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Preface

When scientists and researchers talk about proteins, particularly their function and struc‐
ture, proteomics should be mentioned. In fact, the term proteomics refers to the entire com‐
plement of proteins, including modification. This promising discipline has enabled us to
study proteins from a massive and comprehensive point of view, empowering us to accu‐
rately understand the molecular basis for disease initiation, progression and efficacious
treatment based on the discovery of unique biomarkers.

The book Recent Advances in Proteomics Research describes in five sections some of the appli‐
cations of proteomics. This fine research has been written by leading experts worldwide.

This book is aimed mainly at those interested in proteins and in the field of proteins, partic‐
ularly biochemists, biologists, pharmacists, advanced graduate students and postgraduate
researchers.

Finally, I am grateful to all the experts who participated in this book and shared their valua‐
ble experiences. Indeed, without their participation, this book would not have come to light.

Sameh Magdeldin, M.V.Sc., Ph.D. (Physiology), Ph.D. (Proteomics)
Senior Researcher and Proteomics Team Leader,

Medical School, Niigata University, Japan
Associate Professor, Physiology Department,

Suez Canal University, Egypt





Chapter 1

Quantitative Mass Spectrometry-based Proteomics

Lennart van der Wal and Jeroen A. A. Demmers

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/61756

Abstract

Mass spectrometry-based proteomics, the large-scale analysis of proteins by mass spec‐
trometry, has emerged as a powerful technology over the past decade and has become an
indispensable tool in many biomedical laboratories. Many strategies for differential pro‐
teomics have been developed in recent years, which involve either the incorporation of
heavy stable isotopes or are based on label-free comparisons and their statistical assess‐
ment, and each of these has specific strengths and limitations. This chapter gives an over‐
view of the current state-of-the-art in quantitative or differential proteomics and will be
illustrated by several examples.

Keywords: Mass spectrometry, quantitation, SILAC, heavy isotope labelling, chemical
tagging, 18O labelling

1. Introduction

Analysis of the proteome using mass spectrometry has proven to be an indispensable tool in
biomedical research over the past 15 years or so. Originally, because of technical limitations,
only qualitative measurements were performed for the identification of proteins in a sample.
However, the need to put a quantitative label on proteomics analyses became evident rapidly.
For this reason, several different technologies were developed for their use, in combination
with mass spectrometry, to supply researchers with more quantitative data to investigate, e.g.
the dynamics of a particular proteome. In this chapter, a brief overview of quantitative
approaches in mass spectrometry-based proteomics will be given. Current protocols for
quantitative analysis and software solutions for data analysis will be discussed and examples
from the field (including our own laboratory) will be given to illustrate the power of these
methods.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



2. Mass spectrometry-based proteomics

Before the application of mass spectrometry, protein analysis was mostly based on the
purification of single proteins or protein complexes, followed by the performance of experi‐
ments on these purified proteins or complexes. Usually, such biochemical experiments are
quite laborious and mostly reliant on the extent to which the protein can be purified. Although
mass spectrometry as a technique to study small molecules dates back to the beginning of the
20th century, the use of mass spectrometry in peptide and protein analysis is more recent. The
development of both matrix-assisted laser desorption/ionization (MALDI) and electrospray
ionization (ESI) in the 1980s was key to this development, as these techniques allowed the
ionization of biomolecules such as peptides, proteins and nucleotides, which made their
detection by mass spectrometry possible. The 2002 Nobel Prize in Chemistry was awarded to
John B. Fenn and Koichi Tanaka for the development of these ionisation techniques [1]. With
the possibility to analyse biomolecules, in particular peptides and proteins, using mass
spectrometry, the key step towards proteomics was made. Equally important was the advent
of the genomic age, supplying the databases which are instrumental for the analysis and
identification of proteins, as well as the technical advances of both mass spectrometers and the
(bio)informatic infrastructures that are essential for large data handling.

Mass spectrometry in itself is merely a qualitative analytical technique. The biochemical and
biophysical properties of proteins and peptides are quite variable, which leads to large
differences in properties such as ‘sprayability’ and, thus, in resulting ion intensities between
different peptides, even though these may be present in equimolar amounts in the sample. In
order for mass spectrometry to be useful not only for the qualitative analyses but also for the
quantitative analysis, these caveats and problems need to be addressed and solved. Concern‐
ing the different types of mass spectrometers, there are several physical principles to choose
from. While it goes beyond the scope of this chapter to discuss all of these in details, it is quite
useful to be aware of the different possibilities available as these may influence the perform‐
ance of the quantitative analysis. The type of mass spectrometers that are most widely used in
proteomics are (1) time-of-flight (ToF), (2) quadrupole, (3) (Paul) ion trap, (4) FTICR, or (5)
orbitrap [2,3]. In ToF analysis, the velocity of an ion is measured in order to determine the size
of the particle. The quadrupole analyses the movement of an ion through an electric field, while
the Paul ion trap is a type of quadrupole that uses static direct current and radio frequency
oscillating electric fields to trap ions. In an FTICR mass spectrometer, ions are trapped in a
strong magnetic field and the periodic movement of the ions is translated back to m/z ratios.
In an orbitrap, ions are trapped in an orbital motion around a spindle, while the image current
from the trapped ions is detected and converted to a high-resolution mass spectrum using
Fourier transformation (for a review on orbitrap mass spectrometry, see [3]). Current mass
spectrometers are usually hybrid instruments, which combine two or more of the above
mentioned principles for the analysis of peptides and proteins.

Recent Advances in Proteomics Research2
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3. Overview of quantitation methods

The first (semi-)quantitative approach to proteomics was achieved using ‘2D difference in gel
electrophoresis’ (2D-DIGE). With this technique, proteins are separated according to size and
charge, and it includes the incorporation of fluorescent labels (CyDye) to allow the comparison
of two conditions versus an internal standard [4,5]. After separation of the proteins, the spots
are analysed using specialised software, measuring the relative fluorescence intensities. Spots
that appear to be differentially regulated can then be excised from the gel and identified using
mass spectrometry [6]. The usage of an internal standard, usually a mix of the two measured
conditions, supplies this method with quantitative properties. However, the limitations of 2D-
DIGE, and of 2D gel electrophoresis for complex samples in particular, have led to decreased
usage of the technique. Because of limitations in the number of samples to be compared, in
studying membrane-bound proteins, as well as in the relative low proteome coverage,
alternative technologies have now superseded the use of 2D-DIGE as a quantitative proteomics
method. Techniques currently used for quantitation are summarized in Figure 1 and discussed
further below.

Figure 1. Overview of the stage in which incorporation of the stable isotope labels occurs using different labelling
methods in quantitative proteomics. The colour of the diamonds represents the two proteins samples which are differ‐
entially labelled and compared in the workflow. (Figure adapted from [7]).

Nowadays, the techniques most frequently used to quantify proteins using mass spectrometry
involve labelling proteins with isotopically labelled tags, which can be distinguished in the
mass spectrometer because they differ in mass. Differential mass tags result in a (usually only
small) mass difference between the ‘light’ and ‘heavy’ sample, while proteins and/or peptide
properties such as the retention time on a chromatography column are not affected. This allows
for the simultaneous analysis of the tagged proteins in a single mass spectrum or LC-MS run.
Several methods based on the addition of labelled tags are used in modern proteomics, each
with their strong and weak points. Furthermore, with the development of more sensitive and
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faster mass spectrometers, methods that allow quantitation of proteins in a label-free manner
have been developed, including spectral counting and the comparison of ion intensities. These
techniques have the distinct advantage of requiring no (chemical) labelling of the sample, but
the trade-off is the lower accuracy of the quantitation. All of these techniques will be described
in this chapter, including several examples of how they are used to answer biomedical
questions currently posed in the field.

4. Metabolic labelling

The use of amino acids with either of light or heavy stable N and/or C isotopes in growth
medium is an approach that was introduced by the Mann lab [8]. Because the labelling takes
place at the very beginning of the proteomics workflow, samples can be mixed at the earliest
possible time point. Consequently, the occurrence of systematic errors that may be introduced
during sample handling is reduced [8,9]. Although this method has shown to be a powerful
way to perform quantitation in proteomics in many different applications, there are also
several disadvantages to using metabolic labelling, most importantly the inability for appli‐
cation in human tissue samples. Because the samples need to be metabolically active in order
to incorporate the label, this automatically precludes, e.g. blood and biopsy samples. This
makes it impossible to use metabolic labelling in a diagnostic setting. Furthermore, for some
metabolic labelling approaches, reliable software for data analysis is still lacking. The labelling
itself is quite time-consuming, as it takes some time for cell cultures to become completely
labelled. Finally, the costs of metabolic labelling approaches may be substantial due to the
amount of expensive labelled reagents [10]. Below, several types of metabolic labelling will be
discussed in more detail.

4.1. 15N labelling

The use of heavy nitrogen (15N) to label whole model organisms dates back to the 1960s, when
it was applied to plants for the first time (see [10] for a review on the matter). In the late 1990s,
this strategy took off for other organisms such as E. coli, yeast and Drosophila [9, 11, 12]. Protein
labelling is usually achieved by adding salts containing labelled nitrogen into the medium (in
the form of, e.g. NH4Cl), which will then be metabolised by the organism and finally incorpo‐
rated into proteins. The advantage of this labelling approach, apart from incorporation at the
earliest possible moment, is that labelling of all peptides is guaranteed. However, it also
provides increased complexity of the sample, most importantly because the mass difference
between the light and the heavy counterpart peptides is basically variable for each peptide
pair. This presents a major challenge for suitable bioinformatics solutions for qualitative and
quantitative data analysis. 15N labelling has successfully been used in the study of prokaryotes,
for instance, the proteome of S. aureus was analysed extensively using 15N labelled growth
medium [13]. By tying the identified proteins to the completely sequenced genome of S.
aureus, 80% of all expressed proteins were identified using this approach. A study by Kohl‐
mann and coworkers [14] displayed the power of 15N labelling in shotgun proteomics in
analysing R. eutropha, a prokaryote that can grow on 13CO2 as the sole carbon source and is
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used for the industrial production of stable isotope-labelled biomolecules. R. eutropha has the
ability to switch to lithoautotrophy, i.e. to switch to a source of reduced minerals to satisfy its
energy needs. By studying the proteome of R. eutropha under both normal and lithoautotrophic
conditions, a large upregulation of specific proteins was observed when the prokaryote had
to switch its energy source, including chemotaxis-related proteins [14,15].

4.2. 13C labelling

Another prime candidate for metabolic labelling is 13C, as carbon is a key player in protein
chemistry. 13C labelling has been successfully used in the determination of protein turnover
rates. For instance, by feeding E. coli on 13C-labelled glucose, protein turnover rates using only
a single culture could be measured by mass spectrometry [16]. Moreover, the method is
applicable to shotgun proteomics, which allows for a broader overview of proteins and their
turnover rates. In order to reduce the costs of metabolic labelling, a technique called ‘subtle
modification of isotope ratio proteomics’ (SMIRP) was developed [17]. In SMIRP, an increase
of only ~1% in isotope ratio can be used to relatively quantify proteins by calculating the ratio
of isotopes and comparing it to the variability occurring in nature.

4.3. SILAC

In cultured cells, the metabolic labelling method of choice is stable isotope labelling using
amino acids in culture (SILAC), which uses isotopically labelled amino acids (See Figure 2 for
a typical SILAC workflow). In order for the amino acids to be incorporated into proteins, it is
necessary to determine whether the studied organism is an auxotroph for said amino acid. If
a cell or organism is an auxotroph for an amino acid, it cannot synthesize this amino acid itself
and, therefore, the amino acid should be supplied in the food or in the growth medium [8].
Usually in SILAC, labelled lysine and arginine are used, which are particularly useful for
proteins that are processed with trypsin. Since trypsin cleaves after lysine and arginine, in
principle all peptides except for the C-terminal peptide are labelled. If the cells are auxotroph
for the selected amino acids, all proteins in a cells are generally completely labelled after several
doublings [8]. Conversely, this means that the cells must be dividing, which precludes the use
of this technique on primary tissue samples. A complication that has been described in the
literature that could potentially interfere with quantitation of SILAC labelled proteins is the
natural occurrence of arginine-to-proline conversion. While lysine and arginine are relatively
stable in the cell, it is possible for the cell to produce proline from spare arginine, which can
then lead to heavy labelled proline. Obviously, this is undesirable and should be accounted
for either experimentally or during data analysis (see e.g. [18]).

Labelling using SILAC can also be used to examine post-translational protein modifications
such as phosphorylation and ubiquitination in a quantitative manner. An example of this is a
phosphoproteomic study in yeast after the knockout of a kinase that plays a role in growth
and division [19]. SILAC can in principle be used for any cultured cell type. A recent study
from our lab into hormonal signalling in Drosophila combined SILAC mass spectrometry with
transcriptome analysis [20]. Drosophila Kc cells were stimulated with the key insect hormone
ecdysone and both mRNA expression and protein expression were studied during a time
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course. The results showed a correlation in the changing levels of mRNA and protein over
time, although it became evident that in general there is a time delay between mRNA and
protein expression. Not all mRNA–protein pairs showed this delay though, which could be
attributed to post-transcriptional regulation events of mRNAs and to variable stability of
proteins. Several interesting proteins linked to signalling pathways such as target of rapamycin
(TOR) and Notch were identified as being regulated by ecdysone signalling, giving an
indication of the scope of the ecdysone system. This study shows the applicability of SILAC
in studies where a significant number of proteins are changed, and the correlation between
mRNA and protein levels show the quantitative power of SILAC technology, as well as the
power of this method to identify signalling networks in cellular systems. In general, there is

Figure 2. Typical SILAC workflow: cells representing two different biological conditions are grown in either light or
heavy medium containing amino acid with stable heavy isotopes. Cells are then harvested and mixed in equal
amounts and all sample preparation is performed on the mixed cell populations. In the final mass spectrum, a tryptic
peptide will be observed as a peak pair, which represents the two sample conditions. By calculating the peak intensity
ratio, the conditions can be compared in a quantitative fashion.

Recent Advances in Proteomics Research6
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also a correlation, albeit weak, between steady-state levels of mRNA and protein (Figure 3).
This is mainly true for products that show relatively high expression, which has also been
reported in other studies. From this plot, it becomes also clear that for many mRNA products
no corresponding protein was identified, illustrating the technical limitations in proteomics
that still prevent very low abundant proteins to be detected. In addition, there were several
protein products that could not be matched to mRNAs, indicating that, since the intensities of
these proteins are generally similar to those with a matched mRNA, this could be attributed
to the incomplete annotation of the Drosophila database.

Figure 3. A scatter plot of absolute protein intensities (based on iBAQ values) versus absolute mRNA intensities (based
on FPKM values) shows that steady-state levels of protein and mRNA show a weak correlation (R2= 0.366). The intensi‐
ty distribution of proteins for which no corresponding hit in the transcriptome analysis was found is represented by
the green box plot. This distribution is very similar to the distribution of overlapping hits (blue data points).

An interesting technological progression in the recent years has been the emergence of fully
labelled SILAC organisms, such as fruit flies, mice and rats, which allows for in vivo quanti‐
tative protein analysis [12,21,22]. This allows scientists to study alterations of protein levels in
lab mice with as little variation possible, which in turn makes it possible to study the dynamic
proteome in tissue. Currently, the generation of SILAC labelled mice is limited by cost
considerations due to the expenses required to raise the mice on a diet of labelled food and
this has prevented large-scale usage thus far.

Finally, the so called ‘super-SILAC’ standard is a pool of multiple cell lines that have been
labelled using SILAC, which is then spiked into experimental samples. By spiking all the
samples with this standard, quantitation becomes possible without the necessity to label the
samples themselves using SILAC. This allows the application of SILAC quantitation in patient
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tissue, which can evidently not be labelled using traditional SILAC. It should be noted that it
is recommended to have a representative sample for the tissue to be studied in the SILAC
standard, which limits the usage of this technique to tissues with a representative cell line. For
a more in-depth review on this topic, see [23].

5. Chemical labelling strategies

The use of chemical labelling strategies for relative quantitation in proteomics dates back to
the late 1990s [24]. The major advantages of using chemical techniques rather than metabolic
labelling are the reduced cost and the higher speed of sample processing and analysis. Where
labelling cells with SILAC may take up to several days [8], chemical labelling protocols are
usually performed in less than an hour [25]. Chemical labelling can be applied to any protein
sample, not just metabolically active samples, and some of the techniques allow for a high
number of samples to be analysed simultaneously [26]. However, since chemical labelling is
done either at the protein level or at the peptide level and at a relatively late stage in the sample
preparation protocol, systematic errors are introduced more readily. Also, labelling at the
protein level requires specific proteins such as cysteine or lysine, which makes peptides
without these amino acids not quantifiable [10,24].

5.1. Labelling with an Isotope-Coded Affinity Tag (ICAT)

The first chemical labelling technique that was described for quantitative mass spectrome‐
try was the isotope-coded affinity tag (ICAT). In ICAT, a thiol reactive group is used to
conjugate the tag to cysteine residues in the protein. Apart from the reactive group, the tag
has a linker and a biotin moiety. The linker has either eight hydrogen atoms for the light
version or eight deuterium atoms for the heavy version, which are used to distinguish two
differentially labelled conditions by the 8 Da shift in the mass spectrum [26].  The biotin
moiety of the tag can be used to affinity purify the tagged peptides after trypsinisation.
The weakness of  ICAT lies  in the requirement of  cysteine residues to be present  in the
peptide, which leads to a limitation in the amount of peptides tagged. Furthermore, the
presence of deuterium causes a shift in elution times when peptides are fractionated using
HPLC, which hampers subsequent data analysis [27]. This elution time shift problem was
later solved by introducing 13C instead of D into the linker moiety. ICAT labelling has, for
instance, been used to investigate the redox state of proteins in a study to the formation of
reactive oxygen species and the way this is dealt with by the cell [28]. The ability to use
ICAT in human samples has been exploited in screening cerebrospinal  fluid samples of
Alzheimer patients to find novel prognostic biomarkers [29].

5.2. ICPL

Labelling using isotope-coded protein labels (ICPL) is based on a similar principle as ICAT. In
ICPL, lysine residues in intact proteins are labelled, which are more common than cysteine
residues. The mass difference between isotope pairs of the labelled and unlabelled peptides
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depends on the amount of labelled lysine residues in the peptide and can be determined fairly
simply, which provides strong constraints for database searches [30]. A disadvantage of
labelling lysine residues is that modifying the residue side chain makes it impossible for trypsin
to cleave at this particular lysine residue. As such, this results in much longer peptides after
trypsin digestion, as cleavage will only occur after arginine residues, which may lead to
proteolytic peptides that cannot be detected. It is therefore recommended to either use another
or an additional protease for protein digestion, or to perform the labelling at the peptide level
after proteolytic cleavage. A study on tumour cell senescence in which ICPL was successfully
used is a good indicator for the power of quantitative proteomics in general. Here, an effect of
tumour cell senescence on several important tumourigenesis proteins such as cMYC and key
metabolic enzymes such as ATP synthetases were found [31].

5.3. Isobaric tagging

Tandem mass tags (TMT) and isobaric tag for relative and absolute quantitation (iTRAQ) are
based on labelling peptides with isobaric tags. Here, the label is conjugated to the N-termini
and lysine residues of peptides, so that in principle every peptide is labelled (Figure 4). The
various isobaric tags themselves have different masses, but are balanced by a linker moiety
that ensures identical intact masses for all possible combinations of tag plus linker. As a
consequence, differentially labelled peptides end up in the same precursor peak in the mass
spectrum. Only when this peak is subsequently selected for fragmentation, the linkers will be
cleaved first, which leads to the appearance of peaks corresponding to the different tags
(‘reporter ions’) in the low m/z region of the spectrum. The relative peak intensities of the tags
are then used for quantitation [26]. Since identical peptides end up in the same peak, the
complexity of the MS spectrum is not altered as a result of the labelling procedure. Further‐
more, there are commercial kits available with up to 10 different tags, providing the possibility
to run and compare 10 samples simultaneously. The most prominent disadvantage of this
method is that the tag, just like most other chemical tags, is incorporated at the peptide level.
Also, due to the low m/z values of the reporter ions, not all mass spectrometer types are suitable
for detection.

Due to the high number of samples that can be measured in one run, its applicability to human
tissue samples and the availability of high-resolution mass spectrometers capable of ion
detection in the low m/z region, isobaric tagging has quickly become a popular method for the
relative quantitation of proteins. For example, by using iTRAQ labelling for quantitation,
differentially regulated phosphorylation sites could be detected that were phosphorylated by
ATM/ATR, which are highly conserved kinases key in DNA damage repair [32]. iTRAQ
labelling has recently been used to compare the proteome profiles of healthy brains to several
prion diseased brains such as Creutzfeldt–Jakob disease [33]. This study showed that the
changes in protein expression of different prion diseases are markedly similar, while most
changes at the protein level were found in the cerebellum. This study provides an excellent
example of biomarker research using mass spectrometry and could be a step towards defining
biomarkers for different prion diseases, which are otherwise difficult to classify.
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5.4. Dimethyl labelling

A simple method of labelling compounds at the peptide level for relative quantitation is
dimethylation. Either light-labelled (with H) or heavy-labelled (with D) dimethyl groups are
conjugated to the N-terminus of the peptides and to free lysine residue side chains. The
advantages of dimethyl labelling include low cost, high speed and possibilities for automated
sample preparation. However, since labelling occurs at the peptide level, variation between
runs is still inherent to the process [10,34]. The first incarnation of dimethyl labelling was
limited to only two different flavours. However, using isotopic isomers (‘isotopomers’) of
formaldehyde with either only D or a combination of 13C and D, up to three different samples
can now be compared in a single run [35] (Figure 5). Although this may still be lower than the
amount of different labels that can be achieved using isobaric tagging, it is significantly
cheaper. Dimethyl labelling can be used for a variety of quantitative measurements, for
instance, after a pulldown or immunoprecipitation enrichment protocol. Using an antibody to
probe for phosphopeptides in combination with labelling allows one to quantitatively monitor
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mass tags will be released from the linker and will show up in the mass spectrum as differential 
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Figure 4. Principle of isobaric tagging. Peptides are tagged with chemical labels that have identical masses due to a
delicate balance between individual tag and linker masses. Labelled peptides are then mixed and measured by mass
spectrometry. In the mass spectrum, labelled peptides will appear as one peak, but only when these peptides are se‐
lected and fragmented by MS/MS, the mass tags will be released from the linker and will show up in the mass spec‐
trum as differential reporter ions in the low m/z region. This allows for the relative abundance determination.
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phosphorylation events [36]. Another possibility that was recently introduced is using
dimethylation to study DNA–protein interactions, e.g. by using an oligonucleotide to pull
down the proteins and performing the dimethylation labelling on the proteins enriched for
[37]. These widely different applications show the power of dimethylation as a quantitative
proteomics tool.

Figure 5. Labelling schemes of triplex stable isotope dimethyl labelling. R = remainder of the peptide. Figure adapted
from [35].

5.5. 18O labelling

Another way to differentially label samples for quantitative purposes is the use of heavy
oxygen. This labelling method is different from other labelling protocols in that the label
incorporation is achieved during the digestion of proteins into peptides. By performing the
digestion in water that contains 18O instead of 16O, the carboxyl terminus of every peptide will
incorporate two 18O atoms. This method can be incredibly fast, with reports of labelling being
achieved in 15 min [25]. A potential pitfall is that the labelling may be incomplete when not
performed in a correct manner, leading to multiple peaks in the MS spectrum and therefore
resulting into difficulties in quantitation [25,38]. Our lab has described a protocol to avoid
incomplete labelling and to assure full incorporation of the heavy oxygen label [39]. By using
immobilized trypsin under acidic conditions, all proteolytic peptides could be fully labelled
with heavy oxygen with no traces of back-exchange. The labelling protocol was implemented
into a protein–protein interaction analysis pipeline to differentiate between bona fide interaction
partners of the low-level expressing cell cycle regulator cyclin-dependent kinase 9 (Cdk9) and
non-specifically binding or background proteins (Figure 6). Previously known, as well as
novel, interaction partners of Cdk9 were characterized, among which most notable are the
Mediator complex and several other proteins involved in transcriptional regulation. It was
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shown that a differential proteomics approach based on 18O labelling provides a valuable
method for high-confidence determination of protein interaction partners and is easily
implemented in protein network analysis workflows.

Figure 6. Example MS spectra of tryptic peptides from a 1:1 mixture of a Cdk9 co-IP experiment (light) and a control IP
sample (heavy). (A) The tryptic peptide LGTPELSPTER, which originates from the contaminant acetyl-CoA carboxy‐
lase shows both the light and heavy forms of the peptide, and as such, is a non-specific protein. (B) The peptide
GPPEETGAAVFDHPAK, of cyclin T1, can only be detected in the light sample and is therefore an interactor with
Cdk9 [39].

Another method to achieve consistent labelling is to use alternative proteases besides trypsin,
e.g. β-lactamase [40], which eliminates the incorporation of two heavy oxygen atoms and limits
it to one atom consistently.

6. Absolute Quantitation (AQUA)

All label-based approaches described above are geared towards generating relative quantita‐
tive measurements. In many cases though, it would be interesting to measure absolute
quantities of proteins instead. In order to gain absolute quantitation results, synthesized
peptides or proteins containing heavy isotope labels that correspond to the target peptide or
protein of interest can be spiked into the sample at a known concentration, after which the
intensities of target and standard can be compared to one another. Obviously, the standard
peptide can be modified with one or multiple post-translational modifications if needed [41].
Due to the fact that this spiked standard provides absolute rather than relative quantitation,
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this technique has been dubbed absolute quantitation (AQUA). Spike-in components that can
be used for AQUA include peptides with stable isotopes incorporated into one or several amino
acids [41], a construct in which several peptides are strung together (which has the added
advantage of being able to quantify multiple peptides in one run [42]), or an entirely labelled
protein to quantify the amount of protein [43]. As with other quantitation techniques, the stage
at which the label is incorporated largely determines the extent of the systematic quantitation
error that is introduced into the sample. In studying hormonal influence on blood pressure,
and more specifically angiotensin II, spiking in the synthesized heavy labelled angiotensin has
been used to absolutely quantify protein levels in plasma. As such, it was shown that chronic
kidney disease patients had strongly increased levels of angiotensin II [44]. These results show
that AQUA can be useful in the field of biomarker research, although it has many more
applications, such as in assessing the levels of enzymes in prokaryotes [45].

7. Label-free quantitation

With the development of better and faster mass spectrometers with higher sensitivity and
heavier duty cycles, the number of studies that use label-free quantitation (LFQ) methods has
increased over the past few years. The obvious advantage of LFQ is that no sample processing
other than the standard LC-MS procedures is needed. Furthermore, there is no need for often
expensive labelling kits. There are two major approaches employed in label-free quantitation:
spectral counting and intensity-based quantitation. Quantitation by spectral counting is based
on the observation that peptides that are more abundant will be detected and fragmented more
often by the mass spectrometer, and as such the MS/MS count gives information about the
abundance of the protein. However, there are several issues that should be taken into account
here. In general, larger proteins generate more proteolytic peptides, which increases the chance
that multiple peptides for one such protein are detected. Furthermore, in principle every
peptide has different physicochemical properties, which influence the ionizability and,
therefore, the detectability in the mass spectrometer. To address this, several modifications of
spectral counting have been developed, which incorporate mathematical corrections, such as
introducing a normalised spectral abundance factor into the equation to account for protein
length variability (e.g. emPAI [46]). In intensity-based quantitation, on the other hand, the
quantitation is based on the total amount of peptide that is detected in a specific retention time
window for which the area under the curve in the chromatogram is accurately determined
(extracted ion currents (or XICs) of peptides). LFQ has benefited greatly from recent develop‐
ments in mass spectrometer hardware as it increases the number of quantifiable features
present in a given LC-MS run and allows averaging over more peptides for protein quantita‐
tion [47]. In order for the ion intensity quantitation to be reproducible, normalization steps are
required as differences in the total amount of protein loaded onto the LC-MS system and
instrument variances need to be accounted for. Because of this, powerful software is required
and has been developed to perform this type of peptide and protein quantitation (see [48] for
an in-depth review). An interesting label-free quantitation technique has been described that
combines peptide counting, spectral counting and ion intensities into the so-called normalized
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spectral index [49]. Using this method, the variance between multiple LC-MS runs was largely
eliminated. This method shows great promise in achieving reproducible label-free quantita‐
tion.

8. Software applications for quantitative mass spectrometry

Quantitative proteomic data are typically very complex and the data analysis requires
specialized software. The main challenge concerns incomplete data, as even modern advanced
mass spectrometers cannot sample and fragment every peptide ion present in a complex
sample. As a consequence, only a subset of peptides and proteins present in a sample can be
identified. Over the past years, several strategies for mass spectrometry-based quantitative
proteomics and corresponding computational methodology for the processing of quantitative
data sets have been developed (reviewed in ([50,51]), as different quantitative LC-MS methods
require different software solutions for data analysis. Quantitation can be achieved by
comparing peak intensities in differential stable isotopic labelling, via spectral counting, or by
using the ion current in label-free LC-MS measurements. Many software solutions have been
published and can be used freely, with specific instrument compatibility and processing
functionality which can deal with these basically different quantitation methods. The re‐
searcher has to choose the appropriate software solution for his quantitative proteomic
experiments based on the experimental and analytical requirements. Since it goes beyond the
scope of this chapter to discuss all of the available software tools separately, we refer the reader
to an extensive and up-to-date overview of software solutions including links to websites for
downloads at http://www.ms-utils.org.

9. Concluding remarks

In summary, all of the mass spectrometry-based quantitation methods have their particular
strengths and weaknesses and the researcher has to choose the best method from the multitude
of methods that have emerged for the analysis of simple and complex (sub-) proteomes using
quantitative mass spectrometry for his specific research. This choice depends on the availa‐
bility of high-resolution mass spectrometer and LC equipment, the available expertise present
in the lab and the financial aspects involved. Quantitative proteomics methods have become
mature and can now be applied at a large scale to the study of proteomes and their dynamics.
Using the labelling methods described in this chapter, thousands of proteins can be identified
and quantified in a single experiment. However, there is still room for improvements to both
the experimental strategies for the quantitative analysis of very complex mixtures and of their
post-translational modifications and to appropriate bioinformatics and statistical approaches
in order to obtain meaningful interpretations of the results. The ultimate goal is to generate
quantitative proteomic data at a scale that would allow the comprehensive investigation of a
biological phenomenon.
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Abstract

The quantitative assessment of the synthesis of individual proteins has been greatly hin‐
dered by the lack of a high-throughput nonradioactive method. We recently developed a
method that we call “proteome dynamics” and software that enables high-throughput ki‐
netic analyses of peptides on a proteome-wide scale. Previous studies established that or‐
al administration of heavy water (2H2O or deuterium oxide, D2O) is safe and well
tolerated in humans. Briefly, a loading dose of 2H2O, a nonradioactive isotope, is adminis‐
tered in drinking water. 2H2O rapidly labels body water and transfers 2H from 2H2O to
2H-labeled amino acids, which incorporates into proteins dependent upon the rate of syn‐
thesis of the specific protein. Proteins are analyzed by high-resolution mass spectrometry
and protein synthesis is calculated using specialized software. We have established the
effectiveness of this method for plasma and mitochondrial proteins. We demonstrated
that fasting has a differential effect on the synthesis rates of proteins. We also applied this
method to assess the effect of heart failure on the stability of mitochondrial proteins. In
this review, we describe the study design, instrumentation, data analysis, and biological
application of heavy water-based proteome turnover studies. We summarize this chapter
with the challenges in the field and future directions.

Keywords: Heavy water, proteome dynamics, protein synthesis, modeling, isotopomers,
mass spectrometry

1. Introduction

Prior to isotope studies, it was believed that the protein pool in the body was in a static state
without any dynamic changes [1–3]. The pioneering work of Schoenheimer and his colleagues
investigated the metabolic activities of body proteins using amino acid tracers and therein

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



established the dynamic nature of the protein pool [4, 5]. Subsequent experiments thoroughly
studied the protein balance in the body and revealed that the diet only provides 60–80 g of
proteins (per day) as a source of amino acids building blocks for protein synthesis, while the
human body synthesizes 300–500 g of protein every day [6]. This discrepancy between dietary
protein supply and synthesis suggests that the majority of the newly made proteins are
synthesized from amino acids which are derived from degradation of preexisting proteins [7].
In addition, the de novo synthesis of nonessential amino acids from ammonia and intermediary
metabolites derived from the glycolytic pathway, the pentose pathway, and the citric acid cycle
also contributes to protein synthesis [8] (Fig. 1). It is now well recognized that protein turnover
—synthesis and degradation—is critical for the maintenance of all cellular processes [9].

Dietary Protein
Degradation

Pre-existing Protein
Degradation

De novo
Synthesis

Intracellular
Amino Acids

Newly Made
Proteins

tRNA-
Amino Acids

Figure 1. Sources of intracellular amino acids for protein synthesis.

The total protein synthesis rates in whole body and different organs have been measured using
radioactive (14C, 35S, and 3H) and stable (13C, 2H, and 15N) isotope labeled amino acids in a tissue
using the labeling ratio between the precursor amino acids and the protein products [10].
Because of the simplicity, radioactive isotopes dominated early protein turnover studies until
gas chromatography-mass spectrometry (GC-MS) became commonly available for stable
isotope-based tracer studies [11]. Radioactive amino acids were widely used in pulse-chase
experiments that enabled quantification of both protein synthesis and degradation. However,
due to safety concerns, radioactive isotopes found limited application in human studies. With
the advancement in mass spectrometry instrumentation, the stable isotope-based amino acids
found widespread use in clinical research. Similar to radioactive isotopes, two major designs,
i.e., flooding dose or primed infusion of the stable isotope labeled amino acids are utilized to
study protein turnover in human studies. Multiple studies investigated advantages and
disadvantages of both methods [12, 13]. With a different degree of success, both methods
enhanced our understanding of total protein dynamics in different tissues and circulation.
However, both methods have been associated with several problems related to the assessment
of true precursor enrichment and its impact on data interpretation; in addition, experimental
design typically requires inpatient tracer administration. As discussed below, this is particu‐
larly critical for the short-term labeling protocol that is based on a precursor and product
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relationship. The “true precursor” for protein synthesis is the intracellular tRNA-bound amino
acids which are usually not accessible, particularly in human studies. Therefore, several
extracellular surrogate markers of the “true precursor” have been used for calculation of the
kinetic parameters with varying success. Finally, these methods generally require a large
amount of expensive tracers, and in the case of stable isotopes, infusion of labeled amino acids
elevates amino acid levels and perturbs normal protein metabolism. Until recently, all of these
methods were only applicable in studies of total protein kinetics (i.e., consisting of a mixture
of proteins) without giving any knowledge about the turnover rates of individual proteins.
This shortcoming has particular relevance to health and disease, since it is recognized that
proteins differentially respond to stress and the averaging of individual protein fluxes may
result in a cancellation of changes in their kinetics. This point can be easily illustrated in the
case of acute-phase response (APR) proteins. Due to the distinct dynamics of positive and
negative APRs, they are differently affected in conditions associated with inflammation [14]
or fasting [15]. Although advancement in methods surrounding protein isolation and sample
preparation allowed the analysis of purified (individual) proteins, these methods are in general
cumbersome, labor-intensive and, in many cases, it is difficult to purify proteins (specifically
low abundant ones) from other contaminants.

Over the last 25 years, the development of novel analytical proteomics methods has provided
a major advancement in medical research by allowing investigators to quickly identify and
measure the relative amount of a large number of proteins in a plasma or tissue sample. On
the other hand, like Western blots, these methods only provide static data on protein levels,
and no information on the temporal changes on a given protein. By contrast, coupling of static
proteomics with stable isotope-based metabolic labeling approaches enables the study of
temporal protein dynamics on a proteome scale. Stable isotope labeled amino acids in cell
culture (SILAC) [16] and 15N-labeled algae feeding [17] were successfully applied to study
protein turnover in cell culture and then in vivo in rodents. Although these methods enable
quantification of virtually all identified proteins, the study of protein dynamics in vivo in
humans is challenging. Since all amino acids have nitrogen, 15N-labeled algae feeding enables
tracing all proteins and label amplification in a newly synthesized peptide results in a mass
shift relative to unlabeled peptides that simplifies the data interpretation. While 15N-labeled
algae provide a valuable tool for in vitro cell and in vivo rodent experiments, it is not practical
in human studies because this would require the consumption of a fully 15N-labeled diet.
Although the SILAC method has been used in in vivo studies [18], the dietary administration
of the SILAC tracers, e.g., [13C6]-lysine [19], [2H8]-valine [18], [2H3]-leucine [20], or [13C6]-
arginine [19, 21], limits their application only to fed state which prevents comparisons of
proteome dynamics in fed vs. fasted state [22]. In addition, the dietary tracer administration
of 15N-labeled algae and SILAC also prevents the modification of the diet as an experimental
variable which limits the application of these methods to metabolic diseases that require the
assessment of the role of multiple physiological parameters including glucose, insulin, and
ketone body on protein synthesis in fasted state. Finally, the dietary administration of tracers
in both methods does not allow to readily achieve a steady-state labeling in the precursor pool,
a critical assumption made in protein turnover calculations based on precursor and product
relationships. Deviation from a steady-state labeling in the precursor pool results in underes‐
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timation of protein synthesis using these methods and/or leads to complications in the
mathematical modeling that is required to interpret the data.

Among all other tracers, 2H2O and H2
18O have been used to study the protein turnover [22,

23]. The ubiquitous presence of H and O atoms in amino acids allowed investigators to consider
both 2H2O and H2

18O as unique tracers for the synthesis of virtually all proteins [2, 7, 24]. Since
18O (M+2) isotope adds at least 2Da to each amino acid, the utilization of H2

18O results in a
larger mass shift that improves the sensitivity of the assay as compared to 2H2O. However,
H2

18O is a relatively expensive tracer and is not necessarily affordable for use in humans.
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Figure 2. A simplified scheme of 2H-labeling of alanine and proteins.

By contrast, 2H2O is a low-cost tracer which makes it practical for human application [25].
Similar to H2

18O, 2H2O is safe and it easily equilibrates with total body water (TBW) and 2H2O
also rapidly labels all amino acids (e.g., ~10–20 min in rodents and 1 h in humans) [15, 26].
Thus, the quick steady-state labeling of non-exchangeable H atoms in free amino acids after
2H2O administration demonstrates that the rate limiting step of 2H incorporation into proteins
is protein synthesis from amino acids (Fig. 2). Although the use of 2H2O in metabolic studies
has a long history [24, 27], recently the 2H2O-metabolic labeling experienced a renaissance, for
assessing DNA synthesis [28], gluconeogenesis [29], and lipid turnover [30, 31]. Previously,
the 2H2O-metabolic labeling approach has been used by us and others to measure the average
synthesis rate of mixed tissue proteins [32–35]. We, and others, recently pioneered 2H2O to
study the synthesis rates of individual proteins using advanced mass spectrometry-assisted
proteomics in vivo [15, 22, 36, 37]. We have continued to refine this approach by combining
advanced high-resolution LC-MS (liquid chromatography-mass spectrometry)/MS proteo‐
mics with in vivo 2H2O-metabolic labeling to create a new method called “proteome dynamics,”
which enables quantification of the rate of synthesis of individual proteins.

By giving 2H2O in the drinking water, one can enrich the precursor amino acid pool with 2H
and sustain it indefinitely without affecting the total concentration of precursor amino acids.
The rationale is based on the observation that in the presence of 2H2O, cells generate 2H-labeled
amino acids via transamination and/or de novo synthesis (Fig. 2). All amino acids, including
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Figure 2. A simplified scheme of 2H-labeling of alanine and proteins.

By contrast, 2H2O is a low-cost tracer which makes it practical for human application [25].
Similar to H2

18O, 2H2O is safe and it easily equilibrates with total body water (TBW) and 2H2O
also rapidly labels all amino acids (e.g., ~10–20 min in rodents and 1 h in humans) [15, 26].
Thus, the quick steady-state labeling of non-exchangeable H atoms in free amino acids after
2H2O administration demonstrates that the rate limiting step of 2H incorporation into proteins
is protein synthesis from amino acids (Fig. 2). Although the use of 2H2O in metabolic studies
has a long history [24, 27], recently the 2H2O-metabolic labeling experienced a renaissance, for
assessing DNA synthesis [28], gluconeogenesis [29], and lipid turnover [30, 31]. Previously,
the 2H2O-metabolic labeling approach has been used by us and others to measure the average
synthesis rate of mixed tissue proteins [32–35]. We, and others, recently pioneered 2H2O to
study the synthesis rates of individual proteins using advanced mass spectrometry-assisted
proteomics in vivo [15, 22, 36, 37]. We have continued to refine this approach by combining
advanced high-resolution LC-MS (liquid chromatography-mass spectrometry)/MS proteo‐
mics with in vivo 2H2O-metabolic labeling to create a new method called “proteome dynamics,”
which enables quantification of the rate of synthesis of individual proteins.

By giving 2H2O in the drinking water, one can enrich the precursor amino acid pool with 2H
and sustain it indefinitely without affecting the total concentration of precursor amino acids.
The rationale is based on the observation that in the presence of 2H2O, cells generate 2H-labeled
amino acids via transamination and/or de novo synthesis (Fig. 2). All amino acids, including
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essential amino acids, can exchange at least one H atom as a consequence of a transamination
reaction. However, since the equilibrium of 2H incorporation from total body water into C–H
sites of amino acids is not complete, therefore lower values of deuterium incorporation were
observed for the essential amino acids [15]. For the nonessential amino acids, the asymptotic
number of exchangeable hydrogen atoms varies depending on their structure and their
metabolic origin. For example, de novo synthesized alanine and glutamine may incorporate up
to four and five 2H atoms, respectively. Although N–H, O–H, and S–H sites of amino acids
also spontaneously exchange H with 2H2O, these labile hydrogen atoms back-exchange with
H2O during the extensive sample preparation process. We have demonstrated that there is no
back-exchange of C-bound 2H atoms to 1H from water after proteins have been synthesized
and secreted, and therefore only C–H sites contribute to metabolic labeling during protein
synthesis [31]. For the same reason, the in vivo 2H2O-metabolic labeling differs from in vitro H/
D (2H) exchange methodology that is widely used for protein structure analysis. In contrast to
reversible H/D exchange of labile hydrogen atoms in preexisting proteins, the 2H2O-metabolic
labeling irreversibly transfers 2H to the carbon backbone of newly synthesized protein.

The incorporation of multiple copies of 2H atoms into nonessential amino acids increases
tryptic peptides 2H labeling and improves the assay sensitivity. As a safe, nonradioactive
tracer, 2H2O can be administered in the drinking water to free living organisms without
interfering with their lifestyle routines. These valuable characteristics of 2H2O-metabolic
labeling make it a unique tracer to study the synthesis rates of all proteins in different species,
including humans.

2. The study design for heavy water-based proteome turnover studies

Essentially, all tracer-based protein turnover studies rely on establishing precursor (amino
acid) and product (protein) relationships. When using a pre-labeled amino acid, one of the
major challenges in protein turnover studies is determination of intracellular true precursor
enrichment for the kinetic calculations. The true precursor in protein synthesis is an intracel‐
lular tRNA-bound amino acid which is in low quantities, and it is not accessible in extracellular
fluids [38]. Therefore, the intracellular labeling of free amino acids has been used as the
substitute for true precursor enrichment. Although this can be easily done in animal studies,
the invasive tissue analysis is not suitable for human studies. In many experiments, only
extracellular amino acids are accessible for the precursor enrichment measurements. Since
amino acid movement through the cell membrane is a tightly regulated transporter-mediated
process, there is an enrichment and concentration gradient of amino acids across the extrac‐
ellular and intracellular space. To circumvent this issue, several approaches have been
proposed to assess true precursor enrichment. For instance, the labeling of an extracellular α-
ketoisocaproate (KIC), a metabolite of leucine, was used as a surrogate of intracellular leucine
enrichment [39], while intracellular glycine enrichment was assessed based on urinary
hippurate metabolite of glycine [40]. In other studies, intracellular amino acids labeling was
assessed based on the analysis of protein-bound amino acid in a fast turnover protein like
apoB100 [41]. Several studies have demonstrated that different surrogate precursors result in
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substantially different kinetic calculations and therefore defining the true precursor and data
interpretation are key issues in protein turnover studies [42–44].

In contrast to amino acids, 2H2O freely and rapidly equilibrates with the total body water in
all organs and cell compartments and transfers 2H to intracellular amino acids [15, 36]. This
underlying assumption has been validated in multiple studies through analysis of total body
water and intracellular amino acids labeling at different time points [15, 26, 45]. For the kinetic
calculations, we assume that protein levels do not change during the 2H2O-metabolic labeling
study period, and that there is steady-state flux of all proteins. We have validated this
assumption through quantification of plasma proteins abundance using synthetic stable
isotope-labeled peptides [31]. In addition, other investigators have performed a direct
comparison of the heavy water method with a primed infusion of [2H3] leucine [45] and/or a
flooding dose of [2H5]-phenylalanine [46]; these efforts suggest the validity and the reliability
of the 2H2O-metabolic labeling approach.

Figure 3. Flow scheme for experimental design and analysis of proteome dynamics with 2H2O. After bolus load of
2H2O (0.3 ml/kg body weight), human subjects consume 0.5% in drinking water for 1 week and blood samples are col‐
lected at different time points.

These experimental results allow investigators to consider 2H2O as a precursor of 2H tracer for
proteins synthesis. Recently, we developed an algorithm (details discussed below) for
calculating the enrichment of intracellular amino acid based on body water enrichment
analysis (from accessible body fluids by simple headspace GC-MS analysis) [37]. This over‐
comes the issue related to true precursor enrichment. Furthermore, oral administration of
heavy water after a bolus load easily maintains a steady-state labeling of total body water and
amino acids that result in a substantial enrichment of analyzed proteins. When applied to
plasma or serum proteins, the experimental design for 2H2O-metabolic labeling is as follows:

• 2H2O is given in a bolus dose followed by low intake in the drinking water to maintain a
constant steady-state enrichment of 2H2O in body water (Fig. 3).
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• Body water and tissue amino acids are rapidly labeled and attain a steady state without
perturbing the normal concentration of amino acids. The 2H labeling of free amino acids is
directly proportional to the number of carbon-bound exchangeable hydrogen atoms and
the 2H2O enrichment of body water, and is independent of the rate of protein synthesis.

• Blood is obtained and proteins are isolated at preselected time points.

• Tryptic peptides are analyzed by LC-MS/MS, which identifies several peptides from each
protein of interest, both the endogenous mass and heavier peptides that are enriched with
2H-labeled amino acids. Proteins are identified using online MASCOT or alternative
software packages.

• The high-resolution full scan data analysis is performed using in-house-developed software
allows quantification of mass isotopomer distribution of peptides.

• The time-course labeling of unique peptides represents the rate of synthesis of a protein that
they originate from.

Protein life spans (or half-lives) range from minutes to more than 1 month. Although the heavy
water-based metabolic labeling approach may not be suitable for the kinetic studies of very
short-lived regulatory proteins such as glucagon, insulin, leptin, and adiponectin, it can
capture the kinetics of thousands of proteins with the half-lives that are longer than the
distribution and equilibration of 2H2O with amino acids.

This method has major advantages over other stable isotope methods that utilized amino acids
pre-labeled with 2H, 13C, or 15N, namely: (1) it enriches all proteogenic amino acids and thus
increases the enrichment of newly synthesized proteins to a far greater extent than that can be
achieved by infusion or feeding labeled amino acids or proteins, (2) it can be given to humans
by multiple oral doses over the course of a day in drinking water and does not require IV
infusion, and (3) it is relatively inexpensive (~$350/person) compared to traditional amino acid
tracers ($1,000-$4,000/person).

For the most accurate calculation of protein kinetics, two different short-term and long-term
experimental designs with heavy water have been employed.

2.1. The short-term heavy water protocol for protein synthesis

The short-term protocol requires the bolus load of heavy water and the measurement of
peptide enrichment during the semilinear increase segment of 2H-labeling time-course curve
[15, 22]. The optimal design for the short-term heavy water protocol requires multiple time
points in the early period of protein synthesis, although a single time-point sampling after
2H2O administration is also possible [47]. For the kinetic calculations, we assume that protein
levels do not change during the 2H2O-metabolic labeling study period, and that there is a
steady-state flux of all proteins. We have validated this assumption through quantification of
plasma protein abundance using synthetic stable isotope-labeled peptides. Thus, at a steady
state, the rate constant represents both the fractional synthesis rate (FSR) and the fractional
catabolic rate (FCR). In this case, the fractional synthesis rate (FSR) of a protein could be
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calculated based on the slope of the labeling of the tryptic peptide and precursor amino acid
enrichment using the formula [15]:

peptide precursorFSR = slope of /E E (1)

where the slope of Epeptide is the rate of the increase in 2H-labeling of peptide during 2H2O
administration and Eprecursor is the sum of the enrichment of the amino acids constituting the
peptide sequence at the steady state. With this design, collection of multiple samples at early
hours of the study enables the estimation of turnover rates of proteins with a short half-life,
while extending the experiment for several days or weeks allows the estimation of the kinetics
for proteins with slower turnover rates. The FSR also can be calculated based on a single time-
point sampling after 2H2O administration. However, for accurate estimate of a protein
synthesis rate, it is critical to select an appropriate sampling time after 2H2O exposure. Since
distinct proteins have a wide range of half-lives, this approach may be satisfactory only for
selected sets of individual proteins. In addition, sufficient biological and technical replicates
are required to achieve good statistics based on one time-point sampling. Although this
approach does not require the correction for the baseline enrichment, the net 2H labeling can
be calculated via subtraction of the total baseline enrichment before heavy water administra‐
tion: Epeptide (t) – Ebaseline. Thus, this approach is very simple and straightforward if sampling
points are accurately selected based on the half-lives of the analyzed proteins.

The FSR calculation using equation (1) necessitates the analysis of amino acids labeling in
specific tissues in order to determine true precursor labeling. As mentioned above, invasive
tissue analysis limits the application of this technique mainly to animal studies and complicates
its translation to clinical research. In order to circumvent the problems related to the meas‐
urement of intracellular amino acid labeling, we developed an algorithm for estimation of the
precursor enrichment based on accessible body fluids [37]. The rationale is similar to those
used for heavy water-based lipid turnover studies and based on the fact that the 2H-labeling
of body water represents the precursor enrichment. Thus, the precursor amino acid enrichment
in equation (1) could be replaced with the total body water enrichment. However, since a
product (analyzed peptide) incorporates multiple copies of 2H, the denominator in equation
(1) should take into account the asymptotic number of deuterium (N) incorporated into a
peptide:

( )waterFSR = slope of product labeling/ *E N (2)

where Ewater is the steady-state enrichment of total body water and N is the asymptotic number
of deuterium atoms incorporated into a peptide, which is calculated using a mathematical
algorithm. Since the asymptotic labeling of a peptide is a function of total body water and the
number of exchangeable hydrogen atoms [Epeptide = f(Ewater, N)], when two of the three param‐
eters are known, the third one can be calculated. Thus, N can be calculated using a simple
algorithm based on experimental measurement of a peptide’s labeling (Epeptide) and body water
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enrichment (Ewater). For this purpose, the software models an isotopomer distribution of a
peptide based on plasma 2H2O labeling and the different numbers of incorporated 2H atoms
and compares that with the experimentally measured plateau labeling of a peptide. The
theoretical isotopic distribution is calculated based on the elemental composition of a peptide
sequence and the number of incorporated 2H atoms. Each calculated isotope distribution is
then correlated against the measured isotopic distribution, and the best fit of N is determined
based on the minimum of the sum of squares error between the theoretical isotopic distribution
simulated by the program and the experimentally measured isotope distribution. Plasma 2H2O
labeling is measured using an acetone exchange method, and the isotope distribution of a
peptide(s) is determined using high-resolution full scan spectra. Thus, estimation of the FSR
in a short-term experiment requires measurements of peptide labeling by LC-MS/MS, water
labeling by GC-MS [48], and calculation of the asymptotic number of deuterium atoms
incorporated into the peptide (i.e., the N) using a mathematical algorithm [37].

We demonstrated the utility of this approach by quantifying the effect of the nutritional status
on the synthesis of albumin and other acute-phase response proteins in rats [15]. With this
approach, protein turnover could be determined in a few hours with the total body water
(TBW) enrichment of ~2.5%. For the plateau labeling of analyzed plasma proteins, we used the
data from our 10-day 2H2O experiment. Since the half-life of rat albumin is ~1.8 day, the number
of incorporated deuterium atoms from 10-day labeling experiment (i.e., 5 half-lives of albumin)
is close to the maximum possible 2H incorporation. This short-term 7-h 2H2O labeling protocol
allows measurement of the kinetics of proteins with a wide range of rate constants (~1%/h for
albumin and ~16%/h for ApoB100). Calculated half-lives of different plasma proteins observed
using this approach agree with their known biological functions. For example, rapid FSRs were
observed for the acute-phase response proteins haptoglobin and fibrinogen. Hemoglobin,
albumin, and ApoAI which are involved in oxygen delivery, fatty acid transport, and reverse
cholesterol transport, respectively, have the longest half-lives from all the studied plasma
proteins. The observed half-lives are also in agreement with the N-end rule, which states that
the half-life of a protein is determined by the nature of its N-terminal amino acid residue [49].
ApoB, ApoE, and haptoglobin with destabilizing amino-terminal Phe, Gln, and Asn, respec‐
tively, have shorter half-lives, while hemoglobin, albumin, ApoAI, and ceruloplasmin with
Ala (albumin and ApoA I) and Gly (ceruloplasmin) have longer half-lives.

A short-term (e.g., 7-h) 2H2O-labeling experiment in rats also allows assessing the effect of
nutritional status on the synthesis of plasma proteins, including albumin. Using this approach,
it was determined that fasting has a divergent effect on protein synthesis in accordance with
the biological function of the protein. In agreement with previous studies using amino acid
tracers, it was found that fasting increases the synthesis rate of ApoB100 while reducing the
synthesis rates of albumin and fibrinogen. Stimulated synthesis of ApoB100, the principal
protein of very-low-density lipoprotein (VLDL), suggests increased secretion of VLDL, a well-
known phenomenon in fasting. However, the synthesis rate of albumin, the most abundant
plasma protein, was reduced ~twofold in the fasting state as compared to the fed state.
Presumably, this was related to the regulation of albumin synthesis by amino acid substrate
availability.
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2.2. The long-term heavy water protocol for protein synthesis

Although the short-term experimental design enables one to assess the turnover rates of
plasma proteins in several hours, it requires the knowledge of the precursor enrichment.
Alternatively, a long-term labeling protocol allows one to measure protein turnover based on
modeling of the time-course labeling of analyzed peptides without knowledge of precursor
enrichment; note that this is often based on the assumption of a single compartment [15, 22].
The drawback of this design is that it requires the collection of multiple samples for the curve
fitting. The FSR in a long-term experiment is calculated by fitting the time-course total labeling
of a peptide (Epeptide (t)) to an exponential rise curve equation:

( ) ( )= –
peptide 0 *  1 – e ktE t E (3)

where E0 is the calculated asymptotical total labeling and k is the rate constant. An accurate
calculation of the rate constant requires at least five appropriately timed data points, and
greatly depends on the accuracy of the last time-point measurement. Ideally, it is preferred
that the last time point corresponds to asymptotical labeling; however, the presence of
sufficient early time points will also accurately predict the theoretical E0. The half-life of a
protein is determined based on the turnover rate constant: t1/2 = ln 2/k.

Total labeling of a peptide will be calculated using the formula:

+ + +1 2MPE = MPE 1  MPE 2  ... MPE iM x M x M xi (4)

where MPE Mi is the molar percent enrichment of an isotopomer and calculated as

( )( )= å 0 / ,... * 100%)i i iM M M M (5)

Similar to other tracer experiments, there is a time delay between 2H2O administration and the
effective onset of a protein labeling. Such delays most likely reflect a lag between ribosomal
protein synthesis and export. Secretory proteins are synthesized on polysomes bound to rough
endoplasmic reticulum (ER) and are transported to the lumen of the ER. Before secretion,
proteins are transported from the ER to the Golgi apparatus and there is a temporal delay in
the transfer from the ER. This delay is especially important in calculation of FSR for relatively
fast turnover proteins, such as ApoB100 [50]. It takes ~30 min for newly synthesized ApoB100
to be packaged and released into the circulation; thus, there is a time lag between protein
synthesis and appearance in the plasma. To take the delay into account, the expression of Epeptide

(t) must be modified for an accurate calculation of the rate constant:

( ) ( )t= – –
peptide 0

( *  1 – e k tE t E (6)

where τ is the delay time.
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In both short-term and long-term heavy water metabolic labeling experiments, the production
rates (PR) for a protein is calculated as the product of FSR and the respective pool size of a
given protein:

( )–1 –1PR g×kg ×h  = pool size × FSR (7)

where the pool size is an absolute content of a protein. In the case of plasma proteins, the pool
size is the product of a protein concentration and plasma volume, estimated as 45 ml/kg body
weight. Plasma concentration of a protein can be measured using a standard enzyme-linked
immunosorbent assay (ELISA) techniques or the isotope dilution method by mass spectrom‐
etry [51].

Although the low dose of 2H2O (~0.5% TBW enrichment) is well tolerated in humans, the
transient dizziness has been observed in some subjects with the higher bolus aiming to bring
TBW enrichment 1.5–2% [52]. To reach this high level of 2H2O, according to the original study
designs, human subjects ingested 4–5 smaller doses of 2H2O over 4–5 h. Recently, instead of a
primed bolus, the gradual increase of 2H2O of TBW enrichment was proposed. According to
this protocol, 2H2O enrichment of TBW exponentially increases and reaches the plateau value
[25, 53]. The gradual increase of 2H2O in body fluids prevents any side effects related to 2H-
isotope effect. This nonsteady-state labeling of TBW increases the study duration and some‐
what complicates the calculation. We applied this approach, i.e., slow increase of 2H2O
enrichment of TBW, to study mitochondrial proteome dynamics in a rat model of heart failure
[54]. We also constructed a new algorithm to calculate the time-dependent changes in heavy
mass isotopomers of newly synthesized peptides. To account for the relatively slower increase
in body water labeling, we fit the measured body water enrichment into an exponential curve
that yields the body water turnover curve. Then, the modeled continuous body water curve
was used for estimation of kinetically relevant body water enrichment required for accurate
calculation of synthesis rates. We demonstrated that the calculated turnover rate constants for
mitochondrial proteins using this nonsteady-state labeling protocol are very similar to those
based on the steady-state bolus labeling of TBW [55]. Thus, this data analysis approach allows
accurate quantification of the rate constants to analyze a protein turnover when 2H2O is
administered without a priming bolus. This is of particular importance for human studies
when it is preferable to increase the TBW enrichment gradually in order to eliminate concerns
related to occasional transient dizziness observed with a high bolus dose of heavy water [52].
This also simplifies the study design, since small amounts of heavy water can be consumed
outside of the clinical research unit without interference with the daily lifestyle of study
subjects.

3. High-resolution mass spectrometry for heavy water-based proteome
dynamics studies

Like other stable isotope-based turnover studies, heavy water metabolic labeling requires
sensitive and reproducible measurements of isotope labeling of proteins. This necessitates an
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accurate quantification of isotopomer distribution of protein-bound amino acids or tryptic
peptides unique to a specific protein. Accurate and precise estimates of the isotopic ratio are
critical when one aims to quantify subtle changes in protein synthesis due to diseases or an
intervention.

Classical studies of protein turnover studies with heavy water utilized GC-MS to measure 2H-
incorporation into protein-bound amino acids after the hydrolysis of protein(s). Because of the
low cost of GC-MS instruments, they have traditionally been more accessible than LC-MS
instruments. In addition, until recent developments in high-resolution ion detections, many
LC-MS instruments had lower accuracy in isotope ratio measurements compared to simple
GC-MS instruments. A gas chromatography inlet enables separation of individual amino acids
and quadrupole mass analyzer allows accurate measurement of isotope enrichment with ±
0.3%. In the case of 2H-labeled compounds, heavy isotopomers enriched with 2H are slightly
shifted and eluted in front of the monoisotopic signal (M0). This chromatographic fractionation
was used for the accurate quantification of low 2H enrichment in amino acids and other
molecules. With this approach, as low as 0.01% 2H could be accurately measured using a simple
quadrupole GC-MS instrument [56]. The majority of early studies with GC-MS were focused
on total body or tissue-specific mixed protein turnover without giving knowledge about
individual proteins. Later on, this approach was extended to the analysis of purified individual
proteins. This requires labor-intensive purification of individual proteins and permits only
analysis of one protein at a time. In addition to being time consuming, these protocols suffer
from potential contamination associated with protein isolation. The development of isotope-
ratio mass spectrometry (IRMS) systems adds more than 100-fold increase in sensitivity for
measuring of 2H enrichment compared with GC-MS [57]. However, similar to GC-MS, IRMS
instruments are limited to analysis of protein-bound amino acids.

Recently, a proteomics-based approach was applied to assess the protein turnover in a mixture
of proteins [15, 25, 47]. In contrast to static proteomics, the dynamic proteomics method
requires accurate quantification of the isotope distribution of peptides that requires high-
resolution mass analysis. Studies by Anderson’s group evaluated the utility of different type
of electron spray ionization (ESI) and matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry for the isotope distribution analysis [58, 59]. A Finnigan TSQ
700 or Micromas Quatto II, Thermo-Finnigan linear trap quadrupole (LTQ) linear ion-trap and
Applied Biosysytems Q-STAR XL hybrid quadrupole-TOF, and Bruker BiFlex III MALDI-TOF
were tested [59]. Tandem spectra on the ion-trap instrument were collected in either a zoom
scan or profile mode while the quadrupole instrument was operated in the selected ion
monitoring (SIM) mode. It has been determined that the signal intensity is the key parameter
for accurate characterization of isotope distribution. For instance, the quantification of M1 with
precision better than 5% requires intensities of the base peak ≥20,000 counts in a MALDI-TOF
instrument. Based on our experience, similar precision on LTQ linear ion-trap instrument can
be achieved with an ion intensity of 104 relative to the background signal. It has been noted
that MALDI-TOF slightly overestimates M1.When the ESI trap and quadrupole instruments
were tested for the accuracy and precision of isotope distribution, the ion-trap MS performed
better than the SIM quadrupole MS. Interestingly, the quadrupole instrument in SIM mode

Recent Advances in Proteomics Research32



accurate quantification of isotopomer distribution of protein-bound amino acids or tryptic
peptides unique to a specific protein. Accurate and precise estimates of the isotopic ratio are
critical when one aims to quantify subtle changes in protein synthesis due to diseases or an
intervention.

Classical studies of protein turnover studies with heavy water utilized GC-MS to measure 2H-
incorporation into protein-bound amino acids after the hydrolysis of protein(s). Because of the
low cost of GC-MS instruments, they have traditionally been more accessible than LC-MS
instruments. In addition, until recent developments in high-resolution ion detections, many
LC-MS instruments had lower accuracy in isotope ratio measurements compared to simple
GC-MS instruments. A gas chromatography inlet enables separation of individual amino acids
and quadrupole mass analyzer allows accurate measurement of isotope enrichment with ±
0.3%. In the case of 2H-labeled compounds, heavy isotopomers enriched with 2H are slightly
shifted and eluted in front of the monoisotopic signal (M0). This chromatographic fractionation
was used for the accurate quantification of low 2H enrichment in amino acids and other
molecules. With this approach, as low as 0.01% 2H could be accurately measured using a simple
quadrupole GC-MS instrument [56]. The majority of early studies with GC-MS were focused
on total body or tissue-specific mixed protein turnover without giving knowledge about
individual proteins. Later on, this approach was extended to the analysis of purified individual
proteins. This requires labor-intensive purification of individual proteins and permits only
analysis of one protein at a time. In addition to being time consuming, these protocols suffer
from potential contamination associated with protein isolation. The development of isotope-
ratio mass spectrometry (IRMS) systems adds more than 100-fold increase in sensitivity for
measuring of 2H enrichment compared with GC-MS [57]. However, similar to GC-MS, IRMS
instruments are limited to analysis of protein-bound amino acids.

Recently, a proteomics-based approach was applied to assess the protein turnover in a mixture
of proteins [15, 25, 47]. In contrast to static proteomics, the dynamic proteomics method
requires accurate quantification of the isotope distribution of peptides that requires high-
resolution mass analysis. Studies by Anderson’s group evaluated the utility of different type
of electron spray ionization (ESI) and matrix-assisted laser desorption/ionization time-of-flight
(MALDI-TOF) mass spectrometry for the isotope distribution analysis [58, 59]. A Finnigan TSQ
700 or Micromas Quatto II, Thermo-Finnigan linear trap quadrupole (LTQ) linear ion-trap and
Applied Biosysytems Q-STAR XL hybrid quadrupole-TOF, and Bruker BiFlex III MALDI-TOF
were tested [59]. Tandem spectra on the ion-trap instrument were collected in either a zoom
scan or profile mode while the quadrupole instrument was operated in the selected ion
monitoring (SIM) mode. It has been determined that the signal intensity is the key parameter
for accurate characterization of isotope distribution. For instance, the quantification of M1 with
precision better than 5% requires intensities of the base peak ≥20,000 counts in a MALDI-TOF
instrument. Based on our experience, similar precision on LTQ linear ion-trap instrument can
be achieved with an ion intensity of 104 relative to the background signal. It has been noted
that MALDI-TOF slightly overestimates M1.When the ESI trap and quadrupole instruments
were tested for the accuracy and precision of isotope distribution, the ion-trap MS performed
better than the SIM quadrupole MS. Interestingly, the quadrupole instrument in SIM mode

Recent Advances in Proteomics Research32

had greater precision than MALDI-TOF MS and the accuracy of the quadrupole measurement
was improved when it was operated in a profile scan mode.

When applied to protein turnover studies, the high resolution of MALDI-TOF MS allows
accurate quantification of 2H enrichment of tryptic peptides [22]. The traditional proteomics
methods coupled with MALDI-TOF MS-assisted isotope distribution analysis greatly ad‐
vanced protein turnover studies in a mixture of proteins. However, the absence of a chroma‐
tographic inlet enables the analysis of only the most abundant proteins and therein
compromises a broader application to low abundant proteins. Also, regardless of the peptide
abundance, the presence of interfering signals compromises the utility of MALDI-TOF MS for
turnover studies in a complex mixture of proteins. To avoid this issue, we also evaluated the
utility of the linear ion-trap LTQ instrument for measurement of the fractional synthesis rates
of plasma proteins [15]. The high sensitivity of LTQ MS in zoom scan mode allows accurate
measurement of the kinetics of proteins and the assessment of changes in plasma proteins
synthesis rates related to animal nutritional status. One of the limitations of this instrument is
that only a limited number of peptides can be targeted in each duty cycle which is limited by
the scan speed. To increase the number of analyzed proteins in a single run, the chromatogram
can be divided into several time segments. In this case, several peptides are analyzed in each
time segment. Still, this approach allows only the quantification of isotope distribution using
10–15 peptides from 3–6 proteins using 2-h high-performance liquid chromatography (HPLC)
gradient and well-designed MS method. Although several mass spectrometer platforms with
liquid chromatographic inlets allow accurate quantification of the isotope distribution, only
the high-resolution mass spectrometers permit measuring protein turnover on a truly pro‐
teome-wide scale.

It has been shown that quadrupole time-of-flight (Q-TOF) MS instruments have a good
reproducibility and can accurately measure isotope ratios [60], and it was utilized to study the
lipoprotein turnover in mice. However, Q-TOF instruments have relatively lower resolution
(~30,000) that limits the isotope ratio accuracy of the isotope ratio analysis. By contrast, the
hybrid Fourier transform ion cyclotron (FT-ICR) and Orbitrap mass spectrometers are
characterized by unsurpassed resolution (>100,000), high mass accuracy, and sensitivity [61,
62]. The high mass accuracy of these instruments improves identification and characterization
of peptides, while high resolution provides additional information for the characterization of
the molecular formula based on natural enrichment. Importantly, the high resolution of these
instruments, coupled with the increased scan rates, allows accurate isotope distribution
analysis that enables measurement of metabolic labeling of all analyzed peptides. Recently,
we demonstrated that isotopic ratios between the monoisotopic and heavy isotopic peaks are
consistently lower than predicted values and the magnitude of the spectral error in the FT-ICR
MS is proportional to the scan duration of the ion clouds (i.e., resolution setting) [63]. It has
been shown that the logarithm of the measured isotopic ratio linearly decreases with the
acquisition time, and this phenomenon has previously been used to improve the accuracy of
the isotopic distribution analyses [64]. However, even at the lowest resolution setting (e.g.,
7,500) a significant error (~5%) was observed with FT-ICR MS analysis. Mass accuracy and
isotopic ratios may be affected by the static Coulomb repulsion of ions, so fewer ion numbers
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could reduce the error. However, accurate quantifications of isotopomers require a sufficient
number of ions. We found that ion intensities could be accurately measured with ion counts
ranging from ~10,000 to 100,000. In this range, the isotopic ratios are approximately the same,
while higher ion counts leads to greater error in isotope ratio measurements. To obtain accurate
isotopic ratio measurements of peptides, multiple scans with different durations were
performed, and the data were extrapolated to the initial moment of the ion rotation. This
approach minimizes the absolute isotopic ratio error to within ~1–0.5%. In addition, we found
that monitoring the parent ions in the SIM mode (mass interval is 10 Da), and the collision-
induced dissociation (CID) fragments in the single reaction monitoring (SRM) mode, improves
the specificity of the assay and allows selective identification of peptide and its fragments for
isotopomer analysis. Using SIM and SRM experiments in the same acquisition allows reliable
simultaneous quantification of the isotopic distribution of both the parent peptide and its
fragment ions [37]. An accurate measurement of two consecutive peptide fragments allows
one to calculate the labeling of protein-bound amino acids, including alanine, glutamine, and
glutamate [37].

Next, we tested the utilities of hybrid Orbitrap Velos and Orbitrap Elite instruments for the
2H-based metabolic labeling studies [54, 55]. To evaluate the utility of the newer generation
Orbitrap Elite instrument for isotope distribution analysis, a calibration curve was constructed
by adding an increasing amount of [2-2H]alanyl-YLYEIAR to a constant amount of unlabeled
YLYEIAR. Interestingly, similar but lower magnitude error in isotope ratios was observed in
both Orbitrap instruments. Consistent with previous studies [65], the Orbitrap also yields
higher error at higher resolution setting. The Orbitrap Elite displayed the highest accurate
isotope ratio measurements. We found consistent underestimation of the isotope ratio
measurement when lower 2H enrichment was measured, while overestimation was observed
at the higher 2H enrichment (Fig. 4). Interestingly, the error was less when doubly charged ions
of the same peptide were analyzed.
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Figure 4. Calibration curves of [2-2H]alanyl-YLYEIAR enrichment (0–97%) measured at different resolutions in Orbi‐
trap Elite instrument. More than 5% error was observed at higher resolution (100 K) for a singly charged peptide ion.
Measured enrichment of doubly charged peptide ion is similar to simulated theoretical values.
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The accuracy and precision of molar percent enrichment (MPE) determinations, calculated as
the fraction of the total intensity, depends on the number of isotopomers that are used in the
calculation. This is due to a lower abundance of heavy isotopomers which introduce more
error in MPE calculation. To circumvent this problem, an alternative approach, i.e., M1/M0
ratio, was proposed to assess 2H-induced changes in an isotope distribution [59]. Although
this approach is useful for the modeling of the labeling data in a long-term experiment, it does
not allow one to assess the total labeling of an analyzed peptide and asymptotical number of
2H, the critical step in calculation of the FSR in a short-term experiment.

4. Data analysis in global proteome dynamics studies with heavy water

The high-resolution mass spectrometers allow one to analyze isotopic distributions of virtually
all peptides, thus enabling measurement of global proteome dynamics. The bottleneck in these
experiments is the data processing. Therefore, high-throughput and robust bioinformatics
tools are required to extract the relative isotopomer information from time-course data for the
calculation of protein turnover rate constants based on large volume and complex data sets
generated by high-resolution mass spectrometers.

Several software solutions have been proposed for the tracer-specific protein turnover studies.
SILACtor has been successfully used for protein turnover SILAC experiments in cell culture
[66]. SILACtor is useful for in vitro proteome dynamic experiments when the heavy precursor
is 100% enriched and the protein product labeling gradually increases from 0 to 100%.
However, it is not applicable to in vivo experiments when only partial labeling is feasible. The
Topograph software developed by Macross and colleagues is another software that analyzes
data from pre-labeled amino acid experiments, and it is applicable to both in vitro and in vivo
experiments [67].

The heavy water-metabolic labeling approach poses further specific challenges to data analysis
software [68]. In contrast to protein turnover studies with pre-labeled amino acids that lead to
substantial average mass shifts in newly synthesized proteins, the labeling with heavy water
mainly affects the relative isotopomer distribution without a measurable mass shift (maximum
~0.2–0.4 Da in an average mass of tryptic peptides). Thus, the partial labeling of proteins with
the overlapping isotope profiles of labeled and unlabeled species complicates routine data
analysis with 2H2O-labeling approach.

Therefore, the successful implementation of the heavy water labeling experiment, in addition
to improvements in mass spectrometry, sample preparation, and fractionation, depends on
the efficiency of robust software for data processing. It is also preferable that the software could
handle the data generated by different high-resolution instruments. Recently, several high-
resolution mass spectrometer platforms have been used to study protein turnover using stable
isotopes, including 2H2O. Q-TOF mass spectrometer (Agilent) was applied to assess the
proteome dynamics in plasma and different tissues [25]. For the data analysis, the authors used
MassHunter software package (B0.4) from Agilent (Santa Clara, CA) specially designed for
the isotopic distribution analysis of peptides processed in Agilent 6520 Q-TOF mass spec‐
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trometers. As Agilent’s proprietary software, the MassHunter software package is not freely
available to the public. Although this software facilitates the analysis of data generated in
Agilent Q-TOF MS, for accurate isotopomer profiling, each sample is analyzed twice: during
the first injection, MS/MS spectra are collected for protein identification and a second injection
was performed for high-resolution full scan acquisition which doubles the instrument time
per sample and limits high-throughput analysis. In addition, unlike high-resolution FT mass
spectrometers, Q-TOF instruments have relatively lower resolution (~30,000 compared to
120,000 in Orbitrap Elite) that limits the accuracy of isotope ratio-based turnover measurement
in this instrument.

Although currently available FT LTQ-ICR and LTQ-Orbitrap hybrid instruments allow both
MS/MS scans and full scan analysis in a single acquisition with unsurpassed high resolution,
in contrast to an Agilent Q-TOF instrument, they are not supported with software that could
automatically extract the data from high-resolution full scan spectra. Thus, specialized
software for automated high-resolution data analysis is critically needed. To advance 2H2O-
metabolic labeling for in vivo studies of protein turnover, the new software must be robust,
user friendly, accurate, and capable of producing statistically rigorous results. Recently, Ping
and colleagues described a software IsotoQuan/RateQuant–ProTurn [47] for calculation of
peptide isotope distribution and protein turnover rates from heavy water labeling experi‐
ments. The software has been useful for processing data sets from 2H2O-metabolic experiments.
It uses manual validation for peak integration, and fixed exponential decay functions for
protein turnover rates calculation.

In the original version, the software used a mass accuracy of 100 ppm and resolution of 15,000,
which increases the likelihood of contamination of mass isotopomers by co-eluting signals. To
avoid the complexity caused by co-elution, the mass spectrometers were operated at lower
resolution (15,000) and mass accuracy (100 ppm) [69] which simply masks the interfering
signals due to low resolution. A later version of the software included more stringent filtering
parameters: a mass window of 75 ppm is recommended for 30,000 or 60,000 resolution (http:/
www.heartproteome.org/proturn/index.html). However, this software is not freely available
to the public, and the raw data from outside investigators could be processed only with the
assistance of a web administrator. So far, to the best of our knowledge, no study from outside
investigators has been reported using this software.

To aid our heavy water-based proteome dynamics studies, we recently developed an alterna‐
tive software [55] which is available at the University of Texas Medical Branch (UTMB) website,
https://ispace.utmb.edu/users/rgsadygo/Proteomics/HeavyWater/Version.1.0. Although this
semiautomated software still requires a skilled operator for the data analysis, to the best of our
knowledge, this is the only freely available software for quantification of proteome dynamics
using heavy water-based metabolic labeling approach. With this software, a routine data
analysis workflow for the heavy water labeled samples starts with the peptide/protein
identifications from tandem mass spectra using protein sequence databases. Thus, the software
reads all peptide IDs from the MASCOT mzIdentML files and confirms each ID based on the
stored MS/MS scans at every time point. The initial step is to overlay the chromatographic
profiles for each LC-MS run from all time points. Then, the software generates extracted ion
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chromatograms for each isotopomer for positively identified peptides from the high-resolution
full MS scans within the elution time window of the corresponding MS/MS scan. In addition
to peptide selection based on an exact mass and retention time, the software also filters
unlabeled peptides at the baseline (t=0). For this purpose, theoretical masses are calculated as
additional confirmation of a peptide’s identity. Only peptides satisfying the modifiable
filtering criteria based on exact mass (<10 ppm), peptide score (>35), signal intensity (>104), and
peptides present in at least five time points of 2H labeling are selected for quantification. The
latter criterion is required to obtain sufficient data points for the kinetic modeling of the data.
Although this conservative selection of peptides reduces the number of analyzed proteins, it
substantially improves the accuracy of the results. The chromatographic profile of a peptide
is determined by estimating the signal-to-noise ratio. The software removes peptide IDs that
have chromatographic overlaps with other signals and a spectra of low quality (low signal-to-
noise ratios or low MASCOT scores) based on the correlation of individual peaks across the
elution profile. Also, peptides that cannot be assigned to a unique protein are excluded. All
outliers are removed using appropriate statistical methods.

Next, the mass isotopic distributions for all selected peptides are quantified as a function of
time. Peaks intensities are extracted from the averaged full scan by searching for an intensity
that is maximum within the theoretical mass window (±10 ppm). We then use separate
software to compute FSR, and the values for the same proteins are averaged. Examination of
large data sets reveals that even with using these stringent criteria, contaminating signals may
result in inaccurate rate constant calculations. This could be related to contributions from
minor overlapping unresolved peaks that may not be easily filtered during isotope distribution
analysis by the software. Therefore, a second-line filtering step of “contaminated peptides”
involves the elimination of outlier peptides based on the coefficient of variation in the protein
turnover rate constant relative to the average of the other peptides. Thus, the extracted data
from only those peptides that could be modeled with the regression coefficient cutoff of 0.95
for nonlinear curve fitting and coefficient variation less than 30% relative to average of other
peptides are selected for final quantification of the rate constants. These stringent selection
criteria combined with precise isotope distribution analysis results in accurate quantification
of protein synthesis rates.

5. Biological application of heavy water-based proteome turnover studies

Recent technological advancements in bioanalytical instrumentation and their application to
systems biology are starting to significantly advance our understanding of integrative
physiology. These achievements would not be possible without progresses made in genomics,
proteomics, and metabolomics, that is, “omics” technologies that enable comprehensive
screening of the genome, proteome, and metabolome [70, 71], respectively. The immense
information collected using these “omics” sciences helps to understand the diseases mecha‐
nisms and facilitates early diagnosis of the disease, along with implementation and evaluation
of personalized therapy [72]. Utilization of genomics in particular enabled the discovery of
several genetic diseases. Although multiple protein biomarkers have been identified using
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quantitative proteomics, compared to genomics, proteomics is still lagging behind as a clinical
test method. This is partly related to the complexity of the human proteome. In addition,
profiling of proteins may not be sufficient to understand physiological changes in a living
organism, because they have inherent limitations associated with the low sensitivity of static
measurements which are the end result of the changes in dynamic flux. In general, stress-
induced changes in a biological system first affect the flux of a protein(s) that may lead to more
drastic changes in their pool sizes. Only an uncompensated response to stress would result in
the nonsteady-state changes in the synthesis or degradation of proteins leading to alterations
of their pool sizes. Importantly, the magnitude of changes in flux measured with a small
amount of tracer often exceeds the changes in large pool sizes. This is why the kinetic meas‐
urements are usually more sensitive than static measurements. In addition, if the stress equally
increases or decreases both synthesis and degradation, then the pool size may not change at
all. Isotope-based technologies allow investigators to measure changes in flux, and recently,
“fluxomics” joined the “omics” sciences. Stable isotope-assisted dynamic metabolomics
helped discover previously unknown metabolic pathways [73]. While fluxomics measures
large numbers of metabolite turnover, a stable isotope-assisted protein turnover investigates
the dynamic genome expression through the temporal changes in a protein flux. Thus, the
traditional static proteomics, coupled with a metabolic labeling approach and high-resolution
mass spectrometry, is expected to provide a means for simultaneous measurements of
proteome dynamics. From the tracer selection point of view, a heavy water-based metabolic
labeling approach is of particular interest. For example, H is the ubiquitous element of all
biological molecules, and as a universal tracer, 2H2O labels DNA, RNA, proteins, and metab‐
olites and provides the wealth of information in integrated comprehensive “omics.” Because
of our focus on proteomics, we will mainly highlight the biological application of 2H2O-based
proteome dynamics.

Since proteins are indispensable to life activity and involved in multiple structural functions,
enzymatic, activities, signal transduction, growth, and repair functions, only minor alterations
in a protein homeostasis can lead to genetic and acquired diseases. Mass spectrometry-based
protein turnover studies enables the analysis of perturbations in the protein metabolism in
different diseases. Recently, 2H2O-based metabolic labeling approach was applied to study
proteome dynamics in whole blood, blood cell fractions, plasma, whole tissue samples, and
cell organelles. Here we will focus mainly on in vivo animal and human studies with 2H2O.

5.1. Animal studies

Early studies with the 2H2O-based labeling approach were focused on plasma albumin and
mixed tissue proteins synthesis. Using a rat model, it was found that plasma protein synthesis
is very sensitive to nutrient availability and ~50% of plasma albumin that was synthesized over
a 24-h period was produced within ~5 h after the meal [74]. Furthermore, this study demon‐
strated that the heavy water approach also permits the analysis of plasma albumin synthesis
during metabolic “steady-state” and “nonsteady-state” conditions corresponding to fasted
and fed states. Consistent with these results, using a proteomic approach, we demonstrated
albumin synthesis in rats was significantly reduced after 22-h fasting [15].
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during metabolic “steady-state” and “nonsteady-state” conditions corresponding to fasted
and fed states. Consistent with these results, using a proteomic approach, we demonstrated
albumin synthesis in rats was significantly reduced after 22-h fasting [15].
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The effects of dietary factors on tissue protein synthesis were investigated in acute fasting (20
h) vs. chronic food restriction (7 days), and feeding (a single meal) conditions in rats. Both
acute and chronic fasting significantly reduced mixed tissue protein synthesis in the liver and
gastrocnemius muscle, while it did not affect protein synthesis in the left ventricle of the heart
[32], indicating that cardiac protein synthesis is preserved in conditions of nutritional pertur‐
bations. The follow-up studies demonstrated that diet-induced obesity in mice did not affect
the skeletal muscle protein synthesis; however, it did impair the response of muscle protein
synthesis to nutrient supply [34].

Understanding the mitochondrial proteome is a new emerging area in proteomics analysis
which is largely aimed at targeting over one thousand proteins that are critical in adenosine
triphosphate (ATP) synthesis and cell signaling [75]. Mitochondrial dysfunction plays a key
role in aging and different diseases associated with oxidative stress and impaired energy
metabolism [54, 76]. Therefore, recent attention toward mitochondrial biogenesis [77, 78] and
proteome dynamics [55, 69] became an intense area of research in mitochondrial biology. The
wide range of concentration of mitochondrial proteins poses a great challenge for compre‐
hensive analysis of the mitochondrial proteome. Nevertheless, several fractionation and
enrichment methods have been used to map mitochondrial proteomes. Different labeling
approaches have been applied to measure the turnover rates of mitochondrial proteins. For
example, [2H3]-leucine was used to assess the in vivo turnover rates of mitochondrial proteome
in the mouse liver and heart [67]. We utilized the 2H2O-based metabolic labeling technique to
assess protein kinetics in cardiac, brain, and liver mitochondria. Adult rats were given 2H2O
in the drinking water for up to 60 days. Plasma 2H2O and myocardial and hepatic tissue 2H
enrichment of amino acids were stable throughout the experimental protocol [55]. Analysis of
mitochondrial protein synthesis in rat liver revealed that the half-lives of proteins range from
2 to 6 days. In the heart, the two spatially distinct subpopulations of cardiac mitochondria,
subsarcolemmal (SSM, found along the perimeter of the cell) and interfibrillar (IFM, located
between the myofibrils) mitochondria, were analyzed. It is well known that SSM and IFM
populations have distinct biochemical functions with IFM having a greater respiratory
capacity and resistance to Ca2+-induced stress [79, 80]. Multiple tryptic peptides were identified
from each protein in both SSM and IFM, and showed time-dependent increases in heavy mass
isotopomers that was consistent within a given protein. In contrast to the liver, cardiac
mitochondrial protein synthesis was relatively slow (average half-life of 30 days, or 2.4% newly
made per day). Thus, the rate of synthesis of cardiac mitochondrial proteins is approximately
sevenfold longer than that of the liver. Analysis of protein synthesis based on protein location
within the mitochondrion revealed a shorter half-life for outer membrane proteins than inner
matrix proteins in both SSM and IFM. Subunits of mitochondrial electron transport chain (ETC)
complexes and proteins with other related functions displayed similar half-lives, suggesting
that the differences in mitochondrial proteins turnover could be explained by their sub-
complex association. Although the synthesis rates for individual proteins were correlated
between IFM and SSM (R2=0.84, p<0.0001), values in IFM were 15% less than SSM (p<0.001) [55].
The differences in distinct mitochondria populations may have a particular relevance to
mitochondrial dysfunction in different diseases, since previous studies found differential
effects of aging, diabetes, and heart failure in SSM and IFM. It has been shown that IFM are
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more susceptible than SSM to disease-associated damage [81]. In particular, rats with advanced
pressure overload-induced heart failure have greater dysfunction in IFM than SSM, suggesting
severe impairment in protein synthesis and/or stability in IFM than in SSM.

Previously, it has been shown that the turnover rate of the total mixed mitochondrial brain
proteins are slower than those of cardiac proteins [82]. When we compared the turnover rates
of individual proteins in the rat brain and heart mitochondria, we found that in the brain, the
turnover rate of superoxide dismutase is indeed slower than in the heart (Fig. 5). By contrast,
ATP synthase F1β has a much faster turnover rate in the brain than the heart, suggesting that
the kinetics of individual proteins in each organ is determined by their functions. Consistent
with previous studies [82], we found that similar to the heart, the turnover rates of all analyzed
mitochondrial brain proteins had much slower turnover rates compared to those in the liver.
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Figure 5. Comparison of half-lives of brain and heart mitochondrial proteins.

To test the effect of heart failure on the stability of cardiac mitochondrial proteins, we utilized
our 2H2O approach to measure mitochondrial proteome dynamics in a well-established rat
model of heart failure induced by chronic transverse aortic constriction (TAC) [54]. Decreased
mitochondrial ATP generating capacity in myocardium is a hallmark of heart failure; however,
the underlying mechanisms contributing to mitochondrial dysfunction in heart failure are not
yet fully understood. Rats with TAC develop moderate heart failure after 22 weeks, which
results in left ventricular remodeling, dysfunction, and reduced oxidative capacity in mito‐
chondria. Heart failure caused a decrease of mitochondrial proteins and respiratory capacity
in IFM, but not in SSM. We used a heavy water method to determine whether the decreased
synthesis of mitochondrial proteins contribute to the respiratory dysfunction in heart failure.
Although the synthesis rates of proteins in IFM tend to be higher than those in SSM, it only
started to reach modest significance (p=0.08) in this study. Surprisingly, in spite of the changes
in the mitochondrial protein content, the average rate of protein synthesis (based on the
kinetics of 49 proteins with different functions) was similar in sham-treated and heart failure
groups. This was due to bidirectional changes in the synthesis rate of different mitochondrial
proteins. In particular, heart failure increased the turnover rate of several proteins involved in
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To test the effect of heart failure on the stability of cardiac mitochondrial proteins, we utilized
our 2H2O approach to measure mitochondrial proteome dynamics in a well-established rat
model of heart failure induced by chronic transverse aortic constriction (TAC) [54]. Decreased
mitochondrial ATP generating capacity in myocardium is a hallmark of heart failure; however,
the underlying mechanisms contributing to mitochondrial dysfunction in heart failure are not
yet fully understood. Rats with TAC develop moderate heart failure after 22 weeks, which
results in left ventricular remodeling, dysfunction, and reduced oxidative capacity in mito‐
chondria. Heart failure caused a decrease of mitochondrial proteins and respiratory capacity
in IFM, but not in SSM. We used a heavy water method to determine whether the decreased
synthesis of mitochondrial proteins contribute to the respiratory dysfunction in heart failure.
Although the synthesis rates of proteins in IFM tend to be higher than those in SSM, it only
started to reach modest significance (p=0.08) in this study. Surprisingly, in spite of the changes
in the mitochondrial protein content, the average rate of protein synthesis (based on the
kinetics of 49 proteins with different functions) was similar in sham-treated and heart failure
groups. This was due to bidirectional changes in the synthesis rate of different mitochondrial
proteins. In particular, heart failure increased the turnover rate of several proteins involved in
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fatty acid oxidation, electron transport chain, and ATP synthesis, while it decreased the
turnover of other proteins, including pyruvate dehydrogenase subunit in IFM, but not in SSM.
The study of proteome dynamics suggested that reduced respiratory capacity in IFM might
be related to increased degradation of several IFM proteins involved in fatty acid oxidation
and ETC. Interestingly, proteins with destabilizing N-terminal amino acids of mature proteins
exhibited shorter half-lives compared to those with stabilizing N-terminal amino acids.

Thus, the kinetic measurements of mitochondrial proteins may help understand the mecha‐
nisms responsible for mitochondrial alterations in the failing heart. Taken together, utilization
of the 2H2O method for mitochondrial proteome studies demonstrated that this method is
robust and can distinguish subtle differences in synthetic rates between subcellular popula‐
tions of mitochondria. In addition, measuring the kinetics of individual proteins enables one
to uncover changes in the mitochondrial proteome due to heart disease that cannot be obtained
by simply measuring their static expression at any given time point.

In a follow-up study, Lam and coworkers applied the heavy water method to determine
protein kinetic signatures of β-adregengic-induced cardiac remodeling in a mouse model
[47]. Several kinetic markers of calcium signaling, energy metabolism, proteostasis, and
mitochondrial dynamics were identified. Although large set of data was generated, the
biological relevance of these results requires further evaluation based on protein properties
and pathways that they are involved.

Hellerstein and coworkers used 2H2O labeling-based dynamic proteomics combined with the
stable isotope labeling in mammals (SILAM) quantitative proteomics to explain the effect of
long-term calorie restriction on longevity [83]. Through assessment of both catabolic rate and
absolute synthesis of hepatic proteins, the authors demonstrated that calorie restriction
reduces the turnover of most (~80%) hepatic proteins, including mitochondrial proteins. Thus,
long-term calorie restriction increases the stability of proteins and reduces global protein
synthetic burden that is associated with decreased mitochondrial biogenesis and mitophagy.
The pathway analysis revealed that proteins with related functions display coordinated
changes. In silico analysis identified peroxisome profilator-activated receptor gamma coacti‐
vator 1-alfa as a potential regulator of altered network dynamics.

The 2H2O-labeling methods were also applied to identify kinetic biomarkers of neuronal
dysfunction in mouse models of neurodegeneration [84]. After a bolus administration of 2H2O,
appearance of 2H-labeled neuronal proteins with transport and cargo functions in cerebrospi‐
nal fluid was quantified. Compared to controls, the appearance of proteins in mice with
neurodegeneration was delayed, which was normalized after microtubule-modulating
pharmacotherapy, suggesting that the transport kinetics may provide a test method for
monitoring disease progression and therapy for neurodegenerative diseases.

We applied 2H2O-based metabolic labeling approach to assess the high-density lipoprotein
(HDL) proteome dynamics in a diet-induced mouse model of nonalcoholic fatty liver disease
(NAFLD) [85]. HDL displays multiple functions that include reverse cholesterol transport
(RCT), preventing inflammation, oxidation, platelet activation, and maintaining endothelial
function. In metabolic diseases associated with insulin resistance, HDL may lose these
protective functions and become dysfunctional. The reasons for these changes are not fully
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understood and may be attributed to alterations of the HDL particle composition and modi‐
fications of HDL proteins. In addition to ApoAI and ApoAII (which account ~65% and ~15%
of HDL protein mass, respectively), recently more than 50 less abundant HDL proteins have
been identified. These HDL proteins involved in lipid metabolism, acute-phase response,
innate immunity, protease inhibition, and regulation of endothelial cell apoptosis that
determines HDL’s anti-inflammatory, anti-atherogenic, and cell survival properties. Thus,
alterations in the HDL proteome composition may be a key factor involved in HDL dysfunc‐
tion.

It is well known that a Western diet (WD, high-fat diet containing cholesterol) for 12 weeks
leads to insulin resistance, NAFLD (hepatic steatosis, oxidative stress, and inflammation), and
atherosclerosis (aortic root lesion) in low-density lipoprotein receptor (LDLR-/-) mice. Proteo‐
mics analysis of ApoB-depleted plasma revealed that a WD also altered the levels of multiple
proteins known to be associated with HDL. The kinetics of 60 previously identified HDL
proteins involved in lipid metabolism, thrombosis, protease inhibition, complement regula‐
tion, and acute-phase response were quantified. The analyzed HDL proteins exhibited a wide
range of half-lives varying from a few hours to days. For instance, in a standard chow diet-fed
LDLR-/- mice, ApoE, ApoAI, and PON1 have half-lives 5, 15, and 64 h, respectively. A WD has
differential effects on the turnover rates of proteins with different functions. We found that a
WD results in decreased levels and increased catabolism of PON1 which is responsible for the
antioxidant function of HDL. Interestingly, a WD also resulted in increased levels and turnover
of phospholipid transfer protein (PLTP), which is responsible for promoting HDL remodeling
through phospholipid transfer from ApoB-containing particles to HDL. Mice deficient in PLTP
are protected from atherosclerosis, while HDL from mice over expressing PLTP is dysfunc‐
tional in promoting cholesterol efflux, and these mice developed higher atherosclerotic lesion
compared to control mice. Thus, 2H2O labeling allows to measure HDL proteome flux that is
relevant to HDL functionality.

Since the RCT function of HDL represents the dynamic flux of cholesterol from peripheral
tissues, including macrophage transfer to liver for clearance, we next applied our 2H2O-
metabolic labeling approach to assess HDL flux as an in vivo index of RCT [31]. Because 2H
from 2H2O incorporates into both lipids and proteins, 2H2O allows studying the kinetics of both
HDL-cholesterol (HDLc) and apoAI, the principal protein of HDL. Mice were given 2H2O in
the drinking water and serial blood samples were collected at different time points. Fractional
catabolic rates (FCR) for HDLc and apoAI were assessed based on their 2H2O-metabolic
labeling. In addition, the synthetic heavy peptide of apoAI (VAPL(6C13)GAEL(6C13)QESAR)
and [2H6]cholesterol were used for absolute quantification of pool sizes and production rates
(PR) of apoAI and HDLc, respectively. ApoE-/- mice, which are prone to atherosclerosis,
displayed an increased FCR (p<0.01) and a reduced PR of both HDLc and apoAI (p<0.05)
compared to controls. In human apoAI transgenic mice (resistant to atherosclerosis), PRs of
HDLc and human apoAI were strikingly higher than in wild-type mice. We also validated our
HDL turnover method as an index of RCT. For this purpose, HDL turnover and macrophage-
specific RCT were assessed in the same animals. Myriocin, an inhibitor of sphingolipid
synthesis, was used as a modifier of HDL metabolism. Myriocin significantly increased HDL
flux and macrophage-to-feces RCT, indicating compatibility of these methods. We conclude
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that 2H2O labeling can be used to measure HDLc and apoAI flux in vivo, and to assess the role
of genetic and pharmacological interventions on HDL turnover.
2H2O labeling-based HDL turnover method also was applied to assess the effect of different
isoforms of apoAI and gender on in vivo HDL function in wild-type human transgenic apoAI
mice and mice with 4WF isoform of human apoAI, in which 4 tryptophan residues are
substituted with phenylalanine [86]. The in vitro cholesterol efflux assay demonstrated that the
4WF isoform of apoAI was resistant to myeloperoxidase-induced loss of function while human
apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. This was
associated with a small, nonsignificant increase in HDL turnover in vivo. Male mice displayed
significantly higher plasma apoA1 levels than females for both isoforms of human apoA1,
ascribed to increased production rate of HDL. Safety, simplicity, and low cost of the 2H2O
suggest that this approach can be used for human use to study the effects of HDL-targeted
therapies on both HDL proteome and HDLc dynamics.

5.2. Human studies

Although 2H2O has been used for more than 60 years in animal studies to measure a proteins’
renewal rate, only in 2004 it was introduced to study protein synthesis rates in humans [87].
This first human study validated the basic underlying assumptions of 2H2O use in humans,
i.e., equilibrium with total body water and amino acids is rapid and body water enrichment
can be maintained constant for a long period of time. With ~0.4% TBW enrichment, the FSR of
albumin based on albumin-bound alanine enrichment was determined to be ~4%/day in renal
patients.

A recent study evaluated the long-term safety and hemodynamic effects of higher levels of
heavy water ingestion in healthy young human subjects [53]. Subjects consumed 70% enriched
2H2O in 4 boluses of 0.51 ml/kg body weight daily during the first week of labeling. During
the second week, the subjects consumed 4 boluses of 0.56 ml/kg. This protocol resulted in
gradual increase of body water enrichment up to ~2% during the 14 days of heavy water
exposure. The subjects’ vital signs were monitored during 2H2O administration, and these
subjects were followed up to an 8-month period. Total body water enrichment during exposure
and subsequent physiological clearance from body fluids were determined during the
following 2 weeks. No signs of discomfort and physiological effect were reported in these
healthy young adults. After depletion of 14 of the most abundant proteins by multiple affinity
columns, the tryptic digest from remaining proteins was fractionated using two-dimensional
liquid chromatography separations and analyzed by the LTQ Orbitrap instrument. The
turnover rates of hundreds of proteins were then determined. There was no correlation
between protein turnover rates and protein abundance. Although many proteins involved in
cardiovascular disease were also quantified, this proof of the concept study did not evaluate
any link between protein turnover rates and disease. It was concluded that 2H2O is safe and
effective tracer for large-scale human studies.

Several human studies utilized low-dose heavy water to assess the effect of exercise and
cachexia on muscle protein synthesis. Gaiser and colleagues applied 2H2O (~0.3% TBW 2H2O
enrichment) with a single biopsy protocol to test the effect of short-term (24-h) exercise on
mixed muscle protein synthesis [46]. With this approach, the effect of acute resistance exercise
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on integrative myofibrillar protein synthesis in healthy young subjects was determined.
Subjects performed unilateral exercise using one leg while the other leg served as a control.
Interestingly, exercise did not have any effect on the FSR of mixed muscle proteins. The high-
intensity resistance exercise increased myofibrillar protein synthesis in the exercising leg
(0.94±0.16%/h) compared to the control leg (0.75±0.08%/h, p<0.05), demonstrating that short-
term low-level 2H2O exposure allows one to detect subtle changes in human muscle protein
synthesis.

Recently, Wilkinson and colleagues expanded on these studies and investigated the effect of
long-term (8-day) exercise on mixed muscle protein synthesis with heavy water for monitoring
day-to-day changes in muscle subfractions (myofibrillar, collagen, sarcoplasmic) synthesis
[88]. Similar to the study by Gaiser and colleagues, the authors employed a one-legged
resistance exercise that allows use of the second leg as an internal control. The longer period
of exercise and heavy water administration with multiple muscle biopsies at different time
points in this study allowed them assess the changes in muscle protein synthesis in response
to the temporal and cumulative successive bouts of exercise. By using the highly sensitive
IRMS instrument, this study validated the utility of low dose (0.16–0.24% enrichment of TBW)
heavy water for quantification of diurnal changes in muscle protein synthesis and for the
assessment of short-term changes in protein turnover. It was demonstrated that protein
synthesis in myofibrillar and collagen fractions was increased due to both short-term and long-
term exercise; however, sarcoplasmic protein synthesis remained unchanged.

Scalzo and colleagues applied heavy water-based dynamic proteomics to assess integrated
and individual muscle protein synthesis response and mitochondrial biogenesis for endurance
exercise in males and females after 3 weeks of sprint interval training [89]. This study utilized
3 weeks of 2H2O-labeling protocol to achieve 1–2% TBW enrichment. It was demonstrated that
due to exercise, muscle protein synthesis increased and the magnitude of change was higher
in males compared with females. The increase in integrative muscle protein synthesis was
associated with increased mitochondrial biogenesis assessed based on the synthesis rates of
individual mitochondrial proteins and mitochondrial biogenesis signaling. It is important to
note that it is unfeasible to use pre-labeled amino acid tracers for this kind of long-term studies
of muscle protein synthesis, because this would require inpatient tracer infusion for several
days.

Recently, a few studies utilized the heavy water method to assess the protein turnover in
different diseases. A single oral dose of heavy water was applied to assess muscle protein
synthesis in patients undergoing surgery for upper gastrointestinal cancer [90]. It was
demonstrated that the mixed muscle protein synthesis was not decreased, rather, it was
marginally increased as compared to healthy controls (p=0.03), suggesting that an increase in
muscle breakdown may account for muscle wasting in cancer patients.

Studies from Hellerstein’s group tested the utility of the heavy water method as a diagnostic
tool in patients with psoriasis diseases [91]. The epidermal kinetics was determined in patients
with psoriasis using twice-daily doses of 2H2O for 16–38 days. Keratin turnover was signifi‐
cantly accelerated in psoriatic lesions, suggesting that keratin synthesis could be used as a
kinetic biomarker of psoriasis and other skin diseases.
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These studies demonstrated that the heavy water method has a great potential for human
studies.

6. Challenges and future directions

Since 2H2O can be administered to humans, the dynamic proteomics approach could be widely
used for clinical studies. Proteomics centers and infrastructure, which are equipped with state-
of-the-art instrumentations and bioinformatics, exist in many areas in the USA and around the
world. Static quantitative proteomics is already making highlights in clinical research and
patient care. It is expected that in the near future, 2H2O will complement the traditional
proteomics and expand to different areas of clinical research. The most obvious application of
the heavy water method would be its utilization for the assessment of dynamics of circulatory
proteins. Because of the high sensitivity of existing mass spectrometers, dynamic proteome
analysis using small-tissue biopsy samples is also feasible. Thus, there is a great potential of
using “dynamic markers” of health and disease. However, despite the wide-range potential
for use in clinical settings, the heavy water method is still lagging behind as a diagnostic tool
in patient care. This is partly related to several unmet methodological, instrumental, and
bioinformatics challenges associated with studies of heavy water-based proteome dynamics.
Unresolved issues related to the patient-oriented test design, user-friendly software develop‐
ment, and challenges centered around the data interpretation currently impede the routine
clinical application of this technology.

In particular, a simple study design with a minimal number of short-term samples is very
critical. This also requires creation of a reference database with human protein half-lives for
implementation of a simple test for the proteins of interest based on their expected half-life
ranges. In terms of methodological issues, still there are no published study on the effect of
posttranslational modification and damage-induced aggregation of proteins on protein
turnover and stability.

Although the mass spectrometry-based hardware tools are developing very fast, the cost of
existing instruments is not easily affordable for many clinical laboratories which drives the
cost of any proteomics test. Therefore, the cost reduction in this direction would facilitate the
dynamic proteomics application as a clinical test method.

Some additional challenges are related to data interpretation and software issues. To advance
in vivo studies of proteome dynamics with heavy water, high-throughput, user-friendly,
robust, vendor-independent, accurate software capable of producing statistically rigorous
results is needed. As mentioned in previous sections, currently there is no freely available
software for comprehensive proteome dynamics data analysis. Although our recent software
allows high-throughput data analysis, there are still several unmet bioinformatics challenges
related to heavy water data analysis. One of the technical issues is related to quality control in
data analysis. Sample complexity is the major challenge for automated data analysis. Although
off-line liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electropho‐
resis (SDS–PAGE) (both 1D and 2D) separations simplify peptide mixtures, co-elution of
peptides persists, even after the long-gradient chromatographic separation. This problem is
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more severe with heavy water metabolic labeling, because in contrast to other tracers, 2H2O-
metabolic labeling does not result in sizeable mass shifts of newly synthesized peptides, rather
it leads to redistribution of incorporated 2H among all heavy isotopomers. Therefore, it is
critical to measure mass isotopomer distributions with the maximum number of heavy
isotopomers. Although a simplified approach with M1/M0 has been proposed for the quanti‐
fication of relative isotopomer abundances, an accurate evaluation of peptides 2H enrichment
requires tracing several isotopomers. Inclusion of all heavy isotopomers into calculations
increases the chances of contamination by co-eluting species and chromatographic overlap
signals. Although high mass resolution and accuracy substantially reduce the problem, sample
complexity dramatically affects the turnover rate measurements, if not taken into account.
Thus, the success in the computing of accurate turnover rates will depend on the availability
of robust, easy-to-use software and bioinformatics tools for data analysis which would allow
processing the co-elution profiles and extracting the mass profiles of the target species.

Our current software allows assessing the fractional catabolic and synthesis rates of a protein
in a steady state. However, it is also critically important to know the absolute production rate
of a protein and to determine whether protein abundance is regulated by the changes in a
protein degradation or production. These types of measurements require simultaneous
quantification of isotopic distribution and protein abundance. Also, currently used regression
analysis for calculation of a rate constant(s) is based on a single compartmental model that
relies on a steady-state assumption. However, amino acids and protein levels are in a non‐
steady state during growth, aging, and diseases [92]. The nonsteady-state calculations of
protein turnover necessitate kinetic models, including data on both protein abundance and
relative isotopomer distribution. The future bioinformatics tools based on multi-compartmen‐
tal kinetic analysis and the quantification of absolute protein production rate in nonsteady-
state condition would greatly advance proteome dynamics studies. In addition, there is
currently a gap between dynamic proteomics and pathway analysis. Although several
software are available for the functional analysis of data based on static proteomics data,
currently there are no bioinformatics tools for system biology flux analysis using the proteome
dynamics data.

Finally, clinical application of the heavy water method would necessitate fully automated data
analysis. So far, existing software solutions are unconnected applications that require multiple
format conversion for the input and analysis. Improvement in software cross talk between raw
data inputs and data analysis applications would integrate data analysis pipelines with data
acquisition and search engines. This would require software engineering development that
could transform the existing algorithms to robust user-friendly software packages.

In addition, to the technical limitations highlighted above, the heavy water-based metabolic
labeling approach is applicable to analysis of dynamics of proteins with a half-life of greater
than ~2 h. This is because it takes approximately 1 h to reach the steady-state enrichment in
the amino acid pool, thus it cannot be used for rapidly secreted fast turnover peptides. On the
other hand, it is ideally suited to assess proteins that have a more constant rate of secretion
and relative stable plasma concentrations, and a half-life of >2 h. It is also not appropriate in
short-term experiments (less than 1 week) to measure proteins in plasma that are slowly

Recent Advances in Proteomics Research46



more severe with heavy water metabolic labeling, because in contrast to other tracers, 2H2O-
metabolic labeling does not result in sizeable mass shifts of newly synthesized peptides, rather
it leads to redistribution of incorporated 2H among all heavy isotopomers. Therefore, it is
critical to measure mass isotopomer distributions with the maximum number of heavy
isotopomers. Although a simplified approach with M1/M0 has been proposed for the quanti‐
fication of relative isotopomer abundances, an accurate evaluation of peptides 2H enrichment
requires tracing several isotopomers. Inclusion of all heavy isotopomers into calculations
increases the chances of contamination by co-eluting species and chromatographic overlap
signals. Although high mass resolution and accuracy substantially reduce the problem, sample
complexity dramatically affects the turnover rate measurements, if not taken into account.
Thus, the success in the computing of accurate turnover rates will depend on the availability
of robust, easy-to-use software and bioinformatics tools for data analysis which would allow
processing the co-elution profiles and extracting the mass profiles of the target species.

Our current software allows assessing the fractional catabolic and synthesis rates of a protein
in a steady state. However, it is also critically important to know the absolute production rate
of a protein and to determine whether protein abundance is regulated by the changes in a
protein degradation or production. These types of measurements require simultaneous
quantification of isotopic distribution and protein abundance. Also, currently used regression
analysis for calculation of a rate constant(s) is based on a single compartmental model that
relies on a steady-state assumption. However, amino acids and protein levels are in a non‐
steady state during growth, aging, and diseases [92]. The nonsteady-state calculations of
protein turnover necessitate kinetic models, including data on both protein abundance and
relative isotopomer distribution. The future bioinformatics tools based on multi-compartmen‐
tal kinetic analysis and the quantification of absolute protein production rate in nonsteady-
state condition would greatly advance proteome dynamics studies. In addition, there is
currently a gap between dynamic proteomics and pathway analysis. Although several
software are available for the functional analysis of data based on static proteomics data,
currently there are no bioinformatics tools for system biology flux analysis using the proteome
dynamics data.

Finally, clinical application of the heavy water method would necessitate fully automated data
analysis. So far, existing software solutions are unconnected applications that require multiple
format conversion for the input and analysis. Improvement in software cross talk between raw
data inputs and data analysis applications would integrate data analysis pipelines with data
acquisition and search engines. This would require software engineering development that
could transform the existing algorithms to robust user-friendly software packages.

In addition, to the technical limitations highlighted above, the heavy water-based metabolic
labeling approach is applicable to analysis of dynamics of proteins with a half-life of greater
than ~2 h. This is because it takes approximately 1 h to reach the steady-state enrichment in
the amino acid pool, thus it cannot be used for rapidly secreted fast turnover peptides. On the
other hand, it is ideally suited to assess proteins that have a more constant rate of secretion
and relative stable plasma concentrations, and a half-life of >2 h. It is also not appropriate in
short-term experiments (less than 1 week) to measure proteins in plasma that are slowly

Recent Advances in Proteomics Research46

synthesized constituents of cells, such as troponin or creatine kinase, released in response to
tissue injury or necrosis.

Thus, routine and widespread utilization of 2H2O as a diagnostic tool in patient care requires
future advancement in several areas. As we discussed above, robust study designs comple‐
mented with facile sample preparation, multiplexed analysis, and user-friendly software
package allowing high-throughput data processing and interpretation are required. As a
universal tracer, heavy water could be used to measure other metabolic fluxes along with
proteome dynamics. Thus, as a comprehensive diagnostic tool, the heavy water method could
revolutionize personalized medicine, provided there are certain future technological advance‐
ments in this field.
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Abstract

Neuroproteomics is a scientific field that aims to study all the proteins of the central
nervous system, their expression, function, and interactions. The central nervous sys‐
tem is intricate and heterogeneous, and the study of its proteome is consequently
complex, with many biological questions still requiring deep investigation. For this,
mass spectrometry approaches, most often coupled with liquid chromatography (LC-
MS), have been the number one choice in proteomics, and over the years it has added
many important findings to the field. At this point it is important that proteomics
turns to the quantitative expression of proteins instead of only identifying which pro‐
teins are present in a given sample, much because the most important alterations may
be slight alterations in the quantity of a protein in a given situation. Therefore, many
LC-MS quantitative approaches have been developed relying on the labeling of the
proteins or even by using label-free techniques.

In this chapter, a brief description of the principles and procedures of several
approaches used for relative and absolute, targeted and untargeted quantification of
proteins is presented, complemented with a literature revision of their application in
the neurosciences field.

Keywords: Neuroproteomics, LC-MS techniques, central nervous system, protein rel‐
ative quantification, protein absolute quantification

1. Introduction

Neuroproteomics is a field that aims to study all the proteins of the central nervous system
(CNS), as a whole or related to a specific condition (for example, disease, drug response, etc.).
CNS is very complex, presenting a high degree of heterogeneity at several levels, such as
distinct brain regions, cellular networks, and cell types [1], each one characterized by a different

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



proteome. Even slight perturbations of this structure can lead to CNS disorders, resulting in
alterations in the proteome of all CNS constituents or of specific cellular networks.

Large-scale initiatives have been performed to sequence human and other organism’s genomes
[2], as well as the analysis of gene expression of the distinct regions and cells of the brain.
However, although these studies have contributed with crucial information, the end-point of
gene transcription is the synthesis of proteins, the effector molecules. This way, the complex
and dynamic nature of the proteome has led to a paradigm shift in the neurosciences field,
changing from the focus in genomic information to the analysis of the protein’s expression
levels, by resorting to several approaches [3, 4].

Proteomics methodologies aim to analyze a large number of proteins within a certain set of
samples of an experiment [5], and the great development of this area may be attributed to the
technological advances in mass spectrometry (MS), optimization in sample preparation, and
computer sciences that are now able to deal with the large amount of information generated
by the MS-based technologies [6, 7].

These approaches can deliver different types of data, such as identification of the protein in a
sample at a given moment, expression levels of the proteins (quantitative proteomics),
identification and quantification of post-translational modifications (PTM), and protein
interactions (for example protein-protein interactions) [7].

Over the past years, MS-based proteomics approaches have been able to characterize proteins
in complex mixtures; nonetheless, these approaches have largely been qualitative, successfully
identifying a high amount of proteins from one sample but failing in quantifying the expression
levels of these [5]. However, it has been pressing to turn the proteomics field to quantitative
approaches, once most of the interesting biological alterations are slight differences in the
amount of a protein present in a given situation [8].

The main goal of quantitative proteomics, or quantitative neuroproteomics in particular, is to
measure the expression level of, theoretically, all the proteins in a given sample, preferably in
a highly reproducible manner [9]. This quantitative information can be acquired in two distinct
ways: absolute quantification, where the amount of the protein in the sample is calculated (for
instance, in terms of concentration or copy number per cell); or relative quantification, where
the amount of a given protein is expressed as a fold change for the same protein relative to
another condition [5, 7]. The approaches to obtain relative quantification may be untargeted,
where virtually all the proteins in the sample are quantified; or targeted where the quantifi‐
cation is obtained for a selected protein or a set of proteins. A brief summary of the most
important methodologies is outlined in Figure 1.

The classical approach to obtain relative quantifications of a proteome was to perform a bi-
dimensional electrophoresis (2DE-Isoelectric focusing followed by SDS-PAGE), where the
identification of the proteins was obtained by a MS analysis and the relative quantification by
measuring the staining density of matched gel spots [9]. Nonetheless, in this method, some
types of proteins are underrepresented, and although hundreds to a few thousands of proteins
may be detected, many proteins with lower abundance are very difficult to quantify. Also, the
analysis of many samples by this method is laborious and time consuming. [9]
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Therefore, over the years several methodologies were developed that support proteomic
expression level quantification, and although the most popular are the so-called labeled
approaches (which require the stable isotopic labeling of the samples prior to MS analysis),
the label-free approaches are now gaining increasing interest mostly due to higher accuracy
and sensitivity of MS instruments and improvement of the algorithms for data analysis [9].

In this chapter, a brief introduction to the different LC-MS quantitative approaches will be
performed, mainly focusing on the main principle and their major achievements. Special
attention will be given to the most commonly used methods in each category, and finally a
revision of the literature on proteomics using those approaches will be performed, and
whenever possible, examples in neuroproteomics field will be provided to elucidate the
concepts.
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2. Stable isotope labeling quantitative approaches

The major advantage of using MS to perform quantification instead of gel-based quantification
is the possibility of slight molecular mass changes to be detectable and quantifiable by a mass
spectrometer in large scale approaches and not by any other technology.

The use of stable isotopic labeling for relative protein quantification can be achieved by three
different methodologies: enzymatic, as the incorporation of 18O upon the protein digestion;
chemical, as the incorporation of mass tags in lysines and amine-terminus of proteins or
peptides; or metabolic labeling with the incorporation of heavy amino acids during protein
synthesis [10].

The quantitative analysis for each approach may be performed at different levels, where some
labels have mass differences that are detected (and quantified) in the precursor mass spectra
(MS1), and others are based on isobaric labels that lead to peptides with the same m/z but can
be distinguished (and quantified) at the fragment level (MS/MS) [9].

Each approach has its advantages and limitations, and are appropriate for different analysis
depending on the biological question and on the type of sample to be used [11].

2.1. 18O enzymatic labeling of peptides

The first trackable use of stable isotopes for quantification in neuronal tissue was used by
Desiderio and colleagues by isotopically labeling peptide internal standards for the absolute
quantification of neuropeptides [12]. To achieve this purpose, the authors used for the first
time enzymatically incorporated 18O (from H2

18O) in the carboxylic end of the peptides [12].
Although the strategy has been used since then, it was only in 2001 that it was first reported
in a study of untargeted relative quantification of the proteome of two types of adenovirus [13].

Since this first introduction, the enzymatic incorporation of 18O by serine proteases has been
widely used to compare the peptides produced from the protein digestion of distinct samples
(usually a control sample versus a sample from the condition under study). In general, the
incorporation of the heavy oxygen molecules is achieved by performing the protein digestion
in H2

18O using trypsin, although other enzymes such as chymotrypsin, lysine carboxylase
(LysC), or GluC may also be used [13]. With this approach two oxygen atoms are introduced
in the C-terminus of each generated peptide, resulting in a shift of 4Da in the mass spectra of
the peptide when compared with the peptides obtained from the sample digested with regular
water (Figure 2A) [14].

The advantages of 18O enzymatic labeling are: the fact that virtually all the produced peptides
are labeled and co-elute with the correspondent unlabeled peptide; the only reagent specifi‐
cally required is H2

18O; and the procedure is easy to adapt in any proteomics lab [15, 16]. On
the other hand, the procedure is labor-intensive and time-consuming; the labeling efficiency
is influenced by many factors (such as pH, enzyme to be used, or the characteristics of the
proteins and the peptides); and also if the 18O-water to be used is less than 95% pure, some of
the peptides will be labeled with only one 18O, resulting in a mass spectra with both 2 Da and
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4 Da mass shifts [15]. Finally, the naturally abundant isotopes may also contribute to the peak
intensities making the spectra very complex to analyze and adding the necessity for improved
software for data processing [16].

In 2009, an updated 18O labeling method was introduced, the acid-catalyzed labeling of the
peptides, which, instead of the direct labeling of the peptides during the proteolytic digestion,
it was able to separate the digestion from the labeling step, being the last performed under
acidic conditions [17]. This protocol aimed to increase the distance between the unlabeled and
the labeled peptide in the mass spectra (as the acidic amino acids also incorporate the heavy
oxygen molecules) and also decrease the tendency of back exchange from 18O to 16O that was
reported [17, 18]. However, the incubation in acidic conditions is prolonged, may lead to acidic
hydrolysis of the peptides and deamidation of some amino acids that would increase the
complexity of the spectra [18].

In order to overcome the high time consumption of the procedure, many accelerating techni‐
ques have been applied, such as heating, high pressure, or ultrasonic energy [15]. Also, other
methodologies have been used, such as “inverse labeling”, which aims to decrease the
influence of naturally occurring isotopes [19]. Other 18O labeling approaches have been
proposed throughout the years, as the incorporation of the 18O molecules in cysteine (Cys)
residues at the protein level by the use of 18O-labeled iodoacetamide (cysteine alkylating agent)
[20] or the analysis of glycoproteins after specific enrichment [21].

This 18O labeling strategy has been employed to several types of samples, such as samples from
the CNS, for instance, for the differential expression study of proteins in the hippocampus of
rats subjected to traumatic brain injury [22] or for the quantitative profiling of CNS myelin-
associated proteins in the adult mouse brain [23].

2.2. Metabolic labeling approaches

Although labeled media have been widely used in biological studies, it was only in 1999 that
it was first used to evaluate protein expression by 2-DE [24] or phosphopeptides [25] in
microorganisms. Nonetheless, after the introduction of SILAC (Stable Isotope Labeling by
Amino Acids in Cell Culture) in 2002, metabolic labeling approach gained higher visibility [26].

Briefly, SILAC methodology consists of growing two populations of cells, one in the presence
of normal (light) medium and the other in the presence of medium that contains heavy essential
amino acids [27]. The labeling of the amino acids can be achieved by substituting hydrogen
for deuterium, 12C for 13C or 14N for 15N [27], and this leads to an expected mass shift in the
peptides coming from the heavy medium-grown cells that is visible in the mass spectra of the
peptide (Figure 2B) [28]. A shift from the first report using deuterated leucine [26] to the use
of labeled lysine and arginine with 13C or 15N has been employed, much due to the properties
of the enzyme to be used (usually trypsin or LysC). In this way, virtually all peptides in the
sample will be labeled [28], and also eliminates the problem of some deuterated peptides
eluting at different retention times than the unlabeled analogue [29]. In order not to introduce
quantitative errors in a SILAC experiment, all the proteins must be labeled; therefore, the cells
must be kept in culture with medium supplemented with dialyzed serum (to avoid unlabeled
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amino acids) for at least five passages in order to have at least 97% labeling [26, 28], although
a study of the labeling efficiency is advisable whenever a new cell line is used [28].

The major difference between this approach and others is that the labeling of the proteins is
performed metabolically, and also the mixing of the samples to be compared is performed in
the first steps of sample preparation leading to less variability in the results (Figure 3) [30].
Other advantages of the use of SILAC is its ease of use and implementation and also the
possibility of multiplexing (up to 5 samples per experiment) [9, 30].

While it was proposed initially that dialyzed serum should be used to avoid the presence of
non-labeled amino acids, this fact posed as a challenge for some cell culture types. In contrast,
many studies have already been performed with regular serum, proving that this extra caution
may not be necessary [30].

Over the years SILAC has been adapted to different cell types and with many different
applications, such as the analysis of protein-protein interactions [31], identification and
quantification of PTMs (for example by using methyl SILAC with labeled methionine [32]) and
protein modification dynamics [33], measurement of proteome translation or turnover (by
applying pulsed SILAC) [34, 35], or secretome protein quantification [36, 37].

Thus, SILAC has been applied to try to answer many neurobiological questions since it was
introduced; and in the last years, many studies have been published using this technique in
many different areas, such as the psychiatric field with studies of alcohol abuse [38] and
schizophrenia [39]; in neurodegenerative diseases by studying the functions of Parkin [40]; or
apoptosis in a neuroblastoma cell line [41].

The first rationale about SILAC was that it could only be applied to immortalized cell lines
and never to cultured primary cells. However, there are now many published studies that use
this technique in primary cells [9, 42], namely in primary neuronal cell lines, as in a study of
neuronal phosphotyrosine proteome in response to stimulation by a neurotrophic factor [43];
in a quantitative analysis of synaptic proteins from cultured cortical neurons from a mouse
model of mental retardation [44]; in the analysis of microtubule dynamics in rat hippocampal
neurons [45]; or even by enabling the analysis of primary cultured astrocytes proteome and
secretome [46]. Also, a strategy to diminish the number of passages necessary for the complete
labeling in cultured primary neurons (60% after 6 days and 90% after 10 days) was proposed
by multiplexing SILAC and using labeled amino acids for all the samples so that the protein
labeling incorporation rate may be the same in both samples (because both samples will have
the same heavy/light incorporation ratio) [47, 48].

In neuroprotemic studies, although neuronal-derived immortalized and primary cell lines may
be considered good simplified models, the use of mammal models (such as rodents) are
considered to be more complete. The general principle of SILAC was to add heavy amino acids
to cells in culture, making this approach incompatible with animal models. One of the first
attempts to overcome this challenge was by using the SILAC approach in cultured Neuro2A
cells and then mix them with mouse brain samples to work as internal standards [49]. The first
mammal to have the entire proteome labeled in vivo was a rat being fed with protein-free diet
supplemented with algal cells enriched with 15N [50, 51]. In 2008, the first mouse model to be
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labeled in vivo by using a heavy amino acid 13C-Lysine [52] was introduced. This new strategy
was named SILAM or Stable Isotope Labeling (by Amino Acids) in Mammals, and it has been
applied in several topics of the neuroscience field as the quantification of the synaptossomal
proteome of the rat cerebellum during development [53] or the proteome relative changes in
barrel cortex synapses upon sensory deprivation in mice [54].
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In what concerns neuroproteomics, the labeling of brain tissue in vivo is a great advantage,
although in order to be able to completely label all proteins in the brain of rodents it is necessary
to feed the animals with a special “heavy” diet at least for two generations, making this
approach time-consuming and expensive [52, 55, 56]. Therefore, one of the most promising
possibilities of SILAM is to use tissue from control SILAM-labeled animals as internal
standards to compare between unlabeled conditions [57, 58].

Also, because of this drawback, the super-SILAC approach was introduced, where multiple
cell lines are labeled with SILAC and are afterwards used as internal standards to compare
with unlabeled tissue [59, 60]. This technique was firstly introduced with cancer cell lines in
2010, but it has recently been applied to the study of mitochondria from mice brain by using
a super-SILAC mix of mouse brain mitochondria [61].

It was recently observed that the energy required to break down a nucleus into its component
nucleons (nuclear binding energy) is different for each isotope of every element leading to a
so-called “mass defect” (a mass difference of 6 mDa in the same molecule when a 12C is
exchanged by a 13C atom and a 15N for a 14N) led to the hypothesis that a calculated incorpo‐
ration of isotopes into proteomes would generate a MS1-centric quantification technology
combining SILAC with the multiplexing capacity of isobaric tagging (see below) [62]. This new
approach is named neutron encoding (NeuCode) SILAC, where peptide identifications are
generated using the MS1 scans collected at 30,000 resolving power, where the same peptide
with multiple labels will appear as a single peak in the spectra, whereas to obtain the quanti‐
tative information a higher resolution (480,000) MS1 scan is used, where the isotopologues can
be resolved and the quantitative information extracted as for normal SILAC (with a mass shift
of 36 mDa instead of 4 or 8 Da) [62]. This approach has the advantage of decreasing redundant
acquisition of fragment spectra for the same precursor ion (as in classical SILAC), and because
the quantitative information is acquired at the MS1 level, it is not dependent on peptides
selected for MS/MS and is not subjected to dynamic range compression caused by co-isolation
of precursor ions (as in isobaric labeling, see below) [62, 63].

In these first reports, the authors claim that the NeuCode approach may be used for 12-plexing
by using 3-plex SILAC, each one combined with 4 isotopologues, resulting in four distinct
peaks in a high-resolution spectra [62, 63], although it has already been used for 6- and 18-plex
in yeast cells proteome [64]. This approach has already been used in other applications, such
as C-terminal product ion annotation, based on the fact that all the y-ion in the fragment spectra
will appear as doublets [65, 66], or in top-down proteomics (analysis of the intact proteins
instead of peptides resulting from protein digestion) [67]. The major disadvantage of this
technique is that it requires MS equipments capable of high-resolution powers (≥480,000);
nonetheless, this approach is expected to be easily adapted for neuroproteomics research.

2.3. Chemical labeling approaches: Isotope techniques

The first technique using isotope labeling probes was called isotope-coded affinity tag (ICAT)
and was introduced in 1999 [68]. In this approach, a specific reagent (“tag”) is added to the
cysteines of proteins, once this tag has a thiol-specific reactive group, a linker with 8 deuteriums
in the heavy form, and a biotin affinity tag [68]. The procedure is simple and based on some
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basic steps: first the protein extracts must be isolated and the cysteines reduced, then the
proteins are labeled with the heavy or light ICAT molecule and joined for protein digestion;
the labeled peptides are enriched with an avidin affinity chromatography and analyzed by
LC-MS, where for each precursor a pair of ions will be visible with a mass shift in MS1 mass
spectra (Figure 2c) [68].

This first ICAT molecule was designed with 8 deuteriums leading most of the times to a
difference in retention times of the homologue peptides, where the labeled peptide does not
co-elute with its unlabeled pair, making the spectra analysis very difficult. Also, this mass
difference of 8 Da may be confused with other biological modifications (such as a peptide
containing 2 cysteines and an oxidation of methionine, both leading to a 16 Da mass shift).[69]
On the other hand, the ICAT tag itself was quite large contributing with a mass addition
sometimes bigger than advisable and leading to many fragments in the MS/MS spectra,
complicating the identification of the peptides’ sequence [69].

Due to these limitations of the initial approach, new strategies were introduced based on the
same principles, but with a cleavable site introduced to the tag [69, 70] or also the possibility
of labeling the sample in a solid-phase format [70]. This new cleavable ICAT (cICAT) has an
acid-cleavable linker group connecting the biotin with the thiol-reactive isotope tag and uses
9 13C instead of the 8 deuterium, this way, after labeling and chromatographic enrichment, the
biotin moiety is cleaved giving rise to a smaller modified peptide [69].

This ICAT strategy has already been applied for different approaches as the creation of
aldehyde-reactive tags (hydrazide-functionalized) isotope-coded affinity tag (HICAT) for the
identification and quantification of lipid-conjugated proteins [71].

This isotope-labeling technology has been applied in several neuroscience projects such as the
study of the influence of aging in the proteome of CSF (cerebrospinal fluid) [72], the study of
differential mitochondrial proteins analysis in the pathophysiology of Parkinson’s [73] or
Alzheimer’s diseases [74], and also to aid the study of the expression of synaptosomal protein
in cerebral ischemia [75], migraine mouse models [76], or in the study of addiction [77].

The greatest limitation of this approach is the fact that only peptides containing cysteines
are labeled and enriched, making these the only candidates for protein identification and
quantification,  leading most  of  the times to poor sequence coverages.  For this  reason,  a
similar strategy, ICPL (isotope-coded protein labeling) was developed, which, instead of
labeling sulfhydryl groups labels all free amine groups [78]. This strategy is very similar
to ICAT, with the exception that it has specificity for primary amine groups (lysine side
chains and N-termini), and has no biotin moiety so the option to enrich labeled peptides
does not exist. On the other hand, it is expected that at least 70% of all peptides will have
labeled  lysines  [78,  79],  or  virtually  all  the  peptides  if  the  labeling  is  performed  after
digestion (post-digest ICPL) [79, 80].

This post-digest ICPL can be combined with other fractionation methods such as IEF prior to
LC-MS [81] or even with enrichment of peptides with specific PTM’s as phosphorylation or
glycosylation [82].
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The original ICPL molecule could be multiplexed for three samples where the molecule had
0, 3, or 7 deuterium (d0, d3, and d7 molecules, respectively) [78], but is commercialized in a 4-
plex version allowing the labeling with 0, 4, 6, and 10 Da mass shifts and may be labeled with
deuterium or 13C [9]. Although this approach is not widely used it has the capacity to be applied
successfully to any protein samples, and it has already been used to study the proteome of
postmortem prefrontal cortex from control and schizophrenic patients [81, 83] and in biopsy
tissue samples from patients with glioblastoma [84].

As for SILAC, very recently, the NeuCode strategy described above has been applied to
chemical labeling with the development of an amine-reactive mass tag that takes advantage
of the differential neutron-binding energy between 13C and 15N isotopes that enables up to 12-
plex MS1-based protein quantification [63]. Another NeuCode approach proposed is to use
carbamylation of amine groups via urea isotopologues for protein/peptide labeling, and
therefore relative quantification [85].

2.4. Chemical labeling approaches: Isobaric techniques

All the methods described above use isotopic labeling of the proteins or respective peptides,
this way the calculation of the relative amounts is achieved by the analysis of the intensity of
the precursor ion peaks at the MS1 spectra. In 2003, a revolutionary variation of these techni‐
ques was introduced where the mass tag that was added to the peptides is isobaric, making
all the precursor ions from the samples in study appear as a single peak in MS1, but upon
fragmentation it leads to the formation of reporter ions separated by 1 Da coming specifically
from each of the samples [10]. The first approach applying this principle was called Tandem
Mass Tag (TMT) and in this first report synthesized peptides with the tag were used [86]. A
year later another approach was described, the isobaric tags for relative and absolute quanti‐
fication (iTRAQ). This concept was applied for the first time to label global proteomes (yeast
in this case) and even with the advantage of allowing the simultaneous analysis of 4 samples
(iTRAQ 4-plex) [87].

The molecule used to tag the proteins or the respective peptides after digestion for both
approaches, iTRAQ and TMT, has three main components and the principles are the same,
although structurely different between the two methods (Figure 2D). The molecules are
constituted by an amine-reactive group, which links the reagent to lysines and N-termini of
the proteins or peptides; by a reporter group, which has differential labeling with isotopes (13C,
15N or 18O) and is, upon fragmentation, the monitored ion for quantification in the MS/MS
spectra; and also a balancer group, which aims to keep the overall mass of the reagent equal
among all labels and is also differentially labeled with isotopes. [10]

A few years after this first introduction of TMT and iTRAQ, the neuroproteomics field had the
highest multiplexing usage of these approaches, in this case by studying proteomic changes
in CSF of patients with Alzheimer’s disease undergoing intravenous immunoglobulin
treatment with iTRAQ 8-plex [88] and by comparing CSF proteome in postmortem versus
antemortem drawing of the samples using a 6-plex TMT approach [89]. In 2012, upon the
substitution of a 13C for a 15N in two of the 6-plex tags it was noticed that the new tags were
6.32 mDa lighter, this way an 8-plex approach was developed even without changing the
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structure of the molecule but only by changing the isotopologue used [90], and it was hy‐
pothesized that a 10-plex or even 18-plex approach was possible [90]. In fact, TMT is commer‐
cially available in four different kits (TMTzero, TMTduplex, TMTsixplex, and TMTtenplex),
whereas iTRAQ is commercially available in two versions (iTRAQ 4-plex and iTRAQ 8-plex).

The TMT tags give origin to reporter ions in the 126–131 Da region of the MS/MS spectra and
the molecules used in all the available kits have the same structure. On the other hand, the
iTRAQ 4-plex and 8-plex molecules, which generate ions in the 114–117 Da and 113–121 Da
(except the 120 because of phenylalanine immonium ion contamination), respectively, have
different structures [10, 91].

Isobaric labeling of the proteins and quantification at the MS/MS level (outlined in Figure 3)
has the advantage of each precursor ion appearing as a unique peak leading to an increase in
sensitivity both at the MS and MS/MS level with no increase in mass spectra complexity [87,
92]. On the other hand, it is now known that the reporter ions of isobaric tags are prone to ratio
compression, meaning that together with the target precursor ion some contaminating near-
isobaric ions can be co-isolated and fragmented, contributing to reporter ion intensity and
biasing of the quantitative information [92, 93]. This fact leads to a ratio compression around
the unit, because when reporter ion intensity has interference from reporters coming from
peptides derived from proteins with unchanged expression, the ratio between the two samples
tend to be 1 [93]. To overcome this drawback, an MS3 strategy has been developed [93], as well
as its combination with synchronous precursor selection (SPS) [93], and although with these
strategies the accuracy and precision is enhanced it comes with the cost of a reduction in the
number of proteins quantified [11].

Some comparative studies have been performed between the different isobaric methodologies,
and when comparing 4-plex with 8-plex iTRAQ, the latter led to more consistent ratios without
compromising peptide identifications [91]. On the other hand, in another report, when
comparing TMT 6-plex with the two versions of iTRAQ, the 4-plex iTRAQ performed better
in terms of peptide identifications and similarly in terms of precision of peptide-spectrum
matches [94]. These discrepant results may be due to the use of different equipments and
softwares for data analysis. [10]

The amine reactive tags were the first ones to be developed and are also more commonly used.
However, new molecules have been developed to label other protein residues or PTMs. Both
methods have been adapted for these applications, TMT has been adapted for iodoacetyl cys-
reactive tandem mass tags (iodo-TMT) to identify and quantify S-nitrosylated peptides [95],
carbonyl-reactive TMT (glyco-TMT), which may be used with two different chemistries, either
aminoxy-TMT or hydrazide-TMT, and enable quantification both at the MS1 (coded with
isotopes) and the MS/MS (coded with isotopic reporters) [96]. iTRAQ has also been adapted
for the detection and quantification of carbonylation of proteins by means of functionalizing
the iTRAQ molecule with hydrazine (iTRAQH) [97], for phosphoproteome identification and
quantification (phospho-iTRAQ) [98], and also for identifying new N-termini generated by
proteases in a strategy combining iTRAQ with terminal amine isotopic labeling of substracts
(TAILS) [99, 100].
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TMT and iTRAQ technologies have been extensively used by the scientific community to
answer several biological questions and applied to almost all types of samples. In neuropro‐
teomics, these approaches have been extensively used to characterize the differential pro‐
teomes of neuronal disorders, drug responses or brain regions. Many studies have been
performed using these techniques in areas such as neurodegenerative disorders, as the study
of the putamen proteome of an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) monkey
model of Parkinson’s disease [101] or in the serum of Parkinson’s disease patients [102], or
even in the analysis of synaptossomes from cortical brain tissues from Alzheimer’s disease
patients [103]; in neuropharmacoproteomics, as in the examples of a study of protein quanti‐
tative alterations induced by antidepressants in the hippocampus of mice [104]; also in
addiction as in the evaluation of the effects of administration of plasminogen activator after
ischemic injury in mice [105] or the alterations upon chronic exposure to cocaine [106]; in
neuropsychiatric and other CNS disorders, such as schizophrenia, with the study of protein
expression in the thalamus and CSF of patients [107] and a study of neurofibromin knockdown
PC12 cell line as a model of neurofibrimatosis [108]; or even in studies of neuronal function
such as memory formation in hippocampus [109].

Once, these commercially available isobaric tags were expensive and laborious to produce, in
2010 two new isobaric approaches were proposed, N,N-Dimethyl Leucines (DiLeu) [110] and
deuterium isobaric aminereactive tag (DiART) [111], which should serve as cost-effective
alternatives to iTRAQ and TMT [10].

DiLeu was developed inspired by the chemical isotopic labeling by formaldehyde dimethy‐
lation of lysines [112], which is an inexpensive approach, and the aim is to combine it with
isobaric labeling and quantitation at the MS/MS level [110]. This way a 4-plex set of dimethy‐
lated leucines for amine groups labeling was developed, and has a structure similar with the
other isobaric approaches, with an amine-reactive group, a balance group, and a reporter
group (115–118 Da) [110]. DiLeu has a labeling efficiency similar to iTRAQ and generates
reporter ions with higher intensity; nonetheless, this approach requires an extra step of
activation of the reagents prior to the labeling reaction because it uses a different chemistry [10,
110], and is also prone to the co-isolation of precursor ions (as iTRAQ and TMT). Recently,
DiLeu was used to test if the implementation of ion mobility MS would mitigate this phe‐
nomena [113].

The DiLeu strategy has already been applied to study the neuropeptidome of a crustacean
species [114], and for relative quantification of amine-cointaining metabolites [115]. A 12-plex
DiLeu strategy has been introduced that takes advantage of changing isotopologues in the
reporter groups, similarly to NeuCode or TMT 10-plex [116].

DiART was designed as a less expensive 6-plex isobaric labeling reagent to label amine groups
of proteins and peptides and is, once more, based in a very similar structure as iTRAQ and
TMT using an amine-reactive group, a balancer group, and a reporter group in the mass range
of 114–119 Da. [111, 117] In a study comparing DiART and iTRAQ, the authors found that
DiART leads to more intense reporter ions and consequently less ratio compression, however
with the DiART approach, the common fragmentation method is not advisable due to easy
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reporter ion fragmentation [118]. DiART has also proven to be compatible and valuable for
PTM analysis as quantitative phosphoproteomic studies [119].

Although isotopic and isobaric techniques are based in different methods of quantification and
have strengths and drawbacks, both have proven to be valuable for quantitative proteomics
[11] and the combination of several methods has been applied to increase throughput of the
analysis. This combination is called hyperplexing, because it enables the simultaneous analysis
of a higher number of samples, such as with the combination of metabolic 3-plex labeling with
isobaric 6-plex TMT that enables the analysis of 18 samples [120], also it is expected that by
combining different strategies an even higher throughput and more reproducible results will
be achieved [10]

3. Label-free approaches

As an alternative to the labeled methods, several label-free approaches (Figure 4) have
emerged, some of them with comparable accuracy to the labeled methods and all of them with
similar or higher proteome coverage and dynamic range [121, 122]. These methods gained
popularity mainly due to their low cost, their simple sample preparation, the unlimited
number of samples that can be compared, and their multiple applications [121]. These
attributes turn label-free methods into a powerful technique for clinical applications and large
screenings. However, as samples are analyzed separately, these types of methods are highly
dependent on run-to-run reproducibility, therefore sample preparation and analyzes should
be well implemented and standardized. Furthermore, the methods rely also on the software
capacity for both data extraction and capacity to accommodate errors [123, 124].

In general, label-free approaches can be divided into two distinct groups according to the
method used for data extraction. On one hand, the quantification can be inferred by counting
the number of peptides or spectra assigned to a given protein, and therefore are generically
called spectral counting methods. On the other hand, when liquid chromatography is coupled
with mass spectrometry, quantitative values can be measured through the extraction of the
area of the precursor ions’ chromatographic peaks - area under the curve (AUC) or MS1 signal
intensity methods. [121-123]

Traditionally, label-free methods were associated with the commonly used shotgun ap‐
proaches, where mass spectrometry instruments operate in a data-dependent acquisition
mode (DDA, also called information-dependent acquisition or IDA) (Figure 4A). Therefore,
these methods have also the advantage of being used in data previously acquired for protein
identification [125, 126].

In this type of experiments, the instruments are set to scan the precursor ions followed by the
selection of a limited set to be fragmented, usually the most intense ones. The fragmentation
spectra (MS/MS spectra) obtained will then be used for peptide identification. Independently
of the method used to extract quantitative information, the mass spectrometers working on
IDA mode must be fine-tuned in order to acquire enough data to perform both the identifica‐
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tion and the quantitative analysis [127]. This is particularly important for MS1 quantification
methods, where enough points per chromatographic peak to perform an accurate extraction
should be acquired, without misplacing the acquisition of good fragmentation spectra that
allows peptide's identification. Although this balance is not so crucial for the spectral count
methods, it is also important to have a good balance between survey and fragmentation scan
in order to be able to achieve a higher proteome coverage. Therefore, the development of mass
spectrometers with faster scans combined with higher resolution power has been fundamental
for the increase in the use of label-free approaches [122, 125].

Label-free methods still rely on peptide identification, the IDA experiments tend to be biased
to the most abundant proteins and are highly affected by sample complexity/dynamic range.
Therefore, the use of data-independent acquisition (DIA) methods, where fragmentation
spectra is acquired for the entire sample without any pre-selection of precursor ions, soon
started to be used for label-free quantitative approaches as an alternative to the limitations of
IDA experiments [122, 126].

Finally, although label-free approaches are mainly a method for relative quantification (Figure
4B), several groups have also taken efforts to evaluate the relationships between label-free
measurements and absolute quantification (Figure 4C) of proteins in complex samples. And
in fact, several adaptations came out as good correlations between label-free measurements
with protein concentration, allowing the use of label-free methods for the determination of the
absolute abundance of a protein [122, 128].

3.1. Spectral counting-based label-free methods

Spectral counting methods consist of simply counting of the number of peptides and/or
fragmentation spectra of a particular protein, and comparing the value between conditions.
Within this group of label-free methods, it is possible to distinguish some different types: 1)
those that are based on unique peptide counting; 2) those based on MS/MS counting (SpC);
and finally, 3) an adaptation of spectral counting, spectral TIC counting (MS2 TIC) [132].

3.1.1. Peptide counting and Spectral Counting (SpC)

The correlation between the number of peptides acquired in an IDA experiment with the
protein abundance was firstly reported in 2001 by Washburn and colleagues [133]. In this work,
the authors used the codon adaptation index (CAI) as a measurement of the protein abun‐
dances, and correlated CAI ranges with the number of proteins identified and the number of
peptides identified per protein. CAI relies on the evidence that mRNAs of highly expressed
proteins preferably use some codons (those of which the tRNAs are present in the greatest
amounts) rather than others specifying the same amino acid [134], and at that time it was
already proved to correlate well with protein levels [135]. With this assessment, Washburn
and colleagues were able to note that the most abundant proteins were identified with multiple
peptides, while for the low abundant proteins the identification was achieved based on one or
two peptides. Although no special focus at the quantitative level was performed, this evidence
would be the basal principle of the spectral counting approaches [133].
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Figure 4 – Overview of the label-free MS-based quantitative methods,
instrumental principles and data analysis. (A) Comparison of the MS instrumental
principles of the acquisition modes most commonly used in label-free approaches: 1z
Information Dependent Acquisition EIDAz where fragmentation spectra are only
acquired for a group of selected precursor ions based on their intensities; versus 2z
Data Independent Acquisition EDIAz where fragmentation spectra is acquired for all the
precursor ions independent of its intensity. Fragmentation spectra can be acquired for
the entire mass range simultaneously EMSEz or by covering the mass range in
sequential smaller windows of defined size ESWATH-MSz.
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Figure 4. Overview of the label-free MS-based quantitative methods, instrumental principles and data analysis. (A)
Comparison of the MS instrumental principles of the acquisition modes most commonly used in label-free approaches:
1) Information Dependent Acquisition (IDA) where fragmentation spectra are only acquired for a group of selected
precursor ions based on their intensities; versus 2) Data Independent Acquisition (DIA) where fragmentation spectra is
acquired for all the precursor ions independent of its intensity. Fragmentation spectra can be acquired for the entire
mass range simultaneously (MSE) or by covering the mass range in sequential smaller windows of defined size
(SWATH-MS). (B) Schematic representation of the different label-free approaches for relative quantification. In the
spectral-counting (SpC) approach, peptide/protein abundances can be estimated based on the number of identified
MS/MS spectrum. In the MS2 TIC approach, peptide/protein abundances can be estimated based on the mean of the
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are subsequently identified based on the respective MS/MS spectra (IDA) or a recomputed pseudo-MS/MS spectra
(DIA). In the SWATH-MS approach, changes in confident peptides/proteins are determined based on the fragment ion
intensities (MS2 intensity), designed as peak groups of each preciously identified peptide. In this example, results
would indicate a higher peptide abundance in State A. (C) Representative examples of label-free methods for absolute
quantitative proteomics. In the case of the strategies based on MS1 intensities, the average of the three most intense
ions (TOP3) and the iBAQ index are used to generate reliable absolute quantitative data. In the strategy based on spec‐
tral count, both emPAI and APEX strategies used the number of identified peptides normalized for the expected num‐
ber of peptides (to reduce the impact of protein size) as an indicator of the protein abundance. As an example, proteins
A and C, present at the same abundance, have different spectral counts but they present the same normalized spectral
count. Adapted from [129–131].

At the end of the same year, the first quantitative report based on the spectral counting
principle was published by Pang et al. [136]. In this work, the authors introduced the concept
of peptide “hit” (now known as peptide hits technology or PHT [137]) as a measure to estimate
the relative changes in protein abundance. In this method, each hit corresponds to one
identified peptide and the protein abundance is calculated by summing all the hits. The method
assumes the principle that the coverage of the protein increases in proportion to the protein
abundance, which is reflected in the number of peptide hits of a given protein. In the same
report, the authors applied this quantitative method to the identification of biomarkers for
inflammation in urine samples of healthy vs. disease conditions, and performed a comparison
between the proposed approach and the usual quantitative 2D-gel approach. Similar quanti‐
tative results were obtained between the methods studied, with a significant increase in the
number of the proteins analyzed in the gel-free approaches combined with a significant
reduction in the required amount of sample and sample processing [136].

In 2003, Gao et al. [138] applied for the first time a statistical method (Student’s t-test), already
widely used for gene array experiments, in peptide hits quantitative data in order to quickly
assess with statistical significance the abundance changes° between treatments/conditions.
The use of such method into quantitative proteomics was evaluated in a widely used biological
system by performing a comparison with the results obtained in previous reports, revealing a
high degree of concordance. Therefore, the use of such statistical evaluation can quickly
highlight the proteins that are in fact altered from the entire data set of proteins analyzed in
larger screenings, turning the data analysis into a more automated and reliable method [138].

After the initial report using peptide hits as a quantitative measurement of protein levels [136]
and following the same principle stated in that work, some adaptations to that quantitative
method started to appear in order to take into account the protein characteristics that could
influence the results. Matthias Mann’s group was a pioneer in the development of such
adaptations, with the first adaptation appearing in 2002 by Rappsilber and collaborators [139].
In this work, the authors characterized the human spliceosome by an exhaustive identification
of the constituents of that multiprotein complex, and by obtaining the relative abundance of
the different classes of proteins involved. In order to do so, the authors presented a new method
to quantify protein levels, the protein abundance index (PAI), which consists of the number
of MS/MS spectra identified divided by the number of theoretically observable peptides, i.e.,
the theoretical peptides that will feat in the mass range of MS [139]. By considering the
theoretical number of peptides that can be formed from a given protein, the authors compen‐
sated the impact of the protein size, since larger proteins can give rise to more peptides within
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the MS mass range. However, once the authors considered all MS/MS spectra that originated
positive identifications from peptides acquired with different charge states to modified
peptides, the measured values also reflect the response of a given protein to the measurement
procedure and not only its abundance.

Soon, label-free approaches being performed in comparative screenings and some alternative
methods based on the principle stated above started to emerge. At the same time, two
independent studies focused on the proteome changes observed in the development stages of
the human malaria parasite Plasmodium falciparum were published presenting two alternative
methods to evaluate these proteomics changes. While Florens and collaborators [140] com‐
pared the protein sequence coverage between the development stages to estimate protein
relative abundance, Lasonder and colleagues [141] used the total number of unique peptides
identified and introduced the use of the extracted ion chromatograms (XIC) of individual
peptides as a method to confirm the absence or presence of a particular protein. With the use
of the MS-XIC evaluation, the authors overcame one of the limitations of IDA experiments
where it is possible that a peptide is not selected for fragmentation in a particular sample due
to changes in sample complexity [141].

Another disadvantage of spectral counting is that the length of the protein influences the
number of theoretical peptides that can be produced from tryptic digestions [142, 143].
Therefore, in order to overcome this limitation, several modifications were proposed to take
into account the protein size [121]. The most widely used is the normalized spectral abundance
factor (NSAF), proposed by Zybailov in 2006 [144], which consists of the normalization of the
SpC of a given protein by the protein length (L). These values are further normalized by the
sum of the SpC/L for all the proteins analyzed, thus taking into account the experimental
variation. Furthermore, this method presents a high dynamic range (~4 orders of magnitude)
and is able to measure smaller variations (lower than 50% variation) [144]. This method was
revised by the same group, presenting an improved NSAF approach that is able to deal with
peptides shared between proteins and the distributed normalized spectral abundance factor
(dNSAF) [145].

The use of shared peptides for quantification has been a critical issue since the abundance of
a peptide that is shared across proteins depends on the contributions of the multiple proteins
to which it belongs [127, 146]. Therefore, it is incorrect to overestimate the protein abundance
by counting the shared peptides multiple times, typically these peptides are simply ignored
in protein-level quantification analysis [147]. However, this may significantly decrease the
number of proteins for which it is possible to estimate its abundance (as much as 50%) [146].
Thus other approaches have been used to include these peptides. Some approaches try to
assign the shared peptides for a particular protein (the most abundant of the group) by taking
into account parameters such as the number of unique peptides to calculate the relative
abundance of each protein [148, 149]. dNSAF is perhaps the most known example of such type
of adaptation [145]. Finally, some authors also proposed to analyze the proteins that have
shared peptides as a protein group and not individually. However, these proteins can present
different regulatory mechanisms, therefore their combination fails to estimate the real
variation [150].
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3.1.2. Spectral TIC (MS2 TIC)

In 2008, Asara and colleagues [142] presented a new method for relative protein quantification
that could be considered an extension of the spectral counting technique. In this approach, the
average of the TIC for all of the MS/MS spectra that identified a protein was used as a quan‐
titative measure. Each spectral count gets a unique abundance value, which consist of the sum
of all the fragments in a given MS/MS spectra, instead of being just counted as one event. In
this study, the authors proved that this “spectral TIC” method was effective and expanded the
dynamic range of quantitative ratios allowing for larger protein abundance [142]. This would
allow to overcome one of the limitations of the spectral counting, its intrinsic tendency to easily
reach the saturation for the most abundant peptides, not being able to quantify properly large
protein ratio differences, and limiting the dynamic range of the method [122]. In this approach,
the authors counted all the MS/MS spectra that resulted in positive identification and the
average was used, instead of the sum of the TIC, in order to overcome the sampling bias caused
by different protein molecular weights (larger proteins generate more tryptic peptides than
smaller proteins). The proposed method was tested by evaluating its capacity to reach the
theoretical ratio of a known digestion mixture, and comparing it with other quantitative
methods already well established. With this comparison, the authors showed that the spectral
TIC has a similar accuracy to the AUC methods and is able to correctly calculate large variations
[142] and detect relative changes in low abundance proteins [151].

This method had some improvements; it was combined with data from the SpC method in
order to obtain a better characterization of the samples [152], also Griffin and collaborators
proposed a new normalized label-free method that combines the three MS abundance features,
namely the peptide and spectral counting with the TIC intensity [153]. This method, termed
normalized spectral index (SIN) combines the reproducibility already presented by spectral
counting methods with an increase in the accuracy of the determination of protein abundance
observed in TIC intensity methods. Furthermore, by correcting it for protein length, it also
reduced the samples bias to large proteins [153].

3.2. MS1 signaling intensity or Area Under the Curve (AUC)

Bondarenko and Chelius [154, 155], in 2002, were the pioneers of the use of MS1 signal intensity
as a measurement of protein levels. Bondarenko, in his technical work, tested the hypothesis
that peak area of the peptides should reflect its concentration and therefore those peak areas
should correlate with protein concentration. To test that, different amounts of a pure protein
were analyzed, alone or spiked in a complex mixture, and the extracted peptides’ areas were
compared with peptides’ concentration, revealing a high degree of correlation even in samples
with high complexity. Furthermore, the authors also proposed the use of a correction factor
designed as experiment-dependent correction factor that aimed to reduce the impact of some
experimental parameters, such as differences in sample preparation, that could lead to some
bias of the results. The use of such correction factor, which is determined from the mean
tendency of the non-variable proteins, proves to improve the accuracy of the quantification
[155]. Therefore, the use of normalization methods became a key feature in label-free quanti‐
fication, and several alternatives have been proposed. Those alternatives can be divided into
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two groups based on their basic principles. On one hand, some normalization methods are
based on the principle that a large portion of the proteome does not change, therefore the mean
tendency between experiments can be used to accommodate some experimental deviations.
On the other hand, the normalization for housekeeping proteins, a protein or set of proteins
known to be constant, or for an internal standard added to the samples before sample
processing can be used since both will reflect the effect of sample processing [155, 156].

The MS1 intensity label-free methods are highly accurate since they require the use of high-
resolution mass spectrometer in order to be able to distinguish the co-eluting species [121,
152]. Protein quantification based on AUC requires the comparative measurement of precursor
ions intensity at a particular retention time, therefore this type of quantitative methods is also
dependent on the power of data extraction algorithms, and several different methods are
already available [121, 125, 130]. Independently of the software used, the data analysis of MS1
intensity peaks generically comprises a set of defined steps: feature detection, alignment of
retention times, peak picking, noise reduction, and normalization of MS intensities [121, 130].
The detected and normalized peaks are then compared between the samples and their MS/MS
spectra are used for protein identification [121]. The estimation of the protein abundance can
be obtained mainly by three different strategies: by summing all the peptides considered in
the analysis; by performing the mean of all the peptides; or considering only the 3 most intense
peptides (usually using the mean value), the so-called TOP3 method [157, 158].

Since quantification is done at the MS1 level, the estimation of protein abundance is not
dependent  on  the  acquisition  of  a  particular  MS/MS  spectra  in  all  the  experimental
conditions. In fact, a given peptide can be identified in a single sample and quantified across
all  the remaining samples [141].  Thus, these methods are not so prone to the variability
associated with variation of  sample to sample complexity.  This  characteristic,  associated
with the unlimited number of samples to be compared, enables MS1 intensity methods as
suitable methods for clinical  biomarker discovery,  which normally requires high sample
throughput [125].

Due to the large number of modified methods and the generalized use of the terms spectral
counting and peak intensity to include all the modifications, it is not always clear which
particular method was used in a given experiment. Therefore, to simplify the categorization,
the reports are commonly grouped in these two generic categories, taking into account only
their basic principles.

The use of spectral counting and/or MS1 intensity methods in neuroproteomics is vast and
usually alternates between the use of one type or another [9, 159, 160]. However, some reports
combine the two methods to improve the results obtained, such as in the case of the interac‐
tomics study of the AMPA receptor performed in collaboration with our group [161] where
both spectral counting and MS1 intensity were used to identify the truly positive interactors
from the negative control. Within the areas where label-free methods are being used, it is
possible to identify some general studies focused on understanding proteomics changes in
brain regions, such as the evaluation of frontal cortex changes caused by frontotemporal lobar
degeneration (FTLD) [162]; cell- and tumor-specific alterations, such as the comparison of
astrocytes and astrocytoma proving evidences for the existence of important membrane
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biomarkers capable to define the cell lineage of the tumor [163]; and characterization of protein
architecture of secretory vesicles, key components that mediate intercellular signaling [164].
Although, regarding label-free approaches, the neuropsychiatric field is dominated by the use
of MSE, in the study of neurodegenerative diseases (such as Parkinson’s, Alzheimer’s, and
Huntington’s diseases) there is an evident tendency of spectral counting/peak intensity
methods [9] in both the analysis of cell and animal models (both obtained by the use of chemical
and genetic alterations) [165–167] and also CSF [168] and postmortem tissues (mainly in the
case of Alzheimer’s disease) [169, 170]. Those proteomics screenings led to the identification
of several deregulated proteins, contributing to an increase in the understanding of the
pathways that are altered in those disorders.

There is an inherent tendency for a larger number of spectral counting reports [162–165, 167,
169, 170] when compared with the peak intensity reports [166, 168], as observed from the
examples stated above. This underestimation of peak intensity reports from IDA experiments
is associated with the preference from the alternative peak intensity methods based on DIA
acquisition (such as MSE). Although in reduced numbers, there are also some reports on the
use of MS2 TIC methods, more specifically SIN, in the neuroproteomics field. As an example
of its applicability, there are two studies involving brain tumors. In one study, the authors
performed a characterization of the differentiation states of glioblastome stem cells (cells
responsible for tumor formation and growth [171]), in the other study the authors were focused
in the analysis of the secretome of glioma cells in order to identify the proteins that could be
involved in tumor cells migration [172].

Further quantitative neuroproteomics studies were already summarized in several reviews [9,
159, 160].

3.3. Data-independent acquisition methods

As stated above, in order to overcome the limitation of the use of IDA modes, alternatives with
DIA are starting to be used. The major advantage of this acquisition mode relies on its ability
to record fragmentation spectra from the entire set of precursors of a given sample, without
any selection that can bias the acquired data. However, in these experiments, the data analysis
is very challenging, since the link between the precursor and its fragments is lost [173], these
methods are highly dependent on the development of algorithms capable of extracting
valuable information from the data acquired [174].

These methods operate in a cyclic mode, throughout the entire liquid chromatography (LC)
time range, by alternating between survey and fragment ion spectra. Generically, these
methods can be divided into two distinct groups, those that acquire the fragmentation spectra
of the entire mass range simultaneously, and those that scan the m/z range in sequential
isolation windows of different widths. The use of sequential isolation windows is a way to
reduce some of this complexity, by decreasing the number of concurrent ions being fragmented
at a given moment [173, 174].

Usually in DIA experiments, the quantitative information is still obtained from the precursor
ion signal, while the fragmentation spectra are mainly used for peptide identification by both
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the use of common tools developed for DDA, or by searching pseudo MS/MS spectra recon‐
stituted based on co-elution profiles of precursors and their potential fragments [174].

Several DIA acquisition methods were developed based on the use of different mass spec‐
trometers and/or different dissociation methods (see Table 1) [173, 174], however, within this
chapter only the most used method, LC-MSE, and the SWATH-MS method will be presented.

Method Instrument
m/z selection window

(width)
Dissociation method Ref

Shotgun CID Q-Tof Full m/z range CID in-source [175]

Original DIA Ion Trap 10 m/z CID in-collision cell [176]

MSE QqTOF Full m/z range CID in-collision cell [177]

p2CID Q-Tof Full m/z range
CID in-source &

collision cell
[178]

PAcIFIC
(Percursor Acquisition Independent

From Ion Count)
Ion Trap 2.5 m/z CID in-collision cell [179]

All Ions Fragmentation (AIF) Orbi-Trap Full m/z range
CID in HDC collision

cell
[180]

XDIA or DIA-ETD-CAD IonTrap-ETD-CAD 20 m/z ETD in cell [181]

SWATH QqTOF 25 m/z CID in-collision cell [173]

Fourier transform-all reaction
monitoring (FT-ARM)

LTQ-FT or LTQ-
Orbitrap

12 m/z or 100 m/z CID in-collision cell [182]

Table 1. List of DIA methods (adapted from [173, 174]).

3.3.1. Liquid Chromatography-Mass Spectrometry Elevated energy (LC-MSE)

LC-MSE was the first label-free method from DIA used in proteomics quantitative screening.
This method is based in the neutral loss acquisition mode and was first reported in large
datasets by Wrona and collaborators in 2005 [183] as a “all-in-one” analysis for metabolite
identification. This method was further transposed to proteomics studies, mainly supported
by QqTOF instruments [177, 184]. MSE consist of the acquisition of samples in two alternate
modes, first samples are acquired in a low energy mode to collect precursor ions masses (MS
precursor scan) and then in a high-energy mode to induce the fragmentation of the entire
samples and acquisition of all the product ions (MS/MS scan) [184]. Over the years the coupling
with the continuous development of MS and LC systems (more specifically, the use of UPLC-
MSE), more reproducible and accurate quantification has been achieved. However, as an
inherent issue of DIA experiments, a large amount of data acquired remains unused, therefore
a considerable effort has been done in order to obtain algorithms capable to extract more
information from the acquired data than that already available [174].
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3.3.2. Sequential Window Acquisition of all Theoretical Fragment-Ion spectra (SWATH-MS)

In 2012, Gillet and collaborators [173] presented the SWATH-MS method, although at that
time other DIA methods were already widely used. It was a method that was particular‐
ly  innovator  due  to  its  proposed  data  extraction  methodology.  Here,  the  authors  pro‐
posed  a  targeted  data  extraction  by  combining  parallel  analysis  of  samples  with  an
optimized IDA method for peptide identification followed by a DIA acquisition to be used
to extract quantitative information. From the IDA method, a list (called “library”) contain‐
ing all  the information regarding a given identified peptide (such as RT, precursor m/z,
and MS/MS spectra) was obtained and it was further used to extract the XICs of the specific
fragment ions (called peak groups) from all the high confidence peptides identified. Thus,
instead of using the precursor intensity as performed by the other methods, in SWATH-
MS the use of MS2 signaling intensity-based method was introduced, which is similar to
the quantification already performed in MRM and PRM experiments,  for the untargeted
analysis of large fractions of the proteome. Furthermore, the authors also showed that with
SWATH-MS,  it  was  possible  to  achieve  similar  reproducibility  and  accuracy  as  for  the
targeted methods for protein quantification [173].

For the acquisition of the fragmentation spectra of virtually all the precursor ions present in a
sample, the mass spectrometer, a high-resolution Triple-TOF instrument, operates in the
sequential isolation window acquisition principle introduced by previous DIA studies [174,
176]. By fractionating the sample in SWATH acquisition windows, this method leads to a
reduction of the concurrently fragmented precursors and consequent reduction of the acquired
MS2 spectra complexity.

As data extraction is  performed by targeting the peptides already identified,  the loss of
precursor-fragments linkage is overcome, and a large percentage of data is effectively used.
Furthermore, this targeted data extraction also allows that additional criteria, such as the
transition intensity ratio, m/z error, and similarity to the identified MS/MS spectra, can be
used in combination with the usual chromatographic criteria to evaluate the confidence of
the peak group formed. Therefore, protein quantification is obtained from a more reliable
extracted data [185].

The SWATH-MS method seems to be able to overcome the majority of the limitations of
label-free methods, it is unbiased, presents a broad range of precursor ion fragmentation
(covering almost the entire mass range usually analyzed),  and it  relies on targeted data
extraction  [173],  thus  making  this  method  a  promising  strategy  to  be  applied  in  large
screenings, such as the discovery of biomarkers [9, 129, 186–188]. Although, being a very
recent methodology, the great expectation regarding its application into the biomedical field
is  reflected  in  the  several  improvements  already  achieved  into  the  different  domains
associated with this method. There are already improvements in the DIA acquisition mode
with the introduction of the variable windows mode where windows with different widths
are adjusted to the number of precursor ions per m/z range, thus the number of concur‐
rent ions are reduced in the most populated regions. Moreover, several different groups,
have  been  working  on  the  improvement  of  sample  preparation  and  library  creation  to
increase the number of proteins quantified per sample, as well as to obtain more reprodu‐
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cible data [189–193]. Finally, different algorithms were also developed to address SWATH
data, both in the targeted mode [194] and untargeted mode, which is mainly focused on
performing protein identification directly from the SWATH data [195].

The introduction of the concept of a protein library that can be used to interrogate multiple
samples has opened the door to the idea of having cell-, tissue-, and species-specific libraries
containing exhaustive lists of identified proteins capable of covering the entire proteome.
Those libraries can then be used in both research and clinical fields to extract larger quantitative
information from the analyzed samples. Within this scope, Aebersold and co-works have
already published the first repository with 10,000 human proteins that claims to successfully
detect and quantify 50.9% of all human proteins [196]. Furthermore, as the SWATH file of a
given sample corresponds to the MS/MS spectra signature of that sample, that file can be
interrogated any time it is required without the need to re-analyze the sample. Therefore, with
these SWATH files it is possible to create a repository of samples that can be used in longitu‐
dinal studies [129].

As stated above, the use of DIA in proteomics is recent and is not a common option, therefore,
this overview in the neuroproteomics field will be done for MSE, which is the most used
method, and also for SWATH-MS due to the exponential increase in the interest and devel‐
opment associated with this approach.

MSE is perhaps the most used large-screen, label-free method, particularly in the neuropro‐
teomics field, and the only DIA method that has gained enough visibility so far [9, 197].
Although MSE was also used in different neuroproteomics areas, such as in the studies of
frontotemporal lobar degeneration [198] and the profiling of phosphorylation events in
different rat tissues, including the brain [199], its use was particularly potentiated by the Sabine
Bahn group for the study of neuropsychiatric diseases, such as schizophrenia, major depres‐
sion, and bipolar disease [160]. In general, their published works were mainly focused on
differential analysis of human samples, both serum [200, 201] and postmortem tissue [202-204],
from patients versus healthy controls, or including different disease groups or groups with
different levels of antipsychotic medication. Those works aimed to identify differentially
altered proteins that could distinguish between the disease groups, but could also contribute
to a better understanding of the diseases. In fact, the authors were able to identify several
different proteins that are altered between schizophrenia patients versus controls, including
proteins altered in first-onset paranoid patients [201], and observed also some proteomics
alterations that were dependent on the dose of antipsychotic medication [204]. Finally, to
distinguish the effect of the medication from the disease alterations, Sabine Bahn’s group also
studied the modifications caused by some of the antipsychotic drugs in rat frontal cortex, being
able to identify proteins altered by the medication, some of them altered in both types of
medication used [205]. More recently, MSE was also used to perform proteomic profiles of the
first episode of major depressive disorder patients and sex-specific alterations of adults
diagnosed with Asperger syndrome [206].

Being a very recent method, SWATH-MS reports are mainly associated with technical
improvements, and in demonstrating its capacity to obtain large proteomics profiles with its
potential use to clinical studies and biomarkers discovery, such as the study of plasma PTMs
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as phosphoproteins [187] and glycoproteins [207], large screening of twins [208], and human
library creation [196], and also its applicability in biopsies specimens [188]. In the neuropro‐
tomics area, it is already possible to find some reports, such as the work published by our
group [209], where we presented a pipeline for reproducible quantitative screenings using a
membrane-enriched sample from rat cortex, indicating that our approach is suitable for
evaluation of membrane proteins, key players in the majority of neuronal dysfunctions. There
are also two other works from Fox’s group regarding mitochondrial alterations: one of them
corresponding to an exhaustive characterization of mitochondrial proteome from embryonic
and postnatal rat brain revealing a rearrangement of proteins from glycolysis and mitochon‐
drial trafficking/dynamics, which may suggest a development change to accommodate the
required energy demands in different developmental stages [210]. Another study focused on
mitochondrial functional alterations associated with deregulation of PTEN-induced kinase 1
(PINK1), a Parkinson’s disease-associated protein [211].

3.4. Absolute quantification based on label-free approaches

Although the majority of the screenings are based on relative quantification, some authors
started to focus on the possibility to also extend these methods to absolute quantifications
[128], since the calculation of the protein abundances in a sample is essential to increase the
understanding towards the biological systems and its variations [177, 212]. Overcoming the
elevated cost and demanding sample preparation of an isotopic dilution-based method to
perform absolute quantification, the use of label-free techniques reveals a reliable alternative
(although less accurate than the referred methods). The available methods can be divided into
two generic classes based on the quantification algorithms used: 1) those based on tandem MS
data, e.g., protein sequence coverage or spectral counting including emPAI [213] and APEX
[214]; and 2) those based on the measurement of precursor ion intensity such as MSE [177],
T3PQ [157], and iBAQ [215].

In general, all these techniques were described as having good correlation with protein
amounts in both simple mixtures of proteins with known amounts (alone or spiked in complex
samples) and for unknown proteins in complex samples. When complex samples were used,
the accuracy of the results were confirmed by comparing the values achieved within several
different techniques, such as other mass spectrometry-based quantitative methods (including
isotopic labeled methods), transcriptomics analysis, and ELISA [157, 177, 212–215]. In all cases,
a proper estimation of the protein abundance was achieved with or without standards.

The more cost-efficient and easier option is to exclude the standard proteins and calculate
protein abundances from the fraction of each protein in the total protein pool assuming that
most of the proteins that contribute to the total protein pool are identified and quantified. As
examples of this quantification without standards, it is possible to find the determination of
the copy number (using total protein approach (TPA) [216]) and the definition of the stoichi‐
ometry of protein complexes [217]. However, the quantification accuracy can be increased by
using a standard curve from a mixture of proteins with known amounts that have different
sizes and concentration [212].
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Additionally, the majority of these methods are already implemented in several tools available
for proteomics analysis, therefore, it is possible to combine both relative and absolute quanti‐
fications in a simple way, as in the case of the emPAI that is implemented in the MASCOT
server, one of the most used servers in proteomics [214].

A brief presentation of the most used methods for label-free absolute quantification focused
on the major differences between them, and some reports using these methods into the
neuroproteomics field are presented below.

3.4.1. Spectral counting-based methods

Exponentially Modified Protein Abundance Index (emPAI): Mathias Mann's group present‐
ed what would be the first method for absolute quantification by proving that a transformation
of the PAI values (described above) could be in fact associated with the absolute amount of a
given protein [213]. In this study, the authors showed that the PAI values have a linear relation
with the logarithm of protein concentration, therefore the absolute quantification of a given
protein can be obtained by the exponentially modified PAI (emPAI), which is equal to the
following equation 10PAI-1.

Absolute Protein Expression (APEX): In theory, the APEX method is similar to the previously
proposed emPAI method since it is based on the number of peptides identified normalized for
the theoretical number. However, instead of considering the redundant peptides, it relies only
in the unique peptides. And furthermore, which is also its major strength, this method uses
machine learning to calculate the number of theoretical peptides than can be identified in the
particular experiment. To achieve the probable number of peptides, the theoretical number of
peptides is normalized for a correction factor specific for the experimental settings [212, 214].

3.4.2. Intensity based methods

One of the disadvantages of spectral counting based methods already observed for relative
quantification is the fact that in these methods the saturation is easily reached, therefore, failing
in accurately quantifying proteins present at higher levels. On the other hand, as those methods
rely on the MS/MS spectra identification, they are also biased to the most intense proteins,
therefore, spectral counting-based methods are only accurate within a reduced dynamic range.
Furthermore, they also present a large variability between replicates. Similar to what is
observed for relative quantification with the use of MS1 intensity-based methods these
limitations are overcome.

Peak intensity-based absolute quantification method (iBAQ): In this method, the amount of
a given protein is calculated by the sum of the peak intensities of all peptides matching to it,
divided by the number of theoretically observable peptides [215].

LC-MSE: Silva and colleagues reported in 2006 [177] for the first time the relationship between
MS signal response and protein concentration. In this work, the authors discovered that the
average of the three most intense peptides is highly correlated to the effective amount of a
protein in a sample. In this study the authors spiked the samples with a known amount of a
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mixture of proteins (internal standards). The internal standards were then used to calculate a
universal signal response factor (which was shown to be the same for all the tested proteins)
that correlates the intensity calculated with the amount of the proteins, and is then used to
obtain the quantification for the unknown proteins.

Three most intense peptides peak area (T3PQ): The T3PQ method is an adaptation of the
method previously used in LC-MSE [177] for IDA methods [157]. The principle of this approach
relies on the evidence that for each protein (independent on its size) identified by a set of
peptides, the average of the three most efficiently ionized peptides (those with the highest MS
signals) directly correlated with the amount of the corresponding protein. This method proved
to be more accurate and reproducible than the methods already used (in particular, when
compared with the spectral counting methods) [157].

Absolute quantification methods have been used mainly in studies focusing on the under‐
standing of complexes stoichiometry, and not in large screenings that are the most frequent
assays in the neuroproteomics field. Therefore, there are only few reports using label-free-
based absolute quantification, particularly in neuroproteomics, and those are mainly associ‐
ated with the iBAQ method. One of the more interesting reports where iBAQ was used is
perhaps the work regarding the characterization of the isolated synaptic boutons that culmi‐
nate with the establishment of the amounts of the proteins that compose those vesicles [218].
iBAQ was also used to obtain a comprehensive characterization of the protein abundance in
several organs, such as the brain [158], and in some experiments that focus on the determina‐
tion of the amount of enriched proteins in tissue-specific (hair bundles) [219] and condition-
specific (BACE1 knockouts) [220] proteomes.

4. Multiple reaction monitoring

Multiple reaction monitoring (MRM) is a highly selective scan mode in MS that has been
extensively used for the last 30 years for absolute quantification of small molecules [221].
Similarly, the knowledge acquired in small molecules targeted quantification has been
transposed for targeted quantification of peptides and proteins where several reviews can be
found in the literature [222–224]. Shotgun proteomics MS-based studies retrieve the identifi‐
cation of thousands of proteins in a single analysis, plus the relative quantification by label-
free [225, 226] or isotopic labeled strategies [227, 228]. However, in these global profiling
methods, low-abundance peptides may be difficult to be detected, generating “missing data”
and low precision problems that can impair statistical analyses [229, 230]. Consequently, the
untargeted approach has been widely used, for instance, in clinical studies of biomarker
discovery to find new candidates and, the MRM targeted MS-based approach has been used
in the verification/validation phase, overcoming many of the difficulties associated with
antibody-based protein quantification [231, 232].

Developing and validating MRM-MS assays is a laborious process, but once constructed, it
can be used for accurate and precise quantification of one or several proteins on a large scale
and across laboratories [233]. The high selectivity of MRM scan mode is achieved using, most
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predominantly, triple-quadrupole mass spectrometers. Quadrupoles are known as “mass
filters” where in a first stage (Q1), the mass/charge ratio (m/z) of the intact peptide (precursor
ion) is selected, fragmented in the collision cell (q2), and in a second stage (Q3) a specific
fragment of the precursor is selected, generating the selected reaction monitoring experiment
(SRM) with one transition (precursor/ fragment), or if several fragments are being monitored,
an MRM experiment with several transitions (Figure 5A) [234].
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Figure 5: Schematic representation of the wAb MRM scan mode performed in a triplex
quadrupole instrument and the wBb highxresolution multiple reaction monitoring wHRx
MRMb scan mode performed in a QqTOF system. In classical MRM scan modek the
first quadrupole wQ1b selects the m/z of the precursor that will be fragmented in the
collision cell wq2b and one of the resulted fragments is then selected by the third
quadrupole wQ3b towards the detector. The two stages of mass filters wQ1 and Q3b
represent a transition and more than one can be monitored in a single run. HRxMRM
works similarly at the first stage wQ1b but after fragmentationk all the fragments are
scanned by the TOF mass analyzer instead of selecting only one each time that the
precursor is fragmented. This will generate a highxresolution mass fragmentation
spectrum where extracted ion chromatograms for each fragment can be obtained by
the use of specific softwares.

Figure 5. Schematic representation of the (A) MRM scan mode performed in a triple-quadrupole instrument and the
(B) high-resolution multiple reaction monitoring (HR-MRM) scan mode performed in a QqTOF system. In classical
MRM scan mode, the first quadrupole (Q1) selects the m/z of the precursor that will be fragmented in the collision cell
(q2) and one of the resulted fragments is then selected by the third quadrupole (Q3) towards the detector. The two
stages of mass filters (Q1 and Q3) represent a transition and more than one can be monitored in a single run. HR-MRM
works similarly at the first stage (Q1) but after fragmentation, all the fragments are scanned by the TOF mass analyzer
instead of selecting only one each time that the precursor is fragmented. This will generate a high-resolution mass frag‐
mentation spectrum where extracted ion chromatograms for each fragment can be obtained by the use of specific soft‐
wares.

The peptide sequences to be monitored must be carefully selected as they have to be unique
for a given protein, where peptides with less than 8 residues and those susceptible to undergo
modifications during sample processing (methionine oxidation, cysteine alkylation) must be
avoided. Additionally, for protein isoforms or PTM’s quantification, specific peptides should
be selected for accurate measurements. [229, 235, 236]. The combination of LC separation
followed by the MRM acquisition (2 m/z filters) results in high precision, sensitivity, and high
selective measurements for the selected peptides and, consequently, for the protein [229]. The
best candidate peptide(s) to be monitored for the quantification can be selected based on
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prediction tools (in silico) or on experimental evidences [236]. Selection based on empirical
data involves previous LC–MS/MS experiments from the biological sample to obtain prelimi‐
nary information on the peptide characteristics such as ionization and fragmentation. After
the selection of the peptides (precursors) and their specific fragments, MRM transitions are
evaluated by re-analyzing the sample to help in the selection of the most selective and sensitive
for each peptide of interest [237]. In order to avoid long optimization and multiple rounds of
analyses, there are online repositories such as PeptideAtlas, the Global Proteome Machine
Database, and Pride, which contain peptide sequences and empirical MS spectra to support
MRM designing without the need of preliminary sample processing and analysis [229]. Even
for proteins not found in the database, there are several in silico bioinformatic tools that select
high-responding peptides from candidate proteins, such as ESP preditor [238], PeptideSieve
[239], PepFly [240], MIDAS [241], among others. TIQAM is another interesting software tool
that selects the proteotypic peptides based on the in silico prediction and integrates that
information with the PeptideAtlas repository or other sources to generate the list of transitions
based on the validated fragmentation spectrum [242].

The number of proteins monitored by an MRM experiment is usually low and the duty cycle
(the time for the instrument to cycle through separation and detection of each transition) will
depend on the number of peptides per protein and the number of transitions per peptide. To
overcome the limited number of proteins monitored in an MRM experiment, a timed acquis‐
ition mode, termed scheduled MRM (sMRM) analysis was developed where transitions are
acquired only during a defined elution time window [235]. Consequently, thousands of
transitions can be monitored, allowing the quantification of hundreds of proteins in a single
run. Colangelo and collaborators developed a pipeline for large scale (>1000 transitions/run),
label-free LC-MRM assays for the quantification of 112 rat brain synaptic proteins [243]. The
workflow began with data-dependent acquisition using 5600 Triple TOF to identify the
sequences of the peptides present in the biological sample of interest. The peptide library
information was then converted into thousands of MRM transitions that were easily trans‐
posed to the 5500 QTRAP (demonstrating the consistency of the fragmentation patterns
between the instruments) to be acquired using the sMRM methods. To address the very short
dwell times due to the high number of transitions, they presented an improvement in the
sMRM methods' sensitivity and robustness using an intelligence-based MRM acquisition
(termed extended or xMRM). Firstly, variable acquisition windows throughout the run can be
used and secondly, a “triggered xMRM”, where the secondary MRM transition for each
peptide was only monitored if the primary MRM exceeded a given threshold. The xMRM
enabled the reduction of the number of transitions to be monitored at a given time leading to
an increase of 63–68% in the dwell times for peptides and, consequently, an increase in the
sensitivity for the limiting peptide concentrations.

Although MRM is considered to be a very high selective scan mode, the possibility to have
non-desired peptides with isobaric or very similar m/z values can increase with sample
complexity [244]. The consequence of a non-selective method is the overestimation in concen‐
tration determination of the targeted peptide. Therefore, the use of HR-MRM can increase the
method selectivity and consequently improve the accuracy of the quantification. The scan
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mode works as described in the first stage (Q1) and in fragmentation (Q2) for triple quadru‐
poles with the difference in the last stage, where rather than focusing on a single ion fragment
in Q3, fragment ions of all masses are scanned by a TOF analyzer generating high-resolution
MS/MS spectra (Figure 5B). Thus, fragment ions can be extracted from the high-resolution MS/
MS spectra of the targeted peptides to generate extracted ion chromatograms (XICs) of high
resolution [245]. Tong and collaborators performed a targeted HR-MRM analysis for the
quantification of 47 tear proteins using the Triple-TOF mass spectrometer (QqTOF) with good
reproducibility (CV<5%) [245]. In addition to the improvement in selectivity, the multiple steps
for the selection of the best transitions are not required as in triple-quadrupole instruments.

4.1. Absolute quantification of proteins by MRM

Beyond protein identification and relative quantification by MS, absolute quantification of
proteins in biological samples has also been performed using synthetic unlabeled and/or
labeled peptides [12]. Absolute protein quantification has been generally performed based on
the principle of the stable-isotope dilution (SID) where stable isotope-labeled synthetic
analogous are spiked into the samples to extrapolate protein amounts present in a sample.
Gerber and collaborators termed this approach as the AQUA methodology, where the best
candidate peptides for the quantification of a given protein are synthesized with at least one
residue replaced by stable isotopes, resulting in a very similar endogenous peptide (called
AQUA peptides) but with a sufficient m/z difference so that they can be distinguished by MRM
[246]. Protein quantification is performed by spiking the sample with a known amount of the
AQUA peptide and the peak areas ratio of the unlabeled/labeled peptides are used to deter‐
mine the expression levels of the protein of interest. On the other hand, Barnidge and collab‐
orators performed a study to compare protein quantification using two different methods, one
based on the AQUA approach and the other on an external calibration curve created from
successive dilutions of the synthetic unlabeled peptide [247]. Quantification based on the
external calibration curve resulted in better precision and accuracy values than quantification
based on the sample spiking of the analogous labeled synthetic peptide. In this study, the
external calibration curve was able to accurately determine the peptide concentration however,
for more complex samples, the matrix effect should be evaluated so that method accuracy is
not compromised. The ideal approach for accurate and precise peptide quantification would
be the use of external calibration curves prepared in the representative matrix by spiking the
unlabeled synthetic peptide at various concentrations and a constant amount of the analogous
stable isotope synthetic (SIS) peptide as internal standard. However, proteins or peptides of
interest are usually present in the representative matrix that impairs the accuracy and precision
of the quantification method if the calibration curves are performed by spiking the synthetic
unlabeled peptide into the matrix. For that reason, Campbell and collaborators proposed an
alternative approach called the reverse curve method where varying amounts of the labeled
peptide are spiked in the representative matrix to create the calibration curve [248]. In this
work, seven apolipoproteins were quantified in human plasma using the three approaches: a)
spiking the sample with a known amount of the analogous synthetic-labeled peptide (AQUA
approach); b) spiking the representative matrix with different amounts of the unlabeled
synthetic peptide and a constant amount of the labeled peptide to create the “classical”

Neuroproteomics — LC-MS Quantitative Approaches
http://dx.doi.org/10.5772/61298

87



calibration curve; and c) spiking the representative matrix with varying amounts of the labeled
synthetic peptide to create the curve and a constant amount of the unlabeled peptide to work
as internal standard (reverse calibration curve). For both cases using external curves, some
corrections are required due to the endogenous peptide already present in the sample. The
correction for the classical calibration curve is performed by subtracting the y-interception of
the curve to the determined concentration of the endogenous peptide in the sample. For the
reverse curve the correction factor corresponds to an increase of each curve point by an amount
proportional to the ratio of the amounts of endogenous unlabeled peptide to the spiked
synthetic unlabeled peptide [29]. The AQUA approach revealed to be inaccurate for endoge‐
nous peptide quantification below and above the concentration of the IS spiked into the sample.
As expected, this result demonstrates that accurate peptide quantification in samples can only
be achieved if the spiked IS amount into the sample is close to the concentration of the
endogenous unlabeled peptide. The reverse curve has the advantage of allowing the determi‐
nation of the limits of detection and quantification (LOD and LOQ) once the representative
matrix does not contain the synthetic-labeled peptide. In addition, the quantification using the
reverse curve revealed to be the most accurate and precise between the three methods, thus
this approach can be used with confidence to quantify endogenous peptides/proteins already
present in the surrogate matrix.

Absolute quantification by MRM applied to neuroproteomics was first described by Desiderio
and collaborators to quantify picomole amounts of the endogenous methionine-enkephalin
(ME) in the human pituitary by comparing the response of the endogenous ME to one of the
deuterated ME internal standard (d5-ME) [249]. More recently, Kheterpal and collaborators
determined the concentration of MIF-1 (neuropeptide) in different regions of mouse brain by
using a calibration curve prepared by successive dilutions of the unlabeled synthetic peptide
in the absence of matrix [250].

There are several studies in Alzheimer’s disease that involve protein/peptide quantification
by MRM [251–253]. Lame and collaborators developed a UPLC-MRM method to accurately
quantify Aβ1-38, Aβ1-40, and Aβ1-42 in human cerebrospinal fluid that can play a crucial role in
understanding disease progression and intervention [254]. The quantification was performed
using calibration curves prepared with various concentrations of the synthetic peptides spiked
with constant amounts of analogous 15N-labeled internal standards in an artificial CSF matrix.
Also, Wildsmith and collaborators described the development of an MRM assay for the
absolute quantification of 39 peptides corresponding to 30 proteins to confirm previous
findings for a subset of markers for Alzheimer’s disease [255].

Another approach that, in combination with MRM, allows absolute quantification based on
the isotope-dilution mass spectrometry or AQUA methodology is peptide labeling with non-
isobaric tags reagents, the mTRAQ reagents. Originally, mTRAQ labels appeared in two
versions, the lighter version (lower in mass than the iTRAQ labels by 4 Da) and the heavy
version that is identical to the iTRAQ 117 label resulting in a light version (Δ0) with a monoi‐
sotopic mass of 141 Da and a heavy version (Δ4) of 145 Da. Furthermore, a new label version
(Δ8) is now available called triplex mTRAQ reagents. These have been used mostly for relative
quantification but DeSouza and collaborators described a method for absolute quantification
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Another approach that, in combination with MRM, allows absolute quantification based on
the isotope-dilution mass spectrometry or AQUA methodology is peptide labeling with non-
isobaric tags reagents, the mTRAQ reagents. Originally, mTRAQ labels appeared in two
versions, the lighter version (lower in mass than the iTRAQ labels by 4 Da) and the heavy
version that is identical to the iTRAQ 117 label resulting in a light version (Δ0) with a monoi‐
sotopic mass of 141 Da and a heavy version (Δ4) of 145 Da. Furthermore, a new label version
(Δ8) is now available called triplex mTRAQ reagents. These have been used mostly for relative
quantification but DeSouza and collaborators described a method for absolute quantification
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of proteins using the duplex version of mTRAQ reagent. The procedure consisted of labeling
known amounts of the synthetic peptide used for protein quantification with one of the two
versions while, the opposite version was used to tag the endogenous peptides that needed to
be quantified [256]. At the end, these two fractions were mixed at a known amount and the
resulting mixture was analyzed by unique MRM transitions for each version of the labeled
peptide resultant from the different masses of the tags. The areas that resulted from each MRM
transition were then used to determine the unknown concentration of the peptide in the
digested sample and, consequently, the concentration of the protein of interest.

Apart from the AQUA quantification strategy, standard peptides are usually spiked at late
stages of sample processing; they are poorly compatible with sample pre-fractionation; and
the digestion efficiency cannot be fully determined leading to an inaccurate quantification
[257]. To address these issues, other types of standards were developed known as artificial
concatamers of proteotypic peptides (called QconCAT) and are generally added into the
sample just before protein digestion [258]. Concatamers are artificial protein constructs that
include multiple trypsin-cleavable proteotypic peptides isotopically labeled. The isotope-
labeled peptides are released during protein digestion and will be used as standards for the
absolute target protein quantification. The QconCAT methodology possesses the main
advantage of facilitating multiplex protein quantification where typically 10–30 target analyte
proteins are encoded in each QconCAT at a level of two quantotypic peptides per protein [259].
Chen and collaborators stated that a reliable quantitative approach of clusterin in brain was
needed to clarify its role in Alzheimer’s disease. Consequently, they developed a stable
isotope-labeled concatenated peptide (QconCAT) for the quantification of clusterin in human
postmortem frontal and temporal cortex [260]. Later, they applied this approach for other
protein quantifications also related to AD. At this time, a multiplexed QconCAT was designed
for quantification of various isoforms of amyloid precursor protein (APP). Since common
tryptic peptides between all isoforms of APP were concatenated with unique tryptic peptides
for specific APP isoforms, this QconCAT-MRM method allowed the clear quantification of the
total APP and each protein isoform [261].

Even with the advantage of multiplexing absolute quantification, the assessment of the
digestion efficiency remains undetermined once QconCAT are usually digested at high rates,
not giving the true tryptic digestion efficiencies for each protein [258]. By using the isotope-
labeled equivalent of the full-length target protein, the “ideal” internal standards can be added
at the very beginning of sample processing, allowing the determination of the recoveries after
pre-fractionation steps and the assessment of the digestion efficiencies, which is called the
“Protein Standard Absolute Quantification” (PSAQ). A comparative study between AQUA,
QconCAT, and PSAQ was performed for the quantification of Staphylococcus aureus superan‐
tigenic toxins in water and urine samples where the PSAQ strategy revealed to be more
accurate than the two other methods [262]. PSAQ also revealed to be advantageous for the
absolute quantification of membrane proteins that are more prone to errors on concentration
determination due to protein enrichment steps usually required and incomplete digestion
[263]. In this study, accurate quantification of 7 membrane proteins was achieved using as
internal standards the analogous 15N-labeled full-length proteins added at an initial stage of
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sample processing. There are other quantification approaches based on the addiction of full-
length labeled proteins internal standards for protein quantification such as FlexiQuant [264],
PrEST [265], and Absolute SILAC [266].

Although, some of the approaches presented have few publications for absolute protein
quantification by MRM they can be of interest for the neuroproteomics field to confirm
previous findings or to find new targets with more accurate data.
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Abstract

Mycorrhizae  are  symbiotic  associations  between soil  fungi  belonging  to  diverse
taxa  and the  roots  of  about  90% of  all  terrestrial  plant  species.  The  mutualistic
nature of these symbioses is based on the nutritional exchanges between the part‐
ners.  However,  the benefits to the plant partner are not limited to an improved
mineral nutrition because they also include a general increase in stress tolerance
and health. Because of these benefits, mycorrhizae are of great interest in sustain‐
able  agriculture  and  forestry.  In  the  past  few  years,  the  development  of  high-
throughput  molecular  tools,  in  addition  to  the  advancements  in  microscopy
techniques,  has  allowed  us  to  gain  a  deeper  insight  on  the  molecular  mecha‐
nisms underlying the  establishment  and functioning of  these  symbioses.  In  this
chapter, we focus on the use of proteomic tools to better understand the molecu‐
lar  bases of  cell  communication and the regulation of  developmental  and meta‐
bolic pathways in mycorrhizal associations.

Keywords: Proteomics, mycorrhizal associations, laser microdissection

1. Introduction

Plants cannot move away from unfavourable environments, or run away from hungry eaters,
or escape from detrimental microorganisms. Fortunately, not all environments and all
organisms are a threat to plants, and plants have also evolved strategies to survive adverse
environmental conditions. In fact, plants have adapted to most environments, they have
learned how to avoid risky relationships with detrimental microorganisms, how to be
unconcerned by neutral microorganisms and how to develop intimate affairs with beneficial
partners.

© 2015 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.



The latter type of interaction is referred to as a 'mutualistic symbiosis'. Symbiosis was first
defined at the end of the nineteenth century by Anton De Bary as a term that simply described
the regular coexistence of taxonomically different organisms [1]. A mutualistic symbiosis
means more than 'regular coexistence', as it includes all relationships in which both partners
can benefit from the association, and where benefits can be measured in terms of fitness and
nutrient exchange.

Among mutualistic symbioses, the association of plants with nitrogen-fixing rhizobia [2] and
with mycorrhizal fungi, in particular, are the result of a long co-evolution and co-operation
between plants and soil microbes [1]. Different types of mycorrhizae have been found in
nature: ectomycorrhiza (ECM) is predominant in forest soils and is characterized by the fact
that the fungal hyphae remain outside the plant cell; endomycorrhiza comprises orchid, ericoid
and arbuscular mycorrhiza (AM) and derives its name from the fact that the fungal hyphae
are able to enter into the plant root cells [3].

ECM fungi have evolved from wood- and litter-decaying fungal ancestors, without any
obvious reversal to saprotrophy [4]. Although the oldest ECM root fossils date back to 50
million years ago (MYA) [5], molecular analyses place the origin of ECM fungi in the Creta‐
ceous [6] and suggest that they probably played a role in the migration of plants from the
tropics to the poorer temperate regions [7]. ECM fungi mostly belong to Basidiomycota and
Ascomycota, and they form symbioses with a relative small number of plant species [4]. They
play an important role in forest establishment and in the successful reforestation of harsh
environments, such as saline areas [8]. Moreover, ECM fungi can form fruiting bodies which
have an important economic impact, such as truffles.

The AM symbiosis involves the majority of crop plants and results from the successful
interaction between fungi in the Glomeromycota and the roots of about 80% of terrestrial plants
[9]. This symbiosis is one of the oldest biotrophic interactions, dating back 400–450 MYA and
is thought to have played a pivotal role in the water-to-land transition during plant evolution
[10] (Figure 1). AM fungi have become so intimately dependent on plants that they are obligate
biotrophs.

The evolutionary success of mycorrhizal symbioses likely derives from the bidirectional
nutrient exchange that takes place between the two partners in most associations: fungi deliver
mineral nutrients to the plants, while receiving sugars in return. It has been estimated that up
to 20% of the photosynthesis-derived compounds of terrestrial plants (approximately 5 billion
tons of carbon per year) are consumed by symbiotic fungi [11]. On the other hand, for example,
70% of the overall Pi acquired by arbuscular mycorrhizal rice plants is delivered via the
symbiotic route [12]. Mycorrhizal plants benefit from their interaction with symbiotic fungi
not only in terms of improved mineral nutrition, with an increased biomass production, but
also in better protection against pathogens and abiotic stresses [13].

Because of the importance of mycorrhizal symbioses in plant health, several studies have
focused on the biology, evolution and biodiversity of mycorrhizal associations [14]. In
particular, the recent development of high-throughput molecular tools has allowed us to gain
deeper knowledge on the molecular mechanisms governing the plant–fungus interaction [14],
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providing useful information for the application of these beneficial fungal agents to optimize
plant health, nutrition and yields in sustainable agriculture and forestry.

Although examples will be given for all mycorrhizal types, this chapter mainly focuses on AM
associations due to the following reasons. First, fossil and molecular records indicate for AM
fungi a very long co-evolution with plants, with an unchanged morphology over 400 million
years [15]. This observation opens several interesting questions such as: when has this
symbiosis evolved? Has the molecular machinery that regulates this symbiosis evolved over
time, or are we looking at the same situation fixed millions years ago? Understanding the
biology of this obligate biotrophic interaction is a scientific challenge, but it would allow us to
unravel the molecular mechanisms of the oldest known symbiosis [16]. The second reason is
the high relevance of AM symbiosis for crop plants; better knowledge of these associations
would have agro-environmental applications, with consequent economic and social impact.

2. Plant–symbiotic fungi interactions

The plant AM fungal interaction starts in the soil surrounding the plant roots, a region termed
rhizosphere, where both plants and fungi release chemical signals in a pre-symbiotic molecular
dialogue [17]. Among their root exudates, plants release in the rhizosphere signals such as
strigolactones and cutin monomers, which elicit hyphal branching in AM fungi as well as apical
growth of fungal hyphae towards the root surface, following the gradient of plant molecules
(Figure 2A). Although the fungal receptors for these plant molecules remain unknown, it has
been proved that they are perceived by the fungus, causing a signal cascade.

Fungal signal molecules have been identified in the past few years as being lipo-chito-
oligosaccharides (LCOs) [18], the same type of signal molecules produced by rhizobia when
interacting with legume plants, and chito-oligosaccharides (COs) [19]. Although the plant
receptors for the fungal signal molecules have not been identified yet, large families of
receptors are predicted to potentially bind these molecules.

Thanks to the exchange of these plant and fungal signal molecules, the plant and the AM
fungus recognize each other and begin a more intimate phase of the interaction, with the
fungus starting root colonization. The plant paves the way for fungal colonization by building
up the so-called pre-penetration apparatus (PPA) [20], a transient assembly that defines the

Figure 1. Schematic timeline of the root symbiosis development.
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path followed by the fungal hyphae toward the inner root layers (Figure 2B–C). The AM fungus
follows the path created by the PPA until the root cortex, where it starts to form a tree-like
structure called 'arbuscule' (Figure 2D). The arbuscule is the core of a functional AM symbiosis,
shaped as a highly branched structure where each hyphal branch is surrounded by the plant
cell membrane. The contact surface between the plant and the AM fungus greatly increases
around the arbuscule, thus increasing the area of nutrient exchanges. After few (ca. 4–5) days,
the arbuscule collapses [21] and is replaced by a new one in the same or in another cortical cell.
During AM fungal colonization, ‘early stage’ indicates the phase occurring prior to and during
the initial contact between the two symbionts. This stage ends with the formation of the
arbuscules that mark the transition to the ‘late stage’ of the symbiosis. However, fungal
colonization of plant roots occurs at many access points not normally synchronized and the
mycorrhizal symbiosis is highly dynamic, meaning that when new access points are created,
arbuscules are forming and collapsing. Therefore, early and late stages can be really distin‐
guished only after the first contacts between plant and fungus. The intracellular accommoda‐
tion of unbranched hyphae (during the early stage) and of arbuscules (at a later stage) is a
coordinated developmental process between the plant and the fungal cells: it involves an
intricate and largely unexplored signal exchange, intense secretory activity related to the
biogenesis of the perifungal membrane and an overall reorganization of the cell architecture.

Figure 2. The boxes represent the four phases of formation of the plant–fungus association in the AM symbiosis. (A)
Plant roots exude strigolactones and induce hyphal branching, while the fungus releases LCOs, perceived by the plant.
(B) The AM fungus contacts the root surface and forms hyphopodia. (C) Epidermal plant cells produce a pre-penetra‐
tion apparatus; the AM fungus starts to grow inside the plant and reaches the cortex. (D) The AM fungal hypha
branches inside the cortex cells and form the arbuscules.
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Several plant genes are known to be required for the establishment and functioning of the AM
symbiosis. Some of them encode proteins that are components of the so-called 'SYM pathway'
and are essential for early signalling and root colonization [10]. Other genes are likely involved
in nutrient exchange during arbuscule functioning, such as the Medicago truncatula gene coding
for a phosphate transporter (PT4) specifically induced in arbuscule-containing cells [22].
However, despite molecular and cellular evidence of the expression of these genes in arbus‐
cule-containing cells, the corresponding proteins have not been identified through proteomic
approaches until very recently [23], most likely because of their accumulation in a small sub-
population of root cells, those harbouring the arbuscules, and because of technical difficulties
with membrane protein extraction.

Whereas the main signal molecules involved in the AM fungus–host plant dialogue have been
identified, little information is so far available on the recognition events and on the long-
maintenance factors involved in the ECM symbiosis (Garcia et al. 2015), although auxin and
ethylene have been identified as some of the signals exchanged between the two partners in
ECM [24,25]. By contrast, nothing is known concerning this aspect in the ericoid and the orchid
mycorrhiza. The colonization steps have a very different morphology in ECM and AM
symbioses. During the symbiotic phase, ECM fungi form a fungal sheath (the mantle) that
develops outside the root. From the inner layers of the mantle, some hyphae penetrate between
the epidermal and the outer cortical cells to form an intercellular hyphal network (the Hartig
net) inside the root tissues [1]. Mycorrhiza-induced small secreted proteins (MiSSPs) are fungal
proteins known to be involved during the formation and maintenance of the symbiosis
between ECM fungi and their host plant [26,27].

The identification of the key molecular players in mycorrhizal symbioses is mandatory to
understand  the  complex  interactions  between  the  symbiotic  partners  and  the  ways  to
improve and fully exploit their symbiotic potential in sustainable crop and forest manage‐
ment.  Genome  sequences  of  several  mycorrhizal  fungal  species  are  now  available  and
provide a great opportunity to increase our knowledge on the mycorrhizal lifestyle, on the
metabolic capabilities of these symbioses and on the molecular dialogue between the two
symbiotic partners [28].

3. The symbiotic proteomics of mycorrhizal interactions

Proteomics is the large-scale study of proteins from a specific proteome in order to understand
cellular processes, and includes assessment of protein abundance, protein modifications, along
with identification of interacting partners and networks. As the aim of proteomics is the
identification of proteins, the molecular components actually taking part in cellular processes,
rather than their genetic information, proteomics could be the main technique to unravel the
key players of mycorrhizal symbioses. However, when the number of proteomics studies is
compared with those using genomics, transcriptomics or microscopy, the gap is very signifi‐
cant (Table 1). One of the reasons is that the methods for protein identification are based,
nowadays, mainly on mass spectrometry, a more complex and expensive technology than
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high-throughput DNA or RNA sequencing. Protein identification is made by matching the
peptides masses to corresponding masses calculated by the software on proteins or translated
gene sequences available in databases. If sequences are not found in databases, protein
identification fails. Over the years, many loopholes have been found, among them the easiest
was to use sequences from other species. Concerning the identification of plant proteins, the
best-studied and well-sequenced plant is Arabidopsis thaliana. Unfortunately, this plant is not
able to form any type of mycorrhizal symbiosis. In the past few years, DNA sequencing has
become cheaper and almost a routine technique, allowing the genome sequence of many
organisms to become available.

Another  aspect  that  has  hindered  the  use  of  proteomics  in  the  study  of  mycorrhizal
interactions is the fact that the mycorrhizal symbiosis involves a small percentage of plant
root cells, that may contain fungal structures at different developmental stages and with
different putative roles [29]. For example, arbuscules are limited to the root cortical cells in
the AM symbiosis, a tissue where not all plant cells are colonized. In addition, the majority
of key proteins are likely to be membrane proteins. Taken together, this means that protein
extraction from AM roots  will  lead to a  very small  percentage of  proteins  expressed in
symbiosis. This ‘dilution effect’ has made it very hard to identify the key proteins direct‐
ly involved in plant–fungus interactions.

In summary, the lack of sequence databases of reference organisms and the difficulties in
protein extraction have characterized the first decade of proteomics applications to mycorrhi‐
zal symbiosis, and explain the limited results obtained.

4. Proteomics in action

The first proteomic investigation of the plant–mycorrhizal fungus symbiosis was published
by Dumas et al. (1990) and used mono-dimensional polyacrylamide gel electrophoresis
(PAGE) to separate soluble proteins from non-mycorrhizal roots and from roots infected by
different AM fungi [30]. After this pioneering study, and because of improvements in sample
extraction, sample purification and in the technological performance of the equipment, many
studies have aimed to identify the key players involved in mycorrhizal interactions (Figure
3). Many strategies have been set up, depending on the target mycorrhizal type, on the
symbiotic stage of interest and subcellular localization [30].

4.1. Proteomics on the early stages of the mycorrhizal symbiosis

The studies on the early stages of the symbiosis coincide with the earlier studies in symbiotic
proteomics. Burgess and collaborators set up a complex experiment to identify proteins either
induced, enhanced or inhibited during the early stages of ECM development [31]. They
compared, over a time-course, the profiles of proteins expressed in roots inoculated with three
different isolates of Pisolithus tinctorius showing different degrees of root colonization: isolate
H2144 exhibited a very high infectivity, isolate 441 showed moderate infectivity, while isolate
H506 was not able to induce ECM [31]. They used two-dimensional electrophoresis (2DE)-
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PAGE, a gel electrophoresis technique introduced in the middle 1970s by O'Farrell and Klose
and able to separate with high-resolution proteins by two orthogonal properties: iso-electrical
point and molecular weight [32]. With this approach, Burgess et al. (1995) found that the
morphological changes observed in the inoculated plant roots were linked with massive
changes in protein composition, and claimed that these changes commenced at the time of
contact between the two partners [31]. It was later discovered [33,34] that these morphological
changes during the establishment of ECM were not caused by the contact between plant and
fungus, because molecular signals released in the rhizosphere were sufficient to trigger them.
The work by Burgess et al. (1995) was nevertheless important because it revealed some plant
and fungal symbiosis-related polypeptides and demonstrated that their upregulation was
tightly correlated with fungal infectivity.

Five years later, another paper on the early stage of the ECM symbiosis was published by
Laurent et al. (1999). They used the same methodological approach, 2DE-PAGE separation,
but they focused their attention on the cell wall polypeptides, in order to identify cell surface
proteins involved in ECM symbiosis development. It was a huge sampling effort not only
because they analyzed the early stage of the symbiosis but also because they had to enrich
samples for cell wall polypeptides (CWP). One of the main results was the observation of the
enhanced synthesis of several immunologically related 31- and 32-kDa fungal polypeptides,
called symbiosis-regulated acidic polypeptides (SRAPs) [35]. As gene expression studies were
also carried out, these proteomic data also highlighted the fact that expression of SRAP-32 was
regulated at transcriptional level, suggesting that the synthesis of new hyphal proteins is an
important process during symbiosis formation [35].

In AM symbiosis, the phase between the first contact and the formation of the first arbuscule,
a period ranging between few hours and 1–2 weeks after inoculation, is normally consid‐

Figure 3. The figure represents different approaches that can be used to collect biological material for AM roots proteo‐
mics. (A) Collection of the whole root is the easiest and quickest approach, but it has a drawback due to the fact that
the amount of proteins involved in the symbiosis is a very small percentage of the all extracted proteins. The visual
enrichment approach allows the collection only of the roots in contact with the fungus. (B) The root organ culture sys‐
tem allows to study the early stages of colonization by following the root and hypha growth until they contact each
other and then collect only the root pieces reached by the hyphae. (C) By microscope inspection, roots with the higher
percentage of fungal hyphae in contact can be selected. (D–E) Using a laser microdissection (LMD) approach, it is pos‐
sible to select non-colonized cells (D) and colonized cells (E) from root sections, and to collect them separately, thus
avoiding the dilution effect caused by the heterogeneous situation of a mycorrhizal root.

Symbiotic Proteomics — State of the Art in Plant–Mycorrhizal Fungi Interactions
http://dx.doi.org/10.5772/61331

119



ered as an early stage of the interaction [36]. Focus on this particular phase is important to
understand the cross-talk between the partners and how the proteomes of the two organisms
change during the colonization events. A study by the group of Dumas-Gaudot [37] focused
on the early stages of the AM symbiosis in three different genotypes of the model plant M.
truncatula: the wild-type (J5), a mycorrhiza-defective (TRV25, dmi3) and an autoregulation-
defective (TR122, sunn) genotype. The study was aimed at investigating changes in the root
proteome elicited in response to appressorium formation by Glomus intraradices.  For this
purpose, the authors compared by 2DE-PAGE the root proteome from non-inoculated roots
and from roots synchronized for appressorium formation by G. intraradices.  The authors
showed  that  proteins  that  responded  to  appressorium  formation  were  differentially
expressed in different genotypes. This paper was important because it  also reported, for
the first time, the identification of plant root proteins involved in mycorrhizal symbioses
by matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrom‐
etry.  This  technique  revealed  appressorium-responsive  proteins  that  were  previously
unknown  on  the  basis  of  transcriptome  analyses,  demonstrating  that  proteomics  and
transcriptomics are complementary approaches [37].

The early stage of the mycorrhizal symbiosis represents a challenging, but also a very attrac‐
tive, stage for proteomics. The sampling time and sampling method are crucial for the
experiment’s outcome, and synchronization of the root colonization events would enrich root
samples in the proteins of interest. Lopez-Meyer and Harrison (2006) first proposed a system
to synchronize AM fungal spore germination and root penetration events [38]. Despite this
technical improvement, the amount of proteins involved in the plant response to the AM
fungus and in the PPA formation, as compared to the amount of proteins in the whole root, is
expected to be very low and at the limit of detectability. Therefore, new strategies for sample
preparation and experimental designs are required to reveal the key components of this
fundamental phase of the mycorrhizal symbiosis.

4.2. Proteomics on late stage

Late stage of the AM symbiosis commonly indicates the phase in which the fungus has already
build up the arbuscules. In nature, the symbiosis is highly dynamic and very complex because,
while arbuscules are forming, new penetration events occur.

Bestel-Corre et al. [39] reported the first mass spectrometry (MS)-based identification of
mycorrhiza-related proteins. These authors studied the response of M. truncatula inoculated
either with the AM fungus Glomus mosseae (current name Funneliformis mosseae) or with the
nitrogen-fixing bacterium Sinorhizobium meliloti. Proteins were separated by 2DE-PAGE and
image analyses, with precise quantification of spots volume performed to identify differen‐
tially expressed protein spots. Those spots were excised from the gels and analyzed by mass
spectrometry. Notably, only plant or bacterial proteins were identified, may be due to
difficulties in extracting fungal proteins. The authors identified several proteins related to
defence responses, root physiology and respiratory pathway. However, none seemed to be a
key protein in the mycorrhizal symbiosis.
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The proteomic analysis of the late stage of the AM symbiosis using the whole root system as
starting material never allowed very good results. To overcome this problem, many studies
on the late stage of the symbiosis focused their attention on a specific sub-cellular compart‐
ment. With this approach, the same group published two other papers few years later, using
sub-cellular fractionation methods, reporting more remarkable results described in the next
paragraphs.

Mycorrhizal systems different from ECM and AM have been seldom investigated with
proteomic approaches. However, recent results have been published for orchid mycorrhiza by
Valadares et al. (2014). For orchids, the association with symbiotic fungi is required for seed
germination and seedling development, when the plant relies on the fungus also for carbon
supply (a strategy termed mycoheterotrophy). Recently, 2D-LC-MS/MS (two-dimensional
liquid chromatography MS/MS) coupled to isobaric tagging for relative and absolute quanti‐
fication has been used to identify proteins with differential accumulation in the orchid species
Oncidium sphacelatum at different stages of plant development after seed inoculation with a
Ceratobasidium sp. fungal isolate. Eighty-eight proteins, including proteins putatively involved
in energy metabolism, cell rescue and defence, molecular signalling and secondary metabo‐
lism, have been identified and quantified. These results suggest profound metabolic changes
during the development of mycorrhizal orchids, likely related to a switch from the fully
mycoheterotrophic to the photosynthetic stages [40].

4.3. Proteomics on sub-cellular compartment

Although 30% of naturally occurring proteins are predicted to be embedded in biological
membranes [41], comprehensive membrane proteomics is technically difficult due to the
hydrophobicity, heterogeneity and lower abundance of membrane proteins. In mycorrhizal
symbioses, membrane proteins are very important because they likely include the receptors
that control the fungal–plant dialogue as well as the transporters that mediate nutrient
exchange. For these reasons, many authors have focused on membrane proteins using different
enrichment protocols.

The  first  study  on  sub-cellular  fractionation  of  membrane  proteins  was  conducted  by
Benabdellah  et  al.  (1998).  They  isolated  the  microsomal  protein  fraction  from colonized
tomato roots,  where they found several  differentially expressed proteins [42].  Few years
later, the same group identified for the first time a protein related to mycorrhizal symbio‐
sis by Edman N-terminal sequencing, after plasma membrane enrichment and 2DE-PAGE
protein separation [43].

The years between 2000 and 2010 saw the rapid increase of mass spectrometry as the main
proteomic technique for protein identification and quantification, replacing other techniques
previously used. The difficulties and the low number of proteins identified with the Edman
N-terminal sequencing were overcome with the advent of mass spectrometry, and new
intriguing possibilities were opened.

Valot et al. (2005) also used a sub-cellular proteomic approach to monitor membrane-associ‐
ated protein modifications during the AM symbiosis [44]. 2DE-PAGE of root microsomes
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revealed some mycorrhiza-responsive proteins including 15 induced, 3 up-regulated, and also
18 down-regulated proteins. Among those 36 regulated proteins, 25 were identified using the
MALDI-TOF. Except for an acid phosphatase and a lectin, none of them was previously
reported as being regulated during the AM symbiosis. This sub-cellular proteomic approach
allowed for the first time the identification of fungal proteins expressed in planta. In their final
conclusion, the authors pinpointed the next challenge: the identification of membrane proteins
located in and around the arbuscule, the mycorrhizal symbiosis-specific fungal structure.

Arbuscules are ephemeral structures that form continuously and collapse at the end of a short
life-span. The identification of proteins temporarily present in a sub-set of cell types remains,
at the present time, a technical challenge for quantitative proteomics. Moreover, membranes
associated with the arbuscules are significantly less, relative to the overall root membranes, as
also suggested by the low amount of fungal RNA found in extensively colonized AM roots,
maximally reaching 12% of the total RNA extracted [45]. Despite these considerations, the same
group attempted to enrich samples for plasma membranes using a discontinuous sucrose
gradient method [46]. In this chapter, two complementary proteomics methodologies for
protein fractionation and identification were applied for the first time to the plant–AM fungus
symbiotic association: an automated 2D liquid chromatography-tandem mass chromatogra‐
phy (LC-MS/MS) using a strong cation exchange and reverse phase chromatography, and SDS-
PAGE combined with a systematic LC-MS/MS analysis. The enrichment for plasma membrane
proteins helped to reduce the sample complexity, and both proteomic approaches involved a
pre-fractionation step before MS analysis, another step that reduced further sample complex‐
ity. Only proteins consistently retrieved with the two methodologies were taken into account,
resulting in the identification of 78 proteins. Of those proteins, 56% were predicted to contain
one or more transmembrane domains, while 30% were already known to be localized on the
plasma membrane. Very stringent criteria were applied to detect only proteins that were
exclusively found in the plasma membrane of mycorrhizal plants. Only two proteins passed
this severe threshold: a plasma membrane proton-efflux P-type ATPase (Mtha1) and a blue
copper-binding protein (MtBcp1). Considering the highly stringent criteria, Valot et al. (2006)
concluded that these two proteins were biologically relevant and deserved further investiga‐
tions. The importance of these proteins was in fact revealed in subsequent studies. Even though
they did not identify the specific function of MtBcp1, Pumplin and Harrison (2009) suggested
the presence of at least two distinct domains in the peri-arbuscular membrane (PAM): an
‘arbuscule branch domain’ that contains the symbiosis-specific phosphate transporter, MtPT4,
and an ‘arbuscule trunk domain’ that contains MtBcp1 [47]. Concerning the other protein
specifically induced in arbuscule-containing cells, Wang et al. (2014) showed that H+-ATPases
are required for enhanced proton pumping activity in membrane vesicles. Functional impair‐
ment of this gene led to impairment in the host plant nutrient uptake through the mycorrhizal
symbiosis, whereas its overexpression increased both phosphate uptake and plasma mem‐
brane potential, suggesting that this H+-ATPase plays a key role in energizing the peri-
arbuscular membrane, thereby facilitating nutrient exchange in arbusculated plant cells [48].

In the past few years, proteomics has seen great technical advances, especially in the mass
spectrometry equipment and bioinformatics resources, with the development of new separa‐
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tion techniques, new multi-dimensional procedures, new searching algorithms, new mass
spectrometers and the availability of more databases. Owing to these new technologies,
Abdallah et al. (2014) were able to identify 1,226 root membrane proteins and to report for the
first time the proteomic identification of several symbiosis marker genes: MtPt4, a mycorrhiza-
specific phosphate transporter [22], the AM-inducible ammonium transporter GmAMT4.1 in
soybean [49], STR half-ABC transporters [50] and vesicle-associated membrane proteins
VAMP721d/e [51].

In the experiments of Abdallah et al. (2014), proteins were quantified by label-free counting.
Protein quantification in label-free experiments is generally based on two types of measure‐
ments:  peptide  peak  intensity  and  spectral  count.  These  parameters  are  measured  for
individual  LC-MS/MS  or  LC/LC-MS/MS  runs  and  changes  in  protein  abundance  are
calculated via  a direct comparison between different analyses [52].  The spectral counting
strategy used by Abdallah et al. (2014) suggests that accommodation of AM fungi within
root cortical cells implies both a dynamic reorganization of the root membrane proteome
and the de  novo  synthesis  of  AM-related proteins  [23].  This  study,  beside the identifica‐
tion of proteins corresponding to key genes already identified in mycorrhizal symbiosis,
also reported new proteins, many of which support the importance of membrane traffick‐
ing during mycorrhiza colonization.

In summary, sub-cellular and peptide fractionations led to the identification of many key
proteins involved in AM symbiosis. Despite the recent contributions of proteomics to the study
of the plant–fungus mycorrhizal interactions were substantial, the role of many of them as
actors in the symbiosis is still to be fully understood.

4.4. Proteomics to identify fungal proteins

Most proteomic studies on the AM interaction have focused on plant proteins. Identification
of fungal proteins is more challenging due to the impossibility to grow AM fungi in axenic
cultures, to the lower amount of fungal biomass, as compared to plant material, and to the
more scanty sequence information. However, pioneering studies have been carried out in
France by Dumas-Gaudot and Recorbet [53,54].

Dumas-Gaudot et al. (2004) used the root organ culture method [55] to enrich for proteins
expressed in the extra-radical mycelium of the AM species G. intraradices. They successfully
produced, for the first time, a 2DE reference map for the extra-radical proteome of an AM
fungus. After the selection of the most intense protein spots, they tried to identify them by
mass spectrometry. Unfortunately, only very few proteins from filamentous fungi were known
and present in public databases, and the only available genome sequence, at that time, was
from Neurospora crassa, phylogenetically very far from Glomeromycota. In spite of that,
identification was possible for 8 proteins out of the 14 analyzed, and homologies were found
for 4 of them.

Few years later, the same group attempted again the identification of fungal proteins expressed
in the AM association [54]. They maintained the same experimental system, but they used the
GeLC-MS/MS method and could identify 92 different fungal proteins. GeLC-MS/MS approach
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combines a mono-dimensional gel (1D-PAGE) and a nano-scale capillary liquid chromatog‐
raphy-MS/MS. Briefly, after the 1D-PAGE separation, the mono-dimensional gel is cut in
several pieces; in-gel digestion results in different protein fractions that are separated and
analyzed by LC-MS/MS. Using the MetaCyc database, a collection of more than a thousand
metabolic pathways [57], these authors grouped those proteins in 11 pathways that span
energy, metabolism and cell rescue processes. These data, together with previous identifica‐
tions of putative homologues of cell-cycle gene in G. mosseae and G. intraradices [56,57], suggest
that signalling pathways known in model species may also operate in AM fungi. Although the
GeLC-MS/MS strategy opened the possibility to large-scale proteomics of mycorrhizal fungi,
no further data have been published with this technique.

Secreted fungal proteins play key roles in host plant colonization and symbiosis development
in ECM interactions. Vincent et al. (2012) have identified the extracellular proteins secreted in
the growth medium by the free-living mycelium of the ECM fungus L. bicolor using 2-DE, IPG-
IEF shotgun (IPG strip was cut into fractions and tryptic peptides were eluted from the each
fraction) and SDS-PAGE shotgun, with the aim to validate predicted secreted proteins and
identify putative novel effectors of the symbiosis. Among the 224 proteins identified, there
were carbohydrate-active enzymes (CAZymes), probably involved in cell wall remodelling
during hyphal growth, as well as secreted proteases. Additionally, the involvement of some
of these proteins in the establishment of the mycorrhizal symbiosis was supported by tran‐
scriptomic analyses of ECM roots [58].

5. Mycorrhizal fungi and heavy metals

In plants, stress tolerance to soil pollution can be increased by their interaction with mycor‐
rhizal fungi [59]. Six out of ten of the most polluted soils in the world are contaminated by
heavy metals [60], and mycorrhizal symbioses have been found to reduce metal toxicity to the
host in soils with potentially toxic amounts of soluble and insoluble metals. Phytoremediation,
the plant-mediated reclamation of polluted soils, is receiving increasing attention as a natural
method to restore the biological features of the soil. Mycorrhizal fungi can have an important
part in this process. Many studies have been carried out on the benefits of mycorrhizal plant–
fungus interaction in heavy-metals-polluted soils, but only few of them have used a proteomic
approach to identify the key proteins potentially involved in mycorrhiza-mediated stress
tolerance. Researches on this topic have analyzed different plant organs, like leaves or root,
but also focused on the symbiotic fungus.

Bona et al. (2010) studied the leaf proteome of the arsenic hyperaccumulator fern Pteris
vittata inoculated with two fungi (Glomus mosseae and Gigaspora margarita), with and without
arsenic treatment [59]. The symbiosis with both fungi decreased arsenic concentration
compared with non-mycorrhizal plants, indicating the protective effect of mycorrhizal fungi.
Interestingly, the plant protein expression profile was different when the plant was inoculated
with G. mosseae or G. margarita. Although they studied a different biological system, Canga‐
huala-Inocente and colleagues (2011) identified instead a core of 25 proteins, supporting the
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existence of conserved plant responses to Glomus irregulare and Glomus mosseae, at least in a
woody perennial species such as grapevine [61].

A study on root proteomics has been conducted by Aloui et al. [62]. They reported, using a
2DE approach followed by MS/MS, the protective effect conferred by G. intraradices to the
model legume M. truncatula in the presence of Cd. They identified 36 mycorrhiza-related
proteins, but only 6 displayed changes in abundance upon Cd exposure. These proteins – a
cyclophilin, a guanine nucleotide-binding protein, an ubiquitin carboxyl-terminal hydrolase,
a thiazole biosynthetic enzyme, an annexin, a glutathione S-transferase (GST)-like protein and
a S-adenosylmethionine (SAM) synthase – seem to have a function in oxidative stress allevi‐
ation [62]. The authors also suggested that antioxidant enzymes and non-enzymatic antioxi‐
dants could be probably involved both in arbuscule senescence [63] and in plant protection
against oxidative damage caused by Cd.

In addition to plant proteomics, mycorrhizal fungi have been also investigated for changes in
their protein profiles when exposed to heavy metals. Adaptive metal tolerance has been
reported for mycorrhizal fungi isolated from polluted soils [64], although the underlying
cellular and molecular mechanisms have been seldom identified [57].

Chiapello et al. (2015} used gel-based and gel-free techniques as a complementary approach
to study the proteome of Oidiodendron maius Zn, an ericoid mycorrhizal fungus isolated from
a polluted soil [65] and showing adaptive tolerance to zinc and cadmium [66]. O. maius Zn can
establish endomycorrhizal symbiosis with the roots of ericaceous plants also in heavily
contaminated soils [67]. The aim of the study was to understand the response of this metal-
tolerant fungus to Cd and Zn ions and to reveal common and/or specific cellular and molecular
mechanisms to counteract heavy metal stress caused by these to metals. The authors concluded
that Cd and Zn induce common as well as specific responses. Among the common induced
proteins, agmatinase, an enzyme involved in polyamines biosynthesis, represents a novel
finding in relation to heavy metal responses in fungi.

6. Conclusion and future perspective

Proteomics has allowed us to identify proteins expressed and regulated during the develop‐
ment and functioning of mycorrhizal symbioses, therefore contributing to a better under‐
standing of the events occurring at the cellular level.

Protein identification is strongly dependent on gene and protein sequences available in
databases, and the constant increase in the number of sequenced genomes in the past decade,
together with improvement of mass spectrometry technology, has helped scientists to obtain
more reliable data. In the past few years, a specialized fungal genomics portal, called Myco‐
Cosm (http://genome.jgi.doe.gov/fungi), has been created by the US Department of Energy
(DOE) Joint Genome Institute (JGI), offering an access point to the data from all the sequencing
genome project managed by the DOE JGI [68,69]. Starting from the three first genome projects
on Laccaria bicolor, Tuber melanosporum and Rhizophagus intraradices [70,71,72], several more
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genomes from symbiotic fungi, including ECM, AM, orchid and ericoid fungi, have been
recently sequenced, with the aim to determine the diversity of the molecular processes
involved in the interaction [28]. Despite the more powerful techniques and wider reference
datasets for protein identification, current limitations exist in the application of proteomics to
the study of plant–microbe interactions. In particular, new extraction methods, microsomal
studies, sub-cellular enrichment, gel-free separation methods, pre-fractioning separations and
new mass spectrometry are still far from being fully explored [73].

In order to identify proteins from a very small subset of target cells, Gaude et al. (2012)
combined laser capture microdissection (LCM) and LC-MS/MS [74]. Laser microdissection
permits the rapid isolation, from sections of a heterogeneous tissue, of a selected cell popula‐
tion in a manner compatible with the extraction of DNA, RNA or proteins [29]. Using LCM,
arbuscule-containing cortical cells and cortical cells from non-mycorrhizal M. truncatula roots
were isolated. Proteomic analyses on these cells revealed a number of proteins involved in
lipid metabolism, most likely related to the synthesis of the PAM. This targeted analysis on a
specific subset of colonized cells, those harbouring the arbuscules, curiously did not identify
known PAM marker proteins, thus suggesting that either sample preparation or instrument
capability were not sensitive enough. Although this first use of LCM in the proteomic inves‐
tigation of the AM mycorrhizal symbiosis did not identify known marker proteins, it high‐
lighted the PAM as an important carbon sink. The LCM technique coupled with MS/MS
techniques could be a powerful combination to investigate the protein profiles of specific cells
at specific time-points. Moreover, LCM can help to overcome the problem of asynchronous
fungal development and arbuscule maturation in mycorrhizal roots. To be able to combine
LCM samples of synchronous arbusculated cells with sub-cellular enrichment, peptide pre-
fractionation and analysis with powerful MS instruments such as Orbitrap Velos (Thermo
Fischer company) may reveal an unexpected specificity during the development of this
symbiotic structure.

Novel MS/MS techniques developed in the past few years in other research fields could also
be applied to investigate plant–fungus symbiotic interactions. For example, selected reaction
monitoring (SRM) is a targeted MS technique used to complement untargeted shotgun
methods. SRM is used to measure across multiple samples – in a consistent, reproducible and
quantitatively precise manner – a set of candidate proteins involved in a particular cellular
process [75]. Based on known data from the literature or previous experiments, a set of target
peptides that optimally represent the protein are selected and after their validation they are
used for protein quantification. Unfortunately, the sensitivity of SRM is limited and it cannot
cover the entire proteome of an organism. Nevertheless, this technique is really promising for
the fine protein quantification in different cell types or conditions. Taylor et al. (2014) used
SRM in plant science to confirm protein abundance in Arabidopsis mutant lines, even when
discrimination between very similar proteins was needed [76]. However, the application of
this technique for the identification of OsPT11, homologue to MtPT4, from wild-type and
mutant lines did not work, probably due to the method’s sensitivity (Chiapello, 2013, unpub‐
lished data). Another promising technique to further investigate the proteome of arbuscule-
containing cells is the single-cell imaging mass spectrometry (IMS), a powerful technique used
to map the distribution of endogenous biomolecules with subcellular resolution [77].
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Year Plant Fungus
Separation

technique
Identification technique Reference

EC
TO

1995 Eucalyptus grandis Pisolithus tinctorius 2DE-PAGE ---
Burgess et al.,

1995

1999
Eucalyptus globulus subsp.

bicostata
Pisolithus tinctorius 2DE-PAGE ---

Laurent et al.,

1999

2007 --- Boletus edulis 2DE-PAGE ESI-Q-TOF MS Liang et al., 2007

2012 --- Laccaria bicolor
IPG-IEF / 1-DE

and 2-DE -PAGE
LCQ IT

Vincent et al.,

2012

A
M

2000 Lycopersicon esculentum Glomus mosseae 2DE-PAGE N-terminal sequencing
Benabdellah et

al., 2000

2001 Medicago truncatula Glomus mosseae 2DE-PAGE MALDI-TOF
Bestel-Corre et

al., 2001

2004 --- Glomus intraradices 2DE-PAGE Q-Tof2
Dumas-Gaudot

et al., 2004

2005 Medicago truncatula Glomus intraradices 2DE-PAGE MALDI-TOF Valot et al., 2005

2006 Medicago truncatula Glomus intraradices 2DE-PAGE MALDI-TOF
Amiour et al.,

2006

2006 Medicago truncatula Glomus intraradices
1-DE and 2-DE -

PAGE / 2D-LC
LCQ Deca XP+ Valot et al., 2006

2009 --- Glomus intraradices 1-DE-PAGE ESI-Q-TOF MS
Recorbet et al.,

2009

2009 Medicago truncatula Glomus intraradices 2DE-PAGE LCQ Deca XP+ Aloui et al., 2009

2010 Pteris vittata
Glomus mosseae / Gigaspora

margarita
2DE-PAGE

QSTAR XL hybrid

quadrupole-TOF
Bona et al., 2010

2011 Vitis vinifere
Glomus mosseae / Glomus

intraradices
2DE-PAGE MALDI-TOF

Cangahuala-

Inocente et al.,

2011

2012 Populus alba Glomus intraradices 2DE-PAGE ESI-Q-TOF MS
Lingua et al.,

2012

2014 Medicago truncatula Rhizophagus irregularis 1-DE-PAGE LTQ XL ion trap
Abdallah et al.,

2014

O
th

er
s

2015 --- Oidiodendron maius
2DE-PAGE / 2D-

LC

MALDI-TOF / QSTAR

MS/MS

Chiapello et al.,

2015

2014 Oncidium sphacelatum Ceratobasidium sp. Isolate 2D-LC ESI-Q-TOF MS
Valadares et al.,

2014

Table 1. List of papers in which proteomics has been applied to study mycorrhizal symbiosis. For simplicity, AM fungi
have been indicated with the names used in the original articles, despite the relatively recent taxonomic revision
(Redecker D1, Schüssler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the
classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515-31).

The ability to analyze a single-cell proteome is exciting, but also extremely challenging. The
first difficulty is the sensitivity, both correlated with the sample itself and with the mass

Symbiotic Proteomics — State of the Art in Plant–Mycorrhizal Fungi Interactions
http://dx.doi.org/10.5772/61331

127



spectrometry detection capability. Every single cell can contain proteins in a range of few to
million copies per cell. However, mass spectrometers are now really powerful, and even with
an attomole detection limit, only the most abundant proteins are detectable [78]. The estimated
number and concentration of proteins in a single mammalian cell is 33 attomole/cell for the
most abundant and 830 yotomole/cell for the less abundant [77]. The second challenge is the
inherent limitation associated with the imaging modality itself. Even if further development
is needed to obtain the combined resolution and sensitivity required, IMS stands up as a very
promising technique to analyze specific cell types or conditions. By employing IMS, Ye et al.
(2013) detected a large array of organic acids, amino acids, sugars, lipids, flavonoids in roots
and root nodules of M. truncatula during nitrogen fixation [79]. They demonstrated that IMS
can obtain unique information on the identity and spatial distribution of plant metabolites,
although high-resolution MALDI-MS is required to fully resolve the metabolic differences in
nodule chemistry.

In conclusion, similarly to other ‘omics’ approaches, proteomics has also made rapid progress
in the recent year, thus making this approach a very useful one to complement information on
gene expression in mycorrhizal tissues. At this speed of technological developments, methods
that allow us to easily assign proteins up-regulated during symbiosis to specific cell types and
sub-cellular compartments may not be too far ahead. These proteomic techniques will be
powerful tools to unravel the molecular component involved in plant–mycorrhizal fungal
interactions.
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Abstract

This chapter provides a concise overview on the methods and applications of targeted
proteomics in the context of translational and clinical studies. Mass spectrometry-based
targeted proteomics has emerged as a promising technique for protein and peptide quan‐
tification, presenting a great potential for clinical applications. While significant amount
of discovery works have been carried out in both genomics and proteomics for an assort‐
ment of diseases, it has been challenging in further characterizing individual protein tar‐
gets for their biological significance and clinical value due to the lack of effective and
“universal” techniques. The development of targeted proteomics approach opened a
unique avenue to bridge the discovery-based genomics and proteomics with candidate-
based protein analysis, which is clinically highly relevant. Targeted proteomics analysis
has been implemented on a variety of instrument platforms, and applied for a wide range
of studies, from blood biomarker detection to pathway-driven mechanistic investigations,
with the triple quadrupole-based selected reaction monitoring (SRM) technique being the
most widely used method. With a right combination of calibration approach, internal
standards, and sample preparation strategies, mass spectrometry-based targeted analysis
has proven to be of inter-laboratory reproducibility and sensitivity in analyzing many
clinical specimens. More recently, the advent of mass spectrometry with high frequencies
and resolutions yielded the data independent acquisition (DIA) techniques, such as se‐
quential window acquisition of all theoretical fragment ion spectra (SWATH). The un‐
biased nature of DIA methods would enable a wider analytical scope and a greater
robustness in targeted analysis, representing a paradigm shift in targeted proteomics.

Keywords: Proteomics, Targeted proteomics, Mass spectrometry, Data independent ac‐
quisition

1. Introduction

The introduction of soft ionization techniques in mass spectrometry has ushered in a fascinat‐
ing era in the analysis of large biomolecules, including metabolites and proteolytic peptides
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and proteins from complex biological matrixes [1,2]. Mass spectrometry-based proteomics is
nowadays utilized in a wide arena of translational and clinical applications for global profiling
of biological matrixes to explore disease mechanisms and to discover novel biomarkers [3,4].
Quantitative mass spectrometry confers the highly sensitive and reproducible targeted
proteomics for the multiplexed quantification of already existing targeted proteins and
putative biomarkers [5,6]. These target proteins can be either a single putative protein
biomarker or a set of proteins involved in a specific cell signaling or a metabolic pathway.

While conventional antibody-based assays, such as ELISA, offer several benefits for the protein
quantification, including ease-of-use and simpler instrumentation, ELISA, however, suffers
from cross-reactivities and protein/protein interactions that would alter the quantification
results based on the level of carrier proteins and based on the free and conjugated levels of the
target molecules [7]. Complementarily, mass spectrometry-based targeted proteomics provides
a different mechanism for multiplexed protein quantification, and has indisputable advantag‐
es in the analysis of genetic changes, polymorphisms, alternative splicing, protein isoforms,
and post-translational modifications [6]. In these circumstances, having an antibody with high
resolution and specificity for each of these diversities, even if not impossible, would be very
difficult to attain. Hence, mass spectrometry-based targeted proteomics can be of complemen‐
tary importance for the antibody-based quantifications, in particular,  for the instances of
validating novel protein biomarkers when the corresponding antibodies are not available, or
for the cases of multiplexed interrogation of hypothesis-driven key proteins [6,8].

Unlike the quantification of small metabolites, proteins are complex macromolecules, constitut‐
ing large masses with multiple charges and various dynamic conformations, preventing them
to be effectively separated in the gas phase within a mass analyzer or being detected with high
mass accuracies. A general theme in targeted quantification, which is widely known as bottom-
up proteomics, is to digest proteins by a proteinase enzyme, usually trypsin, with a high
specificity to cleave the basic amino acid residues namely arginine and lysine to generate smaller
tryptic peptides for facile separations and comprehensive mass spectrometric analysis [2].

A set of different targeted approaches have been already applied for the targeted quantification
of proteins [9]. These approaches are based on the survey of precursor ions, survey of product
ions, neutral loss, or a fragmentation pattern using a variety of instruments [9]. The earlier
targeted proteomic approach, which was called selected ion monitoring (SIM), was based on
the generation of an inclusion list and extraction of the exact ion masses of the targeted
molecules for analysis [9]. Though this technique was simple to operate, it suffered from low
selectivity as many different ions could have similar masses with low level of sensitivities. In
contrast, selected reaction monitoring (SRM) built on a triple quadrupole mass spectrometer
generates higher sensitivities and specificities, especially when combined with stable isotope
dilution. The SRM technique was built based on the unique fragmentation pattern for each
targeted molecule that can be mutually specific and provides high sensitivity.

Triple quadrupole mass spectrometer-based SRM technique has been the most widely used
targeted proteomics approach to date, in which targeted analytes are selected in the first
quadrupole, fragmented in the collision chamber via collision-induced dissociation (CID), and
the produced transitions are further separated by the second quadrupole for detection (See
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Scheme 1). In such a setting, a combination of selected transitions generated from the corre‐
sponding peptide under optimized collision conditions can provide unique identification and
accuracy for targeted peptide measurement. The inclusion of multiple product ions makes the
SRM analysis more specific in ion selection compared to the inclusion list-based interrogation,
and minimizes the interference from a complex background of biological sample via selection
of small mass intervals that leads to higher sensitivities. For the optimal use of this technique,
there is an immense need to identify the suitable signature peptides that would be highly stable
under prolonged digestion and storage and to be highly sensitive through the gas-phase
transitions [10].

Sheme 1. Three different approaches in mass spectrometry-based targeted proteomics (a) selected reaction monitoring
(SRM) where selected fragment ions from a single precursor are measured for the quantification, (b) parallel reaction
monitoring (PRM) where a single precursor ion and entire fragment ions are selected, and (c) data independent acquis‐
ition (DIA) where multiple precursors ions are fragmented simultaneously and the entire fragment ions are monitored.
The presented PRM and DIA technologies are based on Orbitrap mass spectrometers, such as Q-Exactive.

The concept of stable isotope dilution, which was originally developed for the quantification
of metabolites, have been implemented for targeted proteomics analysis using stable isotope-
labeled synthetic peptides as internal standards to facilitate mass spectrometric quantifica‐
tions. Though using different instruments, with different elution, ionization, and collision
conditions would impact the intensities of gas-phase transitions, the use of heavy isotope-
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translational modifications through the synthesis of different combinations that can contain
post-translational modifications [12]. An inter-laboratory study have pointed out that the SRM-
based targeted proteomics using common stable isotope-labeled peptide internal standards
and calibration approaches can be of high reproducibility and reliability [4].

LC-MALDI-TOF/TOF analysis is a different platform for biomarkers discovery and detection
with its own unique characteristics [13,14]. In LC-MALDI-TOF/TOF setting, a peptide sepa‐
ration module is used to generate an array of peptides from complex mixtures in the presence
of stable isotope-labeled internal standards on the sample plate; targeted proteomics is then
carried out by specific interrogation of selected candidates using MALDI-TOF/TOF mass
spectrometer. Such an approach involves detached MS and MS/MS acquisition, allowing
repeat interrogation of a wide range of peptide targets with minimal assay development.

Since the fragmentation patterns in SRM-based targeted proteomics can be dependent on the
vendor types, parallel reaction monitoring (PRM) is devised to improve the identification and
quantification of the targeted peptides. In this technique, as shown in Scheme 1, all the
detectable fragmentation ions from the pre-selected substrate are recorded and used for the
quantification [15]. The second quadrupole is replaced with a high-resolution and high-
frequency Orbitrap mass spectrometer. More recently, the advent of fast and high-resolution
mass spectrometers have made a hybrid discovery and targeted proteomics possible through
data independent acquisition (DIA) [16], in which, multiple precursor ions are surveyed
together (See Scheme 1), rendering a new strategy for targeted mass spectrometric analysis.
Using-high resolution mass spectrometer ensures efficient resolving of complex matrices, and
higher frequencies enrich quantification profiles.

2. Targeted proteomics in translational and clinical investigations

Genomic and proteomic studies have already introduced a large number of putative protein
biomarker candidates for an assortment of diseases [17–22]. This assortment signifies the need
for a universal high-throughput targeted proteomics in order to link the putative protein
biomarkers with clinical trials and to perform their verification and validation in the large-
scale cohort studies [23–25]. The application of the targeted quantitative proteomics in clinical
analysis covers extensive objects ranging from the quantification of proteins, multiplexed
monitoring of key proteins in a pathway, targeted analysis of post-translational modifications,
and examination of the expression of genetic changes.

2.1. Targeted quantification of protein level

Targeted proteomics is widely used for protein quantification. The putative protein biomark‐
ers are designated to be quantified in a large cohort of clinical samples. This form of targeted
quantification can bridge the discovery-based proteomics with the pathways analysis through
high-throughput quantification of the predefined protein biomarkers. The targeted quantifi‐
cations of putative protein biomarkers are based on the quantification of signature peptides
after exhaustive extraction of the proteins from complex clinical matrixes. For the complex
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clinical biofluids and blood samples, the reduction of complexity is of prime importance
(Section 3). The development of highly multiplexed quantitative targeted assays based on the
exploration of suitable signature peptides, optimal transitions, and isotope-labeled internal
standards are presented in Section 4.

The use of isotope dilution allows absolute protein quantification and improves the analytical
accuracy by providing internal standards and compensating the changes occurring through
sample preparation and analysis. A variety of studies on targeted quantification of protein
biomarkers have been reported, including quantification of C-reactive protein from plasma
samples [26,27], quantification of immunoglobulin G and its glycoforms from plasma [28], and
multiplexed targeted detection of protein biomarkers in plasma from pancreatic cancer
patients [29]. In most of the studies, certain types of sample preparation strategies were applied
to reduce the sample complexity or enrich the targeted analytes. Without using prior affinity
depletion or enrichment, a study showed the feasibility of absolute quantitation of 45 endog‐
enous proteins, including 31 putative biomarkers of cardiovascular disease, in human plasma
using mass spectrometric targeted approach [30].

2.2. Targeted monitoring of key proteins in a pathway network

Targeted proteomics can be utilized for the concomitant quantification of a set of proteins that
are involved in a clinical condition, or a biological process [31]. Targeted proteomics has
successfully quantified 464 proteins with known or suspected roles in transcriptional regula‐
tion at RNA polymerase II transcribed promoters in Saccharomyces cerevisiae [32]. A list of 1,261
proteins considered to be differentially expressed in human cancer was compiled from
literature and other sources [33]. Some of these cancer-related proteins were analyzed in
plasma from cancer patients, and 182 proteins were detected in depleted plasma, spanning
five orders of magnitude in abundance and reaching a detection sensitivity of 10 ng/mL [11].

Sentinel proteins report the activation of specific cellular processes. In a study, 570 potentially
suitable sentinels for Saccharomyces cerevisiae from available biological data were selected for
the specific proteins, phosphorylation sites, or protein degradation products that report on
four general classes of biological relationships [34]. Quantitative SRM assays were developed
for 157 sentinel proteins and 152 sentinel phosphopeptides that could simultaneously probe
188 distinct biological processes in Saccharomyces cerevisiae in response to a set of environmental
perturbations.

2.3. Targeted quantification of post-translational modifications

Post-translational modifications (PTMs) are playing a significant role in the activation or
inhibition of biological processes, and their changes would be indicative for a clinical condition.
Among the PTMs that are investigated frequently in clinical studies are phosphorylation and
glycosylation. Glycoproteins unequivocally comprise the major biomolecules involved in
extracellular processes and found mostly in secretome, such as growth factors, signaling
proteins for cellular communication, enzymes, and proteases for on- and off-site processing
[35–37]. Glycoproteomics have been used for the discovery of biomarkers in lung and pan‐
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creatic cancer [38,39]. Phosphorylated secreted proteins of tumor cells have been studied as
source of candidates for breast cancer biomarkers in plasma [40].

For some PTMs, such as phosphorylation, methylation, and acetylation, synthetic reference
peptides can be prepared with covalent modifications to mimic naturally occurring post-
translational modifications [12]. Unlike the total protein quantification, the interrogation of
PTMs status relies on the measurement of the targeted peptides that have undergone the
desired modification. In this type of quantification, the subproteome is typically enriched using
affinity columns or other separation techniques to enhance analytical sensitivity. For example,
in glycosylation analysis, enrichment of N-glycosylated peptides coupled with targeted
proteomics was applied to quantify the disease-responsive proteins in the sera of prostate
cancer patients [41].

2.4. Targeted quantification of genetic changes

Genetic changes may have distinct effects at protein level. It may influence the expression level
of proteins, modify their sequences through single nucleotide polymorphisms, the occurrence
of allelic variants, or may impact the alternative splicing events [42]. Each individual may carry
thousands of nonsynonymous single nucleotide variants in the genome, corresponding to
various amino acid polymorphisms in the encoded proteins [43]. In global proteomic analysis,
it is challenging to identify and quantify all protein variants in complex biological samples [42].
Targeted proteomics can be used in the quantification of protein isoforms, alternative splicing,
SNPs, and other genetic mutations that result in changes in protein sequence. In such studies,
the selected signature peptide should be unique and representing the targeted changes and
should be suitable for mass spectrometric analysis [44].

In a study, which utilized targeted proteomics to quantify single amino acid polymorphisms,
the absolute concentrations of three selected single amino acid polymorphism-peptides were
measured in plasma from multiple individuals using SRM with the aid of heavy isotope-
labeled peptide internal standards [44]. In a different study, a strategy for the comparative
analysis of single amino acid polymorphism was developed by integration of stable isotope
dimethyl labeling with a variation-associated database search approach. The technique could
discover as many as 282 unique variation sites and quantify them in the human liver tissues.
Although the identifications were restricted to the known genomic sequence variations, the
use of a concise database improved the identification of variants at the protein level [45].

3. Reducing sample complexity — Blood analysis

Blood is a highly informative clinical matrix, which has been widely used in clinical analysis.
In proteomics, the major challenge associated with the plasma or serum analysis is not only
the sample complexity but also the enormous dynamic range (more than 11 orders of magni‐
tude) in protein concentration [46]. The presence of high abundance proteins, such as albumin
and IgG, can significantly mask the detection of low abundance proteins. Without prior sample
treatment, the reported lower detection limit for plasma analysis using targeted proteomics
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was at µg/mL level [27], which is not suitable for measuring the majority of low and medium
abundant proteins.

The depletion of high abundance proteins, fractionations at either protein or peptide levels,
enrichment of target proteins, peptides, or sub-proteomes are among the suitable techniques
that can be used to reduce the complexity of blood samples. A useful and convenient reduction
of blood complexity should be performed based on the purpose of study and target molecules
that are needed to be quantified [5].

3.1. Immuno-depletion of the high-abundance proteins

Immuno-depletion of the high-abundance proteins has been widely used to reduce the blood
sample complexities. By depletion of the major plasma proteins, targeted mass spectrometric
analysis could reach the lower limit of detection between 1 and 10 ng/mL [5]. The number of
high-abundance proteins to be depleted varies and depends on the purpose of studies.
Potential loss of non-target binding proteins associated with immuno-depletion may be a
concern in some cases [47,48]. It has been proven that such a simple treatment of sample is an
effective way to reduce complex matrix background and to highlight the candidate analytes
for targeted analysis in a high-throughput manner [29,47,49].

Candidate protein biomarkers at low ng/mL to pg/mL levels were detected in serum after
removing the 12 most abundant and 77 moderately abundant proteins from serum samples
using antibody affinity columns [50]. Using immuno-depletion approach, proteins with 100
ng/ml or higher concentrations are readily accessible by targeted MS in plasma without
antibody enrichment [51].

3.2. Fractionation of the plasma samples at protein or peptide levels

Besides immuno-depletion of high-abundance proteins, the fractionation of the proteins by
size exclusion chromatography or using 2D electrophoresis can reduce blood complexity. On
the other hand, tryptic peptides from the shotgun proteomics can be separated at peptide level
using orthogonal separations, such as ion exchange chromatography coupled with reversed
phase LC separation (e.g. MudPIT – multidimensional protein identification technology [52]),
to obtain a better resolution of the eluting peptides. Online peptide fractionation strategies
were also introduced to enhance quantitative analysis [53].

3.3. Targeted enrichment of proteins, peptides, or sub-proteome

Besides the fractionation practices and immuno-depletion, target proteins or peptides or sub-
proteome can be enriched from the complex matrices using affinity or chemical methods to
facilitate targeted analysis.

The method of stable isotope standards and capture by anti-peptide antibodies (SISCAPA) can
reach a LOD as low as 0.1 ng/mL for plasma detection [54,55]. Rabbit polyclonal antibodies
raised against the selected peptide sequences were covalently immobilized on POROS
supports for enrichment of target peptides along with their heavy isotope labeled counterparts,
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which were spiked in as internal standards for absolute quantification [54]. The technique has
proven to enrich the target peptides against the background peptides by more than 100 times,
and can be used to achieve high-throughput analysis using SPE-MS/MS technique [56].

Similar to the enrichment of specific target proteins or peptides, a sub-proteome at protein or
peptide level can be enriched from the complex blood samples. Among the sub-proteome that
are widely enriched from blood samples are N-linked glycoproteins/glycopeptides and
phosphorylated residues. For N-glycoproteome analysis, lectin affinity and hydrazide
chemistry have been the most widely utilized methods for the enrichment of glycoproteins or
glycopeptides. TiO2 columns are able to selectively purify phosphorylated peptides and sialic
acid-containing N-glycopeptides [57].

Lectins are glycan-binding proteins that can bind to their target glycan moiety with high
specificity [58,59]. The lectin affinity of sugar-containing residues can help their affinity
enrichment at protein or peptide levels [60], which may be followed with the site-directed
tagging of N-glycosylation sites by 18O during the elution with N-glycosidase [61]. Hydrazide
chemistry occurs when certain sugars of the glycoproteins are oxidized to form reactive
carbonyl groups. These carbonyls can then be conjugated to hydrazide-activated cross-linkers.
The conjugated peptides/proteins are digested by PNGase F enzyme to cleave glycans from
protein N-glycosylated sites, causing a mass shift of 0.98 Da due to the conversion of asparagine
to aspartic acid [62,63]. This specific mass shift can be used for targeted interrogation of N-
glycopeptides to identify N-glycosylation sites [64] and to monitor the glycosylation levels
associated with the corresponding N-glycosylation sites [65]. Using such an approach, studies
have demonstrated a LOD in the low ng/mL range and an analytical dynamic range over 5
orders of magnitude for plasma detection [66].

TiO2 column is able to selectively purify phosphorylated peptides and sialic acid-containing
N-glycopeptides. A method that combines an optimized TiO2 protocol and hydrophilic
interaction liquid chromatography to simultaneously enrich, identify, and quantify phospho‐
peptides and formerly N-linked sialylated glycopeptides to monitor changes associated with
cell signaling in brain tissues has been reported [57]. Head-to-head comparison of several
serum fractionation schemes, including N-linked glycopeptide enrichment, cysteinyl-peptide
enrichment, magnetic bead separation, size fractionation, and immuno-depletion of abundant
serum proteins have been performed. The analysis showed that immuno-subtraction was the
most effective way to simplify the serum proteome while maintaining reasonable sample
throughput [67].

3.4. Other instrumental innovations in reducing the blood complexity

High-pressure, high-resolution separations coupled with intelligent selection and multiplex‐
ing (PRISM) is an antibody-free strategy to reduce the plasma complexity for SRM analysis
[68]. The strategy capitalizes on high-resolution reversed-phase liquid chromatographic
separations for analyte enrichment, intelligent selection of target fractions via online SRM
monitoring of internal standards, and fraction multiplexing before nano–liquid chromatogra‐
phy–SRM quantification. With the aid of the depletion of the 14 most abundant proteins, a
study demonstrated that this method could detect AGR2 protein in human serum with the

Recent Advances in Proteomics Research142



which were spiked in as internal standards for absolute quantification [54]. The technique has
proven to enrich the target peptides against the background peptides by more than 100 times,
and can be used to achieve high-throughput analysis using SPE-MS/MS technique [56].

Similar to the enrichment of specific target proteins or peptides, a sub-proteome at protein or
peptide level can be enriched from the complex blood samples. Among the sub-proteome that
are widely enriched from blood samples are N-linked glycoproteins/glycopeptides and
phosphorylated residues. For N-glycoproteome analysis, lectin affinity and hydrazide
chemistry have been the most widely utilized methods for the enrichment of glycoproteins or
glycopeptides. TiO2 columns are able to selectively purify phosphorylated peptides and sialic
acid-containing N-glycopeptides [57].

Lectins are glycan-binding proteins that can bind to their target glycan moiety with high
specificity [58,59]. The lectin affinity of sugar-containing residues can help their affinity
enrichment at protein or peptide levels [60], which may be followed with the site-directed
tagging of N-glycosylation sites by 18O during the elution with N-glycosidase [61]. Hydrazide
chemistry occurs when certain sugars of the glycoproteins are oxidized to form reactive
carbonyl groups. These carbonyls can then be conjugated to hydrazide-activated cross-linkers.
The conjugated peptides/proteins are digested by PNGase F enzyme to cleave glycans from
protein N-glycosylated sites, causing a mass shift of 0.98 Da due to the conversion of asparagine
to aspartic acid [62,63]. This specific mass shift can be used for targeted interrogation of N-
glycopeptides to identify N-glycosylation sites [64] and to monitor the glycosylation levels
associated with the corresponding N-glycosylation sites [65]. Using such an approach, studies
have demonstrated a LOD in the low ng/mL range and an analytical dynamic range over 5
orders of magnitude for plasma detection [66].

TiO2 column is able to selectively purify phosphorylated peptides and sialic acid-containing
N-glycopeptides. A method that combines an optimized TiO2 protocol and hydrophilic
interaction liquid chromatography to simultaneously enrich, identify, and quantify phospho‐
peptides and formerly N-linked sialylated glycopeptides to monitor changes associated with
cell signaling in brain tissues has been reported [57]. Head-to-head comparison of several
serum fractionation schemes, including N-linked glycopeptide enrichment, cysteinyl-peptide
enrichment, magnetic bead separation, size fractionation, and immuno-depletion of abundant
serum proteins have been performed. The analysis showed that immuno-subtraction was the
most effective way to simplify the serum proteome while maintaining reasonable sample
throughput [67].

3.4. Other instrumental innovations in reducing the blood complexity

High-pressure, high-resolution separations coupled with intelligent selection and multiplex‐
ing (PRISM) is an antibody-free strategy to reduce the plasma complexity for SRM analysis
[68]. The strategy capitalizes on high-resolution reversed-phase liquid chromatographic
separations for analyte enrichment, intelligent selection of target fractions via online SRM
monitoring of internal standards, and fraction multiplexing before nano–liquid chromatogra‐
phy–SRM quantification. With the aid of the depletion of the 14 most abundant proteins, a
study demonstrated that this method could detect AGR2 protein in human serum with the

Recent Advances in Proteomics Research142

concentration in the range of 50–100 pg/mL [69]. It is also reported that without the upfront
immuno-depletion of the high-abundance proteins, the PRISM technique can reach limit of
detections at low ng/mL range [70]. In addition to sample preparation strategies, ion mobility
separation has been used for analyzing plasma samples, capitalizing on the gas phase
separation of the co-eluting ions [71].

4. SRM assay development

Targeted quantitative proteomics requires development of high-throughput assays [72] to
effectively detect a wide range of proteins in a biological sample with high reproducibility and
robustness [73]. SRM-based methods have been the gold standard for MS-based protein
quantification and have been widely applied in various studies. The development of an SRM
assay typically involves an appropriate sample preparation, an optimal selection of signature
peptides, and a well-calibrated MS protocol [74–76]. In the analysis of blood and other
biofluids, especially when targeting low-abundance proteins, an effective sample preparation
is almost mandated to reduce sample complexity or/and enrich targeted analytes, as afore‐
mentioned in Section 3.

4.1. Exploration of the most suitable signature peptide

An optimal assay should include the most sensitive and the most stable unique signature
peptides to represent the target proteins. Ideally, multiple signature peptides that are belong‐
ing to different domains of the protein are preferred to quantify the target protein for the
reasons of reliability of the quantifications. This is because various domains may have different
efficiencies for trypsin digestion. The results of quantification for each signature peptide may
differ, which in this case might be indicative for the truncation of the target protein or
degradation besides the different digestion rates from different domains [10].

Evaluation of candidate signature peptides from the target proteins is of importance to obtain
a sensitive and reliable quantification. The uniqueness of the signature peptides can be verified
by comparison with the protein databases using alignment software such as protein BLAST,
and empirically verified from matrix. Moreover, the unique peptides should be evaluated for
their stability, the absence of labile residues, and the risk of incomplete digestion, PTMs, having
appropriate length, hydrophilicity, and other relevant parameters, such as their chromato‐
graphic and mass spectrometric characteristics [77]. Human plasma proteome project have
already identified 20,433 distinct peptides, from which a highly nonredundant set of 1,929
protein sequences at a false discovery rate of 1% are inferred [78]. In addition, collections of
peptide spectral libraries, such PeptideAtlas [79] and SRMAtlas [80], provide empirical data
to facilitate signature peptide selection.

4.2. Optimization of collision energy and most sensitive transitions

Selection of the most robust transitions is essential for quantification of signature peptides.
Usually, multiple transitions are selected for the verification of a same signature peptide. In
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the case of presence of pure signature peptides, the fragmentation pattern for each of them can
be performed empirically and the most stable and sensitive transitions can be selected for assay
development. But in the absence of pure signature peptides, using the existing spectral libraries
such as PeptideAtlas [79,81] or SRMAtlas [80] can provide useful information in evaluating
the mass spectral characteristics of a peptide. These libraries are based on the computational
or experimental data resulted from the collision fragmentation of a large number of synthe‐
sized peptides. However, it should be noted that the fragmentation patterns depend on the
instrument types and may differ by different vendors. One possible solution can be the use of
on-the-fly orthogonal-array optimization of the collision energies and transitions for any given
signature peptide, especially in the absence of the pure signature peptides [82]. Another
approach is using PRM, in which all the fragmented ions obtained from the same substrate are
monitored together to obtain a more reliable quantification result [15], as illustrated in Scheme
1.

To assist transition selection, a novel algorithm was presented to allow the construction of SRM
assays from the sequence of the targeted proteins alone. This approach relies on combinatorial
optimization with machine learning techniques to predict proteotypicity, retention time, and
fragmentation of peptides, enabling rapid development of a targeted SRM experiment [83].
Using the contemporary MS capabilities, instrument parameters can be optimized for each
peptide for any given retention time and transition. A study has shown that the optimal
collision energies for each respective charge-state can be predicted using linear equations
based on the peptide precursor mass. These charge-state-dependent equations for predicting
the optimal collision energies are embedded within Skyline software [84].

It is also worthy to mention that in triple Q based SRM methods, there is a reverse relation
between increased dwell time to obtain higher sensitivities, and a reliable peptide profiling.
Spending longer times for each analysis means less number of quantified points, and poor
peptide time profiles. This issue can be partly addressed by using scheduled SRM acquisition
and restricted time window for the known peptides expected to elute in the corresponding
time interval [85]. Higher resolution separation with high reproducibility and longer gradient
times would increase the number of target peptides to be quantified with high sensitivity and
reliability within a single run.

4.3. Exploration of the most suitable internal standards

Targeted proteomics can be used for either relative or absolute quantification. In the case of
absolute quantification, there is a need for appropriate calibration set up next to the isotope
dilution mass spectrometry. Individual heavy isotope-labeled internal standards, which are
spiked in a sample with known amounts, would serve as internal standards for the corre‐
sponding endogenous peptides for specific quantification. On the other hand, with less
quantitative accuracy, a single internal standard or fluorinated internal standards can be used.
In addition, stable isotope-labeled proteins, such as QconCATs, can be used as internal
standards, having the advantage of circumventing the variations caused during digestion [86].
With optimal settings and a stringent quality control, SRM-based targeted proteomics can be
highly reproducible within and across laboratories [4]
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5. Data Independent Acquisition (DIA) for targeted analysis

Advent of high-frequency and high-resolution mass spectrometry has provided the potential
for data independent acquisition (DIA) [16,87]. While conventional data dependent analysis
precludes the analysis of some eluted peptides [88], in DIA acquisition, MS generates virtually
all the MS/MS fragmentation spectra from all precursor ions that are falling into a predefined
m/z range. Hence, each recorded MS/MS fragmentation spectrum is a multiplexed recording
of the fragment ions derived from all peptides eluting in real time within the predefined m/z
range of the precursor window [87]. Scheme 1 illustrates the main elements in DIA technique.
Due to the unbiased fragmentation of precursor ions, DIA approach provides a high multi‐
plexing capability, high reproducibility, and wide analytical scope. Conceptually, DIA-based
mass spectrometric analysis can be viewed as an SRM assay on all peptides detected, allowing
extraction of pseudo SRM data for any peptide of interest within the mass spectrometric
detection limit. The design of a DIA method may be dependent on study purpose and sample
type, and requires an optimal balance of multiple instrument parameters, including targeted
mass range, DIA window width, duty cycle time, and automated gain control, etc.

DIA is a generic term encompassing a wide range of recently developed techniques that are
built on the analysis of a non-predefined set of precursor ions. The early DIA technique,
PAcIFIC, was based on the multiple LC/MS runs at limited mass ranges [89,90]. The technique
suffered from prolonged analysis times. Recently, a variety of DIA techniques have been
explored and implemented using different mass spectrometers, including triple TOF based
sequential window acquisition of all theoretical fragment ion spectra (SWATH), Q/TOF based
MSE, and Orbitrap based multiplexing strategy (MSX) [87]. These DIA techniques differ in the
instrument platforms and using isolation windows of various widths, depending on different
study purposes and instrument settings [91,92].

Coupled with hydrazide-based solid phase extraction for N-glycosylation enrichment,
SWATH has been applied to analyze deglycosylated N-glycopeptide in human plasma. While
the sensitivity of SWATH was slightly less than SRM, the study demonstrated that SWATH
could reach a detection limit of 5 ng/mL in plasma and quantify N-glycopeptides with a
concentration range of 4 orders of magnitude [93]. The same approach (using N-glycopeptide
enrichment) was successfully applied to analyze prostate cancer tissues and identified 1,430
N-glycosylation sites from each sample in average, including 220 proteins that showed
quantitative changes associated with tumor aggressiveness [94].

A recent study has suggested that more than 10,000 human proteins (the majority of human
proteins from UniProt database) could potentially be covered using SWATH-MS technique
that can be of high value for clinical studies [95]. In this study, a variety of human cell types
and depleted human plasma samples were analyzed with the aid of various sample prepara‐
tion techniques, including affinity purification, size exclusion chromatography, strong anion
exchange, and gel electrophoresis [95]. In the quantitative study of human twin population,
the plasma samples from twins are used to explore the impact of longitudinal factors in blood
proteomic changes. This study included the identification of some genetic changes that
occurred by time [96].
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For phosphoproteomics, SRM and SWATH have shown similar performance in the determi‐
nation of changes of phosphopeptide levels extracted from human plasma [97]. The general
theme in the DIA analysis of phosphorylation and glycosylation is the selective enrichment of
the corresponding sub-proteome [15,34,94]. A DIA method, namely combination hyper-
reaction monitoring (HRM), used retention time normalized (iRT) spectral libraries for spectral
identification. Using a controlled sample set, the HRM outperformed shotgun proteomics both
in the number of consistently identified peptides across multiple measurements and quanti‐
fication of differentially abundant proteins when it profiled acetaminophen (APAP)-treated
3D human liver microtissues [98].

6. Software used in targeted proteomics

A variety of software has been developed to assist targeted proteomic data analysis. MRMer is
an interactive open source and cross-platform system for data extraction and visualization of
multiple reaction monitoring experiments [99]. MRMer parses and extracts information from
MS files encoded in the platform-independent mzXML data format. mProphet is an automat‐
ed data processing and statistical validation tool for large-scale SRM experiments [100]. Skyline
can be used for analyzing a variety of targeted proteomic data, including SRM- and DIA-
based data [101]. The extraction of pseudo-SRM profiles from DIA data requires a spectral
library, which can be built using global profiling data for peptide and protein identification.
Skyline is also capable of analyzing MSX (Multiplexed MS/MS) based DIA data [102]

DIA-Umpire is a software program that has been recently developed and performs the data
extraction based on the co-elution of the substrate and its corresponding fragmentation to build
a pseudo-MS/MS library, which later can become useful in identification and targeted
quantification [103]. Spectronaut extends the limits of quantitative proteome profiling with
DIA [98].

7. Current status and further research

Currently, SRM is the gold standard for mass spectrometry-based targeted analysis and has
been widely applied in a broad range of translational and clinical studies. While SRM provides
high sensitivity, one major drawback from using SRM is that a SRM assay is dependent on the
geometry of instruments and the instrumental settings. Thus, it would require an extensive
effort in assay development for each specific group of analytes on a particular instrument. The
number of SRM assays is also limited as there is a reverse correlation between the number of
transitions (selectivity) and the quality of quantification (sensitivity). On the other hand, the
advent of DIA has introduced a virtually unlimited pseudo-SRM analysis that can be run once
and used for the extraction of any given data within the detection limit. The technique, which,
in a way, hybrids the technical characters of discovery-based proteomics and targeted analysis,
is undergoing a rapid progress and represents a paradigm shift in targeted proteomics. The
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non-biased nature and the highly multiplexing capacity that is enhanced by DIA will render
a universal approach for targeted proteomics in translational and clinical investigations.
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