 
the Extended Kalman Filter. Depending on whether the detection has been successful on 
both sides, or only on one side, the measurement vector for the Kalman filter will have 
different configurations: 
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If the linear fit for the near zone is successful, the same is done for the far zone, and the 
model parameters are updated again. 
 

 
Fig. 5. The left and the right lines must intersect at the horizon line 
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If the linear fit for the near zone is successful, the same is done for the far zone, and the 
model parameters are updated again. 
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Fig. 6. Linear lane detection result 

Sometimes the clothoid lane model is not suited for the road we wish to observe, and the 
detection will be incorrect. For these cases, a freeform lane detection system has been 
implemented. Because we don’t have strong models to guide our search, we have to discard 
the non-marking delimiters, and work with lane markings only. The markings are projected 
onto a top view image, and then distance transform is performed, to facilitate the fitting of a 
lane border. The left and the right lane borders are represented as Catmull-Rom splines with 
four control points. The lateral coordinates of the four control points are the model 
parameters, and they are found using a simulated annealing search strategy in the model 
space. 
The result of the freeform detection module is a chain of 3D X coordinates for a set of 
equally spaced fixed Z coordinates. The X values will form the measurement vector for the 
lane state update using again the Kalman filter.  
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Fig. 7. Top view of the lane markings and the distance transform image used for freeform 
lane matching 
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Fig. 8. The search problem for freeform detection: 1 - The search space for one of the control 
points. The y coordinate is fixed; 2 - A control point instance (hypothesis); 3- The Catmull-
Rom spline generated by the control points hypotheses in the current iteration; 4 - The 
intermediate points, which, together with the control points, are used for evaluating the 
distance between the curve and the image 

 
Fig. 9. Freeform lane detection succeeds in situations where the clothoid model fails 

4. Stereovision-based obstacle detection and tracking 
4.1 Stereovision-based obstacle detection 
The obstacle detection algorithm is based on the dense stereo information, which provides a 
rich amount of 3D data for the observed scene and allows the possibility to carry out 
geometrical reasoning for generic obstacle detection regardless of the 2D appearance in 
images.  
Starting from the obstacle points identified by the vertical profile provided by the lane 
detection subsystem, the target is to detect the obstacles as 3D boxes, having position, 
orientation and size. The confident fitting of cuboids to obstacles is achieved in several 
steps. By analyzing the vicinity and the density of the 3D points, the occupied areas are 
located. An occupied area consists of one or more cuboidal obstacles that are close to each 
other. By applying criteria regarding the shape, the occupied areas may get fragmented into 
parts that obey the cuboidal shape. The orientation of the obstacles (on the road surface) is 
then extracted. 
The only 3D points used by the obstacle detection algorithms are those situated above the 
road and below the height of the ego car (fig. 10.b). It is supposed that the obstacles do not 
overlap each other on the vertical direction. In other words, on a top view (fig. 10.c) the 
obstacles are disjoint. Consequently, in what follows the elevation of the 3D points will be 
ignored and all the processing is done on the top view. 
Due to the perspective effect of the camera, further obstacles appear smaller in our images, 
providing fewer pixels, and therefore, less, sparser 3D reconstructed points in the 3D space. 
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On the other hand, the error of the depth reconstruction increases with the distance too, 
which contributes to the 3D points sparseness as well. To counteract the problem of the 
points’ density, a schema to divide the Cartesian top view space into tiles of constant 
density is proposed (fig. 10.c). The horizontal field of view of the camera is divided into 
polar slices of constant aperture, trying to keep a constant density on the X-axis. The depth 
range is divided into intervals, the length of each interval being bigger and bigger as the 
distance grows, trying to keep a constant density on the Z-axis. 
A specially compressed space is created, as a matrix (fig. 11.a). The cells in the compressed 
space correspond to the trapezoidal tiles of the Cartesian space. The compressed space is, in 
fact, a bi-dimensional histogram, each cell counting the number of 3D points found in the 
corresponding trapezoidal tile. For each 3D point, a corresponding cell C (Row, Column) in 
the compressed space is computed, and the cell value is incremented. 
The column number is found as: 

 Column =ImageColumn/c (4) 

where ImageColumn is the left image column of the 3D point and c is the number of adjacent 
image columns grouped into a polar slice as shown in fig. 10.c (c = 6).  
The depth transformation, from the Z coordinate of the Cartesian space into the Row 
coordinate of the compressed space has a formula obtained using the following reasoning: 
a. The Cartesian interval corresponding to the first row of the compressed spaces is: 

 [Z0 … Z0 + IntervalLength(Z0)] = [Z0 … Z1]  (5) 

where Z0=Zmin, the minimum distance available through stereo reconstruction. The 
length of the interval beginning at a certain Z is 

 IntervalLength(Z) = k*Z (6) 

k being empirically chosen). Thus  

 Z0 + IntervalLength(Z0) = Z0+k*Z0 = Z0*(1+k) = Z1 (7) 

b. The Cartesian interval corresponding to the nth row of the compressed spaces is  
[Zn … Zn + IntervalLength(Zn)],  
where  

 Zn=Z0*(1+k)n (8) 

The above equation can be proven by mathematical induction.  
c. For a certain 3D point, having depth Z, the ith interval it belongs to is [Zi…Zi + 

IntervalLength(Zi)] = [Zi …Zi+1].  
From equation (8), we can find the row number as the index of the point’s interval 

 
1+k

0

ZRow = i = [log ]
Z  (9) 

Each 3D point, having the (X, Z) coordinates in the top view of the Cartesian space is 
transformed into a cell C(Row, Column) in the compressed space. 
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a) 

b)

c) 

Fig. 10. Division into tiles. a) Gray scale image, b) 3D points – perspective view, c) 3D points 
– top view; the tiles are here considerably larger for visibility purpose; wrongly 
reconstructed points can be seen in random places; reconstruction error is visible as well. 

The histogram cells that have a significant number of points indicate the presence of obstacle 
areas. On these cells, a labeling algorithm is applied, and the resulted clusters of cells represent 
occupied areas (fig. 11.b). The small occupied areas are discarded in this phase. 
 

  
a) b) 

Fig. 11. The compressed space (for scene in fig. 7) – a bi-dimensional histogram counting 3D 
points. Occupied areas are identified by cell labeling 
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The occupied areas may contain several obstacles and by consequence they may have 
multiple shapes. The obstacle tracking algorithms as well as the driving assistance 
applications need the individual cuboidal obstacles. Therefore the fragmentation of the 
occupied areas into the individual cuboidal obstacles is required. 
An indication that an area requires fragmentation is the presence of concavities. In order to 
detect the concavities, the envelope of the cells of an occupied area is drawn, and then for 
each side of the envelope, the gap between the side and the occupied cells is determined. If 
the gap is significant, we consider that two or more obstacles are present, and the deepest 
point of the concavity gives the column where the division will be applied. The two sub-
parts can be divided again and again as long as concavities are found. 
In fig. 12.c the bottom side of the envelope for the cells in fig. 12.b delimits a significant 
concavity. For each new sub-part, the envelope of the cells has been calculated again (and 
painted as well), but without revealing big concavities for new divisions to be performed. 
 

 
a) 

b) 

c) 

 
d) 

e) 

Fig. 12. Fragmentation of occupied areas into primitive obstacles. a) an occupied area, b) the 
labeling in the compresses space, c) sides of the envelope and the two primitive obstacles of 
the occupied area – compressed space, d) the two primitive obstacles – perspective view, e) 
the two primitive obstacles – top view 

By reconsidering the coordinates (including the height) of the 3D points that have filled the 
cells of an obstacle, the limits of the circumscribing box are determined. Boxes are shown in 
fig. 12.d (perspective view) and fig. 12.e (top view). A more detailed description of the 
obstacle detection system is given in [22]. 

4.2 Stereovision-based obstacle tracking 
Tracking is the final stage of the stereovision based object recognition system. The cuboids 
extracted using the methods described in the previous paragraphs represent the 
measurement data. The state of the object, composed of position, size, speed and orientation, 
is tracked using a Kalman filter based framework. 
A measurement cuboid may initialize a track if several conditions are met: the cuboid is not 
associated to an existing track, the cuboid is on the road (we compare its Y position with the 
profile of the road), the cuboid’s back side position in the image does not touch the image 
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limits, and the height and width of the cuboid must be consistent to the standard size of the 
vehicles we expect to find on the road. The classification based on size is also useful for 
initialization of the object’s length, as in most cases the camera cannot observe this 
parameter directly. 
The core of the tracking algorithm is the measurement-track association process. The 
association (matching) process has two phases: a 3D matching of the predicted track cuboid 
against the measurements, which is performed as a simple intersection of rectangles in the 
top view space, and a corner by corner matching in the image space, when each active 
corner is matched against the corners of the measurement cuboids that passed the 3D 
intersection test. 
 

 
Fig. 13. Coarse association between prediction and measurement cuboids 
 

 

 

 
Fig. 14. Fine association at corner level and the building of a meta-measurement 
The ratio between the area of the intersection and the area of the enhanced prediction is a 
measure of the quality of the 3D association. If a measurement intersects multiple predicted 
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objects, it will be associated to the one it had the best intersection measure. A predicted 
object may associate to multiple measurement objects, but not the other way around. 
After the 3D association is completed, each track prediction is compared to each of the 
associated measurements corner by corner, using their 2D projection, for the visible corners 
only. If a relevant corner of the prediction associates to at least one relevant corner of a 
measurement, this corner becomes an “active” corner. The active corners form a virtual 
object which we’ll call “meta-measurement”. The meta measurement is the sum of all 
measurement objects associated to a predicted object (Fig. 14). The meta measurement is 
used in the Kalman filter for updating the track state. 

5. Description of unstructured environments 
The 3D lane cannot be detected in urban scenes without lane delimiters (ex. intersections). 
An alternative method can be used to detect elevated areas (obstacles), regions where the 
ego vehicle cannot be driven into. Complementary, the obstacle-free road areas can be 
considered as drivable.  
The dense stereo engine normally reconstructs most of the road points even if lane markings 
are not present. Thus, the surface of the road can be computed by fitting a geometric model 
to the 3D data. Fitting the model to 3D data should be performed in a least-square fashion 
(LSQ), or, more robustly, using a statistical approach (ex. RANSAC). The model used for the 
road is quadratic (the vertical coordinate Y is a 2nd degree function of the depth Z and lateral 
displacement X). 

 2 2' 'Y a X a X b Z b Z c= − ⋅ − ⋅ − ⋅ − ⋅ − . (10) 
Fitting the quadratic surface to a set of n 3D points involves minimizing an error function. 
The error function S represents the sum of squared errors along the height: 
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Where Yi is the elevation of the 3D point i and iY  is the elevation of the surface at 
coordinates (Xi, Zi). Minimizing only along the Y-axis, instead of the surface normal, is 
acceptable. Even for curved roads, the normal of the surface is close to the Y-axis: for an 
extreme local slope of 20% (11.3 degrees), the residual of a 3D point along the vertical 
represents 98% of the residual along the normal. The computational complexity is highly 
reduced by avoiding minimization against the normal of the surface. 
By replacing (10) into (11), the function S is obtained, where the unknowns are a, a’, b, b’, and c: 
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For S to have a minimum value, its partial derivatives with respect to the unknowns must be 
0. The following system of equations must be solved: 
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After writing explicitly each equation, the system (4) becomes (matrix form): 
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If weights (w) for each point are available, then the following formulas will be applied: 
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System (14) has 5 linear equation and 5 unknowns, therefore solving it is a trivial algebra 
problem. This explicit way of minimization was preferred instead of the pseudo-inverse 
matrix method. It allows real time re-computation (hundreds of times per frame) of the road 
surface during the surface growing step, as it will be explained later in section. This model 
allows the detection of road surfaces with non-zero pitch and roll angles relative to the ego 
car, and with vertical curvatures (lateral/longitudinal). The model can be extended to fit 
complex road surfaces, such as cubic or B-spline surfaces. 
The 3D space available consists of a set of 3D points (80,000 to 120,000). Real-time fitting of 
the road surface to this set is not possible because it has a high computational complexity. A 
(bird-eye rectangular, 13x40 meters) region of interest of the 3D space can be represented 
similar to a digital elevation map (DEM). A DEM is formed: the value of each cell is 
proportional to the 3D height of the highest point (within the cell). The DEM presents poor 
connectivity between road points at far depths (due to the perspective effect, Fig. 15.b). 
Connectivity can be improved by propagating (to empty cells) the height of valid cell (with 
3D points), along the depth (Fig. 15.c). The propagation amount is computed from the stereo 
geometry of the system, to compensate the perspective effect.  
For the classification into drivable/non-drivable (road inliers/outliers, Fig. 16) areas, the 
depth uncertainty model was extended to a height uncertainty model (17). The expected 
height uncertainty Yerr is a function of the height Y and the depth Z of the 3D point, height 
of the cameras Hcam, and the estimated depth uncertainty Zerr. Zerr is a function of the 
stereo system parameters and the expected disparity uncertainty. The disparity uncertainty 
was chosen experimentally as 1 pixel, although a more complex model for estimating the 
correlation’s accuracy can be developed. 
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objects, it will be associated to the one it had the best intersection measure. A predicted 
object may associate to multiple measurement objects, but not the other way around. 
After the 3D association is completed, each track prediction is compared to each of the 
associated measurements corner by corner, using their 2D projection, for the visible corners 
only. If a relevant corner of the prediction associates to at least one relevant corner of a 
measurement, this corner becomes an “active” corner. The active corners form a virtual 
object which we’ll call “meta-measurement”. The meta measurement is the sum of all 
measurement objects associated to a predicted object (Fig. 14). The meta measurement is 
used in the Kalman filter for updating the track state. 
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(LSQ), or, more robustly, using a statistical approach (ex. RANSAC). The model used for the 
road is quadratic (the vertical coordinate Y is a 2nd degree function of the depth Z and lateral 
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Fitting the quadratic surface to a set of n 3D points involves minimizing an error function. 
The error function S represents the sum of squared errors along the height: 
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Where Yi is the elevation of the 3D point i and iY  is the elevation of the surface at 
coordinates (Xi, Zi). Minimizing only along the Y-axis, instead of the surface normal, is 
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For S to have a minimum value, its partial derivatives with respect to the unknowns must be 
0. The following system of equations must be solved: 
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After writing explicitly each equation, the system (4) becomes (matrix form): 
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                                               a.                                                b.                                 c. 

Fig. 15. The urban scenario (a) and the DEM (b. initial, c. with propagation of heights). 
Darker means more elevated. 

 
Fig. 16. Lateral view of the inliers (blue) region around a quadratic road surface, according 
to the proposed uncertainty model.  

LSQ fitting is sensitive to rough noise in the data set. Due to road outliers, such as obstacle 
points, LSQ fitting is likely to fail when applied to the whole data set. We propose an 
optimal two-step approach for real-time detection of the road surface: 
1. The road model is fitted, using RANSAC, to a small rectangular DEM patch in front of 

the ego vehicle. A primary road surface is extracted optimally for the selected patch. 
2. The primary solution is refined through a region growing process (Fig. 17) where the 

initial region is the set of road inliers of the primary surface, from the initial rectangular 
patch. New cells are added to the region if they are on the region border and they are 
inliers of the current road surface. The road surface is recomputed (LSQ fitting to the 
current region), each time the border of the region expands with 1-2 pixels (about 100 
new cells). 
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                                  a.                                            b.                                          c. 

Fig. 17. Road inliers (blue) / outliers (red) detected with the primary surface in a. 
Intermediate regions, growing from left to right (b and c). For each image, the left side 
shows the inliers used for surface fitting, while the right side shows the classification of the 
whole DEM based on the current surface parameters. 

  
 

 
Fig. 18. The result for two scenes re-projected back as a grid onto the left image: obstacles 
(red) and traffic isles (yellow) are separated from the drivable road surface (blue). 
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Intermediate regions, growing from left to right (b and c). For each image, the left side 
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Fig. 18. The result for two scenes re-projected back as a grid onto the left image: obstacles 
(red) and traffic isles (yellow) are separated from the drivable road surface (blue). 



 Stereo Vision 

 

252 

Obstacle / road separation is performed based on the detected road surface. Each DEM cell 
is labeled as drivable if it is closer to the road surface than its estimated height uncertainty, 
or as non-drivable otherwise. Small clusters of non-drivable cells are rejected based on 
criteria related to the density of 3D points. Remaining non-drivable clusters are classified 
into obstacles and traffic isles, based on the density of 3D points. This approach is detailed 
in [13]. Some results are presented in figure 18, re-projected as a grid onto the left image. 

6. Object classification 
Out of the set of 3D cuboids depicting the obstacles in the urban traffic, one category of 
objects is of special importance: the pedestrians. The pedestrians are the most vulnerable 
traffic participants, and also the most undisciplined and having the most unpredictable 
behavior. For these reasons, the pedestrians need to be recognized as early and as reliably as 
possible. 
 

 
Fig. 19. Classification dataflow 
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In complex, urban scenarios, pedestrians are difficult to detect. This is because the variability 
of their appearance and the high clutter present in this type of scenarios. Therefore, as much 
information as possible must be used in order to correctly recognize them. A multi-feature 
dichotomizer was implemented [23], which can separate obstacles into pedestrians and non-
pedestrians. The implementation contains the following modules (see Fig. 19): 
- The image acquisition and stereo reconstruction module, described in section 2, supplies a 

dense range image, using the image pair from the stereo camera system.  
- The hypothesis generation and size features extraction module generates pedestrian 

hypotheses, which will be classified into pedestrians and non-pedestrians. For short 
range (up to 10 meters) a specialized algorithm is used to generate reliable pedestrian 
hypotheses, containing only individual pedestrians. The algorithm is based on a 
“density map” built by accumulating 3D points, projected on the horizontal xOz plane 
[23]. As this algorithm does not give good results for distant objects, we use the generic 
obstacle detected by the algorithm described in section 4 to supply hypotheses which 
are further away than 10 meters. Because the objects are represented as cuboids, we can 
extract their height and base radius, and use them as features for classification. 

- Shape matching: An important feature for pedestrian recognition is the specific 
pedestrian shape. Having a 3D cuboid, we obtain its projection as a 2D box in the 
image. Edges in the 2D box are extracted using a Canny filter. The extracted edges are 
filtered, using depth, and only those edges which have a correct depth are retained. 
These form the outline of the pedestrian hypothesis. We apply a distance transform on 
these outline edges. The shape matching algorithm uses a hierarchy (tree) of pedestrian 
shape templates, constructed offline. A top-down matching algorithm based on the 
Chamfer distance is used to select the shape template that has the best match with the 
outline of the pedestrian, and the matching score is supplied as a feature for 
classification. The scale of template is inferred from the distance of the 3D box. Our 
approach is similar to [24], but makes more use of the available 3D information. 

- Tracking and motion related features: Another powerful feature for pedestrian recognition 
is the specific way in which pedestrians move. Pedestrians are articulated objects, as 
opposed to most objects present in traffic environments which are rigid. Pedestrians 
move their arms and legs while walking or running. By tracking the individual motions 
of different body parts, and observing motion variations across them, we can supply a 
motion based feature, called “motion signature”.  

The pedestrian hypothesis is tracked using the tracking algorithm described in section 4. 
This step is useful for both object association and to eliminate the global object motion. The 
next step is to select the foreground points of each object. Only points for which their 3D 
coordinates lie inside the tracked cuboid are considered. This step is important as it 
eliminates spurious background points and deals with partial occlusions. Corner points are 
detected, and 2D optical flow vectors computed using the approach described in [25]. The 
optical flow vectors are transformed from 2D to 3D using the available depth information 
supplied by stereo. Principal component analysis is used to find the principal direction of 
the 3D velocity field variation for each individual object. Variance is smoothed across 
frames, to increase its stability. The magnitude of this principal component represents the 
“motion signature”. This motion signature is much smaller for non-pedestrians as compared 
to pedestrians, and thus it is a powerful feature for pedestrian detection. The spectrum of the 
motion signature variation in time is analyzed. Pedestrians display a typical periodic motion 



 Stereo Vision 

 

252 
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In complex, urban scenarios, pedestrians are difficult to detect. This is because the variability 
of their appearance and the high clutter present in this type of scenarios. Therefore, as much 
information as possible must be used in order to correctly recognize them. A multi-feature 
dichotomizer was implemented [23], which can separate obstacles into pedestrians and non-
pedestrians. The implementation contains the following modules (see Fig. 19): 
- The image acquisition and stereo reconstruction module, described in section 2, supplies a 

dense range image, using the image pair from the stereo camera system.  
- The hypothesis generation and size features extraction module generates pedestrian 

hypotheses, which will be classified into pedestrians and non-pedestrians. For short 
range (up to 10 meters) a specialized algorithm is used to generate reliable pedestrian 
hypotheses, containing only individual pedestrians. The algorithm is based on a 
“density map” built by accumulating 3D points, projected on the horizontal xOz plane 
[23]. As this algorithm does not give good results for distant objects, we use the generic 
obstacle detected by the algorithm described in section 4 to supply hypotheses which 
are further away than 10 meters. Because the objects are represented as cuboids, we can 
extract their height and base radius, and use them as features for classification. 

- Shape matching: An important feature for pedestrian recognition is the specific 
pedestrian shape. Having a 3D cuboid, we obtain its projection as a 2D box in the 
image. Edges in the 2D box are extracted using a Canny filter. The extracted edges are 
filtered, using depth, and only those edges which have a correct depth are retained. 
These form the outline of the pedestrian hypothesis. We apply a distance transform on 
these outline edges. The shape matching algorithm uses a hierarchy (tree) of pedestrian 
shape templates, constructed offline. A top-down matching algorithm based on the 
Chamfer distance is used to select the shape template that has the best match with the 
outline of the pedestrian, and the matching score is supplied as a feature for 
classification. The scale of template is inferred from the distance of the 3D box. Our 
approach is similar to [24], but makes more use of the available 3D information. 

- Tracking and motion related features: Another powerful feature for pedestrian recognition 
is the specific way in which pedestrians move. Pedestrians are articulated objects, as 
opposed to most objects present in traffic environments which are rigid. Pedestrians 
move their arms and legs while walking or running. By tracking the individual motions 
of different body parts, and observing motion variations across them, we can supply a 
motion based feature, called “motion signature”.  

The pedestrian hypothesis is tracked using the tracking algorithm described in section 4. 
This step is useful for both object association and to eliminate the global object motion. The 
next step is to select the foreground points of each object. Only points for which their 3D 
coordinates lie inside the tracked cuboid are considered. This step is important as it 
eliminates spurious background points and deals with partial occlusions. Corner points are 
detected, and 2D optical flow vectors computed using the approach described in [25]. The 
optical flow vectors are transformed from 2D to 3D using the available depth information 
supplied by stereo. Principal component analysis is used to find the principal direction of 
the 3D velocity field variation for each individual object. Variance is smoothed across 
frames, to increase its stability. The magnitude of this principal component represents the 
“motion signature”. This motion signature is much smaller for non-pedestrians as compared 
to pedestrians, and thus it is a powerful feature for pedestrian detection. The spectrum of the 
motion signature variation in time is analyzed. Pedestrians display a typical periodic motion 
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signature, while other types of objects display only impulsive noise. The cutoff frequency for 
the motion spectrum is much smaller for pedestrians as opposed to non-pedestrians. This 
makes the motion spectrum a powerful feature for pedestrian classification. 
- Bayesian classification: A naïve Bayesian classifier is used to combine the extracted 

features (height, base radius, lateral and longitudinal speed, motion signature and the 
motion spectrum cutoff frequency). According to Bayes’ formula, the probability of an 
object to belong to class C1, if it displays features F1…Fn is: 
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By assuming feature independence, switching from probability to likelihood and taking 
the logarithm we have: 
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Finally we have: 
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Where A is the prior pedestrian likelihood and B1,…,Bn are functions of feature values. 
- Feature Database and Learning Application 
In order to determine the A and Bk coefficients in equation 20, to obtain pedestrian shape 
templates and build the template tree, and to test our classification algorithm, a sufficiently 
large number of stereo image sequences had to be manually indexed. For each frame in an 
indexed sequence, the ground truth cuboids are stored, together with their class and 
extracted features. A manual labeling tool was developed, which uses the 3D cuboids 
detected by our hypothesis generation algorithms, and which asks the user to supply the 
ground truth class for each of them. Ground truth classes are tracked in order to allow more 
efficient labeling. From the set of indexed sequences, the subset of sequences where the ego 
vehicle was stopped is used to generate pedestrian shape templates for the pedestrian shape 
template tree. The tree is generated by an automatic clustering algorithm.  
Figure 20 shows some results for pedestrian detection. 
 

 
Fig. 20. Detected pedestrians 
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7. Possible use of stereovision in Driving Assistance Systems 
The defining feature of a stereovision sensor is the capability of delivering rich meaningful 
data about the observed environment, combined with a reasonable precision of the 3D 
measurement. These features make the sensor suitable for a large variety of driving 
assistance applications. 
The stereovision-based lane detection, capable of robust operation even when the lane 
markings are less than ideal or even absent, or when shadows or obstacles clutter the scene, 
can be used for lane keeping and following assistance, which can be implemented either as a 
form of warning or even as steering control. 
 

 
Fig. 21. Lane following assistance 
Obstacle detection, in terms of 3D position, size and speed, provide the knowledge required 
for collision avoidance. The trajectory of the ego vehicle can be computed against the projected 
trajectory of the obstacles, the dangerous situations can be identified and appropriate 
measures such as emergency braking can be taken. 
 

 
Fig. 22. Collision avoidance 
A special type of collision is the one involving a pedestrian. The consequences of this 
collision are often very severe, and therefore it has to be avoided at (almost) all cost, even if 
some other type of unpleasant consequences may follow. This is the reason why the 
pedestrian has to be detected and classified as such as soon as it enters the field of view. The 
sensor we have described is thus suited for pedestrian avoidance systems.  
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signature, while other types of objects display only impulsive noise. The cutoff frequency for 
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A special type of collision is the one involving a pedestrian. The consequences of this 
collision are often very severe, and therefore it has to be avoided at (almost) all cost, even if 
some other type of unpleasant consequences may follow. This is the reason why the 
pedestrian has to be detected and classified as such as soon as it enters the field of view. The 
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Fig. 23. Pedestrian avoidance 

Accurate detection, measurement and tracking of the position, size and speed of the vehicle 
in front of us provides all the necessary information for a stop and go, (or follow the leader) 
assistance system, a helpful tool for the busy city traffic. 
 

 
Fig. 24. Stop and go assistance 

Sometimes, the environment is not easily represented in a structured way. In this case, the 
stereovision sensor can deliver information about areas that the vehicle is allowed to drive 
on, and about the forbidden areas, providing information for navigation assistance in 
unstructured environments.  

8. References 
M. Bertozzi, A. Broggi, A. Fascioli, and S. Nichele, “Stereo Vision-based Vehicle Detection”, 

in Proceedings of IEEE Intelligent Vehicles Symposium (IV 2000), October 2000, Detroit, 
USA, pp. 39-44. 

 U. Franke, D. M. Gavrila, S. Görzig, F. Lindner, F. Paetzold and C. Wöhler, “Autonomous 
Driving Approaches Downtown”, IEEE   Intelligent Systems, vol.13, no. 6, pp. 40-48, 
1998. 

 

A Sensor for Urban Driving Assistance Systems Based on Dense Stereovision 

 

257 

 
Fig. 25. Navigation assistance for unstructured environments 
T. A. Williamson, ”A high-performance stereo vision system for obstacle detection”, CMU-

RI-TR-98-24, September 25, 1998, Robotics Institute Carnegie Mellon University, 
Pittsburg, PA 15123. 

M. Bertozzi and A. Broggi, “GOLD: a Parallel Real-Time Stereo Vision System for Generic 
Obstacle and Lane Detection”, IEEE Transactions on Image Processing, vol. 7, no. 1, 
pp. 62-81, January 1998. 

R. Labayrade, D. Aubert, and J.-P. Tarel, “Real time obstacle detection on non flat road 
geometry through V-disparity representation,” in Proceedings of IEEE Intelligent 
Vehicles Symposium (IV 2002), June 2002, Versailles, France, pp. 646–651. 

S. Nedevschi, R. Danescu, D. Frentiu, T. Marita, F. Oniga, C. Pocol, R. Schmidt, T. Graf, 
“High accuracy stereo vision system for far distance obstacle detection”, in 
Proceedings of IEEE Intelligent Vehicles Symposium (IV 2004), June 2004, Parma, Italy, 
pp. 292-297. 

S. Nedevschi, R..Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita, F. Oniga, C. Pocol, “3D 
Lane Detection System Based on Stereovision”, in Proceedings of IEEE Intelligent 
Transportation Systems Conference (ITSC’04), October 2004, Washington, USA, pp. 
161-166.  

S. Nedevschi, R. Danescu,  T. Marita, F. Oniga, C. Pocol, S. Sobol, T. Graf, R. Schmidt, 
“Driving Environment Perception Using Stereovision”, in Proceedings of IEEE 
Intelligent Vehicles Symposium, (IV 2005), June 2005, Las Vegas, USA, pp.331-336. 

S. Nedevschi, F. Oniga, R. Danescu, T. Graf, R. Schmidt,  Increased Accuracy Stereo 
Approach for 3D Lane Detection, Proceedings of IEEE Intelligent Vehicles Symposium, 
(IV2006), June 13-15, 2006, Tokyo, Japan, pp. 42-49. 

A. Sappa, D. Gerónimo, F. Dornaika, and A. López, “Real Time Vehicle Pose Using On-
Board Stereo Vision System”, Int. Conf. on Image Analysis and Recognition, LNCS, 
Vol. 4142, September 18-20, 2006,   Portugal, pp. 205-216. 

M. Cech, W. Niem, S. Abraham, and C. Stiller, “Dynamic ego-pose estimation for driver 
assistance in urban environments”, in Proceedings of IEEE Intelligent Vehicles 
Symposium (IV 2004), Parma, Italy, 2004, pp. 43-48. 



 Stereo Vision 

 

256 

 
Fig. 23. Pedestrian avoidance 

Accurate detection, measurement and tracking of the position, size and speed of the vehicle 
in front of us provides all the necessary information for a stop and go, (or follow the leader) 
assistance system, a helpful tool for the busy city traffic. 
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1. Introduction 
Three-dimensional depth reconstruction from a pair of stereo images needs to find reliable 
stereo correspondence between left and right images. Stereo disparity refers to difference of 
positions between two corresponding points on the stereo images. Although there are many 
possibilities in finding the stereo correspondence, the human vision system successfully 
reconstructs three-dimensional depth distribution with binocular vision. Thus, we can 
expect that solving the stereo correspondence problem brings a key mechanism to 
understand the human vision system. 
The human vision system can solve the stereo correspondence problem from random-dot 
stereograms, which refer to a pair of stereo images consisting of only a randomly dotted 
pattern. Julesz demonstrated that the randomly dotted pattern is enough for the human 
vision system to solve the stereo correspondence problem (Julesz, 1960). When the human 
vision system is exposed to random-dot stereograms, it perceives three-dimensional 
structure emerging spontaneously. This implies that the human vision system has a module 
being able to detect stereo disparity from only a randomly dotted pattern and not requiring 
key information such as edges and feature points, which generally appear in natural scenes. 
Several researchers presented stereo algorithms to solve the stereo correspondence problem 
from random-dot stereograms in the early period of computer vision research. In particular, 
Marr and Poggio presented a representative stereo algorithm named the cooperative 
algorithm (Marr & Poggio, 1976). Their motivation to approach the stereo correspondence 
problem exists in the biological aspect of the human vision system; their algorithm consists 
of multi-layered cell networks. Their most important proposal to the stereo algorithm is the 
two famous constraints: continuity and uniqueness. 
The authors have been approaching several subjects in image processing and computer 
vision research, by utilizing reaction-diffusion equations as a biologically motivated tool 
(Nomura et al., 2007). We call the group of algorithms utilizing reaction-diffusion equations 
the reaction-diffusion algorithm. The previous research done by the authors presented 
several algorithms for edge detection, segmentation (grouping) and stereo disparity 
detection by utilizing the FitzHugh-Nagumo type reaction-diffusion equations. 
This chapter presents a stereo algorithm utilizing multi-sets of the FitzHugh-Nagumo type 
reaction-diffusion equations. We associate each set of the equations with each of possible 
disparity levels; a particular grid point of the set represents existence or non-existence of its 
associated disparity level. The filling-in process originally built in the reaction-diffusion 
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1. Introduction 
Three-dimensional depth reconstruction from a pair of stereo images needs to find reliable 
stereo correspondence between left and right images. Stereo disparity refers to difference of 
positions between two corresponding points on the stereo images. Although there are many 
possibilities in finding the stereo correspondence, the human vision system successfully 
reconstructs three-dimensional depth distribution with binocular vision. Thus, we can 
expect that solving the stereo correspondence problem brings a key mechanism to 
understand the human vision system. 
The human vision system can solve the stereo correspondence problem from random-dot 
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vision system to solve the stereo correspondence problem (Julesz, 1960). When the human 
vision system is exposed to random-dot stereograms, it perceives three-dimensional 
structure emerging spontaneously. This implies that the human vision system has a module 
being able to detect stereo disparity from only a randomly dotted pattern and not requiring 
key information such as edges and feature points, which generally appear in natural scenes. 
Several researchers presented stereo algorithms to solve the stereo correspondence problem 
from random-dot stereograms in the early period of computer vision research. In particular, 
Marr and Poggio presented a representative stereo algorithm named the cooperative 
algorithm (Marr & Poggio, 1976). Their motivation to approach the stereo correspondence 
problem exists in the biological aspect of the human vision system; their algorithm consists 
of multi-layered cell networks. Their most important proposal to the stereo algorithm is the 
two famous constraints: continuity and uniqueness. 
The authors have been approaching several subjects in image processing and computer 
vision research, by utilizing reaction-diffusion equations as a biologically motivated tool 
(Nomura et al., 2007). We call the group of algorithms utilizing reaction-diffusion equations 
the reaction-diffusion algorithm. The previous research done by the authors presented 
several algorithms for edge detection, segmentation (grouping) and stereo disparity 
detection by utilizing the FitzHugh-Nagumo type reaction-diffusion equations. 
This chapter presents a stereo algorithm utilizing multi-sets of the FitzHugh-Nagumo type 
reaction-diffusion equations. We associate each set of the equations with each of possible 
disparity levels; a particular grid point of the set represents existence or non-existence of its 
associated disparity level. The filling-in process originally built in the reaction-diffusion 
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equations realizes the continuity constraint; the multi-sets mutually connected via a mutual-
inhibition mechanism realize the uniqueness constraint. 
Although the human vision system can detect stereo disparity from only random-dot 
stereograms, the authors believe that feature points such as edges detected from image 
brightness distribution help stereo algorithms to achieve more reliable stereo disparity 
detection. An integration mechanism of edge information into the stereo perception is 
interesting from the scientific point of view. According to this, the authors furthermore 
propose to integrate edge information into the stereo algorithm. As mentioned above, the 
authors have also presented an edge detection algorithm utilizing the reaction-diffusion 
equations (Nomura et al., 2008). Thus, in this chapter the stereo algorithm with edge 
information is fully realized with the reaction-diffusion equations biologically motivated. 
Finally, from the engineering point of view we need to evaluate quantitative performance of 
the stereo algorithms presented here. We apply the stereo algorithms to test stereo image 
pairs provided on the Middlebury website (http://vision.middlebury.edu/stereo/). Results 
of the performance evaluations show that the stereo algorithm utilizing the reaction-
diffusion equations with edge information achieves better performance in areas having 
depth discontinuity, in comparison to the stereo algorithm without edge information. 
However, in other areas not having depth discontinuity, edge information obtained for 
image brightness distribution is useless. Thus, the performance of the stereo algorithm is not 
improved. In addition, other state-of-the-art stereo algorithms achieve much more 
performance. Thus, future work needed for the reaction-diffusion algorithm is to improve 
its performance also in other areas not having depth discontinuity. 

2. Previous stereo algorithms 
It is essentially difficult to detect stereo disparity from only a pair of stereo images, since 
image brightness distribution does not provide enough information to identify a particular 
point in image. There exists ambiguity in finding stereo correspondence between stereo 
images; the stereo correspondence problem is the typical ill-posed problem. Researchers 
have devoted their efforts to obtain reliable stereo correspondence with several different 
algorithms, such as, the template-matching algorithm and the cooperative algorithm. 
In the template-matching algorithm that finds stereo correspondence with a cross-
correlation function, we need to extend the size of its correlation window for reducing the 
ambiguity lying on the stereo correspondence problem. However, the larger size of the 
correlation window causes unreliable solution to the stereo correspondence problem, in 
particular, in areas having depth discontinuity. Thus, on the one hand, the larger correlation 
window size assuming the spatial uniformity of disparity distribution is necessary to reduce 
the ambiguity; on the other hand, such the spatial uniformity can not be assumed, in 
particular, in areas having depth discontinuity. The two requirements of reducing 
ambiguity and preserving depth discontinuity is mutually exclusive. 
Marr and Poggio imposed the two constraints: uniqueness and continuity on the 
cooperative algorithm (Marr & Poggio, 1976). The uniqueness constraint states that a 
particular point on a stereo disparity map has only one stereo disparity level except for 
transparent objects; the continuity constraint states that neighboring points on a stereo 
disparity map share same or similar disparity level(s) except for object boundaries. They 
tried to detect stereo disparity by taking account of the two constraints with a biologically 
motivated multi-layered network model, each grid point of which was considered as a cell 
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activated by neighboring cells locating on the same layer and inhibited by other cells 
locating on other layers of disparity levels. The continuity constraint causes error of stereo 
disparity in areas having depth discontinuity. Thus, the problem arising from the depth 
discontinuity is one of the most significant issues not only in the template-matching 
algorithm, but also in other stereo algorithms including the cooperative algorithm. 
Since the original cooperative algorithm is designed for random-dot stereograms, it is not 
applicable to natural stereo images. More recently, Zitnick and Kanade presented a 
cooperative algorithm designed for natural stereo images (Zitnick & Kanade, 2000). In 
addition, the cooperative algorithm can detect occlusion areas in which an object occludes 
another object in either of two stereo images; it is generally difficult for stereo algorithms to 
detect occlusion areas. 
Other algorithms such as the belief-propagation algorithm and the graph-cuts algorithm are 
well known as state-of-the-art stereo algorithms. The Middlebury website is providing the 
ranking table showing which stereo algorithm achieves the best performance for test stereo 
image pairs with respect to the bad-match-percentage error measure. According to the 
ranking table, those state-of-the-art algorithms achieve much better performance, in 
comparison to the cooperative algorithm. 
The authors are interested in biologically motivated algorithms and thus contribute to the 
stereo correspondence problem by utilizing the reaction-diffusion algorithm. The algorithm 
presented by the authors is rather similar to the cooperative algorithm and is linked directly 
with mathematical models of information transmission and pattern formation observed in 
biological systems. 

3. Previous research on reaction-diffusion equations 
3.1 Modeling pattern formation processes with reaction-diffusion equations 
Biological systems self-organize spatio-temporal patterns for information transmission 
(Murray, 1989). Typical examples of self-organized patterns are impulses propagating along 
a nerve axon and a spiral pattern and a target pattern observed in a two-dimensional system 
of slime mould. These self-organized patterns have been explained with a mathematical 
model of reaction-diffusion equations, which are generally described with time-evolving 
partial differential equations. Each of the equations consists of a diffusion term coupled with 
a reaction term describing its corresponding phenomenon such as, for example, a response 
to stimuli given by other neighboring cells or to external stimuli in biological systems. 
The next set of equations describes reaction-diffusion equations with the two variables 
u(x,y,t) and v(x,y,t) in two-dimensional space (x,y) and time t, as follows: 

 ),(2 vufuDu ut +∇=∂ , ),( 2 vugvDv vt +∇=∂ , (1) 

where Du and Dv are diffusion coefficients and f(u,v) and g(u,v) are reaction terms. The 
symbol ∂t refers to the partial differential operator ∂/∂t and ∇2 refers to the Laplacian 
operator ∇2=∂2/∂x2+∂2/∂y2. The FitzHugh-Nagumo type reaction-diffusion equations 
describe impulses propagating along a nerve axon in a biological system (FitzHugh, 1961; 
Nagumo et al., 1962); the equations have the reaction terms f(u,v) and g(u,v), as follows: 

 ])1)(([
ε
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equations realizes the continuity constraint; the multi-sets mutually connected via a mutual-
inhibition mechanism realize the uniqueness constraint. 
Although the human vision system can detect stereo disparity from only random-dot 
stereograms, the authors believe that feature points such as edges detected from image 
brightness distribution help stereo algorithms to achieve more reliable stereo disparity 
detection. An integration mechanism of edge information into the stereo perception is 
interesting from the scientific point of view. According to this, the authors furthermore 
propose to integrate edge information into the stereo algorithm. As mentioned above, the 
authors have also presented an edge detection algorithm utilizing the reaction-diffusion 
equations (Nomura et al., 2008). Thus, in this chapter the stereo algorithm with edge 
information is fully realized with the reaction-diffusion equations biologically motivated. 
Finally, from the engineering point of view we need to evaluate quantitative performance of 
the stereo algorithms presented here. We apply the stereo algorithms to test stereo image 
pairs provided on the Middlebury website (http://vision.middlebury.edu/stereo/). Results 
of the performance evaluations show that the stereo algorithm utilizing the reaction-
diffusion equations with edge information achieves better performance in areas having 
depth discontinuity, in comparison to the stereo algorithm without edge information. 
However, in other areas not having depth discontinuity, edge information obtained for 
image brightness distribution is useless. Thus, the performance of the stereo algorithm is not 
improved. In addition, other state-of-the-art stereo algorithms achieve much more 
performance. Thus, future work needed for the reaction-diffusion algorithm is to improve 
its performance also in other areas not having depth discontinuity. 

2. Previous stereo algorithms 
It is essentially difficult to detect stereo disparity from only a pair of stereo images, since 
image brightness distribution does not provide enough information to identify a particular 
point in image. There exists ambiguity in finding stereo correspondence between stereo 
images; the stereo correspondence problem is the typical ill-posed problem. Researchers 
have devoted their efforts to obtain reliable stereo correspondence with several different 
algorithms, such as, the template-matching algorithm and the cooperative algorithm. 
In the template-matching algorithm that finds stereo correspondence with a cross-
correlation function, we need to extend the size of its correlation window for reducing the 
ambiguity lying on the stereo correspondence problem. However, the larger size of the 
correlation window causes unreliable solution to the stereo correspondence problem, in 
particular, in areas having depth discontinuity. Thus, on the one hand, the larger correlation 
window size assuming the spatial uniformity of disparity distribution is necessary to reduce 
the ambiguity; on the other hand, such the spatial uniformity can not be assumed, in 
particular, in areas having depth discontinuity. The two requirements of reducing 
ambiguity and preserving depth discontinuity is mutually exclusive. 
Marr and Poggio imposed the two constraints: uniqueness and continuity on the 
cooperative algorithm (Marr & Poggio, 1976). The uniqueness constraint states that a 
particular point on a stereo disparity map has only one stereo disparity level except for 
transparent objects; the continuity constraint states that neighboring points on a stereo 
disparity map share same or similar disparity level(s) except for object boundaries. They 
tried to detect stereo disparity by taking account of the two constraints with a biologically 
motivated multi-layered network model, each grid point of which was considered as a cell 
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activated by neighboring cells locating on the same layer and inhibited by other cells 
locating on other layers of disparity levels. The continuity constraint causes error of stereo 
disparity in areas having depth discontinuity. Thus, the problem arising from the depth 
discontinuity is one of the most significant issues not only in the template-matching 
algorithm, but also in other stereo algorithms including the cooperative algorithm. 
Since the original cooperative algorithm is designed for random-dot stereograms, it is not 
applicable to natural stereo images. More recently, Zitnick and Kanade presented a 
cooperative algorithm designed for natural stereo images (Zitnick & Kanade, 2000). In 
addition, the cooperative algorithm can detect occlusion areas in which an object occludes 
another object in either of two stereo images; it is generally difficult for stereo algorithms to 
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stereo correspondence problem by utilizing the reaction-diffusion algorithm. The algorithm 
presented by the authors is rather similar to the cooperative algorithm and is linked directly 
with mathematical models of information transmission and pattern formation observed in 
biological systems. 

3. Previous research on reaction-diffusion equations 
3.1 Modeling pattern formation processes with reaction-diffusion equations 
Biological systems self-organize spatio-temporal patterns for information transmission 
(Murray, 1989). Typical examples of self-organized patterns are impulses propagating along 
a nerve axon and a spiral pattern and a target pattern observed in a two-dimensional system 
of slime mould. These self-organized patterns have been explained with a mathematical 
model of reaction-diffusion equations, which are generally described with time-evolving 
partial differential equations. Each of the equations consists of a diffusion term coupled with 
a reaction term describing its corresponding phenomenon such as, for example, a response 
to stimuli given by other neighboring cells or to external stimuli in biological systems. 
The next set of equations describes reaction-diffusion equations with the two variables 
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 ),(2 vufuDu ut +∇=∂ , ),( 2 vugvDv vt +∇=∂ , (1) 

where Du and Dv are diffusion coefficients and f(u,v) and g(u,v) are reaction terms. The 
symbol ∂t refers to the partial differential operator ∂/∂t and ∇2 refers to the Laplacian 
operator ∇2=∂2/∂x2+∂2/∂y2. The FitzHugh-Nagumo type reaction-diffusion equations 
describe impulses propagating along a nerve axon in a biological system (FitzHugh, 1961; 
Nagumo et al., 1962); the equations have the reaction terms f(u,v) and g(u,v), as follows: 

 ])1)(([
ε
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where a and b are constants and ε is a positive small constant (0<ε<<1). A set of ordinary 
differential equations derived from Eqs. (1) and (2) under Du=Dv=0 indicates two different 
types of system behavior such as the bi-stable system or the mono-stable system as shown in 
Fig. 1. When the set of the equations is bi-stable, it has the two stable steady states, one of 
which locates at the origin (0,0) and the other of which locates at another point (us,vs) having 
us close to one. 
Turing found that a condition causes a spatial static pattern such as a spot or stripe pattern 
with a set of reaction-diffusion equations (Turing, 1952), even if diffusion terms in the 
equations induce spatial homogeneity of the two variables u and v. When the diffusion 
coefficient Dv is much larger than the diffusion coefficient Du, such the spatial static pattern 
appears. The Turing condition refers to the condition that causes the spatial static pattern  in 
reaction-diffusion equations and the Turing pattern refers to the static pattern. Several self-
organized patterns observed in biological systems have been explained as the Turing 
pattern and with the Turing condition (Kondo & Asai, 1995). We need to emphasize that the 
Turing pattern is due to the rapid diffusion on the inhibitor variable v, in comparison to the 
slow diffusion on the activator variable u (Du<<Dv). 
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Fig. 1. Plots of f(u,v)=u(u-a)(1-u)-v=0 and g(u,v)=u-bv=0. The steady states A locating at (0,0) 
and C locating at (us,vs) are stable; the steady state B is unstable. Depending on the 
parameter values a and b, the system of f(u,v)=0 and g(u,v)=0 becomes mono-stable or bi-
stable. When the system is bi-stable, a solution converges either of the two stable states. The 
excited state denotes that the system is in the red area; the rested state denotes that the 
system is in the blue area. 

3.2 Modeling and realizing visual functions with reaction-diffusion equations 
Kuhnert et al. found that a chemical reaction system can realize visual functions such as 
edge detection, segmentation and image memory (Kuhnert, 1986; Kuhnert et al., 1989). The 
chemical reaction system is described with a set of reaction-diffusion equations having 
activator and inhibitor variables. Thus, their experimental reports made a strong impact on 
us and highly motivated us to develop image processing and computer vision research with 
reaction-diffusion equations. 
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After the reports by Kuhnert et al., many other researchers have also done much efforts on 
modeling and realizing visual functions with reaction-diffusion equations. Asai et al. 
realized a reaction-diffusion system with the large-scale integrated circuits technology for 
image processing; Adamatzky et al. furthermore proposed a novel computer architecture 
and named it the reaction-diffusion computer (Adamatzky et al., 2005). Ueyama et al. 
proposed a reaction-diffusion system as a mathematical model of the human visual 
perception (Ueyama et al., 1998). They tried to explain a visual phenomenon observed in 
motion perception with a reaction-diffusion equation. 
In image processing and computer vision research, we usually utilize the Gaussian filter or a 
diffusion equation for reducing noise or selecting scales in patterns. For example, the edge 
detection algorithm proposed by Marr and Hildreth utilizes the difference of two Gaussians 
(Marr & Hildreth, 1980), each of which is alternatively expressed by a diffusion equation. 
Perona and Malik proposed an edge detection algorithm by utilizing an anisotropic 
diffusion (Perona & Malik, 1990). 
The authors have tried to build models of several visual functions such as edge detection, 
grouping and stereo disparity detection by utilizing reaction-diffusion equations. The 
authors believe that reaction-diffusion equations become a basic tool for realizing visual 
functions from the engineering point of view, and a basic model for understanding the 
human visual functions from the scientific point of view. This is the motivation for the 
present research work done by the authors by utilizing reaction-diffusion equations in 
image processing and computer vision research. 
This chapter presents a stereo algorithm by utilizing multi-sets of the FitzHugh-Nagumo 
type reaction-diffusion equations (1) and (2), on which the authors impose the Turing like 
condition (Du<<Dv). The grouping mechanism built in the reaction-diffusion equations 
works as the continuity constraint required in the stereo algorithm. In addition, the Turing 
like condition helps to prevent over-smoothing around corners in structure of stereo 
disparity distribution. 

4. Stereo algorithm with reaction-diffusion equations 
Upon acceptance of the two constraints: continuity and uniqueness proposed by Marr and 
Poggio (1976), the authors present a stereo algorithm that utilizes the FitzHugh-Nagumo 
type reaction-diffusion equations (1) and (2). In order to realize the stereo algorithm, we 
consider multi-sets of the equations, each set of which is associated with a possible 
disparity level, and each set of which governs areas having the associated disparity level. 
In addition, each set inhibits other sets from having other disparity levels via a mutual-
inhibition mechanism. 
A set of the reaction-diffusion equations organizes propagating waves, which are applicable 
to the realization of the continuity constraint (Fig. 2). A wave triggered by an external 
stimulus at a point in space begins to propagate. When the wave collides with another wave 
triggered at another point in the space, the two waves become one, if the system of the 
equations is bi-stable. This is a filling-in process that fills in undefined areas between the 
two triggered positions. Let us give an output of a matching cost function to the set of the 
reaction-diffusion equations as its external stimulus. Then, we can understand that the set 
realizes the continuity constraint. 
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excited state denotes that the system is in the red area; the rested state denotes that the 
system is in the blue area. 

3.2 Modeling and realizing visual functions with reaction-diffusion equations 
Kuhnert et al. found that a chemical reaction system can realize visual functions such as 
edge detection, segmentation and image memory (Kuhnert, 1986; Kuhnert et al., 1989). The 
chemical reaction system is described with a set of reaction-diffusion equations having 
activator and inhibitor variables. Thus, their experimental reports made a strong impact on 
us and highly motivated us to develop image processing and computer vision research with 
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realized a reaction-diffusion system with the large-scale integrated circuits technology for 
image processing; Adamatzky et al. furthermore proposed a novel computer architecture 
and named it the reaction-diffusion computer (Adamatzky et al., 2005). Ueyama et al. 
proposed a reaction-diffusion system as a mathematical model of the human visual 
perception (Ueyama et al., 1998). They tried to explain a visual phenomenon observed in 
motion perception with a reaction-diffusion equation. 
In image processing and computer vision research, we usually utilize the Gaussian filter or a 
diffusion equation for reducing noise or selecting scales in patterns. For example, the edge 
detection algorithm proposed by Marr and Hildreth utilizes the difference of two Gaussians 
(Marr & Hildreth, 1980), each of which is alternatively expressed by a diffusion equation. 
Perona and Malik proposed an edge detection algorithm by utilizing an anisotropic 
diffusion (Perona & Malik, 1990). 
The authors have tried to build models of several visual functions such as edge detection, 
grouping and stereo disparity detection by utilizing reaction-diffusion equations. The 
authors believe that reaction-diffusion equations become a basic tool for realizing visual 
functions from the engineering point of view, and a basic model for understanding the 
human visual functions from the scientific point of view. This is the motivation for the 
present research work done by the authors by utilizing reaction-diffusion equations in 
image processing and computer vision research. 
This chapter presents a stereo algorithm by utilizing multi-sets of the FitzHugh-Nagumo 
type reaction-diffusion equations (1) and (2), on which the authors impose the Turing like 
condition (Du<<Dv). The grouping mechanism built in the reaction-diffusion equations 
works as the continuity constraint required in the stereo algorithm. In addition, the Turing 
like condition helps to prevent over-smoothing around corners in structure of stereo 
disparity distribution. 

4. Stereo algorithm with reaction-diffusion equations 
Upon acceptance of the two constraints: continuity and uniqueness proposed by Marr and 
Poggio (1976), the authors present a stereo algorithm that utilizes the FitzHugh-Nagumo 
type reaction-diffusion equations (1) and (2). In order to realize the stereo algorithm, we 
consider multi-sets of the equations, each set of which is associated with a possible 
disparity level, and each set of which governs areas having the associated disparity level. 
In addition, each set inhibits other sets from having other disparity levels via a mutual-
inhibition mechanism. 
A set of the reaction-diffusion equations organizes propagating waves, which are applicable 
to the realization of the continuity constraint (Fig. 2). A wave triggered by an external 
stimulus at a point in space begins to propagate. When the wave collides with another wave 
triggered at another point in the space, the two waves become one, if the system of the 
equations is bi-stable. This is a filling-in process that fills in undefined areas between the 
two triggered positions. Let us give an output of a matching cost function to the set of the 
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Fig. 2. Numerical result of the FitzHugh-Nagumo type reaction-diffusion equations (1) and 
(2) in one-dimensional space x, in which waves triggered at two different positions 
propagate and become one after the collision of the two waves. (a) Initial condition on 
u(x,t=0); (b) one-dimensional spatial distributions of u and v at t=10 before the collision; (c) 
one-dimensional spatial distributions of u and v at t=12 after the collision. Parameter values 
chosen here for the numerical computation are Du=1.0, Dv=3.0, a=0.05, b=10 and ε=1.0×10-2 
(the bi-stable system); finite differences for the numerical computation are δx=1/5 and 
δt=1/100. An initial condition for v(x,t=0) is zero over the one-dimensional space. In each 
figure, the solid line indicates the one-dimensional distribution of u(x,t) and the broken line 
indicates the one-dimensional distribution of v(x,t). 

The mutual-inhibition mechanism built in the multi-sets of the reaction-diffusion equations 
realizes the uniqueness constraint. Each set organizes propagating waves, for which the 
parameter a in Eq. (2) controls their propagating speed. Thus, when we change the 
parameter value a, we can observe waves propagating at different speeds. If we choose a 
large value of a, we can inhibit the waves from propagating. Thus, each set of the reaction-
diffusion equations utilized in the stereo algorithm is as follows: 

 2
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where n=0,1,⋅⋅⋅,N-1 denotes the index of possible disparity levels and μ is a constant. We 
provide an output of a matching cost function for sn(x,y) as an external stimulus to the set; 
the matching cost function returns one for a stereo image pair exactly matched with a 
disparity level dn and zero for an un-matched pair. The original reaction term f(u,v) in Eq. (2) 
has a constant parameter a. In contrast to this, the above modified version of the reaction 
term in Eq. (4) depends on the state of the other set having the maximum value umax as 
follows: 
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where a0 and a1 are constants and Ωi denotes an inhibition domain for the uniqueness 
constraint (Zitnick & Kanade, 2000). 
For preserving sharp corners existing in stereo disparity distribution, we impose the Turing 
like condition (Du<<Dv) on each of the reaction-diffusion equations in Eq. (3). The condition 
induces rapid diffusion of the inhibitor variable vn, in comparison to diffusion of the 
activator variable un. The rapid diffusion of the inhibitor prior to the diffusion of the 
activator prevents a wave from propagating into undefined areas. The phenomenon 
preventing the propagation of the wave becomes remarkable for a curved wave front having 
negative curvature. Thus, the wave propagation inhibited by itself in a disparity level helps 
a sharp corner governed by another disparity level to survive. The authors name this 
phenomenon due to the Turing like condition the self-inhibition mechanism. 
By computing Eqs. (3), (4) and (5) during enough finite duration of time needed for 
convergence, we finally obtain a stereo disparity map M(x,y,t) at the time t with 
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5. Integration of edge information into the stereo algorithm 
Areas having depth discontinuity cause much error in stereo disparity detection. If the areas 
are given in advance of the stereo disparity detection, information of the areas helps stereo 
algorithms to achieve better performance around the areas. However, the areas are generally 
unknown. Although we can not directly link edge areas existing in image brightness 
distribution with the areas having depth discontinuity, we can expect that information of 
the edge areas becomes a key to success in stereo disparity detection in the areas having 
depth discontinuity. 
The present chapter furthermore proposes the integration of edge information into the 
stereo algorithm presented above. We obtain edge information from either of stereo images 
with an edge detection algorithm and then feed the edge information to the stereo 
algorithm. The authors previously proposed the edge detection algorithm by utilizing the 
reaction-diffusion equations (Nomura et al., 2008). Let the two distributions ue(x,y) and 
ve(x,y) be the results of the edge detection algorithm; they represent spatial distributions of 
the activator variable u(x,y,t) and the inhibitor variable v(x,y,t) obtained at a point (x,y) and 
at time t after enough finite duration of time needed for convergence. In edge areas, a set of 
solutions ue(x,y) and ve(x,y) is in the excited state nearly equal to the stable steady state 
(us,vs) (see also Fig. 1). Thus, we integrate the edge information (ue,ve) into the stereo 
algorithm as follows: 
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Fig. 2. Numerical result of the FitzHugh-Nagumo type reaction-diffusion equations (1) and 
(2) in one-dimensional space x, in which waves triggered at two different positions 
propagate and become one after the collision of the two waves. (a) Initial condition on 
u(x,t=0); (b) one-dimensional spatial distributions of u and v at t=10 before the collision; (c) 
one-dimensional spatial distributions of u and v at t=12 after the collision. Parameter values 
chosen here for the numerical computation are Du=1.0, Dv=3.0, a=0.05, b=10 and ε=1.0×10-2 
(the bi-stable system); finite differences for the numerical computation are δx=1/5 and 
δt=1/100. An initial condition for v(x,t=0) is zero over the one-dimensional space. In each 
figure, the solid line indicates the one-dimensional distribution of u(x,t) and the broken line 
indicates the one-dimensional distribution of v(x,t). 

The mutual-inhibition mechanism built in the multi-sets of the reaction-diffusion equations 
realizes the uniqueness constraint. Each set organizes propagating waves, for which the 
parameter a in Eq. (2) controls their propagating speed. Thus, when we change the 
parameter value a, we can observe waves propagating at different speeds. If we choose a 
large value of a, we can inhibit the waves from propagating. Thus, each set of the reaction-
diffusion equations utilized in the stereo algorithm is as follows: 
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where n=0,1,⋅⋅⋅,N-1 denotes the index of possible disparity levels and μ is a constant. We 
provide an output of a matching cost function for sn(x,y) as an external stimulus to the set; 
the matching cost function returns one for a stereo image pair exactly matched with a 
disparity level dn and zero for an un-matched pair. The original reaction term f(u,v) in Eq. (2) 
has a constant parameter a. In contrast to this, the above modified version of the reaction 
term in Eq. (4) depends on the state of the other set having the maximum value umax as 
follows: 
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where a0 and a1 are constants and Ωi denotes an inhibition domain for the uniqueness 
constraint (Zitnick & Kanade, 2000). 
For preserving sharp corners existing in stereo disparity distribution, we impose the Turing 
like condition (Du<<Dv) on each of the reaction-diffusion equations in Eq. (3). The condition 
induces rapid diffusion of the inhibitor variable vn, in comparison to diffusion of the 
activator variable un. The rapid diffusion of the inhibitor prior to the diffusion of the 
activator prevents a wave from propagating into undefined areas. The phenomenon 
preventing the propagation of the wave becomes remarkable for a curved wave front having 
negative curvature. Thus, the wave propagation inhibited by itself in a disparity level helps 
a sharp corner governed by another disparity level to survive. The authors name this 
phenomenon due to the Turing like condition the self-inhibition mechanism. 
By computing Eqs. (3), (4) and (5) during enough finite duration of time needed for 
convergence, we finally obtain a stereo disparity map M(x,y,t) at the time t with 
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5. Integration of edge information into the stereo algorithm 
Areas having depth discontinuity cause much error in stereo disparity detection. If the areas 
are given in advance of the stereo disparity detection, information of the areas helps stereo 
algorithms to achieve better performance around the areas. However, the areas are generally 
unknown. Although we can not directly link edge areas existing in image brightness 
distribution with the areas having depth discontinuity, we can expect that information of 
the edge areas becomes a key to success in stereo disparity detection in the areas having 
depth discontinuity. 
The present chapter furthermore proposes the integration of edge information into the 
stereo algorithm presented above. We obtain edge information from either of stereo images 
with an edge detection algorithm and then feed the edge information to the stereo 
algorithm. The authors previously proposed the edge detection algorithm by utilizing the 
reaction-diffusion equations (Nomura et al., 2008). Let the two distributions ue(x,y) and 
ve(x,y) be the results of the edge detection algorithm; they represent spatial distributions of 
the activator variable u(x,y,t) and the inhibitor variable v(x,y,t) obtained at a point (x,y) and 
at time t after enough finite duration of time needed for convergence. In edge areas, a set of 
solutions ue(x,y) and ve(x,y) is in the excited state nearly equal to the stable steady state 
(us,vs) (see also Fig. 1). Thus, we integrate the edge information (ue,ve) into the stereo 
algorithm as follows: 
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where the terms ( )[ ]nuu ∇−⋅∇ e1  and ( )[ ]nvv ∇−⋅∇ e1  describe anisotropic diffusion, according 
to the results of the edge detection. Since (1-ue) becomes almost zero in edge areas, slow 
diffusion across an edge line prevents disparity information from propagating into other 
areas having other disparity levels. Thus, we can expect that the slow diffusion brings better 
performance around areas having depth discontinuity. 

6. Experimental results 
This experimental section reports performance of stereo algorithms. The stereo algorithms 
evaluated here are as follows: the reaction-diffusion algorithm without the integration of 
edge information (RDs), the reaction-diffusion algorithm with the integration of edge 
information (RDs+e) and the cooperative algorithm proposed by Zitnick and Kanade (ZK) 
(Zitnick & Kanade, 2000). The two algorithms RDs and RDs+e utilize a normalized cross-
correlation function as a matching cost function; the normalized cross-correlation function 
computes similarity between two areas, each of which consists of five points including the 
target point and its nearest four points. In order to show how much the two reaction-
diffusion algorithms improve initial disparity maps, we also evaluated the initial disparity 
maps (CC5). 
We utilized the four pairs of test stereo images: MAP, TSUKUBA, SAWTOOTH and VENUS 
for the performance evaluation of the stereo algorithms (Scharstein & Szeliski, 2002). The 
Middlebury website provides all of the four image pairs as well as their ground truth data of 
stereo disparity maps and depth discontinuity areas. Figure 3 shows the four pairs of left 
and right stereo images and their initial disparity maps obtained by only the cross-
correlation function (CC5). 
The two error measures: the root-mean-square error measure and the bad-match-percentage 
error measure quantitatively evaluate stereo disparity maps obtained by the stereo 
algorithms. The root-mean-square error measure R (pixel) evaluates absolute difference 
between the true disparity map Mt(x,y) and an obtained disparity map M(x,y,t) in a domain 
F as follows: 
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where F  denotes the number of pixel sites belonging to the domain F. The bad-match-

percentage error measure B (%) evaluates the ratio of the number of bad match pixel sites, 
which have absolute error larger than δd (pixel), to the number of total pixel sites belonging 
to the domain F as follows: 

 ( ) 100,),,(),(1

),(

×δ−σ= ∑
∈Fyx

t dtyxMyxM
F

B  (%), (9) 

 

Stereo Algorithm with Reaction-Diffusion Equations 

 

267 

where the function σ(S,δd) is the threshold function which returns one for S≥δd and 
zero for S<δd. The domain F in Eqs. (8) and (9) refers to the domain consisting of all 
pixel sites except for borders and occlusion areas (all), the domain consisting of un-
textured areas (untex.) or the domain consisting of depth-discontinuity areas (disc.). 
The Middlebury website also provides definitions of the three domains. Borders of 10 
pixels (18 pixels for TSUKUBA) and occlusion areas were ignored in the present 
evaluation. 
The reaction-diffusion algorithms RDs and RDs+e utilize time-evolving partial-differential 
equations, for which the finite difference method provides a set of linear equations with the 
finite differences δx, δy and δt for space (x,y) and time t. The parameter values δx=δy=1/5, 
δt=1/100, Du=1.0, Dv=3.0, a0=0.13, a1=1.5, b=10, ε=10-2, μ=3.0 were chosen for the present 
experiments in RDs and RDs+e. The reaction-diffusion algorithm with edge information 
(RDs+e) requires edge detection results. Figure 4 shows the edge detection results obtained 
by the reaction-diffusion algorithm designed for edge detection. See the literature (Nomura 
et al., 2008) for the edge detection algorithm and its parameter values utilized here. These 
results were fed to the algorithm RDs+e through the anisotropic diffusion terms, as described 
in Eq. (7). 
Figure 5 shows the ground truth disparity maps, disparity maps obtained by RDs+e and their 
absolute error maps. Table 1 shows error values evaluated for the disparity maps obtained 
by RDs, RDs+e and ZK, as well as for the initial disparity maps denoted by CC5. 
With respect to the bad-match-percentage error measure B (%), we can confirm that the 
algorithm RDs+e achieves better performance than RDs in areas having depth discontinuity 
for all of the four stereo image pairs. In particular, for the stereo image pair SAWTOOTH, 
RDs+e achieves better performance for all of the three evaluation domains: "all", "untex." and 
"disc.". However, RDs is better than RDs+e in the evaluation domains: "all" and "untex." for 
the stereo image pair TSUKUBA. The algorithm RDs+e assumes that edge areas obtained for 
brightness distribution coincide with areas having depth discontinuity. When a stereo image 
pair does not satisfy the assumption, RDs+e provides rather much error in stereo disparity 
detection. When comparing the reaction-diffusion algorithms RDs and RDs+e with the 
cooperative algorithm ZK, the reaction-diffusion algorithms achieve better performance for 
SAWTOOTH and VENUS and the cooperative algorithm achieves better performance for 
TSUKUBA. That is, we confirm that overall performance is almost the same. 
Future work required for the stereo algorithm RDs+e is to improve its performance not 
only for the areas having depth discontinuity, but also for other areas including un-
textured areas. In order to do this, we need to feed edge information obtained for an 
initial disparity map instead of image brightness distribution to the stereo algorithm 
RDs+e. Since initial disparity maps have much noise, we need to confirm how much the 
edge detection algorithm works correctly for the noisy maps. Furthermore, the authors are 
considering a new vision system that dynamically integrates the edge detection algorithm 
with the stereo algorithm. First, we obtain edge information from temporarily detected 
stereo disparity distribution; second, we compute one time step of the stereo algorithm 
with the integration of the edge information. By iterating these two steps alternately, we 
expect to achieve better performance of stereo disparity detection in the reaction-diffusion 
algorithm. 
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where F  denotes the number of pixel sites belonging to the domain F. The bad-match-

percentage error measure B (%) evaluates the ratio of the number of bad match pixel sites, 
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With respect to the bad-match-percentage error measure B (%), we can confirm that the 
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for all of the four stereo image pairs. In particular, for the stereo image pair SAWTOOTH, 
RDs+e achieves better performance for all of the three evaluation domains: "all", "untex." and 
"disc.". However, RDs is better than RDs+e in the evaluation domains: "all" and "untex." for 
the stereo image pair TSUKUBA. The algorithm RDs+e assumes that edge areas obtained for 
brightness distribution coincide with areas having depth discontinuity. When a stereo image 
pair does not satisfy the assumption, RDs+e provides rather much error in stereo disparity 
detection. When comparing the reaction-diffusion algorithms RDs and RDs+e with the 
cooperative algorithm ZK, the reaction-diffusion algorithms achieve better performance for 
SAWTOOTH and VENUS and the cooperative algorithm achieves better performance for 
TSUKUBA. That is, we confirm that overall performance is almost the same. 
Future work required for the stereo algorithm RDs+e is to improve its performance not 
only for the areas having depth discontinuity, but also for other areas including un-
textured areas. In order to do this, we need to feed edge information obtained for an 
initial disparity map instead of image brightness distribution to the stereo algorithm 
RDs+e. Since initial disparity maps have much noise, we need to confirm how much the 
edge detection algorithm works correctly for the noisy maps. Furthermore, the authors are 
considering a new vision system that dynamically integrates the edge detection algorithm 
with the stereo algorithm. First, we obtain edge information from temporarily detected 
stereo disparity distribution; second, we compute one time step of the stereo algorithm 
with the integration of the edge information. By iterating these two steps alternately, we 
expect to achieve better performance of stereo disparity detection in the reaction-diffusion 
algorithm. 
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Fig. 3. Stereo image pairs (a) MAP, (b) TSUKUBA, (c) SAWTOOTH and (d) VENUS 
provided on the Middlebury website, and their initial disparity maps provided for the 
reaction-diffusion stereo algorithms RDs and RDs+e. (a-1), (b-1), (c-1) and (d-1) are left 
images; (a-2), (b-2), (c-2) and (d-2) are right images. Initial disparity maps shown in (a-3), (b-
3), (c-3) and (d-3) were obtained by the normalized cross-correlation function CC5. Image 
sizes are (a) 284×216 (pixels), (b) 384×288 (pixels), (c) 434×380 (pixels) and (d) 434×383 
(pixels); possible disparity levels are (a) {0,1,⋅⋅⋅,29} (pixels), (b) {0,1,⋅⋅⋅,15} (pixels), (c) 
{0,1,⋅⋅⋅,19} (pixels), and (d) {0,1, ⋅⋅⋅,19} (pixels). (a-3), (c-3) and (d-3) visualize the initial 
disparity maps in the disparity range of min=0 (pixel) and max=31 (pixels); (b-3) visualizes 
that in the disparity range of min=0 (pixel) and max=15 (pixels). 
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Fig. 4. Edge information obtained by the edge detection algorithm utilizing reaction-
diffusion equations from the left images of (a) MAP, (b) TSUKUBA, (c) SAWTOOH and (d) 
VENUS (see Fig. 3 for the images). Refer to the literature (Nomura et al., 2008) for the edge 
detection algorithm and its parameter values utilized here. (a-1), (b-1), (c-1) and (d-1) show 
edge detection results, in which black dots and lines denote detected edges. (a-2), (b-2), (c-2) 
and (d-2) show spatial distributions of the activator variable ue(x,y); (a-3), (b-3), (c-3) and (d-
3) show spatial distributions of the inhibitor variable ve(x,y). All of the results were obtained 
at t=5.0 in the reaction-diffusion equations. 
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Fig. 5. Stereo disparity maps obtained by the proposed stereo algorithm RDs+e. (a-1), (b-1), 
(c-1) and (d-1) show the ground truth data of disparity maps provided on the Middlebury 
website; (a-2), (b-2), (c-2) and (d-2) show disparity maps obtained by RDs+e at t=10; (a-3), (b-
3), (c-3) and (d-3) show absolute error distributions evaluated for the disparity maps. 
Borders and occlusion areas of disparity maps were ignored in the performance evaluation. 
See Fig. 3 for the stereo image pairs and Fig. 4 for the edge detection results utilized here. (a-
1), (a-2), (c-1), (c-2), (d-1) and (d-2) visualize the stereo disparity maps in the disparity range 
of min=0 (pixel) and max=31 (pixels); (b-1) and (b-2) visualize those in the disparity range of 
min=0 (pixel) and max=15 (pixels). (a-3), (c-3) and (d-3) visualize the error distribution maps 
in the range of min=0.0 (pixel) and max=2.0 (pixels); (b-3) visualize that in the range of 
min=0.0 (pixel) and max=5.0 (pixels). 
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CC5 RDs RDs+e ZK 
 

R(pixel) B(%) R(pixel) B(%) R(pixel) B(%) R(pixel) B(%) 
all 8.43 43.22 1.02 0.25 1.02 0.29 0.87 0.22 

untex. 12.32 76.19 0.39 0.00 0.39 0.00 1.48 0.95 MAP 
disc. 9.41 50.81 3.58 3.53 3.59 3.30 2.95 2.37 

all 3.42 39.82 1.23 3.89 1.35 4.85 0.96 3.49 
untex. 3.97 57.94 1.27 4.54 1.41 6.28 0.87 3.65 TSUKUBA 

disc. 3.49 38.51 2.20 14.90 2.23 14.61 2.05 14.77 
all 4.36 36.35 0.70 1.74 0.68 1.72 0.79 2.03 

untex. 5.77 61.46 0.51 0.35 0.48 0.32 0.69 2.29 SAWTOOTH 
disc. 3.90 35.16 2.23 12.50 1.82 8.94 2.20 13.41 

all 4.67 45.66 0.68 1.53 0.71 1.78 0.81 2.57 
untex. 6.01 68.99 0.61 1.05 0.69 1.28 0.93 3.52 VENUS 

disc. 4.17 43.46 2.11 18.58 2.05 16.74 2.44 26.33 

Table 1. Results of quantitative performance evaluations obtained for the reaction-diffusion 
stereo algorithms RDs and RDs+e and the cooperative algorithm ZK as well as for the initial 
disparity maps denoted by CC5. We evaluated the algorithms in all areas (all), un-textured 
areas (untex.) and depth discontinuity areas (disc.); we ignored borders and occlusion areas 
in the performance evaluations. Underlined scores denote the best performance among the 
algorithms. See Eq. (8) for the root-mean-square error measure R (pixel) and Eq. (9) for the 
bad-match-percentage error measure B (%). The scores evaluated for ZK were resulting from 
the disparity maps provided on the Middlebury website. 

7. Conclusion 
This chapter presented a stereo algorithm utilizing multi-sets of the FitzHugh-Nagumo type 
reaction-diffusion equations. The stereo algorithm realizes the two constraints: continuity 
and uniqueness, as follows. Each set of the reaction-diffusion equations self-organizes 
propagating waves, the collision of which works as the continuity constraint. The mutual 
inhibition mechanism connecting the multi-sets works as the uniqueness constraint. In 
addition, the authors imposed the Turing like condition on each set of the reaction-diffusion 
equations; the condition helps the stereo algorithm to preserve small features such as sharp 
corners in stereo disparity distribution. 
In order to improve the performance of the stereo algorithm in areas having depth 
discontinuity, the authors additionally proposed the integration of edge information into the 
stereo algorithm. That is, the algorithm weakens the diffusion processes of the reaction-
diffusion equations in areas having edges, which are detected by also the reaction-diffusion 
algorithm designed for edge detection from image brightness distribution. 
We evaluated quantitative performance of the two stereo algorithms with/without the 
integration of edge information, by applying them to the well known test stereo image pairs. 
Results of the performance evaluations show that the algorithm with the integration of edge 
information achieves better performance than the stereo algorithm without the integration 
of edge information in the areas having depth discontinuity. Overall performance of the 
stereo algorithms presented here is almost equivalent to that of the cooperative algorithm 
proposed by Zitnick and Kanade. According to the Middlebury website, other state-of-the-
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(c-1) and (d-1) show the ground truth data of disparity maps provided on the Middlebury 
website; (a-2), (b-2), (c-2) and (d-2) show disparity maps obtained by RDs+e at t=10; (a-3), (b-
3), (c-3) and (d-3) show absolute error distributions evaluated for the disparity maps. 
Borders and occlusion areas of disparity maps were ignored in the performance evaluation. 
See Fig. 3 for the stereo image pairs and Fig. 4 for the edge detection results utilized here. (a-
1), (a-2), (c-1), (c-2), (d-1) and (d-2) visualize the stereo disparity maps in the disparity range 
of min=0 (pixel) and max=31 (pixels); (b-1) and (b-2) visualize those in the disparity range of 
min=0 (pixel) and max=15 (pixels). (a-3), (c-3) and (d-3) visualize the error distribution maps 
in the range of min=0.0 (pixel) and max=2.0 (pixels); (b-3) visualize that in the range of 
min=0.0 (pixel) and max=5.0 (pixels). 
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Table 1. Results of quantitative performance evaluations obtained for the reaction-diffusion 
stereo algorithms RDs and RDs+e and the cooperative algorithm ZK as well as for the initial 
disparity maps denoted by CC5. We evaluated the algorithms in all areas (all), un-textured 
areas (untex.) and depth discontinuity areas (disc.); we ignored borders and occlusion areas 
in the performance evaluations. Underlined scores denote the best performance among the 
algorithms. See Eq. (8) for the root-mean-square error measure R (pixel) and Eq. (9) for the 
bad-match-percentage error measure B (%). The scores evaluated for ZK were resulting from 
the disparity maps provided on the Middlebury website. 

7. Conclusion 
This chapter presented a stereo algorithm utilizing multi-sets of the FitzHugh-Nagumo type 
reaction-diffusion equations. The stereo algorithm realizes the two constraints: continuity 
and uniqueness, as follows. Each set of the reaction-diffusion equations self-organizes 
propagating waves, the collision of which works as the continuity constraint. The mutual 
inhibition mechanism connecting the multi-sets works as the uniqueness constraint. In 
addition, the authors imposed the Turing like condition on each set of the reaction-diffusion 
equations; the condition helps the stereo algorithm to preserve small features such as sharp 
corners in stereo disparity distribution. 
In order to improve the performance of the stereo algorithm in areas having depth 
discontinuity, the authors additionally proposed the integration of edge information into the 
stereo algorithm. That is, the algorithm weakens the diffusion processes of the reaction-
diffusion equations in areas having edges, which are detected by also the reaction-diffusion 
algorithm designed for edge detection from image brightness distribution. 
We evaluated quantitative performance of the two stereo algorithms with/without the 
integration of edge information, by applying them to the well known test stereo image pairs. 
Results of the performance evaluations show that the algorithm with the integration of edge 
information achieves better performance than the stereo algorithm without the integration 
of edge information in the areas having depth discontinuity. Overall performance of the 
stereo algorithms presented here is almost equivalent to that of the cooperative algorithm 
proposed by Zitnick and Kanade. According to the Middlebury website, other state-of-the-
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art stereo algorithms achieve much better performance, in comparison to the reaction-
diffusion algorithm. The authors believe that it is possible to improve the performance of the 
reaction-diffusion algorithm by dynamically integrating the edge detection algorithm into 
the stereo algorithm. Thus, we need to improve the performance of the reaction-diffusion 
algorithm designed for stereo disparity detection. 
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1. Introduction 
Real-time 3D imaging has gained special attention in many fields such as computer vision, 
tele-imaging, and virtual reality. Especially real-time 3D modeling is one of emerging topics. 
During the last years, many systems that reconstruct 3D images using image sequences 
obtained from several viewpoints have been proposed. In the work (Saito et al., 1999), the 
3D image sequences are acquired by multiple images of about 50 cameras. They accomplish 
high quality 3D images. In the method, a modeling step is done offline. In (Wu & 
Matsuyama, 2003), (Ueda et al., 2004), (Würmlin et al., 2002), and (Würmlin et al., 2004), the 
3D modeling is employed in real-time using parallel processing with PC clusters. All of 
them use Silhouette Volume Intersection (SVI) method to approximate a shape by a visual 
hull. In order to make the surface finer and map textures on it, some extra tasks are 
required, which are in principle time-consuming. 
On the other hand, some methods have been established to generate range images in realtime, 
for example (Kanade et al., 1996). Some of them have already been commercialized 
(Pointgrey). These methods achieve range images at 5-30 fps by the stereo matching algorithm. 
In this paper, we propose a client-server system in which the server reconstructs, encodes, 
and transmits the 3D images to client in real-time. We do not apply the polygonal modeling 
but transmit a point cloud of multiple range images and render it directly, due to the 
following two reasons: 
1. To reconstruct mesh model, a triangulation is required. Moreover, one needs to extract 

textures from colour images, and map them onto the meshes, which are complicated 
and time-consuming. The computational cost of the processes depends on complexity 
of the object shapes. The point rendering does not need these. 

2. In general, the polygonal meshes have connectivity information as well as the 3D 
coordinates of the vertices. The connectivity has to be encoded without any loss, which 
consumes many bits. Moreover, only one bit error on the connectivity causes 
catastrophic damage on its quality. This is not suitable for transmission over wireless 
network or UDP. 

The point cloud can easily be divided and packetized to individual blocks. 
The client receives and decodes a bit-stream, and then renders the point cloud quickly by 
using a strip-based rendering. As a rendering method for the point cloud, Point-Sampled-
Geometry (Rusinkiewicz & Levoy, 2000) is well known, which is used to represent high 
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art stereo algorithms achieve much better performance, in comparison to the reaction-
diffusion algorithm. The authors believe that it is possible to improve the performance of the 
reaction-diffusion algorithm by dynamically integrating the edge detection algorithm into 
the stereo algorithm. Thus, we need to improve the performance of the reaction-diffusion 
algorithm designed for stereo disparity detection. 
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1. Introduction 
Real-time 3D imaging has gained special attention in many fields such as computer vision, 
tele-imaging, and virtual reality. Especially real-time 3D modeling is one of emerging topics. 
During the last years, many systems that reconstruct 3D images using image sequences 
obtained from several viewpoints have been proposed. In the work (Saito et al., 1999), the 
3D image sequences are acquired by multiple images of about 50 cameras. They accomplish 
high quality 3D images. In the method, a modeling step is done offline. In (Wu & 
Matsuyama, 2003), (Ueda et al., 2004), (Würmlin et al., 2002), and (Würmlin et al., 2004), the 
3D modeling is employed in real-time using parallel processing with PC clusters. All of 
them use Silhouette Volume Intersection (SVI) method to approximate a shape by a visual 
hull. In order to make the surface finer and map textures on it, some extra tasks are 
required, which are in principle time-consuming. 
On the other hand, some methods have been established to generate range images in realtime, 
for example (Kanade et al., 1996). Some of them have already been commercialized 
(Pointgrey). These methods achieve range images at 5-30 fps by the stereo matching algorithm. 
In this paper, we propose a client-server system in which the server reconstructs, encodes, 
and transmits the 3D images to client in real-time. We do not apply the polygonal modeling 
but transmit a point cloud of multiple range images and render it directly, due to the 
following two reasons: 
1. To reconstruct mesh model, a triangulation is required. Moreover, one needs to extract 

textures from colour images, and map them onto the meshes, which are complicated 
and time-consuming. The computational cost of the processes depends on complexity 
of the object shapes. The point rendering does not need these. 

2. In general, the polygonal meshes have connectivity information as well as the 3D 
coordinates of the vertices. The connectivity has to be encoded without any loss, which 
consumes many bits. Moreover, only one bit error on the connectivity causes 
catastrophic damage on its quality. This is not suitable for transmission over wireless 
network or UDP. 

The point cloud can easily be divided and packetized to individual blocks. 
The client receives and decodes a bit-stream, and then renders the point cloud quickly by 
using a strip-based rendering. As a rendering method for the point cloud, Point-Sampled-
Geometry (Rusinkiewicz & Levoy, 2000) is well known, which is used to represent high 
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resolution mesh data. Our rendering scheme is similar to the method. The client divides 
point cloud obtained from range image into strips, and renders it with triangle strips. 
In certain situations at the modeling stage, it is hard to capture the 3D shape perfectly. 
Failure to obtain precise camera-calibration or Region of Interest (ROI) extraction results in 
overlaps and annoying artifacts between different range images. To address these problems, 
we apply a cylindrical method to each frame of 3D sequence before rendering stage. The 
cylindrical method maps each point of the Point Cloud on the inner wall of a virtual 
cylinder, which is then warped to a 2D plane. Mapping of the 3D points on a plane 
facilitates handling of the 3D Point Cloud efficiently, and makes the process work in 
realtime. 
In the next section, we review conventional real-time 3D imaging methods. In Section 3, we 
introduce our client-server system that reconstructs, encodes and displays the 3D images. In 
Section 4, we verify the validity of our method with some experimental results. And then we 
conclude the chapter in Section 5. 

2. Past work 
In this section, we review conventional methods that reconstruct 3D mesh models and 
explain the drawback and advantage with comparison to our method. 
Some papers (Wu & Matsuyama, 2003), (Ueda et al., 2004), (Würmlin et al., 2002), (Würmlin 
et al., 2004), have already presented systems reconstructing 3D images in real-time. In many 
of these methods, first object silhouettes are extracted from multiple images obtained from 
several viewpoints. Next, these silhouettes are re-projected to a 3D space, and the 
intersectional space is assumed as Visual Hull of the object. The procedure is called 
Silhouette Volume Intersection (SVI). Fig. 1 illustrates the SVI method. This method 
successfully reconstructs the rough shape of an object without holes, while the stereo 
method often fails to make a continuous surface due to mismatch of corresponding points. 
Thus the shape without holes can be reconstructed robustly if the image is divided exactly 
into regions and the silhouettes are faithfully extracted. However, SVI method has a 
drawback that it is difficult to reconstruct curved or concave surfaces in principle. In (Wu & 
Matsuyama, 2003), to overcome this drawback, the Visual Hull is divided into voxels and 
the 3D mesh is estimated by Marching Cube method, finally, high-resolution shape is 
obtained by relocating vertices of 3D mesh appropriately. 
On the contrary, our method reconstructs a 3D point cloud using depth images obtained 
from several viewpoints by the stereo method. In general, reconstructing the 3D mesh 
model by the stereo method requires the following five processes: (1) taking depth image, 
(2) integration of several depth images, (3) polygonal meshing of a point cloud, (4) 
simplification of meshes, (5) generating texture and mapping it to the 3D mesh. As 
mentioned above, the computational cost of the stereo method is basically high. The feature 
of our method is to treat point cloud with the 3D coordinates and the colour information 
directly without any 3D meshes. So, calculation is reduced drastically because above (3), (4) 
and (5) processes are not required. Moreover, each depth image can be processed separately. 
Thus it can be implemented with simple parallel processing. In (Waschbüsch, et al., 2007), a 
3D imaging system based on the stereo matching method has been proposed for real-time 
application. 
In the stereo method, estimating depth is unstable because of the mismatch of 
corresponding points. The precision of corresponding points depends on lighting condition 
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or complexity of colour, etc. And it is impossible to reconstruct flat colour surface with low 
reflectance and specular reflection. And, many points are required to represent the colour 
information of an object surface precisely because the colour is assigned to each point. And, 
additional process is necessary before rendering point cloud because the overlapping of the 
range images is caused. 

 
Fig. 1. Silhouette Volume Intersection 

3. Client-server system 
 

 
Fig. 2. 3D image transmission system 

3.1 Outline 
Our Client-Server system is illustrated in Fig.2. The server consists of N+1 Personal 
Computers (PCs) and N stereo cameras. The PCs in the server are connected through 
Gigabit switch. We use the commercial stereo cameras [10]. This camera consists of three 
CCD cameras and transfers three RGB colour images at the same time. The maximum frame 
rate is 15 fps. Each stereo camera is allocated to surround the object and connected with a 
PC through IEEE 1394. The PC takes a depth image and encodes it. Thus the entire server 
takes N depth images. The encoded bitstream is transmitted to the remaining PC, which is 
responsible for integration of data, packetization, transmission to the client, and sending out 
a command of taking images to each PC. We call the PC ParentPC. The relative position of 
each stereo camera is calculated by calibration in advance and informed to the client. The 
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resolution mesh data. Our rendering scheme is similar to the method. The client divides 
point cloud obtained from range image into strips, and renders it with triangle strips. 
In certain situations at the modeling stage, it is hard to capture the 3D shape perfectly. 
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Matsuyama, 2003), to overcome this drawback, the Visual Hull is divided into voxels and 
the 3D mesh is estimated by Marching Cube method, finally, high-resolution shape is 
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On the contrary, our method reconstructs a 3D point cloud using depth images obtained 
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model by the stereo method requires the following five processes: (1) taking depth image, 
(2) integration of several depth images, (3) polygonal meshing of a point cloud, (4) 
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mentioned above, the computational cost of the stereo method is basically high. The feature 
of our method is to treat point cloud with the 3D coordinates and the colour information 
directly without any 3D meshes. So, calculation is reduced drastically because above (3), (4) 
and (5) processes are not required. Moreover, each depth image can be processed separately. 
Thus it can be implemented with simple parallel processing. In (Waschbüsch, et al., 2007), a 
3D imaging system based on the stereo matching method has been proposed for real-time 
application. 
In the stereo method, estimating depth is unstable because of the mismatch of 
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or complexity of colour, etc. And it is impossible to reconstruct flat colour surface with low 
reflectance and specular reflection. And, many points are required to represent the colour 
information of an object surface precisely because the colour is assigned to each point. And, 
additional process is necessary before rendering point cloud because the overlapping of the 
range images is caused. 
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Our Client-Server system is illustrated in Fig.2. The server consists of N+1 Personal 
Computers (PCs) and N stereo cameras. The PCs in the server are connected through 
Gigabit switch. We use the commercial stereo cameras [10]. This camera consists of three 
CCD cameras and transfers three RGB colour images at the same time. The maximum frame 
rate is 15 fps. Each stereo camera is allocated to surround the object and connected with a 
PC through IEEE 1394. The PC takes a depth image and encodes it. Thus the entire server 
takes N depth images. The encoded bitstream is transmitted to the remaining PC, which is 
responsible for integration of data, packetization, transmission to the client, and sending out 
a command of taking images to each PC. We call the PC ParentPC. The relative position of 
each stereo camera is calculated by calibration in advance and informed to the client. The 
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stereo cameras are synchronized with each other by special synchronization equipments. 
ParentPC generates synchronized signal, so each PC can take an image at the same time. 
Hereinafter, we explain the details of the server and the client. 
 

 
 

 
Fig. 3. Processing of depth image for each PC 

3.2 Tasks in server 
Flowchart of tasks in the server is illustrated in Fig.3. ParentPC tells the rest of PCs to take 
colour images. The N PCs does same process in parallel. Here, we explain about the process 
of the PCs. 
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Range Image Acquisition, Extraction of ROI, and Quantization 
Each PC acquires colour images from its connected stereo camera. Each camera has three 
CCD units and can capture three colour images at the same time. All PCs are synchronized 
based on a signal sent from ParentPC. At the second step, range images are generated using 
these colour images by the stereo matching method. In this paper, we do not refer the detail 
of method of acquiring depth image and we use a conventional method. The next step is 
ROI extraction based on background subtraction. Here, a background image is taken 
previously without any object in front of the cameras. This method removes the pixels 
corresponding to the background based on colour and depth values of the obtained images. 
In our case, the ROI is a bounding box including remaining pixels and we only transmit the 
ROIs. Each pixel in ROI is quantized by linear quantization. 
Simplification and Encoding 
For streaming 3D images obtained in real-time, the simplification and the compression of 
the 3D images are essential. In general, a 3D mesh model includes coordinate, colour and 
connectivity information of vertexes. Since this connectivity information must be encoded 
losslessly and it is represented by a set of integers, it makes coding efficiency relatively low. 
Most of conventional 3D mesh simplification methods, for example (Hoppe, 1996) and 
compression methods such as (Khodakovsky et al., 2000) have high computational 
complexity and it can hardly be executed in real-time. 
There exist many compression methods for equally sampled signals and data, such as 
DPCM (Gersho & Grey, 1992) and an integer type orthogonal transformation (Pratt et al., 
1969). These encoding methods can be implemented with low computational complexity 
and can reduce its entropy after quantization by removing correlation with surrounding 
pixels. However since in the range images, some pixels may be blank due to failure in 
finding depth value, the above methods, which basically handles regularly sampled signals, 
cannot be applied directly. Moreover some extra computation is required for the entropy 
coding. Our simplification proposed here is simple. After all the vertices are quantized, one 
first finds the difference to neighbours. And then if the difference is small, completely 
replace the pixel value with it. The method does not need the entropy coding. We explain 
the detail of the algorithm. 
First, the server scans the pixels in ROI of the range image along the horizontal line from 
upper left to lower right. For the depth values and the colour of RGB, we calculate the 
differences between the current pixel and each of four neighbours, the left, and upper left, 
upper, and upper right pixels. And then, if the absolute value of the difference between the 
current value and one of the four pixels is smaller than a threshold, the pixel value is 
replaced with the neighbor’s. Fig. 4 illustrates the example. The left pixel is given priority if 
there were more than one pixel that can be replaced, in order to improve the rendering 
efficiency with triangle strip, the detail of which is explained later. Note that the pixel values 
of four compared neighbors are quantized in advance to enable to decode at the client. Four 
codes are prepared to identify pixels in the neighbourhood. If a pixel is replaced, then one of 
the four codes is allocated to the pixel. After all, the depth and RGB of the pixel is described 
by one code. The simplification procedure is applied with the valid pixels only. So, the valid 
pixels that have only invalid neighbours are not simplified. Fig. 4 (upper right) is the range 
image after the simplification. The arrows show that the pixel values are replaced with other 
neighbours indicated by the arrows. 
As a result, the encoded bit stream is divided into packets and transferred to the decoder. 
The packets are well aligned according to a rule so that the client can determine which range 
images the packets come from. 
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complexity and it can hardly be executed in real-time. 
There exist many compression methods for equally sampled signals and data, such as 
DPCM (Gersho & Grey, 1992) and an integer type orthogonal transformation (Pratt et al., 
1969). These encoding methods can be implemented with low computational complexity 
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replace the pixel value with it. The method does not need the entropy coding. We explain 
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differences between the current pixel and each of four neighbours, the left, and upper left, 
upper, and upper right pixels. And then, if the absolute value of the difference between the 
current value and one of the four pixels is smaller than a threshold, the pixel value is 
replaced with the neighbor’s. Fig. 4 illustrates the example. The left pixel is given priority if 
there were more than one pixel that can be replaced, in order to improve the rendering 
efficiency with triangle strip, the detail of which is explained later. Note that the pixel values 
of four compared neighbors are quantized in advance to enable to decode at the client. Four 
codes are prepared to identify pixels in the neighbourhood. If a pixel is replaced, then one of 
the four codes is allocated to the pixel. After all, the depth and RGB of the pixel is described 
by one code. The simplification procedure is applied with the valid pixels only. So, the valid 
pixels that have only invalid neighbours are not simplified. Fig. 4 (upper right) is the range 
image after the simplification. The arrows show that the pixel values are replaced with other 
neighbours indicated by the arrows. 
As a result, the encoded bit stream is divided into packets and transferred to the decoder. 
The packets are well aligned according to a rule so that the client can determine which range 
images the packets come from. 
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Fig. 4. The range image before (upper left) and after (upper right) the simplification. Current 
pixel (i, j) is compared with its for neighbors (lower left) and if the difference between the 
current pixel value and left pixel is smaller than a threshold, the pixel value is replaced with 
the left (lower right). A special code is allocated to the (i, j) pixel. 

3.3 Tasks in client 
The client receives the bit-stream of the point cloud from ParentPC. The received bit-stream 
consists of the spatial coordinates and colour information of the points. The 3D shape is 
represented by the point based geometry. At this time, overlaps and annoying artefacts are 
caused due to failure of camera calibration or the ROI extraction. In order to remove the 
invalid points, we apply the cylindrical method to the 3D model before rendering. The detail 
is explained below. 
Post Processing 
In the 3D image, annoying artifacts often appears due to overlaps between different range 
images. Fig.13 (a) shows an example of the 3D image with the overlaps. Due to the influence 
of the shadow of the object itself, the annoying artifacts are often left around the boundary 
at the ROI extraction stage. That results in image degradation. Since the 3D point cloud does 
not have connectivity information, it is not straightworward to decide the relationships 
among points. This makes the determination of the unnecessary points more difficult. To 
handle this, we employ a method which projects the vertices of the point cloud onto the 
inner wall of the cylinder. It can treat whole the points in a single 2D plane. Note that the 
cylindrical method is used to determine the unnecessary points, and that does not actually 
transform the coordinates of points for rendering. 
We assume that the 3D object is surrounded by a virtual open cylinder (see Fig.5). The axis 
of the cylinder lies along the principal axis of the object. The cylinder and the object are cut 
into thin horizontal slices. In each slice a 2D point set are mapped from the surface of the 
object surrounded by a circle corresponding to the circumference of the cylinder (see Fig.6 
(a)). In each slice, each point of the 2D point set is mapped on an intersection of a ray and 
the circle. This ray is emitted from a center of the circle and passes through that point. 
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Therefore, a point can be represented by magnitude r and an angle φ based on coordinates x 
and z of that point (see Fig.6 (b)). The values of r and φ are calculated by following simple 
mathematical formula. 

 
(1) 

 
                                   (a)                                                                                             (b) 

Fig. 5. Mapping on the wall of the Cylinder: (a) 3D object with virtual open cylinder. (b) 
Image of mapping on the inner wall of the cylinder. Sampled points in 3D space are 
converted to mapped points in 2D plane. 

 
                                                          (a)                                             (b) 

Fig. 6. Mapping based on angle: (a) One of horizontal slice. 2D point set are surrounded by a 
circle corresponding to circumference of cylinder. (b) Image of mapping based on angle. 
Each point of 2D point set is mapped on intersection of ray and circle. Ray is decided angle 
φ calculated by x and z components of that point. 
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of the cylinder lies along the principal axis of the object. The cylinder and the object are cut 
into thin horizontal slices. In each slice a 2D point set are mapped from the surface of the 
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Therefore, a point can be represented by magnitude r and an angle φ based on coordinates x 
and z of that point (see Fig.6 (b)). The values of r and φ are calculated by following simple 
mathematical formula. 

 
(1) 

 
                                   (a)                                                                                             (b) 

Fig. 5. Mapping on the wall of the Cylinder: (a) 3D object with virtual open cylinder. (b) 
Image of mapping on the inner wall of the cylinder. Sampled points in 3D space are 
converted to mapped points in 2D plane. 

 
                                                          (a)                                             (b) 

Fig. 6. Mapping based on angle: (a) One of horizontal slice. 2D point set are surrounded by a 
circle corresponding to circumference of cylinder. (b) Image of mapping based on angle. 
Each point of 2D point set is mapped on intersection of ray and circle. Ray is decided angle 
φ calculated by x and z components of that point. 
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By repeating this process for all points in a slice, all of 2D point set is projected on the circle. 
When this procedure has been done for all the slices, the entire surface of the object is 
mapped on the inner wall of the cylinder. 
After the mapping process, the cylinder is opened and warped to a plane (Fig.7). Then this 
plane is divided by a regular grid based on the angle φ and the y components. These divided 
small domains are named “Units”. Here, one of the rows corresponds to the slice. If the plane 
has M columns, points stored in the k-th unit have angle φ satisfying the following condition. 

 
(2) 

 
Fig. 7. Unit Plane: Unit Plane warped from the cylinder. This plane is divided by a regular 
grid. These divided small domains are called “Unit”. The units store the mapped points. 

We consider the points assigned to a unit as one segment. We can control quality and speed 
of processing by changing the size of the grid. 
When there are points from more than one camera in a segment, we take it as the overlap. 
Fig.8 shows the image observed from the vertical direction. In Fig.8 (lower left), one unit 
stores the points from only one camera. However in (lower right), the points acquired from 
two cameras are stored in the unit. In this case, one of these surfaces should be removed. 
First, we find a tangent vector of each surface by calculating the differences of each point 
from the same camera. In the case of Fig.9, we have two vectors. These vectors are 
normalized. Secondly, the weighted average of each tangent vector is computed using 
number of points from each camera. Thirdly, the inner products of the average tangent 
vector and view axis of each camera are calculated. In case of Fig.9 (b), we have two inner 
products. Finally, the points coming form a camera with the minimum inner product are 
left, and others are removed (see Fig.9 (c)). 
Rendering 
The client receives only the XYZ coordinates and its colour of each point. Although the 
polygonal representation reconstructs a contiguous surface, computational complexity for 
the triangulation is relatively high. Our method renders the point cloud without 
reconstructing polygonal meshes to enhance the rendering speed. In our method, the 
texturing is not needed, since the colour is provided as attributes of the points. To reduce 
the load of rendering and to make up for the drawback of the stereo method, we adopt the 
strip-based rendering. First, we explain about a simple point-based rendering method using 
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a rectangle primitive. Next, we explain about strip-based rendering using triangle strip as 
primitive, and then we compare the two rendering methods. 
 

 
Fig. 8. (top) Overlap in One Unit: These are images observed from y direction. (lower left) 
One unit stores points that came from only one camera. (lower right) There are points came 
from two cameras. 

 
Fig. 9. Procedure of Unit Process: Blue points come from i-th camera and pink points from  
j-th one. (a) Each tangent vector is acquired. (b) The average of weighted tangent vectors is 
estimated. After that, inner products are calculated. (c) Points came form camera with 
minimum inner product are left. 

1. Point-Based Rendering 
The point-based geometry is proposed for example in (Rusinkiewicz & Levoy, 2000). In our 
implementation, the client renders the received point could with the rectangle (see Fig. 
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10(a)). The client estimates the normal vector using the neighbors. By using the estimation of 
the normal vector and the viewpoint of a user, the size and direction are changed adaptively 
with respect to rotation by the user. Note that although in the conventional point rendering 
method it is possible to control the size of the rectangles and avoid holes and it is efficient 
especially for large scale meshes, in our framework the client avoids the time-consuming 
step and linearly changes the size of the rectangles based on its depth. 
2. Strip-Based Rendering. 
Since high accuracy is not required in geometry and computational complexity in the client 
should be low, we employ the strip-based rendering. The client treats the successive valid 
pixels in the horizontal line as a band and expresses the pixels by a set of the bands (see 
Fig.10(b)). The client renders it with the triangle strip. Since the normal vector of each 
triangle is determined automatically in the steps, we can skip the step of estimating the 
normals. To enhance the efficiency of rendering, if the valid pixel is replaced by the left pixel 
in the above simplification algorithm, the pixel is integrated with the left pixel and the pixels 
are rendered by one strip (Fig.10(c)). And, when scanning the range image in the horizontal 
direction, if there are invalid pixels, the client calculate the distance of its left and right valid 
pixels. If the distance is within the threshold, the client fills the blank with its valid pixel. 
The isolated valid point is rendered by a rectangle. For example, if the pixel is Fig.4(upper 
left), the rendering results in the strips shown in Fig.10(d). 
 

 
Fig. 10. (a) Rectangle as primitive. The number of vertices is four times as many as the 
number of the points. (b)Triangle strip as primitive. The number of vertices is about two 
times as many as the number of the points. (c) Example of merged triangle strip. (d) The 
example of rendering Fig.4 (upper left). 
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4. Experimental results 
The server consists of five PCs (Pentium IV) and four stereo cameras. We use the 
commercial stereo cameras (PointGrey). The resolution of colour image and depth image 
obtained from the camera is 240 x 320. The PCs in the server are connected through Gigabit 
switch. The server acquires four range images and ParantPC integrates them and transmits 
them to the client. For the client PC, we tested several types such as high end PCs to laptops. 
The client is located in the same LAN via a router. The example of a man’s upper body 
obtained under these experiment conditions is presented in Fig.11. The system worked at 
about 9-12fps(frame per sec). 
 

 
Fig. 11. 3D Viewer 

Fig.12 shows the comparison of the point based and strip based rendering. In this 
experiment, the total data size of 100 frames of the human face was 3.86M bytes without the 
proposed simplification. On the contrary, our method achieves 1.46M bytes. The data is 
decreased by 38 %. The average rendering time for one frame was 0.036 sec by the rectangle 
rendering. On the contrary, with the triangle strip, the rendering time was 0.022 sec. It can 
be seen from the Fig. 12 that our method performs well without much degradation. 
Fig.13 (a) illustrates the 3D model reconstructed simply by integrating four range images. 
On the other hand, Fig.13 (b) is the model obtained by the integration with our cylindrical 
method. Blue points from right and left range images are the annoying artifacts on the front 
of the face in (a). However in (b), these annoying artifacts are removed and the facial 
expression is finer than (a). The validity of cylindrical method is shown in Fig.14. These 
pictures are horizontal slice of the face. Each line represents the surface acquired from a 
camera. Fig.14 (b) is the result by our cylindrical method and (a) is the result of the 
conventional method. One can see that some overlaps are removed by the cylindrical 
method in (b). By applying the cylindrical method, the number of points is reduced by 25%. 
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The computation time to apply the cylindrical method was less than 0.1 second and it did 
not almost affect the sequences visually. 
 

 
Fig. 12. Rendering example of rectangle as primitive (left). Rendering example of triangle 
strip as primitive using proposal simplification (right). 
 

 
(a) 

 
(a) 

Fig. 13. Result of Cylindrical Method: These show one frame of the 3D sequence. (a) 
Integrated four range images. (b) After applying the cylindrical method. Annoying artifacts 
on the front of face are removed in (b). 
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Fig. 14. Horizontal Cut Surface of Nose: (left) without the cylindrical method. Overlapping 
area cannot be in sight like blue line. However overlaps are removed especially front side of 
face in (right). 

5. Conclusion 
In this paper, we introduced a real-time 3D imaging system by handling the 3D shape and 
the colour information as Point Cloud. It is an advantage of our system that it enhances the 
transmission efficiency by eliminating the connectivity information. Moreover, by applying 
the cylindrical method to the real-time 3D imaging system, the overlaps and the annoying 
artifacts are removed efficiently in real-time. 
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1. Introduction 
One of the most common issues in developing intelligent vehicle concepts is self localization 
and autonomous navigation. In this chapter, we are particularly interested in global 
localization of urban autonomous vehicles. To get a global position of a vehicle navigating 
in urban areas, localization systems must be adapted to different kinds of environments in 
presence of dynamics objects. In order to achieve global localization, there are two 
approaches. The first one is based on sensors data fusion. The second approach uses 
knowledge on the environment of navigation.  
In most data fusion based methods, the environment is represented using a GIS (Geographic 
Information System). The environment representation is augmented by introducing 
structured elements from sensors. In [1], Chen proposes a method that estimates the camera 
movements using edge matching. The initial position is given by fusing data coming from a 
D-GPS (Differential Global Positioning System), a GIS and other sensors. Kais and al. [2] 
propose to fuse vertical features recorded into a GIS with images provided by an embedded 
camera. The principle is to construct regions around vertical features in order to compute 
the position and the orientation of the camera. The localization process is achieved by 
determining correspondences between virtual and real features.  
The environment knowledge based approach is interesting when sensors unreliability is 
considered. In spite of GPS sensors can be accurate (for example by using RTK-GPS systems) 
GPS information is not adapted into dense urban areas. Indeed, because of the difficulty to 
detect satellites (due to the presence of buildings) and reflection of GPS signals, the GPS 
system may lose in his accuracy and may even provide false positions. This situation is 
known by the urban cayonning problem [3]. 
In order to discard this problem, the environment knowledge approach consists in creating 
an image key database. The camera position and orientation are computed for each image 
referenced during the learning phase. In [4], Katsura et al. propose a method, which adds a 
region analysis to distinguish different region types. The aim is to process specifically each 
region that evolves differently through the time. Based also on image key learning sequence, 
the method proposed by Royer and al. [5] computes 3D specific points. Bundle adjustments 
[6] are used in order to increase the model precision. For each movement of the camera, the 
position is determined using the closest 3D features. 
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Between these two main approaches, there are some hybrid localization methods. For 
vehicle navigation in urban areas, Gerogiev and Allen propose a technique, which consists 
in fusing data coming from several sensors [7]. When the sensors information is unavailable, 
a camera makes a visual servoing between the images provided by the camera and the 
images coming from a geo-referenced image database.  
In this chapter, the presented approach is based on image key learning sequence. The aim is 
to achieve self localization using only stereoscopic information. As Royer and al. in [5], the 
proposed stereovision based method constructs a 3D model. In the approach, the 3D model 
is built from 3D features reconstructed using SIFT based stereo matching and tracked using 
temporal matching. 
This chapter is organized as follows. Section 2 presents the concept and fundament to 
construct a 3D model based on image SIFT features. Section 3 explains how to localize a 
camera using a database containing 3D points, reconstructed from the matching of SIFT 
features. Before concluding, results in various conditions are presented in section 4. 

2. Model construction 
In order to compute the global position of a camera, one needs to construct a 3D model 
composed by features that can be matched under image changes like translation, rotation 
and scaling. In external conditions like in urban environments, it is important that image 
features are partially invariant to illumination changes. Most of the existing approaches use 
Harris corner detector [8], which is sensitive to the scale of images. As a consequence, 
building a map requires a lot of images and a considerable number of points extracted in 
each image. Moreover, in the localization process, the vehicle exploration must be close to 
the learned trajectory.   
In the proposed method, Scale Invariant Feature Transform (SIFT) features are used. 
Introduced by Lowe [9], SIFT features have detailed characteristics that make them suitable 
landmarks for robust Self Localization And Mapping (SLAM), because when mobile robots 
are moving in an environment, landmarks are observed from different angles, distances and 
under different illumination changes. Each reconstruction or localization step is based on 
the matching process of SIFT features. 
Figure 1 shows an example of SIFT features extracted from the left and right images taken 
by a virtual simulated stereoscopic sensor with two cameras. The resolution of the images is 
640x480. In this example, eight levels of scale are used to extract SIFT features. There are 
about 2000 features in each image. This quantity of features is generally sufficient for the 
considered task, but if desired, the number can be increased by increasing the scales and the 
image resolution. 
At each reconstruction step-frame, the SIFT features are extracted from the two rectified stereo 
images and are then matched. The images are rectified using the Zhang method for stereo 
camera calibration [10]. Matched SIFT features are stable and serve as better landmarks for 
detecting and tracking the objects observed in the environment. The stereo matching of the 
SIFT features provides 3D points that serve to construct the 3D model. 

2.1 Stereo matching  
Considering the stereovision sensor, the right camera serves as the reference camera. The 
two cameras are separated by a distance E=12cm and have the same focal length f (see 
Figure 2). The stereo matching of the SIFT features uses the following constraints: 
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Fig. 1. SIFT features extraction 
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Fig. 2. Stereoscopic configuration 

Disparity constraint. Considering a candidate match composed with a left feature and a 
right feature, the difference between the horizontal image coordinates of the features must 
be within a predefined disparity range.  
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proposed stereovision based method constructs a 3D model. In the approach, the 3D model 
is built from 3D features reconstructed using SIFT based stereo matching and tracked using 
temporal matching. 
This chapter is organized as follows. Section 2 presents the concept and fundament to 
construct a 3D model based on image SIFT features. Section 3 explains how to localize a 
camera using a database containing 3D points, reconstructed from the matching of SIFT 
features. Before concluding, results in various conditions are presented in section 4. 

2. Model construction 
In order to compute the global position of a camera, one needs to construct a 3D model 
composed by features that can be matched under image changes like translation, rotation 
and scaling. In external conditions like in urban environments, it is important that image 
features are partially invariant to illumination changes. Most of the existing approaches use 
Harris corner detector [8], which is sensitive to the scale of images. As a consequence, 
building a map requires a lot of images and a considerable number of points extracted in 
each image. Moreover, in the localization process, the vehicle exploration must be close to 
the learned trajectory.   
In the proposed method, Scale Invariant Feature Transform (SIFT) features are used. 
Introduced by Lowe [9], SIFT features have detailed characteristics that make them suitable 
landmarks for robust Self Localization And Mapping (SLAM), because when mobile robots 
are moving in an environment, landmarks are observed from different angles, distances and 
under different illumination changes. Each reconstruction or localization step is based on 
the matching process of SIFT features. 
Figure 1 shows an example of SIFT features extracted from the left and right images taken 
by a virtual simulated stereoscopic sensor with two cameras. The resolution of the images is 
640x480. In this example, eight levels of scale are used to extract SIFT features. There are 
about 2000 features in each image. This quantity of features is generally sufficient for the 
considered task, but if desired, the number can be increased by increasing the scales and the 
image resolution. 
At each reconstruction step-frame, the SIFT features are extracted from the two rectified stereo 
images and are then matched. The images are rectified using the Zhang method for stereo 
camera calibration [10]. Matched SIFT features are stable and serve as better landmarks for 
detecting and tracking the objects observed in the environment. The stereo matching of the 
SIFT features provides 3D points that serve to construct the 3D model. 

2.1 Stereo matching  
Considering the stereovision sensor, the right camera serves as the reference camera. The 
two cameras are separated by a distance E=12cm and have the same focal length f (see 
Figure 2). The stereo matching of the SIFT features uses the following constraints: 
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Fig. 1. SIFT features extraction 
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Fig. 2. Stereoscopic configuration 

Disparity constraint. Considering a candidate match composed with a left feature and a 
right feature, the difference between the horizontal image coordinates of the features must 
be within a predefined disparity range.  
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Epipolar constraint. The vertical image coordinates of the left and right features must be 
within 1 pixel of each other, as the images are aligned and rectified. 
Orientation constraint. The difference of the orientations of the left and right features must 
be within a predefined range. 
Scale constraint. One scale must be at most one level higher or lower than the other. Adjacent 
scales differ by a factor of 1.5 in the proposed SIFT extraction procedure. 
Uniqueness constraint. If a feature has more than one match satisfying the above 
constraints, the matches are considered as ambiguous and are discarded so that the 
resulting matches are more consistent and reliable. 
After matching the SIFT features, a list of matched couples is obtained. For each couple, an 
image horizontal disparity is computed and then a 3D point is reconstructed by considering 
the intrinsic and extrinsic parameters of the cameras. The 3D point has its coordinates in a 
reference associated to the stereovision sensor. All the reconstructed 3D points are added to 
the database after computing their global position (see section 3). In order to use them as 
landmarks, the orientations and scales of the corresponding SIFT features are set 
respectively to the average of the orientations and the scales computed in the left and right 
images. 

2.2 Model computation  
Let’s define an axis-aligned stereoscope S where the left and the right cameras are defined 
respectively by their optical centers C and C’, with the same focal length f, and separated 

with a distance E (cf. figure 2). Let { }, ,x y zW W W W=  be a 3D point from the world 

coordinate system, { },x yq q q= and { }' ' ',x yq q q=  are the projections of the point W into 

the left and right cameras, respectively. Using the stereo triangulation technique, the point 
W can be computed given the image projections q and q’ and knowing the intrinsic and 
extrinsic parameters: 
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Figure 3 shows the projection on the left and right images of the reconstructed 3D points 
after the stereo matching process. 
 

 
Fig. 3. Projection of the reconstructed 3D points on the left and right images  
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2.3 3D model construction  
The global 3D construction is based on an incremental method. At the beginning, the first 
stereoscopic acquisition is used to initialize the 3D reconstruction process.  
Let’s 1 2, NC C C… , be the camera positions computed respectively from the pose 1 to the 
pose ( )3N N ≥ . The goal is to determine the position 1NC +  of the camera, associated to 
the pose N+1. After image acquisition IN+1 from the unknown position 1NC + , the SIFT 
features are extracted. Let  1

i
Nq +  be the ith extracted SIFT feature from the image IN+1. The 

extracted points are then matched with the SIFT points extracted from the image IN. A list of 
couples of matched points ( )1,i i

N Nq q +  is finally obtained. Note that the point 1
i
Nq +  may 

have any corresponding point in the image IN-1. This means that from one image to the other, 
identified points may disappear and new points may appear. The 3D global position of the 
new points is determined by using a robust construction method described in the next section. 
The main problem of the path reconstruction with temporal matching is that the estimation 
of each point position is based on the previous computed ones. Consequently, the 
computation errors increase throughout the reconstruction process. The bundle adjustment 
process [6] limits the error computation. This process increases the construction precision by 
using multiple views. It consists on a minimization process based on the Levenberg-
Marquardt algorithm [11]. The function ( )1 1, , , ,N M

E Ef C C Q Q… …  to be minimized is 
defined from the extrinsic cameras parameters i

EC  and the 3D points { jQ } extracted from 
stereo 3D reconstruction using multiple views. This function is expressed as follows: 

 ( ) ( ) 21 1

1 1
, , , ,

N M
N M j j

E E i i
i j

f C C Q Q q PQπ
= =

= −∑∑… …  (2) 

Where ( ) 2j j
i iq PQπ−  is the square Euclidian distance between the SIFT point j

iq  and 

the point ( )j
iPQπ , which is the projection of the 3D point jQ  on the camera at the ith 

position, called also the retro-projection of the point jQ . iP  is the projection matrix 

obtained from the extrinsic ( )i
EC  and intrinsic parameters of the camera at the ith position. 

In order to make the algorithm more robust, false matches are removed. The minimization 

process begins by keeping the points satisfying the condition ( ) 2j j
i iq PQπ ε− < , where 

ε  is a constant fixed empirically to 9. The minimization algorithm converges when the 
number of the retro-projection points becomes stable. 
Figure 4 shows an example of an environment 3D model construction. This figure represents 
a model view in two different render types. In the middle of the right sub-image, the 
circular shape represents the vehicle trajectory. The other shapes around the trajectory 
represent the 3D reconstructed points, corresponding to the environment 3D model. 

3. Localization 
After completing the 3D model construction of the environment of navigation, the camera 
position can be computed by matching the SIFT features extracted from the acquired images  
 



 Stereo Vision 

 

290 

Epipolar constraint. The vertical image coordinates of the left and right features must be 
within 1 pixel of each other, as the images are aligned and rectified. 
Orientation constraint. The difference of the orientations of the left and right features must 
be within a predefined range. 
Scale constraint. One scale must be at most one level higher or lower than the other. Adjacent 
scales differ by a factor of 1.5 in the proposed SIFT extraction procedure. 
Uniqueness constraint. If a feature has more than one match satisfying the above 
constraints, the matches are considered as ambiguous and are discarded so that the 
resulting matches are more consistent and reliable. 
After matching the SIFT features, a list of matched couples is obtained. For each couple, an 
image horizontal disparity is computed and then a 3D point is reconstructed by considering 
the intrinsic and extrinsic parameters of the cameras. The 3D point has its coordinates in a 
reference associated to the stereovision sensor. All the reconstructed 3D points are added to 
the database after computing their global position (see section 3). In order to use them as 
landmarks, the orientations and scales of the corresponding SIFT features are set 
respectively to the average of the orientations and the scales computed in the left and right 
images. 

2.2 Model computation  
Let’s define an axis-aligned stereoscope S where the left and the right cameras are defined 
respectively by their optical centers C and C’, with the same focal length f, and separated 

with a distance E (cf. figure 2). Let { }, ,x y zW W W W=  be a 3D point from the world 

coordinate system, { },x yq q q= and { }' ' ',x yq q q=  are the projections of the point W into 

the left and right cameras, respectively. Using the stereo triangulation technique, the point 
W can be computed given the image projections q and q’ and knowing the intrinsic and 
extrinsic parameters: 

 
'

'

** *, ,z yz x
x y z

x x

W qW q f EW W W
f f q q

= = =
−

 (1) 

Figure 3 shows the projection on the left and right images of the reconstructed 3D points 
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Fig. 4. Environment 3D model construction 

with those stored in the database, corresponding to the learned trajectory. When the initial 
camera position is unknown, the extracted SIFT features are matched with all features from 
the database. This starting procedure necessitates a considerable computation time. 
However, when started, the localization process uses the last computed position in order to 
compute the current one. This allows filtering the features from the database in order to 
consider only those corresponding to the current view. This filtering stage reduces the 
complexity computation by ignoring more than 90% of the features during the matching 
procedure, allowing thus real time localization. 
Let {Qi}, i = 0…n, be the 3D points extracted from the stereoscopic sensor defined as C (see 
figure 5). The points Qi are expressed into the stereoscopic coordinate system. In order to 
compute the global position of the stereoscopic sensor, the SIFT matching process is used to 
associate to each point Qi a point  W i  of the environment 3D model. 
 

 
Fig. 5. Localization scheme 

The Euclidian distances between the stereoscopic sensor and the points Qi are computed and 
defined as dj. The relation giving the camera position into the global coordinate system is 
expressed as follows: 

0d

C

1d 2d

3d

0Q 1Q 2Q

3Q

A Self Navigation Technique using Stereovision Analysis 

 

293 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 20 0 0 2
0

2 2 2 2

2 2 2 2

x x y y z z

i i i
x x y y z z i

n n n
x x y y z z n

C Q C Q C Q d

C Q C Q C Q d

C Q C Q C Q d

⎧ − + − + − =
⎪
⎪
⎪⎪ − + − + − =⎨
⎪
⎪
⎪ − + − + − =⎪⎩

 (3) 

In order to resolve the equations system (3), it is necessary to minimize the equation (4) 
using the Newton-Gauss algorithm. 
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0
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S rβ
=

=∑  (4) 

where 2 ( )i i ir d f β= − , fi (β) = (Cx- i
xQ )2+(Cy- i

yQ )2 + (Cz- i
zQ )2  and β= (Cx,Cy,Cz). 

The Newton-Gauss algorithm is particularly interesting when it starts with an initial value 
of β closed to the desired solution. This initialization step can be achieved using different 
techniques like Kalman filtering, fusion from several sensors like odometer or simply using 
the previous position. The minimization process can be expressed as follows: 

 ( ) 11 T TJ J Jk k rβ β
−+ = +  (5) 

where J  is the Jacobian matrix of f (β): 
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r and f(β) are respectively the vectors composed with ri and fi(β) (i=1…n) 
In addition, it is possible to increase the localization robustness by using the RANSAC 
technique [12]. This technique consists first in choosing randomly three points Q0, Q1 and Q2 
from the 3D reconstructed points, provided by the stereo matching of the SIFT features. 
Using these chosen points, the global position is then computed. These two steps are 
repeated until convergence, i.e., when the current calculation result is close to the previous 
one. Taking into account the RANSAC scheme, equation (3) (with n=4) can be rewritten as:  

 2
1 2 3 0t H t H H⋅ + ⋅ + =  (7) 

This equation has two solutions t1, t2: 
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The camera (left or right) position estimated from equation (8) is considered to compute the 
retro-projection (see section 2.3) of each point Qi. A retro-projection error can be thus 
computed for each point Qi. If the error is less than 2 pixels, then the point Qi associated to 
this error is considered as an inlier point with respect to the RANSAC procedure. The final 
estimation of the camera position is then computed using equation (3) and by considering 
only the inliers.       

4. Experimental results 
The proposed global localization method is tested and evaluated considering different 
environment conditions (cf. figure 6). The tests are achieved using a specific software 
simulation platform, which allows to generate 3D virtual environments and to construct 
mobile vehicles equipped with different video sensors. The evaluation consists to compare 
the real trajectory and the estimated one, (during the self global localization process). This 
comparison can be achieved by computing the deviation between the two trajectories. Recall 
that the estimated trajectory is based on the learned one, which corresponds to the 
constructed environment 3D model. 
To construct the environment 3D model, the learning process is realized using a stereo 
sequence of 80 couples. The constructed model is composed with 9452 3D points, which 
represents a circular trajectory of about 142.42 meters (see figure 4).  
Graphs 1–4 represent the evolution of the error (in meters) between the real and estimated 
trajectories in different environment conditions. The error represents the distance between 
the estimated camera position and the closest point of the real trajectory. 
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Fig. 6. upper left image: with normal illumination condition; upper right image: with dark 
illumination; lower left image: with high illumination; lower right image: with presence of 
objects in the environment 
 

 
Graph 1. Error (in meter) in normal illumination conditions 

The graph 1 shows that the error is less than 10 cm. Compared to classic GPS systems, the 
proposed localization process is more reliable. 
Most global localization techniques based on feature extraction are often sensitive to the 
environment illumination problem [13]. Graphs 2 and 3 show respectively the error 
obtained by the proposed method in dark and high illumination conditions. The localization 
results remain accurate. The pose of the camera is estimated with a maximum error of 15 
cm. This performance is due principally to the using of the SIFT feature extractor, which is 
not considerably influenced by the illumination changes, and, as a consequence, the SIFT 
matching process provide enough correct matched points to get an efficient result. 
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trajectories in different environment conditions. The error represents the distance between 
the estimated camera position and the closest point of the real trajectory. 
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Fig. 6. upper left image: with normal illumination condition; upper right image: with dark 
illumination; lower left image: with high illumination; lower right image: with presence of 
objects in the environment 
 

 
Graph 1. Error (in meter) in normal illumination conditions 

The graph 1 shows that the error is less than 10 cm. Compared to classic GPS systems, the 
proposed localization process is more reliable. 
Most global localization techniques based on feature extraction are often sensitive to the 
environment illumination problem [13]. Graphs 2 and 3 show respectively the error 
obtained by the proposed method in dark and high illumination conditions. The localization 
results remain accurate. The pose of the camera is estimated with a maximum error of 15 
cm. This performance is due principally to the using of the SIFT feature extractor, which is 
not considerably influenced by the illumination changes, and, as a consequence, the SIFT 
matching process provide enough correct matched points to get an efficient result. 
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Graph 2. Error (in meter) in dark illumination conditions 
 

 
 
Graph 3. Error (in meter) in high illumination conditions 
 

 
 
Graph 4. Error (in meter) in the case of presence of objects near to the learned trajectory 

The last test consists in changing statically the learned environment by adding objects near 
to the trajectory, with normal illumination conditions. The error evolution shown in the 
graph 4 is close to the one associated to the case without presence of objects near to the 
learned trajectory (see graph 1). The presence of objects in the navigation environment 
decreases the number of matched SIFT features. This does not influence the precision of 
localization, while the illumination conditions remain unchanged. Indeed, when graphs 1 
and 4 are compared, one can see that, globally, the precision is approximately identical.   
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5. Conclusion 
This chapter proposes a robust method to achieve global localization. This method is based 
on a learning process, which consists to construct an environment 3D model from spatial 
and temporal matching of the SIFT features. Having the environment 3D model, the 
localization step is performed by searching correspondences between 3D reconstructed 
points and the 3D points belonging to the 3D model throughout the utilization of the SIFT 
features. The reliability of the proposed method is improved by using the RANSAC 
technique. 
The proposed method is tested and evaluated in different environment conditions, using a 
software simulation platform. The tests show that the method is robust and provides 
reliable results. In deed, the error between the estimated and the real trajectories is less than 
10 cm in normal illumination conditions. Thanks to the SIFT extractor, the maximum error 
does not exceed 15 cm, when considering illumination changes.        
In terms of computation time, the localization process runs at 1.2 Hz for images with a 
resolution of 640x480 images, using a PC machine with a Core Duo running at 2.2 GHz. The 
SIFT extraction procedure consumes about 95% of the processing time. This is due to the 
high number of scales considered during the SIFT extraction. More tests are in progress in 
order to reduce the number of the SIFT points without loss of precision. Indeed, a relation 
can be established between the number of SIFT points, the processing time and the desired 
global precision. 
Thanks to the using of stereovision and SIFT extractor, the proposed localization method is 
more interesting in terms of computation time and reliability. The work is in progress to 
compare the method with other ones using simulation and evaluation in real conditions 
through an experimental automated vehicle platform.   

6. References 
T. Chen. "Development of a vision-based positioning system for high density area". In Asian 

Conference on Remote Sensing (ACRS’99), Hong Kong, China, Nov 22-25 1999 
M. Kais, S. Morin, A. de la Fortelle, and C. Laugier. "Geometrical model to drive vision systems 

with error propagation". In 8th International Conference on Control, Automation, 
Robotics and Vision (ICARCV’04), Kunming, China, Dec. 3-9 2004.   

Cui, Sheyhi. "Autonomous vehicle positioning with GPS in urban canyon environment". IEEE 
Transaction on Robotics and Automation, 2003. Monocular Vision for Mobile Robot 
Localization and Autonomous Navigation,  

H. Katsura, J. Miura, M. Hild, and Y. Shirai. "A view-based outdoor navigation using object 
recognition robust to changes of weather and seasons". In IEEE RSJ/International 
conference on Intelligent Robot and System (IROS’03), pages 2974-2979, Las Vegas, 
Nev., USA, Oct. 27-31 2003. 

E Royer, M Lhuilier, M. Dhome, and T. Chateau. "Towards an alternative gps sensor in dense 
urban environment from visual memory". In 15th British Machine Vision Conference 
(BMVC’04), London, U.K., Sept. 7-9 2004. 

Bill Triggs Philip F.Lauchian  Richard I. Hartley and Andrew W. Fitzgibbon, “Bundle 
Adjustment a Modern Synthesis”, "Vision Algorithms: Theory and Practice"  vol. 1883, 
pp. 298—372. Springer Verlag, LNCS (2000) 



 Stereo Vision 

 

296 

 
 
Graph 2. Error (in meter) in dark illumination conditions 
 

 
 
Graph 3. Error (in meter) in high illumination conditions 
 

 
 
Graph 4. Error (in meter) in the case of presence of objects near to the learned trajectory 

The last test consists in changing statically the learned environment by adding objects near 
to the trajectory, with normal illumination conditions. The error evolution shown in the 
graph 4 is close to the one associated to the case without presence of objects near to the 
learned trajectory (see graph 1). The presence of objects in the navigation environment 
decreases the number of matched SIFT features. This does not influence the precision of 
localization, while the illumination conditions remain unchanged. Indeed, when graphs 1 
and 4 are compared, one can see that, globally, the precision is approximately identical.   

A Self Navigation Technique using Stereovision Analysis 

 

297 

5. Conclusion 
This chapter proposes a robust method to achieve global localization. This method is based 
on a learning process, which consists to construct an environment 3D model from spatial 
and temporal matching of the SIFT features. Having the environment 3D model, the 
localization step is performed by searching correspondences between 3D reconstructed 
points and the 3D points belonging to the 3D model throughout the utilization of the SIFT 
features. The reliability of the proposed method is improved by using the RANSAC 
technique. 
The proposed method is tested and evaluated in different environment conditions, using a 
software simulation platform. The tests show that the method is robust and provides 
reliable results. In deed, the error between the estimated and the real trajectories is less than 
10 cm in normal illumination conditions. Thanks to the SIFT extractor, the maximum error 
does not exceed 15 cm, when considering illumination changes.        
In terms of computation time, the localization process runs at 1.2 Hz for images with a 
resolution of 640x480 images, using a PC machine with a Core Duo running at 2.2 GHz. The 
SIFT extraction procedure consumes about 95% of the processing time. This is due to the 
high number of scales considered during the SIFT extraction. More tests are in progress in 
order to reduce the number of the SIFT points without loss of precision. Indeed, a relation 
can be established between the number of SIFT points, the processing time and the desired 
global precision. 
Thanks to the using of stereovision and SIFT extractor, the proposed localization method is 
more interesting in terms of computation time and reliability. The work is in progress to 
compare the method with other ones using simulation and evaluation in real conditions 
through an experimental automated vehicle platform.   

6. References 
T. Chen. "Development of a vision-based positioning system for high density area". In Asian 

Conference on Remote Sensing (ACRS’99), Hong Kong, China, Nov 22-25 1999 
M. Kais, S. Morin, A. de la Fortelle, and C. Laugier. "Geometrical model to drive vision systems 

with error propagation". In 8th International Conference on Control, Automation, 
Robotics and Vision (ICARCV’04), Kunming, China, Dec. 3-9 2004.   

Cui, Sheyhi. "Autonomous vehicle positioning with GPS in urban canyon environment". IEEE 
Transaction on Robotics and Automation, 2003. Monocular Vision for Mobile Robot 
Localization and Autonomous Navigation,  

H. Katsura, J. Miura, M. Hild, and Y. Shirai. "A view-based outdoor navigation using object 
recognition robust to changes of weather and seasons". In IEEE RSJ/International 
conference on Intelligent Robot and System (IROS’03), pages 2974-2979, Las Vegas, 
Nev., USA, Oct. 27-31 2003. 

E Royer, M Lhuilier, M. Dhome, and T. Chateau. "Towards an alternative gps sensor in dense 
urban environment from visual memory". In 15th British Machine Vision Conference 
(BMVC’04), London, U.K., Sept. 7-9 2004. 

Bill Triggs Philip F.Lauchian  Richard I. Hartley and Andrew W. Fitzgibbon, “Bundle 
Adjustment a Modern Synthesis”, "Vision Algorithms: Theory and Practice"  vol. 1883, 
pp. 298—372. Springer Verlag, LNCS (2000) 



 Stereo Vision 

 

298 

A. Georgiev and P.K. Allen. "Localization methods for a mobile robot in urban environments". In 
IEEE Transactions on Robotics and Automation (ICRA’04), 2004. 

C. Harris, and M.J. Stephens, "A combined corner and edge detector". In Alvey Vision 
Conference, pages 147-152, 1988. 

David G. Lowe, "Distinctive image features from scale-invariant keypoints", International 
Journal of Computer Vision, 60, 2 (2004), pp. 91-110 

Z. Zhang. "A flexible new technique for camera calibration". IEEE Transactions on Pattern 
Analysis and Machine Intelligence, 22(11):1330-1334, 2000. 

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipies in C. 
Cambridge University Press, 1988. pp. 681-689. 

Martin A. Fischler and Robert C. Bolles. "Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography". Comm. of the 
ACM 24: 381–395 

K. Mikolajczyk and C. Schmid. "A Performance Evaluation of Local Descriptors". IEEE Trans. on 
Pattern Analysis And Machine Intelligence, Vol. 27, No. 10, Oct. 2005 

18 

Real Time Stereo Image Registration for Planar 
Structure and 3D Sensor Pose Estimation 

Fadi Dornaika1 and Angel D. Sappa2 

1Institut Géographique National, 2 avenue Pasteur, 94165 Saint-Mandé, 
2 Computer Vision Center, UAB, 08193 Bellaterra, Barcelona,  

1France, 
2Spain 

1. Introduction 
In recent years, several techniques to on-board vision pose estimation have been proposed 
(Zhu et al., 1998; Labayrade & Aubert, 2003;  Liu & Fujimura, 2004; Stein et al., 2000; Suzuki & 
Kanade, 1999). Vision system pose estimation is required for any advanced driver assistance 
application. The real-time estimation of on-board vision system pose-position and orientation- 
is a challenging task since i) the sensor undergoes motions due to the vehicle dynamics and the 
road imperfections, and ii) the viewed scene is unknown and continuously changing. 
Of particular interest is the estimation of on-board camera's position and orientation related 
to the 3D road plane. Note that since the 3D plane parameters are expressed in the camera 
coordinate system, the camera's position and orientation are equivalent to the 3D plane 
parameters. Algorithms for fast road plane estimation are very useful for driver assistance 
applications as well as for augmented reality applications. The ability to use continuously 
updated plane parameters (camera pose) will considerably make the tasks of obstacle 
detection more efficient (Viola et al., 2005; Sun et al., 2006; Toulminet et al., 2006). However, 
dealing with an urban scenario is more diffcult than dealing with highways scenario since 
the prior knowledge as well as visual features are not always available in these scenes 
(Franke et al., 1999). 
In general, monocular vision systems avoid problems related to 3D Euclidean geometry by 
using the prior knowledge of the environment as an extra source of information. Although 
prior knowledge has been extensively used to tackle the driver assistance problem, it may 
lead to wrong results. Hence, considering a constant camera's position and orientation is not 
a valid assumption to be used in urban scenarios, since both of them are easily affected by 
road imperfections or artifacts (e.g., rough road, speed bumpers), car's accelerations, 
uphill/downhill driving, among others. 
The use of prior knowledge has also been considered by some stereo vision based 
techniques to simplify the problem and to speed up the whole processing by reducing the 
amount of information to be handled (Bertozzi & Broggi, 1998; Bertozzi et al.  2003; 
Nedevschi et al., 2006 ). In the literature, many application-oriented stereo systems have 
been proposed. For instance, the edge based v-disparity approach proposed in (Labayrade et 
al., 2002), for an automatic estimation of horizon lines and later on used for applications 
such as obstacle or pedestrian detection (e.g., (Bertozzi et al., 2005; Labayrade & Aubert, 
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2003)), only computes 3D information over local maxima of the image gradient. A sparse 
disparity map is computed in order to obtain a real time performance. Recently, this v-
disparity approach has been extended to a u-v-disparity concept in (Hu & Uchimura, 2005). 
In this work, dense disparity maps are used instead of only relying on edge based disparity 
maps. Working in the disparity space is an interesting idea that is gaining popularity in on-
board stereo vision applications, since planes in the original Euclidean space become 
straight lines in the disparity space. 
In (Sappa et al., 2006), we have proposed an approach for on-line stereo camera pose 
estimation. Although the proposed technique does not require the extraction of visual 
features in the images, it is based on dense depth maps and on the extraction of a dominant 
3D plane that is assumed to be the road plane. This technique has been tested on different 
urban environments. The proposed algorithm took, on average, 350 ms per frame. 
As can be seen, existing works adopt the following main stream. First, features are extracted 
either in the image space (optical flow, edges, ridges, interest points) or in the 3D Euclidean 
space (assuming the 3D data are built online). Second, an estimation technique is then 
invoked in order to recover the unknown parameters. 
In this chapter, we propose a novel paradigm for on-board camera pose tracking trough the 
use of image registration (Romero & Calderon, 2007). Since we do not rely on features, the 
image registration should be featureless. We solve the featureless registration by using two 
optimization techniques: the Differential Evolution algorithm (a stochastic search) and the 
Levenberg-Marquardt algorithm (a directed search). Moreover, we propose two tracking 
schemes based on these optimizations. The advantage of our proposed paradigm is twofold. 
First, it can run in real-time. Second, it provides good results even when the road surface 
does not have reliable features. We stress the fact that our proposed methods are not 
restricted to the estimation of on-board camera pose/roads. Indeed, the proposed methods 
can be used for extracting any planar structures using stereo pairs. 
The rest of the chapter is organized as follows. Section 2 describes the problem we are 
focusing on as well as some backgrounds. Section 3 presents the proposed approach in 
details. Section 4 gives some experimental results and method comparisons. Section 5 
concludes the chapter. 

2 Problem formulation and background 
2.1 Experimental setup 
A commercial stereo vision system (Bumblebee from Point Grey1) was used. It consists of 
two Sony ICX084 color CCDs with 6mm focal length lenses. Bumblebee is a pre-calibrated 
system that does not require in-field calibration. The baseline of the stereo head is 12cm and 
it is connected to the computer by an IEEE-1394 connector. Right and left color images can 
be captured at a resolution of 640×480 pixels and a frame rate near to 30 fps. This vision 
system includes a software able to provide the 3D data. Figure 1(a) shows an illustration of 
the on-board stereo vision system as well as its mounting device. 
The problem we are focusing on can be stated as follows. Given a stream of stereo pairs 
provided by the on-board stereo head we like to recover the parameters of the road plane 
for every captured stereo pair. Since we do not use any feature that is associated with road 
structure, the computed plane parameters will completely define the pose of the on-board 
vision sensor. This pose is represented by the 3D plane parameters, that is, the height d and 
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the plane normal u = (ux, uy, uz)T from which two independent angles can be inferred (see 
Figure 1(b)). In the sequel, the pitch angle will refer to the angle between the camera's 
optical axis and the road plane; and the roll angle will refer to the angle between the camera 
horizontal axis and the road plane (see Figure 1(b)). Due to the reasons mentioned above, 
these parameters are not constant and should be estimated online for every time instant. 
Note that the three angles (pitch, yaw, and roll) associated with the stereo head orientation 
can vary. However, only the pitch and roll angles can be estimated from the 3D plane 
parameters. 
 

  
                                   (a)                                                                           (b) 

Fig. 1. (a) On-board stereo vision sensor. (b) The time-varying road plane parameters d and 
u. θ denotes the pitch angle and ρ the roll angle. 

2.2 Image transfer function 
Before going into the details of the proposed approach, this section will describe the 
geometric relation between road pixels belonging to the same stereo pair⎯the left and right 
images. It is well-known (Faugeras & Luong, 2001) that the image coordinates of the 
projections of 3D points belonging to the same plane onto two different images are related 
by a 2D projective transform having 8 independent parameters-homography. In our setup, the 
right and left images are horizontally rectified2. Let pr(xr, yr) and pl(xl, yl) be the right and left 
projection of an arbitrary 3D point P belonging to the plane (d, ux, uy, uz). In the case of a 
rectified stereo pair where the left and right cameras have the same intrinsic parameters, the 
right and left coordinates of corresponding pixels belonging to the road plane are related by 
the following linear transform (the homography reduces to a linear mapping): 

 (1)

 (2)

where h1, h2, and h3 are function of the intrinsic and extrinsic parameters of the stereo head 
and of the plane parameters. For our setup (rectified images with the same intrinsic 
parameters), those coefficients are given by: 

                                                 
2 The use of non-rectified images will not have any theoretical impact on our developed 
method. However, the image transfer function will be given by a general homography. 
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(5)

 

where b is the baseline of the stereo head,  is the focal length in pixels, and (u0, v0) is the 
image center (principal point). Let w be the 3-vector encapsulating the 3D plane parameters, 
that is,   

 
(6)

Note that the vector w fully describes the current road plane parameters. The problem can 
be stated as follows. Given the current stereo pair estimate the corresponding 3D road plane 
parameters d and u or equivalently the vector w. 

3. Approach 
Since the goal is to estimate the road plane parameters w for every stereo pair (equivalently 
the 3D pose of the stereo head), the whole process is invoked for every stereo pair. Figure 2 
illustrates the tracking of the stereo head pose over time. The inputs to the algorithm are the 
current stereo pair as well as the estimated road plane parameters associated with the 
previous frame. The algorithm is split into two consecutive stages. First, a rough road region 
segmentation is preformed for the right image. Let R denotes this region⎯a set of pixels. 
Second, recovering the plane parameters from the rawbrightness of a given stereo pair will 
rely on the following fact: if the parameter vector w corresponds to the actual plane 
parameters⎯the distance d and the normal u⎯then the registration error between corresponding 
road pixels in the right and left images over the region R should correspond to a minimum. In our 
work, the registration error is set to the Sum of Squared Differences (SSD) between the right 
image and the corresponding left image computed over the road region R. The registration 
error is given by: 

 
(7)

The corresponding left pixels are computed according to the linear transform given by (1) 
and (2). The computed xl = h1 xr + h2 yr + h3 is a non-integer value. Therefore, the grey-level, 
Il(xl, yl), is set to a linear interpolation of the grey-level of two neighboring pixels⎯the ones 
whose horizontal coordinates bracket the value xl. 
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Fig. 2. The proposed approach consists of two stages: A rough road segmentation followed 
by image registration. 

3.1 Road segmentation 
In this section, we briefly describe how the road region R is detected in the right images. 
Road segmentation is the focus of many research works (Lombardi et al., 2005; Jansen et al., 
2005; Guzman & Parra, 2007; Alvarez et al., 2008). In our study, the sought segmentation 
should meet two requirements: (i) it should be as fast as possible, and (ii) it should be as 
generic as possible (both urban roads and highways). Thus our segmentation scheme will be 
a color-based approach which works on the hue and saturation components. The 
segmentation stage is split into two phases. The first phase is only invoked every T frames 
for updating the color model and for obtaining a real-time performance. The second phase 
exploits the road color consistency over short time. The first phase consists of a classical K-
means algorithm that is applied on the hue and saturation values of the pixels belonging to 
a predefined region of interest (ROI) that is centered at the bottom of the image. The number 
of classes can be between 3 and 5. The cluster having the largest number of pixels will be 
assumed to belong to the road. Once the cluster is identified, the mean and the covariance of 
its color (hue and saturation components) can be easily computed. In the second phase 
(invoked for every frame), by assuming that the color distribution of the detected cluster is 
Gaussian, we can quantify the likelihood of an arbitrary pixel to be a road pixel. Thus, the 
pixels within the ROI are labelled as road pixels if their Mahalanobis distance to the mean is 
below a certain threshold. Figure 3 shows the segmentation results obtained with the 
proposed scheme. Detected road pixels are shown in white within the ROI of two different 
frames. As can be seen, all detected pixels belong to the road plane. 

3.2 Image registration 
The optimal current road parameters are given by: 
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(7)

The corresponding left pixels are computed according to the linear transform given by (1) 
and (2). The computed xl = h1 xr + h2 yr + h3 is a non-integer value. Therefore, the grey-level, 
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whose horizontal coordinates bracket the value xl. 
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Fig. 2. The proposed approach consists of two stages: A rough road segmentation followed 
by image registration. 
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a color-based approach which works on the hue and saturation components. The 
segmentation stage is split into two phases. The first phase is only invoked every T frames 
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means algorithm that is applied on the hue and saturation values of the pixels belonging to 
a predefined region of interest (ROI) that is centered at the bottom of the image. The number 
of classes can be between 3 and 5. The cluster having the largest number of pixels will be 
assumed to belong to the road. Once the cluster is identified, the mean and the covariance of 
its color (hue and saturation components) can be easily computed. In the second phase 
(invoked for every frame), by assuming that the color distribution of the detected cluster is 
Gaussian, we can quantify the likelihood of an arbitrary pixel to be a road pixel. Thus, the 
pixels within the ROI are labelled as road pixels if their Mahalanobis distance to the mean is 
below a certain threshold. Figure 3 shows the segmentation results obtained with the 
proposed scheme. Detected road pixels are shown in white within the ROI of two different 
frames. As can be seen, all detected pixels belong to the road plane. 

3.2 Image registration 
The optimal current road parameters are given by: 
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where e(w) is a non-linear function of the parameters w = (wx,wy,wz)T. In the sequel, we 
describe two minimization techniques: i) the Differential Evolution minimization, and ii) the 
Levenberg-Marquardt minimization. The first one is a stochastic search method and the 
second one is a directed search method. Moreover, we present two tracking schemes. 
 

 
Fig. 3. Rapid road segmentation associated with two frames. 

3.2.1 Differential evolution minimization 
The Differential Evolution algorithm (DE) is a practical approach to global numerical 
optimization that is easy to implement, reliable and fast (Price et al., 2005). We use the DE 
algorithm (Das et al. 2005; Storn & Price, 1997) in order to minimize the error (8). This is 
carried out using generations of solutions-population. The population of the first generation 
is randomly chosen around a rough solution. We point out that even the exact solution for 
the first frame is not known, the search range for the camera height as well as for the plane 
normal can be easily known. For example, in our experiments, the camera height and the 
normal vector are assumed to be around 1m and (0, 1, 0)T , respectively. 
The optimization adopted by the DE algorithm is based on a population of N solution 
candidates wn,i (n = 1, …, N) at iteration (generation) i where each candidate has three 
components. Initially, the solution candidates are randomly generated within the provided 
intervals of the search space. The population improves by generating new solutions 
iteratively for each candidate. 
Calibration. Since the stereo camera is rigidly attached to the car, the differential evolution 
algorithm can also be used as a calibration tool by which the camera pose can be estimated 
off-line. To this end, the car should be at rest and should face a flat road. Whenever the car 
moves, the off-line calibration results can be used as a starting solution for the whole 
tracking process. Note that the calibration process does not need to run in real-time. 

3.2.2 Levenberg-Marquardt minimization 
Minimizing the cost function (8) can also be carried out using the Levenberg-Marquardt 
technique (Fletcher, 1990; Press et al., 1992) ⎯a well-known non-linear minimization 
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technique. One can notice that the Jacobian matrix only depends on the horizontal image 
gradient since the right and left images are rectified. 

3.3 Tracking schemes 
 
 

 
(a) 

 
(b) 

Fig. 4. Parameter tracking using two strategies. (a) The tracking is only based on the 
Differential Evolution search. (b) The tracking is based on the Differential Evolution search 
and on the Levenberg-Marquardt search. 

The unknown parameters (road parameters/camera pose) should be estimated for every 
stereo pair. Thus, we will adopt a tracking strategy in which the estimated parameters  
associated with the previous frame will be handed over to the current frame. 
Since the unknown parameters (road parameters/camera pose) are estimated by two 
optimization techniques, we propose two tracking schemes which are illustrated in Figure 4. 
The first scheme (Figure 4(a)) is only based on the Differential Evolution minimization. In 
other words, the solution for every stereo frame is computed by invoking the whole 
algorithm where the first generation is generated by diffusing the previous solution using a 
normal distribution. A uniform distribution is used for the first stereo frame. 
The second scheme (Figure 4(b)) uses the Differential Evolution minimization for the first 
stereo frame only. It utilizes the Levenberg-Marquardt for the rest of the frames where the 
initial solution for a given frame is provided by the solution  associated with the 
previous frame. 
Although the first scheme might have better convergence properties than the second 
scheme, the latter one is better suited for real-time performance since the Levenberg-
Marquardt algorithm is faster than the Differential Evolution search (the corresponding 
CPU times are illustrated in Section 4.2). In both tracking schemes, the pose parameters 
associated with the first stereo pair are estimated by the DE search. The Differential 
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off-line. To this end, the car should be at rest and should face a flat road. Whenever the car 
moves, the off-line calibration results can be used as a starting solution for the whole 
tracking process. Note that the calibration process does not need to run in real-time. 
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Minimizing the cost function (8) can also be carried out using the Levenberg-Marquardt 
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technique. One can notice that the Jacobian matrix only depends on the horizontal image 
gradient since the right and left images are rectified. 

3.3 Tracking schemes 
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Fig. 4. Parameter tracking using two strategies. (a) The tracking is only based on the 
Differential Evolution search. (b) The tracking is based on the Differential Evolution search 
and on the Levenberg-Marquardt search. 

The unknown parameters (road parameters/camera pose) should be estimated for every 
stereo pair. Thus, we will adopt a tracking strategy in which the estimated parameters  
associated with the previous frame will be handed over to the current frame. 
Since the unknown parameters (road parameters/camera pose) are estimated by two 
optimization techniques, we propose two tracking schemes which are illustrated in Figure 4. 
The first scheme (Figure 4(a)) is only based on the Differential Evolution minimization. In 
other words, the solution for every stereo frame is computed by invoking the whole 
algorithm where the first generation is generated by diffusing the previous solution using a 
normal distribution. A uniform distribution is used for the first stereo frame. 
The second scheme (Figure 4(b)) uses the Differential Evolution minimization for the first 
stereo frame only. It utilizes the Levenberg-Marquardt for the rest of the frames where the 
initial solution for a given frame is provided by the solution  associated with the 
previous frame. 
Although the first scheme might have better convergence properties than the second 
scheme, the latter one is better suited for real-time performance since the Levenberg-
Marquardt algorithm is faster than the Differential Evolution search (the corresponding 
CPU times are illustrated in Section 4.2). In both tracking schemes, the pose parameters 
associated with the first stereo pair are estimated by the DE search. The Differential 
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Evolution algorithm performs a global search whereas the Levenberg-Marquardt performs a 
directed and local search. 

4. Experimental results 
The proposed technique has been tested on different urban environments since they 
correspond to the most challenging scenarios. In this section, we provide results obtained 
with two different videos associated with different urban road structures. Moreover, we 
provide a performance study using synthetic videos with ground-truth data. 

4.1 Tracked road parameters 
The first experiment has been conducted on a sequence corresponding to an uphill driving. 
The stereo pairs are of resolution 320 × 240. Figure 5(a) depicts the estimated camera's height 
as a function of the sequence frames. Figures 5(b) and 5(c) depict the estimated pitch and 
roll angles as a function of the sequence frames, respectively. The dotted curves correspond 
to the first scheme that is based on the Differential Evolution minimization. The solid curves 
correspond to the second scheme which is based on both the Differential Evolution 
algorithm and the Levenberg-Marquardt algorithm. As can be seen, the estimated 
parameters are almost the same for the two proposed schemes. However, as we will show, 
the second scheme is much faster than the first scheme (the stochastic search). 
Differential Evolution convergence. Figure 6 illustrates the behavior of the Differential 
Evolution algorithm associated with the first stereo pair of the above stereo sequence. This 
plot depicts the best registration error (SSD per pixel) obtained by every generation. The 
three curves correspond to three different population sizes. The first generation (iteration 0) 
has been built using a uniform sampling around the solution d = 1m and u = (ux, uy, uz)T = (0, 
1, 0)T. The algorithm converged in five iterations (generations) when the population size was 
30 and in two iterations when the population size was 120. At convergence the solution was 
d = 1.25m and u = (ux, uy, uz)T = (-0.03, 0.99,-0.02)T . Note that even the manually provided 
initial camera's height has 25cm discrepancy from the current solution, the DE algorithm has 
rapidly converged to the actual solution. Also, we have run the Levenberg-Marquardt 
algorithm with the same starting solution but we get at convergence d = 1.09m and u = (ux, 
uy, uz)T = (0.01, 0.99,-0.02)T . 
Horizon line. In the literature, the pose parameters⎯plane parameters⎯can be used to 
compute the horizon line. In our case, since the roll angle is very small, the horizon line can 
be represented by an horizontal line in the image. Once the 3D plane parameters d and u = 
(ux, uy, uz)T are computed, the vertical position of the horizon line will be given by: 

 
(9)

The above formula is derived by projecting a 3D point (0, Yp, Z∞) belonging to the road 
plane and then taking the vertical coordinate  Z∞ is a large depth value. The 
right-hand expression is obtained by using the fact that uy is close to one and Z∞ is very 
large. Figure 7 illustrates the computed horizon line for frames 10 and 199. The whole video 
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illustrating the computed horizon line can be found at www.cvc.uab.es/~asappa/ 
HorizonLine.avi. 
Approach behavior in the presence of road segmentation error. In order to study the 
algorithm behavior in the presence of significant segmentation errors or non-road objects, 
we conducted the following experiment. We used a video sequence corresponding to a flat 
road (see Figure 3). We run the proposed technique described in Section 3 twice. We used 
the second tracking scheme (DE-LM). The first run was a straightforward run. In the second 
run, the right images were corrupted to simulate a significant registration error (road 
segmentation error). To this end we set the vertical half of a set of 20 right images to a fixed 
color. The left images were not modified. 
Figure 8 compares the pose parameters obtained in the two runs. The solid curves were 
obtained with the non corrupted images. The dotted curves were obtained when the right 
images of the same sequence are artificially corrupted. The simulated corruption starts at 
frame 40 and ends at frame 60. The upper part of the Figure illustrates the stereo pair 40. As 
can be seen, the only significant discrepancy has affected the camera height. Moreover, one 
can see that the correct parameters have been recovered once the perturbing factor has 
disappeared. Figure 9 shows the registration error obtained at convergence as a function of 
the sequence frames. As can be seen, the obtained registration error has suddenly increased, 
which can be used for validating the estimated parameters. 
Figure 10(a) illustrates the registration error (8) as a function of the camera's height while the 
orientation is kept fixed. Figure 10(b) illustrates the registration error as a function of the 
camera's pitch angle for four different camera's height. In both figures, the depicted error is 
the SSD per pixel. From the slop of the error function we can see that the camera height will 
not be recovered with the same accuracy as the plane orientation. This will be confirmed in 
the accuracy evaluation section (see Section 4.3). 

4.2 Method comparison 
The second experiment has been conducted on a short sequence of stereo pairs 
corresponding to a typical urban environment (see Figure 3). The stereo pairs are of 
resolution 320 × 240. Here the road is almost flat and the changes in the pose parameters are 
mainly due to the car's accelerations and decelerations. Figures 11(a) and 11(b) depict the 
estimated camera's height and orientation as a function of the sequence frames using two 
different methods. The solid curves correspond to the developed direct approach (DE-LM) 
and the dashed curves correspond to a 3D data based approach (Sappa et al., 2006). This 
approach uses a dense 3D reconstruction followed by a RANSAC-based estimation of the 
dominant 3D plane⎯the road plane. One can see that despite some discrepancies the 
proposed direct method is providing the same behavior of changes. 
On a 3.2 GHz PC, the proposed approach processes one stereo pair in about 20 ms assuming 
that the ROI size is 190 × 90 pixels and the number of the detected road pixels is 11000 pixels 
(3 ms for the fast color-based segmentation and about 17 ms for the Levenberg-Marquardt 
minimization). One can notice that this is much faster than the 3D data based approach, 
which needs 350 ms. Moreover, the Levenberg-Marquardt algorithm is faster than the DE 
algorithm which needs 120 ms assuming that the number of iterations is 5 and the 
population number is 30 (the number of pixels is 11000). Obviously, devoting a very small 
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Evolution algorithm performs a global search whereas the Levenberg-Marquardt performs a 
directed and local search. 

4. Experimental results 
The proposed technique has been tested on different urban environments since they 
correspond to the most challenging scenarios. In this section, we provide results obtained 
with two different videos associated with different urban road structures. Moreover, we 
provide a performance study using synthetic videos with ground-truth data. 

4.1 Tracked road parameters 
The first experiment has been conducted on a sequence corresponding to an uphill driving. 
The stereo pairs are of resolution 320 × 240. Figure 5(a) depicts the estimated camera's height 
as a function of the sequence frames. Figures 5(b) and 5(c) depict the estimated pitch and 
roll angles as a function of the sequence frames, respectively. The dotted curves correspond 
to the first scheme that is based on the Differential Evolution minimization. The solid curves 
correspond to the second scheme which is based on both the Differential Evolution 
algorithm and the Levenberg-Marquardt algorithm. As can be seen, the estimated 
parameters are almost the same for the two proposed schemes. However, as we will show, 
the second scheme is much faster than the first scheme (the stochastic search). 
Differential Evolution convergence. Figure 6 illustrates the behavior of the Differential 
Evolution algorithm associated with the first stereo pair of the above stereo sequence. This 
plot depicts the best registration error (SSD per pixel) obtained by every generation. The 
three curves correspond to three different population sizes. The first generation (iteration 0) 
has been built using a uniform sampling around the solution d = 1m and u = (ux, uy, uz)T = (0, 
1, 0)T. The algorithm converged in five iterations (generations) when the population size was 
30 and in two iterations when the population size was 120. At convergence the solution was 
d = 1.25m and u = (ux, uy, uz)T = (-0.03, 0.99,-0.02)T . Note that even the manually provided 
initial camera's height has 25cm discrepancy from the current solution, the DE algorithm has 
rapidly converged to the actual solution. Also, we have run the Levenberg-Marquardt 
algorithm with the same starting solution but we get at convergence d = 1.09m and u = (ux, 
uy, uz)T = (0.01, 0.99,-0.02)T . 
Horizon line. In the literature, the pose parameters⎯plane parameters⎯can be used to 
compute the horizon line. In our case, since the roll angle is very small, the horizon line can 
be represented by an horizontal line in the image. Once the 3D plane parameters d and u = 
(ux, uy, uz)T are computed, the vertical position of the horizon line will be given by: 

 
(9)

The above formula is derived by projecting a 3D point (0, Yp, Z∞) belonging to the road 
plane and then taking the vertical coordinate  Z∞ is a large depth value. The 
right-hand expression is obtained by using the fact that uy is close to one and Z∞ is very 
large. Figure 7 illustrates the computed horizon line for frames 10 and 199. The whole video 
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illustrating the computed horizon line can be found at www.cvc.uab.es/~asappa/ 
HorizonLine.avi. 
Approach behavior in the presence of road segmentation error. In order to study the 
algorithm behavior in the presence of significant segmentation errors or non-road objects, 
we conducted the following experiment. We used a video sequence corresponding to a flat 
road (see Figure 3). We run the proposed technique described in Section 3 twice. We used 
the second tracking scheme (DE-LM). The first run was a straightforward run. In the second 
run, the right images were corrupted to simulate a significant registration error (road 
segmentation error). To this end we set the vertical half of a set of 20 right images to a fixed 
color. The left images were not modified. 
Figure 8 compares the pose parameters obtained in the two runs. The solid curves were 
obtained with the non corrupted images. The dotted curves were obtained when the right 
images of the same sequence are artificially corrupted. The simulated corruption starts at 
frame 40 and ends at frame 60. The upper part of the Figure illustrates the stereo pair 40. As 
can be seen, the only significant discrepancy has affected the camera height. Moreover, one 
can see that the correct parameters have been recovered once the perturbing factor has 
disappeared. Figure 9 shows the registration error obtained at convergence as a function of 
the sequence frames. As can be seen, the obtained registration error has suddenly increased, 
which can be used for validating the estimated parameters. 
Figure 10(a) illustrates the registration error (8) as a function of the camera's height while the 
orientation is kept fixed. Figure 10(b) illustrates the registration error as a function of the 
camera's pitch angle for four different camera's height. In both figures, the depicted error is 
the SSD per pixel. From the slop of the error function we can see that the camera height will 
not be recovered with the same accuracy as the plane orientation. This will be confirmed in 
the accuracy evaluation section (see Section 4.3). 

4.2 Method comparison 
The second experiment has been conducted on a short sequence of stereo pairs 
corresponding to a typical urban environment (see Figure 3). The stereo pairs are of 
resolution 320 × 240. Here the road is almost flat and the changes in the pose parameters are 
mainly due to the car's accelerations and decelerations. Figures 11(a) and 11(b) depict the 
estimated camera's height and orientation as a function of the sequence frames using two 
different methods. The solid curves correspond to the developed direct approach (DE-LM) 
and the dashed curves correspond to a 3D data based approach (Sappa et al., 2006). This 
approach uses a dense 3D reconstruction followed by a RANSAC-based estimation of the 
dominant 3D plane⎯the road plane. One can see that despite some discrepancies the 
proposed direct method is providing the same behavior of changes. 
On a 3.2 GHz PC, the proposed approach processes one stereo pair in about 20 ms assuming 
that the ROI size is 190 × 90 pixels and the number of the detected road pixels is 11000 pixels 
(3 ms for the fast color-based segmentation and about 17 ms for the Levenberg-Marquardt 
minimization). One can notice that this is much faster than the 3D data based approach, 
which needs 350 ms. Moreover, the Levenberg-Marquardt algorithm is faster than the DE 
algorithm which needs 120 ms assuming that the number of iterations is 5 and the 
population number is 30 (the number of pixels is 11000). Obviously, devoting a very small 
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CPU time for estimating the road parameters/camera pose is advantageous for real-time 
systems since the CPU power can be used for extra tasks such as pedestrian or obstacle 
detection. 

4.3 Accuracy evaluation 
The evaluation of the proposed approach has been carried out on real video sequences, 
including a comparison with a 3D data based approach (Section 4.2). However, it is very 
challenging to get ground-truth data for the on-board camera pose. In this section, we 
propose a simple scheme giving the ground-truth data for the road parameters through the 
use of synthetic stereo sequences. To this end, we use a 1000-frame real video captured by 
the on-board stereo camera. For each stereo pair, we set the distance (camera height) and the 
plane normal⎯the ground-truth 3D plane road parameters. Those ones can be constant for 
the whole sequence or can vary according to a predefined trajectory. In our case, we keep 
them constant for the whole synthesized sequence. Each left image in the original sequence 
is then replaced with a synthesized one by warping the corresponding right image using the 
image transfer function encapsulating the road parameters. The obtained stereo pairs are 
then perturbed by adding Gaussian noise to their grey levels. 
Figure 12 depicts a perturbed stereo pair. The Gaussian noise standard deviation is set to 20. 
Here the grey-level of the images has 256 values. The noise-free left image is synthesized 
using the ground-truth road parameters. The proposed approach is then invoked to estimate 
the road parameters from the noisy stereo pair. The performance can be directly evaluated 
by comparing the estimated parameters with the ground-truth parameters. The camera 
height error is simply the absolute value of the relative error. The orientation error is 
defined by the angle between the direction of the ground-truth normal and the direction of 
the estimated one. 
Figure 13 summarizes the obtained errors associated with the synthetic stereo pairs. Figure 
13(a) depicts the distance error and Figure 13(b) the orientation error. Here one percent error 
corresponds to 1.2cm. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. The solid curves correspond to the global average of errors over the 10000 
stereo pairs and the dashed curves correspond to the maximum error. As can be seen, the 
performance of the method downgrades gracefully with the image noise. Moreover, one can 
appreciate the orientation accuracy. 

4.4 Convergence study 
In order to study the convergence behavior of the two optimization techniques we run the 
following experiment. We used the same synthetic stereo sequence containing 1000 stereo 
frames. The standard deviation of the added image noise is kept fixed to 4. For every stereo 
frame in the sequence the starting solution was shifted from the ground-truth solution by 20 
cm for the camera height and by 10 degrees for the plane normal. This shifted solution is 
used as the starting solution for the Levenberg-Marquardt technique and as the center of the 
first generation for the Differential Evolution technique. Table 1 depicts the average height 
and orientation errors obtained with the LM and DE minimizations. As can be seen, the DE 
minimization has better convergence properties than the LM minimization which essentially 
looks for a local minimum. 
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5. Conclusion 
A featureless technique for real time estimation of on-board stereo head pose has been 
presented. The method adopts a registration scheme that uses images' brightness. The 
advantages of the proposed technique are as follows. First, the technique does need any 
specific visual feature extraction neither in the image domain nor in 3D space. Second, the 
technique is very fast compared to almost all proposed stereo-based techniques. The 
proposed featureless registration is carried out using two optimization techniques: the 
Differential Evolution algorithm (a stochastic search) and the Levenberg-Marquardt 
algorithm (a directed search). 
A good performance has been shown in several scenarios⎯uphill, downhill and flat 
roads. Although it has been tested on urban environments, it could be also useful on 
highways scenarios. Experiments on real and synthetic stereo sequences have shown 
that the accuracy of the orientation is better than the height accuracy, which is 
consistent with all 3D pose algorithms. The provided experiments tend to confirm that 
(i) the Differential Evolution search was crucial for obtaining an accurate parameter 
estimation, and (ii) the Levenberg-Marquardt technique was crucial for obtaining a real-
time tracking. As a consequence, the DE optimization can be used as a complementary 
tool to the LM optimization in the sense that it provides the initialization as well as the 
recovery solution from a tracking discontinuity adopting the Levenberg-Marquardt 
algorithm. 
We stress the fact that our proposed framework is not restricted to the estimation of on-
board camera pose/roads. Indeed, the proposed methods can be used for extracting any 
planar structures using stereo pairs. 
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Table 1. Average camera pose errors. The first column corresponds to the Levenberg-
Marquardt minimization and the second column to the Differential Evolution minimization. 
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CPU time for estimating the road parameters/camera pose is advantageous for real-time 
systems since the CPU power can be used for extra tasks such as pedestrian or obstacle 
detection. 

4.3 Accuracy evaluation 
The evaluation of the proposed approach has been carried out on real video sequences, 
including a comparison with a 3D data based approach (Section 4.2). However, it is very 
challenging to get ground-truth data for the on-board camera pose. In this section, we 
propose a simple scheme giving the ground-truth data for the road parameters through the 
use of synthetic stereo sequences. To this end, we use a 1000-frame real video captured by 
the on-board stereo camera. For each stereo pair, we set the distance (camera height) and the 
plane normal⎯the ground-truth 3D plane road parameters. Those ones can be constant for 
the whole sequence or can vary according to a predefined trajectory. In our case, we keep 
them constant for the whole synthesized sequence. Each left image in the original sequence 
is then replaced with a synthesized one by warping the corresponding right image using the 
image transfer function encapsulating the road parameters. The obtained stereo pairs are 
then perturbed by adding Gaussian noise to their grey levels. 
Figure 12 depicts a perturbed stereo pair. The Gaussian noise standard deviation is set to 20. 
Here the grey-level of the images has 256 values. The noise-free left image is synthesized 
using the ground-truth road parameters. The proposed approach is then invoked to estimate 
the road parameters from the noisy stereo pair. The performance can be directly evaluated 
by comparing the estimated parameters with the ground-truth parameters. The camera 
height error is simply the absolute value of the relative error. The orientation error is 
defined by the angle between the direction of the ground-truth normal and the direction of 
the estimated one. 
Figure 13 summarizes the obtained errors associated with the synthetic stereo pairs. Figure 
13(a) depicts the distance error and Figure 13(b) the orientation error. Here one percent error 
corresponds to 1.2cm. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. The solid curves correspond to the global average of errors over the 10000 
stereo pairs and the dashed curves correspond to the maximum error. As can be seen, the 
performance of the method downgrades gracefully with the image noise. Moreover, one can 
appreciate the orientation accuracy. 

4.4 Convergence study 
In order to study the convergence behavior of the two optimization techniques we run the 
following experiment. We used the same synthetic stereo sequence containing 1000 stereo 
frames. The standard deviation of the added image noise is kept fixed to 4. For every stereo 
frame in the sequence the starting solution was shifted from the ground-truth solution by 20 
cm for the camera height and by 10 degrees for the plane normal. This shifted solution is 
used as the starting solution for the Levenberg-Marquardt technique and as the center of the 
first generation for the Differential Evolution technique. Table 1 depicts the average height 
and orientation errors obtained with the LM and DE minimizations. As can be seen, the DE 
minimization has better convergence properties than the LM minimization which essentially 
looks for a local minimum. 
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5. Conclusion 
A featureless technique for real time estimation of on-board stereo head pose has been 
presented. The method adopts a registration scheme that uses images' brightness. The 
advantages of the proposed technique are as follows. First, the technique does need any 
specific visual feature extraction neither in the image domain nor in 3D space. Second, the 
technique is very fast compared to almost all proposed stereo-based techniques. The 
proposed featureless registration is carried out using two optimization techniques: the 
Differential Evolution algorithm (a stochastic search) and the Levenberg-Marquardt 
algorithm (a directed search). 
A good performance has been shown in several scenarios⎯uphill, downhill and flat 
roads. Although it has been tested on urban environments, it could be also useful on 
highways scenarios. Experiments on real and synthetic stereo sequences have shown 
that the accuracy of the orientation is better than the height accuracy, which is 
consistent with all 3D pose algorithms. The provided experiments tend to confirm that 
(i) the Differential Evolution search was crucial for obtaining an accurate parameter 
estimation, and (ii) the Levenberg-Marquardt technique was crucial for obtaining a real-
time tracking. As a consequence, the DE optimization can be used as a complementary 
tool to the LM optimization in the sense that it provides the initialization as well as the 
recovery solution from a tracking discontinuity adopting the Levenberg-Marquardt 
algorithm. 
We stress the fact that our proposed framework is not restricted to the estimation of on-
board camera pose/roads. Indeed, the proposed methods can be used for extracting any 
planar structures using stereo pairs. 
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Table 1. Average camera pose errors. The first column corresponds to the Levenberg-
Marquardt minimization and the second column to the Differential Evolution minimization. 
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Fig. 5. Camera's height and orientation computed by the proposed tracking schemes. 
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Fig. 6. The evolution of the best registration error obtained by the Differential Evolution 
algorithm associated with the first stereo pair. The algorithm has converged in 5 iterations 
(generations) when the population size was 30 and in two iterations when the population 
size was 120. 

 

 

 
 

 

Fig. 7. The estimated horizon line associated with frames 10 and 199. The sequence 
corresponds to an uphill driving. 
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Fig. 7. The estimated horizon line associated with frames 10 and 199. The sequence 
corresponds to an uphill driving. 
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Fig. 8. The camera pose parameters in the presence of a significant corruption (road 
segmentation errors). The solid curves are obtained with the non corrupted images. The 
dotted curves are obtained when 20 frames of right images of the same sequence are 
artificially corrupted. The corruption is simulated by setting the vertical half of the right 
images to a fixed color. This corruption starts at frame 40 and ends at frame 60. 
 

 
Fig. 9. The registration error obtained at convergence as a function of the sequence frame. 
The second tracking scheme is used. 

Real Time Stereo Image Registration for Planar Structure and 3D Sensor Pose Estimation 

 

313 

 
                                         (a)                                                                           (b) 

Fig. 10. The registration error as a function of the camera pose parameters. (a) Depicts the 
error as a function of the camera height with a fixed orientation. (b) Depicts the error as a 
function of the camera's pitch angle associated with four different camera heights. 

 
                                       (a)                                                                                (b) 
Fig. 11. Camera's height and orientation using two different methods. 

 
Fig. 12. A stereo pair from a perturbed 1000-frame video. The standard deviation of the added 
Gaussian noise is 20. The left images are synthesized using the ground-truth road parameters. 
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(a)                                                                               (b) 
 

Fig. 13. The errors associated with the plane parameters as a function of the noise standard 
deviation using synthesized video sequences. (a) Depicts the height errors. (b) Depicts the 
plane orientation errors. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. 

7. References 
J. M. Alvarez, A. López, and R. Baldrich. Illuminant-invariant model-based road 

segmentation. In IEEE Intelligent Vehicules Symposium, 2008. 
M. Bertozzi, E. Binelli, A. Broggi, and M. Del Rose. Stereo vision-based approaches for 

pedestrian detection. In Procs. Computer Vision and Pattern Recognition, San Diego, 
USA, June 2005. 

M. Bertozzi and A. Broggi. GOLD: A parallel real-time stereo vision system for generic 
obstacle and lane detection. IEEE Trans. on Image Processing, 7(1):62-81, January 
1998. 

M. Bertozzi, A. Broggi, R. Chapuis, F. Chausse, A. Fascioli, and A. Tibaldi. Shape-
based pedestrian detection and localization. In Procs. IEEE Intl. Conf. on 
Intelligent Transportation Systems, pages 328-333, Shangai, China, October 
2003. 

S. Das, A. Konar, and U. Chakraborty. Two improved differential evolution schemes for 
faster global search. In Genetic and Evolutionary Computation, 2005. 

O. Faugeras and Q.T. Luong. The Geometry of Multiple Images. The MIT Press, 2001. 
R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1990. 
U. Franke, D. Gavrila, S. Görzig, F. Lindner, F. Paetzold, and C. Wöhler. Autonomous 

driving approaches downtown. IEEE Intelligent Systems, 13(6):1-14, 1999. 

Real Time Stereo Image Registration for Planar Structure and 3D Sensor Pose Estimation 

 

315 

A. Guzmán and C. Parra. Extraction of roads from outdoor images. In Vision Systems: 
Applications, pages 101-112. 2007. 

Z. Hu and K. Uchimura. U-V-Disparity: An efficient algorithm for stereovision based scene 
analysis. In Procs. IEEE Intelligent Vehicles Symposium, pages 48-54, Las Vegas, USA, 
June 2005. 

P. Jansen, W. van der Mark, J.C. van der Heuvel, and F.C.A. Groen. Colour based off-road 
environment and terrain type classification. In IEEE Intelligent Transportation 
Systems, 2005. 

R. Labayrade and D. Aubert. A single framework for vehicle roll, pitch, yaw estimation and 
obstacles detection by stereovision. In Proc. IEEE Intelligent Vehicles Symposium, 
Columbus, OH, USA, pages 31-36, June 2003. 

R. Labayrade, D. Aubert, and J. Tarel. Real time obstacle detection in stereovision on non flat 
road geometry through "V-disparity" representation. In Proc. IEEE Intelligent 
Vehicles Symposium, Versailles, France, pages 646-651, June 2002. 

X. Liu and K. Fujimura. Pedestrian detection using stereo night vision. IEEE Trans. on 
Vehicular Technology, 53(6):1657-1665, November 2004. 

P. Lombardi, M. Zanin, and S. Messelodi. Switching models for vision-based on-board road 
detection. In IEEE Intelligent Transportation Systems, 2005. 

S. Nedevschi, F. Oniga, R. Danescu, T. Graf, and R. Schmidt. Increased accuracy stereo 
approach for 3D lane detection. In IEEE Intelligent Vehicles Symposium, 2006. 

W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannery. Numerical Recipes, The Art 
of Scientific Computing. Cambridge University Press, New York, 1992. 

K. V. Price, J. A. Lampinen, and R. M. Storn. Differential Evolution: A Practical Approach To 
Global Optimization. Springer, 2005. 

L. Romero and F. Calderón. A tutorial on parametric image registration. In Scene 
Reconstruction, Pose Estimation and Tracking, pages 167-184. 2007. 

A. Sappa, D. Gerónimo, F. Dornaika, and A. López. On-board camera extrinsic parameter 
estimation. Electronics Letters, 42(13):745-747, June 2006. 

G. Stein, O. Mano, and A. Shashua. A robust method for computing vehicle ego-motion. In 
IEEE Intelligent Vehicles Symposium, 2000. 

R. Storn and K. Price. Differential evolution - A simple and efficient heuristic for global 
optimization over continuous spaces. Journal of Global Optimization, 11:341-359, 
1997. 

Z. Sun, G. Bebis, and R. Miller. Monocular precrash vehicle detection: Features and 
classifiers. IEEE Trans. on Image Processing, 15(7):2019-2034, 2006. 

T. Suzuki and T. Kanade. Measurement of vehicle motion and orientation using optical flow. 
In IEEE Intelligent Vehicles Symposium, 1999. 

G. Toulminet, M. Bertozzi, S. Mousset, A. Bensrhair, and A. Broggi. Vehicle detection by 
means of stereo vision-based obstacles features extraction and monocular pattern 
analysis. IEEE Trans. on Image Processing, 15(8):2364-2375, 2006. 

P. Viola, M.J. Jones, and D. Snow. Detecting pedestrians using patterns of motion and 
appearance. International Journal of Computer Vision, 63(2):153-161, 2005. 



 Stereo Vision 

 

314 

 
 

 
                           
 

(a)                                                                               (b) 
 

Fig. 13. The errors associated with the plane parameters as a function of the noise standard 
deviation using synthesized video sequences. (a) Depicts the height errors. (b) Depicts the 
plane orientation errors. Each point of the curves⎯each noise level⎯corresponds to 10000 
stereo pairs corresponding to 10 realizations, each of which is a sequence of 1000 perturbed 
stereo pairs. 
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1. Introduction  
Visual correspondence represents one of the most important tasks in computer vision. Given 
two sets of pixels (i.e. two images), it aims at finding corresponding pixel pairs belonging to 
the two sets (homologous pixels). As a matter of fact, visual correspondence is commonly 
employed in fields such as stereo correspondence, change detection, image registration, 
motion estimation, pattern matching, image vector quantization.  
The visual correspondence task can be extremely challenging in presence of disturbance 
factors which typically affect images. A common source of disturbances can be related to 
photometric distortions between the images under comparison. These can be ascribed to the 
camera sensors employed in the image acquisition process (due to dynamic variations of 
camera parameters such as auto-exposure and auto-gain, or to the use of different cameras), 
or can be induced by external factors  such as changes of the amount of light emitted by the 
sources or viewing of non-lambertian surfaces at different angles. 
 All of these factors tend to produce brightness changes in corresponding pixels of the two 
images that can not be neglected in real applications implying visual correspondence 
between images acquired from different spatial points (e.g. stereo vision) and/or different 
time instants (e.g. pattern matching, change detection). In addition to photometric 
distortions, differences between corresponding pixels can also be due to the noise 
introduced by camera sensors. Finally, the acquisition of images from different spatial 
points or different time instants can also induce occlusions.  Evaluation assessments have 
also been proposed which compared visual correspondence approaches for tasks such as 
stereo correspondence (Chambon & Crouzil, 2003), image registration (Zitova & Flusser, 
2003) and image motion (Giachetti, 2000). 

2. Literature review 
Let Ir, It be respectively the reference image patch vector and the target image patch vector, 
that have to be matched together. Traditional matching measures can be subdivided into 
two categories: correlation-based or distance-based. Between the first,  the most commonly 
adopted are the Normalized Cross-Correlation (NCC) and the Zero-mean Normalized Cross-
Correlation (ZNCC): 

                                             r t
r t

r t2 2

I I
NCC(I ,I )

I I
=

⋅
                                                  (1) 
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 r r t t
r t

r r t t2 2

(I I ) (I I )
ZNCC(I ,I )

I I I I
− −

=
− ⋅ −

 (2) 

with ◦ denoting the dot product, ||·||p the Lp norm, ¯ the mean value over the patch.  
Thanks to normalization with regards to the magnitude of the vectors and to the mean 
intensity value of the image patch, NCC and ZNCC are invariant, respectively, to linear and 
affine transformation between Ir and It.  Efficient techniques for exhaustive template 
matching based on NCC and ZNCC matching measures have been proposed in (Mattoccia 
et al., 2008-1) and (Mattoccia et al., 2008-2).  
On the other side, commonly used dissimilarity measures are those derived from the Lp-
distance between Ir and It. Between this class, two popular measures are the Sum of Absolute 
Differences (SAD) and the Sum of Squared Differences (SSD): 

 r t r t 1
SAD(I ,I ) I I= −  (3) 

 
2

r t r t 2
SSD(I ,I ) I I= −  (4) 

These two measures showed experimentally good robustness towards noise (Aschwanden 
& Guggenbuhl, 1992), (Martin & Crowley, 1995). An efficient technique for exhaustive 
template matching based on Lp-distance has been proposed in (Tombari et al., 2008). A 
similar approach was also adopted in (Mattoccia et al., 2007) for motion estimation.  
While all these measures are usually computed directly on the pixel intensities of the 
images, in (Martin & Crowley, 1995) it was shown that by computing these measures on the 
gradient norm of each pixel a higher robustness is attained, i.e. for what concerns 
insensitivity to illumination changes the SSD and the NCC applied on gradient norms 
(referred to here respectively as G-SSD and G-NCC) showed to perform well. In particular, 
if we denote with Gr(i, j) the gradient of Ir at pixel (i, j): 
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and similarly with Gt(i, j) the gradient of It at pixel (i, j): 
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the gradient norm, or magnitude, in both cases is defined as:  

 2 2
2

G ( , ) ( , ) ( , )r r
r i ji j G i j G i j= +  (7) 
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Hence the G-NCC function can be defined as:  
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and, analogously, the G-SSD function as: 

 ( )2

r t r t2 2
( , )

G-SSD(I ,I ) G ( , ) G ( , )
ri j I

i j i j
∈

= −∑
 (10) 

In addition to these measures, many alternatives have been proposed in literature with the 
specific aim of deploying robust image matching. The Gradient Correlation (GC) measure, 
proposed in (Crouzil et al., 1996) and derived from a measure originally introduced in 
(Scharstein, 1994), is based on two terms, referred to as distinctiveness (D) and confidence (C), 
both computed from intensity gradients: 

 
r

r t 2
(i,j) I
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The GC measure is then defined as: 

 r t
r t

r t

D(I ,I )
GC(I ,I )

C(I ,I )
=  (13) 

Its minimum value is 0, corresponding to the highest similarity between Ir and It. For any 
other positive value, the greater the value, the higher the dissimilarity between the two 
vectors. In order to compute the partial derivatives, (Crouzil et al., 1996) proposes to use 
either the Sobel operator or the Shen-Castan ISEF filter (Shen & Castan, 1992).  
The Orientation Correlation (OC) measure (Fitch et al., 2002) is based on the correlation of the 
orientation of the intensity gradient. In particular, for each gradient Gr(i,j) a complex 
number representing the orientation of the gradient vector is defined as: 

 ( )rO (i,j) sgn ( , ) ( , )r r
i jG i j iG i j= +  (14) 

with i denoting the imaginary unit and where: 

 ( )
0 0

sgn
if x

x x elsewhere
x

⎧ =
⎪= ⎨
⎪
⎩

 (15) 

Analogously, a complex number representing the orientation of the gradient vector Gt (i, j) is 
defined as: 

 ( )tO (i,j) sgn ( , ) ( , )t t
i jG i j iG i j= +  (16) 

As proposed in (Fitch et al., 2002), the partial derivatives for the gradient computation 
should be calculated by approximating them with central differences. Hence, the OC measure 
between Ir and It is defined as the real part of the correlation between all gradient 
orientations belonging to Ir and It: 
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with ◦ denoting the dot product, ||·||p the Lp norm, ¯ the mean value over the patch.  
Thanks to normalization with regards to the magnitude of the vectors and to the mean 
intensity value of the image patch, NCC and ZNCC are invariant, respectively, to linear and 
affine transformation between Ir and It.  Efficient techniques for exhaustive template 
matching based on NCC and ZNCC matching measures have been proposed in (Mattoccia 
et al., 2008-1) and (Mattoccia et al., 2008-2).  
On the other side, commonly used dissimilarity measures are those derived from the Lp-
distance between Ir and It. Between this class, two popular measures are the Sum of Absolute 
Differences (SAD) and the Sum of Squared Differences (SSD): 
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& Guggenbuhl, 1992), (Martin & Crowley, 1995). An efficient technique for exhaustive 
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and similarly with Gt(i, j) the gradient of It at pixel (i, j): 
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the gradient norm, or magnitude, in both cases is defined as:  
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and, analogously, the G-SSD function as: 
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In addition to these measures, many alternatives have been proposed in literature with the 
specific aim of deploying robust image matching. The Gradient Correlation (GC) measure, 
proposed in (Crouzil et al., 1996) and derived from a measure originally introduced in 
(Scharstein, 1994), is based on two terms, referred to as distinctiveness (D) and confidence (C), 
both computed from intensity gradients: 
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The GC measure is then defined as: 
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vectors. In order to compute the partial derivatives, (Crouzil et al., 1996) proposes to use 
either the Sobel operator or the Shen-Castan ISEF filter (Shen & Castan, 1992).  
The Orientation Correlation (OC) measure (Fitch et al., 2002) is based on the correlation of the 
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As proposed in (Fitch et al., 2002), the partial derivatives for the gradient computation 
should be calculated by approximating them with central differences. Hence, the OC measure 
between Ir and It is defined as the real part of the correlation between all gradient 
orientations belonging to Ir and It: 
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with * indicating the conjugate of the complex vector. In (Fitch et al., 2002) it is proposed to 
exploit the correlation theorem to compute the correlation operation in the frequency 
domain by means of the FFT in order to achieve computational efficiency. 
Another class of measures concerns the so-called order-consistency or order-preservation 
hypothesis, that is the assumption that the considered distortions do not violate the ordering 
between the intensities of neighbouring pixels. This assumption includes a more general 
class of transformations compared to the linear or affine case. These measures are called 
ordinal and a typical example of this class is represented by the Rank transform. As for this 
measure, both Ir and It are transformed into two novel images where each pixel stores the 
number of points in the patch whose intensity is less than that of the central point of the 
patch: 

 { }rR (i,j) ( , ) | ( , ) ( , )r r ru v I I u v I i j= ∈ <  (18) 

 { }tR (i,j) ( , ) | ( , ) ( , )t t tu v I I u v I i j= ∈ <  (19) 

where |· | represents the cardinality operator. Once the two transforms are computed, a 
matching measure is deployed to compare Rr and Rt, e.g. (Zabih & Woodfill, 1994) proposes 
to use the SAD.   
A typical example of this class is represented by the Rank transform (Zabih & Woodfill, 1994), 
and the measure proposed in (Bhat & Nayar, 1998). Further approaches of robust visual 
correspondence measures specifically conceived for change detection are (Ohta, 2001), (Xie 
at al., 2004), (Mittal & Ramesh, 2006). 
Finally, other robust approaches have been proposed in (Seitz, 1989), (Lai, 2000), (Odone et 
al., 2001), (Ullah et al., 2001), (Kaneko et al., 2003). 

3. The MF measure 
This section describes a novel approach, referred to here as Matching Function (MF), which is 
implicitly based on the ordering assumption. In particular, MF aims at quantifying how well 
the order is preserved between corresponding pairs of neighbouring pixels in the two 
images. A simple and effective approach for evaluating the order-consistency is to evaluate 
the difference between the intensities of pairs of neighbouring pixels. As an example, let Ir 
be a 3×3 patch. In order to evaluate the order preservation between neighbouring elements 
within this window, many pairs (e.g. 72) should be considered, as each of the 9 pixels has to 
be put in correspondence with each other. In order to simplify the problem, we propose to 
consider only a subset of the whole neighbouring pairs set by evaluating only horizontal 
and vertical neighbouring pixels. Hence, the considered pairs are reduced to 18, as shown in 
Fig. 1.  
In particular, in order to quantify how well the ordering is preserved between the two 
image patches Ir and It we propose to correlate the differences between the considered 
corresponding pairs within the 3×3 window. If the ordering is preserved for a given pair, 
the result of the pointwise correlation is a positive coefficient regardless of the sign of the 
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intensity difference, which tends to increase the correlation score associated with the 3 × 3 
window. Conversely, if the order is not preserved the correlation coefficient is negative, and 
the correlation score is decreased. Moreover, since horizontal and vertical differences may 
be thought as the discrete approximation of the horizontal and vertical derivatives of the 
image, the proposed measure can also be interpreted as the cross-correlation between two 
vectors made out of derivatives computed within the two 3×3 patches. 
 

           
Fig. 1. considered subset of horizontal and vertical pairs of neighbouring pixels in a 3x3 
patch 

In the general case of two MxN patches, the considered pairs of pixels in each set include all 
pixels at distance 1 and 2 along horizontal and vertical directions. In order to compute this 
set, we define a vector of pixel differences computed at a point (i, j) on Ir: 
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and, similarly, at a point (i, j) on It: 
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Hence, the MF function consists in correlating these two vectors for each point of Ir, It, and 
in normalizing the correlation with the L2 norm of the vectors themselves: 
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It is worth noticing that the normalization allows the measure to range between [−1,1]. It is a 
peculiarity of this method that, because of the correlation between differences of pixel pairs, 
intensity edges tend to determine higher correlation coefficients (in magnitude) with respect 
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with * indicating the conjugate of the complex vector. In (Fitch et al., 2002) it is proposed to 
exploit the correlation theorem to compute the correlation operation in the frequency 
domain by means of the FFT in order to achieve computational efficiency. 
Another class of measures concerns the so-called order-consistency or order-preservation 
hypothesis, that is the assumption that the considered distortions do not violate the ordering 
between the intensities of neighbouring pixels. This assumption includes a more general 
class of transformations compared to the linear or affine case. These measures are called 
ordinal and a typical example of this class is represented by the Rank transform. As for this 
measure, both Ir and It are transformed into two novel images where each pixel stores the 
number of points in the patch whose intensity is less than that of the central point of the 
patch: 
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where |· | represents the cardinality operator. Once the two transforms are computed, a 
matching measure is deployed to compare Rr and Rt, e.g. (Zabih & Woodfill, 1994) proposes 
to use the SAD.   
A typical example of this class is represented by the Rank transform (Zabih & Woodfill, 1994), 
and the measure proposed in (Bhat & Nayar, 1998). Further approaches of robust visual 
correspondence measures specifically conceived for change detection are (Ohta, 2001), (Xie 
at al., 2004), (Mittal & Ramesh, 2006). 
Finally, other robust approaches have been proposed in (Seitz, 1989), (Lai, 2000), (Odone et 
al., 2001), (Ullah et al., 2001), (Kaneko et al., 2003). 

3. The MF measure 
This section describes a novel approach, referred to here as Matching Function (MF), which is 
implicitly based on the ordering assumption. In particular, MF aims at quantifying how well 
the order is preserved between corresponding pairs of neighbouring pixels in the two 
images. A simple and effective approach for evaluating the order-consistency is to evaluate 
the difference between the intensities of pairs of neighbouring pixels. As an example, let Ir 
be a 3×3 patch. In order to evaluate the order preservation between neighbouring elements 
within this window, many pairs (e.g. 72) should be considered, as each of the 9 pixels has to 
be put in correspondence with each other. In order to simplify the problem, we propose to 
consider only a subset of the whole neighbouring pairs set by evaluating only horizontal 
and vertical neighbouring pixels. Hence, the considered pairs are reduced to 18, as shown in 
Fig. 1.  
In particular, in order to quantify how well the ordering is preserved between the two 
image patches Ir and It we propose to correlate the differences between the considered 
corresponding pairs within the 3×3 window. If the ordering is preserved for a given pair, 
the result of the pointwise correlation is a positive coefficient regardless of the sign of the 
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intensity difference, which tends to increase the correlation score associated with the 3 × 3 
window. Conversely, if the order is not preserved the correlation coefficient is negative, and 
the correlation score is decreased. Moreover, since horizontal and vertical differences may 
be thought as the discrete approximation of the horizontal and vertical derivatives of the 
image, the proposed measure can also be interpreted as the cross-correlation between two 
vectors made out of derivatives computed within the two 3×3 patches. 
 

           
Fig. 1. considered subset of horizontal and vertical pairs of neighbouring pixels in a 3x3 
patch 

In the general case of two MxN patches, the considered pairs of pixels in each set include all 
pixels at distance 1 and 2 along horizontal and vertical directions. In order to compute this 
set, we define a vector of pixel differences computed at a point (i, j) on Ir: 
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and, similarly, at a point (i, j) on It: 
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Hence, the MF function consists in correlating these two vectors for each point of Ir, It, and 
in normalizing the correlation with the L2 norm of the vectors themselves: 
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It is worth noticing that the normalization allows the measure to range between [−1,1]. It is a 
peculiarity of this method that, because of the correlation between differences of pixel pairs, 
intensity edges tend to determine higher correlation coefficients (in magnitude) with respect 
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to low-textured regions. Thus, this can be seen as if the measure mostly relies on the patch 
edges. For this reason, MF can be usefully employed also in presence of high levels of noise, 
as this disturbance factor can typically violate the ordering constraint on low-textured 
regions, but seldom along intensity edges. Similar considerations can be made in presence of 
partially occluded patches. 
The set of pixel pairs in (21, 22) can be seen as made out of two subsets: the set of horizontal 
and vertical lateral derivatives (i.e. all pixels at distance 1 one to another along horizontal 
and vertical directions), and the set of horizontal and vertical central derivatives (i.e. all 
pixels at distance 2 one to another along same directions). Theoretically, the former should 
benefit of the higher correlation given by adjacent pixels, while the latter should be less 
influenced by quantization (“sampling”) noise that is introduced by the camera sensor. We 
will refer to two additional measures of the MF class applied on each of these two subsets 
as, respectively, MF1 and MF2. For these last two cases, we define the vector of pixel 
differences at distance 1 pixel: 
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and the pixel differences relative to the case of distance 2 pixels: 
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Then, MF1 and MF2 are defined respectively as: 
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and: 
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A graphical representation of the 3 different pixel pair sets used by MF1,2, MF1 and MF2 is 
shown in Fig. 2.  
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Fig. 2. The 3 considered sets of neighbouring pixel pairs. 

4. Application to pattern matching 
This section shows the application of the class of measures referred to as MF in a typical 
pattern matching scenario. Pattern matching aims at finding the most similar instances of a 
given pattern, P, within an image. In particular, in this section MF measures are compared 
against traditional general purpose approaches as well as against proposals specifically 
conceived to achieve robustness. One goal of the proposed comparison is to determine 
which measure is more suitable to deal with the aforementioned disturbance factors 
represented by photometric distortions, noise and occlusions.  
More precisely, in the comparison with MF we will consider the following matching 
measures:  GC (Crouzil et al., 1996), OC (Fitch et al., 2002), G-NCC, G-SSD (Martin and 
Crowley, 1995). Considered traditional measures are NCC, ZNCC and SSD. All the 
considered measures  are tested on 3 datasets which represent a challenging framework for 
what regards the considered distortions. These datasets, which are publicly available at 
www.vision.deis.unibo.it/pm-eval.asp, are characterized by a significant presence of the 
disturbance factors discussed previously, and are now briefly described. 
Guitar. In this dataset, 7 patterns were extracted from a picture which was taken with a 
good camera sensor (3 MegaPixels) and under good illumination conditions given by a lamp 
and some weak natural light. All these patterns have to be sought in 10 images which were 
taken with a cheaper and more noisy sensor (1.3 MegaPixels, mobile phone camera). 
Illumination changes were introduced in the images by means of variations of the rheostat 
of the lamp illuminating the scene (G1−G4), by using a torch light instead of the lamp 
(G5−G6), by using the camera flash instead of the lamp (G7− G8), by using the camera flash 
together with the lamp (G9), by switching off the lamp (G10). Furthermore, additional 
distortions were introduced by slightly changing the camera position at each pose and by 
the JPEG compression. 
Mere Poulard - Illumination Changes. In dataset Mere Poulard - Illumination Changes (MP-
IC), the picture on which the pattern was extracted was taken under good illumination 
conditions given by neon lights by means of a 1.3 MegaPixels mobile phone camera sensor. 
This pattern is then searched within 12 images which were taken either with the same 
camera (prefixed by GC) or with a cheaper, 0.3 VGA camera sensor (prefixed by BC). 
Distortions are due to slight changes in the camera point of view and by different 
illumination conditions such as: neon lights switched off and use of a very high exposure 
time (BC − N1, BC − N2, GC − N), neon lights switched off (BC − NL, GC−NL), presence of 
structured light given by a lamp light partially occluded by various obstacles (BC−ST1, …, 
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to low-textured regions. Thus, this can be seen as if the measure mostly relies on the patch 
edges. For this reason, MF can be usefully employed also in presence of high levels of noise, 
as this disturbance factor can typically violate the ordering constraint on low-textured 
regions, but seldom along intensity edges. Similar considerations can be made in presence of 
partially occluded patches. 
The set of pixel pairs in (21, 22) can be seen as made out of two subsets: the set of horizontal 
and vertical lateral derivatives (i.e. all pixels at distance 1 one to another along horizontal 
and vertical directions), and the set of horizontal and vertical central derivatives (i.e. all 
pixels at distance 2 one to another along same directions). Theoretically, the former should 
benefit of the higher correlation given by adjacent pixels, while the latter should be less 
influenced by quantization (“sampling”) noise that is introduced by the camera sensor. We 
will refer to two additional measures of the MF class applied on each of these two subsets 
as, respectively, MF1 and MF2. For these last two cases, we define the vector of pixel 
differences at distance 1 pixel: 
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and the pixel differences relative to the case of distance 2 pixels: 
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A graphical representation of the 3 different pixel pair sets used by MF1,2, MF1 and MF2 is 
shown in Fig. 2.  
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Fig. 2. The 3 considered sets of neighbouring pixel pairs. 
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BC−ST5), neon lights switched off and use of the camera flash (GC−FL), neon lights 
switched off, use of the camera flash and of a very long exposure time (GC−NFL). Also in 
this case, images are JPEG compressed. 
 
 

 
 
Fig. 3. Guitar dataset 

Mere Poulard - Occlusions. In the dataset Mere Poulard - Occlusions (MP-Occl) the pattern is 
the same as in dataset MP-IC, which now has to be found in 8 images taken with a 0.3 VGA 
camera sensor. In this case, partial occlusion of the pattern is the most evident disturbance 
factor. Occlusions are generated by a person standing in front of the camera (OP1, …, OP4), 
and by a book which increasingly covers part of the pattern (OB1, …, OB4). Distortions due 
to illumination changes, camera pose variations, JPEG compression are also present. 

G1 G2

   G3                           G4 G5

G6 G7 G8

G9 G10

Robust Visual Correspondence: Theory and Applications 

 

325 

 
 

    
Fig. 4. MP-IC dataset 

The number of pattern matching instances is thus 70 for the Guitar dataset, 12 for the MP-IC 
dataset and 8 for the MP-Occl dataset, for a total of 90 instances overall. The result of a 
pattern matching process is considered erroneous when the coordinates of the best matching 
subwindow found by a certain measure are further than ±5 pixel from the correct ones. 
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Fig. 5. MP-Occl dataset 

Figures 6 and 7 report the matching errors yielded by the considered measures respectively 
on each of the 3 datasets and overall. As it can be seen, approaches specifically conceived to 
achieve robustness generally outperform classical measures, apart from the ZNCC which 
performs badly in presence of occlusions but shows good robustness in handling strong 
photometric distortions. The two measures which yield the best performance are MF and 
GC, with a number of total errors respectively equal to 6 and 8. In particular, MF performs 
better on datasets characterized by strong photometric distortions, conversely GC seems to 
perform better in presence of occlusions.  
For what regards the 3 MF measures themselves, it seems clear that the use of differences 
relative to adjacent pixels suffers of the sampling noise introduced by the camera sensor, 
hence they appear less reliable compared to differences computed on a distance equal to 2. 
Moreover, as a consequence of the fact that MF1,2 and MF2 yield the same results on all 
datasets, MF2 seems the more appropriate measure of the class since it requires only 2 
correlation terms instead of the 4 needed by MF1,2. Finally, for what regards traditional 
approaches, it is interesting to note that the application of NCC and SSD on the gradient 
norms rather than on the pixel intensities allows for a significantly higher robustness 
throughout all the considered datasets. 
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Fig. 6. results of the comparison on the 3 datasets. 

 
Fig. 7. overall results of the pattern matching evaluation. 

5. Application to change detection 
In this section we present the application of the proposed MF measures to the change 
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scene by analyzing a sequence of frames. This is a key task in most advanced video-
surveillance applications, for the mask highlighting changed pixels (change mask) typically 
represents the input data to higher level vision algorithms. This is the case of traditional 
single view as well as more recent and advanced multiple-views systems. The most 
common change detection approach is referred to as background subtraction: given the 
current frame, F, and a model of the background of the scene, B, the change mask is 
obtained by comparing F and B. This approach assumes that the background model is 
available or can be obtained by processing a short sequence of frames at initialization time. 
A wide variety of change detection algorithms has been proposed in literature, so as to 
address issues such as illumination changes, camouflage and vacillating background. A 
recent survey providing good coverage of this research area is given by (Radke et al., 2005). 
Sudden illumination changes occurring in the scene represent a major issue for most 
practical change detection applications. Properly dealing with such a problem is a 
challenging task for change detection algorithms since the resulting photometric variations 
can be easily misinterpreted as structural changes, leading to many false positives in the 
change mask. As depicted in Fig. 8, the proposed change detection algorithm consists of 
three processing stages. In the first stage, the MF measure is used to extract a subset of 
pixels in the current frame that can be marked as background with a high confidence level. 
Once such a subset, referred to as FB, is obtained, it can be usefully employed to remove the 
photometric distortion between F and B. To this purpose, in the second stage the algorithm 
computes the transformation that aligns tonally the current frame, F, to the background 
image, B, using as support subset FB. In the third stage, the final change mask is achieved by 
a pixelwise subtraction between F and the tonally registered background image, BR.  
 

 
Fig. 8. Flow diagram of the proposed change detection algorithm 

Robust visual correspondence In order to get FB we match the points in the background 
image to the current frame. To achieve robustness with respect to outliers and noise, a block-
based approach is used: that is, for each pair of correspondent points in B and F, a M × M 
surrounding block is considered, and the MF measure is computed between the two blocks. 
Points having a score higher than a given threshold are included into FB . To explain the 
usefulness of the MF measure, let’s discuss Fig. 9 where, for the sake of simplicity, we 
consider only two kind of regions, i.e. uniform and highly-textured. When dealing with a 
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uniform region in both F and B (case a in Fig. 9), photometric differences between F and B 
can occur due to either variations of the illumination conditions of the background scene as 
well as to structural changes induced by a uniform foreground object. Thus, in this case the 
required matching measure should yield a low score, for nothing can be said reliably on 
whether the point belongs to the background or not. As for cases b,c,d, it is easy to observe 
that the matching score should be low too, since there’s evidence of the presence of a 
foreground object. Finally, when the background is highly textured and the texture pattern 
does not change in spite of possible photometric changes (case e), it is reasonable to flag the 
point as background with a high confidence level. Hence, in case e we should get a high 
score from the required matching measure. Based on the above considerations, we adopt the 
MF measure which, as previously mentioned, matches corresponding blocks of two images 
by implicitly checking an ordering constraint. Since photometric variations tend not to 
violate the ordering of intensities in a neighbourhood of pixels, MF allows handling sudden 
and strong illumination variations between the background scene and the current frame. As 
previously discussed, MF tries to match the high contrast regions (i.e. the intensity edges) of 
the two blocks under comparison, since only high intensity differences can provide high 
contributions to the correlation score. Hence, MF behaves exactly as pointed out in Fig. 9. In 
fact, only two highly textured and highly correlated patterns can provide a high matching 
score (case e), while the presence of at least one untextured region (cases a,b,c) or of two 
textured but uncorrelated patterns (case d) yields a low score. 
 

   
Fig. 9. Reasoning concerning the robust visual correspondence stage 
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Tonal alignment At this point of the algorithm, FB represents a subset of F denoting pixels 
that reliably belong to the current background. Hence, B is tonally aligned to F by applying 
the histogram specification method (Gonzalez and Wood, 2002). In the evaluation of the IMF 
(Intensity Mapping Function) that aligns B to F only the set of corresponding points that 
belong to the mask FB is taken into account. By applying the IMF obtained from the 
histogram specification method to B we get a novel background, BR, where the photometric 
distortions have been removed. 
Background subtraction Finally, a simple pixelwise difference between BR and F highlights 
structural changes by correctly extracting foreground regions. It is worth pointing out that 
since background subtraction is carried out pixelwise, it is not affected by the aperture 
problem and allows for accurately detecting the borders as well as interior parts of 
foreground objects. Obviously, false negatives can still be found due to the possible 
camouflage between the tonally registered background and the foreground objects. 
Experimental Results We now show the results dealing with a quantitative comparison 
between our approach and other proposals. The testing sequence was a synthetic sequence 
(available at: http://muscle.prip.tuwien.ac.at/data here.php) which comes together with 
groundtruth. For what regards the comparison, as representative of change detection 
algorithms that model false image changes according to a linear relation we consider the 
Normalised Cross Correlation (NCC) between pixel intensities. As for algorithms relying on 
checking the order preservation of intensities we consider the Rank transform (Zabih and 
Woodfill, 1994). We also consider as baseline for comparison the basic pixelwise background 
subtraction approach (BBS). For a fair comparison, we used the same block side for each 
algorithm (i.e. equal to 7). Then, for what regards the other parameters of each algorithm (in 
particular, the threshold for the final change mask), in order to determine the best parameter 
set of each algorithm we selected as a measure of comparison the Precision, i.e. the ratio 
between the true positives (TP) and the sum between true positives and false positives (FP), 
and the Recall, i.e. the ratio between the true positives and the sum between true positives 
and false negatives (FN).  
In order to obtain experimental results, we started from the observation that most change 
detection algorithms, especially for video-surveillance applications, require to have a 
minimum guaranteed value of Recall. Hence, for different thresholds of minimum Recall 
(i.e. 70%, 80%, 90%, we selected for each algorithm the optimal parameter set maximizing 
the Precision value. Such results are shown in Tab. 1. It is worth pointing out that we fixed 
the maximum constraint value of Recall to 90%, since with higher values all algorithms 
would provide Precision values lower than 50%, which would result in very poor change 
masks (the number of false positives being higher than the number of true positives). 
Moreover, it is worth noting that also for these results no post processing was added to the 
output of the evaluated algorithms, similarly no morphology operator was used at any stage 
of the evaluated algorithms.  
From the Table it is easy to infer that the proposed algorithm is the most robust and accurate 
between the evaluated ones, since it always outperforms the other approaches in terms of 
Precision for all different constraint values of Recall. In addition, Fig. 10 shows, for a single 
frame of the evaluated testing sequence, the outputs of the various algorithms at the 
different constraint values of Recall. In addition, in the first row of the Figure the 
background model as well as the current frame together with the correspondent ground 
truth frame are shown. These results qualitatively confirm the trend shown in Tab. 1, 
proving that our approach provides overall the most accurate results.  
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  > 70% > 80%  > 90% 

Proposed 87.3 81,7 52,2 
NCC 59,6 57,2 43,0 

Rank 24,5 18,8 13,1 

BBS 2,2 1,9 1,7 

Table 1. Best values of Precision yielded by the evaluated algorithms with different 
constraint values on Recall. 

 
Fig. 10. Comparison of outputs yielded by the evaluated algorithms on the same sequence 
and with the same constraint values on Recall used for results in Tab. 1. First row, from left 
to right: background model B, current frame F, Ground Truth 
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6. Application to video-surveillance 
In this section a case study is presented where access to a high security gate has to be 
monitored to assess for the presence/absence of people as well as to ensure that only one 
person occupies the gate at a given time (anti-tailgating). To accomplish this surveillance 
task, first of all we apply a change detection algorithm in order to discriminate between 
foreground (i.e. occupants) and background (i.e. the gate floor) regions of incoming frames. 
The change detection algorithm relies on the MF measure: at each point of the current frame 
and background image MF is computed on the window centred on the current point, then a 
threshold is used to discriminate background points from foreground points. The images 
are subject to heavy photometric distortions due to reflections on the gate floor, changes in 
indoor illumination and unpredictable light coming from outside. Fig. 11 shows the results 
where 3 frames acquired in different moments and with different subjects are compared 
with the same background image acquired previously (shown on the left). The 3 images on 
the right show the shape of the region detected as the gate floor using a fixed set of 
parameters (window side = 15, threshold = 0.2) and, as post-processing, a fixed sequence of 
simple morphological operators such as erosion and dilation. Results show that the 
proposed measure is able to extract a good shape of the gate floor with good robustness 
towards the ongoing disturbance factors. 
 

 
Fig. 11. The background (left) and 3 examples dealing with the presented video-surveillance 
application. 

7. Conclusions 
A review of the state of the art and a novel class of measures for robust visual 
correspondence under disturbance factors such as photometric distortions, noise and 
occlusions have been proposed. The proposed approach is based on the order preservation 
hypothesis, and aims at measuring how well the ordering constraint between neighbouring 
pixels is preserved. The novel measures were demonstrated to perform effectively in task 
such as pattern matching and change detection, as well as in a challenging surveillance 
scenario considered as a case study.  
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6. Application to video-surveillance 
In this section a case study is presented where access to a high security gate has to be 
monitored to assess for the presence/absence of people as well as to ensure that only one 
person occupies the gate at a given time (anti-tailgating). To accomplish this surveillance 
task, first of all we apply a change detection algorithm in order to discriminate between 
foreground (i.e. occupants) and background (i.e. the gate floor) regions of incoming frames. 
The change detection algorithm relies on the MF measure: at each point of the current frame 
and background image MF is computed on the window centred on the current point, then a 
threshold is used to discriminate background points from foreground points. The images 
are subject to heavy photometric distortions due to reflections on the gate floor, changes in 
indoor illumination and unpredictable light coming from outside. Fig. 11 shows the results 
where 3 frames acquired in different moments and with different subjects are compared 
with the same background image acquired previously (shown on the left). The 3 images on 
the right show the shape of the region detected as the gate floor using a fixed set of 
parameters (window side = 15, threshold = 0.2) and, as post-processing, a fixed sequence of 
simple morphological operators such as erosion and dilation. Results show that the 
proposed measure is able to extract a good shape of the gate floor with good robustness 
towards the ongoing disturbance factors. 
 

 
Fig. 11. The background (left) and 3 examples dealing with the presented video-surveillance 
application. 

7. Conclusions 
A review of the state of the art and a novel class of measures for robust visual 
correspondence under disturbance factors such as photometric distortions, noise and 
occlusions have been proposed. The proposed approach is based on the order preservation 
hypothesis, and aims at measuring how well the ordering constraint between neighbouring 
pixels is preserved. The novel measures were demonstrated to perform effectively in task 
such as pattern matching and change detection, as well as in a challenging surveillance 
scenario considered as a case study.  
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1. Introduction 
A stereo matching algorithm for 3D structure reconstruction relies on the correlation of 
image features in a pair of images. Usually, two calibrated cameras are used to capture 
scenes, and the left and right images are rectified to reduce the search space from 2D image 
region to 1D line. Then, the disparity is defined by the horizontal difference between the 
corresponding points on the search line. To solve the correspondence problem, various 
image features such as image intensity, edge, color, infrared light, pixel motion, etc. are 
employed either separately or integrated together. Among these image features, pixel 
motion or optical flow has been rarely used as one of the matching features (A. Scheuing & 
H. Niemann, 1986, G. Sudhir et al, 1995, A. M. Waxman & J. H. Duncan, 1986). In this 
chapter, we focus on the use of optical flow as an additional constraint in solving the 
correspondence problem. 
The stereo matching algorithm for 3D structure reconstruction can be divided into two 
groups based on the matching primitives: intensity based matching (also referred to as area 
based matching) and feature based matching. The intensity based matching method 
searches the best matching points using only intensity values of pixels. The method can 
further be divided into two groups depending on the smoothness constraints in 
minimization of matching cost function: local (window-based) method and global method. 
More details on the intensity based method can be found in a survey by Scharstein (D. 
Scharstein & R. Szeliski. 2002, M. Z. Brown et al, 2003). The intensity based matching 
method produces a dense disparity map without any additional post-processing, but 
usually needs an exhaustive search. Since the intensity based method uses the intensity 
value at each pixel directly, this method may suffer from the varying illumination problem. 
The feature based matching method searches the best matching points using some special 
symbolic feature points, such as line, contour, corner, etc. Since this method calculates 
disparity values only on the pixels corresponding to the feature point, this method does not 
require an exhaustive search. Also, symbolic features are less sensitive to illumination 
changes than pixel intensity, so the calculated disparity is more reliable than that of the 
intensity based matching method in the case of varying illumination. However, this method 
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1. Introduction 
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image features in a pair of images. Usually, two calibrated cameras are used to capture 
scenes, and the left and right images are rectified to reduce the search space from 2D image 
region to 1D line. Then, the disparity is defined by the horizontal difference between the 
corresponding points on the search line. To solve the correspondence problem, various 
image features such as image intensity, edge, color, infrared light, pixel motion, etc. are 
employed either separately or integrated together. Among these image features, pixel 
motion or optical flow has been rarely used as one of the matching features (A. Scheuing & 
H. Niemann, 1986, G. Sudhir et al, 1995, A. M. Waxman & J. H. Duncan, 1986). In this 
chapter, we focus on the use of optical flow as an additional constraint in solving the 
correspondence problem. 
The stereo matching algorithm for 3D structure reconstruction can be divided into two 
groups based on the matching primitives: intensity based matching (also referred to as area 
based matching) and feature based matching. The intensity based matching method 
searches the best matching points using only intensity values of pixels. The method can 
further be divided into two groups depending on the smoothness constraints in 
minimization of matching cost function: local (window-based) method and global method. 
More details on the intensity based method can be found in a survey by Scharstein (D. 
Scharstein & R. Szeliski. 2002, M. Z. Brown et al, 2003). The intensity based matching 
method produces a dense disparity map without any additional post-processing, but 
usually needs an exhaustive search. Since the intensity based method uses the intensity 
value at each pixel directly, this method may suffer from the varying illumination problem. 
The feature based matching method searches the best matching points using some special 
symbolic feature points, such as line, contour, corner, etc. Since this method calculates 
disparity values only on the pixels corresponding to the feature point, this method does not 
require an exhaustive search. Also, symbolic features are less sensitive to illumination 
changes than pixel intensity, so the calculated disparity is more reliable than that of the 
intensity based matching method in the case of varying illumination. However, this method 
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requires an additional process for extracting image features, and the produced disparity 
map is not as dense compared to that produced by the intensity based matching method 
unless a surface-fitting step is applied. More details on the feature based matching method 
can be found in a survey by Dhond (U. R. Dhond & J. K. Aggarwal, 1989). 
In this chapter, we propose to use optical flow as an additional constraint in solving stereo 
correspondence problem in both intensity and feature based stereo matching methods. For 
the intensity based matching method, optical flow is used to reduce mismatching, which is 
described in Section 2.1. For the feature based matching method, optical flow simplifies the 
matching procedure as described in Section 2.2. In Section 3, we present some preliminary 
results on the surface reconstruction of a human hand in stereo image sequences using our 
proposed methods. 

2. Modification of two matching techniques 
2.1 Modification of an intensity based matching technique 
In this section, we restrict the intensity based method to the local (window-based) method. 
The local intensity based matching technique calculates the disparity based on two 
geometric constraints. The first is the epipolar constraint that reduces two-dimensional 
search space to one-dimensional one. The second constraint is the assumption that the 
disparity is constant in small image regions (O. Faugeras et al, 1993). Based on these two 
constraints, small image regions are matched between two images along the epipolar line. If 
left and right images are rectified, then the vertical position of the search line in the right 
image is the same as that of the corresponding point in the left image. Then the disparity is 
defined as the horizontal distance between the corresponding points. To find the best 
matching pixel, various matching criteria are used. One of the most basic criteria is the sum 
of squared distances (SSD) defined as: 
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RI  are left and right images, ),( yx  is the pixel coordinates where the disparity 
d is calculated, and the indices i and j are used to cover the entire pixels within a rectangular 
window. The best matching pixel has the minimum SSD value. This method is very simple 
but requires an assumption that the illumination conditions are same for the left and right 
images. But in real stereo images, due to the different setting of each camera or relative 
distance from each camera to the light sources, this assumption is not always satisfied. To 
ameliorate this problem, we use another matching criterion that is more robust to the 
variance of the illumination. This criterion is referred to as the normalized sum of squared 
distance (NSSD)(O. Faugeras et al, 1993) and defined as follows:  
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In addition to the intensity based matching criterion, we use another matching criterion that 
uses optical flow. For each left and right image sequence, the optical flow is calculated using 
our robust motion estimation technique presented in (Y.-H. Kim et al, 2005). The optical 
flow corresponding to a pixel in the left image is matched to that corresponding to a pixel in 
the right image along the epipolar line using the following motion correspondence matching 
criterion in a similar way of the intensity based matching technique described above: 
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where 2 2( , ) ( , ) ( , )M x y u x y v x y= +  is the squared magnitude of optical flow vector which consists of 
the horizontal )(u  and vertical )(v  components and other notations are same as defined in 
Eqs. (1) and (2). 
Finally, we integrate the intensity based matching criterion and the motion based matching 
criterion in a single matching criterion as follows:  

 )),,,(1(),,(),,( dyxNSSDdyxNSSDdyxNSSD MotionIntensityIntegrated +×=  (4) 

2.2 Modification of a feature based matching algorithm 
In this section, we first describe the Marr-Poggio-Grimson (MPG) algorithm that is one of 
the most popular feature based matching methods. Then explain how we modify this 
algorithm using optical flow. 
The MPG algorithm, implemented by Grimson (W. E. L. Grimson, 1981), solves the stereo 
correspondence problem based on the Marr and Poggio's computational model of human 
stereopsis (D. Marr & T. Poggio. 1979). The MPG algorithm consists of following three main 
steps: feature extraction, feature matching, and matching analysis. 
The first step of the MPG algorithm is to extract features in images. For this purpose, the 
Laplacian of Gaussian )( 2G∇  operator (referred to as the primal sketch operator) is first 
applied to the image where the operator is formed by: 
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where ),( yx  is the pixel coordinate and 222 yxr += . The width of the function is represented 
by the distance between the first zeros on either side of the origin and denoted by 

σ222 =Dw . From the image filtered by this operator, zero crossing points are then detected 
as final image features. 
The second step of the MPG algorithm is feature matching. Based on the Marr and Poggio's 
hierarchical model of human stereopsis, the MPG algorithm employs a coarse-to-fine 
approach for feature matching. The disparity values obtained at a coarse level of images are 
used for the disparity calculation at the next finer level of images. At each level, for each 
zero-crossing point in the left image, its matching candidates in the right image are searched 
within the scan line where the center of the line is the coordinates of the zero-crossing point 
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requires an additional process for extracting image features, and the produced disparity 
map is not as dense compared to that produced by the intensity based matching method 
unless a surface-fitting step is applied. More details on the feature based matching method 
can be found in a survey by Dhond (U. R. Dhond & J. K. Aggarwal, 1989). 
In this chapter, we propose to use optical flow as an additional constraint in solving stereo 
correspondence problem in both intensity and feature based stereo matching methods. For 
the intensity based matching method, optical flow is used to reduce mismatching, which is 
described in Section 2.1. For the feature based matching method, optical flow simplifies the 
matching procedure as described in Section 2.2. In Section 3, we present some preliminary 
results on the surface reconstruction of a human hand in stereo image sequences using our 
proposed methods. 

2. Modification of two matching techniques 
2.1 Modification of an intensity based matching technique 
In this section, we restrict the intensity based method to the local (window-based) method. 
The local intensity based matching technique calculates the disparity based on two 
geometric constraints. The first is the epipolar constraint that reduces two-dimensional 
search space to one-dimensional one. The second constraint is the assumption that the 
disparity is constant in small image regions (O. Faugeras et al, 1993). Based on these two 
constraints, small image regions are matched between two images along the epipolar line. If 
left and right images are rectified, then the vertical position of the search line in the right 
image is the same as that of the corresponding point in the left image. Then the disparity is 
defined as the horizontal distance between the corresponding points. To find the best 
matching pixel, various matching criteria are used. One of the most basic criteria is the sum 
of squared distances (SSD) defined as: 
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but requires an assumption that the illumination conditions are same for the left and right 
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In addition to the intensity based matching criterion, we use another matching criterion that 
uses optical flow. For each left and right image sequence, the optical flow is calculated using 
our robust motion estimation technique presented in (Y.-H. Kim et al, 2005). The optical 
flow corresponding to a pixel in the left image is matched to that corresponding to a pixel in 
the right image along the epipolar line using the following motion correspondence matching 
criterion in a similar way of the intensity based matching technique described above: 
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where 2 2( , ) ( , ) ( , )M x y u x y v x y= +  is the squared magnitude of optical flow vector which consists of 
the horizontal )(u  and vertical )(v  components and other notations are same as defined in 
Eqs. (1) and (2). 
Finally, we integrate the intensity based matching criterion and the motion based matching 
criterion in a single matching criterion as follows:  
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2.2 Modification of a feature based matching algorithm 
In this section, we first describe the Marr-Poggio-Grimson (MPG) algorithm that is one of 
the most popular feature based matching methods. Then explain how we modify this 
algorithm using optical flow. 
The MPG algorithm, implemented by Grimson (W. E. L. Grimson, 1981), solves the stereo 
correspondence problem based on the Marr and Poggio's computational model of human 
stereopsis (D. Marr & T. Poggio. 1979). The MPG algorithm consists of following three main 
steps: feature extraction, feature matching, and matching analysis. 
The first step of the MPG algorithm is to extract features in images. For this purpose, the 
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σ222 =Dw . From the image filtered by this operator, zero crossing points are then detected 
as final image features. 
The second step of the MPG algorithm is feature matching. Based on the Marr and Poggio's 
hierarchical model of human stereopsis, the MPG algorithm employs a coarse-to-fine 
approach for feature matching. The disparity values obtained at a coarse level of images are 
used for the disparity calculation at the next finer level of images. At each level, for each 
zero-crossing point in the left image, its matching candidates in the right image are searched 
within the scan line where the center of the line is the coordinates of the zero-crossing point 
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in the left image and the width of the line is 
Dw22 . Within this search line, the points with 

similar local orientations are selected as its matching candidates. Instead of using the local 
orientation at zero-crossings as originally proposed by Grimson (W. E. L. Grimson, 1981), 
we use binary neighborhood comparison -- implemented by Tanaka and Kak (S. Tanaka & 
A. C. Kak, 1990) - as the candidate selection criterion in our implementation. 
The third step of the MPG algorithm is matching analysis. If just only one matching is found 
in the scan line, then the distance between the corresponding points will be the final 
disparity. However, within the search line, more than one matching candidates can be found 
and, in that case, further consideration is required to determine the final disparity. For this 
purpose, Marr and Poggio used two constraints. One is referred as to uniqueness: each zero-
crossing point in the left image must have only one disparity value. The other one is referred 
as to continuity: disparity value must vary smoothly. To implement these two constraints of 
Marr and Poggio's theory, Grimson grouped matching candidates by three types depending 
on the position of the matching candidates in the search line: convergent, divergent, or zero. 
If more than one matching candidates are found, then the one having the same type of 
matching as the dominant matching type in the neighbourhood is accepted. 
In our modification of the MPG algorithm, we simplify the final matching analysis step by 
employing optical flow. First, we calculate squared magnitude of the optical flow vectors in 
the left image and the right image separately. Then in the multiple matching candidates, we 
choose the one having the minimum difference of the squared magnitude of the optical flow 
vectors between the corresponding points. 

3. Results 
In this section, we present some preliminary results of the 3D structure reconstruction using 
our modified matching algorithms described in the previous section. Fig. 1 shows left and 
right image sequences we used here. These image sequences include a human hand that is 
moving at the front of the left and right cameras. To enrich the texture of the hand, we used 
a glove covered by random-dot pattern. 
For each image sequence, optical flow is obtained frame by frame using our robust optical 
flow estimation method (Y.-H. Kim et al, 2005). Generally, differential optical flow 
techniques based on the image derivatives are able to estimate only the small motion. The 
small optical flow does not provide significant differences between neighbour pixels and is 
not adequate for the matching criterion. To ameliorate this problem, we accumulate optical 
flow vectors calculated from several image frames to get larger optical flow. Fig. 2 shows the 
squared magnitude of the accumulated optical flow vectors in three-dimensional space. The 
width and depth of the three-dimensional space represent the axes of the horizontal and 
vertical direction of the image plane, and the height of the three dimensional space 
represents the axis of the squared magnitude of the optical flow vectors. Figs. 2(a, b) show 
the squared magnitude of the optical flow vectors from the 1st image frames to the 2nd 
image frames for each left and right image sequence respectively. Figs. 2(c, d) show the 
squared magnitude of the accumulated optical flow vectors from the 1st image frames to the 
3rd image frames for each left and right image sequence respectively. Figs. 2(e, f) show the 
squared magnitude of accumulated optical flow vectors from the 1st image frames to the 5th 
image frames for each left and right image sequence respectively. As shown in this figure, the 
squared magnitude of optical flow and the difference of these values between neighbour 
pixels increase as the number of image frames used for the optical flow calculation increases. 
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(a)                                                           (b) 

         
(c)                                                           (d) 

         
(e)                                                           (f) 
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Fig. 1. Left and right image sequences: (a, b) The 1st image frames, (c, d) The 2nd image 
frames, (e, f) The 3rd image frames,  and (g, h) The 5th image frames. 
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in the left image and the width of the line is 
Dw22 . Within this search line, the points with 

similar local orientations are selected as its matching candidates. Instead of using the local 
orientation at zero-crossings as originally proposed by Grimson (W. E. L. Grimson, 1981), 
we use binary neighborhood comparison -- implemented by Tanaka and Kak (S. Tanaka & 
A. C. Kak, 1990) - as the candidate selection criterion in our implementation. 
The third step of the MPG algorithm is matching analysis. If just only one matching is found 
in the scan line, then the distance between the corresponding points will be the final 
disparity. However, within the search line, more than one matching candidates can be found 
and, in that case, further consideration is required to determine the final disparity. For this 
purpose, Marr and Poggio used two constraints. One is referred as to uniqueness: each zero-
crossing point in the left image must have only one disparity value. The other one is referred 
as to continuity: disparity value must vary smoothly. To implement these two constraints of 
Marr and Poggio's theory, Grimson grouped matching candidates by three types depending 
on the position of the matching candidates in the search line: convergent, divergent, or zero. 
If more than one matching candidates are found, then the one having the same type of 
matching as the dominant matching type in the neighbourhood is accepted. 
In our modification of the MPG algorithm, we simplify the final matching analysis step by 
employing optical flow. First, we calculate squared magnitude of the optical flow vectors in 
the left image and the right image separately. Then in the multiple matching candidates, we 
choose the one having the minimum difference of the squared magnitude of the optical flow 
vectors between the corresponding points. 

3. Results 
In this section, we present some preliminary results of the 3D structure reconstruction using 
our modified matching algorithms described in the previous section. Fig. 1 shows left and 
right image sequences we used here. These image sequences include a human hand that is 
moving at the front of the left and right cameras. To enrich the texture of the hand, we used 
a glove covered by random-dot pattern. 
For each image sequence, optical flow is obtained frame by frame using our robust optical 
flow estimation method (Y.-H. Kim et al, 2005). Generally, differential optical flow 
techniques based on the image derivatives are able to estimate only the small motion. The 
small optical flow does not provide significant differences between neighbour pixels and is 
not adequate for the matching criterion. To ameliorate this problem, we accumulate optical 
flow vectors calculated from several image frames to get larger optical flow. Fig. 2 shows the 
squared magnitude of the accumulated optical flow vectors in three-dimensional space. The 
width and depth of the three-dimensional space represent the axes of the horizontal and 
vertical direction of the image plane, and the height of the three dimensional space 
represents the axis of the squared magnitude of the optical flow vectors. Figs. 2(a, b) show 
the squared magnitude of the optical flow vectors from the 1st image frames to the 2nd 
image frames for each left and right image sequence respectively. Figs. 2(c, d) show the 
squared magnitude of the accumulated optical flow vectors from the 1st image frames to the 
3rd image frames for each left and right image sequence respectively. Figs. 2(e, f) show the 
squared magnitude of accumulated optical flow vectors from the 1st image frames to the 5th 
image frames for each left and right image sequence respectively. As shown in this figure, the 
squared magnitude of optical flow and the difference of these values between neighbour 
pixels increase as the number of image frames used for the optical flow calculation increases. 
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frames, (e, f) The 3rd image frames,  and (g, h) The 5th image frames. 



 Stereo Vision 

 

340 

     
(a)                                                                        (b) 

     
(c)                                                                        (d) 

     
(e)                                                                        (f) 

Fig. 2. Squared magnitude of (a, b) optical flow from the 1st image frames to the 2nd image 
frames,   (c, d) accumulated optical flow from the 1st image frames to the 3rd image frames, 
(e, f) accumulated optical flow from the 1st image frames to the 5th image frames for the left 
and the right image sequences respectively. 

3.1 Results of a modified intensity based matching technique 
Fig. 3(a) shows the disparities obtained from the original intensity based matching 
algorithm using the first image frames of the left and right image sequences. No motion 
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information is used for this result. The width and the depth of the three dimensional 
space represent the axes of the vertical and horizontal direction of the image plane and 
the height of the three dimensional space represents the axis of the disparity. Fig. 3(b) 
shows the disparities obtained from the modified intensity based matching algorithm 
using the intensity matching criterion and additional motion matching criterion. The 
intensity matching criterion uses pixel intensities in the first image frames of the left and 
right image sequences. The motion matching criterion uses the optical flow from the 1st 
image frames to the 2nd image frames for each left and right image sequence 
respectively. For the integrated matching criterion, Eq. (3) is used. Fig. 3(c) shows the 
disparities obtained from the modified matching algorithm in which the intensity based 
matching criterion uses the first image frames of the left and right image sequences and 
the motion based matching criterion uses accumulated optical flow from the 1st image 
frames to the 5th image frames for each left and right image sequence respectively. We 
can see the number of mismatches decreases by using the motion matching criterion and 
also by increasing the number of image frames to calculate optical flow. The mismatches 
in Fig. 3(c) are separated as shown in Fig. 4(a) using our de-nosing technique (that counts 
the pixels in a certain cubic area around a pixel in interest and if the number of count is 
less than a threshold then the pixel in interest is discarded). Fig. 4(b) shows the finally 
reconstructed surface of hand using a surface fitting function (spaps) in MATLAB (C. de 
Boor, 2004). 

3.2 Results of a modified feature based matching algorithm 
Fig. 2 shows different levels of zero-crossing points for the test image sequences filtered 
by the Laplacian of Gaussian operator with different 

Dw2
 values. In Fig. 2, the value of 

Dw2
 for (a, b) is 32, for (c, d) 16, for (e, f) 8, and for (g, h) 4. Fig. 6(a) shows disparities 

obtained using the original feature based matching algorithm from the first image 
frames of the left and right image sequences. No motion information is used for this 
result. The width and the depth of the three dimensional space represent the vertical 
and horizontal axes of the image plane and the height of the three dimensional space 
represents the axis of the disparity. Fig. 6(b) shows the disparities obtained using our 
modified feature based matching algorithm. This algorithm uses zero-crossing features 
obtained from the first image frames of the left and right image sequences and optical 
flow obtained from the 1st image frame and the 2nd image frame for each left and right 
image sequence respectively. Although our modified feature based matching algorithm 
uses simpler matching procedure than the original feature based matching algorithm as 
described in Section 2.2, we can see no significant difference between the disparity 
results in Fig. 6(a) and those in (b). Fig. 6(c) shows the disparities obtained using our 
modified feature based matching algorithm using the accumulated optical flow from 
the 1st image frame to the 5th image frame for each left and right image sequence 
respectively. There is no significant difference between the result in Figs. 6(b) and that 
of (c). Fig. 7(a) shows the disparities after separating noisy disparities using the same 
de-nosing algorithm used in Section 3.1. The final reconstructed hand surface result is 
shown in Fig. 7(b). 
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Fig. 2. Squared magnitude of (a, b) optical flow from the 1st image frames to the 2nd image 
frames,   (c, d) accumulated optical flow from the 1st image frames to the 3rd image frames, 
(e, f) accumulated optical flow from the 1st image frames to the 5th image frames for the left 
and the right image sequences respectively. 

3.1 Results of a modified intensity based matching technique 
Fig. 3(a) shows the disparities obtained from the original intensity based matching 
algorithm using the first image frames of the left and right image sequences. No motion 

Using Optical Flow as an Additional Constraint for Solving  
the Correspondence Problem in Binocular Stereopsis 

 

341 

information is used for this result. The width and the depth of the three dimensional 
space represent the axes of the vertical and horizontal direction of the image plane and 
the height of the three dimensional space represents the axis of the disparity. Fig. 3(b) 
shows the disparities obtained from the modified intensity based matching algorithm 
using the intensity matching criterion and additional motion matching criterion. The 
intensity matching criterion uses pixel intensities in the first image frames of the left and 
right image sequences. The motion matching criterion uses the optical flow from the 1st 
image frames to the 2nd image frames for each left and right image sequence 
respectively. For the integrated matching criterion, Eq. (3) is used. Fig. 3(c) shows the 
disparities obtained from the modified matching algorithm in which the intensity based 
matching criterion uses the first image frames of the left and right image sequences and 
the motion based matching criterion uses accumulated optical flow from the 1st image 
frames to the 5th image frames for each left and right image sequence respectively. We 
can see the number of mismatches decreases by using the motion matching criterion and 
also by increasing the number of image frames to calculate optical flow. The mismatches 
in Fig. 3(c) are separated as shown in Fig. 4(a) using our de-nosing technique (that counts 
the pixels in a certain cubic area around a pixel in interest and if the number of count is 
less than a threshold then the pixel in interest is discarded). Fig. 4(b) shows the finally 
reconstructed surface of hand using a surface fitting function (spaps) in MATLAB (C. de 
Boor, 2004). 

3.2 Results of a modified feature based matching algorithm 
Fig. 2 shows different levels of zero-crossing points for the test image sequences filtered 
by the Laplacian of Gaussian operator with different 

Dw2
 values. In Fig. 2, the value of 

Dw2
 for (a, b) is 32, for (c, d) 16, for (e, f) 8, and for (g, h) 4. Fig. 6(a) shows disparities 

obtained using the original feature based matching algorithm from the first image 
frames of the left and right image sequences. No motion information is used for this 
result. The width and the depth of the three dimensional space represent the vertical 
and horizontal axes of the image plane and the height of the three dimensional space 
represents the axis of the disparity. Fig. 6(b) shows the disparities obtained using our 
modified feature based matching algorithm. This algorithm uses zero-crossing features 
obtained from the first image frames of the left and right image sequences and optical 
flow obtained from the 1st image frame and the 2nd image frame for each left and right 
image sequence respectively. Although our modified feature based matching algorithm 
uses simpler matching procedure than the original feature based matching algorithm as 
described in Section 2.2, we can see no significant difference between the disparity 
results in Fig. 6(a) and those in (b). Fig. 6(c) shows the disparities obtained using our 
modified feature based matching algorithm using the accumulated optical flow from 
the 1st image frame to the 5th image frame for each left and right image sequence 
respectively. There is no significant difference between the result in Figs. 6(b) and that 
of (c). Fig. 7(a) shows the disparities after separating noisy disparities using the same 
de-nosing algorithm used in Section 3.1. The final reconstructed hand surface result is 
shown in Fig. 7(b). 
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(c) 

Fig. 3. Calculated disparities: (a) using the original intensity based stereo matching 
technique, (b) using the modified intensity based stereo matching technique with optical 
flow from the 1st to the 2nd image frames, and (c) using the modified intensity based stereo 
matching technique with accumulated optical flow from the 1st to the 5th image frames. 
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Fig. 4. (a) Noise separated disparities, (b) A human hand surface reconstruction result   
using our modified intensity based stereo matching method. 
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Fig. 4. (a) Noise separated disparities, (b) A human hand surface reconstruction result   
using our modified intensity based stereo matching method. 
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(e)                                                          (f) 

      
(g)                                                          (h) 

 

Fig. 5. (a) Zero-crossing feature points in the left and right images which are filtered by LoG 
operator with different 

Dw2
: The value of 

Dw2
 is (a, b) 32, (c, d) 16, (e, f) 8, and (g, h) 4, 

respectively. 
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Fig. 6. (a) Calculated disparities: (a) using the original MPG algorithm, (b) using our 
modified MPG algorithm with optical flow from the 1st to the 2nd image frame, and (c) 
using our modified MPG algorithm with accumulated optical flow from the 1st to the 5th 
image frames. 
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Fig. 6. (a) Calculated disparities: (a) using the original MPG algorithm, (b) using our 
modified MPG algorithm with optical flow from the 1st to the 2nd image frame, and (c) 
using our modified MPG algorithm with accumulated optical flow from the 1st to the 5th 
image frames. 
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Fig. 7. (a) Noise separated disparities, (b) A hand surface reconstruction result using our 
modified MPG algorithm. 
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3. Conclusion 
In this chapter, we proposed two modified stereo matching algorithms. One is the 
modification of an intensity based matching algorithm and the other one is the modification 
of a feature based matching algorithm. For the modification of an intensity based matching 
algorithm, we employed an additional matching criterion using optical flow to reduce the 
number of mismatching disparities. For the modification of a feature based matching 
algorithm, we simplified the matching procedure in the original MPG algorithm using 
optical flow. We presented some preliminary experimental results of the 3d structure 
reconstruction obtained by each modified matching algorithm for a pair of image sequence 
including a human hand. 
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1. Introduction  
The stereo matching aims to find corresponding entities between two (or more) images, i.e. 
entities that are projections of the same 3D object in the scene. Constraints used in stereo 
matching can be classified into two categories: local constraints, which rely only on a pixel 
and on some pixels in its surrounding, and global constraints, which must be verified by the 
whole pixels of a line or of the image. The local methods aim to find a matching for a given 
pixel without taking into account neighbour pixels correspondences. Global methods try to 
define a global model of the observed scene and to minimize a global cost function. They try 
to find the correspondences once for all pixels in one line or for all pixels in the image. 
Graph cuts techniques have been recently used to solve the stereo matching problem 
involving global constraints. These methods transform the matching problem to a 
minimization of a global energy function. The minimization is achieved by finding out an 
optimal cut (of minimum cost) in a special graph. Different methods were proposed to 
construct the graph. However, when applied to minimize a global cost function in stereo 
vision, all of them consider for each pixel, all possible disparities between minimum and 
maximum values. Our contribution is a new method for constructing a reduced graph: only 
some potential values in the disparity range are selected for each pixel. These values can be 
provided by a preliminary matching process using only local constraints. We will detail how 
this method allows to make wider the disparity range, and at the same time to limit the 
volume of the graph, and therefore to reduce the computation time. 
In this chapter, the stereo matching problem is defined. A brief state of the art about stereo 
matching is presented. The stereo matching can be solved by either local methods or global 
ones. Among the global methods, we give a short introduction of dynamic programming 
techniques to be a logic introduction of the Graph Cuts methods. We recall the definition of 
Graph, flow, cut, and the different algorithms to solve the problem of maximum flow. A 
general formalism of Relabelling problem is used to express the stereo matching as a 
minimization of an energy function. The implementation of both complete graph (Roy & 
Cox, 1998) and reduced graph (our contribution) are detailed. The two methods are 
compared from experimental results. 

2. Stereo matching 
The stereo vision is a tool to find 3D information on a scene perceived by two images (or 
more) acquired at the same moment from different points of view.  The stereo 



 Stereo Vision 

 

348 

Y.-H. Kim, A. M. Martínez, & A. C. Kak. (2005). Robust motion estimation under varying 
illumination. Image Vision Computing, Vol. 23, No. 4, (365-375) 21 

Stereo Matching and Graph Cuts 
Ayman Zureiki 1,2,  Michel Devy 1,2  and  Raja Chatila 1,2  

 1CNRS; LAAS; 7 avenue du Colonel Roche, F-31077 Toulouse, 
 2Université de Toulouse; UPS, INSA, INP, ISAE; LAAS-CNRS : F-31077 Toulouse,  

France 
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pixel without taking into account neighbour pixels correspondences. Global methods try to 
define a global model of the observed scene and to minimize a global cost function. They try 
to find the correspondences once for all pixels in one line or for all pixels in the image. 
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involving global constraints. These methods transform the matching problem to a 
minimization of a global energy function. The minimization is achieved by finding out an 
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construct the graph. However, when applied to minimize a global cost function in stereo 
vision, all of them consider for each pixel, all possible disparities between minimum and 
maximum values. Our contribution is a new method for constructing a reduced graph: only 
some potential values in the disparity range are selected for each pixel. These values can be 
provided by a preliminary matching process using only local constraints. We will detail how 
this method allows to make wider the disparity range, and at the same time to limit the 
volume of the graph, and therefore to reduce the computation time. 
In this chapter, the stereo matching problem is defined. A brief state of the art about stereo 
matching is presented. The stereo matching can be solved by either local methods or global 
ones. Among the global methods, we give a short introduction of dynamic programming 
techniques to be a logic introduction of the Graph Cuts methods. We recall the definition of 
Graph, flow, cut, and the different algorithms to solve the problem of maximum flow. A 
general formalism of Relabelling problem is used to express the stereo matching as a 
minimization of an energy function. The implementation of both complete graph (Roy & 
Cox, 1998) and reduced graph (our contribution) are detailed. The two methods are 
compared from experimental results. 

2. Stereo matching 
The stereo vision is a tool to find 3D information on a scene perceived by two images (or 
more) acquired at the same moment from different points of view.  The stereo 
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reconstruction is based on the aptitude to find in each image the projection of the same 
object in the scene. In fact, depth information of an object is related from one side to the 
disparity (difference of projections of the object in both images), and on the other side, to the 
relative position of both cameras (baseline) and to the image resolution focal length, etc.). 
Thus, the stereoscopic reconstruction raises two different problems. The first is the disparity 
calculation, which is attached to the problem of stereo correspondence (matching). The 
second problem is the ability to inverse the projective geometry problem. In other words, 
the tridimensional reconstruction, or how to exploit disparity knowledge and relative 
position of the two sensors to find 3D information. The works of (Faugeras, 1993), on the 
projective geometry have established a solid basis for the 3D reconstruction problem. For 
the matching problem, there is no method sufficiently reliable, robust and effective that 
allows a simple use of stereo vision as a sensor of depth measurement.  
Binocular stereo vision uses two images acquired by two cameras. A preliminary phase of 
calibration is needed to estimate the different parameters of a stereo rig: the parameters of 
the projection model for each camera (pinhole geometric model) and the spatial relationship 
between the two cameras. This knowledge allows us to calculate the 3D coordinates of a 
point from its projections in the two images by a simple triangulation. 
Stereo matching is one of the most studied topics in computer vision since more than half a 
century (Julesz, 1962). Stereo matching aims at finding in the left and right images, features, 
which are the projections of the same entity in the 3D scene. In general, the matching 
problem can be seen as a minimization problem. Local approaches try to minimize 
separately many energy functions, representing local matching costs supposed independent 
between different entities to be matched: a local cost depends on similarity constraints 
between these entities. Global approaches try to minimize a unique energy function taking 
into account all matching costs: this global cost integrates local matching costs, and also 
compatibility costs expressing how consistent are matchings computed on a line or on the 
whole image.  A detailed taxonomy of stereo correspondence algorithms is proposed in 
(Scharstein & Szeliski, 2002). The authors classify stereo matching methods with respect to 
four criteria: (i) The local matching cost, (ii) The aggregation area while computing the local 
cost, (iii) The optimization method, (iv) The method performed to refine matching results. 
The method developed at LAAS since 1995 (Grandjean & Lasserre, 1995) is a modified 
version of the dense or pixel-based algorithm described by (Faugeras et al., 1993). This 
method is suitable for robotic applications, especially because it satisfies real-time 
constraints. It can be classified under local methods, because there is no a global 
optimization step to make consistent matchings of adjacent pixels. Here we propose to 
apply such a global optimization method as a second step of our matching algorithm, to 
take advantage of the global minimization while remaining within real-time constraints as 
much as possible. We consider that left and right images are already rectified: it allows to 
limit the research area in the right image, for the match of a pixel in the left image.  

2.1 Local stereo matching methods 
Local stereo matching methods search separately for the best match of each pixel strating 
from one image (e.g. the left one) without taking into account the matches of other ones. The 
matching cost between two pixels is based on similarity measurements of the local intensity 
function. Intuitively, the projections of the same 3D point will have (naturally) similar 
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intensities in the two images. In fact, the Lambertian model (Horn, 1986) assumes that the 
object surface reflects uniformly the light in all directions. Using this model, we can suppose 
that the corresponding pixels in both images are similar, and indeed, their neighbours are 
also similar, assuming that view fields between the two cameras are very close (no 
occlusions). A correlation measurement can calculate a degree of similarity between two 
point sets. Local methods try to find a match p2 in the right image for a point p1 in the left 
one. The correlation measurement uses information given by p1, p2 and their neighbour 
pixels. The pixel p1 and its neighbours form a first point set, and the point p2 and its 
neighbours constitute the other point set. A correlation score evaluates the similarity 
between these data sets. 
Many local approaches use comparison windows centred on the considered pixel. Among 
the most known measurements, we can find: Sum of Squared Differences (SSD) (Cox et al., 
1996), Sum of Absolute Differences (SAD) (Hirschmüller, 2001), Zero-mean Normalized 
Cross-Correlation (ZNCC) (Chen & Medioni, 1999), (Sára, 2002), etc. 
Local stereo correspondence methods are in general fast algorithms, so can be used for real-
time applications. However, they are exposed to many failure sources, in particular 
occlusions or variations of intensity between the two images. In fact, these situations can 
produce many false matches. In addition, because of the absence of any constraint between 
matches, adjacent pixels can have very different disparities, which can be particularly 
remarkable in scenes having vertical lines (edges of an open door for example). Global 
methods try to overcome these problems. 

2.2 Global stereo matching methods 
Global approaches try to define a global model of observed scene and to minimize a global 
cost function. Matches for pixels of one line or or pixels of the whole image, are searched at 
the same time.  In a global method, the matching between a pixel in the left image and a 
pixel in the right image does not depend only on their neighbours, but also on the matches 
of their neighbours. Hence, the match of a pixel influences the matches of its neighbour 
pixels. This influence is modelled by regularization constraints on the matches set.  Some 
methods are based only on the epipolar constraint to transform the bidimensional matching 
problem into one-dimensional problem, as in dynamic programming (Belhumeur, 1996), 
(Cox, 1992). Other methods address the bidimensionnal problem by taking into account, 
inter-lines constraints, i.e. compatibility constraints between matchings provided on every 
epipolar lines, as in graph cuts algorithms (Boykov et al., 1998), (Ishikawa & Geiger, 1998). 
The global regularization aims to reduce the sensibility of stereo correspondence to 
ambiguities caused by occlusions, poor local texture or fluctuation of illumination. This 
improvement has a cost, which is the increasing of algorithms complexity, and in 
consequence, a longer execution time, in addition to some secondary effects due to this 
regularization (smoothing). We detail two global methods: dynamic programming and 
graph cuts. 
Dynamic Programming: 
Dynamic programming, introduced by  Richard Bellman (Bellman, 1957), allows resolving 
optimization problems having an objective function as a sum of monotone non-decreasing 
functions of resources. In practice, this means that we can infer the optimal solution of a 
problem using optimal solutions of sub-problems. The dynamic programming applied to 
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reconstruction is based on the aptitude to find in each image the projection of the same 
object in the scene. In fact, depth information of an object is related from one side to the 
disparity (difference of projections of the object in both images), and on the other side, to the 
relative position of both cameras (baseline) and to the image resolution focal length, etc.). 
Thus, the stereoscopic reconstruction raises two different problems. The first is the disparity 
calculation, which is attached to the problem of stereo correspondence (matching). The 
second problem is the ability to inverse the projective geometry problem. In other words, 
the tridimensional reconstruction, or how to exploit disparity knowledge and relative 
position of the two sensors to find 3D information. The works of (Faugeras, 1993), on the 
projective geometry have established a solid basis for the 3D reconstruction problem. For 
the matching problem, there is no method sufficiently reliable, robust and effective that 
allows a simple use of stereo vision as a sensor of depth measurement.  
Binocular stereo vision uses two images acquired by two cameras. A preliminary phase of 
calibration is needed to estimate the different parameters of a stereo rig: the parameters of 
the projection model for each camera (pinhole geometric model) and the spatial relationship 
between the two cameras. This knowledge allows us to calculate the 3D coordinates of a 
point from its projections in the two images by a simple triangulation. 
Stereo matching is one of the most studied topics in computer vision since more than half a 
century (Julesz, 1962). Stereo matching aims at finding in the left and right images, features, 
which are the projections of the same entity in the 3D scene. In general, the matching 
problem can be seen as a minimization problem. Local approaches try to minimize 
separately many energy functions, representing local matching costs supposed independent 
between different entities to be matched: a local cost depends on similarity constraints 
between these entities. Global approaches try to minimize a unique energy function taking 
into account all matching costs: this global cost integrates local matching costs, and also 
compatibility costs expressing how consistent are matchings computed on a line or on the 
whole image.  A detailed taxonomy of stereo correspondence algorithms is proposed in 
(Scharstein & Szeliski, 2002). The authors classify stereo matching methods with respect to 
four criteria: (i) The local matching cost, (ii) The aggregation area while computing the local 
cost, (iii) The optimization method, (iv) The method performed to refine matching results. 
The method developed at LAAS since 1995 (Grandjean & Lasserre, 1995) is a modified 
version of the dense or pixel-based algorithm described by (Faugeras et al., 1993). This 
method is suitable for robotic applications, especially because it satisfies real-time 
constraints. It can be classified under local methods, because there is no a global 
optimization step to make consistent matchings of adjacent pixels. Here we propose to 
apply such a global optimization method as a second step of our matching algorithm, to 
take advantage of the global minimization while remaining within real-time constraints as 
much as possible. We consider that left and right images are already rectified: it allows to 
limit the research area in the right image, for the match of a pixel in the left image.  

2.1 Local stereo matching methods 
Local stereo matching methods search separately for the best match of each pixel strating 
from one image (e.g. the left one) without taking into account the matches of other ones. The 
matching cost between two pixels is based on similarity measurements of the local intensity 
function. Intuitively, the projections of the same 3D point will have (naturally) similar 
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intensities in the two images. In fact, the Lambertian model (Horn, 1986) assumes that the 
object surface reflects uniformly the light in all directions. Using this model, we can suppose 
that the corresponding pixels in both images are similar, and indeed, their neighbours are 
also similar, assuming that view fields between the two cameras are very close (no 
occlusions). A correlation measurement can calculate a degree of similarity between two 
point sets. Local methods try to find a match p2 in the right image for a point p1 in the left 
one. The correlation measurement uses information given by p1, p2 and their neighbour 
pixels. The pixel p1 and its neighbours form a first point set, and the point p2 and its 
neighbours constitute the other point set. A correlation score evaluates the similarity 
between these data sets. 
Many local approaches use comparison windows centred on the considered pixel. Among 
the most known measurements, we can find: Sum of Squared Differences (SSD) (Cox et al., 
1996), Sum of Absolute Differences (SAD) (Hirschmüller, 2001), Zero-mean Normalized 
Cross-Correlation (ZNCC) (Chen & Medioni, 1999), (Sára, 2002), etc. 
Local stereo correspondence methods are in general fast algorithms, so can be used for real-
time applications. However, they are exposed to many failure sources, in particular 
occlusions or variations of intensity between the two images. In fact, these situations can 
produce many false matches. In addition, because of the absence of any constraint between 
matches, adjacent pixels can have very different disparities, which can be particularly 
remarkable in scenes having vertical lines (edges of an open door for example). Global 
methods try to overcome these problems. 

2.2 Global stereo matching methods 
Global approaches try to define a global model of observed scene and to minimize a global 
cost function. Matches for pixels of one line or or pixels of the whole image, are searched at 
the same time.  In a global method, the matching between a pixel in the left image and a 
pixel in the right image does not depend only on their neighbours, but also on the matches 
of their neighbours. Hence, the match of a pixel influences the matches of its neighbour 
pixels. This influence is modelled by regularization constraints on the matches set.  Some 
methods are based only on the epipolar constraint to transform the bidimensional matching 
problem into one-dimensional problem, as in dynamic programming (Belhumeur, 1996), 
(Cox, 1992). Other methods address the bidimensionnal problem by taking into account, 
inter-lines constraints, i.e. compatibility constraints between matchings provided on every 
epipolar lines, as in graph cuts algorithms (Boykov et al., 1998), (Ishikawa & Geiger, 1998). 
The global regularization aims to reduce the sensibility of stereo correspondence to 
ambiguities caused by occlusions, poor local texture or fluctuation of illumination. This 
improvement has a cost, which is the increasing of algorithms complexity, and in 
consequence, a longer execution time, in addition to some secondary effects due to this 
regularization (smoothing). We detail two global methods: dynamic programming and 
graph cuts. 
Dynamic Programming: 
Dynamic programming, introduced by  Richard Bellman (Bellman, 1957), allows resolving 
optimization problems having an objective function as a sum of monotone non-decreasing 
functions of resources. In practice, this means that we can infer the optimal solution of a 
problem using optimal solutions of sub-problems. The dynamic programming applied to 
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stereo matching searches for a path of minimal cost through a matrix composed of possible 
matches. To reduce the complexity, this technique is applied on two sets of points of the 
same epipolar line. Thus, the stereo correspondence is applied successively to find 
matchings for all pixels of a line of one image with pixels located on its epipolar line in the 
other image (Ohta & Kanade, 1985). 
To obtain a global path cost equal to the sum of the partial-paths costs, it is mandatory to 
use additive costs. We define the local cost for each point in the research zone as the cost of a 
local stereo matching (SAD, SSD, etc.). Occlusions can be taken into account, making 
possible to link a set of image pixels with the same pixel in the other image; penalties are 
considered for these relations (occlusion costs), which will be added to the global cost of any 
path in the matrix (Ohta & Kanade, 1985), (Cox et al., 1996). This formulation presents many 
inconvenient as the sensibility to the occlusion cost, the difficulty to guarantee inter-lines 
consistency (Bobick & Intille, 1999), and the weak application of constraints on order and 
continuity, that could be not satisfied. 
The dynamic programming can help in finding matchings in poorly textured zones, and in 
solving some occlusion problems. But this method brings also some weak points, as 
complexity of calculation, possibility of propagation of a local error through all the research 
line, and non-consistency of disparity between lines. 
Graph Cuts: 
The majority of stereo matching dynamic programming methods try to match pixels 
between epipolar lines in both images without taking into account inter-lines consistency. 
Hence, they do not use the bidimensionnal nature of the problem. To overcome this 
drawback, and to take into consideration bidimensionnal continuity constraint, a solution 
has been proposed using the graph theory. Initially, graph cuts applied to stereo matching 
were proposed by (Roy & Cox, 1998), and then reformulated by (Veksler, 1999) in which the 
matching problem is considered as a minimization of an energy function. Afterwards, the 
iterative graph-cuts algorithms were introduced in (Kolmogorov & Zabih, 2001), 
(Kolmogorov & Zabih, 2002a), (Kolmogorov & Zabih, 2002b). 
The first global method based on graph cuts for stereo correspondence  (Roy & Cox, 1998), 
(Roy, 1999), started from the 1D formulation of the order constraint used by the dynamic 
programming applied separately to each image line. They tried to find a more general 2D 
formulation for this constraint to be applied to all lines together. They proposed a local 
coherence constraint, which suggests that the disparity function is locally smooth, which 
means that neighbour pixels in all directions have similar disparities. They applied this local 
coherence constraint by defining a disparity matching cost, which depends on intensity 
variations of matched pixels.  In the case of two cameras, the matching cost is the squared 
difference of intensities. 
The next step in the method proposed by Roy and Cox is to estimate the optimal disparity 
map over the entire image. The matching constraints are expressed in a 3D mesh composed 
of planes, themselves composed of an image of nodes. There is a plane for each level of 
disparity, and each node represents a matching between two pixels in original images. The 
3D mesh is then transformed into a graph of maximal flow by connecting each node to its 
four neighbours in the same plane by edges called occlusion edge, and with the two nodes 
in the neighbour planes with edges called disparity edges. Edges are not oriented. We add 
two special nodes: a source connected to all nodes in the plane of minimum disparity, and a 
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sink connected to all nodes in the plane of maximum disparity. The weight of a disparity 
edge is equal to the mean value of matching costs of the two nodes. For occlusion edges, the 
weight is multiplied by a constant to control the smoothness of the optimal disparity map. A 
graph cut will separate the nodes in two sub-sets: the optimal disparity map is constructed 
by the assignment of each pixel with the bigger value of disparity for which the 
corresponding node is still connected to the source. 
(Ishikawa & Geiger, 1998) pointed out that the method of Roy and Cox can deal only with 
convex maps. Thereby, it can only take into account linear penalties on disparity, which may 
lead to not very good results due to an over smoothing of disparities. They proposed a novel 
graph with oriented edges, and then it is possible to reinforce the constraint of uniqueness 
and order. However, their method is also weak at discontinuities because of linear penalties. 
Sub-optimal algorithms: (Boykov et al., 1998; Boykov et al., 1999) proposed another method 
to resolve the stereo corresponding using graph cuts. The authors showed that the problem 
of stereo corresponding could be formulated by a Markov Random Field (MRF). They showed 
that the estimate Maximum A Priori (MAP) of such MRF, could be obtained by a minimal 
multi-way cut, using a maximum flow. The advantage of such a method is that it accepts 
non linear penalties for discontinuities, and then it gives more precise disparity maps 
especially near objects' edges. As the general problem of minimal multi-way cut is NP-
complete (Dahlhaus et al., 1994), Boylov et al. decided to introduce an approximated 
algorithm, which can resolve iteratively some sub-problems until convergence. 
(Kolmogorov & Zabih, 2001) have continued the works of Boykov trying to ameliorate the 
energy function to represent more explicitly the occlusion. The sub-optimal approach has a 
wider application spectrum than the one proposed by Roy and Cox or by Ishikawa and 
Geiger. However, it is iterative and sub-optimal, and then its convergence speed and the 
quality of the obtained minimum must be supervised. 
In spite of their good results, methods based on graph cuts are disadvantaged by several 
limitations. Firstly, because of using the bidimensionnal continuity constraint, these 
methods can cause an excess of regularization (over smoothing), which can appear as the 
effects of a local filter. Secondly, as the penalty function (cost of attributing different 
disparities to neighbour pixels) is not always convex, this returns the minimization of 
energy function to be a NP-complete problem (Kolmogorov & Zabih, 2001), and in 
consequence, the obtained solution is only an approximation of the exact one. 

3. Minimum cut problem 
3.1 Graph definition 
A graph is a set of vertices connected by edges. A binary relation between vertices, called 
adjacency relation, defines the connection. A graph G be defined as a pair (V,E), where V is 
a set of vertices, and E is a set of edges between the vertices E = {(u,v) | u, v ∈ V}. If the 
graph is undirected (see figure 1), the adjacency relation is symmetric, or E = {{u,v} | u, v ∈ 
V} (sets of vertices rather than ordered pairs). In a directed graph (cf. figure 2), the edges are 
ordered, the edge (u,v) is different from the edge (v,u). When an edge e=(u,v) connects the 
vertices u and v, these two vertices are adjacent, and called the extremities of the edge e. 
Two edges are called adjacent if they have in common one vertex. A weighted graph is a 
graph having a weight, or a number, associated with each edge. Some algorithms require all 
weights to be non-negative, integral, positive, etc.  
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stereo matching searches for a path of minimal cost through a matrix composed of possible 
matches. To reduce the complexity, this technique is applied on two sets of points of the 
same epipolar line. Thus, the stereo correspondence is applied successively to find 
matchings for all pixels of a line of one image with pixels located on its epipolar line in the 
other image (Ohta & Kanade, 1985). 
To obtain a global path cost equal to the sum of the partial-paths costs, it is mandatory to 
use additive costs. We define the local cost for each point in the research zone as the cost of a 
local stereo matching (SAD, SSD, etc.). Occlusions can be taken into account, making 
possible to link a set of image pixels with the same pixel in the other image; penalties are 
considered for these relations (occlusion costs), which will be added to the global cost of any 
path in the matrix (Ohta & Kanade, 1985), (Cox et al., 1996). This formulation presents many 
inconvenient as the sensibility to the occlusion cost, the difficulty to guarantee inter-lines 
consistency (Bobick & Intille, 1999), and the weak application of constraints on order and 
continuity, that could be not satisfied. 
The dynamic programming can help in finding matchings in poorly textured zones, and in 
solving some occlusion problems. But this method brings also some weak points, as 
complexity of calculation, possibility of propagation of a local error through all the research 
line, and non-consistency of disparity between lines. 
Graph Cuts: 
The majority of stereo matching dynamic programming methods try to match pixels 
between epipolar lines in both images without taking into account inter-lines consistency. 
Hence, they do not use the bidimensionnal nature of the problem. To overcome this 
drawback, and to take into consideration bidimensionnal continuity constraint, a solution 
has been proposed using the graph theory. Initially, graph cuts applied to stereo matching 
were proposed by (Roy & Cox, 1998), and then reformulated by (Veksler, 1999) in which the 
matching problem is considered as a minimization of an energy function. Afterwards, the 
iterative graph-cuts algorithms were introduced in (Kolmogorov & Zabih, 2001), 
(Kolmogorov & Zabih, 2002a), (Kolmogorov & Zabih, 2002b). 
The first global method based on graph cuts for stereo correspondence  (Roy & Cox, 1998), 
(Roy, 1999), started from the 1D formulation of the order constraint used by the dynamic 
programming applied separately to each image line. They tried to find a more general 2D 
formulation for this constraint to be applied to all lines together. They proposed a local 
coherence constraint, which suggests that the disparity function is locally smooth, which 
means that neighbour pixels in all directions have similar disparities. They applied this local 
coherence constraint by defining a disparity matching cost, which depends on intensity 
variations of matched pixels.  In the case of two cameras, the matching cost is the squared 
difference of intensities. 
The next step in the method proposed by Roy and Cox is to estimate the optimal disparity 
map over the entire image. The matching constraints are expressed in a 3D mesh composed 
of planes, themselves composed of an image of nodes. There is a plane for each level of 
disparity, and each node represents a matching between two pixels in original images. The 
3D mesh is then transformed into a graph of maximal flow by connecting each node to its 
four neighbours in the same plane by edges called occlusion edge, and with the two nodes 
in the neighbour planes with edges called disparity edges. Edges are not oriented. We add 
two special nodes: a source connected to all nodes in the plane of minimum disparity, and a 
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sink connected to all nodes in the plane of maximum disparity. The weight of a disparity 
edge is equal to the mean value of matching costs of the two nodes. For occlusion edges, the 
weight is multiplied by a constant to control the smoothness of the optimal disparity map. A 
graph cut will separate the nodes in two sub-sets: the optimal disparity map is constructed 
by the assignment of each pixel with the bigger value of disparity for which the 
corresponding node is still connected to the source. 
(Ishikawa & Geiger, 1998) pointed out that the method of Roy and Cox can deal only with 
convex maps. Thereby, it can only take into account linear penalties on disparity, which may 
lead to not very good results due to an over smoothing of disparities. They proposed a novel 
graph with oriented edges, and then it is possible to reinforce the constraint of uniqueness 
and order. However, their method is also weak at discontinuities because of linear penalties. 
Sub-optimal algorithms: (Boykov et al., 1998; Boykov et al., 1999) proposed another method 
to resolve the stereo corresponding using graph cuts. The authors showed that the problem 
of stereo corresponding could be formulated by a Markov Random Field (MRF). They showed 
that the estimate Maximum A Priori (MAP) of such MRF, could be obtained by a minimal 
multi-way cut, using a maximum flow. The advantage of such a method is that it accepts 
non linear penalties for discontinuities, and then it gives more precise disparity maps 
especially near objects' edges. As the general problem of minimal multi-way cut is NP-
complete (Dahlhaus et al., 1994), Boylov et al. decided to introduce an approximated 
algorithm, which can resolve iteratively some sub-problems until convergence. 
(Kolmogorov & Zabih, 2001) have continued the works of Boykov trying to ameliorate the 
energy function to represent more explicitly the occlusion. The sub-optimal approach has a 
wider application spectrum than the one proposed by Roy and Cox or by Ishikawa and 
Geiger. However, it is iterative and sub-optimal, and then its convergence speed and the 
quality of the obtained minimum must be supervised. 
In spite of their good results, methods based on graph cuts are disadvantaged by several 
limitations. Firstly, because of using the bidimensionnal continuity constraint, these 
methods can cause an excess of regularization (over smoothing), which can appear as the 
effects of a local filter. Secondly, as the penalty function (cost of attributing different 
disparities to neighbour pixels) is not always convex, this returns the minimization of 
energy function to be a NP-complete problem (Kolmogorov & Zabih, 2001), and in 
consequence, the obtained solution is only an approximation of the exact one. 

3. Minimum cut problem 
3.1 Graph definition 
A graph is a set of vertices connected by edges. A binary relation between vertices, called 
adjacency relation, defines the connection. A graph G be defined as a pair (V,E), where V is 
a set of vertices, and E is a set of edges between the vertices E = {(u,v) | u, v ∈ V}. If the 
graph is undirected (see figure 1), the adjacency relation is symmetric, or E = {{u,v} | u, v ∈ 
V} (sets of vertices rather than ordered pairs). In a directed graph (cf. figure 2), the edges are 
ordered, the edge (u,v) is different from the edge (v,u). When an edge e=(u,v) connects the 
vertices u and v, these two vertices are adjacent, and called the extremities of the edge e. 
Two edges are called adjacent if they have in common one vertex. A weighted graph is a 
graph having a weight, or a number, associated with each edge. Some algorithms require all 
weights to be non-negative, integral, positive, etc.  



 Stereo Vision 

 

354 

A E

B

C

D

F

3

7 1
1

4

5

2

4

2

            

A E

B

C

D

F

3

7 1
1

4

5

2

4

2

 
Fig. 1. Weighted Undirected Graph                           Fig. 2. Weighted Directed Graph 

3.2 Graph representation 
A graph can be represented by two data structures: adjacency-matrix or adjacency-list. 
Adjacency-matrix Representation: 
A directed graph with v vertices can be represented by v x v matrix, where the entry at (i,j) 
is 1 if there is an edge from vertex i to vertex j; otherwise the entry is 0. A weighted graph 
may be represented using the weight as entry.  An undirected graph may be represented 
using the same entry in both (i,j) and (j,i) or using an upper triangular matrix. Figure 3 
illustrates a representation of the directed graph of the figure 2 by an adjacency-matrix.  
Adjacency-list Representation: 
A directed graph with v vertices can be represented using a set of v lists of vertices. List i 
contains vertex j if there is an edge from vertex i to vertex j. A weighted graph may be 
represented with a list of (vertex, weight) pairs. An undirected graph may be represented by 
having vertex j in the list for vertex i, and vertex i in the list for vertex j. Figure 4 illustrates a 
representation of the directed graph of the figure 2 by an Adjacency-list. The arrow (->) 
means a link in a list. In general, the adjacency-list representation is more compact for a 
sparse graph. 
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Fig. 3. Adjacency-Matrix 
Representation 

Fig. 4. Adjacency-List 
Representation 

Fig. 5. Entering edges (blue) 
and leaving edges (red). 

3.3 Graph cut definition 
Let G = (V,E) denotes a graph, with V the set of vertices and E the set of edges. A cut is 
formed by partitioning the nodes of a graph into two mutually exclusive sets S and T.  An 
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edge between a node in one set and a node in the other is said to be crossing the cut and 
called a cut edge. In weighted graphs, the weight, or the capacity, of a cut is the sum of 
weights of the edges that have exactly one endpoint in each of the two sets. The problem of 
finding the minimum weight cut in a graph is called Minimum Cut Problem. 

3.4 Minimum s-t cut problem 
In a directed graph G = (V,E), the edges having the same beginning vertex v are called 
leaving edges of v, and the sum of their capacities (weights) is called leaving degree of 
vertex v. The edges having the same arriving vertex v are called entering edges, and the sum 
of their capacities (weights) is called entering degree of vertex v. See figure 5.  

 entering degree of v = 
(u,v) E

c(u,v)
∈
∑  (1) 

 eaving degree of v = 
(v,w) E

c(v,w)
∈
∑  (2) 

We call a source s a vertex in a directed graph with entering degree equal to zero, and a sink 
t is a vertex with zero leaving degree. The s-t cut is the problem of finding a cut in the graph 
to separate the source s from the sink t. A minimum s-t cut is a cut with a minimum weight 
separating the vertices into two sets, the source s will be in one of them and the sink will be 
in the other. 

3.5 Flows in graph 
It is frequently common to introduce flows in a graph by the example of water conduit in 
pipe networks.  
Water flow in networks: 
Suppose we have a water source, a sink and a network of pipes relating them. We accept 
that the source can give (and the sink can receive) an unlimited amount of water. Find the 
maximum flow is the research for the maximum amount of flow capable to pass from the 
source into the sink via the network. Supposing the unlimited capacity for the source and 
the sink, the problem is only constrained by the capacity of the network. The capacity of 
each pipe is proportional to its diameter. In this network, there will be obstructions in some 
pipes. To pass from to the source to the sink, water must absolutely take one of these 
obstructed pipes. In an intuitive case, if all the pipes are full, the flow is equal to the sum of 
their capacities. In particularly, the obstruction corresponds to a set of pipes, which 
separates the source from the sink, and the sum of its capacities is equal to the maximum 
flow capable to pass from the source to the sink. Once the flow is maximal, we are in the 
situation where all the pipes of obstruction are full (saturated). 
Mathematical definition:  
A flow in a weighted graph G=(V,E), where each edge e=(i,j) has a real positive capacity 
c(e), is a map Φ between the edges set E and the set of real numbers.  
A flow   Φ → : VxV  R  
• Φ(i,j) = - Φ(i,j) 
• 0

i V -{s,t} 
Φ(i, j)

∈

=∑  : Flow conservation: what goes into a vertex is equal to what goes out of it 

(except for the source and the sink) 
• Φ(i,j) ≤ c(i,j) for all (i,j) ∈ E : Flow in an edge is less or equal to its capacity 



 Stereo Vision 

 

354 

A E

B

C

D

F

3

7 1
1

4

5

2

4

2

            

A E

B

C

D

F

3

7 1
1

4

5

2

4

2

 
Fig. 1. Weighted Undirected Graph                           Fig. 2. Weighted Directed Graph 

3.2 Graph representation 
A graph can be represented by two data structures: adjacency-matrix or adjacency-list. 
Adjacency-matrix Representation: 
A directed graph with v vertices can be represented by v x v matrix, where the entry at (i,j) 
is 1 if there is an edge from vertex i to vertex j; otherwise the entry is 0. A weighted graph 
may be represented using the weight as entry.  An undirected graph may be represented 
using the same entry in both (i,j) and (j,i) or using an upper triangular matrix. Figure 3 
illustrates a representation of the directed graph of the figure 2 by an adjacency-matrix.  
Adjacency-list Representation: 
A directed graph with v vertices can be represented using a set of v lists of vertices. List i 
contains vertex j if there is an edge from vertex i to vertex j. A weighted graph may be 
represented with a list of (vertex, weight) pairs. An undirected graph may be represented by 
having vertex j in the list for vertex i, and vertex i in the list for vertex j. Figure 4 illustrates a 
representation of the directed graph of the figure 2 by an Adjacency-list. The arrow (->) 
means a link in a list. In general, the adjacency-list representation is more compact for a 
sparse graph. 
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3.3 Graph cut definition 
Let G = (V,E) denotes a graph, with V the set of vertices and E the set of edges. A cut is 
formed by partitioning the nodes of a graph into two mutually exclusive sets S and T.  An 
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edge between a node in one set and a node in the other is said to be crossing the cut and 
called a cut edge. In weighted graphs, the weight, or the capacity, of a cut is the sum of 
weights of the edges that have exactly one endpoint in each of the two sets. The problem of 
finding the minimum weight cut in a graph is called Minimum Cut Problem. 

3.4 Minimum s-t cut problem 
In a directed graph G = (V,E), the edges having the same beginning vertex v are called 
leaving edges of v, and the sum of their capacities (weights) is called leaving degree of 
vertex v. The edges having the same arriving vertex v are called entering edges, and the sum 
of their capacities (weights) is called entering degree of vertex v. See figure 5.  

 entering degree of v = 
(u,v) E

c(u,v)
∈
∑  (1) 

 eaving degree of v = 
(v,w) E

c(v,w)
∈
∑  (2) 

We call a source s a vertex in a directed graph with entering degree equal to zero, and a sink 
t is a vertex with zero leaving degree. The s-t cut is the problem of finding a cut in the graph 
to separate the source s from the sink t. A minimum s-t cut is a cut with a minimum weight 
separating the vertices into two sets, the source s will be in one of them and the sink will be 
in the other. 

3.5 Flows in graph 
It is frequently common to introduce flows in a graph by the example of water conduit in 
pipe networks.  
Water flow in networks: 
Suppose we have a water source, a sink and a network of pipes relating them. We accept 
that the source can give (and the sink can receive) an unlimited amount of water. Find the 
maximum flow is the research for the maximum amount of flow capable to pass from the 
source into the sink via the network. Supposing the unlimited capacity for the source and 
the sink, the problem is only constrained by the capacity of the network. The capacity of 
each pipe is proportional to its diameter. In this network, there will be obstructions in some 
pipes. To pass from to the source to the sink, water must absolutely take one of these 
obstructed pipes. In an intuitive case, if all the pipes are full, the flow is equal to the sum of 
their capacities. In particularly, the obstruction corresponds to a set of pipes, which 
separates the source from the sink, and the sum of its capacities is equal to the maximum 
flow capable to pass from the source to the sink. Once the flow is maximal, we are in the 
situation where all the pipes of obstruction are full (saturated). 
Mathematical definition:  
A flow in a weighted graph G=(V,E), where each edge e=(i,j) has a real positive capacity 
c(e), is a map Φ between the edges set E and the set of real numbers.  
A flow   Φ → : VxV  R  
• Φ(i,j) = - Φ(i,j) 
• 0

i V -{s,t} 
Φ(i, j)

∈

=∑  : Flow conservation: what goes into a vertex is equal to what goes out of it 

(except for the source and the sink) 
• Φ(i,j) ≤ c(i,j) for all (i,j) ∈ E : Flow in an edge is less or equal to its capacity 
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• c(i,j) = 0 for all (i,j) ∉ E 
An edge is saturated if the flow in it is equal to its non-zero capacity: 

e=(i,j) is saturated <==> (c(i,j) = Φ(i,j) and  c(i,j)>0) 

3.6 Residual graph 
Let Φ be a flow in the graph G=(V,E). The residual graph Gr = (V, Er) is constructed in the 
following way: 
∀  (i,j) ∈  E : 

If   Φ(i,j) < c(I,j)  then:    (i,j) ∈  Er  and  cr(i,j) = c(i,j) - Φ(i,j) 

If   Φ(i,j) ≥ 0        then:    (j,i) ∈  Er  and  cr(j,i) = Φ(i,j) 
Thus, for each edge in the graph G with non-zero capacity c(i,j) and with a flow Φ (i,j), there 
are two edges in the residual graph Gr with capacities cr(i,j) = c(i,j) - Φ (i,j) and cr(j,i) = Φ (i,j). 
Figure 6 represents a maximum flow in a graph, and the construction of the residual graph 
illustrated in the figure 7. 
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Fig. 6. Minimum Cut in a graph                                    Fig. 7. Residual Graph 
Augmenting Path: 
An Augmenting Path in the residual graph Gr is a path from the source s to the sink t 
composed of residual edges with non-zero residual capacities. 

3.7 Solutions of the minimum s-t cuts problem 
The minimum s-t cut problem is traditionally resolved using the maximum flow algorithms 
in networks. Let s be the source and t the sink in a graph G, the maximum flow – minimum 
cut theorem says:  

Max Flow (s,t) =  Min Cut (s,t) 
This theorem says that the maximum value of a flow in a graph is equal to the minimum value 
of an s-t cut. (Ford & Fulkerson, 1962) have proved that the flow from the source s to the sink t 
will cause the saturation of a set of edges dividing the vertices into two sets S and T, with s in 
S and t in T. In other words, the theorem states that the maximum flow in a network is 
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dictated by its bottleneck. Between any two nodes, the quantity of material flowing from one 
to the other cannot be greater than the weakest set of links somewhere between the two nodes. 
This theorem links the value of the maximum flow with the value of the minimum cut, but it 
does not specify any relation between the minimum cut value and the set of cut edges. 
However, once we have a maximum flow, we can find the set of edges forming the minimum 
s-t cut. The algorithm 1 illustrates a procedure to obtain the minimum s-t cut.  
The figure 6 illustrates a minimum cut in a weighted directed graph. The weights of edges 
are in black, and the flow values are in blue. The dashed red line crosses the edges of the 
minimum cut. In this example, we notice that the value of the maximum flow is 11, and the 
weight of the minimum cut is 11. 
 

1.   Resolve the Maximum s-t Flow problem.  
2.   Find the set of vertices S reachable from the source s in the residual graph. 
3.   Find the set of vertices T non-reachable from the source s in the residual graph. 
4.   Consider the edges starting from a vertex in S and ending in a vertex in T.  
      The set of these edges forms the minimum s-t cut. 

Algorithm 1. An algorithm of minimum s-t cut. 

3.8 Maximum flow algorithm 
We find in the literatures two approaches for solving the maximum flow problem (Cormen 
et al., 2001). The first is the augmented path algorithm proposed by (Ford & Fulkerson, 
1962), and the second is the Push-Relabel algorithm. 
Augmented path algorithm: 
(Ford & Fulkerson, 1962) have developed a solution of the maximum flow problem based on 
the augmented path. In fact, if there is an augmented path in the residual graph Gr, then the 
flow is not maximal. The algorithm commences by finding an augmenting path, next, it 
adds the capacity of this path to the flow, and then updates the residual graph Gr. This 
operation is repeated until there is no augmented path.  
 

 
Algorithm 2. Maximum Flow: the augmented path algorithm. 
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Augmenting Path: 
An Augmenting Path in the residual graph Gr is a path from the source s to the sink t 
composed of residual edges with non-zero residual capacities. 

3.7 Solutions of the minimum s-t cuts problem 
The minimum s-t cut problem is traditionally resolved using the maximum flow algorithms 
in networks. Let s be the source and t the sink in a graph G, the maximum flow – minimum 
cut theorem says:  

Max Flow (s,t) =  Min Cut (s,t) 
This theorem says that the maximum value of a flow in a graph is equal to the minimum value 
of an s-t cut. (Ford & Fulkerson, 1962) have proved that the flow from the source s to the sink t 
will cause the saturation of a set of edges dividing the vertices into two sets S and T, with s in 
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dictated by its bottleneck. Between any two nodes, the quantity of material flowing from one 
to the other cannot be greater than the weakest set of links somewhere between the two nodes. 
This theorem links the value of the maximum flow with the value of the minimum cut, but it 
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However, once we have a maximum flow, we can find the set of edges forming the minimum 
s-t cut. The algorithm 1 illustrates a procedure to obtain the minimum s-t cut.  
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are in black, and the flow values are in blue. The dashed red line crosses the edges of the 
minimum cut. In this example, we notice that the value of the maximum flow is 11, and the 
weight of the minimum cut is 11. 
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3.8 Maximum flow algorithm 
We find in the literatures two approaches for solving the maximum flow problem (Cormen 
et al., 2001). The first is the augmented path algorithm proposed by (Ford & Fulkerson, 
1962), and the second is the Push-Relabel algorithm. 
Augmented path algorithm: 
(Ford & Fulkerson, 1962) have developed a solution of the maximum flow problem based on 
the augmented path. In fact, if there is an augmented path in the residual graph Gr, then the 
flow is not maximal. The algorithm commences by finding an augmenting path, next, it 
adds the capacity of this path to the flow, and then updates the residual graph Gr. This 
operation is repeated until there is no augmented path.  
 

 
Algorithm 2. Maximum Flow: the augmented path algorithm. 
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Push-Relabel algorithm: 
The idea of the Push-Relabel algorithm can be clarified by the following example. Suppose 
that the graph can be represented as follow: the source s is on the top and the sink t is at the 
height zero (bottom). We send water from the source down to the sink. In each vertex, water 
in excess will flow to the vertices at smaller height, constrained with the capacity of the edge 
relating the two vertices. After each operation, water will be in a lower vertex, and the 
excess is reduced in the upper vertex. We track water until arriving to the sink t. The 
algorithm stops when there is no excess in any vertex. 
The Height of a vertex: We observe that the longest path from the source to the sink 
contains at maximum V vertices. Thus, we can assign a height to each vertex in the 
following way: 
• Height(s) = V  
• Height (t) = 0  
• Φ(u,v)>0 ==>  Height (u) > Height (v)  
In other words, the heights of nodes (except s and t) are adjusted, and flow is sent between 
vertices, until all possible flow has reached t. Then we continue increasing the height of 
internal nodes until all the flow that went into the network, but did not reach t, has flowed 
back into s. In order to introduce the notion of excess, we define first the preflow. 
Preflow Definition: 
A preflow is similar to a flow with the exception that the total amount which can flow into a 
vertex can be bigger than the flow out of the vertex (the principle of flow conservation is no 
longer respected). The notion of preflow is introduced by (Karzanov, 1974). Let G=(V,E)be a 
graph. A preflow is a map verifying: 
Un preflow  P : VxV →  R+ : 

• ∀ (u,v) ∈  E : P(u,v) ≤ c(u,v) 
• ∀ (u,v) ∈  E : P(v,u) = -P(u,v) 
• ∀ u ∈V-{s} : 0

( ,u)  E ( ,u)  E
P( ,u) P(u, )

∈ ∈

− ≥∑ ∑
w w

w w  

Let є(u) = P(V,u), є(u) is called the excess of vertex u, which is the difference between the in 
and out flows of the vertex u. A vertex u ∈V-{s,t} is called overflowed if є(u) > 0.  The 
algorithm 3 gives a general implementation of the Push-Relabel algorithm, which uses the 
Push and the Relabel operations defined below (Goldberg & Tarjan, 1988). 
 

G=(V,E) : a graph, V is the set of vertices, and E is the set of edges. 
                   s is the source, t is the sink 
while (there is a vertex v having an excess (є(v) > 0)) 
begin 
        Select the vertex v. 
        do a Push operation (Push(v)) 
        or do a legal Relabel operation (Ralabel(v)) 
end  

Algorithm 3. Maximum Flow: General algorithm of Push-Relabel. 
Push operation: 
A push from u to v means sending a part of the excess flow from u into v. Three conditions 
must be met for a push to take place: 
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• є(u) >0  : there is an excess in the vertex u, which means that the flow into this vertex is 
bigger than the flow out of it. 

• c(u,v) - Φ(u,v) > 0 : the edge (u,v) is not saturated. 
• Height(u) > Height(v). The vertex u is higher than the vertex v. 
When these conditions are verified, we send a flow equal to min(є(u), c(u,v) − Φ(u,v)). 
Relabel operation: 
Relabelling a vertex u means increasing its height until it is higher than at least one of the 
vertices it has available capacity to them. Conditions for a relabel:  
• є (u) > 0 : There must be an excess in the vertex in relabelling. 
• Height(u) ≤  Height(v) for all v such that c(u,v) − Φ(u,v) > 0. The only vertices we have 

available capacity to are higher.  
When we re-label a vertex u, we adjust its height to be equal to the smallest value verifying 
Height(u) > Height(v) for all the vertices v having c(u,v) - Φ(u,v) > 0. 
Complexity of the maximum flow algorithms: 
• The complexity of the augmenting path algorithm is O(e*MaxFlow) (Ford & Fulkerson, 

1962), where e is the number of edges in the graph, and MaxFlow is the value of the 
maximum flow. 

• The Push-Relabel algorithm is one of the most efficient algorithms to compute a 
maximum flow. The general algorithm complexity is O(v2e) (Cormen et al. 2001), where 
v is the number of vertices in V and e is the number of edges in E. An implementation 
with FIFO vertex has a complexity of O(v3) (Cormen et al. 2001). The theoretical 
complexity of the algorithm proposed by Goldberg is O (v e log(v2/e)) (Goldberg & 
Tarjan, 1988).  

In our work, we use an implementation of Push-Relabel algorithm proposed by (Goldberg, 
1985), which is included in Boost Graph Library1.  
Note that (Boykov & Kolmogorov, 2004) have proposed a new algorithm, and they have 
proved that for typical graphs in vision, their algorithm is about 2 to 5 times faster than the 
other algorithms including the approach  Push-Relabel. Their algorithm belongs to the 
group of algorithms based on augmenting path. The algorithm starts by building search 
trees for detecting augmenting paths. In fact, the good performance is due to the reuse of 
these trees and never restarts building them from scratch.  

4. Stereo matching using graph cuts 
4.1 Labelling problem 
Many problems in vision can be formulated as a labelling problem. In such a problem, we 
have a set of sites and a set of labels. Sites represent features extracted from the image 
(pixels, segments, etc.), for which we want to estimate some quantity. Labels represent the 
quantities associated to these sites: intensity, disparity, region number, etc. Let P={1,2,…,n} 
be a set of n sites, and L={l1, …, lk} be a set of k labels. Labelling is a map from P into L: 

 f : P --> L :  sp -->  fp = f(sp)=li (3) 

                                                 
1 http://www.boost.org/libs/graph/doc/index.html 
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( ,u)  E ( ,u)  E
P( ,u) P(u, )

∈ ∈
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w w

w w  
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Thus, f(P) = {f1,…, fn}. We assign an energy function to the labelling map: a general form of 
energy function can be written: 

 E(f)=Edata (f)+λ Eprior (f) (4) 

The first term Edata(f) represents the intrinsic data energy, which translates the constraints of 
associating labels to data. The second term Eprior(f) aggregates the extrinsic energies (prior 
energy) which translate the constraints defined by the prior information. The constant λ can 
control the relative importance of the two terms; bigger values of λ give more importance to 
prior information.  
The energy function Edata(f) associates an important cost for association data/label, which 
are less pertinent. 

 data p p
p P

E  (f)  D ( f )
∈

= ∑  (5) 

Where Dp(fp) ≥ 0 measures the cost of assigning the label fp to the site p. 
The prior energy function Eprior(f) will assign an important cost to the associations fp not 
compatibles with prior information. The choice of this function depends on the type of the 
problem, but in general, a type of prior energy expresses the smoothing constraint. This 
constraint is very famous in computer vision, and it is well adapted when the estimated 
quality changes slowly everywhere or nearly everywhere: in 3D, this corresponds to the 
hypothesis that the world is continuous piecewise. This hypothesis is considered by taking 
prior information of smoothing type Esmooth. 
To formulate the smoothing energy, we need to model how the pixels interact between 
them: often it is sufficient to express how a pixel interacts with its neighbours. Let Np be the 
set of neighbour pixels to the pixel p, and N be the set of neighbour pairs {p,q}: N is named 
neighbourhood system. Smoothing energy can be written: 

 ∑
∈

=
 N{p,q} 

qp{p,q}smooth ),f(fV(f)E  (6) 

Where V{p,q}(fp,fq) is the neighbourhood interaction function: this function attributes high 
penalties to the pair {p,q} if the pixels p and q have different labels. The form of V{p,q}(fp,fq) 
determines the type of prior smoothing. With these notations, the global smoothing energy 
is the sum of neighbourhood interaction functions of all neighbour pixels. Often we choose 
V{p,q}(fp,fq) as: 

 V{p,q}(fp,fq)=u{p,q} V(fp,fq)     with u{p,q} ∈  R+ (7) 

Where V is a homogeneous potential, and u{p,q} is a multiplying term depending on the pair 
of pixels. The figure 8 shows a linear potential, V(fp,fq)= | fp - fq|. 
In stereo vision, the term u{p,q} is often a decreasing function of the norm of the gradient 
between the sites p and q, which favours the coincidence of disparity discontinuities with 
the contours of the reference image. This choice is translated by the map u{p,q} : u{p,q} = U(|Ip 
- Iq|). The term u{p,q} represents the  penalty of assigning different disparities for neighbour 
pixels p and q. The value of this penalty must be small for a pair {p,q} which is on a contour, 
and therefore with a large difference of intensity |Ip – Iq |. In practice, we use a decreasing 
empiric function U(.). The figure 9 illustrates the function u{p,q}. 
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Fig. 8. Function of linear potential                                       Fig. 9. The function u{p,q}. 

4.2 Energy and graph 
The principle of graph cuts methods is to create a graph in such a way a cut represents a 
function and the weight (cost) of this cut represents the energy value of this function.  The 
value of the minimum cut will be equal to the minimum of the energy function. 
Starting from the general formulation of labelling problem, let us consider the linear 
potential map: 

 V{p,q}(fp,fq) = u{p,q} |fp-fq| (8) 

This gives the global energy: 

 p p {p,q} p q
p  P {p,q}  N

E(f)  D (f )     u  |f -f |λ
∈ ∈

= +∑ ∑  (9) 

We will show how to construct a graph associated to an energy function, and then how to 
obtain the minimum value of this energy function by finding the minimum cut of the graph. 
This method is due to (Roy & Cox, 1998), but it profits of reformulations proposed by 
(Veksler, 1999) who put in evidence the energy to be minimized. Our description of the 
graph will be based on this formulation. First, we will explain the construction of a full 
graph, and then we explain our contribution in reducing its size to accelerate the algorithm. 

4.3 Building a complete graph 
We aim to construct a graph G=(V,E), where the set of vertices V has two special vertices: a 
source s and a sink t, and in which a minimum cut will represent a minimization of the 
stereo matching cost. The graph is constructed as follow: 
• Let k be the number of possible matches (in stereo vision, k is given by the range of 

disparity, which is related to the minimum and maximum depths in the scene). For 
example, for a disparity range [0,40] , the value of k is 41. 

• To each pixel p in the image, we associate a chain composed of k-1 nodes (sites), noted 
p1, p2, …, pk-1. These nodes are connected by edges called t-links or disparity edges, and 

noted { pt1 , pt2 ,…, p
kt }, where ),( 11 pstp = , ),p(pt jj

p
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p
k 1−= . The t-

links of a pixel are a set of edges linking the source to the first node, and then link this 
node to the next one, until linking the last node in the chain to the sink. For a disparity 
range of k values, and for each pixel p, we will have k-1 nodes in the chain and k-2 t-
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Thus, f(P) = {f1,…, fn}. We assign an energy function to the labelling map: a general form of 
energy function can be written: 

 E(f)=Edata (f)+λ Eprior (f) (4) 

The first term Edata(f) represents the intrinsic data energy, which translates the constraints of 
associating labels to data. The second term Eprior(f) aggregates the extrinsic energies (prior 
energy) which translate the constraints defined by the prior information. The constant λ can 
control the relative importance of the two terms; bigger values of λ give more importance to 
prior information.  
The energy function Edata(f) associates an important cost for association data/label, which 
are less pertinent. 

 data p p
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Where Dp(fp) ≥ 0 measures the cost of assigning the label fp to the site p. 
The prior energy function Eprior(f) will assign an important cost to the associations fp not 
compatibles with prior information. The choice of this function depends on the type of the 
problem, but in general, a type of prior energy expresses the smoothing constraint. This 
constraint is very famous in computer vision, and it is well adapted when the estimated 
quality changes slowly everywhere or nearly everywhere: in 3D, this corresponds to the 
hypothesis that the world is continuous piecewise. This hypothesis is considered by taking 
prior information of smoothing type Esmooth. 
To formulate the smoothing energy, we need to model how the pixels interact between 
them: often it is sufficient to express how a pixel interacts with its neighbours. Let Np be the 
set of neighbour pixels to the pixel p, and N be the set of neighbour pairs {p,q}: N is named 
neighbourhood system. Smoothing energy can be written: 

 ∑
∈

=
 N{p,q} 
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Where V{p,q}(fp,fq) is the neighbourhood interaction function: this function attributes high 
penalties to the pair {p,q} if the pixels p and q have different labels. The form of V{p,q}(fp,fq) 
determines the type of prior smoothing. With these notations, the global smoothing energy 
is the sum of neighbourhood interaction functions of all neighbour pixels. Often we choose 
V{p,q}(fp,fq) as: 

 V{p,q}(fp,fq)=u{p,q} V(fp,fq)     with u{p,q} ∈  R+ (7) 

Where V is a homogeneous potential, and u{p,q} is a multiplying term depending on the pair 
of pixels. The figure 8 shows a linear potential, V(fp,fq)= | fp - fq|. 
In stereo vision, the term u{p,q} is often a decreasing function of the norm of the gradient 
between the sites p and q, which favours the coincidence of disparity discontinuities with 
the contours of the reference image. This choice is translated by the map u{p,q} : u{p,q} = U(|Ip 
- Iq|). The term u{p,q} represents the  penalty of assigning different disparities for neighbour 
pixels p and q. The value of this penalty must be small for a pair {p,q} which is on a contour, 
and therefore with a large difference of intensity |Ip – Iq |. In practice, we use a decreasing 
empiric function U(.). The figure 9 illustrates the function u{p,q}. 
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Fig. 8. Function of linear potential                                       Fig. 9. The function u{p,q}. 

4.2 Energy and graph 
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links between these nodes, and two other t-links, the first with the source and the other 
with the sink. Thus, we have in total k t-links. The capacity (weight) of each of these t-
links is equal to the cost of matching of the pixel to a corresponding one in the other 
image with a disparity equal to the zero-index of the t-link in the chain.  

• The capacity of the t-link number j is set to Kp+Dp(lj), with Dp(lj) is the cost of matching 
of the pixel p with a disparity lj, and Kp is a constant satisfying the constraint 10. 

 1
p

p {p,q}
q  N

K   (k - ) u
∈

> ∑  (10) 

In fact, the constant Kp is chosen to be bigger than the sum of capacities of penalty edges (n-
links, cf. below) which have one extremity in the chain of nodes associated to the pixel p. 
• To each pair of neighbour pixels p and q, we link the corresponding chains with edges 

called n-links or penalty edges. The n-link edge at the level j ∈ {1, 2 … k-1}, is noted 
{pj,qj}, has a capacity equals to u{p,q}. The figure 10 illustrates the nodes related to one 
pixel, the t-links (which are coloured in blue) and the n-links (in green). 

The capacity of an s-t cut of a graph is the sum of capacities of all cut edges. Due to the 
construction method of this graph, a cut capacity will be composed of two parts: the first is 
the sum of capacities of the cut t-link edges, and the second is the sum of capacities of cut n-
link edges. In fact, the addition of the constant Kp allows us to assure the uniqueness of the 
cut of each t-link chain, see (Roy & Cox, 1998) for a proof. 
Another method can assure the uniqueness of cutting the chain of t-links in exactly one edge 
is proposed by (Ishikawa, 2000). Their graph is very similar but it is oriented, and they add 
to the chain of pixel  p another inverse chain with infinite capacity. 
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Fig. 10. The t-links and the n-links. 

A graph cut consists in splitting the graph into tow parts. The cut t-link edges form the 
surface of searched depth, and this can allow the assignment of a disparity to each pixel. The 
problem of graph cut can be solved using the maximum flow (as seen before). To determine 
the disparity of a pixel p, the minimum cut will pass through one (and only one) t-link of the 
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chain associated to the pixel p. The index (zero-based) of this edge in the chain allows 
finding the disparity of this pixel. Hence, for a disparity range [dmin, dmax], a t-link of index j 
corresponds to a disparity of (dmin +j). 
 

 
Fig. 11. The disparity surface correspondent to a minimum cut of the graph, as proposed by 
(Roy & Cox, 1998) 

This method enables us to attribute a disparity to each pixel in the image. The disparity 
surface can be visualized as a surface traversing all the cut t-links in the graph. The figure 11 
illustrates a minimum cut and the corresponding disparity surface. We note that this 
method allow us to obtain integer disparity only, and cannot deal with real disparities (sub-
pixel). In fact, the construction of the complete graph requires that the zero-index of a t-link 
in the chain corresponds to a value in the disparity range [dmin, dmax], and in consequence, 
non-integer (real) values of disparity are not acceptable by this method. We will see in the 
next section (by the reduced graph) how to overcome this problem.  
Requirements of this method: 
We will calculate the total number of vertices and edges in the complete graph in order to 
put in evidence two constraints: the constraint of needed memory, and the constraint of 
execution time.  
Let W and H be the width and the height of the image, [0,dmax] the disparity range. Let v the 
vertices number in the graph, and e the number of edges. For each pixel, the number of 
possible matches is k=dmax+1. For each pixel, the corresponding chain has k-1=dmax nodes. 
Thus, the total number of nodes in the graph is (the term +2 is added for the source and the 
sink): 

 v = W  H dmax + 2  (12) 
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chain associated to the pixel p. The index (zero-based) of this edge in the chain allows 
finding the disparity of this pixel. Hence, for a disparity range [dmin, dmax], a t-link of index j 
corresponds to a disparity of (dmin +j). 
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This method enables us to attribute a disparity to each pixel in the image. The disparity 
surface can be visualized as a surface traversing all the cut t-links in the graph. The figure 11 
illustrates a minimum cut and the corresponding disparity surface. We note that this 
method allow us to obtain integer disparity only, and cannot deal with real disparities (sub-
pixel). In fact, the construction of the complete graph requires that the zero-index of a t-link 
in the chain corresponds to a value in the disparity range [dmin, dmax], and in consequence, 
non-integer (real) values of disparity are not acceptable by this method. We will see in the 
next section (by the reduced graph) how to overcome this problem.  
Requirements of this method: 
We will calculate the total number of vertices and edges in the complete graph in order to 
put in evidence two constraints: the constraint of needed memory, and the constraint of 
execution time.  
Let W and H be the width and the height of the image, [0,dmax] the disparity range. Let v the 
vertices number in the graph, and e the number of edges. For each pixel, the number of 
possible matches is k=dmax+1. For each pixel, the corresponding chain has k-1=dmax nodes. 
Thus, the total number of nodes in the graph is (the term +2 is added for the source and the 
sink): 

 v = W  H dmax + 2  (12) 
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In each chain (except at the boundaries), each node is linked with its 6 neighbours by edges. 
The number of edges in the graph  is: 

 e = 6 W  H dmax - 2 dmax ( W + H)  (13) 

The term 2 dmax ( W + H) is added because there are fewer edges at the boundaries of the 
graph. To have an idea about the total number of vertices and edges in the complete graph, 
see the table 1, which is calculated for an image of size 512x512 pixels and for different 
disparity ranges. In this table, and for a disparity range [0, 40], there are more than 10x106 
vertices and more than 60x106 edges. This example illustrates the necessity to have huge 
memory (RAM). Indeed, because the complexity of maximum flow algorithm (as seen 
before), the execution time will be very big, especially for large disparity ranges. 
 

 dmax = 30 dmax = 40 dmax = 50 
Vertices Number v 7 864 320 10 485 760 13 107 200 
Edges Number e 47 124 480 62 832 640 78 540 800 

Table 1. Vertices and edges numbers in the complete graph for an image of size 512x512, for 
different disparity ranges.  

4.4 Building a reduced graph 
The major problems of the complete graph method presented in the previous section are its 
greediness to memory and execution time. To overcome these problems, we propose to 
construct a reduced graph. This reduced graph will contain a reduced number of vertices 
and edges. This allows us to decrease the amount of needed memory, and to lighten the 
execution time (Zureiki et al., 2007). 
In the reduced graph: for each pixel in the image, we keep only some potential disparity 
values, resulting from a local method of stereo matching. However, in the method of the 
complete graph, we keep for each pixel all possible values of disparity (as seen in previous 
section). 
The construction steps of the reduced graph are similar to the complete graph, with some 
differences: 
• By mean of a local matching method (based on local similarity measurement, as SAD 

for example), we calculate for each left pixel p, the matching costs for all possible values 
in the disparity range [dmin, dmax].  

• Then, we choose the N best values (for illustration purposes, we choose N=4 without 
lack of generality). The choice may be done according to different criteria, for example, 
with a classic ZNCC score; we keep the disparity values around the peak, or the N best 
local maxima (if they exist), etc. We will note our N selected disparities for the pixel p as  
{d1,p, d2,p, …  dN,p}, and the corresponding costs of matching as {

1,pp,dD , 
2 ,pp,dD , … , 

N,pp,dD }.  

• To reduce the size of the graph, for each pixel p of the image, instead of keeping a chain 
of k-1 nodes and k edges, we remove all the nodes and edges except N-1 nodes (and 
thus, N edges).  

• Thus, to each pixel p we associate a novel chain of nodes {
1Lp , 

2Lp , …, 
1NLp
−

}. These 

nodes are connected by edges (t-links) noted { 1
pt , 2

pt ,…, p
Nt } with {

11
p
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• The capacity of the t-link edge i is 
i,pp,dC D+ , where C is a constant satisfying the 

constraint 14. The addition of this constant assures the uniqueness of the cut of the t-
links chain in exactly one edge. 

 max minmax {p,q}{p,q}  N
C  N *  (u ) * | d  - d |

∈
>  (14) 

• For each adjacent pixels p and q, the corresponding chains are related by edges (n-links) 
at the N-1 levels, with a capacity as in equation 15.  

 n-link capacity at level i  =  u{p,q} (|di,p - di,q|+1)  (15) 
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Fig. 12. Construction of the Reduced Graph.                Fig. 13. The Reduced Graph. 

The figure 12 illustrates the construction of the reduced graph. The dashed edges are for the 
complete graph (previous section). The not removed nodes are in red, the new t-links are in 
blue and the new n-links are in green. The figure 13 illustrates a frontal projection of the 
reduced graph. 
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• The capacity of the t-link edge i is 
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constraint 14. The addition of this constant assures the uniqueness of the cut of the t-
links chain in exactly one edge. 
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Minimized Energy by the Reduced Graph: 
We have seen that the minimized energy by the complete graph contains two terms. The 
first term represents the intrinsic data energy, which translates the costs of attributing 
disparities to pixels of the image. The second term aggregates the constraint of continuity 
(adjacent pixels have similar disparities). The constant λ can control the relative importance 
of the two terms. Hence, the prior energy appears in the weights associated to the n-link 
edges in the complete graph. In our reduced graph, we do distinguish between two types of 
prior information, the first translates the information acquired by the local method and acts 
in the choice of the selected nodes, while the second (smoothing) interferes in the penalties 
associated to the n-link edges. Thereby, we exploit the prior knowledge that the disparity of 
a pixel p has only N possible values (the most probable) in a new way. In fact, we consider 
that removing non-potential nodes as a novel form of representing this prior knowledge.  
The minimized energy can be written as: 

 ∑∑
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Requirements of this method: 
We will calculate the total numbers of vertices and edges in the reduced graph, using the 
same notation as previously for W, H, dmax, k, etc. Let N be the number of chosen disparities  
among all the possible values in the disparity range. We can obtain the number of vertices 
and edges by replacing dmax by (N-1) in the equation for the complete graph: 

 v = W H (N-1) + 2 (17) 

 e = 6 W H (N-1) – 2 (N-1) (W + H) (18) 

The table 2 gives the numbers of vertices and edges in the reduced graph for an image of 
size 512x512, and for any value of disparity range, while using N=4 or N=5. We clarify that 
the disparity range does not any more influence the size of the graph, but the number of 
pre-selection N. For N=4, we obtain less than 0.8x106 vertices and less than 0.160x106 edges. 
This example illustrates clearly the immense gain in needed memory (RAM). 
 

 N=4 N=5 
Vertices Number v 786 432 1 048 576 
Edges Number e 153 600 1 564 672 

Table 2. Vertices and edges numbers in the reduced graph for an image of size 512x512 with 
the number of pre-selected disparities N= 4 or 5. 
Advantages of the Reduced Graph: 
The benefits of reduced graph construction are: 
• The graph becomes less voluminous. The vertices number is divided for example by 10 

for a disparity range of width 40 and with the number of pre-selection N=4.  
• The size of the graph is no more dependent of the disparity range. This allows us to use 

larger disparity ranges.  
• The index of the edge in the t-link chain associated to a pixel p in the complete graph 

corresponds to a value in the disparity range. This prevents using non-integer 

Stereo Matching and Graph Cuts 

 

367 

disparities.  On the contrary, in the reduced graph, the value associated to the edge is 
added as an attribute, and there is not any constraint to be an integer or real value. 
Hence, we can use real value for disparity, and especially for sub-pixel disparities.  

• Due to the size of the reduced graph in numbers of vertices and edges, and knowing 
that the maximum flow algorithms are proportional (of order 2 or 3) to these numbers, 
the execution time to find the minimum cut in the reduced graph is extremely smaller 
than the one for the complete graph. Table 3 gives some experimental results for 
execution time. 

5. Implementations and results 
In our work, images are acquired by a pre-calibrated stereo rig. In addition, our stereo 
matching algorithms considers that the left and right images are rectified, which means that 
epipolar lines are horizontal and have the same line index in the left and right images. Thus, 
the rectified images come from the pre-calibrated cameras are the input of the graph cuts 
algorithms. We suppose that the rectification is exact, which means that the disparity 
depends only on the column index of the pixel: the pixel (u,v) in the left image is matched to 
the pixel (u, v-d) in the right image. The sub-pixelic resolution is applied only to the value d. 
Graph constructions and processings, are designed using the Boost Graph Library (BGL)2. 
Boost is an open source library distributed under Boost Software License3. The BGL is a C++ 
library built by using the principles of generic programming for the construction of data 
structures and for the implementation of the different algorithms on graphs. For more 
details, see (Siek et al., 2001). Among the many algorithms for manipulating graphs, BGL 
makes available in particular an implementation of the algorithm Push-Relabel Maximum 
Flow proposed by (Goldberg, 1985). This algorithm has a complexity of O(v3), with v is the 
vertices number. In fact, this implementation is not the best one in performance, but it 
allows us to evaluate the execution time for both the complete and reduced graphs. Indeed, 
for the reduced graph, the influence of algorithm is already reduced because the graph is 
less voluminous.  
Algorithms of construction and of minimum cut have been implemented first on the 
complete graph, as described in section 4.3. Next, these algorithms of construction and of 
minimum cut have been adapted for the reduced graph (section 4.4). To evaluate the 
performance of these methods, we have used the image sawtooth (Scharstein & Szeliski, 
2002) illustrated on figure 14. For this image, the exact disparity (round truth) is given on 
figure 15. For the reduced graph, the selection of a limited set of disparities on every pixel is 
provided by a local matching method based on SAD with window size equals to 7 pixels.  
The test is done on a P4 with 3GHz and 512MB of RAM. Table 3 gives the execution time for 
the image sawtooth.  We note that for the size 434x380 and 20 levels of disparities, we could 
not test the method of the complete graph (memory explosion). On the contrary, with the 
reduced graph, we obtain the disparity image in less than one minute. Further, on, we tested 
the two methods with a half-size image (217x190), we can notice a factor of 40 between the 
complete and reduced graphs in execution time (150 seconds against 4 seconds). In addition, 
we remark that for the reduced graph, the pre-selection number N influence explicitly the 
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Minimized Energy by the Reduced Graph: 
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Requirements of this method: 
We will calculate the total numbers of vertices and edges in the reduced graph, using the 
same notation as previously for W, H, dmax, k, etc. Let N be the number of chosen disparities  
among all the possible values in the disparity range. We can obtain the number of vertices 
and edges by replacing dmax by (N-1) in the equation for the complete graph: 

 v = W H (N-1) + 2 (17) 

 e = 6 W H (N-1) – 2 (N-1) (W + H) (18) 

The table 2 gives the numbers of vertices and edges in the reduced graph for an image of 
size 512x512, and for any value of disparity range, while using N=4 or N=5. We clarify that 
the disparity range does not any more influence the size of the graph, but the number of 
pre-selection N. For N=4, we obtain less than 0.8x106 vertices and less than 0.160x106 edges. 
This example illustrates clearly the immense gain in needed memory (RAM). 
 

 N=4 N=5 
Vertices Number v 786 432 1 048 576 
Edges Number e 153 600 1 564 672 

Table 2. Vertices and edges numbers in the reduced graph for an image of size 512x512 with 
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Advantages of the Reduced Graph: 
The benefits of reduced graph construction are: 
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for a disparity range of width 40 and with the number of pre-selection N=4.  
• The size of the graph is no more dependent of the disparity range. This allows us to use 

larger disparity ranges.  
• The index of the edge in the t-link chain associated to a pixel p in the complete graph 

corresponds to a value in the disparity range. This prevents using non-integer 
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execution time for larger sizes of images, but its influence is nearly neglected for small 
images. Thus, this table put in evidence the enormous gain in execution time provided by 
the reduced graph approach. We notice that the complete graph cannot be manipulated on 
normal machines (with ordinary memory), whereas the reduced graph can be built and 
analyzed in acceptable time. Therefore, the reduced graph algorithm is faster, in spite of a 
supplementary phase of calculation of local costs (which can be neglected compared with 
the execution time of graph cut algorithm). 
 

             
Fig. 14. The sawtooth image.                                    Fig. 15. The sawtooth image: true disparity. 

             
Fig. 16. Disparity image by reduced graph.          Fig. 17. Disparity image by complete graph. 

 
Reduced Graph Image Size Complete Graph N=4 N=5 

434x380 NA 15 s 50 s 
217x190 150 s 4 s 5 s 

Table 3. Execution time in seconds for stereo matching using graph cuts in Complete graph 
and Reduced graph, for a disparity range [0, 20], and with the number of pre-selected 
disparities N= 4 or 5. 
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Figure 16 represents the disparity image obtained by the reduced graph approach, and 
figure 17 shows results by the complete graph. We can visually appreciate the quality of the 
obtained disparity images.  
 

             
Fig. 18. The Flowerpots image.                             Fig. 19. The Flowerpots image: true disparity. 

             
Fig. 20. Disparity image by reduced graph.            Fig. 21. Disparity image by SAD matching. 

To illustrate the improvement of the reduced graph with respect to the local matching 
method, let us use the image Flowerpots 4 (Hirschmüller & Scharstein, 2007) shown in the 
figure 18. The true disparity of this image is given in figure 19. We used the SAD local 
method with a window size 7, this gives the disparity image of figure 21. When using our 
reduced graph method to calculate the disparity image, the result is shown in figure 20. We 
notice that many false matches in the local method were removed by the global method.  In 
spite of these ameliorations, there still exist some errors in the disparity image. These errors 
(see figure 20), are in general in zones with very poor texture (or even mono coloured 
zones). In fact, these are among the most difficult problems for stereo matching.  
Although the reduced graph matching method provides several ameliorations, it has some 
weak points, summarized in three main drawbacks: 
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• The reduced graph method inherits some problems from the used local method. In fact, 
if the local method supplies N erroneous values of a pixel disparity, the resulting 
disparity for this pixel will be absolutely one of these erroneous values.By now, the 
global step cannot correct errors introduced by the local step. 

• There are smoothing effects (like all global methods) due to the regularization. The 
smoothing will be more important when using bigger value for the penalty cost. 

• In spite of its relative good execution time, the reduced graph method is not yet 
adapted to be used in real-time applications, like robotics. A parallel version of the 
maximum flow algorithm could be proposed to overcome this problem, taking 
advantage of a dedicated architecture. 

6. Conclusion and perspectives 
We described in this chapter, our evaluation of global stereo correspondence methods based 
on graph cuts. The combination of a local method, able to select a reduced set of possible 
matches for each pixel, and a global method, based on the graph cuts algorithm, let us to 
achieve two goals 
• Sensibly ameliorate the quality of disparity images obtained only by a local method. 
• Avoid the combinatorial explosion of the Graph Cuts method executed without 

preliminary reduction of the graph. 
Some optimizations of our algorithm are currently studied. Note that we work always on 
pre-rectified images, and we produce an integer disparity image: we will study how to 
adapt this algorithm in order to find stereo matching on non-rectified images. 
The reduced graph approach allows us to limit the execution time and to use larger 
disparity ranges. We write the code with the aim to obtain results and not to optimize the 
performance. In addition, we did not use the best maximum flow algorithm. In the next 
period, we could very easily improve performances, in order to satisfy as much as possible, 
real time constraints. 
Section 4.4 has shown that the reduced graph is able to deal with sub-pixel disparities (real 
values). Testing this property and obtaining sub-pixel disparity images will be our main 
objective in our near future works. 
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